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Preface

It gives us great pleasure to present the proceedings of the 9th Asian Conference
on Computer Vision (ACCV 2009), held in Xi’an, China, in September 2009.
This was the first ACCV conference to take place in mainland China.

We received a total of 670 full submissions, which is a new record in the
ACCV series. Overall, 35 papers were selected for oral presentation and 131
as posters, yielding acceptance rates of 5.2% for oral, 19.6% for poster, and
24.8% in total. In the paper reviewing, we continued the tradition of previous
ACCVs by conducting the process in a double-blind manner. Each of the 33 Area
Chairs received a pool of about 20 papers and nominated a number of potential
reviewers for each paper. Then, Program Committee Chairs allocated at least
three reviewers to each paper, taking into consideration any conflicts of interest
and the balance of loads. Once the reviews were finished, the Area Chairs made
summary reports for the papers in their pools, based on the reviewers’ comments
and on their own assessments of the papers.

The Area Chair meeting was held at Peking University, Beijing during July
6–7, 2009. Thirty-one Area Chairs attended the meeting. They were divided
into eight groups. The reviews and summary reports for the papers were dis-
cussed within the groups, in order to establish the scientific contribution of each
paper. Area Chairs were permitted to confer with pre-approved “consulting”
Area Chairs outside their groups if needed. The final acceptance decisions were
made at a meeting of all the Area Chairs. Finally, the Program Chairs drew up
a single-track technical program which consisted of 12 oral sessions and three
poster sessions for the three-day conference. We are glad to see that all of the
oral speakers presented their papers at the conference.

The program included three plenary sessions in which world-leading
researchers, Roberto Cipolla (University of Cambridge), Larry S. Davis (Uni-
versity of Maryland), and Long Quan (Hong Kong University of Science and
Technology), gave their talks. We would like to thank them for their respec-
tive presentations on 3D shape acquisition, human tracking and image-based
modeling, which were both inspiring and entertaining.

A conference like ACCV 2009 would not be possible without the concerted
effort of many people and the support of various institutions. We would like
to thank the ACCV 2009 Area Chairs and members of the Technical Program
Committee for their time and effort spent in reviewing the submissions. The
local arrangement team, led by Yanning Zhang, did a terrific job in organizing
the conference. We also thank Katsushi Ikeuchi, Tieniu Tan, and Yasushi Yagi,
whose help was critical at many stages of the conference organization. Last but
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not least, we would like to thank all of the attendees of the conference. Due to
their active participation, this was one of the most successful conferences in the
history of the ACCV series.

December 2009 Hongbin Zha
Rin-ichiro Taniguchi

Stephen Maybank
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Abstract. Extracting textured objects from natural scenes is a chal-

lenging task in computer vision. The main difficulties arise from the in-

trinsic randomness of natural textures and the high-semblance between

the objects and the background. In this paper, we approach the ex-

traction problem with a seeded region-growing framework that purely

exploits the statistical properties of intensity inhomogeneity. The pix-

els in the interior of potential textured regions are first found as tex-

ture seeds in an unsupervised manner. The labels of the texture seeds

are then propagated through their respective inhomogeneous neighbor-

hoods, to eventually cover the different texture regions in the image.

Extensive experiments on a large variety of natural images confirm that

our framework is able to extract accurately the salient regions occupied

by textured objects, without any complicated cue integration and specific

priors about objects of interest.

1 Introduction

Extracting salient textured objects in natural scenes has long been a central but
tantalizing problem in computer vision. Unlike mosaic texture, natural textures
tend to be more random. The texture appearance of an object of interest, e.g.
the stripes/blocky-fur of a zebra/wild cat (see the top two rows in Fig.1), may
even vary greatly in scale, shape, size and orientation. Textural properties like
roughness, linearity, density, directionality, frequency and phase all seem to be
far too rudimentary to characterize the plausible regularities behind complex
natural textures [1,2,3]. Moreover, the background tends to show a high de-
gree of resemblance in appearance to the contained objects in many situations.
The two images in the bottom rows of Fig.1 illustrate such examples. In the
square patch marked on each image, the pixels come from both the ground/riffle
background and the lizard/otter object (zoomed in second panel). The local
differences among them are however very hard to detect in the respective orig-
inal image. The two factors jointly explain why existing methods based solely
� Supported by National Natural Science Foundation of China of Grant No. 60632050.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 1–10, 2010.
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Fig. 1. The success of our INP on a set of challenging images. Our work is to aggre-

gate the inhomogeneous pixels around the textured seeds shown in the third panel (in

white). Beginning with an arbitrary object-seed (marked by ‘+’), our INP accurately

extracts each desired object (fourth panel) in one piece which is consistent with human

segmentation (fifth panel).

on texture homogeneity seldom achieve satisfactory results in natural texture
segmentation.

To this end, recent years have seen a surge of interests in this field in two direc-
tions: cue integration [4,5,6,7] and interactive or semi-supervised segmentation
[8,9,10,11]. In the former algorithms, multiple cues including texture are utilized
to reach a combined similarity measure for image segmentation. Each cue han-
dled by a separate module is to assess the coherence of nearby pixels or regions
with respect to that cue. Note that each module typically comes with its own set
of parameters. Careful assignment of these parameter values is a non-trivial job,
which critically influences the segmentation results in many cases [5,11]. The ul-
timate goal of the latter methodology is to extract the desired objects with some
useful prior knowledge about the textures, edges, contours, shapes, curvatures
or motions of objects. Different priors have a preference towards different types
of task-driven segmentations. Such image prior is usually incorporated into the
segmentation process in three ways: (i) being “seeds” specified by users in an
initialization step [8]; (ii) being a regularization term formulated into a mean-
ingful energy function [9]; (iii) serving as top-down cues globally blended with a
bottom-up segmentation process [10,11,5]. Appropriate prior knowledge is ben-
eficial to a good segmentation, but the challenge of automatically obtaining the
prior knowledge for a variety of natural images still lies ahead.
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Fig. 2. A general schematic framework (left) and flowchart (right) of INP

In this paper, we focus on a different strategy which exploits solely the statis-
tical inhomogeneity in intensity within the image to segment. In practice, almost
all textures involve spatially significant fluctuations or variations in pixel inten-
sity in a low-level perspective [2,12]. That is, the pixels in a textured region do
not simply adhere to a piecewise-constant or piecewise-smooth homogeneity in
intensity. For example, zebras are easily recognizable by their very black and
white striped body. As such, we here address the problem of textured object ex-
traction head on via the intensity inhomogeneity. We believe it to be an intrinsic
property of just about any texture in the natural world [2].

Our approach, called Inhomogeneous Neighborhood Propagation (INP), is de-
signed to work with a seeded region growing strategy. It is to aggregate the
nearby inhomogeneous pixels all together in a bottom-up merge manner. Figure
2 (left) depicts a general schematic framework of our INP. The framework con-
sists of three primary steps: (i) identifying all the inhomogeneous pixels which
with high probability are in the interior of potential textured regions, and thereby
perform the important role of textured seeds; (ii) propagating the labels of the
texture seeds through their respective inhomogeneous neighborhoods by a sensi-
ble principle that specifies an equivalence relation over the set of textured seeds;
(iii) extracting the desired objects according to human vision from the formed
saliently textured regions that are covered by adjacent inhomogeneous pixels in
the image. Here it is worthwhile to highlight two aspects:

– INP often identifies many background pixels as textured seeds (see the white
areas in the third panel of Fig.1, especially the bottom three cases). The reason
is that intensity discontinuities may also be caused by grassy or foliaged clutter,
surface markings, occlusions, shadows and reflections. All of them are common in
the background of natural images. We have made no effort to simplify the image
to segment, so the unbiased statistics of the image are well preserved (including
disturbances in the background). In such situations, the background is usually
fragmented into pieces by INP, see an example in Fig.2 (left).

– INP is robust to the order of the initial seed selection as it virtually yields a
partition of the set of textured seeds in mathematics. This means, with respect
to its two parameters, INP maps every identified seed pixel into one and only
one equivalence class. Namely, INP defines an equivalence relation (ER) over a
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non-empty, finite set of textured seeds. The properties of an ER (i.e. reflexivity,
symmetry and transitivity) ensure that the segmented results are invariant under
different seed selection orders in INP for a fixed parameter setting.

By virtue of this quality, among the identified textured seeds, we can concen-
trate on only the object seeds irrespective of those in the background. Specifi-
cally, a top-down visual attention is integrated to position an object-seed with
a ‘+’ mark as illustrated in the third panel in Fig.1. It allows our INP to grow
only the region around the selected object-seed to cover the desired object. In
our implementation, each target object in the image is accurately extracted in
such a low-cost shortcut (4th panel in Fig.1). In this way, our INP requires only
two stages: textured seeds identification and object-seed labels propagation. Sec-
tion 2 details the two stages as well as the related key concepts. The algorithmic
analysis about parameter sensitivity and computational efficiency is discussed
in Section 3. Experiment results and evaluations reported in Section 4 confirm
the effectiveness of INP in a variety of natural images. Finally, a conclusion is
given in Section 5.

2 Our Method: INP

In general, an image I is a pair(I, I), consisting of a finite set of pixels I in a
grid space Z2 and a mapping I that assigns each pixel p =(px, py) ∈ I with an
intensity value I (p) in some arbitrary value space. A textured region here is just
described as a function of spatial variations in pixel intensities. In what follows,
the work is thus all related to the local intensity contrasts between pixels.

2.1 Textured Seeds Identification

Consider the square neighborhood N (p) of each pixel p, for a given threshold
ε ≥ 0, there should be pixels in the sets

Ω(p) = {q ∈ N(p) : |I(p) − I(q)| > ε} (1)

Ω′
(p) = {q ∈ N(p) : |I(p) − I(q)| ≤ ε} (2)

where N (p)={q∈ I:|px-qx|≤k,|py-qy|≤ k}, k≥1 and k∈Z. Since Ωp

⋃
Ω′

p=N (p),
it is straightforward for us to define a pixel inhomogeneity factor (PIF) as follows:

PIF(p) =
|Ω(p)|
|N(p)| (3)

where |·| denotes the cardinality of a set, i.e. the number of elements in the
set. This value within [0,1] will be quite discrepant for different pixels. It is
obvious that PIF(p)<0.5 when |Ω(p)|<|Ω′(p)|. In such a situation, the inten-
sity variations between p and most of its adjacent pixels are low. With high
probability, they belong to a smooth region [13]. In contrast, PIF(p)≥0.5 when
|Ω(p)|≥|Ω′(p)|. It implies that the majority of pixels around p have intensity



Exploiting Intensity Inhomogeneity to Extract Textured Objects 5

values much larger or smaller than that of p. In that case, p usually lies in some
inhomogeneous image region, such as object contour or boundary [13]. It is thus
reasonable to score the intensity inhomogeneity of pixels by PIF(p)≥0.5.

To ensure that the pixels indeed originated from textured objects, we further
highlight the other important aspect of a potential textured pixel p, i.e, most of
its neighboring pixels should also have inhomogeneous intensities. In this respect,
a neighborhood inhomogeneity factor (NIF) is put forward in the following:

NIF(p) =
|InNeb(p)|
|N(p)| (4)

where InNeb(p)={q∈N(p): PIF(q)≥ 0.5, p∈ I}. It represents the set of inhomo-
geneous neighbors of an arbitrary pixel p in the image. Putting the two terms
together, the set of seed pixels for growing the desired textured regions is defined
as below:

SEED = {p : PIF(p) ≥ 0.5, NIF(p) ≥ 0.5, p ∈ I} (5)

2.2 Inhomogeneous Neighborhood Propagation

Algorithmically, our INP belongs to the family of region growing and merg-
ing techniques. This old but popular technique has been revived in the last
few years due to its native hierarchy configuration and ease of implementation
[10,7,11,5,13]. In region growing, pixels being elementary regions are gradually
merged to produce larger and larger regions in a sequence of iterative steps.
From a probabilistic viewpoint, a demanding statistical test has to be done to
give a merging predicate and an order in merging [10,11,5].

A recent work in [13] turns around to first find the most representative “seed”
pixels and then define an equivalence relation on the seed set. Each region of
interest in the image is hence associated with an equivalence class. In set theory,
it ensures the separability of an arbitrary image, as well as the robustness to the
selection order of initial seed pixels. To achieve that, the authors in [13] have
come up with the segmentation criterion of ε-neighbor coherence. Based on this
idea, we specify a principle of neighbor inhomogeneity for texture segmentation.

For an arbitrary seed p ∈ SEED in a texture region, its neighbor q satisfying
PIF(q)≥0.5 or NIF(q)≥0.5 should belong to the same textured region as p.

It is obvious that this principle depicts a “transitive relationship” among the
seed pixels. That is, assume the pixels p, q, t ∈ SEED, if t∈N(q) and q∈N(p), t
is grouped into the same region as q while q is grouped into the same region as
p. In such a way, t is also grouped into the same region as p. Further, like the
ε-neighbor coherence criterion in [13], our principle also specifies an equivalence
relation on the set of texture seeds.

Equivalence Relation. For any two seed pixels ‘p∼q’ if p, q satisfy either of
the two conditions: 1) p∈N(q); 2) there exists a finite number of seed pixels
p1, p2, · · · , pn such that p∈N(p1), pk∈N(pk+1), k=1, · · ·, n-1, pn∈N(q).
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It is easy to prove the three properties: reflexive (‘p ∼ p’), symmetric (‘p∼q’
implies ‘q∼p’) and transitive. This principle implies that our INP can start from
an arbitrary textured seed to propagate the label through all its inhomogeneous
neighbors. Moreover, according to the analysis detailed above, the inhomoge-
neous pixels involved in the same propagating chain would, with high probabil-
ity, delineate a single textured object.

Propagation Termination. Such an equivalence relation can partition the
set of texture seeds into several equivalence classes. The number of equivalence
classes just determines the number of interesting regions. Note that each ulti-
mate textured region contains the texture seeds in an equivalence class and some
non-seed texture pixels besides. The presence of these non-seed texture pixels
is responsible for the termination of the label propagation. In other words, the
growth of a region will stop when there is no new textured seed in this region.
Figure 2 (right) summarizes the flowchart of INP for object extraction with an
arbitrarily picked object-seed.

3 Algorithm Analysis of INP

Parameter Sensitivity. INP involves two parameters k and ε. On one hand, k
determines the size of the local neighborhood of each pixel. In the common case,
an optimal k could be chosen in a range of 5-12. However, a “huge” close-shot
object usually needs a larger k (≥12); while a “little” long-shot object requires
a smaller k (≤5). On the other hand, with respect to a given neighborhood size
k, one can figure out some meaningful statistics in intensity such as Mean(k)p

and Ave(k). They are respectively formulated in Eq.6:

Mean(k)p =

∑
q∈N(p) | I(p) − I(q) |

| N(p) | , Ave(k) =

∑
p∈I(Mean(k)p)

| I | (6)

By definition, Mean(k)p exposes the mean difference in intensity within the
neighborhood of each pixel p; and Ave(k) is the average value of all Mean(k)p,
which reflects the global variation in intensity in the image.

In addition, the threshold of intensity contrast (see Eq.1 or Eq.2) ε character-
izes the degree of inhomogeneity or homogeneity in intensity between pairwise
neighboring pixels. For a central pixel p, if ε is larger than the mean intensity
difference in its neighborhood Mean(k)p, most of its neighbors will be in the set
Ω′(p) instead of Ω(p). From the discussion detailed above, p will be not an inho-
mogeneous pixel. Otherwise, if ε is smaller than Mean(k)p, most of its neighbors
will appear in the set Ω(p) and thereby p becomes an inhomogeneous pixel.

However, it is impossible to select a proper ε with regard to Mean(k)p which
varies with different pixels. A good candidate for ε is Ave(k), which is invariant
for a given k. In practice, the value of ε in our experiments fluctuates around
Ave(k). When intensities of the foreground pixels (e.g. a zebra roaming the
grassland) vary sharply, ε is selected to be a little smaller than Ave(k). If the
intensities of the background pixels (e.g. a clutter background with a flying bird)
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Fig. 3. Experimental results on Corel images

vary significantly, ε is set to be a little larger than Ave(k). An adaptive ε has
been observed in the range [Ave(k)–10, Ave(k)+10] in our experiments.

Computational Efficiency. Recall that INP performs object extraction fol-
lowing the general flowchart shown in Fig.2 (right). It is easy to see that the
most time-consuming work is the identification of textured seeds. It requires
the calculation of Ωp for each pixel. Because of the properties of ER, it is not
necessary to compute Np and Ωp of the pixels which are in the first and last k
rows/columns of the image I(w, h), where w and h are the width and height of
the image respectively. Let N = (w − 2k) ∗ (h− 2k),M = (2k + 1)2 − 1, k ∈ Z,
the running time of calculating all Ωp is O(MN). When k is not very large
(≤ 12), it takes nearly O(N) in proportion to the size of the image N. In ad-
dition, the recursive propagation procedure for covering all object pixels takes
less than O(N) as only those pixels around the selected object-seed are scanned
once. Besides, the automatic selection of ε requires computing Mean(k)p and
Ave(k). It takes O(MN) like the calculation of Ωp. Overall, our INP is efficient
with a computational complexity of O(MN) that is nearly linear in the size of
the image.

4 Experiments and Evaluation Results

We have conducted extensive experiments and comparisons to evaluate the per-
formance of our INP. We first test the qualitative effectiveness of INP on a large
number of natural images that contain a variety of challenging textures. All of
the sample images are readily available from the Corel image library [13]. For
a further quantitative evaluation, we apply our INP to all the 100 gray level
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images in an open database compiled by Alpert et al. recently in [5]. The F-
measure is used to assess the consistency of our results with the ground-truth
segmentations in the database.

Qualitative Results on The Corel Dataset. The Corel dataset is commonly
used in computer vision. It contains 30,000 images covering a wide range of sub-
ject matters. For our extraction task, we are interested in those images that
include distinct physical objects in the natural world, particularly the ones that
are of animals in natural scenes. The animal furs by nature exhibit a variety of
challenging textures. Figure 1 shows several representative samples, where our
extraction results (fourth panel) are in marked agreement with human segmen-
tations (red, fifth panel). The salient objects of interest together with the long
but thin bodies, legs or tails are all segmented in one piece, even if the animals
are camouflaged against their backgrounds due to the shadows, illuminations
and reflections. Figure 3 further illustrates our results on a set of challenging
images. The leopards in the first panel are in different poses (crouching, sitting,
eating, standing, walking, running, etc.) in different cluttered backgrounds. A
few “Leopard” images among them occur quite often in the texture segmentation
literature [11]. These methods have had to integrate many cues of intensities,
contours, shapes and motions in order to produce satisfactory results. It is un-
clear whether they are robust to the variations in poses, shadows, shapes and
motions in our experiments. Exploiting the naive intensity inhomogeneity, our
INP succeeds in these difficult “Leopard” images. The integrity of each leopard
object is well preserved. Moreover, the “Leopard” objects extracted by INP are
consistent with the human semantic perception. Other results are also presented
on the images with the animal tiger, butterfly, birds, zebra or giraffe. They ex-
hibit a rich diversity of texture appearances in randomness and irregularity. De-
spite these difficulties, our INP still yields good figure-ground separation. These
extracted salient regions can be useful for content-based or object-based image
retrieval, indexing and classification in multimedia analysis.

Quantitative Evaluation of Consistency. A quantitative evaluation of the
results produced by segmentation algorithms is challenging, since it is difficult
to come up with canonical test sets providing ground truth segmentations. Re-
cently, Alpert et al. has compiled a new database containing 100 gray images
along with ground truth segmentations [5]. To avoid potential ambiguities, the
selected images clearly depict one object in the background. Each image is seg-
mented manually by three different people. A pixel is declared as foreground
only when it was marked as foreground by at least two people. For an objec-
tive evaluation, we have applied our INP to all the 100 images. Some results are
shown in Fig.4. Note that the salient regions here represent more generic textures
in the natural scenes. Visually, our results are very consistent with the human-
driven segmentations (in red color) on the same image. To clarify this point, we
use the F-measure to assess its consistency quantitatively [5]. The amount of
fragmentation is determined simply by the number of segments needed to cover
the foreground object. Table 1 presents the F-measure scores of our results on
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Fig. 4. Experimental comparisons on a new image database from [5]

Table 1. Our F-measure Score on Test Images from The Dataset in [5]

Image F-measure Score Image F-measure Score

IMG 2577 0.83878 nitpix P1280114 0.9671

0677845-R1-067-32 a 0.94971 110016671724 0.8092

aaa 0.8092 boy-float-lake 0.9534

Bream In Basin 0.96807 caterpiller 0.91923

DSC04575 0.93302 DSC 0959 0.9815

tendrils 0.80518 DSCF0034 0.93466

DSCF0459 0.85897 osaka060102 DYJSN071 0.84795

PIC1092515922117 0.92676 PIC7227 0.96282

PIC1080629574 0.94435 windowCN 0078 0.96394

the test images in Fig.4. The large F-measures (some even approximate to the
maximum 1) achieved by INP is another evidence of its effectiveness1.

1 The averaged F-measure score of our INP is 0.82±0.027 that is competitive with the

highest one 0.86±0.012 reported in Table 1 in [5].
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5 Summary

In this paper, we present a novel approach called INP to extract textured objects
in natural images by exploiting intensity inhomogeneity. Along with a top-down
visual attention, INP works by aggregating neighboring inhomogeneous pixels
together within a seeded region growing framework. It requires no complicated
computations on multi-cue integration or specific priors about the objects of
interest. Both theoretical analysis and experiment results confirm that our INP is
easy to interpret and implement, efficient in computational cost and effective
for textured object extraction in a variety of natural images.
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Abstract. A novel external force called CONvolutional Virtual Electric Field 
(CONVEF) for active contours is proposed by taking the Virtual Electric Field 
(VEF) just as a convolution operation and by using modified distance metrics in 
the convolution kernel. The proposed CONVEF method possesses some desir-
able properties of VEF such as large capture range and being implemented in 
real-time by using fast Fourier transform. Meanwhile, the CONVEF snake pro-
vides much better segmentation than VEF snake in terms of noise suppression, 
C-shape concavity convergence, weak edge preserving, and neighbored objects 
separation. These advantages has been demonstrated and verified on synthetic 
and real images.  

1   Introduction 

Shape recovery and object tracking from visual data is of paramount importance in 
the community of computer vision and the active contour models, or snakes, dominate 
this field during the last two decades [1]. The philosophy of the snake models in-
volves minimizing a certain energy functional which integrates an initial estimate, 
geometrical properties of the contour, image data and knowledge-based constraints 
into a compact expression. They have been one of the most influential ideas in com-
puter vision and steer our attention toward top-down, prior knowledge-driven manner 
for image understanding [2].  

In general, there are two types of active contours according to their representation, 
i.e., parametric snake [1][2] which adopts an explicit representation and geometric 
snake [3][4] which resorts to an implicit manner. It usually comes down to solve cer-
tain PDEs to minimize the energy functional of snakes. In [5], the associate PDE is 
treated as a force balance equation, and the internal force is resulted from geometric 
properties while the external force is from image data. Since the external force drives 
the snake contour to approach objects, it plays leading role in the evolution of snake 
and is widely studied in literatures. For example, Xu and Prince [5] proposed the GVF 
external force which  shows high performance in capture range enlarging and con-
cavities convergence and becomes the focus of many research [6][7][8]. Sum and 
Cheung [9] proposed the boundary vector field external force. Park and Chung [10] 
and Yuan and Lu [11] simultaneously proposed the virtual electric field (VEF) based 
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external force, in which each pixel is considered as a static charge. Jalba et al [12] 
recently proposed the charged particle model, where each pixel is also considered as 
static charge. The VEF possesses the advantage of being implemented in real time 
over the GVF while maintaining other desirable properties such as large capture range 
and concavity convergence.  

This paper aims at designing a more effective external force for active contours. 
The proposed external force takes the VEF just as a convolution operation and utilizes 
modified distance metrics in the convolution kernel. We refer to this proposed method 
as CONvolutional Virtual Electric Field(CONVEF). The CONVEF outperforms the 
VEF in terms of noise suppression, neighbored objects separation and C-shape con-
cavity convergence while remaining other desirable properties. 

The remainder of this paper is organized as follows: the VEF snake is briefly re-
viewed in Section 2; in Section 3, we detail the proposed CONVEF method, experi-
mental results and demonstrations are given in Section 4 and we concludes this paper 
in Section 5. 

2   Brief Review of the VEF Snake  

A snake contour is an elastic curve that moves and changes its shape to minimize the 
following energy [1], 

( ) ( )( )∫ ++= dssEE extssssnake ccc
22

2

1 βα . (1)

where c(s)=[x(s),y(s)], ]1,0[∈s is the snake contour parameterized by arc length, cs(s) 
and css(s) are the first and second derivative of c(s) with respect to s and positively 
weighted by α and β respectively. Eext(c(s)) is the image potential which may result 
from various events, e.g., lines and edges. By calculus of variation, the Euler equation 
to minimize Esnake is 

0)()( =∇−− extssssss Ess cc βα . (2)

This can be considered as a force balance equation 

0int =+ extFF , (3)

where Fint= αcss(s)- βcssss(s) and Fext= extE−∇ . The internal force Fint makes the snake 

contour to be smooth while the external force Fext attracts the snake to the desired 
image features. 

Typically, the external energy for gray value image I is defined as 

( )( ) 2
Ic ⊗∇−= σGsEext , (4)

where σG is the Gaussian kernel of standard deviation σ , and the associated external 

force is 

2
IF ⊗∇∇=−∇= σGEextext , (5)
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i.e., the gradient vector of the edge-map of an image. But this gradient vector is ‘my-
opic’ and the snake contour always can’t converge to deep concavities, and the initial 
contour has to be laid nearby object boundaries. In order to overcome these draw-
backs, Xu and Prince [5] proposed the GVF external force by diffusing the gradient 
vector further away from the edges so as to enlarge the capture range and simultane-
ously suppress the noise. Park and Chung [10] pointed out this diffusion based method 
is computationally expensive, therefore, they proposed the virtual electric field (VEF) 
method in which each pixel in the image is considered as a virtual electric charge and 
the virtual electric field at (x0,y0) that is created by all other electric charges in region D 
enveloping (x0,y0) is given by 

( ) ( )
( )
( ) ( )
∑
≠
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −⋅−⋅
=

00 ,,
,

3
0

3
0 ,

yxyx
Dyx

VEF
d

yyq

d

xxq
E , (6)

where ( ) ( )2
0

2
0 yyxxd −+−= , D={(x,y)||x-x0|≤t, |y-y0|≤t}, and q is defined as the 

magnitude of the edge map of an image. The VEF has been shown to be an effective 
external force for active contours in terms of not only capture range enlarging and 
concavity convergence, but also the computational burden. 

3   CONVEF Snakes  

Although the VEF model overcomes the shortcoming of GVF while maintaining other 
advantages such as large capture range and concavity convergence, but there is still 
room for improvement, for example, there is no noise suppression mechanism for 
cluttered background and if two objects are very close to each other, especially when 
one edge is weak and the other is strong, VEF snakes could fail to tell them apart. 
Additionally, if the concavity is C-shape, the VEF snakes become ineffective. Moti-
vated by these observations, we propose a novel external force by taking the VEF just 
as a convolution operation and by utilizing modified convolution kernel. 

We depart from the concept of electric potential. Following the definitions for (6), 
the virtual electric potential at (x0,y0) is given by 

( )
( ) ( )( )

( ) ( )
∑
≠
∈ −+−

=

00 ,,
, 2

0
2

0

,

yxyx
Dyx

VEF

yyxx

yxq
P , (7)

This is a weighted sum and can be rewritten via convolution due to the fact that the 

weight ( ) ( )2
0

2
01 yyxx −+−  is not correlated with the signal q(x,y). Therefore, the 

potential takes the following form: 

qKP VEFVEF ⊗= , (8)

where 22,1 yxrrK VEF +==  and the associated electric field can also be rewritten 

via convolution, which is the gradient of the electric potential, and reads 
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( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ ⊗−⊗−=⊗∇=⊗∇=∇= q
r

y
q

r

x
qKqKP VEFVEFVEFVEF 33

,E . (9)

If one neglect the physical nature of (7) and take (8) just as a convolution operation, 
one can utilize some other convolution kernels in (8). These new kernels may not 
necessarily possess any physical meanings, but they would make VEF more powerful 
and flexible than the original version. We refer to this convolution based version as 
CONvolutional Virtual Electric Field(CONVEF) and to the snake models with CON-
VEF external force as CONVEF snakes. 

We present here one practically effective kernel by modifying the distance metric 

in VEFK . One nonnegative factor h is introduced into r so that hyxrh ++= 22 , and 

the power of r is relaxed from ‘1’ to a certain positive real number n, therefore, the 
proposed kernel is formulated as follows: 

n
h

CONVEF
r

K
1= . (10)

As a result, the corresponding virtual electric potential is 

qKP CONVEFCONVEF ⊗= , (11)

and the convolutional virtual electric field is given by 

⎟
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⎜
⎜
⎝

⎛
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++
q
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q
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x
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h

CONVEF 22
,E . (12)

This modification of r makes CONVEF more powerful than VEF, on one hand, the 
factor h plays a role analogous to scale space filtering, the larger the value of h, the 
greater the smoothing effect on the results; on the other hand, the larger the value of 
n, the faster the potential decays with distance and vice versa, this property allows the 
CONVEF snakes to preserve edges and to tell apart two closely-neighbored objects 
with large n and to dive into C-shape concavities with small n. To note, we neglect a 
constant n outside the bracket in (12). 

Remarks. Very recently, Li and Acton [13] proposed the vector field convolution 
(VFC) external force by convolving the image edge map with a vector field kernel 
which is formulated as 

⎟
⎠

⎞
⎜
⎝

⎛ −−= ++ γγ 11
,

r

y

r

x
KVFC , (13)

where 22 yxr +=  and γ is a positive real number. Comparing (13) with (9), it is clear 

that VFC is essentially an extension of VEF by relaxing the power of r  from 3 to γ+1 , 
so, the VEF is a special case of VFC with 0.2=γ . Although the proposed CONVEF is 
derived from the VEF, it can also be considered as an extension of VFC, in fact, the 
VFC is a special case of the CONVEF with h=0.0 in (12). However, the CONVEF is 
not a naive extension of VFC by introducing the factor h, novelties that one can’t find in 
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[13] include three aspects: (1) noise suppression by using a positive factor h; (2) fasci-
nating effect of increasing the power of hr  for edge preserving and neighbored objects 

separating; (3) In VFC, the power of r is decreased for noise resistance; we point out 
this strategy is not a good choice for noise suppression but shows fascinating power for 
C-shape convergence. We will demonstrate the properties of CONVEF snake with 
particular emphasis on these three novelties and make a comparison with VFC snake in 
Section 4. To note, the power of hr  in CONVEF is larger than 2 whereas that of r  in 

VFC is just larger than 1 according to their different derivations. 

4   Experimental Results and Analysis 

In this section, we demonstrate some desirable properties of CONVEF snakes, and the 
performances of the VEF, VFC, and CONVEF snakes are compared. The differences 
of VEF, VFC and CONVEF reside in the distance metrics in the convolution kernels; 
therefore, their computational costs just depend mainly on the size of the convolution 
kernels. Thus, the CONVEF can also be implemented in real time using fast Fourier 
transform as done to VEF and VFC, which has been investigated respectively in [10] 
and [13], and we will not ply with this issue here. The parameters for all snakes in our 
experiments are 1.0=α , 1.0=β , time step 5.0=τ  and the size of convolution kernel is 
the same as that of the image unless otherwise stated. 

4.1   Capture Range, Concavity Convergence, and Initialization Insensitivity  

We use the U-shape and room images, which are also employed in [5][10][13], to 
verify some general properties CONVEF snakes. Fig.1 shows the results with differ-
ent parameter settings for CONVEF; it can be seen from this experiment, although the 
initial contours are placed inside, or outside, or across the boundaries, the CONVEF 
snakes can locate objects correctly, even stay on the gaps on the boundaries, and con-
verge to the concavity. This experiment manifests the performance of CONVEF 
snake on capture range enlarging, insensitivity to initialization, and convergence to U-
shape concavity. 

4.2   Effect of Factor h: Noise Robustness  

To evaluate the noise suppression ability of CONVEF snakes, we first utilize a syn-
thetic circle image contaminated with noise, shown in Fig.2 (a). The edge map shown 
in Fig.2 (b) is derived by preprocessing the image with a 2D Gaussian kernel of stan-
dard deviation 3.0. The results of CONVEF snake are presented in Fig.2(c); one can 
see from this result the ability for noise suppression of CONVEF snake. In [13], the 
VFC snake is endowed with the ability of noise resistance by decreasing the value of 
γ  in (13). We also apply the VFC snake to this noisy circle image, and find that, 
when the value of γ  is smaller and smaller, the VFC field is more and more regular, 
and the VFC snake evolves more and more steadily. When γ  is small enough, say 1.2 
in this example, the VFC snake can correctly locate the objects, see Fig.2 (d). This 
observation has been demonstrated in [13].  
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(a)      (b)  

(c)         

Fig. 1. Convergence of CONVEF Snakes with different initializations and different parameter 
settings on different images. Parameters are  (a) n=1.5, h=2.0, (b) n=2.0, h=2.0, (c) From left to 
right, n=1.5,h=2.0;  n=1.5,h=1.0;  n=2.0,h=2.0. The dash-dotted lines are initial contours. 

(a)           (b)  

      

                               (c)                                                                  (d) 

Fig. 2. Comparison of VFC and CONVEF snakes on noise robustness. (a) Noisy synthetic 
image, (b) Edge map, Convergence of (c) CONVEF snake with n=1.0,h=16.0; (d) VFC snake 
with 2.1=γ .  In (c) and (d), the left is the evolution of snakes; the right is the vector field. The 
dash-dotted lines are initial contours. 

But further studies show that this strategy of decreasing the value of γ  is not a 
good choice for noise suppression. There is an example in Fig.3. The noisy U-shape 
image is created from that in Fig.1 using the MATLAB function imnoise(U,'salt & 
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pepper',0.1), and this example resembles that in Fig.8 in [13], but there is at least one 
difference: the noise within the concavity in Fig.3 is heavier than that in [13]; this 
means it is more difficult for the snakes to converge correctly to the concavity. We 
also let the noisy image intact as in [13]. The VFC snake with 5.1=γ  in Fig.3 (a) fails 
to dive into the concavity even there is serious leakage on other parts of the boundary. 
As for the CONVEF snake, the result is satisfactory by using a large h to suppress 
noise and by increasing the value of n to preserve weak edges, see Fig.3 (b). Other 
parameter settings can also lead to satisfactory results, such as n=2.0, h=6, which are 
not presented here due to page limitation. This example manifests the drawback of 
VFC snake and the effectiveness of the CONVEF snake when confronting noise. 

      

                              (a)                                                                  (b) 

Fig. 3. Comparison of VFC and CONVEF snakes on noise robustness. Convergence of (a) VFC 
snake with 5.1=γ  (b) CONVEF snake with n=3.0, h=10.0.  In each panel, the left is the evolu-
tion of snakes; the right is the vector field. The dash-dotted lines are initial contours. 

4.3   Effect of Increasing n: Neighbored Objects Separation 

Fig.3 demonstrates the use of large n for edge preserving when the CONVEF snake is 
employed to locate objects. One can also make use of large n to separate two closely 
neighbored objects, especially when one edge is weak and the other is strong. In fact, 
to separate objects is essentially to preserve the edge of each object. We demonstrate 
this particular application using a synthetic image. Fig.4 (a) shows the original image, 
where there are one gray disk and one white rectangle on the black background and 
there are just three pixels between two objects. The edge of the disk is weak and that 
of the rectangle is strong, see Fig.4 (b). Fig.4(c) is the result of VFC snake, which 
shows the VFC vectors located on the weak edge of the disk are influenced to point to 
the neighboring strong ones, leading to the VFC snake moving across the weak edge 
and sticking to the strong edges. Fig.4 (d) shows the result of CONVEF snake with 
n=3.0, h=0.0. It is clear the CONVEF vectors on the neighboring edges point in oppo-
site directions; the weak edge is well characterized by the CONVEF field and the 
snake correctly tells these two closely neighbored objects apart. 

4.4   Effect of Decreasing n: C-Shape Convergence 

Although the strategy of decreasing the value of n is not an ideal choice for noise 
suppression, there may be some other applications in which the CONVEF snake with  
 



18 Y. Wang and Y. Jia 

(a)           (c)  

(b)          (d)  

Fig. 4. (a) Synthetic image of two objects, (b) edge map, Convergence of (c) VFC snake with 
0.2=γ , (d) CONVEF snake with n=3.0,h=0.0. In (c) and (d), the left is the evolution of 

snakes; the right is the vector field. The dash-dotted lines are initial contours. 

 

a small n may play important role. The problem associated with convergence to C-
shape concavity is one of such applications. The problem associated with conver-
gence to U-shape has been intensively studied using GVF [5], VEF [10] and VFC 
[13], but regarding C-shape, even S-shape and G-shape, it is seldom reported and will 
be the focus of this subsection. The difference between C-shape concavity and U-
shape concavity is that the C-shape is semi-close, while the U-shape is open. It is very 
easy for the VEF to form source within concave regions and the VEF vectors around 
the neck of the concave regions are outward; but for CONVEF with a smaller n, the 
faraway points will be weighed more and the force field will be affected by more 
points around, as a result, the CONVEF field around the neck of the concavity will 
point inward the concavity. Fig.5 shows the result of VEF snake on C-shape and the 
results of CONVEF snake on C-shape, S-shape, and even G-shape. The S-shape and 
G-shape are a little more complex than the C-shape, since there is orientation rotation 
especially in the case of G-shape, but CONVEF snake succeeds in all cases. 

4.5   Real Images 

We apply the CONVEF snakes to real noisy medical images. Fig.6 shows the seg-
mentation results of the VFC, VEF and CONVEF snakes on a human lung CT image. 
We aim at extracting the parenchyma in the left part and the cancer in the right part, 
and the difficulties reside in the weak and closely-neighbored boundaries. The results 
of VFC snake and VEF snake are shown in Fig.6 (a) and (b), respectively, the con-
vergent contours of both snakes leak out although the VEF snake behaves much better 
than the VFC snake. Fig.6 (c) shows the results of the CONVEF snakes. The experi-
ment exemplifies the abilities of the CONVEF snake for weak edge preserving and 
neighbored objects separation. The CONVEF snake is also applied to some other real 
images, such as the ultrasound heart image, and promising results are obtained, but 
the results are not presented due to limited pages. 
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           (a)                                    (b)                                  (c)                                (d) 

Fig. 5. Convergence of (a) VEF Snake, (b),(c),(d) CONVEF snake with n=0.5,h=0.0. The dash-
dotted lines are initial contours. 

       

                          (a)                                               (b)                                               (c) 

Fig. 6. Segmentation of the human lung CT image using (a) VFC snake with 7.1=γ , (b) VEF 
snake, (c) CONVEF snake with n=1.5, h=0.0. The gray lines are initial contours. 

5   Conclusion 

In this paper, we have introduced a novel external force for active contours, namely, 
convolutional virtual electric field (CONVEF). This CONVEF is derived from the 
VEF by taking the VEF just as a convolution operation and by using modified dis-
tance in the convolution kernel. It can also be considered as an extension of the VFC 
method. The CONVEF snake possesses some desirable properties of the VEF and 
VFC snakes, such as large capture range, insensitivity to initialization, convergence to 
U-shape concavity and low computational requirement. In addition, the CONVEF 
snake also behaves much better than the VEF and VFC snakes in noise suppression, 
weak edge preserving and C-shape concavity convergence. We have tested the CON-
VEF snake with different objects and images, and the CONVEF snake has been veri-
fied as a superior alternative to the VEF snake, even to the VFC snake. 

Additionally, the CONVEF can also be extended to 3D space to form the CONVEF 
active surface and be tailored to specific applications in a straightforward manner simi-
lar to that of the VFC method. One can also integrate this CONVEF method into the 
geometric active contour as done in [3] and there may be potential applications of the 
CONVEF to extract the curve skeleton [14] and to find axes of symmetry [15]. 
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Abstract. Image verification has been widely used in numerous web-

sites to prevent them from batch registration or automated posting. One

category of the image verification is generated by adding noise into char-

acter or digit images to make them hard to be recognized by Optical

Character Recognition (OCR). In this paper, we propose a novel proba-

bility gradient function for active contour models to efficiently segment

this type of images for easier recognition. Experiments on a set of images

with different intensities and types of noise show the superiority of the

proposed probability gradient to traditional method. The purpose of our

paper is to warn some websites who are still using such kind of verifi-

cation: they should improve their defense method to prevent them from

the potential risk.

1 Introduction

Websites often attempt to be interactive. In order to attract more users and
present them an enhanced user experience, some websites provide login interface
or allow readers to post their comments. However, such interactive applications
can cause potential vulnerability if not well protected. At an early time, some
automated software can execute batch registration or even hack users’ informa-
tion by brute force. As websites have paid increasingly attention to such security
issue, many measures have been taken; and the image verification can be con-
sidered as the most active method applied in numerous situations.

Image verification in most cases is an image with noise corrupted or distorted
characters, see Fig.1 (from ACCV2009 registration page). After adding differ-
ent noise or even distorting its contents, such image is difficult to be recognized
by common Optical Character Recognition (OCR). However, there still exist
loopholes in image verification, and reports show that famous websites such as
Yahoo!, Windows Live Hotmail and Gmail all have been broken by some hackers

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 21–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Image verification on ACCV2009 registration page

in the recent years. The approach breaking verifications contains two steps: seg-
mentation and recognition. The proposed algorithms [1,2] lay more attentions
on the latter but ignore the importance of segmentation. Recently, Chellapilla et
al. [3] point out that there are no effective general algorithm to segment image
verifications. For this purpose, we propose an segmentation algorithm to achieve
the more robust performance in defeating the image verification.

Nowadays, geometric active contour, introduced by Caselles et al [4] and Mal-
ladi et al [5], is a widely used image segmentation method. This model, compared
to parametric active contour developed by Kass et al. [6], has a better perfor-
mance to noisy images, mainly because it is capable to automatically handle
topological changes. In [7], Chan and Vese present a new level set formulation
based on Mumford-Shan model. It concerns the region information instead of the
image gradient so that even discontinuous edges can be detected successfully.

Although these contour models show a good performance against the light
noise, experiments show that the contour evolution may be corrupted in some
strong noise conditions. Thus, in order to improve the robustness of the active
contour model in noisy situation, researchers propose different energy terms in
two components of the model, internal and external energy (called as Eint or
Eext). Luo et al. [8] reformulate a new internal energy Eint to serve the contour
smoothness and a scheme to switch between the region pressure force and the
edge force in different phrases. Unlike the internal energy associated with the
general contour properties, the external energy tightly corresponds to the image
being segmented. In [9], the external energy term Eext is determined by a sta-
tistical approach based on the optimal estimation theory. In segmenting images,
the algorithm estimates not only the most likely shape of the object but also
the optimal parameters for probability distribution function. Regarding its de-
ficiency in handling polygonal-shape objects with arbitrary topology or a group
of disconnected objects, the level set version of this probabilistic framework is
presented in [10]. However, such algorithm still requires manual selection of the
appropriate probability model for the noise distribution. In addition, it cannot
handle the non-exponential family noise, such as salt and pepper noise.

Besides on-line estimating the probability function, the off-line analysis on the
set of sample shapes generates a shape constraint to drive the level set function
to the most likely object shape [11,12]. In order to overcome the limitation in the
shape similarity, Cremers et al. [13] design a labeling function to recognize the
object shape and introduce a particular shape prior and a set of pose parameters.
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Although these approaches based on shape prior model can efficiently extract the
object shape from different clutter and enjoy the robustness to noise, they can
only work when the variation of object shape is small. As to the case with large
changes, like image verification, whose contents are often generated randomly
and contain different types of noise, the off-line analysis can hardly get enough
samples and is no longer suitable. Therefore, on-line statistical strategy is still
more popular than off-line methods.

The above-mentioned contour models mainly focus on the intensity or shape,
but the statistical properties of gradient can provide richer information to im-
prove the contour model’s robustness. In gradient-considered models, such as
snake and geometric active contour, a gradient function is employed to take
the image gradient as the parameter and compute the contour external energy,
When the evolving curve is close to the object boundary, the large gradient along
the boundary makes the function close to 0, which decelerates its movement un-
til it reaches the real object boundary. However, it is not an optimal choice to
generalize this function from clear images to noisy images, because they have
different gradient distributions. In noisy images, the strong noise with large gra-
dient will be mistakenly considered as the boundary and prohibits the contour
from propelling, which leads to a wrong convergence result.

An ideal way for the contour evolution should be propelling quickly in the
region within small gradient, while stopping immediately when it encounters
the object boundary. However, the current gradient function is deficient and
problems lie in: First, the function descents quickly in the 0 neighborhood, which
makes the contour unable to evolve fast enough in the region with small gradient.
Second, noise pixels usually have a larger gradient than non-boundary pixels, but
smaller than boundary ones. The function decreases slowly on the median region,
so it only enhances the noise interference in the procedure of evolution. Finally,
because the gradient magnitude is finite and its reciprocal can never reach 0, the
active contour will never stop evolving even if it reaches the object boundary. To
solve such problems, a rational and comprehensive way to construct the gradient
function is worth researching.

In this paper, a new statistical method is proposed to generate the gradient
function which can truly describe the relationship between the gradient magni-
tude of pixel and the boundary of object. At first, the image gradient distribution
is modeled as gamma mixed models (GaMM) with three components to approx-
imate the distribution of non-edge, edge and noise respectively. Then, we employ
Expectation Maximization (EM) scheme to estimate all unknown parameters of
the model and calculate the posterior probability belonging to the edge. Based on
this probability function, a new gradient function is defined; and after integrating
this new function, the active contour model can greatly improve the algorithm’s
robustness. Compared to statistical framework that can be applied only in the
case of the exponential family, our function is effective in non-exponential noise
conditions without the prior knowledge of noise distributions. Unlike shape prior
framework, the new method does not need the procedure of pre-training, and
such on-line method can save considerable resources as well.
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2 Gradient Distribution Model and Its Solution

In many literatures, researchers consider images as discrete random variables
and propose different probability models over image spaces. In earlier time, the
gray image was modeled as Gaussian mixture models for its veracity [14]. As
for the gradient histogram, the peak shape is more similar to the gamma model
than the Gaussian model. Therefore, Henstock and Chelberg [15] assumed the
gradient histogram as the weighted sum of two gamma densities.

Although GaMM with two components can distinctly describe the gradient
distribution in certain degrees, it cannot precisely approximate the image prop-
erties, especially for noisy images. When the images are modeled as non-edge and
edge parts, the noise is not taken into account, so such assumption will greatly
impair its efficiency in the case of image verification based on noise, which is
the main research object in this paper. In addition, the traditional maximum
likelihood (ML) method is used to estimate parameters in GaMM[12]. In fact,
ML is suitable for the single distribution rather than mixed distributions.

2.1 Probability Model for Gradient Distribution

To overcome limitations of the GaMM with two parts, we extend it to three
components:

G(x) = w1
xα1−1e−x/β1

Γ (α1)βα1
1

+ w2
xα2−1e−x/β2

Γ (α2)βα2
2

+ w3
xα3−1e−x/β3

Γ (α3)βα3
3

(1)

where x is the gradient magnitude, Γ (α) =
∫∞
0 tα−1e−tdt,α > 0 and w1 + w2 +

w3 = 1. Since GaMM are multi-distribution mixture models, EM algorithm,
which estimates values of parameters set {wl,αl, βl; l = 1, 2, 3} in Eq.(1) to
approximate the image gradient distribution, is more rational and reliable than
ML algorithm.

2.2 Likelihood Function in EM

In 1977, Dempster et al [16] proposed EM method to iteratively estimate model’s
parameters by maximizing the likelihood function. The whole process follows two
steps: the E-step that computes the distribution of the hidden variable and the
M-step that maximizes the object function. The hidden variable is calculated
by the assumption that model parameters are correct in E-step; and then the
M-step re-estimates those parameters. The convergence of iterative process has
been proved in [17].

The object function in M-step to be maximized is defined as

Q(Θ,Θg) = E[log(G(x|Θ))|x,Θg ] (2)

where Θ denotes the unknown parameter set {wl,αl, βl; l = 1, 2, 3} and Θg is
the current parameter set. The new parameter set Θ in the next iteration should
maximize the function Q, i.e., Θ = argmax

Θ
Q(Θ,Θg).
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Considering the discrete case and the probability model defined in Eq.(1), the
object function can be rewritten as:

Q(Θ,Θg) =
3∑

l=1

N∑
i=1

log(wl)p(l|xi, Θ
g) +

3∑
l=1

N∑
i=1

log(pl(xi|θl))p(l|xi, Θ
g) (3)

where N represents the number of samples or the total number of pixels in the
image specifically. θl is the gamma parameters set {αl, βl} of the l-th distribution.
p(l|xi, Θ

g) is the posterior probability that the i-th sample xi belongs to part l.
The first term and the second term in Eq.(3) are functions of weight param-

eters wl and gamma parameters θl respectively. Because of their independence,
the object function will reach its maximum whenever the two parts reach their
maximum at the same time.

2.3 Estimation of Weighted Parameters

Under the constraint of
3∑

l=1

wl = 1, Lagrange multiplier λ is introduced to con-

struct a function:

L(w1, w2, w3) =
3∑

l=1

N∑
i=1

log(wl)p(l|xi, Θ
g) + λ(

3∑
l=1

wl − 1) (4)

The partial derivative for each wl is

∂L

∂wl
=

N∑
i=1

1
wl

p(l|xi, Θ
g) + λ (5)

Notice, λ should be −N under the constraint of wl, so Q(Θ,Θg) can get its

maximum when wl = (
N∑

i=1

p(l|xi, Θ
g)/N .

2.4 Estimation of Gamma Parameters

In the second term of Eq.(3), pl(xi|θl) represents the l-th gamma component in
GaMM, i.e., pl(xi|θl) = xαl−1e−x/βl

Γ (αl)β
αl
l

. This term can be simplified as a function of
αl and βl:

f(αl, βl) =
N∑

i=1

p(l|xi, Θ
g)[X1(αl − 1)−X2/βl − (logΓ (αl) + Γ logβl)] (6)

where
N∑

i=1

p(l|xi, Θ
g) is a scale factor, and remains constant to the variables αl

and βl. X1 and X2 are expressed as:

X1 = (
N∑

i=1

log(xi)p(l|xi, Θ
g))/

N∑
i=1

p(l|xi, Θ
g)
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X2 = (
N∑

i=1

xip(l|xi, Θ
g))/

N∑
i=1

p(l|xi, Θ
g)

It is only necessary to compute the maximum value of the term in square
bracket by taking partial derivative:

∂f

∂αl
= (X1 − ∂(logΓ (αl))

∂αl
− logβl) (7)

∂f

∂βl
=

1
β2

l

(X2 − αlβl) (8)

Letting Eq(7) and Eq.(8) be 0, we can get βl = X2/αl, so Eq.(7) can be rewritten
as

g(αl) = logX2 −X1 (9)

where g(αl) = logαl − ∂(logΓ (αl))
∂αl

.
It has been proved that g decreases monotonically from ∞ to 0 between

the interval of (0,∞). That is to say, Eq.(4) has a unique solution in (0,∞).
Since g(αl) is a transcendental equation about αl and solving Γ (αl) is relatively
difficult, we have to use its approximate solution instead.

In 1982, Lawless proposed an empirical formula to solve this transcendental
equation, by which the error can be less than 0.0001. It is expressed as:

α̃ =

{
(0.5000876+0.1648852Y −0.0544274Y 2)

Y 0 < Y ≤ C
8.898919+9.059950Y +0.9775373Y 2

17.79728Y +11.968477Y 2+Y 3 C < Y ≤ 17
(10)

where Y = logX2 −X1. By this approximation formula, the solution of Eq.(9)
can be obtained quickly. Afterwards, we plug α̃ into Eq.(8) to solve the other
gamma parameter β̃.

3 Constructing the New Gradient Function

After the gradient distribution is divided into three independent parts: non-edge,
edge and noise, we can obtain the posterior probability of the pixel belonging to
any parts. Among three posterior probabilities, the one belonging to the edge is
especially important for segmenting image verifications.

3.1 Gradient Function Based on Posterior Probability

It is assumed that the gradient magnitude of edge is larger than that of non-edge
and noise. Therefore, the gamma distribution of edge has the largest mean value
among three components, and we select k = argmax

l
(αlβl) to represent the edge

distribution and calculate the posterior probability belonging to the edge.

p(edge|x) =
p(x|edge)

p(x)
p(edge) =

wkx
αk−1e−x/βk

Γ (αk)βαk

k G(x)
p(edge) (11)
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(a) (b)

Fig. 2. (a) and (b) Illustrate the new gradient function under light noise and strong

noise respectively

Usually, the relatively large and small gradient can be considered as edge and
non-edge respectively, but it is still hard to quantify the relationship between
the gradient and the edge. The posterior probability p(edge|x), however, can
exactly interpret such uncertain phenomenon from the view of statistics theory
and expresses the likelihood that the pixel with the gradient magnitude x would
be an edge pixel.

The range of probability function p(edge|x) is [0, 1], same as the range of the
traditional gradient function. Because of the monotone increasing property with
x, it does not meet what active models require for the gradient function. For this
reason, we define a new gradient function based on the posterior probability as

ḡ(x) = 1− p(edge|x)s (12)

The shape of ḡ(x) shown in Fig.2 is similar to the step function mirrors to the Y-
axis; and 1 and 0 in vertical direction correspond to the small and large gradient
respectively. Furthermore, it is an adaptive function, whose decreasing interval
can vary according to the noise intensity. When the image noise strengthens,
the decreasing interval shifts to the right along the axis, and the interval width
increases as well.

Compared to the traditional function, the new function has three advantages:
Firstly, its value remains 1 around the gradient of 0, which enables the active
contour to propagate at highest rate even in small gradient area; Secondly, our
function falls down quickly in the median area so that it can reduce the effect
of noise to minimum; Finally, when gradient is large, p(edge|x) equals to G(x)
and ḡ(x) will reach 0, so the contour evolution can stop thoroughly.

3.2 Self Adapting Parameter s

Although we have assumed in the section 3.1 that the gradient magnitude of noise
is weaker than that of edge, the stronger noise can still conceal the blur boundary
and lead to a wrong segmentation result. As the noise in image verification
becomes stronger, such problem can be more serious. In this case, the evolution
speed should slow down for the whole contour.
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In Eq.(12), the exponential parameter s plays an important role in control-
ling the speed of curve evolution as well. When s increases, the speed accelerates
accordingly but the boundary with small gradient may be missing in the final
result. Let ion = mid(αlβl) represent the intensity of noise (ion), and by inten-
sive testing in many experiments the parameter s can be defined as the function
of ion:

s = f(ion) =

⎧⎨⎩
1.0
0.5
0.2

ion < 3
3 ≤ ion < 4
ion ≥ 4

(13)

4 Experiments

As analyzed before, our algorithm will consume extra time to construct the new
function; however, the proper analysis for the image gradient will lead a robust
performance in the evolving process. Since the computing process is based on
the gradient histogram, the construction of gradient function will be unrelated
to the image size. Furthermore, our function is just a new gradient function;
and it does not need to change the energy terms in active contour model. That
is to say, most models can integrate this new gradient function to improve the
robustness. Currently, the relative new Li model [18] extends on the basis of
the Chan-Vese model [7] without necessity to re-initialize repeatedly, and can be
realized by highly efficient narrow band scheme method, so it will be applied as
the active contour model in our experiments. Some simple image verifications
are produced by common noises, such as Gaussian noise. Under strong noise, it is
a tough task to extract the region of characters and digits for most segmentation
algorithm, even for the active contour model. Fig. 3 depicts the curve evolution
for the image verifications based on different noise (the noise types, from top
to bottom, are Gaussian, Poisson and salt-pepper respectively). The traditional

(a) Initial contour. (b) 200 iterations (c) 500 iterations (d) 800 iterations

Fig. 3. Results of the traditional gradient function for image verifications based on

Gaussian, gamma and salt-pepper noise (from top to bottom)
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(a) Initial contour. (b) 200 iterations (c) 500 iterations (d) 800 iterations

Fig. 4. Results of our gradient function for image verifications based on Gaussian,

gamma and salt-pepper noise (from top to bottom)

gradation function gives the pixel with strong noise a rather small value due to
its large gradient magnitude, which stalls the contour evolution.

Our gradient function, however, is constructed by fitting the gradient his-
togram and calculating the posterior probability of the edge. By this means,
it can discriminate the true boundary from noise and define the appropriate
function value to reduce the negative effect of noise. After integrating the new
gradient function, active contour model is able to handel the strong noise in im-
age verification and march fast in the noise region. As shown in Fig. 4, the
contour with the help of our gradient function can quickly converge to the

(a) Initial contour (b) 200 iterations

(c) 400 iterations (d) 600 iterations

(e) binaryzation (f) final result

Fig. 5. (a) Is the original image verification with initial contour. (b), (c) and (d) are

contour evolution based on our method after 200, 400 and 600 iterations. (e) is the result

after binaryzation, (f) is the result after threshold segmentation and morphological.
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(a) Contour evolution results (b) Post-processing results

Fig. 6. (a) and (b) Show the results after contour evolution and post-processing

respectively

Fig. 7. Some other image verifications and their segmentation results based on our

method

boundary of characters in a short time. In high-level image verification, images
contain more complex noise. They generally do not include one specific type of
noise mentioned before, but mixture types or even texture as the background.
Fig. 5 (a) -(d) illustrate our algorithm’s convergence procedure for the complex
image verification, which is obtained from ACCV2009 registration page. After
the curve reaches the character’s boundary, we apply binaryzation for the region
outside the boundary and the region inside, which is shown in (e). However,
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some of characters contain loops, such as ”D”; and further processes are needed
to handle such problem. Here we use threshold segmentation and morphological
operator to generate the final result, shown in (f). In addition, the results of
other two image verifications from the same web page are illustrated in Fig.6.

We collect more image verifications from different Internet websites. For these
image verification based on noise, the proposed algorithm can effectively extract
the character regions in these images. The experimental results, illustrated in
Fig. 7 (the upper and the lower rows are the boundary result and the final
result), indicate again that such kind of image verification simply based on noise
can be segmented efficiently, which makes the secure method rather vulnerable
and should be applied with caution.

Till now, the above experiments have shown the effectiveness of our algorithm
towards noise-based image verification. On the other hand, the processing time
is crucial for the segmenting algorithm. The experiments are carried out on a
PC with Core 2 processor, 1.86 GHz, 1GB RAM, with Matlab 6, on Windows
XP. For a 200×50 image, the average time spent in constructing our gradient
function is about 78ms, and the whole processing time is about 1.93s.

5 Conclusion

In this work, a new gradient function for active contour models is proposed to
improve the segmentation robustness. Firstly, we employ the GaMM to approx-
imate the image gradient distribution, in which contains three components that
represent edge, noise and non-edge, respectively. Secondly, after the GaMM pa-
rameters are estimated by EM algorithm, the posterior probability belonging to
the edge can be obtained by Bayesian theory. Finally, a new gradient function is
proposed to replace the traditional gradient function. Experiments have shown
that this new function can be successively applied to segment noise-based im-
age verification in websites. We expect our research can provide web designers
some inspiration so that they can further improve their secure methods used in
websites.
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Abstract. Ill-posed linear equations are pervasive in computer vision.

A popular way to solve an ill-posed problem is regularization. In this

paper, we propose a new criterion for designing the regularizing filter.

This criterion reveals the implicit assumption made by regularizing fil-

ters. Then with the help of the discrete Picard condition, we refine the

exponential filter using our criterion. The effectiveness of our method is

demonstrated on image restoration and interpolation.

1 Introduction

Computer vision involves many ill-posed problems [1], such as image restoration,
edge detection, optical flow, motion estimation, and surface reconstruction. Ac-
cording to [2], a well-posed problem has three properties: existence, uniqueness
and stability of the solution; if any one of these properties does not hold, the
problem is ill-posed.

Regularization is a prevailing method to solve ill-posed problems. Based on the
methods used, there are mainly three approaches to regularization: optimization,
filtering and iterative methods. The first method is actually Tikhonov method [3]
and has a Bayesian interpretation; the second one utilizes the spectrum of the
problem and devotes to tailoring a suitable filter; the third method settles
the problem using an iterative process, and in fact the number of iterations
plays the role of regularization. These three methods are closely related, espe-
cially under L2 norm. In this paper we mainly focus on the filtering approach.
Before that we would like to introduce Tikhonov regularization.

Many ill-posed problems come from a first kind Fredholm integral equation [4]∫
K(x, t)f(t)dt = g(x) . (1)

And they can be discretized as linear equations of the form

Ax = b . (2)

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 33–42, 2010.
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Based on the idea of balancing the residual and some apriori constraint on the
solution, Tikhonov regularization [3] finds the solution by minimizing

J(x) := ‖b−Ax‖2 + α[Ω(x)]2 . (3)

The constraint Ω(x) ensures the stability of the solution, while the regularization
parameter α controls the closeness between the original and the new equation.
Thus two important issues in regularization are choosing proper constraints and
finding the optimal parameters.

Basically speaking, a proper constraint should penalize what we do not want
the solution to exhibit. And there has already been a lot of work on choosing the
constraint Ω(x). For example, ordinary Tikhonov regularization (oTik) takes the
constraint as ‖x‖2, which restricts the size of the solution. For image restoration,
Phillips [5] proposed to use ‖Lx‖2, where L is the Laplace operator. This assumes
small differences in luminance between neighboring pixels. As a variance, it was
shown in [6] that using the total variation can preserve edges better than ‖Lx‖2.
For sparse solution, lasso [7] suggests using ‖x‖1. Although each kind of term has
a meaningful interpretation, an interesting question is that, how can we refine
the constraint that is being used?

To facilitate the analysis, we consider the filtering approach, which makes
use of the spectrum of A. Some exemplar filters include the exponential fil-
ter (Exp) [8], modified Tikhonov regularization (MTR) [9], spatial regulariza-
tion [10], and so on. These methods usually design a filter heuristically: they just
modify the filter to satisfy certain subjective request.

In this work, using backward error analysis, we propose a criterion for de-
signing the regularizing filter. This criterion shows that there is a relationship
between the constraint and the problem itself (e.g., A and b). We further study
the characteristic of a solvable problem, namely the Picard condition [11]; then
we show how the Picard condition helps refine the filter for a specific constraint.

2 Designing the Regularizing Filter

In this section, we first introduce the regularizing filter, then we propose our
criterion. To make use of the criterion, we consider the Picard condition and
show how to refine the exponential filter. For the notation, throughout the paper,
we use Ai as the i-th column of a matrix A and bi as the i-th element of a vector
b. Without special clarification, the norm used is the L2 norm.

2.1 The Regularizing Filter

To solve Ax = b, the least squares method minimizes the residual R(x) = ‖b −
Ax‖2 and the solution is x = (AT A)†AT b, where † is the Moore-Penrose pseudo
inverse. Suppose the singular value decomposition (SVD) is A = USV T , where
U and V are unitary matrices, S is a diagonal matrix with its diagonal elements
si ≥ 0 called the singular values; then the solution can be expressed as

x = V S†UT b =: V S†β =
∑

i
βis

−1
i Vi . (4)
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where β := UT b is called the Fourier coefficients.
However, when the small nonzero singular values of A decay gradually to zero,

this solution can bias greatly from an acceptable one. This is because in practice,
b is often contaminated by noise, thus a very small si tends to amplify the noise
enormously. In this sense, the problem is ill-posed. To solve this ill-posedness,
oTik minimizes J(x) = ‖b−Ax‖2 + λ2‖x‖2, and the solution is

x =
∑

s2
i (s

2
i + λ2)−1βis

−1
i Vi =:

∑
qotik(λ, si)βis

−1
i Vi . (5)

Compared to the least squares solution, this solution involves a low pass filter

qotik(λ, s) = s2(s2 + λ2)−1 , (6)

thus noises in high frequencies are restrained. That is why q(λ, s) is called the
regularizing filter [4]; and these qi = q(λ, si) are called the filter factors.

For a general constraint ‖Lx‖, let y = Lx, we can transform the problem of
minimizing J(x) = ‖b−Ax‖2 + λ2‖Lx‖2 into oTik

min J̃(y) = ‖b−AL†y‖2 + λ2‖y‖2 . (7)

To obtain the filter in this case, we need the generalized SVD of (A,L)

A = UΞX−1 , L = V MX−1 , (8)

where X is invertible, U and V are orthonormal, Ξ and M are diagonal matrices
with the diagonals being ξ and μ, respectively. So AL† = UΞM−1V T =: USV T ,
where S := ΞM−1 is a diagonal matrix with its diagonal elements si := ξiμ

−1
i

called the generalized singular values. According to Eqn.(5), we have the solution
as y =

∑
qotik(λ, si)βis

−1
i Vi; and substitute this into x = L†y, we obtain

x =
∑

qotik(λ, si)βiξ
−1
i Xi . (9)

In the solution above1, qotik(λ, s) is also called the regularizing filter, where si

are the generalized singular values.

2.2 Criterion for Designing the Filter

In practice b is often corrupted by noise η, thus we should not solve Ax = b
directly. To eliminate the noise, we introduce a perturbation term E and solve
(A + E)x = b + η instead. This is motivated by the method of backward error
analysis in numerical analysis. As the true solution satisfies Ax = b, our goal is
to find a proper E that is expected to satisfy Ex = η.

From Eqn.(4), the solution to the exact equation Ax = b is x = V S†β, so we
get η = EV S†β. Suppose the variance matrices of η and β are σ2I and CCT

respectively, we have

σ2I = var(η) = var(EV S†β) = (EV S†C)(EV S†C)T . (10)
1 If L is rank deficient, an extra x0 =

∑
i>rank(L) βiXi should be added to Eqn.(9).



36 Y. Geng et al.

Table 1. Comparison of several filters

Methods Filter q Coefficients |β| ∝
oTik [3] s2(s2 + λ2)−1 s2λ−2

Exp [8] 1 − exp{−s2λ−2} exp{s2λ−2} − 1

MTR [9] s2(s2σ + λ2σ)−
1
σ s2{(s2σ + λ2σ)

1
σ − s2}−1

This leads to E = σWC†SV T , where W is an arbitrary orthonormal matrix.
Due to the arbitrariness, we may set W = U and obtain

E = σUC†SV T . (11)

With this estimate of E, we are going to solve U(I + σC†)SV Tx = b. For a
general β, suppose its elements are independent (thus C is diagonal), then the
solution is

x =
∑ 1

1 + σc−1
i

βi

si
Vi , (12)

where c is the diagonal of C. This solution suggests taking the filter as qi =
(1 + σc−1

i )−1, which results in ci = σqi(1 − qi)−1. Notice that var(β) = CCT ,
we arrive at our criterion for designing regularizing filter

|βi| ≈ σqi(1− qi)−1 ∝ qi(1 − qi)−1 . (13)

Our criterion suggests that the filter should be designed closely related to the
Fourier coefficients β = UT b. With this criterion, we can also analyze what a
filter models β.

2.3 Using the Picard Condition

According to our criterion |βi| ≈ σqi(1 − qi)−1, a filter q can be designed by
modeling β. However, it is difficult to model a general β. Here we consider this
problem in the viewpoint of the Picard condition, which is essential for solving
an ill-posed problem [11].

The Picard Condition. Suppose the kernel K in Eqn.(1) has a singular
value expansion K(x, t) =

∑
siui(x)vi(t), and βi := 〈ui, g〉 are the coefficients.

In order that the problem is solvable, the Picard condition requires that [11]∑∞
i=1(βis

−1
i )2 < ∞. While discretized, the Picard condition desires that the el-

ements of β decay faster than the corresponding singular values on the average.
In Table 1, we compare some existing filters, most of which assume that

|βi| ∝ s2
i . This ad hoc setting requires that βi decays as fast as s2

i ; while the
Picard condition desires that βi decays faster than si.

Our Filter ‘rExp’. Inspired by the exponential filter, we propose to model

|βi| ≈ σ(exp{sρ
i λ

−ρ} − 1) with ρ > 1 , (14)

qrexp(λ, s) = 1− exp{−sρλ−ρ} , (15)
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Algorithm 1. Choosing Parameters for rExp

Initialize ρ = 2 and estimate σ1

Loop:2

Find the optimal λ for x =
∑

(1 − exp{−sρ
i λ

−ρ})βis
−1
i Vi3

Update ρ ← mean
∣∣ln{ln(|βi|σ−1 + 1)}/(ln si − ln λ)

∣∣4

End of Loop5

Find the optimal λ for x =
∑

(1 − exp{−sρ
i λ−ρ})βis

−1
i Vi6

and denote it as the refined exponential filter (rExp). Here a free parameter ρ is
incorporated so that we can better model β; and rather than setting it as 2 for
convenience, we just require ρ > 1 so that the Picard condition is satisfied. In
the following paragraph, we also provide an algorithm for determining ρ.

Choosing the Parameters. It is a crucial problem to choose a suitable param-
eter λ for all regularization schemes. Fortunately there have been several robust
and popular ways. For example, L-curve [12] and generalized cross-validation
(GCV) [13]. If the noise level is predictable, Morozov discrepancy principle [14]
can also be used. Here we also provide an iterative method to choose ρ. With an
initial ρ = 2, we obtain λ from one of the methods mentioned above. Then from
|βi| ≈ σ(exp{sρ

i λ
−ρ} − 1), we arrive at

ρ ≈ mean
∣∣∣∣ ln{ln(|βi|σ−1 + 1)}

ln si − lnλ

∣∣∣∣ . (16)

This procedure can be performed repeatedly until we get a proper ρ. The algo-
rithm is summarized in Algorithm 1.

3 Experiments

In the experiments, we apply our method to image restoration and image inter-
polation. The test images shown in Figure 1 are the 24 Kodak Images2.

3.1 Image Restoration

A blurred and noisy image can be modeled as g = h∗f+η, where f is the original
image, g is the observed image, h is the blurring kernel, ∗ denotes convolution
and η is the additive noise. Image restoration is to recover the original image by
solving Hf = g. In [5], Phillips proposed to minimize

‖g −Hf‖2 + λ2‖Lf‖2 , (17)

where L is the Laplacian operator. In [6], the authors suggested to minimize
‖g−Hf‖2 +λ2‖f‖TV , where ‖ · ‖TV denotes the total variation. With this kind

2 http://r0k.us/graphics/kodak/
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Fig. 1. The 24 Kodak Images used in our experiments

of constraint, edges can be preserved. This method was developed as ‘scalar TV’
and further as ‘adaptive TV’ methods [15].

In practice, we often deal with the Toeplitz matrices. A block-circulant-
circulant-block (BCCB) matrix can be diagonalized very efficiently using fast
Fourier transform (FFT). Suppose H and L are BCCB matrices, then we have
H = FΞF ∗, L = FMF ∗, where F is the unitary discrete Fourier transform
matrix. Similar to Eqn.(9), the solution is

x =
∑

q(λ, si)βiξ
−1
i Fi , (18)

where β = F ∗b, namely applying the inverse Fourier transform to b.
In the experiment, the images are first degraded by a 3 × 3 average filter,

and then corrupted by white Gaussian noise with a standard deviation σ = 10.
During the restoration, the blurring kernel h is estimated using the method
in [16]; H and L are constructed as BCCB matrices so that FFT can be used.
We apply rExp to restore the images, followed by a Wiener filter to further
reduce the noise. We compare our method with oTik, Exp [8], Wiener filter,
and total variation methods (Scalar TV and Adaptive TV) [15]. The results are
reported using the peak signal-to-noise ratio (PSNR)

PSNR = 10 · log10{MAX2
I /MSE} , (19)

where MAXI is the maximum possible pixel value for the image (255 for 8-bits
images), and MSE is the mean square error for the original and restored images.

We show the PSNR on the restored images in Figure 2 and detail the average
PSNR of each method in Table 2. Our method provides the highest average
PSNR on the 24 images; and significant improvement is achieved compared with
the exponential filter. We also plot the parameter ρ of our method in Figure 2,
which illustrates the necessity of allowing ρ other than 2. For visual comparison,
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Table 2. Average PSNR of the 24 restored Kodak images

Methods oTik Exp Wiener Scalar TV Adaptive TV rExp

PSNR 25.29 26.51 26.83 26.87 27.28 27.75
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Fig. 2. (Left) PSNR of the 24 restored Kodak images. (Right bottom) The parameter

ρ of rExp with respect to iterations on the 5-th Kodak image.

we show blowups of the restored images in Figure 3. It is clear that our method
provides restored images visually comparable with Adaptive TV and better than
other methods.

3.2 Image Interpolation

Image interpolation is used to render high-resolution images from low-resolution
images. A low-resolution image can be modeled as g = DHf + η, where f and
g are the lexicographic order of high-resolution images F and low-resolution
images G, respectively. D and H are the matrices that model the decimation
and the blurring processes, respectively.

An interesting interpolation algorithm is proposed in [17]. The main idea is
to solve the problem using the Tikhonov regularization. Considering the huge
sizes of H and D, the authors assume that these matrices are separable:

H = H1 ⊗H2 , D = D1 ⊗D2 , (20)

where ⊗ represents the Kronecker product. Thus the model is equivalent to

G = (D2H2)F (D1H1)T + η . (21)

Then with the aid of the Kronecker product and SVD, the computation cost can
be reduced greatly. For example, if the decimation factor is 2, then we have

D1 =

⎡⎢⎢⎢⎣
1 0 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 0 1 . . .
...

...
...

...
...

. . .

⎤⎥⎥⎥⎦ , H1 =

⎡⎢⎢⎢⎣
v0 v1 . . . v−1

v−1 v0 . . . v−2

...
...

. . .
...

v1 v2 . . . v0

⎤⎥⎥⎥⎦ , (22)
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Fig. 3. The restored images using different methods. From left to right: (Top) Original

image, Degraded image, oTik, Exp; (Bottom) Wiener, Scalar TV, Adaptive TV, rExp.

Fig. 4. The interpolated images using different methods. From left to right: Original

image, Bicubic, oTik, rExp.

where v = (v−k, ..., v−1, v0, v1, ..., vk)T , and h = uvT is the blurring kernel. For a
3×3 mask, it is often assumed that u = v = (a, 1−2a, a)T . Without any apriori
information, we may set a = 0.25.

However, it is important to notice that, under the assumption of separability
and with the selection of u and v above, the singular values of D1H1 range from
|1−2a| to √

(1− 2a)2 + 4a2 (see Appendix A). Thus if a is not near 0.5, we can
use iterative methods such as the steepest descent or the conjugate gradient to
solve Eqn.(21). So we propose our method as follows. First we restore the noisy
low-resolution image g using the method we have introduced in Section 3.1, then
we employ the separability and solve the normal equation of Eqn.(21) to obtain
the high-resolution image F .

In the experiment, we first blur F with a 3 × 3 average filter. Then we sub-
sample the blurred image and add Gaussian noise with σ = 10 to construct G.
We use our method and the method in [17] to compute image F , respectively.
For more comparison, we also resize the image G using bicubic interpolation.
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Table 3. Average PSNR of the 24 interpolated Kodak images

Methods Bicubic oTik rExp

PSNR 25.04 24.82 25.85

0 5 10 15 20 25
20

21

22

23

24

25

26

27

28

29

30

The 24 Iamge IDs for interpolation

P
S

N
R

 

 

Bicubic
oTik
rExp

Fig. 5. PSNR of the 24 interpolated Kodak images

It is clear that our method outperforms other methods in both PSNR (Table 3
and Figure 5) and visual aspect (Figure 4).We believe that this benefits from
the flexibility of ρ in our method.

4 Conclusions

In this paper, we suggest a criterion for designing the regularizing filter. By in-
corporating the Picard condition, we propose to refine the exponential filter. Our
scheme works effectively for ill-posed problems, which has been demonstrated
on image restoration and image interpolation.
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Appendix

A Spectrum of Decimated Toeplitz Matrices

Property. If A is the odd rows of a circulant Toeplitz matrix H

H =

⎡⎢⎢⎢⎣
b a 0 . . . 0 a
a b a . . . 0 0
...

...
...

. . .
...

...
a 0 0 . . . a b

⎤⎥⎥⎥⎦ =: Toep[b, a, 0, ..., 0, a] , (23)

then the singular values σ(A) ⊆ [|b|,√b2 + 4a2].

Proof. With a proper permutation matrix P , we have B := AP = [A0 A1], where
A0 = bI, A1 = aJ with J = Toep[1, 0, ..., 0, 1]. Then BBT = b2I+a2JJT . Notice
‖JJT ‖1 ≤ ‖J‖1‖JT ‖1 = 4 and the maximum eigen-value λmax(M) ≤ ‖M‖p for
any p ≥ 1, we get λ(JJT ) ⊆ [0, 4], which leads to λ(BBT ) ⊆ [b2, b2 + 4a2].
Immediately we obtain that the singular values of B (also of A) range between
|b| and

√
b2 + 4a2.
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Abstract. Multi-view video is a new video application requiring

efficient coding algorithm to compress the huge data, while the color

variations among different viewpoints deteriorate the visual quality of

multi-view video. This paper deals with these two problems simultane-

ously focusing on color. With the spatial block-matching information

from multi-view video coding, color annotated images can be produced

given gray input in one view and color input in another view. Then

the color images are rendered from colorization process. By discarding

most of the chrominance information before encoding and restoring them

when decoding, this novel scheme can greatly improve the compression

rate without much loss in visual quality, while at the same time produce

color images with similar appearance to reference without correction.

1 Introduction

With the improvement of technologies in image processing and computer vision,
the “Second-generation image coding” [1] has raised great interest because of
its higher potential in coding efficiency and closer relationship with perceptual
quality. Different from traditional “transform + entropy coding” compression
schemes relying on statistical redundancy, the “Second-generation image coding”
focuses on visual redundancy by utilizing features within images and videos. One
good example of this kind of system can be found in [2]. The coding efficiency
was exploited by removing some parts of an image intentionally then transferred
them in a compressed manner, and finally the whole image could be restored
in the decoder side. This idea can be concluded as “encoder removes whereas
decoder restores” [3], which motivates us in incorporating this next generation
compression idea into the next generation video application—Multi-view Video
Coding (MVC).

The multi-view video captured by a combination of synchronous cameras
from different positions can provide people with more realistic experience. Some
research groups have proposed several multi-view video systems such as free
viewpoint television (FTV) [4] and 3DTV [5]. Although the multi-view video
systems own many advantages over the current mono-view video systems, some
problems have restricted the widely-use of this technology. First, since the multi-
view video sequences are captured by many cameras at the same time, there are

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 43–52, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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huge amount of data required to capture, process and transfer efficiently. Sec-
ond, although the set of cameras has been adjusted to the same configuration as
precisely as possible, it is still difficult to avoid the chrominance discrepancies
among different viewpoints due to the scene illumination, camera calibration and
jitter speed. In many cases, color correction has to be used as pre-processing to
deal with this problem [6].

Before we introduce the improvement to the aforementioned two problems, we
need to define the reference view and the target view according to their different
functions in our scheme. The reference view is one designated camera view seen as
having correct color and used as reference by other views when coding; while the
target views are all the other views which are encoded referring to reference view.
A special point in our scheme is that the reference view is color sequence and the
target views are all gray sequences. Given these basic definitions, next we will
summarize the solutions. The first problem can be improved because we combine
the “encoder removes whereas decoder restores” idea with existed MVC scheme
and exploit color redundancy by discarding all the chrominance information in
target views before encoding. Then the color is left to be restored through our
proposed color annotation and colorization strategy when decoding. Thus, the
coding efficiency is further improved because of the discarded chrominance. Since
color is restored as similar to reference as possible, the color similarity between
different views are also guaranteed without color correction, which improves the
second problem.

In order to implement such a scheme, two critical questions have to be an-
swered in this paper: 1) How to produce the side information using codec to
provide enough cues for colorization? 2) How to design the colorization method
using the side information from codec to reconstruct the color image without
deteriorating the visual quality? In the following we will give a description to
our complete framework in Section 2, and the first question will be explained in
detail in Section 3 while the second in Section 4. Section 5 is about the imple-
mentation issues and experiment results. Finally Section 6 comes as conclusion.

2 Framework of Proposed Scheme

The complete framework of our scheme is shown in Fig. 1. As it is illustrated
in the legend in upper-left corner, blocks in different gray-scales are depicted to
distinguish different views.

The state-of-the-art MVC scheme is based on H.264/AVC (using H.264 for
short in the following statement), and coding efficiency is improved by exploiting
not only the temporal motion redundancy between subsequent frames but also
spatial motion redundancy between neighboring viewpoints. This solution can
be seen as an extension of the traditional motion compensation to different
viewpoints. Implementation of MVC schemes considering spatial prediction are
introduced in [7] and [8]. In order to emphasize the color redundancy, we use
a simplified prediction structure similar to [7] and [8], as it is shown in upper-
right corner in Fig. 1. The reference view in our system not only serves as
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Fig. 1. The framework of our color correction and compression scheme

temporal/spatial reference for motion prediction, but also the spatial reference
for color restoration. Mean while, in our scheme, Motion Vectors (MVs) not only
take the responsibility of motion compensation for coding purposes, but also as
side information for colorization. The corresponding blocks from reference views
are utilized to indicate the chrominance values for target views according to their
MVs from reference views, and this process is called color annotation. Finally the
colorization technique will render the color annotated frame covered by partial
color to one with complete color appearance.

3 Color Annotation Using H.264 Features

The emerging technology focusing on adding color to gray image provides the
possibility of using color redundancy in video coding. In [9] the author succeeded
in integrating color transfer [10] into coding pipeline, and improved the coding
efficiency, but it was for mono-view video coding and until recently few researches
have been done for MVC. On the other hand, current research did not consider
utilizing the latest color restoration techniques as well as the advanced features
in codec such as H.264. By exploring these current achievements, we find that
H.264 codec can provide lot’s of useful information to enhance color annotation
process, which brings benefits to restoring better color quality.

3.1 Scribble-Based Colorization

The concept of colorization is often used in computer graphics referring to adding
color to gray image. According to [11], the existed colorization method is roughly
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divided into two categories: example-based and scribble-based . The example-
based method requires the user to provide an example image as reference of
color tones. For example, in [12] the author proposed a pixel-based approach to
colorize an image by matching swatches between the grayscale target and color
reference images. The scribble-based colorization depends on scribbles placed by
users onto the target image and performs color expansion to produce the color
image. Levin [13] proposed a simple but effective colorization algorithm with
convincing result. As long as the color was properly annotated, their method,
without doing image segmentation, would render a delicate color picture.

In our application for MVC, neither do we want to render a color picture
from an artist’s view like graphics applications, nor can we provide an example
image for reference. However, we have spatial reference color frames and MV-
based color annotation as prerequisites for automatic scribble generation. We
can use the prediction blocks from coding pipeline to play the role of scribbles
to annotate color. The correctness of this idea is based on a simple intuition: the
matching blocks from reference frames indicate the correct color values for target
frames, since space-time neighboring frames own close similarity. Fortunately, the
motion prediction technology in H.264 is powerful enough in block matchinig,
which promises the accuracy of blocks for color annotation.

3.2 Color Annotation from H.264 Based MVC

Being the lasted video coding standard, H.264 owns many highlighted features,
as described by Wiegand [14]. It is our task to combine these features with our
colorization scheme, because we do not want to introduce extra operations to
automatic color scribble annotation. The color annotation mainly occurs during
the prediction procedure, and among various highlighted features in H.264, two
of them contributes significantly to color annotation.

1) Directional spatial prediction for intra coding: This new technique means
coding by extrapolating in current picture without reference to other frames. We
do not intend to use this technique, however, in our scheme we just want to pre-
vent it in chrominance channels, because we only have gray target sequences and
only want to search corresponding blocks in reference views according to lumi-
nance similarity. It is the codec who decides how many blocks will be inter/intra
coded considering rate-distortion optimization. The intra coding result on gray
blocks is still gray, so we can only get chrominance values indicated from inter
coding between reference and target views, i.e. in chrominance channels we need
to assign each matching block with MVs pointing to chrominance values from
reference. Then after the annotation for chrominance, some intra blocks are left
without color, and these blocks are just the target for the following colorization
tasks. One example of color annotation output from inter coding blocks can be
seen in Fig. 2(a), and all the gray areas are left by intra blocks.

2) Variable block-size motion compensation with small block sizes: H.264 sup-
ports more flexibility in block sizes including 7 types from 4×4 to 16×16. The larger
blocks can save bits and computations in consistent textures while the
smaller ones can describe the details in an accurate way. Thus, the color scribbles
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(a) (b)

Fig. 2. Color annotation result: (a)variable-size block; (b) fixed-size block. (Please refer

to electronic version for color figures.)

can also be flexible according to luminance consistency, which provides more pre-
cise color annotation than using fixed-size blocks. Fig. 2 shows an comparison
of color scribbles depicted using 7 types variable-size block and 16×16 fixed-size
block only. We can see that in (b) the yellow skirt can not be depicted accurately
using fixed-size blocks only.

4 Optimization Based Colorization

The scribble-based colorization method in [13] using optimization is a very simple
method with excellent performance. Although in some new researches [15], more
surprising result is provided considering edge detection or texture consistency,
these methods introduce too many complicated operations beyond our needs. As
it is shown in Fig. 2, our scribbles are square blocks covering the majority part of
the image, which makes our colorization task much easier than modern graphics
problems. In our annotated image, we have matching color blocks assigned by
MVs as known color areas and in uncolored areas we have luminance intensity
to guide the color expansion. This makes our application situation satisfies the
assumption in [13]: neighboring pixels in space-time that have similar intensities
should have similar color. Therefore, we colorize our annotated images using the
optimization method according to their luminance similarity to their neighbors.

The colorization is controlled by minimizing the difference of a pixel and its
neighbors around in the U and V channels of the YUV color space. During our
color annotation process, we assign color values according to MVs only in U
and V channels, so in U and V channels of target images where the values are
zero are the pixels required to be colorized according to their Y values. Take U
channel for example, we minimize the difference cost of a pixel U(x, y) with its
weighted average of color around neighboring area N (e.g. a 3×3 window), and
m, n is the width and height of the picture:

cost(U) =
m∑

x=1

n∑
y=1

(U(x, y)−
∑
N

wNU(x + Δx, y + Δy))2 (1)
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The weight factor wN is calculated from the square difference between different
luminance in Y channel, σN is the standard deviation of pixel U(x, y) around
the neighboring area N :

wN = exp
(−(Y (x, y)− Y (x + Δx, y + Δy))2

2σ2
N

)
(2)

The optimization problem above can be solved using a common method such
as the least squares, because the constraints are linear and the optimization
function owns a quadratic form. After the colorization for both U and V channels,
we obtain a complete color picture.

5 Experiment Results

5.1 Implementation Issues

Both the MVC prediction structure and color annotation of our scheme are
constructed under the framework of H.264, but we introduce many new features
according to our application. We design our new codec by revising the H.264
reference software JM v10.2 [16]: 1) In H.264, Decoded Picture Buffer (DPB)
stores all the reference frames required to encode the current frame for motion
estimation in the temporal direction. However the spatial reference frame must
be taken into consideration when designing the DPB for MVC. Thus, we modify
original JM’s DPB for spatial prediction as it is shown in Fig. 1. 2) In order
to produce the color annotated frames, the MVs of inter frame coding between
reference and target views have to be utilized. This requires a modification to
decoder in generating the color annotated frames. When the decoder performs
spatial motion compensation using luminance MVs, we need to attach every MV
with the corresponding chrominance blocks from reference frames.

We use two different MVC sequences to test our scheme. The first sequence is
called flamenco2 published by KDDI [17]. It is captured using 5 cross cameras
with 20cm spacing, and it is a non-rectified sequence which has severe color vari-
ation among different viewpoints. The second sequence is called rena published
by Nagoya University [18]. This is also a sequence required color correction, and
it is capture using 100 cameras with 5cm spacing in 1D-parallel distribution.
Both the sequences have a frame rate of 30Hz, and resolution of 640×480.

In our experiment, the flamenco2 is cropped to 320×240 and we extract the
first 100 frames from each sequence. In order to show the results in a simple way
without losing generality, we choose two neighboring views in each sequence, one
as reference and the other as target view. For flamenco2 we use viewpoint 0 as
reference while viewpoint 1 as target; for rena the reference and target views
are designated from viewpoint 51 and 52 respectively. We test the visual quality
and coding bit rate under 4 different Quantization Parameter (QP) values: 22,
27, 32, and 37.
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(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

Fig. 3. Visual quality comparison: (a1)-(a5): The first frame from flamenco2, (a1)

original reference viewpoint, (a2) original target viewpoint, (a3) color correction result

from histogram matching, (a4) color annotation result from proposed method, (a5)

colorization result from proposed method; (b1)-(b5) are the corresponding results from

the 40th frame of flamenco2; (c1)-(c5) from the first frame of rena; (d1)-(d5) from 40th

frame of rena. (Please refer to electronic version for color figures.)

5.2 Experiment Results for Color Correction

Since our color sequence is generated from color annotated frames referring to
reference, and we assume that the matching blocks from reference indicating
the correct color values, so the colorized results should also be seen as color
corrected results. In the comparison of visual quality, we show the first and 40th
frames of each sequence with original picture, color corrected result and our
colorized output. We use the histogram matching method in [6] as the control
group of color correction comparison. For fair comparison, the time-constant
mapping function in [6] is not considered, because we do not introduce any time
constraint in our method. The result of visual quality comparison can be found
in Fig. 3.

The goal of color correction is to make the color appearance of target view
similar to reference view as closely as possible. Take (a1) and (a2) in Fig. 3 as an
example, there exists severe red color cast phenomenon in (a2) and we want to
make it as blue as (a1). The histogram matching output in (a3) solves majority of
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the problem, but some red residua can still be observed. While in (a5), colorized
from the color annotation in (a4), we restore the reference color appearance on
target views with a better similarity. The same benefits of proposed method can
also be told from the other three groups’ results. Some blocking artifacts can be
found in our colorized result. This is because our method is based on the de-
coding output and the block-based color annotation may introduce inconsistent
boundaries.

5.3 Experiment Results for Color Compression

The chrominance information in target views is restored from color annotation
and colorization on gray sequence when decoding, that means during encoding
and transfer stage only luminance sequence is processed in target views, and
the reference view is processed with common MVC method. Because the color
sequence used in our test owns severe color variations and the final output aims
at correcting it towards reference, this makes the calculation of PSNR on re-
constructed image to original image not reasonable. Obviously, we cannot judge
that a reconstructed image with more precisely corrected color has a lower ob-
jective quality due to its corrected color difference to the original one. This is
different from the PSNR evaluation in color correction methods like [6]. These
methods using color correction as pre-processing before encoding and the PSNR
calculation can be performed on corrected sequence, while our method belongs
to post-processing and we do not have colorized sequence before finishing decod-
ing. Therefore, we only give the bit rate comparison under different QP values
in Table 1.

The bit rate saving of proposed method steps to a higher stair comparing to
color correction based pre-processing. In the test of flamenco2, we lower the bit
rate by about 20% on average comparing to others. All the saving bits are derived
from the chrominance coefficients. The detailed inter frame bits distribution can
be read from Table 2 including the bit costs on mode, motion, luminance coeffi-
cients (Coeffs. Y) and chrominance coefficients (Coeffs. C). As to the results of
rena, the bit rate saving seems too much to be reasonable. But this is the case.
The first reason is rena’s small camera spacing benefits our spatial prediction
based color annotation. The second reason is our scheme does not rely on mo-
tion redundancy. The inter frame motion in rena is not so violent, which means
the traditional motion-based coding is not able to exert its power. The third
reason is this sequence is noisy in chrominance. The poor-quality image brings
difficulties to transform based coding. However, color compression does not have
these limitations. On the contrary, we can further improve the coding efficiency
through saving more bits on chrominance coefficients. From Table 2 we can con-
clude that the capability of color correction in reducing chrominance coefficients
is very limited, while compression through color redundancy can maximum this
ability since the bits cost on chrominance coefficients is tending to zero.

However, our scheme also has several limitations: 1) The tradeoff between
lower bit rate and better visual quality should be considered according to ap-
plication, because sometimes the colorized result may not perform well in visual
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Table 1. Bit rate comparison (kbps). Method 1 = No correction; Method 2 = His-

togram matching; Method 3 = Proposed method

Sequence Method QP=22 QP=27 QP=32 QP=37

flamenco2 1 1530.76 822.59 433.46 229.66

2 1513.69 803.67 410.19 209.97

3 1229.50 703.51 375.39 193.68

rena 1 1427.09 549.55 268.81 153.71

2 1840.32 611.96 262.55 140.30

3 673.62 306.99 158.41 94.44

Table 2. Inter frame bit rate distribution (bits/frame, QP=32). Method 1 = No cor-

rection; Method 2 = Histogram matching; Method 3 = Proposed method

Sequence Method Mode Motion Coeffs. Y Coeffs. C

flamenco2 1 1122.80 5173.13 5522.36 1693.86

2 1131.83 5168.40 5221.51 1224.24

3 1114.83 5156.43 5542.56 6.89

rena 1 1744.13 2776.73 539.22 3004.55

2 1808.17 2661.33 522.14 2760.91

3 1684.58 2557.30 616.69 22.16

quality; 2) Our color annotation is based on spatial prediction and the spatial
matching will be greatly deteriorated if severe occlusions or great variations exist
in the neighboring viewpoints. But when compressing multi-view sequences with
small camera spacing like rena, our scheme may bring significant improvement
in coding efficiency.

6 Conclusion

This paper introduces a new coding plus color correction scheme for multi-view
video by exploring the color redundancy. Some advanced features in H.264 codec
are utilized as automatic color annotation, and then an optimization based col-
orization is performed to render the color picture. Different from motion based
coding, we focus on color, and the final output of our method brings benefits to
both color correction and color compression problems, to perform more consis-
tent color appearance and save more bits for MVC.

In future works, we will try to incorporate colorization and MVC pipeline
more closely with complicated MVC prediction structure. Furthermore, better
colorization method should be studied to prevent the blocking artifacts and
improve colorized visual quality.
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Abstract. Image segmentation is an important processing step in many image 
understanding algorithms and practical vision systems. Various image segmen-
tation algorithms have been proposed and most of them claim their superiority 
over others. But in fact, no general acceptance has been gained of the goodness 
of these algorithms. In this paper, we present a subjective method to assess the 
quality of image segmentation algorithms. Our method involves the collection 
of a set of images belonging to different categories, optimizing the input pa-
rameters for each algorithm, conducting visual evaluation experiments and ana-
lyzing the final results. We outline the framework through an evaluation of four 
state-of-the-art image segmentation algorithms—mean-shift segmentation, 
JSEG, efficient graph based segmentation and statistical region merging, and 
give a detailed comparison of their different aspects. 

Keywords: Image segmentation,  subjective evaluation. 

1   Introduction 

Image segmentation is an important processing step in many image, video and com-
puter vision applications. Extensive research has been done in creating many different 
approaches and algorithms for image segmentation [1-10]. However, no single seg-
mentation technique is universally useful for all applications and different techniques 
are not equally suited for a particular task. Hence there needs a way of comparing 
them so that the better ones can be selected. To properly position the state of the art of 
image segmentation algorithms, many efforts have been spent on the development of 
performance evaluation methods. 

Typically, researchers show their segmentation results on a few images and point 
out why their results look better than others. In fact, we never know from such studies 
if their results are good or typical examples, whether they are for a particular image or 
set of images, or more generally, for a whole class of images. Other evaluation meth-
ods include analytical and empirical goodness methods [11]. For analytical methods 
[12, 13], performance is judged not on the output of the segmentation method but on 
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the basis of their properties, principles, complexity, requirements and so forth, with-
out reference to a concrete implementation of the algorithm or test data. But until 
now, this kind of methods may only be useful for simple algorithms or straightfor-
ward segmentation problems. The difficulty is the lack of general theory for image 
segmentation [14]. As for empirical goodness methods, some goodness metrics such 
as uniformity within regions [15], contrast between regions [16] and shape of seg-
mented regions [17] are calculated to measure the quality of an algorithm. The great 
disadvantage is that the goodness metrics are at best heuristics, and may exhibit 
strong bias towards a particular algorithm [18]. To address these problems, it has been 
widely agreed that a benchmark, which includes a large set of test images and some 
objective performance measures, is necessary for image segmentation evaluation. 
Several important works [19-23] emerged and among these, one widely influential 
prior work is Berkeley benchmark presented by Martin et al. [19]. Unfortunately, both 
Martin’s and other researchers’ work suffer from a series of shortcomings, which are 
discussed in [20].  

This paper presents a segmentation evaluation method that was motivated by the 
following two proposals. 

(1) The first one is that an evaluation method should produce results that correlate 
with the perceived quality of segmentation images. This was noted by Cinque et al. 
[24]:“Although it would be nice to have a quantitative evaluation of performance 
given by an analytical expression, or more visually by means of a table or graph, we 
must remember that the final evaluator is man and that his subjective criteria depend 
on his practical requirements.” Though those methods mentioned above can be very 
useful in some applications, their results do not necessarily coincide with the human 
perception of the goodness of segmentation. 

   

(a)                                          (b)                                              (c) 

Fig. 1. Illustration of segmentation comparison where the blue boundaries in the images indi-
cate the segmentation results. The left image (a) is the ground-truth segmentation. The middle 
(b) and right (c) are respectively the results produced by two segmentation algorithms. 

(2) The second one is that existing benchmark based evaluation methods, usually 
objective methods, cannot properly reflect the goodness of different segmentation 
algorithms, so human subjects are needed to directly evaluate the output of segmenta-
tion algorithms. Generally, these methods define different functions, which measure 
the discrepancy between an algorithm’s results and the ground-truth segmentations, to 
produce a quantitative value as a representation of the algorithm’s quality. But actu-
ally, the human labeled ground-truth segmentations are another kind of expression of 
the pictures’ semantic meaning and it is not convincing to measure it by a quantitative 
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value, especially when there are several ground-truth segmentations for one picture 
just as Martin’s benchmark.  Indeed, it is still a known difficult task to exactly quan-
tify the semantic meaning. “In the absence of explicit semantics, the only alternative 
is to turn to human subjects, who will introduce implicit semantics through their un-
derstanding of the images [23].” Take the segmentations in Fig. 1 as an example. 
Suppose the left image (a) is a ground-truth segmentation, the middle (b) and right (c) 
are two segmentation results by different algorithms. If we evaluate the algorithms 
through hit rate by comparing the segmented boundaries with the ground-truth ones, 
the two algorithms will be considered as the same in performance. Nevertheless, most 
of us will think the algorithm producing the right segmentation result (c) is better than 
the one producing the middle one (b). 

The approach taken to evaluate segmentation algorithms in this work is to measure 
their performance by human subjects, to use real images of different types in the 
evaluation and to select the parameters for each algorithm in a meaningful way that is 
not biased towards any algorithm. Aspects that distinguish our work with the previous 
are the following: 

(1) Firstly, we test segmentation algorithms on images of different types and ana-
lyze their performance separately. This is often overlooked by other evaluation meth-
ods, which usually draw a thorough conclusion on a bunch of mixed test images. As a 
matter of fact, it can be a distinguished property that different algorithms may per-
form differently on each categorized images.  

(2) Secondly, our selected input parameters of each algorithm for the final evalua-
tion process are more reasonable. Most exiting evaluation methods merely gave a 
mathematic metric without considering the parameter selection problem or challenged 
this crucial step with ambiguity. In this work, we use a coarse-to-fine method to select 
10 “best” parameter sets for each algorithm from a large parameter space. The final 
evaluation is made on the basis of each algorithm’s 10 parameter sets. Therefore, our 
conclusion is more robust and can reflect the algorithms’ real performance.  

(3) In our analysis of the experimental data, we use the statistical technique and 
psychological model Intraclass Correlation Coefficient. This makes our experimental 
conclusion more reasonable and acceptable. 

The remainder of this paper is organized as follows. In Section 2, we introduce the 
images used in our experiments and four algorithms to be evaluated. In Section 3, we 
describe our parameter selection procedure for each algorithm and in Section 4, ex-
periments are conducted to assess the performance of the four segmentation algo-
rithms. Finally, discussion and conclusion are made in Section 5. 

2   Images and Segmentation Algorithms 

Any scheme for evaluating segmentation algorithms must choose a test-bed of images 
with which to work. In this paper we employ the publicly available Berkeley image 
segmentation database [25], to which existing evaluation method frequently refer. 50 
natural images of different types are carefully selected from the database. They are 
categorized as textured and nontextured, each of which compose half of the dataset. 
To ensure wide variety, we intentionally collect images with various contents, such as 
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human, animal, vehicle, building, landscape, etc. All images are colored RGB format 
of 481×321 or 321×481 in size.  

We also select four segmentation algorithms in our evaluation, which are mean-
shift segmentation (MS) [4], JSEG [1], efficient graph-based method (EGB) [3] and 
statistical region merging (SRM) [2], based on the following three considerations.  

(1) They well represent different categories of image segmentation methods.  
(2) All of them are relatively new methods and published in well-known publications.  
(3) The implementations of these methods are publicly available. 

3   Parameter Selection 

Selecting the input parameters of each algorithm is a critical step in performance 
evaluation because the resulting quality varies greatly with the choice of parameters. 
Most existing evaluation methods treat this complex problem with ambiguity or do 
not mention it at all. In this paper, we select parameters in a prudent manner. For each 
algorithm, the plausible meaningful range of each parameter is determined by consult-
ing the original paper and doing a preliminary experiment, through which we can get 
a general idea of the parameters’ effects on the algorithm’s results. We try our best to 
make sure each parameter of a specific algorithm samples the entire reason-able pa-
rameter space, with no bias toward any parameter or algorithm. After this initial pa-
rameter selection, we then choose ten parameter settings for each algorithm through 
five persons’ evaluation. Our final results are based on the ten parameter settings of 
each algorithm. This is called the final parameter selection. 

3.1   Initial Parameter Selection  

According to the principles mentioned above, we choose the initial combinations of 
parameter settings for each algorithm as follows. 

(1) Mean-shift segmentation (MS). The mean-shift based segmentation technique 
is one of many techniques under the heading of “feature space analysis.” There are 
three parameters for the user to specify. The first parameter hs , and second parameter 
hr , are respectively the radius of the spatial dimensions and color dimensions for 
gradient estimation. The third one, M  (minimum region), controls the number of 
regions in the segmented image. Our preliminary experiment on dozens of images 
tells us that the reasonable maximum of the three parameters are respectively about 
49, 30.5 and 7000. Therefore, we give 7×7×7 combinations of mean-shift parame-
ters, where hs ∈{7, 14, 21, 28, 35, 42, 49}, hr ∈ {6.5, 10.5, 14.5, 18.5, 22.5, 26.5, 
30.5} and M ∈{50, 200, 700, 1000, 3000, 5000, 7000}. 

(2) JSEG segmentation (JSEG). JSEG is a much more different method based on 
region growing using multiscale “J-images.” The algorithm has three parameters that 
need to be determined by the user. The first one is a threshold q  for the quantization 
process. The second one is the region merging threshold m  and the last one l  is the 
number of scales desired for the image. The ranges of the three parameters are 
bounded by the author in the implementation as q ∈  [0, 600], m∈  [0, 1] and l ∈{1, 
2, 3}. Consequently, the initial 7×7×3 JSEG parameter settings are combinations of 
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the just referred three, where q ∈{85, 170, 255, 340, 425, 510, 595}, m∈{0.15, 0.30, 
0.45, 0.60, 0.75, 0.90, 1.00} and l ∈{1, 2, 3}. 

(3) Efficient graph-based segmentation (EGB). This is typically a graph-based 
segmentation method by comparing and merging pairwise regions. The algorithm 
required three parameters to be set: σ , k  and Min . σ is used to smooth the input 
image before segmenting it. k is the value for the threshold function and Min repre-
sents the minimum component size enforced by post-processing. On the basis of a 
preliminary experiment, the initial 7 × 7 × 7 parameter settings are determined as 
σ ∈ {0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1.00}, k ∈{200, 500, 800, 1000, 2000, 3000, 
4000} and Min ∈{50, 200, 700, 1000, 3000, 5000, 7000}. 

(4) Statistical region merging based segmentation (SRM). The key idea of this 
method is to formulate image segmentation as an inference problem and then process 
it with region merging and statistical means. There is only one parameter Q  , which 
control the coarseness of the segmentation, to be decided by the user. Q  is an integer 
number confined  in the range of [1, 256] according to the original paper but our pre-
liminary experiment shows a shrunken range of [1, 80] is more appropriate. 

We can easily find that all the first three algorithms (MS, JSEG and EGB) have 
three parameters and we ensure each parameter equally samples the reasonable pa-
rameter space. Some of the parameters have the same meaning (e.g. M and Min ). 
Thus they are given the same numerical value. While this method does not guarantee 
that the optimal input parameter set is identified — indeed there is currently no ac-
cepted method that will guarantee finding the optimal input parameters without 
ground truth — it does avoid biasing the results toward any of the algorithm.  Unfor-
tunately, the fourth SMR algorithm only depends on one parameter. This makes it 
harder to compare it with the other three. Adding two more parameters by modifying 
the algorithm is a way of addressing this problem [22, 26]. However, this is not an 
easy task and furthermore, modifying the algorithm may divert it greatly from the 
original one.  Thereby we handle this demanding problem by shrinking the initial 
parameter settings to less than one third of the first three parameters’ choices. 

3.2   Final Parameter Selection 

In this stage, the number of every algorithm’s initial parameter combinations is re-
duced to 10. The methodology employed here is by the subjective evaluation of 5 
participants, major in computer vision, on 20 images. Half of the images are textured 
and the other half are nontextured.  

In the first place, each algorithm produces results on the 20 training images with all 
its initial parameter combinations. But the forms of segmentation results differ greatly 
with each other as showed in Fig. 2. MS produces results with two kinds of forms, 
white-black boundary map and region map with mean color within the region. JSEG 
gives its segmentation results in the form of boundary map superimposed on the 
original map, while EGB with region map filled with random color and SRM with 
boundary map superimposed on the mean color region map. In order to exempt the 
influence of different segmentation representations on participants’ ratings, we pro-
gram to transform the three kinds of results of MS, EGB and SRM into one uniform 
representation, boundary map superimposed on the original map, which is the same as 
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the results of JSEG.  Participants are then asked to rate the segmentation results from 
a scale of one to seven. There is no time limit but the participants are asked to make 
their standard of “goodness” consistent in the whole procedure and for one image, the 
scores of four algorithm must be rated at one time. The rating score indicates the 
easiness of identifying the perceptually different objects from the segmentation re-
sults. The higher the score is, the easier the different objects can be identified. After 
doing this, the results of each algorithm with a rating no less than five are collected in 
together. We then use a voting process to decide the most representative parameter 
settings for each algorithm. Parameters with the highest ten voting scores are selected 
as the algorithm’s final parameter settings. The results of final parameter selection are 
listed in Table 1. 

 

Fig. 2. The different representations of the four algorithms’ segmentation results: (a) an original 
image; (b, c) the segmentation results of MS; (d) the segmentation result of JSEG; (e) the seg-
mentation result of EGB; (f) the segmentation result of SRM 

4   Algorithm Evaluation 

Getting the ten parameter settings for each algorithm, we then use a subjective way to 
evaluate the four segmentation algorithms. In this experiment, 30 images are used. 
Each image is processed by each algorithm with all its 10 parameter combinations. 
The total 1200 segmentation results are then evaluated by 20 persons major in com-
puter vision in a similar way as described in the final parameter selection step. 

4.1   Consistency between Participants’ Ratings 

Before we start our evaluation, it is important to known whether the ratings are con-
sistent across the participants. This is estimated using one form of the Intraclass Cor-
relation Coefficient psychological model [27, 28]. The ICC (3, k) form is appropriate 
for the task because it measures the expected consistency of the k participants’ mean 
ratings. The ICC (3, k) model is defined as: 

ems

ems-bms
k) ICC(3, = , (1)
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Table 1. The final parameter selection results. There are 10 parameter combinations for each 
algorithm. 

 
 
where bms represents mean square of the ratings between targets, ems means total 
error mean square, and k is the number of participants. The values of ICC can range 
from zero to one, where zero means no consistency and one means complete consis-
tency. This ICC model is used for every segmentation algorithm to examine the corre-
lation of participants’ ratings. Since 20 participants are involved in the procedure, the 
ICC (3, 20) for each algorithm is 0.9258(MS), 0.9702(JSEG), 0.9692(EGB) and 
0.9617 (SRM). These figures give an indication that a consensus about ratings exists. 
This is a critical result since it establishes the validity of comparing the ratings in our 
experiments. 

4.2   Performance and Parameters 

In this part, we examine the algorithms’ performance under different parameters. In 
the first place, the rating scores are used to determine the two parameter settings using 
two different criteria. The best single overall parameter setting, termed the fixed pa-
rameters, is identified by averaging the ratings across the participants, averaging these 
results across images, and finding the parameter set with the highest average. The best 
parameter setting for each individual image, termed the adapted parameters, is also 
found. This is done by averaging the ratings across participants and identifying the 
parameters that have the highest average rating for each image. 

The fixed parameters for each algorithm are: MS (35, 10.5, 5000), JSEG (595, 
0.60, 1), EGB (1.00, 500, 3000) and SRM (32). The adapted parameters for each 
image are show in Table 2. Since all the images are from Berkeley database, their 
names are labeled with numbers as they were. 

We calculate their mean ratings under the two parameter settings by averaging the 
ratings across images and participants and then compare their relative performance. 
For fixed parameters, their mean ratings are 4.73(MS), 4.76(JSEG), 4.37(EGB) and 
4.13(SRM). For adapted ones, they are 5.12(MS), 5.01(JSEG), 4.73(EGB) and 
4.43(SRM).We can see clearly that the performance of the two algorithms — MS and 
JSEG — are better than that of EGB and SRM in both fixed and adapted parameter 
settings, while for MS and JSEG, or EGB and SRM, the difference in them is trivial. 
We can also find that for every algorithm, the adapted parameters outperform the  
< 
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Table 2. The adapted parameters for each image. Image names are labeled with the numbers in 
the Berkley database. 

 
 

fixed parameters. This is a significant result because it implies that the amount of 
effort expected in parameter optimization can influence the measured performance of 
the algorithm. Therefore, equal effort must be put in optimizing the parameters in a 
real application. 

4.3   Performance and Image Category 

In this experiment, we examine the interaction between the algorithms’ performance 
and the image categories. The relative performance of the algorithms is calculated 
separately by averaging the ratings across images of a specific category and partici-
pants. For textured images, their mean ratings are 4.28(MS), 3.78(JSEG), 3.66(EGB) 
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and 3.03(SRM). For nontextured ones, they are 4.56(MS), 4.76(JSEG), 4.21(EGB) 
and 4.32(SRM). Generally, the four algorithms perform better on nontextured images 
than on textured images. This suggests that each algorithm leaves something to be 
improved when confronted with textured images. How to deal with texture is still a 
problem required to be noticed while developing segmentation algorithms. As for 
their relative performance, we can find that the MS algorithm performs significantly 
better than the other three for textured images, while SRM is the poorest and, JSEG 
and EGB are nearly of the same level. For nontextured images, JSEG and MS pro-
duce better results than SRM and EGB. The difference between MS and JSEG is 
marginal. The same is true for EGB and SRM.  

4.4   Stability with Respect to Different Images 

Performance variation with respect to different images under one particular parameter 
combination is an important property. Here we first average ratings of every image 
under every parameter setting across participants and then calculate the variance of 30 
images’ ratings under every parameter combination. At last the 10 variances of the 
algorithm are averaged as a representation of the algorithm’s stability under different 
images. The variances for the four algorithms are respectively 2.85(MS), 2.55(JSEG), 
1.38(EGB) and 1.79(SRM). From these figures, we can see that the stability of the 
four algorithm is EGB>SRM>JSEG>MS. Though MS and JSEG produce better re-
sults than EGB and SRM, their stability with respect to images is not as good as EGB 
and SRM.  

4.5   Stability with Respect to Different Parameter Settings 

An algorithm’s performance may vary greatly under different parameter settings. In 
this experiment, we look at an algorithm’s stability across the 10 best parameter com-
binations. We average the ratings of a particular image across participants and then 
compute the variance of an image’s 10 ratings. After that, we average the variance 
results across 30 images. Experimental results are 0.91(MS), 1.45(JSEG), 0.46(EGB) 
and 1.16(SRM), which show that the relative stability are EGB>MS>SRM>JSEG. 
When employing a sensitive algorithm such as JSEG, we should pay more attention to 
the parameter selection because it may affect the results greatly. 

4.6   Processing Time Comparison 

Processing speed is a critical consideration in many applications. Sometimes it is 
much more important than other properties discussed above. However, except for MS 
algorithm, none of the other three algorithms give a running time registration in their 
original implementation programs. So we make a little change in the original pro-
grams to make them capable of registering the processing time while segmenting an 
image. After that, we calculate the mean processing time of an algorithm by averaging 
time across all images and parameter settings. All the programs are run on a computer 
with Pentium 4 CPU 2.93GHz and 1G memory. 

The processing time (in seconds) are 44.34(MS), 9.88(JSEG), 0.61(EGB) and 
0.39(SRM). Obviously, we can see that MS is the most time-consuming algorithm, so 
it is not appropriate for real time applications. JSEG runs more quickly than MS, but 
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it still can not satisfy the need of real time situations. Fortunately, EGB and SRM are 
both quick enough in a real time system and SRM stands out with the quickest speed. 

5   Discussion and Conclusion 

In this paper, we have presented a subjective method for comparing the quality of 
image segmentation algorithms. To demonstrate the utility of our proposed method, 
we performed a detailed comparison between four algorithms: mean-shift segmenta-
tion (MS), JSEG, efficient graph-based method (EGB) and statistical region merging 
(SRM). The algorithms were compared with respect to different parameter settings, 
image categories and processing time. Also, two kinds of stability were considered: 
stability with respect to parameters for a given image and stability with respect to 
different images for a given parameter combination. Our experimental results show 
that no single algorithm can outperform others in all aspects mentioned above. For 
example, MS and JSEG perform better than EGB and SRM in terms of parameter 
settings and different image categories, while their stability and processing time are 
not as good as the other two properties. Therefore, there should be a trade-off between 
these characteristics in the selection of a real application. 

We can also find that, from the perspective of recognizing the different objects in 
images, even the state-of-the-art segmentation algorithms are far from perfect. This 
can be demonstrated from the mean scores in Section 4.2 and Section 4.3. We believe 
that, only after knowing how to solve this object recognition segmentation, can we 
make a great progress in image segmentation. Additionally, an effective object recog-
nition segmentation method can facilitate many related applications, such as contend 
based image retrieval. Our future research involves developing a new segmentation 
algorithm consistent with human perception and this work is under way. 

Our comparison in this experiment is an overall one rarely done in previous 
evaluation papers. We can get a complete understanding of the algorithms after this 
evaluation. This is informative when confronting with a problem of segmentation 
method selection in real applications. 

However, this evaluation method has its shortcomings. First, subjective evaluation 
is a tedious and time-consuming work. In these experiments, the entire 50 images 
require thousands of ratings for every participant. This severely limits the number of 
images used in the evaluation, which brings out the second shortcoming that the abil-
ity to generalize our experimental results may be limited. In this work, 20 images 
were used in the parameter selection process and another 30 images are used in the 
algorithm evaluation process. This is not a large number compared with those objec-
tive evaluation methods. In spite of this, we argue that our evaluation conclusion is 
meaningful and useful. For one reason, the rating scores of different participants are 
consistent with each other as the psychological model ICC (3, k) demonstrates. For 
another, though it is not a large number of images, they have diverse image character-
istics, and it is larger enough than those which claim their superiority over others on 
just several images. Besides, some of the properties compared in our experiments 
vary greatly with different algorithms and we believe it can reflect the actual quality 
of the algorithm. 
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Abstract. In recent years, the detection accuracy has significantly im-

proved under various conditions using sophisticated methods. However,

these methods require a great deal of computational cost, and have dif-

ficulty in real-time applications. In this paper, we propose a real-time

system for object detection in outdoor environments using a graphics

processing unit (GPU). We implement two algorithms on a GPU: adap-

tive background model, and margined sign correlation. These algorithms

can robustly detect moving objects and remove shadow regions. Exper-

imental results demonstrate the real-time performance of the proposed

system.

Keywords: Object detection, Real-time system, GPU, Adaptive back-

ground model, Margined sign correlation.

1 Introduction

Object detection algorithms can be applied to various practical systems, such
as person recognition, traffic monitoring and security systems. To realize these
applications, many approaches for object detection have been proposed, and
brought significant improvements in detection accuracy. The real-time perfor-
mance, however, is also important for effective detection.

Graphics hardware has recently been used to achieve real-time performance.
In [7], [8], field programmable gate arrays or other LSI chips were used to im-
plement algorithms for object detection. However, restrictions of their architec-
tures still hinder effective performance. Recently, object detection algorithms
on graphics processing units (GPU) have been proposed [10], [11], [12]. GPUs,
which were originally devices for 3D-graphics processing, have been remarkably
improved for their programmability in recent years [9]. This programmability
and their low price have resulted in a current trend of general purpose com-
puting on a GPU (GPGPU). In [10], a pedestrian detection algorithm using a
histogram of oriented gradient features and support vector machine classifiers
runs on a GPU. In [11], a background subtraction on the CIELAB color space

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 65–74, 2010.
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is sped up using a GPU. In [12], a background segmentation algorithm based on
the extended colinearity criterion is also sped up using a GPU.

There are many object detection methods, which are based on various types
of features [10], inter-frame difference [2] and background subtraction [1], [5],
[11]. The background subtraction technique is commonly used for its simplic-
ity. However, to deal with dynamic and local illumination changes, background
models should be sophisticated at the pixel [1], region [5] or frame level [11]. In
particular, pixel-level background models can be implemented on a GPU by de-
signing a background subtraction process per pixel for programmable pipelines.
We have proposed an adaptive background model (ABM) and margined sign
correlation (MSC) for object detection in the previous paper [1]. The previously
proposed method can detect moving objects robustly, but the method has huge
computational cost. In this paper, we propose a real-time system for object de-
tection by implementing the ABM and MSC on a GPU. This paper is organized
as follows: Section 2 briefly reviews the algorithms of the ABM and MSC, which
are effective algorithms for object detection in outdoor environments. Section 3
explains the proposed system implemented on the GPU. Experimental results
are shown and discussed in Section 4. Conclusions are given in Section 5.

2 ABM and MSC[1]

We briefly explain the ABM and MSC in this section. We assume that a camera
and lights are relatively static in a background scene; therefore, a complex reflec-
tion model including the surface normal, light direction, and camera direction is
not needed. In addition to the background subtraction technique, we apply the
MSC for texture analysis. The MSC robustly detects spatial difference for illu-
mination changes and can find object regions that are classified as background
by chroma difference.

2.1 Adaptive Background Model

The pixel value E(x, t) is given by the following equation:

E(x, t) = Sa(x, t)Ra(x)Ia(x, t) + Sd(x, t)Rd(x)Id(x, t), (1)

where Ia(x, t) and Id(x, t) are the intensity of the ambient light and the sun-
light, respectively. Ri(x) is a diagonal matrix including albedo and specular
reflections of an object surface, and Si(x, t), which varies from 0 to 1, is the
degree of brightness of the light at point x at time t. The value of Si(x, t) = 0
indicates that the ray of light source i is obstructed at point x and time t, while
Si(x, t)=1 means that all rays of light source i reach point x at time t. Sa(x, t)
is always 1 in outdoor scenes because Ia is an ambient light source (rays from
the sky). Finally, by substituting Li(x, t)=Ri(x)I i(x, t) in Eq. 1, the following
equation can be obtained:

E(x, t) = La(x, t) + Sd(x, t)Ld(x, t). (2)
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Additionally, La and Ld are assumed to be Gaussian processes:

La(x, t) = La(x, t−1) + εSa , (3)
Ld(x, t) = Ld(x, t−1) + εSd

, (4)

where εSa∼N(0, ΣSa) and εSd
∼N(0, ΣSd

).

2.2 Margined Sign Correlation

The margined sign correlation (MSC) is an extension of sign cross correlation
and is defined as follows:

MSCm(f(x), g(x)) =
〈sgnm(f(x)), sgnm(g(x))〉

‖sgnm(f(x))‖ · ‖sgnm(g(x))‖ , (5)

‖sgnm(f(x))‖ =
√

(sgnm(f(x)), sgnm(f(x))), (6)

〈sgnm(f(x)), sgnm(g(x))〉 =

∫
x∗∈N(x)

sgnm(f(x∗
)−f(x))sgnm(g(x∗

)−g(x))dx∗, (7)

sgnm(x) =

⎧⎨⎩
+1 |m| ≤ x
0 −|m| ≤ x < |m|,
−1 x < |m|

(8)

where N(x) is a neighborhood of x, and m is the margin in consideration of
noise. In the case of m = 0, MSC0(f(x), g(x)) is equivalent to the peripheral
increment sign correlation [6], and when f(x), g(x) are replaced to median (or
mean) of f(x), g(x), MSC0(f(x), g(x)) is equivalent to the sign cross correlation.
MSCm(f, g) is not defined if ‖sgnm(f(x))‖=0 or ‖sgnm(g(x))‖=0. This means
that the calculation of the cross correlation makes no sense because of noise in
image f (or g).

3 GPU-Based Implementation of the Proposed
Algorithm

Because of the recent development of the GPU, the GPGPU has been attract-
ing attention in the research field [10], [11], [12]. Programmable pipelines in the
current GPUs support vectorized floating-point operations, which bring fast pro-
cessing. The graphics pipelines have programmable vertex and fragment stages,
and typically, GPGPU applications only use the fragment stage (Fig. 1). In spite
of this development , there are two limitations for GPU-based implementations.
The first is that a branch condition is not supported due to the Single Instruc-
tion Multiple Data architecture of the current GPU. This means that a branch
condition must be expressed in a suitable way for the fragment shader program.
The second is the slow data transfer between the GPU and the CPU, so transfer
times need to be reduced.

In our research, the fragment program is designed for the whole process for
each pixel, so we need only one data transfer from the GPU to the CPU. This
section describes each step of the proposed system.



68 A. Yamamoto and Y. Iwai

Fig. 1. GPGPU programming model

Fig. 2. Overview of the proposed system for object detection

3.1 Overview of the Proposed System

Fig. 2 illustrates the overview of the proposed system. The system consists of
three parts: brightness estimation, background components estimation, and clas-
sification of foreground and background. We assume that a background pixel is
expressed by the ABM [1]. Then, sudden illumination changes like shadows can
be expressed by the reflectance parameter Sd of two background components
La, Ld.

After estimation of the brightness, each pixel is classified as either object or
background region based on chroma and texture differences between an input
image and the estimated background. The use of not only chroma but also
texture difference reduces misclassification caused by the color similarity between
objects and background regions. In this paper, we use the MSC [1] for analyzing
textures.

During the classification, background components are updated by using a
Kalman filter. When a pixel is classified as background, the background
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components are replaced by estimated values. The above processes are performed
on the GPU for all pixels.

3.2 Estimation of Brightness

The reflectance parameter Sd(x, t) is estimated from an input image and back-
ground components La(x, t) and Ld(x, t). However, the true values of La(x, t)
and Ld(x, t) are unknown, so we first use L̃a(x, t−1) and L̃d(x, t−1) as plug-in
estimates for La(x, t) and Ld(x, t). These estimates are suitable for a very short
time, and then the reflection parameter can be calculated from the following
equation:

S̃d(x, t) = 〈E(x, t)−L̃a(x, t−1),
L̃d(x, t−1)

‖ L̃d(x, t−1) ‖2
〉, (9)

where 〈, 〉 expresses an inner product of vectors. We can deal with sudden changes
of direct light, such as shadows and occlusion by clouds, by adjusting the reflec-
tion parameter.

3.3 Classification of Foreground and Background

Foreground objects are detected using two different measures of difference: the
chroma difference and the texture difference. Object detection and shadow re-
moval are performed using the chroma difference between object color E(x, t)
and the estimated background model, La(x, t) and Ld(x, t). The chroma differ-
ence D(x, t) is defined by the following equation:

D(x, t) =‖ E(x, t)−(L̃a(x, t−1)+S̃d(x, t)L̃d(x, t−1)) ‖ . (10)

Here we also use L̃a(x, t−1) and L̃d(x, t−1) as plug-in estimates of La(x, t) and
Ld(x, t). The decision based on the chroma difference is made from the following
criterion: {

background D(x, t) < Dth,
object otherwise,

(11)

where Dth is a threshold value that determines whether a pixel is an object
region or not.

The chroma classifier is effective for removing shadows; however, it cannot de-
tect objects similar to the background color. Therefore, we use another classifier
which evaluates spatial relations of luminance contrast, i.e., texture difference.
Luminance contrast largely corresponds to the green color component, so we
consider the spatial difference of the green component only. This significantly
reduces the computational resources compared with the previous work [1]. The
texture difference classifier is defined as follows:{

background MSCm(E
G
(x, t)− L̃aG(x, t−1), L̃dG(x, t−1)) ≥ Eth,

object otherwise,
(12)

where we also use L̃a(x, t−1) and L̃d(x, t−1) as plug-in estimates of La(x, t)
and Ld(x, t), and Eth as a threshold value.
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Table 1. Final decision based on two classifier

chroma difference

background foreground

texture background background foreground

difference foreground foreground foreground

Finally the system determines whether a pixel is in the background regions
or not by using the two classifiers’ decisions. In the system, the decision is made
by logic, as shown in Table 1.

3.4 Estimation and Update of Background Components

Estimation and update of ambient light. During the classification process,
the system calculates observation L̂a(x, t) from Eq. 2 by substituting Sd(x, t)
and Ld(x, t) for S̃d(x, t) and L̃d(x, t−1) as follows:

L̂a(x, t) = E(x, t)−S̃d(x, t)L̃d(x, t−1). (13)

When a pixel is classified as a background pixel, the system estimates L̃a(x, t)
from observation L̂a(x, t) using a Kalman filter to avoid the case where a pixel
is too bright such that:

S̃d(x, t) ≤ S
ath, (14)

where Sath is the threshold value of this filtering process, and is proportional to
εSa . The filtering process can reduce outliers where ambient light is not observed
adequately and can stabilize the estimates of ambient light.

Estimation and update of direct light. The system calculates the observa-
tion L̂d(x, t) from Eq. 2 by substituting Sd(x, t) and Ld(x, t) for S̃d(x, t) and
L̃d(x, t−1) as follows:

L̂d(x, t) = E(x, t)+(1−S̃d(x, t))L̃d(x, t−1). (15)

The system estimates L̃d(x, t) from observation L̂d(x, t) using a Kalman fil-
ter, when a pixel is classified as a background pixel and satisfies the condition
expressed by the following equation:

S̃d(x, t) ≥ S
dth. (16)

This indicates that the system selectively updates the direct light component by
filtering dark pixels where the direct light component would be small, and this
filtering process also stabilizes the estimates of direct light.
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(a)Input frame (b)Classification result

(spatial difference of green color)

(c)Classification result (d)Classification result

(spatial difference of luminance) (spatial difference of RGB color)

Fig. 3. An input frame and classification result based on different spatial difference

4 Experimental Results

We evaluate the performance of the proposed system with respect to both the ex-
ecution time and the detection rate. Our system works on two 64-bit Quad-Core
Intel Xeon Processors (2.8 GHz) with 4 GB memory and on a NVIDIA GeForce
8800 GT graphics card with 512 MB memory. The frame size of a video sequence
is 720×486 pixels. For evaluation, we use color images (8 bits color) captured in
an outdoor environment at about noon on 8 May 2005 (fair weather, occasionally
cloudy). We set the margin m to SD/2 which is half the maximum variance of
two Kalman filters. In our experiments, the MSC was calculated on the neigh-
borhood size 7×7 pixels, which is the largest size for real-time processing on our
GPU.

Fig. 3 (a) shows an input frame used for the evaluation and Figs. 3 (b), (c),
and (d) show results obtained from the GPU system based on different spatial
differences; G, luminance, and RGB (RGB is used in the previous work [1]).
Fig. 4 shows histograms of MSC values based on the different spatial differences:
G, luminance, and RGB. Figs. 4 (1a), (2a), (3a), and (4a) show regions of interest
(ROI) while the remaining fighres are histograms of each ROI. In Figs. 3 (b), (c),
and (d), white regions represent the background. The number of pixels of object
regions manually classified in Fig. 3 (a) is 64533 pixels, while the number of pixels
of shadow regions is 11342 pixels. Table 2 shows both the object detection and
shadow removal rates for the images shown in Figs. 3 (b), (c), and (d). Table 3
shows speed performance of our GPU system with different texture differences,
compared to the CPU-based software system.
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(1a)Human region (1b) G (1c) luminance (1d) RGB

(2a)Waving tree region (2b) G (2c) luminance (2d) RGB

(3a)Human region with (3b) G (3c) luminance (3d) RGB

background color

(4a)Moving shadow region (4b) G (4c) luminance (4d) RGB

Fig. 4. Histogram of MSC values based on the different spatial differences: G, lumi-

nance, and RGB

Table 2. Object detection rates and shadow removal rates

object region shadow region

pixel rate(%) pixel rate(%)

G 51054 79.11 10683 94.19

luminance 50746 78.64 10731 94.61

RGB 49595 76.85 11014 97.11

From Table 2, when the spatial difference of the green color is used, the
detection rate of object regions becomes better than the luminance and RGB
color, while the removal rate of shadow regions becomes worse. These can be
seen especially in human head regions and a shadow region in Figs. 3 (b), (c),
and (d); however the difference amongst three results are small enough to be
ignored. Figs. 4 (1b), (1c), (2b), (2c), (3b), (3c), (4b), and (4c) also show quite
similar results between the green component and the luminance. In addition, in
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Table 3. Speed performance using three different texture classifiers

G luminance RGB

processing frame/sec processing frame/sec processing frame/sec

time (sec) (fps) time (sec) (fps) time (sec) (fps)

CPU 1.40 0.71 1.75 0.57 2.67 0.38

GPU 0.13 7.5 0.17 6.0 0.23 4.3

CPU/GPU 10.8 10.3 11.6

Figs. 4 (2b), (2d), (4b) and (4d), the histograms of the waving tree and shadow
regions are sharpened by using the spatial difference of the luminance (the green
component) compared with the RGB difference used in the previous work [1].
In Figs. 4 (3b) and (3d), the histogram of the luminance (the green component)
difference becomes gentle-slope in comparison with that of the RGB difference.
This means that our texture classifier can detect background regions and remove
shadow regions more efficiently.

From Table 3, our GPU system executes more than 10 times faster than the
CPU-based system. In addition, our system executes more than 1.7 times faster
by using the spatial difference of the green component as compared to that of
the RGB color. When the spatial difference of the green color is used, our system
processes at a speed of 0.13 seconds per frame. Based on the results, it is clear
that the proposed system is suitable for various practical online applications.

5 Conclusion

In this paper, we developed the GPU-based algorithm for object detection in
outdoor environments. The adaptive background model, which can deal with
global illumination changes and shadows, is suitable for GPU implementation
because of its pixel-level modeling and simple form. Our system can detect spatial
differences faster on the GPU by only using green color information for the
margined sign correlation. Experimental results demonstrated that our system
can be used in real time without degradation in performance. As a result, our
system works 10 times faster than the software-based implementation system,
so our system is suitable for real-time applications in outdoor environments.

In the future, we will improve our system to be stable for long periods under
various conditions.

References

1. Yoshimura, H., Iwai, Y., Yachida, M.: Object detection with adaptive background

model and margined sign cross correlation. In: 18th International Conference on

Pattern Recognition, Hong Kong, vol. 3, pp. 19–23 (2006)

2. Huang, K., Wang, L., Tan, T., Maybank, S.: A real-time object detecting and

tracking system for outdoor night surveillance. Pattern Recognition 1, 432–444

(2008)



74 A. Yamamoto and Y. Iwai

3. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and prac-

tice of background maintenance. In: 7th IEEE International Conference on Com-

puter Vision, Kerkyra, Greece, vol. 1, pp. 255–261 (1999)

4. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time

tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, Fort Collins, CO, USA, vol. 2, pp. 246–252 (1999)

5. Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and sub-

traction of dynamic scene. In: 9th IEEE International Conference on Computer

Vision, pp. 1305–1312 (2003)

6. Kaneko, S., Satoh, Y., Igarashi, S.: Robust object detection in image sequence using

peripheral increment sign correlation. In: 5th Japan-France Congress on Mecha-

tronics, pp. 287–292 (2001)

7. Price, A., Pyke, J., Achiri, D., Cornall, T.: Real time object detection for an un-

manned aerial vehicle using an FPGA based vision system. In: Proceedings 2006

IEEE International Conference on Robotics and Automation, pp. 2854–2859 (2006)

8. Hayashi, H., Nakada, K., Morie, T.: Moving object detection algorithm inspired

by the sequence detection in the hippocampus and its digital LSI implementation.

International Congress Series, vol. 1301, pp. 35–38 (2007)

9. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
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Abstract. SIFT, short for Scale Invariant Feature Transform, is re-

garded as one of the most robust feature detection algorithms. The Gaus-

sian and DoG Pyramid Construction part, functioning as computation

basis and searching spaces for other parts, proves fatal to the system.

In this paper, we present an FPGA-implementable hardware accelerator

for this part. Stratified Gaussian Convolution scheme and 7-Round Par-

allel Computation scheme are introduced to reduce the hardware cost

and improve process speed, meanwhile keeping high accuracy. In our

experiment, our proposal successfully realizes a system with max clock

frequency of 95.0 MHz, and on-system process speed of up to 21 fps for

VGA format images. Hardware cost of Slice LUTs is reduced by 12.1%

compared with traditional work. Accuracy is kept as high as 98.27%

against original software solution. Our proposed structure proves to be

suitable for real-time SIFT systems.

1 Introduction

In recent years, Feature Point Detection has been of great attention. Feature
points can be used in various circumstances, such as, Object Recognition, Robot
Localization and Mapping, Panorama Stitching, 3D Scene Modeling, Recognition
and Track-ing, 3D Descriptor for Human Action Recognition, and so forth. The
SIFT algorithm, short for Scale Invariant Feature Transform, is proposed by
David Lowe in [1][2]. Regarded as one of the most robust feature point detection
algorithms, a significant advantage of SIFT over other algorithms is that, the
feature points detected are invariant to image scaling and rotation, while at the
same time robust to changes in illumination, noise, occlusion and minor changes
in viewpoint. Although SIFT is powerful, time consumption of the algorithm is
relatively huge as a result of complex processes to achieve its robustness.Hardly
any real-time system exists for VGA image processing.

GPU-based system has been proposed in [3][4][5]. Although accelerated, this
method greatly depends on the performance of the GPU chip and the PC en-
vironment, and the results vary much from computer to computer. Recently,
researches have been focusing on hardware accelerators for the SIFT algorithm.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 75–84, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Hardware acceleration implementations are proposed in [6][7][8][9][10] introduc-
ing some successful SIFT hardware design examples. Although these systems
are far from perfect and are not able to reach real-time computation for VGA
images, the results showed a promising view of hardware implementation of
SIFT.

According to [6], SIFT can be structurally divided into 4 major parts, Gaus-
sian Pyramids and DoG Pyramids Construction (GDPC), Feature Point Detec-
tion, Orientation Calculation, Descriptor Creation.

In this paper, we focus on hardware implementation of GDPC part.

1.1 Previous Work on Gaussian and DoG Pyramid Construction

The GDPC part is the very first part of the SIFT algorithm. This part gen-
erates the Gaussian Pyramids and DoG Pyramids which are the computation
basis and searching spaces for other parts. Although this part takes only 10% of
computation complexity of the whole system, it proves to be fatal to the system.

In [7], the author proposed a GDPC hardware accelerator using 5 Gaussian
Convolution Units (GCUs) to build up the system. Based on Linear Separable
characteristics of Gaussian Convolution, the author breaks down 2D GCU into
2-time 1D-based 2D GCU so that hardware cost increases almost linearly with
Gaussian Kernel Width. Although it is reasonable to use 5 GCUs at once as it
is, the problem is that these 5 GCUs have various Gaussian Kernel Widths. The
GCU with the largest width (27) consumes almost 3 times hardware cost of the
GCU with the smallest width (11). As a result, hardware cost is high.

In [9], Gaussian filter is implemented in pipeline architecture. They also use
the 1D-based 2D GCU structure. The Max Clock Frequency reaches as high
as 149MHz. However, due to relevance between Gaussian Images of adjacent
intervals, to update one pixel at the last interval, the system needs to update
(3 × 4 × 4 + 1 + 9 × 6 × 4) = 265 pixels at the 2nd interval1. The system has
to wait before these 265 pixels are fully computed. As a result, the system is
unable to make full advantage of the pipeline architecture. As a whole system,
only up to 30 frames of QVGA images can be processed per second, that is
to say, less than 10 frames of VGA image per second. The speed is far from
sufficient.

In [10], a robotic system is implemented with SIFT algorithm with Stratix
II FPGA board. It is claimed that the system could process one VGA image in
60ms. However, no structural information and no information on SIFT version
is given.

The remainder of this paper is arranged as follows. Our proposal for GDPC
hardware accelerator will be given in SECTION 2, including Stratified Gaussian
Convolution Scheme, 7-Round Parallel Computation Scheme, as well as respec-
tive expected improvement. Afterwards, experimental environment, hardware
synthesis details, software simulation, and detailed analysis on accuracy will be
given in SECTION 3. SECTION 4 briefly concludes our work.

1 [9] uses 7 × 7 Gaussian Kernel.
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2 A 7-Round Hardware-Saving Architecture for GDPC

Our proposal is to develop a hardware system with lower hardware cost and is
common in use, meanwhile, keeping similar accuracy and accelerating process
speed. Our proposed hardware architecture is specified, but not confined, for
the VGA and QVGA image processing. After modifying some parameter, our
proposal could also be utilized in processing of other image sizes.

In our proposal, we use the 1D-based 2D GCU introduced in [7][9] to real-
ize Gaussian Convolutions(GCs). 8 registers are used to represent one pixel in
Gaussian Images, while 6 registers in DoG Images.

2.1 Stratified Gaussian Convolution(SGC)

A key feature of GC is that, by multiplication, a single, larger GC to an image
can be divided into 2 successive GCs, the square sum of whose Gaussian Kernel
Radii is square of the larger Gaussian Kernel Radius that were actually applied,
as indicated in Formula 3. Define 2D discrete Gaussian function as in Formula 1.

G
′
(r, c, σ,R) :

{
= 1

2πσ2 · exp−
r2+c2

2σ2 ,−R ≤ r ≤ R,−R ≤ c ≤ R;
= 0, otherwise.

(1)

where R is Gaussian Convolution Radius2, dependent to σ by the Formula 2.
On the other hand, σ can be decided by R.

R =
[(int)(σ × 8 + 1.5)]|1− 1

2
. (2)

So, we have,

L(r, c, σ0) = G
′
(r, c, σ0, R0) ∗ I(r, c) = G

′
(r, c, σ1, R1) ∗ L(r, c, σ2). (3)

where L(r, c, σ2) = G
′
(r, c, σ2, R2) ∗ I(r, c);

and R0 =
√

R2
1 + R2

2.
For example, applying successive GCs with Gaussian Kernel Radii of 6 and

8 give the same results as applying a single GC with Gaussian Kernel Radius
of 10, since

√
(62 + 82) = 10. By doing this, we may stratify a larger-width GC

into smaller-width GCs.
In our proposal, 5 GCs are stratified based on Formula 3 using stratifying

method listed in Table 1.
The system first computes the GC with Stratified Kernel Radius (1st) and

then computes the GC with Stratified Kernel Radius (2nd). In this way, a larger
GC could be computed by two successive smaller GCs as indicated in Formula 3.

Our proposal only stratifies the 4th and the 5th GCs into 2 parts. Other GCs
are remained as they are. There are good reasons for applying such a stratifying
method.
2 Gaussian Convolution Width (W ) and Gaussian Convolution Radius (R) have the

relation by W = 2 × R + 1.
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1. Data Re-Using
Stratified Kernel Radii (1st) of the 4th and the 5th GC are the same with
Gaussian Kernel Radius of the 3rd GC. When computing the second part of
the 4th and the 5th GC, it is possible to re-use the data generated from the
3rd GC as input. As a result, hardware specified for the first part of 4th and
the 5th GC is needless.

2. Hardware Saving
The 4th GC and the 5th GC are so large that they consume almost twice and
even 3 times the hardware cost of the 1st GC would do. Thus, it is wise to
break them down into 2 or more stages and re-use the hardware resources.

3. Process Convenience
Although the 3rd GC also consumes almost twice the hardware cost of the
1st GC, there is strong reason that we keep the 3rd GC in the first part of
computation without being stratified. In the VGA (or QVGA) image case,
the Scale 3 image generated from the 3rd GC is re-used as original image of
the next Octave. As a result, keeping the 3rd GC without stratifying enables
the system to compute the 1st to the 3rd GC of the next Octave during the
time when system is computing the second part of the 4th and 5th GC of the
previous octave. This also underlies the possibility of parallel solution to be
mentioned below.

By applying this scheme, it is possible that we may theoretically save about
17.8% hardware cost under the assumption that hardware cost of a GC is pro-
portional to its Gaussian Kernel Width compared with(Formula 4).

TheoreticalHardwareSaving = 1− 11 + 12 + 17 + 17 + 19
11 + 12 + 17 + 23 + 27

≈ 17.8%. (4)

2.2 7-Round Parallel Computation Scheme

According to the Stratified Gaussian Convolution Scheme, it is possible and rea-
sonable to arrange the hardware into a parallel structure as shown in Fig. 1. For
a VGA (or QVGA) image, 6 rounds of GDPC computation are originally needed
to generate 6 groups of Gaussian Pyramids and 5 groups of DoG Pyramids. In

Table 1. Stratification of Gaussian Convolution (VGA)

Gaussian From To Gaussian Stratified Stratified

Convolution kernel kernel kernel

Radius Radius(1st) Radius(2nd)

1stGC Scale0 Scale1 5 5 —

2ndGC Scale0 Scale2 6 6 —

3rdGC Scale0 Scale3 8 8 —

4thGC Scale0 Scale4 11 8 8

5thGC Scale0 Scale5 13 8 9
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Fig. 1. Hardware architecture of our proposed accelerator. Numbers in the brackets

denote Gaussian Convolution Widths of Gaussian Convolutions. UGP denotes Upper

Gaussian Path. LGP denotes Lower Gaussian Path.

our proposal, GDPC is computed for 7 rounds. Nevertheless, process speed is
still improved.

Process schedule of our proposed system is shown in Table 2. The whole
process can be divided into 5 steps, including Loading Image, Gaussian Con-
volution (UGP GC and LGP GC), Differential Operation (UGP Diff and LGP
Diff), Storing, and Down-Sampling.

In the 1st round, only UGP operations are computed. Scale 1, Scale 2 and
Scale 3 Gaussian Images of Octave 0 are generated through GCU1 , GCU2 , and
GCU3 . Scale 3 Gaussian Image is stored into TmpBuf , which is in the next
clock stored into Original Image Memory. DoG Images are generated through

Table 2. System process flow. OI denotes original image as system input. PI denotes

input image from previous octave.

1st 2nd 3rd 4th 5th 6th 7th

Round Round Round Round Round Round Round

Loading

Image OI PI PI PI PI PI PI

UGP

GC Yes Yes Yes Yes Yes Yes No

LGP

GC No Yes Yes Yes Yes Yes Yes

UGP

Diff Yes Yes Yes Yes Yes Yes No

LGP

Diff No Yes Yes Yes Yes Yes Yes

Storing Yes Yes Yes Yes Yes Yes Yes

Down

Sampling No Yes Yes Yes Yes Yes Yes
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DiffUnit0 and are stored in DoGBuf , which are then written into DoG Image
Memory.

From the 2nd round on, LGP operations are computed along with UGP com-
putations. Scale 4 and Scale 5 Gaussian Images of the previous Octave, and Scale
1, Scale 2, Scale 3 Gaussian Images of the current Octave are generated through
GCU4 and GCU5 , and GCU1 , GCU2 , and GCU3 respectively. DiffUnit0 and
DiffUnit1 are both used to generate Scale 3 and Scale 4 DoG Images of the pre-
vious Octave, as well as Scale 0, Scale1, and Scale 2 DoG Images of the current
Octave.

The last round (7th round) computes only LGP operations, generating Scale
4 and Scale 5 Gaussian Images of Octave 5, as well as Scale 3 and Scale 4 DoG
Images of Octave 5.

Under the assumption that computation time of a GCU is proportional to Gaus-
sian Kernel Width, time consumption of a GC with Gaussian Kernel Radius of 1
may be represented as O(1). Time consumption of conventional work in [6] for one
single image would be 63.6 × O(1). In the same way, using the same Clock Fre-
quency, time consumption of our proposal is 47.6× O(1). Expected Acceleration
Ratio (EAR) is about 25.2% over [7]. Moreover, as the Gaussian Convolution is
stratified, critical path should be shortened. Therefore, the max clock frequency
can be further improved, and actual EAR is expected to be larger.

2.3 Memory Operations Using Dual-Port DDR2 Memory

Dual-port DDR2 memory is embedded on Virtex(R)-V FPGA board. Two inde-
pendent ports of 36-bit read/wirte width are provided. Read or Write memory
operations can be finished in one clock, and the two ports can independently be
Read or Write. This provides a variety of memory operation assignment. In our
implementation, we assign dual-port DDR2 memory operations as in Table 3.

Table 3. Dual-port DDR2 memory port assignment

Port A Port B Contents Clocks

Loading Image 17 pixels

(1stround) 36-bit Read 36-bit Read ×8 bits 2

Loading Image

(2ndround 36 pixels

to 6thround) 36-bit Read 36-bit Read ×8 bits 4

Loading Image 19 pixels

(7thround) 36-bit Read 36-bit Read ×8 bits 3

Storing 3 pixels

(1stround) 36-bit Write No Use ×5 bits 1

Storing

(2ndround 5 pixels

to 6thround) 36-bit Write 36-bit Write ×5 bits 1

Storing 2 pixels

(1stround) 36-bit Write No Use ×5 bits 1



A 7-Round Parallel Hardware-Saving Accelerator 81

Table 4. Comparisons on hardware synthesis with conventional work in [7][9]

Item Proposed Conventional Conventional

Architecture Work[7] Work[9]

Image Size VGA(QVGA) VGA QVGA

Registers/Pixel(G/DoG) 8/6 11/8 8/6

Computation Rounds/Image 409,500(102,375) 409,500 102,375

Max Clock Frequency 95.0 MHz 82.0 MHz 149 MHz

Process Speed 21(81) fps 16 fps 30 fps

Slice Registers 6,120 6,333 7,256

Slice LUTs 5,011 5,825 15,137

In this case, for all 409,500 rounds of computations of one VGA image, alto-
gether 2,252,100 clocks are needed to finish all 6 Gaussian Pyramids and 5 DoG
Pyramids.

3 Experimental Results and Analysis

Our experimental results are given in this section and compared with conven-
tional work in [7][9]. Our software experiments are done with Microsoft(R) Visual
Studio(R) 2008 Professional Edition on a PC with Intel(R) Core(TM)2 CPU
6700 @ 2.66 GHz 2.67 GHz, 2.00 GB RAM. Hardware Synthesis is done with
Xilinx ISE WebPACK 10.1 on FPGA board of Xilinx Virtex(R)-V, XC5VLX330.
In this paper, only tested results of VGA processing are shown. Original software
solution is given in [11].

3.1 Hardware Synthesis

Hardware proposals in [7] are re-constructed on Virtex(R)-V FPGA board so
that results can be comparable3.

Hardware synthesis detail comparisons are shown in Table 4. As conventional
work introduced in [7] did not consider memory operations, its process speed is
re-estimated using dual-port DDR2 memory. For all 409,500 rounds of compu-
tations, it takes altogether 5,125,000 clocks, resulting in actual process speed at
around 16 fps4.

Compared with conventional work in [7], our system achieves about 15.9%
higher max clock frequency, with accelerated Process Speed of 21 VGA images
per second, which is 31.3% faster. Acceleration is brought by SGC scheme and 7-
Round Parallel Computation scheme. This fits the assumption in SECTION 2.2.
Thanks to SGC scheme and data-reuse, hardware consumption is also reduced
by 8.4% totally.

Compared with conventional work in [9], although our proposal does not
achieve as high max clock frequency, our Process Speed (81 fps for QVGA)
3 [7] is originally implemented on Altera FPGA board.
4 Clock Frequency is set at 82.0 MHz which is the same as [7].
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Fig. 2. Comparisons between our proposal and original software implementation

is about 1.8 times faster. As explained in SECTION 1.1, a huge control unit
is needed due to relevance of GCs, as a result of which, Slice LUTs are hugely
consumed. Hardware consumption is totally reduced by 50.3% by our proposed
architecture.

In [10], although detailed design information is not give, it is claimed that
process speed could possibly reach 15 fps for a VGA image. The speed is slower
than ours.

Compared with systems provided by [7][9][10], our proposed architecture com-
putes in a faster fashion, consuming less hardware.

3.2 Software Simulation

The software simulation of our architecture is based on PC with Microsoft(R)
Visual Studio(R) 2008. Our proposal is re-constructed on software environment
strictly with integer computation and transfer the results back to corresponding
floating point values for easier analysis. Processed VGA images by our proposal
and processed VGA images by original software implementation are compared
in Fig. 2.

In our experiment, Thd is pre-defined as 0.02, which is half of the Contrast
Pre-Elimination Threshold in the original software implementation. According
to the definition of DoG images, differences should be less than half of the
Contrast Pre-Elimination Threshold so that in DoG Pyramids there will be no
mis-eliminations theoretically.

In Fig. 2, differentiated images between original software implementation and
our proposal are almost black except for very small number of white points, show-
ing that our proposal generates almost the same Gaussian Images as the original
software implementation. In another word, our proposal successfully keeps a high
accuracy. Here, we only show Differentiated Images of Octave 0. Limited by page
spaces, all Differentiated Images for other Octaves are not displayed.

For all 50 images in our evaluation dataset, the averaged accuracy rate is
98.2%.
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Fig. 3. AAD analysis between our proposal and original software implementation

3.3 Detailed Analysis on Accuracy

Averaged Absolute Difference (AAD) is introduced as the evaluating function in
order to further analyze the accuracy of our system by Formula 5.

AAD(o, s) =

√∑n
i=1[PSW (o, s, i)− PHW (o, s, i)]2

n
. (5)

where AAD(∗) denotes Averaged Absolute Difference of between two selected
images of certain Octave ans Scale; o denotes Octave; s denotes Scale; PSW (∗)
denotes pixel value in a software-generating image; PHW (∗) denotes pixel value
in a hardware-generating image; i denotes the ith pixel in a image; n denotes
the total number of pixels in one image.

Here, AAD si used to indicate differences between our proposal and original
software solution. A smaller AAD would indicate that data generated by our
proposal is more similar with original software solution, that is to say, keeping
higher accuracy level. AAD analysis is only done for Gaussian Images as differ-
ences of DoG Images are proportional to that of Gaussian Images. AAD analysis
of 50 tested images is shown in Fig. 3.

Fig. 3 shows, when scale up-grows, AAD also grows larger. This is because
when scale grows, Gaussian Kernel Width is getting larger, and consequentially
our proposal generates larger AAD with software solution. Also, in the same
scale, AAD grows when octave grows. This is due to the structure of SIFT.
Because Scale 3 Image of each octave is used as the original image of the next
octave, differences will be passed down to the next octave. In this way, the AAD
is reasonably getting larger and larger when octave and interval grow.

Contrast Pre-Elimination Threshold of the system is 0.04 in floating point
value. If AAD values for Gaussian Images are smaller than half of the Contrast
Threshold (0.02), there would be theoretically no error contrast elimination in
the DoG Images because the DoG Images would have differences smaller than
0.04. As in Fig. 3, all AAD is smaller than 0.02. Thus, the results are of high
accuracy.
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4 Conclusion

In this paper, we proposed a 7-round parallel hardware-saving architecture for
hardware accelerator of Gaussian and DoG Pyramid Construction part of SIFT
algorithm. By introducing Stratified Gaussian Convolution Scheme and 7-Round
Parallel Computation Scheme, we successfully achieve to reduce the hardware
cost, consuming 6,120 Slice Registers and 5,011 Slice LUTs, which is afford-
able by a Vertix(R)-V FPGA board. Meanwhile, max clock frequency achieves
95.0MHz, and process speed is accelerated to 21 fps in VGA processing and 81
fps in QVGA processing. The two proposed schemes prove to be a triumph in
reducing both hard ware cost and computation time. Our proposed system is
suitable for real-time SIFT systems.
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Abstract. In real world, a scene is composed by many characteristics. Intrinsic 
images represent these characteristics by two components, reflectance (the al-
bedo of each point) and shading (the illumination of each point). Because re-
flectance images are invariant under different illumination conditions, they are 
more appropriate for some vision applications, such as recognition, detection. 
We develop the system to separate them from a single image. Firstly, a pre-
sented method, called Weighted-Map Method, is used to separate reflectance 
and shading. A weighted map is created by first transforming original color 
domain into new color domain and then extracting some useful property. Sec-
ondly, we build Markov Random Fields and use Belief Propagation to propa-
gate local information in order to help us correct misclassifications from 
neighbors. According to our experimental results, our system can apply to not 
only real images but also synthesized images. 

Keywords: Intrinsic Image, Reflectance, Shading, Weighted Map. 

1   Introduction 

For the scene in real world, we can find some characteristics on it. Some characteris-
tics contain some useful information about the objects. Barrow and Tenebaum [1] 
proposed using intrinsic images to represent some of these characteristics. An image 
is modeled as a product of two major images: one associated with the light source 
called the shading images and the other remaining constant under different illumina-
tion conditions called the reflectance images.  

In many vision applications, it is helpful for using shading and reflectance images. 
Two images have their own advantages. We have mentioned that the reflectance  
images remains constant under different illumination conditions. For some vision 
applications, such as pattern recognition [9], scene interpretation [4], and object rec-
ognition [2] are preferable to be conducted on reflectance images. Unlike reflectance 
images, shading images varies with different illumination conditions. These images 
can be used for objectives as shading analysis [3], color constancy [5], illumination 
assessment [6], and image segmentation [14]. By [1], the intrinsic image decomposi-
tion is to separate shading images and reflectance images like Fig. 1. Let I(x, y) be the  
                                                           
* Corresponding author. 
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(a)                                 (b)                                    (c) 

Fig. 1. An input image is equal to the product of a shading image and a reflectance image. (a) 
Original image. (b) Reflectance image. (c) Shading image. 

input image and S(x, y) be the shading image and R(x, y) be the reflectance image. 
Then, we have under expression: 

( , ) ( , ) ( , )I x y S x y R x y= ×                                             (1) 

All pixels of the input image satisfy Eq. 1. If a image have n pixels, we have n equa-
tions to solve. But we have twice unknowns, S(x, y) and R(x, y), it becomes a difficult 
problem. Obviously, we need additional information in order to solve the equations.  

In this paper, we present an intrinsic image decomposition method for a single 
color image. We follow the assumption, which was presented by Tappen et al. [13] 
that image derivatives are caused by either shading changes or reflectance changes. 
We transform this color image into a new color space which called LUM-RG-BY 
color domain. The transformed color image creates a weighted map. The weighted 
map is used to classify intrinsic images. After the classification, we use gradient in-
formation and loopy belief propagation to correct the misclassifications. 

2   Related Work 

It is a nontrivial task to decompose an image into its shading and reflectance images 
because it is ill-posed problem [1]. Additional information should be introduced. 
Weiss [15] used image sequences to achieve the purpose. This approach could create 
full frequency images, but required multiple images of a fixed scene. Images under 
different illumination conditions are also used in shading removal from surveillance 
images [10]. 

Tappen et al. [13] presented an algorithm for recovering shading and reflectance 
images from a single image and made the assumption that image derivatives is caused 
either by shading changes or by reflectance changes, but not both. They used the color 
information: (1) If the ratio between two adjacent pixels is almost equal in all r, g, b 
channels, the derivative is classified as shading. (2) Otherwise, the derivative is classi-
fied as reflectance. In addition to the color information, they use Adaboost [7] to train 
the structure of patterns, and then classify gray-scale images. Two methods are com-
bined together with the probability model. They also used belief propagation [16] to 
process ambiguous areas. 

Some algorithms such as Retinex[10] presented the assumption that the derivatives 
along reflectance changes have much larger magnitudes than those caused by shading. 
However, this assumption doesn’t always hold real images. For example, spot light 
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source easily lead to strong shadow and the derivatives caused by shadow are larger 
than those caused by reflectance changes. 

We have organized the rest of this paper in the following way: Section 3 de-
scribes our system flowchart in detail. Our weighted-map method for intrinsic im-
age decomposition will be described in Section 4 and Section 5. In Section 6 will 
demonstrate some experimental results. Finally, conclusions and the future work are 
presented in Section 7. 

3   Separation of Reflectance and Shading 

Fig. 2 shows a flowchart for our approach to the image decomposition from a single 
image. The approach consists of three major modules: Intrinsic Derivative Component  
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Fig. 2. The system flowchart 
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Creation, Classification Using Weighted Map, and Intrinsic Image Recovery. We will 
discuss about Module 1 and Module 3 in this section and then put Module 2 in later 
section.  

3.1   Intrinsic Derivative Component Creation 

In Module 1, our goal is to extract image derivatives. Let Ii be color channel images. 
First of all, Ii is transformed into to the logarithmic domain in Eq. 2: 

' ' 'log log ( ) ,   , ,i i i i i iI I S R S R i r g b= = × = + =  (2)

This step transforms multiplicative composition into additive composition of shading 
and reflectance of Ii. Next, the transformed image 'iI  is next convolved with fx and  fy. 
In this paper, the horizontal derivative filter, fx, is defined as [0, -1, 1] and the vertical 
derivative filter,  fy, is defined as [0, -1, 1] t. After the convolution, we can get two 
derivative images Ix

i’ and Iy
i’. The two derivative images are separated by Module 2. 

3.2   Intrinsic Image Recovery 

After classification using Module 2, the estimated shading derivative components, 
' ',i i

x yS S , and reflectance derivative components, ' ',i i
x yR R , can be obtained. They can be 

used to recover the actual shading and reflectance images. In Module 3, we recover 
each intrinsic image from its derivatives with the same approach used by Weiss [15]. 
The solution for the intrinsic component images in log domain, S i’ and  Ri’ are:  

' ' '

' ' '

* [ ( * ) ( * ) ]

* [ ( * ) ( * ) ]

i r i r i
x x y y

i r i r i
x x y y

S g f S f S

R g f R f R

= +

= +
  (3)

where * is convolution, fx
r and  fy

r are reverse copy of fx and fy. g is satisfied by: 

*[( * ) ( * )]r r
x x y yg f f f f δ+ =   (4)

The computation of g can be done by using the efficiently FFT. Then we take expo-
nential transformation on these intrinsic components in log domain as follows: 

' 'exp( ),    exp( ),    , ,i i i iS S R R i r g b= = =   (5)

After this step, we can get each channel image of shading and reflectance images. We 
have to compose this channel images into shading or reflectance images like Eq. 6. 

( ,  ,  )

( ,  ,  )

r g b

r g b

S S S S

R R R R

=
=

  (6)

4   Classification Using Weighted Map 

Our Module 2, Classification Using Weighted Map, comprises two major processes, 
namely Color Domain Transformation and Weighted Map Creation and Classification. 
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The respective objectives of these two processes are as follows; (1) to find a new color 
domain with well-separated property for shading and reflectance. (2) to create weighted 
maps in the x- and y-directions to classify the derivatives extracted by Module 1 as 
either shading-induced or reflectance-induced based on a pre-specified threshold value.  

4.1   Color Domain Transformation 

At first step, the input image was converted to L, M, S digital images, where L, M, S 
respectively stand for images with the spectral functions of the long-wavelength-
sensitive, middle-wavelength-sensitive, and short-wavelength-sensitive cones of hu-
man visual system. In Eq. 7, we can see the transformation from RGB channel to 
LMS channel is linear. So we can obtain the LMS image easily from a single image. 

0 .3811   0 .5783    0 .0402

0 .1967    0 .7244    0 .0782

0 .0241    0 .1288    0 .8444

L R

M G

S B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
 (7)

In Fig. 3, it is observed that the shading and reflectance components in the original 
image are retained in each of the three channel images. However, in this study, this 
problem is resolved by further transforming the LMS channel images into the LUM-
RG-BY color domain [8], in which LUM, RG and BY denotes the luminance,  
red-green, and blue-yellow channels, respectively. The transformation process is 
performed in accordance with Eq. 8 

  

  

0 . 5 *

0 . 5 *

L U M L M

L M
R G

L U M
S L U M

B Y
S L U M

= +
−=

−=
+

 

 (8)

We can covert RGB color image into LUM-RG-BY color space through LMS color 
space. The LUM, RG, BY images are shown in Fig. 4. The shading components only 
appear in the LUM channel image, and reflectance components appear in all three 
channel images. 

After color domain transformation, we convolute LUM, RG, BY channel images 
with the same horizontal and vertical derivative filter, fx and fy in section 3. 

4.2   Weighted-Map Creation and Classification 

In this section, we create a weighted map to classify intrinsic images. Since the shad-
ing components only appear in LUM channel image, we are able to extract the reflec-
tance components from RG and BY channel images.  

We build reflectance-related maps, M, to extract the reflectance components from 
RG, BY images. The value of Mx(x, y) can be computed from RGx(x, y) and BYx(x, y). 
Similarly, My(x, y) can be determined from RGy(x, y) and BYx(x, y). We choose the 
max absolute value from RG and BY images as its value, like Eq. 9. 

( , ) max( ( , ) ,  ( , ) )

( , ) max( ( , ) ,  ( , ) )

x x x

y y y

M x y RG x y BY x y

M x y RG x y BY x y

=

=
 

 (9)
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(a)                             (b)                             (c)                             (d)  

Fig. 3. (a) Original image. (b) L channel image. (c) M channel image. (d) S channel image. 

 
(a)                                       (b)                                        (c) 

Fig. 4. The LUM, RG, BY channel images. We can see the shading component only has sig-
nificant changes in LUM channel image. The reflectance component is in all three channel 
images (a) LUM channel image. (b) RG channel image. (c) BY channel image. 

Then we take an operation between LUM images and reflectance-related maps: 

( , ) ( , )   ( , )

( , ) ( , )   ( , )

x x x

y y y

W x y LUM x y M x y

W x y LUM x y M x y

= ⋅∗

= ⋅∗
  (10)

where .* is pixel-by-pixel multiplication. Since the reflectance derivatives are associ-
ated with sharp changes and the shading derivatives are associated with smooth 
changes, in weighted map, the reflectance derivatives are larger than the shading 
derivatives. Fig. 5 illustrates the weighted map. Because there is significant difference 
between shading and reflectance derivatives in weighted map, a threshold is used to 
distinguish between shading derivatives and reflectance derivatives like Eq. 11. 

,  Reflectance, Reflectance
if  ;  if 

otherwise,  Shading otherwise,  Shading
y yx x W ThresholdW Threshold >> ⎧⎧

⎨ ⎨
⎩ ⎩

  (11)

There is a problem for reflectance and shading changes being ambiguous since no 
definite border exists between them. We choose a threshold based on our experiment. 
It is a future work for deciding a threshold by using training or other method. 

5   Misclassification Correction 

After classification, the result is shown in Fig. 6(a).  Green around eyes penetrates 
into the rest region because reflectance derivatives are discontinuous like Fig 6(b).  
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( ) (b)
 

                    (a)                                            (b) 

Fig. 5. The reflectance derivatives are larger than the shading derivatives in our weighted map. 
(a) Wx image. (b) Wy image.  

 

                  (a)                             (b)                                (c)                              (d) 

Fig. 6. (a) The reconstructed reflectance image. (b) The reflectance derivative image. Reflec-
tance derivatives are discontinuous in its eyes. (c) The reconstructed reflectance image after 
misclassification correction. (d) The reflectance derivative image after misclassification correc-
tion. Original discontinuities in eyes are corrected. 

Classification using weighted map is pixel-by-pixel, so some pixel derivatives of the 
same edge are classified as reflectance, and some are classified as shading. In decon-
volution, the misclassifications lead to reconstruct intrinsic images badly. Since we 
know that edges belong to reflectance, our idea is to correct misclassifications by 
using edge information. In Fig. 6(c)(d), shows the result after correction. 

5.1   Neighboring Pixel Modeling Using Markov Random Fields 

There are many methods for extracting edges from a single image. We use the sobel 
operator to find edges. However, edges extracted by the sobel operator may be influ-
enced by noise. For example, edge could be extracted too thick due to shadow, and 
part of the edge possibly includes shading components. Therefore, we can’t directly 
classify all derivatives on the edge as reflectance derivative components. Our method 
is to gather classifications of neighboring pixels and is based on these classifications 
for correcting misclassifications. We create a Markov Random Field [16] for propa-
gating classifications of neighboring pixels.  

After applying the sobel operator, pixels of every edge are modeled by a Markov 
Random Field. We initialize every Markov Random Field by previous classifications 
using weighted map, like Eq. 12.  
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, ,    
1,  if  pixel derivative at coordinates( , ) is classified as Reflectance

=   
0,  if pixel derivative at coordinates( , ) is classified as Shading

  ,  i j i j
i j

i j
x y

⎧
⎨
⎩

  (12) 

where xi,j represents the hidden node state and yi,j represents the observation node state 
at coordinates (i,j). We assumed that the state xi,j should be the same with its 
neighboring pixels as possible as it can. Therefore, we define joint compatibility func-
tion of two neighboring hidden nodes as probability 0.7 if they are in the same state or 
probability 0.3 if they are in different states. Since most pixel derivatives of the edge 
are classified as reflectance, it is expected that shading derivatives are reclassified as 
reflectance derivatives. On the other hand, if pixel derivatives classified as reflectance 
are approximately equal to ones classified as shading, it tends to reserve the original 
classifications. After the initialization, we must compute the marginal probabilities of 
hidden node states in every Markov Random Field. We use Loopy belief propagation 
[16] to compute them. 

 

(a)                               (b)                               (c)                              (d) 

Fig. 7. (a)(b)(c)(d) are the same with Fig. 6(a)(b)(c)(d) expect the input image 

5.2   Edge Information Correction Using Loopy Belief Propagation 

Loopy belief propagation is an algorithm for computing marginals of function. We 
use it to find an approximate solution on our Markov Random Field. It is difficult to 
get exact solution due to computational complexity. We run Loopy Belief Propaga-
tion until it converges and gets marginal probabilities of hidden node states. These 
probabilities can be used to correct our misclassifications. The state of node with max 
probability is selected to become a new state. For example, if state 1 of node xi,j is 
higher than state 0, then xi,j should be classified as Reflectance. Fig. 7 is the same with 
Fig. 6 expect the input image. 

6   Experimental Results 

In this section, we demonstrate our experimental results. In Fig. 8, we show the result of 
weighted-map method for real scenes. These input images include obvious shadow. 
Some papers like [10][15] consider shadow as shading components. In our case, the 
shadow is classified as shading components correctly. However, there are some prob-
lems on reflectance images. For example, in Fig. 8(f), though we succeed in separating 
shadow from its original input image, the reflectance image which was ever covered by 
shadow in the original image is darker than what we expect. Because shadow affects  
, 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l)
 

Fig. 8. (a)(b)(c)(d) are original input images. (e)(f)(g)(h) are reflectance images. (i)(j)(k)(l) are 
shading images. 

(a) (b) (c)

(d) (e) (f) 

(g) (h) (i)  

Fig. 9. (a)(d)(g) are original input images. (b)(e)(h) are reflectance images using our method. 
(c)(f)(i) are reflectance images using Tappen’s method. 
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derivatives on edges, it causes deconvolution inaccurate when we use these derivatives 
to reconstruct reflectance images. In Fig. 8(g), on the right side of kitty’s head, high 
light region is classified to reflectance image. We call this highlight region “specular” 
which is caused by spot light. Specular is a challenge to distinguish and tends to be 
classified as reflectance components because the spot light is so strong that original 
color information is destroyed.  

In Fig. 9, we compare our weighted-map method with Tappen’s method [13]. In 
Fig. 9(a), the pillow image, two methods can work for most regions. However, in the 
right eyebrow, Tappan’s method fails to classify it as reflectance components. In the 
lower right fold, a little shadow still exists. Our method can succeed in these regions. 

In Fig. 9(d), the bottle image, our method is appropriate for the type of shadow, 
which influences objects gradually, due to our assumption that shading derivatives 
change smoothly. Our result is better than Tappen’s result because derivatives caused 
by gradual shadow are small and easy to be distinguished. In Fig. 9(g), the color of 
Tappan’s result is more accuracy than out result. 

7   Conclusions 

In this paper, we present an effective approach to recover intrinsic images from a 
single image. Based on Tappen’s assumption, we use the weighted map to separate 
intrinsic images by LUM-RG-BY color domain and the edge information is consid-
ered to correct our misclassifications. Our basic idea is to utilize other color domain 
which illumination and chrominance are easily separated by. The second idea is the 
edges always belong to reflectance components. We correct our misclassifications by 
the edge information. Our method can work on synthetic and real images and produce 
satisfying decomposition. In future work, specular is the problem to solve. We need 
more information to remove specular and recover lost color. Finally, the processing 
time is still too long, so it is an important task to reduce the complexity of FFTs and 
loopy belief propagation for real-time applications.  
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Abstract. This paper studies the problem of light estimation using a

specular sphere. Most existing work on light estimation assumes distant

point light sources, while this work considers an area light source which is

estimated in 3D space by reconstructing its edges. An empirical analysis

on existing methods for line estimation from a single view is carried out,

and it is shown that line estimation for a single view of a sphere is an

ill-conditioned configuration.

By considering a second identical sphere, a closed form solution for

single view polygonal light estimation is proposed. In addition, this paper

also proposes an iterative approach based on two unknown views of just

a single sphere. Experimental results on both synthetic and real data are

presented.

1 Introduction

The calibration of light sources plays an important role in both computer graph-
ics and computer vision. For instance, combining computer-generated models
with the real world, as in augmented reality, requires known light positions for
realistic rendering. Many computer vision techniques make the common assump-
tion of distant point light sources, which conveniently reduces the complexity in
modeling the image formation and allows a simple light source position estima-
tion. As an example, consider the classic shape from shading (SfS) technique
that recovers the 3D shape of an object by relating the intensity values to the
normal vectors and light source direction. Motivated by the possibility that SfS
could be extended to deal with area light sources, this paper studies the problem
of recovering polygonal area light sources from images of a specular sphere.

There exists a relatively large amount of research dealing with distant point
illuminant estimation, and many early results were published in the context of
SfS [1,2,3]. A survey of those and related methods can be found in [4]. Other
related work on light estimation includes a method developed by Yang and Yuille
[5] which estimates light directions from a Lambertian sphere by locating the
occluding boundary of light sources. Their method was extended by Zhang and
Yang [6] who introduced the concept of critical points which have their normal
vectors perpendicular to the light direction. Later Wang and Samaras [7] further
extended this method and estimated light from a single view of an object with

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 96–107, 2010.
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known geometry by a robust minimization of a global error. Wong et. al. [8]
introduced a method for recovering both the light directions and camera poses
from a single sphere of unknown radius. In addition to the estimation of light
directions, Takai et. al. [9] proposed a method for estimation of near point light
sources and ambient light from a single image. This is achieved by employing a
pair of reference spheres as light probes.

Because of the relative high complexity involved in estimating area light
sources, the literature in this field is rather sparse. In [10], Debevec estimated
global illumination in the context of augmented reality without assuming specific
types of light source, but did not estimate parameters such as distance and size
of the illuminants.

In this paper an area light source is recovered from an image of the specular
highlight it produces on a sphere. Unlike Zhou and Kambhamettu’s method
[11] which uses an iterative approach for estimating area light sources from
specularities observed on two spheres, this paper provides a closed form solution
by treating an area light source as a polygon in 3D space composed of a set
of lines. Such lines are independently determined as the intersections of the
reflection rays. We call this type of light source a polygonal light source.

There exists previous work on estimating a line from a single view. Lanman
et. al. [12] formulated the problem and solved it in theory, but practical results
remained inaccurate. In [13], the authors solved their inaccurate line estimation
by carefully estimating all parameter of their system. In this paper it will be
shown that even with ground truth calibration, single view line estimation from
a single view of a sphere cannot be accurately solved. A closed form solution of
two spheres is therefore proposed. This paper also develops an iterative approach
based on two unknown views of just a single sphere. The rotation relating the
two unknown views can be estimated by assuming a rectangular light source.

A related paper by Gasparini and Sturm [14] also utilizes 3D lines in non-
central images. In their interesting work, a system that deals with the structure
from motion problem for general camera models is proposed.

The rest of the paper is organized as follows. Section 2 considers the problem
of line estimation from a single view. In the first part of this section, a theoretical
description for the estimation is given, while the second part provides empirical
results which show that single view line estimation is an ill-conditioned problem.
Knowing that a single view of a single sphere is insufficient, Section 3 formulates
the problem for (a) a single view of two spheres and (b) two views of a single
sphere. Experimental results on both synthetic and real data are shown in Section
4, followed by conclusions in Section 5.

2 Line Estimation from a Single View

Consider a pinhole camera viewing a line L. Together with the camera center
the line defines a plane. Any line lying on this plane will project to the same line
on the image, which makes line reconstruction from a single view ambiguous.

Instead of considering the image l of the line, let us now consider an image ls
of the line L formed by its reflection on a sphere. While l is a 2D line, ls will in
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general be a curve. The viewing lines defined by the back-projection of the points
on ls will intersect the sphere and reflect according to the law of reflection. The
resulting rays, which we call reflection rays will intersect L. In contrast to the
case of a pinhole camera viewing a line, the reflection rays will not meet at a
single point, and this enables line reconstruction from a single view.

Proposition 1. The reflection rays constructed from an image of the reflection
of a line L on a sphere will intersect two lines, namely the line L and a line A
passing through the sphere center and the camera center.

Proof. Let us denote the back-projection of a point x ∈ ls as the viewing line V
and its reflection on the sphere with center S as the reflection lineR. The viewing
line will leave the camera center C, pass through the point x, and intersect the
sphere at a point P . Let V and R be the unit vectors in the directions of the
viewing line and the reflection line respectively. The law of reflection states
that the incident angle must be equal to the reflection angle, and the reflection
direction is therefore given by R = (2N · V )N − V , where N is the unit normal
vector at point P . The reflection line R passes through P in the direction R and
will, by construction, intersect the line L at some point L. All the reflection rays
constructed in such a way will intersect the line L.

To show the intersection with the other line, note that the lines V , R and
N are coplanar, where N is defined as the line from S in direction N . As the
camera center C is on V and the sphere center S is on N , it follows that the
line A from the camera center C to the sphere center S also lies on the same
plane as V , R and N , and making an angle of γ = 180− (α + β) with R, where
α = � (N ,R) and β = � (A,N ) (see Fig. 1). This applies to all reflection rays
and it follows that any reflection ray R will intersect A and L. ��
In 1874, Schubert published his work Kalkül der Abzählenden Geometrie in
which he showed that the number of lines intersecting four arbitrary lines will
be zero, one, two or infinite [15]. Unless the four lines lie on a doubly ruled surface

S

L

C

x

P

V

R

A

N

Fig. 1. The image of a line L on a sphere with center S is determined by reflected

viewing rays R which will intersect two lines, the line L and a line A passing through

S and camera center C
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(single sheet hyperboloid, hyperbolic paraboloid or plane), they will not produce
infinite intersecting lines [14,16]. Therefore in the general case the reflection rays
in our system will intersect at most two lines, and under a degenerate case the
reflection rays lie on a doubly ruled surface and produce infinite intersecting lines.
In practice the degenerate case can easily be detected, because the reflection
rays will produce a Plücker hyperplane matrix with a nullspace larger than two
dimensions.

Corollary 1. Reconstruction of a line from its reflection on a sphere becomes
possible by solving for the two lines intersecting its reflection rays and selecting
the one which does not pass through the camera center.

2.1 Line Intersection in Plücker Space

In order to formulate line intersections algebraically, we adopt the 6-vector
Plücker line coordinates representation for directed lines in P 3[17]. Two points
P = (px, py, pz, 1) and Q = (qx, qy, qz, 1) define a line L as

L = (l0, l1, l2, l3, l4, l5)
= (pxqy − qxpy, pxqz − qxpz, px − qx, pyqz − qypz, pz − qz, qy − py). (1)

With this notation, lines in P 3 are mapped to homogeneous points L = (l0, l1, l2,
l3, l4, l5) or hyperplanes L = (l4, l5, l3, l2, l0, l1) in 5 dimensional Plücker coordi-
nate space.

A major advantage of this representation is the simplicity of the incidence
operation. Given two lines A and B, the incidence operation is the inner product
between the homogeneous Plücker representation of line A and the hyperplane
Plücker representation of line B

A · B = a0b4 + a1b5 + a2b3 + a3b2 + a4b0 + a5b1. (2)

Since the inner product will be zero for intersecting lines, solving for n lines
I1, I2, ..., In that intersect m given lines L1,L2, ...,Lm is equivalent to finding
the n-dimensional nullspace of a matrix formed by the Plücker hyperplane rep-
resentations of the given lines:

Mx =

⎡⎢⎢⎢⎣
L1

L2

...
Lm

⎤⎥⎥⎥⎦x = 0. (3)

Finding the set of lines x that map M to a null vector, implies that for each
row i the inner product Li · x equals zero. Given the m reflection lines from
the previous section and the task of finding the n = 2 intersecting lines, we
can simply solve for those lines by finding the nullspace of the matrix M with
singular value decomposition
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M = UΣV T =

⎡⎢⎣ u11 · · · u1m

...
...

um1 · · · umm

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

. . .
σ6

0 · · · 0
...

...
0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣v11 · · · v16

...
...

v61 · · · v66

⎤⎥⎦
T

. (4)

For n = 2, M is a rank four matrix and will span a two dimensional subspace that
can be parameterized by the two points a = (v15, · · · , v65) and b = (v16, · · · , v66),
which correspond to the two smallest singular values σ5 and σ6. Fortunately not
all points on the 5-dimensional line L(t) = at + b are 3-dimensional lines, but
just those lines A that satisfy

A · A = 0. (5)

Teller and Hohmeyer[18] were the first to formulate and solve this problem by
intersecting the line L(t) with all points that satisfy (5). This produces the
quadratic equation

(a · a)t2 + 2(a · b) + (b · b) = 0, (6)

for which the two real roots correspond to the two intersecting lines. As a result
of proposition 1, the nullspace of matrix M will in general be two dimensional.
In practice nearly coplanar reflection lines will result in a nullspace with higher
dimensions. Due to numerical instabilities, incorrect solutions will likely be se-
lected. An empirical analysis has been performed which considers this problem
and is described in the next section.

2.2 Empirical Analysis

In order to study the feasibility of the theoretical formulation above, we analyze
synthetically generated images empirically. A specular sphere reflecting a line
was rendered using an OpenGL Shading Language program. The reflected line
light source was detected by thresholding and subsequent Bezier spline curve fit-
ting, which allowed sub-pixel-accurate sample points for computing the reflection
lines. As we are dealing with synthetic data, all camera and sphere parameters
are readily available and the reflection lines can be determined. One practical
concern about the theoretical formulation in Section 2 is the numerical instabil-
ity in the case of nearly coplanar reflection lines. Coplanar reflection lines are
undesirable because all lines on that plane will intersect the reflection lines and
as a result the nullspace selection will be unstable. We use the average angle
that lines make with a best fitting plane, as a planarity measurement.

In the first experiment we rendered a synthetic sphere of radius Sr = 1 and
center S = (0, 0, 0)T with a synthetic camera. Without loss of generality, let the
camera be located at C = (0, 0,−5)T pointing in the negative z-direction and a
line be positioned parallel to the x-axis piercing the y-axis at L = (0,−5, 0). Let
A be the vector from S to C and B the shortest vector from S to the line light
source. The distance |A| between the camera center and the sphere center as
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Fig. 2. This plot shows the plane fitting error against the viewing angle. A linear

relationship between this angle and the planarity measurement can be identified, with

better results for larger angles.

well as the distance |B| between the line and the sphere center is kept constant
at 5 units, while the camera is being rotated around the x-axis in 10 degree
intervals. Let us define the angle � (A,B) as the viewing angle. Fig. 2 plots
the plane fitting error against this viewing angle. A linear relationship between
the viewing angle and the planarity measurement can be identified, with better
results (smaller error) for larger viewing angles.

Fig. 3 plots the plane fitting error while translating the light source along
y-axis (left) and translating the camera center along z-axis (right) with constant
viewing angle. These plots show a strong relationship between light and camera
distances to the plane fitting error. Shorter distances between sphere center and
light produce least coplanar reflection rays compared to larger distances. The
opposite is true for distances between sphere center and camera center.

The synthetic experiments above show that the coplanarity of the reflection
rays depends on the two distances |A| and |B| as well as the viewing angle. An
increase in the plane fitting error can be observed with large viewing angles,
small light distances and relatively large camera distances. This is undesirable

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

camera distance

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

pl
an
e
fit
tin
g
er
ro
r

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

light distance

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

pl
an
e
fit
tin
g
er
ro
r

Fig. 3. Plots for plane fitting error while translating the light source along the y-axis

(left) and translating the camera center along the z-axis (right) with constant viewing

angle
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for line reconstruction as it prevents robust single view line estimation from
spherical reflections under general conditions. Apart from this, the experiments
in this section show that the reflection lines are often close to coplanar, with a
maximum plane fitting error of about 3 degrees, which is insufficient for accurate
line estimation in practical situations.

3 Estimation of a Polygonal Light Source

In this section, we apply the theoretical formulation developed above for the
problem of polygonal light source estimation by treating the light source as a
polygon composed of a set of lines. Each line in the set will be independently
reconstructed and a polygon will be calculated from the reconstructed lines. It
has been shown in the previous section that in practice a line cannot be uniquely
reconstructed from a single view of a single sphere, and setups with an additional
sphere or an additional view are considered.

In the following, two procedures that estimate polygonal light sources given
just the intrinsic camera parameters K are considered. Section 3.2 introduces
a closed form solution given a single view of two spheres of the same radius,
while Section 3.3 introduces an iterative approach based on two unknown views
of a single sphere. Both of the methods require a known translation between
the camera center C to the sphere center S. For this reason a solution [8] for
estimating the sphere center from its silhouette is described in the following
section.

3.1 Where Is the Sphere?

The sphere silhouette, being a conic, can be represented by a 3x3 symmetric
matrix Csil, given by

Csil = (PQ∗
sP

T)∗

= (KKT − (KS/Sr)(KS/Sr)T)∗, (7)

where Q∗
s denotes the dual to the quadric Qs, which represents the sphere with

center S and radius Sr. Here the pinhole camera is given as P = K[ I 0 ].
In order to recover the sphere center C from Csil, the effect of K is first

removed by normalizing the image using K−1. The conic Csil will be trans-
formed to a conic Ĉsil = KTCK in the normalized image. This conic Ĉsil can
be diagonalized into

Ĉsil = MDMT = M

⎡⎣a 0 0
0 a 0
0 0 b

⎤⎦MT, (8)

where M is an orthogonal matrix whose columns are the eigenvectors of Ĉsil,
and D is a diagonal matrix consisting of the corresponding eigenvalues. The
matrix MT defines a rotation that will transform Ĉsil to the circle D with radius
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r =
√
− b

a centered at the origin. This transformation corresponds to rotating
the camera about its center until its principle axis passes through the sphere
center. The distance d between the camera center and sphere center is given as

d = Sr

√
1 + r2

r
. (9)

Finally, the sphere center can be recovered as

C = M [ 0 0 d ]T

= dm3, (10)

where m3 is the third column of M .

3.2 Two Spheres and a Single View

This section gives a solution for polygonal light estimation by introducing a
second, identical sphere into the scene. Two identical spheres for light estimation
have been utilized before [19]. In contrast to previous work, this section provides
a closed form solution. Note that the iterative method provided by Zhou et. al.
[19] gives no guarantee for convergence.

Firstly the relative locations of both identical spheres are estimated by the
method given in section 3.1. The reflecting rays R1, ...,Rm for the first sphere
and the reflecting rays R′

1, ...,R′
n for the second sphere will form the equation

Mx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

...
Rm

R′
1

...
R′

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
x = 0. (11)

The reflection lines for a single sphere will be relatively coplanar. However, by
including the reflection lines from a second sphere, an intersecting line can be
determined, which corresponds to an edge of the light source. Repeating this
process for all sides of the polygonal light source results in n lines in space.
Correspondence for the n sides of the light source can be achieved easily because
the order of the edges will not change in the specular reflection.

3.3 Two Views of a Single Sphere

In the following method two images of a single sphere are taken from two distinct
viewpoints. Projection matrices for the two cameras can be written as

P1 = K1[ I C1 ]
P2 = K2[E C2 ], (12)
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where K1 and K2 are the two camera calibration matrices (assumed to be known)
and C1 and C2 are determined from the method described in Section 3.1. The
sphere center is the world origin and the first camera is chosen as a reference
view. The unknown 3x3 rotation matrix E is independent from the image Csil

of the sphere but can be determined from the specular reflection. This follows
from the fact that the location of the highlight on the sphere surface depends
on the cameras location as well as the light location.

Given the correct rotation matrix E, the reflection lines for both views corre-
sponding to an edge of the light source can be determined. Note that the resulting
reflection lines for a single view will be relatively coplanar, but by including the
reflection lines from the other view, an intersecting line can be determined which
gives an edge of the light source. This process is repeated for all edges of the
light source.

To solve for the unknown rotation, an optimization over the 3-dimensional
rotation space is performed using the cost

Ecost = w1αr + w2dr + k, (13)

where w1 and w2 are weight coefficients determined experimentally, αr is the
average angle between the reflection lines and dr the average distance between
them.

To add additional constraint on the rotation E, a rectangular light source is
assumed and k is a measurement of how rectangular the given lines {W ,X ,Y,Z}
are, and is defined as

k = � (W ,Y) + � (X ,Z)
+|� (W ,X )− 90|+ |� (X ,Y)− 90|
+|� (Y,Z)− 90|+ |� (Z,W)− 90|. (14)

Instead of performing an optimization directly on the parameterized search
space, an initial global minimum is found by subdividing the search space. The
optimization is subsequently initialized with the global minimum of the subdi-
vision. This procedure avoids an early termination of the optimization in a local
minimum.

4 Experimental Results

The closed form solution of Section 3.2 and the iterative method of Section 3.3
for recovering a polygonal light source have been implemented. Experiments on
both synthetic and real data were carried out, and the results are presented in
the following sections.

4.1 Synthetic Experiments

A synthetic experiment with a rectangular light source and (a) a single view
of two spheres and (b) two views of a single sphere has been performed. An
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OpenGL Shading Language program has been written to model the specular
reflection of the polygonal light sources on the spheres. Both the silhouette of
the spheres and the edges of the specular highlight were extracted automatically
by thresholding and subsequent fitting of Bezier spline curves.

All ground truth data is available for the edges of the light source and esti-
mation errors can be calculated as the angle between the estimated edges and
ground truth edges. Their average was 3.77 degree for experiment (a) and 1.63
degree for experiment (b). The distance between those lines was used as a sec-
ond error measurement and their average was 0.079Sr for experiment (a) and
0.058Sr for experiment (b), where Sr is the radius of the sphere.

4.2 Experiments on Real Data

For the first experiment on real data, two identical plastic white cue snooker balls
were imaged from a single viewpoint. The spheres were put below a standard
rectangular fluorescent office lamp. The light source has a dimension of 270mm x
1170mm while the snooker balls’ diameter is 57mm. The intrinsic parameters of
the camera were obtained using Zhang’s camera calibration method [20]. Cubic
Bezier-spline snake was applied to extract the contours of the sphere in the
images, and conics were then fitted to these contours using a direct least squares
method [21]. Edges from the specular reflection of the rectangular light source
were picked and matched manually. One of the spheres is shown in a crop of
the image in Fig. 4(a), and Fig. 4(b) illustrates a synthetically generated view
of the sphere reflecting the estimated light source. We compared the size of

Fig. 4. (a) A standard rectangular fluorescent office lamp is illuminating a plastic

white cue snooker ball. (b) A synthetically generated view of the sphere reflecting the

estimated light source for the two sphere single view case. (c) A blue snooker ball is

enlightened by a smaller rectangular desk light source. (d) The synthetically generated

view with estimated light source for the two view single sphere case.
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the estimation result with the specification of the light source and found an
approximate error of 13mm x 52mm for the 270mm x 1170mm light source.

Two views of a single sphere were taken in a second experiment. This time a
blue snooker ball was enlightened by a smaller rectangular desk light source with
a dimension of 68mm x 33mm. A crop of the image is shown in Fig. 4(c), and
Fig. 4(d) illustrates a synthetically generated view of the sphere reflecting the
estimated light source. In this case the estimation result had an error of 5mm x
3mm for the 68mm x 33mm light source.

5 Conclusion

This paper recovers a polygonal light source from the image of a specular sphere.
Its main contributions are

1. an empirical analysis, which shows that line estimation from a single view
of a single sphere is not possible in practice;

2. a closed form solution for recovering a polygonal light source from a single
view of two spheres; and

3. an iterative approach for rectangular light source estimation based on two
views of a single sphere.

Experiments on both synthetic and real images show promising results. In future
research, we would like to study the possibility of extending SfS to handle the
more complex lighting conditions of a polygonal light source.
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Abstract. In this paper, a new approach to face relighting by the product of  
reflectance image and illumination Tensorfaces is proposed.  With a pair of 
multi-spectral images, a near infrared and a visual image, the intrinsic images 
decomposition can be implemented and corresponding reflectance image is de-
rived. Besides, the illumination images obtained from last step as well as the  
input visual images constitute a 3-D tensor, on which super-resolution and 
maximum a posteriori probability estimation are carried out. And then, illumi-
nation Tensorfaces under specific light are derived, by which face under target 
illumination can be synthesized. In contrast to commonly used shape models or 
shape dependent models, the proposed method only relies on Lambertian as-
sumption and manages to recover reflectance of the face. Besides, compared 
with the existing methods, i.e. Tensorfaces and Quotient Image, our methods 
properly preserve the identity of the subject as well as the texture details. Ex-
periments show that the proposed method is not only simple when deriving  
intrinsic images, but also practical when performing face relighting. 

1   Introduction 

Face relighting plays an increasingly essential role in image processing, computer 
vision and graphic communities owing to its various applications, i.e. face detection 
and recognition, image retrieval, video conference, virtual reality, movie special ef-
fects, and digital face cloning. For realistic face synthesis, the following three proper-
ties are critical to hold: retaining facial features, reproducing various skin reflectance 
and preserving the identity of a subject. Although a great number of face relighting 
algorithms have been proposed previously aimed at dealing with the problems men-
tioned above, synthesizing a plausible facial image is still a challenge task. In fact, 
instead of improving the quality of synthesized images, most of existing face relight-
ing work pays more attention on enhancing the recognition rate. 

In face relighting, most algorithms factorize a single or multiple images into light-
ing and reflectance components firstly and many methods are proposed in recent 
years aimed at solving this factorization problems: Illumination Cone [1], Quotient 
Image [2] , Spherical Harmonic Subspace [3], [4], Morphable faces [5], [6], Tensor-
faces [7], [8], Intrinsic Images [9], [10], and subspace model-based approach using 
BRDF [11], as depicted in Fig. 1. All these methods can be clearly categorized based  
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Fig. 1. Recent work concerned with face relighting. Italic: method proposed in this paper. 

on whether a 3-D shape model or the Lambertian assumption is used or not. In this 
paper, under Lambertian assumption, we propose a method to synthesize new facial 
images by illumination Tensorfaces and intrinsic images without a shape model. 

The term “intrinsic images” is first introduced by Barrow and Tenenbaum [9] in 
1978 to refer to a midlevel decomposition of the sort depicted in Fig. 2. The observed 
image is the product of two images: an illumination image and a reflectance image. 
Because of a shortness of a full 3D description of the scene, we call this a midlevel 
description. The physical causes of changes in lighting at different points are not 
made explicit in reflectance image, and we rarely see any highlights or cast shadow. 
However in the illumination image, not only shadow but also specularity is depicted. 

= × 
 

Fig. 2. The intrinsic image decomposition. The input image is decomposed into two parts, a 
reflectance image and an illumination image. 

The major contribution of this paper is to derive intrinsic images from Multi-
Spectral Quotient Image and implement face relighting by the product of reflectance 
images and illumination Tensorfaces to render a more realistic image other than only 
enhancing recognition rates. Weiss [10] proposed an intrinsic images decomposition 
method with assumption that illumination images will give rise to sparse filter out-
puts. However, images sequences are necessary in his method for approaching this 
problem as a maximum-likelihood estimation, which sometimes is impossible for few 
inputs. As to our method, only a pair of multi-spectral images, a near infrared (NIR) 
and a visual image (VIS) are enough to derive the reflectance image. In addition, 
unlike the Illumination Cone [1], Spherical Harmonic Subspace [3], [4] or Morphable 
face [5], [6], the proposed method does not need a 3-D shape, leading to a practical 
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but simple solution of face relighting. Besides, the existing method, i.e. Tensorfaces 
[7], though providing a reasonable illumination simulation on face, fails to preserve 
the identity properly. The proposed method can cover this drawback since the identity 
information is largely retained in the reflectance image, which remains still during the 
relighting process. 

The paper is organized as follows. In section 2, we introduce the multi-spectral 
properties and make an explanation of what we call “Multi-Spectral Quotient Image”. 
Section 3 sets up two 3-D training tensors as the basic multilinear analysis tool, which 
include factors of identity, pixels and illumination. Then super-resolution is carried 
out aimed at obtaining the “true” identity of input image in high-resolution tensor 
space and the target illumination Tensorfaces are derived, by which the relighting 
procedure can proceed. Section 4 discusses the experimental database and results 
before conclusions are drawn in section 5. 

2   Multi-spectral Quotient Image  

In this section, we first take a brief view of intrinsic image decomposition model, and 
then we will introduce what we call Multi-Spectral Quotient Image and justify its 
correctness. 

2.1   Intrinsic Images Decomposition Models 

According to Lambertian reflectance function, if a distant light source l reaches a 
surface point with albedo R and normal direction n , then intensity I , reflected by the 
point due to this light is given by:  

( , ) ( , ) ( , )  .I x y R x y n x y l= i                                                (1) 

When more light sources are involved, equation (1) becomes:  

1

( , ) ( , ) ( , )  .
k

i
i

I x y R x y n x y l
=

= ∑ i                                             (2) 

Lambertian reflectance function can be thought as a special version of intrinsic im-
ages, where R stands for a view independent reflectance (albedo) value, and L is the 
shading of Lambertian surface: 

1

( , ) max( ( , ) ,0) .
k

i
i

L x y n x y l
=

=∑ i                                            (3) 

Combining equation (2) with (3), we obtain:  

( , ) ( , ) ( , ) . I x y R x y L x y=                                               (4) 

Recovering two intrinsic images R and L from a single input remains a difficult prob-
lem for computer vision systems since it is a classic ill-posed problem. In [10], Weiss 
focus on a slightly easier version of the problem. Given a sequence of T images 
whose reflectance images are constant over time and illumination images change, the 
decomposition can be derived. Fig. 2 shows one examples of reflectance and illumi-
nation images from Yale B face database gained by Weiss’s method. 
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2.2   Multi-spectral Images Properties 

Spectral measurements from human tissue have been used for many years for charac-
terization and monitoring applications. The interaction of light with human tissue has 
been studied extensively [12], [13], [14] and a model for skin color in multi-spectral 
has been built [15]. In this paper, we only focus on two typical spectral, point visual 
light (VIS) source of 520nm and point near infrared (NIR) light source of 850nm in 
that their appearances are fairly distinct and each of them includes different facial 
features of the same subject, as depicted in Fig. 3. 

 

Fig. 3. An example of NIR and VIS image pairs. The first row is a group of five NIR facial 
images under frontal illumination and the second row is the counterpart of VIS images which 
are taken simultaneously using a two CCD camera. 

There are two reasons for this phenomenon. First, due to different skin, eyes and lips 
reflectance between NIR and VIS, the intensity ( I ) of images is quite different, which 
indicates that the reflectance varies with spectral changes. This sort of changes regard-
ing spectral has been explicitly revealed in [16] and serve as the main reason for the 
brightness difference between two images. For example, the skin under NIR is brighter 
than that under VIS, whereas the eyeballs and eyebrows possess the reverse trend. An-
other reason is that under NIR, skin has a larger penetration depth than for visible wave-
lengths enabling imaging the subsurface characteristics. We employ tissue thickness that 
reduces the light intensity to 37 percent of the intensity at the surface to describe this 
parameter. The optical penetration depth is defined as 1/ 3 a sμ μ′ where aμ and sμ′ are 
the absorption coefficient and reduced scattering coefficient of the tissue, respectively. 
For a typical person, we have aμ =0.77mm-1 and sμ′ =1.89 mm-1  in the visual light and 

aμ =0.02mm-1 and sμ′ =1.31 mm-1  in near infrared, which means a 0.479mm and a 
3.567mm penetration depth of facial skin respectively. At the latter depth, the tissue is 
smoother than the surface part and has more unified reflectance, giving rise to a better 
expression of facial shape and illumination information. These unique properties of 
multi-spectral images enlighten us to derive a novel but simple method to carry out 
intrinsic image decomposition in the following parts. 

2.3   Multi-spectral Quotient Image 

According to Lambertian model, the VIS and NIR images reflectance function can be 
expressed as: 

( , ) ( , ) max( ( , ) ,0) ,VIS VIS VIS VISI x y R x y n x y l= ⋅ i                                (5) 
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( , ) ( , ) max( ( , ) ,0) ,NIR NIR NIR NIRI x y R x y n x y l= ⋅ i                                 (6) 

where all parameters share the same meaning with equation (1) and “ i ” denotes dot 
product. Specifically, subscripts of parameters indicate that they pertain to VIS and 
NIR images respectively.  In this paper, a pair of multi-spectral images is captured 
simultaneously with roughly the same light intensity and direction which guarantees 
that the parameter VISl is close to NIRl . Besides, since the images of one subject are 
taken at the same time, the shape VISn and NIRn are exactly the same. Combining this 
with equation (5) and (6), we obtain the following deduction of Multi-Spectral Quo-
tient Image (MQI): 

( , ) ( , ) ( , )
MQI ( , ) ,

( , ) ( , )
VIS VIS VIS

VIS
NIR NIR

I x y R x y R x y
R x y

I x y R x y c
α α β= = ⋅ = ⋅ = ⋅               (7) 

whereα is a constant, denoting the ratio of VISl to NIRl for they are not identical with 
each other, though very close and c is the reflectance of NIR image at skin area. Term 
max( ( , ) ,0) / max(( ( , ) ),0)VIS VIS NIR NIRn x y l n x y li i  is omitted for light source direction and 
shape vector on face between these two spectral are nearly the same, leaving only the 
light intensity ratio α between VIS and NIR. Here notice that we use constant c instead 
of ( , )NIRR x y to represent the reflectance of face under NIR environment due to spectral 
characteristics as we mentioned in section 3.1. Therefore, the skin area of NIR image 
turns out to be a “pseudo illumination image” and MQI equals to reflectance image of 
VIS multiplying some constant β .  However, areas other than skin on face render 
slightly different reflectance which cannot be approximately expressed by only one 
fixed parameter c . The bias of them can be greatly improved by a pre-trained mask 
which will be explained detailedly in section 3.2. Fig. 4 shows some MQI examples. 

 

Fig. 4. Some examples of the Multi-Spectral Quotient Image. The first row contains facial 
images under arbitrary illuminations and images of second row are corresponding illumination 
images of inputs. The final row is their reflectance images gained with the proposed method.  

3   Relighting with Illumination Tensorfaces 

In this section, a tensor structure for face images of different modalities involving 
changes from visual images to illumination images and people identity is set up at 
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first. Then an algorithm for super-resolution in tensor parameter vector space is  
derived. Finally, with the reflectance image achieved from last section and the illumi-
nation Tensorfaces gained in this section, face relighting can be performed. Fig. 5 
depicts the whole process of the proposed method, which includes 4 steps, 1) model-
ing face in tensor space, 2) super-resolution and Bayesian inference, 3) Multi-Spectral 
Quotient Image, 4) face relighting.  

V̂ VV
×

÷

 

Fig. 5. The whole procedure of the proposed method, including 4 steps, where V̂ andV are the 
identity parameter vectors for the low-resolution input face image and unknown high-resolution 
image. 

3.1   Modeling Face Images in Tensor Space 

First a tensor structure is constructed from multi-modal face images and HOSVD is 
used to decompose them [7]. The decomposed model can be expressed as: 

               1 2 3 ,idens illums pixelsD Z= × × ×U U U                                         (8) 

where tensor D groups the multi-modal face images into tensor structure, and core ten-
sor Z governs the interactions between the 3 mode factors. The mode matrix

 
,idens illumsU U and pixelsU

 
span the parameter space of different people identities, illumi-

nations, and face images respectively. Specifically, the illumination factors in this paper 
involve changes from a frontal visual image to its corresponding illumination image.  

In order to carry out super-resolution in tensor space using Bayesian inference to 
simulate an illumination image from a given frontal face, a low-resolution and its 
counterpart high-resolution training tensor space are set up at first. Since the down-
sampling image maintains most of its low frequency information, the shape structure, 
the identity is retained. By projecting a frontal image into the low-resolution training 
tensor space, we can achieve its identity parameter vectorV̂ . For the purpose of re-
lighting, we use Bayesian model to perform multi-modal face image super-resolution 
and derive input image’s “true” identity V  in high-resolution tensor space. Then, by 
implementing multilinear algebraic operations, the illumination image under some 
lighting is recovered. For more details on super-resolution in tensor space, readers can 
refer to [17]. 
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3.2   Face Relighting 

Face relighting performs by the product of reflectance images and illumination im-
ages. In fact, a direct simulation to form an image under some illumination using 
Tensorfaces without intrinsic factorization process is feasible and Tensorfaces can 
provide a reasonable lighting simulation in that the first several eigenvectors of a 
serial of images with varying illuminations are able to represent most of lighting 
changes. However, the identity vector learned by Bayesian inference may not be right 
or close enough to the true one, leading to artificial appearance. 

In this paper, the learned illumination Tensorfaces retain the proper lighting infor-
mation, yet the “false” identity. The product of reflectance and learned illumination 
Tensorfaces can cover this drawback for most identity information is kept in the for-
mer. However, since reflectance varied between NIR and VIS in eyes, lip, mouth and 
skin respectively, the reflectance image gained from MQI cannot rightly represent 
them all. In this paper, we mainly focus on the largest area on face, skin and adjust 
other areas to the acceptable range by a pre-trained mask. This re-shading mask is the 
average of quotient images between the primitive relighting results and ground truth 
images, which can eliminate the impact of varying reflectance and other uncertain 
factors, i.e. brightness and contrast, as Fig. 6 depicted. The most distinct parts be-
tween primitive result and ground truth are eyes and the former seems to be artificial 
due to lack of lighting changes. In the last image of Fig. 6, re-shading operation pro-
vides a more acceptable simulation around the eye area. 

÷ =
  

Fig. 6. The generation and utility of pre-trained re-shading mask. (a) Ground truth, (b) primitive 
result, (c) re-shading mask, (d) outcome after re-shading. 

4   Experiments and Results 

The experiments aim at evaluating the proposed method of intrinsic image decompo-
sition and showing the utility of this decomposition in image processing. What’s 
more, with illumination Tensorfaces, face relighting can be employed on the given 
frontal visual images. All images in our experiments are captured with JAI AD080 
digital camera, which can take NIR and VIS images at the same time for it possesses 
two CCD sensors, sensitive to near infrared and visible light respectively.  

The first part of this section reveals how the proposed intrinsic decomposition me-
thod is applied in the image synthesis with a simple image addition. Given an image  
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Fig. 7. An example of image synthesis. The bend-aid image is directly added to the facial im-
age under arbitrary illumination, resulting in an artificial synthesized image in the first row. In 
the second row, the bend-aid is firstly added to the reflectance image, and then multiplied by 
the illumination image. 

 

Fig. 8. Qualitative comparison with Quotient Image [2], Tensorfaces [7] and ground truth 
images. (a) Quotient Image, (b) Tensorfaces, (c) proposed method, (d) ground truth images. 

in arbitrary illumination, we find that a direct image addition will lead to an unreal 
result, for additional parts rarely carry any illumination. However, if the additional 
part is added to the reflectance image at first, and then multiplied by the illumination 
image, the result seems fairly true, as Fig. 7 depicted. 

The second experiment presents face relighting and images captured are VIS and 
NIR ones. The VIS database contains 100 subjects under several illuminations with pure 
green LED (520nm) while the NIR database with frontal illumination (850nm) is taken 
simultaneously. In this paper, 50 subjects are randomly selected to be probe set, and 
others for training. Fig. 8 shows some example of the proposed method, from which we 
can see that Quotient Image leads to some highlight areas around the edge of eyes, nose, 
brows and mouth due to lack of dense alignment and its result does not appear convinc-
ing because the lighting effect is not consistent in different parts of the face. Tensorfaces 
perform reasonably well in lighting simulation, but fail to preserve the identity, resulting 
in a unlike face compared with ground truth. Our synthesized images are more realistic 
and perceptually closer to the ground truth images and handle both specularity and 
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shadow well. What’s more, due to the better performance on retaining texture details  
of face, the characteristics of inputs are fairly preserved. An objective test using correla-
tion score is also implemented across different illuminations and results are shown in 
Table 1. These scores objectively represent the difference between them and are consis-
tent with the subjective observation. Specifically, the alignment operation benefits the 
Tensorfaces and eliminates most of their blurring appeared when training images do not 
share the same shape with the probe set. 

Table 1. Comparison of the average correlation scores across different illuminations for 4 
algorithms 

Algorithm 
Quotient 

Image 
Tensor- 

faces 
Proposed  method 
before re-shading 

Proposed method 
after re-shading 

Correlation 
Scores 

0.9448 0.9813 0.9773 0.9859 

5   Conclusions 

In this paper, a new method to extract intrinsic images and synthesize facial images 
under different lighting conditions has been proposed. Firstly, the reflectance image of a 
subject is simply recovered through dividing its frontal VIS by NIR image. Then, the 
VIS image is projected to the low-resolution training tensor space in order to obtain the 
target illumination images. Finally, the image under some illumination can be synthe-
sized with a product operation. The experimental results of our method are promising 
and proved to be more realistic than existing methods, i.e. Tensorfaces and Quotient 
Image on texture details, specularity or shadow simulation and identity preservation. 
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Abstract. In this paper, we propose a 2-step algorithm to reduce the

lighting influences between frames in an image sequence. First, the light-

ing parameters of a perceptual lighting model are initialized using an

entropy measure. Then the difference between two successive frames is

used as a cost function for further optimization the above lighting pa-

rameters. By applying the proposed lighting model optimization on an

image sequence, the neighboring frames become similar in brightness and

contrast while features are enhanced. The effectiveness of the proposed

approach is illustrated on the detection and tracking of facial features.

1 Introduction

Most of the image analysis techniques for video sequences consider tracking of
features or objects. Tracking algorithms intend to find similar regions/points in
successive frames. This correspondence process, is easily influenced by illumi-
nations when real images are captured. Therefore illumination is regarded as a
critical factor for robust feature detection and tracking algorithms [1,2]. For a
specific object, e.g. the human face, these challenges are mainly caused by the
variations of pose, expression, occlusion and illumination. Several algorithms
have been proposed dealing with the pose and motion (expression) changes (e.g.
[3,4,5]) and less investigation has been made to cope with the illumination or
lighting changes as pre-processing step.

Recently, several algorithms have been proposed for the adjustment of the
lighting conditions of images before further analysis. To simulate the function
of low frequency lighting, the 3D geometric information of objects has been
used in [6,7,8]. However, recovering the 3D information from images is still an
open problem in computer vision. In addition, its computation complexity is
too expensive to be afforded by an online tracking problem. Although pose-
illumination methods have demonstrated their effectiveness [9,10,11], they still
� Actually at School of Psychology, University of Birmingham,B15 2TT, UK.
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required to have the 3D model of objects or the training of basis images for
different objects. To alleviate this complexity, other class of algorithms have
been proposed for enhancing images and reducing the illumination influences,
among them we can cite, the quotient image algorithm [12,13], and perception
based lighting balance algorithm [14].

In this paper, the difference between successive frames is used as a cost func-
tion for optimizing a lighting model of an image sequence. For each image frame,
to ensure convergence, the algorithm works in two steps. First initial values of a
lighting model parameters are estimated using as measure the entropy of the cur-
rent image. These values are then used as initial guesses for a constrained least
squares optimization problem, considering two successive frames. It is worth
pointing out that the proposed algorithm do not only allow shadow removal
[15,16], but also adjust the global lighting conditions to be more uniform and
enhance the local features of the image.

The paper is organized as follows. We first introduce the used perception based
lighting model in Section 2. In Section 3 we give an overview of the proposed
lighting adjustment algorithm for image sequence. Section 4 discusses qualitative
and quantitative results of the lighting adjustment in the case of facial features
detection and tracking. Finally, some conclusions are drawn in Section 5.

2 Lighting Model

The Human Vision System (HVS) can adapt very well under enormously changed
lighting conditions. People can see well at daytime and also at night. That is due
to the accurate adaptation ability of the HVS. However, image capturing devices
seldom have this adaptation ability. For an image taken under extreme lighting
conditions, such as the images shown in first row of Fig 2(b), a proper lighting
adjustment algorithm should not only adjust the brightness of the images, but
also enhance the features of the image, especially for the dark regions. To reach
this goal, we propose to reduce the light variations by an adaptive adjustment
of the image. Here, we employ a model of photoreceptor adaptation in Human
Vision System [17] in which three parameters (α, f , m) control the lighting
adjustment. The adjusted image Y is modeled as a function of these lighting
parameters and the input image X as:

Y (α,m, f ;X) =
X

X + σ(Xa)
Vmax (1)

where σ, referred to as semi-saturation constant, Xa the adaptation level, and
Vmax determines the maximum range of the output value (we use Vmax = 255 to
have grey image output in the range of [0, 255]). The semi-saturation constant
σ describes the image intensity and its contrast through the parameters f and
m, respectively [17]:

σ(Xa) = (fXa)m (2)

The adaptation level, Xa, controls the amount of detail in the adjusted images:

Xa(x, y) = αX local
a (x, y) + (1− α)Xglobal

a (3)
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Fig. 1. (a) Adaptation level v.s. α parameter (b) lighting adjustment v.s. m and f
parameters

where the global adaption level Xglobal
a is the mean grey level of the image X , and

X local
a is the local adaptation level corresponding to the low-frequency informa-

tion of the images, which can be obtained by convolving the image with a Gauss or
Wiener kernel. The parameter α controls the contribution of each term.

The effect of the three parameters on the lighting model (Eq.1) is illustrated
in Fig.1. Fig.1(a) depicts, for different values of α, the obtained adjusted images.
As one can notice, the details are gradually enhanced with increasing values of
α. When α = 1, i.e.Xa = X local

a , all the details are shown including the noise.
Fig.1(b), shows the lighting adjustment results for a fixed value of α, and for
different values of f (columns) and m (rows). The image contrast is enhanced
when m increases, while the image brightness is enhanced when f is decreasing.

3 Image Sequence Lighting Adjustment

In capturing an image sequence Xk, k = 1, · · ·N , the influence of the scene
lighting may not be neglected. Often the variations of the lighting conditions
cannot be avoided while recording, and therefore lighting adjustment methods
must be used before further processing. In this paper, we propose a tow-steps
lighting adjustment approach. First, the initial optimal parameters, α0

k, f0
k , m0

k of
each frame Xk are calculated using entropy as objective function. These values
are then used as initial guesses for a constrained least squares optimization
problem for further refinement of those parameter. In this step, the objective
function is the difference between the adjusted previous frame Yk−1 and the
current frame Xk. The two steps are detailed in the following sections, and
experimental results are presented in section 4.

3.1 Single Image Enhancement

It is well known that an image with large entropy value indicates that the distri-
bution of its intensity values is more uniform, i.e. each intensity value has almost
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the same probability to appear in the image. Hence, the image cannot be locally
too bright or too dark. Entropy H(X), defined as:

H(X) = −
255∑
i=0

p(i)log2(p(i)) (4)

where p(i) is the probability of the intensity values i in the whole image, can be
employed to evaluate image lighting quality. When all the intensity values have
the same probability in the image, the entropy can reach its maximum value 8.
However, not all the images can reach the entropyH(X) = 8 when they are in their
best situation. The optimal entropy value, Ho, is image content dependent. In this
paper, we set Ho = 7 as the expected optimal entropy for all the images. Therefore
the objective function for the lighting adjustment of every single image is

J1(α,m, f) = arg min
a∈[0,1];m∈[0.3,1)
f∈[exp(−8),exp(8)]

|H(Y (α,m, f ;X))−Ho| (5)

The lighting parameter α controls the adaptation level of the images, as in
Eq.3. It can adjust the image much more than the other two parameters (f,m).
Therefore an alternate optimization strategy is used [14]. First, the parameter α
is optimized with fixed m and f . Then the parameter m and f are optimized with
fixed α. These two optimizations are repeated until convergence. To initialize,
we estimate α̂ with fixed m and f which are selected according to the luminance
situation of the image. The contrast-control parameter m can be determined by
the key k of the image [17], as

m = 0.3 + 0.7k1.4 (6)

The key of the image evaluates the luminance range of the image and is defined as

k =
Lmax − Lav

Lmax − Lmin
(7)

where Lav,Lmin,Lmax are the log average, log minimum and log maximum of the
luminance respectively. For color images, we use the luminance image computed
as L = 0.2125Ir + 0.7154Ig + 0.0721Ib, where Ir , Ig, Ib are the red, green, blue
channels. The brightness-control parameter f is set to 1. Then the simplex search
algorithm [18] is applied for determining the optimal α̂. Fixing the value α̂ in
J1, the simplex search algorithm is then used to search for optimal m̂ and f̂ .
The alternate optimization will stop when the objective function J1 is smaller
than a given threshold.

This approach can adjust an image to have suitable brightness and contrast.
Also, it can enhance the local gradient of the image due to the adjustment of the
parameter α. However, entropy does not relate to intensity directly. Different
images can have the same entropy value while their brightness is different. For
example, the images in the second row of Fig. 2(a) and (b), being the lighting
adjusted results of the images of the first row, have the same entropy values, but
their lighting conditions are not similar. Consequently, for a sequence of images,
we still need to adjust the brightness and contrast of successive frames to be
similar and therefore enhance their features.
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3.2 Lighting Adjustment of Successive Images

In video sequences, the difference between successive frames is due to object
and/or camera motions and lighting changes. Whereas the former differences
are exploited in object tracking and camera motion estimation, the latter, i.e.
lighting differences, are such that the required brightness constancy assump-
tion for tracking gets violated. In this paper, we show that for tracking of slow
movement in a sequence captured by a fixed camera, the lighting problem can
be reduced by applying a lighting adjustment method. Indeed, the lighting of
the overall sequence could be made more uniform (in a sequential manner) by
considering the changes between successive frames. We propose to use the differ-
ence between successive frames as an objective function to estimate the optimal
lighting parameters of the current frame Xj, provided that the previous frame
Xj−1 has been adjusted, i.e. given Yj−1:

J2(α,m, f) = argmin
α∈[0,1];m∈[0.3,1)
f∈[exp(−8),exp(8)]

∑
x

∑
y

(Y (α,m, f ;Xj(x, y))− Yj−1)
2

(8)

With Eq.1, the difference e(α,m, f) = Y (α,m, f ;Xj)−Yj−1 between frames can
be written as (for simplicity we drop the pixel index (x, y)):

e =
Xj

Xj − (fjXaj )mj
− Xj−1

Xj−1 − (fj−1Xaj−1)mj−1
(9)

To simplify the computation of the partial derivatives of the objective function
J2, we consider the following error term:

ẽ =
Xj − (fjXaj )mj

Xj
− Xj−1 − (fj−1Xaj−1)mj−1

Xj−1

=
(fjXaj )mj

Xj
− (fj−1Xaj−1)mj−1

Xj−1
(10)

Let Ŷj−1 = (fj−1Xaj−1)mj−1/Xj−1 and apply log to both side of Eq.10, we can
simplify the difference between frames further as

ê = log
(fjXaj )mj

Xj
− log Ŷj−1

= mj log fj + mj logXaj − logXj − log Ŷj−1 (11)

Then the objective function J2 can be rewriten as

Ĵ2(αj , mj , fj)= arg min
α∈[0,1];m∈[0.3,1)
f∈[exp(−8),exp(8)]

∑
x

∑
y

(
mj log fj + mj log Xaj − log Xj − log Ŷj−1

)2

(12)

This formulation allows easily estimating the partial derivatives, and we apply
the interior-point algorithm [19] to solve the optimization problem Ĵ2, with
initial values of the lighting parameters α0

j ,f
0
j and m0

j obtained by minimizing
Eq.5.
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4 Experimental Results

The proposed lighting adjustment algorithms of the previous section have been
tested on the PIE facial database [20], from which we selected images under
different lighting conditions to compose 3 test sequences, here referred to as L1,
L2 and L3. We intend to take these sequences as typical examples to demonstrate
the performance of the algorithm in slight lighting variations (L1), overall dark
sequences (L2) and suddenly changing light variations (L3). To show the benefits
of the proposed image sequence lighting adjustment approach, we compare it to
state-of-art lighting adjustment methods for single images , namely, the quotient
image (QI) algorithm [12,13], and the well known histogram equalization (HE)
approach.

The lighting conditions of the test sequences can be described as follows.
Sequence L1 and L2 are composed of 19 frames taken from the same person.
The first row of Fig. 2 shows the first 4 frames of L1 and L2. The images in
L1 are taken with ambient lighting and 19 different point light sources. The
positions of these light points, are 10, 07, 08, 09, 13, 14, 12, 11, 06, 05, 18, 19,
20, 21, and 22, respectively. The images in L2 are taken under the same light
point source but without ambient lighting, so they appear to be more dark.
Sequence L3 is composed of 39 images which come from L1 and L2 alternately.
Thus the lighting condition of the images in L3 is ambient lighting on and off
alternately. The first row of Fig. 4 shows the frames 9 to 14 of L3.

To evaluate the lighting quality of the adjusted images, the key value (Eq. 7)
and entropy are depicted in Figure 3. The key value of an image evaluates the
luminance range of the image. The entropy, being the mean entropy of the 3
color channels, relates to the distribution of the intensity values in each channel.
The key value of all adjusted frames and the original sequence of L3 are shown
in Fig. 3(d). The key value zigzags due to the alternate brightness of the original
sequence L3. For a sequence with reduced lighting variation the key value should

Fig. 2. Lighting adjustment results of frame 1 to 4 in L1 and L2. (a) and (b) are results

of L1 and L2: from top to bottom are original images, entropy-based optimization, and

2-step optimization results, respectively.
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Fig. 3. Entropy and image key curves. (a)and (b) are the mean entropy and the variance

of key of all the frames in the original sequences and adjusted results of the sequences,

respectively. (c) and (d) are the entropy value and key value of every frame in L3 and

different adjusted results of L3, respectively.

stay constant throughout the sequence. Therefore, we show the variance of the
key value in Fig. 3(b). For all the 3 test sequences, the variance of the key value
of the results of the proposed 2-step optimization algorithm is smaller than that
of the other algorithms except HE algorithm. However, HE algorithm costs the
entropy value of images, whose results are even worse than the original images
(Fig. 3(a)). The reason is that HE algorithm can make the intensity distribution
uniform only by skipping values in the intensity range [0,255] of the adjusted
images, thereby leaving many gaps in the histogram of the adjusted images. The
entropy value of the QI results are the smallest because of the loss of the low
frequency information in the images. The proposed algorithm is the largest in
the mean of entropy, Fig. 3(a), and we can also see from Fig. 4(a) that these
resemble most the intensity value distribution of the original images. Our goal
is indeed not to change the image appearance dramatically (as compared to QI)
but only to obtain a good lighting quality. Therefore, it is quite normal that we
couldn’t improve L1 sequence so much, which is already captured at a reasonable
lighting quality with the ambient light. However, we were still able to adjust its
brightness to be more uniform while keeping its high image quality, as shown in
Figure 2(a). On the other hand, our 2-step algorithm enhanced the image lighting
quality significantly for the sequences L2 and L3 containing images taken under
extreme lighting conditions.

Next, we examine the effect of the lighting adjustment methods on the object’s
edges of Fig. 4(b) to determine if the methods are appropriate as pre-processing
for feature detection methods. Considering the edges in the adjusted images, our
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Fig. 4. Lighting adjustment results of frame 9 to 14 in sequence L3.(a) from top to

bottom are the original images, entropy-based optimization, 2-step optimization , his-

togram equalization(HE), and quotient image(QI) results, respectively. (b) the edge of

corresponding images in (a).

proposed algorithm enhances the feature of images. This is especially the case
for those images taken in a dark environment. Also, highlight are compensated
and the influence of shadows on the edges are reduced. The HE algorithm was
able to enhance the contrast of the image but at the same time it enhanced
noise as well. As we already mentioned, the QI algorithm removed most low fre-
quency information of the image thereby included some important features of the
image.

The advantage of the image difference-based optimization step is illustrated
for facial feature tracking (on the sequences L1 to L3). We demonstrate that the
difficulty of tracking a modified object appearance due to lighting changes can be
overcome by employing our proposed algorithm as pre-processing. In this paper,
we focus on the results of a template-based eye and mouth corner tracker. That
tracker is part of a previously developed approach to automatically locate frontal
facial feature points under large scene variations (illumination, pose and facial
expressions) [3]. This approach consisted of three steps: (i) we use a kernel-based
tracker to detect and track the facial region; (ii) we constrain a detection and
tracking of eye and mouth facial features by the estimated face pose of (i) by
introducing the parameterized feature point motion model into a Lukas-Kanade
tracker; (iii) we detect and track 83 semantic facial points, gathered in a shape
model, by constraining the shapes rigid motion and deformation parameters by
the estimated face pose of (i) and by the eyes and mouth corner features location
of (ii).

The performance of the tracking of the eyes and mouth corners (6 feature
points) on the original and adjusted image sequences L1 to L3 is displayed in



126 X. Jiang et al.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

frame number
          (a)         

tr
ac

ki
ng

 e
rr

or

 

 

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

frame number
          (b)         

tr
ac

ki
ng

 e
rr

or

 

 

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

frame number
          (c)         

tr
ac

ki
ng

 e
rr

or

 

 
2−step Optimization [0−0.3]
2−step Optimization [0−0.5]
2−step Optimization [0−0.7]
2−step Optimization [0−0.9]
Entropy−based Optimization
Original Image
Histogram Equalization
Quotient Image

Fig. 5. Feature points tracking error

Figure 5. The tracking error per frame is calculated as the average distance
between the real positions (manually identified) and the tracked positions of the
6 feature points in the image. When tracking was lost, the graph is truncated.
Figure 5(a) shows that all adjustments of the sequence L1 allow to track until
the end of that sequence. The QI shows the smallest tracking error because it
enhances the gradient features in the image, but at the cost of obtaining visually
unpleasant images (see last row of Fig.4(a)). Compared to the HE results, our
two-step optimization does reach a better tracking performance. Because the
initial lighting variations in sequence L1 are not that big, the entropy-step alone
may already improve the tracking. The benefit of the image difference-based
optimization step becomes obvious via the tracking error graphs of the dark
sequence L2 in Fig. 5(b). Here, the tracking errors on the 2-step optimization are
the smallest. This shows that local features are enhanced very well, but also that
taking care of correspondences between images is indeed important. QI and HE
adjustments perform worse in tracking. For QI, the reason is that it may enhance
the local features (gradients) only when the noise level is not high, i.e. images
taken in good lighting conditions such as in L1. On the alternating dark and
light sequence L3 the tracking of the original and entropy-optimized sequence is
very quickly lost, as shown in Fig. 5(c). It is thus crucial to take into account
the sequence aspects in lighting adjustment. It is worth noting that the tracking
for our proposed algorithm results was lost only when a part of the image were
in deep shadow (such as frame 12, 17 and 19). Although no adjustment method
can track until the end of the sequence, we see that a larger enhancement of
the local features may allow to track longer (reduced entropy). That was done
by enlarging the alpha range from [0, 0.3] to [0, 0.9] in the 2-step optimization
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Fig. 6. Shape tracking results. (a) original sequence M1, (b) adjusted sequence M1, (c)

original sequence M2, (d) adjusted sequence M2.

(Eq.5 and Eq.8). When comparing the errors before tracking was lost, we see
that reducing frame differences, especially with small alpha range, increases the
accuracy of the tracking. This shows that enhancing image sequence quality can
also help to track.

Finally we tested the constrained shape model tracking (step (iii) of [3]) on an
image sequence1 with high illuminations changes as well as head motion. Before
adjustment, shown in Fig. 6(a), (c), some tracked features could not be well de-
lineated due to the illumination changes in the image sequence. The intensity and
texture of the face image were improved by our lighting adjustment and therefore
all shape points were tracked more efficiently as shown in Fig. 6(b), (d).

5 Conclusion

Most algorithms dealing with the lighting problem only aim at adjusting the
lighting conditions of a single image. In this paper we proposed a 2-step light-
ing adjustment algorithm to reduce the influence of the variation of lighting
conditions in an image sequence. First, an entropy-based algorithm is applied
to calculate initial lighting parameters of a perceptual lighting model. Then the
difference between current and previous frames is employed as an objective func-
tion for the further optimization of those lighting parameters. Using this criteria,
successive frames are adjusted to have similar brightness and contrast. Image
lighting quality, measured by entropy and key value, but also local features are
enhanced. We did demonstrate the effectiveness of the proposed algorithm for
subsequent image processing, such as detection and tracking.

1 http://www.dia.fi.upm.es/ pcr/downloads.html
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Abstract. Recently, some diffusion-based filtering methods have been devel-
oped such as anisotropic diffusion (AD) or nonlinear diffusion (ND), which can 
reduce the speckle noise, at the same time, preserve and enhance the 
edge/borders in ultrasound image. However, because of the granular pattern of 
speckle, it is quite difficult to reduce speckle exactly through diffusion-based 
methods only. In this paper, we propose a super resolution (SR) based ND  
method. We firstly reduce and compound speckle noise in a sequence of ultra-
sound images by using a fast SR method for ultrasound image. After this proc-
ess, ultrasound speckle is much smaller, and the edge and structure are much 
clearer as complementary information of different images was used. To reduce 
the noise of the SR improved image, we use a local coherence based ND 
method. In the end, experimental results of the proposed method are compared 
with some other AD methods to demonstrate its effectiveness. 

1   Introduction 

Ultrasound imaging systems are widely used because of its real-time image forma-
tion, portability, low cost and noninvasive nature. However, due to the nature of ultra-
sound imaging, speckle as a dominant noise decreases the resolution of ultrasound 
image. Moreover, because of the presence of speckle, it is quite difficult to directly 
use common image processing methods in ultrasound image (such as feature detec-
tion, image segmentation and image registration). Therefore, finding appropriate 
method to reduce speckle noise in ultrasound image is a hot area for researchers in 
medical image processing. After Perona and Malik’s seminal work [1], since 2000, 
many researchers studied anisotropic diffusion (AD) based ultrasound speckle reduc-
tion methods, such as speckle reducing anisotropic diffusion (SRAD) [2], and ori-
ented speckle reducing anisotropic diffusion (OSRAD) [3] and semi-implicit scheme 
based nonlinear diffusion method in ultrasound speckle reduction (SIND) [4]. These 
methods have similar results in reducing speckle noise and preserving edge in ultra-
sound image.  

However, all of above AD methods process ultrasound B mode image directly 
without utilizing an advanced image restoration method. In this way, affecting by the 
granular speckle, they all cannot reduce ultrasound speckle noise exactly. In order to 
get better denoising result, we firstly use a new ultrasound image fast super resolution 
(SR) method [5] to restore ultrasound image. This method can reconstruct an en-
hanced ultrasound image from a sequence of ultrasound images by using a maximum 
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a-posteriori framework. Moreover, this method can automatically escape the errors 
generated by outliers in a sequence of input images. After the image restoration, we 
will get an improved ultrasound image in which the speckle noise is much smaller and 
structures are much clearer. To reduce the noise in the restored image, we propose to 
employ local coherence to control diffusion coefficients in our ND method. In addi-
tion, our ND method can be discretized by additive operator splitting (AOS) scheme 
[6] so that we can use large time step size (TSS) in the process of iteration to do spee-
dup. To our knowledge, this is the first paper to address the speckle reduction of SR 
restored ultrasound images. 

This paper is organized as follows. Section 2 shortly introduces the ultrasound im-
age fast SR method [5]. Section 3 presents our AD method in which we use local 
coherence to control diffusion coefficients at each point of image. Section 4 demon-
strates the experimental results. Section 5 presents the conclusion. 

2   Fast Super Resolution for Ultrasound Image Reconstruction 

The SR problem is an ill-posed inverse problem. In [5], the authors used a maximum 
a-posteriori (MAP) approach with transformation information, and they utilized AD 
[1] for regularization. During this process, a frequency domain approach to registra-
tion [7] is used for get better registration result, because incorrect registration may 
severely affect final result. In addition, the authors proposed a robust and efficient 
implementation. 

2.1   Super-Resolution Model 

The goal of SR is to improve the spatial resolution of an image. This type of problem 
is an inverse problem, wherein the source of information, or high-resolution (HR) 
image, is estimated from the observed data, or low-resolution (LR) images. Each of 
the LR images {Yk, k=1,2,…,N} [M×M] can be modeled by a sequence of geometric 
warping, blurring, and downsampling operations on the high resolution L×L image X , 
followed by additive noise.  We can represent Yk and X as column vectors with length 
M2 and L2 respectively. The model can be formulated as [8]: 

kkkkk VXFHDY +=   Nk ,...,2,1=  (1)

where Dk is the downsampling matrix of size [M2×L2], Hk is the blurring matrix of 
size [L2×L2] representing the ultrasound system’s point spread function (PSF), Fk is 
the geometric warp matrix of size [L2×L2] , Vk is the additive noise, and N is the num-
ber of available input LR images.  

In [5], the author introduced that using a maximum a-posteriori (MAP) estimator 
of X to maximize the probability density function (PDF) P (X|Yk) , taking the log 
function and Bayes rule to the conditional probability, and assuming the Vk is additive 
Gaussian noise with mean value of zero and variance of σk

2. , the conditional probabil-
ity in (1) can be written as: 
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The noise is assumed to be identically distributed with variance of σ2, which is ab-
sorbed by the parameter λ=1/2σ2. Letting dE/dX=0, the steepest descent (SD) algo-
rithm is an efficient method to reach the solution X by the following iterative process 
until an iteration convergence criterion is met: 
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whereμis the step size, which should be small enough. C is the diffusion coefficient 
of the anisotropic diffusion method [1]. The second term is the detail recovery term 
that combines information from different frames to update X, and the last term is a 
smoothing term, or regularization factor, that suppresses instability. The second term 
can be implemented by convolution with some appropriate kernels. In this paper, a 
faster and robust implementation is applied [9]. 

2.2   The Fast and Robust Implement 

Before introducing the implementation, there are several assumptions: 

 All the input images are the same size, and all the decimation operations are also 
the same, i.e., ∀k, Dk=D. 

 The sequence input images are acquired by the same ultrasound system at the 
same depth so all the blur operations are assumed equal, i.e., ∀k, Hk=H. More-
over, the region-of-interest (ROI) is sufficiently small so that H is assumed to be 
linear space invariant (LSI), and the matrix H is block circulant. 

 The ROI needed to reconstruct the result is small enough so that translational 
displacement at all points inside may be considered equal. A rigid registration 
will be applied for motion estimation [7]. Therefore, the matrices Fk are all block 
circulant and linear space invariant. 

With these assumptions, H and Fk are block circulant matrices which commute 
(FkH=HFk and Fk

T  Hk
T =Hk

T  Fk
T    ). So, the second term in (3) can be written as [10]: 
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To compensate for potential outlier images in the sequence, we propose replacing the 
summation in (5) with a scaled pixel-wise median to increase robustness [9].  
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0 1{ }T T T N
k k kR N median F D DF == ⋅  and  0 1{ }T T N

k k kP N median F D Y == ⋅  (6)

Using (6), manually pre-selecting proper frames from a cine loop is no longer neces-
sary. The improvement in (6) gives a fast and robust method to implement the updates 
of X corresponding to the second term in (3), but the results will be degraded by 
speckle noise. So the author adopted a Perona and Malik’s AD [1] in their method to 
achieve an edge-enhancing regularization during the SR process [5]. 

3   Nonlinear Diffusion Method 

After using above SR method to do image restoration, we get an enhanced and com-
pounded ultrasound image from a sequence of ultrasound images. In the restored 
image, speckle has been compounded so that it is no longer a granular pattern. It turns 
to be much smaller. To reduce the image noise in the restored ultrasound image, we 
propose to use a local coherence based ND method. Local coherence is defined from 
structure matrix, it is as, 
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where Ix and Iy are partial derivatives at certain point in the image, before compute 
structure matrix at each point, we convolute the image I with a Gaussian mask.  Using 
eigenvalue decomposition, (7) could be written as 
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where u1 and u2 are eigenvalues, w1 and w2 are eigenvectors.  
Our diffusion equation is as 

[ ]
I

div l I
t

∂ = ⋅∇
∂

 (9)

Where l is the local coherence function, the independent variable of l is the absolute 
value of the difference of two eigenvalues, the definition of l is, 

2
1 2 1 2(| |) 1 1 (| | )l Kμ μ μ μ− = + −  (10)

where 1μ and 2μ are the eigenvalues of structure matrix at each point, structure ma-
trix is as ( ) ( )TJ I I Iσ σ σ∇ = ∇ ⋅∇ . Here, Iσ∇ is the gradient of a smoothed version of 
I  which is obtained by convolving I with a Gaussian of standard deviation σ. Con-
verting (9) to a matrix-vector notation and adopting AOS scheme, (9) comes down to 
the following iteration scheme 
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where l is the diffusion coefficient. ( )iΝ is the set of the two neighbors of pixel i . 

From the criteria for discrete nonlinear diffusion scale-spaces proposed by Weickert 
[6], we find that (9) can by discretized by AOS scheme to do speedup. 

4   Experiment and Results 

To evaluate the effectiveness of the proposed method, we conducted simulation and in 
vivo experiments. In the experiment of simulated ultrasound image speckle reduction, 
we analyzed different kinds of AD methods quantitatively. In each experiment, we 
compared the proposed method with Parona and Malik’s method (P&M AD) [1], 
SRAD [2] and semi-implicit scheme based nonlinear diffusion (SIND) [4].  

4.1   Results of Simulation Experiment 

In this experiment, we firstly simulated ultrasound B mode image as [2, 11]. In this 
method, ultrasound radio-frequency (RF) image was generated by convoluting a 2-D 
point spread function with a 2-D echogeneity image. The parameters used in our 
simulation are: the pulse width was 1.2, the lateral beam width was 1.5, the center 
frequency was 5 MHz. The size of echogeneity image was 256×256. The gray values 
of different objects in the echogeneity image are: the dark circular at top left corner 
was 2, the rectangular target at top right corner was 25, the bright small circular at 
middle left area was 18, the dark circular at bottom left corner was 4, the simulated 
artery interior was 3, the simulated vascular wall was 20, the three small cysts were 2, 
the five bright point targets were 40, the background was 10. The following are the 
echogeneity image and simulated ultrasound image (both images are log-compressed 
and normalized with the same way for better displaying). 

Because in the SR method we needed to use a sequence of ultrasound images to 
generate one restored image, so we used the simulated ultrasound image in figure 1.b 
as one in the set of simulated ultrasound images needed for restoration. Moreover, we 
generated another 15 simulated ultrasound images. Nine of them are generated by 
using the same echogeneity image as figure 1.a. To generate the other six simulated 
outliers, we used six different echogeneity images as outliers. Two of the simulated 
outliers are showed as figure 2.a - 2.b. The fast SR method we used was about six 
times than traditional SR methods. In the SR method, the size of final restored image 
was as, Mnew×Nnew = k·(Mold×Nold), where k is the square root of the number of im-
ages in the data set. In our experiment, we had 16 simulated images in the data set, so  
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(a)                                                               (b) 

Fig. 1. Ultrasound B mode image simulation result. (a) The echogeneity image. (b) The gener-
ated ultrasound simulated image. 

        

                                     (a)                                                       (b) 

        

                                     (c)                                                       (d) 

Fig. 2. The result of SR method on a sequence of 16 ultrasound B mode simulated images. (a)-
(b) two outliers generated by different echogeneity images. (c) One simulated image generated 
by the echogeneity image as figure 1.a. (d) The result of the SR method. 
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the size of the restored image is 4 times of the size of original ultrasound simulated 
images. In addition, the authors used a Gaussian kernel instead of PSF in the blurring 
processing [5]. The result of SR method is as figure 2.d. 

The following are the filtering results of the proposed method and some other AD 
methods. 

        

                                      (a)                                                              (b) 

        

                                      (c)                                                              (d) 

Fig. 3. The filtering results of the proposed method and some other AD methods. (a) The result 
of P&M AD, TSS = 0.25, 30 iterations. (b) The result of SRAD, TSS = 0.25, 25 iterations. (c) 
The result of SIND, TSS = 1.5, 5 iterations. (d) The result of the proposed method, TSS = 1.5, 5 
iterations. 

In order to test the performance of the proposed method, two metrics were com-
puted. The first one is mean squared error (MSE), it is defined as, 

2

( , ) 1

1 ˆMSE ( ( , )) ( , ))
M N

i j

S i j S i j
M N

×

=

= −
× ∑  (13)

where S and Ŝ are the reference and filtered images respectively.  
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The second metric is contrast-to-noise-ratio (CNR), which is sometimes referred as 
lesion signal-to-noise ratio [11], it is, 

1 2

2 2
1 2

| |
CNR

μ μ
σ σ

−=
+

 (14)

where 1μ and 2
1σ are the mean and variance of intensities of pixels in a region of in-

terest (ROI), and 
2μ and 2

2σ are the mean and variance of intensities of pixels in a 
background region.  

The computed values of MSE are summarized in Table 1. And obtained values of 
CNR are summarized in Table 2. 

Table 1. MSE values on the simulated image 

Method MSE 
Noisy 262.56 
P&M AD 137.41 
SRAD 23.96 
SIND 26.55 
Proposed method 17.83 

Table 2. CNR values on the simulated image 

Method ROI 1 ROI 2 ROI 3 ROI 4 
Noisy 3.17 1.90 1.29 1.46 
P&M AD 4.19 2.65 1.61 1.92 
SRAD 6.21 5.74 3.24 3.16 
SIND 5.91 6.34 3.82 3.75 
Proposed method 7.61 7.48 4.29 4.87 

 
From the values of MSE and CNR on different diffusion-based filtering methods, 

we can see that the proposed SR based ND method is much better than some other 
AD methods.  

4.2   Results of In Vivo Experiment 

The following filtering results of in vivo ultrasound image show that the proposed 
method can preserve structure details and edges more accurately than other AD 
methods. The SR method improved original ultrasound B mode image greatly by 
compounding speckle and enhancing structure and edge through introducing 
complementary information in data set. In this way, the proposed ND method can 
get a much better result than other non-image-restored diffusion-based filtering 
methods.  
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                           (a)                                        (b)                                       (c) 

         
                            (d)                                        (e)                                        (f) 

Fig. 4. The results of the proposed method and some other diffusion-based filtering methods on 
in vivo ultrasound image. (a) The original ultrasound image. (b) The result of the SR method. 
(c) The result of P&M AD, TSS = 0.25, 30 iterations. (d) The result of SRAD, TSS = 0.25, 20 
iterations. (e) The result of SIND, TSS = 1.5, 3 iterations. (d) The result of the proposed 
method, TSS = 1.5, 3 iterations. 

                            

                            (a)                                       (b)                                          (c) 

          

                          (d)                                         (e)                                          (g) 

Fig. 5. Profiles along the highlight line in ultrasound image. (a) Original image showing the 
highlight line. (b) Profiles along the highlight line in the original image (c)-(g) Profiles along 
the highlight line in the images processed by P&M AD, SRAD, SIND, the proposed method. 
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5   Conclusion 

In this paper we present a new SR based nonlinear ND method for speckle reduction 
and experimental evaluation. From the experimental results we can see that the pro-
posed method can reduce ultrasound speckle noise more exactly than other AD meth-
ods. Our new method can also preserve and enhance edge and structure details much 
better. The reason is that we combine the SR method and the ND method. We firstly 
improve the ultrasound image quality by the SR method. On the basis of this process, 
we propose a local coherence ND method to reduce the image noise of the restored 
image. In this way, we get a much better filtering result than other diffusion-based 
filtering methods. 

To test the proposed method, in the future, we would like to do more experiments 
in different in vivo ultrasound images. Moreover, because the speed of the SR method 
we used is still not fast enough for real-time application, we would like to explore the 
possibility to use parallel processing to do speedup. In addition, registration in the SR 
method is very important, inaccurate registration will result in a poor image restora-
tion. So, improving the registration method in the SR method is another future work. 
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Abstract. We propose a novel technique for background estimation on

the tabletop systems that have an information display on the tabletop

and observe tabletop objects with a camera. In such systems, the back-

ground of an image observed with the camera includes the image shown

on the tabletop display. The background varies according to the infor-

mation presented on the tabletop display. Although we can estimate the

background image from a displayed image based on traditional geomet-

ric registration and photometric correction, the background image is not

sufficiently accurate in terms of pixel value blending for background sub-

traction. We estimate the background image in high accuracy based on

the pixel structures of the display and the camera. We experimentally

evaluate the methods by comparing the estimated image with the ob-

served image.

1 Introduction

The tabletop systems that have an information display on the tabletop and
observe tabletop objects with a camera have recently been applied to human
interfaces in tabletop tasks [1] [2]. Showing instructional information on the
display in the tabletop can provide deictic instructions to users about the objects
on the tabletop.

When showing such instructional information in an easily viewable area for the
user, the system has to understand the positions of the objects on the tabletop.

In the tabletop systems, the method often used is one that obtains the position
and posture of the target objects using a tag, like ARToolkit, and calculates
object regions using an object model. However, such a technique cannot be
applied to objects that are too small to append tags. In this paper, we propose a
technique for acquiring object regions from an observed image directly without
using such tags.

There are two approaches that acquire object regions from an observed image
directly. One approach is to build models of the objects and extract the object

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 140–151, 2010.
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regions that match the model from the image. The other approach is to build a
model of the background and extract the object regions that do not match the
model from the image. We chose the second approach because the first method
requires the preparation of many models for various shapes of objects, whereas
the second technique requires the preparation of only one background model,
which is not related to the objects.

When the background is varying, we can not use the observed image captured
when no objects are on the tabletop as the background model. A number of
background models able to deal with dynamic backgrounds have been proposed
for use in cases when the background changes.

In the tabletop systems considered in this study, the background changes
dynamically according to the displayed instructional information. Therefore, for
background subtraction, we attempted to estimate the background image from
the displayed image. When the background can be estimated, object regions can
be extracted from an observed image by background subtraction.

To estimate the background when an arbitrary image is displayed, the re-
lationships of the position and color between each pixel of the displayed and
observed images are required. The relationships are computed by geometric reg-
istration and color correction techniques used in projector-camera systems [3].
In related works, by applying geometric and photometric conversions based on
relationships of images projected by a projector, compensation of the projected
images is achieved. In this study, we estimate the background image when an
arbitrary image is displayed using the similar approach.

Geometric conversion based on geometric relationship and photometric con-
version based on photometric relationship are applied in this order. Traditional
geometric conversion includes homography transformation and interpolation.
Homography transformation makes a pixel center on a coordinate system onto
another coordinate system. Because the transformed pixel center are not always
mapped to a pixel center on the latter coordinate system, to calculate the RGB
value of each pixel of converted image, interpolation is needed. In the interpo-
lation, it is assumed that the RGB value of a pixel is at the center of the pixel.
Although different pixel structures exists in that each pixel can have three RGB
devices (display) or one device of RGB devices (camera), traditional geometric
conversion does not take into account such pixel structures.

When we estimate the background of an image with the traditional approach,
because of its low accuracy, there are large differences between the observed im-
age and the estimated image, especially in positions that display large differences
in pixel values between nearby pixels. In tabletop systems, when we use charac-
ters or arrows that have sharp edges for presenting information, the estimated
background image will show a large difference. When we extract object regions
by background subtraction using the estimated background image, if the pixels
that show large differences are clustered, the clustered pixels will be extracted
as error regions. If the error regions are large, the system will not be able to find
objects in the correct regions.
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To avoid this, background estimation with high accuracy is needed. In this
paper, we propose a novel technique for background estimation on the tabletop
systems by modeling the pixel structures of the display and the camera and using
interpolation based on these models in geometric conversion. This interpolation
based on pixel structures has the advantage of being robust for various relative
resolutions of the display and the camera. Especially when the difference of the
relative resolutions of the dispaly and the camera is large, the effect of the pixel
structure is large. In such case, although the error of traditional method is large,
our method works still better than the traditional method. By estimating the
background image to high accuracy with this technique, we can extract object
regions by background extraction with fewer errors.

This paper is organized as follows. Section 2 describes the method of estima-
tion using traditional image conversion and discusses the associated problems.
Section 3 describes the method of estimation using the proposed image conver-
sion that takes into consideration pixel structures. Section 4 outlines experiments
that quantify the performance of the proposed method. Finally, Section 5 pro-
vides a conclusion and outlines future work.

2 Background Estimation Using the Traditional
Approach

2.1 Overview of Background Estimation

In general, observed images have nonlinear distortion caused by optical prop-
erties of the lens. In this study, it is assumed that this distortion has been
calibrated.

An image for presenting information on the tabletop systems is displayed on
the tabletop display, which is a surface in 3D space, and the observed image
is captured from the image plane of the camera. The relationship between the
two surfaces is called Homography transformation. This transformation can be
described as a homography matrix.

We can calculate the homography matrix using pairs of pixels, one of which
is in the displayed image and the other in the observed image. Using a checker
pattern board, we can obtain the position of the pixel pairs at the corners of
the checker pattern. In this case, by showing the checker pattern image on the
display and observing it with the camera, we can calculate the homography
matrix between the display surface and the image plane of the camera.

The homography matrix for geometric conversion (denoted by H), the position
of a pixel on the displayed image Is (denoted by (x, y)), and the position of a
pixel on the geometrically converted image It from Is (denoted by (i, j)) are
described as

s

⎛⎝ i
j
1

⎞⎠ =

⎛⎝ si
sj
s

⎞⎠ = H

⎛⎝x
y
1

⎞⎠ (s : constant). (1)

In computer systems, a color image is handled as a set of discrete pixels that have
a three-dimensional color vector. When we geometrically convert an image with
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Fig. 1. Traditional geometric conversion

(i) Display pixels (ii) Camera pixels

Fig. 2. The pixel structures

a matrix (1), the converted pixel position do not always match a pixel position
on the converted image. Pixel values of the converted image are calculated by
interpolating the converted pixels around the pixel (Fig.1). The pixel value of
(i, j) on It is calculated by transforming all of the pixels of Is onto the converted
image It with the matrix H , and interpolating with its neighbor converted pixels
on It. In this case, the interpolation is performed assuming that the values of a
pixel are at the center of the pixel.

This homography transformation and interpolation is called “geometric con-
version”. After “geometric conversion”, we can obtain the background image by
“photometric conversion,”which converts the pixel value based on color corre-
spondence using color lookup tables. A method of calculating this color corre-
spondence is proposed by Nayar et al. [4]. We can obtain image Io, which is a
photometrically converted image from the geometrically converted image It, by
this method using a color lookup table.

2.2 Errors in Geometric Conversion

In the interpolation in the geometric conversion, it is assumed that each pixel
is discrete in that its RGB values are at the center of the pixel. However, the
display has three independent RGB devices, and the camera observes each RGB
color in independent pixels. A magnified view of this is shown in Fig.2. When
we estimate the background image, errors caused by the difference in these color
expressions appear.

We then calculate the difference between the estimated background image
and the observed image to evaluate the conversion errors. We use the image in
Fig.3 (i) as an example of information displayed on the tabletop systems.

We use a 20 inch wide LCD (DELL; resolution 1900×1200) and an IEEE-1394
digital camera (Flea; Point-grey Research; resolution 1024×768). In this evalua-
tion, we set the camera to the specified camera resolution, and the resolution of
the display is set to be almost the same as the camera resolution. We used a 20
inch wide LCD display made by DELL and Flea which is an IEEE-1394 digital
camera made by Pointgrey Research. The camera was calibrated using Zhang’s
calibration technique [5].

The observed image is shown in Fig.3 (ii); the estimated image and the image
resulting after background subtraction are shown in Fig.4.
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(i) Displayed image (ii) Observed image (iii) Regions for analyze

Fig. 3. Images for evaluation

(i) Estimated image (ii) Result of background subtraction (iii) Error-removed image

Fig. 4. Resultant images

In the characters and arrow region, errors are present that are not in the
object region, as can be seen from Fig.4 (ii). This is caused by clustered pixels
which have a large variation.

When we use characters or arrows for instructional information on the table-
top systems, their sharp edges cause the edges to be extracted as error regions.
If an error appears, the system cannot distinguish the error regions from the
object regions.

In this case, we can reduce the error regions as noise, but when the error
regions are large, small object regions are also removed as noise. We continuously
apply erosion to the estimated background image to remove all the error regions
and simultaneously apply dilation to the image. The object region resembling a
string loop is thus removed as noise (Fig.4 (iii)).

2.3 Analysis

To analyze the errors, we compare the pixel values in the edge regions of the
estimated and observed images. Fig.5 and 6 show the pixel values in the edge
regions (15 pixels each) of the images shown in Fig.3 (iii) (Left and Right lines
respectively).

Looking at the region within the frame shown in Fig.5, values of R and G are
smaller than those of B in the observed image. Moreover, looking at the region



Background Estimation Based on Device Pixel Structures 145

(i) Estimated image (ii) Observed iamge

Fig. 5. Pixel values of the Left line in Fig.3 (iii)

(i) Estimated image (ii) Observed image

Fig. 6. Pixel values of the Right line in Fig.3 (iii)

within the frame in Fig.6, values of G and B are smaller than those of R in the
observed image. However, in the estimated image, values of R, G, and B are
almost identical. This suggests that the color of each pixel appears uneven in
the observed image, and the color cannot be reconstructed using the traditional
geometric conversion method.

This is because that although the display and the camera treat R, G and B
devices independently and each device has size, the traditional interpolation in
geometric conversion treats a three-dimensional color as a point. Therefore, the
traditional method could not simulate the display-camera conversion accurately.

In our proposed method, we resolve this problem and perform interpolation in
geometric conversion that models the structures of the display and the camera
in order to achieve accurate background image estimation.

3 Geometric Conversion Based on Pixel Structures

3.1 Pixel Structures

Display pixel structure. To express arbitrary colors in each pixel, most dis-
plays express colors via a juxtapositional additive color mixture system using
the three primary colors red (R), green (G), and blue (B). The juxtapositional
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Fig. 7. Applying display model Fig. 8. Bayer interpolation

additive color mixture system is a photometric property that mixes multiple
colors into one color by using color regions too small to be distinguishable by
the human eye.

For example, take the case of the pixel structure of an LCD. An ordinary
LCD arranges three small rectangles of R, G, and B, which are the three pri-
mary colors, and each small rectangle comprises a pixel of the LCD (Fig.2 (i)).
Because of this pixel structure, an LCD can express many colors by adjusting
the brightness of each RGB value.

We model each pixel of the displayed image as follows (Fig.7). A pixel of
the image has 1/3 of the width of three RGB rectangle regions. The shape and
arrangement of each RGB pixel vary for each type of display. However, we can
discuss them by building an appropriate model that covers every type of display.
Therefore, in the following sections, we use the LCD model.

Camera pixel structure. The color acquisition methods of a camera also vary
according to each type of camera. In this paper, we describe the Bayer format,
which is the most popular camera pixel structure. We also discuss all methods
by building an appropriate model for each type of structure.

The Bayer pattern is a pixel arrangement pattern, whose system is as follows.
There are three types of light-receiving element: One receives only red light waves
(R), the second only green light waves (G), and the third only blue light waves
(B). These three types of elements are arranged as follows (see also Fig.2 (ii)).

– i = 2m + 1, j = 2n, (if m,n ∈ N):red
– i = 2m, j = 2n + 1, (if m,n ∈ N):blue
– otherwise:green

where N is a natural number, 0 ≤ i ≤ width of I, and 0 ≤ j ≤ height of I.
Because each element can receive only one color (R, G, or B), we have to

interpolate the other colors from neighboring elements. The most common in-
terpolation method is linear interpolation.

An example of Bayer interpolation is shown in Fig.8. It shows that image Ic

observed with a camera is converted to image It by Bayer interpolation. After
this interpolation, the image becomes an ordinary image with RGB values in
each pixel.
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3.2 Proposed Interpolation in Geometric Conversion

For camera and display pixels that have the structures described below, we can
simulate the conversion “display on an LCD and observation using a camera.”We
apply the display pixel structure model described in 3.1 to the input image Is

and obtain displayed image Id that reflects the pixel structure.
The pixel values are interpolated based on the size of the pixels. As each RGB

subpixel of Id is rectangle, its four corner points are converted geometrically onto
the coordinate system of the image Ic (Fig.9).

Fig. 9. Interpolation based on pixel structures

The pixel value Ic(i, j) at (i, j) in image Ic is calculated by summing RGB sub-
pixel values of the pixels in Id in the pixel region Ic(i, j) weighted by each RGB
subpixel region size. We denote the number of pixels which lap over Ic(i, j) by the
homography transformation as Nij , those pixels as Id(xp, yp), N(p = 1, · · · , N),
their RGB subpixels as Id(xp, yp)R, Id(xp, yp)G, and Id(xp, yp)B, overlapped re-
gions of transformed those RGB subpixels and Ic(i, j) as Aij(p)R, Aij(p)G, and
Aij(p)B, and pixel size of Ic(i, j) as Ai,j . Now, we can describe the pixel value
Ic(i, j) as

Ic(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑Nij

p=1 Id(xp, yp)R ·Aij(p)R/Aij

(i = 2m, j = 2n + 1, (m,n ∈ N))∑Nij

p=1 Id(xp, yp)B ·Aij(p)B/Aij

(i = 2m + 1, j = 2n, (m,n ∈ N))∑Nij

p=1 Id(xp, yp)G · Aij(p)G/Aij

(otherwise).

(2)

Finally, we convert image Ic based on the camera pixel structure described in
3.1 and obtain the geometrically converted image It (Fig.8). After photometric
conversion to Ic, we can obtain the estimated image based on display and camera
pixel structures.

4 Experimental Results

Using our proposed method and the traditional method, we experimentally com-
pared estimated images to an observed image in order to evaluate the accuracy
of background estimation.
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We used a checker pattern image whose grid measures 100 × 100 pixels.The
pattern has flat regions of brightness and sharp edges.

To show the effectiveness of our method with various resolutions and positions
regarding the display and camera, we tested four cases as follows:

case A: The resolution of the camera is relatively larger than the resolution of
the display (the camera observes an area of the display measuring 500× 450
pixels).

case B: The resolution of the camera is the same as the resolution of the display
(the camera observes an area of the display measuring 1000× 750 pixels).

case C: The resolution of the display is relatively larger than the resolution of
the camera (the camera observes an area of the display measuring 1300×900
pixels).

case D: The resolution of the camera is the same as the resolution of the display;
the display is rotated about 45◦ (the camera observes an area of the display
measuring 1000× 750 pixels).

In each case, we show the evaluation image on the display and observe it using
the camera.

To examine the accuracy of estimation, we obtain differences between the
input images and estimated images converted using both methods.

We then calculate the integrated histogram of the differences. The calculation
is applied to a region measuring 480 × 360 pixels at the center of the image.
Results are shown in a semi-logarithmic graph in Fig.10. It is better that the
threshold which used in background subtraction is small. On the other hand,
it is necessary for the threshold to be larger than the maximum noise of the
observed image. We took two images for the same objects and obtained their
difference to evaluate the minimum possible threshold. The results are shown in
Fig.10 as “limit”.

These graphs show the numbers of error pixels binarizing with thresholds in
the horizontal axis. In those graphs, the smallerer the threshold is, the more
accurate background subtraction is performed.

In case B, errors in both the methods are relatively small than other cases.
This is because the resolution of the display and that of the camera are nearly
equal, hence the effect of the pixel structures is small.

In case A and C, because the large divergence between resolution of the camera
and that of the display, the effect of the pixel structure is large. In case D, because
of the rotation of the camera, the error of the traditional method is larger than
case B. In these cases, the traditional method which is not based on the pixel
structures can not convert images in high accuracy. On the other hand, our
proposed method can convert images as high accuracy as the conversion of case
B.

Now look at the threshold 32 as shown in Fig.10. In this threshold, the number
of error pixels of the “limit”is 0. In case B, the error pixel of the traditional
method is 5003 and that of the proposed method is 573. In this case, we could
reduce the error about 1/9 of the traditional method.
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(i) Error of case A (ii) Error of case B

(iii) Error of case C (iv) Error of case D

Fig. 10. Integrated histograms of background subtraction error

We applied background subtraction using the threshold 32 to the images shown
in Fig.3 (i) and Fig.11 (i) which are the background displayed images. Fig.3 (i)
includes only text for instruction of a tabletop task. Fig.11 (ii) includes also text
and a picture for instruction of a tabletop task. The results are shown in Fig.4
(ii) and Fig.12. In Fig.4 (ii) and Fig.12 (ii) which are processed by the traditional
method, the noise regions are clustered. The largest cluster is as large as the thin
cable (diameter:1mm) which we suppose that it is one of the most small objects
in tabletop tasks. On the other hand, in Fig.12 (i) and (iii) which are processed
by our proposed method, the noise regions are enough smaller than the thin cable
in the image. This provides evidence for the effectiveness of the proposed method
based on pixel structures for the tabletop system.

We additionaly analyze the reason of the error which still remained in our
proposed method. We calculate integrated histograms of the differences in several
region of the images and calculate the thresholds which makes the error 0. The
result shows that the threshold in a region far from the center of the image is
larger than the threshold in a region near the center of the image.

We may say it is caused by insufficient accuracy of the lens distortion correc-
tion and lens blur. In this study, we assume there are no lens distortion and the
focus of the camera is set on the display surface in evaluation. It seems reason-
able to suppose that the residual between the proposed method and “limit”is
caused by insufficiency of the assumption.
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(i) Displayed image 2 (ii) Observed image 2

Fig. 11. Example image 2 for background subtraction evaluation

(i) Proposed 1 (ii) Traditional 2 (iii) Proposed 2

Fig. 12. Result of background subtraction

5 Conclusion

We have proposed a technique for background estimation on tabletop systems
that have an information display on a tabletop and observe tabletop objects with
a camera.

We estimated the background image by geometric and photometric conversion.
Although the display and the camera treat R, G and B devices independently and
each device has size, the interpolation in traditional geometric conversion treated
a three-dimensional color as a point. Therefore, the interpolation in the traditional
geometric conversion does not work accurately. We modeled the display and cam-
era pixel structure and improve the interpolation with the model. Through this
method, we obtained the background image in high accuracy.

We experimentally evaluated our proposed method and the traditional method
by comparing the estimated image with the observed image. We show the effec-
tiveness of our method in various relative resolutions between the camera and
the display.

In this paper, we have assumed that the focus of the camera is set at the
center of the LCD, but in practice lens blur remains in the observed images. In
addition, the focus is sometimes off in fringes because of variations in the distance
between the camera and the display surface. Therefore, remaining errors should
be considered as a blur of the observed images.

If we can estimate the blur of the observed image and apply the blur to the
estimated image, these errors will be reduced. In future work, we would like to
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estimate the blur of the observed image for reducing remaining errors and build
a tabletop system with object recognition.
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Abstract. We present a nonparametric background subtraction method that uses 
the local spatial co-occurrence correlations between neighboring pixels to ro-
bustly and efficiently detect moving objects in dynamic scenes. We first 
represent each pixel as a joint feature vector consisting of its spatial coordinates 
and appearance properties (e.g., intensities, color, edges, or gradients). This joint 
feature vector naturally fuses spatial and appearance features to simultaneously 
consider meaningful correlation between neighboring pixels and pixels’ ap-
pearance changes, which are very important for dynamic background modeling. 
Then, each pixel’s background model is modeled via an adaptive binned kernel 
estimation, which is updated by the neighboring pixels’ feature vectors in a local 
rectangle region around the pixel. The adaptive binned kernel estimation is 
adopted due to it is computationally inexpensive and does not need any as-
sumptions about the underlying distributions. Qualitative and quantitative expe-
rimental results on challenging video sequences demonstrate the robustness of 
the proposed method. 

1   Introduction 

Background subtraction in video is a basic task in many computer vision and video 
analysis applications, such as intelligence video surveillance, human machine inter-
faces, indexing for multimedia, people detection and tracking and robotics. Accurate 
moving object detection will greatly improve the performance of object tracking, 
recognition, classification and activity analysis. However, designing robust back-
ground subtraction methods is still an open issue, especially considering various com-
plicated variations that may occur in dynamic scenes, e.g., trees waving, water rippling, 
illumination changes, camera jitters, etc.  

Over the years, many methods have been proposed to achieve the goal of robust 
background subtraction. According to different background subtraction approaches, 
these methods can be classified as parametric and nonparametric methods. 

One popular parametric technique is to model each pixel intensity or color value in a 
video frame with a Gaussian distribution [1]. This model does not work well in the case 
of dynamic natural environments. To deal with this problem, the Gaussian Mixture 
Model (GMM) [2] is used to model each pixel. But it cannot adapt to the case where the 
background has quick variations [3]. Numerous improvements of the original method 
developed by Stauffer and Grimson [2] have been proposed over the recent years and a 
good survey of these improvements is presented in [4]. Some background subtraction 
methods treat pixel value changes as a time series and consider a predictive model to 
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capture the most important variation based on past observations. In [5], an autoregres-
sive model is proposed to capture the properties of dynamic scenes. Monnett et al. [6] 
model the background as a dynamic texture, where the first few principal components 
of the variance of a set of background images comprise an autoregressive model. In [7], 
a Hidden Markov Model approach is adopted.  

Rather than using parametric techniques, a number of nonparametric approaches are 
proposed to model background distribution in complex environments where back-
ground statistics cannot be described parametrically. In W4 system [8], the background 
scene is statically modeled by the minimum and maximum intensity values and 
maximal temporal derivative for each pixel recorded over some period, and is up-
dated periodically. A non-statistical clustering technique to construct a background 
model is presented in [9]. The background is encoded on a pixel-by-pixel basis and 
samples at each pixel are clustered into the set of codewords. Heikkila and Pietikainen 
[10] propose a novel approach based on the discriminative LBP histogram. However, 
simple grayscale operations make LBP rather sensitive to noise and it is also not so 
efficient on uniform regions. In [11], scene is coarsely represented as the union of pixel 
layers and foreground objects are detected by propagating these layers using a maxi-
mum-likelihood assignment. However, the limitations of the method are 
high-computational complexity and the requirement of an extra offline training step. 
Elgammal et al. [12] are among the first to utilize the kernel density estimation tech-
nique to model the background color distribution, which has been successful applied in 
background subtraction literature. Another significant contribution of this work is the 
incorporation of spatial constraints into the formulation of foreground classification. In 
the second phase of their approach, pixel values that could be explained away by dis-
tributions of neighboring pixels are reclassified as background, allowing for greater 
resilience against dynamic backgrounds. In [13], the background and foreground 
models are first constructed via kernel density estimation technique separately, which 
are then used competitively in a MAP-MRF decision framework. Mittal and Paragios 
[14] propose the use of variable bandwidths for kernel density estimation to enable 
modeling of arbitrary shapes of the underlying density in a more natural way. Then, 
density estimation is performed in a higher-dimensional space consisting of intensity 
and optical flow for the purpose of modeling and subtraction of dynamic scenes. Parag 
and Elgammal [15] use a boosting method (RealBoost) to choose the best feature to 
distinguish the foreground for each of the areas in the scene. One key problem with 
kernel density estimation techniques is their high computational requirement due to the 
large number of samples needed to model the background. To accelerate the compu-
tational speed of kernel density estimation, some innovative works, such as fast Gauss 
transform (FGT) in [16] and binned kernel estimators in [17, 18], have been presented. 
A Bayesian framework that incorporates spectral, spatial, and temporal features to 
characterize the background appearance is proposed in [19]. Under this framework, the 
background is represented by the most significant and frequent features, i.e., the prin-
cipal features, at each pixel. 

In this paper, we present a nonparametric background subtraction method that uses 
the local spatial co-occurrence correlations between neighboring pixels to robustly and 
efficiently detect moving objects in dynamic scenes such as waving trees, ripples in 
water, illumination changes, camera jitters etc. The key idea is to represent each pixel 
as a joint feature vector consisting of its spatial coordinates and appearance properties 
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(e.g., intensities, color, edges, or gradients). The intuition is that image variations at 
neighboring pixels could be similarly affected by environmental effects (e.g. the small 
movements of the dynamic scenes); it should be possible to represent a pixel using its 
spatial and appearance features simultaneously to consider both meaningful correlation 
between neighboring pixels and its appearance changes. Background modeling prob-
lem is then formulated as the problem of modeling the joint feature vector distribution 
in a local neighboring rectangle region for each pixel. Each pixel’s background model 
is modeled via a nonparametric method, i.e. adaptive binned kernel estimation [18], 
which provides a practical means of dramatically reducing computational burdens 
while closely approximating the kernel density estimation [17]. Qualitative and quan-
titative experimental results on challenging video sequences demonstrate the robust-
ness of the proposed method by comparing it with the widely used GMM. 

The rest of the paper is organized as follows. Section 2 presents our background 
subtraction algorithm. Experimental results are given in Section 3. Finally, we con-
clude this work in Section 4. 

2   The Proposed Background Subtraction Method 

In this section, we introduce our approach to background subtraction. The goal is to 
construct and maintain a statistical representation of the scene that the camera sees. In 
our algorithm, a background model is constructed for each pixel location. A joint fea-
ture vector is extracted to represent each pixel on the current video frame and compared 
to the background model for classification. Each pixel’s background model is then 
updated by the neighboring pixels’ feature vectors in a local rectangle region around the 
pixel. 

2.1   Pixel Representation 

To achieve the goal of robust background modeling, a good scene or pattern repre-
sentation is one of the key issues. Representation issues include: what level (e.g. pixel, 
patch or frame level) representation and feature are desirable for the description of a 
pattern, and how to effectively extract the feature from the incoming video frame. 

In this paper, to instantiate our joint feature vector, we represent each pixel by a 
three-dimension feature vector consisting of its spatial coordinates and intensity. The 
advantages of using the joint feature vector for dynamic background modeling are as 
follows. First, it explicitly considers the meaningful correlation between pixels in the 
spatial vicinity. For example, a center pixel in current frame would be a neighboring 
pixel in the next frame due to the small movements of dynamic scenes. The center 
pixel’s intensity will change non-periodically. However, the joint feature vector is  
more robust to this change due to the spatial coordinates are directly used to model and 
exploit the spatial co-occurrence correlations between the center pixel and its neigh-
boring pixels. Second, since each kind of feature has its strength and weakness and is 
particularly applicable for handling a certain type of variation, the joint feature  
vector can naturally fuse multiple features to make it more robust to different type of 
variations. 
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2.2   Binned Kernel Estimation Based Background Modeling 

Nonparametric techniques can adapt to arbitrary unknown data distribution due to the 
advantages that they do not need to specify the underlying model and estimate its pa-
rameters explicitly. This characteristic enables the nonparametric techniques to become 
powerful tools for background modeling application. Since the background modeling 
problem, especially in dynamic scenes, involves multivariate multimodal densities in 
which the data are clustered in irregular forms in the feature space and do not follow a 
standard parametric form. The kernel density estimation technique is one of nonpa-
rametric techniques, which has been successful applied in background subtraction 
literature. But from the point of view of time and space complexity, the kernel density 
estimation technique is not efficient due to the large number of samples needed to 
model the background. 

In this paper, to improve the time and space complexity of kernel density estimation 
technique, we adopt adaptive binned kernel estimation to construct each pixel’s back-
ground model. Adaptive binned kernel estimation provides a practical means of dra-
matically reducing computational burdens while closely approximating the kernel 
density estimation. 

Let x |x , i 1,2, … n  be a recent sample set of the joint feature vector val-
ues in a local neighboring region around a pixel. Using this sample set, the probability 
density function that this pixel will have the joint feature vector value x  at time t can be 
estimated as  Pr x ∑ K x x                                              (1) 

where K x | | K x . Here, K ·  is a kernel function with a symmetric posi-
tive defined bandwidth matrix . Some commonly used kernel functions are 
the Uniform kernel, the Gaussian kernel, the Epanechnikov kernel, the Cosinus Kernel 
and the Triangular kernel. Employing the profile definition, the general kernel density 
estimation becomes Pr x | | ∑ κ M x , x ,                                     (2) 

where κ ·  is a profile of the kernel K · ,M x , x , x x x x  is the 
Mahalanobis distance from x  to x , and c  is a normalization constant. Computing this 
estimation for the given pixel x  would require n kernel evaluations. It is true that this 
numbers can be much reduced if one uses a kernel with compact support so that for the 
given pixel x , many of the indices i would be such that M x , x ,  fall outside the 
support of K. But then one also needs to perform a test to see if this is the case. 

Since computational efficiency is an important property of background modeling for 
practical applications, we adopt the binned kernel estimation to speed up considerably 
the computation.  

Binning technique, in its simplest form, can be described as follows: consider the 
feature space is quantized with m levels. Then, we can use the function b:1,2, … , m  associates to a given pixel’s feature vector x  the index b x of its bin in 
the quantized feature space. Thus, an estimate of m bins histogram, characterizing the 
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underlying distribution for the pixel to be classified, is given by the following standard 
bin counting procedure: h |h C ∑ δ b x u , u 1,2, … m                          (3) 

where  is the Kronecker delta function and C is a normalization constant ensuring ∑ h 1. The binned kernel estimator for the pixel having the joint feature vector 
value x  at time t is then  Pr x ∑ h δ b x u                                           (4) 

The advantage of binning stems essentially from the fact that the b x  need to be 
computed only once and, assuming that K ·  has compact support, only a small number 
p among them are nonzero and need to be evaluated.  

2.3   Foreground Detection 

Foreground detection is done after getting the background model. The incoming pixel 
having the joint feature vector value x  is classified as foreground if it does not adhere 
to the model of the background. Formally, the classifier can be formulized as the  
following: Label x foreground,        if Pr xbackground,       otherwise                                   (5) 

where Th is a user-settable threshold. 

2.4   Updating the Background 

Each pixel’s background model is adapted over time using the neighboring pixels’ 
feature vectors in a local rectangle region around the pixel. Specifically, for one sample x , the background distribution at time t+1 is updated as follows: h 1 α h α,     if  b x u           h ,                 otherwise                                         (6) 

where  is the learning rate of the background model. This updating process is repeated 
until all neighboring pixels’ feature vectors are used. 

3   Experiments 

The performance of the proposed method for modeling the background and detecting 
moving objects is evaluated in this section. The algorithm is implemented using C++, 
on a machine with Intel Pentium Dual 2.0 GHz processor and has achieved the 
processing speed of 20 fps at the resolution of 160 120 pixels. To the authors’ 
knowledge, there is still a lack of globally accepted baseline algorithms for the exten-
sive evaluation of background subtraction algorithms. Few of background subtraction 
algorithms are open source. Even that we can implement those methods, the parameters 
tuning is always a problem to achieve the results reported in original literature. This 
makes the comparison of the different approaches rather difficult. Since the GMM 
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method [2] is widely applied in practice and the source code is publicly available (e.g., 
GMM in OpenCV), we compare the performance of our method to it. Both qualitative 
and quantitative comparisons are used to evaluate our approach.  

3.1   Qualitative Evaluation 

We have tested our method and GMM using five challenging image sequences from the 
existing literatures. Identical parameters are used in the five sequences, although better 
results could be obtained by customizing the values for each sequence. In our imple-
mentation, the size of local rectangle region is 10 10 , the feature space (i.e. 
X*Y*Intensity) is quantized with 2*2*26 levels, and the threshold Th is set as 1.0e-8. 

Fig.1 shows qualitative comparison results of our method, the ground truth and the 
GMM on the Waving_Trees sequence presented in [5]. The Waving_Trees sequence is 
from an outdoor scene that contains heavily swaying trees. This is a very difficult scene 
from the background modeling point of view. Since our method is designed to expli-
citly consider the meaningful correlation between pixels in the spatial vicinity, it 
manages the situation relatively well. While the GMM generates large number of false 
foreground pixels under this difficulty condition, due to the quick variations and the 
non-periodic motions of the waving trees. 

 

Fig. 1. Qualitative comparison results of our method, the ground truth and the GMM on the 
Waving_Trees sequence. The first column contains the original video frames. The second con-
tains the corresponding ground truth frames. The last two columns contain the detection results of 
our method and the GMM, respectively. 

Fig.2 shows a qualitative illustration of the results as compared to the ground truth 
and the GMM on the Camera_Jitter sequence from [13]. The Camera_Jitter sequence 
contains average camera jitter of about 14.66 pixels. It can be seen that our method has 
almost no false detections in spite of the camera motion. It also can be seen that the 
GMM produces a large number of false foreground pixels under this condition. 
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Fig. 2. Qualitative comparison results of our method, the ground truth and the GMM on the 
Camera_Jitter sequence. The first column contains the original video frames. The second con-
tains the corresponding ground truth frames. The last two columns contain the detection results of 
our method and the GMM, respectively. 

 

Fig. 3. Detection results from the Water_Surface sequence, which contains the ocean waves. The 
first row contains the original video frames. The second row contains the detection results ob-
tained by our method. 

In Fig.3, 4 and 5, we show the results of our method using other three dynamic 
outdoor sequences from [19]. The three dynamic outdoor sequences include the Wa-
ter_Surface sequence with the ocean waves, the Campus sequence with large-area 
waving leaves and the Fountains sequence with moving objects in the front of a 
fountain. The challenges in these three dynamic scenes are that the backgrounds are 
continuously changing and have quick variations. Our method gives good results be-
cause it represents each pixel using its spatial and appearance features simultaneously 
to consider both meaningful correlation between neighboring pixels and its appearance 
changes. In the case of the Fountains sequence, our method produces some false 
background pixels. It should be noticed that most of the false background pixels occur 
on the background areas where the foreground objects are similar to parts of the 
backgrounds in intensity (see Fig.5). This is because our method exploits intensity to 
represent the pixels. 
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Fig. 4. Detection results from the Campus sequence, which contains large-area waving leaves. 
The first row contains the original video frames. The second row contains the detection results 
obtained by our method. 

 

Fig. 5. Detection results from the Fountains sequence, which contains moving objects in the 
front of a fountain. The first row contains the original video frames. The second row contains the 
detection results obtained by our method. 

3.2   Quantitative Evaluation 

In order to provide a quantitative perspective about the quality of foreground detection 
with our approach, we manually mark the foreground regions in every frame from the 
Waving_Trees and Camera_Jitter sequence to generate ground truth data, and make 
comparison with the GMM. In the most background subtraction work, quantitative 
evaluation is usually done in terms of the number of false negatives (the number of 
foreground pixels that were missed) and false positives (the number of background 
pixels that were marked as foreground). However, it is found that when averaging the 
measures over various environments, they are not accurate enough. In this paper, a new 
similarity measure presented by Li et al. [19] is used to evaluate the detection results of 
foreground objects. Let A be a detected region and B be the corresponding ground 
truth, the similarity between A and B is defined as S A, B                                                      (7) S A, B  varies between 1 and 0 according to their similarity. If A and B are the same, S A, B  approaches 1, otherwise 0 if A and B have the least similarity. It integrates the 
false positive and negative errors in one measure. 

The quantitative comparison results on the Waving_Trees and Camera_Jitter se-
quence are reported in fig.6. It should be noticed that, for our method, there are a few of 
the false positives and false negatives that occur on the contour areas of the foreground 
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objects (see Fig.1 and 2). This is because our method uses the spatial co-occurrence 
correlations in a local neighboring region. According to the overall results, the  
proposed method outperforms the GMM for the used test sequences with dynamic 
backgrounds. 

 

Fig. 6. Quantitative comparison results of our method and the GMM on the Waving_Trees and 
Camera_Jitter sequence. The left figure is the comparison results on the Waving_Trees se-
quence. The right figure is the comparison results on the Camera_Jitter sequence.  

4   Conclusion and Future Work 

We explore in this paper the method of exploiting the spatial co-occurrence correlations 
between neighboring pixels for background subtraction. Our study shows that the 
spatial co-occurrence correlations are helpful to achieve robust moving objects detec-
tion in dynamic scenes such as waving trees, ripples in water, illumination changes, 
camera jitters etc. We first represent each pixel as a joint feature vector consisting of its 
spatial coordinates and intensity, which simultaneously consider meaningful correla-
tion between neighboring pixels and pixel’s appearance changes. Then, each pixel’s 
background model is constructed via adaptive binned kernel estimation, which is 
computationally inexpensive and does not need any assumptions about the underlying 
distributions. Extensive comparison experiments on several challenging video se-
quences demonstrate the advantage of the proposed method over the GMM. However, 
a detailed comparison of the proposed method with other background subtraction 
methods that make a claim of modeling dynamic scenes is the subject of future re-
search. We are in the process of comparing and contrasting these methods with our 
method in terms of their detection ability and processing speed. 
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Abstract. In this paper, we present a Self-Avoiding Polygon (SAP) model for
describing and detecting complex gable rooftops from nadir-view aerial imagery.
We demonstrate that a broad range of gable rooftop shapes can be summarized
as self-avoiding polygons, whose vertices correspond to roof corners. The SAP
model, defined over the joint space of all possible SAPs and images, combines
the shape prior embedded in SAP and a set of appearance features (edge, color
and texture) learned from training images. Given an observed image, the poste-
rior probability of the SAP model measures how well each SAP fits the observed
data. Our inference algorithm follows the MAP framework, i.e. detecting the best
gable roof is equivalent to finding the optimal self-avoiding polygon on the im-
age plain. Even though the entire state space of all SAPs is enormous, we find
that by using A∗ search, commonly our algorithm can find the optimal solution in
polynominal time. Experiments on a set of challenging image shows promising
performance.

Keywords: Gable Roof, Self-Avoiding Polygon (SAP).

1 Introduction

Automatic building roof delineation from aerial imagery has been an important research
topic in computer vision, remote sensing and cartography for the past decades. Exten-
sive work has been done on this task from different perspectives, such as fusing multiple
information (DEM) [1], using 3D information [2,1], among others. But little has been
reported on automatic roof delineation from single nadir-view aerial imagery. Chal-
lenges are twofolds: 1) Shape variety. Building rooftops have big variations in both
topology and geometry. Examples in Fig. 1 may help to visualize some of these variety.
Such variations cannot be accounted for in fixed shape templates. Even existing com-
positional models, such as [3,2,4], are still based on manual specified rules and hence
limited in generality. 2) Local ambiguity. Because of their distinguishable characteris-
tics, local structures such as straight-lines, corners and parallel lines are favored in man
made structures (building, road, etc.) detection literature. But these local elements are
also notoriously noisy. On the one hand, occlusions will lead to failure of local edge de-
tector, which will probably cause miss-detection of local structures. On the other hand,
background clutters inevitably generates excessive amount of false alarms, which, if is

� This research has been supported by the National Natural Science Foundation of China (NSFC)
under the grant (60776793).
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Fig. 1. (a) Appearance based roof corners; (b) examples for gable roof with arbitrary shape; (c)
Illustrations of the Self-avoiding polygon representation. First row shows how gable roof can be
decomposed into corners and edges, second row shows how those corners and edges generate a
Self-avoiding polygon.

not thresholded properly, will bog down the algorithm into endless futile search. It is al-
ways a headache to strike a balance between over-kill and under-threshold for methods
that make use of local structures.

In this paper, we address the problem of shape variety by proposing the self-avoiding
polygon (SAP) model. A SAP is a closed sequence of moves on a lattice which dose
not visit the same point more than once except the point the moves start with. It plays a
central role in the modeling of crystal growth and polymers [5]. As demonstrated in Fig.
1 that a broad range of gable rooftop shapes can be summarized as SAPs, whose vertices
correspond to two types of commonly shared roof corners. We believe the SAP is a
compact yet expressive representation for all rectilinear building rooftops. To address
the local ambiguity, our efforts are twofolds. Firstly, we adopt learning based local
structure detectors, which optimally integrate all appearance features (e.g. edge, texture
and color) extracted from a large neighborhood. Such methods have been proved to be
extremely effective to address local ambiguities [6,7]. Secondly, our inference algorithm
detects the best gable roof by searching the entire state space of all possible SAPs.
Since the global information is much more stable than local structures, our method is
more robust against local noise. To achieve efficient inference, A∗ search algorithm is
exploited to search the state space.
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1.1 Related Work

In this section, we briefly review roof detection algorithms in literature, especially those
model-based approach. For a detailed survey, we refer the reader to [8]. Most previous
work model roofs by aggregating edge features under 2D or 3D geometry constrains.
There are two major categories, parameterized models [9,10,1,11] and component based
models [2,3,4]. The parameterized models are restricted to buildings that can be de-
scribed by prototype shapes. Therefore, the model in this category can handle few shape
variations. It is also difficult to find an optimal way to combine the large number of pa-
rameters. The component based model shows great flexibility and expressive power in
modeling various building types. For example the approach of Bignone et al. [3] pro-
pose a generic roof model based on planar roof patch components. The roof patches
are extracted by combining photometric and chromatic attributes of image regions with
edge features. The entire roof are composed by grouping roof patches in an overall
optimization process under a set of spatial constraints. The major challenge for this
category is the local ambiguity. Instead of depending purely on edge features, richer
information should be combined in detection of components. The inference algorithms
for both two categories are based on hierarchical bottom-up hypothesis and top-down
verifications. Due to local ambiguity, it is possible for bottom-up process miss-detect
correct hypothesis, thus such framework does not necessary assure global optimality.

2 Model Representation and Probabilistic Distribution

2.1 The SAP Model

The corners of gable roof, some of which are shown in Fig.1(a), are typical features for
discriminating gable roofs and also play important roles in our representation. The state
space of gable corners C on image lattice Λ with domain D is defined as a dictionary:

ΩC = {C(x,y,s,θ,t),∀(x, y, s, θ, t)}, (1)

where (x, y) ∈ D is the center position of C, s ∈ {k, k = 1, ...,K} and θ ∈ {2π w
16 ,w =

0, . . . , 15} denotes scale and orientation respectively, t ∈ {1, 2} represents two types of
gable roof corners as shown in Fig.1(a).

As shown in Fig.1(c), a complex gable roof is represented with a close sequence of
corners composing a self-avoiding polygon denoted by P :

P = 〈n, (C1, . . . ,Ci, . . . ,Cn,Cn+1)〉, (2)

C1 � Cn+1, (3)

Ci ⇒ C j, j = i + 1, i = 1, . . . , n.

where n ∈ [minN,maxN] means the number of corners in P, each node Ci ∈ ΩC is
a corner. Equation (3) means that the start and end should be same in order to form
a closed loop. Ci ⇒ C j denotes a set of constraints that two neighboring nodes must
satisfy. To define Ci ⇒ C j, we first suppose Ci = C(xi ,yi,si,θi,ti), then Ci ⇒ C j if and only
if there exists (θi, θ j) such that
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Fig. 2. Constraints for neighboring corners in a SAP. The arrows represent open bounds to be
connected with a neighboring corner. Given a roof corner, all valid choices of its neighbor are
displayed by its children nodes.

si = s j;

θ j = θi + π or θi − π/2, i f ti = 1, t j = 1,

θ j = θi + π , i f ti = 1, t j = 2,

θ j = θi + π or θi + π/2, i f ti = 2, t j = 1,

θ j = θi + π , i f ti = 2, t j = 2. (4)

A more intuitive way to illustrate these constraints is shown in Fig.2.
The state space of P is determined by the number of node n and each node Ci =

(xi, yi, si, θi, ti). Given a P, we can generate a shape template of gable roof by connecting
all open bonds of each node into a loop, as illustrated in Figure. 1 (c).

2.2 Probabilistic Distribution

The joint distribution on P and an image I can be written in Gibbs form:

p(P, I) =
1
Z

exp (−E(P) − E(P, I)). (5)

where Z is the partition function. The first energy term E(P) represents a set of con-
straints serving as shape priors. Besides the constraints specified in equation (4), we
penalize situation when point (xi+1, yi+1) is not close to the line crossing point (xi, yi)
toward direction θi. We also penalize situation when (xi, yi), (xi+1, yi+1) are too close to
each other.

The second energy term E(P, I) measures how good a gable rooftop generated from
P fits the image I, and is given by generalizing a pseudo-likelihood function:

E(P, I) = −
∑

s∈Λ/R
log p(I(s); y(s) = 0|I(N(s)/s))

−
∑

s∈R
log p(I(s); y(s) = 1|I(N(s)/s)). (6)

where x ∈ Λ is a pixel, I(x) is the intensity value at the given pixel x, N(x) is a neigh-
borhood on pixel x, N(x)/x includes all the pixels in the neighborhood except x, R ⊂ Λ
is the image domain occupied by the rooftop generated from P, Λ/R means on the im-
age lattice Λ except R, p(I(x); y(x) = 1|I(N(x)/x)) is a conditional joint probability,
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y(x) = 1 indicate that pixel x is on the rooftop, while y(x) = 0 indicate that pixel x is on
the background.

By adding
∑

x∈R log p(I(x); y(x) = 0|I(N(x)/x)) to the first right-hand-side term and
subtracting it from the second right-hand-side term of equation(6), we can re-express
the equation(6) as:

E(P, I) = −
∑

x∈Λ
log p(I(x); y(x) = 0|I(N(x)/x))

−
∑

x∈R

log p(y(x) = 1|I(N(x)))
log p(y(x) = 0|I(N(x)))

. (7)

where the first right-hand-side term does not depend on P and hence can be ignored. To
compute the second right-hand-side term we further divide R into three sets: corners(C),
boundaries(B) and interior area (A).

−
∑

x∈R

log p(y(x) = 1|I(N(x)))
log p(y(x) = 0|I(N(x)))

= Ecorner + Ebound + Earea,

Ecorner = −
∑

x∈C
log

p(y(x) = 1|I(N(x)))
p(y(x) = 0|I(N(x)))

≈ −
∑

x∈C
log

p(lC(x) = 1|I(N(x)))
p(lC(x) = 0|I(N(x)))

, (8)

Ebound = −
∑

x∈B

log
p(y(x) = 1|I(N(x)))
p(y(x) = 0|I(N(x)))

≈ −
∑

x∈B

log
p(lB(x) = 1|I(N(x)))
p(lB(x) = 0|I(N(x)))

, (9)

Earea = −
∑

x∈A
log

p(y(x) = 1|I(N(x)))
p(y(x) = 0|I(N(x)))

≈ −
∑

x∈A
log

p(lA(x) = 1|I(N(x)))
p(lA(x) = 0|I(N(x)))

. (10)

where lC(x) = 1 or 0 indicate pixel x is “on” or “off” the corner of a gable roof. Similar
definition is used for lB(x) and lA(x). The approximate equal signs in equation (8,9,10)
hold true under the assumption that all three sets are independent to each other, and
background distributions p(l(x) = 0|I(N(x))) equal to p(y(x) = 0|I(N(x))). The right
hand side of equation (8),(9) and (10) represent posterior probability ratios of a pixel
x belonging to the corner, boundary and interior area respectively given a image patch
centered at x. We will discuss how to obtain them in the next section.

2.3 Learning Local Appearance Model

Boundaries, corners and interior areas are the “local structures” discussed in section
1. As we know, these structures are very noisy in aerial imagery. To overcome this
problem, partly, we adopted learning based appearance models that integrates edge,
color and texture features from the entire image patch.

For corners, we adopt the active basis model [7] because it has larger context and
allows small geometric deformation. The log posterior ratio can be represented by:

Ecorner = − log
p(lC(x) = 1|I(N(x)))
p(lC(x) = 0|I(N(x)))

= − log
p(I|B)
q(I)

p(lC(x) = 1)
p(lC(x) = 0)

= −
k∑

j=1

λ jr j + log z j.

where B = (Bi, i = 1, . . . , n) is a template composed of a set of Gabor wavelets Bi.
r j is convolution response of the jth Gabor wavelets with image I and λ j is the jth
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(a) Training results for roof corner

(b) Training results for roof end

Fig. 3. Learning corner templates from aligned image patches. The first plot displays the learned
corner templates with each gray bar representing a Gabor wavelet. For the remaining 11 pairs of
examples, the left plot shows the training image patch I centered at a roof corner, and the right
plot shows the corresponding template.

coefficients. q(I) refers to the background distribution, zi is normalizing constant. As il-
lustrated by Fig. 3, these parameters can be learned from a set of training image patches
centered at the gable roof corner using a shared pursuit algorithm. For more details
about this learning process, please refer to [7].

Ebound and Earea is learned by training discriminative classifiers based on local cues
within the neighborhood, which is done in spirit similar to the approach in [6]. The cues
include edge color texture and brightness. We use a Ñ(s) = 30 × 30 neighborhood to
learn an approximated posterior probability. It is worth mention that the energy func-
tions of all three types are computed at a given scale. For different scales, we resize the
image, which equivalent to change the size of image patch.

3 Model Inference Algrorithm

The task of the inference algorithm is to find a P∗ that maximize the posteriori proba-
bility given I.

P∗ = arg max
P∈ΩP

p(P|I) = arg max p(P, I). (11)

where ΩP is the whole space of all possible SAPs. This can be done in a principled way
using the A∗ search algorithm [12]. As shown in Fig. 5, A∗ prioritizes search not only
based on the cost of a path traveled so far, but also on an estimate of the cost to get to
the goal, called ‘heuristics’. This keeps search balancing between local path cost and
global path cost, and assures the search to converge to the path with least cost quickly.
We first define four basic data structures in the algorithm process (To fix notation, we
will use X to denote the current node in the search algorithm, Y as previous node, G
denote the goal node):

– A Saliency Map Array. It is the fundamental data structure for searching in the SAP
space. It stores energy maps for the corners, boundaries and inner areas, computed
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Fig. 4. Saliency maps computed at a given scale, darker the pixel, higher the energy (cost).(a)
original image,(b) saliency map for boundary,(c) saliency map for inner area. The rest 8 images
are saliency maps of corner at the orientation given above the image.

(a) (b)

Fig. 5. An illustration for A∗ heuristics. (a) Search in maze, A∗ search combines cost so f ar
(solid line) with a heuristic cost to goal (dashed line) to balance between local and global cost.
(b) Search SAP on lattice, solid line and dashed line correspond to cost so f ar and cost to goal.

from an input image. In each map, the value in each pixel equals to cetain type
of energy at that pixel, as defined by equation (8,9,10). All saliency maps are nor-
malized, according to the largest and smallest value of each type into [0, 1]. The
lower the energy (cost) is, the more likely there exists an element on this pixel. For
a given scale, we have 16 × 2 saliency maps for corner, representing for 16 differ-
ent orientations and 2 types. We have one saliency map for boundaries and one for
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inner area, because they are orientation independent. Fig. 4 illustrates a gable roof
image and its corresponding saliency maps at a given scale. Only 8 orientation of
corner are displayed.

– A Priority Queue. Also known as Open Set. It maintains a queue of corners with
different priorities which determine the order in which the search visit corners. Here
the priority of a corner is the total cost of it which we will discuss later.

– A Closed Set. It stores nodes that already being traversed, it may be used to make
the search more efficient.

– A Neighborhood Tree. As shown in Fig. 2, it determines which type and orientation
of corner can be connected to the current one. Then the neighborhood of current
node in the search are limited in a sub-tree. In our algorithm, we define a function
neighborhood nodes(X) to get all the possible nodes in its the neighborhood of X.

The algorithm traverses various paths from start node then back to start node. For each
node X traversed, it maintains 4 values computed from the following functions (The
pseudo code of algorithm is given in Algorithm1):

Algorithm 1. A∗(InitS et)
ClosedS et⇐ empty
PriorityQueue⇐ InitS et
while PriorityQueue � empty do

X ⇐ PriorityQueue[0] {The node with highest priority in PriorityQueue}
if X = start node(X) ∧ path length(X) ≥ minN then

return path reconstruct(X)
end if
remove X from PriorityQueue
if path length(X) ≥ maxM, then continue endif
add X to ClosedS et
for all Y such that Y ∈ neighbor nodes(X) do

if Y ∈ ClosedS et, then continue endif
Goal⇐ start node(X)
U pdataCost ⇐ cost so f ar(Y,X) + cost to goal(Y,Goal)
if Y � PriorityQueue then

add Y with its cost U pdataCost and came f rom node X to PriorityQueue
else if T otalCost[Y] > U pdataCost then

update the cost and came f rom node of Y by U pdateCost and X
end if

end for
end while

– came f rom(X). It stores the previous node of X in the path, which will be used in
function start node(X) for tracing back to the start node of the path from node X.

– cost so f ar(X, Y). The smallest cost from the initial node to current node. It is the
sum of two values. The first is the “path cost”, which is the sumation of all energies
defined by the posterior function. It equals to the sum of all saliency maps covered
by the current path. The second is the “path length”, which is the length of the
current path used to encourage SAPs with shorter perimeter.
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– cost to goal(X,G). The estimated (or ‘heuristic’) distance from current node to
goal. To be sure of the ‘heuristic’ is admissible, or is not overestimated, we only
consider the “path length” and set the “path cost” to be zero. An example is shown
in Fig. 5 (b), where the dashed green line indicates the estimated distance, the solid
green line indicates the real path. The “path length to go” equal the length of the
dashed green line. Since the search must be a walk on the lattice, the length of
dashed line must be shorter than the length of the solid green line. Thus it guaran-
tees that the estimate is admissible.

– total cost.The sum ofcost so f ar(X) and cost to goal(X).

4 Experiment

We evaluate our SAP model on a number of challenging gable roofs. The main goals
are to show its ability to delineating complex gable roof tops with various topological
and geometrical configurations, in presence of boundary occlusions and background
clutters. The first experiment is to learn templates of roof corners using the shared
pursuit algorithm of [7]. The training set has M = 35 of instances for each type of
gable roof corner. The algorithm returns n = 40 Gabor wavelets as illustrated in Fig. 3.
To reduce searc space, we use a preprocess to determine the scale. We compute saliency
maps of roof corners at 10 continous scales. The max score of each scale is ploted into
a curve as illustrated in Fig. 6 (b). The scale with maximun score is selected as the
global scale, which will be used by the search algorithm. We demonstrate some final
results by connecting the searched corners using straight lines, as shown in Fig. 7. It
is also worth mention that although the whole search space of our algorithm is very
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Fig. 6. The scale is predetermined by finding the best corner. (a) original image,(b) max2 score
at 10 different scales. max2 score is the bigest score for corners at all orientation and location.(c)
detected corner at scale 6 with the max score, (d) Saliency map of scale 6.

Fig. 7. Detection results for complex gable roofs



Gable Roof Description by Self-Avoiding Polygon 171

huge, we discover in experiments that the A∗ algorithm only search a few branches with
lowest cost in the Neighborhood Tree.. Therefore, the actual computing time grows
linearly (not exponentially) with search depth, which agrees with the polynominal time
complexity of A∗ search in best case.

5 Discussion and Conclusion

We have addressed the problem of detection and description complex gable roofs from
nadir-view aerial imagery. We proposed a SAP model and an efficient A∗ search algo-
rithm for complex gable roof representation and inference. We formulated the problem
under the MAP framework. For our future work, we will focus on developing more ef-
ficient addmisible heuristics to guide the search to convergy to the goal faster. And we
still need to do much work to generalize the SAP model to more types of roofs. More
shape prior should be added to constrain SAP model in a smaller space.
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Abstract. Tracking the left ventricular (LV) endocardial boundary and

motion from cardiac magnetic resonance (MR) images is difficult be-

cause of low contrast and photometric similarities between the heart wall

and papillary muscles within the LV cavity. This study investigates the

problem via Graph Cut Distribution Matching (GCDM) and Interacting
Multiple Model (IMM) smoothing. GCDM yields initial frame segmen-

tations by keeping the same photometric/geometric distribution of the

cavity over cardiac cycles, whereas IMM constrains the results with prior

knowledge of temporal consistency. Incorporation of prior knowledge that

characterizes the dynamic behavior of the LV enhances the accuracy of

both motion estimation and segmentation. However, accurately charac-

terizing the behavior using a single Markovian model is not sufficient

due to substantial variability in heart motion. Moreover, dynamic be-

haviors of normal and abnormal hearts are very different. This study

introduces multiple models, each corresponding to a different phase of

the LV dynamics. The IMM, an effective estimation algorithm for Marko-

vian switching systems, yields the state estimate of endocardial points

as well as the model probability that indicates the most-likely model.

The proposed method is evaluated quantitatively by comparison with

independent manual segmentations over 2280 images acquired from 20

subjects, which demonstrated competitive results in comparisons with a

recent method.

1 Introduction

Tracking myocardial boundary and motion plays a leading role in the diagnosis of
cardiovascular diseases. It allows analyzing and quantifying myocardial motion
[1]. Magnetic Resonance (MR) sequences are widely used for analyzing cardiac
function, and provide a large number of images1. Therefore, tracking based on
manual delineation of the Left Ventricular (LV) boundary in all these images is

1 Typically, the number of images per subject is equal to 200.
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prohibitively time consuming, and automating the process has been the subject
of an intense research effort recently [2,3]. This problem is difficult due to the
low contrast and photometric similarities between connected cardiac regions -
for instance, the papillary muscles within the cavity and heart wall have approx-
imately the same intensity. Therefore, standard segmentation methods based
solely on intensity information cannot yield accurate tracking. To overcome this
difficulty, most of existing methods constrain the solution with prior geometric
properties, such as the shape of the LV cavity learned a priori from a finite
training set [4]. Unfortunately, such training information is not sufficiently re-
liable to recover the substantial variability between subjects [1]. Furthermore,
these methods do not account for temporal consistency of cardiac motion.

The system proposed in this study consists of two complementary steps. The
first step, referred to as Graph Cut Distribution Matching (GCDM), yields initial
segmentation of the LV cavity within each frame by keeping the same photo-
metric/geometric distribution of the cavity over cardiac cycles. This is done by
minimizing a distribution-matching energy which measures the similarity be-
tween a given segmentation of the first frame and the unknown segmentation
of the current frame. Based on global distribution information learned from the
first frame in the current data, GCDM overcomes some of the difficulties inherent
to cardiac images without resorting to a priori training.

The second step, referred to as Interacting Multiple Model (IMM) smoothing,
constrains the segmentation results with prior knowledge of temporal consistency
via multiple models. Incorporation of such prior knowledge, which characterizes
the dynamic behavior of the LV motion, enhances the accuracy of both seg-
mentation and tracking. Particularly, a cyclic temporal model is well suited for
periodic cardiac motion [3,5]. However, due to the substantial variability in the
dynamics of the LV of a normal heart, accurate representation of the motion
with a single Markovian model is not sufficient. Moreover, the dynamics of nor-
mal and abnormal hearts are very different. Therefore, the LV dynamics can
be viewed as a Markovian switching system, which has both continuous (noise)
and discrete (model) uncertainties. For such systems, the IMM is an effective
solution. It yields the state estimate as well as the model probability indicating
the most-likely model. Furthermore, in IMM filtering, the state estimates are up-
dated using only the past observations. However, if a delay in estimation can be
tolerated, the results could be drastically improved using future measurements.
As such, IMM smoothing [6] can be further exploited for our problem.

The proposed method is evaluated quantitatively by comparison with indepen-
dent manual segmentations over 2280 images acquired from 20 subjects, which
demonstrated competitive results in comparisons with a recent method.

2 Graph Cut Distribution Matching

Consider a MR cardiac sequence containing N frames2 In
p = In(p) : P ⊂ R2 → I,

n ∈ [1..N ], with P the positional array and I the space of photometric variables.
2 The number of frames N is typically equal to 20 or 25.
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For each frame n ∈ [2..N ], this first stage consists of dividing P into two regions–
the heart cavity and the its complement in P–according to photometric and
geometric criteria. We state the problem as the minimization of a discrete cost
function with respect to a binary variable (labeling), Ln(p) : P → {0, 1}, which
defines a variable partition of P : the heart cavity Cn corresponding to region
{p ∈ P/Ln(p) = 1} and its complement, the background Bn corresponding to
region {p ∈ P/Ln(p) = 0}. The optimal labeling is obtained by minimizing
an energy containing two kernel density matching terms, an intensity matching
term and a distance matching term. To introduce the energy, we first consider the
following definitions for any labeling L : P → {0, 1}, any image I : P ⊂ R2 → I,
and any space of variables I.
• PI

L,I is the Kernel Density Estimate (KDE) of the distribution of image
data I within region RL = {p ∈ P/L(p) = 1}

∀i ∈ I, PI
L,I(i) =

∑
p∈RL K(i− Ip)

AL
, with K(y) =

1√
2πσ2

exp−
y2

2σ2 , (1)

with AL is the number of pixels within RL: AL =
∑

RL 1, and σ is the width
of the Gaussian kernel. Note that choosing K equal to the Dirac function yields
the histogram.
• B(f, g) is the Bhattacharyya coefficient3 measuring the amount of overlap

(similarity) between two distributions f and g: B(f, g) =
∑

i∈I
√

f(i)g(i).
We assume that a segmentation of frame I1, i.e., a labeling L1 defining a

partition {C1,B1}, is given. Using prior information from this frame, the photo-
metric and geometric model distributions of the cavity are learned, and used in
the following distribution matching constraints to segment subsequent frames.

Photometric constraint. Given the learned model of intensity, which we de-
note MI = PI

L1,I1 , the purpose of this term is to find for each subsequent frame
In a region Cn whose intensity distribution most closely matches MI . To this
end, we minimizes the following intensity matching function with respect to L:

BI(L, In) = −B(PI
L,In ,MI) = −

∑
i∈I

√
PI

L,In(i)MI(i) (2)

Geometric constraint. The purpose of this term is to constrain the segmenta-
tion with prior geometric information (shape, scale, and position of the cavity)
obtained from the learning frame. Let c be the centroid of cavity C1 in the learn-
ing frame and D(p) = ‖p−c‖

ND
: P → D a distance image measuring at each point

p ∈ P the normalized distance between p and c, with D the space of distance
variables and ND a normalization constant. Let MD = PD

L1,D the model distri-
bution of distances within the cavity in the learning frame. We seek a region Cn

whose distance distribution most closely matches MD by minimizing:

BD(L,D) = −B(PD
L,D,MD) = −

∑
d∈D

√
PD

L,D(d)MD(d) (3)

3 Note that the values of B are always in [0, 1], where 0 indicates that there is no

overlap, and 1 indicates a perfect match between the distributions.
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Note that this geometric prior is invariant to rotation, and embeds implicitly un-
certainties with respect to scale via the kernel width σ in (1). The higher σ, the
more scale variations allowed. In our experiments, σ = 2 was sufficient to handle
effectively variations in the scale of the cavity. This geometric prior relaxes (1)
complex learning/modeling of geometric characteristics and the need of a train-
ing set and (2) explicit optimization with respect to geometric transformations.

The discrete energy function. The discrete energy function we minimize con-
tains the photometric and geometric matching terms as well as a regularization
term for smooth segmentation boundaries. For each n ∈ [2..N ], the first stage of
our algorithm computes the optimal labeling Ln

opt minimizing:

F(L, In) = BI(L, In) + BD(L,D) + λS(L) (4)

where S(L) is related to the length of the partition boundary given by [7]:

S(L) =
∑

{p,q}∈N

1
‖p− q‖δLp �=Lq , with δx �=y =

{
1 if x �= y
0 if x = y

, (5)

and N is a neighborhood system containing all unordered pairs {p, q} of neigh-
boring elements of P . λ is a positive constant that balances the relative contri-
bution of S.

Graph cut optimization. The distribution matching terms in F(L, In) do
not afford an analytical form amenable to graph cut optimization. The ensuing
problem is NP-hard. Furthermore, gradient-based optimization procedures are
computationally very expensive and difficult to apply. To overcome this prob-
lem, we compute a first-order approximation of the Bhattacharyya measures in
F(L, In) by introducing an auxiliary4 labeling which corresponds to an arbi-
trary, fixed partition. For any labeling L, the intensity matching term minus a
constant reads:

BI(L, In)− BI(La, In)︸ ︷︷ ︸
Constant

≈
∑
p∈P

δBI
p,La,L︸ ︷︷ ︸

V ariations of BI

= −1
2

∑
p∈P

∑
i∈I

√
MI(i)

PI
La,In(i)

δPI
p,La,L(i),

(6)
where δBI

p,La,L and δPI
p,La,L(i)) are the elementary variations of, respectively,

BI(La, In) and PI
La,In(i), each corresponding to changing the label of pixel p

from La(p) to L(p). Elementary variation δBI
p,La,L is computed in the rightmost

equality of (6) with the first-order expansion of the Bhattacharyya measure
BI(L, In). Then, we compute elementary variations δPI

p,La,L(i), i ∈ I using the
the kernel density estimate in (1), which yields after some manipulations:

δPI
p,La,L(i) =

⎧⎨⎩ δLa(p) �=1
K(i−In

p )−PI
La,In (i)

ALa+1 if L(p) = 1

δLa(p) �=0
PI

La,In (i)−K(i−In
p )

ALa−1 if L(p) = 0
(7)

4 Note that La is an arbitrary, fixed labeling which can be obtained from a given

segmentation of the first frame.
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where δx �=y given by (5). Finally, using (7) in (6) and after some manipulations,
the intensity matching term reads as the sum of unary penalties plus a constant:

BI(L, In) ≈ constant +
∑
p∈P

bI
p,In(L(p)), (8)

with bI
p,I given, for any image I : P ⊂ R2 → I and any space of variables I, by

bI
p,I(1) =

δLa(p) �=1

2(ALa + 1)
(BI(La, I)−

∑
i∈I

K(i− Ip)

√
MI(i)
PI

La,I(i)
)

bI
p,I(0) =

δLa
p �=0

2(ALa − 1)
(
∑
i∈I

K(i− Ip)

√
MI(i)

PI
La,I(i),

− BI(La, I)) (9)

Using a similar computation for the distance matching term, adopting the same
notation in (9) for distance image D, and ignoring the constants, the problem
reduces to optimizing the following sum of unary and pairwise (submodular)
penalties:

Lopt = arg min
L:P→{0,1}

∑
p∈P

{bI
p,In(L(p)) + bD

p,D(L(p))} + λS(L) (10)

In combinatorial optimization, a global optimum of the sum of unary and pair-
wise (submodular) penalties can be computed efficiently in low-order polynomial
time by solving an equivalent max-flow problem [8]. In our case, it suffices to
build a weighted graph G = 〈N,E〉, where N is the set of nodes and E the set
of edges connecting these nodes. N contains a node for each pixel p ∈ P and
two additional terminal nodes, one representing the foreground region (i.e., the
cavity), denoted TF, and the other representing the background, denoted TB.
Let wp,q be the weight of the edge connecting neighboring pixels {p, q} in N ,
and {wp,TF ,wp,TB} the weights of the edges connecting each pixel p to each of
the terminals. By setting the edge weights as follows:

wp,TF = bI
p,In(0) + bD

p,D(0); wp,TB = bI
p,In(1) + bD

p,D(1); wp,q =
λ

‖p− q‖ ,

we compute, using the max-flow algorithm of Boykov and Kolmogorov [8], a
minimum cut Cn

opt of G, i.e., a subset of edges in E whose removal divides the
graph into two disconnected subgraphs, each containing a terminal node, and
whose sum of edge weights is minimal. This minimum cut, which assigns each
node (pixel) p in P to one of the two terminals, induces an optimal labeling Ln

opt

(Ln
opt(p) = 1 if p is connected to TF and Ln

opt(p) = 0 if p is connected to TB),
which minimizes globally the approximation in (10).

3 Dynamic Model for Temporal Periodicity

Let (x, y) be a Cartesian point on the boundary between the segmentation regions
obtained with graph cut distribution matching RLn

opt
= {p ∈ P/Ln

opt(p) = 1}
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and Rc
Ln

opt
= {p ∈ P/PLn

opt(p) = 0}. Consider the state vector ξ = [x̄ x ẋ]T that
describes the dynamics of the point in x-coordinate direction, where ẋ and x̄ de-
note, respectively, velocity and the mean position over cardiac cycle. We assume
the heart motion is periodic. A continuous state-space model that describes the
cyclic motion of the point is given by,

ξ̇(t) =

⎡⎣ 0 0 0
0 0 1
ω2 −ω2 0

⎤⎦ ξ(t) +

⎡⎣1 0
0 0
0 1

⎤⎦w(t) = A(ω)ξ(t) + Bw(t) (11)

where ω is the angular frequency, and w(t) the white noise that accounts for
approximating the unpredictable modeling errors arising in LV motion. Model
(11) is linear for a given ω and can be viewed as an approximation of the temporal
periodic model used in [5] where the higher-order terms of the Fourier expansion
were neglected. A bank of models can be effectively used in parallel to closely
match the changing dynamics of boundary points as discussed in Section 4. The
discrete-time equivalent of (11) can be derived as

ξk+1 =

⎡⎣ 1 0 0
1− cos(ωT ) cos(ωT ) 1

ω sin(ωT )
ω sin(ωT ) −ω sin(ωT ) cos(ωT )

⎤⎦ ξk + wk = F (ω)ξk + wk (12)

where wk is the process noise of the discrete-model. We can consider the state
vector x = [x̄ x ẋ ȳ y ẏ]T that describes the dynamics in x-y plane. The discrete
state-space model in x-y plane is given by

xk+1 =
[
F (ω) 03×3

03×3 F (ω)

]
xk + vk = Fkxk + vk (13)

The single Markovian model in (13) is insufficient to describe the LV dynamics
due to the following reasons: (1) The angular frequency that characterizes the
motion of a LV point for normal subjects changes over time. (2) The dynamics
of LV motion differ significantly in systolic and diastolic phases of heart beat.
(3) The LV dynamics of abnormal subjects differ significantly from those of
normal subjects. Therefore, the LV dynamics is a hybrid system – a system
which has both continuous (noise) and discrete (model) uncertainties – and, as
such, it requires an interacting multiple model (IMM) approach. In the context
of tracking maneuvering targets [9]. IMM estimation is shown to be very effective
in the cases of hybrid systems. In the next section, we devise IMM to track the
motion of the LV.

4 Interacting Multiple Model Algorithm

Let the system consists of n discrete set of models denoted by M = {M1, . . . , Mn}.
Let μj

0 = P{M j
0} be the prior probability of model M j , and pij = P{M j

k |M i
k−1}

be the probability of switching model from i to model j, with M j
k being the
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model M j at time step k. The system equations corresponding to M j
k is given

by: xk = F j
k xk−1 + wj

k−1 and zk = Hj
kxk + vj

k. The one cycle recursion of the IMM
filter can be summarized as follows.

Interaction. The mixing probabilities μ
i|j
k for each model M i and M j are cal-

culated as follows. c̄j =
∑n

i=1 pijμ
i
k−1 and μ

i|j
k = 1

c̄j

∑n
i=1 pijμ

i
k−1 where μi

k−1 is
the model probability. The inputs to each filter are calculated by

m0j
k−1 =

∑n
i=1 μ

i|j
k mi

k−1 and P 0j
k−1 =

∑n
i=1 μ

i|j
k [P i

k−1 + (mi
k−1 − m0j

k−1)(m
i
k−1 − m0j

k−1)
T ].

Filtering. Kalman filter [9] is used for mode-conditioned state estimates:

[m−,i
k , P−,i

k ]=KFp(m
0j
k−1, P

0j
k−1, F (ωi), Qi

k) and [mi
k, P i

k]=KFu(m−,i
k , P−,i

k , zk, Hi
k, Ri

k)

where KFp and KFu denote prediction and update equations of Kalman filter,
respectively. The probability of model M j

k being correct (mode probability) is
computed as a function of the likelihoods of the other filters: μi

k =
Λi

k c̄i∑n
i=1 Λi

k
c̄i

where

likelihood of model M i is given by Λi
k = N (vi

k; 0, Si
k) where vi

k is the measurement
residual and Si

k innovation covariance for model M i in the Kalman filter update
step.

Mixing. The estimate of the IMM algorithm is calculated by combining in-
dividual mode-conditioned filter estimates using mode probabilities as follows:
mk =

∑n
i=1 μi

kmi
k and Pk =

∑n
i=1 μi

k

[
P i

k + (mi
k − mk)(mi

k − mk)T
]
.

4.1 Fixed-Interval IMM-Smoother

If an estimation delay can be tolerated, the performance of the filtering algo-
rithm can be improved drastically by smoothing. In cardiac images, the delay in
estimation is not significant as the imaging frequency is relatively high. There
are several variations of smoothing available [10]. Here, we use a fixed-interval
smoothing, which is the most common type. The optimal solution for fixed-
interval smoothing is to fuse the posterior distributions obtained by two optimal
IMM estimators, one running forward and the other backward using an equiva-
lent reverse-time Markov model. However, obtaining the equivalent reverse-time
model and the optimal forward/backward IMM estimators are difficult. The ap-
proximate fixed-interval smoother [6], which uses simpler fusion technique and
an approximation of the required backward IMM algorithm directly from origi-
nal Markov switching system with white Gaussian noise, is used to resolve the
problem.

5 Experiments

The proposed method was applied to 120 short-axis sequences of cardiac cine
MR images, with a temporal resolution of 20 frames/cardiac cycle, acquired
from 20 subject: the endocardial boundary was tracked in a total of 2280 im-
ages including apical, mid-cavity and basal slices, and the results were evaluated
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quantitatively by comparisons with the manual segmentations performed inde-
pendently by a medical professional. The results were also compared with the
recent LV boundary tracking method in [2], using the same data.

Parameter settings. The regularization and kernel width parameters were
unchanged for all the datasets in GCDM: α set equal to 0.15, the kernel width σ
to 2 for distance distributions, and to 10 for intensity distributions. Four dynamic
models were used in the IMM (the values were measured in squared pixels and
w0 = 2π/(heart period)): (1) ω = ω0/2, q1 = 0.02, q2 = 0.1, Rk = 0.5 (2) ω = ω0/2,

q1 = 0.2, q2 = 1, Rk = 8 (3) ω = 2ω0, q1 = 0.02, q2 = 0.1, Rk = 0.5 (4) ω = 2ω0,

q1 = 0.2, q2 = 1, Rk = 8. The filters were initialized by two-point differencing [9].

Quantitative performance evaluation. We used two criteria to evaluate the
performances of the algorithms.

• Root mean squared error: The Root Mean Squared Error (RMSE) is
computed using symmetric nearest neighbor correspondences between man-
ual and automatic LV boundaries using 24 equally-spaced points along the
boundary. The RMSE over N number of points is given by: RMSE =√

1
N

∑N
i=1 (x̂i − x̃i)2 + (ŷi − ỹi)2, where (x̂i, ŷi) is a point on the automatic

boundary and (x̃i, ỹi) is the corresponding point on the manual bound-
ary. Table 1 reports the RMSE for the proposed method and [2] averaged
over all the dataset. The proposed method yielded an RMSE of 2.4 pixels,
whereas the method in [2] yielded 3.1. The average RMSE plotted against
the time step is shown in Fig. 2(a). The proposed algorithm yielded a lower
RMSE compared to [2] and, therefore, a higher conformity to the manual
segmentation.

• Dice metric: We computed the Dice Metric (DM), a common measure of
similarity between manual and automatic segmentation [2]. The DM is given
by: DM = 2Vam

Va+Vm
, where Va, Vm and Vam are the volumes of, respectively,

the automatically segmented cavity, the corresponding hand-labeled cavity,
and the intersection between them. Note that DM is always between 0 and
1, where 1 means a perfect match. The proposed method yielded a DM equal
to 0.915± 0.002, whereas the method in [2] yielded 0.884± 0.008, for all the
data analyzed (refer to Table 1 where DM is expressed as mean ± standard
deviation). We also evaluated the algorithm using the reliability function of
the obtained Dice metrics, defined for each d ∈ [0, 1] as the probability of
obtaining DM higher than d over all volumes: R(d) = Pr(DM > d) =(number
of volumes segmented with DM higher than d)/(total number of volumes). In

Table 1. The RMSE and DM statistics for the proposed method (GCDM-IMM) and

method in [2]

Performance measure RMSE (pixels) DM

GCDM-IMM 2.4 0.915 ± 0.002

Method in [2] 3.1 0.884 ± 0.008
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Fig. 1. Representative examples of the LV boundary tracking using the proposed

method: mid-cavity (1st row), basal (2nd row) and apical (3rd row) frames. The first

row depicts typical examples where the proposed method included accurately the pap-

illary muscles inside the target cavity, although these have an intensity profile similar

to the surrounding myocardium.
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Fig. 2. Comparison between automatic and manual segmentations of 2280 images, for

both the proposed method (GCDM-IMM) and the method in [2]

comparison to method [2], the proposed algorithm led to a higher reliability
curve, as depicted in Fig. 2(b).

Visual inspection. In figures 3 and 1, we give a representative sample of the
results for 3 subjects. Fig. 3 shows the trajectory of LV points estimated using the
proposed GCDM-IMM method. The first row in Fig. 1 depicts typical examples
where the proposed method included accurately the papillary muscles inside the
target cavity, although these have an intensity profile similar to the surrounding
myocardium.
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(a) mid-cavity (b) basal (c) apical

Fig. 3. Trajectory of LV endocardial boundary points estimated using the proposed

method

6 Conclusions

This study investigates the problem of tracking endocardial boundary and mo-
tion via Graph Cut Distribution Matching (GCDM) and Interacting Multiple
Model (IMM) smoothing. GCDM yields initial frame segmentations by keeping
the same photometric/geometric distribution of the cavity over cardiac cycles,
whereas IMM constrains the results with prior knowledge of temporal consis-
tency. The proposed method is evaluated quantitatively using root mean squared
error and Dice metric, by comparison with independent manual segmentations
over 2280 images acquired from 20 subjects, which demonstrated significantly
better results as compared to a recent method [2].
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LNCS, vol. 5241, pp. 1025–1033. Springer, Heidelberg (2008)

3. Spottiswoode, B., Zhong, X., Hess, A., Kramer, C., Meintjes, E., Mayosi, B., Ep-

stein, F.: Tracking myocardial motion from cine DENSE images using spatiotem-

poral phase unwrapping and temporal fitting. IEEE Transactions on Medical Imag-

ing 26(1), 15–30 (2007)

4. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of

shape and appearance for analysis of cardiac MRI. Medical Image Analysis 12(3),

335–357 (2008)

5. McEachen, J., Nehorai, A., Duncan, J.: Multiframe temporal estimation of cardiac

nonrigid motion. IEEE Transactions on Image Processing 9(4), 651–665 (2000)

6. Helmick, R., Blair, W., Hoffman, S.: Fixed-interval smoothing for Markovian

switching systems. IEEE Transactions on Information Theory 41(6), 1845–1855

(1995)

7. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph

cuts. In: Proceedings of the Ninth IEEE International Conference on Computer

Vision, vol. 1, pp. 26–33 (2003)



182 K. Punithakumar et al.

8. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow

algorithms for energy minimization in vision. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 26(9), 1124–1137 (2004)

9. Bar-Shalom, Y., Kirubarajan, T., Li, X.R.: Estimation with Applications to Track-

ing and Navigation. John Wiley & Sons, Inc., New York (2002)

10. Rong Li, X., Jilkov, V.: Survey of maneuvering target tracking. Part V: Multiple-

model methods. IEEE Transactions on Aerospace and Electronic Systems 41(4),

1255–1321 (2005)



Object Detection with Multiple Motion Models

Zhijie Wang and Hong Zhang

Department of Computing Science, University of Alberta, Canada

{zhijie,zhang}@cs.ualberta.ca

Abstract. Existing joint detection and tracking algorithms generally

assume one single motion model for objects of interest. However, in real

world many objects have more than one motion model. In this paper we

present a joint detection and tracking algorithm that is able to detect ob-

jects with multiple motion models. For such an object, a discrete variable

is added into the object state to estimate its motion model. In this way,

the proposed algorithm will not fail to detect objects changing their mo-

tion models as the existing algorithms. Experimental results show that

our proposed algorithm has a better performance than the existing joint

detection and tracking algorithms with different single motion models,

in detecting objects with multiple motion models.

1 Introduction

Object detection is an important task in computer vision. One primary objective
is to determine how many objects of interest exist in an image and track them.
Object detection may be employed in various applications such as intelligent
surveillance system, man-machine interface and robotics. This paper specifically
deals with detecting objects with multiple motion models.

There has been much research in the object detection problem. Popular de-
tection methods include background subtraction [1,2] and appearance modeling
(for example, Harr-like features [3] and Eigenface [4]). These methods however
make a decision directly on the basis of a single frame. Therefore, the results
are often unsatisfactory when input is noisy. To deal with this problem, a class
of joint detection and tracking (JDT) algorithms ([5,6,7,8]) have been proposed.
They make decisions based on the integrated information over time. As a result
they tend to be more accurate than those single-frame based algorithms above.
However, the problem of these JDT algorithms is that they assume that each ob-
ject has only one single motion model. Consequently, they may fail when objects
move unpredictably or experience unexpected motion.

The goal of our research is to propose a new algorithm that detects objects
going through irregular motion with the help of multiple motion models. There
has been some work, such as [9,10], uses a hybrid state to index motion models
in the filter to deal with objects with multiple motion models. However they
only focus on tracking, while our work makes use of this idea in detection and
finally provides an algorithm suitable for detecting objects with multiple mo-
tion models. With a discrete variable to indicate different motion models, our

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 183–192, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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proposed algorithm is able to exploit an object’s a priori motion information for
its detection, and it has the ability to adjust its filter’s model according to the
object’s different motion models. As a result, our proposed algorithm is able to
accumulate detection evidence even though the object changes its motion pat-
tern, rather than lose track of the object as the existing JDT algorithms. Finally,
the object can be detected when the accumulated evidence is strong.

The rest of this paper is organized as follows. In Section 2, the general
Bayesian sequential estimation solution for detecting objects with a single mo-
tion model is first described, and then our new solution for objects with multiple
motion models is proposed. The proposed solution is implemented with a par-
ticle filter in Section 3. Section 4 includes the experimental results showing the
performance of the proposed algorithm, and finally the conclusion is drawn in
Section 5.

2 Bayesian Sequential Estimation

In this section, we first describe how Bayesian sequential estimation works in
general to detect objects with a singe motion model, and then we discuss how
we change the original algorithm and make it suitable for detecting objects with
multiple motion models.

2.1 Detect Objects with a Single Motion Model

Bayesian sequential estimation solves the object detection problem by recursively
computing the posterior probability density function (pdf) p(Xt|Zt). Zt includes
all the observations {z1, . . . , zt} up to time t. Xt is the joint object state defined
as a variable length vector

Xt = [xt Et]. (1)

xt is the state of object at time t, and Et ∈ {0, 1} is a discrete existence variable
indicating whether the object exists at time t. Et is modeled by a Markov chain
whose transitions are specified by a transitional probability matrix (TPM)

Π =
[
1− Pb Pb

Pd 1− Pd

]
(2)

where Pb denotes the probability of object birth and Pd denotes the probability
of object death.

The posterior pdf p(xt, Et = 1|Zt) can be derived according to

p(xt, Et = 1|Zt) = α p(zt|xt, Et = 1) p(xt, Et = 1|Zt−1). (3)

p(zt|xt, Et = 1) is the measurement model updating the predicted state ac-
cording to the current observation, and it can be defined according to different
applications. p(xt, Et = 1|Zt−1) is the predicted state function which can be
defined as follows,
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p(xt, Et = 1|Zt−1)

=
∫

p(xt, Et = 1|xt−1, Et−1 = 1)p(xt−1, Et−1 = 1|Zt−1)dxt−1

+ p(xt, Et = 1, Et−1 = 0|Zt−1)

=
∫

p(xt|xt−1, Et = 1, Et−1 = 1)(1− Pd)p(xt−1, Et−1 = 1|Zt−1)dxt−1

+ pb(xt)Pb. (4)

On the right hand side (RHS) of the above equation, p(xt|xt−1, Et = 1, Et−1 = 1)
is the state transition probability function specified by the object’s motion model.
p(xt−1, Et−1 = 1|Zt−1) is the previous posterior pdf which is already known.
pb(xt) is the initial object pdf where subscript ’b’ stands for ”birth”. If no apriori
knowledge is available, it may be assumed to be uniformly distributed.

Once the posterior pdf p(xt, Et = 1|Zt) is computed, the probability that an
object exists may be calculated as

PEt=1 =
∫

p(xt, Et = 1|Zt)dxt. (5)

Additionally, the state of the object can be estimated as the marginal of the pdf
p(xt, Et = 1|Zt).

2.2 Objects with Multiple Motion Models

The above algorithm assumes that the state transition probability function
p(xt|xt−1, Et = 1, Et−1 = 1) in (4) is specified by a single motion model xt =
f(xt−1, w(t− 1)) where w(t− 1) is the process noise. However in practical prob-
lems, objects may have more than one motion model. For example, an aircraft
moving in a constant velocity may accelerate suddenly. In this case if we use
a constant velocity model to define the state transition probability function
p(xt|xt−1, Et = 1, Et−1 = 1), then the algorithm will lose the track as well as
the detection of the aircraft after it accelerates. Therefore, there is a need to
change the above original algorithm so that it is able to detect objects with
multiple motion models.

To switch among different motion models, the original joint object state is
changed to

Xt = [xt αt Et]. (6)

A discrete variable αt is added to the object state to indicate its motion model.
αt ∈ {1, . . . ,Mm} and Mm is the number of possible motion models. αt is mod-
eled by a Markov chain whose transitions are specified by an Mm ×Mm TPM
Π = [πij ] where

πij = Pr{αt = j|αt−1 = i}, (i, j ∈ {1, . . . ,Mm}). (7)

With variable αt, the filter can switch among the different motion models and
find the one fit the object’s actual model best. In this way, the filter will not lose
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the track of the object when it changes its motion model. In contrast, it can still
follow the object and accumulate the detection evidence continuously.

Additionally, the original predicted state function in (4) is changed to

p(xt,αt, Et = 1|Zt−1)

=
∑
αt−1

∫
p(xt,αt, Et = 1|xt−1,αt−1, Et−1 = 1)

p(xt−1,αt−1, Et−1 = 1|Zt−1)dxt−1 + p(xt,αt, Et = 1, Et−1 = 0|Zt−1)

=
∑
αt−1

∫
p(xt|αt, xt−1, Et = 1, Et−1 = 1)Pr{αt|αt−1}(1− Pd)

p(xt−1,αt−1, Et−1 = 1|Zt−1)dxt−1 + pb(xt)Prb{αt}Pb. (8)

Pr{αt|αt−1} is specified by (7). Prb{αt} is the probability of the initial ob-
ject motion model where subscript ’b’ stands for ”birth”, and if no a priori
knowledge is available, it may be assumed to be uniformly distributed. The dif-
ference between this new predicted state function and the original one in (4) is
that the state transition probability function p(xt|αt, xt−1, Et = 1, Et−1 = 1) is
specified by its αtth motion model. Here αt can be one of the object’s possible
motion models, rather than the same motion model all the time as in the original
algorithm.

After the above changes, this new algorithm is able to take advantage of the a
priori motion information of objects of interest and achieve a better performance
than the original algorithm in detecting objects with multiple motion models.

3 Particle Filter Implementation

The Bayesian sequential estimation solution derived in the previous section
for detecting objects with multiple motion models will now be implemented
with a particle filter described in Fig. 1. Briefly, it is assumed that the pos-
terior pdf at the previous time is approximated by a set of weighted particles
{(xi

t−1,α
i
t−1, E

i
t−1, w

i
t−1)}N

i=1. w
i
t−1 is the ith particle’s weight at time t−1. The

input to the algorithm is the set of particles at a previous time and the current
observed image, and the output is the set of particles at the current time. We
will next explain the algorithm in more details.

– The first step predicts the current existence variable according to the previ-
ous existence variable and the TPM specified by (2).

– Given the existence variable predicted, the second step predicts the object’s
current state based on the previous state and the predicted state function
defined in (8).

– The third step weights the particles representing the predicted state given the
current observed image. To achieve the detection mechanism, the likelihood
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Input: {(xi
t−1, α

i
t−1, E

i
t−1, w

i
t−1)}N

i=1, zt

Output: {(xi
t, α

i
t, E

i
t, w

i
t)}N

i=1

1. Given {Ei
t−1}N

i=1, generate {Ei
t}N

i=1 according to the TPM specified by (2).

2. Based on {Ei
t−1}N

i=1 and {Ei
t}N

i=1, generate {(xi
t, α

i
t)}N

i=1 from {(Xi
t−1, α

i
t−1)}N

i=1

according to (8).

3. Given zt, compute the weights {wi
t}N

i=1 for {(xi
t, α

i
t)}N

i=1 according to (9).

4. Normalize {wi
t}N

i=1 to {w̃i
t}N

i=1.

5. Resample from {(xi
t, α

i
t, E

i
t, w̃

i
t)}N

i=1 for N times to obtain a new set of particles

{(xi
t, α

i
t, E

i
t, 1/N)}N

i=1.

Fig. 1. The particle filter implementation of the proposed JDT algorithm

ratio is used as the particle weight here rather than the measurement model
p(zt|Xt). The likelihood ratio can be calculated as

L(zt|Xt) =
p(zt|Xt)
pB(zt|Xt)

. (9)

pB(zt|Xt) is the probability of that the object specified by Xt belongs to
background.

– The fourth step performs normalization.
– The fifth and last step is the standard resampling step, which converts the

set of weighted particles back to an equivalent set of unweighted particles
approximating the current posterior pdf.

Once the posterior pdf p(xt,αt, Et = 1|Zt) is approximated by the set of parti-
cles. The probability that the object exists is estimated based on (5) as

PEk=1 =
1
N
·

N∑
i=1

δ(Ei
k, 1). (10)

δ here is the Kroneker delta function. δ(i, j) = 1, if i = j, and zero otherwise.

4 Experimental Results

In this section, we will show the superiority of our proposed algorithm for de-
tecting objects with multiple motion models on both a synthetic experiment and
a real experiment involving the detection of an object in a video sequence in a
mining application. Experimental results will show that incorporating multiple
motion models into JDT algorithms is able to benefit detecting objects that
vary their motion pattern. In the following, we will describe the results on both
experiments.

4.1 Synthetic Experiment

In this experiment, we create a scenario where one object moves back and forth
as shown in Fig. 2a. The object is a square with the pattern as shown in Fig. 2b.
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(a) (b)

Fig. 2. (a) Experimental scenario. The background is represented by nested rectangles

each of a different shape and an object by a small square with the texture shown in

the right panel. (b) Object appearance used in the experiment. Note that in this work

an object is modeled in general by its intensity histogram in a rectangular region,

although with modification, other types of object models can be accommodated by the

algorithm.

The object moves from one side to the other in a constant velocity for 10 frames
before it changes its direction, and then it repeats the same motion pattern.
This motion pattern is assumed known a priori and we use two motion models
to describe the object, one at a constant velocity (vt = vt−1) and the other with
the same speed with the previous time but in the opposite direction (vt = −vt−1).
We incorporate these two models into our detection algorithm. We compare our
new algorithm with the original JDT algorithm using only one constant velocity
model to show that the latter one is not sufficient to deal with objects with more
than one motion model. We also compare our proposed algorithm with another
JDT algorithm using a random walk model to show that the naive algorithm
does not work well either.

For all three competing algorithms above, the measurement model is defined
as

p(zt|Xt) = ΠEt

i=1p(zi,t|Xi,t) = ΠEt

i=1

1√
2πδ

exp(
−dist(qi,t, q

∗)2

2δ2
).

qi,t is the intensity histogram computed from image zi,t, which is extracted
from the object region specified by Xi,t. dist(qi,t, q

∗) is the distance between the
object’s histogram and the reference histogram q∗.

Although this scenario of multiple motion models is simple, it is sufficient to
illustrate the problems of interest, and compare the performances of the com-
peting algorithms. Fig. 3a shows the detection results of the one motion model
(OMM) algorithm, the two motion model (MMM) algorithm (our algorithm)
and the random walk (RW) algorithm. The x-axis is the frame number and the
y-axis is the existence probability of having one object (Pr{Et = 1}). The hori-
zontal dashed line at existence probability of 0.5 typically indicates the threshold
that determines whether the object exists. The results show that our new algo-
rithm can detect the object consistently with the existence probability above
0.5 throughout. However the OMM algorithm may lose the track as expected
when the object moves with a motion pattern inconsistent with the single mo-
tion model assumed by the particle filter, so that its existence probability drops
suddenly every 10 frames and leads to incorrect detection decisions.
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(a) (b)

Fig. 3. (a) Existence probability curves of the two motion mode algorithm (our algo-

rithm), one motion model algorithm and random walk algorithm. (b) Existence prob-

ability curves of the three algorithms when significant noise exists in the video.

Additionally, we also checked the performance of a naive algorithm using a
random walk model, which amounts to assuming no a priori motion information.
Therefore to deal with the possible change of motion model, it has to diverge
its prediction with a large variance. As a result, when the observation model’s
variance is not small enough, i.e. when significant noise exists, the object cannot
be detected. Furthermore, we also test the three algorithms on the same video
with a higher level of observation noise than that in Fig. 3a and their results are
shown in Fig. 3b. Due to our new algorithm’s flexibility to deal with multiple
motion models, it is able to accumulate the evidence even though the object
changes its model, and finally detect the object after the evidence is accumulated
to be strong enough. However the OMM algorithm will lose its accumulated
evidence every time the object changes its model, and as a result the object can
never be detected. The same can be said of the RW algorithm, when significant
noise exists, indicating that conservative prediction is unable to detect the object.

4.2 Large Lump Detection

We have also tested our proposed algorithm in a real experiment involving a
video sequence whose purpose is to detect the presence of large lumps in the
feed to a crusher in the oilsand mining industry. In the dry feed preparation
stage of oil sand mining, detecting large lumps in the feed to a crusher (Fig. 4)
is extremely important. In the following, we will show better performance of our
proposed algorithm than JDT algorithms with one motion model in this real
problem.

With a simple inspection of the large lump video sequence, generally lumps
move from top to bottom along a verticle line. Initially lumps move slowly and
then gradually faster and faster on a conveyor, and finally they drop suddenly
when they reach the end to fall into the crusher. Therefore, lumps may be
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Fig. 4. Two large lumps on a chute before they fall into a crusher

(a) (b) (c) (d)

Fig. 5. Sequence of Lump 1. (a) Frame 1, (b) Frame 2, (c) Frame 7 (d) Frame 8.

considered to have two motion models, a small constant acceleration model on
the conveyor and a large constant acceleration model off the conveyor. We incor-
porate these two motion models into our algorithm to detect lumps and compare
the results with JDT algorithms using only one motion model. The observation
model used in these algorithms can be found in [11] where an effective feature
detector is proposed specifically for this large lump problem.

Fig. 5 shows a few consecutive frames where one lump moves down into the
crusher. Initially, it moves really slowly, for example from frame 1 (Fig. 5a)
to frame 2 (Fig. 5b), and then gradually faster until frame 7 (Fig. 5c). From
frame 7 (Fig. 5c) to frame 8 (Fig. 5d) the lump moves much faster than before.
Fig. 6 shows the comparison of four algorithms, our algorithm MMM using two
constant acceleration models and three OMM algorithms using a small constant

Fig. 6. Comparison of four algorithms detecting the large lump in Fig. 5
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(a) (b) (c) (d)

Fig. 7. Sequence of Lump 2. (a) Frame 1, (b) Frame 2, (c) Frame 17 (d) Frame 18

Fig. 8. Comparison of four algorithms detecting the large lump in Fig. 7

acceleration model, a constant velocity model and a constant position model.
All the three OMM algorithms do not match the actual lump motion model
very well, and especially from frame 7 to frame 8 when the lump changes its
acceleration rate the OMM algorithms obviously lose the track as well as the
detection of the lump. Our MMM algorithm, in contrast, continues accumulating
the evidence and finally detects the lump. Even from frame 7 to frame 8, our
algorithm still can adjust itself according to the change of the lump’s motion
model by finding the filter’s model that optimally matches the actual lump
model. Fig. 7 shows another lump moving slowly from frame 1 (Fig. 7a) to
frame 2 (Fig. 7b) and then gradually faster until frame 17 (Fig. 7c) and finally
much faster from frame 17 to frame 18 (Fig. 7d). Fig. 8 shows the comparison
of the four algorithms as Fig. 6. Again our algorithm shows the superiority than
the OMM algorithms especially at the last frame when the lump moves fast.

5 Conclusion

To summarize, a JDT algorithm that can deal with objects having multiple
motion models has been proposed. The novel feature in the proposed algorithm
is that it can incorporate multiple motion models into the filter to exploit the
a priori information about the objects of interest and reliably detect objects
having multiple motion models. Although the experiments are not complicated,
they illustrate the original OMM JDT algorithm’s intrinsic problem of unable
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to deal with objects with multiple motion models, and the results demonstrate
the superiority of the proposed algorithm. Finally, what we want to point out is
that the proposed algorithm in this paper can be extended for multiple object
detection straightforwardly.
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Abstract. This paper presents an improved template matching method

that combines both spatial and orientation information in a simple and

effective way. The spatial information is obtained through a generalized

distance transform (GDT) that weights the distance transform more on

the strong edge pixels and the orientation information is represented as

an orientation map (OM) which is calculated from local gradient. We

applied the proposed method to detect humans, cars, and maple leaves

from images. The experimental results have shown that the proposed

method outperforms the existing template matching methods and is ro-

bust against cluttered background.

1 Introduction

Object detection is an active research topic in Computer Vision. Generally speak-
ing, existing object detection methods can be categorized into learning-based
approach and template-based approach. In the learning based approach, object
signatures (e.g. the features used to describe the objects) are obtained through
training using positive/negative samples [1], [2], [3], [4] and object detection is
often formulated as a problem of binary classification. In the template based
approach, objects are described explicitly by templates and the task of object
detection becomes to find the best matching template given an input image.
The templates can be represented as intensity/color images [5], [6] when the
appearance of the objects has to be considered. Appearance templates are often
specific and lack of generalization because the appearance of an object is usually
subject to the lighting condition and surface property the object. Therefore, bi-
nary templates representing the contours of the objects are often used in object
detection since the shape information can be well captured by the templates [7],
[8], [9]. Given a set of binary templates representing the object, the task of de-
tecting whether an image contains the object eventually becomes the calculation
of the matching score between each template and the image. The commonly used
matching method is known as ”Chamfer matching” which calculates the ”Cham-
fer distance” [10] or ”Hausdorff distance” [11], [12] between the template and
the image through the Distance Transform (DT) image [13] in which each pixel
value represents its distance to the nearest binary edge pixel. This paper is about
an effective method to match a binary template with an image by using both
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the strength and orientation of the image and template edges. For simplicity, we
shall use the term ”template” to refer to ”binary template” hereafter.

As well known, Chamfer matching produces high false positives in images
having cluttered background. This is probably due to the interference of the edge
pixels in the background on the DT image. For a cluttered image, there are often
numerous strong and weak edge pixels from both background and foreground.
They contribute indiscriminatively to the DT image in a conventional distance
transform regardless of their edge magnitude and orientation. Fig. 1 represents
an example where the spatial distances between the image point p and template
point q are same in the left and the right image whereas the pair (p, q) in the left
image actually presents a better match. Fig. 2 illustrates an example of human
detection in cluttered background obtained by applying the Chamfer matching
[10]. As shown in the 5th and 6th images, true detections have larger matching
distance to the template (1st image) than false detections.

To reduce the false positives, magnitude [14] and orientation of edges [15],
[16], [17] can be included in the matching as additional information to the DT
image. A number of attempts have been made along this direction in the past.
For example, in [14], various salience factors such as edge strength and curvature
of connected edges are employed to weight the DT image during matching, but
the distance is still computed based only on the spatial information. In terms of
orientation, Gavrila [15] quantized the orientation of edge pixels into different
bins of angles and then created the DT images for every edge orientation. Olson
et al.[16] and Jain et al.[17] combined the orientation with spatial information in

Fig. 1. The red curves and blue curves represent the image edges and template edges

respectively while the (red/blue) arrows represent the corresponding edge orientations

Fig. 2. From left to right: the template, input image, edge image, DT image, and

the detection results (blue rectangles). The detection results represent those locations

whose Chamfer distances to the template are smaller than 0.36 (the 5th image) and

0.35 (the 6th image).
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the definition of the matching score. In [16], Olson et al. considered each image
point as a set of 3 elements (xy−coordinates and orientation), the Hausdorff
distance was employed to the spatial coordinates and orientations separately. To
facilitate the matching, the orientation is discretized and DTs are created for each
of the discrete orientations, thus the computational complexity is increased. In
[17], the matching score between a template point and an image point is defined
as a product of the spatial and orientation distances. The spatial distance is
calculated using the conventional DT, e.g. [13], without considering the strength
or magnitude of the edges.

In this paper, we introduce a generalized distance transform (GDT) and an
orientation map (OM) to encode respectively the spatial and orientation infor-
mation. The GDT allows us to weight the DT image more on the strong edge
points during the DT. A new matching score is defined by linearly combining
the distances calculated using GDT and OM and is proved to be Euclidean.
The new matching method is used and verified in the experiments of detecting
humans, cars and maple leaves from images. The results have shown that the
proposed matching method outperforms existing methods and is robust against
the interference of cluttered background.

The remainder of this paper is organized as follows. In section 2, we describe
the proposed template matching method in which a generalized distance trans-
form and an orientation map are employed. For comparison, we also briefly
review Olson’s and Jain’s methods. Experimental results along with some com-
parative analysis are presented in section 3. Finally, conclusions and future work
are given in section 4.

2 Template Matching with Edge Orientation

Let p(sp, op) and q(sq, oq) be two points on an image where sp = (xp, yp) and
sq = (xq, yq) are the spatial coordinates of p and q respectively; op and oq are
the edge orientations at p and q. Let ds(p, q) denote a spatial distance between
p and q, e.g. Euclidean distance; and do(p, q) be a measurement to measure the
difference in orientation between p and q. Let T and I be a binary template
and a test image respectively, D(T, I) denote the matching score or distance
(dissimilarity) between T and I.

2.1 Olson’s and Jain’s Methods

In [16], Olson et al. defined the matching score D(T, I) in the form of the Haus-
dorff distance as,

D(T, I) = max
t∈T

max{ds(t, t∗), do(t, t∗)} (1)

where t∗ is the closest pixel of t in the image I with respect to the spatial and
orientation distances, i.e. t∗ = arg minq∈I max{ds(t, q), do(t, q)}. The orientation
component do(·) is encoded as,

do(p, q) = |op − oq| (2)
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The matching score in (1) is calculated using the DTs created for every discrete
orientation. Hence, the computational complexity depends on the number of
distinct orientation values. As can be seen in (2), do(p, q) cannot guarantee that
the difference between op and oq is always an acute angle. In addition, in (1),
the spatial component, ds and orientation component, do are of different scales.
Thus, both ds and do need to be normalized before being used to compute the
matching score.

In the work of Jain et al. [17], the matching score is defined as,

D(T, I) =
1
|T |

∑
t∈T

1− exp(−ρds(t, t∗))do(t, t∗) (3)

where |T | is the number of pixels in T , ρ is a positive smoothing factor, and t∗ ∈ I
is the closest pixel of t in term of spatial distance, i.e. t∗ = arg minq∈I ds(t, q).
The orientation component do(p, q) is defined as,

do(p, q) = | cos(op − oq)| (4)

2.2 Proposed Method

As shown in the previous section, t∗ in both (1) and (3) is determined based
on the conventional DT image without considering the quality of edge pixels. In
other words, the strong and weak edges contribute equally to spatial distance
in the DT image. Our observation has shown that cluttered background often
produces dense weak edges at various orientations that can severely interfere with
the DT. We, therefore, propose the Generalized Distance Transform (GDT) and
orientation map (OM) that are able to take into consideration the strength and
orientation of edges for reliable and robust matching.

Generalized Distance Transform (GDT). Let G be a regular grid and
Ψ : G → R a function on the grid. According to Felzenszwalb and Huttenlocher
[18], the GDT of Ψ can be defined as,

DΨ (p) = min
q∈G

{ds(p, q) + Ψ(q)}, (5)

where ds(p, q) is some measure of the spatial distance between point p and q in
the grid. Intuitively, for each point p we find a point q that is close to p, and for
which Ψ(q) is small. For conventional DT of an edge image using L2 − norm,
ds(p, q) is the Euclidean distance between p and q, and Ψ(q) is defined as

Ψ(q) =

{
0, if (q) ∈ e

∞, otherwise
(6)

where e is the edge image obtained using some edge detector.
Notice that the conventional DT does not consider the quality of the edge

points in e and a cluttered background often contains many weak edge points.
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In order to reduce the impact of these weak edge points, we define the Ψ(q) as
follow such that more trust is placed on the strong edge points.

Ψ(q) =

{
η√

I2
x+I2

y

, if (q) ∈ e

∞, otherwise
(7)

where Ix = ∂I/∂x and Iy = ∂I/∂y are the horizontal and vertical gradients of
the image I at position q; η is a positive constant controlling the contribution of
the gradient’s magnitude at q. By using this definition, the GDT is computed not
only based on the spatial distance but also on the strength of the edges. If η = 0,
(7) becomes (6) and DΨ (p) becomes ds(p, p∗) where p∗ = argminq∈I ds(p, q).

Using the algorithm proposed in [18], the GDT can be computed in O(knm)
time, where n×m is the image’s size, k (= 2 in our case) indicates the number
of dimensions.

Orientation Map (OM). Let p∗ be the closest edge point to the pixel p,

p∗ = arg min
q∈G

{ds(p, q) + Ψ(q)}

and the orientation value at p is defined as,

OΨ (p) = arctan(Ix∗/Iy∗) (8)

where Ix∗ and Iy∗ are the gradients at p∗. In other words, the orientation of edge
pixels will be propagated to their nearest non-edge pixels.

The orientation map OΨ (p) provides additional information to match a tem-
plate with a test image. We can see that, OΨ (p) and DΨ (p) can be calculated
simultaneously without increasing computational complexity. In addition, com-
pared with the work of Olson et al. [16], the computation of the GDT and OM
is independent of the template and the number of edge orientations.

Once the GDT and OM is calculated, the matching score D(T, I) is defined
as,

D(T, I) =
1
|T |

∑
t∈T

√
αD2

Ψ (t) + (1− α) sin2 |OΨ (t)− ot| (9)

Notice that DΨ (t) obtained from (5) needs to be normalized to (0, 1) before
being used in (9). α is positive weight representing the relative importance of
the spatial component against the orientation component, sin2 |OΨ (t)− ot|. The
use of sin(·) to encode the distance in orientation guarantees that the difference
in orientation is always considered only for acute angles. In (9), the value of
α is in general application dependent. However, α = 0.5 works well for our
experiments.

In (9), ot is the orientation at point t ∈ T . Since T is a binary template, ot

cannot be obtained directly using the gradient image. As illustrated in Fig. 3,
in this case, we sample T uniformly along the contours and then trace all points
of T clockwise. ot can be approximated as the angle of the normal vector of the
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Fig. 3. Left: The gradient vector of a point in the contour of a binary template. Right:

Templates with the approximated gradient vectors (grey lines).

line connecting the two points (t − 1) and (t + 1) which are the previous and
next consecutive points of t on T .

Notice that if α = 1 and η = 0, the prosed method becomes the conventional
template matching method [10], i.e.,

D(T, I) =
1
|T |

∑
t∈T

DΨ (t) (10)

where Ψ(·) is defined as in (6).

3 Experimental Results

The proposed template matching method was evaluated by employing it to detect
humans, cars and maple leaves from images. The process of detecting these
objects can be summarized as follows. Given a set of templates describing the
target object and an input image, we first scan the input image by a detection
window W at various scales and positions. Let IW be the image of a detection
window W , the best matching template T ∗ is obtained as,

T ∗ = argmin
T

D(T, IW ) (11)

where D(T, IW ) is defined as in (9). Once the best matching template, T ∗ is
found, a verification is required to ascribe a degree of confidence on whether
IW contains a target object. In this paper, the verification was simply done by
comparing D(T, IW ) with a threshold.

Human Detection. We evaluated the performance of human detection task
on pedestrian test set USC-A [19]. This set includes 205 images with 313 un-
occluded humans in upper right standing poses from frontal/rear viewpoints.
Many of them have cluttered backgrounds. The detection was conducted by
scanning a 45× 90 window on the images at various scales (from 0.6 to 1.4) and
each detection window was matched with 5 templates (binary contours of human
body shape). The detection results were then compared with the ground truth
given at [19] using the criteria proposed in [6]. The criteria include the relative
distance between the centres of the detected window and the ground truth box
with respect to the size of the ground truth box and the overlapping between the
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Fig. 4. ROCs of the proposed method and its variants (left), other methods (right) on

the USC-A dataset. Notice that we do not merge overlapping detection windows. In

the right image, the two ROCs of Olson’s method with and without using GDT are

not much different from each other.

Fig. 5. PR curves of the proposed method and its variants (left), other methods (right)

on the UIUC dataset where the result of [5] is copied from the original paper

detection window and the ground truth. The achieved ROC and some detection
results are shown in Fig. 4 and Fig. 6(a) respectively.

Car Detection. In the detection of cars, we used the UIUC car dataset [5] and
a set of 20 templates. This dataset contains 170 images with 200 cars in the
side view and under different resolutions and low contrast with highly textured
backgrounds. In this dataset, all cars are approximately the same size and some
are partially occluded. The images are scanned with steps of 5 pixels and 2
pixels in the horizontal and vertical directions respectively. We also employed
the evaluation scheme proposed by Agarwal and Roth [5]. The precision-recall
(PR) curve of the proposed method is presented in Fig. 5 and some detection
results are shown in Fig. 6(b).

Leaf Detection. We selected 66 of 186 images (of 896 × 592 size) containing
maple leaves (one leaf per image) on different backgrounds from [20] and one
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(a)

(b)

(c)

Fig. 6. Some experimental results of human detection (a), car detection (b), and maple

leaf detection (c)
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template shown in Fig. 3. On this dataset, the proposed method achieved 100%
of true detection with no false positives whereas at the lowest misclassifica-
tion, computed by FalsePositive + FalseNegative, the conventional template
matching achieved 62/66 of true detection with 6 false positives. Some results
are shown in Fig. 6(c).

Comparison. In addition to the performance evaluation, we compared the pro-
posed method with its variants and other methods. The comparison has been
made mainly on the two datasets: USC-A and UIUC since the number of data
from these datasets is large enough to achieve a credible comparison. The pur-
pose of this comparison is to show the robustness brought by weighting strong
edges using the GDT (7) and the use of orientation in matching separately, as
well as in the combination of both of them. For example, the conventional tem-
plate matching was implemented as the special case of the proposed method by
not using orientation and weighting edges, i.e. Ψ(·) is defined as in (6) and the
matching score is given as in (10).

For comparison with other works, we implemented the method proposed by
Olson et al. [16] and Jain et al. [17]. In our implementation, the spatial distances,
ds, in (1) and (3) are computed by two different ways: using (6) as conventional
DT and the proposed GDT (7). For car detection, we compared the proposed
method with the work of Agarwal et al. [5] where the appearance of the objects
was employed. Fig. 4 and Fig. 5 are the ROCs and PR curves achieved by
the proposed method, its variants, and other methods. It can be seen that the
proposed method combining both GDT and orientation performs superiorly in
comparison with its variants and other existing methods.

4 Conclusion

This paper proposes an improved template matching method which is based
on the orientation map (OM) and generalized distance transform (GDT) that
uses the edge magnitude to weight the spatial distances. The matching score is
then defined as a linear combination of the distances calculated from the GDT
image and OM. We compared the performance of the proposed algorithm with
existing methods in the cases of detecting humans, cars and maple leaves. The
experimental results show that the proposed method improved the detection
performance by both increasing the true positive and negative rate. To further
speed up the matching process, the combination of the proposed algorithm with
a hierarchical template matching framework, such as the one in [7] or [8] will be
our future work.
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Abstract. Face recognition from a single image remains an important task in
many practical applications and a significant research challenge. Some of the
challenges are inherent to the problem, for example due to changing lighting
conditions. Others, no less significant, are of a practical nature – face recogni-
tion algorithms cannot be assumed to operate on perfect data, but rather often on
data that has already been subject to pre-processing errors (e.g. localization and
registration errors). This paper introduces a novel method for face recognition
that is both trained and queried using only a single image per subject. The key
concept, motivated by abundant prior work on face appearance manifolds, is that
of face part manifolds – it is shown that the appearance seen through a sliding
window overlaid over an image of a face, traces a trajectory over a 2D manifold
embedded in the image space. We present a theoretical argument for the use of
this representation and demonstrate how it can be effectively exploited in the sin-
gle image based recognition. It is shown that while inheriting the advantages of
local feature methods, it also implicitly captures the geometric relationship be-
tween discriminative facial features and is naturally robust to face localization
errors. Our theoretical arguments are verified in an experimental evaluation on
the Yale Face Database.

1 Introduction

Much recent face recognition work has concentrated on recognition using video se-
quences as input for training and querying the algorithm. This trend has largely been
driven by the inherent advantages of acquiring and exploiting for recognition as much
data as possible, as well as the increased availability of low-cost cameras and storage
devices.

A concept that has gained particular prominence in this body of research, and one
that is of interest in this paper, is that of face manifolds [1]. The key observation is that
images of faces are (approximately) constrained to lie on a non-linear manifold, of a low
dimensionality compared to the image space it is embedded in. This is a consequence
of textural and geometric smoothness of faces and the manner in which light is reflected
off them – a small change in imaging parameters, such as the head pose or illumination
direction, thus produces a small change in the observed appearance, as illustrated in
Fig. 1.

In this paper, however, we are interested in recognition from individual images – a
single, near frontal facial image per person is used both to train the algorithm, as well

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 203–213, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. (a) Textural and geometric smoothness of faces gives rise to appearance manifolds. (b)
Motivated by previous research into face appearance manifolds, which as a representation demon-
strated impressive results on the task of face recognition from video, in this paper we introduce
face part manifolds (c).

as to query it. Although when available, recognition from video has distinct advantages,
for practical reasons single image based recognition is preferred in a large number of ap-
plications. In some cases video may be unavailable (e.g. when face recognition is used
for browsing or organizing photographic collections); in others it may be impractical to
obtain (e.g. for passports or national identification cards).

2 Unfolding a Face

An observation frequently used by face recognition algorithms, is that not all parts of
a face are equally discriminative with respect to the person’s identity. For example, the
appearance of the eye or mouth regions is often considered to carry more identifying in-
formation than, say, the cheek or forehead regions [2,3]. Furthermore, due to the smooth-
ness of the face surface, local appearance is affected less with small head pose changes
than holistic appearance and is more easily photometrically normalized. These are the
key advantages of local-feature based recognition approaches (see e.g. [4,5,6,7,8]) over
those which are holistic in nature. On the other hand, by effectively ignoring much of
facial area, these methods do not fully utilize all the available appearance information.
The geometrical relationship between fiducial features is also often left unexploited.

In this paper we demonstrate how the principles motivating the use of facial appear-
ance manifolds, largely popularized by video based work, can be adapted to recognition
from single images. The resulting representation, a set of samples from a highly non-
linear 2D manifold of face parts, inherits all of the aforementioned strengths of local
feature based approaches, without the associated drawbacks.

2.1 Manifold of Face Parts

The modelling of face appearance images as samples from a manifold embedded in
image space is founded on the observation that appearance changes slowly with vari-
ation in imaging parameters. Depending on which parameters are considered in the
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modelling process, successful methods have been formulated that use video and person
specific appearance manifolds of pose (or, equivalently, motion) [9], person specific
manifolds of illumination and pose [10] or indeed the global face manifold of identity,
illumination and pose [11,12].

The assumption that face appearance is constrained to a manifold can be expressed
as a mapping f from a lower dimensional face space to a high dimensional image space
f : Rd → RD , such that:

∀Θ1,Θ2 ∈ RD. ∃Θ3 ∈ RD :∥∥f(Θ1)− f(Θ3)
∥∥ <

∥∥f(Θ1)− f(Θ2)
∥∥ (1)

Strictly speaking, this condition does not actually hold. While mostly smooth, the face
texture does contain discontinuities and its geometry is such that self-occlusions occur.
However, as an appropriate practical approximation and a conceptual tool, the idea has
proven very successful.

Low-level features. In this paper we define a face part to be any square portion of face
image. We then represent the entirety of facial appearance by the set of all face parts of
a certain, predefined size. Formally, an image I ∈ RW × RH produces set of samples
p ∈ Rs × Rs:

P (s) =
{
p ≡ I(x + 1 : x + s, y + 1 : y + s)

∣∣
x = 0 . . .W − s, y = 0 . . .H − s

}
(2)

This is illustrated in Fig. 2 and can be thought of as appearance swept by a window
overlaid on top of the face image and sliding across it.

The same smoothness properties of faces that gave rise to the concept of face ap-
pearance manifolds allow the set of face part appearances P (s) to be treated as being
constrained to a face part manifold. This manifold is 2-dimensional, with the two di-
mensions corresponding to the sliding window scanning the image in horizontal and

(a) (b)

Fig. 2. (a) We obtain a set of data point samples from the 2D face part manifold by sliding a square
window of a fixed size in horizontal (shown) and vertical directions over the original image of
a face. Five consecutive samples are shown in (b). As argued from theory, due to the geometric
and textural smoothness of faces, the appearance change between them is very gradual. This is
quantified in Fig. 3.
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Fig. 3. The value of normalized cross-correlation between a reference face region and regions
scanned by the sliding window (see Fig. 2) in the horizontal (red line), vertical (blue line) and
diagonal (black line) directions, as a function of its displacement

vertical directions. The required smoothness condition of (1) is qualitatively illustrated
in Fig. 2 and quantitatively in Fig. 3

2.2 Photometric Normalization

Local appearance based representations have important advantages for recognition.
Specifically, in a more spatially constrained region, the variation in both the surface
geometry and the corresponding texture will be smaller than across the entire face. This
uniformity allows for simpler correction of lighting. Furthermore, the distributed nature
of our representation also allows for increased robustness to troublesome face regions,
which may not get normalized correctly.

We process each face part in four steps, as follows:

1. approximate adaptive gamma-correction
2. local contrast scaled high-pass filter
3. image energy normalization to unity

Approximate adaptive gamma-correction. Our goal here is to power transform the in-
tensities of image pixels so that their average is as close to grey as possible:

γ̂ = argmin
γ

∣∣∣∣∣
∑N

x=1

∑M
y=1 I(x, y)γ

N ·M − 0.5

∣∣∣∣∣
2

. (3)

This minimization problem cannot be solved in a closed form. Given that gamma cor-
rection needs to be separately applied to each extracted face part, for time-efficiency
reasons we do not compute the optimal gamma γ̂ exactly. Instead, we use its approxi-
mate value:

γ∗ =
0.5
〈I〉 , (4)
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where 〈I〉 is the mean image patch intensity:

〈I〉 =

∑N
x=1

∑M
y=1 I(x, y)

N ·M . (5)

Local contrast scaled high-pass filter. In most cases, the highest inter- to intra- personal
information content in images of faces is contained in higher frequency components,
low frequencies typically being dominated by ambient and directional illumination
effects [13]. We make use of this by applying a high-pass filter to gamma corrected
patches.

Il = I ∗Gσ=2 (6)

Ih = I − Il. (7)

An undesirable artefact of high-pass filtering is the sensitivity of the result to the overall
image contrast: the same facial feature illuminated more strongly will still produce
a higher contrast result, then when imaged in darker conditions. We adjust for this by
scaling the high-pass filter output by local image intensity, estimated using the low-pass
image:

Î =
Ih(x, y)
Il(x, y)

. (8)

Image energy normalization to unity. The final step of our photometric adjustment
involves the normalization of the total image patch energy:

Ī(x, y) =
I(x, y)√

E(I)
, (9)

where E(I) is the original energy:

E(I) =
∑
x,y

I(x, y)2. (10)

The results of our photometric normalization cascade are illustrated on examples of
face parts in Fig. 4.

2.3 Global Representation

We have already argued that the face parts appearances extracted from a single image
can be thought of as set of dense samples from the underlying face part manifold. The
analogy between the relationships of face parts and this manifold and that of face images
and the corresponding face appearance manifolds, is tempting but there is a number of
important differences between the two.

If the entire range of variation in the appearance of a person is considered, regard-
less of the manner in which the face is illuminated or the camera angle, the appearance
should never be the same as that of another person1. Although imaging parameters do

1 Exceptions such as in the case of twins are not of relevance to the issue at hand.
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Fig. 4. Examples of appearance of three facial regions before any processing (top row) and after
our photometric adjustment (bottom row). The effects of illumination are largely normalized,
while the prominence of actual facial features is emphasized.

affect the discriminative power that an image has for recognition, this is far more pro-
nounced in the case of face parts which inherently vary in information content [14]. A
uniform region, such as may be observed in the cheek or forehead regions, after pho-
tometric normalization described in the previous section, is nearly uniformly grey and
virtually void of person-specific information, see Fig. 5. Such parts will be clustered
in an apex from which all face part manifolds radiate, as illustrated on an example in
Fig. 1. It should be noted that these are non-informative only in isolation. In the con-
text of other parts, they shape the face part manifold and by affecting the geodesic
distance between discriminative regions, implicitly capture geometric relationship be-
tween them. Both observations highlight the need to represent and use extracted face
part manifold samples in a unified, holistic manner.

Manifold structure, modelling and discrimination. The shape that face part manifolds
take in image space is greatly dependent on the sliding window size. This is illustrated
in Fig. 6. For very small part sizes, of the order of 10% of face image size, the infor-
mation content of any patch is so small that the corresponding manifold is so highly
curved and self-intersecting, that its structure is entirely lost in the sampling process. In
contrast, large parts, with dimensions comparable to that of the original image, produce
manifolds with a far simpler structure.

Irrespective of the chosen part size, all face part manifolds will have a common origin
at the cluster of nearly uniform, non-informative parts. While many parts will fall within
or near this region of image space, it can be observed that manifolds corresponding
to individuals with different identities can be discriminated between by looking the
direction they extend in from it. This is illustrated in Fig. 1(b). An important corollary of
this observation is that for recognition, it is not necessary to accurately model the exact
shapes of part manifolds. Rather, it is sufficient to discriminate between the minimal
hyperplanes they are embedded in.
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Non−discriminative

Discriminative

Fig. 5. One of the difficulties introduced by employing a dense, local representation of a face is
caused by a large number of non-discriminative local appearance patches (top row). Such, similar
looking regions can result from images of faces of different individuals, in contrast to information
containing, person specific ones (bottom row). The algorithm used to compare two sets of patches
(one corresponding to a known, database individual and one to a novel, query image) must take
this observation into account.
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image of a face. The data is shown projected to the first three principal components. The ratio of
face part sliding window size to the size of the original face image is shown above each plot.
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Thus, we adopt the following approach. Given a set of extracted face parts P (i) =
{p(i)

1 , p
(i)
2 . . .}, we first shift the image space origin to the non-informative, uniformly

grey image. The adjusted face part appearance variation is represented by the hyper-
plane defined by the eigenvectors associated with the largest eigenvalues of the data
covariance matrix:

C(i) =
∑

j

(
p
(i)
j − π)(p(i)

j − π
)T

, (11)

where π is the grey image. Finally, the distance η between two sets of face part sam-
ples is estimate by considering the weighted sum of the largest canonical correlations
ρ1 . . . ρN between the corresponding hyperplanes:

η = 1−
∑

i

αiρi. (12)

If the basis vectors of the two hyperplanes are Bi and Bj , the canonical correlations
ρ1 . . . ρN are computed as the first N singular values of the matrix BT

i Bj .

3 Evaluation

We evaluated the performance of the proposed method and tested the key premises
argued for in this paper on the frontal view subset containing 650 images from the
Yale Face Database B. The database is available for free download at http://cvc.
yale.edu/projects/yalefacesB/yalefacesB.html and is described in
detail in [15]. It contains 64 images for each subject and pose, corresponding to different
and greatly varying illumination conditions (63 employing a single light source and an
additional ambient light only image), as shown in Fig. 7. Faces were then manually
registered (to allow the effects of localization errors to be systematically evaluated),
cropped and rescaled to 50× 50 pixels.

Holistic representation and normalization. One of the ideas underlying the proposed
method is the case for face representation using some form of local representation. Con-
sequently, our first set of experiments evaluated the performance of holistic matching,

Fig. 7. A cross-section through the range of appearance variation due to illumination changes,
present in the Yale Face Database B data set

http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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Fig. 8. Measured recognition performance, displayed in the form of Receiver-Operator Character-
istic (ROC) curves, for (a) holistic appearance matching after different photometric normalization
techniques, and for (b) the proposed method for different face part sizes

using the same basic representation for face appearance as we later use for face parts.
The results are summarized in Fig. 8(a).

The extreme variability in illumination conditions present in our data set is evident
by the no better than random performance of unprocessed appearance (green). As ex-
pected, high-pass filtering produces a dramatic improvement (red), which is further
increased with gamma correction and image energy normalization (blue), resulting in
the equal error rate of 8.5%.

Proposed method and influence of face part size. The second set of experiments we
conducted was aimed at evaluating the overall performance of the proposed algorithm
and examining how it is affected by the choice of face part scale. This set of results
is summarized in Fig. 8(b). For the optimal choice of the sliding window size, which
is roughly 70% of the size of the cropped face, our method significantly outperforms
all of the holistic matching methods. The observed deterioration in performance with
decreased part size is interesting. We believe that this is not a reflection of inherently
reduced discriminative power of the representations based on smaller part sizes, but
rather of our linear model used to represent appearance variation within a set.

Sensitivity to face localization errors. Our final experiment tested how holistic and
the proposed local, dense representation of face appearance perform in the presence of
face localization errors. Having manually performed face registration, we were able to
systematically introduce small translational errors between faces which are matched,
thus obtaining a family of ROC curves for different error magnitudes. These are shown
in Fig. 9. The superiority of our method over holistic recognition is very apparent; while
the recognition success of the latter starts to rapidly degrade even with an alignment
disparity of only one pixel and performing no better than random at six pixels, our
method shows impressive robustness and only a very slight dip in performance.
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Fig. 9. Performance degradation of the (a) best holistic and (b) the proposed method with relative
displacement of compared images

4 Conclusion

We introduced a novel method for face recognition from single images. Our algorithm
is based on 2D manifold-like structures embedded in the image space and which we
call face part manifolds. Very much like the face appearance manifolds they were in-
spired by, these are shown to be representations with significant discriminative power.
What makes them particularly attractive is the observation that they naturally reconcile
the differences between local feature based and holistic recognition approaches. They
inherit the simplicity of the basic element and the distributed nature of the former, while
making full use of available appearance and facial geometry information like the latter.
A thorough theoretical analysis of the method is followed by its empirical verification
on the Yale Face Database.
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Abstract. We propose a new principle for recognizing fingerspelling se-

quences from American Sign Language (ASL). Instead of training a sys-

tem to recognize the static posture for each letter from an isolated frame,

we recognize the dynamic gestures corresponding to transitions between

letters. This eliminates the need for an explicit temporal segmentation

step, which we show is error-prone at speeds used by native signers. We

present results from our system recognizing 82 different words signed by

a single signer, using more than an hour of training and test video. We

demonstrate that recognizing letter-to-letter transitions without tempo-

ral segmentation is feasible and results in improved performance.

1 Introduction

The native language of the Deaf Community in the United States is American
Sign Language (ASL), which defines a vocabulary of gestures corresponding to
frequently used words. When no standard sign exists for a desired word, signers
use fingerspelling, spelling out the word using gestures that correspond to the
letters in the English alphabet. Unlike word-level signs, fingerspelling gestures
use a single hand, and most do not require motion. Instead, different letters
are primarily distinguished by the positions of the signer’s fingers, called the
handshape.

The näıve approach to fingerspelling recognition is to learn to recognize each
letter’s handshape in isolation before tackling letters in sequence. We believe a
more reliable system recognizes transitions between letters rather than the letters
themselves. This approach avoids the need to select which frames to classify
into letters, a process that is error-prone at conversational speed. In addition,
emphasis on transitions leverages information about the shape of a signer’s hand
as a letter is being formed to differentiate between letters that are easily confused
in static frames. The näıve solution discards this helpful information.

In this work, we present a system that recognizes transitions between finger-
spelled letters. In Sect. 2, we review previous work on fingerspelling recognition.
These existing recognition systems rely on an initial time segmentation process
to identify a single isolated frame for each letter to be recognized. In Sect. 3,
we demonstrate situations where proposed time segmentation techniques fail,

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 214–225, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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necessitating the shift to letter-to-letter transitions. In Sect. 4, we describe a
system that uses traditional techniques from word-level ASL and speech recog-
nition to model the transitions. Section 5 illustrates the technique on an example
vocabulary. The results show that modeling transitions between letters improves
recognition performance when prior temporal segmentation is not assumed.

2 Related Work

The automatic translation of ASL into written English has been an active area
of research in computer vision for over a decade. Traditionally, researchers have
considered recognition of word-level gestures and fingerspelled letters to be iso-
lated problems and have developed separate techniques to address the two. The
two independent systems could eventually be combined to translate sequences
containing both word-level and fingerspelled signs by segmenting the video into
word-level or fingerspelled only segments using a binary classifier [1] and running
the appropriate system on the extracted segments.

Most systems designed to recognize word-level gestures use Hidden Markov
Models (HMMs) to model each hand’s location and velocity over time. Tech-
niques differ mainly in the degree to which handshape information is considered.
Some methods [2,3] use only very basic handshape information, if any; others [4]
use a complete description of the bending angles at 18 joints in the hand, which
are measured using an instrumented glove such as a CyberGlove.

In contrast, existing fingerspelling recognition systems classify static hand-
shapes in isolation. The complexity in the handshapes that must be differenti-
ated led some researchers [5,6] to use joint bending angles from a CyberGlove as
the input features. Unfortunately, these gloves are both intrusive and expensive.
Hernandez-Rebollar et al. [7] built their own instrumented glove in an attempt
to provide a low-cost option. Other researchers [8,9,10,11] focused on improv-
ing vision-based methods to create systems that are relatively inexpensive and
require only passive sensing. These systems have performed well in restricted
environments. Birk et al. [12] report recognition rates as high as 99.7% for a
single signer when presented with isolated images of each letter.

A related and active area of research is the recovery of arbitrary 3D hand
poses from a single image [13]. In theory, one could construct a fingerspelling
recognition system by taking a single image of the signer’s hand, inferring the
corresponding 3D hand pose, and then matching this pose to the static poses
defined for each letter. Like traditional systems, however, a technique relying on
pose reconstruction still uses an isolated image of a letter as the input to be
recognized.

To find the necessary single frame, researchers apply a threshold to the total
motion in the image. Recognition is performed on low-motion frames. Different
techniques are used to measure the motion of the signer, ranging from the total
energy in the difference between two consecutive frames [10] to the velocity of the
hand directly measured using the instrumented gloves [6]. Motion-thresholding
techniques work well as long as signers pause as they sign each letter. However,
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they begin to fail when this assumption breaks down and individual letters become
hidden in the smooth flow of high-speed fingerspelling gestures.

To our knowledge, Goh and Holden’s fingerspelling recognition system [14] is
the only current technique that does not require an explicit segmentation into
individual letters prior to recognition. This system is trained to recognize finger-
spelling using the Australian Sign Language (Auslan) alphabet, with individual
HMMs for each Auslan letter chained together using an explicit grammar to
form word-level HMMs. A new sequence is classified as the word whose HMM
maximizes the probability of the observations, consisting of coarse descriptions
of handshape and the velocities of points along the boundary of the silhouette.
They report a best word-level accuracy of 88.61% on a test set of 4 examples of
20 different words.

3 The Case for Transitions

The assumption that signers pause at each letter is consistently violated at
conversational speed. Proficient signers commonly fingerspell at 40-45 words per
minute (WPM), and it is impossible to pause at every letter at this speed. At 45
WPM, many letters are not formed exactly, but are combined with neighboring
letters in fluid motions. Even if a signer does pass through the exact handshape
defined for a letter, the aliasing resulting from a comparatively low frame rate
can cause this handshape to be missed.

Our experiments show that thresholding methods fail to accurately identify
letters at conversational speed. We took clips from interpreter training videos [15]
of native signers and identified frames to classify using a method similar to the
one described by Lamar et al. [10], which measures motion in each frame by
image differencing. In the first version, we select all frames with motion below a
set threshold; in the second, we select only frames corresponding to local minima
of motion that fall below the threshold. Figure 1(a) shows 30 frames from a man
signing rpreter (part of interpreter), with frames corresponding to local minima
below a set threshold surrounded by red boxes. The seven frames that best
represent the seven signed letters as determined by a human expert are outlined
in blue.

The threshold misses the first three (r, p, and r in frames 4, 8, and 12) and last
(r in frame 30) letters completely. Frame 18 is incorrectly identified as a letter
frame; it is actually the midpoint of the transitional motion from the letter e
to t, where the signer changes the direction of motion of the index finger. Also
note that the handshapes selected by the expert for r and e in frames 12 and 15
do not exactly match the handshapes defined in the ASL manual alphabet for
these letters.1 The signer never forms the exact handshapes during his smooth
motion from the p in frame 8 to the t in frame 20. This would cause errors in
recognition for a system trained on the defined static poses for each letter, even
if these frames were selected for classification.
1 An introduction to the ASL manual alphabet can be found at

http://www.lifeprint.com/asl101/fingerspelling/abc.htm

http://www.lifeprint.com/asl101/fingerspelling/abc.htm
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Fig. 1. The last 30 frames (left-to-right, top-to-bottom, in (a)) from the word inter-
preter with the closest frame to each of the seven letters outlined in blue. The four

frames outlined in red (numbers 15, 18, 20, and 26) are those selected using a fixed

threshold on the motion in the frame. ROC curves (b) show the effect of varying the

threshold. Selecting all frames below the threshold (solid black) identifies too many

incorrect frames; selecting only local minima below the threshold (dashed red) is inca-

pable of finding letters where the signer does not pause. (Figure best viewed in color.)

The receiver operating characteristic (ROC) curves in Fig. 1(b) show the
effect of varying the threshold. The dashed line corresponds to an algorithm that
selects only local minima. Because some letters actually occur at local maxima,
not minima, this algorithm can never identify all the letters, no matter what the
threshold. The solid line corresponds to an algorithm that selects every frame
with motion below the threshold. This algorithm eventually finds all the letter
frames but includes almost all transition frames as well. Clips of different words
from a number of different signers show similar poor performance. In fact, we
observed that the more common a specific combination of letters was, the less
likely it was for those letters to occur at local minima.

Human experts recognize the difficulty in trying to extract individual letters
from continuous fingerspelling, often teaching students to look for the “shape of
the word” instead of picking out each letter. Research has shown young deaf chil-
dren also use this method, initially perceiving fingerspelled words as single units
rather than as sequences of individual letters [16]. We adopt a similar approach,
recognizing motions between letters and eliminating the need for an initial time

Fig. 2. Hand silhouettes from consecutive frames of the fingerspelled words at (left) or

an (right). The final handshapes (letters t and n) appear similar, but handshapes are

clearly different during the transition. In at, only the index finger must move to all for

correct placement of the thumb. In an, the index and middle fingers must both move.
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segmentation step. As an added benefit, looking at the motion between letters
can help differentiate between letters whose static handshapes appear similar.
Figure 2 shows consecutive frames from the fingerspelled words at and an, which
have similar final handshapes but contain distinguishing transitional motions.

4 Recognizing Transitions

In this section, we describe a system that recognizes the gestures corresponding
to motions between consecutive letters. We model the motion using an HMM
with an observation model defined over part-based features extracted from single-
camera video of an unadorned signer. Because we recognize changes in handshape
over time using an HMM, our approach is related to the handshape channel
model used by Vogler and Mexatas [17] to recognize word-level signs involving
changes in handshape. Our method differs in that it is glove-free. The use of
similar recognition techniques is intentional because it allows the two systems
to be combined into one that would recognize both aspects of ASL.

4.1 Handshape Representation

We use a part-based method to represent handshape. Part-based methods are
sparse representations that match regions of the image to codewords in a speci-
fied dictionary. Typically, codewords are learned from training data or provided
by a human expert. We learn codewords that capture important information
about the position of each finger but that can be easily computed from images
recorded by a single camera.

Extracting Hand Silhouettes. Before learning parts, we extract the silhou-
ette of the signer’s dominant hand from each frame. Our train and test sets are
constructed so that skin can be accurately detecting using an intensity thresh-
old. In realistic environments, a more robust skin detection algorithm [18] would
be needed. After locating the region corresponding to the dominant hand and
arm based on its position in the frame, we discard the portion corresponding to
the arm by finding the wrist, a local minimum in the horizontal thickness of the
region. Our algorithm deals with slight errors in wrist detection by learning to
include small unremoved arm pieces in the dictionary of parts. Finally, extracted
silhouettes from each frame (examples shown in Fig. 2) are translated so that
their centroids align and are stored as 201×201-pixel binary masks.

Unsupervised Learning of a Dictionary of Parts. These silhouettes can be
partitioned into a small number of mostly convex parts. Each part is defined by
its shape and location relative to the centroid of the silhouette. The largest part
corresponds to the palm and any bent fingers occluding it. The remainder of the
silhouette consists of disconnected parts corresponding to extended or partially
extended groups of fingers or to sections of the arm that were not properly
removed. In Fig. 3(b), the silhouette from Fig. 3(a) has been broken into parts.
The outline of each piece is shown.
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(a) (b) (c) (d)

Fig. 3. A hand silhouette (a) is broken into parts, indicated by their outlines in (b).

The reconstruction of this silhouette using the dictionary of parts in (d) is shown

in (c). This dictionary was learned from the training set described in Sect. 5. Each

part is displayed using the corresponding binary mask, with multiple non-overlapping

non-palm parts drawn in the same image to conserve space. We successfully learn

semantically meaningful palms and groups of fingers in an unsupervised fashion.

We extract parts from silhouettes using morphological operations. The palm
part is extracted by performing a sequence of erosions and dilations. After a
few erosions, the appendages disappear, indicated by the convexity of the shape
exceeding a fixed threshold. The dilations return the shape, corresponding to
the palm, to its original size but do not regrow the removed appendages. No
morphological operations are performed on the non-palm parts, which remain
when the extracted palm is subtracted from the original silhouette. All parts
are represented by binary masks with dimensions equal to the size of the input
silhouette (201×201 pixels). The location of the non-zero region encodes the
location of the part relative to the centroid of the hand.

The final dictionary contains parts representing the most frequently occurring
pieces. After extracting pieces from a training set, we cluster the palm pieces
and the non-palm pieces separately using k-means clustering. To increase clus-
tering speed, we reduce the dimensionality of each piece using PCA. We include
the medioids of each returned cluster in our dictionary. Increasing the size of
the dictionary improves the expressiveness of the representation but decreases
computational efficiency and requires more training data. The dictionary learned
from our training set (see Sect. 5) is shown in Fig. 3(d). Each connected com-
ponent (20 palms and 40 non-palms) is a separate part.

Reconstruction from Parts. Given a learned dictionary, we compute repre-
sentations of novel hand silhouettes by reconstructing the new shape as closely as
possible while simultaneously using as few parts as possible. We first extract the
palm part from the novel silhouette using morphological operations and select
the part from the palm section of the dictionary that minimizes the total number
of incorrect pixels. Next, we greedily add parts from the remaining (non-palm)
portion of the dictionary until adding parts no longer improves the reconstruc-
tion. At each iteration, we tentatively add each unused part to the reconstruction
by increasing the value of all pixels inside its mask by one, selecting the part
which most reduces the total number of incorrect pixels in the reconstruction. To
improve the invariance of the representation we search over a small set of affine
transformations when finding the best fitting part. At termination, we return a
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bit-vector indicating which parts make up the final reconstruction. Figure 3(c)
shows the reconstruction of the silhouette from Fig. 3(a) that uses five parts
from the dictionary in Fig. 3(d).

4.2 Hidden Markov Model

We train separate HMMs to recognize the transition between each pair of letters.
To recognize fingerspelling sequences without knowing when each transition be-
gins, we chain together the individual HMMs (called subunits). In this section,
we describe the topology of the resulting HMM, the observation model, and the
training and recognition processes. Rabiner’s tutorial [19] provides a good review
of HMMs and the related algorithms referenced here.

HMM Topology and Observation Model. Each subunit is a five-state Bakis
topology HMM [20] (see Fig. 4). Observations in the first and last states usu-
ally correspond to the handshapes of the two letters. Observations in the three
internal states capture configurations appearing during the transition. Skip tran-
sitions accommodate transitional motions performed at varying rate and phase
relative to video sampling times. In the complete HMM, we connect subunits
together using a bigram language model over letter transitions, introducing tran-
sitions between final and initial states of the subunits that form trigrams.

With our representation of handshape, each frame contains one palm and any
combination of the non-palms. Thus, with a dictionary containing P palm parts
and F non-palm parts, there are P · 2F possible observations at each frame.
It is too costly to try to learn or store the exact distribution over all possible
observations. Instead, we approximate with the factored distribution

P(p, f1, . . . , fF ) = P(p)
F∏

i=1

P(fi|p) , (1)

which requires only (P−1)+P ·F parameters for each state. The P−1 parameters
define a multinomial distribution over palm parts. The remaining parameters
define P · F binomial distributions over the existence or non-existence of each
non-palm part conditioned on the palm used.

Training. The subunits are trained independently using isolated sequences cor-
responding to the desired letter pair. Given a clip of continuous fingerspelling,
we hand-label a single frame for each letter signed. (These frames are the ones
previous methods use for recognition.) We then use all the frames between the
two labeled frames as an example of a given transition. During training, we
ensure that each sequence ends in the final state of the subunit by adding a non-
emitting state reachable only from the final emitting state. The parameters of
each subunit HMM are estimated using the standard Baum-Welch algorithm [19].
Initial observation models are learned by assuming that the true path for each
training sequence traverses all five states and remains in each state for 1

5 of the
total number of frames. The state transitions are initialized to be uniform over
those allowed by our topology. Figure 4 shows the learned HMM for the a→t
transition. Each state is represented by its most probable observation.
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Fig. 4. A letter-to-letter transition HMM trained to recognize the a→t transition.

Edges correspond to transitions with non-zero probability. States model handshapes

found at different points during the transitional motion. The most likely observation

is displayed to represent each state.

Recognition. To recognize a sequence of letters we compute the Viterbi
path [19] through the full HMM. Our recognized sequence of letters follows from
the sequence of subunits the path traverses. The path traverses a subunit only
if it reaches one of the final two states, which keeps us from recognizing a letter
pair when only the first letter of the pair is actually signed.

5 Results

To construct a challenging test vocabulary, we built a third-order letter-level
model of English words (from Joyce’s Ulysses), and included the 50 most com-
mon letter pairs. These 50 digrams account for 48% of all letter pairs, and
contain 18 different letters. We then listed all trigrams (a total of 186) contain-
ing these 50 digrams that occurred with a frequency of at least 10−4. We built
an 82-word vocabulary (listed in Fig. 5) containing each trigram at least once.
The perplexity, 2H (where H is entropy [21]), of this vocabulary is 5.53 per di-
gram. By comparison, the perplexity of an equivalent model built from the 1,000
most common English words is 10.31. Our reduced perplexity results from the
prevalence of vowels in the top 50 digrams.

Our training set consists of 15 frame-per-second video of 10 examples of each
word (29,957 frames total); a separate testing set contains 10 additional examples
of each word (28,923 frames). Training and test data amount to about 65 minutes
of video. Each frame is originally 640 × 480 pixels, with the hand occupying a
region no larger than 200 × 200 pixels. We learn the dictionary of parts using
unlabeled frames from the training set and train the HMMs using labeled frames.
No portion of the training set was used to test the performance of any algorithm.

5.1 Competing Algorithms

To isolate the effect of recognizing letter transitions from choices of handshape
representation and probabilistic model, we compare our performance to two al-
ternate systems (Alt1 and Alt2), both of which share our handshape represen-
tation and observation model. Both Alt1 and Alt2 use an HMM with one state
corresponding to each letter, with observation models trained on isolated in-
stances of the corresponding letters. The HMM for Alt1 contains a single state
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alas, andes, aroma, atoned, beating, bed, below, berate, bestowal, chased, cheat,

cheng, chinese, chisel, chow, coma, conde, contend, coral, corinth, courant, delores,

easter, eden, elitist, eraser, halo, handed, hang, hare, healed, helen, hero, hinder,

hither, home, hour, lane, larine, latest, lathered, line, long, male, marathon, master,

mate, meander, medea, mentor, merited, near, rarest, realist, releases, rise, roman,

ron, row, sealer, sentinel, serene, teal, testing, that, then, these, this, thor, tithed,

tome, urease, urine, velour, venerate, vera, vest, wales, wand, war, wasteland, water

Fig. 5. The 82-word vocabulary

Table 1. Performance of Alt2 and L2L with and without a dictionary, averaged over

the entire test set (10 examples each of 82 different words). Most recognition errors in

L2L without a dictionary are single letter substitutions or missing final letters.

Alt2 Alt2+dict L2L L2L+dict

Digrams correct 53.44% 60.61% 69.64% 72.85%

Words recognized with no incorrect letters 31.83% 86.59% 57.32% 92.68%

Per letter performance on full words 76.97% 90.86% 86.85% 94.75%

modeling all non-letter handshapes. In the Alt2 HMM, we form 18 identical
copies of the non-letter state, one for each letter state. The replicated non-letter
states permit transitions between only those pairs of letters that occur in our
vocabulary. In both systems, recognition is performed by computing the Viterbi
path and discarding the frames assigned to the non-letter state(s).

5.2 Performance Comparison

We classified isolated digrams and entire words using our method (L2L) and the
comparison methods that recognize letters only (Alt1 and Alt2). Figure 6(a)
shows the distribution of recognition performance for the three algorithms over
the isolated digrams. To quantify the severity of a recognition error on a word,
we compute the letter error rate (LER) for each word by computing the ratio
of the number of incorrect letters (insertions, deletions, or substitutions) to the
total number of letters recognized. The per letter performance for that word
is then 1 − LER. Figure 6(b) shows the distribution of per letter performance
over our test words. L2L outperforms the alternative techniques on both isolated
digrams and full words.

Adding an explicit dictionary to both Alt2 and L2L will improve performance
by restricting the space of possible words. Table 1 contains a summary of recog-
nition performance of both techniques with and without a dictionary. While
adding a dictionary improves the performance of both Alt2 and L2L, model-
ing transitions results in better recognition accuracy than modeling letters in
isolation with or without the help of a dictionary.
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Fig. 6. A comparison of the performance of the proposed method to the two alterna-

tives. All graphs show a count distribution of the fraction of letters recognized correctly.

(a) Counts over 50 isolated digrams. (b) Counts over 82 different words. Top row: Alt1;

middle row: Alt2; bottom row: L2L (our method). L2L recognizes a larger percentage

of digrams and words with increased accuracy.

6 Discussion

We have introduced a principle for fingerspelling recognition that bypasses the
difficult task of identifying an isolated frame for each letter and no longer ig-
nores the dynamic nature of fingerspelling sequences. Our experiments show
that modeling transitions between letters instead of isolated static handshapes
for each letter improves recognition accuracy. Modeling transitions results in
a recognition system that leverages information available while a letter is be-
ing formed to disambiguate between letters whose handshapes appear similar in
single-camera video. Additionally, because the letter transition model includes
multiple HMM states for each letter depending on the surrounding context, it
can learn differences in handshape caused by coarticulation [22].

The benefit of modeling transitions is most apparent when no dictionary is
used to aid recognition. While dictionaries are commonly used in deployed speech
or word-level ASL recognition, we believe a system that does not rely on an
explicit dictionary is more suited to fingerspelling recognition. Signers use fin-
gerspelled signs exactly when the word they need is uncommon enough to not
have a word-level sign. Thus, a deployed system would be most useful when it
could correctly interpret uncommon words such as proper nouns that are likely
not to be included in a reasonably-sized dictionary constructed during training.

The largest drawback to modeling and recognizing transitions between letters
instead of isolated letters is the increase in the number of classes from 26 to
262. Although this increases the need for training data, it does not pose an
insurmountable obstacle. For example, a hybrid method that models interesting
transitions in detail but uninformative transitions at the level of Alt2 would
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help manage the complexity of the resulting system. Additionally, techniques
commonly employed in speech recognition such as tying similar states together
could be used to make it possible to train the HMM with a reasonable amount
of training data.

Our goal in this paper was not to demonstrate a deployable fingerspelling
recognition system, but rather a useful principle for analysis. Much work remains
before we reach a practical system, including generalizing to the full alphabet
and multiple signers, dealing with cluttered environments, and interfacing with a
word-level recognition system. Nonetheless, our demonstration of the feasibility
of modeling transitions between letters represents a step toward a system that
will recognize native ASL.
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Abstract. This paper introduces an efficient technique for simultane-

ous processing of video frames to extract spatio-temporal features for

fine activity detection and localization. Such features, obtained through

motion-selectivity attribute of 3D dual-tree complex wavelet transform

(3D-DTCWT), are used to train a classifier for categorization of an

incoming video. The proposed learning model offers three core advan-

tages: 1) significantly faster training stage than traditional supervised

approaches, 2) volumetric processing of video data due to the use of 3D

transform, 3) rich representation of human actions in view of direction-

ality and shift-invariance of DTCWT. No assumptions of scene back-

ground, location, objects of interest, or point of view information are

made for activity learning whereas bidirectional 2D-PCA is employed

to preserve structure and correlation amongst neighborhood pixels of a

video frame. Experimental results compare favorably to recently pub-

lished results in literature.

1 Introduction

In recent years, research community has witnessed considerable interest in ac-
tivity recognition due to its imperative applications in different areas such as
human-computer interface, gesture recognition, video indexing and browsing,
analysis of sports events and video surveillance. Despite the fact that initially
good results were achieved, traditional action recognition approaches have in-
herent limitations. Different representations have been proposed in action recog-
nition such as optical flow [3], geometrical modeling of local parts space-time
templates, and hidden Markov model (HMM) [4]. Geometrical model [1,8,12]
of local human parts are used to recognize the action using static stances in a
video sequence which match a sought action. In space-time manifestation [21],
outline of an object of interest is characterized in space and time using silhou-
ette. The volumetric analysis of video frames has also been proposed [6] where
video alignment is usually unnecessary and space-time features contain descrip-
tive information for an action classification. In [6] promising results are achieved

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 226–235, 2010.
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assuming that background is known for preliminary segmentation. For action
recognition use of space-time interest points has been proved to be a thriving
technique [11] without any requirement for pre-segmentation or tracking of in-
dividual dynamic objects in a video. Recently, classifiers that embed temporal
information in a recognition process [18] and event recognition in still images
[10] have been proposed where distinct scene and object recognition schemes are
applied to identify an event.

A novel action learning framework using 3D dual-tree complex wavelet trans-
form (3D-DTCWT) is proposed to process volumetric data of a video sequence
instead of searching a specific action through feature detection in individual
frames and finding their temporal behavior. Proposed by Kingsbury [9], 2D
dual-tree complex wavelet transform has two important properties; the trans-
formation is nearly shift-invariant and has a good directionality in its subbands.
The idea of multiresolution transform for motion analysis was proposed in [5]
and further developed as 3D wavelet transform in video denoising by Selesnick
et al. [15], which is an important step to overcome the drawbacks of previously
introduced video denoising techniques.These limitations are due to separable im-
plementation of 1D transforms in a 3D space, and also due to an artifact called
checkerboard effect which has been extensively explained in an excellent survey
on theory, design and application of DTCWT in [17]. Selesnick et al. refined their
work in [16] introducing non-separable 3D wavelet transform using Kingsbury’s
filter banks [9,17] to provide an efficient representation of motion-selectivity.

For real time processing, complex wavelet coefficients of different subbands
are represented by lower dimension feature vectors obtained using bidirectional
2D-PCA, i.e., a variant of 2D-PCA [20]. Extreme learning machine (ELM) is
applied to classify the actions represented by feature vectors. ELM is a supervised
learning framework [7], single hidden layer feedforward neural network, that is
trained at speed of thousands times faster than traditional learning schemes such
as gradient descent approach in traditional neural networks.

2 Dual-Tree Complex Filter Banks

Consider the two-channel dual-tree filter bank implementation of the complex
wavelet transform. Shown in Fig. 1, the primal filter bank in each level defines the
real part of the wavelet transform. The dual filter bank depicts the imaginary
part when both the primal and dual filter banks work in parallel to make a
dual-tree structure. Recall that the scaling and wavelet functions associated
with the analysis side of the primal are defined by two-scale equations φh(t) =
2
∑

n h0[n]φh(2t − n) and ψh(t) = 2
∑

n h1[n]φh(2t − n). The scaling function
φf and wavelet function ψf in the synthesis side of the primal are similarly
defined via f0 and f1. The same is true for the scaling functions (φ̃h and φ̃f )
and wavelet functions (ψ̃h and ψ̃f ) of the dual filter bank B̃. The dual-tree filter
bank defines analytic complex wavelets ψh + jψ̃h and ψ̃f + jψf , if the wavelet
functions of the two filter banks form Hilbert transform pairs. Specifically, the
analysis wavelet ψ̃h(t) of B̃ is the Hilbert transform of the analysis wavelet
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Fig. 1. Typical schematic of a 3D-DTCWT structure with the real and imaginary parts

of a complex wavelet transform. Only the analysis side is shown in details in this figure.

ψh(t) of B, and the synthesis wavelet ψf (t) of B is the Hilbert transform of
ψ̃f (t). That is, Ψ̃h(ω) = −jsign(ω)Ψh(ω) and Ψf(ω) = −jsign(ω)Ψ̃f (ω), where
Ψh(ω), Ψf (ω), Ψ̃h(ω), and Ψ̃f (ω) are the Fourier transforms of wavelet functions
ψh(t), ψf (t), ψ̃h(t), and ψ̃f (t) respectively, sign represents the signum function,
and j is the square root of -1. This introduces limited redundancy and allows
the transform to provide approximate shift-invariance and more directionality
selection of filters [9,17] while preserving properties of a perfect reconstruction
and computational efficiency with improved frequency responses. It should be
noted that these properties are missing in discrete wavelet transform (DWT).
The filter bank B constitutes a biorthogonal filter bank [19] if and only if its
filters satisfy the no-distortion condition

H0(ω)F0(ω) + H1(ω)F1(ω) = 1 (1)

and the no-aliasing condition

H0(ω + π)F0(ω) + H1(ω + π)F1(ω) = 0. (2)

The above no-aliasing condition is automatically satisfied if H1(z) = F0(−z)
and F1(z) = −H0(−z). The wavelets of the dual filter bank exhibits similar
characteristics, i.e., H̃1(z) = F̃0(−z) and F̃1(z) = −H̃0(−z) where z refers to
the z-transform. A complete procedure of DTCWT design and its application
for moving object segmentation is presented in [22] and [2] respectively.
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2.1 Non-separable 3D Dual-Tree Complex Wavelet Transform

Generally, wavelet bases are optimal for the category of one dimensional sig-
nals. In case of 2D (two dimensional), however, the scalar 2D discrete wavelet
transform (2D-DWT) cannot be an optimal choice [17] because of the weak line
(curve)-singularities of DWT although it is still better than the discrete cosine
transform (DCT). In video, however, the situation is even worse and the edges
of objects move in more spatial directions (motion) yielding a 3D edge effect.
The 3D-DTCWT includes a number of wavelets which are expansive than real
3D dual-tree wavelet transform. This is related to the real and imaginary parts
of a 3D complex wavelet with two wavelets in each direction. Fig. 1 shows the
structure of a typical 3D-DTCWT. Note that the wavelets associated with 3D-
DTCWT are free of the checkerboard effect. The effect remains disruptive for
both the separable 3D-CWT (complex wavelet transform) and 3D-DWT. Recall
that for 3D-DTCWT, in stage three (the third level of the tree), there are 32
subbands from which 28 are counted as wavelets excluding the scaling subbands,
compared with the 7 wavelets for separable 3D transforms. Thus, 3D-DTCWT
can better localize motion in its several checkerboard-free directional subbands
compared with 2D-DWT and separable 3D-DWT with less number of subbands
and checkerboard phenomena. It should be noted that there is a slight abuse of
using the term subband here. It is more reasonable to use the terms of ‘blocks’
or ‘boxes’ instead of ‘subbands’ in a 3D wavelet structure.

2.2 Extreme Learning Machine

It is a well known fact that the slow learning speed of feedforward neural net-
works (FNN) has been a major bottleneck in different applications. Huang et
al. [7] showed that single-hidden layer feedforward neural network, also termed
as extreme learning machine (ELM), can exactly learn N distinct observations
for almost any nonlinear activation function with at most N hidden nodes (see
Fig. 2). Unlike the popular thinking that network parameters need to be tuned,
one may not adjust the input weights and first hidden layer biases but they
are randomly assigned. Such an approach has been proven to perform learn-
ing at an extremely fast speed, and obtains better generalization performance
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for activation functions that are infinitely differentiable in hidden layers. For
N arbitrary distinct samples (xi, γi) where xi = [xi1, xi2, . . . , xip]′ ∈ Rp and
γi = [γi1, γi2, . . . , γim]′ ∈ Rm (The superscript “ ′ ” represents the transpose)
represent input samples and label respectively. A standard ELM with L hidden
nodes and an activation function g(x) is modeled as

L∑
i=1

βig(xl) =
L∑

i=1

βig(wi.xl + bi) = ol, l ∈ {1, 2, 3, . . . , N} (3)

where wi = [wi1, wi2, . . . , wip]′ and βi = [βi1, βi2, . . . , βim]′ represent the weight
vectors connecting the input nodes to an ith hidden node and from the ith hidden
node to the output nodes respectively. bi shows a threshold for an ith hidden
node, and wi.xl represents inner product of wi and xl. The above modeled ELM
can reliably approximate N samples with zero error as

L∑
l=1

‖ol − γl‖ = 0 (4)

L∑
i=1

βig(wi.xl + bi) = γl, l ∈ {1, 2, . . . , N} (5)

The above N equations can be written as Υβ = Γ where β = [β′
1, . . . , β

′
L]′L×m

and Γ = [γ′
1, . . . , γ

′
N ]′N×m. In this formulation Υ is called the hidden layer output

matrix of ELM where ith column of Υ is the output of ith hidden node output
with respect to inputs x1, x2, . . . , xN . If the activation function g is infinitely
differentiable, the number of hidden nodes are such that L � N . Thus

Υ = (w1, . . . , wL, b1, . . . , bL, x1, . . . , xN ) (6)

Traditionally, training of ELM requires minimization of an error function ε in
terms of the defined parameters as

ε =
∑N

l=1(
∑L

i=1 βig(wixl + bi)− γl)2 (7)

3 Proposed Algorithm

Our proposed framework assigns an action label to an incoming video based upon
observed activity. Initial feature vectors are extracted after segmenting moving
objects in various frames of an input sequence. Each video frame is converted to
gray level and a square dimension matrix. No further pre-processing is applied
to input data and we assume no additional information about location, view
point, activity, background and data acquisition constraints. We do not require
knowledge of background or static objects since a robust moving object detection
and segmentation algorithm is applied to extract movements in a video [2]. After
segmentation, video frames contain moving object information only. Applying
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Fig. 3. Spatio-temporal information captured by (a) bidirectional 2D-PCA, (b) PCA

3D-DTCWT on segmented video sequence of size (Q,M,P ) results into a box
of video frames of size (Q/2,M/2, P/2) where Q, M , and P represent rows,
columns and number of frames respectively.

To avoid the curse of dimensionality bidirectional 2D-PCA is employed which
requires multiplication between two feature matrices computed in row and col-
umn directions using 2D-PCA [20]. As opposed to PCA, 2D-PCA is based on
2D image matrices rather than 1D vectors, therefore the image matrix does not
need to be vectorized prior to feature extraction. We propose a modified scheme
to extract features using 2D-PCA by computing two image covariance matrices
of the square training samples in their original and transposed forms respec-
tively while the training image mean need not be necessarily equal to zero. The
vectorization of mutual product of such 2D-PCA matrices results into a consid-
erably smaller sized subband feature vectors that retain better structural and
correlation information amongst neighboring pixels. Fig. 4 shows better ability
of bidirectional 2D-PCA to represent the spatio-temporal information of various
actions performed by actor Daria. Fig. 4(a) and (b) are plotted against three
different videos that contain activity of Jack, Bend and Jump respectively. The
first two components of subband feature vectors obtained using bidirectional
2D-PCA and traditional PCA are plotted. In Fig. 4(a), the separability of differ-
ent action classes is noticeable whereas components are merged for the feature
vectors obtained using PCA (Fig. 4(b)). Procedure of the proposed algorithm is
briefly summarized below.

INPUT: A video sequence consisting of frames ai, 1 ≤ i ≤ P
OUTPUT: Recognized Action
Step 1: Apply segmentation and extract video frames bi, 1 ≤ i ≤ P with

moving objects only (see Fig. 4).
Step 2: Compute coefficients Cd

f , d ≤ 28, f ≤ P/2 (d, f represent filters orien-
tation and number of coefficient matrices) using 3D-DTCWT on volumetric
video data bi, 1 ≤ i ≤ P .
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Fig. 4. First row: Randomly selected actions. Bending, Running, Jack, Jump, Side,

and Skip (left to right). Second row: Segmented frames using our technique in [2].
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Fig. 5. Accuracy analysis. (a) Video classification for increasing size of feature vectors,

(b) Varying number of compared videos.

Step 3: Compute feature vectors using coefficients computed in Step 2. Cal-
culate coefficient covariance matrices G:
Gd = 1

f

∑f
i=1(C

d
i − C)′(Cd

i − C), C =
∑f

i=1 Cd
i , d ∈ {1, 2, . . . , 28}, i ≤ f .

Step 4: Evaluate the maximizing criteria J(X) for projection vector X .
J(X) = X ′GdX, d ∈ {1, 2, . . . , 28}.

Step 5: 2D-PCA for coefficient matrix Cl
i is represented as Yd = Cd

i X, d ∈
{1, 2, . . . , 28}, i ≤ f.

Step 6: Determine bidirectional 2D-PCA as Y bi
d = Y ′

d .Yd, d ∈ {1, 2, . . . , 28}.
Step 7: Convert matrices Y bi

d , d ∈ {1, 2, . . . , 28} into vector form.
Step 8: Train ELM using training feature vectors (computed in Steps 1–7).
Step 9: Test the action in an incoming video using feature vectors.

4 Results and Discussion

To test the performance of our proposed method, publicly available datasets [6]
are used in experiments. These datasets contain different subjects which perform
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Table 1. Confusion table for dataset [6]

Bend Jump Jack Side Walk Run Skip Wave1 Wave2

Bend 9

Jump 8 1

Jack 9

Side 1 8

Walk 9

Run 8 1

Skip 8 1

Wave1 9

Wave2 9
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Fig. 6. Computational complexity of our

proposed method
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Fig. 7. Performance analysis of different

methods

nine distinct actions and therefore we have various videos with varying number
of frames. In Fig. 4, first row shows some randomly selected video frames for
various subjects along with their segmentation in second row. A leave-one-out
cross validation scheme is applied whereas results presented in this section are
averaged values for 10 runs of the same experiment through random selection of
subjects and/or actions in the dataset.

It is also worth to point out that the dimension of individual feature vectors
may also affect the video classification since larger feature vectors retain more
information at the expense of higher computational complexity. However, antic-
ipating improved classification by monotonically increasing the size of feature
vectors is not a rationale approach. As presented in Fig. 5(a), the accuracy is
not constantly increasing by raising the dimensionality of feature vectors; espe-
cially classification precision is dwindling or remains constant at arrow locations
while the computational complexity of classification is ever-increasing. In our
experiments, we achieve reasonable degree of action recognition for the size of
feature vectors varying from 36 to 100. In the past, as per the best knowl-
edge of authors, classification accuracy has been reported for a fixed number of
training and testing actions/subjects whereas it is an interesting investigation
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to judge the accuracy of a classifier by analyzing its performance for randomly
selected combinations of training and testing videos. As shown in Fig. 5 (b),
our proposed method achieves an average classification precision of 94.2% for
varying number and combinations of subjects/videos. Insightful investigation
reveals the fact that for a larger number of compared videos of the same or dif-
ferent actions/object has higher probability for false alarms [see Fig. 5(b)] due
to apparently the same activity observed in small number of adjacent frames
such as standing, similar movements in between repetition of an action etc.
Fig. 6 represents the computational complexity (combined for training and test-
ing) of our proposed classifier for activity recognition and classification after
extraction of feature vectors of all videos of the dataset [6] with respect to the
employed processor. Categorization time is another important factor to measure
the performance of a classification framework. Our proposed method completes
classification of subband feature vectors at considerably faster speed. This is an
additional improvement on existing methods since proposed technique requires
significantly less time for identification and categorization due to enormously
simple structure of a classifier comprising of only one hidden layer of neurons
yet producing promising results. Table 1 shows confusion table, with achieved
accuracy of 95.04%, for a random combination of one and three videos used for
testing and training purpose respectively.

Fig. 7 presents accuracy analysis of various methods for human action recog-
nition; it is clear that our proposed scheme outperforms well-known techniques
in terms of accuracy and computational complexity. We achieve 94.2% correct
action labeling that is an average value for varying number and combinations of
randomly selected videos instead of relying on a specific number and/or combi-
nation of video sets.

5 Conclusion

A new human action recognition framework is presented based on volumetric
video data processing rather than frame by frame analysis. Our method as-
sumes no a priori knowledge about activity, background, view points and/or ac-
quisition constraints in an arriving video. Shift-invariance and motion selectivity
properties of 3D-DTCWT support reduced artifacts and resourceful processing
of a video for better quality and well-localized activity categorization. Subband
feature vectors, computed using bidirectional 2D-PCA, are input to an ELM
that offers classification at considerably higher speed in comparison with other
learning approaches such as classical neural networks, SVM and AdaBoost.
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Abstract. In this paper we study the problem of gender recognition

from human body. To represent human body images for the purpose of

gender recognition, we propose to use the biologically-inspired features

in combination with manifold learning techniques. A framework is also

proposed to deal with the body pose change or view difference in gender

classification. Various manifold learning techniques are applied to the

bio-inspired features and evaluated to show their performance in differ-

ent cases. As a result, different manifold learning methods are used for

different tasks, such as the body view classification and gender classifica-

tion at different views. Based on the new representation and classification

framework, a gender recognition accuracy of about 80% can be obtained

on a public available pedestrian database.

1 Introduction

Gender recognition has many useful applications. For instance, gender informa-
tion extracted from images can be used to count the number of men and women
entering a shopping mall or movie theater. A “smart building” might use gen-
der for surveillance and control of access to certain areas. Gender recognition is
also an important research topic in both psychology [1,2,3] and computer vision
[4,5,6].

SEXNET [4] is probably the first work to recognize gender from human faces
using a neural network. Later on, other researchers have focused on face-based
gender recognition, see some recent works [5,6] and references therein. Almost all
previous research on gender recognition uses human faces, either in psychology
study or computational recognition. Is it possible to use other cues than faces for
gender recognition? Very recently, Cao et al. [7] presented an interesting work
where the human body images are used for gender recognition. They describe a
patch-based gender recognition (PBGR) approach in [7], and use the histogram
of oriented gradient (HOG) operator [8] for feature extraction in each patch, and
use a boosting method [9] for classification.

The advantages of using human bodies over faces are that (1) human bodies
can still be used for gender recognition even in low resolution images captured by
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Fig. 1. Some examples of human body images used for gender recognition

the security video cameras, while the faces might not be used due to insufficient
resolution; (2) faces or important facial features might be occluded by hair, mask,
or sun glasses such that the faces cannot be used for gender recognition, while the
bodies can still be used; (3) extreme face pose changes such as presenting profile
views or even back views make the face no useful for gender recognition; and (4)
capturing faces with a close-by camera might be too intrusive for some people
or in some situations, while the bodies can usually be captured at a distance.

In this paper we plan to investigate new representations for human body-
based gender recognition, which is described in Section 2. Then we propose a
framework for automatic gender recognition considering different body views in
Section 3. The experiments on gender recognition are presented in Section 4.
Finally, the conclusion is given.

2 Human Body Representation

We use the biologically-inspired features (BIF) combined with manifold learning
for representing human body images. Some representative methods are evaluated
in learning the manifold from the BIF.

2.1 Biologically-Inspired Features

It has been a long-term research goal to understand how objects are recognized
in the visual cortex. Theories and algorithms from neuroscience and psychology
might have great impact on the design of computational methods. Here we in-
vestigate the biologically-inspired features for the problem of gender recognition
from human body. To our best knowledge, this is the first time that the BIFs
are investigated for this problem.

Riesenhuber and Poggio [10] proposed a set of features derived from a feed-
forward model of the primate visual object recognition pathway. The framework
of the model contains alternating layers called simple (S) and complex (C) cell
units creating increasing complexity as the layers progress from the primary
visual cortex (V1) to inferior temporal cortex (IT). Specifically, the first layer of
the model, called the S1 layer, is created by convolving an array of Gabor filters
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Fig. 2. Visualization of the Bio-inspired features using two bands and four orientations

at four orientations and 16 scales, over the input image. Adjacent two scales
of S1 units are then grouped together to form eight ‘bands’ of units for each
orientation. The second layer, called the C1 layer, is then generated by taking
the maximum values within a local spatial neighborhood and across the scales
within a band. The advantage of taking the “max” operation within a small
range of position and scale is to tolerate small shifts and changes in scale.

Serre et al. [11] extended the model of Riesenhuber and Poggio to include
two higher level layers, called S2 and C2, for object recognition. In the S2 layer,
template matching is performed to match the patches of C1 units with some pre-
learned prototype patches that are extracted from natural images. This S2 layer
gets intermediate features that are more selective and thus useful for discriminat-
ing between classes of objects. These S2 units are then convolved over an entire
image and C2 units are assigned the maximum response value on S2. Mutch
and Lowe [12] built on Serre et al.’s work for object category recognition and
proposed some improvements. Meyers and Wolf [13] used biologically-inspired
features for face recognition by concatenating the C1 units to form a so-called
S2 facial features (S2FF) and used a relevant component analysis technique for
feature dimension reduction.

For human body based gender recognition, we found that using the S2 and
C2 features (via pre-learned prototypes [11]) does not work well for our problem.
Instead, we only use the C1 features. Based on our experience, the point of view
is that the C2 features might be useful for recognizing object categories, e.g.,
trees, cars, bikes, etc., but not necessarily show high performance for recognition
of objects within the same category, such as human faces or bodies. Serre et
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al. have showed that the C2 features do not outperform the HOG features [8]
in pedestrian detection. Meyers and Wolf [13] used the C1 features for face
recognition. In our approach, only the C1 features are used for gender recognition
from human body images.

2.2 Manifold Learning

Suppose there is a set of human body images X = {xi}n
i=1 ∈ RD, in the image

space I, with ground truth labels, L = {li : li ∈ N}n
i=1, e.g., males and females.

The goal of manifold learning is to learn a low-dimensional manifold M in the
embedded subspace of I, such that the new representation Y = {yi}n

i=1 ∈ Rd

satisfies d � D. In linear embedding, the methods find D × d matrix P sat-
isfying Y = PT X, where Y = [y1 y2 · · · yn], X = [x1 x2 · · · xn], and
P = [p1 p2 · · · pd].

Principal Component Analysis (PCA) [14]: As a traditional unsupervised dimen-
sionality reduction algorithm, the PCA finds the embedding that maximizes the
projected variance, namely,

p = argmax
p, ‖p‖=1

pT Sp,

where S =
∑n

i=1(xi− x̄)(xi− x̄)T is the scatter matrix, and x̄ is the mean vector
of {xi}n

i=1.

Orthogonal Locality Preserving Projections (OLPP) [15]: The OLPP finds
the embedding that preserves essential manifold structure by measuring the
local neighborhood distance information. Define the affinity weight sij =
exp (−‖xi − xj‖2/t) when xi and xj are k nearest neighbors of each other,
otherwise sij = 0. Define symmetric matrix S(i, j) = sij , diagonal matrix
D(i, i) =

∑
j sji, and Laplacian matrix L = D− S. The objective of OLPP is

p = argmin
p, pT XDXT p=1

n∑
i=1

n∑
j=1

(pTxi − pTxj)2sij

Marginal Fisher Analysis (MFA) [16]: The MFA conducts supervised learning
with Fisher criterion. It constructs the within-class graph Gw and between-class
graph Gb considering both discriminant and geometrical structure in the data.
In contrast to the OLPP [15], now define two Laplacian matrices, one is for
within-class, Lw, and the other is for between-class, Lb. The objective of MFA is

p = argmin
p

pTXLwXT p
pTXLbXTp

Locality Sensitive Discriminant Analysis (LSDA) [17]: The LSDA is another
supervised method that constructs the similar graphs and objective as MFA but
solves in a different way. The objective of LSDA is
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argmin

∑n
i,j=1(p

Txi − pTxj)2s
(w)
ij

argmax
∑n

i,j=1(p
Txi − pTxj)2s

(b)
ij

and compute pi as the eigenvector of

X(αLb + (1− α)Sw)XTp = λXDwXT p

associated with the largest eigenvalues, where α ∈ [0, 1] is an empirical constant.

2.3 Our Representations for Human Bodies

We investigate the combination of bio-inspired features and manifold learning as
a new representation of human bodies for body-based gender recognition. Both
the unsupervised PCA and supervised OLPP, MFA, and LSDA are used for man-
ifold learning. Some interesting results can be observed in our gender recognition
experiments. Manifold learning (or subspace analysis) is an active research topic
in computer vision recently. Usually, manifold learning methods are applied to
raw images directly [15,16,17]. However, the misalignment or no-perfect aligning
of human body images might cause problems for subspace analysis methods if
they are applied to the images directly. When the bio-inspired features rather
than the raw images are used as the input, the manifold leaning methods might
not suffer from the alignment problem, since the “MAX” operation in obtain-
ing the C1 features from S1 can endure small translations, rotations, and scale
changes [10,11]. Note that the bio-inspired features that we used here do not
have the C2 layer as in [10,11].

3 Gender Recognition

We use the linear support vector machines (SVMs) [18] for classification. The
nonlinear SVMs perform no better than the linear SVMs for gender recognition
from human bodies, and even worse than the linear SVMs in some cases. For
human body images, there is a pose variation problem. The human bodies may
have frontal or back view, as shown in Figure 1. So we need to consider the pose
problem in gender recognition from body images, not simply take it as a two-class
classification problem between the male and female. We propose a framework to
classify the views first, and then recognize the gender at each classified view, as
shown in Figure 3.

Since the classification of frontal and back views is not perfect, any incorrect
classification might decrease the performance of gender recognition that follows
the view classification. To deal with this problem, we propose a special processing
in view classification.

A confidence measure is used for view classification between the frontal and
back views. The signed distance to the linear SVM hyperplane is used to de-
termine the confidence. Let d(x) = wT x + b be the signed distance from a test
sample x to the hyperplane (w, b). If d(x) > t1 with t1 > 0, it is confident to
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Fig. 3. The framework for automatic gender recognition using human body images

classify sample x as positive; If d(x) < −t2 with t2 > 0, it is then confident
to classify x as negative; Otherwise, sample x is classified as “either positive or
negative”. In our case, we used the mixed view (a mixture of frontal and back
views) to represent the situation of “either positive or negative,” which looks
like a “new” class. In this way, we can reduce the influence of view classification
on the following gender recognition. In other words, if a test human body x is a
frontal view with high confidence, the system recognizes the gender of x using
only the trained classifier for frontal views. Similarly, if x is a back view with
high confidence, the system recognizes the gender of x using only the trained
classifier for back views. Otherwise, if x has low confidence to be classified as
frontal or back view, the system does not really classify x into one of the two
views. Instead, the system uses a mixed view that contains both frontal and back
views in training to recognize the gender of x.

Experimentally we found that the four representations, i.e., “BIF+PCA,”
“BIF+OLPP,” “BIF+LSDA,” and “BIF+MFA,” work quite differently in dif-
ferent situations. Thus different representations were chosen for different classi-
fication tasks in the whole framework of gender recognition, as shown in Figure
3. See experiments for details.

4 Experiments

The gender recognition experiments are performed on a pedestrian detection
database that contains human bodies of both frontal and back views. The ground
truth of gender is labeled manually. A standard five-fold cross validation is used
to measure the performance.

4.1 The Database

There is no standard database for gender recognition using human body images.
In this research, we choose to use the MIT pedestrian database [19] which is a
common database for pedestrian detection. Some examples are shown in Figure
1. Each pedestrian image has a size of 64 by 128 pixels. The original database has
more than 900 images. The gender was manually labeled for the MIT pedestrian
database, and from which 600 males and 288 females were selected for gender
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recognition experiments as in [7]. The remaining images are not used due to the
difficulty in manual labeling. Another thing is that the database contains both
frontal and back views of human bodies. There are about 47% frontal views and
53% back views.

4.2 Gender Recognition at Different Views

To extract the bio-inspired features, we used 6 bands and 8 orientations in S1
layer. The filters have 12 sizes, ranging from 7×7 to 29×29. Partial results of the
BIFs with 2 bands and 4 orientations are displayed in Figure 2 for illustration.
The dimension of the BIF is 10,720 for each input image. Then manifold learning
methods are applied to the extracted BIFs rather than to raw images. Given
the same BIFs, different methods for manifold learning may result in different
number of features, as shown in Figure 4.

First, the gender recognition is performed at different views: frontal, back,
and mixed. The mixed view contains both the frontal and back views without
separation. For the frontal view gender recognition given the extracted BIF, the
PCA method obtains about 300 features from the original 10,720. The highest
accuracy for gender recognition is 79.1% using about 200 features, as shown in
the top left of Figure 4. The LSDA method obtains about 235 features with
the highest accuracy of 79.5% using about 150 features. The MFA and OLPP
methods deliver only about 117 features. Similar phenomena about the number
of reduced features can be observed in the back view and mixed view gender
recognition. There are more images in the mixed view, so more features are
derived after manifold learning.

The gender recognition accuracies for each view are shown in Table 1. The best
representation for gender recognition at frontal view is the “BIF+LSDA,” which
gives an accuracy of 79.5%. This accuracy is higher than the 76.0% of the PBGR
method [7]. The “BIF+LSDA” representation is also the best for back view
gender recognition, with an accuracy of 84.0%. This accuracy is about 10% higher
than the PBGR method [7]. For the mixed view, the “BIF+PCA” representation
gives the highest accuracy of 79.2%. It is also higher than the accuracy of 75.0%
based on the PBGR method [7]. As a result, our new representations have higher
accuracies than the PBGR approach [7] for gender recognition in each case.
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Table 1. Gender recognition accuracies at different views independently

Method Frontal View Back View Mixed View

PBGR [7] 76.0±1.2% 74.6±3.4% 75.0±2.9%

BIO+PCA 79.1±3.0% 82.8±5.1% 79.2±1.4%

BIO+OLPP 78.3±3.5% 82.8±4.6% 77.1±1.9%

BIO+LSDA 79.5±2.6% 84.0±3.9% 78.2±1.1%

BIO+MFA 79.1±2.2% 81.7±5.2% 75.2±2.1%

In terms of the performance at different views, gender recognition at the back
view has higher accuracies than the frontal view. This result is interesting. One
may design a system using the back view only for body-based gender recognition.
For the mixed view, gender recognition performance is usually worse than both
the frontal and back views, or close to the lower of the two cases. As a result,
using the mixed view is not a good idea for gender recognition.

Another purpose of showing the experimental results at different views is to
provide some guidance in designing an automatic gender recognition system that
takes all views into consideration.

4.3 Automatic Gender Recognition

First let us look at the view classification performance. Using a standard five-
fold cross validation, we measure the view classification accuracies based on the
four different body representations. As shown in Table 2, the highest accuracy
is 84.3%, given by the “BIF+PCA” representation. This accuracy is not very
high. For a test example, if we use the classified view (frontal or back) for gender
recognition, the performance might be influenced because of using possibly an
incorrect view for the test example. To deal with this problem, we propose a
framework to reduce the effect of wrong view classification, as shown in Figure 3.

As stated in Section 3, we use confidence measure in view classification. The
threshold values can be chosen by t1, t2 ∈ (1, 2). Experimentally, we found
t1 = 1.7 and t2 = 1.5 are a good choice. If the distance from a test exam-
ple to the linear SVM hyperplane satisfies −t2 ≤ d(x) ≤ t1, the mixed view
will be used for gender recognition for the test example x. Now let us mea-
sure the view classification accuracy using three views: frontal, back, and mixed.
The “BIF+PCA” is selected as the representation since it works best for the

Table 2. The accuracies of view classification (frontal vs. back). The approximate

dimensions are the average over five runs in the five-fold cross validation.

Method View Classification Accuracy

PCA (dim.≈707) 84.3±2.1%

OLPP(dim.≈115) 82.9±2.4%

LSDA(dim.≈300) 83.7±2.6%

MFA(dim.≈173) 82.6±1.8%
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Table 3. Automatic gender recognition from human bodies

Representation Three-View Representations

for Classification for Gender

Human Body Accuracy Gender Recognition Recognition

View (Frontal, Back, in Accuracy

Classification and Mixed) Each View

BIF+PCA 99.3±0.5%
Frontal View BIF+LSDA

80.6±1.2%Mixed View BIF+PCA

Back View BIF+LSDA

two-view classification (see the first row in Table 2). As shown in Table 3, the
view classification accuracy is as high as 99.3%.

Then different representations are used for gender recognition at different
views, as listed in the third column of Table 3. The best choice for each view is
based on the results in Table 1. Now the gender recognition accuracy is 80.6%,
which is higher than the 75.0% given by the PBGR approach [7] where only the
mixed view was used for gender recognition.

5 Conclusion

We have presented a new representation for gender recognition from human
body. Our representation combines the biologically inspired features with mani-
fold learning techniques. A framework is proposed to deal with the human body
pose variation (e.g, frontal and back views) in gender recognition. The recog-
nition accuracy can be above 80% based on our new representation and clas-
sification framework, which is higher than the 75% accuracy using the PBGR
approach. Experimentally, we found that the “BIF+LSDA” representation is
better than others for gender recognition at either frontal or back view, while
the “BIF+PCA” performs better in both body view classification and gender
recognition with the mixed view. In the future, we will further evaluate our
approach on a larger database that may also contain side views.
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Abstract. Although many algorithms have been proposed for orientation field 
estimation, the results are not so satisfactory and the computational cost is ex-
pensive. In this paper, a novel algorithm based on straight-line model of ridge is 
proposed for the orientation field estimation. The algorithm comprises four 
steps, preprocessing original fingerprint image, determining the primary and 
secondary ridges of fingerprint foreground block using the top semi-neighbor 
searching algorithm, estimating block direction based on straight-line model of 
such a primary ridge and correcting the spurious block directions. Experimental 
results show that it achieves satisfying estimation accuracy with low computa-
tional time expense.  

Keywords: Fingerprint orientation field; Primary and secondary ridges; Top 
semi-neighbor searching algorithm; Straight-line model of ridge. 

1   Introduction 

Among various biometric techniques, the fingerprint recognition is most popular and 
reliable for automatic personal identification [1]. Generally, the estimation of orienta-
tion field is usually a basic processing step for a whole recognition system. 

Many approaches have been proposed for orientation field estimation, which can 
broadly be categorized as filter-based approach [2], gradient-based approach [3, 4], 
model-based approach [5-7], and approach based on neural networks [8]. Among 
these approaches, the former three approaches are used popularly. On the whole, these 
literatures mentioned above can produce good fingerprint orientation fields to some 
extent, but they bring a high time consumption. So these methods are not quite suit-
able for an on-line fingerprint identification system. To overcome the weakness, Ji et 
al. [9] propose an orientation field estimation method only using a primary ridge, 
which reaches a tradeoff between the time complexity and perfection to some extent. 
However, they only use four discrete directions to represent a fingerprint orientation 
field and estimate the block direction using projective variance. It is obvious that their 
algorithm cannot represent perfect orientation field and the computation time in-
creases monotonically as the predefined direction number or the pixel number of 
primary ridge increases. To further reduce the computational complexity and improve 
the quality of orientation field, we propose a novel orientation field estimation method 
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based on Ref. [9]. This method can achieve satisfying estimation accuracy with low 
computational time expense. 

The remainder of this paper is organized as follows. The preprocessing algorithm 
of fingerprint image is introduced in the next section. The details of our proposed 
orientation field estimation approach are presented in Section 3. Many convincible 
experimental results are shown in Section 4. Finally, Section 5 contains the conclu-
sion of our work. 

2   Preprocessing Algorithm for Original Fingerprint Image 

To obtain high-quality binary fingerprint images, unlike Ji’s work [9], we take image 
quality into consideration during the whole preprocessing step. Firstly, let us define 
some notations. Suppose I is an original fingerprint image of size r c× , and ( , )I s t is 

the intensity of the pixel ( , )s t , where 0 s r≤ < and 0 t c≤ < . We divide the im-

age I into a series of non-overlapped blocks of size w w× , and the block size needs to 
be properly chosen so that not less than two ridges are contained by a fingerprint 
block. The block ( , )i j of the fingerprint image is denoted as ( , )B i j , where 

0 i r w≤ < and 0 j c w≤ < . , ( , )i jB m n denotes the intensity of pixel ( , )m n within 

block ( , )B i j , where 0 m w≤ < and 0 n w≤ < . All these blocks can be categorized as 

foreground and background which are to be labeled by ( ( , ))L B i j . Furthermore, 

( ( , )) 1L B i j = and ( ( , )) 0L B i j = indicate that block ( , )B i j belongs to foreground and 

background, respectively. In this paper, the type ( ( , ))L B i j  of a fingerprint block is 

determined as 

1 ( , ) ( , ),
( ( , ))

0 ,

( , ) ,

s

s f

if S i j T i j
L B i j

else

T i j Q φ

>⎧= ⎨
⎩

=
 (1) 

where ( , )sT i j is a given segmentation threshold, φ  is a constant, which is experien-

tially set to 60, and fQ denotes the quality factor of fingerprint image. To reduce the 

computational complexity and save the execution time, the value of parameter fQ  is 

determined experimentally. For high-quality, median-quality and low-quality finger-
print images, fQ  is set to 1.36, 1 and 0.5, respectively.  Herein, the pixel intensity 

variance ( , )S i j of the fingerprint block ( , )B i j  is defined as 

1 1
2

,
0 0

1
( , ) ( ( , ) ( , )) ,

w w

i j
m n

S i j B m n B i j
w w

− −

= =

= −
× ∑∑  (2) 

where ( , )B i j denotes the mean pixel intensity value of the fingerprint block ( , )B i j , 

and it is directly calculated using 
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1 1

,
0 0

1
( , ) ( , ).

w w

i j
m n

B i j B m n
w w

− −

= =

=
× ∑∑  (3) 

Herein, only the foreground block ( , )B i j ( ( ( , )) 1L B i j = ) is binarized, and the binari-

zation threshold ( , )bT i j  for which is dynamically calculated using 

( , ) ( , ) ,

,
b

f

T i j B i j

Q

η
η γ

= +
=

 (4) 

whereη  is a adjustable value and it is the product of the quality factor fQ and the 

constant γ . The parameter γ  is experientially set to 25. Based on such a rule, the 

foreground block is binarized via 

,
,

1 ( , ) ( , ),
( , )

0 ,
i j bb

i j

if B m n T i j
B m n

else

>⎧⎪= ⎨
⎪⎩

 (5) 

where , ( , )b
i jB m n denotes the final binary value of pixel ( , )m n within the foreground 

block ( , )B i j .  

3   Fingerprint Orientation Field Estimation 

3.1   Top Semi-neighbor Searching Algorithm 

Suppose the neighborhood structure is 3 3× , and then for a given pixel ( , )m n ,  

its top semi-neighbor is defined as ( , )m a n d+ + , where 

{ 1, { 1,0,1}} { 0, 1}a d a d= − ∈ − ∪ = = − . Similarly, the bottom semi-neighbor can be 

defined as ( , )m e n f+ + , where { 0, 1} { 1, { 1,0,1}}e f e f= = ∪ = ∈ − . These notions 

have been detailedly illustrated in Fig.1 (a). In Fig.1 (a), the squares denote pixels in 
the binary fingerprint image block ( , )bB i j . For pixel P  (the blue square), its top and 

bottom semi-neighbors are red and yellow squares, respectively. 
Let ,i jR denote the response matrix (see Fig.1 (b)), which has the same size 

with ( , )bB i j , and the response of each pixel within ( , )bB i j is labeled using ele-

ment , ( , )i jR m n . , ( , ) {0,1}i jR m n ∈  denotes pixel ( , )m n response type. Furthermore, if 

pixel ( , )m n produces a response, and then , ( , ) 1i jR m n = , otherwise , ( , ) 0i jR m n = . 

Based on such a rule, the top semi-neighbor searching algorithm means that for a 
given pixel ( , )m n , if there is at least one response in its top semi-neighbor, then pixel 

( , )m n produces a response, meanwhile, element , ( , )i jR m n is set to 1. The proposed 

algorithm can be illustrated in Fig.1. For pixel P in Fig.1 (a), since there is a response 
in its top semi-neighbor (see Fig.1 (b), the red circle), it produces a response and the 
associated element within response matrix ,i jR is set to 1 (see Fig.1 (b), the blue cir-

cle). Contrastively, the pixel Q doesn’t produce a response because of no response in 

its top semi-neighbor (see Fig.1 (b), the red box).  
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Fig. 1. The top semi-neighbor searching algorithm: (a) the top and bottom semi-neighbors of 

pixel P within block ( , )bB i j ; (b) ,i jR , the response matrix for block ( , )bB i j  

3.2   Determining Primary and Secondary Ridges 

The processing steps of determining the primary and secondary ridges using the pro-
posed algorithm can be depicted as follows: First, we scan the binary block to find the 
first non-zero pixel and force it to produce a response, and as a consequence, the as-
sociated element within response matrix is set to 1. Second, we apply the top semi-
neighbor searching algorithm on other non-zero pixels within the binary block until 
no response is produced. Under this status, the non-zero pixel number of response 
matrix is just the pixel number of ridge, and then we label the ridge using its pixel 
number. Furthermore, we need to remove the ridge from the binary block so as to 
process the next ridge. Such steps are repeated, till all ridges have been labeled using 
pixel numbers. Finally, by comparing these pixel numbers of ridges, the ridge related 
to the maximal pixel number is determined as the primary ridge, and the ridge related 
to the secondary pixel number is determined as the secondary one, then all other 
ridges are removed. 

3.3   Block Direction Estimation Based on Straight-Line Model of Ridge 

Denote the fingerprint block as a portion of the coordinate plane (also called the Car-
tesian plane) shown in Fig.2. Suppose the origin of the orthogonal coordinate system 
is located at pixel ( 2, 2)w w within the block ( , )B i j , where w  is the height or width 

of fingerprint block ( , )B i j . Thus, the new coordinate of any pixel ( , )m n , 

namely ( , )x y , can be computed using 

2,

2 ,

x n w

y w m

= −
= −

 (6) 

where ( , )m n  is the original coordinate of pixel within the block ( , )B i j , and ( , )x y is 

the new coordinate within the orthogonal coordinate system. 
Since the local direction of a block is mainly decided by the primary ridge [9], we 

model the primary ridge using a straight-line equation (see Fig.2). As we known, the  
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Fig. 2. Block direction estimation using the straight-line model of primary ridge 

value of a fingerprint block’s orientation, ,i jD , is defined within [0, )π , so it can be 

regarded as the angle ψ  of inclination of the straight-line L, i.e., 

1

, 1

tan ( ) 0 ,

tan ( ) 0,
i j

k if k
D

k if kπ

−

−

⎧ ≤ < +∞⎪= ⎨
+ −∞ < <⎪⎩

 (7) 

where k is the slope of the straight-line L . Without loss of generality, we suppose the 
pixel number of primary ridge is H (usually 2H ). For any pixel 
( , )h hx y (1 h H≤ ≤ ) within the primary ridge, it should meet the straight-line equa-

tion L , i.e., 

,h hy kx b= +  (8) 

where ( , )h hx y  is the new coordinate within the orthogonal coordinate system. Obvi-

ously, Eq. (8) is the problem of the first-order polynomial fitting. Solving Eq. (8) 
using least squares method gives  

1

1 1

2

1 1 1

.

H H

h h
h h

H H H

h h h h
h h h

H x y
b

k
x x x y

−

= =

= = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑ ∑
 (9) 

After the coefficient k  is solved, we can obtain the block direction, ,i jD , by using Eq. 

(7). Finally, the directions of all foreground blocks are integrated into an initial orien-
tation field. 

3.4   Correcting Spurious Block Direction 

To improve the initial orientation field, we propose a correction scheme originating 
from Refs. [8-10]. As we known, the direction of fingerprint block, ,i jD , is defined 
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within [0, )π , but we can partition the fingerprint blocks into distinct directional 

classes in terms of our requirements [8]. Without loss of generality, let cN denote the 

number of directional classes, then the ranges for these classes lC ( 0 cl N≤ < ) can be 

determined as 

[ ) [ )
[ )
[ )
[ )

0, 2 ( 2 ) , 0,

(2 ) 2 , (2 ) 2 1 2,
( )

( 1) 2 , ( 1) 2 2,

(2 ) 2 , (2 ) 2 2 ,

c c

c c c
l

c c c c c

c c c c

N N if l

l N l N if l N
Ra C

N N N N if l N

l N l N if N l N

π θ π π θ π
π π θ π π θ

π θ π θ
π π θ π π θ

⎧ − ∪ − + =
⎪ − − + − ≤ <⎪= ⎨ − − + + =⎪
⎪ − + + + < <⎩

 (10) 

where ( )lRa C  denotes the range of class lC , and θ  is the correction angle because 

the estimated block direction may deviate from the true direction due to the presence 
of noise and deformations. Let ( )pO I  denote the orientation field estimated by pri-

mary ridges, and ( )sO I  denote the orientation field estimated by secondary ridges, 

where I denotes the fingerprint image, and [ )( ), ( ) 0,p sO I O I π∈ . ,
p

i jD  and ,
s
i jD  

denote these two directions of a same block ( , )i j  in ( )pO I  and ( )sO I , respectively. 

For a block direction within ( )pO I , whether the direction is estimated correctly is 

determined by 

, ,

, ,

0 ( ) ( ),
( , )

1 ( ) ( ),

p s
i j i j

p s
i j i j

if Jc D Jc D
M i j

if Jc D Jc D

⎧ ≠⎪= ⎨
=⎪⎩

 (11) 

where ( )Jc η  is a function, whose output value is l  if ( )lRa Cη ∈ . M  is a matrix of 

the same size as ( )pO I and element ( , ) {0,1}M i j ∈ indicates whether the direction of 

block ( , )i j  in ( )pO I  is estimated correctly. ( , ) 1M i j = means that the direction is 

estimated correctly, otherwise, it is estimated wrongly and needs a correction.  
These detected spurious directions within ( )pO I  will be corrected one-by-one by 

analyzing the statistical number pattern of neighbor directions [9-10]. In this paper, 
the spurious direction is restored to the center of the range of the class that appears 
most frequently in the 3 3×  neighborhood structure. Let ( )lSum C  denote the number 

of class lC  appearing in the neighborhood structure, and ,
p

i jD  denote the detected 

spurious direction in ( )pO I . Suppose the class qC  satisfies 

arg max[ ( )]q lC Sum C= , where 0 cl N≤ < , the spurious direction ,
p

i jD  in ( )pO I  is 

corrected as 

,

0 0,

,
p

i j
c

if q
D

q N elseπ
=⎧

= ⎨
⎩

 (12) 

where notation ,
p

i jD  denotes the correction result of spurious direction ,
p

i jD . 
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4   Experimental Results and Discussion 

To show the effectiveness of our approach we choose two sets of fingerprint images 
to estimate the orientation fields for them. Set 1 consists of four distinct databases of 
FVC2004, DB1_A-DB4_A. Set 2 contains 3300 fingerprint images captured with a 
scanner manufactured by Digital Biometrics, whose size is 328×356.  

4.1   Estimation Accuracy 

To compare conveniently, we use four discrete directions to represent a fingerprint 
orientation field as well. An example of orientation field estimation is shown in Fig.3. 
From the figure, we can clearly see that our algorithm can accurately estimate the 
orientation field in the delta region (see the red triangle) and the core region (see the 
red circle). Also, we numerically evaluate the orientation field estimation accuracy. 
Similar to Ji’s work [9], the estimation accuracy is computed by 0 1S S , where 0S and 

1S denote the correct-direction block number and foreground block number, respec-

tively. Based on such a rule, on DB1_A, DB2_A, DB3_A, DB4_A and Set 2, the aver-
age estimation accuracies by our algorithm are 98.71%, 97.45%, 99.08%, 98.52% and 
97.69%, respectively, and the average estimation accuracies by Ji’s algorithm are 
98.02%, 94.88%, 98.21%, 97.19% and 95.37%, respectively. These statistical data 
demonstrate that our proposed algorithm achieves satisfying accuracy and has higher 
estimation accuracy than Ji’s. This is because, on one hand, we take image quality 
into consideration and introduce the quality factor fQ during the preprocessing step to 

obtain high-quality binary fingerprint images; on the other hand, we introduce the 
correction angle θ  to overcome the effect of noise and deformations on fingerprint 
orientation field estimation. 

4.2   Computational Complexity 

Firstly, on DB1_A, DB2_A, DB3_A, DB4_A and Set 2, the average time expenses  
by our algorithm are 259ms, 154ms, 207ms, 173ms and 199ms, respectively. The  
 

 

Fig. 3. Computation of orientation field: (a) original Set 2:264_01; (b) orientation field for (a); 
(c) overlapped image 
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Fig. 4. Average execution time comparisons of our approach and Ji’s approach on all finger-
print samples 

maximal time expense is about 259ms, which is acceptable for an automatic finger-
print identification system (AFIS).  

In addition, the proposed algorithm for fingerprint orientation field estimation is 
compared with the Ji’s work [9] from the computational complexity. Given the two 
sets of fingerprint images, we change cN  to some extent and the comparison results 

of average processing times under various parameters are shown in Fig.4. The figure 
indicates that the average processing time of Ji’s method increases monotonically as 
the predefined direction number increases, whereas, our average processing time 
remains almost constant. This indicates that our algorithm not only can represent 
more perfect orientation field, but also has high computational efficiency.  

4.3   Recognition Performance Comparison 

In this subsection, similar to Ji’s work [9], we implement the fingerprint recognition 
system [11] using different orientation field estimation methods still on the two sets of 
fingerprint images. These methods include original orientation field estimation 
method [11], Ji’s method [9] and ours. For the three systems (i.e. using original 
method, Ji’s method and ours), only the orientation field estimation step is different 
and other steps are as the same. So, based on the recognition results for each system, 
the average results over all databases are shown in Fig.5.  

By the receiver operating curves (ROCs), we can see that the proposed orientation 
field estimation method has better performance than the other two methods. Statisti-
cally compared with the original system [11], on DB1_A, the FRR can be reduced 
more than 5.0% on average by our method, and on DB2_A, DB3_A, DB4_A and Set 2, 
the average decreases caused by our method are about 8.6%, 4.3%, 4.1% and 7.0%,  
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Fig. 5. Average recognition performance comparisons over all databases 

respectively. Similarly, compared with the Ji’s system [9], on DB1_A, DB2_A, 
DB3_A, DB4_A and Set 2, the average decreases caused by our method are about 
1.3%, 2.1%, 1.6%, 1.5% and 2.4%, respectively. In addition, we can see that the per-
formance improvements on relatively low-quality DB2_A and Set 2 are more than 
those on other relatively high-quality databases, i.e., DB1_A, DB3_A and DB4_A. 
This is because we have taken image quality into consideration, and introduced the 
quality factor fQ during the preprocessing step. These performance comparisons 

further exhibit that our estimation method of orientation field is of great helpfulness to 
improve the performance of the fingerprint recognition system, even on low-quality 
fingerprint databases. 

5   Conclusions 

In this paper, a novel algorithm based on straight-line model of ridge is proposed for 
the orientation field estimation. The contribution of this paper mainly lies in three 
points:  

1. We have built an orientation field estimation framework by combining the  
primary ridge and the secondary ridge. 

2. The proposed top semi-neighbor search strategy greatly reduces the computa-
tional cost for determining the primary and secondary ridges. More impor-
tantly, different from previous works, the computation time of block direction 
estimation is almost invariant with respect to cN .    

3. To obtain high-quality binary fingerprint images, we introduce the quality  
factor fQ during the preprocessing step. Furthermore, we introduce the correc-

tion angle θ  to overcome the effect of noise and deformations on fingerprint 
orientation field estimation. 
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Abstract. This paper proposes a novel algorithm for individual recogni-

tion by gait. The method of Procrustes shape analysis is used to produce

Procrustes Mean Shape (PMS) as a compressed representation of gait

sequence. PMS is adopted as the gait signature in this paper. Instead

of using the Procrustes mean shape distance as a similarity measure,

we introduce shape context descriptor to measure the similarity between

two PMSs. Shape context describes a distribution of all boundary points

on a shape with respect to any single boundary point by a histogram of

log-polar plot, and offers us a global discriminative characterization of

the shape. Standard pattern recognition techniques are used to classify

different patterns. The experiments on CASIA Gait Database demon-

strate that the proposed method outperforms other algorithms in both

classification performance and verification performance.

Keywords: Gait recognition, Procrustes shape analysis, shape context

descriptor, Procrustes Mean Shape (PMS).

1 Introduction

Among various biometrics like face, iris and fingerprint, gait is a more attractive
biometric feature for human identification. Gait signals can be detected from a
long distance and measured at low resolution. Therefore, gait can be used in
such situations that face or iris information is not available in high enough reso-
lution for recognition. From the perspective of surveillance, gait is a particularly
attractive modality. Recently, the study of gait recognition, which concerns rec-
ognizing individuals by the way they walk, has received an increasing interest
from researchers in the computer vision community.

Many contributions have been made to this rapidly developing domain. Gait
recognition techniques mainly fall into two categories namely model-based and
model-free approaches. The model-based approaches usually model the human
� Corresponding author.
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body structure and extract image features to map them into the structural com-
ponents of models or to derive motion trajectories of body parts. Bhanu and Han
[1] proposed a kinematic-based method to identify individuals. It estimates 3D
human walking parameters by performing a least square fit of the 3D kinematic
model to the 2D silhouette images. A genetic algorithm is then used for feature
selection. The advantage of model-based approaches is that models can handle
occlusion and noise better and offer the ability to derive gait features directly
from model parameters. They also help to reduce the dimensionality needed to
represent the data. However, they suffer from high computational costs. The
majority of current approaches are model-free. They typically analyze the im-
age sequence by motion or shape and characterize the whole motion pattern
of the human body by a compact representation regardless of the underlying
structure. Based on body shape and gait, Lee et al. [2] described a moment-
based representation of gait appearance for the purpose of person identification.
Sarkar et al. [3] proposed a baseline algorithm for human identification using
spatiotemporal correlation of silhouette images. Han and Bhanu [4] proposed a
spatiotemporal gait representation called Gait Energy Image to characterize hu-
man walking properties. Wang et al. [5] employed a compressed representation
of gait sequences and obtained encouraging classification performance.

Inspired by Wang [5]’s work, we made further exploration to it in this paper.
We use Procrustes shape analysis to produce Procrustes Mean Shape (PMS) of
each gait sequence in the database. Quite different and novel, instead of using
the Procrustes Mean Shape Distance (MSD) as Wang did, we introduce Shape
Context (SC) descriptor [6] to measure the similarity of two PMSs. The exper-
iments on dataset-A and dataset-B in CASIA Gait Database [7] show that SC
is an efficient and powerful shape descriptor for similarity measure. We gain
favorable performance after combing PMS and SC.

2 Related Work

Intuitively, recognizing people through gait depends greatly on how the silhou-
ette shape of an individual changes over time. Shape is an important cue as it
captures a prominent element of an object. Therefore, gait may be considered
to be composed of a set of static poses and their temporal variations can be
analyzed to obtain distinguishable signatures. Based upon the above considera-
tion, Wang et al. [5] depicted the human shape using the method of Procrustes
shape analysis. Pose changes of segmented silhouettes over time are represented
as an associated sequence of complex configurations in a two-dimensional (2D)
shape space and are further analyzed by the Procrustes shape analysis method
to obtain an eigenshape as gait signature.

In the field of shape matching and shape similarity measuring, several shape
descriptors have been proposed, ranging from moments and Fourier descriptors
to Hausdorff distance and the medial axis transform. For a detailed discussion
of shape matching techniques, the reader is referred to paper [8]. Belongie and
Malik [6] firstly introduced the idea of shape context descriptor. Shape context
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describe a distribution of the remaining boundary points with respect to one
point on the boundary. Histogram of a log-polar plot of the shape boundary gives
the shape context for that particular boundary point, thus offering a globally
discriminative characterization. Their work showed remarkable results involving
character recognition using gimpy images. It also had an extensive testing for
silhouette images from trademarks, handwritten digits and the COIL dataset.

3 Procrustes Shape Analysis

Procrustes shape analysis [9] is a popular method in directional statistics. It is
intended for coping with 2D shapes and provides a good method to find mean
shapes. To reduce redundant information, the shape boundary can be easily
obtained and stored using a border following algorithm based on connectivity.
As we can see in Fig. 1, (xi, yi) is a random pixel on the boundary. Let the
centroid (xc, yc) of the shape be the origin of the 2D shape space. The two
axes Re and Im represent the real and imaginary part of a complex number,
respectively.

Im

Re

Unwrapping by   

  contour following

( ),i ix y

( ),C Cx y
O

Fig. 1. Illustration of computing PMS

As shown in Fig. 1, we can then unwrap each shape anticlockwise into a set
of boundary pixel points sampled along its outer-contour in a common complex
coordinate system. Each shape can be described as a vector of ordered complex
numbers with M elements, u = [u1, u2, . . . , uM ]T , ui = (xi − xc) + j × (yi − yc).
Therefore, each gait sequence will be accordingly converted into an associated
sequence of such 2D shape configurations. Given a set of m shapes, we can find
their mean shape û by computing the following matrix:

Su =
m∑

i=1

uiu
∗
i

u∗
i ui

, (1)

where, the superscript ∗ represents the complex conjugation transposition. û is
the so-called Procrustes Mean Shape (PMS) which is the dominant eigenvector
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(b) subject #2 in dataset-A

Fig. 2. Two examples of the PMS in dataset-A. Note that the sample points in the

PMS depicted here are re-sampled to a visible level for reading convenience.

of Su, i.e., the eigenvector that corresponds to the greatest eigenvalue of Su.
Two examples of PMSs are shown in Fig. 2.

To compare two different PMSs, the Procrustes Mean Shape Distance (MSD)
was used by Wang [5] to measure the similarity between them. Instead of using
the MSD, this paper treats the similarity measure totally in a different way as
described below.

4 Shape Context

The concept of shape context was originally introduced to measure similarities
between shapes and recognize objects. Similar to PMS, a shape is represented
by a discrete set of N points, P = {p1, p2, . . . , pN}, sampled from the internal
or external contours on the object. Assuming contours are piecewise smooth, we
can obtain as good an approximation to the underlying continuous shapes as
desired by picking N to be sufficiently large. Note that, the point number N
here can be either equal to the number M in PMS or not.

Consider the set of vectors originating from a random point pi to all other
points on the shape. These vectors actually express the configuration of the
entire shape relative to the reference point. For the point pi, we compute a
coarse histogram hi relative to the coordinates of the remaining N − 1 points,

hi(k) = #{q �= pi : (q − pi) ∈ bin(k)}, (2)

where, the symbol # represents number counting, and the histogram is defined
to be the shape context (SC) of pi. This formula means counting the number of
boundary points within each sector or bin to form the SC. We use bins that are
uniform in log-polar space, making the descriptor more sensitive to positions of
nearby sample points than to those points farther away. Fig. 3 shows the process
of generating the SC. As can be seen in Fig. 3, the SCs of two neighboring points,
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Fig. 3. Illustration of computing SCs for a PMS. The circles and lines attached on the

PMS are the diagram of log-polar histogram bins used in computing the SCs. We use

5 bins for log-radius and 12 bins for θ. Examples of SCs for three points A, B, and C
are shown in the right column (Dark = large value).

A and B, are more similar than the SC of point C which is far away. This is
because A and B have similar structures relative to the whole shape.

Consider a point pi on the first shape and a point qj on the second shape.
Let Cij denotes the cost of matching these two points. As SCs are distributions
represented as histograms, it is natural to use the χ2 test statistic:

Cij = C(pi, qj) =
1
2

K∑
k=1

[hi(k)− hj(k)]2

[hi(k) + hj(k)]
, (3)

where hi(k) and hj(k) denote the K -bin normalized histogram at pi and qj ,
respectively. Given the cost matrix with elements Cij between all pairs of points
pi on the first shape and qj on the second shape, we want to minimize the total
cost of matching,

H(π) =
∑

i

C(pi, qπ(i)). (4)

Obviously, π(·) is a permutation of pi and qj . This is an instance of the square
assignment problem, which can be solved in O(N3) time using the Hungarian
method [10]. However, we can use the more efficient algorithm of [11] to reduce
the computational cost. The input to the assignment problem is a square cost
matrix, and the result is a permutation π(·) so that

∑
i Ci,π(i) is minimized.

We measure the SC distance between two shapes, P and Q, as the symmetric
average of the matching costs over best matching pairs, i.e.

D(P,Q) = min(
1
Np

∑
p∈P

arg minC(p, π(p)),
1
Nq

∑
q∈Q

arg minC(q, π(q))), (5)

where, Np and Nq are point numbers on each shape, respectively. Given such a
dissimilarity measure, we can use different classification techniques to recognize
objects.
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5 Gait Recognition Using PMS and SC

In the scheme of our work, we first use Procrustes shape analysis to find the
PMS of each gait sequence as gait signature for recognition. Then SC is adopted
as a similarity measure between one PMS and the others to provide evidences
for classification. The block diagram in Fig. 4 summarizes the major steps in a
gait recognition system combining PMS and SC.

Classification

Database

Recognition 

Result

Shape 

Context

Motion 

detection
Unwrapping

Procrustes 

Shape 

Analysis

Similarity 

Measure

Gait Sequence

Fig. 4. The diagram of gait recognition algorithm using PMS and SC

In Fig. 4, the two steps in the dotted rectangle are the major differences to
Wang’s [5] work, and they are also the originality of our work.

Gait recognition is a traditional pattern classification problem which can be
solved by measuring similarities or dissimilarities among gait sequences. We try
three different simple classification methods, namely the nearest neighbor classi-
fier (NN), the k-nearest-neighbor classifier (kNN, k=3), and the nearest neighbor
classifier with class exemplar (ENN).

6 Experimental Results

6.1 Gait Data

Here, we use dataset-A and dataset-B in CASIA Gait Database [7] to verify the
effectiveness of the proposed algorithm. Dataset-A (used to be NLPR database)
is quite familiar to researchers in gait recognition. It has 80 sequences belonging
to 20 pedestrians at three different viewing angles. We use the sequences with a
lateral viewing angle here. Dataset-B is a more large-scale and relatively fresh
database, and it has 124 different pedestrians (94 males, 30 females). All the
subjects were asked to walk naturally on the concrete ground along a straight
line in an indoor environment. Each subject walked along the straight line 10
times (6 for normal walking, 2 for walking with a bag, and 2 for walking with
a coat). Some examples of this dataset are shown in Fig. 5. Here, we only use 6
times’ normal walk at lateral view that is 744 sequences.

We assume that all silhouettes have been extracted from original human walk-
ing sequences. Edge detection and segmentation are then used to the image to
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(a) normal walking (b) walking with a bag (c) walking with a coat

Fig. 5. Sample images in dataset-B

obtain a clear silhouette boundary of the object. The boundary points are sam-
pled to M points. In our experiments, M equals to 360 just as Wang [5] did in
his work. To reduce the computational cost of computing shape context, each
PMS is re-sampled to 100 points.

6.2 Classification Performance

We use the leave-one-out cross-validation rule to obtain the unbiased estimate
of the Correct Classification Rate (CCR). Each time we leave one sequence out
as a probe sample and train on the remainder. The CCRs of the original PMS
method [5] and the proposed method on both datasets are reported in Table 1.
From this table we can see the superiority of our method compared with the
original PMS using MSD.

Table 1. The classification performance comparison on two datasets

Methods A-NN A-kNN A-ENN B -NN B -kNN B -ENN

Original PMS [5] 71.25% 72.50% 88.75% 88.98% 86.69% 91.13%

PMS + SC 88.75% 81.25% 98.75% 94.49% 93.15% 97.18%

Another useful classification performance measure is the rank order statistic,
which was first introduced by the FERET protocol for the evaluation of face
recognition algorithms [12]. It is defined as the cumulative match scores (CMS)
that the real class of a test measurement is among its top k matches. The CMS
curves on two datasets are shown in Fig. 6. It is noted that the CCR is equivalent
to the score when rank = 1.

6.3 Verification Performance

We also estimate False Acceptance Rate (FAR) and False Reject Rate (FRR)
via the leave-one-out rule in terms of verification performance. Equal Error Rate
(EER) demonstrates the degree of balance between FAR and FRR numerically.
The smaller the values of ERRs the better is the performance. The EERs of
original PMS using MSD and the proposed method on two datasets are reported
in Table 2.



Gait Recognition Using Procrustes Shape Analysis and Shape Context 263

2 4 6 8 10 12 14 16 18 20
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

 

 

Original PMS on A, NN
PMS + SC on A, NN
Original PMS on A, ENN
PMS + SC on A, ENN

(a) CMS curves on dataset-A

2 4 6 8 10 12 14 16 18 20
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Rank

C
um

ul
at

iv
e 

M
at

ch
 S

co
re

 

 

Original PMS on B, NN
PMS + SC on B, NN
Original PMS on B, ENN
PMS + SC on B, ENN

(b) CMS curves on dataset-B

Fig. 6. CMS comparison on two datasets

Table 2. The verification performance comparison on two datasets

Methods A-EER B -EER

Original PMS [5] 0.1994 0.1282

PMS + SC 0.1324 0.1081

Table 3. Comparison of recent algorithms on dataset-A

Methods Top1 Top5 Top10

BenAbdelkader [13] 82.50% 93.75% 100.0%

Lee [2] 87.50% 98.75% 100.0%

Wang [5] 88.75% 96.25% 100.0%

Chen [14] 91.25% 96.25% 100.0%

Our method 98.75% 100.0% 100.0%

6.4 Comparisons

We also compare the performance of the proposed algorithm with other famous
algorithms using the same silhouette data from the dataset-A with a lateral
viewing angle. Based on the FERET protocol with rank of 1, 5, and 10, the best
results of the algorithms are reported in Table 3, from which we can see that
our method compares favorably with others.

7 Discussion

Plenty of experimental results have shown that SC is a rich and powerful shape
descriptor for shape matching and object recognition. One may wonder why
not directly use SC to represent the contour that the pedestrians generate while
walking and obtain similarity measure between one pedestrian and another. That
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is because the processes of finding correspondence and best matching pairs are
highly time consuming. It is not an applicable method for a practicable system,
especially in the domain of gait recognition which generally needs batch process-
ing. Anyway, Chen and his group [14] have once tried to represent gait sequence
by four key stances chosen from one walking cycle. Then they employed SC to
generate gait features from those key stances. Their experimental results are
listed in Table 3 for comparison.

As many work have proved [5], PMS is a excellent way to make a compact rep-
resentation to gait sequences. PMS uses a single complex vector to represent the
structural characteristics of a whole sequence with frame number varying from
dozens to hundreds, yet without losing any useful information. This compact
characterization makes it possible to take advantage of the descriptive ability
of SC just as we did in this paper. On the other hand, SC is a rich and pow-
erful shape descriptor and offers us a global discriminative features. Moreover,
SC leads to a robust score for measuring shape similarity to distinguish differ-
ent objects. By taking advantage of the active points of those two methods, we
obtain favorable performance relative to the existing algorithms.

8 Conclusion

In this paper, a novel gait recognition algorithm is exhibited by combining two
kinds of shape descriptors, Procrustes shape analysis and shape context de-
scriptor. We take advantage of the compressed representation characteristic of
Procrustes shape analysis to represent the continuously pose changing of pedes-
trian gait sequences. The mean shape of a set of complex vectors is adopted as
gait signature for recognition. The shape context, which is a rich and effective
shape descriptor, is employed to describe PMSs and to offer a similarity mea-
sure of different shapes instead of using MSD. The computational cost of the
matching process is largely decreased, and the discriminating power of the PMS
is also re-exploited to an encouraging level. Experiments on both small size and
large scale datasets have demonstrated the effectiveness and superiority of the
proposed algorithm.
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Abstract. Advances in cameras and web technology have made it easy to cap-
ture and share large amounts of video data over to a large number of people
through services like Google Street View, EveryScape, etc. A large number of
cameras oversee public and semi-public spaces today. These raise concerns on
the unintentional and unwarranted invasion of the privacy of individuals caught
in the videos. To address these concerns, automated methods to de-identify indi-
viduals in these videos are necessary. De-identification does not aim at destroying
all information involving the individuals. Its goals are to obscure the identity of
the actor without obscuring the action. This paper outlines the scenarios in which
de-identification is required and the issues brought out by those. We also present
a preliminary approach to de-identify individuals from videos. A bounding box
around each individual present in a video is tracked through the video. An out-
line of the individuals is approximated by carrying out segmentation on a 3-D
Graph of space-time voxels. We explore two de-identification transformations:
exponential space-time blur and line integral convolution. We show results on
a number of public videos and videos collected in a plausible setting. We also
present the preliminary results of a user-study to validate the effectiveness of the
de-identification schemes.

1 Introduction

Advances in cameras and web technology have made it easy to capture and share large
amounts of video data over the internet. This has raised concerns regarding the privacy
of individuals. For example, when photographs of a monument are taken to create a
panoramic view of the scene, people present are not aware of it and their consent is not
taken before making them public. Technologies like Google Street View, EveryScape,
etc., have a high chance of invading into one’s private life without meaning to do so.
Parents have also expressed concern on the possible compromise of the security of
their children. The recent furore over Street View in Japan and the UK underscores
the need to address the privacy issue directly. An increasing number of video cameras
observe public spaces like airports, train stations, shops, and streets. While there may
be a possible security need to see the individuals in them, identifying the action suffices
in most cases. The actor need be identified only rarely and only to authorized personnel.

There is, thus, a need to de-identify individuals from such videos. De-identification
aims to remove all identification information of the person from an image or video,
while maintaining as much information on the action and its context. Recognition and
de-identification are opposites with the former making use of all possible features to

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 266–276, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Person De-identification in Videos 267

identify an object while the latter trying to obfuscate the features to thwart recognition.
De-identification should be resistant to recognition by humans and algorithms. Identify-
ing information captured on video can include face, silhouette, posture, gait, etc. Three
types of videos need de-identification to not compromise the privacy of individuals.
Casual videos that are captured for other purposes and get shared. Examples include
images used by projects like Google StreetView, the net-cameras fitted in public spaces
that can be viewed over the internet, videos or photos on sharing sites, etc. Individuals
appear in these videos purely unintentionally and there is no need to know their iden-
tities. All individuals should therefore be de-identified irrevocably and early, perhaps
at the camera itself. Public surveillance videos come from cameras watching spaces
such as airports, streets, stores, etc. There is no intention to capture any specific set of
persons, but there is an explicit intention to capture people occupying the space. These
videos may be viewed at a monitoring station to look for anomalies but also to judge
how users react to situations or products. These may be displayed on public monitors
and a recorded version may be accessible to many people. The types of actions per-
formed by individuals in these videos may be important, but not their identities. Hence
de-identification is necessary. Private surveillance videos come from cameras placed at
the entrances of semi-private spaces like offices. Individuals entering them have a pur-
pose and access is often limited to authorized persons only. The videos may be of higher
quality and are likely to have a more detailed view of the individuals. De-identification
may not be essential, but could be recommended to take care of potential viewing by
non-authorized people.

The privacy issues are genuine and will grow with wider adaptation of technology.
Automated methods to de-identify individuals without affecting the context of the ac-
tion in the video are needed to address them. It may be necessary to control the level
of de-identification to cater to different situations. Some work directed towards face
de-identification has been reported before. In this paper, we discuss the different issues
relating to de-identification of individuals in videos. We strive to guard against algo-
rithmic and manual identification using face, silhouette, gait, and other aspects. We also
present the design of a de-identification scheme and present results on several standard
and relevant videos. We also present preliminary results from a user study conducted to
gauge the effectiveness of the strategy.

2 De-identification: General Framework

De-identification involves the detection and a transformation of images of individuals
to make them unrecognizable. It is easy to hide the identity of individuals by replac-
ing a conservative area around them by, say, black pixels. However, this hides most
information on what sort of human activity is going on in that space, which may be
important for various studies. The goal is to protect the privacy of the individuals while
providing sufficient feel for the human activities in the space being imaged. There is
a natural trade-off between protecting privacy and providing sufficient detail. Privacy
protection provided should be immune to recognition using computer vision as well as
using human vision.
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2.1 Criteria for De-identification

The characteristics or features used to recognize humans in videos is the focus of a
de-identification transformation, such as the following.

1. Face plays the dominant role in automatic and manual identification. Thus, the
de-identification transformation should pay more attention to detect and obfuscate
faces in the video more than other aspects.

2. The body silhouette or the gait are important clues available in videos which need
to be obfuscated. Humans exploit them effectively and algorithmic identification
using them have been developed with some success [1,2]. The silhouette can be
dilated or expanded to remove its information content. Gait relates to the temporal
variation of a person’s arms and silhouette. Masking it needs the temporal silhou-
ettes to be changed in a non-predictable way.

3. Other information about individuals may be critical to specific aspects of privacy,
such as the race and gender. Both are hard to mask completely. Though race may
relate closely to skin colour and can be masked by RGB or hue-space transfor-
mations, these destroy the naturalness of the videos in our experience. Gender is
more subtle and no clearly defined manifestation has been agreed on, which makes
obfuscation of gender hard.

2.2 Subverting De-identification

We now discuss ways by which the de-identification can be subverted or “attacked”
to reveal the identity of individuals involved. The de-identification process has to be
satisfactorily robust to these methods.

1. Reversing the transformation used for de-identification is the most obvious line of
attack. The transformation should, thus, be irreversible. Blurring using convolution
is susceptible to reversal by deconvolution. Frames of the de-identified video may
be treated as multiple low-resolution observations when a form of blurring is used.
Techniques similar to those used in super-resolution may facilitate the reversal of
the blurring partially or completely. We use a blurring involving several neighbour-
ing blocks in space and time to prevent reversal.

2. Recognizing persons from face, silhouette, gait, etc., is being pursued actively in
Computer Vision. The problem may be set as a series of verification problems,
given a list of people. The de-identification transformation has to be robust to the
common computer vision algorithms.

3. Manual identification is another way to subvert de-identification, though it is con-
siderably more expensive. It is not clearly known what properties humans use to
identify and recognize individuals. However, general blurring and colour manipu-
lation makes recognition highly unlikely even by humans. User study is an effective
way to judge the effectiveness of the de-identification approach and to compare be-
tween multiple approaches.

4. Brute-force verification is a way to attack a de-identified video. Such attacks are
possible if some knowledge of the de-identification algorithm and its parameters
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Fig. 1. Overview of the method

are available. Different combinations of algorithms and their parameters can be ap-
plied on target individuals, with comparison performed in the de-identified space. A
match in the transformed space can strongly indicate a match in the original space.
This way of attack cannot be prevented easily; they can only be made arbitrarily
hard by the underlying combinatorics.

It should be noted that only transformations that ignore the input video can theoreti-
cally be totally safe. Brute-force attack is possible on others. Such a transformation will
replace individuals in the video with a constant (say, black or white) or random colour.
We rule out such methods as they destroy all information on the action performed.

3 De-identification: Proposed Approach

An overview of our method is outlined in Figure 1. The system comprises of three
modules: Detect and Track, Segmentation, and De-identification.

3.1 Detect and Track

The first step is to detect the presence of a person in the scene. HOG [3] based human
detector gives good results with a low miss rate. Other human detectors [4] can also be
employed. To track the person in the subsequent frames, a motion compensation based
segmentation is useful, which assumes that the foreground objects are small compared
to the background. Hence, the dominant motion in each frame is due to the camera.
Motion vectors for each pixel can be calculated using optical flow. The dominant motion
is the average of motion vectors of all pixels in a frame. The foreground pixels vary
significantly from the average motion.

We study the effectiveness of the de-identification process in this paper. We, there-
fore, concentrate on the de-identification step that follows human detection. Standard
databases such as CAVIAR have the necessary ground truth information to study de-
identification alone. We created such ground truth on the additional videos we used for
experiments.

3.2 Segmentation

The bounding boxes of the human in every frame, provided by the ground truth, are
stacked across time to generate a video tube of the person. Multiple video tubes are
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formed if there are multiple people in the video. Segmentation of the person is per-
formed on the video tube as follows. The video space is first divided into fixed voxels
of size (x × y × t) in the spatial (x, y) and temporal (t) domains. Dividing the video
space into voxels has two advantages. Firstly, it reduces the computation required in the
large video space. Secondly, a block-based segmentation removes fine silhouette infor-
mation while preserving gross outlines. Fine boundaries of a person reveal a lot about
the body shape and gait [1,2] and can aid recognition.

Segmentation is a labeling where each voxel v is assigned a label αv ∈ {0, 1},
where 1 is for foreground and 0 for background. For segmentation, the video tube is
divided into blocks of B voxel-planes in time. One voxel-plane overlap is used between
consecutive blocks to enforce continuity across the blocks. A 3D graph is constructed
on these blocks in the voxel space and a mincut is performed on this graph. A rigid but
blocky (because of voxelation) outline of the human is extracted by this. The energy
term E associated with this graph is of the form

E(α, θ, v) = U(α, θ, v) + λ1V1(v) + λ2V2(v), (1)

where U is the data term and V1, V2 are the smoothness terms corresponding to the intra-
frame and inter-frame connections between two voxels respectively. θ = {θ0, θ1} are
two full-covariance Gaussian colour mixtures, one each for foreground and background,
with K clusters each. Hence, k ∈ [1,K], α = {0, 1} and θα = {wα

k , μα
k , Σα

k }. We used
K = 6 for the results presented here. The Gaussian Mixture Models (GMMs) are used
for adequately modeling data points in the colour space.

The energy E is defined in such a way that a minimization of this energy provides us
with a segmentation that is coherent across time and space. A mincut on the graph min-
imizes this energy function efficiently [5]. Initialization of foreground and background
seeds is done by performing GrabCut [6] on the first frame with the human. The fore-
ground and background GMMs are also initialized in this process. These GMMs later
provide seeds to the graph, as well as help in defining the energy terms.

The data term U is similar to the one used by GrabCut [6], defined as U(α, θ, v) =∑
n D(αn, θk, vn) where n is the number of voxels and

D(αn, θk, vn) = min
k=1···K

[− logwαn

k +
1
2

log detΣαn

k +
1
2
v̄T

n Σαn

k
−1v̄n] (2)

where v̄n = vn − μαn

k . The representative colour vn for a voxel should be chosen
carefully. We first compute the distance D0 and D1 to the background and foreground
respectively for each pixel in a voxel, using pixel colour instead of vn in Equation (2).
The pixels are sorted on the ratio D0

D1
in the decreasing order. We choose the colour of

mth pixel after sorting as the representative colour vn. The value of m is kept low so
that voxels with even a few foreground pixels are biased towards the foreground. This is
important for de-identification as the foreground needs to be segmented conservatively.
We also identify seed voxels for the graphcut segmentation based on D0 and D1. If the
distance to foreground,D1, is very low for the mth pixel, the voxel is a seed foreground.
However, if the distance to background,D0, is very low for the (N −m)th pixel (where
N is the number of pixels in the voxel), the voxel is a seed background.
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(a) (b)

Fig. 2. (a) Distances for pixel (3, 3) of a voxel from each neighbouring voxel. The distances to
the neighbouring voxels in the adjacent voxel plane are calculated in a similar manner. (b) Saddle
shaped vector field used for LIC.

The smoothness terms V1 and V2 are defined as V (v) =
∑

vp,vq∈v δpq · Vpq , where

δpq is 1 when vp and vq are neighbours and 0 otherwise, and Vpq = exp−β‖vp−vq‖2
,

where vp is the mean colour of a voxel. β is the expected value calculated as β =
(2E(‖vp − vq‖2))−1, where E is the expectation operator [6].

3.3 De-identification

After the segmentation of the person, the next step is to apply the de-identification trans-
formation on the human being present. Two de-identification approaches were explored.
One of them is an exponential blur of pixels in a voxel.

In exponential blur, the output colour for each pixel in a foreground voxel is a
weighted combination of its neighbouring voxels’ average colours. All voxels within
distance a participate in the computation of this colour. The weight corresponding to
each voxel decreases exponentially with the distance from the voxel center to the pixel.
The weights for the (l,m, n)th pixel of voxel vi can be calculated ∀vp ∈ Γi as:

γ(l,m, n) = e−
d2
(l,m,n),vp

8a2 , (3)

where Γi is the set of voxels which lie within distance a from vi, and d(l,m,n),vp
is

the distance of the (l,m, n)th pixel from the voxel center vp. Figure 2(a) shows the
distances d(l,m,n) in one voxel plane for the pixel (3, 3). This simple blurring function
ensures that there is no abrupt change in colour at the voxel boundaries. The temporal
blurring of the space-time boundaries aims to remove the gait information of the indi-
vidual. The amount of de-identification is controlled by varying the parameter a; more
the value of a, more is the de-identification.

The second de-identification transformation is based on line integral convolution
(LIC). LIC is generally used for imaging vector fields [7] on a texture. We use LIC to
distort the boundaries of the person. Different vector fields can be used for achieving
different effects. The gradient vector field of the texture image rotated by 90◦ gives a
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Fig. 3. Results of LIC-10, Blur-4, and Blur-4 followed by an intensity space compression on three
different videos, with clear frames in odd rows and de-identified frames in even rows

painterly effect to the image. We used a saddle shaped vector field (Figure 2(b)) for
our experiments. LIC is applied to the foreground pixels obtained after segmentation.
The amount of de-identification acquired can be controlled by the line length L, of the
convolution filter.

Intensity space compression was additionally tried. The intensity values of the fore-
ground pixels are compressed after an exponential blur or LIC. The result is boosted
up by a fixed value after the compression. It provides greater de-identification, but the
video loses more information. This simple technique hides the race of a person success-
fully. The results are presented in Figures 3 and 4.
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Fig. 4. The first column shows the clear frame. The next five columns show the output of Blur-2,
Blur-4, LIC-10, LIC-20, and Blur-2 followed by an intensity space compression, in that order

4 Experimental Results

We implemented the above system and conducted the experiments on standard datasets
like CAVIAR, BEHAVE, etc., and on our own that provide more clearly visible individ-
uals in videos. Some of the results are shown in Figures 3 and 4. Different parameters
were tried for each of the de-identification transformations; a = 2 and 4 for exponential
blur and L = 10 and 20 for LIC. We divide the video into N = 4× 4× 2 sized voxels.
m was kept as 3 (10% of N ) for our experiments. Increasing the voxel size across time
domain increases the blockiness across the frames. If a person is moving fast enough,
it can introduce jumps in the segmented output around the boundary. More results can
be seen in the video submitted as supplemental material.

Figure 4 shows the output of different de-identification transformations on a single
frame from different videos. The effect of changing the parameters of the transforma-
tions can be seen clearly. Increasing the value of a and L increases the de-identification
achieved, but it results in more loss of information in a scene. In general, LIC-10 and
Blur-2 are insufficient in masking the identity of people. Blur-4 and LIC-20 perform
better. Body structure plays a huge role in identifying people when their faces are ob-
fuscated beyond recognition. LIC distorts the outline of a person based on the vector
field used because LIC tries to image the vector field using the person’s image as a
texture. However the output of LIC-20 sometimes looks unnatural and ghost-like. The
intensity space compression, as shown in Figures 3 and 4, can claim to remove the race
information. But it preserves the body structure of the person. This happens because the
intensity values of the foreground pixels are boosted up and hence rendered visibly dif-
ferent from the background pixels. This trade-off can be avoided by dilating or eroding
the foreground mask before applying the intensity space compression.
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4.1 User Study

Recognition by humans is one of the ways to subvert de-identification. It is difficult to
quantitatively state the effectiveness of the system as it is not known which features
humans use to identify and recognize individuals. Hence, a user study was conducted to
test the usefulness of the system. We showed 4 different sets of 6 videos each, processed
with a different parameter value in each set, to 40 individuals. Half of them were quite
familiar with the individuals appearing in the video. Others were only casually familiar.
Users were asked to match the individuals appearing in the video against a palette of
30 photographs shown. They were also asked to state the factor that helped them in
the recognition. The results are summarized in Table 1. Overall correct recognition
was fairly high due to the familiarity of the users with the subjects. The gait or the
walking style was also a big give-away for many subjects. The highest recognition
was reported for individual 4; about 80% of the users got the correct answer. Almost
everyone reported that recognition was possible because of the unique walking style of
the person. For individual 2, only about 20% of the answers were correct because this
person had no unique body shape or walking style. The correct answers were only from
those sets in which low values of parameters for Blur and LIC were used.

Table 1. Statistics: User Study

Familiar Unfamiliar
Algorithm, Parameter Correct Incorrect Correct Incorrect
Blur, a = 2 24 6 11 19
Blur, a = 4 21 9 10 20
LIC, L = 10 24 6 15 15
LIC, L = 20 23 7 13 17

4.2 Discussion

The preliminary results suggest that a high level of blurring should be used for effective
de-identification. While the facial and other features can be masked adequately, the gait
and other temporal characteristics are hard to mask. The amount of temporal blurring
we tried was not sufficient, given some familiarity with the subjects. Our user study
seems to suggest that de-identifying an individual to others familiar with him/her is
a very challenging task. Without familiarity, gait and other characteristics are of low
value and face plays the most important role.

5 Related Work

In the past, outlines of privacy preserving systems have been presented [8,9] to high-
light the issues. These were sketches and not reports of an implemented de-identification
system. Most privacy protection schemes focus on faces [10,11,12,13]. Commonly used
schemes rely on methods which work well against human vision such as pixelation and
blurring. [14,15] studied the effectiveness of blur filtration. Neustaedter et al. [15] con-
cluded that blur filtration is insufficient to provide an adequate level of privacy. More
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recent methods such as the k-Same [10] and k-Same-Select [11] provide provable pri-
vacy and preserve data utility. Face modification has also been attempted as a way of
image manipulation in [16,17,18]. The focus of these methods is seamless transfer of in-
formation from one or more input images to the target image. De-identification is a very
different problem. The focus is on destroying all identifiable features from the image,
which requires less effort than a seamless face substitution algorithm.

There has been very little work in the past dealing with entire human body for de-
identification. Chen et al. [19] proposed a method for human body obscuring using
motion history information of the edges. This method hides the identity of the actor,
but it also removes all the information on the action. Park et al. [20] introduced the
concept of personal boundary in a context adaptive human movement analysis system.
Foreground pixels form multiple coherent colour blobs that constitute a human body.
These blobs are used for blocking human identity. The problem with this approach is
that it preserves the overall silhouette of the person which can aid recognition.

Another technique used for protecting privacy is based on segmenting the privacy
information from a video and encrypting it to hide it from the end user. Different frame-
works have been proposed to hide the data in the video itself, e.g., as a watermark [21]
or as encrypted information in DCT blocks [22]. This information can be retrieved later
on request. Prototype designs have also been proposed to provide a variable amount of
control to the users over the information viewed in a video [15,21] which is a require-
ment of an ideal de-identification scheme.

Detecting and segmenting humans in images and videos is a very active area of re-
search today which may help a complete de-identification system [23,24]. Recognizing
humans from faces, silhouettes, gait, etc.is also an active area; success in those provides
more methods a de-identification system should guard against.

6 Conclusions

In this paper, we analyzed the issues relating to de-identification of individuals in videos
to protect their privacy by going beyond face recognition. We also presented a basic
system to protect privacy against algorithmic and human recognition. We present results
on a few standard videos as well as videos we collected that are more challenging to
hide identity in. We also conducted a user study to evaluate the effectiveness of our
system. Our studies indicate that gait and other temporal characteristics are difficult to
hide if there is some familiarity with the subjects and the user. Blurring is a good way to
hide the identity if gait is not involved. We propose to conduct further studies to evaluate
the de-identification system against recognition by computer vision algorithms. That is
likely to be easier than guarding against manual identification of individuals.

Acknowledgements. Partial funding was provided by the Naval Research Board of
India.
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Abstract. Due to its importance to classification and clustering, dimensionality
reduction or distance metric learning has been studied in depth in recent years.
In this work, we demonstrate the weakness of a widely-used class separability
criterion—trace quotient for dimensionality reduction—and propose new criteria
for the dimensionality reduction problem. The proposed optimization problem
can be efficiently solved using semidefinite programming, similar to the tech-
nique in [1]. Experiments on classification and clustering are performed to eval-
uate the proposed algorithm. Results show the advantage of the our proposed
algorithm.

1 Introduction

Dimension reduction is a critical procedure for many classification and clustering algo-
rithms, such as k-nearest-neighbors and k-means. In the literature, principal component
analysis (PCA) and linear discriminant analysis (LDA) are two classical dimensionality
reduction techniques. PCA projects the input data into the subspace that has maximum
variance. LDA projects the input data onto a subspace by maximizing the between-
class distance and minimizing the within-class variance. These two algorithms do not
take constraints. In this sense, they are global learning methods. Relevant component
analysis (RCA) [2], instead, is one of the important work that learns a metric from
equivalence constraints. RCA can be viewed as an extension of LDA by incorporat-
ing must-link constraints and cannot-link constraints into the learning procedure. Each
of these methods may be seen as devising a linear projection from the input space to a
lower-dimensional output space. In [1,3] it is shown that many dimensionality reduction
algorithms can be formulated in the trace quotient problem framework:

W ◦ = argmax
W�W=Id×d

Tr(W�SbW )
Tr(W�SvW )

, (1)
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where Tr(·) represents the matrix trace, and Id×d is a d× d identity matrix. Sb and Sv

denote two positive semidefinite matrices, which contain the information of inter-class
distances and intra-class distances, respectively. A few different methods can be used
to construct those two matrices. In LDA, an approximate cost function, quotient trace,

Tr((W�SvW )
−1

(W�SbW )),

is maximized instead of the original quotient trace problem (1). The purpose of doing
so is that the approximate cost function can be solved by generalized eigenvalue de-
composition (GEVD), ending up with a close-form solution[3]. This is also a common
practice for many other dimensionality reduction algorithms. Sb in LDA is defined as
the within-class scatter matrix, while Sv is the between-class scatter matrix, i.e.,

Sb =
∑

c

Nc(μc − μ0)(μc − μ0)
� (2a)

Sv =
∑

c

∑
i∈c

(xi − μc)(xi − μc)
� (2b)

where μc is the mean vector of class c, and μ0 is the global mean vector;Nc is the num-
ber of vectors in class c. In the input space, Tr(Sb) represents the sum of distances from
the mean vector of each individual class to the global mean vector. Tr(Sv) measures
the sum of distances from each individual vector to the mean vector of its respective
class. In contrast, Tr(W�SW ) represents the sum of distance in the projected space. A
metric learning algorithm is proffered by Xing et al. [4], aiming to maximize squared
inter-class distances while restrict the intra-class distances (non-squared)1. This opti-
mization problem is shown below:

minimize
A

∑
(xp,xq)∈S‖xp − xq‖2

A (3a)

subject to
∑

(xp,xq)∈D‖xp − xq‖A ≥ 1, (3b)

A � 0, (3c)

where xp and xq are vectors in the data set; the distance metric ‖x − z‖A is equal
to

√
(x− z)TA(x− z); D and S are the similarity set and dissimilarity set, with the

definition: {D : (xp,xq) ∈ D if xp and xq are dissimilar} and {S : (xp,xq) ∈
S if xp and xq are similar}. This problem is convex, so a global optimum is guaran-
teed. Note that here a Mahalanobis metric A is learned. When A is rank-deficient, it is
equivalent to reduce the dimension.

In [1], the trace quotient problem (1) is solved directly through a framework based
on a sequence of semidefinite programs (SDPs). Given the similarity set S and the
dissimilarity set D, Shen et al. [1] shows a strategy to construct Sb and Sv different
from (2a), (2b):

Sb =
∑

(p,q)∈D
(xp − xq)(xp − xq)�, (4a)

1 If the constraints are also squared distance, the final solution will always be rank-one.
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Sv =
∑

(p,q)∈S
(xp − xq)(xp − xq)�. (4b)

The method for building the similarity and dissimilarity sets can be described as
follows. For each xp, if xq belongs to xp’s k differently-labeled neighbors, then
(xp,xq) ∈ D; Similarly, if xq belongs to xp’s k′ same-labeled neighbors, then
(xp,xq) ∈ S. In this case, Tr(Sb) is the sum of distances of vector pairs in the dissim-
ilarity set, while Tr(Sv) is the sum of distances of vector pairs in the similarity set.

There is connection between Xing et al.’s method and the trace quotient problem. If
similarity and dissimilarity sets are the same and (4a) and (4b) are used to construct Sb

and Sv, then we have ∑
(xp,xq)∈S‖xp − xq‖2

A = Tr(SbA),

and ∑
(xp,xq)∈D‖xp − xq‖2

A = Tr(SvA).

Therefore, the optimization problem of Xing et al. (Equ. (3)) is very similar to the trace
quotient problem (Equ. (1)). Both algorithms are designed for the purpose of maxi-
mizing the between-class distance and at the same time minimizing the within-class
distance. The results of clustering experiments verify this conclusion.

However, there are still some important differences between them. There is an addi-
tional rank constraint (W ∈ RD×d) in the trace quotient problem. Therefore, the pro-
jection matrix (W ) learned by [1] is orthogonal and low-dimensional, while Xing et al.
[4] learns a generic Mahalanobis matrix instead of a projection matrix. The optimiza-
tion problem (1) can be reformulated as a series of simple SDP feasibility problems,
which is much more faster than Xing et al.’s projected gradient descent algorithm [4].

In this work, we argue that the trace quotient formulation may not be always the
best choice for dimensionality reduction. We reformulate the class separability criterion
of (1). A set of different criteria are proposed, which may be better choices in some
cases. We show that the resulted optimization problem can also be solved using SDP.
Comparable results are obtained on various data sets for classification and clustering
problems.

2 Classification Separability Criteria

The problem (1) is to optimize the class separability criterion:2

J =
Tr(Sb)
Tr(Sv)

, (5)

where the numerator and the denominator are both the global view of the between-class
distances and the within-class distances.

Now let us consider the separability for each 2-class combination individually. First,
there is a matrix pair (Sb(i,j) , Sv(i,j)) for each class-pair (i, j) (i, j are both the class

2 Again, we can replace Tr(S) with Tr(W�SW ). For simplicity, we also use the matrix S to
represent the scatter matrix in the projected space.
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labels). The methods mentioned above can be used to construct Sb(i,j) and Sv(i,j) (only
vectors of classes i and j are taken into account). Then a group of criteria are introduced
to measure the separability for each class pair individually:

J(i, j) =
Tr(Sb(i,j) )
Tr(Sv(i,j) )

, (6)

where i > j,∀i, j = 1, · · · , c, and c is the number of classes. There will be c(c−1)
2

criteria for c class data sets.
In the same way, we can also split the total classification error E into class-pairs. For

class-pair (i, j), E(i, j) stands for the ratio between the number of wrong predictions
and the total number of predictions. All E(i, j)’s constitute E:

E =
∑
i>j

E(i, j). (7)

Intuitively, each J(i, j) is related straightforward to the corresponding E(i, j). The
criteria in (6) reflect more information than the criterion (5). The best separability can
be obtained when all J(i, j)’s are large such that each E(i, j) is small.

For some multi-class cases, the criterion (5) can not measure the class separability
well. The criterion in (5) mixes up all the criteria in (6) into one formula, which ignore
much information about the separability. A large J may consist of some extremely small
J(i, j)’s and some extremely large J(i, j)’s. Those small J(i, j)’s can result in a large
total classification error.

3 The Trace Quotient Problems

Taking the advantage of the criteria (6), we demonstrate two trace quotient problems
related to the original problem (1).

W ◦ = argmax
W�W=Id×d

∑
i>j

Tr(W�Sb(i,j)W )
Tr(W�Sv(i,j)W )

(8)

and,

W ◦ = argmax
W�W=Id×d

min
i>j

Tr(W�Sb(i,j)W )
Tr(W�Sv(i,j)W )

(9)

where ∀i, j = 1, · · · , c, and c is the number of classes.
The problem (8) is to optimize the L1 norm of J(i, j)’s, while the problem (9) focus

on the L∞ norm of J(i, j)’s. Despite its elegance and simplicity, the problem (8) is not
convex. It is the sum of a bunch of quasi-convex (also quasi-concave) items. While for
the problem (9), although it is convex either, it has a single minimum. The problem of
minimizing the maximum of a set of quasi-convex functions has been discussed in the
context of multi-view geometry [5]. For details, one may refer to [5]. So the problem
(9) is proffered here, which can be transformed to a quasi-convex problem [6] and
efficiently solved, using the framework presented in [1].
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Algorithm 1. Bisection search
Require: δl and δu are lower and upper bounds of δ respectively, and the tolerance σ > 0.

repeat
δ = (δu + δl)/2.
Solve the feasibility problem (11a)–(11d).
if feasible then

δl = δ;
else

δu = δ.
end if

until δu − δl > σ

First, an slack variable δ is introduced, and the problem (9) is equal to

maximize
δ,W

δ (10a)

subject to Tr(W�Sb(i,j)W ) ≥ δ ·Tr(W�Sv(i,j)W ), (10b)

W�W = Id×d (10c)

W ∈ RD×d. (10d)

where i > j,∀i, j = 1, · · · , c, and c is the number of classes.
By introducing a new variable Z = WW� (then Z must be positive semidefinite),

constraint (10b) is transformed to Tr((Sb − δSv)Z) ≥ 0. Constraints (10c) and (10d)
can be converted to Tr(Z) = d and 0 � Z � I. Here I is the identity matrix. This
way our problem is reformulated to a linear fraction, therefore a quasi-convex problem,
which can be solved by bisection search of δ involving a serial of SDPs.

δ◦ is defined as the optimal δ, which is obviously not smaller than any δ∗ make the
following SDP problem feasible:

find Z (11a)

subject to Tr((Sb(i,j) − δ∗Sv(i,j))Z) ≥ 0, (11b)

Tr(Z) = d, (11c)

0 � Z � I. (11d)

Then, a bisection search algorithm can be adopted. Note that (11d) is not a straight-
forward semidefinite constraint, but it can be converted into the standard form of
SDP. See [1] for how to reformulate this trace quotient problem into an sequence of
SDP feasibility problems. Standard optimization packages can be used to solve the SDP
problem. In our experiments, we use CVX [7] and SDPT3 [8] for all SDP problems.

We have proposed a new criterion for the dimensionality reduction problem, which
is derived from the trace quotient problem in [1]. The proposed algorithm can still be
efficiently solved using semidefinite programming.
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4 Experiments

In this section, we carry out experiments to evaluate the performance of the proposed
method on classification and clustering.

4.1 Classification

In the first classification experiment, our algorithm are evaluated on several data sets
and compared with LDA and the original trace quotient algorithm in [1]. Note that our
algorithm is slower when the number of classes is large because the constrains number
of the optimization problem grows with the number of classes.

We first learn a projection matrix for dimensionality reduction via our algorithm and
others, then a 3-NN classifier is applied on the projected metric space. Five dimension-
ality reduction algorithms are considered:

LDA: Fisher linear discriminant analysis.
SDP1:The algorithm solves the original trace quotient problem (1) which maximize

the class separability criterion J(i, j) (5) and uses the method used in LDA (2a)-(2b) to
construct scatter matrices.

SDP2: The algorithm solves the variant problem (9) maximizing the minimum of a
group of criteria J(i, j)s (6) and the method in LDA (2a)-(2b) is also used to construct
scatter matrices.

SDP3: The algorithm solves the original trace quotient problem (1), however the
scatter matrices are built based on the similarity and dissimilarity sets (2a)-(2b).

SDP4: The algorithm solves the variant problem (9) and uses the method (4a)-(4b)
to construct scatter matrices.

Iris, Wine and Bal are small data sets from UCI machine learning repository [9],
which only have three classes. These data sets are randomly sampled by a ratio of
7/3 for training and testing. USPS and ORL are both image data sets with large input
dimensions. PCA is used to reduce the dimension of USPS and ORL as a preprocessing
procedure for accelerating the latter computation. USPS handwriting digit data set has
10 classes (digit 0 − 9) and 256 input dimensions(16 × 16 image), with predefined
training and testing subsets. We only use the training set by randomly splitting this
subset (20% for training and 80% for testing). The number of dimensions is reduced
to 55 by PCA, preserving around 90.14% of variance. ORL face data set is made up
of 400 images of faces belong to 40 individuals (10 faces per person). Each image is
down-sampled from 56 × 46 to 28 × 23, and then the dimension is further reduced to
55 by PCA. The training and testing sets are obtained by 7/3 sampling for each person
respectively. Table 1 summarizes the description of the data sets.

We report the classification accuracy of a 3-NN on the projected data. Table 2 reports
the classification results. We find that SDP2 is slightly better than SDP1 in all data sets.
In other words, when using LDA’s scatter matrices, the proposed algorithm is better
than the original trace quotient algorithm in [1]. Also note that LDA works very well on
these data sets. For SDP3 and SDP4, the performances are comparable. No method is
always better than the other on all tested data sets. The conclusion is when using LDA’s
scatter matrices, the original trace quotient criterion may not be preferred.
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Table 1. Description of data sets and experimental parameters for classification.

Iris Wine Bal USPS ORL
Train samples 105 125 438 1459 280

Test samples 45 53 187 5832 120

Classes 3 3 3 10 40

Input dimensions 4 13 4 256 644

Dimensions after PCA 4 13 4 55 42

Parameters (k, k′) for SDP3 (3, 3) (1, 5) (3, 5) (3, 5) (2, 3)
Parameters (k, k′) for SDP4 (3, 3) (1, 5) (3, 5) (3, 5) (2, 3)
Runs 5 5 5 5 5

Table 2. Classification accuracy of a 3-NN classifier on each data set in the form of mean (std)%.
The final dimension is also shown.

Iris Wine Bal USPS ORL
LDA 96.00(1.86), 2 99.25(1.03), 2 89.52(1.84), 2 92.70(0.48), 9 97.67(0.70), 39
SDP1 96.00(3.65), 3 96.23(1.89), 8 86.74(1.48), 3 94.26(0.33), 50 96.67(1.77), 39
SDP2 96.89(1.99), 3 96.60(4.70), 8 87.81(0.79), 3 94.49(0.21), 50 96.82(1.60), 39
SDP3 96.44(1.22), 3 86.04(2.15), 8 91.76(2.35), 3 95.13(0.39), 50 96.50(1.60), 39
SDP4 96.00(1.86), 3 84.34(4.62), 8 88.88(2.40), 3 94.76(0.28), 50 94.50(2.25), 39

In the second experiment, SDP1 and SDP2 are compared on the USPS digits data.
We report the results in Table 3. In each run for class number c, c digits are randomly
selected to form data set. We find that target dimension is more important than class
number. When the target dimension is 50, the behavior of SDP1 and SDP2 are almost
the same, while SDP2 is much better for 2D target dimension. Therefore, when the
target dimension is low, the trace quotient criterion tend to perform worse.

In the third experiment, we choose digits 3, 7, 9 and 0 in USPS to form the data
set. From this data set, we can see different behavior of algorithms explicitly. All the
samples are treated as training data and a 2-dimensional target metric space is learned
by LDA, SDP1 and SDP2. Then a 3-NN classifier is applied on the projected data.

Figure 1 illustrates the data projected into 2D by different algorithms. We can see
that LDA and SDP1 can not separate digits 7 and 9, while SDP2 can separate them
more clearly. Figure 2 illustrates the class separability criteria (J and J(i, j)) and the
corresponding training errors (E and E(i, j)) of the data projected by LDA, SDP1 and
SDP2. We can see that, although the J of SDP1 is largest (10.914) among the three
algorithms, the classification result is the worst (total error: 10.252%). On the contrary,
SDP2 gets the best result (total error: 3.566%) with its smallest J (3.806). It means that
the criterion J can not reflect the class separability reasonably in this case. We also find
that J(7, 9) is extremely small in SDP1 (0.010) and LDA (0.084). In the meanwhile,
E(7, 9) takes the largest part in the total error E in the cases of SDP1 and LDA. There
may exist over-fitting in SDP1. To maximize J , SDP1 may sacrifice some J(i, j). But a
extremely small J(i, j) leads to an extremely large E(i, j). However, J(i, j)s of SDP2
are more average, which makes it outperform others.
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Table 3. Comparison results between SDP1 and SDP2 on USPS. For each case, the experiments
are run 10 times on randomly split data.

number of classes 3 4 5 6 7 8
frequency of SDP1 wins(target dimension is 50) 4 6 5 5 5 8

frequency of SDP2 wins(target dimension is 50) 6 4 4 5 5 2

frequency of SDP1 wins(target dimension is 2) 0 3 1 1 1 4

frequency of SDP2 wins(target dimension is 2) 10 7 9 9 9 6

(1) LDA (2) SDP1 (3) SDP2

Fig. 1. Subfigures (1), (2) and (3) show the data projected into 2D metric space learned by LDA,
SDP1 and SDP2, respectively. ◦, ×, +, ∗ represent digits 3, 7, 9, 0, respectively. LDA and SDP1
can not separate digits 7 and 9, while SDP2 can separate them well.

4.2 Clustering

In the clustering experiment, we run 4 algorithms on 5 UCI data sets and compare the
clustering accuracies. A distance metric is learned via proposed algorithms, and then
k-means clustering algorithm is applied on the metric.

We consider 4 distance metric learning algorithms, and compare these with the de-
fault Euclidean metric:

SDP5: The algorithm solving the problem (1) and using the method (4a) - (4b) to
construct scatter matrices.

Xing1: The algorithm proposed by [4] (the case of full A), using the same method in
SDP5 to construct the similarity and dissimilarity sets.

SDP6: The algorithm solving the problem (9) and using the method (4a)-(4b) to
construct scatter matrices.

Xing2: The algorithm proposed by [4] (the case of full A), using the same method
in SDP6 to construct the similarity and dissimilarity set (combine all the Sb(i,j) ’s, and
Sv(i,j) ’s).

We use 5 UCI data sets to evaluate these algorithms. Each data set has more than
2 predefined labels, which is considered as the “true” clustering. Table 4 demonstrates
features of data sets and parameters of algorithms.

For each run, the data set is randomly sampled by a ratio of 5/5 (except for Soybean,
which is 7/3 ), then a similarity set S and a dissimilarity setD (for Xing1 and Xing2) or
a inter-class scatter matrix Sb and a intra-class scatter matrix Sv (for SDP5 and SDP6)
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Fig. 2. Class separability criteria vs. training errors for the projected training data (digits 3, 7, 9, 0
in USPS data set) using the projection matrices learned by LDA, SDP1 and SDP2.

are constructed according to the training subset. Since k-means can only obtain a local
optimal result, we run it 5 times for each data set and choose the best result as the final
accuracy. Table 5 shows the clustering accuracy on the 5 UCI datasets. The accuracy is
calculated in the way that is same as [4] (Sample(xi,xj) drawn from the same cluster
with chance 0.5 and form different clusters with chance 0.5).

We find that all the results of SDP5 and SDP6 are better than the default Euclidean
metric, and SDP5 and SDP6 have very similar performances. Compared with Xing et
al.’s method [4], SDP5 and SDP6 also have comparable performances This verifies that

Table 4. Description of data sets and experimental parameters for clustering

Balance Soybean Protein Iris Wine
Size of dataset 625 47 116 150 168

Training ratio 0.5 0.7 0.5 0.5 0.5
Classes 3 4 6 3 3

Input dimensions 4 35 20 4 12

Parameters (k, k′) for Xing1 and SDP5 (5, 5) (3, 4) (5, 5) (3, 3) (5, 1)
Parameters (k, k′) for Xing2 and SDP6 (3, 2) (3, 1) (5, 4) (5, 1) (3, 5)
Runs 10 10 10 10 10
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Table 5. Clustering accurary of k-means clustering in the form of mean (std)%

Balance Soybean Protein Iris Wine
Default metric 59.61(1.62) 90.54(9.15) 64.70(2.11) 87.41(1.78) 68.76(2.91)
Xing1 67.27(1.81) 96.41(6.02) 62.26(3.82) 95.36(1.79) 68.04(2.79)
SDP5 64.73(3.12) 95.60(7.13) 68.26(4.19) 90.85(3.91) 67.75(2.08)
Xing2 67.07(1.83) 96.51(4.51) 60.15(2.53) 95.93(2.27) 68.57(3.80)
SDP6 63.07(2.78) 92.19(7.44) 66.20(2.77) 91.38(4.59) 68.91(1.94)

the optimization problem of trace quotient and Xing et al. are almost equivalent. Note
that Xing’s algorithm is more computationally expensive to solve than the trace quotient
problem.

5 Conclusion

In this work, we have presented a new algorithm for dimensionality reduction. A new
class separability criterion is presented, and a global optimization approach is designed.

We have applied the proposed algorithm on classification and clustering. Classifica-
tion experiments show that the performance of our algorithm is competitive to the one
presented in [1]. Our algorithm is better when Sb and Sv are constructed by LDA. Fur-
thermore, our algorithm is much better when the target dimension is small. In clustering
experiments, our algorithm have a comparable result as the state-of-the-art [4].

Future work will focus on solving the problem (8) directly, which may lead to even
better performances.
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Abstract. We propose a new robust estimator for parameter estimation

in highly noisy data with multiple structures and without prior informa-

tion on the noise scale of inliers. This is a diagnostic method that uses

random sampling like RANSAC, but adaptively estimates the inlier scale

using a novel adaptive scale estimator. The residual distribution model

of inliers is assumed known, such as a Gaussian distribution. Given a

putative solution, our inlier scale estimator attempts to extract a dis-

tribution for the inliers from the distribution of all residuals. This is

done by globally searching a partition of the total distribution that best

fits the Gaussian distribution. Then, the density of the residuals of es-

timated inliers is used as the score in the objective function to evaluate

the putative solution. The output of the estimator is the best solution

that gives the highest score. Experiments with various simulations and

real data for line fitting and fundamental matrix estimation are carried

out to validate our algorithm, which performs better than several of the

latest robust estimators.

1 Introduction

Robust parameter estimation is fundamental research in the fields of statistics
and computer vision. It can be applied in many estimation problems, such as
extracting geometric models in intensity images and range images, estimating
motion between consecutive image frames in a video sequence, matching images
to find their similarity, and so on. In these problems, the data contains explana-
tory data, which also includes leverage elements, and a large number of outliers.
The data may also contain several structures, such as various lines or planes
that appear in pictures or range images of a building. Therefore, the common
requirements for a modern robust estimator in computer vision are: robustness
to various high outlier rates (high breakdown point [1]), ability to work with
multi-structural data and good detection of inliers.

In this paper, we present a new robust estimator that has a high breakdown
point, can work with multi-structural data and estimates the correct inlier scale.
Our method relies on a novel inlier scale estimator and a density-based objective
function. The proposed inlier scale estimator finds the most Gaussian-like parti-
tion globally in the residual distribution of a putative solution. This is the main

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 287–298, 2010.
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contribution of our paper. Since we find the best inlier scale for inliers globally,
smoothness of the probability density is not strictly required, and therefore, we
have chosen the histogram method for fast computation.

2 Related Works

Least median squares (LMS) [1] is the most well-known robust estimator in
statistics and computer vision, and can achieve a high breakdown point [1] of up
to 50% of the outliers. However, in a real estimation problem, such as extracting
lines from an intensity image or extracting planes from a range image, where
the outlier rate is higher than 50%, the LMS cannot be used. Some estimators,
however, have a higher breakdown point than 50%. The RANSAC algorithm [9]
and Hough transform [10] are the most popular in this regard. If the scale of
inliers is supplied, RANSAC can reach a very high breakdown point. However,
the drawback of RANSAC is that it needs a user-defined threshold to distinguish
inliers. The Hough transform can also achieve a very high breakdown point if it
is able to manage its large voting space. Certain extensions of the LMS, such as
MUSE (minimum unbiased scale estimate) [2] or ALKS (adaptive least kth order
squares) [3], can be applied with high outlier rates, but these have a problem with
extreme cases, such as perpendicular planes, and are sensitive to small pseudo
structures. Another extension of the LMS is MINPRAN (minimize probability
of randomness) [4], which requires an assumption of the outlier distribution.
This assumption seems to be strict since outlier distribution is assumed with
difficulty. RESC (residual consensus) [5] computes a histogram of residuals and
uses several parameters to compress the histogram. The histogram power is com-
puted as the score for the putative estimate. RESC is claimed to tolerate single
structure data that contains up to 80% outliers, however, it needs many user-
defined parameters to compress the histogram and to detect the inlier distribu-
tion, which reduces its adaptiveness. The pbM (projection-based M-Estimator)
[6][11] is an extension of the M-Estimator that uses projection pursuit and the
KDE (kernel density estimation), and can provide a breakdown point greater
than 50%. However, it only works for linear residual functions, such as linear
regression, or linearized residual functions. Another robust estimator that uses
the KDE is the ASSC (adaptive scale sample consensus) [7]. ASSC assumes that
the inliers are located within some special structure of the density distribution;
practically it detects the first peak from zero and the valley next to the peak to
locate the inliers. ASSC can provide a very high breakdown point, around 80%,
when the correct bandwidth for the KDE is applied. ASSC has subsequently
been improved, resulting in ASKC (adaptive scale kernel consensus) [8], which
has an improved objective function and higher robustness in the case of high
outlier rates. The bandwidth for the KDE in ASKC is computed using a scale
estimate that contains approximately 10% of the smallest residuals. However,
this under-smoothed bandwidth causes the ASKC estimate to have very few in-
liers in the case of data with a low outlier rate, and this reduces the accuracy
even though the breakdown point is still high. In contrast to the pbM, ASSC
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or ASKC, our proposed method does not compute the inlier scale (the standard
deviation of noise on the inlier residuals) directly from the estimated probability
density. Since it roughly describes the true distribution and since the location of
a local peak, global peak or local valley in the density estimation depends on a
smoothing bandwidth, we find the best inlier scale globally by matching with a
Gaussian distribution.

3 Adaptive-Scale Robust Estimator

3.1 Problem Preliminaries

Assume the estimation of a structure model with the constraint:

g(θ,X) = 0, (1)

where θ is the parameter vector of the structure, and X is an explanatory data
point. Our estimation problem can then be described as follows.

– Input : N observed data points Xi, i = 1..N , including both inliers and
outliers.

– Output : Parameter θ that describes the data.

In a real problem, each inlier Xt is affected by an unknown amount of noise.
Therefore, the actual parameter θ cannot be recovered, and some approximation
of θ needs to be estimated. In evaluating whether an approximate estimate θ̂ is
good or bad, the estimator can only rely on the statistics of the error for each
data point. This error is called the residual, and is a non-negative measure in the
proposed method. For each model estimation problem, there are numerous ways
of defining the residual function, including using the original constraint function
(1). Generally, however, the residual is defined as:

rθ̂ = f(θ̂,X). (2)

The standard deviation of these inlier residuals is called the “inlier scale”, and is
denoted by σθ̂. The problem is that σθ̂ is not known, and therefore, an inlier scale
estimator tries to estimate it. This estimate is denoted by σ∗

θ̂
. Once the inlier

scale has been determined, the threshold tθ̂ = τσ∗
θ̂

can be decided to distinguish
inliers from outliers.

Given an estimate θ̂, and an inlier scale σθ̂, the probability density function is
denoted as Pθ̂(r). Pθ̂(r) is normalized using the inlier scale σθ̂ and we denote this
normalized density function as P s

θ̂
( r

σθ̂
). As the estimate θ̂ approaches the correct

value of θ, the distribution of inliers resembles more closely the ideal distribution.
We call the ideal distribution when θ̂ = θ, the distribution model. The density
function for the standardized distribution model, with a sample deviation of 1, is
denoted as G(ξ), ξ ≥ 0. In this case, the standardized distribution model is the
standard Gaussian distribution for the absolute of variables, denoted by AGD
and described in Fig.1.
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The proposed estimator works with data with multiple structures, and there-
fore, the residual distribution Pθ̂(r) has multiple modes. The mode near the
origin is assumed to belong to the inlier structure, while the others belong to
the outlier structures. Therefore, we cannot use the whole distribution model
G(ξ) with 0 ≤ ξ < ∞ for matching. Only the portion of G(ξ) with 0 ≤ ξ ≤ κ is
assumed as the inlier distribution model and is used for matching. κ is selected
so that the range 0 ≤ ξ ≤ κ contains more than 95% of the population; in this
study, for example, we use κ = 2.5.

3.2 Proposed Robust Estimator

In most previous works, the authors have assumed that the inlier residual distri-
bution is a Gaussian distribution. This is also true for our research. We propose
an estimator that uses distribution matching to find the best inlier scale from
the distribution of all residuals.

Inlier Scale Estimation by Matching the Residual Distribution to the
Distribution Model: The inlier scale is estimated by searching for the best
fit between a segment of the residual distribution and the AGD. The segment of
the residual distribution used for matching starts from zero. Then, the residual
scale of the first structure is detected regardless of the outlier structures. The

matching error between the density function P s
θ̂
(

ri
θ̂

σ ) with assumed inlier scale σ

and the AGD density function G(
ri

θ̂

σ ) is defined by a simple minimization:

eθ̂(σ) = min
k

Average
0≤ri

θ̂
≤κσ

{(P s
θ̂
(
ri
θ̂

σ
)− kG(

ri
θ̂

σ
))2}, (3)

where k is some scale of the AGD density function, ri
θ̂

is the ith residual and
κ indicates the portion of the AGD used in the matching. Then, the best scale
of inlier residuals σ∗

θ̂
is estimated by searching the scale that gives the smallest

matching error. This is summarized as

σ∗
θ̂

= argmin
σ

{eθ̂(σ)}. (4)

Inliers are then distinguished using the threshold tθ̂ = κσ∗
θ̂
.

In our algorithm, to compute the probability density of the residual from an
estimate θ̂, we apply the well-known histogram method, although the KDE can
also be used. A histogram is simple and as residual sorting is not required, in
contrast to most previous estimators, it gives a very low computational cost.
Searching for the best inlier scale σ∗

θ̂
is graphically depicted in Fig.1.

Bin-width for the histogram is selected in the same way as in previous works
[7][8]. A widely used bin-width [13] for robust estimators is:

b̂θ̂ = (
243

∫ 1

−1
K(ζ)2dζ

35N(
∫ 1

−1 ζ2K(ζ)dζ)2
)

1
5

ŝθ̂, (5)
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Fig. 1. Demonstration of searching the inliers scale. Data contains two actual parallel

lines. The inlier scale is obtained by finding the smallest matching error.

where K is some kernel, such as the popular Gaussian kernel or Epanechnikov
kernel, and ŝθ̂ is the smallest window containing 15% of the smallest residuals.

Objective Function: Inspired by the use of the KDE in the pbM-Estimator
[11] and ASKC [8], we also apply it in our adaptive objective function:

F (θ̂) =
1

Nhθ̂

N∑
i=1

K(
ri,θ̂

hθ̂

), (6)

where hθ̂ is adaptively estimated and K is a kernel such as the Gaussian kernel
KG or Epanechnikov kernel KE. The KDE objective function evaluates how
densely the residuals are distributed at zero using the kernel’s window. In our
case, the window of kernel K is hθ̂, which tightly fits the estimated inliers,
and therefore, the objective function gives the density measured at zero for the
estimated inliers only. For KG, hθ̂ = σ̂∗

θ̂
and for KE , hθ̂ = κσ̂∗

θ̂
.

3.3 Estimation Algorithm Summary

We summarize the proposed algorithm below.

(a) Create a random sample and then estimate the solution parameters θ̂.
(b) Estimate all the residuals of the data points given the parameters θ̂.
(c) Estimate the bin-width by (5), and then compute histogram Pθ̂.
(d) Estimate the inlier scale as summarized by (4).
(e) Estimate the score using the objective function (6).
(f) Update the best solution.
(g) Repeat from (a) if not terminated.
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4 Experiments

We carried out several experiments to validate our algorithm in linear and non-
linear estimation problems: plane fitting, line fitting and fundamental matrix
estimation. First, we used a simulation to understand the various aspects of the
algorithm, and then actual experiments were performed with real data to vali-
date the algorithm in various real situations. For the plane and line fitting (linear
residual) problems, we compared our algorithm with several popular robust es-
timators: the pbM, LMedS, ALKS, ASSC, and ASKC. For the fundamental ma-
trix (using non-linear residual) estimation, we used LMedS, ASSC, ASKC, and
ALKS for comparison, since the pbM was originally proposed for linear robust
regression problems. ALKS is very unstable when k is small, and therefore, in
our experiments we only started searching for k when it was greater than 15% of
the total number of data points. The Epanechnikov kernel was used in the KDE
as well as the related objective functions. All algorithms were supplied with the
same set of random sampling hypotheses and no optimization. For the proposed
estimator, κ was selected such that the portion of the AGD for matching con-
tained about 97% of the population; κ = 2.5 was used for all the experiments.
The following criteria were used for validating the proposed estimator:

– Robustness through various outlier rates and noise scales.
– The ability to work with data with multiple structures.

4.1 Linear Fitting

In this problem, the estimator must extract the correct line or plane from a
dataset that contains single or multiple structures with the appearance of ran-
dom outliers. The experiments were carried out using various popular analytic
simulations for the robust estimator. Given an estimate θ̂ = (â, b̂, ĉ, d̂), the esti-
mation error is defined as:

Errorθ̂ =
√

(a− â)2 + (b− b̂)2 + (c− ĉ)2 + (d− d̂)2, (7)

where (a, b, c, d) are ground-truth parameters. The normal vector of each plane
is normalized such that

√
a2 + b2 + c2 = 1,

√
â2 + b̂2 + ĉ2 = 1.
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Fig. 4. Multiple data examples: (a) parallel lines and (b) data with 3D steps

Single Structure with Various Outlier Rates: We simulated a random
dataset containing a random 3D plane with 500 random points within a 3D
volume [0, 0, 0, 1000, 1000, 1000]. Some of the inlier points were replaced by
outliers with random coordinates, thereby keeping the total number of data
points as 500. The inlier points were contaminated by Gaussian noise with scale
σG=8. The average results for 100 such datasets are shown in Fig.2. Fig.2(a)
shows the estimation errors for robust estimators and Fig.2(b) shows the ratio
between the estimated inlier scale and the actual inlier scale. The proposed
estimators, pbM, ASSC and ASKC, have similar breakdown points, and they can
work with very high outlier rates, up to 90%. However, with regards accuracy
of the estimation and estimated inlier scale, the proposed estimator gives the
best results. The estimated inlier scale is close to the actual inlier scale, with the
ratio between them almost 1.

Single Structure with Noise Levels on Inliers: The dataset was set up
in the same way as in Section 4.1 for line fitting, but the outlier rate was fixed
at 60%, and the noise scale σG varied between 1 and 52. The average results
for 100 datasets are shown in Fig.3. These results show that the performance
of each estimator decreased as the noise scale increased. However, the proposed
estimator was highly resistant to the high noise scale.

Parallel Lines with Varying Distances: This problem demonstrates the
ability of line estimation with the appearance of multiple structures. A dataset
containing two parallel lines is used in this experiment. The estimator must
then discriminate the two lines and extract a line correctly from the data. The
experiment was carried out with varying distances between the two parallel lines:

Line1 : 2x− y + d = 0, where d = 20, 30, 40, ...210
Line2 : 2x− y = 0.

Each dataset contained 450 random points (outliers); 150 points on line1 and
300 points on line2 were generated randomly for each trial in this experiment.
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Fig. 5. Estimation errors for data (a) with parallel lines and (b) with steps

Gaussian noise with a zero mean and σG=8.0 was added to the points on each
line, whilst keeping the range of all points within the rectangle (0, 0, 62.5σG,
62.5σG). An example of a random dataset is shown in Fig.4(a) with d = 80. The
average results from 100 trials for the estimation error and number of estimated
inliers are shown in Fig.5(a). When the two lines are close together, d = 20, they
are almost mistaken for one line, with all estimators having a similar accuracy.
When the lines are further apart, the performance of ALKS is the worst, as it
only manages to estimate correctly once the two lines are very far apart. Since
the actual outlier rate for estimating any line is greater than 50%, LMedS pro-
duces worse results as the two lines move further apart. However, our proposed
algorithm retains a similar accuracy rate irrespective of the distance between
the lines. The pbM, ASSC and ASKC have the same robustness as the proposed
estimator, but with lower accuracy.

Multiple Steps with Varying Noise Levels: In this experiment, step data
consisting of four planes was set up as shown in Fig.4(b). The parameters of the
actual planes are:

Plane 1 : z − 100 = 0
Plane 2 : z − 200 = 0
Plane 3 : z − 300 = 0
Plane 4 : z − 400 = 0

The dataset for evaluation consisted of 240 random points for each plane and
240 random outliers. Each data point on a plane was contaminated by Gaussian
noise with σG. The experiment was carried out to test all the estimators with
different values of σG. With larger values of σG, the four planes are closer and
may become fused. The results are illustrated in Fig.5(b), which gives the average
of the results for 100 such randomly generated datasets.

The pbM did not perform well in this experiment as it mistook the four
planes for the same structure, resulting in the estimated number of inliers being
about four times more than the actual number of inliers for each plane. LMedS
did not perform well either, as the outlier rate is high for the estimation of
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Frame t-1 Frame t 

Fig. 6. One pair of images in a sequence; inliers (image features in red) and outliers

(image features in green) are output by the proposed estimator

any plane. ASSC and ASKC were able to estimate correctly only at low noise
levels. The proposed method was able to function correctly at slightly higher
noise levels, but then it also became confused and estimated the four planes as
a single plane. Since ALKS is well known for its instability and sensitivity to
small pseudo structures, we limited the size of possible structures for ALKS,
with the estimated structure being larger than 15% of the data. Hence, ALKS
was able to function at much higher noise levels. In this case its sensitivity was
an advantage.

4.2 Fundamental Matrix Estimation in Real Video Sequences

In these experiments, real video sequences were captured in an indoor environ-
ment with an omnidirectional vision sensor. Examples of the captured images
are shown in Fig.6. The sensor consisted of an omnidirectional mirror, a telecen-
tric lens and an imaging sensor. The camera was mounted on a rotary stage and
controlled by a PC, which translated the camera whilst it was being rotated.
For each pair of images, 200 Harris image features were detected on the first im-
age and tracked on the second image to obtain the feature correspondence pairs
using the KLT feature tracker [12] implemented in OpenCV. The fundamental
matrix between a pair of consecutive images was computed using the seven point
algorithm [16] with these feature correspondence pairs. The residual function is
defined in [15]:

r = f(F ,x,x
′
) =

∣∣∣x′T Fx
∣∣∣√ 1

‖ Fx ‖2
+

1
‖ F T x

′ ‖2
, (8)

where F is the fundamental matrix and (x,x
′
) a feature correspondence pair.

Since we cannot compare the estimated fundamental matrix with a ground-truth
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fundamental matrix, we compute the error as the standard deviation of only
inlier residuals of the estimated fundamental matrix θ̂

∗
= F̂

∗
:

Error ˆF
∗ =

√√√√ 1
M

M∑
i=1

(r
i,

ˆF
∗)2, (9)

where M is the number of inliers. This error computation relies on how the
solution fits the motion data: a better fit produces smaller residuals for inliers,
and vice versa. In a simulation, the actual inliers are known and thus M is known.
In a real experiment, the error is computed for the M smallest residuals (which
are considered inliers), with M assigned manually after checking the actual data.

For each video sequence, about 50 images were captured, whilst ensuring the
same rotation between consecutive images. The performance of all the estimators
tends to deteriorate with a greater degree of rotation, since the KLT tracker is less
accurate under greater rotation. Therefore, we used three video sequences with
different rotation settings. These video sequences are referred to as V ideo 4deg,
V ideo 14deg and V ideo 18deg for rotation speeds of 4 degrees/frame, 14 de-
grees/frame, and 18 degrees/frame, respectively. We computed the error by (9)
and M was set independently for each video sequence after randomly checking
five pairs of images within each video sequence. The average number of true in-
liers and the assigned value for M for each video sequence are given in Table.1.
The average errors and number of estimated inliers for 100 executions of each
video sequence are given in Table.1. For low outlier rates, LMedS gave the best
accuracy. However, for a high outlier rate in V ideo 18deg, LMedS performed
worst. The estimation error of the proposed method is quite similar to that of
ASSC. With regard to the number of estimated inliers, the proposed method
gave the best results, the number of estimated inliers was close to the actual
number of inliers.

Table 1. Fundamental matrix estimation error and number of estimated inliers for

real video sequences

Video sequence Video_4deg Video_14deg Video_18deg 
Number of true inliers 187.7 102.7 72.2 
Assigned M 160 90 60 
Fitting error /  
No est. inliers 
Proposed method 0.00152 150.7 0.00377 86.4 0.00382 65.5 
ASSC 0.00156 36.7 0.00377 38.7 0.00385 39.9 
ASKC 0.00184 22.7 0.00474 23.6 0.00507 23.9 
ALKS 0.00903 66.8 0.01955 98.7 0.02127 64.5 
LMedS 0.00125 101.0 0.00349 101.0 0.00574 101.0 

Fig.7 shows the estimated distributions of residuals (from both inliers and
outliers) for the estimators with the sequence V ideo 18deg. For each estimator,
the distribution was computed as the average of the residual distributions for
the solutions for all pairs of images. The graph shows that the distributions and
the Gaussian are highly correlated regardless of the estimator.
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4.3 Computational Cost

We simulated the relation between processing time and the number of data
points, the average results of which are shown in Fig.8. In this simulation, a
linear fitting problem for a plane was used and all the estimators were given
the same set of random samples. The graph shows that overall the proposed
estimator gives the fastest computational time, especially for large data.

5 Discussion and Conclusions

In this paper, we proposed a novel highly robust estimator for the estimation
problem in computer vision that deals with data with high outlier rates and
multiple structures. Our algorithm does not need any prior information about
the inlier scale, as this is estimated adaptively by globally searching for the
best match of the Gaussian distribution and the residual distribution. Thus, the
inlier residual distribution is tightly estimated, resulting in robustness and high
accuracy for the proposed algorithm. The validity of the proposed algorithm was
confirmed by experiments with several different estimation problems in various
situations.

Without a smoothing parameter, such as bin-width in the proposed estimator
and bandwidth in ASSC, the residual statistics are unstable, especially for a
small set of residuals. This reduces the robustness of an adaptive robust estima-
tor, as is the case in ALKS. ALKS tends to extract smaller structures that have
a distribution similar to the Gaussian distribution. However, in a small set of
residuals, this distribution is likely to occur. Using a smoothing parameter in the
residual density estimation can make an adaptive-scale estimator more robust,
as is the case in ASSC, ASKC, and pbM. However, the problem lies in how large
this parameter should be. For example, in ASSC and ASKC, the estimated in-
lier scale is correlated with the bandwidth but not with the actual outlier rate.
The inlier scale is frequently underestimated for data with low outlier rates. The
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proposed estimator is designed to estimate the inlier distribution tightly, and
therefore the inlier scale is always close to the actual inlier scale regardless of
the outlier rate.

In current method, we assume the Gaussian distribution for inlier residuals.
In future, we would like to improve the algorithm for application to distribution
models other than the Gaussian.
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Abstract. A distance metric that can accurately reflect the intrinsic

characteristics of data is critical for visual recognition tasks. An effective

solution to defining such a metric is to learn it from a set of training sam-

ples. In this work, we propose a fast and scalable algorithm to learn a Ma-

halanobis distance. By employing the principle of margin maximization

to secure better generalization performances, this algorithm formulates

the metric learning as a convex optimization problem with a positive

semidefinite (psd) matrix variable. Based on an important theorem that

a psd matrix with trace of one can always be represented as a convex

combination of multiple rank-one matrices, our algorithm employs a dif-

ferentiable loss function and solves the above convex optimization with

gradient descent methods. This algorithm not only naturally maintains

the psd requirement of the matrix variable that is essential for met-

ric learning, but also significantly cuts down computational overhead,

making it much more efficient with the increasing dimensions of fea-

ture vectors. Experimental study on benchmark data sets indicates that,

compared with the existing metric learning algorithms, our algorithm

can achieve higher classification accuracy with much less computational

load.

1 Introduction

Many visual recognition tasks can be regarded as inferring a distance metric
that is able to measure the similarity of visual data in a way consistent with
human perception. Typical examples include visual object categorization [1] and
content-based image retrieval [2], in which a similarity metric is needed to dis-
criminate different object classes or the relevant and irrelevant images for a given
query. Classifiers, from the simple k-Nearest Neighbor (k-NN) [3] to the advanced
Support Vector Machines (SVMs) [4], can be explicitly or implicitly related to a
distance metric. As one of the representative classifiers, k-NN has been applied
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to a wide range of visual recognition tasks and it is the classifier that directly
depends on a predefined distance metric. To make this classifier work well, an
appropriate distance metric has to be applied. Previous work (e.g., [5,6]) has
shown that compared to using the standard Euclidean distance, employing an
well-designed distance metric to measure the (dis)similarity of data can signifi-
cantly boost the classification accuracy of k-NN.

In this work, we propose a scalable and fast algorithm to learn a Mahalanobis
distance metric. The key issue in this task is to learn an optimal Mahalanobis
matrix in this distance metric. It has been shown in the statistical learning the-
ory [7] that increasing the margin between different classes helps to reduce the
generalization error. Hence, our algorithm formulates the Mahalanobis matrix
as a variable of the margin and optimizes it via margin maximization. By doing
so, the learned Mahalanobis distance metric can achieve sufficient separation
at the boundaries between different classes. More importantly, we address the
scalability problem of learning a Mahalanobis distance in the presence of high-
dimensional feature vectors, which is a critical issue of distance metric learning.
As indicated in a theorem in [8], a positive semidefinite matrix (psd) with trace
of one can always be represented as a convex combination of a set of rank-one
matrices with trace being one. This inspired us to develop a fast optimization
algorithm that works in the style of gradient descent. At each iteration, our al-
gorithm only needs to find the largest principal eigenvector of a gradient matrix
and to update the current Mahalanobis matrix. This process incurs much less
computational overhead than the metric learning algorithms in the literature [9].
Moreover, thanks to the above theorem, this process automatically preserves the
psd property of the Mahalanobis matrix. To verify its efficiency, the proposed
algorithm is tested on a set of benchmark data sets and is compared with the
state-of-the-art distance metric learning algorithms. As experimentally demon-
strated, k-NN with the Mahalanobis distance learned by our algorithms attains
higher classification accuracy. Meanwhile, in terms of the optimization time, our
algorithm is much less affected by the increased dimensionality of feature vectors.

2 Related Work

For a given classification task, learning a distance metric aims to find a met-
ric that makes the data in the same class close and separates those in different
classes from each other as far as possible. There has been some work on dis-
tance metric learning in the literature. Xing et al. [5] propose an approach to
learn a Mahalanobis distance for supervised clustering. It minimizes the sum of
the distances among data in the same class while maximizing the sum of the
distances among data in different classes. Their work shows that the learned
metric improves clustering performance significantly. However, to maintain the
psd property, they use projected gradient descent and their approach has to per-
form a full eigen-decomposition of the Mahalanobis matrix at each iteration. Its
computational cost rises rapidly when the number of features increases, and this
makes it less efficient in handling high-dimensional data. Goldberger et al. [10]
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develop the algorithm called Neighborhood Component Analysis, which learns
a Mahalanobis distance by minimizing the leave-one-out cross-validation error
of the k-NN classifier on a training set. However, their algorithm leads to a
non-convex optimization problem and expensive computational load. Although
the work in [10] learns a Mahalanobis distance metric as ours does, it does not
study and make use of the psd property of the Mahalanobis matrix. The work
closest to ours is [9] in the sense that it also learns a Mahalanobis distance in the
large margin framework. In their approach, the distances between each sample
and its “target neighbors” are minimized while the distances among the data
with different labels are maximized. A convex objective function is created and
solved by using the semidefinite programming (SDP) technique. Note that they
have adopted an alternating projection algorithm for solving the resulted SDP
because standard interior-point methods do not scale well. At each step of iter-
ation, similar to [5], also a full eigen-decomposition is needed. Our approach is
largely inspired by their work. However, we take a different way to achieving the
margin maximization and lead to a different objective function. To develop our
fast algorithm, we adopt a differentiable loss function rather than the discon-
tinuous hinge loss function in [9]. More importantly, our algorithm has a clear
advantage on computational efficiency (we only need to compute the leading
eigenvector) and achieves better classification performance.

3 Formulation of Our Optimization Problem

Let ai ∈ RD(i = 1, 2, · · · , n) denote a training sample where n is the number
of training samples and D is the number of features. To learn a Mahalanobis
distance, we create a set S which contains a group of training triplets as S =
{(ai,aj ,ak)}, where ai and aj come from the same class and ak belongs to a
different class. A Mahalanobis distance can be defined as follows. Let P ∈ RD×D

denote a linear transformation and dist be the squared Euclidean distance in
the transformed space. The squared distance between the projections of ai and
aj is

distij = ‖PT ai −PT aj‖2
2 = (ai − aj)TPPT (ai − aj). (1)

According to the class membership of ai, aj and ak, we require that distik ≥
distij and it can be obtained that

(ai − ak)T PPT (ai − ak) ≥ (ai − aj)TPPT (ai − aj). (2)

It is not difficult to see that this inequality is generally not a convex constrain
in P because the difference of quadratic terms in P is involved. In order to make
this inequality constrain convex, a new variable X = PPT is introduced and
used through out the whole learning process. Learning a Mahalanobis distance
is essentially to learn the Mahalanobis matrix X. (2) becomes linear in X. This
is a typical technique for formulating an SDP problem whose global maximum
can be efficiently computed.
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3.1 Maximization of a Soft Margin

In our algorithm, the margin is defined as the distance between distik and distij ,
that is,

ρr = (ai − ak)T X(ai − ak)− (ai − aj)T X(ai − aj),
∀(ai,aj ,ak) ∈ S, r = 1, 2, · · · , |S|. (3)

It is maximized to identify the optimal Mahalanobis matrix X. In the meantime,
to deal with non-separable data sets and avoid over-fitting training samples, we
must allow some training errors while maximizing the margin. Considering these
factors, we define the objective function for learning X as

max
ρ,X,ξ

ρ− C
∑|S|

r=1 ξr

s.t. X � 0,Tr(X) = 1, ξr ≥ 0, r = 1, 2, · · · , |S|,
(ai − ak)T X(ai − ak)− (ai − aj)T X(ai − aj) ≥ ρ− ξr, ∀(ai, aj , ak) ∈ S,

(4)
where X � 0 constrains X to be a psd matrix and Tr(X) denotes of trace of
X. r indexes the training set S and |S| denotes the size of S. C is an algorith-
mic parameter that balances the training error and the margin. ξ ≥ 0 is the
slack variable similar to that used in the SVMs and it corresponds to the soft-
margin hinge loss. Imposing Tr(X) = 1 removes the scale ambiguity because the
inequality constrains are scale invariant. To simplify exposition, we define

Ar = (ai − ak)(ai − ak)T − (ai − aj)(ai − aj)T . (5)

By doing so, the last constraint in (4) can be written as〈
Ar,X

〉 ≥ ρ− ξr, r = 1, · · · , |S| (6)

Note that this is a linear constrain on X. Problem (4) is thus a typical SDP
problem since it has a linear objective function and linear constraints plus a
psd conic constraint. It can be solved using off-the-shelf SDP solvers. However,
directly solving problem (4) using standard interior-point SDP solvers would
quickly become computationally intractable with the increasing dimensionality
of feature vectors. The following shows our way of developing a fast algorithm
for (4).

3.2 Employing a Differentiable Loss Function

It is proven in [8] that a psd matrix can always be decomposed as a linear convex
combination of a set of rank-one matrices. In the context of our problem, this
means that X =

∑
θiZi, where Zi is a rank-one matrix and Tr(Zi) = 1. This

important result inspires us to develop a gradient descent based optimization
algorithm. In each iteration X is updated as

Xi+1 = Xi + α(�X−Xi) = Xi + αpi, 0 ≤ α ≤ 1 (7)
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Fig. 1. The hinge loss, squared hinge loss and huber loss used in our work

where �X is a rank-one and trace-one matrix. pi is the search direction and will
be introduced in Table 2.

To make a gradient descent method applicable, we need to ensure that the
object function to be differentiable with respect to the variables ρ and X.

Let f denote the objective function and  be a loss function. Our optimization
problem can be written as

f(X, ρ) = ρ− C

|S|∑
r=1

 (
〈
Ar,X

〉− ρ). (8)

The above problem (4) adopts the hinge loss function which is defined as  (z) =
max(0,−z). However, the hinge loss is not differentiable at the point of z = 0,
and gradient-based optimization will encounter problems. In order to remove
this problem, we propose to use differentiable loss functions, for example, the
squared hinge loss or huber loss functions discussed below.

The squared hinge loss function can be represented as

 (
〈
Ar,X

〉− ρ) =
{

0, if (
〈
Ar,X

〉− ρ) ≥ 0,(〈
Ar,X

〉− ρ
)2

, if (
〈
Ar,X

〉− ρ) < 0.
(9)

As shown in Fig. 1, this function connects the positive and zero segments
smoothly and it is differentiable everywhere including the point z = 0. We also
consider the huber loss function:

 (
〈
Ar,X

〉− ρ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if (
〈
Ar,X

〉− ρ) ≥ h,

(h−(
〈
Ar ,X

〉
−ρ))2

4h , if −h < (
〈
Ar,X

〉− ρ) < h,

−(
〈
Ar,X

〉− ρ), if (
〈
Ar,X

〉− ρ) ≤ −h,

(10)

where h is a parameter whose value is usually between 0.01 and 0.5. A huber
loss function with h = 0.5 is plotted in Fig. 1. There are three different parts in
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Table 1. The proposed optimization algorithm

1. Randomly initialize X0 such that Tr(X0) = 1, rank(X0) = 1;

ε is a pre-set small value.

2. For k = 1, 2, . . .
2.1 Compute ρk by solving the subproblem

ρk = arg max
ρ>0

f(Xk−1, ρ).

2.2 Compute Xk by solving the problem

Xk = arg max
X�0,Tr(X)=1

f(X, ρk).

2.3 If |f(Xk, ρk) − f(Xk−1, ρk)| < ε and |f(Xk−1, ρk) − f(Xk−1, ρk−1)| < ε
(k > 1),

break.

3. End for.

the huber loss function, and they together form a continuous and differentiable
function of z. This loss function approaches the hinge loss curve when h → 0.
Although the huber loss is a bit more complicated than the squared hinge loss,
its function value increases linearly with the value of

〈
Ar,X

〉−ρ. Hence, when a
training set contains outliers or sample heavily contaminated by noise, the huber
loss can often give a more reasonable (milder) penalty than the squared hinge
loss does. We discuss both loss functions in our experimental study. Note that
by using these two loss functions, the cost function f(X, ρ) that we are going to
optimization becomes differentiable with respect to both X and ρ.

4 A Fast Optimization Algorithm

The proposed algorithm maximizes the objective function iteratively, and in
each iteration the two variables X and ρ are optimized alternatively. Note that
optimizing in this alternative way will not prevent the global optimum from
being obtained because f(X, ρ) is a convex function in both variables (X, ρ) and
(X, ρ) are not coupled together. The pseudo-code of the proposed algorithm is
given in Table 1. Note that ρk is a scalar and the step 2.1 in Table 1 can be solved
directly by a simple one-dimensional maximization process. However, X is a psd
matrix with size of D×D. Recall that D is the dimensionality of feature vectors.
The following section presents how X is efficiently optimized in our algorithm.

4.1 Compute the Mahalanobis Matrix Xk

Let P = {X ∈ RD×D : X � 0,Tr(X) = 1} be the domain in which a feasible X
lies. Note that P is a convex set of X. As shown in Step 2.2 in Table 1, we need
to solve the following maximization problem:

max
X∈P

f(X, ρk), (11)
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Table 2. Compute Xk in the proposed algorithm

1. Given ρk and initial approximation Xk, calculate ∇f(Xk, ρk).

2. For i = 1, 2, . . .
2.1 Compute vi corresponds to the largest eigen value of ∇f(Xi, ρk).

2.2 If the largest eigen value is less than ε, break.

2.3 Let the search direction pi = viv
T
i −Xi.

2.4 Set Xi+1 = Xi + αpi. α is found by line search.

3. End for.

4. Set Xk+1 = Xi.

where ρk is the output of Step 2.1. Our algorithm offers a simple and efficient
way for solving this problem by automatically maintaining the positive semidef-
inite property of the matrix X. It needs only compute the principal eigenvalue
computation whereas the previous approaches such as the method of [9] require
to carry out a full eigen-decomposition of X.

Let ∇f(X, ρk) be the gradient matrix of f with respect to X and α be a
step size for updating X. Recall that we update X in such a way that Xi+1 =
(1 − α)Xi+1 + α�X, where rank(�X) = 1 and Tr(�X) = 1. To find the �X
that satisfies these constraints and in the meantime can best approximate the
gradient matrix ∇f(X, ρk), we need to solve the following optimization problem:

max
〈∇f(X, ρk),�X

〉
s.t. rank(�X) = 1, Tr(�X) = 1.

(12)

Clearly the optimal �X� is exactly vivT
i where vi is the eigenvector of ∇f(X, ρk)

that corresponds to the largest eigenvalue. Hence, to solve the above optimization,
we only need to compute the principal eigenvector of the matrix ∇f(X, ρk). The
step 2.2 is elaborated in Table 2. Note that X still retains the properties of
X � 0,Tr(X) = 1 after this process.

Clearly, a key parameter of this optimization process is α which implicitly
decides the total number of iterations. The computational overhead of our al-
gorithm is proportional to the number of iterations. Hence, to achieve a fast
optimization process, we need to ensure that in each iteration the α can lead to
a sufficient reduction on the value of f . This is discussed in the following part.

4.2 Compute the Step Size α

We employ the backtracking line search algorithm in [11] to identify a suitable
α. It reduces the value of α until the Wolfe conditions are satisfied. As shown in
Table 2, the search direction is pi = vivT

i −Xi. The Wolfe conditions that we
use are

f(Xi + αpi, ρi) ≤ f(Xi, ρi) + c1αpT
i ∇f(Xi, ρi),

∣∣pT
i ∇f(Xi + αpi, ρi)

∣∣ ≤ c2
∣∣pT

i ∇f(Xi, ρi)
∣∣. (13)
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Table 3. The ten benchmark data sets used in our experiment

Ntrn Nval Ntst Nfea Nfea after PCA Nclass Nruns

USPS 5,833 1,458 2,007 256 60 10 1
MNIST 7,000 1,500 1,500 784 60 10 1
Letter 10,500 4,500 5,000 16 16 26 1
ORLface 280 60 60 2,576 42 40 10
Twin-Peaks 14,000 3,000 3,000 3 3 11 10
Wine 126 26 26 13 13 3 10
Balance 439 93 93 4 4 3 10
Vehicle 593 127 126 18 18 4 10
Breast-Cancer 479 102 102 10 10 2 10
Diabetes 538 115 115 8 8 2 10
Face-Background 472 101 382 100 100 2 10

where 0 < c1 < c2 < 1. The result of backtracking line search is an acceptable α
which can give rise to sufficient reduction on the function value of f . It will shown
in the experimental study that with this setting our optimization algorithm can
achieve higher computational efficiency that the existing solvers.

5 Experimental Result

The goal of this experiment is to verify the efficiency of our algorithm in achiev-
ing better classification performances with less computational cost. We perform
experiments on 10 data sets described in Table 3. Here, Ntrain, Nvali, and Ntest

denote the sizes of the training sets, validation sets, and the test sets, respectively.
Nclass is the number of class and Nfea shows the dimensionality of the feature
vectors and “Nfea after PCA” is the number of features that are preserved after
the Principal Component Analysis. The Wine, Balance, Vehicle, Breast-Cancer
and Diabetes sets are obtained from UCI Machine Learning Repository1, and
USPS, MNIST and Letter are from libSVM2. For MNIST, we only use its test
data in our experiment. The ORLface data is from ATT research3 and Twin-
Peaks is downloaded from Laurens van der Maaten’s website4. The Face and
Background classes (435 and 520 images respectively) in the image retrieval
experiment are obtained from the Caltech-101 object database [12]. To accumu-
late statistics, the ORLface, Twin-Peaks, Wine, Balance, Vehicle, Diabetes and
Face-Background data sets are randomly split as 10 pairs of train/validation/test
subsets and experiments on those data set are repeated 10 times with each pairs.

The k-NN classifier with the Mahalanobis distance learned by our algorithm
(called SDPMetric in short) is compared with the k-NN classifiers using a sim-
ple Euclidean distance (“Euclidean” in short) and that learned by the large

1 Asuncion, A. Newman, D.J. (2007) UCI Machine Learning Repository

[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University of

California, School of Information and Computer Science.
2 C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001.

The software is freely available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
3 Available at http://www.uk.research.att.com/facedatabase.html
4 http://ticc.uvt.nl/lvdrmaaten/
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margin nearest neighbor in [9] (LMNN5 in short). Since Weinberger et al. [9]
has shown that LMNN obtains the classification performance comparable to
SVMs, we focus on the comparison between our algorithm and LMNN. To pre-
pare the training set S, we apply the 3-Nearest Neighbor method to these data
sets to generate the training triplets for our algorithm and LMNN, except that
the Twin-peaks and ORLface are applied with the 1-NN method. Also, the ex-
periment compares the two variants of our proposed SDPMetric, which use the
squared hinge loss (SDPMetric-S in short) and the huber loss(SDPMetric-H in
short), respectively. We split each data set into 70/15/15% randomly and refer
to those split sets as training, validating and testing sets except pre-separated
data sets(Letter and USPS) and Face-Background which was made for image
retrieval. Following [9], LMNN uses 85/15% data for training and testing. The
training data is also split into 70/15% inside LMNN to be consistent with our
SDPMetric. Since USPS data set has been split into training/test already, only
the training data are divided into 70/15% as training and validation sets. The
Letter data set is separated according to Hsu et al. [13]. As in [9], the Principal
Component Analysis (PCA) is applied to USPS, MNIST and ORLface to reduce
the dimensions of feature vectors.

The following experimental study demonstrates that our algorithm achieves
higher classification accuracy with much less computational cost than LMNN on
most of the tested data sets. The detailed test error rates and timing results are
reported in Table 4 and 5. As shown, the test error rates of SDPMetric-S are
comparable to those of LMNN and SDPMetric-H achieves lower misclassification
error rates than LMNN and the Euclidean distance on most of data sets except
Face-Background data which made as a image retrieval problem and MNIST on
which SDPMetric-S achieves low error rate.

Before reporting the timing result on these benchmark data sets, we compare
our algorithm with SeDuMi6 and SDPT37 which are used as solvers in CVX8.
We randomly generate 1,000 training triplets and gradually increase the dimen-
sionality of feature vectors from 20 to 100. Fig. 2 illustrates computational time
of ours, CVX/SeDuMi and CVX/SDPT3. As shown, the computational load
of our algorithm almost keeps constant as the dimensionality increases. In con-
trast, the computational load of CVX/SeDuMi and CVX/SDPT3 rise rapidly in
this course. In the case of the dimension of 100, the difference on optimization
time can be as large as 800–1000 seconds. The computational time of LMNN,
SDPMetric-S and SDPMetric-H are compared in Table 5. As shown, LMNN is

5 Note that to be consistent with the setting in [9], LMNN here also uses the “obj=1”

option and updates the projection matrix to speed up its computation. If we update

the distance matrix directly to get global optimum, LMNN would be much more

slower due to full eigen-decomposition at each iterations.
6 A software package to solve optimization problems which is from

http://sedumi.ie.lehigh.edu/.
7 A software to solve conic optimization problems involving semidefinite, second-order

and linear cone constraints. http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html
8 Matlab Software for Disciplined Convex Programming. The CVX package is available

from http://www.stanford.edu/boyd/cvx/index.html
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Fig. 2. Computational time vs. the dimensionality of feature vector

Table 4. 3-Nearest Neighbor misclassification error rates. The standard deviation val-

ues are in brackets.

Euclidean LMNN SDPMetric-S SDPMetric-H

USPS 5.63 5.18 5.28 5.18
MNIST 3.15 3.15 3.00 3.35
Letter 5.38 4.04 3.60 3.46
ORLface 6.00 (3.46) 5.00 (2.36) 4.75 (2.36) 4.25 (2.97)
Twin-Peaks 1.03 (0.21) 0.90 (0.19) 1.17 (0.20) 0.79 (0.19)
Wine 24.62 (5.83) 3.85 (2.72) 3.46 (2.69) 3.08 (2.31)
Bal 19.14 (1.59) 14.19 (4.12) 9.78 (3.17)) 10.32 (3.44)
Vehicle 28.41 (2.41) 21.59 (2.71) 21.67 (4.00) 20.87 (2.97)
Breast-Cancer 4.51 (1.49) 4.71 (1.61) 3.33 (1.40) 2.94 (0.88)
Diabetes 28.00 (2.84) 27.65 (3.45) 28.70 (3.67) 27.64 (3.71)
Face-Background 26.41 (2.72) 14.71 (1.33) 16.75 (1.72) 15.86 (1.37)

Table 5. Computational time per each run(seconds)

LMNN SDPMetric-S SDPMetric-H

USPS 256s 111s 258s
MNIST 219s 111s 99s
Letter 1036s 6s 136s
ORLface 13s 4s 3s
Twin-peakes 595s less than 1s less than 1s
Wine 9s 2s 2s
Bal 7s less than 1s 2s
Vehicle 19s 2s 7s
Breast-Cancer 4s 2s 3s
Diabetes 10s less than 1s 2s
Face-Background 92s 5s 5s

always slower than the proposed SDPMetric which converges very fast on these
data sets. Especially, on the Letter and Twin-Peaks data sets, SDPMetric shows
significantly improved computational efficiency.
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Fig. 3. Retrieval performance of SDPMetric, LMNN and the Euclidean distance

Face-Background data set consists of the two object classes, Face easy and
BACKGROUND Google in [12], as a retrieval problem. The images in the class
of BACKGROUND Google are randomly collected from the Internet and they
are used to represent the non-target class. For each image, a number of interest
regions are identified by the Harris-Affine detector [14] and the visual content
in each region is characterized by the SIFT descriptor [15]. A codebook of size
100 is created by using k-means clustering. Each image is then represented by a
100-dimensional histogram containing the number of occurrences of each visual
word. We evaluate retrieval accuracy using each facial image in a test subset
as a query. For each compared metric, the Accuracy of the retrieved top 1 to
20 images are computed, which is defined as the ratio of the number of facial
images to the total number of retrieved images. We calculate the average accu-
racy of each test subset and then average over the whole 10 test subsets. Fig. 3
shows the retrieval accuracies of the Mahalanobis distances learned by Euclidean,
LMNN and SDPMetric. we clearly observe that SDPMetric-H and SDPMetric-S
consistently give the higher retrieval accuracy values, which again verifies their
advantages over the LMNN and Euclidean distance.

6 Conclusion

We have proposed an algorithm to show how to efficiently learn the Mahalanobis
distance metric with maximal margin. Enlightened by that important theorem
on psd matrix decomposition, we design a gradient descent approach to update
the Mahalanobis matrix with light computational load and well maintain its psd
property in the whole optimization process. Experimental study on benchmark
data sets and the retrieval problem verify the superior classification performance
and computational efficiency of the proposed distance metric learning algorithm.
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Abstract. This paper develops a supervised dimensionality reduction method,
Lorentzian Discriminant Projection (LDP), for discriminant analysis and classifi-
cation. Our method represents the structures of sample data by a manifold, which
is furnished with a Lorentzian metric tensor. Different from classic discriminant
analysis techniques, LDP uses distances from points to their within-class neigh-
bors and global geometric centroid to model a new manifold to detect the intrinsic
local and global geometric structures of data set. In this way, both the geometry
of a group of classes and global data structures can be learnt from the Lorentzian
metric tensor. Thus discriminant analysis in the original sample space reduces
to metric learning on a Lorentzian manifold. The experimental results on bench-
mark databases demonstrate the effectiveness of our proposed method.

Keywords: Dimensionality reduction, Lorentzian geometry, metric learning, dis-
criminant analysis.

1 Introduction

In recent years, the computer vision and pattern recognition community has witnessed
a growing interest in dimensionality reduction. One of the most successful and well-
studied techniques is the supervised discriminant analysis. We devote this paper to ad-
dressing the discriminant analysis from the perspective of Lorentzian geometry.

1.1 Related Work

Principal Component Analysis (PCA) [1] and Linear Discriminant Analysis (LDA) [2]
are two most popular linear dimensionality reduction techniques. PCA projects the data
points along the directions of maximal variances and aims to preserve the Euclidean
distances between samples. Unlike PCA which is unsupervised, LDA is supervised. It
searches for the projection axes on which the points of different classes are far from
each other and at the same time the data points of the same class are close to each other.
However, these linear models may fail to discover nonlinear data structures.

During the recent years, a n umber of nonlinear dimensionality reduction algo-
rithms called manifold learning have been developed to address this issue [14][5][11][6]
[7][10]. However, these nonlinear techniques might not be suitable for real world ap-
plications because they yield maps that are defined only on the training data points. To
compute the maps for the new testing points requires extra effort.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 311–320, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Along this direction, there is considerable interest in using linear methods, inspired
by the geometric intuition of manifold learning, to find the nonlinear structure of data
set. Some popular ones include Locality Preserving Projection (LPP) [16][9], Neighbor-
hood Preserving Embedding (NPE) [15], Marginal Fisher Analysis (MFA) [8], Max-
imum Margin Criterion (MMC) [17], Average Neighborhood Margin Maximization
(ANMM) [18], Semi-Riemannian Discriminant Analysis (SRDA) [4] and Unsupervised
Discriminant Projection (UDP) [19].

1.2 Our Approach

Yang et al . [19] adapted both local and global scatters to unsupervised dimensionality
reduction. They maximized the ratio of the global scatters to the local scatters. Zhao
et al . [4] first applied the semi-Riemannian geometry to classification [4]. Inspired by
prior work, in this paper, we propose a novel method, called Lorentzian Discriminant
Projection (LDP), which focuses on supervised dimensionality reduction. Its goal is to
discover both local class discriminant and global geometric structures of the data set.
We first construct a manifold to model the local class and the global data structures. In
this way, both of the local discriminant and the global geometric structures of the data
set can be accurately characterized by learning a special Lorentzian metric tensor on
the newly built manifold. In fact, the role of Lorentzian metric learning is to transfer the
geometry from the sample space to the feature space.

The rest of this paper is organized as follows. In Section 2, we provide the Lorentzian
Discriminant Projection algorithm. The experimental results of LDP approach to real-
world face analysis and handwriting digits classification are presented in Section 3.
Finally, we summarize our work and conclude the paper in Section 4.

2 Lorentzian Discriminant Projection

2.1 Fundamentals of Lorentzian Manifold

In differential geometry, a semi-Riemannian manifold is a generalization of a Rieman-
nian manifold. It is furnished with a non-degenerate and symmetric metric tensor called
the semi-Riemannian metric tensor. The metric matrix on the semi-Riemannian man-
ifold is diagonalizable and the diagonal entries are non-zero. We use the metric sig-
nature to denote the number of positive and negative ones. Given a semi-Riemannian
manifold M of dimension n, if the metric has p positive and q negative diagonal en-
tries, then the metric signature is (p, q), where p + q = n. This concept is extensively
used in general relativity, as a basic geometric tool for modeling the space-time in
physics.

Lorentzian manifold is the most important subclass of semi-Riemannian manifold in
which the metric signature is (n− 1, 1). The metric matrix on the Lorentzian manifold
Ln

1 is of form

G =
[
Λ̂(n−1)×(n−1) 0

0 −λ̌

]
, (1)
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where Λ̂(n−1)×(n−1) is diagonal and its diagonal entries and λ̌ are positive. Suppose
that r = [r̂T , ř]T is an n-dimensional vector, then a metric tensor g(r, r) with respect
to G is expressible as

g(r, r) = rTGr = r̂T Λ̂r̂− λ̌(ř)2. (2)

Because of the nondegeneracy of the Lorentzian metric, vectors can be classified into
space-like (g(r, r) > 0 or r = 0), time-like (g(r, r) < 0) or null (g(r, r) = 0 and
r �= 0). One may refer to [3] for more details.

2.2 The Motivation of LDP

The theory and algorithm in this paper are based on the perspective that the discrimina-
tion is tightly related to both local class and global data structures. Our motivation of
LDP are twofold: the viewpoint of Lorentzian manifold applied to general relativity and
the success of considering both local and global structures for dimensionality reduction.

The Lorentzian geometry has been successfully applied to Einstein’s general relativ-
ity to model the space-time as a 4-dimensional Lorentzian manifold of signature (3,1).
And as will be shown later, this manifold is also convenient to model the structures of
a group of classes. On one hand, we model the local class structure by the distances
between each sample and its within-class neighbors. We also characterize the global
data structure by the distances between each point and the global geometric centorid.
Combining both local and global distances together, we naturally form a new manifold
to preserve discriminant structure for data set. On the other hand, to optimize both local
and global structures at the same time, we need to perform discrepancies of within-
class quantities and global quantities. To do so, we introduce Lorentzian metrics which
are the unique tools to integrate such kinds of dual quantities from the mathematical
point of view. Therefore, the discriminant structure of the data set is initially modeled
as a Lorentzian manifold where coordinates are characterized by the distances between
sample pairs (each point with its within-class neighbors and the global geometric cen-
torid). Furthermore, we use the positive part Λ̂ to handle the local class structure and
the negative part −λ̌ to model the global data structure.

To this end, learning a discriminant subspace reduces to learning the geometry
of a Lorentzian manifold. Thus, supervised dimensionality reduction is coupled with
Lorentzian metric learning. Moreover, we present an approach to optimize both the lo-
cal discriminant and global geometric structures by learning the Lorentzian metric in
the original sample space and apply it to the discriminant subspace.

2.3 Modeling Features as a Lorentzian Manifold

For supervised dimensionality reduction task, the samples can be represented as a point
set Sx = {x1, ...,xm}, xi ∈ Rn. The class label of xi is denoted by Ci and mi is
the number of points which share the same label with xi. As we have previously de-
scribed, the goal of the proposed algorithm is to transform points from the original high-
dimensional sample space to a low-dimensional discriminant subspace, i.e. Sy ⊂ Rd

where d � n. In this subspace, feature points belonging to the same class should
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have higher within-class similarity and more consistent global geometric structure. To
achieve this goal, we introduce a Lorentzian manifold to model the structure of features
in a low dimensional discriminant subspace.

With yi, Syi = {yi,yi
1, ...,y

i
mi−1} (points share the same class label with yi) and

ȳ (the geometric centroid of Sy , i.e., ȳ = 1
m

m∑
i=1

yi), a new point dyi is defined as:

dyi = [d(yi,yi
1), ..., d(yi,yi

mi−1), d(yi, ȳ)]T = [d̂T
yi
, d(yi, ȳ)]T , (3)

where yi
j ∈ Syi and d(yp,yq) is the distance between yp and yq . It is easy to see that

this coordinate representation can contain both local within-class similarity and global
geometric structure. We consider these mi-tuple coordinate representations as points
sampled from a new manifold L

mi
1 furnished with a Lorentzian metric tensor gl. It is

straightforward to see that gl(dyi ,dyi) can be written as

gl(dyi ,dyi) = dT
yi

Gl
idyi = tr((YiDi)Gl

i(YiDi)T ), (4)

where the metric matrix Gl
i is real diagonal and the signature of the metric is (mi−1,1),

Di = [emi ,−Imi×mi ]T (Imi×mi is an identity matrix of size mi ×mi and emi is an
all-one column vector of length mi) and Yi = [yi,yi

1, ...y
i
mi−1, ȳ].

Then the total Lorentzian metric tensor can be given as:

m∑
i=1

gl(dyi ,dyi) = tr(YLYT ), (5)

where L =
m∑

i=1

BiDiGl
iD

T
i BT

i , Y = [y1, ...,ym, ȳ] and Bi is a binary selection

matrix of size (m + 1)× (mi + 1) which satisfies Yi = YBi [13][12].
If there is a linear isometric transformation between the low dimensional feature y

and the original sample x, i.e.,y → Uy = x, we can have an optimization model:{
argmin

U
tr(UT XLXT U),

s.t. UT U = Id×d.
(6)

The linear transformation U that minimizes the objective function in (6) can be found
as being composed of the eigenvectors associated with the d smallest eigenvalues of the
following problem:

XLXT u = λu. (7)

It is sufficient to note that the Lorentzian metric tensor forms the geometry of the fea-
ture structure. Thus a question naturally arises: how to learn a special Lorentzian metric
tensor to furnish the newly built manifold? This is discussed in the next subsection.

2.4 Learning the Lorentzian Manifold

The Lorentzian metric matrices Gl
i are key to the proposed dimensionality reduction

problem. We give a novel method to learn it from the sample set Sx and then apply it to
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the feature set Sy . The metric Gl
i consists of two parts: the positive-definite part Λ̂i and

the negative-definite part−λ̌i. In this subsection, we introduce an efficient way to learn
Λ̂i and λ̌i successively. The positive part of the Lorentzian metric tensor in the original
sample space can be given as:

gp
l (d̂xi , d̂xi) = d̂T

xi
Λ̂id̂xi = gT

i D̂xigi, (8)

where

gi = [
√

Λ̂i(1, 1), ...,
√

Λ̂i(mi − 1,mi − 1)]T

and
D̂xi = diag(d(xi,xi

1)
2, ..., d(xi,xi

mi−1)
2).

We may minimize this metric and obtain the following optimization problem:{
arg min

gi

gT
i D̂xigi,

s.t. eT
mi−1gi = 1.

(9)

It is easy to check that the solution to the above problem is

gi =
(D̂xi)−1emi−1

eT
mi−1(D̂xi)−1emi−1

. (10)

Thus the positive-definite part Λ̂i can be obtained as

Λ̂i(p, q) =

{
gi(p)2 if p = q,

0 otherwise.
(11)

As introduced in Section 2.1, a null (or light-like) vector r is the vector that vanishes
the metric tensor: g(r, r) = 0. Inspired by this physical property used in general rela-
tivity, we can make the metric locally unbiased. So the negative definite part λ̌i of Gl

i

can be determined by:
mi−1∑
j=1

Λ̂i(j, j) + λ̌i = 0. (12)

We empirically find that the discriminability will be enhanced if we choose a positive
factor γ ∈ [0, 1] to multiply the negative part i.e., λ̌i ← γλ̌i. The value of γ can be
determined by cross validation.

3 Experimental Results

Experiments are conducted on Yale1, FRGC [20] and USPS2 databases to test the per-
formance of LDP against the existing algorithms. For these databases, the image set
of each subject is split into different gallery and probe sets, where Gm/Pn means m



316 R. Liu et al.

(a) Eigenfaces

(b) Laplacianfaces

(c) Fisherfaces

(d) Lorentzianfaces

Fig. 1. Eigenfaces, Laplacianfaces, Fisherfaces and our proposed Lorentzianfaces

images are randomly selected for training and the remaining n images are for testing.
Such a trial is repeated 20 times.

In the face analysis (representation and recognition) problem, we want to use LDP
to learn an optimal discriminant subspace which is spanned by the columns of U in
(6) for face representation. The eigenvectors can be displayed as images, called the
Lorentzianfaces in our approach. Using the facial images in experiment 4 of FRGC
version 2 as the training set, we present the first 10 Lorentzianfaces in Figure 1, together
with Eigenfaces [1], Laplacianfaces [9] and Fisherfaces [2].

We perform the discriminant subspace learning on the expressive features yielded by
PCA which is classic and well-recognized preprocessing. For the PCA-based two step
strategy, the number of principal components is a free parameter. In our experiments, we
choose the percentage of the energy retained in the PCA preprocessing step to be 99%.

3.1 Experiments on Yale

The Yale face database was constructed at the Yale Center for the Computational Vi-
sion and Control. It contains 165 gray-scale images of 15 subjects under various facial
expressions and lighting conditions such as center-light, with glasses, happy, left-light,
without glasses, normal, right-light, sad, sleepy, surprised, and winking. In our experi-
ment, we cropped each image to a size of 32×32. Figure 2 shows some cropped images
in Yale database.

The average recognition rate of each method and the corresponding dimension are
given in Table 1. The recognition rate curves versus the variation of dimensions are

1 Available at http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2 Available at http://www.cs.toronto.edu/ roweis/data.html
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Table 1. The average recognition results on Yale (G4/P7 and G6/P5) and FRGC (G3/P27 and
G5/P25) databases (mean ± std %). The optimal dimension of the face subspace are given in the
brackets.

- Yale FRGC
Method G4/P7 G6/P5 G3/P27 G5/P25

Eigenfaces 57.6 ± 3.7 (40) 59.6 ± 5.2 (15) 48.3 ± 4.3 (120) 58.6 ± 3.5 (120)
Laplacianfaces 46.2 ± 5.2 (55) 46.4 ± 7.0 (65) 46.6 ± 3.5 (120) 57.7 ± 2.1 (120)

Fisherfaces 70.4 ± 4.8 (15) 72.7 ± 6.4 (15) 74.2 ± 5.4 (80) 87.5 ± 1.7 (75)
MMC + PCA 70.1 ± 4.5 (20) 70.5 ± 5.6 (40) 61.1 ± 7.1 (110) 78.0 ± 6.4 (85)
MFA + PCA 67.1 ± 6.0 (15) 70.1 ± 6.5 (25) 72.9 ± 5.1 (50) 85.7 ± 3.8 (65)

Lorentzianfaces 72.9 ± 5.3 (20) 74.3 ± 6.2 (15) 80.6 ± 5.2 (60) 89.4 ± 2.2 (50)

Fig. 2. Some cropped Yale facial images

illustrated in Figure 3. As can be seen, the proposed Lorentzianfaces outperforms other
methods involved in this experiment.

3.2 Experiments on FRGC

Experiments are also conducted on a subset of facial data in experiment 4 of FRGC
version 2 [20] that measures the recognition performance from uncontrolled im-
ages. Experiment 4 is the most challenging FRGC experiment which has 8014 single
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Fig. 3. The recognition rate curves versus the variation of dimensions on Yale database. The left
figure shows the G4/P7 results and the right one shows the G6/P5 results.
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Fig. 4. Some cropped FRGC version 2 facial images
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Fig. 5. The recognition rate curves versus the variation of dimensions on experiment 4 of FRGC
version 2 database. The left figure shows the G3/P27 results and the right one shows the G5/P25
results.

uncontrolled still images of 466 subjects in the query set. We choose the first 30 images
of each subject in this set if the number of images is not less than 30. Thus we get 2850
images of 95 subjects. The images are all cropped to a size of 32× 32. Figure 4 shows
the facial images of one subject in our experiment.

Table 1 also shows the average recognition results on experiment 4 of FRGC version
2. Figure 5 displays the recognition rate curves versus the feature space dimensions
when performing these methods. One can see that Lorentzianfaces is significantly better
than other methods in comparison.

3.3 Experiments on USPS

The USPS handwriting digital data includes 10 classes from “0” to “9”. Each class has
1100 samples. The first 200 images of each class are chosen for our experiments. We
directly apply all algorithms to the normalized data without using PCA as preprocess-
ing. The average classification results are shown in Table 2. The performance of LDP
is again better than other methods under consideration.
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Table 2. The average classification results on USPS database (mean ± std %). The optimal di-
mension of the feature space are given in the brackets. U and S mean unsupervised and supervised
methods, respectively.

Method G30/P170 G40/P160 Type
PCA 99.27 ± 0.21 (10) 99.42 ± 0.24 (20) U
LPP 76.29 ± 4.65 (25) 87.60 ± 10.54 (25) U
LDA 80.23 ± 8.18 (5) 88.70 ± 7.96 (25) S
MMC 95.04 ± 1.57 (20) 95.47 ± 0.94 (15) S
MFA 80.81 ± 2.89 (5) 87.63 ± 2.98 (15) S
LDP 99.38 ± 0.18 (20) 99.50 ± 0.21 (15) S

3.4 Discussions

By conducting experiments systematically, we can find that: as in LPP and MFA, the
number of neighbors (e.g., k, k̂ and ǩ) is the most important parameter. The parameter
k in LPP is set to 5 in all experiments. For face recognition, the parameters k̂ and ǩ
in MFA are set to m − 1 (m is the number of images in the gallery set) and 210,
respectively. For handwriting digits classification, we set the parameters k̂ and ǩ to 7

and 40, respectively. The Gaussian kernel exp
(
− ‖xi−xj‖2

t

)
is used in LPP where we

set the parameter t to 250 in our experiments.

4 Conclusions

This paper presents a novel discriminant analysis method called Lorentzian Discrimi-
nant Projection (LDP). In the first step, we construct a Lorentzian manifold to model
both local and global discriminant and geometric structures of the data set. Then, an
approach to Lorentzian metric learning is proposed to learn metric tensor from the orig-
inal high-dimensional sample space and apply it to the low-dimensional discriminant
subspace. In this way, both the local class and the global data structures can be well pre-
served in the reduced low-dimensional discriminant subspace. The experimental results
have shown that our proposed LDP is promising.
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Abstract. In this paper, instead of the ordinary manifold assumption,

we introduced the bundle manifold assumption that imagines data points

lie on a bundle manifold. Under this assumption, we proposed an unsu-

pervised algorithm, named as Bundle Manifold Embedding (BME), to

embed the bundle manifold into low dimensional space. In BME, we

construct two neighborhood graphs that one is used to model the global

metric structure in local neighborhood and the other is used to provide

the information of subtle structure, and then apply the spectral graph

method to obtain the low-dimensional embedding. Incorporating some

prior information, it is possible to find the subtle structures on bundle

manifold in an unsupervised manner. Experiments conducted on bench-

mark datasets demonstrated the feasibility of the proposed BME algo-

rithm, and the difference compared with ISOMAP, LLE and Laplacian

Eigenmaps.

1 Introduction

In the past decade manifold learning has attracted a surge of interest in machine
learning andanumberof algorithmsareproposed, including ISOMAP[1],LLE[2,3],
Laplacian Eigenmap[4], Hessian LLE[5], Charting[6], LTSA[7], MVU[8], Diffusion
Map[9] and etc. All these focus on finding a nonlinear low dimensional embedding
of high dimensional data. So far, these methods have mostly been used for the task
of exploratory data analysis such as data visualization, and also been successfully
applied to semi-supervised classification problem[10,11].

Under the assumption that the data points lie close to a low dimensional
manifold embedded in high dimensional Euclidean space, manifold learning al-
gorithms learn the low dimensional embedding by constructing a weighted graph
to capture local structure of data. Let G(V,E,W ) be the weighted graph, where
the vertex set V corresponds to data points in data set, the edge set E denotes
neighborhood relationships between vertices, and W is the weight matrix. The
different methods to choose the weight matrix W will lead to different algorithms.

In the case of multiple manifolds co-exist in dataset, one should tune neigh-
borhood size parameter (i.e. k in k− nn rule, ε in ε -rule) to guarantee the con-
structed neighborhood graph to be connected, or to deal with each connected
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components individually. Neighborhood graph can be viewed as discretized rep-
resentation of the underlying manifolds and the neighborhood size parameter
controls the fitness to the true manifolds. Constructing neighborhood graph by
a larger neighborhood size parameter will result in losing ’the details’ of the
underlying manifolds, due to the occurrence of ’short-cut’ connections between
different manifolds or the different parts of the same manifold (when the manifold
with high curvature). On the other hand, treating each connected component
individually will lose the information of correspondence between different com-
ponents so that the panorama of the global geometry of observation data set
cannot be obtained.

In this paper, instead of the global manifold assumption, we suggest that it is
more appropriate to imagine data points to lie on a bundle manifold, when one
faces the task to visualize the image dataset in which may consists of multiple
classes. For example, facial images of a certain person, under the pose changing
and expression variation, in which the different expressions relate to different
classes, span a bundle manifold. Under the bundle manifold assumption, to make
the embedding faithful, it is needed to preserve the subtle local metric structures.
We propose a naive way to visualize the subtle structure of bundle manifold,
named as Bundle Manifold Embedding (BME). By incorporating the intrinsic
dimension as apriori information, BME can discover the subtle substructure in an
unsupervised manner. Experiments conducted on benchmark datasets validated
the existence of subtle structure, and demonstrated the feasibility and difference
of the proposed BME algorithm compared with ISOMAP, LLE and Laplacian
Eigenmaps.

1.1 The Related Work

In computer vision, object images with continuous pose variations can be imag-
ined to lie close to a Lie group[12]. Ham et al.[13] reported that different databases
may share the same low-dimensional manifold and the correspondence relation-
ship between different data sets can be learned by constructing unit decompo-
sition. Lim et al.[14] presented a geometric framework on the basis of quotient
space for clustering images with continuous pose variation. Recently, Ham and
Lee[15] assumed a global principal bundle as the model of face appearance man-
ifold for facial image data set with different expressions and pose variation. And
they also proposed a factorized isometric embedding algorithm to extract the
substructure of facial expressions and the pose change separately.

In this paper, following the way consistent with Ham and Lee[15], we suppose
that in some multi-class dataset data points lie on bundle manifold and each
class-specific manifold relates to an orbit. Under the bundle manifold assump-
tion, we will discuss how to develop manifold learning algorithm to discover the
subtle substructure of bundle manifold.

2 The Proposed Algorithm: Bundle Manifold Embedding

The principle of learning manifold is to preserve the local metric structure when
obtain the low dimensional embedding. In the case of bundle manifold assumption,
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Fig. 1. Illustration for the proposed BME algorithm

however, there are extra subtle substructures, that is, the orbit structure. There-
fore the local metric structures on bundle manifold consist of two aspects: (a) local
metric between different orbits, and (b) local metric within each orbit. To obtain
the faithful embedding of bundle manifold, two kinds of local metric need to be
preserved as much as possible.

We propose to construct two neighborhood graphs: NBGB and NBGF , where
NBGB is used to represent the local metric structure between orbits, and NBGF

is used to capture the subtle substructure for each orbit (an orbit is likely corre-
sponding to data points within each class, also can be viewed as fibre manifold).
By means of spectral graph approach on combination of the weight matrices of
two neighborhood graphs, the low dimensional embedding can be obtained.

Given data set X = {xi, xi ∈ Rm, i = 1, ..., n}, where m is the dimensionality
of the observation space and n is the number of data points in data set X . First
of all, we need to interpret a little of the two concepts: extrinsic neighbors
and intrinsic neighbors, denoted as Nextrinsic and Nintrinsic, respectively. An
illustration is given in Fig. 1 (a) and (b). For a data point xi ∈ X , its extrinsic
neighbors Nextrinsic(xi) can be selected by the ambient space metric, that is,
Euclidean metric; whereas the intrinsic neighbors Nintrinsic(xi) of xi ∈ X are
defined to be able to capture the subtle substructure of each orbit. In fact the
extrinsic neighbors are the same as in the common manifold learning algorithms;
whereas the intrinsic neighbors need to be selected along each orbit. The later
is the key to discover the subtle structure of bundle manifold.

The proposed bundle manifold embedding algorithm consists of four steps as
illustrated in Fig. 1, and will be depicted in the next subsections.

2.1 Find Extrinsic Neighbors and Construct Extrinsic
Neighborhood Graph NBGB

For each data point xi ∈ X , we select the extrinsic neighbors Nextrinsic(xi) by
Euclidean distance. We prefer to choose k − nn rules rather than ε ball rule for
its simplicity to determine the local scale parameter. And then a weighted graph
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with n nodes, one for each of data points, and a set of edges connecting each of
extrinsic neighbors, is constructed. Denoted the extrinsic neighborhood graph
as NBGB(V,EB ,W ), where the vertex set V correspond to data points, the
undirected edges set EB denote neighborhood relationships between the vertices
and the weight Wij on each edge is the similarity between the two vertexes.
We make use of the Gaussian kernel Wij = e−‖xi−xj‖/σiσj with adaptive scale
parameter σi = ‖xi − xk

i ‖ and σj = ‖xj − xk
j ‖, where xk

i and xk
j are the k-th

nearest neighbors of xi and xj , respectively.
The neighborhood graph NBGB(V,EB ,W ) is constructed to offer the back-

ground information for discovering the subtle structure of orbits, instead of to
directly calculate the local metric information between different orbits. There-
fore the neighborhood scale parameter k need to be large enough to guarantee
the connectivity of extrinsic neighborhood graph NBGB(V,EB,W ). The neigh-
borhood relationship defined by Euclidean distance can be used to preserve the
’global structure’ within local neighborhood1, see Fig. 1(a).

2.2 Find Intrinsic Neighbors and Construct Intrinsic Neighborhood
Graph NBGF

The subtle substructure in bundle manifold is orbits (also called fibers) of the
structure group. For multi-class data set, Euclidean distance cannot distinguish
such a subtle local metric structure, so that it often failed to find the orbit
structure. In order to select intrinsic neighbors in an unsupervised way, we need
a new metric, which can discern the subtle difference between different orbits.

Under the bundle manifold assumption, each orbit is controlled by structure
group (a Lie group), and it is also a smooth manifold. Therefore we can sup-
pose that each data point and its neighbors lie on a locally linear patch of the
smooth manifold within each orbit and define the intrinsic neighbors by local
linear structure. Based on neighborhood graph NBGB(V,EB ,W ), we character-
ize the local geometry of these patches by nonnegative linear coefficients that
reconstruct each data point xi from its k neighbors xj

i where j ∈ Nextrinsic(xi),
Nextrinsic(xi) is the index set of k extrinsic neighbors of xi. Here we need to
solve a set of quadratic programming problems: for xi ∈ X, i = 1, . . . , n

min
aij

ε(aij) = ‖xi −
∑

j∈Nextrinsic(xi)
aijx

j
i‖2

s.t.
∑

j∈Nextrinsic(xi)
aij = 1

aij ≥ 0

(1)

where aij are the nonnegative local linear reconstructing coefficients. For j �∈
Nextrinsic(xi), aij are set to zero. Notice that weight matrix A constructed in
such a manner is consistent with convex LLE[3].

1 Under the bundle manifold assumption, the local subtle structure is orbit struc-

ture. Euclidean distance cannot distinguish the subtle orbit structure. Therefore,

the neighborhood computed by Euclidean distance can be used as reference infor-

mation to capture the global structure of neighborhood.



Learning Bundle Manifold by Double Neighborhood Graphs 325

Given the nonnegative reconstructing coefficients matrix A, constructing the
intrinsic neighborhood graph NBGF (V,EF , A) is straightforward. Taking the
intrinsic dimension d of data set as apriori information, we keep the d+1 largest
nonnegative reconstructing coefficients and set those minor coefficients to zero.
This is our recipe to find the exact intrinsic neighbors. The nonnegative coeffi-
cients are treated as affinity measure to find the intrinsic neighbors and those
dominant coefficients indicate a reliable subtle neighborhood relationship of each
orbit.

In fact, the intrinsic neighborhood graph NBGF (V,EF , A) is refinement of
the extrinsic neighborhood graph and can be derived from NBGB(V,EB ,W )
by removing those edges related to minor reconstructing coefficients aij . The
remaining d+1 dominant positive coefficients will span simplex with dimension d.
These simplex can reveal the subtle intrinsic structure hiding in bundle manifold,
that is, help us to reveal those orbit structures or class-specific manifolds. In the
virtue of this recipe, the obtained intrinsic neighborhood graph can distinguish
the subtle local structures.

2.3 Construct the Generalized Graph Laplacian

We denote LB as the normalized graph Laplacian of NBGB(V,EB ,W ), where
LB = D−1/2(D −W )D−1/2, D is diagonal matrix with entries Dii =

∑
j Wij .

On the other hand, we denote LA = ATA, in which LA is a nonnegative sym-
metric matrix for capturing the subtle substructure from NBGF (V,EF , A). To
obtain the faithful embedding of bundle manifold, both the local metric within
each orbit, and the local metric between different orbits need to be preserved.
Therefore we need to make use of both information from NBGB(V,EB,W ) and
NBGF (V,EF , A) to form an affinity relationship matrix. For simplicity, we lin-
early combine the normalized graph Laplacian matrix LB and the nonnegative
symmetric matrix LA as follows:

U = (1− γ)LB + γLA (2)

where γ(0 ≤ γ < 1) is a tradeoff parameter. In the extreme case, γ = 0, it turned
out to be Laplacian Eigenmap[4], in which the subtle substructure information
from orbit is ignored. The more γ tends to 1, the more the subtle substructure
is emphasized.

The matrix U is nonnegative, symmetric2, and carries two aspects of local
metric information. We treat U as affinity weight matrix to construct a gener-
alized graph Laplacian L̃ for embedding the data points into low dimensional
space, in which L̃ = U − D̃ and D̃ is diagonal matrix with entries D̃ii =

∑
j Uij .

2.4 Embed into Low Dimensional Space

Under the assumption that data points lie on bundle manifold, mapping data
points from high-dimensional space into low dimensional space must keep the
2 The weight matrix W need to be symmetric.
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local metric both on orbits and between orbits as much as possible. The con-
structed generalized graph Laplacian L̃ above is ready for such a purpose.

Suppose that the embedding is given by the n× q matrix Y =[y1, y2, . . . , yn]T

where the i-th row provides the embedding coordinates of the i-th data point.
As in Laplacian Eigenmap[4], we formulated a quadratic optimization problem
as following:

minε(Y ) = 1
2

∑
i,j

{Uij‖yi − yj‖2} = trace(Y T L̃Y )

s.t. Y T D̃Y = I

Y T D̃1 = 0

(3)

where yi ∈ Rq is q-dimensional row vector, I is identity matrix, 1 = [1, 1, . . . , 1]T

and 0 = [0, 0, . . . , 0]T . Apparently, the optimization problem in (3) is a general-
ized eigenvector problem as:

L̃f = λD̃f (4)

Let f0, f1, . . . , fq be the solution of equation (4), and ordered them according to
their eigenvalues in ascending order:

L̃f0 = λ0D̃f0
L̃f1 = λ1D̃f1

· · ·
L̃fq = λqD̃fq (5)

where 0 = λ0 ≤ λ1 ≤ . . . ≤ λq. We remove the eigenvector f0 corresponding to
eigenvalue 0 and employ the next q eigenvectors to obtain the embedding Y as
Y =[y1, y2, . . . , yn]T =[f1, f2, . . . , fq] in q-dimensional Euclidean space.

3 Experimental Results

In this section we will demonstrate data visualization experiments on the bench-
mark data sets. The proposed BME algorithm is compared with ISOMAP, LLE,
and Laplacian Eigenmaps. The parameter k is chose k = 20 for all algorithms
in all experiments and the intrinsic dimension d used in BME is set to d = 1.

The first set of experiments are conducted on a selected data subset COIL-4,
which consists of image samples from four classes (i. e. object-3, object-5,object-
6 and object-19) of COIL-20[16]. The four classes of objects are the most similar
four classes of object images in COIL-20. The manifold embedded in each class
of COIL-20 is homeomorphism to circle (i.e. S1).

As can be seen from Fig. 2 in panels (a), (b) and (c), ISOMAP, LLE, and
Laplacian Eigenmap all failed to find the subtle class-specific manifold substruc-
tures. The results obtained by the proposed BME algorithm are given in Fig. 2
panels (d), (e) and (f) with different tradeoff parameter γ = 0.90, 0.95, 0.99. It
is obvious that the subtle class-specific manifold substructures are discovered by
BME algorithm.
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In Fig. 2 panel (d) and (e), however, it can be observed that data points
of the three classes of object-3, object-6 and object-19 are still piled together.
We gathered those piled data points of the three classes (object-3, object-6 and
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Fig. 2. Data visualization results that compared the proposed BME with ISOMAP,

LLE, Laplacian Eigenmap on COIL-4 data set (where k=20 is used for all algorithms)
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Fig. 3. Data visualization results that compared the proposed BME with ISOMAP,

LLE, Laplacian Eigenmap on COIL-3 (where k=20 is used for all algorithms)
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Fig. 4. Data visualization results that compared the proposed BME with ISOMAP,

LLE, Laplacian Eigenmap on FreyfaceExpression-2 data set (where k=20 is used for

all algorithms)

object-19) in Fig. 2 panel (d) and (e) to form data set COIL-3. It is interesting
to further visualize the data in COIL-3. Therefore we conduct the second set
of experiments on dataset COIL-3. The results are presented in Fig. 3. The
ISOMAP, LLE and Laplacian Eigenmap still failed; whereas the proposed BME
algorithm can reveal the subtle substructures distinctly.

From the data visualization results above, we can draw the conclusion that the
tradeoff parameter γ controls the clearness of the discovered subtle substructure.
The larger the parameter γ is, the more consideration is taken into the intrinsic
neighborhood graph, and it will lead to focusing on subtle substructure much
more. The smaller parameter γ corresponds to take into consideration more
the background information, that is, from the extrinsic neighborhood graph.
An over-large γ, however, will degrade the corresponding relationship between
different class-specific manifolds, and will result in losing the faithfulness of the
obtained subtle substructure. Strictly speaking, the global geometric structure
hiding in the COIL-4 and COIL-3 data sets may not be exactly a principal
bundle manifold, but then using such an assumption will remind us to capture
the true geometric structure carefully and help us to explore the ’real feature’
of data set.

The third set of experiments are conducted on Frey face data set3. We manu-
ally sorted the Frey face dataset into five expressions categories (’anger’, ’happy’,
’sad’, ’tongue out’ and ’normal’) and choose the two most similar classes of ex-
pressions (’anger’ and ’normal’) as the FreyfaceExpression-2 dataset for data
3 http://www.cs.toronto.edu/∼roweis/data.html, B. Frey and S. Roweis
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visualization. There are continuous pose variation in both ’anger’ and ’normal’
expressions. Therefore the two expression manifolds will share the similar one-
dimensional subtle structure. The experimental results are displayed in Fig. 4.
We can find that the BME is superior to the other algorithms that it can reveal
the subtle substructure.

Finally we need to mention about the parameters k, d and γ in BME. The
neighborhood scale parameter k need to be large enough to guarantee the con-
nectivity of extrinsic neighborhood graph to provide reference information. For
the explorative data analysis task, one can try the intrinsic dimension d from
one to the estimated intrinsic dimension by those significant nonnegative local
linear reconstruction coefficients. In addition, the parameter γ may be selected
from some typical values, such as 0.85, 0.90, 0.95, 0.99 and etc.

4 Concluding Remarks and Discussion

In this paper we suggest that the true global geometric structure of some datasets
is likely bundle manifold, not a single manifold, and also presented a naive unsu-
pervised algorithm, BME, for visualizing the subtle structure. Experiments on
benchmark data sets demonstrated the feasibility of the proposed BME algo-
rithm. We believe that the principal bundle manifold assumption and the pro-
posed bundle manifold embedding algorithm are beneficial to deeply understand
the global intrinsic geometry of some image datasets.

Under bundle manifold assumption, an interesting question arose that what
is the exact meaning of the estimated intrinsic dimensionality. Perhaps we need
redefine the task of intrinsic dimension estimation due to the exitance of orbit
structures. In the proposed algorithm, however, the information used is only the
local metric at each of orbits and the locality on bundle manifold. The shar-
ing intrinsic structure among orbits has not been employed yet. Therefore the
more sophisticated means to learning the bundle manifold will be investigated
in future.
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Abstract. Object detection problems in computer vision often present a compu-
tationally difficult task in machine learning, where very large amounts of high-
dimensional image data have to be processed by complex training algorithms.
We consider training support vector machine (SVM) classifiers on big sets of im-
age data and investigate approximate decomposition techniques that can use any
limited conventional SVM training tool to cope with large training sets. We rea-
son about expected comparative performance of different approximate training
schemes and subsequently suggest two refined training algorithms, one aimed at
maximizing the accuracy of the resulting classifier, the other allowing very fast
and rough preview of the classifiers that can be expected from given training data.
We show how the best approximation method trained on an augmented training
set of one million perturbed data samples outperforms an SVM trained on the
original set.

1 Introduction

Problems in computer vision often deal with large sets of high-dimensional image
data, making the machine learning tasks involved computationally expensive. Even
with moderate sets of data, straightforward implementations of learning algorithms can
quickly exceed time and memory limitations. In cases where the amount of data is pur-
posely very large, even advanced exact solutions can struggle to complete in acceptable
time.

A Support Vector Machine (SVM) is a binary classification technique which is suc-
cessfully used in computer vision systems. The training of an SVM is a quadratic
programming problem and there is a great ongoing effort to improve the optimization
algorithms and adapt them to work with large sets of training data. A number of incre-
mental approaches have been developed that attempt to solve the optimization problem
by iteratively working on a heuristically chosen subset of the training data. Decomposi-
tion algorithm by Osuna et al. [1] and chunking by Vapnik [2] work on a subset of fixed
size and choose samples that most violate the optimization conditions. The Sequen-
tial Minimal Optimization (SMO) algorithm by Platt [3] optimizes just two samples
at a time to arrive at the global solution and can be modified to only keep a limited
’working-set’ in mind [4]. Incremental SVM learning method by Cauwenberghs and
Poggio [5] and its adaptation for online learning [6] iteratively update the current op-
timal solution to include the next sample. All of these methods strive to find the exact

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 331–340, 2010.
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solution of the original optimization problem for the entire training set, and scale poorly
as they try to guarantee optimization conditions for all of the training samples.

Other approaches to very large datasets include ways to scale down the training data,
as in the hypersphere approach of Katagiri and Abe [7], or the development of truly
approximate alternatives to SVM training, like the Core Vector Machines of Tsang et
al. [8]. However to this day widely spread implementations of the SVM algorithms nor-
mally include one of the exact incremental flavours of training and are quite limited in
the amounts of data they can successfully be used on. This fact makes approximate de-
composing approaches still attractive: by considering the limited SVM implementation
as a basic ’black-box’ tool that can summarize small parts of the training data, one can
attempt to build different training schemes that try to extract the best possible classi-
fiers within the limitations. An example of such approach is the incremental training
proposed by Syed et al. [9].

In this paper we attempt to introduce a framework for reasoning about the accuracy
of training schemes built using SVMs of limited size. We describe two algorithms with
those assumptions in mind, an incremental scheme which is similar in spirit to chunking
algorithms and attempts to optimize classifier accuracy by extracting as many support
vectors as possible, and a reduction scheme which aims at fast shrinking of the training
set by removing the samples that are less likely to be support vectors. We demonstrate
the methods on the face detection problem and show how to use very large sets of
artificially generated variations of the samples to produce a more accurate classifier
with a limited SVM implementation.

2 Object Detection with Support Vector Machines

A support vector machine classifier is a function:

f(x) =
N∑

i=1

yiαiK(xi, x) + b, (1)

where sgn(f(x)) is the classification label for query x ∈ Rn, X ≡ {xi, yi} is the
training set with xi ∈ Rn, class label yi ∈ {±1}, and cardinality N = |X |. K(x1, x2)
is the kernel function such that K(x1, x2) = 〈φ(x1) · φ(x2)〉 for some mapping φ :
Rn → F from input space Rn to a potentially high-dimensional space F where the two
classes become linearly separable. Weights αi and offset b are results of the training,
and for problems where good generalization is attainable, the majority of samples xi

will have weight αi = 0 and thus can be ignored in the application stage, while those
with αi > 0 are referred to as support vectors and provide an approximate description
of the training data.

In object detection applications an SVM can be trained to distinguish between object
and non-object (background) images. For the face detection problem, typically thou-
sands of images of fixed dimensions representing the object and the background are
flattened into vectors containing colour or grayscale intensity values of pixels. The vec-
tors are then assigned class labels, and using an appropriate kernel function (Gaussian
Radial Basis Function, K(x, y) = exp(−||x− y||2/σ2), is a commonly used choice) a
decision function can be trained that uses a subset of training images for classification.
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Even for small image patches of e.g. 20 × 20 pixels that result in 400-dimensional
vectors, there is usually a very large number of potential examples that represent the ob-
ject in question. If available examples of the object are limited, it is common to augment
the training set with artificially generated variations, for example small linear transfor-
mations (shifts, rotations, etc.) of the data [2][8], and emulated lighting conditions or
viewing angles [10]. Several such varying properties used together can result in several
orders of magnitude increase in the number of samples in the training set.

Most of the SVM training algorithms perform at their best when the entire training
set and its kernel matrix (containing the values K(xi, xj)) is cached for fast access.
With a straightforward setup however, a moderate size problem of ten thousand 400-
dimensional samples takes up over 800 Megabytes of RAM to cache (assuming 8 byte
double values for K(xi, xj)) and a single training run even on a modern machine can
take hours.

For image detection problems such as face detection, the set of positive examples
is usually quite large (for modern applications, 10000 at least), and the set of negative
examples is often extremely large (at least 100000), and if faster training algorithms
were available, could easily be made larger still. It is generally not feasible to train a
full SVM on such large training sets, especially when the dimensionality of the data is
also high, hence the need for better approximate algorithms.

3 Properties of Subset Trained SVMs

We consider the case where an implementation of an SVM training algorithm can be run
on at most Mmax � N samples in an acceptable time. This section derives properties
of different subset selection methods which will allow us to motivate the algorithms in
Section 4.

We use the following definitions.

Definition 1. svm(A): used to indicate the support vector machine classifier (support
vectors and their weights) resulting from using an SVM training algorithm on input set
A. We also consider the size of an SVM, |svm(A)| to be the number of support vectors
in the machine.

Definition 2. sv(A): used to indicate the support vectors of an SVM trained on input
set A. By definition, sv(A) ⊆ A.

Definition 3. r(svm(A)): the theoretical accuracy of an SVM trained on input set A
(0 ≤ r ≤ 1 with 1 indicating a perfect classifier).

Definition 4. r̂(svm(A)): the estimated accuracy of an SVM trained on input set A.

Definition 5. r̄(svm(A)): the expected accuracy of an SVM trained on a random sub-
set A ⊆ X , with |A| = M . r̄ could be computed as the average r̂ over all subsets.

In the following, we assume that any SVM training algorithm will obey Axiom 1.

Axiom 1
r(svm(A)) ≤ r(svm(B)), if A ⊆ B



334 I. Kukenys, B. McCane, and T. Neumegen

Proposition 1 (Smaller)

r̄(svm(A)) ≤ r̄(svm(B)), A,B ⊆ X, if |A| ≤ |B|.

Proof. Recall that r̄(svm(A)) is the expected accuracy of an SVM computed over all
possible subsets of size |A|, and since |Ai| ≤ |Bj |, it follows that for any i there exists
j such that Ai ⊆ Bj , and for any j there exists i such that Bj ⊇ Ai. From Axiom 1, it
follows that for each subset Ai, there exists Bj such that r̂(svm(Ai)) ≤ r̂(svm(Bj)).
Conversely, for each subset Bj , there exists Ai such that r̂(svm(Bj)) ≥ r̂(svm(Ai)).
Therefore it follows that r̄(svm(A)) ≤ r̄(svm(B)).

Proposition 1 confirms the intuitive belief that to maximise the expected accuracy of an
approximate SVM training scheme we should choose the largest subset possible.

The following three propositions seek to establish an ordering for different training
data decomposition schemes.

Proposition 2 (Reduction)

r̄(svm(sv(A) ∪ sv(B))) ≤ r̄(svm(A ∪B))

Proof. From sv(A) ⊆ A, sv(B) ⊆ B, it follows that:

sv(A) ∪ sv(B) ⊆ A ∪B,

and the proposition follows from Proposition 1.

Proposition 3 (Incremental)

r̄(svm(sv(A) ∪B)) ≤ r̄(svm(A ∪B))

Proof

sv(A) ⊆ A

sv(A) ∪B ⊆ A ∪B

and the proposition follows from Proposition 1.

Proposition 4 (Reduction versus Incremental)

r̄(svm(sv(A) ∪ sv(B))) ≤ r̄(svm(sv(A) ∪B))

Proof

sv(A) ∪ sv(B) ⊆ sv(A) ∪B

and the proposition follows from Proposition 1.



Training Support Vector Machines on Large Sets of Image Data 335

Notice that these decomposition schemes can be applied recursively, which leads to the
decomposition algorithms outlined in the following section. For splitting the data into
two subsets, we have the following ordering from the above propositions:

r̄(svm(sv(A) ∪ sv(B))) ≤ r̄(svm(sv(A) ∪B)) ≤ r̄(svm(A ∪B))

If we were to split into three subsets, the following ordering would result (stated without
proof, but straightforward to prove):

r̄(svm(sv(A) ∪ sv(B) ∪ sv(C))) ≤ r̄(svm(sv(A ∪B) ∪ sv(C)))
r̄(svm(sv(A ∪B) ∪ sv(C))) ≤ r̄(svm(sv(A ∪B) ∪C))

r̄(svm(sv(A ∪B) ∪ C)) ≤ r̄(svm(sv(A) ∪B ∪C))
r̄(svm(sv(A) ∪B ∪ C)) ≤ r̄(svm(A ∪B ∪ C))

4 Approximate Decomposition Training

4.1 Incremental Validating Scheme

Proposition 3 can be applied in a straightforward manner to implement the algorithm
proposed by Syed et al. [9] that was shown to produce classifiers with minimum to no
penalty in accuracy for a variety of datasets. In this approach the support vectors from
the previous training step (the current model) are merged with the next chunk of data to
train the next classifier. The limitation of this algorithm is that there is no simple way to
limit the size of the training set a priori, which can lead to unacceptably long training
times or exceed the capabilities of the SVM implementation at hand.

We propose a revised version of the algorithm that uses the incremental approach,
with two main differences. Firstly, we keep the size of the training subset constant, so it
doesn’t exceed the maximum capability of the SVM implementation. Secondly, when
choosing the data for the next iteration of training, we validate the data samples with the
current classifier and only pick the ones that are misclassified. This is partly inspired by
the ’bootstrapping’ approach that is often used to obtain ’hard’ non-object (background)
data, where the negative samples that the current solution fails to discard can be used
to improve the classifier. This is also similar to what exact chunking algorithms do
internally, minus the requirement that the optimization criteria must be satisfied for the
entire training set - here the samples that were picked for a round of training and did
not become support vectors get dropped from the training set.

1. Input: data set X and constant M .
Output: an SVM, Sinc.

2. Set j = 1.
3. Remove a random subset X1 ⊂ X , |X1| = M from X :

X = X \X1

4. Train an SVM for X1:
S1 = svm(X1)



336 I. Kukenys, B. McCane, and T. Neumegen

5. Do
(a) Use the support vectors from the previous classifier:

Xj+1 = sv(Xj)

(b) Fill the subset with misclassified samples:
While |Xj+1| < M

i. Pick next xi ∈ X
ii. If Sj(xi) �= yi then X = X \ {xi}, Xj+1 = Xj+1 ∪ {xi}

(c) Train the next iteration of the SVM:

Sj+1 = svm(Xj+1)

(d) j = j + 1
While |Sj| < M and |Xj| > |Sj−1|
(stop when the training buffer is full of support vectors or all remaining samples
are classified correctly).

6. The last SVM trained is the final decision function:

Sinc = Sj

The benefit of this approach is that a potentially large number of training samples are
never directly used in the training steps, yet are validated to classify correctly. In our
observations, if M is larger than the size of the SVM that would result from training
on the entire set X , M > |svm(X)|, the algorithm will produce a classifier of similar
complexity as the full solution and will terminate by validating all of the remaining
training samples. Otherwise, a set of M support vectors will emerge that another round
of training is not able to reduce, giving a reasonably good classifier for size M .

4.2 Reduction Scheme

We propose the following algorithm based on the idea of iteratively dividing the train-
ing set. The data is recursively replaced by support vectors obtained by applying the
reduction method with a small size M̄ on the current data set, until the remaining data
set is either smaller than the target size M , or further reduction steps fail to remove any
more samples.

1. Input: data set X1 and constants M and M̄ .
Output: an SVM, Sred.

2. j = 1
3. Do:

(a) Split the training data into chunks of size M̄ :

Dj = {dj
i |dj

i ⊂ Xj, |dj
i | = M̄, dj

i ∩ dj
k = φ}

(b) Train an SVM for every chunk and merge all resulting support vectors and
consider them the new training set:

Xj+1 =
⋃
i

sv(dj
i )
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(c) j = j + 1
While |Xj| > M and |Xj| < |Xj−1|
(stop when remaining data reaches manageable size or the set cannot be reduced
further).

4. If |Xj| ≤M , train the final function on the final training set:

Sred = svm(Xj)

otherwise pick a random subset X̄ ⊂ Xj , |X̄ | = M :

Sred = svm(X̄)

From Proposition 4, this algorithm is expected to give less accuracy than the incremental
scheme:

r̄(Sred) ≤ r̄(Sinc) ≤ r(svm(X)) (2)

However by choosing a smaller division size M̄ the algorithm can be forced to quickly
reduce the large data set into a manageable subset consisting of ’most representative’
samples. We next show how these training schemes compare in practical experiments.

5 Results

5.1 Comparison

Dataset. To compare the different training schemes, we used image data from our
face detection project. 20 × 20 pixel patches of grayscale images containing human
eyes (figure 1) were used as positive samples and random background image patches
were used as negative samples. We ran these experiments using a set of 1407 images
containing 2456 eye objects.

The data set was augmented with variations of every eye object, where we added one
pixel shifts of the object window in 8 directions, resulting in 22104 positive samples of
the eye object. The same number of random background patches from the same images
were used as the negative samples, giving us a large training set of 44208 samples.

Experiments. To measure the accuracy of the resulting classifiers, we chose to evalu-
ate on the entire training set, denoting by r̂ the percentage of samples in the training set
that a given decision function classifies correctly. We ran the training schemes varying

Fig. 1. Example subset of the training data: 20x20 pixel patches containing human eyes
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Fig. 2. Accuracy and complexity on the comparison set

the subset size parameter M between 500 and 5000 samples, a practical limit of avail-
able hardware resources. SVM parameters for the Gaussian kernel width (σ = 6.3 for
normalized data) and constraint bound C = 10 were assumed to be problem specific
and were fixed at values known to work well for the data set. For every resulting deci-
sion function we recorded the overall time taken and the accuracy r̂. For the reduction
scheme we used M̄ = 0.1M .

Figure 2(a) shows the accuracies of the classifiers obtained using the different meth-
ods. The results are consistent with the expected order (Equation 2) - the reduction
scheme is less accurate, while the incremental scheme becomes more accurate early on.
The conclusion is that the largest possible training subset size M should be used where
maximizing the accuracy is desired.

Figure 2(b) shows the complexity of the resulting classifiers in terms of the number
of support vectors. Notably there seems to be a limit to how complex the solutions for
the given training set can get when using the incremental method. If this method indeed
picks ’better’ support vectors, it could indicate how complex an exact solution for the
given large problem might be.

The time taken to train a classifier using the different approaches is shown in fig-
ure 3(a). The reduction approach is a clear winner if a small M̄ size is chosen.

5.2 A Million Sample Dataset

Datasets. To further test the capabilities of approximate training, we designed an ex-
periment that attempts to utilize a training set of one million samples, a task infeasible
if using exact SVM training.

For the training set, we took 1571 images of human faces (multiple image sources,
around 1000 different subjects, varying lighting conditions), containing a total of 2500
eye objects (obstructed or closed eyes not included). We then augmented the training
set by adding shifts of the object window in four directions (×5), two slightly smaller
and one slightly larger crop for each location (×4), and nine image rotations between
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−20◦ and 20◦ at each position (×10), giving us 500K samples of an eye object. We
then extracted 500K random background patches from the same images, resulting in a
training set of one million samples.

For the evaluation set, we took a different set of 505 images containing 801 eye
objects that we used as positive evaluation samples and extracted 16020 random back-
ground patches from the images for the negative samples.

Experiments. To have a baseline, we first trained an SVM classifier using just the
original 2500 positive samples and bootstrapping for negative samples over the 500K
set of background patches. The overall training time was 3.5 hours and the resulting
decision function had 1598 support vectors.

We then trained a classifier using the incremental validating scheme, using the buffer
size of M = 5000. 16 cycles of training took a total of 17.5 hours and used up (vali-
dating or training) 350K of the samples before saturating the training buffer with sup-
port vectors, resulting in a decision function with 5000 support vectors. The reduction
scheme with M̄ = 500 on the other hand took only 10.5 hours and discarded 957K
samples. A decision function trained on a random subset of 5000 from the remaining
43K had 3896 support vectors.

Figure 3(b) shows the ROC curves for the two augmented set functions compared
to the original one, calculated over the evaluation set. The approximate incremental
function trained on the augmented set shows a better characteristic than the original. To
further support this, we ran the functions as object detector scanners over the evaluation
images. The conventional classifier found 93.5% percent of known eyes in the images,
while the incremental classifier from the augmented set found 98.8% percent.

6 Conclusions and Future Work

When faced with a large learning problem and an SVM implementation of limited capa-
bilities, approximate training strategies can be used to obtain an approximate solution.
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The reduction scheme can provide a quick feel of the redundancy in the problem data,
checking if the data can be reduced to a manageable size, while the incremental scheme
can extract a classifier of maximum complexity dictated by the available computing
resources.

The approximate decomposition approaches to SVM training allowed us to quickly
train approximate decision functions over very large sets of data. The two schemes
we compared can use any available SVM implementation as its basic component. We
showed how the trade-off between the training time and the resulting accuracy for both
algorithms can be controlled using the subset size parameter, and discussed how such
algorithms are a useful tool for tackling large real-life SVM learning problems in com-
puter vision.

Having a fast way to train SVM classifiers on large sets of data allows us to look
into ways of increasing the accuracy of our face detecting classifiers. We are now able
to augment our training sets with variations of the sample data, increasing the amount
of data by several orders of magnitude, and judge which variations give a worthy im-
provement, despite the penalty of the approximate training.
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Abstract. We propose a novel logic-rule learning approach for the Tower

of Knowledge (ToK) architecture, based on Markov logic networks, for

scene interpretation. This approach is in the spirit of the recently pro-

posed Markov logic networks of machine learning. Its purpose is to learn

the soft-constraint logic rules for labelling the components of a scene.

This approach also benefits from the architecture of ToK, in reasoning

whether a component in a scene has the right characteristics in order

to fulfil the functions a label implies, from the logic point of view. One

significant advantage of the proposed approach, rather than the previous

versions of ToK, is its automatic logic learning capability such that the

manual insertion of logic rules is not necessary. Experiments of building

scene interpretation illustrate the promise of this approach.

1 Introduction

The aim of scene interpretation is to classify the objects in a scene and then
associate with each class of object a semantic label. Recent years have seen
considerable literature on this topic, including [1] [2] [3] [4]. Recently, an exciting
development of scene interpretation has focused on graphical models such as
Bayesian networks [5] and Markov random fields (MRF) [6]. However, most of
these approaches are based on statistical learning, and hence they rely heavily
on the availability of sufficient training data.

To avoid such a deficiency, the Tower of Knowledge (ToK) scheme was pro-
posed in [7] [8] [9], either in the form of a non-iterative algorithm or an iterative
algorithm, to combine logic rules with the statistical properties of each class of
object, for 3D scene interpretation. Applying logic in scene interpretation [10]
[11] [12] has been around for a couple of decades. However, the exploration of
object functionalities, incorporated in the logic rules, was proposed for the first
time by the architecture of ToK [7], as we know that objects, in particular man-
made objects, exist with their own functionalities to fulfil human need. The logic
rules of ToK are used to discover whether an object has the right characteristics
in order to fulfil the functions a label implies from the logic point of view.

Previous versions of ToK assume that the logic rules have been programmed
into the computer vision system, and thus they lack automatic learning capabil-
ities.This paper proposes a Markov logic network based (MLN-based) ToK for

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 341–350, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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self-learning the set of rules in the form of first-order logic. Instead of assum-
ing that all (descriptor/functionality) units of the same level are independent
as in the previous versions of ToK, we use logic rules to express that the units
of the same level may depend on each other for reasoning on the units from
neighboring levels. This scheme still offers the advantages of the recursive ToK
on generalising more accurately from sparse data, and at the same time uses
FOIL (First Order Inductive Learner) to learn the logic rules.

Our method benefits from the most recent successes of Markov logic networks
(MLNs) [13] in the machine learning community for learning and making in-
ference by combining first-order logic and probabilistic graphical models in a
single representation. MLNs combine logic and probabilities to soften the hard-
constraint logic rules, by attaching weights to logic rules and viewing them as
templates for features of an MRF. So, they are used in this paper for enhancing
the architecture of ToK, in which logic rules, are normally used to impose a label
with soft constraints. The next section reviews the architecture of ToK.

2 Brief Overview of ToK

The ToK architecture provides a rational way of labelling the objects of a scene
by considering the rules between the functionalities of objects and their descrip-
tors. The architecture of ToK, as schematically proposed in [7], is shown in
Figure 1. In this figure, ToK consists of four levels: image, semantic, function-
ality and descriptor levels. The image level belongs to low level vision. Features
extracted from images are the units of this level and the input to ToK. The other
three levels belong to high level vision. The nouns of the semantic level are the
names of the objects, i.e. labels (e.g. “balcony”,“window”). The remaining two
levels are those of the functionalities and the descriptors, which may be seen as
the implicit logic representations of object models. The verbs of the function-
ality level are functionalities of the objects such as “to stand in” and “to look
out”. A functionality may be fulfilled, if the object has certain characteristics.
These are captured at the descriptor level. Examples of these units are “having
enough space for a person” and “there is an opening on the wall”. The units in
the descriptor level can interrogate the sensors and the images to verify that a
required descriptor applies to an object. This way, the vertical connections of
the scheme encode implicitly the generic models of objects, seen not in isolation
or as static entities, but in the context of what they are used for and what their
generic characteristics are.

The original ToK architecture [8] [9] assumes that the units of functionali-
ties/descriptors are independent of each other for the inference of a specific la-
bel. These units, in practice, are dependent as far as the inference is concerned.
Thus, in order to avoid such a disadvantage of the previous ToK approaches,
we apply MLN in this paper to model the architecture of ToK. The reason why
MLN is applied, instead of other rule-based learning methods, is that the hard
constraints of logic rules can be softened in MLN by learning the weights of each
logic rule. This is applicable to the ToK architecture since each logic rule in the
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Fig. 1. ToK for labelling object ai. The units in this figure stand for the measurements

Mi, labels L, functionalities F and descriptors D. The arrows represent the transfer of

information from evidence to queries.

ToK architecture has different probability to hold as discussed previously. Next,
we shall show the details of the MLN-based method for scene interpretation.

3 The Proposed MLN-Based Approach

Based on the architecture of ToK, the problem of scene interpretation may be
seen as assigning label lj ∈ L to object ai ∈ A, according to each functionality
fk ∈ F and descriptor dl ∈ D. This problem will be solved by the inference of
probabilities of assigning lj to ai represented by lj(ai) (simplified to be lij), via
the proposed MLN model in Section 3.3. For such inference, we have to learn
the rules in Section 3.2 and their weights in Section 3.4. First, we need to review
the basic idea of MLN in Section 3.1, as the foundation of the proposed method.

3.1 Basic Idea of MLN

In order to introduce MLN, it is necessary first to have a look at the notation
and expression of logic rules [14], in the form of first-order logic. Assume that
there is a logic rule: Fh ← Fe1 ∧ . . . ∧ Fen. In this logic rule, Fh as postcondi-
tion, is implied by preconditions Fe1, . . . , Fen which may be seen as evidence.
Each precondition/postcondition is called a literal. Assigning values to possible
literals, such as f3(a1) = 1 and l2(a1) = 0, defines a possible world. Similarly,
assigning a value to each logic rule , such as l2(a1) ← f3(a1), is called a ground-
ing. Considering the logic rule in ToK, the above logic rules may be rewritten in
the form of XOR (exclusive or, �) shown in Table 1, which is slightly different
from the equivalent form of first-order logic rules in [14].

However, in some cases, the logic rules may hold with their own probabilities.
Consider the logic rule l2 ← f3 in Figure 1. We know that for an object to be a
“door” (= l2), it has to be able to “let people to go through” (= f3) such that f3

is a requirement for l2. Then, one may say that if we observe functionality f3, we
have a non-zero probability of this object being l2. In other words, the hard logic
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rule is changed into a soft one implying a label with some probability, probably
lower than 1, as the object through which people can go may or may not be s
door (soft classifier). MLN was proposed [13] to soften the hard constraints of
logic rules, and therefore can be applied in our approach for the soft classifier.

In MLN [13], MRF is applied to model logic rules by considering the literals
of logic rules as binary nodes of an MRF. Considering each logic rule Ri as a
clique of an MRF with weight wi, the probability of a possible world x may be
computed by MLN as,

P (X = x) =
1
Z

exp

(
R∑

i=1

wini(x)

)
(1)

where R is the number of logic rules involved in MLN and ni(x) is the num-
ber of true groundings of logic rule Ri. Z is a normalising constant to make∑

x∈X P (X = x) = 1, in which X consists of all x. In our model of MLN, X
stands for the combinations of values assigned to the label of an object and the
preconditions for this label, and x stands for a particular combination of values
X . For example, a particular x may be x = {l2(a1) = 1, f3(a1) = 1}. ni(x) is 1
if x makes rule Ri true, else it is 0. In addition, wi is the weight of rule Ri. So,
P (X = x) is the probability for combination of values x to arise.

Then, for a specified logic rule, the probability that the postcondition Fh is
true may be queried given the already known MLN M and preconditions as the
evidence, expressed by Fe={Fe1, . . . , Fen}. We may obtain such a probability as:

P (Fh|Fe,M) =
P (Fh ∧ Fe|M)

P (Fe|M)
=

∑
x∈XFh

∩XFe
P (X = x|M)∑

x∈XFe
P (X = x|M)

(2)

where XFh
/XFe is the set of worlds in which Fh/Fe holds. P (X = x|M) may be

computed by using (1).
Let us cite an example for showing how (2) works. Assume that the previous

logic rule for ∀ai, l2(ai) ← f3(ai) is a classifier with weight w for recognising
doors. As another expression, this rule is equivalent to l2(ai) �¬f3(ai), which is
an expression of XOR: an object is either a door, or it is something not allow-
ing people to go through. For component a1, this leads to four possible worlds
{l2(a1) = 1, f3(a1) = 1}, {l2(a1) = 1, f3(a1) = 0}, {l2(a1) = 0, f3(a1) = 1} and
{l2(a1) = 0, f3(a1) = 0}. If we observe a person going trough component a1 (i.e.
f3(a1) = 1), there will be only two worlds: {l2(a1) = 1, f3(a1) = 1} and {l2(a1) =
0, f3(a1) = 1}. Given Table 1, {l2(a1) = 1, f3(a1) = 1} makes the logic rule true,
and {l2(a1) = 0, f3(a1) = 1} makes it false. According to (1) and (2), it is
easy to obtain P (l2(a1) = 1|f3(a1) = 1)= p(l2(a1)=1,f3(a1)=1)

p(l2(a1)=0,f3(a1)=1)+p(l2(a1)=1,f3(a1)=1)

=
1
Z ew

1
Z + 1

Z ew = ew

ew+1 .

3.2 The Learning Method of Logic Rules

In order to construct the ToK architecture described in Section 2, the logic rules
for scene interpretation have to be learnt first. Before learning such logic rules,
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Table 1. Truth table of logic rule: Fh ← Fe1 ∧ . . . ∧ Fen

postcondition preconditions logic rule
Fh Fe1 ∧ . . . ∧ Fen Fh � ¬{Fe1 ∧ . . . ∧ Fen}
1 1 1
1 0 0
0 1 0
0 0 1

we decide to treat the functionality units of the ToK architecture in our approach
as the latent units, and then consider the descriptors as preconditions and the
labels as postconditions for the logic rules. Therefore, we take the descriptors
and labels of each object in the training dataset as input to the learning method.
The labels and descriptors of objects from the training dataset, have to be an-
notated before training.

Then, an logic programming method, FOIL [15], is applied in our proposed
approach to learn the logic rules of recognising the components of scenes. FOIL
begins with the most general preconditions (the empty preconditions), and then
recursively learns literals to specialise the rule for the postcondition until it
avoids all negative examples. However, in order to accommodate the soft con-
straints of logic rules, the original FOIL is modified as summarised in Table 2.
In this table, FOIL selects the precondition with the most gain, defined as

Gain(dl, New Rule) ≡ p1

(
log

p1

p1 + n1
− log

p0

p0 + n0

)
(3)

where p0 and n0 are numbers of positive and negative examples satisfying logic
rule: New Rule, and p1 and n1 are numbers of positive and negative examples
after adding precondtion dl to New Rule. In addition, min gain is defined as
the threshold of minimum gain for adding a new precondition. See [15] for more
details.

3.3 The Proposed MLN Inference Model for Scene Interpretation

This subsection focuses on applying MLN and the learnt logic rules for inter-
preting scenes given the problem and notation stated at the beginning of Section
3. Now, consider the inference model of MLN from the viewpoint of ToK archi-
tecture. The architecture, as shown in Figure 1, has labels as the query nodes of
MLN, and functionalities as latent nodes. The descriptors, as preconditions of
all logic rules leading to lij (more than one rule for some label categories), are
the evidence for the query. Therefore, the model of MLN, denoted as M , may
be obtained through the rule learning method in Section 3.2 and weight learning
method in Section 3.4. Then, the Markov blanket of lij , denoted by MB(lij),
is set up to involve the descriptors of all logic rules (

⋂F
t=1 Rt) leading to label

lj for component ai, which have been learnt in Section 3.2. Then, (2) may be
extended to accommodate MB(lij). ai is thereby labelled as lj with probability

P (lij = 1|MB(lij),M)=

∑
x∈(lij=1)∩MB(lij)

P (x|M)∑
x∈MB(lij)

P (x|M)
(4)
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Table 2. Summary of the FOIL algorithm

– Input: Training dataset in which attributes are descriptors and targets are labels.
– Output: A set of logic rules to predict the labels for a scene.
– Rule set R ← Φ

For each category of lj ∈ L
• P ← Those positive examples the labels of which are lj
• N ← Those negative examples the labels of which are not lj
• D′ ← Possible descriptor set, with ∀d′

l ∈ D′ satisfied by members of P
While D′ �= Φ

• New rule: lj ← Empty descriptor
• N ′ ← N

While N ′ > 0
• DCandidate: Generate candidate new descriptors from D′ for New rule by

searching for the descriptors which are satisfied by the maximum number of
examples in P .
If maxdl∈DCandidate

Gain(dl, New rule) < min gain, Then Break

• dbest ← argmaxdl∈DCandidate
Gain(dl, New rule)

• Append dbest to preconditions of New rule
• N ′ ← Subset of N ′ that satisfies preconditions of New rule
• D′ ← Subset of D′ that excludes dbest

If DCandidate = Φ, Then Break
End

• R ← R ∪ New rule
End

End

According to (1) and (4), P (lij = 1|MB(lij) ,M) can be rewritten as

P (lij = 1|MB(lij),M) =
P (lij = 1,MB(lij),M)

P (lij = 0,MB(lij),M) + P (lij = 1,MB(lij),M)
(5)

=
e
∑F

t=1 wtft(lij=1,MB(lij))

e
∑

F
t=1 wtft(lij=0,MB(lij)) + e

∑
F
t=1 wtft(lij=1,MB(lij))

where with the observed descriptors as preconditions stored in MB(lij), ft(lij =
1,MB(lij)) is the binary value of the feature corresponding to the tth logic
rule being true or not, when labelling component ai as lj . Similarly, ft(lij =
0,MB(lij)) is the binary value corresponding to the tth logic rule being true or
not, when labelling the component as non-lj. wt is the weight associated with
the tth logic rule. It can be learnt by the method of the next subsection.

Next, the problem of scene interpretation on the basis of MLN is reduced to
computing ft(lij = 1,MB(lij)) and ft(lij = 0,MB(lij)) with relevant descrip-
tors. Here, we assume that Dijt = {d(1)

ijt , . . . , d
(m)
ijt } is the set of descriptors of

the tth logic rule in MB(lij) leading to lij , where Dijt ⊆ D that is the set of
all descriptors. According to Section 3.1, logic rule lij ← d

(1)
ijt ∧ . . .∧ d

(m)
ijt can be

rewritten in the form of exclusive logic as lij�¬(d(1)
ijt∧. . .∧d

(m)
ijt ). Therefore, it can

be obtained that in (5) ft(lij = 1,MB(lij)) = 1 and ft(lij = 0,MB(lij)) = 0,
iff d

(1)
ijt ∧ . . .∧ d

(m)
ijt = 1. Then, ft(lij = 1,MB(lij)) and ft(lij = 0,MB(lij)) may

be derived, given the observed Dijt.
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However, the above descriptors may be estimated with soft constraints. As
introduced in [8], the descriptors observed for a particular object have associated
confidences with which they apply to the object. The confidence of descriptor
dl being true for ai may be computed and normalised [8] [9] through cil =

1
max p(M̃i|dl)

p(M̃i|dl), where M̃i is used to indicate the measurements we need to

verify the descriptors for ai. Then, the confidence of d
(1)
ijt ∧ . . . ∧ d

(m)
ijt = 1 may

be written as Cijt =
∏

v c
(v)
ijt , where c

(v)
ijt is the confidence that descriptor d

(v)
ijt is

true. Therefore, we can obtain the confidences of ft(lij = 1,MB(lij)) = 1 and
ft(lij = 0,MB(lij)) = 0, and further rewrite (5) as,

P (lij = 1|MB(lij),M, M̃i)

=

∏F
t=1{

∏
v c

(v)
ijt e

wt + (1−∏
v c

(v)
ijt )e

0}∏F
t=1{

∏
v c

(v)
ijt e

0 + (1−∏
v c

(v)
ijt )ewt}+

∏F
t=1{

∏
v c

(v)
ijt e

wt + (1−∏
v c

(v)
ijt )e0}

(6)

for the probability of assigning lj to ai. Based on (6), we may label object ai by

l(ai) = argmax
lj∈L

P (lij = 1|MB(lij),M, M̃i) (7)

3.4 Learning the Weights of the Logic Rules

Now, the only task left for scene interpretation is learning the weights of the logic
rules. Here, we use a gradient ascent algorithm [13] to learn weights {w1, w2,
. . . wt, . . .} of the logic rules learnt in Section 3.2. Assume that X = {l∗,D∗} is
the training dataset, where l∗ is the label set of the training data, and D∗ is its
corresponding descriptor set. Then, the gradient conditional log-likelihood is

∂

∂wi
logPw(l∗|D∗) (8)

= ni(l∗,D∗)−
∑

s

{Pw(l∗s = 1|D∗)fi(l∗s = 1,D∗) + Pw(l∗s = 0|D∗)fi(l∗s = 0,D∗)}

where ni(l∗,D∗) is the number of true groundings of the ith logic rule (i.e.
the number of training examples satisfying the ith rule) in dataset X. For lj
involved in the ith rule, l∗s = 1 means that label l∗(as) of each object as in l∗

is forced to be lj (i.e. l∗sj = 1), and l∗s = 0 likewise means that each l∗sj = 0,
while D∗ remains unchanged. fi(·) is the binary value of the ith logic rule being
true or not. Pw(l∗s |D∗) is P (l∗s |D∗) computed using current weight vector w =
{w1, . . . , wt, . . .} and (5), by

Pw(l∗s |D∗) =
exp(

∑F
t=1wtft(l∗s ,D

∗))

exp(
∑F

t=1wtft(l∗s = 0,D∗))+exp(
∑F

t=1 wtft(l∗s = 1,D∗))
(9)
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Given (8) and (9), wi may be updated iteratively through gradient ascent:

wi,k = wi,k−1 + η
∂

∂wi
logPw(l∗|D∗)|wk−1 (10)

where wi,k is the value of wi in iteration k and η (= 0.01 in the next section) is
the learning rate of gradient ascent. Each weight may be initialized to be 0. For
more detail about weight learning of logic rules see [13].

4 Experimental Results

To validate the proposed approach, we performed experiments on a variety of
building scenes to recognise four classes of components: windows, doors, bal-
conies and pillars. The domain of building scene interpretation is shown in Ta-
ble 3. Using the rule learning (Section 3.2) and weight learning (Section 3.4)
methods, all logic rules and their weights were obtained in Table 4 by learning
from the training dataset, which consists of only 5 buildings with 131 compo-
nents, randomly selected from database [16]. Here, we used the annotation tool
[16] to generate the labels and descriptors of these training components.

We have extensively evaluated the proposed approach for labelling 700 com-
ponents of the 3D reconstructed models of 12 buildings from databases [16] and
[17]. The 3D models for testing were reconstructed and represented according
to [18]. We used the annotation tool, available at [16], to manually segment the
3D components. Moreover, the confidence of each descriptor being true, as intro-
duced in Section 3.3, can be set in this specific 3D scene (building) interpretation
task by using the method described in [8] [9].

Table 3. Domain of knowledge for Building Scene interpretation based on Figure 1

Level English expression Units
Window l1

Label Door l2
Balcony l3
Pillar l4

Lets people look out f1
Lets light in f2

Functionality Lets people walk out f3
Lets people stand in f4
Makes building stable f5

It is glass-like d1
The bottom of the component touches the ground d2

Descriptor It is high enough for human size d3
The top of the component touches a flat plane d4

The width is large enough for human size d5
There are some opening components next to it d6

Table 4. The learnt logic rules and their weights for building scene interpretation

Labels Logic rules Weight

Window l1 ← d1 2.97
l1 ← d3 ∧ d2 −5.27

Door l2 ← d3 ∧ d2 1.06
Balcony l3 ← d5 ∧ d6 2.91
Pillar l4 ← d4 3.22
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Fig. 2. The images of buildings for the scene interpretation task. All these data are

from the eTRIMS [16] and IMPACT[17] databases.

Table 5. The confusion matrix of the results of 3D scene interpretation using MLN-

based ToK-original ToK-recursive ToK. The running time of these three approaches,

for labelling all 700 components, is 39.68-28.97-1070.41 seconds.

Window(Results) Door(Results) Balcony(Results) Pillar(Results)
Window (Ground Truth) 538-538-533 7-6-11 0-1-1 0-0-0

Door (Ground Truth) 0-3-9 65-62-53 0-0-0 0-0-3
Balcony (Ground Truth) 2-1-1 0-0-0 26-27-27 0-0-0
Pillar (Ground Truth) 0-0-0 4-16-9 0-0-0 58-46-53

Then, we implemented the original, recursive and MLN-based versions of ToK
on all 12 buildings shown in Figure 2, in order to evaluate the performance
of the proposed MLN-based approach. Table 5 shows the confusion matrix of
labelling all 700 components of the 12 buildings. From this table, it can be seen
that the proposed approach with labelling error 1.9% outperforms the recursive
ToK (error rate: 4.9%) and the original ToK (error rate: 3.9%). The original
ToK requires a large set of training data (more than 200 buildings with over
5000 components), yet only about 2.5% of these training data are required by
the MLN-based ToK. Also, note that the MLN-based ToK does not operate an
iterative algorithm as the recursive ToK does, and therefore saves computational
time as illustrated in Table 5. However, the most important attraction of MLN-
based ToK is that it is able to automatically learn the logic rules instead of
using the human knowledge to insert them in advance into the computer as the
original or recursive ToK requires.

5 Conclusions

In this paper, we proposed an MLN-based ToK approach for scene interpreta-
tion. The success of ToK implies that scene interpretation can be built on the
inference of the causal dependencies between the functionalities of objects and
their descriptors. In contrast to the original ToK, the proposed approach has
three major parts. First, an inductive logic programming method has been ex-
tended to learn the logic rules between labels and descriptors of objects. Second,
the weights of these rules have been learnt by gradient ascent search. Third,
based on ToK, MLN may recognise the components of a scene, given the already
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learnt logic rules and their corresponding weights. In conclusion, the proposed
approach automatically learns the soft-constraint logic rules to label the compo-
nents of a scene by MLN. This allows the approach to benefit from the advantage
of using sparse data for learning, and at the same time avoid the need of the
previous versions of ToK all logic rules to have to be inserted into the algorithm
manually. In addition, experimental results showed that our approach is superior
to both the original and recursive ToKs.
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Abstract. We study the problem of classifying images into a given,

pre-determined taxonomy. The task can be elegantly translated into the

structured learning framework. Structured learning, however, is known

for its memory consuming and slow training processes. The contribution

of our paper is twofold: Firstly, we propose an efficient decomposition

of the structured learning approach into an equivalent ensemble of local

support vector machines (SVMs) which can be trained with standard

techniques. Secondly, we combine the local SVMs to a global model by

re-incorporating the taxonomy into the training process. Our empirical

results on Caltech256 and VOC2006 data show that our local-global

SVM effectively exploits the structure of the taxonomy and outperforms

multi-class classification approaches.

1 Introduction

Recognizing objects in images is one of the most challenging problems in com-
puter vision. Although much progress has been made during the last decades,
performances of state-of-the-art computer vision systems are far from the recog-
nition rates of humans.

There are of course many natural explanations why humans outperform artifi-
cial recognition systems. However, an important difference between them is that
humans effectively use background knowledge and incorporate semantic informa-
tion into their decision making; their underlying representation is highly struc-
tured and allows for assessing co-occurrences to estimate the likeliness of events.
By contrast, artificial recognition systems frequently rely on shallow or flat rep-
resentations and models. The number of object recognition systems exploiting
those co-occurrences or semantic relations between classes is rather small.

We believe that incorporating semantics into the object recognition process
is crucial for achieving high classification rates. In this paper, we focus on tasks
where the semantics is given a priori in form of a class-hierarchy or taxonomy.
In general, incorporating a taxonomy into the learning process has two main
advantages: Firstly, the amount of extra information that is added to the system
details inter-class similarities and dependencies which can enhance the detection
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1:all

9:life

11:laurasitheria

15:pegasofera

19:horse16:carnivora

18:dog17:cat

12:cetartiodactyla

14:sheep13:cow

10:person

2:nonlife

6:4-wheeled

8:car7:bus

3:2-wheeled

5:motorbike4:bicycle

Fig. 1. The VOC2006 taxonomy

performance. Secondly, the complexity of the task is spread across the taxonomy
which can be exploited by simpler learning techniques.

There have been many publications dealing with learning class-hierarchies,
for instance on the basis of delayed decisions [1], dependency graphs and co-
occurrences [2,3], greedy margin-trees [4], and by incorporating additional in-
formation [5]. By contrast, we focus on classifying images into a pre-determined
taxonomy. The task fits into the structural learning framework [6,7] which has re-
cently gained much attention in the machine learning community and which has
already been successfully applied to document classification with taxonomies [8].

However, the structural framework is computationally costly in terms of train-
ing time and memory consumption. We propose an efficient decomposition of
the structural objective into several binary optimization tasks. The local models
can be trained efficiently in parallel and converge to the same solution as their
structural analogon. We furthermore show how to incorporate global taxonomy
information into the training process of the local models by re-scaling the impact
of images according to their location in the class-hierarchy. Empirically, we show
on VOC2006 and Caltech256 data sets that our local-global SVM effectively ex-
ploits the structure of the taxonomy and outperforms multi-class classification
approaches.

The remainder of this paper is structured as follows. Section 2 introduces
the formal problem setting and Section 3 briefly reviews structural learning. We
present our main theorem detailing the decomposition of the structured approach
into local models in Section 4 where we also address the problem of assembling
local models on a global level. We report on empirical results in Section 5 and
Section 6 concludes.
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2 Problem Setting

We focus on the following problem setting where we are given n pairs {(x(i), y(i))},
1 ≤ i ≤ n, where x(i) ∈ !d denotes the vectorial representation of the i-th image
which can be represented in higher dimensions by a possibly non-linear map-
ping φ(x(i)). The latter gives also rise to a kernel function on images, given by
k(x, x′) = 〈φ(x), φ(x′)〉. The set of labels is denoted by Y = {c1, c2, . . . , ck}.
For simplicity, we focus on multi-class classification tasks, where every image is
annotated by an element of Y . However, our approach can easily be generalized
to the multi-label setting, where an image can be annotated with several class
labels.

In addition, we are given a taxonomy T in form of an arbitrary directed graph
(V,E) where V = (v1, . . . , v|V |) and Y ⊂ V such that classes are identified with
leaf nodes, see Figure 1 for an example. We assume the existence of a unique
root node. The set of nodes on the path from the root node to a leave node y is
defined as π(y). Alternatively, the set π(y) can be represented by a vector κ(y)
where the j-th element is given by

κj(y) =
{

1 : vj ∈ π(y)
0 : otherwise

1 ≤ j ≤ |V |, y ∈ Y

such that the category sheep in Figure 1 is represented by the vector

κ(sheep) = (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0)′.

The goal is to find a function f that minimizes the generalization error R(f),

R(f) =
∫
�d×Y

δ(y, f(x))dP (x, y),

where P (x, y) is the (unknown) distribution of images and annotations. As in the
classical classification setting, we address this problem by searching a minimizer
of the empirical risk that is defined on a fixed iid sample from P

Remp(f) =
n∑

i=1

δ
(
y(i), f(x(i))

)
. (1)

The quality of f is measured by an appropriate, symmetric, non-negative loss
function δ : Y ×Y → !+

0 detailing the distance between the true class y and the
prediction. For instance, δ may be the common 0/1 loss, given by

δ0/1(y, ŷ) =
{

0 : y = ŷ
1 : otherwise. (2)

When learning with taxonomies, the distance of y and ŷ with respect to the
taxonomy is fundamental. For instance, confusing a bus with a cat is more severe
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than mixing-up the classes cat and dog. We’ll therefore also utilize a taxonomy-
based loss function reflecting this intuition by counting the number of nodes
between the true class y and the prediction ŷ,

δT (y, ŷ) =
|V |∑
j=1

|κj(y)− κj(ŷ)|. (3)

For instance, the taxonomy-based loss between categories horse and cow in Fig-
ure 1 is δT (horse, cow) = 4 because

π(cow) xor π(horse) = {cow, cetartiodactyla, pegasofera, horse}.

3 Learning in Joint Input-Output Spaces

The taxonomy-based learning task matches the criteria for learning in joint
input-output spaces [6,7] where one learns a function

f(x) = argmax
y

〈w, Ψ(x, y)〉 (4)

that is defined jointly on inputs and outputs. The mapping Ψ(x, y) is often called
the joint feature representation and for learning taxonomies given by the tensor
product [8]

Ψ(x, y) = φ(x) ⊗ κ(y) =

⎛⎜⎜⎜⎝
φ(x)[[v1 ∈ π(y)]]
φ(x)[[v2 ∈ π(y)]]

...
φ(x)[[v|V | ∈ π(y)]]

⎞⎟⎟⎟⎠ .

Thus, the joint feature representation subsumes the structural information and
explicitly encodes paths in the taxonomy. To minimize the empirical risk in
Equation (1), parameters w can be optimized with conditional random fields
(CRFs) [9] or structural support vector machines (SVMs) [6,7]. Following the
latter and using the formulation by [10,11] we obtain the optimization problem
in Equation (5).

min
w,ξ

1
2
‖w‖2 + C

n∑
i=1

∑
ȳ �=y(i)

ξ
(i)
ȳ

s.t. ∀i, ∀ȳ �= y(i) : 〈w, Ψ(x(i), y(i))− Ψ(x(i), ȳ)〉 ≥ δ(y(i), ȳ)− ξ
(i)
ȳ (5)

∀i, ∀ȳ �= y(i) : ξ
(i)
ȳ ≥ 0.

The above minimization problem has one constraint for each alternative classi-
fication per image. Every constraint is associated with a slack-variable ξ

(i)
ȳ that

acts as an upper bound on the error δ caused by annotating the i-th image with
label ȳ. Once, optimal parameters w∗ have been found, these are used as plug-in
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estimates to compute predictions for new and unseen examples using Equation
(4). The computation of the argmax can be performed by explicit enumeration
of all paths in the taxonomy.

Note that the above formulation differs slightly from [6,7] where every instance
is associated with only a single slack variable representing the most strongly
violated constraint for each image. Although, Equation (5) can be optimized
with standard techniques, the number of categories in state-of-the-art object
recognition tasks can easily exceed several hundreds which renders the structural
approaches infeasible. As a remedy, we will present an efficient decomposition of
the structural optimization problem in the next section.

4 Local-Global Support Vector Learning

In this section we present the main contribution of this paper. Firstly, we devise
a decomposition of the structural approach in Equation (5) into several local
models in Section 4.1. Secondly, we show how to combine the local models glob-
ally by incorporating the structure of the taxonomy into the learning processes
in Section 4.2.

4.1 An Efficient Local Decomposition

The idea is to learn a binary SVM using the original representation φ(x) for each
node vj ∈ V in the taxonomy instead of solving the whole problem at once with
an intractable structural approach. To preserve the predictive power, the final
binary SVMs need to be assembled appropriately according to the taxonomy.
Essentially, our approach boils down to training |V | independent binary support
vector machines such that the score fj(x) = 〈w̃j , φ(x)〉 + b̃j of the j-th SVM
centered at node vj serves as an estimate for the probability that vj lies on the
path y of instance x, i.e., Pr(κj(y) = 1). It will be convenient to define the
auxiliary label function zj(y) by

zj(y) =
{

+1 : if κj(y) = 1
−1 : otherwise. (6)

An image x(i) is therefore treated as a positive example for node vj if this very
node lies on the path from the root to label y(i) and as a negative instance
otherwise. In Figure 1 for instance, we have zlife(cow) = 1 but zlife(bus) = −1.

Using Equation (6), we resolve the local-SVM optimization problem that can
be split into |V | independent optimization problems, effectively implementing a
one-vs-rest classifier for each node.

min
w̃j ,b̃j ,ξ̃j

1
2

|V |∑
j=1

‖w̃j‖2 +
|V |∑
j=1

C̃j

n∑
i=1

ξ̃
(i)
j

s.t. ∀i, ∀j : zj(y(i))(〈w̃j , φ(x(i))〉+ b̃j) ≥ 1− ξ̃
(i)
j (7)

∀i, ∀j : ξ̃
(i)
j ≥ 0.
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At test time, the prediction for new and unseen examples is computed similarly
to Equation (4). Denote the local-SVM for the j-th node by fj then the score
for class y is simply the sum of all nodes lying on the path from the root to the
leave y,

ŷ = argmax
y∈Y

∑
j:κj(y)=1

fj(x). (8)

The following theorem shows that the above approach is equivalent to the struc-
tural SVM in Equation 5.

Theorem 1. If C = C̃j for 1 ≤ j ≤ |V | and δ(y, ȳ) in Equation (5) is the 0/1
loss (Equation (2)) then the optimization problems in Equations (5) and (7) are
equivalent.

The proof is shown in the Appendix and relies on projecting combinatorial vari-
ables ȳ onto nodes, hence reducing the number of possible events significantly to
only a binary choice: either a node lies on a path or not. Along with the number of
combinatorial outcomes, the training times reduce significantly. Another appeal-
ing aspect of this result is that the |V | support vector machines can be trained
efficiently in parallel. This property is also preserved when re-incorporating the
taxonomy information as is shown in the next section. Moreover, model selec-
tion can be applied to the training process of each model separately which may
lead to highly adapted local models with optimal trade-off Cj parameters (and
potentially also kernel parameters) while its structural counterpart allows only
for a single parameter C. In the next section we will show how to combine the
local SVMs of optimization problem (7) globally by introducing example-specific
costs.

4.2 Incorporating Global Misclassification Costs

The previous section shows how to decompose the structural approach into inde-
pendent, binary problems. Although, the taxonomy is still necessary for scoring
paths at prediction time (Equation (8)), the training processes of the binary
SVMs is independent of any taxonomy information.

We now show how to incorporate taxonomy information into the training
process of the local models. The intuition behind our approach is to reweight
images by their taxonomy-distance. That is, we intend to penalize confusions of
classes that have a large distance with respect to the taxonomy. On the other
hand we are willing to accept misclassifying instances of nearby classes.

To be precise, we identify the cost cj(x(i)) at node vj for a negative example
as the number of nodes on the path from the j-th node to the true output; that
is, cj(x(i)) = δT (vj , y

(i)). For instance, in Figure 1, the associated costs with an
instance (x, bus) at the node life are clife(x) = 4. The costs for positive examples
are given by the costs of all negative instances for balancing reasons,

cj(x) =
1
n+

j

∑
i:zj(y(i))=−1

cj(x(i)),
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Fig. 2. Results for Caltech256. 0/1 loss and Taxonomy loss of local-global-SVM.

where n+
j is the number of positive examples at node vj . Given the weights cj ,

these can be augmented into the training process according to [12]. The local-
global SVM optimization problem can be stated as follows,

min
w̃j ,b̃j ,ξ̃j

1
2

|V |∑
j=1

‖w̃j‖2 +
|V |∑
j=1

C̃j

n∑
i=1

cj(x(i)) ξ̃(i)
j

s.t. ∀i, ∀j : zj(y(i))(〈w̃j , φ(x(i))〉+ b̃j) ≥ 1− ξ̃
(i)
j (9)

∀i, ∀j : ξ̃
(i)
j ≥ 0.

That is, if cj(x(i)) " 1 then the importance of the i-th input is increased while
cj(x(i)) � 1 decreases its impact on the objective function. Thus, input examples
that are associated with large costs cj(x) are likely to be classified correctly while
accepting misclassifications associated with small costs.

5 Empirical Results

We compare our local-global SVMs empirically with the one-vs-rest SVM which
is contained as a special case of our approach and furthermore equivalent to
employing a flat taxonomy, where the root is directly connected to all leave
nodes.

We experiment on the Caltech256 [13] and on the VOC2006 [14] data sets.

5.1 Data Sets

The Caltech256 data set comes with 256 object categories plus a clutter class;
we focus on the 52 animal classes. This reduces the number of images to 5895;
the smallest class has 80, the largest 270 elements. Each image is annotated
with precisely one class label. We construct 5 sets of training, holdout, and
test splits and deploy a taxonomy with approximately 100 nodes from biological
systematics as underlying class-hierarchy. The left panel of Figure 3 shows the
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loss δT (y, ŷ) based on our taxonomy. Here blue color denotes categories which
are close in taxonomy distance while red pairs are far apart. For example, the
classes 40–52 belong to a sub-group which is far from the cluster 18-39.

The VOC2006 dataset comprises 5,304 images containing in total 9507 an-
notated objects from 10 categories. The smallest class consists of 354 and the
largest contains 1341 examples. We prepare 5 different training, holdout, and
test splits by drawing images randomly to preserve the same number of class
labels as proposed by the VOC2006 challenge. Thus, our training sets vary in
their sizes and comprise between 2,500 and 3,000 instances. Although VOC2006
is a multi-label task, we treat the data set as a multi-class classification task by
comparing for each class and each image belonging to that class the class label
to the class of the maximum score. The taxonomy is shown in Figure 1.

5.2 Feature Extraction and Combination

We employ pyramid histograms [15] of visual words [16] (PHOW) for pyramid
levels 0,1 over grey, opponent color 1 and 2 channels, which results in six different
features. For every color channel, 1200 visual words are computed by hierarchical
k-means clustering on SIFT features [17] from randomly drawn images. For
VOC2006, the underlying SIFT features are extracted from a dense grid of pitch
six. For Caltech256 the images have been pre-scaled to have 160,000 pixels,
while their aspect ratios have been preserved. We apply a χ2-kernel for every
PHOW feature [18]. The kernel width parameter is initialized with the mean
of the χ2 distances over the respective training splits [2]. The final kernel K is

then computed by the product of the six χ2-kernels, K =
(∏6

i=1 Ki

)λ

, where λ

controls the width of the product kernel.

5.3 Experimental Setup

Model selection is performed for the SVM trade-off parameter C in the range
C ∈ [6−2, 64] and for the kernel parameter λ in the interval λ ∈ [3−7, 32]. For
experiments with the taxonomy loss δT (Equation (3)) we also apply δT for
finding the optimal parameters in the model selection. All other experiments
use the 0/1-loss analogon. We deploy class-wise losses at each node to balance
extreme class ratios for all methods. In our binary classification setting, this
reduces to the computing the average of the loss on the positive class  (+1) and
that of the negative class  (−1). The final value is then given by  = 1

2 ( (+1) +
 (−1)). We use the model described in Section 4.2 and refer to it as local-global
SVM.

5.4 Caltech256

Figure 2 shows the results for varying numbers of training images per class for
combining the training of local-global SVMs (right). As expected, the error of
all methods decrease with the sample size. As expected, there is no significant
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Fig. 4. Confusion probabilities for classes kangaroo (left) and scorpion (right)

difference between a one-vs-all SVM and our local-global SVM in terms of 0/1
loss. By contrast, the local-global SVM significantly outperforms the shallow
basline in terms of taxonomy loss δT . This effect is due to incorporating the
taxonomy structure into the training process of local-global SVMs.

To interpret this result, we compute average confusion matrices detailing
P (ŷ|y) over 5 repetitions for 50 training images per class. We compute the av-
erage taxonomy loss with respect to the confusion probabilities for each object
class, i.e.,

∑
ŷ δT (y, ŷ)P (ŷ|y). The right panel of Figure 3 shows the differences of

the average taxonomy losses between our method and the one-vs-rest baseline.
Negative values in this plot indicate that our method reduces the taxonomy loss
of the corresponding classes. We observe that the local-global SVM effectively
reduces the taxonomy loss for a large number of classes. However, there also
exist classes such as toad (4), ostrich (9), and kangaroo (18) for which the error
increased. To investigate this finding, we compared confusion probabilities of the
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Table 1. Error-rates for VOC2006

δ01 δT

one-vs-rest 0.5257 ± 0.0131 0.2714 ± 0.0050
taxonomy 0.5006 ± 0.0126 0.2507 ± 0.0042

baseline (upper left panel) and the taxonomy-based approach (lower left panel)
for the kangaroo class in Figure 4. In fact, kangaroo was substantially confused
with llama (27) and raccoon (39) which are rather far from kangaroo in our
taxonomy.

By contrast, our approach achieves significantly better accuracies than the
baseline on the scorpion (47) class. Figure 4 (top right panel) shows that the
taxonomy model increases confusions when compared to one versus all slightly
between scorpion and Arthropoda like crab (44) which are relocated in the higher
fourty indices and are biologically close to scorpions while it reduces confusions
for example to kangaroo (18), raccoon (39) and toad (4).

Our analysis indicates that a mismatch between the similarity in feature space
and distance with respect to the taxonomy can substantially harm the classifi-
cation performance. Thus to improve learning with pre-determined taxonomies,
one would either have to (i) remove these mismatches by reverse engineering
the class-hierarchy or to (ii) design features which resolve this conflict. We will
address both aspects in future research.

5.5 VOC2006

Finally, Table 1 shows average precisions for the VOC2006 data set. The left
column shows the 0/1 loss (Equation (2)) and the loss in the right column
corresponds to the average number of nodes that lie in-between the true and
the predicted class (Equation (3)). For both loss functions, the local-SVM yields
significantly lower error-rates than a flat one-vs-rest classification.

6 Conclusions

We presented an efficient approach to classification of images with underlying
taxonomies. Our method grounds on decomposing structural support vector ma-
chines into local, binary SVMs that can be trained in parallel. Furthermore, we
employed taxonomy-based costs for images to incorporate the taxonomy into the
learning process. Significant contributions like [1,19] compared taxonomy models
to flat ones using 0/1-loss. Empirically, we observed our local-global SVMs to
effectively benefit from the underlying taxonomy with respect to taxonomy loss :
our approach was always equal or better than its shallow multi-class counterpart
that cannot make use of taxonomy information.

Acknowledgements. This work was supported in part by Federal Ministry of Eco-

nomics and Technology of Germany under the project THESEUS (01MQ07018) and by

the FP7-ICT Programme of the European Community, under the PASCAL2 Network

of Excellence, ICT-216886.



Efficient Classification of Images with Taxonomies 361

References

1. Marszalek, M., Schmid, C.: Constructing category hierarchies for visual recogni-

tion. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS,

vol. 5305, pp. 479–491. Springer, Heidelberg (2008)

2. Lampert, C.H., Blaschko, M.B.: A multiple kernel learning approach to joint multi-

class object detection. In: Proceedings of the 30th DAGM symposium on Pattern

Recognition (2008)

3. Blaschko, M.B., Gretton, A.: Learning taxonomies by dependence maximization.

In: Advances in Neural Information Processing Systems (2009)

4. Tibshirani, R., Hastie, T.: Margin trees for high-dimensional classification.

JMLR 8, 637–652 (2007)

5. Marszalek, M., Schmid, C.: Semantic hierarchies for visual object recognition. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(2007)

6. Taskar, B., Guestrin, C., Koller, D.: Max–margin Markov networks. In: Advances

in Neural Information Processing Systems (2004)

7. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods

for structured and interdependent output variables. Journal of Machine Learning

Research 6, 1453–1484 (2005)

8. Cai, L., Hofmann, T.: Hierarchical document categorization with support vector

machines. In: Proceedings of the Conference on Information and Knowledge Man-

agement (2004)

9. Lafferty, J., Zhu, X., Liu, Y.: Kernel conditional random fields: representation

and clique selection. In: Proceedings of the International Conference on Machine

Learning (2004)

10. Weston, J., Watkins, C.: Multi–class support vector machines. Technical Report

CSD-TR-98-04, Department of Computer Sciences, Royal Holloway, University of

London (1998)

11. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multi–class clas-

sification and ranking. In: Advances in Neural Information Processing Systems

(2002)

12. Brefeld, U., Geibel, P., Wysotzki, F.: Support vector machines with example de-
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Appendix: Proof of Theorem 1

Proof: We show the equivalence of the unconstraint objective functions. We first note

that the dual representation of the structural parameter vector is given by w =∑
i,ȳ �=yi

α(i, ȳ)(Ψ(xi, yi) − Ψ(xi, ȳ)). Since nodes are treated independently and the

κj are orthogonal, we have
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for α̃j(i) =
∑

ȳ �=y(i) α(i, ȳ)|κj(y
(i)) − κj(ȳ)|. Note that the pseudo labels in Equation

(6) can alternatively be computed by zj(i) = sign(
∑

ȳ �=y(i) κj(y
(i)) − κj(ȳ)). For the

sum of the slack variables, we define the non-negativity function (t)+ = t if t > 0 and

0 otherwise and proceed as follows:
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where wj denotes the j-th block of w = (w1, . . . , w|V |) and is given by

w̃j = wj |
∑

i,ȳ �=y(i)

κj(y
(i)

) − κj(ȳ)|.

This concludes the proof. ��



 

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 363–372, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Adapting SVM Image Classifiers to Changes in Imaging 
Conditions Using Incremental SVM: An Application to 

Car Detection 

Epifanio Bagarinao1, Takio Kurita1, Masakatsu Higashikubo2, and Hiroaki Inayoshi1 

1 Neuroscience Research Institute 
National Institute of Advanced Industrial Science and Technology 

Tsukuba City, Ibaraki, 305-8568 Japan 
{epifanio.bagarinao,takio-kurita,h.inayoshi}@aist.go.jp 

2 Sumitomo Electric Industries, Ltd. 
Shimaya, Konohana-ku, Osaka, 554-0024 Japan 

higashikubo@sei.co.jp 

Abstract. In image classification problems, changes in imaging conditions such 
as lighting, camera position, etc. can strongly affect the performance of trained 
support vector machine (SVM) classifiers. For instance, SVMs trained using 
images obtained during daylight can perform poorly when used to classify 
images taken at night. In this paper, we investigate the use of incremental 
learning to efficiently adapt SVMs to classify the same class of images taken 
under different imaging conditions. A two-stage algorithm to adapt SVM 
classifiers was developed and applied to the car detection problem when 
imaging conditions changed such as changes in camera location and for the 
classification of car images obtained during day and night times. A significant 
improvement in the classification performance was achieved with re-trained 
SVMs as compared to that of the original SVMs without  adaptation. 

Keywords: incremental SVM, car detection, constraint training, incremental re-
training, transfer learning. 

1   Introduction 

The effective training of support vector machine (SVM) usually requires a large pool 
of training datasets. However, gathering datasets for SVM learning takes longer times 
and needs more resources. Once trained, SVM classifiers cannot be easily applied to 
new datasets obtained from different conditions, although of the same subject. For 
instance, in image classification problems, changes in imaging condition such  
as lighting, camera position, among others, can strongly affect the classification 
performance of trained SVMs making the deployment of these classifiers more 
challenging. 

Consider for example the detection of cars in images from cameras stationed along 
highways or roads as a component of an intelligent traffic system (ITS). The problem 
is to detect the presence of cars in sub-regions within the camera’s field of view.  
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To solve this problem, one can start collecting images from a given camera, extract 
training datasets from these images, and train an SVM for the detection problem. 
After training, the SVM could work perfectly well for images obtained from this 
camera. However, when used with images taken from other cameras, the trained 
classifier could perform poorly because of the differences in imaging conditions. The 
same can be said of SVMs trained using images obtained during daylight and applied 
to classify images taken at night.  

One solution to this problem is to train SVMs for each camera or imaging 
condition. But this can be very costly, requires significant resources, and takes a 
longer time. An ideal solution is therefore to be able to use an existing large collection 
of training datasets to initially train an SVM and adapt this SVM to the new 
conditions using a minimal number of additional training sets. This involves 
transferring knowledge learned from the initial training set to the new conditions. 

This problem is related to the topic of transfer learning (for instance [1-3]). Closely 
related to this work is that of Dai and colleagues [3]. They presented a novel transfer 
learning framework allowing users to employ a limited number of newly labeled data 
and a large amount of old data to construct a high-quality classification model even if 
the number of the new data is not sufficient to train a model alone. Wu and Dietterich 
[4] also suggested the use of auxiliary data sources, which can be plentiful but of 
lower quality, to improve SVM accuracy. The use of unlabeled data to improve the 
performance on supervised learning tasks has also been proposed by Raina, et al.[5].  

In this paper, we investigate the use of incremental SVM [6-7] to improve the 
classification of the same class of images taken under different imaging conditions. 
We assumed the existence of a large collection of labeled images coming from a 
single camera that could be used as starting training samples. Two training methods 
based on incremental SVM are employed for the initial training. One is the standard 
incremental approach, henceforth referred to as non-constraint training. The other 
one is constraint training, which imposes some limitations on the accepted support 
vectors during the learning process. After training, SVMs are adapted by means of 
incremental re-training to the new imaging condition using only a small number of 
new images. This is the transfer learning stage. The algorithms used will be detailed 
in the next section. In our experiments, we used images captured from cameras 
stationed along major roads and highways in Japan. Sub-images containing cars or 
background (road) were extracted and their histogram of oriented gradient (HOG) [3] 
computed. HOG features were then used as training vectors for SVM learning.  

2   Materials and Method 

In this section, we first give a brief discussion of the standard incremental SVM 
approach (non-constraint training). The constraint training method is then presented in 
the next subsection and finally incremental re-training is discussed.  

2.1   Incremental SVM 

Incremental SVM [6-7] learning solves the optimization problem using one training 
vector at a time, as opposed to the batch mode where all the training vectors are used 
at once. Several methods had been proposed, but these mostly provided only 
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approximate solutions [9-10]. In 2001, an exact solution to incremental SVM was 
proposed by Cauwenberghs and Poggio (CP) [6]. In the CP algorithm, the Kuhn-
Tucker (KT) conditions on all previously seen training vectors are preserved while 
“adiabatically” adding a new vector to the solution set.  

To see this, let ( ) ( )∑
=

+=
n

i
iii bKyf

1

, xxx α  represents the optimal separating 

function with training vectors xi and corresponding labels 1±=iy . The KT conditions 

can be written as (see [1] for more details): 
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with C being the regularization parameter, the αi‘s are the expansion coefficients, and 
b the offset. The above equations effectively divides the training vectors into three 
groups, namely, margin support vectors ( 0=ig ), error support vectors ( 0<ig ), and 

non-support vectors ( 0>ig ). 

In the CP algorithm, a new training vector is incorporated into the solution set by 
first setting its α-value to 0, and then its g-value is computed using Eq. (1). If it is 
greater than 0, then the new training vector is a non-support vector and no further 
processing is necessary. If not, the training vector is either an error vector or a support 
vector and the initial assumption that its α-value is 0 is not valid. The α-value is then 
recursively adjusted to its final value while at the same time preserving the KT 
conditions on all existing vectors. For a detailed discussion, refer to Ref. [6]. In this 
paper, the use of the original CP algorithm for training is referred to as non-constraint 
training as compared to constraint training, which will be discussed next. We also 
used an in-house implementation of this algorithm using C to support incremental 
SVM learning. 

2.2   Constraint Training 

Supposed we have an initial training set labeled as ( ) ( ) ( ){ }nn yyy ,,,,,, 2211 xxxX K=  

where n is significantly large. In our problem, the training vector xi represents the 
HOG features from images coming from a given camera, while the label yi can either 
be ‘with car’ (1) or ‘no car’ (0). Also, let ( ) ( ) ( ){ }mm yyy ,,,,,, 2211 zzzZ K=  denotes 

another dataset taken from another camera and m << n. We defined constraint training 
as the selection of an appropriate set of support vectors from X that maximizes the 
classification performance of an SVM using dataset Z as test set. It should be noted 
that the support vectors of X do not necessarily give an optimal classification of Z as 
will be shown in the results. However, there may exist a subset of X with support 
vectors that can lead to an optimal classification of Z. Finding this subset is the aimed 
of constraint training. 
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Fig. 1. Incremental SVM-based constraint training: 1) Get a new training vector from the 
training set X. 2) Update existing SVM using incremental approach. 3) Test updated SVM 
using target dataset Z. 4) If classification accuracy increases, keep the support vector (SV); 
otherwise, discard it. 5) Repeat (1) until all training vectors are processed. 

There are several ways to implement constraint training. An example is to 
randomly extract subsets from X, train SVMs using these subsets, and select the 
subset which gives the maximum classification accuracy of Z. In this paper, we used 
incremental SVM and employed the algorithm outlined in Fig. 1. The algorithm 
follows from that of the non-constraint case except for an additional constraint, which 
is given as follows. As each new training vector is added, a classification test using a 
target dataset (Z in the notation above) is performed. A newly computed support 
vector is included into the running solution set if it increases the classification 
accuracy of the evolving SVM; otherwise, support vectors that tend to decrease the 
classification accuracy are discarded. The algorithm ensures that only support vectors 
that increase the classification accuracy of the target set are included in the final 
SVM. This effectively realigns the separating function of X to give an optimal 
separation of samples from Z, without using any sample from the latter. The final set 
of support vectors is the desired subset of X.  

2.3   Incremental Re-training 

In constraint training, only samples from the initial training set X are used during 
training. Samples from the target set Z are not included in the training process. In 
incremental re-training, the trained SVM is updated using this limited number of 
samples. See Fig. 2. The basic idea is that an SVM is already trained using dataset X 
via either non-constraint or constraint training method. After this initial training, 
samples from dataset Z are incrementally incorporated into the trained SVM to adapt  
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Fig. 2. With incremental re-training, an SVM is trained using an initial training set either via 
non-constraint or constraint approach, then is re-trained using the target set by means of 
incremental SVM 

it to the new dataset. This is the transfer learning phase. The final result is an adapted 
SVM with a much improved classification performance of the class of feature vectors 
represented by the target dataset Z. 

3   Results 

Five cameras stationed at five different locations along major roads in Japan were 
used to capture images of passing vehicles. For each camera image, 16 x 16 sub-
images containing cars and no cars were extracted. These selected images were then 
converted into HOG features using an 8 x 8 overlapping blocks with 4 pixels overlap 
giving a total of 9 blocks. The direction of gradient in each block was divided into 8 
effectively converting each 16 x 16 image into a 72-dimensional feature vector.  

From this, five groups of datasets were formed and labeled as follows: 379LCR 
(58,453 feature vectors), 382LR (56,405 feature vectors), 383LR (50,058 feature 
vectors), 122LR (12,762 feature vectors), and 384LCR (61,214 feature vectors). 
Images from 379LCR, 382LR, and 383LR were taken during daytime, while that 
from 122LR and 384LCR were obtained at night. Each dataset was then divided into 
10 subsets. For each subset, an SVM was trained and then tested using the other 
subsets. The optimal SVM kernel (selected from linear, polynomial, RBF, and 
sigmoid kernels) and the associated kernel parameters were chosen using a cross 
validation approach with a grid search method in the parameter space. Each subset 
can have different optimal kernel and kernel parameters. 

In our first experiment, we looked into the classification performance of SVMs 
trained using the non-constraint approach. The within group classification 
performance where SVMs were trained and tested using datasets belonging to the 
same group was evaluated. For instance, an SVM trained using 379LCR_0 was used 
to classify 379LCR_n, where n = 1, …, 9. We also tested cross group classification 
performance where SVMs trained from one group were used to classify data from 
another group.  

The classification performance for different SVMs trained using subsets of 
384LCR are shown in Table 1. The first column indicates the subset used to train the 
SVM, while the rest of the columns show the classification accuracy. The second 
column is the result for within group classification, while columns 3 to 6 are the  
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Table 1. Classification accuracy (%) of SVMs trained using subsets of 384LCR 

384LCR_n 384LCR 379LCR 382LR 383LR 122LR 
0 99.9739 84.6013 75.1565 74.8072 98.5896 
1 99.9804 90.4915 67.9231 75.1508 99.8433 
2 99.9869 91.2442 72.4156 79.7095 99.8668 
3 99.9902 88.5310 69.6002 77.0167 99.8198 
4 99.9755 91.1023 73.3942 80.6065 99.7649 
5 99.9739 90.5240 73.3907 80.7084 99.7649 
6 99.9771 91.4256 72.7755 80.2269 99.7963 
7 99.9820 91.2152 80.9450 86.7913 99.8041 
8 99.9902 90.1887 70.3555 77.6399 99.8590 
9 99.9788 91.6240 77.9559 83.3593 99.8746 
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Fig. 3. Classification accuracy during constraint (red plots) and non-constraint (green plots) 
training as the number of incorporated samples is increased. In both panels, 382LR_0 was used 
as the target/test set, while 379LCR_0 (left) and 379LCR_6 (right) as the training sets. 

results for cross group classification. For within group classification, the classification 
accuracy is significantly high (more than 99%).  The same performance can be said 
for the other datasets not shown. On the other hand, the performance for cross group 
classification varies depending on the dataset used as test set. For some dataset, the 
performance can be as high as 99% (e.g., table 1, column 6), while for others, it can 
be lower than 70% (e.g., table 1, column 4). 384LCR-based SVMs are poor classifiers 
for 382LR or 383LR (both daytime datasets), but performed relatively well in 
classifying 379LCR (daytime dataset) or 122LR (nighttime datasets).  

For the next experiment, we examined whether it is possible to improve cross 
group classification accuracy using constraint training. We also compared the 
accuracy of the constraint method with that of the non-constraint method for cross 
group classification during incremental learning. The results are shown in Fig. 3. For 
non-constraint training, the classification accuracy of the target set fluctuates as the 
number of support vectors increases. This is shown in the green plots of both panels. 
Since constraint training considers only support vectors that can increase the 
classification accuracy of the target set, the plots shown in red are always increasing. 
Interestingly, the classification accuracy with constraint training exceeded that of the  
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Table 2. Classification accuracy (%) of SVMs trained with constraint and using subsets of 
379LCR as training sets and 382LR_0 as target set 

379LCR_n 379LCR 382LR 383LR 384LCR 122LR 
0 91.2186 91.0664 93.3217 90.6786 93.3004 
1 86.4113 94.7753 93.5515 95.9650 97.7198 
2 86.3121 93.6920 92.0253 92.6275 96.4739 
3 86.3172 93.9863 92.7764 97.9841 98.8011 
4 79.6931 93.3215 92.1611 94.1419 96.3329 
5 78.2252 92.8127 92.7164 92.4756 95.2359 
6 87.0819 95.2256 93.7712 92.8742 96.4582 
7 83.0770 93.3481 93.4796 96.1463 96.0586 
8 86.0674 88.6038 91.3760 98.4415 97.4220 
9 88.8885 95.1299 94.4924 97.0056 98.0959 

 
Table 3. Classification accuracy (%) results for incremental re-training. Subsets of 379LCR 
were used as training sets and 384LR_0 as the target set  

Incremental Retraining 379LCR_n
Constraint Non-constraint 

n 379LCR 384LCR 379LCR 384LCR 
0 89.0613 99.9951 99.6750 99.9935 
1 90.9996 99.9886 99.7109 99.9935 
2 93.0765 99.9935 99.6613 99.9902 
3 96.0669 99.9706 99.7006 99.9951 
4 90.9329 99.9967 99.7793 99.9967 
5 90.6660 99.9967 99.8084 99.9918 
6 82.0351 98.6686 99.7536 99.9886 
7 92.5308 99.9984 98.8777 99.4527 
8 90.9466 99.9951 99.7827 99.9918 
9 97.9693 99.9918 99.6921 99.9820 

 
non-constraint case even with this simple condition. By imposing this constraint to the 
learning process, the performance of the evolving SVM as a classifier of the target set 
is considerably improved. 

Table 2 shows the classification performance of the trained SVMs with constraint. 
Two effects can be observed. As expected, the cross group classification accuracy 
generally increases for all datasets considered.  This is particularly true for the target 
dataset, which in this case is 382LR, with more or less 10% increase in accuracy 
(column 3). On the other hand, a corresponding decrease in the within group 
classification accuracy can also be observed (column 2). But this is just expected 
since constraint training is designed to optimize the classification of the target set, 
which may not result in an optimal solution for the original training set. 

We next used incremental re-training to include the limited number of target 
dataset into the training process and evaluated the classification performance of the 
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resulting SVMs. Both the use of non-constraint and constraint approaches for initial 
training was investigated. The results are summarized in Table 3. Here, subsets of 
379LCR were used as initial training sets and the resulting SVMs were incrementally 
re-trained using 384LR_0. With incremental re-training, the classification accuracy of 
the target dataset (384LCR) jumps to more than 99%, a significant improvement 
compared to the cross group classification performance. Moreover, for non-constraint 
initial training, the classification accuracy of the initial training dataset (379LCR) 
remains high.   

To evaluate the number of additional training vectors needed to raise the 
classification accuracy during retraining, we performed classification test for each 
newly added support vectors as the SVM evolved. We randomly shuffled the order 
the additional training vectors are incorporated into the training process and took the 
average of the classification result. Representative plots are shown in Fig. 4. The left 
panel shows the classification performance of an SVM initially trained using 
379LCR_0, and then incrementally re-trained using 382LR_0. On the other hand, 
384LCR_0 was used for re-training in the right panel. Both panels showed that the 
constraint approach for initial training (blue plots) made the trained SVMs adapt 
faster (less additional training samples) to the new datasets as compared to the use of 
non-constraint approach for initial training. In both cases, only a small number of 
target vectors are needed to adapt the SVMs to the new datasets. 
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Fig. 4. Classification accuracy as a function of the number of target samples incorporated into 
the incremental re-learning process. The SVMs were initially trained using 379LCR_0 and then 
incrementally retrained using 382LR_0 (left panel) and 384LCR_0 (right panel). Both 
constraint (blue plots) and non-constraint (red plots) approaches for initial training were 
evaluated.  

4   Discussion 

Support vector machines are robust classifiers for datasets they are initially trained. 
Changes to some of the conditions where the initial datasets were acquired could 
significantly affect the classifiers’ performance. The case currently considered is the 
detection of cars in images from cameras stationed along major roads. From the results 
presented, differences in lighting conditions from one location to the other can 
significantly affect the classification performance of SVMs trained using only dataset 
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from one location (see Table 1). This presents a significant problem in the deployment 
of these classifiers. Training an SVM for each location can mitigate this limitation for 
small deployment. But for large scale application, this can be very costly, requires 
significant resources, and takes a longer time, and therefore, impractical. 

In this paper, we have demonstrated a practical approach to overcome this 
limitation. The approach requires that an initial collection of dataset, possibly from a 
single camera, be available. For new deployment, a small number of additional 
images can be taken, which can then be used to adapt an existing classifier to the new 
imaging condition via transfer learning. Since the approach is based on incremental 
SVM, it is also possible to do on-line learning. The general idea is that from the initial 
collection, a subset can be selected that optimizes the classification accuracy of  
the new dataset using constraint training. The resulting SVM can then be 
incrementally re-trained using the additional (target) dataset to further improve its 
classification performance.  

The result in Table 2 shows the efficacy of the constraint approach to extract 
subsets from the initial training set which can maximize the classification accuracy of 
the target set. Although the classification accuracy of the initial dataset decreases, this 
is immaterial since the final goal is the improvement in the classification of the new 
dataset for deployment purposes. The extracted subsets can then be combined with the 
target set via incremental re-training to further improve the classification of the target 
set as shown in Table 3. This has the advantage of faster adaptation of the trained 
SVM to the new datasets. On the other hand, using non-constraint approach for initial 
training does not only improve the classification of the target set, but also preserve the 
accuracy of the initial dataset (see Table 3). This is important if we don’t want to lose 
the classification accuracy of the initial training set such as the case when re-training 
the SVM to accommodate day and night time images. In both cases, the achieved 
improvement requires only several hundreds of additional datasets, which can be 
readily obtained. The cost involved and the resources required will therefore be 
minimal.  

The use of incremental SVM here is critical. With incremental SVM, additional 
training vectors can be added to the learning process without retraining from scratch. 
Given that training is the most computationally intensive task in the classification 
problem, incremental SVM can provide a significant saving in training time. It also 
enables us to evaluate the contribution of the newly added vectors to the classification 
performance of the evolving SVM. As an application, we were able to constraint the 
support vectors that can be included into the solution set in terms of their contribution 
to the classification accuracy. This in turn allowed us to select only subsets within the 
initial training dataset that are useful for the optimization of the target set.  
Moreover, the training process itself involves the selection process. And with an 
additional incremental re-training, the target dataset can be easily incorporated into 
the final SVM.  

In conclusion, we have demonstrated the combined use of non-constraint/constraint 
initial training and incremental re-training to adapt SVM image classifiers to changes 
in imaging conditions. When applied to the car detection problem, significant 
improvement in the classification accuracy was achieved validating the efficacy of the  
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method. The small number of additional datasets required for re-training makes the 
approach cost effective and practical for use in large deployment, such as in 
intelligent traffic systems, as the additional cost and needed resources are minimal.  
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Abstract. We are interested in incrementally discovering the set of object classes
present in a scalable database of images. This paper describes a graph-based
framework for learning the set of object classes in a weakly supervisedly manner.
Rather than making use of the ”Bag-of-Features (BoF)” approach widely used in
current work on object recognition, we represent each image by a graph using a
group of selected local invariant features. Using local feature matching and itera-
tive Procrustes alignment, we perform graph matching and compute a similarity
measure. Borrowing the idea of query expansion, we develop a similarity propa-
gation based graph clustering (SPGC) method. Using this method class specific
clusters of the graphs can be obtained. Such a cluster can be generally represented
by using a higher level graph model whose vertices are the clustered graphs, and
the edge weights are determined by the pairwise similarity measure. Experiments
are performed on a dataset, in which the number of images increases from 1 to
50K and the number of objects increases from 1 to over 500. Some objects have
been discovered with total recall and a precision 1 in a single cluster.

1 Introduction

Suppose we are given a database of images which contain frequent occurrences of a set
of unknown objects. In this paper we are interested in discovering a set of models that
can describe the individual objects from a scalable image database in an incremental
manner.

In the statistical text analysis community, latent topic models such as probabilistic
Latent Semantic Analysis (pLSA) [1] and Latent Dirichlet Allocation (LDA) [2] have
had significant impact as methods for ”semantic” clustering. Given a collection of docu-
ments, with each document represented by a ”Bag-of-Words (BoW)” vector, the models
are able to learn common topics such as ”biology” or ”astronomy”.

Given the success of these models, several papers in computer vision [3][4][5] have
applied them to the visual domain, replacing text words with visual features [6][7]. This
approach is usually referred to as the ”Bag-of-Features (BoF)” method. Rather than
discovering topics, the BoF method aims to discover visual categories, such as cars or
bikes in the image database. However, in the visual domain there are strong geometric
relations within images, which do not exist in the text domain. There have been several
attempts to learn visual categories in an unsupervised manner by jointly modeling the
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Fig. 1. An analogy between image and text document in semantic granularity

appearance of local patches and their spatial arrangement [8][9]. Examples include the
rotation, translation and scale invariant pLSA (RTSI-pLSA) model proposed by Li et al
[8] and the geometic LDA (gLDA) model proposed by Philbin et al [9]. These methods
can be regarded as extensions of the basic BoF based method. However, there are three
basic problems which may compromise their modeling or recognition performance:
a) local invariant features in the vision domain do not operate at the same semantic
level as words in text domain; b) local features are not object specific; and c) visual
vocabulary need to be incrementally adapted as more data becomes available. Before
offering solutions to these problems, we explore them in further depth.

Firstly, if we compare the text domain BoW and the visual domain BoF, then it be-
comes clear that the BoF does not operate at the same semantic level as the BoW. A
word in BoW is a single word, a term or a phrase. Every keyword (e.g. cup or car)
normally has at least one high level semantic meaning. However, a visual feature usu-
ally does not posses semantic meaning. For convenience of comparisons, we draw an
analogy between image based object discovery and text based topic discovery. Figure 1
shows the semantic granularities of images and documents, and indicates the analo-
gies that we draw between their constituent elements. From the diagram it is clear that
”topic discovery” and ”visual object recognition” or ”categorization” do not belong
to the same semantic level. ”Visual object recognition” might at best correspond to the
problem on how to recognize words according to a group of letters, strokes, morphemes
or word roots that are placed in a particular arrangement.

Secondly, most of the local invariant features or visual words are not object or class
specific. To provide an illustration, we have trained a large clustering tree of over 2
million selected 128-dimensional SIFT (Scale Invariant Feature Transforms) [10] de-
scriptors extracted from over 50K images and spanning more than 500 objects. There
are 25334 leaf nodes in the clustering tree and the center vector of each leaf node corre-
sponds to a quantized visual word. With an increasing number of objects, a single visual
word may appear in hundreds of different objects. By contrast, a group of local features
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for an image object together with their collective spatial arrangement, are usually of a
high level semantic meaning. The co-occurrence of the features with a specific spatial
arrangement is object specific.

The third significant issue is that it is difficult to incrementally select a suitable num-
ber of visual words to construct a BoF when we increase the number of images and
objects present. As the number of objects present increases, it is difficult to maintain a
stable model. Alternatively, a visual vocabulary might not be static but instead evolve
over time when new images are added to the database.

Although the BoF method has demonstrated impressive levels of performance and
provide arguably the most successful paradigm for object discovery and recognition,
because of the shortcomings listed above, in this paper we offer an alternative to the BoF
model. We regard a group of local features together with their spatial arrangement as a
visual entity. If such a visual entity is of a certain semantic meaning, e.g. corresponding
to a car, then it is placed at the word-level in text domain. Since each visual entity is
represented by structured data, a more versatile and expressive representational tool is
provided by attributed graphs. Hence we simply term such a visual entity as a graph,
which takes the place of a BoF based vector. We thus demonstrate how to implement
object discovery and recognition without using the BoF model.

Most of the successful BoF based approaches [7][11][12][13] include the following
ingredients: a) an image representation, b) a spatial verification and similarity measure,
c) clustering of feature descriptors, and d) a search engine. Our method also has similar
ingredients. In Section 2, we provide an overview of the corresponding basic ingredients
for our method, and point out the differences with that of the BoF based approach. In
Section 3, we propose an object discovery and model learning method. We present
experimental results in Section 4 and conclude the paper in Section 5.

2 Ingredients of a Scalable Search Engine

Image representation. We first scale each training image to an identical size, and then
select a subset of visually salient local features. For simple description, we just present
the experiment on SIFT in the following. But we emphasize our methods could be
adapted to alternative families of local invariant feature extractors or any combinations.
For an image, those SIFT features that are robustly matched with the SIFT features in
similar images can be regarded as salient representative features. Motivated by this, a
method for ranking SIFT features has been proposed in [14]. Using this method, the
SIFT features of an image I are ranked in order according to their decreasing matching
frequency. We select the T top ranked SIFT features, denoted asV={Vt, t = 1, 2, ...,T
}, where Vt = ((

−→
X t)T , (

−→
Dt)T , (

−→
Ut)T )T . Here,

−→
X t is the location,

−→
Dt is the direction vector

and
−→
Ut is the set of descriptors of a SIFT feature. In our experiments, T is set to 40. If

there are less than this number of feature points present then all available SIFT features
in an image are selected.

For the reasons given in Section 1, we regard the above selected local features to-
gether with their spatial arrangement as a semantic visual entity, which is placed at the
word-level in text domain. This kind of structured data can be represented by using at-
tributed graphs G [15] (hereafter simplified as graphs). We can obtain a set of graphs G
={Gl, l = 1, 2, ...,N} from a set of images.
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Pairwise graph matching for spatial verification and similarity measure. As shown
in [7][11][13], the recognition or retrieval results can be significantly improved using
the geometry of spatial feature arrangement to verify consistency. Here the idea is to
re-rank an initial list of matching candidates by estimating geometric transformations,
e.g. affine homographies, between the query image image and each of the top-ranking
candidates. The re-ranking score is computed from the number of verified inliers, and
outliers are excluded.

In our approach, on the other hand, each image is represented by a graph. As a result
the spatial verification problem becomes one of pairwise graph matching (PGM). We
perform PGM with the aim of finding a maximum common subgraph (MCS) between
two graphs Gl and Gq, and the result is denoted as MCS (Gl,Gq). There are a plethora
of available methods for finding matching features consistent with a given set of geo-
metric constraints, and the problem has been proven to be NP-hard. RANSAC provides
one popular set of methods, however their implementation is slow [16]. In [17], pair-
wise graph matching is achieved by combining SIFT feature matching and iterative
Procrustes alignment. The method can not only be used to align the feature points, but
can also be used to discard those features that do not satisfy the spatial arrangement
constraints. Given MCS (Gl,Gq) obtained by PGM, they define a similarity measure
between the graphs Gl and Gq as follows:

R(Gl,Gq) = ‖MCS (Gl,Gq)‖ × ( exp(− e(Xl, Xq)) )κ. (1)

Here a) ‖MCS (Gl,Gq)‖ is the cardinality of the MCS of Gl and Gq, b) κ is the num-
ber of roughly mismatched feature pairs by SIFT matching, which is used to amplify
the influence of the geometric dissimilarity between Xl and Xq, and c) Xl and Xq are
respectively the position coordinates in graphs Gl and Gq corresponding to the vertexes
of MCS (Gl,Gq).

This similarity measure is significantly different from the BoF similarity measure
which is based on the L1 or L2 distance between vectors [7][11][18][13], and captures
both the similarity of local appearance and global spatial consistency.

Clustering of feature descriptors. For BoF based methods, the vector quantization of
feature descriptors has been used by Sivic and Zisserman [7]. Here small vocabular-
ies were generated using the k-means clustering method. It was subsequently shown
in [12][18][13] that for large scale cases a more discriminative vocabulary is neces-
sary. In [18], hierarchical k-means (HKM) and in [13] a KD-forest approximation were
explored as possible refinements of the method. The aim of using these clustering meth-
ods is to obtain the visual vocabulary for construction of a BoF vector. Each image is
then represented by a high dimensional tf-idf (Term Frequency-Inverse Document Fre-
quency ) [12][18][13] weighted BoF vector.

Although we represent images by graphs, we still require means of clustering the
local feature descriptors. We use a SOM neural net based tree clustering method (termed
a RSOM tree ) proposed in [19] for learning a large corpus of SIFT descriptors. The
RSOM tree can be incrementally trained since it utilizes a self-organizing divide-and-
conquer architecture. It is also important to stress that though the leaf nodes in an RSOM
tree are a quantization of the descriptors, we do not regard such a quantization as a visual
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vocabulary. We simply use the RSOM tree to efficiently retrieve candidate matching
graphs, in the manner detailed in the following paragraphs.

Search engine. Given a graph set G ={Gq, q = 1, 2, ...,N}, for each graph Gl ∈ G, and
the remaining graphs in the set (∀Gq ∈ G), we obtain the pairwise graph similarity
measures R(Gl,Gq) defined in Equation (1). Using the similarity measures we rank the
graphs Gq in decreasing order. The K top-ranked graphs are defined as the generalized
K-nearest neighbor graphs (KNNG) of graph Gl, denoted as K{Gl}.

With increasing size of the graph dataset, it becomes time consuming to obtainK{Gl}
if a sequential search strategy is adopted. Fortunately, for a large graph set, most of the
similarity measures are low. For a single graph Gl, if we can efficiently find a subset G′

with significant similarity values as a pre-filtering stage, then we only need to perform
pairwise graph matching on this subset. To this end, we use the above mentioned RSOM
clustering tree.

To obtain K{Gl} for each sample graph using a trained RSOM tree we proceed as
follows. Given a graph Gl, we find the winner of the leaf nodes for each descriptor of
this graph and define the union of all graphs for the winners as follows:

UG{Gl} = { Gq | U j
q ∈ Gq,U

j
q ∈ WL{Ut

l },U
t
l ∈ Gl}. (2)

where WL{Ut
l } is the winner of the leaf nodes for descriptor Ut

l . The frequency of graph
Gq, denoted as Hq, represents the number of roughly matched descriptors between two
graphs. Since we aim to obtainK{Gl}, we need not process all graphs in the set UG{Gl}.
We rank the graphs in UG{Gl} according to decreasing frequency Hq. From the ranked
list, we select the first K graphs, denoted by K

′ {Gl} as follows:

K
′ {Gl} = { Gq | Gq ∈ UG{Gl},Hq > Hq+1, q = 1, 2, ...,K.}. (3)

For each graph Gq in K
′ {Gl}, we obtain the similarity measure according to Equation

(1) and then K{Gl} can be obtained. Using this method, we can efficiently obtain K{Gl}.
As a result, it is not necessary to use a search engine constructed from BoF vectors,
which is the usual practice in the text domain. Hence, the method can be easily adapted
to incremental learning settings.

3 Object Discovery and Model Learning

This section commences by presenting a new graph clustering method developed by
borrowing the widely used idea of query expansion from text query. We then explain
how the method can be used to discover object classes and learn object class models.

3.1 Similarity Propagation Based Graph Clustering

In the text retrieval literature, a standard method for improving performance is query
expansion, where a number of the highly ranked documents from the original query
are reissued as a new query. This allows the retrieval system to use relevant terms not
present in the original query. In [11][13], query expansion was imported into the visual
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processing domain. Spatial constraints between the query image and each result allows
for an accurate verification of each returned image. This has the effect of suppressing
false positives, which typically limit the effectiveness of text-based query expansion.
These verified images can then be used to learn a latent feature model to enable the
controlled construction of expanded queries. The simplest query expansion method that
offers good performance is the so-called ”average query expansion”. Here a new query
is constructed by averaging a number of document descriptors. The documents used
for the expanded query are taken from the top-ranked verified results from the original
query.

Our query expansion method is based on the RSOM tree and the set K{Gl} for each
graph, obtained in the training stage. The method is based on a pairwise similarity
propagation algorithm for graph clustering (SPGC). Stated simply, the method is as
follows. A group of graphs are referred to as siblings of a given graph Gl provided they
satisfy the following condition:

S {Gl} = {Gq ∈ K{Gl} | R(Gl,Gq) ≥ Rτ} � S Rτ{Gl}. (4)

We use the definition to recursively obtain the family tree for the graph Gl, and this is
formally defined as follows.

Family Tree of a Graph (FTOG): For any given similarity threshold Rτ, an FTOG of
Gl with k generations and denoted as M{Gl, k}, is defined as follows:

M{Gl, k} = M{Gl, k − 1}
⋃

Gq∈L{Gl ,k−1}
S Rτ {Gq}. (5)

where, if k = 1, L{Gl, 1} = L{Gl, 0}
⋃

S {Gl} and M{Gl, 0} = {Gl}; and the process stops
when M{Gl, k} = M{Gl, k + 1}. An FTOG, whose graphs satisfy the restriction defined
in Equation (4), can be regarded as a cluster of graphs. However, it must be stressed
that this is not a clustering method based on a central prototype. Instead, graphs are
clustered using the similarity propagation strategy.

3.2 Weakly Supervised Object Discovery and Model Learning

The clustering process is controlled by the threshold Rτ. By varying the parameter, we
can represent images using canonical graphs constructed from a number of selected
local invariant features so that most of the graphs belonging to an identical object form
a single FTOG. An example FTOG obtained from a large dataset is shown in Figure 2,
where Rτ = 7.8.

In this case, the FTOG is class specific. From the perspective of fault tolerance, the
precision does not necessarily need to be 100%.

According to our experiments, if Rτ ≥ 10.0 is large then the corresponding FTOG
will have high precision (close to 1). With this setting, we can obtain a number of
disjoint FTOG’s from a large graph dataset (in each FTOG, there are at least 2 graphs.).
We use these FTOG’s as cluster seeds. For each FTOG, in a weak supervision stage, we
manually assign a groundtruth object label (or name) to a cluster. We can also manually
adjust the threshold to obtain a better cluster containing more graphs belonging to the
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Fig. 2. A sample FTOG obtained by using SPGC. A dataset of over 50,000 images contains 72
images of a car, appearing with viewpoint variations of 0o − 360o. Using SPGC, we can obtain an
FTOG only containing all the 72 images as shown in this figure.

same object class. We denote the similarity threshold for the corresponding FTOG’s as
Rτ1(Ml{Gq}). In this way each cluster corresponds to an object class discovered from
the data, and the corresponding FTOG is the class model. However, a single object may
be split between multiple clusters.

If we regard each graph in an FTOG as a vertex in a higher level graph, for a pair
of vertexes an edge, weighted by the similarity measure, is defined iff their similarity
measure is subject to the given similarity constraint, an FTOG can be further regarded
as a class specific graph (CSG) model.

Given that c FTOGs have been detected for a single object-class in a dataset, i.e.
∃Gli , i = 1, 2, ..., c, subject to M{Gli , g}

⋂
M{Glj , g} = ∅, i � j, i, j ∈ {1, 2, ..., c },

then we uniquely label the corresponding FTOG’s as L1, L2, ..., Lc. We denote the set of
clusters for a single discovered object model as follows:

CRτ = { MRτ {Gl,∞}} � { Ml | l ∈ {L1, L2, ..., Lc} }. (6)

A set of class specific FTOGs of an object can also be regarded as class specific graph
models and still termed CSG model. Ideally a single object has one corresponding
FOTG, that is c = 1. However, in an incremental learning setting, each object will
tend to have more then one FTOG. With an increasing size of the dataset it is likely that
two disjoint FTOG’s will become merged when intermediate graphs are encountered.
In an incremental learning setting, a new graph Gl is added to its discovered model
according to the following rules:

1. If ∃ more than one graph Gq, s.t. R(Gl,Gq) ≥ Rτ0 , Gl is processed as a redundant
duplicate graph of Gq, in our settings, Rτ0 = 18.

2. If ∃ Gq0 , s.t. R(Gl,Gq0) ≥ Rτ1 (Ml{Gq0 }), Gl is incremented as an irreducible graph
of Ml{Gq0 }; If there is another graph Gq1 ∈ Ml{Gq1 }, Ml{Gq0 } and Ml{Gq1 } come from
different classes, Gl then is marked as an ambiguous graph. If Ml{Gq0 } and Ml{Gq1 }
belong to the same class, then we merge these two FTOG’s.

3. If max{R(Gl,Gq)} < Rτ1(Ml{Gq}), create a new FTOG Ml{Gl}.
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(a) 50 objects in Coil 100 (b) Unlabeled sample images.

(c) 8 objects in[16] (d) 10 objects collected by the authors.

Fig. 3. Image data sets. a: 3600 images of 50 objects in COIL 100, labeled as A1∼A50; b: 29875
unlabeled images from many other standard datasets, e.g. Caltech101 [3] and Google images,
covering over 450 objects and used as negative samples; c: 161 images of 8 objects used in [16],
labeled as C1 to C8; d: 20000 images of 10 objects collected by us, labeled as D1 to D10. For
each of the objects in D1 to D9, we collect 1500 images which traverse a large variation of
imaging conditions, and similarly 6500 images for D10. For simple description, the 4 dada sets
are denoted as A to D. The objects in Figure 3a,Figure 3c and Figure 3d are numbered from left
to right and then from top to bottom as shown in the corresponding figures, e.g. A1 to A50 in
Figure 3a. As a whole, the 68 objects are also identified as Object 1 to Object 68.

Once a CSG model is trained, for a test graph Gl, we can obtain Kτ{Gl} and use a
k-nearest neighbor weighted voting recognition strategy, using the similarity measure
R(Gl,Gq) as a weight.

4 Experimental Results

We have collected 53536 training images, some examples of which are shown in Figure
3, as training data. The data spans more than 500 objects including human faces and
natural scenes. For each of these images, we extract ranked SIFT features using the
method presented in [14]. Of these at most 40 highly ranked SIFT features are selected
to construct a graph. We have collected over 2,140,000 SIFT features and 53536 graphs
for the training set. We have trained an RSOM clustering tree with 25334 leaf nodes for
the SIFT descriptors using the incremental RSOM training method. In this stage, we
have also obtained K{Gl} for each of the graphs. We use the 68 objects (detailed in Fig.
3) and the 31 human faces (detailed in Fig. 4) to test our object class discovery method.

(1) Object discovery. The object discovery results for the 68 object problem are shown
in Fig. 4, it is clear that for most of the objects sampled under controlled imaging con-
ditions, ideal performance has been achieved. For 35 objects in COIL 100, 35 models
are individually discovered with total recall and precision of unit in one FTOG. For
13 objects, 6 models are discovered. Each group of objects in Fig. 5 (A)(B)(C)(D) are
actually identical in shape but color. Since it only uses gray scale information in SIFT,
our method fails in this case. We hence regard these objects in the four groups as being
correctly discovered according to shape.
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Fig. 4. Results of object discovery

Fig. 5. 6 groups of objects are overlapping-clustered into 6 clusters

In the above table, ID is the Object ID; Ni is the number of the initial images of an object; Nd is
the number of images discovered by using our method; N+d is the number of correctly discovered
images; p is the precision defined as N+d /Nd; r is recall defined as N+d /Ni. Nc is the number of
discovered clusters of each object.

Unfortunately, in most practical situations, the images of an object are likely to be
obtained with large variations of imaging conditions and are more likely to be clustered
into several FTOGs. As a result, each object gives rise to multiple clusters. For objects
51 to 58 there are no more than 30 images with large variations in viewing conditions,
and the images are not representative enough to perform ideal recognition. However, for
objects 59 to 68, the images clustered together are sufficient to form an effective object
model which can be used for recognition. For object 68, since there are thousands of
images, the different views form a single cluster.

It is worth pointing out that all of these experiments are implemented in an incremen-
tal learning setting. We commenced by using 3600 images of 50 objects in the COIL
100 database as the first batch of images. From which, the models of these 50 objects
are discovered. With the increase of additional training images, the discovered models
of the 50 objects have not been changed. We than trained a second batch of samples
containing instances of Object 51 to Object 68, and their corresponding models are dis-
covered. The number of images is than increased to over 50K by including the category
of Caltech faces and over 450 other objects. From this data we attempt to discover the
face class. Compare to the up-to-date BoF based methods, the size of the RSOM clus-
tering tree is dynamic, the scale of the image corpus is also dynamic. The discovered
model keeps stable and can be refined in the incremental settings.

5 Conclusion

In this paper, we propose a scalable framework for learning object classes (object dis-
covery). The method is graph-based and makes use of the RSOM tree clustering of local
feature descriptors and graph clustering using similarity propagation (SPGC). As such
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it is therefor distinct from current state-of-the-art ”Bag-of-Feature” based methods. We
represent each bag of features of an image together with their spatial configuration using
a graph instead of a BoF vector. We use our similarity propagation clustering method
to extend the widely used query expansion strategy to graph representations of images.
One significant feature of our model is that it can be placed in an incremental setting
and used to expand the set of objects and refine the corresponding object models. We
perform experiments on large image datasets. As an example here, the number of im-
ages increases from 1 to over 50K, and the number of objects increases from 1 to over
500. For some of the objects, ideal performance, with total recall and precision of unity
in one cluster, has been achieved. Using a parallel computing environment, e.g. PC-
clusters or local networks, the scale of our system can be readily extended to huge size.
Using the object models learned using our technique we can potentially simultaneously
effect object detection, recognition and annotation. We will explore these problems in
future work.

References

1. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine
Learning 43, 17–196 (2001)

2. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. In: NIPS (2002)
3. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories.

In: CVPR (2005)
4. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.: Discovering object cate-

gories in image collections. In: ICCV (2005)
5. Russell, B.C., Efros, A.A., Sivic, J., Freeman, W.T., Zisserman, A.: Using multiple segmen-

tations to discover objects and their extent in image collections. In: CVPR (2006)
6. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of keypoints. In:

Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)
7. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos.

In: ICCV, pp. 1470–1477 (2003)
8. Li, Y., Wang, W., Gao, W.: A robust approach for object recognition. In: Zhuang, Y.-t., Yang,

S.-Q., Rui, Y., He, Q. (eds.) PCM 2006. LNCS, vol. 4261, pp. 262–269. Springer, Heidelberg
(2006)

9. Philbin, J., Sivic, J., Zisserman, A.: Geometric lda: A generative model for particular object
discovery. In: BMVC (2008)

10. Lowe, D.: Distinctive image features from scale-invariant key points. IJCV 60(2), 91–110
(2004)

11. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query ex-
pansion with a generative feature model for object retrieval. In: ICCV (2007)

12. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR (2006)
13. Philbin, J., Chum, O., Isard, M., Sivic, J., Zissermans, A.: Object retrieval with large vocab-

ularies and fast spatial matching. In: CVPR (2007)
14. Xia, S.P., Ren, P., Hancock, E.R.: Ranking the local invariant features for the robust visual

saliencies. In: ICPR 2008 (2008)
15. Chung, F.: Spectral graph theory. American Mathematical Society (1997)



Incrementally Discovering Object Classes 383

16. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3d object modeling and recognition
using local affine-invariant image descriptors and multi-view spatial constraints. IJCV 66(3),
231–259 (2006)

17. Xia, S., Hancock, E.: 3D object recognition using hyper-graphs and ranked local invariant
features. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anag-
nostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 117–126. Springer,
Heidelberg (2008)

18. Jegou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and
efficient image search. In: CVPR (2007)

19. Xia, S.P., Liu, J.J., Yuan, Z.T., Yu, H., Zhang, L.F., Yu, W.X.: Cluster-computer based incre-
mental and distributed rsom data-clustering. ACTA Electronica sinica 35(3), 385–391 (2007)



Image Classification Using Probability
Higher-Order Local Auto-Correlations

Tetsu Matsukawa1 and Takio Kurita2

1 University of Tsukuba,

1-1-1 Tennodai, Tsukuba, Japan
2 National Institute of Advanced Industrial Science and Technology,

1-1-1 Umezono, Tsukuba, Japan

{t.matsukawa,takio-kurita}@aist.go.jp

Abstract. In this paper, we propose a novel method for generic ob-

ject recognition by using higher-order local auto-correlations on proba-

bility images. The proposed method is an extension of bag-of-features

approach to posterior probability images. Standard bag-of-features is

approximately thought as sum of posterior probabilities on probabil-

ity images, and spatial co-occurrences of posterior probability are not

utilized. Thus, its descriptive ability is limited. However, using local

auto-correlations of probability images, the proposed method extracts

richer information than the standard bag-of-features. Experimental re-

sults show the proposed method is enable to have higher classification

performances than the standard bag-of-features.

1 Introduction

Genetic object recognition technologies are important for automatic image search.
Despite many methods have been researched until now, the performance is still
inferior to human recognition system.

The most popular approach for generic object recognition is bag-of-features
[3], because of its simplicity and effectiveness. Bag-of-features is originally in-
spired from text recognition method “bag-of-words”, and uses orderless collection
of quantized local features. The main steps of bag-of-features are : 1) Detection
and description of image patches. 2) Assigning patch descriptors to a set of pre-
determined codebooks with a vector quantization algorithm. 3) Constructing a
bag of features, which counts the number of patches assigned to each codebook.
4) Applying a classifier by treating the bag of features as the features vector,
and thus determine which category to assign to the image.

It is known that the bag of features method is robust for background clutter,
pose changes, intra-class variations and produces good classification accuracy.
However, several problems are existed for applying to image representation. To
solve these problems, many methods are proposed. Some of these methods are
spatial pyramid binning to utilize location informations [7], higher level codebook
creation based on local co-occurrence of codebooks [1][13][18], improvement of
codebook creation[9][10][11] and region of interest based matching [14].
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In this paper, we present a novel improvement of bag-of-features. The main
novelty of the proposed method is to utilize probability images for feature ex-
traction. The standard bag-of-features is approximately thought as a method so
called “sum of posterior probabilities” on probability images. So the method does
not utilize local co-occurrence on probability images. We applied higher-order lo-
cal auto-correlations on probability images, thus richer information of probability
images can be extracted. We call this image representation method as “Prob-
ability Higher-order Local Auto-correlations (PHLAC)”. PHLAC has desirable
property for recognition, namely shift-invariance, additivity and synonymy [19]
invariance. We show this image representation method PHLAC has the signifi-
cantly better classification performance than the standard bag-of-features.

The proposed method gives the different direction of improvement to the
currently proposed methods of bag-of-features (e.g. Correlation of codebooks,
improvement of clustering and spatial pyramid binning), so this method can be
combined with those methods in the future.

2 Related Work

The image feature extraction using local co-occurrence is recognized as an impor-
tant concept [6] for recognition. Recently, several methods have been proposed
using correlation. These are categorized to feature level co-occurrence and code-
book level co-occurrence. The examples of feature level co-occurrence are local
self similarity [12] and GLAC [5]. We can use these features in the codebook
creation process, then the codebook level co-occurrence and the feature level
co-occurrence is thought as another concept. The examples of codebook level
co-occurrence are correlations [13] and Visual Phrases [18]. When using code-
book level co-occurrence, we need large number of dimensions, e.g. in proportion
to codebook size × codebook size when we consider only co-occurrence of two
codebooks. Thus, features selection method or dimension reduction method is
necessary and current researches are focused on how to mining frequent and
distinctive codebook sets [17][18][19]. The expressions of co-occurrence using a
generative model have also been proposed [1] [16]. But, these methods require a
complex latent model and expensive parameter estimations. On the other hand,
our method can be easy implemented and is relatively low dimension but effective
for classifications, because it is based on auto-correlations on posterior proba-
bility images. The methods which give posterior probability to a codebook have
also been proposed [15][14], but these methods are not using auto-correlation of
codebooks.

3 Probability High-Order Local Auto-Correlations

3.1 Probability Images

Let I be an image region and r= (x, y)t be a position vector in I. The image
patch whose center is rk are quantized to M codebook {V1,...,VM} by local fea-
ture extraction and vector quantization algorithm VQ(rk) ∈ {1,...,M}. These
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steps are same as the standard bag-of-features [7]. Posterior probability P (c|Vm)
of category c ∈ {1, ..., C} is assigned to each codebook Vm using image patches on
training images. Several forms of estimating posterior probability can be taken.
(a) Codebook plausibility. The posterior probability is estimated by Bayes’ the-
orem as follows.

P (c|Vm) =
P (Vm|c)P (c)

P (Vm)
, (1)

where, P (c) = 1/C, P (Vm)=( # of Vm )/(#of all patches), P (Vm|c) = (# of
class c ∧ Vm )/(# of class c patches). Here, P (c) is common constant, so set
to 1.
(b) Codebook uncertainty. In our method, the probability is not restricted to the
theoretical definition of probability. The pseudo probability which indicates the
degree of supporting to each category from a codebook is considered. Codebook
uncertainty is the percentage of class c in given codebook. This is defined as
follows.

P (c|Vm) =
P (Vm|c)P (c)∑C

c=1 P (Vm|c)
. (2)

(c) SVM weight. The weight of each codebook when learning by one-against-
all linear SVM [4] is used to define pseudo probability. Assume we use K lo-
cal image patches from one image, then the histogram of bag-of-features H =
(H(1), ..., H(M))becomes as follows.

H(m) =
K∑

k=1

{
1 if (V Q(xk) = m)
0 otherwise

. (3)

Using the histogram of bag-of-features, the classification function of one-against-
all linear SVM becomes as follows.

arg max
c∈C

{fc(H) =
M∑

m=1

αc,mH(m) + bc}, (4)

where, αc,m is the weight for each histogram bins and bc is the learned threshold.
We transform the weight of each histogram to non-negative by αc,m ← αc,m −
min{αc} and normalize it by αc,m ← αc,m∑

M
m=1 αc,m

. Then we can obtain the pseudo
probability by SVM weight as follows.

P (c|Vm) =
αc,m −min{αc}∑M

m=1(αc,m −min{αc})
. (5)

We used SVM weight as pseudo probability because the proposed method be-
comes a complete extension of the standard bag-of-features when using this
pseudo probability (Sec. 3.3).

In this paper, we assume to use grid sampling of local features [7] per p
pixel interval, because of simplicity. We denote the set of sample points as Ip

and we call the map of (pseudo) posterior probability of codebook of each local
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Fig. 1. Probability images (codebook plausibility): Original image, probability of

BIKE(left), probability of CAR(middle), probability of PEOPLE(right). This proba-

bility image is calculated by 2 pixel interval (p=2), for easy understanding the original

images are resized to the same size to probability images. The actual size of the orig-

inal images are larger than the probability images by p×p pixels. Local features and

codebook are the same as those used in experiment.

regions as a probability image. Examples of probability images are shown in
Fig. 1. White color shows the high probability. The data are comes from IG02
used in the following experiment. The number of categories is 3 (BIKE, CAR
and PEOPLE). It is noticed the human-like contours are appeared in PEOPLE
probability.

3.2 PHLAC

We call HLAC features [6] on this probability images as PHLAC. The definition
of Nth order PHLAC is as follows.

R(c,a1, ...,aN ) =
∫

Ip

P (c|VV Q(r))P (c|VV Q(r + a1)) · · · P (c|VV Q(r + aN ))dr.

(6)
In practice, Eq.(6) can take so many forms by varying the parameters N and
an. In this paper, these are restricted to the following subset: N ∈ {0, 1, 2} and
anx, any ∈ {±Δr × p, 0}. By eliminating duplicates which arise from shifts, the
mask patterns of PHLAC becomes as shown in Fig. 2. This mask pattern is
the same as 35 HLAC mask patterns [6]. Thus, PHLAC inherits the desirable
properties of HLAC for object recognition, namely shift-invariance and additiv-
ity. Although PHLAC does not have scale-invariance, we can deal with scale
changes by using several size of mask patterns.

By calculating correlations in local regions, PHLAC becomes to robust against
small spatial difference and noise. There are several alternatives of preprocessing
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Algorithm 1. PHLAC computation

Training Image :

1) Create codebook by local features and clustering algorithm (e.g. SIFT + K means).

2) Configure posterior probability of each codebook {plausibility, uncertainly, SVM}.
Training and Test Image :

3) Create C posterior probability images by p pixel interval.

4) Preprocessing posterior probability images (local averaging).

5) Calculate HLAC on posterior probability images by sliding HLAC mask patterns.

Fig. 2. PHLAC: local averaging size(left), extracting process(middle) and mask pat-

terns(right).The number {1,2,3} of mask patterns show the frequency for which its

pixel value is used for product in Eq.(6).

of these local regions such as {max, average, median}. We found average is the
best for other settings. Thus the practical formulation of PHLAC is given by

0thorder RN=0(c) =
∑
r∈Ip

La(P (c|VV Q(r))) (7)

1storder RN=1(c,a1) =
∑
r∈Ip

La(P (c|VV Q(r)))La(P (c|VV Q(r + a1)))

2ndorder RN=2(c,a1,a2) =
∑
r∈Ip

La(P (c|VV Q(r)))La(P (c|VV Q(r + a1)))

La(P (c|VV Q(r + a2))),

where La means local averaging on a (Δr × p) × (Δr × p) region centered on
r(Fig. 2). Actually, PHLAC are obtained by HLAC calculation on local averaged
probability image (see Algorithm.1.). PHLAC are extracted from probability
images of all categories, thus the total number of features of PHLAC becomes
35×C. There are two possibilities of classification using PHLAC image represen-
tations. One is the classification using all PHLAC of all categories (PHLACALL)
and the other is using one categories PHLAC for each one-against-all classifiers
(PHLACCLASSWISE). We compare these methods in the following experiments.
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3.3 Interpretation of PHLAC

Bag-of-features(0th) + local auto-correlations(1st + 2nd): If we use
SVM weights as pseudo probabilities, then 0-th order of PHLAC becomes the
same as the classification by the standard bag-of-features using linear-SVM. Be-
cause H is a histogram (see Eq.(3)), Eq.(4) is rewritten as follows.

arg max
c∈C

{
K∑

k=1

αc,V Q(rk) + bc} (8)

= arg max
c∈C

{
K∑

k=1

(αc,V Q(rk) −min{αc}) + Kmin{αc}+ bc} (9)

= arg max
c∈C

{AcRN=0(c) + Bc}, (10)

where Ac =
∑M

m=1(αc,m−min{αc}), Bc = Kmin{αc}+bc. (In this transforma-

tion from Eq.(9) to Eq.(10), the relationship RN=0(c) =
∑K

k=1

αc,V Q(rk)−min{αc}
Ac

is used.) This equation shows that the classification by the standard bag-of-
features is possible by using only 0-th order of PHLAC and the learned param-
eters Ac and Bc. (Exactly, this was assumed no-preprocessing in the calculation
of PHLAC ). This is the case that SVM weight is used as pseudo probability,
but it is expected other probabilities have also similar property. Because the
histogram of the standard bag-of-feature is created by not utilizing local co-
occurrences, the 0th order of PHLAC is thought as almost the one-against-all
bag-of-features classifications. Higher order features of PHLAC have richer infor-
mation of probability images (e.g. the shape of local probability distributions).
Thus, if any commonly existed patterns are contained in the specific classes, this
representation can be expected to achieve better classification performance than
the standard bag-of-features.

The relationship of the standard bag-of-features and PHLAC classification is
shown in Fig.3. In our PHLAC classification, we train additional classifier using
0th order PHLAC {RN=0(1), ...,RN=0(C)} and higher order PHLAC as feature
vector. Thus, the only 0-th order PHLACSV M can achieve better performance
than the standard bag-of-features.

Synonymy invariance: The synonymous codebooks are the codebooks which
have similar posterior probabilities [18]. PHLAC calculates directly on the prob-
ability images, the same features can be extracted even a local appearance is
exchanged to other appearances whose posterior probabilities are same. This syn-
onymy invariance is important for creating compact image representations [19].

4 Experiment

We compared the classification performances of the standard bag-of-features and
PHLAC using two commonly used image datasets: IG02[8] and fifteen natural
scene categories [7].
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Fig. 3. Schematic comparison of the standard bag-of-features classification with our

proposed PHLAC classification

To obtain reliable results, we repeated the experiments 10 times. Ten random
subsets were selected from the data to create 10 pairs of training and test data.
For each of these pairs a codebook was created by using k-means clustering on
training set. For classification, a linear SVM was used by one-against-all. As
implementation of SVM, we used LIBSVM. Five-fold cross-validation on the
training set was used to tune parameters of SVM. The classification rate we
report is the average of the per-class recognition rates which in turn are averaged
over the 10 random test sets.

As local features, we used a SIFT descriptor [2] sampled on a regular grid. The
modification by the dominant orientation was not used and computed on 16×16
pixel patch sampled every 8 pixels (p = 8). In the codebook creation process,
all features sampled every 16 pixel on all training images were used for k-means
clustering. As normalization method, we used L2-norm normalization for both
the standard bag-of-features and PHLAC. In PHLAC, the features were L2 nor-
malized by each auto-correlations order. Below we denote the classification of
PHLAC using probability by codebook plausibility as PHLACPlau, PHLAC us-
ing pseudo probability by codebook uncertainty as PHLACUnc and SVM weight
as PHLACSV M . Note that although the SVM of standard bag-of-features is used
for Eq.(5) of PHLACSV M , the result of 0th order PHLACSV M is different from
the result of standard bag-of-features from the reason mentioned in Sec 3.3.

4.1 Result of IG02

At first, we used IG02 [8](INRIAAnnotations forGranz-02)datasetwhich contains
large variations of target size. The classification task is to classify the test images
to 3 categories, CAR, BIKE and PEOPLE. The number of training images of each
category is 162 for CAR, 177 for BIKE and 140 for PEOPLE. The number of test
images is same as training images. We resampled 10 sets of training and test sets
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Fig. 4. Recognition rates of IG02. The basic setting is codebook size = 400 ((b)-(f)),

Spatial Interval Δr= 12 ((a),(b),(d)-(f)) and PHLACALL ((a)-(e)).

from all images. Image size is 640×480 pixels or 480×640 pixels. Maraszalek at el
prepared mask images which indicates target object locations. We also attempted
to estimate probability of Eq.(1) by using only target object region’s local features.
We denote this PHLAC features as PHLACPlau−MASK . The experimental results
are shown in Fig. 4.

Overall performance: As basic settings we used spatial interval Δr=12 and
PHLACALL. In all codebook size, all types of PHLAC achieves higher classifi-
cation performances than the standard bag-of-features (Fig.4(a).). PHLACSV M

achieves higher classification rates than PHLACP lau and PHLACUnc. By using
mask images for estimating probability, the performance of PHLACP lau be-
comes better when the codebook size is larger than 400.

Recognition rates per category: The classification rates of PHLAC becomes
higher than the standard bag-of-features almost all cases (Fig.4(b).). Especially,
the classification rates of PEOPLE are higher than the standard bag-of-features
in any settings of PHLAC. This is because human-like contours which are shown
in Fig.1 are appeared in human’s regions and not existed in other images.
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Spatial interval: The spatial interval seems to be better near Δr=12 (12×8
= 96 pixel) in all settings except for PHLACSV M (Fig.4(c).). The classification
rates of PHLACPlau and PHLACUnc become lower as to increase the spatial
interval. In the case of PHLACSV M , classification rates is still high when the
spatial interval becomes large and the peak of classification rates is appeared near
Δr=20. But the classification rates in Δr=20, PHLACPlau and PHLACUnc be-
come to be low, so we set the spatial interval as to Δr=12 as basic settings. In
practice, multi-scale spatial interval is more useful than single spatial interval,
because there are several optimal spatial intervals.

Auto-correlation order: In the case of PHLACPlau and PHLACUnc, the clas-
sification rates become higher as to increase auto-correlation order (Fig.4(d)).
PHLACSV M is higher classification performance than other PHLAC only
0-th order auto-correlations. This is the reason of high classification rates
of PHLACSV M in the large spatial intervals. Using up to 2nd order auto-
correlations, PHLACSV M also can achieve the best classification performance.
Especially in the optimal spatial interval of PHLACSV M (Δr=20), the 2nd order
auto-correlation of PHLACSV M were 5.01% better than 0th order (Fig.4(c)).

Preprocessing: In local averaging and no preprocessing seems to be compara-
ble in Fig.4(e). But when we tried another codebook size and spatial intervals,
the local averaging were often outperformed no preprocessing cases. Thus, we
recommend to using local averaging for preprocessing.

PHLAC type: PHLACALL are better performance than PHLACCLASSWISE

in PHLACPlau and PHLACUnc (Fig.4(f)). On the other hand PHLACSV M are
better in the case of using PHLACCLASSWISE. This indicates the dimension for
training of each SVM can be reduced to 35 dimension when using PHLACSV M .

4.2 Result of Scene-15

Next we performed experiments on Scene-15 dataset [7]. The Scene-15 dataset
consists of 4485 images spread over 15 categories. The fifteen categories contain
200 to 400 images each and range from natural scene like mountains and forest
to man-made environments like kitchens and office. We selected 100 random
images per categories as a training set and the remaining images as the test
set. We used PHLACALL and experimentally set spatial interval as to Δr = 8.
Some examples of dataset images and probability images are shown in Fig.5.
Recognition rates of scene 15 are shown in Fig.6. In Scene-15, PHLAC achieves
higher recognition performances than the standard bag-of-features classification
in all categories and all number of codebook. In this dataset, PHLACPlau and
PHLACUnc indicates higher accuracy than PHLACSV M . In the case of codebook
size is 200, PHLACPlau gives more than 15% higher recognition rate.

In our experimental settings, classification rates of the standard bag-of-features
using histogram intersection kernel [7] is 66.31(± 0.15)% in codebook size 200
and PHLACPlau achieves 69.48 (± 0.27) % by using linear SVM. While Lazabnik
reported 72.2(± 0.6) % on the standard bag-of-features, this difference is caused
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office opencountry forest mountain

industrial coast bedroom highway

Fig. 5. Example of Scene15. Probability image shows probabilities of own category.

Fig. 6. Recognition Rates of Scene15: per codebook size (left) and per category when

codebook size is 200(right)

by the difference of implementations such as feature extractions and codebook
creations. The proposed method and the standard bag-of-features use the same
codebook and features through in our experiments.

5 Conclusion

In this paper, we proposed an image description method using higher-order local
auto-correlations on probability images called ”Probability Higher-order Auto
Correlations(PHLAC)”. This method is regarded as an extension of the standard
bag-of-features for improving the limitation of spatial information by utilizing
co-occurrence of local spatial pattern in posterior probabilities. This method
has shift-invariance and additivity as in HLAC [6]. Experimental results show
the proposed method achieved higher classification performance than the stan-
dard bag-of-features in average 2 % and 15 % in the case of IG02 and Fifteen
Scene Dataset respectively using 200 codebooks. We think combinations with
other method (e.g. spatial binning and correlation features) probably improve
the performance by the proposed probability auto-correlations scheme.
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Disparity Estimation in a Layered Image
for Reflection Stereo
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Abstract. By watching the reflection in the glass window, one can often

observe a two-layered image consisting of a front-surface reflection from

a glass and a rear-surface reflection through the glass. The transparent

glass plate reflects and transmits the incident light from its front sur-

face. The transmitted light is then reflected from the rear surface and is

transmitted again to the air through the front surface. These two light

paths create a layered image comprising two identical images with a spe-

cific displacement depending on the object range. Estimating the object

range requires the accurate detection of the image shift in the layered

image. This paper presents a study of the shift estimation method using

Fourier transformation of the layered image. The maximum location in

the Fourier transform of the Fourier power spectrum of the layered image

indicates the image shift. Experimental results demonstrate the effective-

ness of the method compared with a method using an autocorrelation

function.

1 Introduction

A transparent glass plate has two surfaces: frontal and rear. These surfaces both
reflect and transmit rays from an object. A camera receives rays that have been
reflected by the glass surfaces from the object if the object and the camera are
on the same side of the glass plate. In this situation, the image includes two
nearly identical scenes that have been reflected from the frontal surface and the
rear surface. Figure 1 presents an example of a resultant layered image. The
displacement between the two reflections is observable especially if the object is
close to the glass and if the glass plate is thick.

Few papers describe multiple reflections at surfaces of a transparent glass
plate. Miyazaki and Ikeuchi [9] modeled internal reflections in a transparent
object with polarization to estimate the object shape. Diamant and Schechner [3]
proposed a regularized optimization method to recover scenes, but they assume
that the displacement in reflected scenes is constant in the image, independent
of the object distances. Shimizu and Okutomi [12],[13] used displacement to

� His current affiliation is the College of Science and Technology, Nihon University,

Japan.
�� His current affiliation is the State Key Lab. of Industrial Control Technology, Zhe-

jiang University, Hangzhou, China.
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Fig. 1. The glass reflection shown here produces a layered image: the right image is a

magnification of the left

estimate the scene depth. They designated the depth estimation configuration
as reflection stereo. To estimate the displacement, they use the autocorrelation
function along with a positional constraint in the layered image on the condition
that the camera and the transparent plate are calibrated.

The reflection stereo is a type of monocular stereo rig with a narrow baseline.
Monocular methods are categorizable as multi-view [6], multi-image [4], and
multi-exposure [11] methods. The reflection stereo belongs to the last category.

This paper presents a study of the shift estimation method using a Fourier
transform of the layered image. A periodic variation in the Fourier power spec-
trum of a layered image will be observed corresponding to the amount and di-
rection of the image shift. Therefore, the Fourier transform of the Fourier power
spectrum can detect the cycle and direction by finding its peak location.

This paper is organized as follows. Section 2 briefly explains basic principles
of the reflection stereo range measurement. Section 3 presents three methods
to estimate the shift in the layered image: autocorrelation, cepstrum, and the
proposed method. In section 4, we validate the effectiveness of the proposed
method using some experiments with a real image. Section 5 concludes this
paper with some relevant remarks.

2 Reflection Stereo

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )ioio DD θθ cos,sin− υ

ξ

( )icic DD θθ cos,sin

iθ

sθ

d

Surface reflection 

Rear-surface reflection 

Transparent plate 

Object
Optical center

n

sI

rI

Fig. 2. Geometry of the reflection stereo apparatus

This section briefly ex-
plains basic information
related to the reflection
stereo [12] range measure-
ment.

Figure 2 portrays two
light paths from an object
to the camera optical cen-
ter. A transparent glass
plate reflects and trans-
mits the incident light on
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its front surface. The transmitted light is then reflected from the rear surface and
is transmitted again to the air through the front surface. These two light paths
have an angle disparity θs that depends on the relative refractive index n of the
plate, the plate thickness d, the incident angle θi, and the object distance Do.

The fundamental relation between the angle disparity θs and the distance
Do is explainable as the reflection and refraction of light in a plane including
the object, the optical center, and the normal vector of the plate (the plane of
incidence). A two-dimensional (2D) ξ-υ coordinate system is set with its origin
at the reflecting point on the surface. The following equation can be derived
by projecting the object position (−Do sin θi, Do cos θi) and the optical center
position (Dc sin θi, Dc cos θi) to ξ-axis.

Do + Dc = d
sin (2 (θi − θs))

sin θs

√
n2 − sin2 (θi − θs)

(1)

The angle disparity θs is obtainable by finding the displacement in the layered
image. Then the object distance Do is derived from Eq. (1). The displacement has
a constraint which describes a correspondent position in the rear-surface image
moving along a constraint line with respect to the position in the image. The
constraint reduces the search to 1D, just as for stereo vision with the epipolar
constraint. The angle disparity takes the minimum value θs = 0 when Do = ∞
if the plate is manufactured perfectly as a parallel planar plate. In other words,
the two layers will perfectly overlap for a far distant object.

3 Disparity Estimation

3.1 Autocorrelation

The autocorrelation function Ra(τ) of a function f(x) is defined as

Ra(τ) = lim
T→∞

1
2T

∫ T

−T

f(x)f(x− τ)dx. (2)

It is an even function with respect to τ ; it takes the maximum value at τ = 0.
Some local maxima will be detected if f(x) is not a random function.

Let f(x) be a 1D function representing the pixel values on a constraint line.
In the case of the layered image, it can be written as f(x) = I(x) + gI(x −Δ),
where I(x) and g denote a reflected image and a “gain” difference, respectively,
and Δ represents a shift between them. Autocorrelation function Ra(τ) of f(x)
is written as a sum of the following autocorrelation functions of image I(x).

Ra(τ) = (1 + g2)RI(τ) + gRI(τ + Δ) + gRI(τ −Δ) (3)

The image shift Δ can be found by determining the second local maximum1 of
the autocorrelation function Ra(τ).
1 The second and third maxima in Eq. (3) equally appear if the integral interval in Eq.

(2) is infinite. But in real implementations, the autocorrelation is computed with a

limited range. This results in asymmetrical second and third peaks in Eq. (3).
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The integral range is limited to a finite region of interest in real situations.
In addition, the autocorrelation function is evaluated in discrete locations along
the constraint line; then the sub-sampling peak location is estimated using an
interpolation.

The peak shape of the autocorrelation function RI(τ) depends on the spatial
frequency response of the image I(x); the second peak location can not be found
if the region has a weak texture2.

3.2 Cepstrum

The cepstrum is the spectrum of the logarithm of the spectrum of a time or
spatial domain signal3 [2],[10]. The cepstrum domain designated as the quefrency
is not both the frequency and the spatial domain, but it corresponds perfectly
to the spatial domain of the original signal. The cepstrum has been used for
measurement of the delay time in an audio signal, image blur restoration [1], or
correspondence search in stereo images [8],[16].

The shift estimation in the layered image can be considered as the same
problem to estimate the delay time in an audio signal with echo; the cepstrum
method is applicable.

The cepstrum of the 1D layered image f(x) = I(x) + gI(x−Δ) is obtainable
as shown below.

F
[
log |F [f(x)](u)|2

]
(χ) = F

[
log

∣∣F [I(x)](u)
(
1 + ge−jΔu

)∣∣2] (χ) =

F
[
log |F [I(x)](u)|2

]
(χ) + 2π log(1 + g2)δ(χ) +

2g
1 + g2

πδ(χ±Δ) +

F
[ ∞∑

m=2

(−1)m+1

m

(
2g

1 + g2
cosΔu

)m
]

(χ) (4)

Therein, the Fourier transform of a spatial domain function f(x) denotes
F [f(x)](u). Furthermore, u denotes a variable in the frequency domain. The
Fourier transform is performed using a discrete Fourier transform for a digital
image. The variable in the secondary Fourier transform χ denotes the quefrency.

The first term in Eq. (4) depends on the spatial frequency response of the
image I(x). The second term is a delta function at the origin; these terms are
unnecessary to estimate the shift. The third term is two delta functions cor-
responding to the shift amount. The fourth term indicates negligible multiple
maxima at an integral multiple of the shift. It is notable that the shift in the
layered image should be found by detecting a delta function in the quefrency
2 Note that the reflection stereo can estimate the object distance using the peak lo-

cation in the autocorrelation function of the layered image, even if the object does

not have a specular reflection. The secondary peak requires only that the object has

some textures.
3 As an extension of the cepstrum, the complex cepstrum is the inverse Fourier trans-

form of the complex logarithm of the Fourier transform of a signal. An informative

survey can be found in [10].
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domain. The peak can be very sharp; the sub-pixel peak location might fail to
be estimated accurately.

3.3 Proposed Method

The proposed method is inspired by the cepstrum, but without taking the loga-
rithm of the power spectrum, and with some pre-processing and post-processing
to estimate an accurate sub-pixel shift. A periodic variation in the Fourier power
spectrum of a layered image will be observed corresponding to the amount and
direction of the image shift. The Fourier transform of the Fourier power spectrum
detects the cycle and direction by finding its peak location.

In a way similar to that described in previous subsections, the sum of two
identical signals I(x) with shift Δ models the layered image in 1D along a con-
straint line as f(x) = I(x) + gI(x − Δ). The ratio g denotes the brightness
difference between the layered images.

As the pre-processing in the proposed method, a high-pass filter (HPF) is
applied to the layered image signal by substructing the low-frequency component
from the original signal as

f ′(x) = (1−N(σ2, x))⊗ (I(x) + gI(x−Δ)) , (5)

where N(σ2, x) and symbol ⊗ respectively signify a Gaussian function with
variance σ2 and convolution operation, as follows.

N(σ2, x) = e−
x2

2σ2 (6)

F [N(σ2, x)](u) =
√

2πσe−
σ2u2

2 (7)

Then, taking the Fourier transform of Eq. (5) as

F [f ′(x)](u) = F [
1−N(σ2, x)

]
(u)F [I(x) + gI(x−Δ)] (u)

= F [
1−N(σ2, x)

]
(u)F [I(x)](u)

(
1 + ge−jΔu

)
� HPI(u)

(
1 + ge−jΔu

)
= HPI(u) (1 + g(cosΔu− j sinΔu))
= HPI(u) ((1 + g cosΔu)− jg sinΔu) , (8)

where HPI(u) denotes a Fourier transform of high-pass filtered I(x), the power
spectrum of Eq. (8) becomes obtainable as

|F [f ′(x)](u)|2 = |HPI(u)|2 (1 + g2 + 2g cosΔu
)
. (9)

The Fourier transform of Eq. (9) is

F
[
|F [f ′(x)](u)|2

]
(χ) = (1 + g2)F

[
|HPI(u)|2

]
(χ)

+gF
[
|HPI(u)|2

]
(χ + Δ) + gF

[
|HPI(u)|2

]
(χ−Δ), (10)

where χ denotes the quefrency.
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Fig. 3. Processing flow of the proposed method

Equation (10) shows the existence of three peaks in the quefrency domain. As
is true with the cepstrum, the second and the third terms correspond to the shift
in the layered image. The constraint in the spatial domain is applicable to the
quefrency domain without modification. Figure 3 presents the processing flow.

The shape around the maximum in Eq. (10), F
[
|HPI(u)|2

]
(χ), cannot be

determined analytically because it includes the original signal. However, the
high-pass filter and the weight in the frequency domain (described in the next
subsection) allow its approximation as a 2D Gaussian function. The results of
the discrete Fourier transform comprise a set of data at discrete locations. Nine
values around the secondary peak are used to estimate the sub-quefrency peak
location by fitting them to a 2D Gaussian (also see the next subsection).

3.4 Implementation Details

Eliminating the Low-frequency Component: This pre-processing is done
by applying high-pass filtering to the original layered image before taking the
Fourier transform. As described in [5], this pre-processing has the following two
effects.

1. The power of the low-frequency component in images is much greater than
the high-frequency component, but the low-frequency component does not con-
tribute to estimation of the correspondence location in the layered image.

2. The 2D FFT computation for the discrete Fourier transform assumes that
the finite region for the computation is an infinite series of patches. A disconti-
nuity at the patch edges influences the results. Reduction of the low-frequency
components decreases the discontinuity at the region edges.

Weighting in the frequency domain after the first Fourier transform can also
reduce the low-frequency component in the layered image. However, this weight-
ing has no effect on 2. above. Therefore in this case, a weighting in the spatial
domain before the Fourier transform is required, such as Blackman–Harris win-
dowing [7]. This windowing in the spatial domain decreases the effective area in
the region of interest (ROI); it enlarges the ROI and increases the computational
time.

Weighting in the Frequency Domain: High-pass filtering pre-processing
increases the noise effect in the whole process by reducing the low-frequency
component. To reduce the noise effect caused by an unnecessary high-frequency



Disparity Estimation in a Layered Image for Reflection Stereo 401

component, a weight is applied in the frequency domain after the first Fourier
transform.

The weighting has the following two effects: it reduces the noise effect caused
by high frequency, and it forms the shape around the peak location in Eq. (10).
In the proposed method, the Fourier transform of 2D Gaussian used for the
weighting to form the peak shape is also a 2D Gaussian. This shape forming
has efficacy for estimating the sub-quefrency (it is the same as the sub-pixel)
estimation by fitting a continuous 2D Gaussian to the obtained discrete samples.

We have performed many experiments using both synthetic and real images to
confirm the pre-processing and weighting (σ = 0.4 in Eq. (7)) effects to estimate
the correspondence in the layered image (not shown in the paper).

Using the Constraint: The quefrency domain has the same dimensions of
the spatial domain. The constraint in the spatial domain is applicable with no
modification to the quefrency domain.
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Fig. 4. Search range limitation by a

constraint

Results of the discrete Fourier
transform comprise a set of values at
discrete locations in the quefrency do-
main; searching along the constraint
line in a fractional unit is impossible.

As depicted in Fig. 4, nine values
around the second peak are searched
along the constraint line from the peak
candidates, which include rounding to
integer locations from the constraint
line (⊗ marks) and their surrounding
nine integer locations (◦ marks).
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Fig. 5. 2D Gaussian fitting

Sub-Pixel Disparity Es-
timation: An accurate
sub-pixel disparity is indis-
pensable for practical range
estimation in a very nar-
row baseline in the reflec-
tion stereo configuration. A
sub-pixel peak location is es-
timated using a 2D Gaus-
sian fitting with nine values
around the peak location, as
depicted in Fig. 5.

The following 2D quadratic
function fitting is used for the 2D Gaussian fitting, after taking the logarithm of
the value of the secondary Fourier transform r(·).
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S(x, y) = Ax2 + Cy2 + Dx + Ey + F (11)

The sub-pixel peak location estimated by fitting the 2D quadratic function is
obtainable as follows [14].

(dx, dy) =
(
− D

2A
,− E

2C

)
(12)

The A, C, D, and E is obtainable by the following using nine values centered at
(p, q), which is the maximum location found among the candidates.

A = (ρmm − 2ρzm + ρpm + ρmz − 2ρzz + ρpz + ρmp − 2ρzp + ρpp) /6
C = (ρmm + ρzm + ρpm − 2ρmz − 2ρzz − 2ρpz + ρmp + ρzp + ρpp) /6
D = (−ρmm + ρpm − ρmz + ρpz − ρmp + ρpp) /6
E = (−ρmm − ρzm − ρpm + ρmp + ρzp + ρpp) /6 (13)

Therein, ρ·· is an abbreviation of the following logarithms of the secondary
Fourier transform results at the corresponding locations.

ρmm = log r(p− 1, q − 1) ρzm = log r(p, q − 1) ρpm = log r(p + 1, q − 1)
ρmz = log r(p− 1, q) ρzz = log r(p, q) ρpz = log r(p + 1, q)
ρmp = log r(p− 1, q + 1) ρzp = log r(p, q + 1) ρpp = log r(p + 1, q + 1)

(14)

Finally, the estimated sub-pixel shift in the layered image is obtainable as (p +
dx, q + dy).

4 Experimental Results

4.1 Comparison with Autocorrelation

Figures 6(a) and 6(b) respectively present the object (about 25 cm height) and
a layered image. Figures 7(a) and 7(b) respectively show the autocorrelation

(a) Object from oblique view point         (b) Observed complex image                           

Fig. 6. The object and layered image reflected at a transparent plate
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Fig. 7. Autocorrelation and the proposed method

function and the proposed method for region (a) in Fig. 6(b). The ROI size is
49×49 [pixel] and the search range is ±24 [pixel] for the autocorrelation function.
The ROI size for the proposed method is 48× 48 [pixel]. Figures 7(c) and 7(d)
respectively portray the intersection of the secondary peak in Figs. 7(a) and
7(b). A quadratic and a Gaussian function are fitted respectively to the function
values. The sub-pixel location of the secondary peak is clearly detected in both
methods for this ROI.

Figures 7(e) and 7(f) respectively portray the autocorrelation function and the
proposed method for region (e) in Fig. 6(b). Figure 7(h) depicts the intersection
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of the secondary peak in Fig. 7(f). Figure 7(g) shows the intersection of Fig.
7(e) at the same location of 7(h). The secondary peak can be detected clearly
in the proposed method. Moreover, the peak shape is almost identical with Fig.
7(d); the Gaussian fitting is effective to estimate the sub-pixel location. No peak
could be found in the autocorrelation function at that location.

4.2 Object Shape Estimation

Figure 8 presents the range maps obtained from the layered image shown in Fig.
6(b), after the system calibration described in [13]. Through the calibration, the
thickness of the plate (10 mm in catalogue) and the refractive index (typically
1.49 for consumer acrylic plate) are estimated simultaneously with the plate
angle and position for the camera.

Figures 8(a) and 8(b) are the resultant range maps obtained from the layered
image shown in Fig. 6(b) using the autocorrelation function and the proposed
method, respectively. The whiteout region in Fig. 8(a) depicts the region in
which the secondary peak cannot be detected in the autocorrelation function.
The proposed method detects the peak and provides slightly sharper edges than
autocorrelation.

(a) Range map estimated using conventional ZNAC.

(b) Range map estimated using proposed method.                                                                   

Fig. 8. 3D measurement results
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5 Conclusions

This paper proposed a method to estimate the shift in the layered image using
Fourier transformation. The method was applied to range estimation using the
reflection stereo configuration. Experimental results represented the effectiveness
of the method compared with a method using autocorrelation function. Future
studies will investigate texture recovery of the layered image and real-time com-
putation of the reflection stereo.
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Abstract. This paper describes a method for model-based 3D object lo-

calization. The object model consists of a triangular surface mesh, model

points, and model geometrical features. Model points and model geomet-

rical features are generated using contour generators, which are estimated

by the occluding contours of projected images of the triangular surface

mesh from multiple viewing directions, and they are maintained depend-

ing on the viewing direction. Multiple hypotheses for approximate model

position and orientation are generated by comparing model geometrical

features and data geometrical features. The multiple hypotheses are lim-

ited by using the viewing directions that are used to generate model

geometrical features. Each hypothesis is verified and improved by using

model points and 3D boundaries, which are reconstructed by segment-

based stereo vision. In addition, each hypothesis is improved by using the

triangular surface mesh and 3D boundaries. Experimental results show

the effectiveness of the proposed method.

1 Introduction

Model-based 3D object localization is an important issue in computer vision. For
metallic or plastic industrial objects and the indoor environments, it is difficult
to obtain stable dense 3D data using an area-based stereo method or a laser
rangefinder, because the objects often lack texture information and/or shiny.
Therefore, a 3D-3D matching method using dense 3D data [1] is unsuitable in
such environments. In dealing with such environments, the use of edge infor-
mation is effective. Several edge-based methods including object tracking [2,3],
object localization [4,5], have been proposed. These methods adopt a 2D-3D
matching algorithm, which uses 2D image(s) and a 3D object model. As one ap-
proach to achieving greater robustness for such environments, edge-based 3D-3D
matching algorithms, which use 3D edge information and a 3D object model,
have been proposed. For example, Sumi et al. [6,7] created object models from
range data that have a lattice data structure. This modeling enables one to
estimate a model’s contour generators rapidly, however, there is a problem in
that modeling for concave objects is difficult. Maruyama et al. [8] created object
models from triangular surface meshes. This method dealt with various objects
including free-form objects and concave objects, however, this algorithm requires

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 406–415, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a great deal of computational cost to obtain model points that are dynamically
updated in an iterative localization process according to viewing direction.

In this paper, to overcome these problems, we propose a method for rapid
model-based 3D object localization. Object model features are generated from
a triangular surface mesh according to the viewing directions, which are dis-
cretely set. These features are maintained according to the viewing direction.
This modeling allows easy parallel processing, in addition, by using the viewing
directions that are used in model geometrical features generation, the number of
combinations of features between the model and reconstructed 3D boundaries is
reduced. The error in the matching caused by discrete modeling is resolved by
searching corresponding triangles for 3D boundaries. To show the effectiveness of
the proposed method, we present the results of experiments for various objects.

2 3D Reconstruction

We use segment-based stereo vision [6] for the reconstruction of 3D boundaries.
Geometrical features are generated by fitting a line or a circle to reconstructed
segments. The geometrical features consist of vertexes and arcs, which have
two tangent vectors. As a feature, vertexes have an angle between two tangent
vectors, and arcs have radius. The top row of Figure 1 shows an example of input
stereo images, The bottom row of Figure 1 shows reconstructed 3D boundaries.
Figure 2 shows an example of geometrical features.

3 Object Model

An object model consists of a triangular surface mesh, model points and model
geometrical features.

The triangular surface mesh reflects the whole shape of the object. This is
used to generate model points and model geometrical features, as well as to
improve position and orientation in the fine adjustment process described later.
Each triangle consists of three vertexes and a normal vector, and has information
on adjacent triangles.
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Model points and model geometrical features are used to estimate approxi-
mate model position and orientation. As shown in Figure 3, they are generated
and maintained according to viewing direction, which discretely sets every face
of a geodesic dome. This method enables the prior execution of some opera-
tions that require a great deal of computational cost, including the estimation of
contour generators and hidden-line removal. This discreteness in modeling may
cause an error in the matching. However, we believe that any such errors can
be remedied in the fine adjustment process. The procedure of generating model
points and model geometrical features is as follows.

1. Project a triangular surface mesh onto a 2D image according to viewing
direction W i(i = 1, · · · , Nv), where Nv is the number of viewing directions.

2. Extract contours of the projected image. The extracted contours are seg-
mented [6]. Then, the 3D position for each contour point is calculated [8].

3. Generate model vertexes and model arcs by fitting a line or a circle to 3D
segments. Model points are sampled on the 3D segments at equal intervals.

4. Calculate the distance between each model point and centroid of each trian-
gle. For each model point, the index of the triangle that has the minimum
distance is stored as the corresponding triangle. In addition, a normal vector
corresponding to the triangle is stored as the normal vector of the model
point.

5. Repeat 1 through 4 for each viewing direction.

Contour generators that are used to generate model points and model geometri-
cal features can be estimated from a triangular surface mesh without projection
onto a 2D image.Because the generated data geometrical features used in this
research are dependent on the segmentation of contours on 2D images, we con-
sider that model geometrical features are generated by the same operation as the
data geometrical features. Therefore, we adopt the method stated previously.

4 Localization

Localization consists of two processes: initial matching and fine adjustment. Ini-
tial matching generates multiple hypotheses for the approximate model position
and orientation using each model according to viewing direction. Fine adjust-
ment improves each hypothesis generated in initial matching. The model’s po-

sition and orientation are expressed as a 4 × 4 matrix T =
[

R t
0 0 0 1

]
, where

R is a 3× 3 rotational matrix and t is a 3× 1 translation vector that moves an
object model.

4.1 Initial Matching

Initial matching is independently carried out for each model according to the
viewing direction. Here, we describe a case using model Md, whose viewing di-
rection is W d. First, R and t are calculated by comparing model geometrical
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Fig. 3. Generation of model points and model geometrical features

features and data geometrical features [6]. By this comparison, multiple hypothe-
ses with different T are generated. This comparison can be very fast. However,
the later processes require a great deal of computational cost because they are
based on an iterative process. To reduce computational costs, each hypothesis is
verified using R and t at this stage.

The centroid of a triangular surface mesh P MC is moved and the viewing
direction W d is rotated according to the following formulas:

P ′
MC

= RP MC + t,W ′
d = RW d. (1)

If this hypothesis is similar to the true position and orientation, the vector
from camera position O to P ′

MC
and W ′

d are almost the same. To reflect this
conjecture, hypotheses that have the angle between

(
P ′

MC
−O

)
and W ′

d is less
than θW are adopted, where θW is a threshold.

Next, each hypothesis is verified and improved using an iterative method
based on the Iterative Closest Point (ICP) algorithm [9,10]. The procedure is as
follows:

1. Search data points corresponding to model points using their normal vec-
tors [6]. Let {Mi} , {Di} (i = 1, · · · , np) be a pair of model point and cor-
responding data point, where np is the number of correspondences. If the
distance between a model point and a data point exceeds a threshold θId,
the pair is excluded from the pairs of correspondences.

2. Estimate T ′ that moves P Mi to P Di by the least squares method, which
minimizes the following error ε(t):

ε2(t) =
np∑
i=1

∣∣R′P Mi + t′ − P Di

∣∣2 , (2)

where t is the number of iteration.
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3. Update the model position and orientation using T = T ′T .
4. Repeat 1 through 3 until a variation of ε(t) satisfies |ε(t− 1)− ε(t)| < θIc,

where θIc is a threshold. If the variation of ε(t) does not satisfy the previous
equation with sufficient iteration, this hypothesis is wrong and it is excluded.

It is well known that the reconstruction of a curved surface using stereo vision
involves a measuring error [11]. We do not bother to deal with this error because
we assume that this error is small enough to be considered as insignificant.

4.2 Fine Adjustment

This process improves the multiple hypotheses obtained in the initial matching
by searching corresponding triangles for data points. To search a correspond-
ing triangle rapidly, we traverse triangles that have adjacency information. This
search could find an inappropriate triangle, however, we can find a warmer tri-
angle by using iterative process based on the ICP algorithm. The procedure is
as follows:

1. Calculate matrix T ′′ = T−1 that moves the data points.
2. Move data points {Di} according to T ′′.
3. Search the triangle that has the minimum distance between data point P Di

and the triangle’s centroid.
(a) Decide the vertex vm(m = 1, 2, 3) that has the maximum distance be-

tween P Di and the three vertexes on the current corresponding triangle
F . Initial corresponding triangle is stored during the model generation
process.

(b) Calculate the distance between P Di and the centroid P Fnext which is
an adjacent triangle to F and is an opposite-side triangle to vm. If the
distance |P Di − P Fnext | is larger than that|P Di − P F |, then go to 4.

(c) Update the corresponding triangle F = Fnext, then go back to 3a.
4. Search the corresponding model point on the triangle F for P Di .

Case Fig 4(a): Calculate P M ′
i
, which is the foot point perpendicular from

the data point P Di using N which is the normal vector of F . If P M ′
i

exists on the triangle F , P M ′
i

is the model point.
Case Fig 4(b): Calculate P M ′

i
, which is the foot point perpendicular from

P Di to each edge ej(j = 1, 2, 3). If P M ′
i

exists on the edge ej , P M ′
i

is
the model point.

Case Fig 4(c): If a model point that satisfies the previous two conditions
does not exist, P M ′

i
is vk(k = 1, 2, 3), which has the minimum distance

between P Di and P vk
.

Verification: If the distance between P M ′
i

and P Di exceeds a threshold
θFd, the pair is excluded from the pairs of correspondences.

5. Estimate T ′′′ that moves P Di to P M ′
i

by using the similar Eq. (2). Here, let
ξ(t) be the error, n′

p be the number of correspondences.
6. Update the model position and orientation by T ′′ = T ′′′T ′′.
7. Repeat 2 through 6 until the variation of ξ(t) is less than θFc, where θFc is

a threshold.
8. Calculate T = T ′′−1 that moves an object model.
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Figure 5 shows an example of mesh traversing. In Figure 5, a circle with a
dashed line shows a vertex that has the maximum distance with a data point at
each triangle. In this example, triangles are traversed as follows: the first step is
from F5 to F2, the next step is from F2 to F3.

4.3 Rank for Hypothesis

Each hypothesis is given a score based on the number of both the 3D corre-
sponding points and the 2D corresponding points. The procedure for searching
2D correspondences is as follows:

The triangular surface mesh is projected onto the 2D image according to a
hypothesis T , and the contours of the projected image are extracted. A normal
vector for the each point of the contours is calculated [6]. The surrounding neigh-
borhood is traced in the direction of the normal vector for each contour point on
the 2D image, which stores edge information for an input image. If an edge point
is found within the trace-length threshold and the normal vectors are similar,
the edge point is the corresponding point for the contour point. This process is
carried out for each input image, and a total score s = n′

p + w (nL + nR + nV )
is calculated, where nV , nR, nV is the number of correspondences of each input
image, and w is a weight for 2D correspondences. w is experimentally set to
0.5. After scores for all hypotheses are calculated, the hypothesis which has the
largest s is selected.

Figure 6 shows an example for Figure 1 with a cup model. Figure 6 (Left)
shows the contours of the projected image and the direction of the normal vec-
tors. In Figure 6(Right), the large black dots show corresponding points on a 2D
image. The score of Figure 6(a) is 317.5 = 56 + 261.5 and that of Figure 6(b) is
109 = 56 + 53. Therefore, the hypothesis in Figure 6(a) has a high priority.

4.4 Parallel Processing

Our localization algorithm allows parallel processing because initial matching is
executed independently for each model according to the viewing direction. Fine
adjustment also is executed independently for each hypothesis. In this paper,
we implement parallel processing by means of a simple partition. Namely, let Nt

be the number of partitions, 1 CPU handles Nv/Nt models in initial matching
and handles Nf/Nt hypothesis in fine adjustment, where Nf is the number of
hypotheses obtained by initial matching.
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Fig. 6. Correspondence search on image (top row: input left stereo image. bottom row:

contours and normal vectors, corresponding point).

Fig. 7. Object models (Top Row: block, snack 1, snack 2,

snack 3, bottle 1, bottle 2. Bottom Row: bottle 3, “rocker-

Arm”, “igea”, cup, phone, duck)
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5 Experiments

To evaluate the effectiveness of the proposed method, experiments are carried
out for various objects. Each input image has 640 × 480 pixels with 256 gray-
level resolution. The models used in this research are shown in Figure 7. The
triangular surface meshes for block, snack 1, snack 2 and snack 3 are created
using commercial CAD software. The “rockerArm” and “igea” are courtesy of
Cyberware. The duck, cup, phone, bottle 1, bottle 2 and bottle 3 are created
from real objects using range data measured by a laser rangefinder. Using a 3D
printer, we created real 3D objects of “rockerArm” and “igea”. The experimental
setup is shown in Figure 8. We use three CCD cameras with 25 mm lenses, and
a desktop PC with Dual Intel Xeon E5440 with 3 GB RAM. Parallel processing
of the proposed method is implemented using the POSIX thread library.

Figure 9 shows localization results with green contours obtained by projecting
the model onto a left stereo image. Table 1 shows the computational costs in
Figure 9, where Mv,Mc are the numbers of vertexes and circles; Dv, Dc are those
of the data; HI is the number of hypotheses without limitation in Sect. 4.1,
HW is the number with limitation in Sect. 4.1, HF is after initial matching; T
is the execution time (seconds). The parameters are: θIc = 0.01, θFc = 0.01,
θId = 7 (mm), θFd = 5 (mm). These parameters are decided experimentally. θW
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is: 90 (deg.) in the case Nv = 20; 60 (deg.) in the case Nv = 80; 40 (deg.) in the
case Nv = 320. These parameters are decided according to the angle between
adjacent viewing directions in the model generation process. The results show
that the proposed method can be executed rapidly and robust for both occlusion
and cluttered environments.

(a) block (b) duck (c) cup (d) phone

(e) “rockerArm” (f) “igea” (g) snack 1 (h) snack 2

(i) snack 3 (j) bottle 1 (k) bottle 2 (l) bottle 3

Fig. 9. Experimental results

Table 1. Computational costs and number of hy-

potheses in Figure 9

Nv Mv Mc Dv Dc HF HW HI T

(a) 20 1420 1486 60 80 497 11792 34730 3.07

(b) 80 284 0 60 80 697 2386 2398 2.21

(c) 20 350 362 121 134 371 8141 11703 4.64

(d) 80 1122 956 121 134 994 11336 29222 3.60

(e) 80 1132 1162 107 156 1489 14355 41365 2.83

(f) 320 1608 1910 107 156 731 53282 241975 6.46

(g) 20 176 190 152 164 462 6235 9643 3.54

(h) 20 300 0 152 164 292 2383 2395 2.57

(i) 20 216 0 152 164 613 2469 2503 2.48

(j) 20 354 428 115 156 250 10804 17327 4.19

(k) 20 428 390 115 156 96 9282 13983 4.70

(l) 20 488 448 115 156 119 11127 16844 4.53

Table 2. Standard deviation

of Rx, Ry , Z, r in Figure 10

Rx Ry Z r
[deg.] [mm]

block 0.54 0.72 0.22 0.57

duck 0.88 1.04 0.32 1.26

“igea” 1 1.83 1.79 0.62 1.47

“igea” 2 4.08 2.38 0.73 1.83
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Fig. 10. Error evaluation

To evaluate the accuracy of the position and orientation, we conduct experi-
ments using a turntable [6,8]. We use a block, duck and “igea”. For “igea”, we
set up two poses. As shown in Figure 8, the rotational stage of the turntable is
set up parallel with the X-Y plane of the world-coordinate system. An object is
placed on the rotational table and rotated through 360 degrees in increments of
1 degree. Figure 10 shows the motion of the centroid for each model in the X-Y
coordinates and the localization result for points (a), (b) and (c). In this exper-
iment, the standard deviation of rotation angles around the X-axis and Y -axis,
the Z-position and r, which is the distance between a centroid of a model and
the rotational axis of the table, should be constant. Table 2 shows the standard
deviation of Rx, Ry, Z and r. The results show that the proposed method has a
high enough accuracy for a robot manipulator to pick up an object.



Model-Based 3D Object Localization Using Occluding Contours 415

6 Conclusion

This paper described a method for model-based 3D object localization. Object
model features were generated and maintained according to viewing directions
that were discretely set. By using the viewing directions that were used in object
modeling, we reduced the number of combination of features between a model
and the reconstructed 3D boundaries. Errors in matching caused by discrete
modeling were improved by searching corresponding triangles for 3D boundaries.
The proposed localization algorithm and object modeling allowed parallel pro-
cessing. Experimental results for various objects showed the effectiveness of the
proposed method. In the future, we will reduce computational cost by reducing
the number of features.
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Abstract. In this paper, we propose an efficient method for finding con-

sistent correspondences between two sets of features. Our matching al-

gorithm augments the discriminative power of each correspondence with

the spatial consistency directly estimated from a graph that captures the

interactions of all correspondences by using Random Walks with Restart

(RWR), one of the well-established graph mining techniques. The steady -

state probabilities of RWR provide the global relationship between two

correspondences by the local affinity propagation. Since the correct cor-

respondences are likely to establish global interactions among them and

thus form a strongly consistent group, our algorithm efficiently produces

the confidence of each correspondence as the likelihood of correct match-

ing. We recover correct matches by imposing a sequential method with

mapping constraints in a simple way. The experimental evaluations show

that our method is qualitatively and quantitatively robust to outliers,

and accurate in terms of matching rate in various matching frameworks.

Keywords: Random Walks with Restart, feature correspondence, se-

quential matching.

1 Introduction

Feature correspondence is one of the fundamental problems of computer vision
and lies at the core of many applications including 3D reconstruction and ob-
ject recognition. To solve this problem, several approaches [9][3][7] have been
proposed. One approach is to formulate the matching problem as an integer
quadratic programming, like [9][3]. However, the method of Maciel et al. [9] is
based on a non-optimal minimization technique with non-polynomial complex-
ity, and the method by Berg et al. [3] is more suitable only for the case of
allowing several features to match the same feature. The other one is to use
a spectral technique for finding consistent correspondences between two sets of
features, like [7]. Leordeanu et al. [7] used the principal eigenvector of the pair-
wise affinity matrix corresponding to its largest eigenvalue as the information
about how strongly the matching candidates belong to the optimal set. However,
their results depend mainly on the properties of the affinity matrix such as the
number of links adjacent to each correspondence in local neighborhood system.
Moreover, it is difficult to control the scale of each individual appearance-based
matching score compared with the geometric affinities in a principal manner.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 416–425, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we introduce an efficient probabilistic method for solving vari-
ous correspondence problems. We propose to estimate the likelihood that each
candidate corresponds to the consistent correspondences between two sets of
features by the Random Walks with Restart (RWR) [6][11], one of the well-
established graph mining techniques. Namely, this likelihood of one matching
candidate is defined as the weighted sum of all the steady-state probabilities
between that candidate and other candidates in the RWR framework. We finally
recover the optimal matches from the estimated likelihoods by simply adopting
a sequential method with mapping constraints, as in the work of Leordeanu et
al. [7]. Our matching framework has various advantages over [7] as follows. First,
since RWR, similarly to the graph-based semi-supervised learning [13], has the
ability to estimate the global relevance between pairs of correspondences by the
local affinity propagation, our proposed likelihood of each correspondence rep-
resents its confidence by considering global interactions among highly consistent
correspondences. Second, we easily define the combination of two properties:
the discriminative power of each individual correspondence and the pairwise
geometric affinities, in a probabilistic framework. Finally, our approach can be
applied to various correspondence problems between points, regions, or interest
points [8][10][12]. In case of non-discriminative features like points, the only pair-
wise geometric information helps in finding the correct correspondences. When
discriminative features like regions or interest points are employed, both the ge-
ometric relations and each individual appearance-based matching score can be
utilized for improving the performance.

2 Proposed Algorithm

Feature matching is to find the optimal set Lopt of well-matched pairs in a can-
didate set L = {ln}n=1,...,N of the initial feature correspondences ln = (xn, xn′),
where the features xn and xn′ are extracted in two sets X and X ′ respectively.
Let e be the event of a candidate be matched. We intend to estimate the likeli-
hood θn = p(ln|e) that the candidate ln is a correct match. We finally recover the
optimal matches Lopt from the total likelihoods {θn}n=1,...,N by simply imposing
a sequential method with mapping constraints.

2.1 Likelihood Estimation

The likelihood θn can be obtained by

θn =
∑
lk∈L̄

p(ln|lk, e)p(lk|e) =
∑
lk∈L̄

πk
nηk, (1)

where L̄ ⊂ L is a set of the seed correspondences. All candidates are generally
used as seeds, L̄ = L. However, if there are many outliers with very similar ap-
pearances, it is more effective to use only a few correspondences, that are likely
to exist in the optimal set Lopt, as seeds. Each likelihood θn is modeled by a
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mixture of distributions πk
n = p(ln|lk, e) from each seed lk ∈ L̄ which has an ini-

tial seed distribution ηk = p(lk|e). The distribution πk
n indicates the geometric

relevance score between a candidate ln and a seed lk. In this work, we propose
to use the RWR steady-state probability based on the pairwise local affinities, as
similar to the segmentation framework of Kim et al. [6]. Compared with tradi-
tional graph distances (such as shortest path, maximum flow), this steady-state
probability can capture the whole relationship between two candidates. The seed
distribution ηk corresponds to the weight of the seed lk. Namely, it means how
well the features’ descriptors of the seed lk match to each other. In brief, our
matching algorithm combines the discriminative power of each correspondence
with the global geometric interactions in a probabilistic framework. Now, we
describe our proposed distributions πk

n and ηk in detail.

Estimating Pairwise Relationship of Correspondences. Let us consider
an undirected weighted graph G = (L,E), where each node ln ∈ L uniquely
identifies a feature correspondence, and each edge enm ∈ E spanning between
two nodes ln, lm ∈ L is determined by the neighborhood system. Each weight
wnm ∈ W is assigned to the edge enm, and measures how compatible the fea-
tures (xn, xm) in a set X are with (xn′ , xm′) in the other set X ′ by the compu-
tation of the geometric consistency between two correspondences ln = (xn, xn′)
and lm = (xm, xm′). The affinity matrix W = [wnm]N×N may be differently
designed according to various applications. We will introduce various pairwise
affinity models in Section 3 in more detail.

Now, we propose to use the steady-state probability of RWR, that captures
the whole relationship between a candidate ln and a seed lk in this graph G,
via the geometric affinity πk

n in (1). Suppose that a random walker starts from a
seed lk, and iteratively transmits to its neighborhood with the probability that
is proportional to the edge weight between them. Also at each step, it has a
restarting probability λ to return to the seed lk. After convergence, we obtain
the steady-state probability that the random walker will finally stay at the node
ln. Since this steady-state probability considers all possible paths between the
two correspondences ln and lk, it is suitable measure for the distribution πk

n in
(1). By setting a vector πk = [πk

n]N×1, RWR can be formulated as follows [6][11].

πk = (1− λ)Pπk + λhk, (2)

where hk = [hk
n]N×1 is the seed indicating vector with hk

n = 1 if n = k and 0 oth-
erwise, and the transition matrix P is the adjacency matrix W row-normalized:
P = D−1 × W, where D = diag(d1, ..., dN ), dn =

∑N
m=1 wnm. The random

walker positioned at each correspondence ln is returned with the restarting prob-
ability λ. With smaller λ, the current state becomes more emphasized and more
propagated to its neighborhoods. We empirically set λ = 0.01 for all experiments.

Estimating Initial Seed Weights. A seed weight ηk in (1) means how well
matched both features of the seed correspondence lk are. Let η̂ = [η̂k]N×1 be the
seed weight vector with η̂k = ηk if lk ∈ L̄ and 0 otherwise. This vector η̂ can be
differently designed according to the feature types for the specific applications.
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In case of non-discriminative features such as points, there are no initial scores
on the individual correspondences. In this case, we use the principal eigenvector
of the pairwise affinity matrix W as in the work of Leordeanu et al. [7]. Their
work is to find the optimal solution u∗ = argmaxu(uT Wu) that maximizes
the inter-cluster score S =

∑
ln,lm∈L wnm. By the Raleigh’s ratio theorem, this

solution u∗ is the principal eigenvector of W. Since the eigenvector u∗ denotes
the unary scores that represent how strongly each correspondence belongs to the
optimal set, it is defined as our seed weight vector η̂ = u∗ (|η̂| = 1).

For discriminative features like regions or interest points [8][10][12], we use the
following seed weight η̂k based on the Euclidean distance between two features
xk and xk′ of each seed lk with feature properties vk and vk′ .

η̂k =
{

exp
(−‖vk − vk′‖/2σ2

w

)
lk ∈ L̄

0 otherwise,
(3)

where σw is the variance of the total feature properties. In this work, all can-
didates are used as seeds, L̄ = L. Although each seed weight provides a proper
information about how well the features’ descriptors match, it does not give
absolute confidence under difficult conditions such as nonrigid deformation, oc-
clusion and illumination changes. So, if we can choose only a few reliable seeds
instead of all candidates under uncertain conditions, they can help in finding bet-
ter correspondences. For example, we can select the refined seeds L̄ by adding
an additional condition that the distance to the first nearest neighbor is closer
than 0.7 times the distance to the second one. This constraint can be generally
used for extracting more discriminative correspondences.

Overview of Our Probabilistic Model. Based on the RWR formulation
in (2), the total likelihoods {θn}n=1,...,N in (1) can be written in a vector form,
θ = [θn]N×1 such that

θ = (1 − λ)Pθ + λη̂ = λ(I − (1− λ)P)−1η̂. (4)

Since a small neighborhood system is used for the transition matrix P, the
matrix (I − (1 − λ)P) in (4) is very large (N × N) but quite sparse. Therefore
its inversion is practically feasible by efficient numerical methods. For example,
the MATLAB division operator ‘\’ (which we used in our experiments) serves
as a very efficient tool in finding the inversion of such large sparse matrix.

2.2 Finding Optimal Correspondences

We finally choose the well-matched pairs Lopt from the estimated likelihoods θ
in (4). Algorithm 1 describes the selection procedure of correct matches, which is
similar to the greedy algorithm of Leordeanu et al. [7] for finding the solution of
the correspondence problem. We start by first selecting l∗n (= argmaxlm∈Lθm)
that has the maximum likelihood as a correct correspondence, because it is the
one we are most confident of being correct. Namely, we assign l∗n into Lopt. Next
we have to reject all other candidates that are in conflict with l∗n by user-defined
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Algorithm 1. Sequential Matching Estimator
1: Accept a correct pair l∗n of maximum likelihood θn and insert it into Lopt.

2: Reject all other candidates that are in conflict with l∗n by user-defined constraints.

3: Choose the next correct match l∗n as the one with the next highest likelihood except

the rejected or accepted candidates.

4: (Optional) If l∗n is incompatible with the inliers lm ∈ Lopt such that

maxlm∈Lopt wnm < γ, reject it and go to step 3.

5: Accept a correct pair l∗n and insert it into Lopt.

6: If all candidates are not either rejected or accepted, go to step 2.

constraints. In our experiment, we reject all candidates of the form (xn, ·) or
(·, xn′). Note that here the user could use different constraints. We accept the
next correct match l∗n as the one that has the next highest likelihood among the
remained candidates. In this accept step, we can optionally use the additional
rejecting constraint in Algorithm 1.4, where the pairwise affinity score wnm is
used for deciding the optimality of l∗n. Since this constraint is based on the
concept that the matches in Lopt have a tendency to smoothly change the local
geometric deformation between the neighboring ones, we can easily find the
optimal set Lopt regardless of the real sets with many outliers. We then continue
by rejecting the pairs in conflict with the newly accepted one l∗n. We repeat this
procedure of accepting new match, until all candidates are either rejected or
accepted. We finally produce the set Lopt of correct matches.

3 Experiments

We present experiments which demonstrate the performance of our approach
to feature matching. In this section, we applied our algorithm to several dif-
ferent correspondence problems according to the feature types including Point
Matching, Region Matching and Interest Point Matching. These problems have
different affinity matrices W and seed weight vectors η̂ in (4).

Point Matching. We evaluate the robustness of our algorithm according to
the deformation and the ratio of outliers to inliers on the task of finding cor-
respondences between 2D point sets, like in [7]. For quantitative evaluation, we
study the case when the deformation noise is added by a Gaussian distribution
with zero mean. We generate date sets of 2D model points X by randomly se-
lecting N i inliers in a given plane. We obtain the corresponding inliers in X ′

by disturbing independently the N i points from X with white Gaussian noise
N(0, σ2

e). The parameter σe controls the degree of the deformations between
two sets X and X ′. Next we randomly add No point outliers in X and X ′,
respectively, with the same random uniform distribution over the x-y coordi-
nates. The total number of points in X (or X ′) is Np = N i + No. The size of
L is N = Np × Np since all possible correspondences are used as candidates.
In this experiment, we score the performance according to the variation of the
deformation parameter σe and the number of outliers No.
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(a) N i = 15, No = 0 (b) N i = 30, No = 0 (c) N i = 15, σe = 2

Fig. 1. Comparison of our method with spectral method (‘Spectral’) [7] for point

matching. (a) and (b) show the number of the correct matches according to the varia-

tion of deformation noise σe. (c) compares the number of the correct matches according

to the variation of the number of outliers No.

For estimating the likelihoods θ in (4), the affinity matrix W = [wnm]N×N

is defined by the following pairwise score wnm between two candidates ln =
(xn, xn′) and lm = (xm, xm′) [7]. Note that a feature xn has the x-y position
vector fn.

wnm =

{
4.5− (Dnm−Dn′m′)2

2σ2
d

if |Dnm −Dn′m′ | < 3σd

0 otherwise,
(5)

where the functions Dnm = ‖fn − fm‖ and Dn′m′ = ‖fn′ − fm′‖ output the Eu-
clidean distances between the pairs of points. The parameter σd controls the
sensitivity of the weight on deformations. The larger σd, the more deformations
in the data we can accommodate, also the more pairwise relationships between
wrong matches will get positive scores. We initially set σd = 5. Since points X
and X ′ are non-discriminative and there are no information on the individual
correspondences, the principal eigenvector of the affinity matrix W is used as the
seed weights η̂. We finally produce the optimal set Lopt from these likelihoods θ
by Algorithm 1 without the optional step 4.

Fig. 1 shows the performance curves of our method vs. the spectral method
[7] as we vary the deformative noise σe from 0 to 10 (in steps of 1), the number
of inliers N i from 15 to 30, and the number of outliers No from 1 to 30 (in steps
of 1). Both methods ran on the same problem sets over 30 trials for each value
of the varying parameter. We compared the performances of these two methods
by counting how many matches agree with the ground truth. Compared with
the spectral method [7] that depends mainly on neighborhood system to each
candidate, our method increases the confidence of all correspondences by con-
sidering the whole relationship between the candidates.

Region Matching. In the task of finding region correspondences like [4], this
experiment gives the average performances of the algorithms according to the
variation of the region properties. For quantitative evaluation, we studied the
case when the color noise was added by a Gaussian distribution with zero mean.
We generated date sets of N c×N c grid regions X with random colors, as shown
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Fig. 2. Comparison of our method with the ‘Initial’ method and the ‘Spectral’ method

[7] for region matching. (a) and (b) show the synthetic examples with 4×4 grid regions

in X and X ′, respectively. (c) and (d) compare the number of the correct matches

according to the variation of the color noise σc. In case of 4 × 4 region matching, (e)

and (f) check the sensitivities of the ‘Spectral’ method and ‘Our’ method according to

the variation of the parameters κ in (7) and λ in (4), respectively.

in Fig. 2(a). We obtained the corresponding regions in X ′ by supporting the
adjacency relations in X . We then disturbed independently the colors of the
regions in X ′ with white Gaussian noise N(0, σ2

c ), as shown in Fig. 2(b). The
parameter σc controls the degree of the color variance between two sets X and
X ′. The total number of regions in X is Np = N c ×N c. The size of candidates
L is Np × Np, since all possible combinations were used as candidates. In this
experiment, we scored the performance according to the color variance σc.

For estimating the likelihoods θ in (4), the pairwise affinity score wnm between
two candidates ln = (xn, xn′) and lm = (xm, xm′) was defined under the basic
and simple concept that a correspondence preserves adjacency relations in the
image space, as follows.

wnm =
{

1 if (xn, xm) ∈ ℵ and (xn′ , xm′) ∈ ℵ′

0 otherwise,
(6)

where the adjacency relation (xn, xm) ∈ ℵ (or (xn′ , xm′) ∈ ℵ′) exists if regions
xn (or xn′) and xm (or xm′) share a common boundary as in the work of Hedau
et al. [4]. We simply generated the seed weights η̂ for all correspondences L̄ = L
by using the 3-dimensional color values as the feature property v(·) in (3). We
initially set σw = 0.25 in (3). We finally produced the optimal set Lopt by
Algorithm 1 without the optional step 4.

Fig. 2(c) and (d) compare the performance curves of our method with the
‘Initial’ method and the ‘Spectral’ method [7] as we varied the color noise σc
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Fig. 3. Introducing our geometric affinity score wnm between two correspondences

ln = (xn, xn′) and lm = (xm, xm′) for affine covariant features. Each feature xn has the

x-y position vector fn. Each candidate ln has the local affine transformation matrix

An between two features xn and xn′ , estimated by [8][10][5]. We initially set σf = 0.5.

from 0 to 0.1 (in steps of 0.01), the number of matched regions Np from 16 to 25.
We compared the performances of these three methods over 30 trials by counting
how many matches agreed with the ground truth. Note that the ‘Initial’ method
is the same as Algorithm 1 with the seed weights η̂, instead of the likelihoods
θ. It was included for testing the qualities of the seed weights η̂ itself. Although
the pairwise affinity wnm in (6) for region matching only considers the adjacency
relation, our method achieved better performance than other methods.

For discriminative features, the ‘Spectral’ method [7] uses a new weight matrix
Π, instead of W, as follows.

Π = W + κ · diag(η̂), (7)

where the parameter κ controls the scale of the scores η̂ of each individual cor-
respondence compared with the geometric affinity W. With larger parameter κ,
the discriminative power of each correspondence is more emphasized than pair-
wise relations. Fig. 2(e) shows that the performance of the ‘Spectral’ method is
very sensitive to the parameter κ. We empirically set κ = 100. Our method also
needs one parameter: the restarting probability λ in (4). However, compared
with the ‘Spectral’ method, our method finds better correspondences with little
performance changes according to the variation of λ, as shown in Fig. 2(f).

Interest Point Matching. We generally use the interest points, extracted
by the affine covariant region detectors [8][10][12], as features. We choose a can-
didate set L of the N feature correspondences with the condition that the de-
scriptors are the nearest neighbors. Note that here the user could use different
constraints for generating L. In this experiment, we used both affine covariant
region detectors: the MSER detector [12] and the Hessian Affine detector [10] to
obtain larger candidates L. The pairwise affinity wnm was defined as the spatial
configuration between the neighboring feature correspondences, and based on
the Euclidean distances between the pairs of features as shown in Fig. 3. This
affinity matrix W well represents the pairwise geometric relationships under
non-rigid deformations. The seed weights η̂ were obtained by using the SIFT
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descriptor [8] as the feature property v(·) in (3). We initially set σw = 0.2 in
(3). We finally produced the optimal set Lopt by Algorithm 1 with the threshold
γ = 0.9.

Fig. 4 and Fig. 5 show the results of our feature matching in different dataset:
ETHZ toys dataset and ICCV2005 datasets, respectively. These examples prove

|L| = 707 |Lopt| = 34

|L| = 1187 |Lopt| = 30

Fig. 4. Results of our feature matching in ETHZ toys dataset [1]: The original color

images (the left column) and the matched features (right column)

L={42 Inliers + 279 Outliers} L={17 Inliers + 324 Outliers} L={41 Inliers + 355 Outliers}

Lopt={25 Inliers + 0 Outliers} Lopt={9 Inliers + 0 Outliers} Lopt={15 Inliers + 0 Outliers}
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Fig. 5. Results of our feature matching between two scenes sharing overlapping fields

of view in ICCV2005 datasets [2]. The matched features between each pair of the color

images, displayed in the top row, are presented in the middle row. The graphs in the

bottom row show the accumulated number of correct pairs in a high likelihood order.
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that our method produces well-matched pairs under difficult conditions such as
nonrigid deformation and many outliers.

4 Conclusions

This paper presents a novel probabilistic framework for various correspondence
problems. In this work, we design the likelihood of each correspondence as the
weighted sum of all the RWR steady-state probabilities between feature corre-
spondences. This likelihood efficiently represents the confidence of each candidate
by considering the whole relations between two candidates in small neighborhood
system. We finally obtain the optimal matches by a simple sequential method
with mapping constraints. our method is qualitatively and quantitatively ro-
bust to noise and outliers in various matching frameworks. Our future work will
include the candidate growing approach, instead of the fixed candidates L.
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Abstract. Intensity based registration methods, such as the mutual in-

formation (MI), do not commonly consider the spatial geometric infor-

mation and the initial correspondences are uncertainty. In this paper,

we present a novel approach for achieving highly-automatic 2D/3D im-

age registration integrating the advantages from both entropy MI and

spatial geometric features correspondence methods. Inspired by the scale

space theory, we project the surfaces on a 3D model to 2D normal image

spaces provided that it can extract both local geodesic feature descriptors

and global spatial information for estimating initial correspondences for

image-to-image and image-to-model registration. The multiple 2D/3D

image registration can then be further refined using MI. The maximiza-

tion of MI is effectively achieved using global stochastic optimization. To

verify the feasibility, we have registered various artistic 3D models with

different structures and textures. The high-quality results show that the

proposed approach is highly-automatic and reliable.

1 Introduction

Multiple 2D/3D image registration and mapping is a key problem in computer
vision that shows up in a wide variety of applications such as medical image
analysis, object tracking, recognition and visualization. In practice, due to the
less information about intra- and inter-correspondences for captured multiple
images and the 3D model, the problem of multiple 2D/3D image registration is
highly ill-posed. The MI measure based 2D/3D image registration methods take
only intensity values into account without considering spatial geometric infor-
mation. The error of initial correspondences may easily lead to a blunder in the
final registration. Therefore, it is often that the initial spatial correspondences
are manually determined by users, which is non-efficient and time consuming.

This paper presents a novel approach for highly-automatic MI based texture
registration using self-initialized geodesic feature correspondences. Given a 3D
shape model and multiple images, we perform this approach in three main steps
with respect to the search of initial spatial correspondences, the estimation of
projective transformation of multiple views, and the refinement of texture reg-
istration. At first, we extract local features of surfaces on a 3D shape. However,

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 426–435, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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direct geometric feature extraction on 3D shapes is difficult. The reason is that
the scale-variability of geometric structures on scanned 3D models are simplified
due to discrete 3D coordinate point-clouds or triangulated surfaces on 3D models,
shown in Fig. 1. Traditional work extract feature descriptors using only surface
and curvature smoothing based on 3D coordinates lacking canonical scale anal-
ysis. The important discriminative information encoded in the scale-variability
of intrinsic geometric structures are easily ignored. Recent work on the scale-
variability of images as a 2D projection of 3D objects [1], scale invariant features
in the discrete scale space for 2D images [2], and scale-dependent 3D geometric
features [3] have been studied intensively. Inspired from these work, we present a
comprehensive framework for analyzing and extracting local feature descriptors
using the constructed multiple normal maps in geometric scale-spaces.

Secondly, the projective transformation of correspondences for image-to-image
2D/2D and image-to-model 2D/3D are estimated using sparse geometric features
and related camera parameter estimation procedures. The key idea underlying
the correspondence between a 3D shape and images is that multiple 2D normal
images are the 2D projections of geometric surfaces on a 3D shape. The con-
verted multiple normal maps encode the rich geometric information within the
spatial distribution of each local features that are sparsely distributed on the nor-
mal images using geodesic distance measure. The self-initial correspondences are
estimated in two steps with respect to 2D/2D and 2D/3D correspondences. Fur-
thermore, a maximization of MI method [4], [5] is extended for refining multiple
2D/3D image registration using self-initialized geodesic feature correspondences.

Our approach has several advantages. First, the approach is highly-automatic
and efficient, facilitating the human supervision and the search of initial cor-
respondences to geometric 3D models with varying geometric complexity. One
only needs to define the group of input images according to their surface repre-
sentations on the 3D shapes. The best position of given multiple viewed images
to the 3D surface is determined using self-initialized correspondences. Second,
sparse geometric features based initial correspondence does not require camera
captured images to contain the entire 3D object for the purpose of silhouette
extraction [6], or shape outline extraction. Third, the approach allows sparse
geometric feature correspondences and entropy MI based optimization to be
integrated for solving a practical problem in a reliable and optimal way.

The rest of the paper is organized as follows. Section 2 presents the concepts
of multiple normal images of a 3D shape model. Section 3 describes the geodesic
measure and sparse geometric feature extraction. Section 4 formulates the global
stochastic optimization based maximization of MI. Implementation details and
experimental results are presented in Section 5.

2 Multiple Normal Image Representation of a 3D Model

Given a triangular mesh model of a 3D object, a original mesh M is parame-
terized to a planar domain D. The parametrization p : D → M is a bijective
mapping from a discrete set of planar points to the mesh vertex set. Normally,
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Fig. 1. a|b|c|d. (a) A partial point-clouds 3D model. (b) Shaded 3D model. (c) Normals

on the 3D model. (d) 2D mesh parameterization with fixed boundary of this 3D model.

parameterizing a mesh to a planar domain does not preserve the angles and the
surface area of faces on the mesh. Some changes in the angles and surface area
are considered as distortions. Minimizing the parameterization distortion is a
challenging problem [7], [8], [9]. For example, in Fig. 1(d), we parameterize one
2D mesh image that encodes the original 3D model.

Although the geometric properties can be encoded via 3D coordinates and
curvatures, the surface normals have been demonstrated as a suitable base rep-
resentation, shown in Fig. 1(c). It allows us to use Gaussian filtering on the 3D
shape without influencing the topology of 3D shapes. The normal directions are
critical for detecting 3D features. To implement it, we project the surface normal
of each vertex of the 3D model and then interpolate those values in the planar do-
main using barycenter coordinates within each triangular face to obtain a dense
normal map. The resulting normal map is a geometric 2D image representation
of the original 3D shape (or part of the shape) that is independent of the reso-
lution of its 3D model. To achieve accurate representation of geometric surfaces
on a 3D shape to one or multiple normal images, we define the transformation
in terms of geodesic distances instead of the traditional Euclidean distances.

The generated one or multiple normal maps cannot exactly represent the origi-
nal 3D shape due to the distortion of parameterization. For example,
the distance between any two points in the normal map is not equivalent to
the corresponding relative geodesic distance on the 3D model. To construct 2D
surface representation of the original shape, the correct relative geodesic dis-
tances between any two points on the normal map is necessary. Therefore, the
distortion is computed for each point in the normal map. Given a point v ∈ D
that maps to a 3D mesh vertex Ψ(v), we define its distortion ξ(v) in the equation
ξ(v) = 1

|adj(v)|
∑

u∈adj(v)
‖v−u‖

‖Ψ(v)−Ψ(u)‖ , where adj(v) is a set of vertices adjacent
to v. The local distortion is a measure of the average change in the length of the
edge adjacent to a vertex. The large ξ(v), the more the adjacent edges have been
stretched in the parameterization around v. We then construct a dense map of
distortion values in this way. The resulting distortion map is to approximate the
geodesic distances between any two points in the normal map.
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Fig. 2. a|b|c|d
e|f |g|h . Geodesics Gaussian distribution on embedded surfaces in 3D spaces.

(a)(b)(c)(d) The boundary of geodesic Gaussian kernel with a radius. (e)(f)(g)(h) The

distribution of geodesic gaussian kernels with a given radius.

3 Geodesics Measure and Feature Corners Extraction

To achieve initial correspondence searching, we have to define the right feature
spaces. To detect salient feature corners for matching, we first derive the first or-
der and second order partial derivatives of the normal map Nσ. Novel feature cor-
ners can then be derived using these partial derivatives using geodesics distance
as the distance metric which can accurately represent the local surface geometry
in scale-space. Given a 2D isotropic Gaussian centered at a point u ∈ D, we define
the value of geodesic Gaussian kernel at a point v, then the boundary of geodesic
support region on a intensity surface in 3D space. The geodesic Gaussian kernel is
derived as Ggeod(v, u, σ) = 1

2πσ2 exp
[
− dgeod(v,u)2

2σ2

]
, where dgeod : R2 × R2 → R

is the geodesic distance between the 3D surface points Ψ(v) and Ψ(u). The
geodesic distance between two 3D points is defined as the discretized line inte-
gral dgeod(v, u) in the distortion map, which can be computed as dgeod(v, u) ≈∑

vi∈Ω(v,u)
ξ(vi)

−1+ξ(vi+1)
−1

2 ‖vi−vi+1‖, where Ω(u, v) = [v1, v2, · · · , vn, u] is a list
of points sampled on the surface between v and u. The density of this geodesic
sampling determine the quality of the approximation of the original geodesic dis-
tance. Using the geodesic Gaussian kernel, the normal at point u for scale level
σ as Nσ(u) =

∑
v∈F N(v)Ggeod(v;u, σ)/‖∑v∈F N(v)Ggeod(v;u, σ)‖ , where F

is a set of points in a window centered at u. The window size is also defined
in terms of geodesic distance and is proportional to the standard deviation σ
at each scale level. In our implementation, we change the size of the window
from the center point while evaluating each point’s geodesic distance from the
center to correctly estimating the distribution of similar“high” points. Note that
the geodesic Gaussian kernel can be performed for the image embedded surface
with the 3rd coordinate of intensity in 3D space. Fig. 2 shows the non-isotropic
boundary distribution of geodesic Gaussian kernel with a scale σ for an embed-
ded surface in 3D spaces. It has the same effects on the normal maps which can
be smoothed using the geodesic Gaussian kernel in different scales.
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Based on these properties, we extract the geometric meaningful feature corners
on the normal maps so that we can find the correspondence points between
normal maps and the photographs of the real object in the next step. We are
interested in detecting the geometric corners which can also be detected on the
related 2D photographs. Firstly, we compute the Gram matrix R of the first
order partial derivatives of the normal map Nσ at each point. The Gram matrix
at a point u is defined as

R(u;σ) =
∑

v∈W

[
Ns

σ(v)2 Ns
σ(v)N t

σ(v)
Ns

σ(v)N t
σ(v) N t

σ(v)2

]
Ggeod(u, v)] (1)

Where Ns
σ and N t

σ are the horizontal first derivatives and vertical first deriva-
tives in the tangential plane on the normal map. The normal map encodes rich
geometric information parameterized from the 3D model. Then, using a prin-
ciple of corner extraction [10], we extract corners from normal maps using the
likelihood of a corner as the corner response following P(u;σ) = det(R(u;σ))−
τTrace(R(u;σ))2, where τ is a tunable parameter. Once the corners are detected
in 2D they can be mapped back to the original 3D model. Since the 2D normal
map is dense, the corresponding location of the corners in 3D are independent
of the input 3D model’s triangulation.

4 Maximization of MI Based Registration Refinement

Let x be an arbitrary point on the surface of the 3D model that is visible in
the texture image I(x), and T (x) is the 3D-2D projective transformation. The
intensity value in the image I(T (x)) depends on the radiance in the scene, the
(bidirectional reflectance distribution function) BRDF of the surface in x, and
the normal to the surface N(x). The dependance of the intensity I(T (x)) on
the surface normal N(x) can be estimated using the MI (redefining x as a ran-
dom variable), i.e., the entropy of the “normal-intensity” M[N(x), I(T (x))]. If
we consider a random variable x, its entropy H(x) can be estimated from two
independent samplings of x. One sampling is used to estimate the probability
density function with the Parzen window method, which is then evaluated on
the second sampling. The MI between N(x) and I(T (x)) is estimated from small
sub-samplings of the data (order of tens of points). When the image I(T (x)) and
the model N(x) are optimally aligned, the mutual information M is maximized.

Based on this principle, Viola and Wells [4] proposed a method based on
Parzen windows [11] to estimate the MI and its differential with respect to T (x),

M[N(x), I(T (x))] = H[N(x)] +H[I(T (x))] −H[N(x), I(T (x))] (2)

where M is MI and H entropy. Note that H[N(x)] does not depend on the trans-
formation T (x). Due to the small random sub-sampling of data, the estimation
of the MI gradient is stochastic. Recently, Cleju and Saupe [5] extended this for-
mulation to support multiple image registration. Except the image-to-model MI
which is defined in the same way as [4], additional image-to-image MI objective
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function are defined using the full color space. The MI between images I1 and
I2, associated with the transforms T1 and T2, is defined as:

M[I1(T1(x)), I2(T2(x))] = H[I1(T1(x))] +H[I2(T2(x))] −H[I1(T1(x)), I2(T2(x))]

The main advantage of the formulation is that the new objective functions bring
the surface BRDF in the global optimization criterion. In this function, the
image-to-image MI is defined from the chrominance components I and Q of
the YIQ color space. The image-to-image MI is parameterized by the projective
transformations associated with both images, and it is maximized when both
images are aligned to the model. The stochastic gradient estimation follows the
same procedure as for the image-to-model MI.

For the joint refinement and optimal registration of several images to a 3D
model, we use a multi-objective optimization method [5] that is defined as a
linear combination of the elementary MI functions with non-negative weights.
In this method, firstly, when all images are aligned and the registration refined
to the model, all objective functions are maximized. If only the image-to-model
MI functions are considered, each set of camera parameters corresponds to one
objective function. In this case the iterative gradient-based optimization updates
each set of parameters in the direction of the corresponding gradient. Secondly,
when all image-to-image MI functions are considered, we estimate several gra-
dients for the parameters of each camera, corresponding to the MI with the
model and with other overlapping images. In each iteration we must choose the
direction for optimization based on the these gradients.

5 Implementation and Experimental Results

We present the implementation in detail. Sequentially, we describe the interme-
diate and final registration results in our experiments for the proposed approach.

5.1 Self-initialized Correspondence Using Sparse Features

In this step, we estimate initial correspondence for both image-to-image and
image-to-model matching. We have implemented the proposed geodesic feature
corner extraction method on the normal maps which is parameterized from the
3D shape models. Then we present automatic initial correspondence results for
image-to-image and image-to-model via certain related matching algorithms and
a camera self-calibration method. Finally, we further optimize the extrinsic pa-
rameters of the cameras and refine the registration results using the MI based
global stochastic optimization framework.

Firstly, the projective transformation T is computed by estimating camera
model. The optimization model does not make assumptions on the projective
transformation T , and consequently on the camera model. In our implementa-
tion we consider the pinhole camera model [12] with four distortion coefficients
(two for radial distortion and two for tangential distortion). Since multiple views
of photographs have been taken around the real 3D object, any two uncalibrated
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Fig. 3. a|b|c Initial correspondence searching of pairwise texture images. (a)(b) Two

captured texture images for the real 3D object with detected and triangulated feature

corners. (c) Unsupervised searching of initial feature correspondence between pairwise

texture images (a) and (b) using the GASAC method.

Fig. 4. a|b|c (a) Project two images to the 3D model using the self-initialized feature

correspondence. (b) Zoom in (a). (c) After projective transformation, these texture

images are initially mapped to the surface of the 3D model. Note that these two images

were taken with different illuminations (one texture image was taken using flashlight).

image consequences can be used to estimate the fundamental camera matrix
and epipolar lines for pairwise image-to-image matching [13]. The intrinsic pa-
rameters field-of-view, optical center, and distortions, were self-calibrated using
Zhang’s method [14] which are used as initial value for constructing image-to-
model correspondence. Any of projective transformation parameters are further
refined and optimized using the MI based multiple objective functions. In our
experiments, we consider the intrinsic parameters fixed and we optimize only the
extrinsic parameters. The rotation matrix is parameterized by axis-angle form
for its advantages over Euler angles in the iterative optimization [15].

Secondly, image-to-image 2D/2D correspondences are self-initialized using an
extended RANSAC algorithm. The initial correspondence for 2D/2D matching is
to determine the relative orientation of the images. The self-initialization is esti-
mated using the methods in multiple view geometry [13], [12]. We have estimated
the fundamental matrix and the epipolar lines for describing the projective rel-
ative orientation of uncalibrated images. To handle the large number of highly
resolving images, the computationally intensive RANSAC algorithm for robust
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Fig. 5. a|b|c|d
e|f |g|h High-fidelity 2D/3D texture registration results using the suggested

method. (a)(e) Camera photo for the real 3D object. (b)(f) The scanned 3D model.

(c)(g) and (d)(h) Final results of multiple image registration on the 3D model.

outlier detection has been replaced by a faster evolutionary approach called Ge-
netic Algorithm Sampling Consensus GASAC [16]. The initial correspondence
value and results of the feature based matching are shown in Fig. 3.

Furthermore, image-to-model 3D/2D correspondence are estimated based on
estimated camera parameters and additional camera calibration. To find ini-
tial correspondence value between the 3D shape and the given texture images,
we have extracted and utilized the obtained geodesic feature descriptors using
normal maps of the 3D shape. We convert the 3D/2D matching problem to a
3D/3D one. Similar to the ICP algorithm [17], the search of initial correspon-
dence is to estimate a paired-point matching transformation based on geodesic
feature points and then apply the transformation to one side of the registration.
We have scanned several artistic 3D objects with metal surface and reflection. In
Fig. 4(a) and (b), we can see some images are initially projected to the surface on
the 3D model without any projective transformation processing using sparsely
distributed correspondent feature points. After the projective transformation us-
ing self-calibrated transformation parameters, shown in Fig. 4(c), several images
with different illuminations are mapped on the surface of the 3D shape model
after refined projection and registration.

5.2 Color Image Registration and Comparison of Other Approaches

The multiple image registration can be refined and tuned using the maximiza-
tion of mutual information. If a patch of the surface is visible in two images after
self-initialized correspondence, we will simply say that the images overlap. We
define image-to-image MI functions for each overlap. In [18], a 3D model with
reflectance values mapped on its surface was registered to color images using the
method [4]. Here, we extend the objective function for fully color information
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Fig. 6. a|b|c|d High-fidelity 2D/3D texture registration results using the suggested

method. (a) Photograph. (b) The scanned 3D model. (c)(d) Final results of multiple

image registration using the suggested method. Look from different viewpoints.

of the images to the registration objective functions. In our implementation we
defined the image-to-image MI from the chrominance components I and Q of
the YIQ color space. The image-to-image MI is parameterized by the projective
transformations associated with both images, and it is maximized when both
images are aligned to the model. The gradient estimation follows the same pro-
cedure as for the image-to-model MI. Fig. 5 and Fig. 6 show the refined final
registration results using the suggested approach.

In the refinement period of registration, the maximization of MI does not need
the existence of any 3D-2D feature information (including visible outlines in the
image) after self-initialized correspondence. The refinement of global stochas-
tic optimization does not make assumptions on the unknown parameters of the
rendering function. It is robust to various illumination conditions and even to
occlusions. Compare to other registration algorithms, our accuracy is signifi-
cantly better than the one reported in [19], mean projection error of 5-6 pixels
for 3072× 2304 pixel images. One restriction when using the MI objective func-
tion is that the value of the global maximum cannot be estimated. In contrast,
when registration is refined and further optimized with point correspondences,
for instance, the global optimum corresponds to 0 projection error. The whole
software system has been implemented in Cpp language based on SUSE 10.3
Linux system. In Fig. 5, the full registration and refinement of six images takes
10 minutes using an AMD Athlon Dual-Core 4600+ 2GB PC.

6 Conclusions

In this paper, we have suggested a new approach for reliable and highly-automatic
multiple image registration using self-initialized geodesic feature correspondences.
To improve the robustness and automation of MI based multiple 2D/3D image
registration, the integration of self-initialized geodesic feature correspondence
can support accurate initial value for further global stochastic optimization based
maximization of MI. Furthermore, we have demonstrated that the normal maps
of the 3D model in scale space encode rich geometric information for geodesic
feature extraction. In particular, we have combined and utilized both advantages
from sparse features and entropy MI in an integrated framework. A thorough
evaluation and several high-fidelity registered 3D point based models show that
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the proposed approach has more flexibilities for highly-automatic and reliable
multiple image registration.
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Abstract. Accurate image correspondence is crucial for estimating

multiple-view geometry. In this paper, we present a registration-based

method for improving accuracy of the image correspondences. We apply

the method to fundamental matrix estimation under practical situations

where there are both erroneous matches (outliers) and small feature loca-

tion errors. Our registration-based method can correct feature locational

error to less than 0.1 pixel, remedying localization inaccuracy due to fea-

ture detectors. Moreover, we carefully examine feature similarity based

on their post-alignment appearance, providing a more reasonable prior

for subsequent outlier detection. Experiments show that we can improve

feature localization accuracy of the MSER feature detector, which recov-

ers the most accurate feature localization as reported in a recent study

by Haja and others. As a result of applying our method, we recover the

fundamental matrix with better accuracy and more efficiency.

1 Introduction

Most current methods for establishing epipolar geometry between two uncali-
brated views use correspondences between point features detected in each image.
Each correspondence provides one linear equation to be used in estimating the
fundamental matrix. This process is affected by error in two main ways. First,
not all matches between features reflect real correspondence between objects in
the 3D scene, and it is necessary to filter out the false matches before attempting
to estimate the fundamental matrix. The erroneous matches (outliers) are sin-
gled out using robust estimation methods such as M-estimator [1] and random
sampling algorithms [2][3]. These methods, however, discard the valuable infor-
mation about correspondence quality contained in the similarity score between
the two points, in effect assuming that all matched pairs have an equal chance
of being a mismatch. Some recent works [4][5] mitigated this shortcoming by
considering this similarity quality and achieved improved results. The second
issue is, how to accurately recover the epipolar geometry assuming we are work-
ing with inlying feature matches. In practical applications, errors in the position
of the matched point centriods are unavoidable. A feature’s geometric proper-
ties, such as location and shape, are determined by its appearance in a single
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image. Under wide-baseline conditions, these properties are highly volatile due
to factors such as image noise, occlusion, image quantization error, etc. Hence,
even correctly corresponding features can not be precisely related by the ground
truth two-view geometry. This is echoed by the recent work by Haja et al. [6].
They showed that different feature detectors exhibit significantly different lo-
calization accuracy in position and feature shape. They have also found this
positional accuracy is proportional to feature scale, which agrees with intuition.
Various numerical schemes [7][8] have been proposed for high accuracy funda-
mental matrix computation, under the assumption that the locational errors of
each feature are Gaussian. Also, Georgel et al. [9] implicitly corrected this error
by introducing a photometric cost to their pose estimation framework.

We present a method for improving point correspondences that improves both
the robustness and accuracy of fundamental matrix estimation by advancing in
both of the above areas. We achieve this by an intensity based alignment of the
local patches around each matched feature point. For each of the initial putative
matches, we locally adjust the position and shape of the feature in one image
according to the appearance of its counterpart in the other image. Consequently,
we will have a better characterization of the feature similarity and the features
are better localized towards the image of a common 3D structure. This improved
similarity and localization will enable a more effective robust outlier rejection.
At the same time, we obtain a more accurate fundamental matrix by directly
correcting the source of the inaccuracy: feature location errors.

The remainder of the paper is organized as follows. In Section 2 we discuss
related work on fundamental matrix estimation. After describing our registration-
based refinement in Section 3.1, we layout the procedure for the improved funda-
mental matrix estimation in Section 3.2. The effectiveness of the proposed
correspondence refinement is validated in Section 4. This paper concludes with
a discussion of other possible applications and future work.

2 Related Work

The fundamental matrix is the algebraic representation of the epipolar geometry,
the intrinsic projective geometry between two views. Encapsulating this two-view
geometry, the fundamental matrix F constrains corresponding image points with
a linear equation

m′�Fm = 0, (1)

for any pair of matching points m ←→ m′ in two images, where m = (x, y, 1),
m′ = (x′, y′, 1) are homogeneous representations of point image-coordinates, and
F is a 3× 3 matrix with 7 degrees of freedom.

Being linear in the elements of F, Equation (1) can be used to estimate F by
linear least squares regression, as long as we have a sufficient number of corre-
spondences in general position. However, most automated methods for selecting
matched point pairs suffer from having some amount of false matches mixed
in with the correct matches, which can cause serious errors in the regression
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process. Thus most methods for F-estimation proceed in two stages, estimating
initial F using a robust method to filter out erroneous matches, and then re-
estimating F precisely using the matches deemed correct.

2.1 Robust Fundamental Matrix Estimation

Robust methods are designed to deal with estimation problems where a portion
of the data is completely erroneous. Representative works are M-Estimators [1],
least median of squares [10], and random sampling approaches (e.g. [2][3]). How-
ever, each of these operates under the assumption that each input datum is
equally likely to be erroneous. In the image matching problem discussed here,
additional information is available to estimate the quality of the matches being
used to estimate F.

The PROSAC algorithm by Chum and Matas [5] and the Guided-MLESAC
algorithm of Tordoff and Murray [4] introduced some domain-specific priors into
the random sampling scheme. That is, they incorporated information about the
quality of the point matches into the random sampling process. These schemes,
which we call prior-influenced random sampling, demonstrate significant gain
in computational efficiency and robustness. PROSAC is of particular interest
because of its mild not-worse-than-random assumption and its computational
efficiency. It draws samples on progressively larger subsets consisting of top-
ranked correspondences. Their ranking is based on such similarity measures as
Euclidean distance of discrete cosine transform (DCT) coefficients [11] or ratio of
SIFT distances [12]. The confidence in the solution is guaranteed by a RANSAC-
equivalent termination criterion.

2.2 Precise Fundamental Matrix Estimation

Even once a set of correct matches has been selected, the equations implied by
Equation (1) cannot be satisfied exactly due to the noise in the point positions.
Precise fundamental matrix estimation (abbreviated as F-estimation) is often
cast as a minimization problem, minimizing either an algebraic residual or some
geometric distance. From the algebraic perspective, it can be solved either lin-
early by the Orthogonal Least Squares Regression algorithm [1], or by nonlinear
iterative estimation methods [13]. When approached as a geometrical minimiza-
tion problem, the objective function bears some meaningful geometrical distance.
It can be either reprojection errors of corresponding points (Golden method [14]),
or the perpendicular geometric distances of points to a certain conic (Sampson
distance [15]), or the distance of a point to its epipolar line [16].

3 Our Approach

Robust F-estimation methods rely therefore on the possibility of making a clear
distinction between outliers and inliers. However, the errors in feature alignment
have a tendency to blur this distinction. As these errors increase, all components
of the system degrade. First, the similarity scores used to rank points are less re-
liable, which makes the prior-influenced random sampling less effective. Second,
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the initial F estimated by the robust methods are of poorer quality, which leads
to more difficulty categorizing inliers from outliers. In fact, the inlier/outlier
categorization is inherently less reliable, as the errors on inlying matches tend
to be larger. Finally the resulting precisely estimated F is less accurate, as its
accuracy is ultimately determined by the accuracy of the point matches used as
input to the minimization algorithm.

We propose to improve their alignment by local registration. This will produce
two immediate results. The first is a more accurate localization of the matched
points. This effectively reduces the noise level of the points. The second is a
better similarity measure of the matches because of this reduction in position
and shape discrepancy.

Robust outlier rejection will benefit from these results. The improved sim-
ilarity provides a more reliable prior for the prior-influenced random sampling
schemes. In the meantime, the reduced noise in position will give rise to a stronger
positive vote if a correct model is being tested by a random sampling method.
Thus, one would expect the inliers to be detected more efficiently and with bet-
ter success rate. Finally, precise F-estimation will also benefit from the improved
feature localization.

3.1 Localization Refinement by Registration

Most feature points used in image matching applications achieve a level of trans-
formation invariance by incorporating some transformation information into
their description. Following the convention introduced by Mikolajczyk et al. [17],
we define an Maximally Stable Extremal Region (MSER) [18], i, by a centroid,
xci(xi, yi), as well as three parameters, ai, bi, ci, describing an elliptical region
around the centroid. A correspondence between a pair of points then implies
that these elliptical regions correspond to each other. An affine transformation
φ which matches one ellipse onto the other can be computed by determining
three or more equivalent points on each ellipse and solving for the affine trans-
formation parameters that map the points from one ellipse to the other.

For each correspondence, our registration-based refinement tries to find the
optimal affine transform φopt based on pair-wise appearances and to re-align
the corresponding features accordingly. This registration is implemented in two
steps, φ-initialization and φ-optimization.

φ-Initialization. This step establishes an initial affine transform φinit with
which to start registration, based on an approximate patch alignment. With each
feature ellipse being defined by five parameters (xi, yi, ai, bi, ci), one cannot infer
a six parameter affine transform φ between a pair of features without resorting
to the use of more information such as image appearances. By mapping bounding
rectangles of the two ellipses, we establish an approximate transform φinit and
leave the accurate φ-estimation to the optimization step.

Specifically, the ellipse for each point satisfies the quadratic form

[x− xc]A [x− xc] = 1; A =
[
a b
b c

]
. (2)
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It is known that the lengths of the semimajor and semiminor axes of the ellipse
are given by the square roots of the eigenvalues, (λmax, λmin), of A−1, and the
direction of each axis is given by the corresponding eigenvector, (vmax,vmin).
The major axis thus intersects the ellipse at p1,2 = xc±

√
λmax · vmax, and the

minor axis intersects the ellipse at p3,4 = xc ±
√
λmin · vmin.

To simplify initialization, we assume the bounding rectangles of two features
i and j correspond to each other. If the length (width) of the bounding rectan-
gle i still maps to length (width) of the bounding rectangle j, these rectangles
are related by a restricted affine transform with 5 degrees of freedom (dof): a
translation (2 dof), a rotation (1 dof), and re-scaling along the length/width of
the rectangle (2 dof). The affine transformation parameters, φinit = {φ1, ...φ6}
mapping rectangle i onto rectangle j can then be found by solving the linear
equation: [

pj1 pj2 pj3 pj4

1 1 1 1

]
=

⎡⎣φ1 φ2 φ3

φ4 φ5 φ6

0 0 1

⎤⎦ · [pi1 pi2 pi3 pi4

1 1 1 1

]
. (3)

There is a 180 degree ambiguity in the direction of the major axis. We resolve
it assuming that the correct transformation will involve the smaller amount of
rotation. This heuristic is in accordance with the way digital photographs are
taken - usually, we hold cameras roughly vertical to the floor/ground and we
do not make big camera rotation around the optical axis. If camera rotations
can be large, this can easily be fixed, in the φ-optimization step, by trying both
directions.

φ-Optimization. We optimize the transformation φ using direct or intensity
based registration. Intensity based registration approaches solve for a smooth
transformation between images (or image patches) by maximizing a similarity
measure defined on the pixel intensities (see, e.g. [19] for details). Specifically,
one image, Imov , is warped by some parameterized transformation to match
the other one, Ifix, and the similarity is evaluated. The correct registration is
considered to be the one that maximizes the similarity between the images. The
registration problem is thus expressed as an unconstrained optimization problem

φopt = argmaxφS(Ifix, Imov(W (x,φ))). (4)

In our case, we use the normalized correlation coefficient as the similarity mea-
sure S and use the affine transformation (φ in Equation (3)) as the warping
function W (x,φ). We solve this optimization problem using a trust-region
Newton-Raphson optimization method. Details of this type of optimization may
be found in [20].

3.2 Improved Fundamental Matrix Estimation

Algorithm (1) gives an outline of our proposed method for automatically com-
pute epipolar geometry between two images. The input to the algorithm is
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simply the image pair; and the output is the estimated F and a set of correct
matches. The key difference between this algorithm and previous approaches
is the Correspondence refinement step, where we refine the localizations of each
pair of correspondences. However, it is worth pointing out that our approach can
be applied to any multiple-view geometry estimation method that follows this
basic pattern.

We use the MSERs as our features and their putative correspondences are
established by nearest-neighbor classification of their SIFT descriptors [17]. The
Sampson distance is used as the distance function for both the PROSAC consen-
sus testing and the final iterative F-estimation. The Sampson measure is found
to give adequate accuracy in the F-estimation [1][14].

Algorithm 1: Compute the fundamental matrix between two images.
Data: stereo images Il, Ir

begin
1. Features: Extract affine invariant features in each image.

2. Putative correspondences: Compute a set of feature matches based on

similarity of their SIFT Descriptors.

3. Correspondence refinement: For each putative match, re-align the position

and shape of the feature in one image (Ir) according to match appearances.

4. PROSAC robust estimation: Progressively enlarge sample pool, starting

with most promising candidates. In the end, PROSAC chooses the F with the

largest number of inliers.

5. Non-linear estimation: Re-estimate F from all inliers by minimizing the

Sampson cost function.

end
Result: Fundamental Matrix F, the set of inlier matches.

4 Experiments

We evaluated our method on three aspects. The first aspect was feature local-
ization accuracy, the second was robust outlier rejection, and the third was the
accuracy of the final F estimated. We experimented on four standard image
sets: the House, Corridor, Valbonne and Shed. 1 The images are presented in
Figure (1) and show the estimated epipolar lines. Among them, the House and
Corridor have ground truth F and correspondences for localization accuracy
analysis.

4.1 Test on Feature Localization Accuracy

It was reported that the MSER [18] is the most accurate in feature localization
[6], thus we worked on the MSER features to see if further accuracy improvement
was indeed achieved.

1 The House, Corridor and Valbonne were retrieved from

http://www.robots.ox.ac.uk/~vgg/data1.html.

http://www.robots.ox.ac.uk/~vgg/data1.html
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(a) House (b) Valbonne (c) Corridor (d) Shed

Fig. 1. Image sets with estimated epipolar lines

Error Measure. Since our application here was estimating F, we measured
the error of feature positions using the epipolar geometry. We focused on the
accuracy of positions only since the shape wasn’t relevant in our F-estimation.

We measured the deviation of the matched points with the distance between
a point’s epipolar line and the matching point in the other image d(x′

i,Fxi),
where d(x, l) is the distance in pixels between a point x and a line l (both in
homogeneous coordinates). The more precise the matched points are localized,
the smaller this distance (or error) is. To ensure that each image received equal
consideration, we examined statistics of the set of errors in both images

D = {d(x′
i,Fxi), d(xi,F�x′

i)|∀i ∈ [1, 2, ..., N ]}, (5)

where N is the number of inlier matches.
Note that although the deviation of a point from its epipolar line doesn’t

exactly measure its displacement on a 2D image, it can be used as an ade-
quate approximation. By definition, the error d(x′

i,Fxi) measures the deviation
of points only in the direction perpendicular to the epipolar lines. A more pre-
cise measure is that used in the work by Haja et al. [6], where they examined
match localization accuracy by measuring the region overlap errors based on
carefully estimated ground truth homographies. However, their overlap measure
is very restrictive: one is limited to planar scenes where all features lie on the
same plane; while the measure here is suitable for real-life 3D scenes containing
complex structures. When the errors in point positions are equally possible in
all directions (as is always the case), it is often adequate.

Results on Localization Accuracy. On the image sets House and Corri-
dor, we compared the sets of errors D of three point sets using ground truth
fundamental matrix Ftruth: the Oxford points, the original points, and the re-
fined points. The Oxford points are ground truth point matches provided along
with the image set. The original points are the MSER features selected as in-
lying matches. And the refined points are the inlier subset of our registration-
refined MSER features. Both of the above two point sets were selected using the
PROSAC algorithm.
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Figure (2) shows the error of the refined points is statistically lower than
other point sets on both House and Corridor. On the House dataset, for example,
refined points have an error median of 0.1 pixel; the values for original points and
Oxford points are 0.14 and 0.25 respectively. Since the ground truth points were
hand-selected by visual inspection, their localization could be inaccurate, thus,
the error of the Oxford points ended up being the largest. This also explains
why our registration-based refinement can lead to an even better localization
accuracy.
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Fig. 2. Accuracy Comparison Using Ground Truth (Ftruth). For each of House
and Corridor, we show error boxplots of three different point sets, the Oxford points
(represented by 1 on the x-axes), original points (2) and refined points (3). Along the

y-axis, the units are in pixels. For each point set, the red line in the center of the box

is the error median and the upper and lower horizontal lines of the box represent the

top quartile and bottom quartile.

4.2 Improvement on Robust Inlier Detection

We applied Algorithm (3.2) on the image sets and obtained results on robust
inlier detection. Table (1) shows the average number of inliers detected and
samples drawn of different point sets over 100 experiments.

Table (1) reveals that refinement can improve robust inlier detection in two
ways. First, it encourages more inliers to be detected. This is because some small
inaccuracies of feature location were improved, thus some of the previously clas-
sified outliers were corrected. This correction is particularly important when
the overall match count is low - we do not want to lose any matches due to
false-negatives. Second, it drastically reduces the amount of samples needed to

Table 1. The Comparison of the number of inliers detected and the number of samples

drawn on the set of original vs. refined matches

#Total #Inlier matches #Sample trials

Methods matches original matches refined matches original matches refined matches

House 77 55 62 16 13

Valbonne 26 16 18 32 8

Corridor 66 45 54 31 7

Shed 47 34 35 30 10
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find the correct solution. Using the PROSAC scheme on both point sets, fewer
samples are drawn from the refined points to detect the inliers. This trend is con-
sistent over all data. Part of the reason is more accurate locations will facilitate
identifying the correct model (in this case, fundamental matrix F) more quickly,
i.e. avoid being distracted by minor inaccuracies. Another factor is that the reg-
istration provides better similarity scores for the match ranking of PROSAC.
This sample count reduction is more obvious when the inlier percentage is low,
as in Valbonne, Shed, and Corridor.

4.3 Improvement on F-Estimation Accuracy

The statistics on the set of distances D (Equation (5)) are also commonly used in
measuring F-estimation accuracy [14]. We estimated F using the different point
sets and then measured the resulting errors. The same procedure, iteratively
re-weighted least squares minimization using Sampson distance [1], was used for
estimating the F on all point sets.

In Figure (3), we show the errors of original points versus refined points on the
four images. The refined points consistently achieved better accuracy than the
original points. Between 21% and 67% reduction in error median was achieved by
the proposed method. In the case of Valbonne (plot for Valbonne in Figure (3)),
if we were to directly compare the errors here against that presented in Table 3 of
[18], we would see no significant improvement. The reason is although both used
the Valbonne sequence, they selected different images of the sequence. Also, their
set of correspondences were obtained differently: first they estimated a “rough
EG”; then more and better correspondences were obtained using “guided-
matching” with a very narrow threshold. This narrowing of threshold effectively
ensured that only those better-localized matches be selected. Their “guided-
matching” effectively added more accurate matches and deleted bad ones; while
our method worked on available matches and made them better. Both strategies
are useful; in practice, one can combine them for a further improved result.

4.4 Computing Time

Running time of the proposed method is dependent on many factors, e.g. the
number of putative matches, accuracy in their original alignment, etc. Our
method spends extra time on local patch optimization but needs less time on
robust outlier rejection.

Our current implementation of the algorithm is a mixture of Matlab scripts
and C++ binaries, and its running time is not particularly informative. How-
ever, we have timed the registration components of the algorithm. The local
patch optimization consists of an initialization, mainly involving pre-computing
image derivatives, which only needs to be done once per image pair, and the
optimization of each patch. Running single core on a 1.8GHz Intel Core Duo
processor, the initialization times ranged between 0.32–0.72s (depending on the
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Fig. 3. Accuracy Comparison of F-estimation. Error boxplots of different point

sets on four image sets. 1 and 2 on the x-axes represent the original points and refined
points respectively. The lower the error (along y-axis) is, the more accurate is the

F-estimation. The red lines indicate the error medians.

size of the image), and the optimization time averaged 11.5ms per patch. Consid-
ering that both parts of the algorithm can be easily parallelized, the processing
time of an integrated algorithm could be expected to be reasonable.

5 Discussion and Conclusion

We proposed a method for improving the quality of correspondences by local
patch registration. This registration further improves localization accuracy of
feature detectors and produces a better measure of feature’s similarity. In the
context of robust fundamental matrix estimation, our method enables a more
effective outlier rejection and obtains a more accurate fundamental matrix.

It is reasonable to expect this improvement in feature localization accuracy
since information of both images is utilized, whereas in the feature detection
one decides feature localization based on only a single image. This idea of
registration-based correspondence refinement can also be used in other tasks
involving multiple-view correspondence, since this gain in localization accu-
racy is always desired. The effect of our method on the MSERs implies that
the F-estimation can always benefit from the refinement even if one use other
features, since most popular features have more room for improvement than
MSERs [6].

Another gain from this registration that can be explored is the improvement in
the local mapping implied by the feature shape parameters. Certain approaches,
such as [21], have used this shape information to assist in F-estimation using
only a few feature correspondences. Improving the accuracy of this local mapping
could enhance the applicability of this type of approach.
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Abstract. Curve matching plays an important role in many applica-

tions, such as image registration, 3D reconstruction, object recognition

and video understanding. However, compared with other features(such

as point, region) matching, it has made little progress in recent years. In

this paper, we investigate the problem of automatic curve matching only

from their neighborhood appearance. A novel descriptor called HMCD

descriptor is proposed for this purpose, which is constructed by the fol-

lowing three steps: (1) Curve neighborhood is divided into a series of

overlapped sub-regions with the same size; (2) Curve description matrix

(CDM) is formed by characterizing each sub-region into a vector; (3)

HMCD descriptor is built by computing the first four order Moments of

CDM column vectors. Experimental results show that HMCD descriptor

is highly distinctive and very robust for curve matching on real images.

Keywords: Curve matching; Curve descriptor; HMCD descriptor.

1 Introduction

Compared to point matching [1,2] and region matching [3], little progress has
been made in curve matching (including line matching) in recent years, which
is due to several reasons [4], such as inaccuracy of endpoint locations, geometric
constraint can not be easily available, support regions of different curves have
different size. Only a few methods for curve matching are reported in literature
until now. For images of planar surfaces, Lourakis [5] proposed an approach using
“2 lines + 2 points” projective invariants for line matching. Herbert [4] presented
a novel method for automatic matching in color images. The main drawback of
this method is its heavy reliance on color information. While color provides a
very strong cue for discrimination, it may fail in the case where color feature is
not distinctive, such as on gray images or remote sensing images. Schmid and
Zisserman [6,7] applied geometrical constraints (epipolar geometry, one param-
eter family of homographies and curvature of curves) and cross correlation for
line matching and curve matching. Grouping matching strategy proposed by
Deng and Lin [8] has the advantage that more geometric information can be

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 448–455, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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available for removing ambiguities, and such method can cope with more sig-
nificant camera motion. However, it often has high complexity and is sensitive
to topological connections or inaccuracy of endpoints. Mikolajczyk and Zisser-
man [9] also proposed a curve descriptor by generalizing SIFT point descriptor
and Orrite [10] developed continuity Hausdorff distance for matching partially
occluded curves invariant under projective transformation. Most existing meth-
ods for curve matching either require prior knowledge or are limited to some
specific scenes, such as geometries between images or planar scenes.

This paper is focus on automatic curve matching without any prior knowledge,
and a descriptor called Harris Moment curve descriptor (HMCD) is developed
only based on local appearance. Compared with previous approaches, HMCD has
two advantages: (1) It is an automatic method that can work without known any
constraints, (2) It can be applicable to general conditions. The remainder of this
paper is organized as follows. Section 2 introduces the strategy of partitioning
curve neighborhood into sub-regions. In section 3 each sub-region is characterized
into a feature vector. Section 4 elaborates the construction of HMCD descriptor
and section 5 provides the experiments. Section 6 is the conclusions.

2 Partition of Curve Neighborhood

In this paper, we propose a novel and effective scheme to summarize curve neigh-
borhoods with different size into vectors with the same dimension. As shown in
figure 1, for a pixel Pi on a curve, denote its gradient direction as dni and the di-
rection orthogonal to dni anticlockwise as dti, then a rectangular region centered
at Pi and along with {dni,dti} is defined as pixel support region(PSR). Denote
the PSRs defined by all the pixels on the curve along curve as G1, G2, ..., GN (As-
suming the curve consists of N pixels), then the union of all these PSRs is called

Fig. 1. Schematic figure of HMCD computation.(This figure shows the situation of 3

subregions is used for each PSR, whereas in this paper 9 is used.)
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the curve support region(CSR). In order to characterize CSR in more detail,
each PSR is divided into M sub-regions with the same size along the direc-
tion dni : Gi = Gi1

⋃
Gi2, ...,

⋃
GiM . It is noted that determination of the

direction dni is significant for ensuring rotation invariance, otherwise, some am-
biguity could occur when deciding the order of Gi1, Gi2, ..., GiM .

3 Sub-region Representation

In this section, we characterize each sub-region into a description vector using a
rotation invariant Harris feature. The original Harris self-related matrix can be
expressed as [11] (∇f = [∇x,∇y] denotes the sample gradient):

H(x, y) =
(∇x · ∇x ∇x · ∇y

∇x · ∇y ∇y · ∇y

)
(1)

Since that gradient vector is not rotation invariant,to achieve rotation invariance,
we use the coordinate system determined by {dni,dti} to express sample gradient
in each PSR. The new coordinate of a sample gradient can be expressed: ∇′f =
[∇n,∇t] = [∇f · dni,∇f · dti]. This is similar to that of SIFT which rotates each
gradient relative to the orientation of keypoint. Then, rotation invariant Harris
Matrix can be expressed as:

H′(x, y) =
(∇n · ∇n ∇n · ∇t

∇n · ∇t ∇t · ∇t

)
(2)

Denote two eigenvalues of the matrix H′ as α, β respectively, the sum of the
eigenvalues can be computed from the trace of H′ and their product can be
computed from the determinant of H′:

Tr(H′) = α + β, Det(H′) = α · β (3)

Then, the following two features are used as rotation invariant Harris feature for
each sample in support region of the curve:

h1 = Tr(H′), h2 = sign(Det(H′)) ·
√
|Det(H′)| (4)

After computing feature for each sample, a Gaussian weighting function, with
scale equal to half the curve support region width (along the direction dni),
is used to assign a weight to each sample in the curve support region. The
purpose of such a weighting is to give less emphasis to importance of samples
that are far from the curve, which are most effected by mis-registration errors.
Another reason is to avoid sudden changes of descriptor due to small change in
the position of the curve support region.

In order to reduce boundary effect, each sample feature is distributed into two
adjacent sub-regions along the direction dni by the following means: for a sample
whose two nearest neighborhood sub-regions are Gij , Gi(j+1) , if it has distances
d1, d2 from the central lines (parallel to dti) of the two sub-regions respectively,
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the sample feature is weighted by w1 = d2�(d1 + d2) , w2 = d1�(d1 + d2) and
then distributed into Gij , Gi(j+1) respectively.

Denote the features distributed into a sub-region Gij as {(h1, h2)T } , ac-
cumulate these features according to their signs, then a feature vector with a
dimension of 4 can be formed: Vij = (V 1

ij , V
2
ij , V 3

ij , V
4
ij)

T (As shown in figure 1),
where,

V 1
ij =

∑
h1>0

h1, V 2
ij =

∑
h1<0

−h1, V 3
ij =

∑
h2>0

h2, V 4
ij =

∑
h2<0

−h2

It is not difficult to see that Vij is invariant to image rotation, we call it the
description vector of the sub-region Gij .

4 HMCD Descriptor

By the description vectors of sub-regions of a curve C, we define a 4M ×N ma-
trix, called curve description matrix (CDM):

CDM(C) =

⎛⎜⎜⎝
V11 V12 ... V1N

V21 V22 ... V2N

... ... ... ...
VM1 VM2 ... VMN

⎞⎟⎟⎠ � (V1,V2, ...,VN ) (Vi ∈ R4M ) (5)

CDM contains most structural information of curve support region. However, it
can not be considered as a curve descriptor since its size still varies with curve
length. To achieve descriptors independent of curve length, the first four order
moments are used, and a vector with 16M dimensions can be attained here:
(MT

1 ,MT
2 ,MT

3 ,MT
4 ), where,

M1 =
1
N

N∑
i

(Vi −M(V)),M2 =
1
N

N∑
i

(Vi −M(V))2

M3 =
1
N

N∑
i

(Vi −M(V))3,M4 =
1
N

N∑
i

(Vi −M(V))4

M(V) =
1
N

N∑
i

Vi

Then, in order to make the descriptor invariant to linear changes of illumina-
tion, these Moment vectors are normalized to unit norm respectively. Finally,
by concatenating these vectors into a single vector, a descriptor called Harris
Moment-based curve descriptor (HMCD) can be attained here:

HMCD(C) =
(

MT

1

‖M1‖
MT

2

‖M2‖
MT

3

‖M3‖
MT

4

‖M4‖

)T

∈ R16M (6)
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To reduce the influence of non-linear illumination, for the same reason as
[1], each value of the unit vector is limited no larger than 0.2, which means
that matching the magnitudes for large gradients is no longer as important, and
that the distribution of orientations has greater influence. After restraining the
maximum value of each dimension, HMCD is re-normalized to unit norm as a
whole and the ultimate descriptor is achieved.

5 Experiments

In this section, we test the performance and robustness of HMCD by using it
for curve and line matching on real image pairs.

Setup: HMCD descriptor with 144 dimensions is used here, which is computed
by using 9 sub-regions with size of 5×5 pixels for each PSR. Euclidean distance
between descriptors is used as the metric, and NNDR (Nearest and Next Distance
Ratio) which has become the most popular criterion for point matching, is used
as our curve matching criterion. Besides using the NNDR criterion of 0.8, a
simple global threshold of 0.55 is also used in experiments.

Curve segmentations are detected by using the Canny edge detector and then
removing junctions in edges. Line segments used in experiments are extracted
using the method proposed in [4]: firstly Canny edge detector is used to extract
edges, then edges are split at points with high curvature. Finally segments with
length less than 20 pixels are discarded and lines are fitted to the split edges
using the least squares technique.

Results: Figure 2 shows four examples of HMCD-based curve matching. For
pair (a), there exists a rotation and a little viewpoint change between two images.
98 curves are matched and all the matches are correct (b). On the second pair (c)
of two fresco images, 175 curves are matched and 2 match is incorrect (d).The
two images in pair (e) are captured under different viewpoint and obviously large
affine distortion exists between them. 93 curves are matched and 5 matches is
incorrect (f). As for the last pair (g), 92 curves are matched and 6 match is
incorrect (h).

As a special case of curve, lines can certainly be matched by HMCD descriptor
proposed in this paper. Figure 3 provides four results of line matching. The two
images in the first three groups (a)(c)(e) are captured under different viewpoints,
which results in rotation and affine changes. It can be seen from the results,
HMCD can be competent for robust line matching under rotation and affine
changes. As for the last image pair, it can be seen from the result (h) that,
though there exists obvious occlusion between two images, HMCD can still work
effectively with a high correct ratio.

The experiments illustrate that HMCD performs great and robust for both
curve matching and line matching. Comparatively, HMCD can attain a higher
correct ratio for curve matching than for line matching, and this can be explained
by that curves usually have support regions with richer texture than lines.
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(a) (b) Extracted curves : 136, 131, Matched curves : 98, Incorrect : 0

(c) (d) Extracted curves : 429, 423, Matched curves : 175, Incorrect : 2

(e) (f) Extracted curves : 313, 354, Matched curves : 93, Incorrect : 5

(g) (h) Extracted curves : 269, 303, Matched curves : 92, Incorrect : 6

Fig. 2. Curve matching results using HMCD descriptor (Image pairs (c)(g) are provided

by [2], the size of all images is 640 × 480)
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(a) (b) Extracted lines : 193, 197, Matched lines : 119, Incorrect : 6

(c) (d) Extracted lines : 250, 229, Matched lines : 109, Incorrect : 9

(e) (f) Extracted lines : 238, 230, Matched lines : 93, Incorrect : 4

(g) (h) Extracted lines : 37, 32, Matched lines : 20, Incorrect : 0

Fig. 3. Line matching results using HMCD descriptor (the size of all images is 640×480)
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6 Conclusions

This paper reports a novel and robust descriptor for curve matching (including
line matching), which can be used for automatic wide baseline stereo matching.
The main contribution of this work is that our HMCD based matching is fully
automatic, and can work without any prior knowledge about the scene or camera
positions. The experiments show that HMCD descriptor is very effective and
robust for curve and line matching. Up to now, our HMCD descriptor is not
scale-invariant,and making multi-scales analysis will be one of our future work
directions.
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Abstract. This paper proposes a novel graph matching algorithm based

on skeletons and applies it to shape recognition based on object silhou-

ettes. The main idea is to match the critical points (junction points and

end points) on skeleton graphs by comparing the geodesic paths between

end points and junction points of the skeleton. Our method is motivated

by the fact that junction points can carry information about the global

structure of an object while paths between junction points and end points

can represent specific geometric information of local parts. Our method

yields the promising accuracy rates on two shape datasets in the pres-

ence of articulations, stretching, boundary deformations, part occlusion

and rotation.

Keywords: Skeleton, skeleton graph, graph matching, shape recogni-

tion, path similarity.

1 Introduction

Image matching is a fundamental aspect of many problems in computer vision,
including object or scene recognition, solving for 3D structure from multiple
images, stereo correspondence, and moving tracking [1]. In this paper, we focus
on shape matching based on skeletal path similarity. Recent few years have
witnessed a popular way in which skeleton is involved in the image matching
problems. Integrating geometrical and topological feature of the object, skeleton
(or Medial Axis) [2] plays an important role as a shape descriptor for object
recognition. However, the fact that the topological structure of skeleton trees or
graphs of similar objects may be completely different probably remains the most
challenging aspect due to the sensitivity of skeletonization. This fact is illustrated
in Figure 1,the objects from the same class may have different skeleton graph
because of the instability of the critical points (junction points and endpoints).
Thus some nontrivial edit operations (cut, merge, et al.) are inevitable to match
skeleton graphs or trees. This paper presents a novel scheme for skeleton-based
shape similarity measure. The proposed method is based on the similarity of
shortest paths between end points and junction points of the pruned skeletons
[3] to overcome the limitations mentioned above.
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Fig. 1. Visually similar shapes in (A) and (B) have very different skeleton graph in

(C) and (D)

As a preprocess for skeleton matching, we do the merge operation on the
junction points of each skeleton based on their local context similarity. Then,
the junction points and end points of different skeletons are matched in one-to-
one correspondence with minimal cost, and the redundant junction points are
not considered (cut operation on junction points). The penalty cost will be added
for each redundant endpoint in order to compute the final shape similarity.

In section 2, the background of the related methods will be discussed. The way
to match shapes based on the similarity of the skeleton paths between endpoints
and junction points is introduced in section 3 and section 4. In section 5, the
experimental results and analysis on two different datasets have been provided.
At last, conclusion and future work are drawn out in section 6.

2 Related Work

The skeleton-based recognition methods are usually based on the graph or tree
representation of the skeletons. Since the skeleton or medial axis is always or-
ganized into an Attributed-Relation Graph(ARG), the similarity between two
objects can be measured by matching their ARGs. Zhu and Yuille [4] matched
the skeleton graphs of objects using a branch-bounding method that was limited
to motionless objects. Shock graph was a kind of ARG proposed by Siddiqi et al.
[5], which was based on Shock Grammar. The distance between subgraphs was
measured by comparing the eigenvalues of their adjacency matrices. Sebastian
et al. have presented a scheme to compute the edit distance between the shock
graphs [6]. Liu et al. [7,8] can deal with the problem when the two shapes have
different amount of junction points in their skeleton graph. Demirci et al. trans-
form weighted graphs into metric trees for accurate matching [9]. Aslan and Tari
proposed an unconventional approach to shape recognition using unconnected
skeletons in the course level [10]. Bai et al. proposed a method to match ARGs
based on the shortest paths between endpoints [11]. The approach does not re-
quire any editing of the skeleton graph, however, only endpoints were used for
matching in their framework without using the explicit structure of parts.
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Motivated by the skeletal path representation [11], our proposed method uti-
lizes the shortest paths between all the pairs of end points and junction points
to represent a context of local structures. Utilization of merge or cut operation
similar to [8] in matching phase is used for finding the optimal correspondence
between the critical points on different shapes.

3 Shape Representation with Skeleton Paths

In this paper, all the skeletons for shape matching are extracted and pruned by
the method introduced in [3].

A critical point (endpoint/junction point) can be called a node (end node
/junction node) in a skeleton graph, and the shortest paths between every pair of
nodes are represented as sequence of radii of the maximal disks at corresponding
skeleton points [11]. If there is no other junction node on the path between an
end node and a junction node, the end node and the junction node is said to
be connected. The shortest path between a pair of end nodes on a skeleton
graph is called a end-to-end path. The path between an end node and the
nearest junction node on a skeleton graph is called a junction-to-end path.
In addition,the path between different junction nodes is called a junction-to-
junction path. We show a few example skeleton paths in Fig 2. Let sp denotes
a skeleton path. We sample the path sp with M equidistant points, which are all
skeleton points. Let R(t) denotes the radius of the maximal disk at the skeleton
point with index t in sp. Let L denotes the length of sp, R denotes a vector
of the radius of the maximal disks centered at the M sample skeleton points
on sp:

R = (R(t))t=1,2,...,M = (r1, r2, . . . , rM ) (1)

In our method, the radius R(S) is approximated with the values of the distance
transform DT (s) at each skeleton point s. Suppose there are N0 pixels in the

Fig. 2. Some of local paths (in red) in the cat’s skeleton
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original shape S. To make the proposed method invariant to the scale, R(S) is
normalized in the following way:

R(S) =
DT (s)

1
N0

∑N0
i=1 DT (si)

(2)

where si(i = 1, 2, . . . , N0) varies over all N0 pixels in the shape. The shape
dissimilarity between two paths is called a path distance. If R and R′ denote the
vectors of radius of two paths sp and respectively, L and L′ denote the lengths
of the two paths sp and respectively, then the path distance pd between sp and
textslsp’ is:

pd(sp, sp′) =
M∑
i=1

(ri − r′i)
2

ri + r′i
+ α

(L− L′)2

|L + L′| (3)

Where α is a weight factor. In order to make the representation scale invariant,
the path lengths are normalized.

4 Matching Nodes Using Skeleton Paths

Compared to the method in [11] that only used the end-to-end skeleton paths
for matching the correspondence between end nodes, we match both junction
nodes and end nodes using path similarity. The basic idea here is to match the
junction nodes first using path similarity, then end nodes are matched using path
similarity based on the correspondence of junction nodes. This is reasonable,
since junction points always contain the important structure information for
connecting the local meaningful parts of an object, and matching end nodes are
easy when the correct correspondence of junction points are obtained. However,
a challenging problem is the fact that junction nodes may not be stable, see
example in Fig. 1. In order to solve this problem we do the merging operations
based on the path contexts of junction nodes before matching process and the
cut operations in matching process. In total, our method consists of two steps:
mergence of junction nodes, matching critical nodes.

4.1 Mergence of Junction Nodes

We assume there are N junction nodes in a skeleton. The cost to merge two
junction nodes Vi and Vj is defined as following:

cost(Vi, Vj) =
N∑

k=1

pd(spi,k, spj,k) (4)

where spi,k, spj,k denote the junction-to-end paths between every end node and
junction nodes Vi and Vj , and k is the index of the end nodes in a counterclock-
wise direction. And the merging condition is as following:

cost(Vi, Vj) < N ∗ δ (5)
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Fig. 3. The merge of junction nodes of two cats skeletons

where δ is a small value as a threshold. Any pair of junction nodes that satisfy
the condition (5) are merged. Fig 3 illustrates an example of the merging process
above. As Fig 3 shows, junction nodes c and d are merged as a single junction
node d because they satisfy condition (5), so are b′ and e′. In our implementation,
we didn’t merge the junction nodes c and d to one node actually. Instead only
one of them will be selected for junction nodes matching.

4.2 Matching Critical Nodes

Let G and G′ denote two graphs to be matched, and let the numbers of the
junction nodes in G and G′ be K and N , respectively. Here we assume K � N .
It is easy to know that there are CK

N ∗K! kinds of matching cases and our aim
is to obtain the optimal one-to-one matching with the minimal cost. In the case
that the two graphs have different numbers of junction nodes, cut operation will
be implemented by neglecting the redundant junction nodes. Specifically, we
eliminate the junction nodes which are not matched. For example, there are one
junction nodes V1 in G, two junction nodes V ′

1 , V ′
2 in G′ , so 2 kinds of possible

matching cases exist:

V1 ←→ V ′
1 or V1 ←→ V ′

2

In the former, V ′
2 is eliminated and in the latter one V ′

1 is eliminated. Of course, in
most cases,more complex matching situations will occur. In Fig 4, after matching
junction nodes and cut operation(in this case, the junction point d has been
eliminated ), critical points (in this case a,b,c) are obtained. Then, we get the
common structure of the matched skeletons,and the critical nodes are in one-to-
one correspondence.

For any pair of matched junction nodes V and V ′,suppose the numbers of end
nodes adjacent to V and V ′ are m and n respectively. We assume m � n. Thus
there are Cm

n ∗m! kinds of matching choices. In this way, we can get U kinds of
possible matching choices. Each matching choice has a matching cost and our
aim is to obtain the one with the minimal cost. Assume there are Pk matched
paths and Qk unmatched paths in the kth matching choice(k is the index of
matching choices), hence our model can be represented as following:
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Fig. 4. Critical points achieved after junction node matching

arg min (costk), k = 1, 2, ..., U

costk = (1 + Qk/Pk)
Pk∑
i=1

pd(spi, sp
′
i) (6)

where spi and sp′i represent skeleton paths in the graphs to be matched, Qk/Pk

functions as a penalty factor if unmatched skeleton paths exist.

5 Experiments

In this section, we evaluate the performance of the proposed method in two
parts: matching the critical nodes in the skeleton graphs, and the recognition
performance of our method on two standard shape databases.

5.1 Correspondence Matching

To verify the accuracy of our method, shapes of various objects are matched
and some representative results are shown. Besides the matching of two horses
in Fig 5.(A) ,we test our method on several other examples. Since the structure
of the horse is similar to the cat, our matching process finds the correct corre-
spondence shown in Fig 5.(B). Fig 6 illustrates that the proposed method works
well in the presence of articulation. Fig 7 also shows some matching results in
the presence of occlusion or part missing. In Fig 7.(A) there is protrusion on the
back of a cat, and in Fig 7.(B) two legs of a horse were removed. It demonstrates
that the proposed method is able to obtain a correct correspondence even if
parts of a shape are altered.
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Fig. 5. Some representative results of correspondence matching

Fig. 6. The correspondence in the presence of articulation

Fig. 7. The correspondence in the presence of occlusion or part missing

5.2 Robustness of Recognition

To evaluate the recognition performance of the proposed method, we test it
on Aslan and Tari’s two databases [10]. The first dataset includes 14 classes of
articulated shapes with 4 shapes in each class, as shown in Fig 8. We use each
shape in this database as a query. Several representative results are shown in
Fig 9, where five most similar shapes are shown for the queries. Below each shape
is the cost to match with the query. For each query, a perfect result should have
three most similar shapes in the same class as the query. The distance in red
marks an error where this is not the case.Encouragingly, the recognition rate on
this dataset is 99.4% since there are only 1 errors in 168 query results. Moreover,
we can easily observe that the wrong result is very similar to the query. For this
dataset, we use parameters M = 50,α = 45.
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Fig. 8. Alan and Tari database [10] with 56 shapes

Table 1. Retrieval results on Alan and Tari 56 database [10]

Algorithm 1st 2nd 3rd

IDSC+DP [12] 53 51 38

Path Similarity [11] 55 55 53

Ours 56 56 55

Fig. 9. Selected results of the proposed method on Alan and Tari database [10].Distance

in red is the only error.

In Table 1, the result by the proposed method is compared to the result by
other two recent shape matching methods. The proposed method performs better
both than Inner Distance [12] in non-rigid deformations and Path Similarity [11],
since we use the information of the junction nodes explicitly.

Our method is also tested on another bigger database provided by Aslan and
Tari [13]. The database consists of 180 shapes which have 30 classes with 6
shapes in each class. For each shape, we check whether the 5 closest matches are
in the same class as the query. Some typical results are shown in Fig 10. In the
whole database, there are only 24 errors in 900 query results, so the recognition
rate is 97.3%. The numbers of correct shapes for all 900 queries among the 1st,
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Fig. 10. Selected results of the proposed method on Tari’180 database [10]. Distance

in red are errors

2nd, 3rd,4th, 5th closest matches are 180,179,174,175,168. Here, parameters are
M = 50,α = 55. We now analyze the computational complexity of the proposed
method. Let Mi be the number of end nodes in the graph Gi, and let Ni be
the number of junction nodes in Gi. Since the implementations in section 4.2
and 4.3 cost the most time, the time complexity of our method is approximately
O(Mi! ∗Ni!). However, since the number of junction nodes Ni has usually been
significantly reduced to less than 7 after the merging process in section 4.1, the
average time for matching per pair of shapes is very small. In this experiment,
it is only 0.8 second.

6 Conclusion

In this paper, we propose a novel method to match skeleton graphs. The most
important contribution is the merge and cut operation on junction nodes of skele-
ton graphs. The effect of these operations is the introduction of the structural
information of the skeleton, which is very helpful in matching. As a result, our
method is simple and efficient in correspondence matching even in the presence
of occlusion and articulation. The experiment shows that the merge and cut
process of junction nodes in our method have advantages over the method based
only on path similarity. However, in our framework we didn’t consider the case
for many-to-one matching, which may be a limitation. In the future, our work
will focus on classification based on the construction and unsupervised learning
of tree union of skeletons.
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Abstract. This paper presents a statistical-structural constraint model to repre-
sent and generate cartoon face wrinkles. A weighted constraint cost is defined 
to measure constraint of age, facial structure and parameter on wrinkles. Then 
wrinkle generation model is built in the sense of minimum constraint cost. 
Through clustering, age constraint and its parameters are learned from wrinkle 
samples with respect to regions and age group. According to facial structure, 
region-center wrinkles are computed to realize structural constraint on wrinkles. 
Having obtained the two constraints and parameters, generation model is opti-
mized to produce wrinkles. Experimental results have demonstrated validity of 
the model. 

Keywords: Cartoon face wrinkle, age, facial structure. 

1   Introduction 

Facial cartoon[1][2] is an interesting rendering form for human face, which has been 
widely used in multimedia world. They use concise elements like shape, curve, and 
contour to render face[1][2]. However, most of them fail to pay enough attention to 
wrinkles that are essentially important for expressing rich variances of face. Proper 
wrinkles can largely enhance expressive effect of cartoon face. Thus, adding proper 
wrinkles to cartoon face is necessary as well as significant work. 

There are two challenges for this work. First, direct information provided by car-
toon face is sparse. Usually, only facial structure information like shape and contour 
is available. Second, wrinkle itself has no regular forms. Wrinkle formation is a com-
plex process that is affected by various factors like aging and facial muscle move-
ment[3][4], which lead to high non-structure and uncertainty of wrinkles’ attributes. 
How to represent wrinkle and simulate formation with sparse facial information are 
two key problems for wrinkle generation. 

This paper presents a statistical-structural constraint method to represent and gen-
erate cartoon face wrinkles. Wrinkle curve is represented with feature points and PCA 
model[5][6]. Similar to the AAM[6], constraint cost is defined, which characterize 
constraint of age, facial structure and parameter. Wrinkle generation model is built in 
the sense of minimum constraint cost. Age constraint and parameters are learned from 
wrinkle samples through statistic and clustering. Structural constraint and parameters 
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are computed according to facial structure. Having realized the two constraint models, 
generation model is optimized to produce cartoon face wrinkles. 

2   Related Work 

Modeling Wrinkles. Amounts of work have been done to model wrinkles. Zijian Xu et 
al[7] divide face to 16 zones to process facial details and wrinkles. They build a diction-
ary of wrinkle primitives learned from labeled wrinkle patches using clustering. Using 
inference and optimization, facial details and wrinkles are reconstructed on realistic or 
sketchy faces. To add proper wrinkles to aging faces, Jinli Suo et al[8] divides face 
plane into 8 zones and builds wrinkle database using labeled wrinkle curves for each 
age group and facial zones. Yu Zhang[9]determine 3D expressive wrinkle’s shape and 
amplitude based on face anatomy model. Yin Wu et al [10] simulates 3D wrinkles 
through changing attributes of facial layers based on muscle movement. Though those 
methods achieve good results in their applications, they are inapplicable to generate 
cartoon face wrinkles with sparse information of cartoon face. 

Representing Shapes. The ASM[5] use feature points to represent shape of objects, 
and align shape vector to form shape models. The AAM[6] use PCA method to pa-
rameterize facial shape, then build fit function to represent prior position constraint, 
which is optimized to reconstruct face. Zijian Xu et al[7] represent facial details as 
parameters of image primitive type, rotation, translation, scale, etc. Jinli Suo et al[8] 
represent wrinkle geometry with parameters of wrinkle number, position, orientation 
and scale. 

3   Wrinkle Representation and Generation Model 

Wrinkle representation and generation are closely related. In this section, we first 
build representation of wrinkles. Based on that, the generation model is given.  

Due to biologic property of human face, wrinkles in different regions of face have 
different forms. So, face plane is always divided into subregions[7][8]. We improve 
the subdivision in paper [7][8] and redefine 11 wrinkle regions on face according to 
the facial contour feature points manually labeled or extracted using the ACM[11]. 
They are shown in figure 1. 

 

Fig. 1. Facial wrinkle regions 
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As one muscle structure may influence different types of wrinkles, some subre-
gions may overlap. The significance of wrinkle regions is that they provide a repre-
sentation of facial structure related to wrinkle distribution. 

Following the shape representation method of the ASM[5] and AAM[6], and wrin-
kle position representation way of paper[7][8], we use feature points vector to typify 
wrinkle curve data and PCA method to parameterize it. Suppose 

1 1 2 2( , ),( , ),...( , )N Nx y x y x y are N  nearly even-spaced coordinates points on wrinkle 

curve, and the shape vector is 1 2 1 2( , ... , , ... )N Nx x x y y y= Tw . Using PCA method, w is 

parameterized as: 

( , , , , )x yt t sθ=v b  (1) 

where b is a vector that typify coefficients of trained wrinkle shape bases. xt , yt , θ  
and s  respectively typify translation of x and y direction, rotation, and scale of  
similarity transformation that align the original wrinkle w  to a reference wrinkle with 
least squares solution[5]. 

v is parameterized representation of wrinkles. Wrinkle data w can be reconstructed 
with PCA method and similarity transformation from v . 

Aging and facial muscle movement are two key factors that lead to facial wrin-
kles[3][4]. Muscle movement can be reflected through facial structure. So, a wrinkle 
is constrained by age feature and facial structure. Suppose Aw , Rw  and μ respec-

tively typifies the parameter of constraint of age, facial structure and wrinkle parame-
ters. Similar to AAM[6], we define constraint cost to measure constraint effect on 
wrinkles. The cost ( )C v is:  

( ) ( , ) ( , ) ( , )A v A R v R PC D D Dα β γ μ= + +v w w w w v  (2) 

where , ,α β γ  is positive weighting factors, vw is wrinkle data that is reconstructed 

from v . ( )AD ⋅ , ( )RD ⋅ and ( )PD ⋅ are distance measurement between two vectors.   

The smaller the cost is, the better the constraint effect is. Thus, the wrinkle ∗v  in 
the sense of minimum constraint cost is: 

arg min ( )C∗ =v v  (3) 

( , )A v AD w w and ( , )R v RD w w respectively reflects age and facial structure constraint. 

( , )PD μv  typifies constraint of parameters.  In the following section, we will learn and 

compute the constraints on wrinkles. 

4   Learning Constraint of Age 

Wrinkles on different faces in the same age group have common characteristics. For 
instance, they usually distribute around a center. This center characterizes distinct 
distributive feature of wrinkles in an age group. We define this ‘center’ as age-center 
wrinkle. Age-center wrinkle can be learned from wrinkle curve samples that are la-
beled on facial images of the same age group. Before learning, rude samples are 
aligned to reference face according to wrinkle regions with similarity transformation.  
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4.1   Learning Age-Center Wrinkles 

Burt et al[12] compute average face image of each age bracket as central features of 
the faces in this age bracket. Similar to that, we use age-center wrinkles to reflect age 
constraint on wrinkles. They are learned from wrinkle samples in the same wrinkle 
regions of different faces in the same age group. Wrinkles with common distributive 
features are supposed to be clustered from samples. Translation parameter of each 
wrinkle is used to cluster wrinkle samples. Translation parameter ( , )x yl t t= typifies 

relative translation to reference wrinkle from the wrinkle whose scale and rotation are 
aligned. It can cluster wrinkles with similar position and direction considering that 
wrinkles in the same class have similar positions, directions and scales.  

Clustering is operating with respect to age group and wrinkle regions. Suppose 
there are Q  facial images in the same age group A . All wrinkle samples in wrinkle 
region R of the j-th face is: {( , , , , ), 1... }( 1,2... )j i xi yi i i jt t s i M j Qθ= = =V b ,where jM  is the 

number of wrinkles. Through clustering, the wrinkle samples are classified 
into K clusters according to translation parameters ( , )x yl t t= . K can be set according 

to experience. Clusters with too small samples ( for example, less than 2) are regarded 
as noise and discarded. 

Suppose the K clusters are :{ , 1,2... }( 1,2,... )i
i j GiG j M i K= =w , where i

jw is wrinkle 

sample of cluster iG , and ( 1,2... )GiM i K= is the number of samples in the i-th cluster. 

The average values of wrinkles in each cluster are denoted as 1 2[ , ,... ]A K=Ω ω ω ω . AΩ is 

just the age-center wrinkle matrix. ( 1,2,... )i i K=ω  is the average value of i-th cluster, 

which represents the i-th age-center wrinkle in region R of age group A . Figure 2 
shows part of wrinkle samples on right cheek of old people, and figure 3 illustrates 
results of clustering those wrinkle samples, where data points are connected for clarity. 

 

 

 

Fig. 2. Wrinkle samples (drawn on
the region of mean face)   

 Fig. 3. Learning age-center wrinkles. (a) Translation 
parameters and clustering. (b) Age-center wrinkles. 

4.2   Measurement of Age Constraint on Wrinkles 

Age-center wrinkle AΩ  typify the mean distribution of an age group A , and character-

ize age constraint on wrinkles. For a wrinkle w of age group A , similar to AAM[6], 
measurement of age constraint is rewritten as:  
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1( ) ( )A A A AD −= − Σ −Tw ω w ω  (4) 

where Aω  is one of the elements of AΩ , i.e. age-center wrinkle. 1
A
−Σ is weighting ma-

trix, and AΣ  can be trained as variance from wrinkle samples. 

5   Computing Constraint of Facial Structure 

Age-center wrinkles characterize common distributive feature of wrinkles in an age 
group. Due to discrepancy of individual face, wrinkles are different on various faces 
even in the same age group. This fact reflects constraint of various facial structures on 
wrinkles. According to biomechanics, wrinkle forms when muscle contracts[13]. 
Repeated movement of muscle fibres will cause everlasting wrinkles. Essentially, 
wrinkles are also fibers that are constrained by neighbor fibres. The closer they are, 
the stronger the constrained effect is. Figure 4 simply shows analysis of a wrinkle 
w . 1E  and 2E  are projection of the wrinkle on edges of muscle fibers. 

 

Fig. 4. Facial structure constraint on wrinkles. Red thick dashed lines typify muscle fibre edges, 
black dashed lines typify projection operation. Orange dot dash lines typify muscle fibres. 

Edges of wrinkle regions defined in section 3 are approximately in the similar direc-
tion of muscle fibres, so we can take the edges as constraint edges. For an assumptive 
wrinkle w , it distributes around a center that is determined by constraint edges of facial 
structure. Though the constrained correlation between the edges and the ‘center’ may be 
complex, we can approximate it with linear relationship to guarantee the condition on 
edges. Suppose 1E and 2E have the same data form with w . Positional distances be-

tween w and 1E , 2E are defined as 1 1 2
d l l= − , and 2 2 2

d l l= − , where 

( , )x yl t t= , 1 1 1( , )x yl t t= , 2 2 2( , )x yl t t= are respectively translation parameters of w , 1E  and 

2E . According to above analysis, region-center wrinkle with respect to w  is defined as:  

2 1
1 2

1 2 1 2
R

d d
E E

d d d d
= +

+ +
ω  (5) 

Wrinkle distributes around its region-center wrinkle under constraint of facial struc-
ture, and therefore Rω  reflects the constraint of facial structure on wrinkles. Similar 

to AD , measurement of facial structure constraint is:  
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1( ) ( )R R R RD −= − Σ −Tw ω w ω  (6) 

where 1
R
−Σ is weighting matrix. Rω  is the region-center wrinkle. 

6   Wrinkle Generation and Experimental Results 

Having obtained age and facial structure constraint, we can generate wrinkles on 
cartoon face. Substituting (4) and (6) into (3), ∗v is given as:  

1 1

1

arg min{ ( ) ( ) ( ) ( )

( ) ( )}

A A A R R Rα β
γ μ μ

∗ − −

−

= − Σ − + − Σ −

+ − Σ −

T T

T
v

v w ω w ω w ω w ω
v v

 (7) 

where μ  is average value of parameterized wrinkle samples, and 1−Σv is weighting 

matrix. w is reconstructed from v , and Rω  is computed according to w .They are 

both the function of v . 
Due to the nonlinear operation in computing region-center wrinkle, we adopt a 

simplex search method[14] to optimize formula (7). Though it may not give global 
optimizing values, it can still be the optimal method if a good initial value is selected. 

6.1   Data Preparation and Training 

We have collected 100 facial images of young, middle-aged and old people respec-
tively. In order to learn center wrinkles and variances of wrinkle samples, we manu-
ally label wrinkle curves on the 300 images. Those wrinkle regions in which the ap-
pearance frequency of wrinkle is less than 25% are removed. The data in those re-
gions are regarded as noise data for a specific age. For example, in 100 samples of 
middle-aged people, there are only less 20 faces that appear little wrinkles in the re-
gion between eyebrows. Eventually, 1643 wrinkle samples with respect to 11 regions 
and 3 age groups are collected. 

We assume that AΣ and RΣ  are equal diagonal matrix, which are learned from 

wrinkle samples. Σ v  are assumed as diagonal matrix. μ is mean value of parameter-

ized wrinkles. Σ v and μ are learned from parameterized wrinkles. Aω is obtained in 

clustering. Rω is a variable related to w , which is computed following w .  

It must be noted that generated wrinkle data with the model are discrete coordinate 
points of wrinkles as defined in section 3. The wrinkle curves are drawn by connect-
ing those points. 

6.2   Experiment 1: Wrinkle Adjustment by Facial Structure 

Region-center wrinkle presents regulated forms of a known wrinkle under the con-
straint of facial structure. It can be used to adjusting abnormal wrinkles on a specific 
face, which is important in cartoon wrinkle rendering. For an assumptive abnormal 
wrinkle, the adjusted wrinkle is computed with formula (5).  

Figure 5 shows assumptive wrinkles w on left cheek on a specific face and its ad-
justed wrinkles. We can see that adjusted wrinkles are more realistic and beautiful. 



472 P. Wei et al. 

 

 

Fig. 5. Wrinkle adjustment by facial structure.(a)(b) Position adjustment.(c)(d) Abnormal shape 
adjustment.(e)(f) Smoothing irregular wrinkles. Red dashed lines typify facial wrinkle regions. 
Blue dot lines typify original wrinkles, and black real lines typify adjusted wrinkles. 

 

Fig. 6. Personalized wrinkles on various facial structures. The first line is generated wrinkles in 
left lower eyelid region. The second line is in the right cheek, and the third line is in the left 
outer canthus. Red dot lines typify the facial structure, and black real lines are wrinkles. 

6.3   Experiment 2: Personalized Wrinkles on Different Faces 

Wrinkles on different faces exhibit various forms even in the same age group. The 
generated wrinkles by our model can present rich variances in different facial struc-
tures. Here, we assume 1α β γ= = = . Figure 6 shows some results in different facial 
structures of old people. The wrinkles exhibit personalities in different facial struc-
tures, which prove validity of our model. 

6.4   Experiment 3: Generation of Cartoon Face Wrinkles 

Figure 7 shows generated wrinkles in faces of three different age. In experiment, we 
assume 1α β γ= = = . We first use the Personal Facial Cartoon Generation Sys-
tem[1][15] to generate sketchy and texture cartoon face, as Figure 7(b) and (d) shows, 
then add optimal wrinkles generated by our model. The figures show that generated 
wrinkles are vivid and expressive.  
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Fig. 7. Generation of cartoon face wrinkles.(a)Original facial images.(b) Sketchy cartoon face 
without wrinkles.(c) Sketchy cartoon face with wrinkles. (d)Texture cartoon face without wrin-
kles. (e) Texture cartoon face with wrinkles. 

7   Discussion and Conclusion 

We have presented a statistical-structural constraint model for cartoon face wrinkle 
representation and generation. Experimental results are expressive. This model can be 
used in facial aging, wrinkle extraction, facial expression and so on. 

There are some limitations of this model, which are also the future work we should 
do. For the reason that the same number of generated wrinkles in the same age group 
and some times similarity of wrinkle regions of different people face, whole appear-
ance of wrinkles on different faces in the same age group seem similar sometimes. 
Second, our model aims at adding ‘proper’ wrinkles for specific cartoon face. It is not 
proof of nature laws but approximation or intimation. Thus, added wrinkles are not 
always the same completely with wrinkles in the natural situation. 

Aiming at those limitations, we will further research methods of generating more 
personalized and realistic wrinkles. 
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Abstract. This paper presents a spatially varying super-resolution approach that 
estimates a high-resolution image from the low-resolution image sequences and 
better removes Gaussian additive noise with high variance. Firstly, a spatially 
varying functional in terms of local mean residual is used to weight each low-
resolution channel. Secondly, a newly adaptive regularization functional based 
on the spatially varying residual is determined within each low-resolution chan-
nel instead of the overall regularization parameter, which balances the prior 
term and fidelity residual term at each iteration. Experimental results indicate 
the obvious performance improvement in both PSNR and visual effect com-
pared to non-channel-weighted method and overall-channel-weighted method.  

Keywords: Super resolution, spatially varying weight, adaptive regularization 
functional, local mean residual. 

1   Introduction 

Due to imaging system’s physical constraints, it is difficult to obtain high-resolution 
images in some applications. Super-resolution is a very good approach to resolve this 
problem. Super-resolution is to form a higher resolution image by means of multiple 
low-resolution images of the same scene or object and its applications can be widely 
found in a broad range of image and video processing task such as aerial photo, medi-
cal imaging, video surveillance etc [1].  

Super resolution is an ill-posed problem and a number of estimation results satisfy 
the constraints of the observation model. The Tikhonov regularization formulation is 
an important research method to formulate the inverse problem well-posed and find 
the optimized solution, which can incorporate prior information easily. The choice of 
regularization parameter is the central issue and plays a very important role in the 
reconstruction process. So far, a number of approaches have been developed to ad-
dress this problem, such as generalize cross validation (GCV) [6][7] and L-Curve [8]-
[10]. However, the determination of the regularization parameter needs the prior 
knowledge about signal and noise and additional computation in a separate first step. 
The main disadvantage of using a constant regularization parameter is that edges 
cannot be preserved well when regularization is based on a smoothness assumption. 



476 Y. An, Y. Lu, and Z. Zhai 

To overcome this difficulty, References [2][3] modify regularization parameter itera-
tively using an adaptively regularization functional at the same time with the restored 
image. An adaptive method based on different degree of registration error is used to 
determine the regularization parameter automatically in each low-resolution channel, 
which not only incorporates auto channel information but also cross channel informa-
tion [4]. Reference [5] proposed a MAP-based image resolution enhancement with 
overall weight in terms of the cross-channel fidelity to each low-resolution image.  

The disadvantage of non-channel-weighted regularization method is that the data 
residual term drops the difference of each channel’s contribution and each low-
resolution channel has an equal and constant weight during the entire reconstruction 
process. The overall-channel-weighted regularization method takes into account the 
difference of each channel’s contribution but ignores the difference of different re-
gions in one channel, such as the textured regions and the smoothing regions. We 
present a spatially varying super-resolution approach based on local mean residual, 
which can give different weights and regularization parameters in different regions 
and better removes the additive noise with high variance. 

The rest of the paper is organized as follows. In section 2, the observation model is 
briefly presented; In section 3, we introduce the spatially varying super-resolution 
approach based on local mean residual with adaptive weights and regularization pa-
rameters in different regions; Experimental result and discussion are presented in 
section 4, and conclusions are shown in section 5. 

2   Observation Model 

In most cases, the image degradation model can be described by a linear process. 
Assume that p observed low-resolution images, each of size 21 NN ×  and lk represents 

the kth measured low-resolution image. The deterministic high-resolution image h is 
of size 21 LNLN ×  and L is the down-sampling factor. All vectors are ordered lexico-

graphically and the degradation model can be represented by:  

pknDBFhl kk ,...,2,1, =+=  .                                        (1)  

where nk represents random Gaussian zero mean noise with variance 2
kσ . F, B and D 

represent respectively geometric warp operation, space invariant blur operation and 
decimation operation.  

Assume no prior information of the noise variance for each channel, and as in [4], 
the registration error noise has a Gaussian type pattern, and its standard deviation is 
proportional to the degree of the registration error. Reference [5] takes into account 
the registration error and gives different fidelity to each low-resolution channel. 
Hence the so-called inverse problem in (1) can be formulated using multi-channel 
method:   
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where 
2

DBFhlk −  is the residual term of the kth low-resolution channel which 

enforces faithfulness of the solution to the data, and 
2

Ch  is the regularization term 

representing a prior information about the high-resolution image which measures the 
image singularity and enforces smoothness on the solution. )(hkλ  is the regularization 

parameter within the kth low-resolution channel, and kα is weight coefficient of the 

kth low-resolution channel. C denotes two-dimensional Laplacian high-pass filter.    

3   Spatially Varying Regularization Reconstruction 

The basic idea behind the proposed method is not only taking into account the differ-
ence of each channel’s contribution but also considering the difference of different 
regions’ contribution within one channel. For example, the local mean residual in the 
textured regions is larger than the one in the smoothing regions. So we propose a 
spatially varying super-resolution approach based on local mean residual, which can 
adaptively weight different regions in different channel and give different regulariza-
tion parameter in different regions in one channel. 

3.1   Spatially Varying Weight for Each Low-Resolution Channel 

According to the properties in [5], the cross-channel weight is inversely proportional 

to the residual norm
2
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where p  is the number of the low-resolution images. Equation (2) is non-channel-

weighted regularization method when the weight coefficient of each low-resolution 
channel kα  equals to 1. 

The purpose of this section is to show that a relatively simple modification of the 
above methods yields a spatially varying weight for each low-resolution channel. 
And the modified method can better remove the additive noise with high variance 
while preserve the texture information of the image. To obtain a spatially varying 
scheme, we generalize the residual term by imposing a mean window to get a piece-
wise local residual constraint. Let us define a measure first to which we refer as local 
residual: 
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where ),( yxl
)

is the corresponding degradation of the high-resolution image in each 

channel and ),( yxRk  is the local mean of the data residual term with size of 

21 NN × . ),(),(),( xxxxwyxw yx −−=  is a normalized and radially symmetric 

smoothing window and subjects to  

1),(
1 1

),( =∑∑
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So the weight coefficient of each low-resolution channel ),( yxkα  can be rewritten as 
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In order to make the coordinates identical, we multiply kR  by TD  

k
T

k RDLR =  .                                                      (7) 

where kLR  is the nearest interpolation up-sample of kR  with size of 21 LNLN × . 

Equation (6) can be represented as  
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3.2   Spatially Varying Regularization Functional in Each Low-Resolution 
Channel 

A set theoretical (ST) approach [14][15] is used to formulate the image super-
resolution problem. Assume the solution to (1) is smooth and this is achieved by  

22
ECh ≤  .                                                           (9) 

where 2E  is a prescribed constant, which restricts the bound of the high frequency of 
the high-resolution image h. Similarly, the noise nk is assumed to belong to the sets 

222
kkk eDBFhln ≤−=  .                                             (10) 

where 2
ke  is proportional to the variance of the noise in the kth low-resolution chan-

nel. If both bounds 2
ke  and 2E  are known, 2)()( Eeh kk =λ  is used to compute the 

regularization parameter. But in practical cases, it is difficult to obtain an accurate 
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estimate of them. So 
2

DBFhlk − , which is the data residual in the kth channel, can 

be used to replace the numerator of the regularization functional. And the denomina-

tor is also replaced by 
2

Ch  , then we can get a new regularization functional 

2

2

)(
Ch

DBFhl
h k

k

−
=λ                                              (11) 

The regularization functional controls the weight of the regularization term and regu-
lates the proportion between the data residual term and the regularization term. When 
it becomes larger, the edge of the reconstructed image is blurrier, and reversely, the 
reconstructed image is shown much noisier. So we should take into account the dif-
ferent effect of the regularization functional on the difference regions in the high-
resolution image. A newly adaptive regularization functional based on the spatially 
varying residual is proposed to control each low-resolution channel instead of the 
overall regularization functional. We replace the numerator of Equation (11) with 

kLR  in order to make the coordinates identical, which is the up-sample of local resid-

ual of each low-resolution channel kR . And in order to prevent the denominator from 

becoming zero we use the maximum of the regularization term to replace the denomi-
nator.  The regularization functional is described as 

)),(max(
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k =λ  .                                         (12) 

The gradient descent optimization algorithm can be used to reconstruct the high-
resolution image by minimizing the cost function (2). The expected high-resolution h 
can be updated iteratively beginning with an initial estimate of the high-resolution 

image 0ĥ which is obtained using nearest interpolation from a low-resolution image 
and moves toward the optimum image as 
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until convergence is reached. The parameter β in (13) represents the step size at 
each iteration and m is the iteration number. 

4   Experimental Result and Discussion 

To test the performance of our proposed spatially varying weight image sequences 
super-resolution algorithm, we adopted test image “Lena” with size of [512×512] to 
do numerical experiment for a synthetic test. 16 low-resolution images were created 
by translating, blurring and down-sampling with a factor of 4 in each dimension and 
added by zero mean Gaussian white noise. The blur operation B was [5×5] Gaussian  
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kernel with variance 2. The decimation operation D was [4×4] averaging and the two-
dimensional Laplacian operator was used for C. The weight coefficient ),( yxkα  of 

the low-resolution channel was obtained by Equation (8), and the regularization pa-
rameter ),( yxkλ  was determined by Equation (12). 4 cases listed in Table 1, were 

used to test the validity of our algorithm. The first low-resolution image was chosen 
as reference image and the relative motions with other images were estimated using 
Lucas-kanade method. Nearest interpolation of the first frame was chosen as the first 
estimate of high-resolution image. The algorithm was carried out for 50 iterations or it 

got convergent with the criterion 62212 10−+ <−= nnn hhhE . The window size 

used to compute the local mean residual take an important role in the reconstruction 
process. Fig. 1 shows the PSNR of Case 4 in different window size. We can see it can 
not get better results when the window size between 9 and 11. 

Table 1. Four cases of synthetic test using “Lena” 

 p=16: number of low-resolution images 2
kσ  

Case 1 16 frames of “Lena” with size of [128×128] 22 
Case 2 16 frames of “Lena” with size of [128×128] 102 
Case 3 16 frames of “Lena” with size of [128×128] 152 
Case 4 16 frames of “Lena” with size of [128×128] 202 

Table 2. PSNR of the “Lena” using the four methods 

PSNR Case 1 Case 2 Case 3 Case 4 

Bilinear 25.42 24.12 23.30 22.36 

Non-channel-weighted method 27.48 26.71 25.92 24.96 

Overall-channel-weighted method 27.85 26.80 25.85 24.76 

Our proposed method 27.29 27.07 26.69 26.29 

 

Fig. 1. The PSNR of “Lena” test with different window size in Case 4 
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 (a)                               (b) 

     
 (c)                              (d) 

Fig. 2. Results of case 2. (a) Bilinear interpolation of reference image; (b) Non-channel-
weighted method; (c) Overall-channel-weighted method; (d) Our proposed method.  

The performance of the proposed algorithms was quantitatively evaluated by meas-

uring the PSNR. It is defined by ( )
⎭
⎬
⎫

⎩
⎨
⎧ −×=

22
10 255log10 hhNPSNR

)
, where N is 

the total number of pixels in the high-resolution image, and h
)

 and h  are the esti-
mated high resolution image and the original image respectively. For comparison, the 
PSNR of the restored images for “Lena” using Bilinear, Non-channel-weighted 
method, Overall-channel-weighted method and our proposed method are demon-
strated in Table 2 respectively. The window size we use is 9. From Case1 to Case 4, 
the superiority of our proposed method is better and better compared with other meth-
ods, and especially in Case 4 with standard deviation of 20. The results of Case 2, 
Case 3 and Case 4 are shown in Fig. 2, Fig. 3 and Fig. 4. 

 



482 Y. An, Y. Lu, and Z. Zhai 

     
(a)                             (b) 

     
(c)                              (d) 

Fig. 3. Results of case 3. (a) Bilinear interpolation of reference image; (b) Non-channel-
weighted method; (c) Overall-channel-weighted method; (d) Our proposed method.  

     
(a)                              (b) 

Fig. 4. Results of case 4. (a) Bilinear interpolation of reference image; (b) Non-channel-
weighted method; (c) Overall-channel-weighted method; (d) Our proposed method. 
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(c)                               (d) 

Fig. 4. (continued) 

5   Conclusion 

In this paper, we have presented a spatially varying functional to update the weight of 
each low-resolution channel, and simultaneously determine the within-channel regu-
larization functional adaptively based on the partly restored image at each iteration 
step. The weight coefficients act as the cross-channel fidelity to each low-resolution 
image in terms of the local mean residual, while the regularization functional works 
as balance between the fidelity term and the prior term for each channel. The experi-
mental results demonstrate the validity of our proposed algorithm, which better re-
move the additive noise with high variance and perform a better reconstruction. 
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Abstract. Though current commercial image search engines provide ef-

fective ways to retrieve the relevant images, they are ineffective for users

to find the desired from the retrieved hundreds of results, especially for

ambiguous queries. In this paper, we propose to summarize the search

results by several representative images. We argue that the relevance and

image quality are two important measures for a user friendly summariza-

tion since image search results are normally noisy with some low-quality

images. The two factors, which can be regarded as informative prior of

whether an image is a good summary candidate, are modeled into Affin-

ity Propagation framework. User studies demonstrate that our proposed

method is able to produce a user friendly summary, in terms of relevance,

diversity, and coverage.

1 Introduction

Though image search engine provides a convenient tool for users to retrieve
the desired images from the large amount of images on the Web, users are often
difficult to find the interesting ones from the returned results due to the excessive
amount of images for users’ browsing. Image search result summarization, which
selects the representative images from the results for presentation, can alleviate
users from browsing all the returned images.

Consider the situation where a user issues a query “apple” and the search
engine returns hundreds of images sorted by relevance. As shown in Fig.1, the
images returned for query “apple” range from apple food to Apple Inc. products,
even to apple shape rock. It is very inefficient for users to browse all the images
to find the desired ones. Actually, when several topics for “apple” are presented,
users are able to obtain their targets more conveniently, as shown in Fig.2.

There are some prior works on automatically determining the image sum-
maries from an image collection [1][2][3][4][5]. Simon et al. [1] formulate the
problem of scene summarization as an optimization problem by taking the im-
age coverage and diversity into consideration and then describe a greedy algo-
rithm to solve it. Kennedy et al. [2] focus on landmark summarization. They
� This work was performed when Rui Liu was visiting Microsoft Research Asia as a

research intern.
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Fig. 1. Top 35 images for the query “apple”, retrieved by Microsoft Live Search

employ K-Means to cluster the images into visually similar groups, and then
select images from the clusters according to some heuristic criteria including vi-
sual coherence and interest point connections. Fan et al. [3] compute an optimal
partition based on a mixture-of-kernels and use a sampling algorithm to select
representative images. Yang et al. [4] propose a greedy method to recommend
canonical images. They first adopt visual words to represent the visual features
in the scene, and then iteratively pick up the images which cover the most infor-
mative visual words as many as possible. Another related work is from Raguram
et al. [5]. They work on clustering Flickr photos by utilizing image content and
the associated tags to summarize general queries, such as “love”, “CLOSEUP”
and so on.

Although the above methods, referred to as image collection summarization
(ICS), are effective to select representative images from a collection, they are not
optimal to summarize image search results. There are several reasons. One is that
the image search engines often return some noisy images which should not be con-
tained in the summarization result. Hence, selecting images primarily by cover-
age and diversity, as most of the ICS methods do, is not a good strategy in the
noisy circumstances. For example, as shown in Fig.3, it is very possible to select a
“green map” (the third image from the left) that is obviously not favored by users
when only coverage and diversity are considered. The second reason is that the
relevance obtained from the search engine is useful prior information for images
to be selected as summaries. However, most of the ICS methods did not take this
into consideration. The third reason is that the image quality in the summariza-
tion result is important for users’ experience. The low-quality images such as the
rightmost in Fig.3 are non-informative for users if they occur in the summaries,
since users cannot get the “complex” idea from such small-sized thumbnails. Our
study shows that user experience significantly suffers from low quality summaries,
and even cannot tolerate any thumbnail images with low resolution.

In this paper we proposed Image Search Result Summarization (ISRS) to
address these problems, as illustrated in Fig.4. Informally, we define the image
search result summarization as a problem of extracting the most “important”
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Fig. 2. A human summary for “Apple”, which contains the images of “red apple”,

“apple logo”, “apple iPhone”, “apple tree”, and “apple pie”

Fig. 3. A machine summary for “Apple” when only coverage and diversity are used

Fig. 4. Image Search Result Summarization System

images of search results. Important images mean that they are relevant to
queries, attractive to users, and representative for the different subtopics. To
achieve these goals, first, we investigate human summaries and employ several
criteria such as relevance and quality to capture human’s perception of image
summaries. We take the initial rank returned by the search engine as the rel-
evance information. Several features including dynamic range, color entropy,
brightness, blur and contrast are employed to train a quality model. In order to
select the representative images with little redundancy, we cluster the images to
find the exemplars using Affinity Propagation and then greedily select summaries
from the exemplars according to several criteria such as relevance, quality, relia-
bility and redundancy penalty. The experimental results show that our proposed
method can give an excellent summarization for image search results.

The rest of the paper is organized as follows. Section 2 introduces a clustering
step to extract the summary candidates. Section 3 discusses a ranking step to
select top-ranked images from the candidate set until the desired number is met.
Section 4 describes the various experiments and shows the results. Finally, the
paper concludes with Section 5.
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2 Generating Summary Candidates

For each image in the search result, we first estimate the relevance and qual-
ity, which will be combined as the prior whether the image should be selected
as a summary. Then we select exemplars by using Affinity Propagation (AP)
algorithm [6] with the prior to generate the candidates for summarization.

2.1 The Clustering Approach

To start with, we will briefly introduce Affinity Propagation (AP), which is an
exemplar-based clustering algorithm developed by Frey and Dueck [6]. The rea-
son that we employ AP clustering method lies in two folds. First, it is difficult for
other clustering methods to take the relevance and quality factors into account
as a prior, while AP algorithm enables us to assign the prior for each image. The
other is that AP does not require predefining the number of clusters, which is
usually hard to determine for the summarization problem.

Considering all the N data points as potential exemplars, the AP algorithm
clusters data according to two kinds of message exchanged between data points.
One is “responsibility” r(i,k), sent from data point i to k, reflecting how well-
suited k is to serve as the exemplar for i in view of other potential exemplars. The
other is “availability” a(i,k), sent from point k to i, reflecting how appropriate
it would be for i to choose k as its exemplar considering the support from other
points that k should be an exemplar. The computational cost of AP algorithm
is O(N2T ) where T is the number of iterations.

One of the inputs to the AP algorithm is the similarity matrix of the N data
points. The other is the preference, which can be regarded as the prior for each
image to be selected as an exemplar. With the preference, AP algorithm does not
need to specify the number of clusters. In the output of AP clustering algorithm,
every data point i has its corresponding exemplar k, which means the image Ii

can be represented by Ik, and we denote this as S(Ii) = Ik.

2.2 Scoring Preference

In this section, several criteria are proposed to measure the prior of an image
to be contained in a summary, which are natural to be incorporated into AP
framework. The preference for each image as an exemplar is estimated via a
linear model of the relevance R(Ii, q) and quality Q(Ii):

Prior(Ii, q) = w1R(Ii, q) + w2Q(Ii) + c (1)

where Ii is the i-th image in the search result, q is a given query, and c is a
constant.

In the following we will detail the estimation of relevance and quality
respectively.
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Fig. 5. Percentage of representative images (average over the 26 queries) that falls in

different intervals of the initial rank

Relevance. The basic idea to estimate relevance is to use the initial rank, which
records the ranked position of each image returned by the search engine directly.
In order to verify that the rank is useful, we perform a simple experiment. We
manually label 26 queries in order to find out all the representative images,
and then compute the percentage of representative images (average over the 26
queries) that falls in different intervals of the initial rank. As can be seen from
Fig.5, those representative images in top 100 take up one quarter of the total
representative images and far outnumber those in the other intervals. Meanwhile,
the number of representative images decreases significantly along the rank. This
fact reveals that the top ranked images are more likely to be representative
images than those bottom ones, which suggests that relevance is one of the
important factors that influence a human’s decision to select summary images
and that the rank provided by search engines is a good indication of the “true”
relevance.

Given N retrieved images under a specified query q, the relevance score for
each image Ii is defined as:

R(Ii, q) = 1− Pos(Ii, q)/N, i = 1, . . . , N. (2)

where Pos(Ii, q) is the position of the image Ii in the search result.

Quality. Images presenting a good appearance are likely to attract more at-
tentions. Good appearance means both clear view and high aesthetics. Here we
adopt a set of features that are effective in describing the quality of an image to
predict whether an image has a good appearance.

Dynamic Range. Dynamic range is used for denoting the luminance range of
a scene being photographed. The value is computed by the ratio between the
maximum and minimum measurable light intensities.
Color Entropy. We use color entropy proposed in [7] to describe the colorlessness
of the image content.
Brightness. A large amount of low-quality images are photographed with insuf-
ficient lights. We calculate this factor according to [7].
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Blur. The blur algorithm that we adopt is proposed in [8], and has been proven
to work well for web images.
Contrast. Good images are generally under strong contrast between the subject
and the background. In this paper we compute the contrast according to [8].

Each quality measure returns a score for each of the images. The quality factor
Q(Ii) is further a linear combination of dynamic range, color entropy, brightness,
blur and contrast. To learn the weights of the quality factors automatically, we
first construct a training set by labeling images into low-quality (Fuzzy and
unpleasant images), middle-quality (Not good enough to be contained in a sum-
mary), and high-quality (Good looking and easy to understand). Because each
image’s relative order is important in our task, ranking support vector machine
[9] is used to train the quality model.

Once the relevance and quality are defined, the summary candidates are then
generated by employing AP clustering method. After the clustering step, we now
turn to the ranking process.

3 Ranking and Selecting Summary Candidates

In this section, we aim at selecting the most “competitive” images to form a sum-
mary. Competitiveness is a measure to minimize the redundancy while maximize
both the candidate’s prior confidence and reliability.

Prior. The prior of an exemplar is assigned by the Prior(Ii, q) (See Eq. 1) to
measure the importance of the image Ii for query q.

Reliability. We design this measure to describe how reliably an exemplar would
be selected as a summary, based on the visual consistency property. The intu-
ition is based on the observation that the neighbors of a reliable exemplar will
locate in the same cluster as the exemplar, on the other hand, the neighbors of
an unreliable exemplar will scatter around other clusters. Suppose we have M
generated exemplars by χ = {x1, x2, . . . , xM}, and N images, whose pairwise
similarity matrix is denoted by W . For a particular exemplar xi, we obtain its
K-Nearest-Neighbors (KNN) P = {p1, p2, . . . , pK}. Let pxi

j be one of exemplar
xi’s KNN. The reliability of xi is computed as the following:

NNC(xi) =
1
K

K∑
j=1

δ(pxi

j , xi) (3)

where

δ(pxi

j , xi) =
{

1, S(pxi

j ) = xi, i = 1, . . . ,M, j = 1, . . . ,K.

0, else
(4)

That is to say, if pxi

j links to the exemplar xi, then Ij contributes one to
NNC(xi), else it contributes zero.

Redundancy penalty. Some queries often contain significant number of similar
images with the same topic. Take “apple” for example, a large portion of the
returned images are “apple logo”. However, these images are often clustered
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into multiple groups. In order to avoid such redundancy to achieve a diversified
summary, we punish the images which are similar to previously selected images.
For an image Ii, the redundancy penalty is computed by:

Redundancy(Ii) = max
Ij∈A

Sim(Ii, Ij) (5)

where A is the image set composed of already selected ones.
Afterwards, the prior, reliability and redundancy penalty scores are aggre-

gated by linear combination, to produce the overall score:

Score(Ii, q) = β1Prior(Ii, q) + β2NNC(Ii)− β3Redundancy(Ii) (6)

where Ii is an exemplar and β1, β2, β3 are the weight parameters that can be set
empirically.

In each iteration, we greedily select the exemplar Ii with the highest
Score(Ii, q). The iterative process ends until the required number of images
is met, and the selected images are finally taken as our summarization results.

4 Experiments

In this section, we present the experimental results of our summarization ap-
proach, based on a number of user studies and comparisons.

4.1 Data Preparation and Parameters

In our experiment, 26 queries with totally 24,010 images are crawled from Live
Image Search before 2008/8/8. Each query returns approximately 1000 images.
We filter out the bad images, for example, the images with the aspect ratio
greater than 4 or lower than 1/4, because such kinds of images are not suited
for presentation in the summary.

We extract three kinds of low-level features developed in [10] to represent
images from different perspectives, such as color (24-dimension Attention Guided
Color Signature), shape (324-dimension Histogram of Gradient, 45-dimension
Multi-Layer Rotation Invariant EOH), and texture (192-dimension Daubechies
Wavelet). Adaptive visual similarity measure is used to combine all the image
features to generate the similarity matrix. Detailed algorithm is described in [10].

Following the methods in Section 2.2.2, we calculate the overall measure to
characterize the quality of a thumbnail. We label all the images of the 26 queries,
where 20% are labeled as high-quality images, and 23% as low-quality images.
RankSVM with linear kernel [9] is used to learn the quality model. 13 queries
are selected as the training set and the other 13 as the test set for evaluating
the quality model and the summarization result.

4.2 Evaluation Design and Procedure

20 invited participants aged between 20 and 30 with different professional knowl-
edge, took part in our study. To evaluate the proposed summarization approach,
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we conduct a two step user study by these participants. Firstly, we ask these
participants to scan the images in each query so that they will be familiar with
the topics. Secondly, we ask them to score the summary for each query.

We implement a rank-only baseline and a quality-only baseline, which both use
AP framework. The rank-only baseline considers only the relevance of an image
in the phrase of assigning preference, and the quality-only baseline considers only
the quality of the image. For the purpose of comparing our method, we further
implement two image summarization baseline systems: Top5, which takes the
top five images in the retrieved results as summary [4], and APSP, obtained by
AP clustering sharing the same preference value.

Since it is usually difficult to have people agree on which images should be
selected to compose a “gold” summary, the use of multiple criteria for evaluation
could help alleviate this problem [2, 4]. Our evaluation is based on ten different
popular queries among the test set. Summaries on each query are generated by
the methods shown in Table 1, each of which contains five images. For each
summary, we ask users to answer the following questions:

Relevance: How many images in the summary are relevant to the topic (0-5)?
Coverage: How well does this summary represent the retrieved images (0-5)?
Diversity: How many different topics are there in the summary (1-5)?

4.3 Results

To begin with, we evaluate the different measures used in the proposed method,
i.e., rank and quality as detailed in Section 2, and try to analyze how such
measures affect the summarization result. Table 1 summarized the average per-
formance of our method with only one of the measures and the combination. As
can be seen, the combination (M3) of two measures achieves the best score. This
implies that various factors are all useful and can complement each other. As
well, we can see that M2 (rank-only) performs better than M1 (quality-only),
especially on relevance.

Now we compare the proposed methods (M3) with the other two baselines,
Top5 and APSP as shown in Table 1. M3 achieves the best results in terms of
coverage and diversity, and the relevance is comparable to Top5. Unsurprisingly,
since APSP does not consider the rank and quality measures, it performs poorly.
Since M3 takes diversity into consideration it is reasonable that the relevance is

Table 1. Performance comparison statistics

Methods Relevance Coverage Diversity

APSP 3.835 3.205 3.05

Top5 4.54 3.425 2.785

M1(quality-only) 3.65 3.05 2.83

M2(rank-only) 4.285 3.38 2.935

M3(combination) 4.405 3.675 3.415
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Fig. 6. The different summarization results for “apple”

Fig. 7. Example summaries generated by our method

slightly lower than Top5. This also demonstrates that the rank obtained from
search engine is really a useful factor to model relevance in the summarization.

The summaries for “apple” generated by Top5, APSP, and M3 are illustrated
in Fig.6. As can be shown, Top5 is able to provide relevant images for “apple”,
however, the diversity and representativeness is not considered. Firstly, two “ap-
ple logo” and two “fresh apple” are presented in the top images while a good
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summary should avoid such redundancy. Second, a “Think Linux” image appears
in the rightmost of the summary, yet, more representative images would be a bet-
ter choice. The result of APSP as shown in Fig. 6(b), contains irrelevant images
and poor-quality thumbnails which are non-informative for normal users. This
is because that relevance and quality are not considered. The proposed method
M3 achieve the summary comprising “apple logo”, “apple iphone”, “apple fruit”,
“apple tree”, and “apple products”. From this we can see that M3 generate a
more diverse and comprehensive summaries compared with Top5 and APSP. In
addition, the relevance and quality of the images in the result of M3 are better
than the others.

Fig.7 shows more results generated by M3. For “Baseball”, our summary
contains the topic of “baseball player”, “baseball”, “baseball clipart”, “baseball
bats”, and “baseball stadium”. For “BMW”, our method generates a high-quality
and diverse summary, including “BMW X6”, “Bmw logo”, “BMW Z4”, “BMW
Serie 1”, as well as “BMW Isetta”. Other results for queries “Birds” and “Anne
Hathaway” are also shown in Fig.7.

5 Conclusion

We propose a novel approach to summarize image search results by taking the
relevance and quality as a prior. It mainly consists of two steps: a clustering step
and a ranking step. In the clustering step, we generate the summary candidates
based on a clustering method with the priors of relevance and quality. In the
ranking step, the summary is obtained by selecting the top candidates which are
ranked according to the prior, reliability and redundancy penalty. User studies
conducted on several popular queries show that the proposed method can achieve
a user friendly summarization in terms of relevance, diversity and coverage.
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Abstract. Learning based super-resolution can recover high resolution

image with high quality. However, building an interactive learning based

super-resolution system for general images is extremely challenging. In

this paper, we proposed a novel GPU-based Interactive Super-Resolution

system through Neighbor Embedding (ISRNE). Random projection tree

(RPtree) with manifold sampling is employed to reduce the number of

redundant image patches and balance the node size of the tree. Signifi-

cant performance improvement is achieved through the incorporation of

a refined GPU-based brute force kNN search with a matrix-multiplication-

like technique. We demonstrate 200-300 times speedup of our proposed

ISRNE system with experiments in both small size and large size images.

1 Introduction

Learning based super-resolution, which recovers the high resolution (HR) by
learning the relationship between HR training images and low resolution (LR)
counterparts, attracts much attention recently. Comparing with other methods,
learning based super-resolution is capable of extracting more image/patch in-
formation from a collection of image pairs or image patch pairs and supports
higher magnification factors with fewer LR images [1].

Freeman et al. [2] constructed a Markov network to connect the LR and HR
image patches, followed by employing Bayesian belief propagation to allocate HR
counterparts. However, artistic style is exhibited in the recovered HR image [3].
Assuming local geometry preservation for both high- and low-dimensional man-
ifold, Chang et al. [4] proposed single image super-resolution through neighbor
embedding (SRNE). Wei et al. [5] improved SRNE by extracting visual primitives
and removing the noisy patches by validation (NEVPM). Yang et al. [6] investigated
the selection of neighbor factors from the perspective of compressed sensing and
Su et al. [7] studied the influence of patches from the viewpoint of neighborhood
preservation. Furthermore, efficient face super-resolution methods has been pro-
posed by employing a hallucination algorithm and its variants [8,9,10]. These
algorithms are efficient because they employ linear PCA algorithm to project all
the LR images into a low-dimensional subspace [8].
� Corresponding author.
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It is worth noting that although many refinements have been proposed, the
performance issue of learning based super-resolution, which plays a crucial role
in its practical applications, is not well studied yet. It is very challenging to build
an interactive (a few frames per second) learning-based method which can learn
from hundreds of thousands of image patches or training images.

To attack the aforementioned issue, we propose Random Projection tree
(RPtree) [11] with manifold sampling to reduce the total number of image
patches and balance the tree structure. Then a refined GPU-based kNN search
is employed to find the neighboring patches from the nodes of RPtree. Thirdly,
we perform SRNE for the recovery of high-resolution test image patches. Finally,
we introduce a global reconstruction constrain for further improving the image
quality of high-resolution images. We successfully build an interactive super-
resolution with neighboring embedding system (ISRNE) without compromising
the image quality, even achieving a slightly better quality than the previous
SRNE. Our experiments indicate that ISRNE not only demonstrates a remarkable
improvement over performance, but also shows a superior scalability to existing
methods.

The rest of the paper is organized as follows. In Sect. 2, we describe our
interactive SRNE in details. We report the experiment results and discuss the
limitation of the ISRNE in Sect. 3, followed by a conclusion in Sect. 4.

2 Interactive Super-Resolution through Neighbor
Embedding (ISRNE)

To construct an interactive super-resolution system, we devote our efforts on the
parallelization of two crucial steps of SRNE. These steps are: (1) All the image
patches are separately reconstructed by neighbor embedding which has a closed-
form solution; (2) The neighboring patches of each test patch are searched by
kNN. It is worth noting that in this paper, we do not consider the parallelization
of NEVPM, a refined version of SRNE since NEVPM comprises some steps which are
hard to be paralleled [5]. For self-containness, we give a brief introduction on
SRNE before the discussion of our approach.

2.1 Super-Resolution through Neighbor Embedding

A key assumption in SRNE is that the local geometries of image patches are
similar in two distinct HR and LR feature spaces. Therefore, an HR counterpart
of an LR image patch can be recovered using a collection of HR training patches.

We denote ys and xs be the training patches from HR images and its LR
counterparts respectively. The optimal reconstruction weights of each patch xt

from LR test images is obtained by minimizing the local reconstruction error [4]:

ε = min ‖xt −
∑

xs∈Nxt

ωtsxs‖2, xt,xs ∈ Rd (1)

subject to the constraints
∑

xs∈Nxt
ωts =1 and ωts=0 for any xs /∈ Nxt , where

Nxt is the neighborhood of xt given neighbor factor k. Denote G=(xt1T −Xs)T
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(xt1T −Xs), Equation (1) can be optimized by solving a linear system equation
GW = 1, s.t.

∑
xs

wts = 1. Thus, the HR patch yt is attained as follows:

yt =
∑

xs∈Nxt

ωtsys, ys ∈ RD. (2)

where ys is the HR counterpart of LR image patch xs.
In the last step above, we can either simply average the values in the over-

lapped regions between adjacent patches, or employ other more sophisticated
methods (e.g. one pass algorithm) to enforce inter-patch relationship.

To achieve efficient parallelization of SRNE, we introduce RPtreewith manifold
sampling.

2.2 Random Projection Tree with Manifold Sampling

RPtree, a variant of the k-d tree, hierarchically partitions data of D dimension
into pieces in a manner which only depends on the intrinsic low-dimensional
manifold [11]. The advantages of utilizing RPtree are that: (1) RPtree consumes
less time (O(n)) to construct than PCA tree (O(nlogn)) [11], given n data points;
(2) Unlike k-d tree, RPtree can deal with high-dimensional data (≥ 30) which
are often seen in super-resolution domain; (3) RPtree won’t bring a detrimental
effect on the SRNE performance, since the manifold assumption of RPtree is the
same as that of neighbor embedding [4].

RPtree is built in a streaming manner [12] in which the following statistics at
each internal node of the tree are maintained and updated as new data arrives.

μi ← (1− αi)μi−1 + αixi

σ2
i ← (1 − αi)σ2

i−1 + αi(xi − μi)2.

where μi and σ2
i denote the mean value and the corresponding variance in the

ith iterative times, respectively. Parameter αi(≤ 1/i) is a weighted factor, and
xi means a new sample. The details can be seen in [12].

With this way, Freund et al. [11] proved that if data in C are of intrinsic
dimension d, the average diameter of any descendant cell (≤ d levels below) of
C will be less than half of the average diameter of C with constant probability,
picking any cell C in the RP tree. However, this theorem is not sufficient to assure
the even partition of RPtree especially when the data is distributed unevenly,
which is the case in natural image patches. Since the background patches are
quite similar, most of such patches will be assigned to few nodes. To reduce
the difference of distribution density between the background and foreground
patches, we introduce manifold sampling in order to balance the RPtree. Given
d dimensional n data points xi(i = 1, ..., n), specifically, we approximate the
geodesic distance between data points xi and xj , which are lying close together
(their Euclidean distances dist(xi,xj) is less than a given threshold ε or one
of the K nearest neighbors of xj of xj), can be approximated. For data points
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lying far apart, we then approximate the geodesic distance by the shortest path
distance which is formulated as follows:

dist(xi,xj) = min{dist(xi,xj), dist(xi,xk) + dist(xk,xj)} ∀k, 0 ≤ k ≤ n

Once the approximated geodesic distances between sample pairs in the high
dimensional space are calculated, we can directly use these distance values to
decimate redundant points in the manifold. We also prove an error upper bound
of manifold sampling for super-resolution as follows:

‖Δy‖
‖y‖ ≤ 4ε

‖P‖ +
rε

‖y‖ ,

where PT P = G, and r denotes the super-resolution factor. It indicates that we
can guarantee the difference between the original SR results and correspond one
with manifold sampling is small by carefully choosing ε. Due to limited space,
we put the proof into the supplementary.

2.3 GPU Acceleration

The complexity of the brute force kNN algorithm reaches an order of O(nmd +
nmlogm), where m represents for the number of query data points and, n for
the number of reference data points, and d is the dimensionality of the data
points. To reduce computational cost, Garcia et al. [13] proposed a fast kNN
search scheme based on a brute force GPU algorithm and obtained a remarkable
increase in performance. However, a näıve implementation of GPU acceleration
has very low efficiency due to large amount of un-coalesced memory access and
bank conflicts. In our approach, we develop a matrix-multiplication-like algo-
rithm, to compute the distances.

Denoting the query points as Xt(xtij )m×d and the reference points as
Xs(xsij )n×d, the squared distance matrix D(dist2ij)m×n can then be calculated:

D = Xt &XT
s ,

where & denotes the operator between two matrices, and is defined by:

dist2ij = xti · xsj =
d∑

k=1

(xtik
− xsjk

)2.

Above approach is very similar to the matrix multiplication between Xt and
XT

s , except that the computing kernel is modified. We can very conveniently cope
with the computation utilizing currently available parallel matrix multiplication
algorithms to obtain significant performance improvement. An illustration of
this operation is shown in Fig. 1.

As the neighborhood number k is relatively small in our application, we em-
ploy insertion sort for best performance [13]. Unlike Bishop et al.’s method [14],
we needn’t perform dimension reduction which is required for k nearest neighbor
search on k-d tree. We further propose a combination of GPU-based kNN and
RPtree with manifold sampling to speed up queries. In Sect. 3, we show that
there is no negative impact on the the quality of restoration.
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Fig. 1. Matrix-mulitplication-like operation between Xt(xtij )m×d and Xs(xsij )n×d.

We follow the method of matrix multiplication to compute the distance matrix, with

the computing“kernel” modified.

2.4 Global Reconstruction Constrain

In super-resolution domain, there are two important criteria to evaluate the
recovered HR quality. One is the recovery of high frequency, the other is the
consistency of LR and HR images. To keep the consistency, generally speaking, a
global reconstruction constrain which means the simulated downsampling of the
reconstructed HR image Y is the same as the LR image X should be considered
as follows:

X = DSHY

where H represents a blurring filter, and DS the downsampling operator.
As the consistency of LR and HR images are not always satisfied when patch

by patch restoration is employed, Liu et al. [15] first proposed a two step method
to combine the local nonparametric and global parametric model. In ISRNE, we
utilize the back-projection method (BP) which has been studied by Yang et al.
[6] as a post-processing procedure to enhance the consistency.

Back-projection algorithm is an iterative procedure for estimating unknown
scenes. Given an estimation of the super resolution image, a simulated imaging
process yields a set of low-resolution images which are compared with the ob-
served low resolution images. The super-resolution estimation is then modified so
as to reduce the error between the observed and simulated images. The process
is terminated when the error is less than a predetermined level, or after a given
number of iterations. The iterative procedure is formally described as follows:

Ŷ(t+1) = Ŷ(t) + HBP
(
X− X̂(t)

)
= Ŷ(t) + HBP

(
X−DSHŶ(t)

)
where HBP is a back-projection operator which is an approximation to the
inverse of the operator DSH , t is the iterative times.
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3 Experiments

In order to evaluate the effectiveness of ISRNE, experiments are carried out on
two image sets of different scales. The smaller training set is from Chang et al.’s
paper [4] as in Fig. 2, and the larger one consists of 370 images are collected
from a well-known COREL database.

In the experiments, we will magnify the input image by a factor of 4. In the
LR images, we always use 3 × 3 LR patches, with overlap of 2 pixel between
adjacent patches, corresponding to 12 × 12 patches with overlap of 8 pixels
for the HR images. Like SRNE [4], the neighbor factor k is set to be 5 and
the features (first-order and second-order gradient) are extracted directly from
the illuminance component of LR images since humans are more sensitive to
illuminance changes.

The computer used for the evaluation is an Intel Core 2 Duo E7200 2.53GHz
with 2GB of DDR2 memory PC2-5300 (2×1GB dual-channel memory). The
graphics card used is an NVIDIA GeForce 8800 GT with 512MB of DDR3 mem-
ory. NVIDIA CUDA 2.0 is employed for GPU computation.

We first evaluate the effectiveness of RPtree with manifold sampling using
the small training set. The tree height is set to be 4, which is a tradeoff between
the tree search and node search cost. To remove the randomness of RPtree,
the output, i.e. the number of patches in each node, of 10 times are recorded.
The sum of node frequencies of the 10 repetitions is reported as in Fig. 3. It is
easy to see from Fig. 3 that the distribution of these patches on the tree nodes
are highly imbalanced. Furthermore, there always exists a “big” node in the
tree, which contains almost half of the total patches. For example, the frequency
of a node owing the number of points in [4000, 6000] is equal to 10. It is not
difficult to observe that such patches are sampled from the background. After
manifold sampling is employed, the imbalance is greatly reduced as shown in
Fig. 3. It indicates that the proposed RPtree with manifold sampling indeed
remove redundant patches and improve the balance of RPtree.

As shown in Fig. 4, we compare our method with neighbor embedding (SRNE) [4]
and back projection. It is easy to notice that the forehead hair and double eye of
the girl utilizing ISRNE are more clear than those using SRNE. Furthermore, ISRNE
has lower RMSE for the recovery of HR image than SRNE, and is comparable to
SRNE+BP method and sparse representation method [6] which needs several hours
to get the result. It indicates that while the main goal of the proposed ISRNE is to

Fig. 2. Small training set
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(a) Before Sampling (b) After Sampling

Fig. 3. The distribution of data in RPtree. The vertical axis means the times of a node

of RPtree owing the number of points in some interval.

Fig. 4. 4× recovery of low resolution image. The root mean squared errors (RMSEs)

are shown in the Brackets, from left to right: LR, SRNE (0.0387), SRNE + BP (0.0368),

Sparse Representation (0.0357), ISRNE (0.0369), Ground truth.
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Fig. 5. A performance comparison on the super-resolution with different search meth-

ods for images with different resolutions

attain interactivity, the recovered image quality is not sacrificed, even better than
that of the previous one (e.g. SRNE) in some cases.

To evaluate the performance of ISRNE, we compare it with several state-of-the-
art acceleration methods including: Brute force kNN search (BF), RPtree, partial
distance search acceleration (PDS) [16], and the combination of manifold sampling
with the former three methods. Furthermore, we also study the performance of
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Fig. 6. 4× recovery of low resolution image using the big training set. For each scene,

the left one is the LR image and the right one is recovered by ISRNE. From left to right,

top and bottom, the RMSE errors of these four test images are: 0.0827, 0.0583, 0.0643,

and 0.0734, respectively. In the middle, there are close-ups of the four images.

Table 1. Running time (RT) of ISRNE in seconds, from top to bottom: RT for prepro-

cessing, RT for kNN search, RT for weights calculation, RT for reconstruction, RT for

postprocessing and the total RT

Test 1 Test 2 Test 3 Test 4

Tpre (s) 9.490 9.450 9.420 9.400

TkNN (s) 1.930 1.890 1.760 1.870

Tw (s) 0.115 0.118 0.117 0.118

Tresto(s) 0.161 0.160 0.162 0.166

Tpost (s) 0.107 0.107 0.103 0.107

Total 11.803 11.725 11.500 11.560

three variants of the proposed ISRNE algorithm by neglecting either manifold
sampling or RPtree, or both. The training images are the small training set as
in Fig. 2. The test images of increasing sizes include one image from Chang et al.’s
paper [4] and three images downloaded from Internet. To remove the randomicity
of RPtree, all the methods related to RPtree are repeated 10 times and the
corresponding means and standard deviations of the computational times are
reported in Fig. 5.

It can be seen from Fig. 5 that compared with other methods, ISRNE has
the best performance, and the acceleration ratio of BF is increased with the
resolution of the test images. Furthermore, RPtree and manifold learning are
two comparable and complementary methods which can further accelerate the
refined GPU-based kNN procedure. When the size of images are smaller than
500×348, the running time is less than 1 second which is a basic requirement to
build an interactive super-resolution system. While the “MS+RPtree+PDS” made
a remarkable improvement in the aspect of acceleration, it is hard for PDS to
design an alternatively parallelized one due to its serial computation nature.
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Finally, we attempt to figure out how many training/test patches will hinder
the interactive property of ISRNE. Therefore, we extract 131, 523 patches from
2, 156, 360(5828×370) raw patches which are generated from the mentioned large
training image set. The test set consists of four images from Corel test set without
overlapping with the large training set. The HR test images (of size 384× 256) re-
covered by ISRNE are shown in Figures 6, and running time analysis are tabulated
in Table 1. Compared with the LR images, we can observe that (1) the wall of Ro-
man relics becomes cleaner; (2) the faces of these horses become smoother and a
little bit recognizable; (3) some buildings on the mountain are shown up; (4) the
food details in the dish is distinguishable and the edges of the dish is cleaner. Note
that most of the running time is spent on pre-processing, especially on transfer-
ring all the 131, 523 patches into memory. The time for kNN search and neighbor
embedding is only about 2 second, while other aforementioned learning methods
for super-resolution never run through such tough tests.

4 Conclusion

With the combination of RPtree with manifold learning and the refined GPU-
based kNN search, an interactive super-resolution through neighbor embedding is
proposed. Experiments on both small-scale images and large-scale images indi-
cate that the proposed ISRNE not only remarkably accelerates the procedure of
super-resolution but also enhances the image quality of recovered high-resolution
images well. Note that although the kNN search time grows with the training
patches and test patches, a more powerful hardware will greatly neutralize the
side effect. Meanwhile, this scheme can easily be applied to other patch based
search and replace problems like image denoising, inpainting, texture transfer,
and transparency separation.

There are a few issues that require a thorough investigation. Since RPtree can
construct a tree much more efficient than other tree-based algorithms, we will
investigate how to dynamically update the training patches to further refine the
performance of ISRNE in the future. Furthermore, we would like to generalize
the proposed framework to other learning based super-resolution method.
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Abstract. Vocabulary tree-based method is one of the most popular methods 
for content-based image retrieval due to its efficiency and effectiveness. 
However, for existing vocabulary tree methods, the retrieval precision in large 
scale image database has never been acceptable especially for image datasets 
with high variations. In this paper, we propose a novel tree fusion framework: 
Feature Forest, utilizing and fusing different kind of local visual descriptors to 
achieve a better retrieval performance. In the offline-learning stage, our 
framework first establishes different feature vocabulary trees based on different 
features and uses the average covariance to build vocabulary tree adaptively. In 
the online-query stage, we use the ratio of the resulting score to the standard 
score to fuse retrieval results of each vocabulary tree adaptively. The 
evaluations show the effectiveness of our approach compared with single 
vocabulary-tree based methods on different databases. 

1   Introduction 

For content based image retrieval system, the quality of retrieval result depends 
highly on two factors: one is whether the extracted feature of image is representative 
or not, the other is whether the online retrieval is efficient and effective, which is 
especially important for large scale image database. For the former, some excellent 
features have been proposed in recent years, such as sift, Speed Up Robust Feature 
[11], Histogram of Oriented Gradient [10], but they also have their respective 
limitations for different image contents. As to the retrieval method, the key idea of 
current retrieval methods is to partition the feature space as well as possible in the 
offline stage though their partition methods are different. [12, 13] use a variation of 
supervised learning methods to train the bag of words with positive and negative 
labels, [14, 15] use hashing algorithm to bucketing the descriptors and [3, 5, 6, 8] use 
hierarchical k-means to train the descriptor vectors into visual words. And on query 
stage, voting for the images which are near to the query feature is adapted by all 
methods above. 

Vocabulary tree method has been proved feasible for scalable image retrieval and it 
was first proposed in [5]. Based on this structure, [3] propose distance-weighted 
scoring scheme to make the scoring strategy more reasonable and [8] used the 
adaptive forests to replace vocabulary tree with fixed structure. However, [3] brings 
up the memory and speed problem. [8] used capacity constraint to determine whether 
to create next level or not. Inspired by this method, we propose to use average 
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covariance to replace the capacity constraint and it can solve two cases, which [8] 
can’t solve.  What’s more important is that the methods based on vocabulary tree all 
utilize just one feature. However, single feature may be inadequate to describe 
different visual properties of the images, especially for scalable images and [1] has 
realized the problem and pointed out that for multi-class object categorization,  
multiple features and different combinations of features are needed. To overcome the 
inadequacy of using signal type of feature, we propose the Feature Forest, which 
consist of several vocabulary trees trained with different type of visual features. In the 
offline-training stage, our proposed method first establishes different feature 
vocabulary trees, the structure of which is adaptively constructed using our own rule, 
which is described in section 3.2. In the online stage, we use the ratio of the resulting 
score to the standard score to fuse retrieval results of each vocabulary tree adaptively. 
The contribution of our work is as follows:  

 

1. Using average covariance of the node as guide line to determine whether such 
feature space needs to be clustered into sub-space. 

2. Proposing a novel framework: feature forest, which can fuse the query results of 
each vocabulary tree adaptively.  

 

The rest of the paper is organized as follows. Section 2 presents related works on 
vocabulary tree and object recognition technology. Section 3 briefly reviews 
vocabulary tree framework and our extended work. Section 4 describes the 
framework of Feature Forest and a sample feature forest. Section 5 shows 
experimental result. Finally, we provide conclusions and a plan for feature work in 
Section 6.  

2   Related Work 

Content based image retrieval is a discipline of considerable value on both practical 
application and research.  In recent years, some effective methods have been 
proposed, such as the Multiple Instance Learning, Local Sensitive Hashing and 
Vocabulary Tree. Based on these methods, a lot of extended work also has been done. 

Our work is more relative to vocabulary tree based methods. In 2003, Sivic and 
Zisserman [6] proposed a text retrieval method for object matching in video. 
Descriptors extracted from local affine invariant regions are quantized into visual 
words, which are clustered by k-means into several classes. The collection of visual 
words is used in Term Frequency Inverse Document Frequency (TF-IDF) scoring of 
the relevance of an image to the query. The scoring is accomplished using inverted 
files. The effect of this method is very good but it does not fit for scalable retrieval. 
Based on this method, David Nister and Henrik Stewenius [5] propose the famous 
vocabulary tree. They use hierarchical k-means, which could quickly compute very 
large vocabularies. But the structure of vocabulary tree is fixed and it can’t part the 
feature space adaptively. K. Grauman and T. Darrell [7] propose vocabulary tree 
guided feature pyramid to approximate correspondences in high dimensions. It has the 
same shortcoming as method [5]. Tom Yeh propose an adaptive vocabulary forests 
methods [8], which adapts a vocabulary forest and automatically keeps existing 
histogram pyramid database entries up-to-date in a forward file system. Tom Yeh has 
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considered the problem in [5, 7], but its rule of whether to continue to partition is 
decided by the data number in the node. Different from adaptive method in [8], our 
rule is based on the average covariance of the node, which is more reasonable. The 
detailed explanation will be given in section 3.2.  In order to score more reasonable, 
[3] propose an additional weight based on the distance for scoring in the same 
vocabulary. Though it stores the compressed PCA instead of original data, it still costs 
a lot of memory, because it needs to load in all the compressed training data and 
spend added time to calculate the weights for each voting. Another common 
shortcoming of above methods is that they have not considered the problem proposed 
in [1]. Only using single feature for a large database with high diversity is an 
important constraint for the retrieval precision. Feature forest just hammers at solving 
this problem. The experiment shows the effectiveness of our approach compared with 
single vocabulary tree on different databases. 

3   Vocabulary Tree 

3.1   Review of Vocabulary Tree Structure  

Given a scalable image database, it extracts descriptors from all the training image 
and use the hierarchical k-means to train a vocabulary tree. The tree is determined 
level by level, up to some maximum number of levels L, and each division into k 
parts is only defined by the distribution of the descriptor vectors that belong to the 
parent quantization cell. The feature space will be parted into sub-spaces on different 
level.  The leaf node will write down the ID of descriptors. ID indicates the descriptor 
comes from which image. This is used in hierarchical Term Frequency Inverted 
Document Frequency (TF-IDF) scoring of the relevance of an image to the query. In 
order to make the score be more suitable for the combination of feature forest, we use 
the pyramid match kernel [2]. 

 

                       (1)  

 

is the score of image Y in database for query image X, is the number 

of features from image Y,  passing the same node with features from image X at level 
. 

On the online stage: each descriptor from the query image is simply propagated 
down the tree by at each level comparing the descriptor vector to the k candidate 
cluster centers and choosing the closest one. The score for each database image is 
calculated with (1) and query results will be ranked according to the score.  

3.2   Extended Work for Vocabulary Tree 

[8] has proved that adaptive structure can work better than the fixed vocabulary tree 
structure. They construct the adaptive tree by constraining the capacity of the node. It 
can insure that each node has an appropriate number of features and avoid voting for 
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the weak matching feature. Different from the work done in [8], our adaptive rule is 
based on the average variance. Whether the feature space need to be clustered into k 
sub-space is determined by the covariance of the cluster. When the average is less 
than the threshold, we will stop clustering, otherwise, we will divide the node into k 
sub-spaces. The threshold is determined by the average covariance of the total data. 

 

                                                                 (2) 

 

N is the level number. TotalAverVar is covariance of all data in root node of the tree. 
For some image database, we need to multiple (most time it is less than 0.5) to 
make the effect better. 

When the data number in a node is small but sparse or the data number is large but 
compact, using number of the node to determine whether it is need to be divided into 
sub-space will fail. In this case, our rule is more reasonable, because it is according to 
compact degree of the cluster but to the feature number in the cluster. Adaptive 
structure can avoid missing vote for the perfect matching feature and avoid voting for 
the weak matching feature.  

4   Building Feature Forest 

It is important to note that the visual properties of various images are different, so it is 
difficult to use one feature to characterize all types of images well. B.Libe [1] has 
concluded that for multi-class object categorization, multiple features and different 
combination of features are needed to get a better result. For scalable image retrieval, 
the image contents vary a lot, so a single feature may be suitable to characterize some 
images, but it can’t suitable for all the images. Fig.5 gives a visible interpretation. For 
some querying images, single feature trees fail to give an acceptable query results, but 
the feature forest, combined two single trees, gives a better result. So we need to 
characterize the image from different viewpoints for image retrieval, especially for 
scalable image retrieval. 

In order to solve the above mentioned problems of vocabulary-tree, we propose a 
new structure, Feature Forest, to fuse several vocabulary trees built upon different 
features and combine these trees adaptively.   

4.1   Tree Fusion  

4.1.1   Weight Tuning   
The essence of the scoring strategy of (1) is to measure the number of matching point 
of two images. For one feature, the visual similarity degree of two images is 
proportional to the matching point number. So the higher the query resulting score, 
the better the query result. Based on above analysis, the rationale of finding an 
optimal weight for each built feature tree relies on how to find an optimal 
measurement for its query result score. For a feature tree A, if the relative score of the 
querying result is higher than that of feature tree B, it indicates that the querying 
result of tree A is better than tree B. So when fusing the tree, we need to give a larger 
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weight for tree A. How to get the relative score? Firstly, we define a standard score 
for each feature tree and here the standard score for feature tree i is defined as the 
statistical average score of K query images, which have a good querying results. 

In online-query stage, for each feature tree, we use the ratio of its query score to its 
standard score to indicate the effect of the query result. The higher the ratio, the better 
the query results of this feature tree. The standard score is calculated with (3). For a 

query image k, we note as the score of top j rank in the retrieval results of feature 

tree i and as the standard score of top j rank in feature tree i.  

 

                                              (3) 

 
Once getting the average score for top j rank in feature tree i, we use the average ratio 

of  top N rank to make the weight more stable. The weight  for feature tree i is 

calculated as follows:  
 

                                       (4) 

 
For a query image, if the ratio of query result score to the standard score is small in 

one feature tree, the weight for this tree is relatively small.  If the is smaller than 1, 

the query result is worse than standard query result, otherwise, the query result is 
better than standard query result. 

4.1.2   Retrieval  
In the test phase, the scales of scores for different features are different. In order to 
combine the score of different feature tree together; we need to normalize the score of 
each feature to [0,1]: 

 

                                        

                                                      (5) 

 
Here N is the number of database images. By now, we have gotten the resulting score 
and the weight of each feature tree and we have also normalized the score to make it 
can be combined together. For a query image, the final score of each database image 
can be calculated by (6) 
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m is the number of feature tree. is the score of image k in tree . The value of 

equals to the corresponding  with the same image ID. is the final score of 

image k in image database.  

4.2   Image Representation and Two Tree Fusion 

4.2.1   Image Representation 
It is crucial that using different type of visual feature to characterize image content 
from different viewpoints and resolution scales, such as color, texture and shape. For 
our Feature forest, using same type of visual features can only bring nearly same 
weights for different tree structures, which is less meaningless to utilize the advantage 
of Feature Forest. Such as building a feature forest with sift and Speed Up Robust 
Feature, is meaningless, because they are the same type feature. So only using 
complementary features can fully achieve the superior effect of feature forest. 

In this paper, we use Histogram of Oriented Gradient (HOG) feature, and Speed 
Up Robust Feature (SURF) to build the feature forest. On one hand, HOG Feature is 
dense feature, which can match similar regions better and SURF feature is sparse 
feature.  On the other hand, SURF is a texture feature to some extent and HOG 
contain partial color information and shape information.  

SURF has an approximate effect compared to SIFT, but its speed is much faster 
than SIFT. It is based on sums of 2D Haar wavelet responses and makes an efficient 
use of integral images. As basic image features it uses a Haar wavelet approximation 
of the determinant of Hessian blob detector. In order to get a higher retrieval speed, 
we use SURF with 64 dimensions, and extract about 500 features for each image. 
HOG descriptors describe the distribution of intensity gradients or edge directions of 
local object appearance and shape within an image. In this paper, the histogram is 
calculated for each cell with size 2*2 and the direction is divided into 9 bins. The 
combination of these histograms then represents the descriptor. To have better 
invariance in illumination or shadowing result, we normalized the local histograms by 
the intensity across a larger region 3*3.   The final HOG feature is 81 dimensions. 

4.2.2   Tree Fusion 
If we extract about 3000 feature with 128 dimensions per image for both SURF and 
HOG. The query time of feature forest would be twice of the query time in [3]. In that  
 

 
Fig. 1. Left: Original image. Middle: Detected interest points. This kind of scenes shows 
clearly the nature of the features from Hessian-based detectors. Right: Calculated gradient 
image. HOG feature is calculated in each region and normalized in block. 
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(a) 2 objects in ZuBuD     (b) 3 objects in UKY          (c) 2 objects in famous_landmarkmark  

Fig. 3. Each object has 5, 4, 10 relevant images separately in (a) (b) (c). The relevant images 
are different viewpoint of the same object. 

Table 1. VT: vocabulary tree. Retrieval quality on database with125 images (subset of UKY 
dataset) compared to the standard approach. Although the result with the standard approach is 
already very good it can still be improved with adaptive create next level in section 3.2. 

 

 

5.2   Feature forests Performance 

For each of the three databases, we train HOG vocabulary tree, SURF vocabulary tree 
and feature forest for the three databases, separately. As to query, we index each 
image of the database. The performance is weighted by precision: 
 

             |   ||  |                       (7) 

 
The lowest precision of feature forest is 38.63%, 85.63%, 89.16% for 

famous_landmark, UKY, ZuBuD, separately. In 3 databases, the precision of feature 
forest is always higher than single SURF and HOG vocabulary tree. ZuBuD is a 
relative easy database for image retrieval and the single SURF can reflect its contents 
well, so the feature forest method doesn’t improve too much compared to SURF tree. 
But for UKY and famous_landmark, image contents are more diverse. In this case, 
the performance of feature forest is visible. The precision gain for UKY database at 
top 4 is 8.2% and the precision gain for famous_landmark database is 4.13% at top 
10. Fig. 5 shows some examples of feature forest compared to single vocabulary tree. 
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(a) results of ZuBuD database 
relevant image number is 5 

(b) results of UKY database 
relevant image number is 4 

(c) results of famous_landmark 
relevant image number is 10 

Fig. 4. In (a), (b), (c), the curve shows the retrieval precision of SURF vocabulary tree, HOG 
vocabulary tree and feature forest from Top 1 to Top 15. The green, blue and red curve is the 
retrieval precision of HOG vocabulary tree, SURF vocabulary tree and feature forest, separately. 

 

Fig. 5. For each of the image, the 1rd, 2rd, 3rd are the retrieval results of HOG, SURF and the 
feature forest, separately. Obviously, feature forest gives the best querying result. 

6   Conclusion and Future Work 

In this paper, we introduce a novel tree fusion framework: Feature Forest, utilizing 
different kind of local visual descriptors to achieve a better retrieval performance. In 
the offline-learning stage, our framework first establishes different feature vocabulary 
trees based on different features and uses the average covariance to determine 
whether to create the next level. In the online-query stage, we use the ratio of the 
resulting score to the average score to fuse retrieval results from each vocabulary tree. 
The final results are combined adaptively from each feature tree according to their 
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ratio. The evaluations show our method outperform other original vocabulary tree 
method under the same experimental conditions. In the future, we will test on the 
feasibility to incorporate more than two kinds of features into our Feature Forest 
structure.  Our final goal is to build a feature forest consisting of several feature trees 
and each feature tree is trained with the least but most important features to boost the 
query speed. Though the feature tree trained with less features may have weaker 
performance, we just want to utilize such weak feature tree to construct a strong 
feature forest, which is similar to boosting algorithm in some extent.  
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Abstract. In this paper, we propose a super-resolution technique for

multiple independently moving 3D objects from a single camera, the

camera is also allowed to move freely. Previous techniques were mostly fo-

cused on planar objects, and it was difficult to realize super-resolution for

the scene containing 3D objects, due to significant appearance changes

caused by objects’ motion and viewpoint changes. In this paper, we pro-

pose a new technique which can solve the above mentioned problems

by applying pixel-based registration instead of planar based registration,

which are commonly used in the previous 3D super-resolution techniques.

Since the technique is pixel-wise and is not required to divide the scene

into planar patches, it can be applied to images containing objects with

complex shapes or non-rigid objects, to which applying planar approxi-

mation is difficult.

1 Introduction

Recently, a number of super-resolution techniques are proposed and commer-
cialized, because the higher resolution of images are, the more stable and ac-
curate the results become in tracking, surveillance and other vision problems.
Although there are many attempts to develop a sensor with high resolution, a
super-resolution technique is still important, because there is a limit on integra-
tion degree on a chip.

In terms of super-resolution techniques, reconstructing a high-resolution im-
age from multiple low-resolution images is intensively researched [1,2]. In those
techniques, it is assumed that scenes are either static or dynamic, but consist of
single depth or planar objects with little motion, and the camera is also assumed
to be static. With such assumptions, registration between frames can be simpli-
fied and it can be done with sufficient accuracies with 2D affine or homography

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 516–526, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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transformation using just a limited number of correspondences. However, for
applying techniques to more general purposes, it is necessary to allow 3D scenes
containing multiple independently moving objects, non-rigid motion objects (e.g.
cloths), etc. With existing super-resolution techniques, it is difficult to achieve
this, because of significant appearance changes caused by objects’ motion and
viewpoint changes. To perform super-resolution for such objects or scenes, 3D
information should be considered.

There have been several studies targeting super-resolution of 3D objects and
scenes [4,5,6]. Tung et al. [4] have applied super-resolution technique to construct
a high-resolution 3D video[3]. Their target is a person wearing the special cloth
which changes its shapes drastically with his/her motion. To cope with such non-
rigid 3D object, they first constructed 3D shape using voxel curving technique,
and then, divided captured frames into triangular patches to approximate planar
surfaces of the object. Similarly, Sei et al. [5] have succeeded in performing super-
resolution for 3D scenes by dividing the scene with several patches, however, in
their method, it is necessary to assign the initial patches manually. Mudenagudi
et al. [6] used several cameras to reconstruct 3D scene to apply super-resolution
techniques to 3D scenes. These previous works are based on approximating 3D
objects by triangular patches, and thus, accurate and dense 3D reconstruction
is required; it is still a basic and open problem for computer vision research.

In this paper, we propose a super-resolution technique for 3D objects without
conducting an explicit planar approximation of object surfaces. More specifically,
our method adopts a pixel-wise registration instead of planar based registration
which is common in previous techniques. To achieve this, first, we extract a
sufficient number of planes as the candidate planes, one of which all the pixels
belong to, and then, estimate which plane a pixel belongs to for all the pixels;
Note that our technique allows missing planes or wrong assignments of pixels.
Since this process does not use explicit scene approximation using triangular
patches, our method can be performed even for independently moving 3D objects
and non-rigid objects.

The contributions of the proposed method can be summarized in the following
three points: (1) Super-resolution method for 3D objects based on pixel-wise
registration without the need for explicit planar approximation is proposed. (2)
The method is robust against noise and outlier related to the corresponding
points of the input images. (3) The technique can be performed even for scenes
containing multiple moving objects and non-rigid objects.

2 Pixel-Wise Super-Resolution Technique

2.1 Outline

In previous works, triangular patches are used for super-resolution of 3D ob-
jects. A difficult problem of this approach is how to generate triangular patches;
where registration becomes incorrect if a single created patch crosses multiple
planes. In [7], an optimization is implemented with respect to the position of
the created patches, and the resulting method is effective. However, this method
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Fig. 1. Outline of our super-resolution technique

requires feature points near plane boundaries and this is usually difficult be-
cause of aperture problem. Since registration accuracy of a triangular patch de-
pends on accuracy of correspondences between frames, wrong correspondences
of even one vertex cause failure of registration and super-resolution processes of
relevant patches.

In this paper, we propose a super-resolution technique without dividing scenes
into triangular patches. Fig. 1 shows the outline of our technique. Our
technique can be largely divided into two steps, such as registration step and
super-resolution step. The registration step is composed of the following three
sub-steps: (1) tracking corresponding points between input images, (2) retriev-
ing groups of feature points which reside in the same plane (section 2.2), and
(3) selecting the optimum group for each pixel by finding the minimum error
value of the average of the re-projection error for all frames (section 2.3). Super-
resolution process is implemented using the registration results based on MAP
(Maximum A Posterior) formulation (section 2.4).

2.2 Estimating Candidate Planes with Feature Point Tracking

A number of studies have already been reported related to the extraction of
planes from the scene for the purpose of 3D reconstruction [8,9]. In these stud-
ies, planar areas are extracted by clustering feature points. If it was possible
to perform highly accurate planar approximation of all objects in the image in-
cluding curved planes and moving objects, it would be possible to implement
registration process with regard to super-resolution process. However, it is dif-
ficult to perform the accurate plane approximation because tracking of feature
points are easily affected by outliers, aperture problem and view-dependent ap-
pearance changes.

In this paper, we propose a super-resolution technique based on pixel-wise reg-
istration which is less affected than a patch-based plane approximation technique
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Algorithm 1. Candidate plane estimation
1: X is defined as a set of all corresponding feature points across input frames.

2: P (x) is defined as a predicate that is true if point x have been unselected and

unlabeled.

3: while ∃x ∈ X; P (x) do
4: Select a feature point a(⊆ {x ∈ X; P (x)}) and the k nearest neighbor points

b(⊆ X) (in this paper k := 7).

5: A(0) := φ, A(1) := a ∪ b, i := 1

6: while A(i) �= A(i−1) do
7: Compute the homography matrix H of A(i) for each frame.

8: A(i+1) := φ
9: for ∀y ∈ X do

10: if Adequateness of the H for y ≥ threshold then
11: A(i+1) := A(i+1) ∪ y
12: end if
13: end for
14: i := i + 1

15: end while
16: A(i) is one of groups of feature points residing in the same plane.

17: end while

described above. More specifically, instead of dividing the scene into triangular
patches, candidate planes are first extracted, each of which is defined by a group
of feature points included in a single plane, and then, all pixels are assigned to
one of them. Therefore, the method assumes that sufficient number of candidate
planes are extracted to approximate the 3D scene; to fullfill the requirement, ex-
traction of planes as much as possible from all the combination of feature points
is one simple solution. On the other hand, the smaller the number of candidate
planes is, the more efficient the computation is; therefore, we propose an efficient
method to reduce the number of candidate planes to approximate the 3D scene
by using the knowledge that the neighboring feature points usually belong to
the same plane. This process is described as Algorithm 1 as follows:

In Step 10, the adequateness is judged by the number of the frames with which
the average of the re-projection error of all the correspondent points using H is
less than the threshold value (0.2 pixel in our case).

In Fig. 2, three groups are obtained, where the black points represent the
feature points which are already calculated or assigned to some planes, and the
white points represent unselected and unlabeled points.

2.3 Pixel-Wise Registration by Minimization of Re-projection
Error

Since the candidate planes (groups of feature points each of which is included
in a single plane) extracted by the aforementioned method are represented as
groups of feature points rather than explicit patches, the correspondence points
of each pixel is not determined at this stage. Since transformation parameters of
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Fig. 2. Candidate plane detection Fig. 3. Plane detection for each pixel

each candidate plane between frames are calculated in the previous step, pixel-
wise correspondences can be estimated by assigning each pixel to one of the
candidate planes by minimizing the re-projection error using the parameters.

In this paper, the homography matrices obtained from the candidate planes
are used as transformation parameters. Then, the differences of intensity for
each pixel from the base frame to all other frames are computed, the average
of the differences are stored for each planes, and the pixel is assigned to the
plane for which the value of the average of the differences is the minimum. The
actual calculation is as follows. By denoting the number of input frames as N ,
the homography matrix (as obtained from the i-th candidate plane, i.e., the i-th
group of feature points) of the base frame onto the k-th frame as H(k)

i , and the
respective intensity levels of arbitrary points from the base frame and the k-th
frame as I(·) and I(k)(·), respectively, the following equation is obtained for each
pixel in the base frame.

îp = arg min
i

⎡⎢⎣
∑M

k=1

{
I(p)− I(k)(H(k)

i p)
}2

M

⎤⎥⎦ (1)

Here, M(≤ N) denotes the number of frames for which the pixels were effective
before the projection (in other words, the pixels were within the image), and p
represents a coordinate vector. By finding the minimum projection difference,
each pixel is assigned to plane îp; Note that since we can reject pixels whose
difference obviously are large, our method can handle occlusion. The selection
process is shown in Fig. 3.

Finally, registration of each pixel is conducted by projecting the pixel of k-th
frame onto the base frame using the transformation matrix {H(k)

i }−1. If î de-
rived from Eq. (1) of each pixel in the base frame and the plane number i of the
corresponding pixel coincide, those pixels are adopted as corresponding pixels.
As a result, the corresponding position in the base frame of each pixel from each
frame is obtained with subpixel accuracy. Since there is a high possibility that
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neighborhood pixels reside in the same plane, the initial results are smoothed
out by using a mode-filter for 24 neighboring pixels in this paper.

2.4 Super-Resolution Calculation from Pixel-Wise Registration

Super-resolution is a technique to reconstruct high-resolution images by using
multiple low-resolution images. A large number of studies related to super-
resolution have been published, among which the most prominent ones utilize
a formulation based on MAP (Maximum A Posterior) [1,2]. The popular MAP
based method is also used in this paper. Taking x as a high-resolution image
vector, y as an input image vector and N as the number of input frames, the
MAP formulation is given by:

x̂ = argmin
x

{
N∑

k=1

||yk −DBkWkx||2 + λ||Cx||2
}

(2)

Here, the matrix representing the subsampling is denoted as D, the matrix rep-
resenting the PSF (Point Spread Function) as Bk and the matrix representing
the motion of the scene or the camera as Wk. In addition, C denotes the ma-
trix representing prior regarding the high-resolution image, and λ is a parameter
denoting the level of contribution of the prior. In this regard, optimization meth-
ods such as the conjugate gradient method are used in the actual estimation of
high-resolution images.

The formulation of Eq. (2) has a problem of efficiency. Therefore, the following
formulation based on a simple approximation is used.

x̂ = arg min
x

⎧⎨⎩
P∑

j=1

wj(mj − bjx)2 + λ||Cx||2
⎫⎬⎭ (3)

Here, mj and wj denote the averaged pixel value and the number of pixels
contained in the j-th pixel of the high-resolution image in the case where each
pixel from the input images is projected onto the high-resolution image, and P
denotes the number of pixels of the high-resolution image x. Furthermore, PSF
is assumed to be constant for all frames, and the PSF kernel corresponding to
the j-th pixel is denoted as bj .

3 Experiments

In the experiments, we conducted three types of techniques to compare the
results.
1. The proposed method
2. MAP based super-resolution technique assuming a single depth

For registration, a homography matrix of each frame onto the base frame is
computed.

3. MAP based super-resolution based on Delaunay triangulation [10].
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For registration, 2D affine transformation matrices are obtained from the
three points defining each of the resulting patches, and the position of each
pixel in the base frame is subsequently computed.

For all the experiments, we captured the scene using a USB camera (Logitech
QuickCam Pro 9000) with grayscale and size 300 × 300 pixels, and used 41
frames as the input where the 21st frame were defined as the base frame. Feature
extraction and tracking are conducted by using KLT tracker [11].

For super-resolution calculation, we defined several parameters empirically
as follows. A Gaussian kernel (σ = 1.8) was used as PSF kernel, MRF (Markov
Random Field) of 4 neighboring pixels were assumed for the regularization terms
in Eq. (3), and the matrix C corresponds to the convolution with the Laplacian
kernel be {(0, 1, 0), (1,−4, 1), (0, 1, 0)}. The contribution of the regularization
terms λ was set to 0.3. The scale of both the vertical and the horizontal axis for
the high-resolution image was set to 4 times larger than that of the input images.

3.1 Super-Resolution of Images of 3D Objects

In this experiment, scenes were static and the camera was moved drastically.
Because of the dynamic camera motion, appearance of the scene was significantly
different, depending on captured frames as shown in Fig. 4(a) and 5(a).

First, we captured the scene with multiple planar objects and conducted
super-resolution techniques. Fig. 4 shows the input image sequence and the
super-resolution results. In Fig. 4(d), we can observe a super-resolution effect
only on a limited part with the single depth technique, whereas all parts are
improved by the triangulation and our techniques. However, when we see the
boundary of the planes, apparent artifacts are observed with the triangula-
tion technique, which did not appear with our technique. The results of the
search for planes performed with the proposed method and the results of se-
lecting a plane for each pixel are shown in Fig. 7. We can confirm that our
technique successfully assigns all pixels to correct planes and the smoothing
process allows for reducing noise generated as a result of failures in the plane
selection process.

Next, we captured the scene with a curved object and conducted super-
resolution techniques. Fig. 5(a) show the input sequence and Fig. 5(c)–(e) show
the results. The result of the selection of candidate planes is shown in Fig. 8. In
this experiment, we can observe a super-resolution effect only on a limited part
with the single depth technique, whereas all parts are improved by the triangu-
lation and our techniques. However, because of tracking error of feature points,
apparent artifacts are observed with the triangulation technique in some parts,
which did not appear with our technique.

Finally, we compared the PSNR (Peak signal to noise ratio) of the three
methods using simulation data (Fig. 6 (a) and (b).). The super-resolution re-
sults and the PSNR are shown in Fig. 6 (c) to (e). The results show that the
proposed method improved the PSNR with approx. 1[db] (triangulation) and
3[db] (single depth).
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(a) Examples of the input images. The leftmost image is the base frame.

(b) Zoomed input

images

(c) Proposed

method

(d) Single depth

assumption

(e) Triangulation

base

Fig. 4. Input images containing multiple planar objects and the super-resolution results

(a) Examples of the input images. The leftmost image is the base frame.

(b) Zoomed input

images

(c) Proposed

method

(d) Single depth

assumption

(e) Triangulation

base

Fig. 5. Input images containing curved surface objects and the super-resolution results

(a) (b) (c) (d) (e)

(a) Whole input image

(b) Zoomed input image

(c) Proposed method (25.1[db]).

(d) Single depth assumption (22.2[db]).

(e) Triangulation base (24.2[db]).

Fig. 6. Comparison of SR images obtained with the three methods through the PSNR
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Results from searching for groups of feature points residing in the same plane

(searching for planes) with the proposed method and selecting a plane for each pixel.

The groups of red points in (a)–(e) represent the groups of feature points corresponding

to candidate planes. (f)–(g) shows the results of selecting planes for each pixel, and

(a)–(e) correspond to red, green, blue, yellow and purple. (f) represents the original

selection of planes, while (g) represents the results after the smoothing.

Fig. 8. Results of the search for candidate planes for objects containing curved planes

3.2 Super-Resolution of Images Containing Moving Objects and
Non-rigid Objects

In this experiment, dynamic scenes were captured by the moving camera. Objects
were both rigid and non-rigid.

First, we captured the scene consisted of multiple planar objects which moved
independently and conducted super-resolution techniques. Examples of the in-
put images are shown in Fig. 9(a), where there are two sets of a bundled four
booklets and one set(right one) was moved freely during the capturing process.
In this case, since the camera was held in hand, the motions of the two objects
were independent to each other. The results are shown in Fig. 9(c)–(e). Since it
is impossible to take into account multiple moving objects by assuming a single
depth, entire parts are blurred in the result as shown in Fig. 9(d). With the
method based on triangulation, it was better than single depth, however, track-
ing error and wrong triangulation resulted in also significant artifacts as shown
in Fig. 9(e). To the contrary, with the proposed method, although small color
artifacts are observed in some areas where there is no texture, it is clear that
the overall resolution is improved (Fig. 9(c)).

Next, we performed an experiment by using a non-rigid moving object. In the
experiment, we captured an waving flag as the target object. With the best of
our knowledge, no other method can achieve super-resolution for such scenes.
Since the proposed method is based on pixel-wise registration, we can confirm
that the results were drastically improved by our method as shown in Fig. 10.
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(a) Examples of the input images. The leftmost image is the base frame.

(b) Zoomed input

image

(c) Proposed

method

(d) Single depth

assumption

(e) Triangulation

base

Fig. 9. Input images containing moving objects and the super-resolution results

(a) Examples of the input images. The leftmost image is the base frame.

(b) Zoomed input

image

(c) Proposed

method

(d) Single depth

assumption

(e) Triangulation

base

Fig. 10. Input images containing non-rigid objects and the super-resolution results

4 Summary

In this paper, we proposed a super-resolution technique for independently moving
3D objects with pixel-based registration. The proposed method can be divided
into three parts. (1) Plane candidates extraction step, (2) assignment of each pixel
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to a plane candidate step, and (3) MAP based super-resolution step. Since the
technique does not require an explicit plane extraction such as triangulation of
the scene, the method does not affected by the feature extraction and tracking
error. With several experiments using actual images, the effectiveness of the pro-
posed method was confirmed by comparing the proposed method with conven-
tional methods, such as the methods based on single depth assumption and
triangulate patches. In addition, it was experimentally verified that the proposed
method can also be applied to images containing multiple moving objects and non-
rigid objects since it involves pixel-wise registration. Problems which should be
approached in future research involve the application of the proposed method to
motion blur and objects with intensity variation.
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Abstract. The bag-of-visual-words (BOVW) approaches are widely used in 
human action recognition. Usually, large vocabulary size of the BOVW is more 
discriminative for inter-class action classification while small one is more robust to 
noise and thus tolerant to the intra-class invariance. In this pape, we propose a 
pyramid vocabulary tree to model local spatio-temporal features, which can 
characterize the inter-class difference and also allow intra-class variance. 
Moreover, since BOVW is geometrically unconstrained, we further consider the 
spatio-temporal information of local features and propose a sparse spatio-temporal 
pyramid matching kernel (termed as SST-PMK) to compute the similarity 
measures between video sequences. SST-PMK satisfies the Mercer’s condition and 
therefore is readily integrated into SVM to perform action recognition. 
Experimental results on the Weizmann datasets show that both the pyramid 
vocabulary tree and the SST-PMK lead to a significant improvement in human 
action recognition. 

Keywords: Action recognition, Bag-of-visual-words (BOVW), Pyramid 
matching kernel (PMK). 

1   Introduction 

Human action recognition has been received more and more attentions due to its crucial 
values in smart surveillance, human-computer interface, video indexing and browsing, 
automatic analysis of sports events, and virtual reality. However, there exist many 
difficulties with human action recognition, including occlusion, illumination changes, 
as well as geometric variations in scale, rotation, and viewpoint.  

In general, the action recognition approaches can be roughly classified as the 
template-based and the appearance-based approaches [1]. For the template-based 
approaches, there exist two sorts of templates. The first sort of templates directly use 
several key frames or segmented patches of the input videos, as described in [6, 8]. The 
second sort of templates are obtained by linear or nonlinear transformation of the input 
videos. For example, Rodriguez et al. [9] combine a sequence of training images into a 
single composite template by a MACH filter. For the appearance-based approaches, 
local features or global (or large-scale) features are employed to represent the videos.  
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Fig. 1. Interest points localization of ten action video sequences in Weizmann dataset. Each red 
point corresponds to a video patch associated with a detected interest point. One key frame is 
shown for each video and all interest points detected in that video are overlapped on the key 
frame.  

Generally, local spatio-temporal features are more robust to noise, occlusion and action 
variation than large-scale features. 

Recently, several state-of-the-art action recognition approaches [2, 3, 4, 5, 17, 19] 
use the BOVW to exploit local spatio-temporal features. Typically, these approaches 
firstly generate a vocabulary of visual words and then characterize videos with the 
histograms of visual word counts. It is obvious that the vocabulary plays a decisive role 
in the process of action recognition. A good vocabulary should not only discriminate 
the inter-class invariance but also tolerant the intra-class invariance of objects or 
actions. It is common to choose an appropriately large vocabulary size [4, 10]. 
However, the large size of vocabulary may introduce a sparse histogram for each video, 
yield more noise and reduce the discriminability of vocabulary. On the other side, if  
the vocabulary size is small, it may cause over-clustering and high intra-class 
distortion. Motivated by these observations, we propose a novel architecture of 
vocabulary – the pyramid vocabulary tree which combines the vocabularies of different 
sizes and exploits a larger and more discriminative vocabulary efficiently. In addition, 
it is very fast to project new features on the tree. With pyramid vocabulary tree, video 
sequences are hierarchically represented as the multi-resolution histograms of the 
vocabulary tree.  

Moreover, it is well known that the BOVW approaches are geometrically 
unconstrained. Therefore, there are many algorithms intending to combine the 
geometrical information with BOVW. Some approaches [13, 15] uniformly divide the 
3D space into the spatio-temporal grids and then compute the histogram of local 
features in each grid. However, in the human action videos, the interest points are 
usually detected in some local regions while most other regions contain no interest 
points (as illustrated by Fig.1). Inspired by this observation, we cluster the interest 
points in the spatio-temporal space, which forms several cluster centers. At each cluster 
center we compute the histogram of the local features. Based on the spatio-temporal 
cluster centers, we propose a sparse spatio-temporal pyramid matching kernel  
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(called SST-PMK) to measure the similarities between video sequences. In SST-PMK, 
the histogram used for representing the video is more compact and robust than that in 
[13, 15]. Therefore the distance computed by SST-PMK is more reliable. Besides, the 
SST-PMK satisfies the Mercer’s condition and can be directly used as the SVM kernel 
to perform action recognition.  

In general, we propose a novel framework based on the sparse spatio-temporal 
representation of the pyramid vocabulary tree for action recognition. The pyramid tree 
is built to model the local features, and also prepares a hierarchical structure for 
computing SST-PMK. Moreover, SST-PMK effectively integrates the distances 
obtained from all levels of the pyramid vocabulary tree to compute the similarities 
between video sequences with a very fast speed.  

The remainder of the paper is organized as follows. Section 2 describes how to 
generate the pyramid vocabulary tree. Section 3 introduces SST-PMK and then 
combines it with the SVM classifier. Section 4 reports experimental results. Section 5 
concludes the paper. 

2   Pyramid Vocabulary Tree 

The Pyramid vocabulary tree is built by hierarchically clustering a large set of training 
descriptor vectors. The building process of the pyramid vocabulary tree is illustrated in 
Fig. 2. First of all, the training descriptor vectors are clustered into k visual words to 
build the coarsest level 0 (i.e. the conventional BOVW). Subsequently, we split each 
visual word at the coarsest level 0 into two ones, resulting in a finer vocabulary level. In 
this case, the vocabulary tree grows in a hierarchical coarse-to-fine manner. 
Meanwhile, the number of its leaf nodes increases in an exponential manner.  

In the following sections, we briefly describe the generation of BOVW and the 
building of the pyramid vocabulary tree in details. 

 

Fig. 2. The building process of the proposed pyramid vocabulary tree 
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2.1   The Generation of BOVW 

A large set of local features are used in the unsupervised training of the tree. Capturing 
local features includes two relatively independent steps: detecting cuboids and 
describing cuboids. In recent years, a number of detectors and descriptors have been 
proposed for human action recognition. All can be used in our recognition framework. 
In this paper, we employ the Dollár et al.’s detector [7] to detect cuboids at every frame 
of each video and use the PCA-SIFT descriptor [14] to describe the detected cuboids. 
Dollár et al. [7] detector improves the 3D Harris detector by applying Gabor filtering to 
the temporal domain. The outputs of the detector are the location, the scale, and the 
dominant orientation of each interest point. We extract a cuboid at a given scale 
centered at every interest point with a size which is s times of its scale (s is set to be 6 in 
this paper). Then, PCA-SIFT descriptor applies Principal Components Analysis (PCA) 
to the normalized gradient vector which is formed by flattening the horizontal and 
vertical gradients of all the points in the cuboid. 

Subsequently, a K-means clustering process is run on the obtained PCA-SIFT 
features. As a result, k cluster centers are treated as k visual words at Level 0. Other 
clustering methods, such as spectral clustering [21] or Maximization of Mutual 
Information (MMI) [22], can also be two alternatives instead of the K-means 
clustering.  

2.2   The Pyramid Vocabulary Tree 

After building the 0th level of the tree, the training features are partitioned into k groups, 
where each group consists of the features closest to a particular visual word. Then the 
training features of each group are clustered into two new visual words at a new level. 
Therefore each visual word at 0th level is split into two new visual words at level 1. This 
splitting is reasonable because the visual words at level 0 are highly compact after 
clustering. In this way, the tree grows till the maximum number of levels L is reached. 
The vocabulary size of each level is doubled than its upper level. 

In the online phase, each new PCA-SIFT feature is compared to k candidate cluster 
centers at level 0 and assigned to the nearest words. Then the result is propagated to the 
next level in order that we only need to compare the descriptor vector to the 2 children 
cluster centers and choose the closest one. Level by level, the new feature is projected 
to the tree very fast. Furthermore, in the computational complexity aspect, the 
quantization of new PCA-SIFT features requires k+2L dot products in our approach. 
However, it needs 2Lk dot products for the conventional BOVW in a non-hierarchical 
manner with the same vocabulary size at the Lth level. 

3   SVM Classification Based on SST-PMK 

With the pyramid vocabulary tree, each video can be represented as a multi-level visual 
word histogram. To effectively measure the similarity of two visual word histograms, 
we present a sparse spatio-temporal pyramid matching kernel (called SST-PMK) in this 
section. Moreover, SST-PMK can serve as a kernel for SVM classification. 



 Human Action Recognition Using Pyramid Vocabulary Tree 531 

3.1   The Sparse Spatio-temporal Pyramid Matching Kernel (SST-PMK) 

The pyramid matching kernel (PMK) proposed by Grauman and Darrell [11] is an 
effective kernel to measure the similarity of two multi-resolution histograms and it has 
been successfully applied to object recognition. However, one potential problem with 
the PMK [11] is that it does not consider the spatio-temporal information. From Fig.1, 
it can be seen the geometrical distribution of interest points is regularly varying among 
different action classes, and thus spatio-temporal information is very helpful for 
improving the action recognition accuracy. Therefore, we take into account the 
spatio-temporal information of interest points while computing PMK. This is the 
contribution of our SST-PMK. 

The other observation in Fig.1 is that interest points are not uniformly distributed in 
the image and some regions contain no interest points. Without considering this 
observation, the SPM [13] uniformly partitions the whole image into 2D grids in the 
spatial space (i.e., the image coordinate) and the STPM [15] uniformly partitions the 
whole video into 3D grids in the spatial and temporal space. These two methods do not 
effectively assign grids, which leads to a large number of grids and some of the grids do 
not contain any interest points. Moreover, both SPM and STPM require a preprocessing 
step for normalizing the size of images or videos. In contrast, the grids obtained by 
SST-PMK are sparse and discriminative, without normalizing videos beforehand. Fig. 
3 shows the hierarchical structure of SST-PMK. The following lists the specific 
procedure of constructing the SST-PMK. 

 

 
At first, the spatio-temporal vectors of interest points are clustered to produce 

spatio-temporal words (i.e. ST word i in Fig. 3 1≤i≤n). The 3-D data set formed by 
these vectors is divided into several subsets. The ST words are derived from the center 
of subsets.  

Then, for each video, we compute the histograms of its descriptor vectors (i.e. 
PCA-SIFT features) at each ST word and each level. And then we concatenate the 
obtained histograms into a vector H = [H l , … , H L], where Hl represents the histogram 
at level l. And Hl = [h l - ST 1, … , h l-ST n], where h l – ST i is the histogram for ST word i at 
level l. That is, we build a hierarchical structure as Fig.3 for each video and represent 
the video as a histogram vector. 

Given the corresponding histogram vectors X and Y of two videos, the SST-PMK 
computes a weighted histogram intersection in the hierarchical structure as illustrated 

Fig. 3. The hierarchical structure of SST-PMK for each video. The geometrical information of 
interest points is combined with the pyramid vocabulary tree to represent the videos. 
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in Fig. 3. At each level l, the histogram intersection is defined as the sum of the minimal 
value at each bin: 
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where x l –ST j is an element of X and represents the histogram of the video for ST word j 
at the level l, and x l –ST j( i ) denotes the count of the ith bin of x l –ST j. The number of the 
newly matched pairs Nl induced at level l is the difference between successive levels’ 
histogram intersections:  
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Because level L is the finest level, we compute the number of matches Nl from level L 
to level 0 just opposite to the building process of the pyramid vocabulary tree. The 
resulting kernel K is obtained by the weighted sum over the number of matches Nl 
occurred at each level, and the weight associated with level l is set to (2l-L): 
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where XL+1= YL+1=0.   
The SST-PMK effectively combined each level in the hierarchical structure. The 

newly matched pairs at coarser level, which are not matched ones at its finer level, are 
also considered in the SST-PMK. This corresponds to some cases in action recognition, 
such as the same class actions performed by different persons, and the same class 
actions performed by one person at many times. If these intra-class actions are not 
regarded as match at fine level, they are still able to be treated as match at coarser level. 
Therefore, according to the pyramid tree and SST-PMK, our approach can overcome 
the variations between intra-class objects or actions. 

3.2   SVM Classification 

We adopt the algorithm in [16] to train SVM for human action recognition. From 
equation (3), we obtain the following equation: 

),Y(XKK(X,Y) STjSTj
n

j Δ∑ =
=

1
                                         (4) 
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KΔ(XSTj , YSTj) is actually a pyramid matching kernel (PMK) [11]. In [11] it is proved that 
PMK is a Mercer kernel and a positive semi-definite kernel. Given that Mercer kernels 
are closed under addition, equation (4) shows that SST-PMK is a Mercer kernel. 
Therefore, SST-PMK distance between videos is directly incorporated into the kernel 
function of the SVM classifier. 

4   Experiments 

The proposed action recognition approach directly manipulates the unsegmented input 
image sequences, which aims to recognize low-level actions such as walking, running, 
and hand clapping. Note that our recognition system does not require any preprocessing 
step. In contrast, there is a common limitation in [12, 18, 20]: a figure centric 
spatio-temporal volume or silhouette for each person must be specified and adjusted 
with a fixed size in advance. However, object segmentation and tracking is hard to 
implement in itself.  

We test our approach on the Weizmann dataset [23]. The Weizmann human action 
dataset contains 10 different actions including Walking, Running, Jumping, Galloping 
sideways, Bending, One-hand waving, Two-hands waving, Jumping in place, Jumping  
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Fig. 4. The confusion matrix of our approach on the Weizmann action dataset 
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Jack and Skipping. One representative frame from each action category is shown in 
Fig.1. There are 93 samples in total. The resolution of the videos is 320x240 pixels and 
the frame rate is 15fps.  

We perform the leave-one-out cross-validation to evaluate the competing 
algorithms. The red line is obtained by the proposed approach, the blue one is the ordinary 
BOVW approach, and the black one is the PMK approach without considering the 
spatio-temporal information. 

In all experiments we use the videos of the first five persons to learn the bag of visual 
words. In each run, the videos of 8 actors are used as the training set and the remaining 
videos of one person are used as the testing set. There is no overlap between the training 
set and the testing set. We run the algorithms 9 times and report the average results. 

In our approach, the three-level pyramid vocabulary tree is used to model local 
features. The number of visual words is set to 160 at the coarsest level (i.e. level 0) and 
640 at the finest level (i.e. level 2). The geometrical information of the interest points is 
clustered into 10 centers. We use SST-PMK as the SVM kernel. Fig. 4 shows the 
confusion matrix of our approach on the Weizmann dataset. Each row of the confusion 
matrix corresponds to the ground truth class, and each column corresponds to the 
assigned cluster. It shows that our approach works much better on the actions with large 
movements, but it does not achieve desirable results for the actions of small difference. 
The recognition accuracy for the actions with large movements is 100%, such as “bend”,  
“Jack”, “Pjump”, “side”, “walk”, “wave1”, and “wave2”. The actions “Jump”, “Run”, 
and “Skip” are similar to each other, and thus may be a little confused with each other.  
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Fig. 5. Recognition accuracy obtained by the three approaches vs. vocabulary size in Level 0 
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4.1   The Comparison of Three Approaches 

In order to demonstrate the advantages of the pyramid vocabulary tree and the proposed 
SST-PMK, we compare two other approaches with our approach. In the first approach, 
we use only one vocabulary (i.e. conventional BOVW) and the remaining settings are 
all the same as our approach. Since there is only one level, the SST-PMK degenerates 
to the sum of the two histogram intersection: 

 )(X(i),Y(i)I(X,Y) Ln

i∑ =
=

k

1
min                                        (6) 

where n is the number of ST words, and kL is equal to the vocabulary size of level L in 
our approach. Therefore in the first approach, equation (6) is used as the kernel of SVM 
classification. For the second approach, we do not consider the geometrical 
information, i.e., PMK is used for SVM classification. Moreover, we run the three 
approaches using different vocabulary sizes. Fig.5 draws the recognition accuracy 
curve of the three approaches vs. the vocabulary size k at level 0. Fig.5 shows that our 
approach gains the highest recognition accuracy at most cases. For k=[50, 60, …, 500], 
our approach is on average 7.63% higher than the first approach, and 4.66% higher than 
the second approach. It demonstrates that both the pyramid vocabulary and the 
geometrical information of the interest points are helpful for the action recognition.  

4.2   Kernel Comparison of SVM 

We also compare the proposed SST-PMK with other four popular kernels used in 
SVM: linear kernel x'*y, polynomial kernel (g*x'*y)3, radial basis function (RBF) 
exp(-g||x-y||2), and sigmoid kernel tanh(g*x'*y). The same experimental configurations 
are used for all five kernels. Moreover, in the SVM classifier [16], C-Support Vector 
Classification (C-SVC) is employed and two kernel parameters (c and g) are 
considered. Different kernel parameters are used to estimate the recognition accuracy: 

]2 , ,2 ,[2  g  ],2 , ,2 ,2 [  c 3-14-1525-4-5 LL ==   

Table 1. Comparisons between the proposed SST-PMK and the four popular kernels for SVM 
classifier 

 

 Linear Polynomial RBF Sigmoid SST-PMK 
Bend 1 0.6667 1 1 1 
Jack 1 0.4444 1 1 1 
Jump 0.8889 0.4444 0.6667 0.5556 0.6667 
Pjump 0.8889 0.4444 1 1 1 
Run 0.6667 0.5556 0.8889 0.8889 0.8889 
Side 1 0.1111 1 1 1 
Skip 0.6667 0.4444 0.6667 0.4444 0.6667 
Walk 0.7778 0.2222 0.8889 1 1 

Wave1 1 0.2222 1 1 1 
Wave2 1 0.6667 1 1 1 

Average 0.8889 0.4222 0.9111 0.8889 0.9222 
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More specifically, since the linear kernel and SST-PMK just have one parameter c, we 
try 31 different c values and report the best results. For the other three kernels 
(polynomial kernel, RBF, and sigmoid kernel) have two parameters c and g, we try 
31×19=589 combinations. Table 1 shows the experimental results using the five kernels 
based approaches. Polynomial kernel based approach achieves the worst results, and the 
average accuracy of other three kernels (Linear kernel, Sigmoid kernel, and RBF) based 
approaches is a little lower than ours. Our approach achieves the best recognition 
performances, and it outperforms the other four kernels for nine actions of ten.  

5   Conclusion 

In this paper, we develop a novel framework which can recognize low-level actions such 
as walking, running, and hand clapping from unsegmented video sequences. This paper 
has the following two contributions. First, to the best of our knowledge, the vocabulary 
is built into pyramid tree topology in human action recognition for the first time. Second, 
we propose SST-PMK, which takes advantages of geometrical information of local 
features, to compute the similarities between video sequences. SST-PMK improves 
PMK by clustering the spatio-temporal information of interest points. Experiments show 
the effectiveness and robustness of the proposed approach. 
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Abstract. In this paper, we proposed a method that employs the auto-

scaled incremental eigenspace learning to locate the salient distortion

areas continually in the video to serve the purpose of region based rate

control application. Compared to other locating methods, the auto-scaled

incremental eigenspace learning locating method can achieve locating the

salient distortion areas robustly and accurately, and specifically in real-

time. In addition, for the case that there exists the overlap/occlusion

between different salient distortion areas, the proposed method can also

obtain accurate location information which could make the region based

rate control and bit allocation to reach higher efficiency in many appli-

cations. The experiment results of the proposed algorithm demonstrate

the subject visual quality of the video has been improved greatly.

Keywords: Incremental tensor subspace, Region based, Tracking.

1 Introduction

For region based coding methods, popular resolutions are based on employing
image segmentation algorithms to identify the shapes and locations of the ROI
inside the video frame. In recent years, a large number of research works [1] [2]
have been proposed for ROI segmentation and rate control based on motion,
texture and color segmentation. The main challenge of these segmentation al-
gorithms is to reduce the processing time in order to meet the requirement of
low delay in real time applications. Song et al. [1] proposed a simple yet effec-
tive moving region segmentation algorithm based on morphological processing
techniques. Because this method also considers removing background noise to
simplify the segmentation result, it is inevitable for it to be with high computa-
tional complexity.

Tang et al. want to resolve the efficient problem from another point of view,
they found that visual foreground and background analysis is not that radically
useful for rate control algorithms, while the resolution for such questions should
consider taking advantage of the visual distortion sensitivity (VDS), which is

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 538–547, 2010.
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the capability of human vision to detect distortion in video/image sequence.
Upon such idea, Tang et al. proposed their work in [2], in this work, the model
proposed by Ma et al. [3] was adopted due to its low computational complexity
and reasonable performance. However, this texture structure model also can not
avoid the heavy processing cost although it is better compared with the work of
Song et al. For the region based coding, it is not obliged to obtain the binary mask
or the segmented ROI for the following work. The location information of ROI
is generally enough. Therefore, one idea that uses efficient and accurate tracking
algorithms may be more effective in locating the ROI because for the general
tracking algorithms, the speed requirement is always a prior consideration.

Object tracking mainly aims at locating the position of the interest objects
frame by frame and marking the regions where these objects are in each video
frame. The main challenge of the object tracking is to deal with the intrinsic and
extrinsic appearance variations of the tracking regions. Thus, how to effectively
model the appearance variations becomes a key to the solution of the object
tracking problems. In recent years, a lot of research works have been done [4]
[5]for the object tracking based on target appearance modeling and using the
eigenspace analysis for object tracking has been demonstrated to be effective by
many works. Black and Jepson [6] proposed an algorithm by utilizing the repre-
sentation of pre-trained view-based eigenspace and a robust error norm to model
the appearance variations. Their algorithm makes the assumption of subspace
constancy in motion estimation instead of using the assumption of brightness
constancy in optical flow based techniques. However, the robust performance of
this algorithm is at the cost of large amount of off-line training images that may
cover as much possible appearance variation (due to viewing angle or illumina-
tion) from which to construct the eigenbasis. This requirement can not be always
fulfilled for many general applications. A more flexible mixture model via on-
line EM to explicitly model the appearance change during tracking was recently
proposed by Fleet et al. [4]. Although their algorithm has good discriminability
between the variations of pose, illumination and expression, its treatment of the
pixels in the target region makes it fail when background pixels are modeled
other than foreground during tracking.

In order to treat the tracking target as an abstract “thing” other than inde-
pendent pixels, Lim et al. proposed their online incremental learning algorithm
for robust visual tracking in [5] because it has been widely accepted that the dis-
tortion in the video under various environments can be effectively described and
represented in low dimensional linear spaces, which is named Tensor Subspace
Analysis TSA [7]. Lim’s algorithm also need learning, but this learning is an
online process without training phase because it learns the eigenbasis during the
object tracking process. The efficient subspace update mechanism facilitates this
algorithm successfully track the object under varying pose and illumination con-
ditions. However, this robust tracking algorithm may also drift from target un-
der some circumstances, such as target scale or size is small or changing greatly.
Based on the work of Lim, Li et al. [8] and Zhang et al. [9] respectively proposed
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their algorithm for object tracking, however neither of these works shows the
results of the multiple object tracking when there exists the occlusion case.

In this paper, we proposed our auto-scaled incremental tensor subspace anal-
ysis to track/locate the regions of interest in the video frame for the region
based coding applications. The paper is arranged as following: section 2 presents
the auto-scaled incremental tensor locating algorithm. Section 3 describes the
region-based rate control by using tracked location, and section 4 is our experi-
ment results. Finally, our paper concludes in section 5.

2 Auto-scaled Incremental Eigenspace Tracking

The algorithm of incremental eigenspace tracking is proposed as an extension
of the work of sequential Karhunen-Loeve (SKL) [10] by using an incremental
PCA mechanism, which can update the eigenbasis as well as mean. Suppose we
have a d × n data matrix A = {I1, I2, ..., In}, each column I is an observation,
which is a d dimensional vector of image, the SVD of A can be represented as
A = UΣV �. If there is a new observation B = {I1, I2, ..., Im} coming, which is
a d ×m matrix, let C =

[A B ]
to be the concatenation of A and B, then the

SVD of C can be represented as follows:

C =
[A B ]

=
([

U B̃ ]
Ũ
)
Σ̃

(
Ṽ �

[
V � 0
0 I

])
(1)

In this equation, B̃ is the component of B orthogonal to U , the Ũ and Ṽ �

come from the SVD of matrix Ũ Σ̃Ṽ � =
[
Σ U�B
0 B̃�B

]
. If we denote the means of

A,B, C as ĪA, ĪB, ĪC and scatter matrices (defined as the outer product of the
centered data matrix) as SA,SB,SC , the problem caused by time-varying mean
of the new coming data of the SKL algorithm can be corrected by using the
following equation:

SC = SA + SB +
nm

n + m
(ĪB − ĪA)(ĪB − ĪA)� (2)

The mean of the C can be computed as ĪC = n
n+m ĪA + m

n+m ĪB. If there is a
forgetting factor f , ĪC can be modified as ĪC = fn

fn+m ĪA + m
fn+m ĪB.

Then the tracking process is controlled by using a variant type of condensation
algorithm [11]. Given a set of observed images It = {I1, I2, ..., It}, the estimation
of the hidden data variable Xt which describe the affine motion transformation
of the target at time t can be computed by

p(Xt|It) ∝ p(It|Xt)
∫

p(It|Xt−1)p(Xt−1|It−1)dXt−1 (3)

Here, the affine motion transformation Xt is composed of six parameters
including x, y translation xt, yt, rotation angle θt, scale st, aspect ratio αt and
skew φt direction at time t. Each parameter of Xt is assumed to be modeled



Auto-scaled ITS Learning for Region Based Rate Control 541

independently by a Gaussian distribution from the state Xt−1, then the frame-
wise motion is represented as an affine transformation as:

p(Xt|Xt−1) = N (Xt;Xt−1, Ψ) (4)

Where Ψ is a diagonal covariance matrix whose elements are the corresponding
variances of affine parameters {σ2

x, σ
2
y, σ

2
θ , σ

2
s , σ

2
α, σ2

φ}. We assume that the vari-
ance of each affine parameter does not change over time except the scale σ2

s .
With the dynamic changing values of the scale parameter σ2

s , it is possible to
track the object regions with higher precision because let the moving objects
to keep its shape or size constantly during tracking is not always reasonable
for the realistic situation. Enlightened by the work of [12], we incorporate the
automatic blob scale computation algorithm of Collins [13] to estimate the scale
of the affine transformation parameter changing.

For the image features that are blob-sized and the like, the work of Lindeberg
[12] uses the Laplacian as the differential operator, which is a multi-resolution
image analysis based on convolution with Laplacian-of-Gaussian (LoG) filters
at varying scales when the Gaussian scale space is employed, and the LoG is

defined as LoG(x;σ) = 2σ2−‖x‖2

2πσ6 e
−‖x‖2

2σ2 . Then, the corresponding blob features
at different scales can be found as the form (x0, σ0) where local maxima is
achieved spatially and in scale. Different from Lindeberg, Collins replaces the
LoG scale space with the Difference-of-Gaussian (DoG) [13] because it has been
demonstrated that the filter of LoG can be approximated by a difference of two
centered Gaussian with the scales related by σ2/σ1 = 1.6. Thus DoG has the
form as:

DoG(x;σ) = G(x; 0, σ1)−G(x; 0, σ2)

=
1

2πσ2/1.6
e

−‖x‖2

2σ2/1.6 − 1
2πσ2(1.6)

e
−‖x‖2

2σ2(1.6) (5)

The reason for choosing the DoG instead of LoG is that the efficient compu-
tation methods of generating Gaussian convolution pyramids is available, which
is very important and useful for the real time application. Another reason is that
we assume that each parameter of the affine transformation from is according
to an independent Gaussian distribution especially for the position and scale
change. It should be pointed out that the DoG operator does not approximate
the LoG as the traditional form of DoG(x) ≈ LoG(x) but equal with a constant
scale factor as DoG(x)/LoG(x) ≈ c, the intuitionistic representation of the scale
space is in Fig. 1.

We then apply this feature selection theory to propose our auto-scaled in-
cremental eigenspace tracking when tracking area estimation can be described
as blobs through changes in covariance of the tracking parameter samples. The
auto-scaled mechanism can be described as: at any given scale σ0, we use a
spatial filter DoG(x, σ0) as the 2D marginal kernel H(x, σ) = σ0. Then each
estimated weight sample image patch where each pixel is proportional to the



542 P. Zhang et al.

x
y

spatial

sc
al

e

Fig. 1. DoG spatial kernels at different scales

likelihood that it belongs to the object be tracked is convolved with a scale-
space filter bank of a set of DoG filters at multiple different scales. The result
is a three dimensional scale space representation in the manners of representing
blobs having different spatial position and scale estimated parameters.

Accurately, the set of kernel scales around the current scales σ0 is defined as:

{σs = σ0 × bs, for − n ≤ s ≤ n} (6)

Where b > 1 specifies the base of a logarithmic coordinate scale and n is the
limited range of scales to compute around the current scale σ0. In the work of
Collins, he recommend to use the values: b = 1.1 and n = 2, while in proposed
method, we choose b = 1.15, n = 3. Also, a filter bank of spatial shadow kernels
is also defined, each is for different scale σs and is define as a DoG kernel around
each estimated object position parameter (x0, y0).

Hx(x, s) = DoG[diag(1/w, 1/h)(x− x0), σs] (7)

The w and h is the width and hight of the spatial kernels. During the imple-
mentation and experiment, the each current scale σ0 is considered as a constant.
It is obvious that the DoG is a linear composition of the Gaussians, therefore
with the assumption that σ1 = σs/1.6 and σ2 = 1.6σs, the expected spatial
kernel can be defined also as a combination of Gaussians:

Kx(x, s) = G(x;x0, σ1)/σ2
1 −G(x;x0, σ2)/σ2

2 (8)

For the scale kernel, locking one estimated location (x0, y0) and looking for
the best scale σs. Then the value of

∑
x Hx(x, s)w(x) is computed in the range

of scales −n ≤ s ≤ n.

3 Region-Based Rate Control by Using Tracked Location

Generally, the region based rate control [1] [14] [2] [15] in video coding is to
enhance the coding quality of ROI by allocating more bits to this region or
decrease the quantization parameter (QP) for ROI. As a result, the subjective
visual quality of the reconstructed video can be greatly improved. We also adopt
this strategy into our scheme. H.264/AVC [16] is so far the most efficient standard
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for video compression which achieves much higher coding efficiency than previous
ones. This is because that H.264/AVC employs more advanced approaches in
the coding procedure. Li et al. in JVT-G012 [17] proposed an adaptive rate
control frame work for H.264/AVC and it has been adopted by the Joint Video
Team. This single-pass rate control method is based on the classic quadratic
rate-quantization (R-Q) model and a linear model for mean absolute difference
(MAD) prediction. According to JVT-G012, there are three levels of rate control,
which include group of picture (GOP) level, frame level and the basic unit level.
Note that the basic unit can be one macroblock (MB) or a group of MBs. In
this work, we focus on MB level rate control, which will incorporate our tracking
results from the previous section.

4 Experiment Results

The Fig. 2 and Fig. 3 show the comparison between the tracking results without
and with the automatic scale changing. The left column is the tracking results
by using incremental eigenspace learning [18], while right column is the tracking
results of proposed auto-scaled incremental eigenspace tracking algorithm. In our
experiment, we use the database of PETS2006 and the experiment results show
for multiple moving object tracking with the blob scale changing, the proposed
tracking algorithm is more robust and have higher locating accuracy.

Fig. 4 shows the ROI obtained by our tracking algorithm for three typical
video sequences: Hall, Stefan and Coastguard. In our MB level rate control, if

Tracking without auto-scaled Tracking with auto-scaled

Frame #44

Frame #57

Frame #72

Scene No.2

Fig. 2. Tracking results comparison (using the PETS2006)
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Tracking without auto-scaled Tracking with auto-scaled

Scene No.1

Scene No.2

Fig. 3. Tracking results comparison (using the PETS2006)

hall stefan coastguard

Fig. 4. Tracking regions-of-interest serving for the region-based rate control purpose

Table 1. Performance comparison for JVT-G012 rate control and proposed region

based rate control scheme

Sequence Actual Bitrate Average PSNR(dB)

(Bitrate, framerate) Algorithm (Kbps) Overall ROI Non-ROI

Stefan CIF JVT-G012 257.07 28.57 28.52 28.59

(256k, 30fps) Proposed 256.34 27.68 30.91 27.30

Hall CIF JVT-G012 96.36 35.23 32.08 35.83

(96k, 30fps) Proposed 96.27 34.63 33.39 34.80

Coastguard CIF JVT-G012 256.28 30.32 30.76 30.23

(256k, 30fps) Proposed 255.89 29.68 31.95 29.41

the current MB overlaps with the ROI, it will be classified as ROI-MB otherwise
it is a Non-ROI-MB. In order to improve the coding quality of ROI in a frame,
the QP value of the ith MB determined by the original JVT-G012 MB level rate
control will be further adjusted as follows:

QPi =
{

QPi −ΔQP MBi ∈ ROI
QPi otherwise
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(a) Uncompressed frame

(b) Overall: 29.16 dB
          ROI: 28.39 dB
  Non-ROI: 29.36 dB

(c) Overall: 28.93 dB
          ROI: 30.35 dB
  Non-ROI: 28.67 dB

Fig. 5. Coding results for 4th frame of Stefan: (a) Uncompressed frame, (b) original

rate control and (c) with region based rate control

Fig. 6. Frame by frame comparison for Hall sequence. (a) Overall PSNR (b) PSNR for

ROI region.

where ΔQP = 2 is adopted as a quality adjustment factor in our scheme. Actu-
ally, the QP adjustment scheme is not limited to the H.264 rate control. It can
be applied to the MB level rate control for any other video coding standard.
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We have implemented our proposed algorithm to the H.264/AVC reference
software JM11 [19]. The original rate control algorithm JVT-G012 in JM11 was
used as a benchmark for comparison. The experiments were conducted using
the first 100 frames of three CIF (352x288) test video sequences with various
target bit rates. In our experiments, the frame coding structure was IPPP and
the rate-distortion-optimization (RDO) was enabled in motion estimation and
mode decision. In motion estimation, we set the number of reference frames to
be one and selected the search range of 16. We have configured all other encoder
parameters to be the same for both methods.

Table 1 tabulates test results of the actual bit rate, the average luminance
PSNR for the overall sequence, the ROI and the Non-ROI areas for both rate
control schemes. From the table we find that both algorithms can achieve ac-
curate output bit rate. It is observed that by using our proposed region based
rate control method, the PSNRs for ROI have been greatly improved for all
test sequences by up to 2.4 dB while the overall PSNR degradation is within 1
dB. Fig. 5 shows the coding results of the 4th frame of Stefan. As can be seen,
the visual quality of the ROI, which is the tennis player has been significantly
improved while the quality degradation in Non-ROI area is not noticeable. In
addition, Fig. 6 illustrates frame by frame comparisons for Hall sequence. Similar
results have been observed for other two sequences. Although some degradation
is introduced to Non-ROI, based on our observation it is almost invisible to the
human perception. Thus the overall subjective visual quality is greatly improved
by incorporating the tracking algorithm into region-based rate control scheme.

5 Conclusion

In this paper, we proposed using the auto-scaled incremental eigenspace tracking
method to locate the regions-of-interest (ROI) to serve the purpose of region
based rate control applications. The ROI in the video frames can be accurately
tracked and located by the proposed auto-scaled incremental eigenspace tracking
method even the scale of the interest object is small or changes rapidly. The
experiment results show that with the accurate location information of the ROI,
the final rate control performance is also satisfying.
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Abstract. This paper presents a model for visual focus of attention

recognition in the Ambient Kitchen, a pervasive computing prototyp-

ing environment. The kitchen is equipped with several blended displays

on one wall and users may use information presented on these displays

from multiple locations. Our goal is to recognize which display the user is

looking at so that the environment can adjust the display content accord-

ingly. We propose a dynamic Bayesian network model to infer the focus

of attention, which models the relation between multiple foci of atten-

tion, multiple user locations and faces captured by the multiple cameras

in the environment. Head pose is not explicitly computed but measured

by a similarity vector which represents the likelihoods of multiple face

clusters. Video data are collected in the Ambient Kitchen environment

and experimental results demonstrate the effectiveness of our model.

1 Introduction

Attention awareness is an important component of many pervasive computing
applications [1], including assisted daily living and understanding and retrieval
of meeting records. Visual focus of attention (VFOA) refers to the object or
location that a person is focusing his visual attention on. In human-computer
interaction (HCI), by recognizing a user’s VFOA, a system can infer a user’s
interest or intention in response to which an appropriate situated service can be
provided. In this paper, we investigate the problem of inferring a user’s VFOA in
the Ambient Kitchen. The Ambient Kitchen is a kitchen environment equipped
with a heterogeneous array of sensors and displays, including several projected
displays on the walls to show situated information, including recipes and food
preparation guidance. In a typical scenario, before the user starts to prepare
food, different recipes appear on different displays. By inferring the user’s VFOA,
the system can know which display the user is attending to, and by comparing
the time spent looking at different displays, infer the recipe that the user is
most interested in. As a result, proactive services can be provided to the user,
e.g. displaying more detailed food preparation guidance according to the recipe
of interest.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 548–559, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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VFOA is related to both head pose and eye gaze. However, psychological
research has demonstrated that in many cases head pose is a sufficient cue to
estimate a user’s VFOA [2]. This is fortunate as the facial images captured in the
Ambient Kitchen are of a resolution that is too low to be used to estimate eye
gaze accurately. We have also taken into account a number of factors specific to
the kitchen environment in the design of our solution to the VFOA recognition
problem in the Ambient Kitchen. Firstly, in the kitchen, when a user is preparing
food in front of the counter a user may stand at different locations and there
are several visual targets that might be the focus of attention. Consequently, the
relation between the user’s position and the target’s location has to be taken into
account in inferring the focus of attention. Secondly, in order to capture the user’s
face and body at different locations, we have placed three cameras inside the wall
on which the displays are projected. Different cameras may capture different
poses of the faces, and it is desirable, if possible, to make use of information
from these multiple cameras. Finally, the user’s head pose ranges from a frontal
pose to a full profile pose. Consequently, our approach must be able to track
faces with large pose variations and estimate the VFOA accordingly.

In recent years there has been an increase in interest in estimating visual
focus of attention. Stiefelhagen [3] studied the VFOA of participants in meetings
both with an omni-direction camera on the table, and later from multi-view far
field cameras [4]. Ba [5] and Otsuka [6] also worked on head pose tracking and
inferring VFOA in meetings in different meeting room settings. However, in the
meeting situation, participants are sitting at fixed locations and exhibit only
limited bodily movement. Smith [7] studied the VFOA problem in an outdoor
environment in which passers-by look at an advertisement (a single target) on a
wall. Zhang [8] also monitored the VFOA in outdoor settings but only estimated
near frontal head poses for which each pose is considered a VFOA.

Our research is the first attempt to estimate the VFOA in the kitchen set-
ting. Previous research usually addresses VFOA problems either using a fixed
viewer location with multiple targets, or multiple user locations with a single
target. However, in our application, there are multiple user locations and multi-
ple targets. Conventional approaches also usually invoke specialized mechanisms
to estimate the head pose, either 3D models which require accurate and robust
feature tracking, or 2D appearance models which need a training set for the pose
models. The low-resolution images available in our setting mean that 3D model
based methods are not applicable. Due to the generalization problem, and the
fact that we lack ground truth head pose data, 2D appearance based pose models
trained using other databases are also not appropriate. However, since our goal
is to estimate the VFOA rather than head pose, we are interested in whether
it is possible to infer the VFOA using face images without explicitly computing
head pose. Previous work mostly uses single camera information although in [4]
multi-camera information is used to estimate head pose and VFOA is estimated
according to the computed head pose. However, if the head pose is not explic-
itly computed, it is desirable to integrate multi-camera information directly for
VFOA recognition.
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We propose a principled solution using a dynamic Bayesian network (DBN)
model. The inference of the multiple VFOAs is formulated as the maximum a
posteriori (MAP) problem. The current VFOA is deduced from multiple camera
information, i.e. the faces captured by different cameras. The head pose is not
explicitly computed but measured by a similarity vector that represents the
likelihoods of multiple face clusters, and we take the similarity vector as a hidden
variable. Since the head pose captured by a camera is determined not only by
the current VFOA but also by the location of the head, we also introduce the
face location to the model. The model observations include the face images and
face locations in all cameras.

The remainder of the paper is organized as follows. The application environ-
ment is described in Sect. 2. Our DBN model and model inference are presented
in Sects. 3 and 4. The experimental results are described in Sect. 5, and finally,
conclusions and a discussion of further work are presented in Sect. 6.

2 Application Environment

Our Ambient Kitchen [13] is a high fidelity prototype for exploring the design
of pervasive computing algorithms and applications for everyday environments.
The environment integrates projectors, cameras, RFID tags and readers, object
mounted accelerometers [14], and underfloor pressure sensing using a combina-
tion of wired and wireless networks. Figure 1(a) shows the physical set-up of the
kitchen. On the wall of the Ambient Kitchen, there are four displays that show
a range of information, e.g. recipes and food preparation guidance. Our task is
to find out which display the user is looking at, i.e. the user’s VFOA, when the
user is preparing food at the counter.

Due to the limited filed of view of the cameras, three cameras have been
embedded in the wall immediately above the counter so that the face of the
user will always be captured when the user is standing in front of any display
(which are projected above the counter). The cameras are located between the
boundaries of two projected displays so that they do not interfere with the
projected content. Figure 1(b,c) shows the layout of the displays and cameras,
and the images captured by three cameras when a user is looking at a display.

To simulate the action of looking at a display we placed paper markers at
the center of each display and asked subjects to look at these markers. Subjects
were asked to look at each marker for a short time in a specified sequence while
three cameras captured video data simultaneously. Strictly speaking, the user
might stand at any location in front of the counter. However, according to our
observations and experience, in a real kitchen, users prefer to stand at one of a
few relatively fixed locations when preparing food. Since the displays on the wall
show the recipes and guidance, we assumed that the preferred locations for the
user corresponded to positions in front of each display. Therefore, to simplify
the data collection, we split the area in front of the counter into three areas
according to the locations of the displays, and asked subject to stand in these
areas for the data collection sessions.
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Fig. 1. (a) The Ambient Kitchen, the four displays on the walls, and the markers; (b)

the layout of the VFOAs, cameras and areas; (c) the images captured by 3 cameras

when the user is standing in area 2

3 The DBN Model for VFOA Recognition

3.1 Model Overview

We used a dynamic Bayesian network (DBN) model to address the visual focus
of attention recognition problem, as is illustrated in Fig. 2. In the model, the
hidden variable Ft denotes the user’s focus of attention at time t. The possible
values of Ft are the M possible VFOAs. The hidden variable Ci

t denotes the face
cluster of face images captured by camera i at time t. The possible values of Ci

t

are the K face clusters. The observation variable Zi
t denotes the face captured

by camera i at time t. And the observation variable Li
t denotes the horizontal

face location in the image captured by each camera. In our model, we neglect
the influence of the user’s height. The DBN model describes the probabilistic
relationships among the variables and reflects their stochastic dependencies. The
face cluster Ci

t is governed by the VFOA Ft and the location Li
t. That means

when a user is standing at a fixed location and looking at a specific object, the
possible face cluster Ci

t captured by camera i will be determined and the face
observations Zi

t will be dependent on the face cluster Ci
t . Note that the head

pose estimation is solved in an implicit way by taking the face cluster as the
hidden state variable Ci

t .
Note also that i denotes the index of different cameras and F will be inferred

according to the multi-camera information, since when the user is standing in
areas 2 and 3, he will be captured by two cameras. In some cases, it would be
difficult to compute the user’s VFOA using the image from a single camera, a
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Fig. 2. The dynamic Bayesian network model for visual focus of attention recognition.

Squares represent observations and circles represent hidden variables. The subscript t

denotes the frame number, and the superscript i denotes the index of the camera.
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Fig. 3. The faces captured by camera 2 and 3, when the user is standing in area 2 and

looking at VFOA 1 and 2

problem that is addressed by the use of multiple cameras. As illustrated in Fig. 3,
the user is standing area 2, looking at VFOA1 and VFOA2 respectively. The
images from camera 2 are very similar and relatively difficult to distinguish as
compared to the images from camera 3 (which are quite distinct). Consequently,
the information from two cameras can be combined to obtain considerably more
accurate results.

3.2 Elements of the Model

According to the model, the joint distribution of all variables is given by:

P (F1:T , C1:R
1:T , L1:R

1:T , Z1:R
1:T ) =

T∏
t=1

P (Ft|Ft−1)
R∏

i=1

P (Ci
t |Ci

t−1, L
i
t, Ft)P (Zi

t |Ci
t). (1)

P (Ft|Ft−1) models the temporal transition probabilities of a user’s VFOA and
is defined to enforce temporal smoothness. When a user is looking at a target,
he will tend to look at the target for a relatively short time and then move to
another target.

P (Ci
t |Ci

t−1, L
i
t, Ft) models the probabilistic dependencies of Ci

t on the VFOA
Ft , the face location Li

t and the face cluster Ci
t−1 in last frame. This is the core

of the model, which captures the relations among multiple VFOAs, multiple user
locations and faces captured by multiple cameras. Suppose the user’s face is at
a fixed location Li

t and looking at a specific target Ft, the possible face cluster
Ci

t captured by camera i will be determined. This probability matrix will be
obtained according to the training data. To enforce the temporal smoothness
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of face cluster C, P (Ci
t = k|Ft, L

i
t, C

i
t−1 = k) will be increased by α and then

normalized to be a probability distribution.
P (Zi

t |Ci
t) denotes the face observation likelihood. Given the face cluster Ci

t ,
this term is the probability that face observation Zi

t will be generated by the
face cluster. We formulate the likelihood as:

P (Zi
t |Ci

t = k) = exp(−d2(Zi
t ,Mk)/σ2)/Λ, (2)

where Λ is a normalization term, Mk denotes the image subspace of the face
cluster Ci

t = k and d(Zi
t ,Mk) denotes the distance of the image Zi

t to the image
subspace Mk (e.g. the residual error of the image if represented by the subspace).
Suppose there are K face clusters, then for each observation we can obtain a
similarity vector S whose length is K, where Sk = P (Zi

t |Ci
t = k). The details of

the observation model are described in the next subsection.

3.3 The Observation Model

Our system is initialized using a multi-view face detector with which faces are
tracked using a combination of face detection and online template update track-
ing. We train our multi-view face detectors in a manner similar to [9] and [10]; for
a given frame, faces are detected near the face location in the previous frame.
If no face is detected, online template updating is employed to maintain the
tracking [11].

After we identify the face box, we compute the similarity vector that repre-
sents the likelihoods of the face produced by multiple face clusters. The term
P (Zi

t |Ci
t) represents the face observation likelihood, which is formulated in (2).

Due to the lack of ground truth head pose data, we do not have predefined or
trained face clusters in advance. Instead, we build the face clusters directly from
our video data. When users are standing at a fixed location l and looking at a
specific object f , the possible face poses captured by camera i are determined
and poses of different people are treated as similar. We denote the collection of
face images captured in this manner as C(l, f, i). Suppose we divide the user
locations into N regions, and that there are M VFOAs and R cameras, in total
there will be M×N×R face clusters. Note that the intrinsic face poses of differ-
ent face clusters defined in this way may be similar if the relative geometrical
relations of C(l, f, i) are similar. Hence the likelihood that a face produced by
face clusters with similar poses will also be similar. The obtained face clusters
are taken as the hidden variable. In our experiment, face clusters are modeled
by PCA subspaces.

3.4 Parameter Learning and Setting

For the dynamics of VFOA, we set P (Ft = i|Ft = i) = Pf , and spread the
remaining transition probability to other VFOAs as P (Ft = j, j �= i|Ft = i) =
1−Pf

M−1 . Usually Pf is set to a value near to 1.0 and in our study, we set it to 0.8.
P (Ci

t |Ci
t−1, L

i
t, Ft) is trained by counting the frequencies of the observations

belonging to a face cluster with the a fixed F and L. F is the manually labeled
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ground truth VFOA, and L are the observations computed from the training
image sequences. We first assume that Ct is independent of Ct−1 and after
counting is finished, we increase the probability P (Ci

t = j|Ci
t−1 = j, Li

t, Ft) by
β to introduce smoothness between face clusters, and then we normalize the
probability matrix (β is set to 0.2). The number of locations Li

t in the image of
each camera is set as 3 corresponding to the three user areas.

P (Zi
t |Ci

t) denotes the face observation likelihood. A similarity vector S is
computed as the measurement of the observation. In effect we are not making a
deterministic decision and the parameter in (2) is adjusted to make the highest
value of the similarity vector lie at around α (which is set to 0.4 in our experi-
ment). If no face is detected, we set the similarity vector S = 1

K , meaning that
the similarity with each face cluster is equal.

4 Model Inference

The VFOA recognition problem is formulated as the inference of our model.
Given the observations Z and L, we want to infer the values of hidden random
variables F and C. In other words, our objective is to maximize the following
joint distribution:

(F̂ , Ĉ) = arg max
F,C

P (F,C, Z, L). (3)

We use approximate inference techniques [12] which minimize a “free en-
ergy” cost function. Free energy measures the accuracy of a simpler probability
distribution Q(h) which is used to approximate the true posterior distribution
P (h|v). Here, h and v represent the hidden variables (F , C) and observations
(Z, L) respectively. The distribution Q(h) that is closest to P (h|v) is then used
for computing the estimates of our objective. The distribution is defined as:

Q(h) =
T∏

t=1

Q(Ft|Ft−1)
R∏

i=1

Q(Ci
t |Ci

t−1, Ft). (4)

Following [12], the free energy in our problem is given by:

E =
∫

h

Q(h)ln
Q(h)

P (h, v)
. (5)

Given the states of the hidden variables F , C in time t− 1, by minimizing E
w.r.t. Q(Ci

t |Ci
t−1, Ft) and Q(Ft|Ft−1) , we get:

∂Et

∂Q(Ci
t |Ci

t−1, Ft)
= 0 => Q(Ci

t |Ci
t−1, Ft) ∝ P (Ci

t |Ci
t−1, L

i
t, Ft)P (Zi

t |Ci
t), (6)

∂Et

∂Q(Ft|Ft−1)
= 0 => Q(Ft|Ft−1) ∝ P (Ft|Ft−1)

R∏
i=1

K∏
Ci

t−1=1

K∑
Ci

t=1

(P (Ci
t |Ci

t−1, L
i
t, Ft)P (Zi

t |Ci
t))

Q(Ci
t−1|Ft−1).

(7)
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In (7), Q(Ci
t−1|Ft−1) can be computed by:

Q(Ci
t |Ft) =

∫
Ft−1,Qi

t−1

Q(Ci
t |Ci

t−1, Ft)Q(Ci
t−1|Ft−1)Q(Ft−1). (8)

Then the probability distributions can be computed iteratively by:

Q(Ft) =
∫

Ft−1

Q(Ft|Ft−1)Q(Ft−1), (9)

Q(Ci
t) =

∫
Ft

Q(Ci
t |Ft)Q(Ft). (10)

The output of the model inference will be the VFOA with the highest prob-
ability:

V FOA = arg max
Ft

Q(Ft). (11)

5 Experiments

We collected data from 8 subjects. The subjects were asked to look at different
markers from three different locations (areas in front of the counter) while three
cameras captured video data of the subjects simultaneously. As a result we
collected 24 sets of video (25 fps) and with 3 video clips, one for each of the
cameras, in each video set. The length of each video varied from 25 to 30 seconds.
The video resolution was 360×288 for which a face typically occupied a region
of around 40×40 pixels. To establish the ground truth for the focus of attention,
we manually annotated the video data with the marker number and the start
and end time of the act of looking at each marker. We performed the model
inference on the whole video data set, but only the video data with the ground
truth VFOA was used for face cluster training, model parameter training and
the evaluation. All the faces were histogram equalized to reduce the influence of
illumination differences and were normalized by zero mean and unit norm.

5.1 Face Image Clusters

Examples of tracked faces are given in Fig. 4(a), where every two rows contains
the images of a different subject. The first row contains the original tracked faces
and the second row shows the corresponding mean image of the face cluster with
the highest probability. As can be seen, the mean image of the most similar
face cluster is similar to the true face pose, which qualitatively demonstrates
the effectiveness of our approach. We can see that the tracked faces are not
exactly aligned and in the model we do not compute the accurate pose but use
a similarity vector as a “soft” measure. Our goal is to use observations that are
not well aligned to infer the VFOA.

When users are in area 1, the faces are visible to only camera 3, while in
areas 2 and 3, the faces are visible to two cameras. So in our experiment, the
number of face clusters is 5×6=30. For each cluster, we randomly selected 10
face images for each subject to make up the training set. PCA subspace models
are then trained for each cluster. The mean for each cluster is shown in Fig. 4(b).
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Fig. 4. (a) The tracked faces and the mean of the corresponding face clusters; (b) the

mean images of all face clusters

Table 1. The result of VFOA recognition with same training and test set

Area VFOA1 VFOA2 VFOA3 VFOA4 VFOA5 VFOA6

1 100.00 99.78 100.00 97.87 98.47 100.00

2 100.00 89.00 94.33 97.25 95.89 98.32

3 100.00 92.21 86.61 93.72 97.71 98.50

5.2 VFOA Recognition

We ran two experiments to evaluate the effectiveness and generality of the face
image representation and the model. In the first experiment, we used the data for
8 subjects as the training and test set. In the second experiment, we performed
leave-one-out cross-validation, i.e. we used data for 7 subjects as the training
set and data for the other subject as the test set, and ran 8 rounds using each
subject as a test. The training set is used to train the face clusters and the
model parameters, and the test set is used to infer the VFOA. The results of
the two experiments are shown in Table 1 and 2 respectively. The recognition
accuracy is computed as the proportion of correctly recognized frames in all the
video segments using the manual annotation as the ground truth. For the second
experiment, we only considered the result of the test set video and the results of
8 rounds are used to compute the overall recognition accuracy.

The accuracy shown in Table 1, is a direct result of using the same training
and test set. The lower accuracy achieved in the second experiment can be
explained by the large variations of face appearance and illumination between
different subjects. We can see that when the user is standing in area 1 and
looking at VFOA 4, 5 and 6, the accuracy is particularly low and the VFOAs
are wrongly recognized as the neighboring VFOAs. This is because VFOA 4, 5
and 6 are relatively distant from area 1 and are close to each other. As a result
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Table 2. The result of VFOA recognition using leave-one-out cross-validation

Area VFOA1 VFOA2 VFOA3 VFOA4 VFOA5 VFOA6

1 97.22 98.01 64.86 53.52 45.70 58.46

2 91.70 80.45 95.57 81.50 46.47 87.31

3 81.16 46.12 70.77 99.78 64.86 74.31

Table 3. The average accuracy when user is in areas 2 and 3, looking at 6 VFOAs

Area 2 Accuracy Area 3 Accuracy

Cameras 2 & 3 80.50 Cameras 1 & 2 72.83

Camera 2 only 68.29 Camera 1 only 52.84

Camera 3 only 74.91 Camera 2 only 63.49
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Fig. 5. Comparisons between multi-camera and single-camera configuration with user

in area 2(left) and area 3(right). The horizontal axis is the VFOA index, and the

vertical axis is the recognition accuracy.
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Fig. 6. The inference process. The horizontal axis is the frame number and the vertical

axis is the VFOA probability. The lines of different colors denote different VFOAs.

when users attend to VFOAs 4, 5 and 6, they tend not to rotate their heads
significantly, sometimes only adjusting eye gaze to change VFOA (in the videos
where VFOA 4, 5 and 6 are wrongly recognized the subjects clearly exhibit this
kind of behavior). Another factor that impacts on the accuracy is that the faces
captured by camera 3 when looking at VFOA 4, 5 and 6 are all close to being in
full profile and are very difficult to discriminate. A similar situation occurs for
VFOA 5 when viewed from area 2 and for VFOA 2 when viewed from area 3.
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To evaluate the impact of multi-camera information fusion, we also estimated
the VFOA using the model with single camera information. When the user is
standing in area 1, only one camera has a clear view of the subject and we
therefore do not include these results in our evaluation. The remaining results
for areas 2 and 3, are shown in Fig. 5 and show that most of the time, the
results for the multi-camera are better than that for a single camera. For multi-
camera information, good results can be obtained for any VFOA. Table 3 lists
the average accuracy for different VFOAs when the user is standing in areas 2
and 3. This demonstrates that multi-camera information produces acceptable
results for all the possible situations.

Some example inference processes are depicted in Fig. 6. The three figures
from left-to-right represent the inference results of video data for one subject
standing in areas 1, 2 and 3 respectively. The different colored lines denote the
probability of different VFOAs. The line with the highest probability at a certain
frame indicates the recognized VFOA at that frame. It can be seen that when
the user is standing in area 1 and looking at VFOAs 4, 5 and 6, the probability
of the best VFOA is lower than when looking at VFOAs 1, 2 and 3.

6 Conclusions and Future Work

We have proposed a multi-layer probabilistic model for visual focus of attention
recognition in the Ambient Kitchen. The model can integrate and model the
relation between multiple foci of attention, multiple user locations and faces
captured by multiple cameras. The focus of attention is computed by maximizing
the posterior probabilities of the hidden variables of the model. The head pose is
not explicitly computed but measured using a similarity vector that is computed
by comparing the tracked face with multiple face clusters. We have collected
video data in the Ambient Kitchen environment and our experimental results
show that our model can produce sufficiently accurate results.

Currently, when the user is looking at distant VFOAs, the recognition perfor-
mance decreases due to the similar appearances of face images. For future work,
we are intending to investigate the use of better image presentations and com-
bining motion information to discriminate neighboring VFOAs. In this paper,
the VFOAs are constrained to be one of six targets on the wall of the Ambient
Kitchen. In the future, we will extend the VFOAs to a larger set of targets (e.g.
different locations on the counter) and we will evaluate our method in a real
food preparation process. Although the model has been evaluated in the Ambi-
ent Kitchen, it is also applicable to other application environments, e.g. finding
out which products in a shop window passers-by are looking at.
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Abstract. The recently proposed Facial Trait Code (FTC) formulates

the component-based face recognition problem as a coding problem using

Error-Correcting Code. The development of FTC is based on the extrac-

tion of local feature patterns from a large set of faces without significant

variations in expression and illumination. This paper reports a new type

of FTC that encompasses the faces with large expression variation and

under various illumination conditions. We assume that if the patches of

a local feature on two different faces look similar in appearance, this pair

of patches will also show similar visual patterns when both faces change

expressions and are under different illumination conditions. With this as-

sumption, we propose the Polymorphous Facial Trait Code for face recog-

nition under illumination and expression variations. The proposed method

outperforms the original Facial Trait Code substantially in solving a strict

face verification problem, in which only one facial image per individual is

available for enrolling to the gallery set, and the probe set consists of facial

images with strong illumination and expression variations.

1 Introduction

Local features are commonly considered effective for face recognition. Different
feature extraction methods result in different descriptors of local features. Liao
and Li [1] extracted 17 local features using the Elastic Graph Matching (EGM),
and each of these 17 features had its own specific spot on a face, for example,
the corners of eyes, the ends of eyebrows, and the centers of lips. Deformable
graphs and dynamic programming were used in [2] to determine eyes, nose,
mouth, and chin. A two-level hierarchical component classifier was proposed in
[3] to locate 14 feature patches in a face, and [4] showed that face recognition
using these 14 feature patches outperformed the same recognition method but
using the whole face as the feature. Ivanov et. al. [5] extended this study by
experimenting with a few different recognition schemes using the same set of 14
feature patches. Recently, an iterative growing process was proposed to further
improve the localization of these 14 feature patches, leading to a two-layered
identification approach proven to perform well in identifying faces with large
pose and illumination variations [6]. Few have different perspectives toward the
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definition of such local features, as the features are perceivable to our nature,
and many feature-based approaches have yielded promising performance.

It has been shown in [7] that patterns exist in many of the unperceivable fea-
tures and can be extracted, and the extracted patterns can be used to decompose
and encode a face. The unperceivable features with patterns good for discrim-
inating faces are called facial traits, and the associated face coding scheme is
called the Facial Trait Code. Through empirical observations, we found that the
variations across human faces can be categorized into two types: the inherent
variation and the external variation, the former is the variation caused by the
inherent difference between people, while the latter is the variation caused by
different conditions, such as illumination conditions or facial expressions, under
which facial images are taken. In [7], the facial patterns are extracted based on
a large collection of facial images called the FTC face set, and basically it con-
tains faces taken under the inherent variation only. Hence the patterns extracted
can be regarded as the inherent patterns that best discriminate between different
people. However, if we take faces under both inherent and external variations
into account, [7] will extract a mixture of inherent and external patterns. The
external patterns, which capture the variation in external conditions such as il-
lumination and facial expressions, are useless for discriminating different people.
Without a proper mechanism, these external patterns will cripple the FTC for
face recognition problem.

In this paper, we propose a novel Facial Trait Code, called Polymorphous
Facial Trait Code, or POLYFTC for short, that handles the inherent and
external patterns in a systematic way. The construction of the POLYFTC in-
volves a two-stage pattern extraction scheme that extracts inherent patterns
and their associating external patterns hierarchically. The corresponding elabo-
rated encoding and decoding schemes are also proposed, which jointly recognize
human faces under variations in illumination conditions and facial expressions
robustly. This paper will begin with an introduction to the Facial Trait Code in
Section 2, followed by the development of the Polymorphous Facial Trait Code
in Section 3. A comparative study on the face recognition performance using the
POLYFTC and other algorithms will be reported in Section 4. The conclusion
and contribution of our study will be summarized in Section 5.

2 Facial Trait Code

The original version of the Facial Trait Code (FTC) is reported in [7], and is
summarized in this section.

2.1 Facial Trait Extraction and Associated Codewords

One can specify a local patch on a face by a rectangle bounding box {x, y, w, h},
where x and y are the 2-D pixel coordinates of the bounding box’s upper-left
corner, and w and h are the width and height of this bounding box, respectively.
If the bounding box is moved from left to right and top to bottom in the face
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with various sizes of steps, denoted by Δx and Δy pixels in each direction, and if
w and h can change from some small values to large values, we will end up with
an exhaustive set of local patches across the face. The number of the patches
grows with the size range of the patches and the reduction in the step size. With
an extensive experimental study on the size range and step, [7] ended up with
slightly more than a couple thousands of patches for a face with 80x100 pixels
in size. In the following, we assume M patches in total obtained from a face.

A large collection of facial images, called the FTC face set, is needed for
FTC construction. Assuming K faces available from the FTC face set, and all
faces aligned by the centers of both eyes, the above running box scheme will give
a stack of K patch samples in each patch. To cluster the K patch samples in
each patch stack, the Principal Component Analysis (PCA) is firstly applied to
extract the features. Considering the case that the K facial images can be from
L individuals (L ≤ K, i.e., one individual may have multiple facial samples),
for each patch stack the Linear Discriminant Analysis (LDA) is then applied
to determine the L most discriminant low dimensional patch features for the
L individuals. It is assumed that the L low dimensional patch features in each
patch stack can be modeled by a Mixture of Gaussian (MoG), then the unsuper-
vised clustering algorithm proposed by Figueiredo and Jain [8] can be applied
to identify the MoG patterns in each patch stack. Assuming M patch stacks are
available, this algorithm can cluster the L low dimensional patch features into
ki clusters in the i-th patch stack, where i = 1, 2, ...,M . The ki clusters in the
i-th patch stack were considered the patterns existing in this patch stack, and
they are called the patch patterns.

A scheme is proposed in [7] that selects some combination of the patches
with their patch patterns able to best discriminate the individuals in the FTC
face set by their faces. This scheme first define a matrix, called Patch Pattern
Map (PPM), for each patch. PPM shows which individuals’ faces reveal the
same pattern at that specific patch. Let PPMi denote the PPM for the i-th
patch, i = 1, 2, ...,M . PPMi will be L × L in dimension in the case with L
individuals, and the entry at (p, q), denoted as PPMi(p, q), is defined as follows:
PPMi(p, q) = 0 if the patches on the faces of the p-th and the q-th individuals
are clustered into the same patch pattern, and PPMi(p, q) = 1otherwise.

Given N patches and their associated PPMi’s stacked to form a L × L ×N
dimensional array, there are L(L− 1)/2 N -dimensional binary vectors along the
depth of this array because each PPMi is symmetric matrix and one can only
consider the lower triangular part of it. Let vp,q (1 ≤ q < p ≤ L) denote one of
the N -dimensional binary vectors, then vp,q reveals the local similarity between
the p-th and the q-th individuals in terms of these N local patches. More unities
in vp,q indicates more differences between this pair of individuals, and on the
contrary, more zeros shows more similarities in between.

The binary vector vp,q motivated the authors in [7] to apply the Error Correct-
ing Output Code (ECOC) [9] to their study. If each individual’s face is encoded
using the most discriminant patches, defined as the facial traits, then the in-
duced set of [vp,q]1≤q<p≤L can be used to define the minimum and maximum
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Hamming distance among all encoded faces in the corresponding code space. The
vp,q with the least (most) of unities gives the minimum (maximum) Hamming
distance. To maximize the robustness against possible recognition errors in the
decoding phase, authors in [7] proposed an Adaboost algorithm to maximize the
dmin, the minimum Hamming distance, for the determination of the facial traits
from the overall patches.

Assuming N facial traits selected from the the overall M patches, and each
with trait patterns symbolized by 1, 2, ..., ki, i = 1, 2, ..., N , one can now define
the codewords in FTC. Each codeword is of length N and n-ary where n is the
largest number of the trait patterns found in one single trait. In summary, given
a large collection of faces as the FTC face set, one can define N facial traits,∑N

i=1 ki trait patterns, and
∏N

i=1 ki faces (or FTC codewords).

2.2 FTC Encoding and Decoding

With a pre-selected length of the FTC codeword, N , the FTC face set defines N
facial traits of different sizes, orientations, and locations, and also the patterns
in each facial trait. Each facial trait pattern is tagged with a number, which
will be used as a symbol in the FTC codeword. In the FTC encoding, a given
face is firstly decomposed into N patches according to the specifications given
by the N facial traits, and each patch is then classified into a specific facial trait
pattern and numbered as the pattern tag. An ordinary classifier can be used for
the patch classification. The authors in [7] applied a Nearest-Neighbor classifier
based on feature vectors resulting from LDA. The given face is therefore encoded
into a n-ary FTC codeword of length N .

In practice the images in the gallery set are firstly encoded into gallery
codes. Given a probe, an image from the probe set, it is also firstly encoded into
a probe code. The FTC decoding matches this probe code against all gallery
codes, and finds the ’closest’ one using the Hamming distance as the measure.

Given two codewords gc = [g1g2...gN ] and pc = [p1p2...pN ], the Hamming
distance can be easily interpreted using the code difference dc = [d1d2...dN ]
where

di =
{

0 if pi = gi

1 otherwise.

Then the Hamming distance between gc and pc is given by the following,

D(gc,pc) =
N∑

i=1

di. (1)

3 Polymorphous Facial Trait Code

As stated in Introduction, human facial images are taken under inherent and
external variations. The original FTC [7] considered mainly facial images taken
under only the inherent variation. Although it was reported to be effective in
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identifying faces under inherent variations, it is expected to have degraded per-
formance when faces taken under external variations are involved, owing to no
mechanism was proposed to handle such a situation.

In this paper we propose a novel Facial Trait Code that handles the inherent
and external patterns in a systematic way, and robustly recognizes faces taken
under variations in illumination conditions and facial expressions. We begin with
dividing the FTC face set into two disjoint subsets, the Trait Extraction Set
and the Trait Variation Set, respectively. The Trait Extraction Set consists
of a large number of frontal facial images taken under the inherent variation
only (i.e. taken with neural expression and evenly distributed illumination). The
Trait Variation Set consists of facial images taken under both inherent and
external variations. Assume the Trait Extraction and Variation Set has nE and
nV facial images, respectively, the following sections give the construction of the
proposed POLYFTC.

3.1 The First Stage of Clustering: Extraction of Inherent Patterns

For each of the M patches defined in Section 2.1, we extract its trait patterns
following the procedures described in [7]. Instead of using the whole FTC Face
Set, as is the case in [7], we use facial images in the Trait Extraction Set only.
Assuming that the inherent variation across faces in the Trait Extraction Set
follows a Gaussian Mixture model, the first stage of clustering extracts the
corresponding inherent patterns. Then, based on the extracted patterns, we select
the N most discriminative facial traits out of M patches using the Adaboost-
based algorithm proposed in [7]. Assume each facial trait has ki patterns, i =
1 ∼ N . For each of the i-th facial trait, this step clusters the total nE patch
samples in the Trait Extraction Set into ki disjoint subsets, denoted as Ei,j ,
j = 1 ∼ ki, which is the collection of patch samples cropped from faces belong
to the j-th inherent pattern in the Trait Extraction Set.

3.2 The Second Stage of Clustering: Extraction of External
Patterns

Ei,j is defined in the Trait Extraction Set, which contains faces with only inherent
variation. We denote Vi,j as the counterpart of Ei,j in the Trait Variation Set,
and Vi,j contains patch samples whose identities are all in Ei,j . We define Pi,j

as the union of Ei,j and Vi,j , and it contains patch samples belong to the same
inherent pattern, but are taken under various external variations.

In our study, we found that when the patches of a local feature on two different
faces are clustered into the same inherent pattern, this pair of patches will also
show similar visual patterns when both faces are taken under the same external
variation (e.g. when both faces change expressions, or when they are taken under
another illumination condition). Based on this observation, we assume that the
external variation across patch samples belong to the same inherent pattern
also follows a Gaussian Mixture model, and the second stage of clustering
upon these patch samples extracts the corresponding external patterns. Fig. 1
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(a) (b)

Fig. 1. See text

(a) illustrates an example of the clustering result. Patch samples in this figure
belong to the same inherent pattern, and those in the same row are clustered
as the same external pattern. From this figure, it appears that when different
people have the same inherent mouth pattern, their mouths taken under the same
illumination condition look similar (Figure 1 (a), the second row shows left-lit
samples and the third row shows right-lit samples), or with different expressions
(the fourth row for smiling and the fifth row for shouting). For the same local
feature, Fig. 1 (b) illustrates patch samples belong to another inherent pattern.

3.3 Polymorphous Patterns for Illumination and Expression Robust
Encoding

The proposed POLYFTC aims to encode human faces with their inherent vari-
ations maximized, while this encoding process is made invariant to external
variations. We define a Polymorphous Pattern as a set of external patterns
belong to the same inherent pattern. The Facial Trait Code using the polymor-
phous patterns is thus called the Polymorphous Facial Trait Code. Recall
that the FTC encoding transforms a facial image into a codeword. Each digit
location in the FTC codeword is a pattern tag of the associating facial trait, and
this pattern tag is the classification result of a trait-specific classifier. When we
apply polymorphous patterns, this encoding process needs to be modified. The
following gives the elaborated POLYFTC encoding scheme.

1. For the i-th facial trait, assume the above construction results in ki polymor-
phous patterns, each consists ki,j external patterns. j = 1 ∼ ki. The total
number of external patterns exist in the i-th trait is thus Ki =

∑ki

j=1 ki,j .
We relabel all the n, n = nE +nV , patch samples in the whole FTC face set
using their external pattern tags, and it gives Ki classes.

2. Perform LDA on these n patch samples based on their external patterns
labels.

3. Train a Ki-class Support Vector Machine (SVM) using the resulting LDA
feature vectors.
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Fig. 2. The flow chart of the polymorphous pattern extraction and encoding

4. Repeat step 1 through 3 for all the N facial traits to complete the POLYFTC
training stage.

5. In the POLYFTC encoding stage, a facial image is spatially decomposed
into N local patch samples. For each patch sample, the corresponding trait-
specific SVM classifies it into one of total Ki external patterns, and the
resulting external pattern tag gives the polymorphous pattern tag it be-
longs to.

6. The resulting N polymorphous pattern tags are concatenated to form a N -
digit codeword, which is the POLYFTC encoding result.

The training and encoding of the proposed POLYFTC are illustrated in Fig. 2.
The POLYFTC decoding, required for the face recognition application, is the
same with that of the FTC.

4 Experimental Results

To demonstrate the effectiveness of the proposed algorithm, we conducted several
experiments on the AR face database [10]. There are 126 different people (70 men
and 56 women) in the AR database. Each person participated in two sessions,
separated by two weeks (14 days). We include one neutral faces (Fig. 3 (a)),
three faces taken under three different facial expression (Fig. 3 (b),(c) and (d)),
and three faces taken under three different illumination conditions (Fig. 3 (e),(f)
and (g)). These faces are aligned with the centers of two eyes, converted to gray
scale images, and resized to 80-by-100 pixels.

We compared the performance of the proposed algorithm with two baseline
algorithms, Eigenface [11] and Fisherface [12], the LBP approach [13], and the
original FTC [7]. Note that instead of using the nearest neighbor classifier for
trait pattern classification [7], in this work we applied the Support Vector Ma-
chine1 (SVM), and it gives about 10% boost in identification accuracy. For both
1 For both FTC and POLYFTC implemented in this paper.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Samples of faces from the AR database

(a) identification (b) verification: Equal-

Error-Rate

(c) verification: Hit-Rate

Fig. 4. Performance of different algorithms. The y-axis is the accuracy and the x-axis

is the SPP.

FTC and POLYFTC, 64 facial traits are selected to form 64-digit codewords.
Both the identification and verification results are reported.

4.1 Test Protocol and Performance Comparison

We randomly select 63 identities from 126 ones with their samples to form the
training set. The facial samples belong to the remaining 63 identities taken during
the first session form the gallery set, and those taken during the second session
form the probe set. Face recognition algorithms are trained using samples in
the training set, and they are not allowed to alter their models afterward. The
facial images in the gallery set are enrolled, and images in the probe set are
identified or verified against the gallery identities. The number of sample per
person (SPP for short) in the gallery set is considered as a factor, it ranges
from 1 to 7. SSP=1 presents a very strict protocol, in which only one image is
enrolled, and it may be taken under strong illumination variation or slight facial
expressions.2 Meanwhile, the probe set includes images under all the kinds of
variations.

Fig. 4 (a) shows the identification results; (b) shows the Equal Error Rates in
verification problem; (c) shows the Hit Rates when the False Alarm Rate equals
to 0.01. Each data point in these figures is the averaged result over 20 rounds of
2 We do not use Fig. 3 (d) for enrolling, since in practice it is rarely the case.



568 P.-H. Lee, G.-S. Hsu, and Y.-P. Hung

Table 1. Summary of the performance of algorithms

SPP 7 1

algorithm Ident HIT EER Ident HIT EER

EIGEN [11] 0.80 0.67 0.102 0.42 0.22 0.298

FISHER [12] 0.78 0.64 0.118 0.62 0.46 0.149

LBP [13] 0.88 0.75 0.106 0.53 0.31 0.291

FTC [7] 0.85 0.69 0.056 0.66 0.49 0.106

POLYFTC 0.90 0.90 0.046 0.70 0.60 0.099

random identity selection. Note that the performance of the Eigenface and LBP
approaches decrease dramatically when SPP decreases, as expected, since the
two algorithms do not learn any feature that is invariant to within-person vari-
ation in appearance. Obviously the proposed POLYFTC outperforms all other
algorithms consistently. Note that POLYFTC outperforms FTC substantially
for the verification problem in Fig. 4 (c). The reason is that the minimum pair-
wise codeword distance, or dmin, among the gallery codewords for POLYFTC
is typically around 50, while it is around 14 for FTC in our experiment, and
it means that codewords of different identities are far more well separated in
the POLYFTC code space than those in the FTC code space. Table 1 gives the
summary of the performance of all the algorithms under SPP equals 1 and 7.

5 Conclusion and Future Work

In this paper we propose a new type of the Facial Trait Code [7]. The proposed
algorithm applies a more sophisticated two-stage clustering scheme to extract
inherent and external patterns of human facial parts. The inherent patterns
capture the genuine variation in human facial appearance, while the external
patterns capture the variations caused by illumination or facial expressions. The
proposed algorithm yields promising recognition results for faces under illumi-
nation and expression variations. An it achieves significant better verification
performance than the original Facial Trait Code.

The introduction of external patterns makes the proposed POLYFTC appli-
cable to the facial expression recognition problem, since the POLYFTC encoding
actually recognizes the external patterns besides the polymorphous pattern. Our
future work will develop an algorithm that simultaneously recognizes the facial
expression, illumination condition and identity of a given face.
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Abstract. Several studies of psychophysics have shown that the eyes

or the mouth seem to be an important cue in human face perception,

and the nose plays an insignificant role, this means that there exists a

distinctive information distribution of faces.This paper presents a novel

approach for face recognition by combining the Local Binary Patterns

(LBP) based face descriptor and the distinctive information of faces.

First, we give a quantitative estimation of the density for each pixel

in fronted face image by combining Parzen-window approach and Scale

Invariant Feature Transform (SIFT) detector, which is taken as the mea-

sure of the distinctive information of the faces. Second, we integral the

density function in the sub-window region of face to gain the weights

set which is used in the LBP based face descriptor to produce weighted

Chi square statistics. As an elementary application of the estimation of

distinctive information of face, the proposed method is tested on the

FERET FA/FB image sets and yields a recognition rate of 98.2% con-

trast to the 97.3% which is produced by the method adopted by Ahonen.

Keywords: Face Recognition, Parzen-window, SIFT, LBP.

1 Introduction

Face recognition is possibly one of the first cognitive process used by human to
recognize familiar people and attracts much attention due to its potential values
for applications as well as theoretical challenges. A key issue in face recognition
is finding efficient descriptors for facial appearance. Up to now, many holistic
representation approaches have been introduced, including Principal Compo-
nent Analysis (PCA)[1], Linear Discriminant Analysis (LDA)[2], Independent
Component Analysis (ICA)[3]. PCA is commonly referred to as the ”eigenface”
method; it finds a set of the most representative projection vectors so that the
projected samples retain most information about original samples in the sense
of the least mean squared reconstruction error. ICA captures both second and
higher order statistics and projects the input data onto the basis vectors that
are as statistically independent as possible. LDA uses the class information and
finds a set of vectors that maximize the between-class scatter while minimizing
the within-class scatter.
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A main shortage of holistic methods is the sensitivity of the variations in differ-
ent factors such as pose, illumination etc. On the other hand, the local descriptors
have gained more attention due to their robustness to challenge such factors. In
2004, Ahonen et al. introduced a new approach for face recognition based on Lo-
cal Binary Pattern features[4], which uses both shape and texture information
to represent the face images. In their approach, a face image is divided into small
regions from which the Local Binary Pattern (LBP) histogram[5] are extracted
and concatenated into a single feature histogram efficiently representing the face
image. In the end, the recognition is performed using a nearest neighbor classifier
in the computed feature space with Chi square as a dissimilarity measure. From
then on, many studies based on LBP features were investigated [6,7,8,9].

The performance of the LBP-based algorithm largely depends upon the weights
set of facial parts. The weights set is determined by the inherent property of face
which is suggested by the studies of psychophysics that the eyes or the mouth seem
to be an important cue in human face perception, and the nose plays an insignif-
icant role[10,11,12]. To make use of this property of face for recognition, several
empiric approaches were introduced, which include getting weights by performing
recognition experiments on a training set[4], or learning suitable weights based
on Fisher separation criterion[7]. Another method utilizes Adaboost technique to
find more appropriate facial parts and their weights[6].

In this paper we propose a novel generative approach which is different from
the methods adopted in[4,6,7], to find the weights of different facial parts. First,
according to the research of psychophysics, we give a quantitative estimation of
the density for each pixel in fronted face image by combining Parzen-window
approach and Scale Invariant Feature Transform (SIFT) local interest point de-
tector, which is taken as the measure of the distinctive information of the faces.
Second, we integral the density function in the sub-window region of face to
gain the weights set which is used in the LBP based face descriptor to produce
weighted Chi square statistics. As an elementary result, the proposed method is
tested on the FERET FA/FB image sets and yields a recognition rate of 98.2%
contrast to the 97.3% which is produced by the method adopted in[4].

The rest of this paper is organized as follows: In section 2, the Local Binary
Patterns are introduced. In section 3, the estimation of distinctive information
probability density of face is proposed and used in LBP based face description.
And the experiment results on the FERET database is given in section 4. In
section 5, we present the conclusion and future work.

2 Face Description with LBP

2.1 Local Binary Pattern

The original LBP operator, introduced by Ojala et al.[5], is a powerful means of
texture description. The operator labels the pixels of an image by thresholding
the 3× 3-neighbourhood of each pixel with the center value and considering the
result as a binary number. Then the histogram of the labels can be used as a
texture descriptor.
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The basic operator was extended to use neighborhoods of different sizes [5].
Using circular neighborhoods and bilinearly interpolating the pixel values allow
any radius and number of pixels in the neighborhood. For neighborhoods we will
use the notation (P,R) which means P sampling points on a circle of radius
of R.

Another important extension to the original operator is to use uniform
patterns[5]. A Local Binary Pattern is called uniform if it contains at most two
bit-wise transitions from 0 to 1 or vice versa when the binary string is considered
circular. Ojala reported that in their experiments with texture images, uniform
patterns account for a bit less than 90% of all patterns when using the (8, 1)
neighborhood and for 70% in (16, 2) neighborhood.

In this paper, according to [5], we use the following notation for the LBP
operator: LBPu2

P,R . Where the subscript represents using the operator in a (P,R)
neighborhood. Superscript u2 stands for using only uniform patterns and labeling
all remaining patterns with a single label.

A histogram of the labeled image fl(x, y) can be defined as:

Hi =
∑
x,y

I{fl(x, y) = i}, i = 0, . . . , k − 1 (1)

in which k is the number of different labels produced by the LBP operator and

I{A} =
{

1, A is true
0, A is false

2.2 LBP Based Face Description

In [4], Ahonen et al. presented that the face area can be divided into small
regions from which Local Binary Pattern (LBP) histograms are extracted and
concatenated into a single, spatially enhanced feature histogram efficiently rep-
resenting the face image. For this purpose, the face image is divided into regions
R0, R1... Rm−1 (see Fig.1) and the spatially enhanced histogram is defined as

Hi,j =
∑
x,y

I{fl(x, y) = i}·I{(x, y) ∈ Rj}, i = 0, . . . , k−1, j = 0, . . . ,m−1 (2)

Meanwhile, regarding the psychophysics studies that some facial regions con-
tain more useful information than others in terms of distinguishing between
people, Ahonen presented a weighted Chi square statistics as follow to build a
dissimilarity measure of face.

χ2
ω(S,M) =

∑
i,j

ωj · (Si,j −Mi,j)2

Si,j + Mi,j
(3)

In which S and M are two histograms, and ωj is the weight for region j. See
Fig.1 for the illustration of face descriptor, more details can be seen in [4].

An important issue is how to find the weights of different local face region.
In [4], Ahonen presented the following procedure to find the weights ωj for
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Fig. 1. LBP face description with concatenated histogram

the weighted χ2 statistic: a training set was classified using only one of the
sub-windows at a time. The recognition rates of corresponding windows on the
left and right half of the face were averaged. Then the windows whose rate
lay below the 0.2 percentile of the rates got weight 0 and windows whose rate
lay above the 0.8 and 0.9 percentile got weights 2.0 and 4.0, respectively. The
other windows got weight 1.0. Hereinafter we will give a generative method to
determine the weights set of face region by estimating the distinctive information
density of face.

3 Density Estimation of Distinctive Information of Face

3.1 Estimating Density by Parzen-Window Approach

From the view of object classification, the face image can be considered as a
class with consistent texture in almost same scale (see Fig2). A normal human
face always has the same facial components on certainly position. Given exact
position of eyes, the position of other facial components such as nose, mouth,
is determined. Such geometry property of face is exactly the foundation of the
registration of face image. So, we can consider thousands of aligned face images
as a unified class.

Previous studies of psychophysics have shown that different facial parts play
different role for face perception[10,11,12]. It is obvious that the more significant
role the facial parts play, the more distinctive information facial parts contain.
In the view of detecting local interest point, it is reasonable to induce that the
significant facial parts of face image region will detect more local interest points.
In this regard, we can draw a conclusion that the position of local interest points
indicate the significance of facial parts. Furthermore, the local interest points
detected from thousands of aligned face images can be treated as equal role
(see Fig.4).

The studies of psychophysics means that there exists a true two dimensional
probability distribution density p(X) of the distinctive information on the face
image, and the local interest points can be considered the samples drawn inde-
pendently and identically distributed (i.i.d.), according to the probability law
p(X) of face image by local interest point detector. Here we can regard the
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Fig. 2. The unified structure of face. In this illustration, the right blur image is created

by averaging thousands of aligned face images with fixed scale and pose as left column.

The face images are got from face database of University of Notre Dame[13].

detector as a sampler. The purpose is to estimate the probability density func-
tion p(X) by using the locations and scales of local interest points.

In fact, until now we have no idea of the form of the underlying probabil-
ity density function p(X). Fortunately, the nonparametric procedures such as
Parzen-window approach can be used with arbitrary distributions and without
the assumption that the forms of the underlying densities are known. Further-
more, in this study, we have two advantages. First, we are essentially assured
of convergence to a complicated target density with enough samples more than
200,000. Second, the dimensionality of the density is limited to two dimensions,
and somewhat avoid ”curse of dimensionality”.

To specify the problem, suppose we have n samples X1,X2, ...,Xn of two
dimensions, in which Xi = (xi1 , xi2 ). It is well known that the Parzen-window
estimate function is below.

pn(X) =
1
n

n∑
i=1

1
Vn

φ(
X −Xi

hn
) (4)

Where φ(X) is the window function, hn is the window width. And Vn is the
volume of tiny local region, here we can set Vn = h2

n . In fact, the form of the
window function can be arbitrary, but an appropriate function is the zero-mean,
unit-variance normal density. Let the window function as follows:

φ(x, y) =
1
2π

e−
x2+y2

2 (5)

Here we suppose X = (x, y). Thus pn(X) is an average of normal densities
centered at the samples as follows:

pn(X) =
1
n

n∑
i=1

1
2πh2

n

e
− (x−xi1 )2+(y−xi2 )2

2h2
n (6)

The real density function can be expressed as an average of functions of X
and the samples Xi. In essence, each sample contributing to the estimation in
accordance with its distance from X .
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Fig. 3. The local interest point(keypoint) detected by SIFT detector

3.2 Local Interest Point Detector

As described above, the local interest point detector can be seen as a sampler
which samples the local interest point according probability law p(X) of distinc-
tive information of face image. Thus it is important to choose the appropriate
detector to extracting the local interest point.

In the 2004, David Lowe presented a method to extract distinctive invariant
features from images named Scale Invariant Feature Transform (SIFT)[14]. The
method includes both detector and descriptor. In this paper, we choose the SIFT
detector to extract the local interest point. There are two reasons for selecting
SIFT detector. First, the SIFT detector produces the scale invariant local interest
points (called keypoints in the SIFT framework) which could contain multi-scale
distinctive information, another merit of SIFT detector is that there are large
numbers of local interest points can be extracted from typical images (See Fig.3).
In this paper, the SIFT keypoints is detected with Lowe’s code1. More details
about SIFT detector can be seen in [14].

3.3 Finding Weights Set of Facial Parts

As discussed in [4], the effective face description can be discribed as the weighted
Chi square statistics. By using probability density p(X) of the distinctive infor-
mation of the face, for the divided regions R0, R1, . . . , Rm−1 (see Fig.6), the
weights can be calculated as follows:

ωj =
∫

Rj

p(X)dX, j = 0, . . . ,m− 1 (7)

Then the dissimilarity measure of face can be rewritten as follows:

χ2
ω(S,M) =

∑
i,j

(Si,j −Mi,j)2

Si,j + Mi,j
·
∫

Rj

p(X)dX, j = 0, . . . ,m− 1 (8)

The keypoints detected by SIFT detector include parameters such as position,
scale, and orientation. In this study, we consider the position as the coordinates
of samples detected from face image by SIFT detector, and the scale as the
1 Available at http://www.cs.ubc.ca/lowe/keypoints/
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Fig. 4. Procedure of estimating distinctive information density. First we detect thou-

sands of aligned face image and gain hundred of thousand keypoints, then we super-

position all keypoints in one image. Second, we estimate the density p(X) by Parzen-

window approach, the right image was integral by p(X) in sub-window of face.

scope the samples affects. For this consideration, we set the keypoint scale as
the window width hn of the window function and the keypoint position as the
samples Xi. By detecting thousands of aligned face image, we gain more than
200000 samples Xi which are huge enough to converge to the true density of
distinctive information. The estimation procedure can be seen in Fig.4.

4 Experiments and Results

4.1 Finding Weights Set of Face

Note that the distinctive information distribution of face is the inherent property
of face and independent of face database. To explain this fact, we estimate the
density function p(X) in the face database of University of Notre Dame[13], and
perform the face recognition in the FERET face database.

The face database consists of 2292 images acquired under different lighting
and expression conditions. The lighting configuration includes ”FERET style
lighting”(also called ”LF”) and ”mugshot lighting”(also called ”LM”). For each
subject and illumination condition, two images are taken: one is with neutral
expression, which will be called ”FA”, and the other image is with a smiling
expression, which will be called ”FB”. According to the lighting and expression,
there are four categories: (a) FA expression under LM lighting (FA|LM), (b) FB
expression under LM lighting (FB|LM), (c) FA expression under LF lighting
(FA|LF ) and (d) FB expression under LF lighting (FB|LF ). In this study,
the estimation procedure is performed on neutral expression dataset includes
(FA|LM) and (FA|LF ).

To compare with the weights set got from the method adopted in [4], we
divide the face image into 7x7 windows (see Fig.6).
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Fig. 5. Face images under different lighting and facial expression conditions

Fig. 6. (a) An example of a face image divided into 7x7 windows. (b) The weights set

produced by method adopted in [4]. (c) The weights set produced by proposed method.

Fig. 7. Different block of face image. (a) 5x5 windows (b) 6x6 windows (c) 7x7 windows

(d) 8x8 windows (e) 9x9 windows.

In fact, the proposed method can be used to calculate weight in sub-region
of face image with arbitrary dividing manner. (See Fig.7). This flexibility is a
useful property which can be used for future works.

4.2 Face Recognition on FERET FA/FB Image Sets

The proposed method is tested on the FERET FA/FB image sets[15]. There
are totally 3,737 images in the training set of FERET database. All images are
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Fig. 8. Some examples of preprocessed face images

Fig. 9. Rank curves for the FB probe sets

rectified, cropped and scaled to 77 pixels high by 67 pixels wide according to
the eye positions the FERET database provided. The preprocessed images are
illustrated in Fig.8. Several comparative experiments were tested on the probe
set FB with the gallery FA of the FERET database. There are 1196 images in FA,
1195 images in FB, and all exactly the subjects have exactly one image in both
FA and FB. The rank curves of the final recognition results are plotted in Fig.9.
It should be noted that the CSU implementations of the algorithms whose results
we introduce here do not achieve the same figures as in original FERET test due
to some modifications in the experimental setup [16].

To compare with method adopted in [4], we divide the face image into 7x7
windows. Our approach has achieved the upper bound recognition performance
shown in Fig.9. While Ahonen’s method gets a recognition rate of 97.3% on
FERET FA/FB image sets, our approach delivers a slightly better recognition
rate of 98.2%.
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5 Discussion and Conclusion

Different form previous methods, this paper presents a generative method, which
is originally inspired by the studies of psychophysics that different facial parts
play different role in face perception, to find the weights set which can be used
in LBP based face representation. This method extracts the inherent property of
the face by estimating the distinctive information density of face. Experimental
results on FERET FA/FB image set show that our method achieves a slightly
better recognition rate of 98.2% than Ahonen’s approach.

Future work includes studying more effective methods for dividing the fa-
cial image into local regions and finding multi-scale representation of the face.
Another important topic is to look for effective methods to fuse different spec-
trum face image such as visual and infrared spectrum by using the distinctive
information density.
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Abstract. We present an efficient 3D face recognition algorithm and

demonstrate its performance on the FRGC v2.0 data set. The pose of

a 3D face is automatically corrected based on the nose tip and prin-

ciple component analysis(PCA). The facial curve in the nose region is

used to eliminate a large number of dissimilar faces in the gallery at

an early stage. Facial curves in the regions of forehead and cheeks are

used to produce a mapping of facial deformation caused by expressions.

The remaining faces after rejection are then verified using a region-based

matching approach. This approach adaptively selects regions which are

relatively steady based on the deformation mapping, and matches them

separately. At last, the results are fused using the sum rule. Promising

experimental results are achieved on FRGC v2.0 data set.

Keywords: 3D face recognition, PCA, deformation mapping, region-

based matching.

1 Introduction

Face recognition is a challenging problem because of the ethnic diversity of faces
and variations caused by expressions, gender, pose, illumination and makeup.
Most previous studies of the face recognition exploited 2D images. But 2D face
recognition is sensitive to illumination and pose[1]. Therefore, researchers are
now investigating other data acquisition modalities of the face to overcome these
limitations. One of the most promising modalities is the 3D shape of the face
and 3D face recognition is considered to be invariant to illumination and pose[2].

Most of the 3D face recognition systems treat the 3D face surface as a rigid
surface. But actually the face surface is deformed by different expressions. There-
fore, systems that treat the face as a rigid surface are prone to fail when dealing
with face with expressions. The involvement of facial expression has become an
important challenge in 3D face recognition systems. Chang et al. [3] use multi-
ple overlapping nose regions and obtain increased performance relative to using
the whole-frontal-face region. In the work by Mian et al. [4], the nose and the
forehead regions are separately matched by iterative closest point(ICP) [5] al-
gorithm, then their scores are fused. Such approaches, however, don’t make full
use of the discriminative information that exists in the entire face.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 581–590, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In the work by Wang [6], the rigid parts of facial surface are dynamically ex-
tracted by selecting a part of nearest points pairs to calculate dissimilarity mea-
sure during registration of facial surfaces. Faltemier et al. [7] select 28 different
regions around the face, and then perform score-based fusion on the individual
region match scores. Both of the methods use ICP to perform image matching,
and achieve good performance. But the time consumption is large because all of
the face regions should be matched between scans.

Considering that face is usually deformed in different way under different
expressions, some researchers combine facial expression categorisation with face
recognition [8], [9], [10]. In the work by Cook [8], images are manually allocated to
three groups based on expression, and then a part-face recognition system based
on subspace projection methods is constructed. Martinez [10] creates 6 regions
of the face and defines the weight of each region for three distinct expressions
in a train set, and then the weights are used for recognition. However, both of
the methods above assume expression of the face is known. In [9] an automated
variant of this approach is detailed. A ”happy face” recognition system is used
to aid the face recognition.

Beumier and Acheroy [11] extract several facial profiles and compare them
for recognition. The main advantages of this method are its high speed and
low storage needs and it is reported that the central profile shows the major
distinctiveness [12].

In this paper, we present an robust 3D face recognition method using rejection
and adaptive region selection. The pose of a 3D face is automatically corrected
using a novel approach based on the nose tip and principle component analy-
sis(PCA) [13]. Facial curves in nose, forehead and cheek regions are extracted
and compared. Facial curve in the nose region is matched to reject unlikely faces,
and curves in other regions are matched to produce a facial deformation map-
ping for expressions. Then, the appropriate sub-regions which are more resilient
to expressions can be selected based on the deformation mapping and matched
using ICP algorithm. Final similarity score is the sum of elementary scores given
by each region. Fig.1 shows the block diagram of our method.

The rest of this paper is organized as follows: Section 2 explains our auto-
matic 3D face detection and normalization algorithm. In Section 3, comparisons

Fig. 1. Block diagram of our algorithm
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between facial curves are presented. Section 4 gives details of our adaptive re-
gion selection scheme. Section 5 lists and compares the recognition results of our
algorithm with others. Conclusion and future work are discussed in Section 6.

2 Face Detection and Normalization

2.1 Face Preprocessing

We perform our experiments on FRGC v2.0 dataset [16]. There are missing and
outlier points in many images in FRGC, which will deteriorate the recognition
accuracy, so the images are firstly denoised for future processing. Small holes in
the face are firstly filled by locating ”missing” points which are surrounded by
four or more ”good” points. The x, y, and z coordinates of the missing point are
interpolated from its valid neighbors. Then, spikes caused by outlier points are
removed, and the outlier points are defined as the one whose distance is greater
than a threshold from any one of its neighboring points.

2.2 Face Detection

Since faces in the FRGC v2.0 dataset are mostly acquired from the shoulder
level up(See Fig.2(a)), the faces should be localized. It is well known that the
location of nose is around the centroid of the face, so the nose tip is firstly
detected. The nose tip is detected using a coarse to fine approach as follows. An
initial nose tip is found using the curvature and geometric constraint. At first,
the curvature and shape index [14] at each point on the face is calculated to find
possible nose tip candidates, labeled S1nt. Then, the centroid of the pointcloud
of the face is calculated, and the points in the S1nt whose distance is smaller
than a threshold from the centroid are selected to form a more accurate nose
tip candidate, labeled S2nt. Finally, the centroid of the candidate points S2nt is
chosen as the initial nose tip location.

A sphere of radius r centered at the initial nose tip is then used to crop the
3D face. A constant value of r = 90mm is selected in this paper. This process
crops an ellipsoid region, as shown in Fig.2(b).

Fig. 2. (a) The original face. (b) The cropped face. (c) The cropped face with PCS.
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2.3 Face Normalization

It can be found that the shape of the cropped face is approximately an ellipsoid.
Three eigenvectors can be obtained after PCA is used to the pointcloud of the
face, and the vertical and horizontal orientation are the eigenvectors of two
largest eigenvalues and the face normal is the smallest eigenvector. Therefore,
the pose of a face can be normalized using PCA.

Taking eigenvector corresponding to the largest eigenvalue as the Y axis, and
eigenvector corresponding to the smallest eigenvalue as the Z axis, we define
a new right-hand coordinate system. This coordinate system is called the pose
coordinate system(PCS), and it represents the head pose and depends only on
the points distribution of the facial surface. The original facial surface is then
transformed to the PCS. The final nose tip is determined as the point with
the largest z value. In order to avoid the influence by hair, the final nose tip is
selected in a smaller regions centered at the initial nose tip. The origin of PCS
is then transformed to the location of the final nose tip. All the faces in the PCS
have the same pose, so the face is normalized, as shown in Fig.2(c).

3 Comparison Based on Facial Curves

3.1 Facial Curves Extraction

Facial surface is often deformed by expressions. Generally speaking, the mouth is
the most affected by expressions, whereas the nose is the least affected. Smile ex-
pression leads to shape deformation of mouth and cheek, surprise affects mouth,
sad even changes the shape of forehead area slightly and the upper part of the
face is more stable. Considering that the nose is the most static region and the
forehead and cheeks will deform in certain case, we choose facial curve in the nose
to form rejection classifier, facial curves in the forehead and cheeks to map facial
deformations, and finally 4 vertical and 4 horizontal curves which are located in
the regions of nose, forehead and cheeks are extracted (Shown in Fig.3).

Fig. 3. Facial curves. (a) Facial curve p(1), (b) Facial curves p(2), p(3), p(4), (c) facial

curves p(5), p(6), (d) facial curves p(7), p(8).

A facial curve is defined as the intersection of a plane with the surface of
a face. Since all the faces embedded in the PCS have the same pose and the
geometric distribution of facial features is almost the same, we extract facial
curves based on the coordinate information.
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3.2 Comparison Based on Facial Curves

Once all of the curves have been extracted, matching is performed using ICP
algorithm. ICP establishes correspondences between the closest points of two
sets of 3D points and minimizes the distance error between them by applying
a rigid transformation to one of the sets. This process is repeated iteratively
until the distance error reaches a minimum saturation value. The similarity is
measured by the average distance between two curves.

Facial curve in the nose region is used to reject unlikely faces in the gallery,
and curves in other regions are used to produce the deformation mapping of
the face. Firstly, facial curve in the nose region of a probe is matched to all of
the galleries, and the matching process results in a vector of similarity scores
sp(1) of size N ,where N is the size of the gallery. Gallery faces whose similarity
score is above a threshold δreject are rejected. Then, other 7 facial curves of the
probe are matched to the remaining gallery faces, and vectors of similarity scores
sp(i) , (i = 2, 3, ..., 8), can be obtained, and the size of each sp(i) is N ′, where N ′

is the size of the remaining galleries and N ′ < N . The ratio of distance error
between the seven facial curves and facial curve in the nose is calculated using

Δsp(i) = sp(i)/sp(1) , (1)

where i = 2, 3, ..., 8. The facial deformation can be scaled by Δsp(i) . We assume
that the higher the value of Δsp(i) , the larger deformation is presented in the
corresponding region. So regions for recognition are selected based on the value
of Δsp(i) , which will be discussed in detail in Subsection 4.2.

In the process of rejection a threshold δreject = 0.8 is selected so that 69% of
the gallery faces are rejected, and the verification rate of the rejection classifier
is 98.1% for probes with all expressions. In this paper, a C++ implementation
of the rejection classifier on a Intel Core Duo 2.34GHz machine with 1.0 GB of
memory machine takes 3.07 seconds for matching a probe with a gallery of 466
faces and only 145 faces are remained to be processed in the next stage, which
shortens the recognition time largely and the average matching time for all the
facial curves is 9.77s.

4 Face Recognition

4.1 Part-Face Methodology

Face recognition techniques typically employ a monolithic representation of the
face during recognition, however, approaches which decompose the face into sub-
regions have shown considerable promise [3,4]. Lower part of the face is usually
affected by opening mouth and mustache, so only upper part of the face is used
in this paper. We consider 4 regions in the upper part of the face by a set of
predefined implicit functions (See Fig.4).
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Fig. 4. Matching surface extraction for four probe and gallery surfaces. (a) Probe A

(probe surface in a forehead region), (b) Probe B (probe surface in a left cheek region),

(c) Probe C (probe surface in a right cheek region), (d) Probe D (probe surface in a

nose region), and (e) a gallery surface.

4.2 Adaptive Region Selection Scheme

Given that the deformation mapping caused by expressions can be obtained by
the comparison of facial curves, we propose an adaptive region selection scheme
which selects regions based on facial deformation mapping produced by facial
curves. We assume that the higher the value of Δsp(i) , the larger deformation is
presented in the region in which the ith curve is located. Hence, the deformation
of each region can be scaled by the corresponding similarity score ratio Δsp(i) as

ΔsProbeA =
Δsp(2) + Δsp(3) + Δsp(4)

3
, (2)

ΔsProbeB =
Δsp(5) + Δsp(6)

2
, (3)

ΔsProbeC =
Δsp(7) + Δsp(8)

2
. (4)

The nose is almost invariant under all expressions, so Probe D is always
selected. Other regions are selected only when the corresponding deformation
ΔsProbeA, ΔsProbeB , ΔsProbeC is less than a threshold δdeform. In this paper,
threshold δdeform is the key for region selection. Here, we obtain the optimal
δdeform from the training set: δdeform = 2.0. All the experiments in Section 6
are carried out with the optimal parameter.

By identifying images in which deformation is present, the recognition precess
can place more emphasis on those regions which are least affected. Through look-
ing at the distortions on a region by region basis, this system configuration can
scale to any number of facial expressions without requiring the use of expression
specific recognition systems as in [9]. Comparing with the work by Wang [6],
only regions which are useful for recognition are matched in this paper, which
can improve the efficiency of recognition. Comparing with systems such as [3,4],
more useful information are used for recognition in our paper.

4.3 Face Matching and Results Fusion

Once regions have been selected, the ICP algorithm is running on each probe
to the remaining galleries. In order to accelerate the ICP algorithm, the neighbor
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search algorithm [15] is used. The final recognition results are fused using sum
rule, which is given by

si =
K∑

j=1

sji, (5)

where i = 1, 2, . . . , N ′, K is the number of regions and N ′ is the number of
remaining faces in the gallery. The identity corresponding to the smallest s is
supposed to be the recognition result.

5 Experiments and Analysis

FRGC v2.0 data set includes 4007 3D face images of 466 distinct human subjects
with from 1 to 22 images per subject. This currently represents the largest 3D
face database publicly available to biometrics researchers. We perform two types
of experiments: verification experiment and identification experiment.

5.1 Verification Experiment

In the verification experiment, we perform the FRGC Experiment 3 and the
system’s performance is quoted as a true accept rate (TAR) at a given false
accept rate (FAR). In the experiment, the gallery images come from the Fall
2003 semester and the probe entries come from the Spring 2004 semester. The
result of this experiment is a receiver operating characteristic (ROC) curve.

Generally, nose and forehead regions are supposed to be the most steady
regions, and are used for recognition. Here we compare the performance of nose-
forehead region with our scheme in Fig.5.

The verification rates at 0.001 FAR are 94.0% and 95.0%, respectively. We
can see that our scheme performs better. The results demonstrate that regions
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covering cheeks contain useful information for face recognition, and forehead
region will deform in certain expression. The results of our method with rejec-
tion classifier are not reported because the experiment is a one-to-one matching
experiment, and there is no need to use rejection.

5.2 Identification Experiment

In the experiment, we take the earliest image of every participant and use it
as the gallery image for the subject. All subsequent images for each subject are
used as probes. The system’s performance is quoted as a rank-one recognition
rate and the result is a cumulative match characteristic (CMC) curve.

The results of using regions of nose and forehead, regions adaptively selected
and regions adaptively selected combined with rejection are presented. The rank
one recognition rates are 91.2%, 97.3%, 97.0% respectively(See Fig.6). The iden-
tification rate with the rejection classifier is slightly reduced by 0.3% compared
with the region-based method. The reason for this is that there is a probabil-
ity that the classifier may also reject the correct identity. It can be avoided by
improving the threshold δreject in rejection process. However, the selection of
δreject should be balanced between the time consumption and recognition rate.
The identification rate of our adaptive region selection scheme is 97.3%, which
shows that it is important to use cheek region for recognition.

5.3 Comparing with Other Methods

We compare our adaptive region selection scheme with some other 3D face recog-
nition methods on the same database. Their performance comparison is shown
in Table 1.

Note that our algorithm outperforms each method presented except for that
of Faltemier [7]. Faltemier extracts 28 regions on the face, and matches them
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Table 1. The comparison with other methods

Chang [3] Mian [4] Cook [8] Faltemier [7] This Paper

FRGC NA NA 92.01% 94.8% 95.0%

Experiment 3

Rank One 92.3% 96.2% 94.6% 98.1% 97.3%

Recognition Rate

respectively, then score-based fusion is performed on the individual region match
score. Compared with Faltemier’s algorithm, only the regions that are useful for
recognition are used in this paper, which will largely shorten the recognition time.

6 Conclusion and Future Work

In this paper, we have proposed a robust 3D face recognition method based on
rejection and adaptive region selection. The contributions of this paper are as
follows: (1) Facial curve in the nose region which is simple and robust to expres-
sions is used to reject unlikely faces before accurate matching. (2) An adaptive
regions selection scheme is proposed. Facial curves in the regions of cheeks and
forehead are compared to produce the facial deformation mapping, then regions
used for recognition are selected according to the deformation mapping. (3) An
automatic face normalization algorithm using the nose tip and PCA is proposed.
Experiments have been done on FRGC v2.0 data set. Encouraging results have
demonstrated the effectiveness of our method.

Although our method works well on common faces of approximate symmet-
rical face, it can fail when nose tip is located incorrectly, which causes incorrect
PCS. Fortunately, this is a rare case and most scanners can be handled by our
algorithm.

Acknowledgments. Thanks to FRGC organizers for providing the face data.
This work is sponsored by National Science Foundation of P.R.China(60775025),
Program for New Century Excellent Talents in University, Natural Science Foun-
dation of Jiangsu Province(BK2007116).
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Abstract. We develop a novel face recognition algorithm which is robust to ran-
dom position perturbations of key points and does not require face alignment, e.g.
resizing, rotating, cropping, etc. In our proposed method, a well trained Active
Appearance Model (AAM) is first divided into several regions by special land-
marks, and each region is given a label by a template. This model is then fed to
new coming facial images to segment the images into irregular regions. In these
regions, multi-features fusion matrices are calculated and embedded to related
Riemannian manifolds to train classifiers which are combined to construct a final
classifier. Our experiment results show its accuracy, efficiency, and robustness on
FERET and A-R human face database.

1 Introduction

Face recognition has drawn more and more attention in recent years. This interest is
motivated by its broad range of applications in many fields. In almost all existed auto-
matic face recognition systems, face alignment is a necessary step [1] [2] [3] [4] [5].
Without this step, many classical pattern recognition techniques can not have good re-
sults in following steps. However, how to align two facial images has been an inherently
difficult problem for a long time. In many face alignment methods, eyes are often man-
ually located first and then used as anchor points [1] [5]. Therefore, in many automatic
face recognition systems, eye automatic detection is often necessary before classifica-
tions. However, this alignment method can not be robust all the time, especially when
there are occluding structures (hair, glasses, etc.) over eyes. Some papers use AAM
to align two facial images without eye locating, but after aligning step, face deforma-
tions are still unavoidable. The target facial images are also translated, rotated, resized
and cropped to a certain pattern to continue the recognition approach [1] [3] [5]. Here
the target images will be deformed inevitably and therefore some information of the
original images will be changed or lost.

In this paper, we show a new face recognition approach in which neither face align-
ment nor deforming original images are necessary. In our proposed method, a well
trained Active Appearance Model (AAM) (Figure 1) with special landmarks will be fed
to a new coming facial image to segment the image into some irregular regions [6] [7].
In these regions, raw features (intensity derivatives, edge orientation, texture features,
Gabor responses, etc.) are extracted respectively, and combined together by covariance

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 591–600, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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matrices [8] [9]. Since covariance matrices with different region labels live in different
manifolds, we calculate this feature on related Riemannian manifolds formulated by
symmetric positive definite matrices (nonsingular covariance matrices, so called ten-
sors in this paper). Finally several classifiers trained on manifolds are combined to give
the class label of the new coming facial image.

In traditional face recognition methods, the final recognition rates always badly de-
pend on accurate positions of key points detected. In this paper, because our proposed
method depends on region information rather than point information, there are almost
no changes in final recognition accuracy while applying random perturbations to posi-
tions of key points when these perturbations do not change regions segmented seriously.

The paper is organized as follows. In Section 2, we briefly introduce AAM and co-
variance matrices of irregular regions for multi-features fusion. In Section 3, we present
an introduction to Riemannian geometry and our face recognition algorithm on the ten-
sor space. In Section 4, we describe our experiment results.

2 Multi-features Fusion of Irregular Regions

2.1 Active Appearance Model (AAM)

Active appearance model (AAM) algorithm is an important method for locating de-
formable objects in many applications. As described by Cootes et al [6], the models
were generated by combining a model of shape variation with a model of the appear-
ance variations in a shape-normalized frame. We require a training set of labeled im-
ages, where key landmark points are marked on each example object. For instance, to
build a face model we require face images marked with points at key positions to outline
the main features (Figure 1).

With a full appearance model generated above and a reasonable starting approxima-
tion, an efficient scheme for adjusting the model parameters is proposed by Cootes et
al. in [6], so that a synthetic sample is generated, which matches the new facial image
as closely as possible (Figure 3).

In these appearance models, we mark some special key points first. After the match-
ing approach described above, we segment the facial image into several irregular re-
gions by the specially marked points (Figure 3). This division is obviously beneficial to
keep information of the new image, because shapes of most important components of
human face (eyes, nose, mouth, etc.) are reserved perfectly in these regions. Until now,

Fig. 1. AAM Model Fig. 2. AAM Model segmented by special land-
marks into irregular regions
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Fig. 3. Examples for AAM Models fed to faces and segmention

there are not any deformations on the new facial image, while deformations just appear
on the model and the contours of irregular regions segmented previously on the model.

2.2 Multi-features Matrices of Irregular Regions

Covariance matrix of rectangle region is proposed by Oncel Tuzel et al. as a fast de-
scriptor for object detection [8] [9]. Here we give a new form of this covariance feature
on irregular regions and reinterpret it from a new perspective.

Let R be a region with N points. Let F be the N × d dimensional feature region
extracted from R

F (R) = [f(x1, y1), f(x1, y2), ... ] , (xi, yj) ∈ R (1)

where f(x, y) = [φ1(x, y) φ2(x, y) ... φd(x, y)]T , and the function φi can be any map-
ping such as intensity, gradients, Gabor responses, etc. Let {zk}k=1...N be the d− di-
mensional feature points inside F . We represent the irregular region F with d × d
covariance matrix of a the feature points

CF =
1

N − 1

N∑
k=1

(zk − μ)(zk − μ)T (2)

where μ is the mean of points inside F .
The covariance matrix above proposes a natural way of fusing multiple features

which might be correlated. The diagonal entries of the covariance matrix represent
the variance of each feature extracted and the non-diagonal entries represent the cor-
relations. At the same time, noise corrupting individual samples are largely filtered out
with an average filter μ during covariance computation (2).

We use templates covering irregular regions to segment the facial image (Figure 3).
These templates are defined just by their vertices, which are specially marked in the
appearance models (Figure 2). When models we built match a new face, shapes of
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the templates change because of the moving of their vertices. Regions with the same
template marks in different images are considered as corresponding regions.

In our experiments, raw features we choose for multi- features fusion do not have
any information regarding the number of points. This implies a certain scale invariance
over irregular regions in different images.

F (R) = [VShape VTexture VGabor] (3)

where x, y are pixel location, VShape is a 5 dimensional vector which consists of Ix,
Iy , Ixx, Iyy (the first and second order derivatives of the intensity) and arctan Iy

Ix
(the

edge orientation). The second term VTexture is a texture descriptor obtained from Local
Binary Pattern (LBP) on 3× 3 neighborhood of pixel (x, y) [10] [11]. It is a 10 dimen-
sional vector (nine uniform patterns and one non-uniform pattern) [10]. The last term
VGabor is a descriptor for frequency characteristics. It is a 20 dimensional vector. It is
also called a Gabor jet [1] which is generated by a set of Gabor kernels in five scales
and four orientations (0, π/4, π/2, 3π/4) at a certain convolution point (x, y). At last,
all these feature vectors are normalized to [0, 1].

With the defined mapping φ, the input image is mapped to a d = 35 dimensional
feature image. The multi-features fusion matrix of an irregular region is a 35 × 35
matrix and due to symmetry only upper triangular part is stored, which has only 630
different values.

3 Face Recognition on Riemannian Manifolds

Since covariance matrices do not lie on Euclidean space, a lot of traditional machine
learning techniques are not appropriate to learn the classifiers. The space of d-dimensional
nonsingular covariance matrices can be represented as a connected Riemannian mani-
fold. See [12][13][9] for more detailed descriptions. Now we focus of the space Sym+

n

of positive definite symmetric matrices (tensors) and briefly introduce it in section 3.1.

3.1 Tensor Space

Each point on Riemannian manifolds has a neighborhood which can be mapped homeo-
morphously to Rm. In the case of tensors, there are some important simplifications. Let
W = UDUT be a diagonalization, where matrix U is orthonormal, and D = DIAG(di)
is the diagonal matrix of eigenvalues. We can represent the exponential mapping as

exp(W ) =
+∞∑
k=0

W k

k!
= U exp(D)UT = U DIAG(exp(di)) UT (4)

Generally, the exponential map exp(W ) is onto but only one-to-one mapping. But on
tensor space, exp(W ) is a one-to-one, onto and continuously differentiable mapping.
Therefore, its inverse mapping logarithm is given by

log(Σ) =
+∞∑
k=1

(−1)k+1

k
(Σ − I)k = U log(D)UT = U DIAG(log(di)) UT (5)



Face Recognition via AAM and Multi-features Fusion 595

On Sym+
n , Riemannian metric on the tangent space of each point Σ is given by

an inner product. If W1 and W2 are two tangent vectors at Σ, Riemannian metric is
defined by

〈W1,W2〉Σ = 〈Σ− 1
2 W1Σ

− 1
2 , Σ− 1

2 W2Σ
− 1

2 〉Σ = Tr
(
Σ− 1

2 W1Σ
−1W2Σ

− 1
2

)
(6)

From the definition of Riemannian metric (6) and the definition of logarithm map-
ping (5), the distance between two points on tensor space is defined as

dist (Σ1, Σ2) = dist
(

I, Σ
− 1

2
1 Σ2Σ

− 1
2

1

)
= Norm

(
Σ

− 1
2

1 Σ2Σ
− 1

2
1

)
(7)

where Norm (Σ)2 = ‖ log (Σ) ‖2 =
∑n

i=1 (log (σi))
2.

Now an orthogonal coordinate system on the tangent space is defined with the vector
operation. For a vector

−→
ΣΛ ∈ TΣSym+

n , we define its minimal representation in the
orthonormal coordinate system as

VecΣ

(−→
ΣΛ

)
= Vec

(
log

(
Σ− 1

2 ∗ Λ
))

= Vec
(
Σ− 1

2
−→
ΣΛ Σ− 1

2

)
(8)

The mapping VecΣ realizes an explicit isomorphism between TΣSym+
n and

Rn(n+1)/2 with the canonical metric.
Let Σ1, Σ2, ..., ΣN be the set of points on a Riemannian manifold Sym+

n , The
Karcher mean [14] is a tensor minimizing the sum of squared distances

C (Σ) = arg min
N∑

i=1

dist2 (Σ,Σi) (9)

where dist is defined in (7). In the case of tensor space, the manifold has a non-positive
curvature, so that there is one and only one mean value which can be calculated by the
Newton gradient descent algorithm, which iterates by computing first order approxima-
tions to the mean on the tangent space and usually converges very fast.

3.2 Face Recognition on Tensor Space

On Riemannian manifolds, a simple and straightforward classification approach would
be to map the manifold to a higher dimensional Euclidean space which is more flat-
tened. However, this method can not preserve the distances between the points on the
manifolds orbicularly [9]. Therefore we should train tensor space classifiers which can
reflect the global structure of the manifolds.

Let Σ1, Σ2, ..., ΣN be points on a Riemannian manifold Sym+
n , we want to find a

function f(Σ) : Sym+
n '→ R, which divides Sym+

n into parts based on the training set
of labeled items.

First we define mappings from neighborhoods on Sym+
n to connected Euclidean

space. Here we use the logarithm maps, logΣ , which map the neighborhood of points
Σ ∈ Sym+

n to its tangent spaces TΣ . Because logΣ is a homeomorphism around the
neighborhood of the point, the structure of Sym+

n is preserved locally [9]. We learn the
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classifiers on the tangent space which is a vector space. The mean value of the points
(9) on Sym+

n minimizes the sum of squared distances on Sym+
n , therefore it is an

appropriate approximation.
As shown in section 2.2 and Figure 3, we have segmented faces into several irregular

regions by templates. For each region of all training samples, we compute their multi-
features fusion matrices respectively, and regard the matrices as points Σi on a related
Riemannian manifold Sym+

n . Then the Karcher mean Σ̄j for each region is computed.
We map points to the tangent space of Σ̄j and train classifiers on it for each region.
Finally, the output of these classifiers (one classifier for one region. We test four base
classifiers: KNN, LDA, L-SVM, K-SVM. Please see section 4 for more details) are
combined using a fusion methodology to make the final decision.

Many methods on combining multiple classifiers have been proposed. In our pa-
per, four fusion rules are adopted. Two rules are simple: majority voting and sum rule
[15]; and two rules are complicated: priori selection method and posteriori selection
method [16].

Majority voting. Each classifier Ck(x) assigns a class label to the input face data,
Ck(x) = i. We represent this event as a binary function,

Tk(x ∈ Xi) =

{
1, Ck(x) = i

0, otherwise
(10)

By a majority voting, the final fusion classifier is

β(x) = argi max
K∑

k=1

Tk(x ∈ Xi) (11)

Sum rule. We assume that Ck(x) is the classifier we get from the kth region. According
to the sum rule, the final fusion classifier is

β(x) = argi max
K∑

k=1

P (Xi|Ck(x)) (12)

where P (Xi|Ck(x)) is the probability that x belongs to Xi under the measure of clas-
sifier Ck(x).

Priori selection. Instead of simply counting the percentage of training samples in the
region that are correctly classified, we can calculate the average of probability outputs
from correct classifiers. The probability can be further weighted by the distances be-
tween the training faces and the test face. Consider the face xj ∈ Xi as one of the
k-nearest neighbors of the test face x, the p(Xi|xj , Ck) provided by the classifier Ck

can be regarded as a measure of the classifier accuracy for the test face x based on
its neighbor xj , Suppose we have N training faces in the neighborhood, then the final
fusion classifier is [17]

β(x) = argi max

∑N
j=1 p(Xi|xj , Ck)Wj∑N

j=1 Wj

(13)

where Wj = 1/dj is the distance between the test face x, and its neighbor face xj .
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Posteriori selection. If the class assigned by the classifier Ck is known, Ck(x) = Xi,
then this information can be exploited as well. Suppose we have N training faces in the
neighborhood, and let us consider the face xj ∈ Xk as one of the k-nearest neighbors
of the test face x, then the final fusion classifier is [18]

β(x) = argi max

∑
xj∈Xk

p(Xi|xj , Ck)Wj∑N
j=1 p(Xi|xj , Ck)Wj

(14)

where Wj = 1/dj is the distance between the test face x, and its neighbor face xj .

4 Experiments

We perform the experiments on FERET face database [19] and A-R face database [20].
fb of FERET includes 1195 probes with the same lighting and fc includes 194 probes
with different lighting. Therefore tests on fc is more difficult than on fb. The AR-face
database includes 26 frontal images with different facial expressions, illumination con-
ditions, and occlusions for 126 subjects. Images were recorded in two different sessions
14 days apart. Thirteen images were recorded under controlled circumstances in each
session.

Table 1. Recognition Rate on fb of FERET

Majority voting Sum rule Prior Posteri

KNN 0.81 0.79 0.86 0.89
LDA 0.82 0.85 0.91 0.88

L-SVM 0.84 0.87 0.92 0.90
K-SVM 0.87 0.90 0.94 0.96

Table 2. Recognition Rate on fc of FERET

Majority voting Sum rule Prior Posteri

KNN 0.32 0.34 0.41 0.38
LDA 0.32 0.29 0.42 0.47

L-SVM 0.38 0.40 0.49 0.53
K-SVM 0.51 0.54 0.65 0.63

In our first experiment, four kinds of classifiers ( KNN, LDA, Linear-SVM and
Kernel-SVM ) and four kinds of combining methods (section 3.3) have been tested
on the tangent space of manifold Sym+

n . The test results are shown in Tabel 1, Tabel
2 and Tabel 3. From the results shown in tables we can see, K-SVM + Priori Selection
and K-SVM + Posteriori Selection have the best combining results. We compare these
two combining schemes on Riemannian manifolds with other classical face recognition
algorithms which need manual eye locating and face aligning before classification. And
the rank curves on fb, fc, A-R database are plotted in Figure 4, Figure 5 and Figure
6. We can see clearly that the accuracy of our methods are not worse than Fisherface,
Eigenface or EBGM algorithms, but our methods do not need manual eye locating,
facial images alignment or face deformation before classification while the others need.

In our second experiment, we test the validity of our proposed segmentation method.
Here, we compare our segmentation method with methods proposed in [8] [10], which
just divide faces to rectangle regions. We test three schemes on fb of FERET database
(K-SVM + Posteriori Selection): no face alignment + rectangle division; face alignment
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Table 3. Recognition Rate on A-R database

Majority voting Sum rule Prior Posteri

KNN 0.84 0.82 0.87 0.87
LDA 0.82 0.82 0.90 0.91

L-SVM 0.84 0.87 0.87 0.91
K-SVM 0.87 0.92 0.93 0.95
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Fig. 4. Test results on fb of FERET
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Fig. 5. Test results on fc of FERET
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Fig. 6. Test results on A-R database
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+ rectangle division and our method. The comparing results are shown in Figure 7. Our
segmentation scheme is better than the other two.

In our third experiment, we test three different manifolds mapping approaches:

– Our method, which maps the points to the tangent spaces at the Karcher means of
points on manifolds.

– The mean calculation is ignored and points are always mapped to the tangent space
at the identity matrix.

– We learn classifiers on the vector space. We ignore the geometry of Sym+
n , and

stack the upper triangular part of the covariance matrix into a vector.

These three methods are tested on fb of FERET (K-SVM + Posteriori Selection). The
results are shown in figure 8. We can see that the original method outperforms all the
other approaches significantly. The second best result is achieved by mapping points to
the tangent space at the identity matrix followed by the vector space approaches.

5 Conclusion

We presented a novel face recognition approach which is robust to random position
perturbations of key points and does not need manual eye locating, two facial images
alignment or face deformation. The templates that we use to divide AAM models into
irregular regions preserve original face information well. The multi-features fusion ma-
trices on Riemannian manifolds combine different kinds of features (shape, texture,
Gabor, et al) together. On the manifold Sym+

n , we train classifiers for each region and
combine them to a final classifier which is tested on FERET and A-R database, the re-
sults show that our method is accurate and robust while facial images alignment is no
longer necessary.
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Abstract. In this paper we propose a new tensor based analysis al-

gorithm for face gender recognition, in which we consider the different

feature structures of male/female images respectively. Given a gender

labeled face dataset, we aim to obtain their meaningful low-dimensional

data representation which preserves their intrinsic male/female struc-

tures, and this is achieved by combining tensor analysis with a local

geometric preserving constraint on the tensor decomposition. In the pro-

posed approach, a similarity graph is built to represent images of the

same gender and separate those of different genders. Technically, a 5-

mode (w.r.t gender, pose, illumination, expression, pixels) tensor decom-

position is used to analyze the packed image matrix, which is constrained

on the proposed graph and this graph can preserve as much as possible

on the information of gender in the decomposed component data. The

objective of gender recognition is formulated as an optimization problem

and then solved by an alternating algorithm. Finally, experiments are im-

plemented on several face databases and it is proved that the proposed

approach can enhance gender discriminant capability significantly com-

pared to the tensor approach, while has already achieved a comparable

recognition performance as a state-of-art algorithm.

1 Introduction

Without much effort human is able to recognize a person’s gender quickly from
his/her facial appearance, but this is not an easy task for computers. Automatic
gender recognition is an important problem in computer vision, and it attracts
much attention of researchers from psychology, pattern recognition and computer
vision [1,2,3,4]. While some other studies highly concern about divergent aspects
of this problem, such as combination of automatic face detection and gender
classification [5,4], or comparisons of discriminant information between different
facial parts [6]; however in this paper we mainly focus on extracting effective
facial features for gender recognition. A typical face gender recognition system
can be shown as a diagram in Fig.1.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 601–610, 2010.
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Fig. 1. Diagram of Gender Recognition

Face images are generally of high dimensionality and may not suitable for
direct discriminant feature extraction. Dimensionality reduction algorithms are
employed both to reduce the computational cost and to extract the most useful
features for classification. Earlier gender recognition algorithms take raw facial
image as linear input and work on low resolution images (e.g. SEXNET [1]),
and the emergence of kernel technique seems a convincing direction both for
low computational costs and high performance. For example, Moghaddam and
Yang [7] reported that kernel-based SVMs performs better than other gender
classifiers, which shows how useful to capture the nonlinear structure of face
dataset. In spite of these kernel-related algorithms, many linear dimensionality
reduction algorithms are also developed in recent years.

Though linear dimensionality reduction algorithms are simple and computa-
tionally fast, they are rarely able to capture nonlinearity of face data. While
nonlinear dimensionality reduction algorithms are usually derived from a struc-
tural view of the dataset and can capture the intrinsic nonlinear variations of face
data, they can hardly provide an explicit mapping from a high dimensional data
space X to a low dimensional embedding space Y . Some techniques on devel-
oping linear approximation of nonlinear methods, or developing linear methods
with nonlinear constraints, have been successfully applied to face recognition,
gait recognition [8],[9], etc recently. They are the main motivations for our work
in this paper.

The main purpose of this paper is to develop a nonlinear constrained multi-
linear analysis for gender recognition. Multilinear analysis in face recognition,
like Tensorface [10,11], is proved to be useful for capturing variations in face
dataset. Tensor modelling of face images basically assumes that a face image is
a multilinear function of several variation factors such as person, illumination,
viewpoint, expression, pixels etc; however this might not be totally true, and the
multilinear approximation can be improved further by imposing nonlinear con-
straints. The important scheme for this paper is to impose a locality preserving
constraint on the decomposed components, which are expected to improve the
discriminant capability for gender recognition.

The rest of this paper is organized as follows: in section 2, we briefly re-
view the methods of tensor analysis and graph-based embedding algorithms.
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Following that a new algorithm for gender recognition is proposed in section 3,
and experimental results are shown in section 4. Finally we conclude the paper
in section 5.

2 Tensorface and Graph-Based Embedding

In this section we briefly review the algorithms of Tensorface and Graph-based
constrained embedding. These two approaches are then combined to derive the
proposed algorithm for gender recognition in this paper. To the best of our
knowledge, this is the first time this technique is used for gender recognition.

2.1 Tensor Analysis of Facial Images

Multilinear analysis for face recognition is first introduced by Vasilescu and
Terzopoulos [10,11]. In this section we mainly interpret such idea for face gen-
der recognition. Given a face image database X = {Xi}N

i=1, it is assumed that
each face image is a multilinear function of several factors of variations, i.e.
gender, pose, illumination, expression, thus the full database is formed by a
5-mode tensor

T = Z ×1 Ug ×2 Up ×3 Ul ×4 Us ×5 Ux (1)

where ×k denotes the mode-k product, Z is the core tensor which controls
interactions among dimensions and Ug, Up, Ul, Us, Ux are the corresponding
gender, pose, illumination, expression, and pixel variational subspaces, whose
dimensionality are denoted as Ng = 2, Np, Nl, Ns, Nx respectively. Thus the face
tensor T ∈ R2×Np×Nl×Ns×Nx . For tensor analysis, High Order SVD (HOSVD)
can be performed to find a least square approximation of the face tensor

min
U ′

g,U ′
p,U

′
l ,U ′

s,U ′
x

∥∥∥Z ×1 U
′
g ×2 U

′
p ×3 U

′
l ×4 U

′
s ×5 U

′
x − T

∥∥∥2

(2)

where U
′
g, U

′
p, U

′
l , U

′
s, U

′
x in the decomposition is usually truncated to lower di-

mensionality, and they can be viewed as eigen-components in each gender/pose/
illumination/pixel modes respectively. To solve the above optimization problem,
(2) is actually a standard numerical problem which can be solved using pub-
lic computing tools in [12]. Once we obtained the face tensor decomposition
from (2), we can project an image x to any one or more subspaces using tensor
product. For example the projection to a gender subspace is

Yx = x ×1 Z ×2 U
′
p ×3 U

′
p ×4 U

′
l ×5 U

′
x (3)

and then we can take the projected features Yx for subsequent recognition task.
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2.2 Graph-Based Constrained Embedding

Yan et al. [8] proposed Graph Embedding as a general framework for nonlinear
dimensionality reduction with application in face recognition, we now interpret
it for our face gender recognition problem.

Given an image xi ∈ RD in high dimensional space, we can obtain its low
dimensional representation yi ∈ Rd where d << D, using some dimensionality
reduction methods such as tensor projection in subsection 2.1. Then we have two
point set X ⊆ RD and Y ⊆ Rd, which should have similar data structure. To
describe and impose constraint of the structure, a graph G can be constructed
in the original data space to reflect the near or faraway relations between points,
and the projected data is required to preserve these relation as much as possible.
Such a concept leads to the general objective form of graph embedding:

y∗ = min
yT By=d

∑
i�=j

‖yi − yj‖2
Sij (4)

where Sij is the edge weighting between points xi and xj , d is a constant and
B is the constraint matrix defined to avoid trivial solutions. Usually, soft edge
weighting from heat kernel are adopted for building the graph weighting, that is
to define:

Sij =

{
e−

‖xi−xj‖2

t , if xi are xj neighbors;
0, otherwise.

(5)

where t is a diffusion parameter of the heat kernel. And B is usually defined to
be a diagonal matrix for scale normalization of

B = diag(d11, d22, . . . , dNN ), and dii =
N∑

j=1

Sij (6)

Of course B can be defined differently in applications but we don’t explore this
issue further in this paper.

The idea of preserving locality data structure is for general purpose, and can
be applied to many dimensionality reduction algorithms. The research in this
paper is to combine it with face tensor analysis for gender recognition.

3 Locality Preserving Tensor Analysis

In this section, we present the formulation of locality preserving tensor analysis,
and propose a new algorithm to solve it.

3.1 Problem Formulation

As we pointed out in Section 2.2 that graph-based constraint is extensible for di-
mensionality reduction algorithms, and from Section 2.1 we know that projecting
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features on tensor eigen-components is also a kind of dimensionality reduction
process. Further, we notice that the tensor analysis for gender recognition does
not make use of label information at all, so the gender eigen-components can
hardly reflect the different distribution of male and female image clusters. In
order to design suitable gender recognition algorithm, it is necessary to impose
a structure constraint while doing the face tensor decomposition. This can be
achieved as we build a similarity graph G = (X,S) from gender labels

Sij =

{
e−

‖xi−xj‖2

t , if xi and xj are both male or female;
0, otherwise.

(7)

In this process we require that projections on the gender eigen-components
should preserve the similarity relations as much as possible. Mathematically this
leads to an optimization problem.

y∗ = min
yT By=1

∑
i�=j

‖yi − yj‖2
Sij (8)

where B is the same as (6). By substituting the projected y from (3), the objec-
tive function can be rewritten as(

Z∗, U∗
g , U

∗
p , U

∗
l , U

∗
s , U

∗
x

)
= min

Z,Ug,Up,Ul,Us,Ux

yT By=1

∑
i�=j

‖xi ×1 R− xj ×1 R‖2Sij (9)

where R is a 4-mode tensor without gender component, i.e.,

R = Z ×2 Up ×3 Ul ×4 Us ×5 Ux (10)

and y is the projected gender data columns.

3.2 Computational Algorithm

We now consider how to solve the optimization problem in (9). It is known that
there is no closed form solution for general tensor decomposition, and we need
to use iterative algorithms to obtain suboptimal solutions. Instead of optimizing
six variables (Z,Ug, Up, Ul, Us, Ux) simultaneously, we use an alternating scheme
which solve them iteratively. This implies that in each iteration we only optimize
one variable and regard others as constants. Notice that we can always compute
the core tensor by Z = X ×1 UT

g ×2 UT
p ×3 UT

l ×4 UT
s ×5 UT

x , so there
are only five variables to optimize. Rename the five variables Ug, Up, Ul, Us, Ux

to be V1, V2, V3, V4, V5, and assume the current optimizing variable is Vk while
other variables are fixed, then the objective function can be written as:∑

i�=j

‖xi ×1 R− xj ×1 R‖2Sij (11)
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= Tr

⎛⎝Vk
T

⎛⎝∑
i

DiiXiR(k)R
T
(k)X

T
i −

∑
i,j

SijXiR(k)R
T
(k)X

T
i

⎞⎠Vk

⎞⎠ (12)

= Tr
(
Vk

T (Dk − Sk)Vk

)
(13)

with a constraint

1 = yTDy = Tr
(
yTDy

)
= Tr

(
Vk

TDkVk

)
(14)

where R(k) is the mode-k matrix unfolding of tensor V1×· · ·×Vk−1×Vk+1×· · ·×V5

and Dk, Sk are denoted for

Dk =
∑

i

DiiXiR(k)R
T
(k)X

T
i , Sk =

∑
i,j

SijXiR(k)R
T
(k)X

T
i (15)

Then the original objective function is equivalent to a trace-ratio minimization
problem:

min
Z,Ug ,Up,Ul,Us,Ux

Tr
(
Vk

T (Dk − Sk)Vk

)
Tr

(
Vk

TDkVk

) (16)

Along this direction, the optimized Vk can be computed by solving the following
generalized eigenvector problem:

(Dk − Sk)u = λDku (17)

Then in the next iteration, we alternate to optimize Vk+1 while fixing all other
Vj , j �= k + 1, and repeat the same updating procedure to obtain the eigen
solution. Repeat this alternating and iterating procedure until changes of all
variables are small enough, and the algorithm can terminate then. Next we
present the recognition algorithm.

Finally, we need to point out that the above proposed formulation and com-
putational procedure are dealing with a 5-mode tensor model of face images. Yet
it can be easily extended to more or less N -mode tensor models, especially by
fixing the expression and/or illumination directions the algorithm can adapt to
face images varying mainly gin poses/illuminations.

3.3 Recognition

If a solution of the constrained tensor decomposition is obtained by the above
Locality Preserving Constrained Tensor (LPC-Tensor) algorithm as summarized
in Table.1, so that we have X

.= Z ×1 Ug ×2 Up ×3 Ul ×4 Us ×5 Ux, then
for any image x we can obtain its projections on each subspace. Then vari-
ous classifiers can be used for recognition based on the low-dimensional data
representations.
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Table 1. LPC-Tensor Algorithm for Gender Recognition

Input: given a face image set 𝑋 = {𝑥𝑖}𝑁𝑖=1 with gender labels, with its 5-
mode face tensor 𝑇 ∈ ℝ2×𝑁𝑝×𝑁𝑙×𝑁𝑠×𝑁𝑥 , and the required new dimensions
𝑁

′
𝑔, 𝑁

′
𝑝, 𝑁

′
𝑙 , 𝑁

′
𝑠, 𝑁

′
𝑥 for final tensor decomposition, parameter 𝑡 of heat kernel.

Output: all components of the locality preserving constrained tensor, i.e. 𝑍,
𝑈𝑔, 𝑈𝑝, 𝑈𝑙, 𝑈𝑠, 𝑈𝑥.

Procedure:

0. Initialization: set 𝑈𝑔 =

(
𝑰𝑁 ′

𝑔×𝑁 ′
𝑔

0(2−𝑁 ′
𝑔)×𝑁 ′

𝑔

)
, 𝑈𝑝 =

(
𝑰𝑁 ′

𝑝×𝑁 ′
𝑝

0(𝑁𝑝−𝑁 ′
𝑔)×𝑁 ′

𝑝

)
, 𝑈𝑙 =(

𝑰𝑁 ′
𝑙 ×𝑁

′
𝑙

0(𝑁𝑙−𝑁
′
𝑙 )×𝑁

′
𝑙

)
, 𝑈𝑠 =

(
𝑰𝑁 ′

𝑠×𝑁 ′
𝑠

0(𝑁𝑠−𝑁 ′
𝑠)×𝑁 ′

𝑠

)
, 𝑈𝑝 =

(
𝑰𝑁 ′

𝑥×𝑁 ′
𝑥

0(𝑁𝑥−𝑁 ′
𝑥)×𝑁 ′

𝑥

)
.

1. Build constraint graph and compute edge weights: for every image 𝑥𝑖, 𝑥𝑗 ∈ 𝑋,

if 𝑥𝑖 and 𝑥𝑗 share the same gender label then let 𝑆𝑖𝑗 = 𝑒−
∥x𝑖−x𝑗∥2

𝑡 , otherwise let
𝑆𝑖𝑗 = 0.

2. Do iteration:
for loop = 1 : max loops

let 𝑉1 = 𝑈𝑔, 𝑉2 = 𝑈𝑝, 𝑉3 = 𝑈𝑙, 𝑉4 = 𝑈𝑠, 𝑉5 = 𝑈𝑥;
for k = 1 : 5

update core tensor 𝑍 = 𝑋 ×1 𝑉 𝑇
1 ×2 𝑉 𝑇

2 ×3 𝑉 𝑇
3 ×4 𝑉 𝑇

4 ×5 𝑉 𝑇
5 ;

compute 𝐷𝑘, 𝑆𝑘 by (15);
solve the eigen-vector problem (17) for 𝑉𝑘;

end
if ∥ (𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5) − (𝑈𝑔, 𝑈𝑝, 𝑈𝑙, 𝑈𝑠, 𝑈𝑥) ∥ < 𝜖, break;

end

3. Output the tensor decomposition components: 𝑍,𝑈𝑔 = 𝑉1, 𝑈𝑝 = 𝑉2, 𝑈𝑙 = 𝑉3,
𝑈𝑠 = 𝑉4, 𝑈𝑥 = 𝑉5.

4 Experiments

In this section we use the Extended Yale B and FERET database to evaluate
the gender recognition performance of the proposed algorithm (LPC-Tensor),
and compare it with several widely used feature extraction methods, i.e. PCA,
LDA, LPP, and the original tensor approach. Before starting the experimental
process, we first need to set up some common experimental configurations.

4.1 Experimental Configuration

It is known that alignment and normalization are important for good perfor-
mance of face recognition algorithms. The same rule is also true for face gender
recognition. In our experiments, we manually align each face image by its two



608 H. Qiu, W.-q Liu, and J.-H. Lai

eyes coordinates and one mouth coordinates. In addition, gray level normaliza-
tion are also performed for each image.

For recognition, the nearest neighborhood classifier is used for all algorithms.
With these configurations, we compare several typical algorithms on the follow-
ing face databases.

4.2 Results on the Yale B and Extended Yale B Database

The Yale B, plus the Extended Yale B face database [13,14], totally consists of
38 individuals (29 male and 9 female), with 9 varying poses and 64 different
illumination conditions. Since no expression variation is provided, the expres-
sion component of our algorithm is fixed to one dimension and we just omit it
safely. We have made full use of all these images in our experiments. Firstly, all
images are cropped and aligned using their two eyes coordinates and one mouth
coordinates, then resized into a size of 112x92, followed by a normalization pre-
processing of histogram equalization. For each round of test, we randomly divide
the poses and illuminations set into two nearly equal parts, and use one part of
all selected individuals’s images for training, the left part for testing. It can be
seen that for every individual we have chosen their images from the same poses
and illuminations. This selection is important to ensure the consistency of the
image data structures.

We have run the routine for 15 times, in which we record the best recognition
rate of all involved algorithms, and finally get their average performance. The
final results we obtained are shown in Table.2. From the results we can see that
the proposed algorithm has achieved better performance than other feature ex-
traction methods.

Table 2. Gender Recognition Comparisons on the YaleB+Extended Database

4.3 Results on the FERET Database

The FERET face database [15] is another challenging database with varying
poses and illuminations. It contains 1199 individuals, however each individual
might have different number of images. For purpose of forming a consistent face
images manifold, we only collect 540 male images and 540 female images from
the database, and all of them have three frontal/left/right poses, as well as fixed
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illumination variations. The routine of training and testing is similar to that we
described for the Yale B database.

Results obtained from this experiment obtained by running the routine for 15
times and accumulating to average the recognition rate of all involved algorithms.
The final comparison results are shown in Table.3.

The discriminant capability of proposed algorithm outperforms other meth-
ods. Also the recognition rates for both male and female of all algorithms are
better than those on Yale B database. Though such good performance may re-
late to our careful selection of face images, we can still conclude in general that
the consistent structure of face dataset with more images has important impact
for face gender recognition.

Table 3. Gender Recognition Comparisons on the FERET Database

5 Conclusions and Future Work

In this paper we proposed a locality preserving constrained tensor decomposition
algorithm for gender classification. The algorithm can enhance the performance
by preserving the intrinsic structure of face dataset in tensor decomposition.
Experimental results show the effectiveness of the algorithm. To improve the
computation efficiency, we need make further efforts on seeking faster solutions
for optimization problems formulated in this paper. The recent results [16,17]
on fast implementation of tensor decomposition will motivate to go forward.
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Abstract. To make a visual examination of a chromosome image for

various chromosome abnormalities, individual chromosome regions have

to be determined in a subject image and classified into distinct chromo-

some types in advance. We propose a subregion based method to improve

this process. The proposed method regards each chromosome region as

a series of subregions and iterates a search for subregions in the subject

image consecutively. In this method, chromosome region classification

can be performed simultaneously with its determination for each sub-

region, and features in the subregions can be integrated effectively for

recognizing (determining and classifying) the entire chromosome region.

1 Introduction

A visual examination of a chromosome image for various chromosome abnormal-
ities plays an important role in many clinical practices, including treatment and
prevention of genetic disorders, radiation dosimetry, toxicology, etc [1].

Generally, the visual chromosome examination requires the following [2]:

1. staining a set of chromosomes in a cell nucleus and capturing its image,
2. determining individual chromosome regions in the subject image,
3. classifying the determined regions into the 24 distinct chromosome types (1,

2, . . . , 22, X, and Y).

With proper staining techniques (e.g. G-banding technique etc.), a character-
istic series of light and dark bands appears along the longitudinal axis of a
chromosome (Fig. 1 (a)). The band appearance on a chromosome is called a
banding pattern, and it is unique to each type of chromosome [3]. For determin-
ing and classifying the chromosome regions in an image, many methods have
been proposed [4,5,6,7,8,9,10]. In most of them, individual chromosome regions
are extracted from the subject image (Fig. 1 (b)), the longitudinal profile of
intensity on each region is acquired as its banding pattern, and the extracted
regions are classified into the 24 distinct chromosome types according to their
banding patterns (Fig. 1 (c)). The classification result is inspected for abnor-
malities of number, where there are one or more entire chromosomes additional
to or missing from the normal complement. The banding pattern on each region
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Fig. 1. (a) An example of banding pattern (G-banded chromosome 5), (b) chromosome

image, (c) determination and classification results [11]

is visually examined for abnormalities of structure, where part of the bands are
lost (deletion), repeated (duplication), shifted (translocation), etc [1].

Most of the existing methods for chromosome region classification require that
individual chromosome regions are extracted accurately from the subject image
in advance, and they also assume that each extracted region has the appearance
of normal bands. However, chromosome regions in an image frequently touch or
overlap each other and have some parts difficult to distinguish them from the
background, and thus the accurate extraction of individual chromosome regions
is hard to achieve [12,13]. Furthermore, aberrant bands occur on the extracted
region because of various reasons (e.g., region extraction failures, region over-
laps, structural chromosome abnormalities, etc.), and consequently the region
appearance often deviates from the normal [4,8].

To overcome these problems, we propose a novel chromosome image recogni-
tion method based on subregions. The proposed method regards each chromo-
some region as a series of subregions and iterates a search for subregions in the
subject image consecutively. As a result, chromosome region classification can
be performed simultaneously with its determination for each subregion, and fea-
tures in the subregions can be integrated effectively for recognizing (determining
and classifying) the entire chromosome region.

This paper is organized as follows: Section 2 describes procedures in the pro-
posed method; Section 3 explains the detail of the subregion search and chromo-
some region recognition in the subject image; Section 4 provides experimental
results. Some conclusions and perspectives are discussed in Section 5.

2 Procedures in the Proposed Method

The proposed method regards each chromosome region as a series of subre-
gions and iterates a search for subregions in the subject image consecutively.
In this method, a reference banding pattern is made by averaging samples for
every chromosome type (Fig. 2 (a)). Each reference banding pattern for an en-
tire chromosome region is divided into several parts, and they are used as the
templates for recognizing the subregions of a chromosome. In the following, the
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Fig. 2. (a) Reference banding pattern and local banding patterns, (b) consecutive

subregion searches

divided parts are referred to as local banding patterns (lbp), and the m th local
banding pattern of the chromosome type i is denoted by lbp

(i)
m .

Firstly, as shown in Fig. 2 (b), the subject image is searched for the subregion
corresponding to a template. If the subregion corresponding to lbp

(i)
m is detected,

secondly, the neighborhood of the detected subregion is searched for the next
subregion corresponding to the adjoining lbp

(i)
m+1 (or lbp

(i)
m−1). By iterating the

search for corresponding subregions consecutively, with the first detected subre-
gion as the starting point, one subregion after another is tracked. Through this
iteration, the entire region of the chromosome is determined in the image, and
at the same time the chromosome type i is assigned to the determined region.

By taking the proposed approach, the following advantages are expected in
the chromosome image recognition:

– As the consecutive subregion searches, region classification is performed si-
multaneously with region determination for each subregion, and the results
of preceding subregion searches are utilized for the following searches. Ac-
cordingly, the achievement of stable region determination can be expected.

– By excluding the results of failed subregion searches, features in the subre-
gions are effectively integrated while reducing aberrant band influence, and
region classification is performed according to these integrated features. Con-
sequently, the achievement of accurate region classification can be expected.

3 Subregion Search and Chromosome Region Recognition

3.1 Subregion Search

A subregion search is made by scanning the subject image IS with a template
lbp and seeking for subregions where the mean-squared-error (MSE) to lbp are
sufficiently small. The MSE to lbp is computed at every position within a search
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Fig. 3. Template lbp set at (x, y) in the subject image IS

area set in IS. As shown in Fig. 3, when lbp (U in length and V in width) is set
at (x, y) in IS, the MSE e2(x, y) is calculated by:

e2(x, y) =
1

UV

U−1∑
u=0

V −1∑
v=0

(I ′S(x′, y′) − lbp(u, v))2 , (1)

I ′S(x′, y′) = αIS(x′, y′) + β, (2)
x′ = x + u cos θ − v sin θ, (3)
y′ = y + u sin θ + v cos θ, (4)

where θ is the rotation angle of lbp and it is set so as to minimize e2(x, y).
Since the dimensions and intensities of chromosome regions vary with every

image, the proposed method adjusts the dimensions of lbps to those of chromo-
some regions in IS and adapts the intensities of IS to those of lbps.

– Suppose that the reference image IR is used for making lbps (i.e., reference
banding patterns) and the subject image IS is searched with these lbps.
By binarizing IR on the basis of intensities, the mode wR of region widths
and the sum AR of region areas are measured in the binarized image. From
these measurements, the sum LR of region lengths can be estimated by
LR = AR/wR. Similarly, wS, AS, LS are determined in the binarized IS. To
adjust the lbp dimensions, the proposed method sets the lbp width to wS and
magnifies the lbp length by LS/LR.

– To adapt the intensities of IS, for every rotation angle θ, the intensities of
pixels overlapped with lbp are transformed by (2), where α and β are set to
minimize e2(x, y).

In the proposed method, subregions within the search area for lbp
(i)
m are sorted by

their MSE in ascending order, and the top N subregions are chosen as the can-
didates to correspond with lbp

(i)
m . If the candidate subregions corresponding to

lbp
(i)
m are chosen, the area should be searched for the subregion corresponding to

the following lbp
(i)
m+1 can be determined according to these candidate subregions.

As shown in Fig. 4 (a), the proposed method sets a rectangle area sa
(i)
m+1 at each

candidate subregion for lbp
(i)
m , circumscribes a rectangle about all sa

(i)
m+1, and
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Fig. 4. (a) Search area SA
(i)
m+1 for lbp

(i)
m+1, (b) rectangle area sa

(i)
m+1 set at each pre-

ceding candidate subregion

uses this larger rectangle area SA
(i)
m+1 as the search area for lbp

(i)
m+1. As shown

in Fig. 4 (b), each rectangle area sa
(i)
m+1 is set as follows:

1. determining the head ph
(i)
m of a candidate subregion for lbp

(i)
m ,

2. setting a sector at ph
(i)
m with radius r

(i)
m+1 = γ × U

(i)
m+1, direction θ

(i)
m , and

central angle 2δφ (γ and δφ are constants set beforehand),
3. circumscribing a rectangle sa

(i)
m+1 about the sector,

where U
(i)
m+1 is the length of lbp

(i)
m+1 and θ

(i)
m is the rotation angle of lbp

(i)
m .

By iterating the subregion search and the search area setup (for the starting
point, an entire area of the subject image is regarded as the search area), one
set of subregions (N at the most) after another is chosen as the candidates to
correspond with each lbp.

3.2 Chromosome Region Recognition

Since the proposed method chooses a set of subregions as the candidates to corre-
spond with each lbp, for recognizing an entire chromosome region, it is necessary
to select a subregion from every candidate set and determine a combination
of the candidate subregions. In the proposed method, for each chromosome re-
gion, inadequate subregions are eliminated from the candidate sets, and then
the optimum combination of candidate subregions is determined.

Eliminating Inadequate Candidate Subregions. When a candidate sub-
region has a high MSE value, even if this subregion corresponds to lbp, it is
surmised that the aberrations (chromosome region overlaps, chromosome abnor-
malities, etc.) occur there. In the proposed method, to reduce the aberrant band
influence on the chromosome region recognition, subregions whose MSE values
are greater than a given threshold TMSE are eliminated from the candidate sets.
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Fig. 5. (a) Eliminating disconnected candidate subregions, (b) determining the opti-

mum combination of candidate subregions

Furthermore, to make up a combination of the candidate subregions into a
single continuous region, in the proposed method, disconnected subregions are
eliminated from the candidate sets. Let the head and tail of a candidate subregion
for lbp

(i)
m be ph

(i)
m and pt

(i)
m , respectively. The distance between two adjoining

candidate subregions is defined by:

d
(i)
m−1,m = ‖ph

(i)
m−1 − pt(i)m ‖

(
or d

(i)
m,m+1 = ‖ph(i)

m − pt
(i)
m+1‖

)
(5)

When the distances d
(i)
m−1,m from a candidate subregion for lbp

(i)
m to all adjoining

candidate subregions for lbp
(i)
m−1 are greater than a given threshold TDIS, this

candidate subregion for lbp
(i)
m is eliminated (if all distances d

(i)
m,m+1 are greater

than TDIS, this candidate subregion is also eliminated). For example, in Fig. 5 (a),
the candidate subregion ‘a’ and ’b’ for lbp

(i)
m have adjoining candidate subregions

where the distances are d
(i)
m−1,m ≤ TDIS or d

(i)
m,m+1 ≤ TDIS, on the other hand,

‘c’ has no adjoining candidate subregions of d
(i)
m−1,m ≤ TDIS, even though it has

adjoining candidate subregions of d
(i)
m,m+1 ≤ TDIS. Consequently, ‘a’ and ‘b’ are

kept in the candidate set, while ‘c’ is eliminated from the candidate set.

Determining Optimum Combination. For recognizing an entire chromo-
some region, the proposed method selects a subregion from the set of candidates
for every lbp and determines a combination of the candidate subregions. To de-
termine the optimum combination, candidate subregions are selected so as to
minimize the overall MSE in the combination of the selected subregions on the
condition that the distance d between two adjoining candidate subregions is not
greater than TDIS (Fig. 5 (b)).

Through this process, the entire region of a chromosome is determined as a
combination of subregions in the subject image, and at the same time a chro-
mosome type is assigned to the determined region.
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4 Experiments

We implemented a prototype system based on the proposed method, and con-
ducted chromosome image recognition experiments.

4.1 Chromosome Images

The experiments were carried out on the chromosome images that are opened
to public by the website at the Wisconsin State Laboratory of Hygiene and
ZooWeb [11]. Thirty-one chromosome images were used in the experiments (each
image was 768×576 pixels in size). Fig. 6 shows examples of an original chromo-
some image and its binarized image. These images were divided into two sets:
one (15 images) was used as subject images IS, and the other (16 images) was
used as reference images IR employed for making templates (lbp).

Reference banding patterns for chromosome 1, 2, . . . , 5 were made from IR.
As shown in Fig. 7, each reference banding pattern was divided into several lbp,
and a single lbp (marked with ‘∗’) was selected to search for the starting point
subregion of each chromosome type. In the experiments, these procedures were
carried out manually.

4.2 Experimental Results

In the experiments, the number of chosen candidate subregions was set to N = 3,
the parameters for a sector were set to γ = 2, δφ = 90◦ (described in Sect. 3.1),
the threshold of MSE was set to TMSE = 5000, and the threshold of distance was
set to TDIS = 15pixels (described in Sect. 3.2).

Fig. 8 shows an example of chromosome image recognition result. Every IS was
searched for subregions with a starting point lbp. The subregions were sorted by
their MSE in ascending order, and the top 30 subregions were chosen as the start-
ing points. From these subregions, chromosome region recognition was started
individually, and the combinations of subregions were determined. The deter-
mined combinations for each chromosome type (1, 2, . . . , 5) in every IS were
sorted by their overall MSE in ascending order. In Fig. 8 (a), correct regions

(a) (b)

Fig. 6. Examples of an original chromosome image (a) and its binarized image (b)
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Fig. 8. (a) Examples of correct chromosome regions (chromosome 1), (b) examples of

determined combinations

(chromosome 1) were marked with ‘C’, and in Fig. 8 (b), determined combina-
tions (top 5) were shown with their orders (the correct regions were recognized
in the first and third).

To evaluate the chromosome recognition results, recall R and precision P were
used. They are defined by:

R = |C ∩ D|/|C|, (6)
P = |C ∩ D|/|D|, (7)

where |C| is the number of correct chromosome regions C and |D| is the number
of determined combinations D. The top k determined combinations for each chro-
mosome type in every IS were used as D (therefore, |C| = 15 subject images ×
5 chromosome types × 2 = 150, |D| = 15 × 5 × k = 75k). When a determined
combination overlaps with the correct chromosome region (more than 60% in
area), we decide that the determined combination corresponds correctly to the
chromosome region. In (6) and (7), |C ∩ D| denotes the number of determined
combinations which correspond correctly to the chromosome regions.
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The average R and P for 5 chromosome types and 15 subject images were
computed by varying k. Fig. 9 shows the average R and P with different k,
and Fig. 10 shows the relation between the average R and P by varying k.
Currently, fundamental functions in the proposed method were implemented
naively, therefore the recognition accuracies were low (e.g., R = 0.6 and P = 0.09
at k = 20). However, by improving the subregion search method and developing
an effective lbp selection method, the increase in accuracy can be expected.

5 Conclusions

In this paper, we have proposed a subregion based method for recognizing chro-
mosome images. The proposed method regards each chromosome region as a
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series of subregions and iterates a search for subregions in the subject image
consecutively. The proposed method can be expected to achieve stable chromo-
some region determination and accurate chromosome region classification.

However, several problems remain in the proposed method. To achieve effec-
tive chromosome image recognition, we plan to improve and expand the proposed
method:

– To increase the accuracy and efficiency of chromosome recognition, we will
improve the subregion search method itself and develop a method of deter-
mining effective lbps (i.e., effective parts in each reference banding pattern)
for the subregion search.

– To recognize a complement of chromosome regions in the subject image
effectively, we will consider a method of utilizing previous recognition results
on some chromosome types for recognizing the other chromosome types, and
we need to develop a method for selecting correct chromosome regions from
recognition results (i.e., determined combinations of subregions).
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Abstract. Learning techniques based on random forests have been lately

proposed for constructing discriminant codebooks for image classification

and object localization. However, such methods do not generalize well to

dealing with weakly labeled data. To extend their applicability, we con-

sider incorporating co-occurrence information among image features into

learning random forests. The resulting classifiers can detect common pat-

terns among objects of the same category, and avoid being trapped by

large background patterns that may sporadically appear in the images.

Our experimental results demonstrate that the proposed approach can ef-

fectively handle weakly labeled data and meanwhile derive a more discrim-

inant codebook for image classification.

1 Introduction

Recent research efforts on object classification and localization have supported
that, especially for the latter, the bounding box or shape mask information is
useful for accomplishing the related tasks. However, while providing such infor-
mation for a large dataset is laborious, it has been noticed that the background
clutter within a bounding box encompassing a target object can be distracting
and cause misclassifications. The situation becomes even worse when the pro-
vided data are only weakly labeled. That is, an image is marked as positive
(without any bounding box information) for some object class if it does contain
such an object of interest. Otherwise, it is treated as a negative one. To alleviate
this unfavorable effect, exploring the co-occurrence evidence has been proposed,
e.g., in [1] and shown to be a feasible approach. In this work, we propose a novel
implementation of random forests that effectively incorporates the co-occurrence
information to perform proper splits and yield a discriminant codebook for both
object classification and localization.

1.1 Related Work

A number of object localization schemes rely on that the target location in each
of the training data is annotated with a bounding box [2], [3], [4]. The proce-
dure is typically performed in the following three steps. First, interest points
are detected within object areas of all images. Second, for each object category,
a codebook is generated by partitioning the feature space into several regions.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 621–632, 2010.
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(a) (b) (c)

Fig. 1. (a) Original image. (b) The probability map produced by RF. (c) The proba-

bility map produced by our method. Observe that the co-occurrence information can

help random forests to prefer common patterns, such as car doors, wheels, to specific

patterns, such as road textures in the images.

The features in the same region yield a visual word, and the collection of them
forms a codebook. This leads to a bag-of-visual-words representation. Third, ob-
ject models are learned with a chosen classification algorithm, e.g., SVM. With
the scores evaluated by the object models, localization can be done by scan-
ning a given testing image to obtain the best one which indicates the possible
object location, or by labeling each pixel with the one that its object model
achieves the highest score. However, the above-mentioned techniques are often
time-consuming during the test stage, and also do not generalize well to han-
dle the weakly labeled data. On the other hand, techniques based on multiple
instance learning for exploiting the weakly labeled data have been proposed to
learn the object models [5], [6], [7], but most of them focus on image classification
rather than object localization.

Bosch et al. [1] consider the co-occurrence information to find regions of in-
terest (ROIs), and report that the knowledge of ROIs can improve image clas-
sification accuracy. Yet in [8], [9] the authors have integrated the co-occurrence
information with existing classification schemes to address object recognition.
Nevertheless, these techniques are all computationally expensive.

Owing to its efficiency, classification with random forests has been used in
tackling various computer vision problems, such as codebook generation [10],
image classification [1], and image segmentation [11]. In particular, Shotton
et al. [11] apply random forests to learning a discriminant codebook. While
the resulting codebook could achieve accuracy improvements for both image
classification and segmentation, its quality may suffer from noisy labeling.
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1.2 Our Approach

Our method exploits the efficiency of random forests and the co-occurrence in-
formation between images to alleviate the effects of noisy labels. The key idea
is to uncover common patterns among most of the images rather than specific
patterns in a few images, as illustrated in Fig. 1. As a result, we expect to de-
rive a codebook that is discriminant for both image classification and object
localization on weakly labeled formulations.

2 Random Forests (RF)

In this section, we give a brief review of random forests. A random forest is an
ensemble of decision trees with randomness. Each decision tree is constructed by
recursively splitting each internal node into left and right nodes until the stop
criterion is met, e.g., there are too few examples in the node, all data in the node
have the same class label c, or the desired depth L is reached. At each internal
node n, a split function f partitions the training data set Sn into two subsets Sl

and Sr:

Sl = {v ∈ Sn|f(v) ≤ 0}, (1)
Sr = Sn\Sl. (2)

When growing the tree, we choose a split function at each node n to maximize
the score function that measures the degree of separation of the training data.
Following [12], the score function S is defined as the normalized information
gain:

S(n, f) =
2IC,f (n)

HC(n) + Hf (n)
, (3)

where HC(n) is the class entropy of node n, Hf (n) is the split entropy of node
n, and IC,f (n) is the mutual information between the class distribution and the
given split function f of node n. They are defined respectively as follows:

HC(n) = −
∑

c

p(c|n) log p(c|n), (4)

Hf (n) = −
∑

p∈{l,r}
p(Sp|n) log p(Sp|n), (5)

IC,f (n) =
∑

c

∑
p∈{l,r}

p(c, Sp|n) log
p(c, Sp|n)

p(c|n)p(Sp|n)
. (6)

Moreover, the randomness of random forests can be drawn from two aspects:
training data, and split functions. First, each decision tree is grown with different
subset of the training samples. Second, the split function at each internal node
is generated randomly to divide the data into two subsets, and the best one of
them is chosen according to the score function in (3).
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(a) (b)

Fig. 2. Each pattern represents a feature in an image. The patterns with the same shape

belong to the same image, and the patterns with the same color belong to the same

class. Therefore, there are four images, eight features, and two classes in this figure. We

assume these features are in the same node n. Each pair of features connected by the

line represents a CoFP. (a) There are three types of CoFPs illustrated with different

line colors. (b) A split function f separates the features in the node n into two disjoint

sets, Sl and Sr. It also divides the CoFPs into three disjoint sets: the set of pairs of

features connected by the dotted lines Sĉ, the set of pairs of features connected by the

solid lines in bottom left plane Sl̂, and the set of pairs of features connected by the

solid lines in top right plane Sr̂.

After a random forest is learned, the class probability distribution of leaf node
n in a tree is denoted as p(c|n), which is estimated by the posterior distribution
over the training data falling into leaf node n. The final classification result of a
test sample x is obtained by averaging the class distribution over the leaf nodes
reached in all trees:

p(c|Nx) =
1
T

T∑
t=1

p(c|nt), (7)

where nt is the leaf node in tree t reached by sample x and Nx is the set of all
such leaf nodes in the given random forest.

3 Co-occurrence Random Forests (CoRF)

In our formulation, image Xi is represented by a set of features, which can be the
detected interest points, or randomly sampled patches with variant scales and
positions. The conventional random forests treat all features in all the training
images as training samples. Therefore, they would discover specific patterns from
particular images, but not common patterns among most of images which the
latter is what we want. This is mostly due to the lack of correlated information
between features. It is thus reasonable to expect that taking account of the
co-occurrence information would guide the random forest algorithm to discover
proper patterns. In what follows we will describe how to incorporate the co-
occurrence information into the random forest algorithm.

3.1 Co-occurrence Feature Pairs

There is a match function gi,j : (A, B) → m, which presents a mapping be-
tween two sets of features, where A ∈ Xi, B ∈ Xj, and m = 1 if (A, B) is
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matched, otherwise m = 0. In other words, the mapping indicates co-occurrence
relations between two sets, Xi and Xj . The match function g is qualified by
a cost function C, for example, the sum of the distances between match pairs.
Assume the function g∗ is the minimum cost. We define a feature pair (A, B) ∈
{(C, D)|g∗i,j(C, D) = 1, C ∈ Xi, D ∈ Xj} as a co-occurrence feature pair (CoFP).
A CoFP (A, B) is the best mapping between two sets according to the cost func-
tion C. In this paper, we assume that CoFPs of two sets of features are one-to-one
mapping. A feature on one set maps at most one feature on another set, and the
number of match pairs is as many as possible.

As illustrated in Fig. 2a, each CoFP can be divided into three groups: self-
match pairs, intra-class-match pairs, and inter-class-match pairs. A self-match
pair is a CoFP from the same image. In other words, the interest point matches
to itself. An intra-class-match pair is a CoFP from two different images which are
labeled as the same class. An inter-class-match pair is a CoFP from two different
images which are labeled as different classes. Therefore, CoFPs are labeled as
following. If a CoFP comes from images in the same class c, i.e. a self-match pair
or an intra-class-match pair, it is labeled as class c. Otherwise, it is labeled as φ,
which denotes a mismatch pair, i.e. an inter-class-match pair. The information,
i.e the CoFPs and their labels, is applied to any classification model to determine
the CoFP belongs to the specific class c or the background clutter φ.

However, the cost function is affected by the selection of the distance function
between features which would affect CoFPs directly. The Euclidean distance is
a good choice, but it might suffer from the curse of dimensionality [13]. Besides,
finding the optimal function g∗ is time-consuming, while the feature dimension
and/or the number of features in each image are large. We instead incorporate
learning the distance function into the classification model.

3.2 Implicit Co-occurrence Feature Pairs

As aforementioned, searching the optimal match function g∗ is time-consuming.
Therefore, we utilize tree structures to reduce search space and make this prob-
lem easier. We assume that a similarity or decision tree has been built. In the
tree, if features fall into the same node, we could say they are similar to each
other. In other words, each pair of features in the node is a candidate of the
CoFPs. Besides, it is easy to prove that the candidates in the node are the sub-
set of the candidates in its parent node. Because we assume that two sets of
features are one-to-one mapping, the candidates of the CoFPs can be removed
if they are the candidates in its descendant nodes. As a result, the CoFPs are
discovered by the bottom-up strategy. In addition, the number of CoFPs in the
node n̂ is computed efficiently by the following equation

|Sn̂| =
∑
i,j

min(|Sn ∩ Xi|, |Sn ∩ Xj |), (8)

where | · | is the number of elements in the set, Sn is the set of the features in
the node n, Xi is the set of the features in the image i, and Sn̂ is the set of
the CoFPs in the node n̂. Note that elements in the node n are features, and
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elements in the node n̂ are CoFPs which are generated from the set Sn. In the
next subsection, we exploit the number of CoFPs, to guide the random forest
algorithm to discover the proper patterns. Because, we do not search for the
exactly match pairs, this mapping is called implicit co-occurrence feature pairs
(iCoFPs). iCoFPs have the same properties as CoFPs except the exact mapping.

3.3 Learning Co-occurrent Random Forests

In random forests, we divide the set of features at each node into two disjoint
sets according to the split function f which is defined as

f(v) = v(i) + b, (9)

where v ∈ Rd is a feature vector, i ∈ {1, · · · , d} is a dimension index, and
b is a bias. f also separates the iCoFP set Sn̂ at node n̂ into three disjoint
subsets Sl̂, Sr̂, and Sĉ implicitly, as illustrated in Fig. 2b. Note that Sĉ is the
residual set of Sn̂, i.e. the mismatch pair set in the sublevel of Sn̂, or precisely
Sĉ = Sn̂\(Sl̂ ∪ Sr̂). In other words, it can not be split anymore. As a result, the
co-occurrence information, i.e. iCoFPs, can be incorporated into the random
forest algorithm, and we call this algorithm the co-occurrence random forest
algorithm. iCoFPs and their labels which are defined in the previous subsection
are treat as the input data of the random forest algorithm. The split function
which divides the features into two parts are the same as (9). As aforesaid, the
separation on the features implies divide the iCoFPs into three parts. So, the
score function which measures the degree of separation of the iCoFPs in the
node n̂ is defined as

S(n̂, f) =
2IĈ,f (n̂)

HĈ(n̂) + Hf (n̂)
, (10)

where

HĈ(n̂) = −
∑

c∈{1,··· ,C,φ}
p(c|n̂) log p(c|n̂), (11)

Hf (n̂) = −
∑

p̂∈{l̂,r̂,ĉ}
p(Sp̂|n̂) log p(Sp̂|n̂), (12)

IĈ,f (n̂) =
∑

c∈{1,··· ,C,φ}

∑
p̂∈{l̂,r̂,ĉ}

p(c, Sp̂|n̂) log
p(c, Sp̂|n̂)

p(c|n)p(Sp̂|n̂)
. (13)

The joint probability of the class c and the split Sp̂, the class probability, and
the split data probability in (11), (12), and (13) are given respectively by

p(c, Sp̂|n̂) =
1
Z

wp̂ |{(v1,v2)|(v1,v2) ∈ c, (v1,v2) ∈ Sp̂, (v1,v2) ∈ Sn̂}| , (14)

Z =
∑

c∈{1,··· ,C,φ}

∑
p̂∈{l̂,r̂,ĉ}

p(c, Sp̂|n̂), (15)
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p(c|n̂) =
∑

p̂∈{l̂,r̂,ĉ}
p(c, Sp̂|n̂), (16)

p(Sp̂|n̂) =
∑

c∈{1,··· ,C,φ}
p(c, Sp̂|n̂), (17)

where | · | is the number of elements in the set which can be computed efficiently
by the equation (8), and wp̂ is the weight associated with the node p̂. wp̂ is
proportional to the inverse of the diameter of the node. In our experiments, we
set wp̂ as wl̂ = wr̂ = 2wĉ. Note that if we only consider self-match pairs, our
method is equivalent to the traditional random forests. After a co-occurrence
random forest is learned, the final classification result of a test sample x can
be computed using (7). In the next two sections, we describe how to apply the
CoRF to solve object localization and image classification problems.

4 Object Localization

For object localization, we use the voting approach to generate the final prob-
ability map. The probability of each patch x in test image I is calculated by
equation (7). Then, the probability of each pixel i is figured out by

p(c|i, I) =
1
N

∑
{j|i∈Rxj

}
p(c|Nxj), (18)

where xj is a patch in the test image, Rxj represents the region that is covered
by the patch xj , and N is the number of patches that cover the pixel i. Therefore,
we could get the probability map.

5 Image Classification

For image classification, we consider support vector machines (SVMs) as the
classifier with the linear kernel [10] or the pyramid match kernel [11], [14] to
measure the similarity between two images. Each node in the random forests
denotes a visual word, and each image is represented by the histogram of hier-
archical visual words. Note that, for the linear kernel, we only use the leaf nodes
as the visual words without utilizing the hierarchical structure of the trees.

The pyramid match kernel [14] is defined as

K̃(Xi, Xj) =
K(Xi, Xj)√

K(Xi, Xi)K(Xj, Xj)
, (19)

where

K(Xi, Xj) =
L∑

l=1

wlNl (20)
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= w1I(H1(Xi), H1(Xj))

+
L∑

l=2

(wl − wl−1)I(Hl(Xi), Hl(Xj)), (21)

Nl = I(Hl(Xi), Hl(Xj)) − I(Hl+1(Xi), Hl+1(Xj)) (22)

I(Hl(Xi), Hl(Xj)) =
B∑

b=1

min(Hl,b(Xi), Hl,b(Xj)), (23)

L is the depth of the tree, wl is the weight at the level l, Nl is the newly match
at the level l, and Hl,b(X) is the bth bin of histogram representation of the
feature set X at the level l. Each tree t forms one pyramid match kernel K̃t.
The final kernel over all trees is obtained by K̃ = 1

T

∑
t K̃t. In [11], the weight

wl is set as 1
2L−l which is proportional to the depth of the node. In contrast,

we set the weight wl,b as the following steps. Initially, the diameter of the leaf
node has a unit length, and the diameter of the internal node is the sum of its
children’s diameter. After computing the diameters of all nodes, the weight of
the node is set to the inverse of its diameter and the sum of all weights in the
tree is normalized to one. Because the built trees are usually imbalance, and the
leaf node has more discriminant power than the internal node. In our setting,
the weight at each level is not the same, and each bin has its weight which is
proportional to the inverse of its diameter. In addition, we could improve the
pyramid match kernel by weighting the histogram intersection with p(c|b), the
class prior given the visual word b. The histogram intersection in (23) is modified
as follows

I(Hl(Xi), Hl(Xj)) =
B∑

b=1

p(c|b)min(Hl,b(Xi), Hl,b(Xj)). (24)

The class prior can help mask the interest area in the image, and filter out the
irrelevance samples.

6 Experiments

In this section, we evaluate our method on the Graz-02 dataset, which contains
three categories with large variations in locations, scales, lighting conditions, and
viewpoints. We test each class versus background class individually. Various visual
descriptors could be used, such as SIFT [15], geometric blur [16], color descriptor
[10], [11], and so on. In our experiments, the best one is class dependent.

In all experiments, we use the following setting, which is similar to [10]. In each
image, 8,000 features are randomly extracted with variant scales and positions.
We choose the color wavelet descriptor as our feature descriptor. Among all
features extracted from all training images, we randomly select 20,000 features
to train each tree with 50 tests for each split. Five trees are learned, and each of
them contains about 1,000 leaf nodes.
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Table 1. Pixel labeling results on Graz-02 (The pixel precision-recall EER)

Bike RF CoRF RF.GT CoRF.GT [17].GT [4].GT

L=8 53.9 56.7 60.0 58.9

61.8 66.4L=11 54.6 57.1 60.7 59.1

L=14 54.7 57.1 61.0 59.0

Car RF CoRF RF.GT CoRF.GT [17].GT [4].GT

L=8 44.0 44.8 52.4 54.9

53.8 54.7L=11 42.8 46.4 52.8 56.0

L=14 40.1 46.2 51.3 56.8

Person RF CoRF RF.GT CoRF.GT [17].GT [4].GT

L=8 30.5 35.1 39.4 39.1

44.1 51.4L=11 32.6 34.5 38.8 40.4

L=14 33.0 34.4 38.2 40.8

6.1 Object Localization

For object localization, train/test split is the same as the one in [4], [17]. For
each category, the first 150 odd numbered images are used for training, and
the first 150 even numbered images are used for testing. The performance is
measured as the pixel level classification rate at equal error rate, which is the
point that the recall meets the precision. The results are shown in Table 1. The
number in the leftest column indicates the maximum tree depth L. The suffix
GT means that the method is trained with ground truth shape masks. In the
most of the cases, our method outperforms the traditional random forests. In
Fig. 3, we observe that the co-occurrence information guides the random forest
algorithm to select more meaningful features, and alleviates the effect of weakly
labeled data. Moreover, the pixel level probability map which is produced by
our method is more compact than the conventional manner. However, there is
still a large gap of the accuracy between working with ground truth data and
weakly labeled data for object localization. More clues should be exploited, e.g.
spatial configuration [18], to reduce the gap.

6.2 Image Classification

For image classification, we use the same train/test split as the one in [10]. For
each category, the first 150 even numbered images are used for training, and
the first 150 odd numbered images are used for testing. The performance is
measured as the image classification rate at equal error rate, which is the point
that the false positive rate meets the false negative rate. We perform the image
classification with different kernels: the linear kernel (LK), the intersection kernel
(IK), and the pyramid match kernel (PMK). The intersection kernel is similar to
the pyramid match kernel. The difference between them is that the intersection
kernel only uses the leaf nodes as the codebook. The suffix p represents that
the histogram intersection is weighted by the class prior p(c|n). The PMK1 uses
the weight in equation (20) that is suggested by Shotton et el. [11], and the
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Part of results on Graz-02. (a) and (d) are the original images. (b) and (e) are

the probability map produced by RF. (c) and (f) are the probability map produced by

our approach.



Co-occurrence Random Forests for Object Localization and Classification 631

Table 2. Image classification results on Graz-02 (EER)

Bike LK IK IK.p PMK1 PMK1.p PMK2 PMK2.p

RF 83.3 82.7 83.2 80.8 81.3 82.2 82.7

CoRF 85.2 82.7 83.0 79.2 82.3 82.8 83.2

Moosmann et el. [10] 84.4 - - - - - -

Car LK IK IK.p PMK1 PMK1.p PMK2 PMK2.p

RF 80.8 80.8 81.6 78.1 78.8 80.8 81.6

CoRF 80.1 82.8 83.6 79.7 81.2 82.7 83.5

Moosmann et el. [10] 79.9 - - - - - -

Person LK IK IK.p PMK1 PMK1.p PMK2 PMK2.p

RF 88.5 87.0 87.2 86.0 86.7 87.2 87.3

CoRF 86.5 87.5 88.0 85.8 87.5 87.0 88.2

Moosmann et el. [10] - - - - - - -

PMK2 uses the weight we suggest in section 5. The results are shown in Table
2. Some conclusions could be derived from this table. In all cases, the class prior
improves the results as in [11]. This also verifies the result mentioned in [19].
The results of PMK2 are similar to the results of IK and both of them are better
than the results of PMK1. In other words, the leaf node has more discriminant
power than the internal node. In most of the cases, our method is better than the
conventional random forests. Again, the co-occurrence information could guide
the random forest algorithm to discover the proper patterns.

7 Conclusions and Future Work

We have proposed a learning technique to exploit the co-occurrence information
when image data are only weakly labeled. As demonstrated, by more effectively
identifying common patters among images of the same class, CoRF can learn
a more discriminant codebook, and locate the object position more accurately.
Consequently, our method can accomplish better accuracies in both object lo-
calization and image classification. However, there is still a significant gap of the
accuracy between working with ground truth data and weakly labeled data for
object localization than that for image classification [10], [11]. To bridge this gap
would be the main focus of our future work.
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Abstract. Many vision problems map to the minimization of an energy

function over a discrete MRF. Fast performance is needed if the energy

minimization is one step in a control loop. In this paper, we present

the incremental α-expansion algorithm for high-performance multilabel

MRF optimization on the GPU. Our algorithm utilizes the grid struc-

ture of the MRFs for good parallelism on the GPU. We improve the basic

push-relabel implementation of graph cuts using the atomic operations

of the GPU and by processing blocks stochastically. We also reuse the

flow using reparametrization of the graph from cycle to cycle and itera-

tion to iteration for fast performance. We show results on various vision

problems on standard datasets. Our approach takes 950 milliseconds on

the GPU for stereo correspondence on Tsukuba image with 16 labels

compared to 5.4 seconds on the CPU.

1 Introduction

Low-level vision problems like stereo correspondence, restoration, segmentation,
etc., are usually modeled as a label assignment problem. A label from a given set
is assigned to each pixel or block in an image. These problems are often modeled
in a Markov random-field (MRF) framework. Geman and Geman [17] formulated
the maximum a-posteriori (MAP) estimation of the MRF as an energy min-
imization problem. Minimization of these energy functions is computationally
expensive. Several algorithms have been proposed to improve the computational
performance [9,4,1,2]. However, real time performance on regular images is still
a challenge on the traditional hardware. Several vision applications like robot
navigation, surveillance, etc., require the processing to be completed at close to
video frame-rates.

Solving computationally expensive problems on parallel architectures is an-
other way to improve the efficiency. However, not all algorithms are easily scal-
able to parallel hardware models. The contemporary graphics processing units
(GPUs) are emerging as popular high performance platforms because of their
huge processing power at reasonable costs. The Compute Unified Device Archi-
tecture (CUDA) [19] from Nvidia provides a general-purpose parallel program-
ming interface to the modern GPUs. The emerging standard of OpenCL also
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c© Springer-Verlag Berlin Heidelberg 2010
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promises to provide portable interfaces to the GPUs and other parallel process-
ing hardware. The grid structure of the MRFs arising in vision problems makes
the GPU an ideal platform for energy minimization problems. However, syn-
chronization and memory bandwidth are bottlenecks for implementing them on
the GPUs.

In this paper, we explore MRF optimization on the GPU. In particular, we
propose a method to efficiently use the GPU and their atomic capability for high
performance. We present the incremental α-expansion algorithm for multilabel
MRFs. Our method retains the grid structure of the graph, common to low-level
vision problems. We also propose a method to map dynamic energy minimization
algorithms [4] to the GPU architecture. We recycle and reuse the flow from
the previous MRF instances. A novel framework is also proposed based on the
observation that the most of the variables in the MRF get the final labels quickly.
Reuse of the flow from one cycle to the next as well as from one iteration to the
next in the first cycle, and shifting the graph constructions to the parallel GPU
hardware are the innovative ideas that produce high performance. We achieve a
speedup of 5-6 times on different multi-labeling problems on standard datasets.

We tested our algorithm on different problems such as stereo correspondence,
image restoration, and photomontage. Stereo correspondence results are shown
on Tsukuba, Venus and Teddy images. Image restoration results are shown on
Penguin and House images and photomontage on Panorama and Family images.
All the datasets are taken from the Middlebury MRF page [14]. The energy
functions used are the same as used by them. Our approach takes 950 millisec-
onds on the GPU for stereo correspondence on Tsukuba image with 16 labels
compared to 5.4 seconds on the CPU.

1.1 Literature Review

Some of the key algorithms which are used to minimize energy functions de-
fined over MRF include α-expansion and αβ-swap [3], max-product loopy belief
propagation [20] and tree-reweighted message passing [12]. α-expansion involves
constructing a graph over which maxflow/mincut algorithms are applied repeat-
edly. The Ford-Fulkerson’s algorithm [21] to solve maxflow/mincut problem is
popular and several fast implementations are available today [3,10]. Push-relabel
method [7] is more parallelizable and was implemented on the Connection Ma-
chines by Goldberg et al. [5].

Recently efforts have been made to solve the optimization algorithms on the
parallel architecture. Push-relabel algorithms have been implemented on the
GPU recenly [13,8]. They demonstrate solution of bilabel problems on the GPU.
Liang et al. [15] designed a new parallel hardware to solve belief propagation
algorithm efficiently. Delong and Boykov [18] gave a scalable graph-cut algorithm
for N-D grids which attains non-linear speedup with respect to the number
of processors on commodity multi-core platforms. Schmidt et al. [23] present
an efficient graph cuts algorithm for planar graphs motivated by the work of
Borradaile and Klein [22].
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2 MRF Energy Minimization on the GPUs

Many vision problems are naturally formulated as energy minimization prob-
lems. These discontinuity preserving functions have two terms, data term and
smoothness term. The general form of the function is:

E(f) =
∑

Dp(fp) +
∑

Vp,q(fp, fq)

where Dp(fp), the data term, measures the cost of assigning a label fp ∈ L
to pixel p ∈ P and V(p,q)(fp, fq), the smoothness term, measures the cost of
assigning the labels fp and fq to the adjacent pixels p and q.

The MRF is modeled as a graph with a grid structure with fixed connectivity.
We use the α-expansion algorithm to minimize the energy, which is posed as
a series of two-label graph cuts. We use a flagged graph cuts using the push-
relabel algorithm for these. We also reuse the flows to initialize the current MRF
instance from the previous iterations and cycles. Two basic steps of updation
and reparameterization are also parallelized on the GPUs.

2.1 α-Expansion Algorithm

The α-expansion [3] is a popular move-making energy minimization algorithm
(Algorithm 1). Steps 2 to 4 form a cycle and the step 3 is an iteration within a
cycle. The algorithm starts from an intial labelling and makes a series of moves,
which involve label change of the random variables, until there is no decrease in
the energy. After each iteration of α-expansion, the random variable in the MRF
retains either its current label or takes a new label α. One cycle of α-expansion
algorithm involves iterating over all the labels.

Given a current labelling f , there are exponential number of moves possi-
ble in Step 3. Graph cuts algorithm efficiently computes next configuration f

′

in polynomial time. It involves constructing a graph based on the current la-
beling and the label α. Vertices with label α do not take part in the iteration
but all others attempt to relabel themselves with α. There are two ways to
construct the graph involved. Kolmogorov et al. [10] construct the graph with-
out any auxiliary vertices, while Boykov et al. [3] introduce auxiliary vertices.
The α-expansion method involves constructing graph in each iteration. This is

Algorithm 1. α-EXPANSION
1: Intialize the MRF with an arbitrary labelling f .

2: for each label α ∈ L do
3: Find f

′
=arg min E(f

′
) among f ′ within one α-expansion of f , current labelling

4: end for
5: if E(f

′
) < E(f) then

6: goto step 2

7: end if
8: return f
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a time consuming step. It takes 1.2 seconds on the Tsukuba image for stereo
correspondence problem with 16 labels on the CPU.

2.2 Flagged Graph Cuts on the GPU

The push-relabel algorithm finds the maximum flow in a directed graph. Each
vertex u in the graph has two quantities associated with it: height value h(u) and
excess flow e(u). The algorithm involves two basic operations: Push and Relabel.
It has been implemented on the ealier version of CUDA, with and without the
atomic capability [13,8]. We extend prior work to handle α-expansion [13].

Push Operation: The push operation can be applied at a vertex u if e(u) >
0 and its height h(u) is equal to h(v) + 1 for at least one neighbor v ∈ Gr, the
residual graph. Algorithm 2 explains the implementation of the push operation
on the GPU.

Algorithm 2. KERNEL2 PUSH
Input: A residual graph, Gr(V, E).

1: Load height h(u) from the global memory to the shared memory of the block.

2: Synchronize the threads of the block to ensure the completion of load.

3: if u is in the current graph then
4: Push excess flow to eligible neighbors atomically without violating constraints.

5: Update edge-weights of (u, v) and (v, u) atomically in the residual graph Gr.

6: Update excess flows e(u) and e(v) atomically in the residual graph Gr.

7: end if

Relabel Operation: Local relabel operation is applied at a vertex u if it has
positive excess flow but no push is possible to any neighbor due to height mis-
match. The height of u is in-creased in the relabeling step by setting it to one
more than the minimum height of its neighboring nodes in the residual graph Gr.
Algorithm 3 explaines the implementation of local relabel performed on GPUs.

Algorithm 3. KERNEL3 RELABEL
Input: A residual graph, Gr(V, E).
1: Load height h(u) from the global memory to the shared memory of the block.

2: Synchronize the threads of the block to ensure the completion of load.

3: if u is in the current graph then
4: Update the activity bit of each vertex in the residual graph Gr.

5: Compute the minimum height of the neighbors of u in the residual graph Gr.

6: Write the new height to the global memory h(u).

7: end if

Push-relabel algorithmfinds the maxflow/mincut on an edge-capacitatedgraph.
Graph construction is central to any energy minimization method based on the
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Table 1. Comparison of running times(in milliseconds) for one graph cut on GTX 280

with that of Boykov on the CPU on different images

Image Graph Cuts Graph Construction Total

GPU CPU [11] GPU CPU [11] GPU CPU [11]

Flower 37 188 0.15 60 37.15 248

Sponge 44 142 0.15 61 44.15 203

Person 61 140 0.15 60 61.15 201

graph cuts. Our graph-construction exploits the grid-structures of the MRFs de-
fined over images. We adapt the graph construction of Kolmogorov et al. [10],
which maintains the grid structure.α-expansion repeatedly finds the mincut based
on the current graph, the current labelling of the pixels, and the label α. Thus the
structure of the graph changes for each iteration using α. We use a flagged graph-
cuts method, which helps in retaining the grid structure of the graph. We keep a
flag bit with each vertex in the graph, which is set if the vertex is part of the cur-
rent graph. Each vertex participates in the computationonly only if the flag is set
(Step 3 of Algorithm 2 and 3). This way, we maitain the grid structure and restrict
the overall computation. The graph is constructed based on the energy functions
which can change over iterations for some problems. To reduce the overall com-
putation time, the evaluation of the energy functions and the graph construction
are performed on the GPU. Our energy function and graph construction are same
as in [14]. Table 1 compares the times for bilabel segmentation on some standard
datasets on the GPU and the CPU.

2.3 Stochastic Cut

Most of the pixels get their final label after a few iterations on different datasets.
This relates to the fact that the MRF constitutes both simple and difficult
variables [16]. The simple variables settle and get their final label within few
iterations of the graph cuts algorithm. Only few vertices exchange flows with
their neighbours later. Processing vertices which are unlikely to exchange any
flow with their neighbours results in inefficient utilization of the resources.

We determine blocks of vertices that are active at different stages of the graph
cuts algorithm. An active block has at-least one pixel that has exchanged flow in
the previous step. The activity is determined based on the change in the edge-
weights and is marked for each block. Based on the active bit, the kernel executes
the other parts of the algorithm. Figure 1(a) shows the number of active blocks
as the computation progresses. This behaviour of the MRF is data dependent.
In the case of the Tsukuba image for stereo correspondence problem, we see that
the number of active blocks decreases significantly within a few iterations of the
graph cuts. However, in the case of the Penguin image for restoration problem,
the number of active blocks remains almost same throughout the computation.
We delay the processing of a block based on its activity bit by a fixed amount. A
block is processed in every iteration if it is active, otherwise the block is processed
only after 10 iterations. This delaying has no effect on the final convergence as



638 V. Vineet and P.J. Narayanan

Algorithm 4. KERNEL4 STOCHASTIC
Input: A residual graph, Gr(V, E).
1: Check the active bit of the block.

2: Perform Flagged Graph Cuts every iteration on all the above blocks and every 10th

iteration on the inactive blocks.
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Fig. 1. (a) Number of active blocks vs. iteration number and (b) average time vs.

iteration number on different datasets

Goldberg et al. [7] proves that the convergence of the push-relabel algorithm is
independent of the order of processing of the push and relabel operation for each
vertex. However, to maintain the preflow condition at all time, we can apply the
above approach only to the push operation. Algorithm 4 explains the working of
the push-relabel algorithm with stochastic cuts on the GPUs. Figure 1(b) shows
the time taken by each iteration averaged over all cycles.

2.4 Increamental α-Expansion on the GPU

Energy minimization algorithms try to reach the global minima of the energy
functions. They will converge faster if initialized close to optimum point. Ini-
tialization can have a huge impact on the computation time. Reusing the flow
has been the method to initialize better. Kohli and Torr [4] describe a reparam-
eterization of the graph to initialize it for later frames in dynamic graph cuts.
Komodakis et al. [2] extends this concept to multilabeling problems. Alahari et
al. [1] give a simpler model for the same using dynamic α-expansion.

We adapt these methods to get an incremental α-expansion algorithm. We
make three modifications to speed the overall process.

– First, we adapt the re-parameterization given by Kohli and Torr to the
push-relabel algorithm. The final graph of the push-relabel method and the
final residual graph of the Ford-Fulkersons method are the same. We can
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Fig. 2. Incremental α-expansion. Arrows indicate reparameterization based on the dif-

ferences in graph constructed. G
j
i is the graph for iteration j of cycle i.

Algorithm 5. KERNEL5 INCREMENTAL
Input: A residual graph, Gr(V, E).
1: Initialize the graph

2: for the first cycle:

3: Construct graph G1
1for α = 1, save in prev

4: Perform 1-expansion for label 1 using flagged graph cuts

5: Save final excess flow graph in eflow

6: for labels l from 2 to L do
7: Construct graph Gl

1 for current label l
8: Reparametrize eflow based on difference with prev

9: Perform l-expansion for label l using flagged graph cuts

10: Save final excess flow graph in eflow

11: end for
12: for latex cycles i, iterations j
13: Construct graph G

j
i

14: Reparameterize based on G
j
i and G

j
(i−1)

15: Perform l-expansion for label l using flagged graph cuts

apply similar reparametrization steps to the leftover flow for the push-relabel
algorithm. The graph is updated using reparameterization from one step to
another instead of being constructed from scratch.

– Second, we adapt the cycle-to-cycle relation used by Komodakis et al. and
Alahari et al. to α-expansion. For this, we store the graph at the start of each
iteration for future use. The final excess flows at the end of each iteration of
a cycle is also stored for use with the same iteration of the next cycle. The
edge weights for an iteration in the next cycle are compared with the stored
edge weights from the previous cycle. Reparametrization is applied to the
stored excess flow from the previous iteration, based on their difference. The
reparametrized graph is used for the graph cuts in Step 3 of Algorithm 1,
leading to faster convergence. Cycle-to-cycle reuse of flow typically results
in a speed up of 3 to 4 times in practice.

– Third innovation is the incremental step for the later iterations of first cycle,
which has no stored value for reparametrization. Nodes with label i do not
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take part in the iteration i of each cycle; all other nodes do. The graph
remains nearly the same from iteration i to iteration (i + 1), with a few
nodes with label (i + 1) dropping out and those with label i coming in.
We reparametrize the final excess flows from iteration i using the difference
between the graphs at the start of iterations i and (i + 1) for the first cycle.
In our experience, the iteration-to-iteration reuse of flow for the first cycle
reduces the running time of the first cycle by 10-20%.

Figure 2 and Algorithm 5 explain our approach for the incremental α-expansion.
The incremental α-expansion algorithm needs to store L graphs Gj , 1≤j≤L, one
for each iteration. It also stores L excess flows at the end of each iteration of a
cycle. The first cycle needs one additional graph to be stored.

3 Experimental Results

We conducted experiments on a single Nvidia GTX 280 graphics adapter with
1024MB memory on-board (30 multiprocessors, 240 steam processors) connected
to an Quad Core Intel processor (Q6600 @ 2:4GHz) with 4GB RAM running
Fedora Core 9. We tested our algorithm on different standard problems such as
stereo correspondence, image restoration, and photomontage on various images.
Stereo correspondence results are shown on Tsukuba, Venus and Teddy images.
Image restoration results are shown on Penguin image and photomontage on the
Panorama image. All the datasets are taken from the Middlebury MRF page [14].
The energy functions used are the same as used by them.

Figures 3(a), 3(b) shows the results of our approach on Tsukuba, Teddy im-
ages respectively for stereo correspondence. The results of restoration problem
on Penguin image is shown in Figure 3(c) and of photomontage problem on
Panorama image in Figure 3(d). Timings are shown on Middlebury code on the
CPU, Fast-PD and dynamic α-expansion on the CPU, our basic implementation
without flow reuse, and the complete incremental α-expansion. Our incremental
α-expansion on the GPUs is 5-8 times faster than the α-expansion on the CPU
using Middlebury code [14]. Impact of flow-reuse can also be seen from the graphs
in Figure 2.4. Stereo correspondence on Tsukuba image with 16 labels takes
772 milliseconds on the GPU compared to 5.4 seconds on the CPU. Dynamic
α-expansion [1] and Fast-PD [2] takes 3.23 seconds for the same. Figure 3(e)
compares the total times for convergence for different levels of optimization dis-
cussed above on various datasets. Recently, Liang et al. [15] proposed belief
propagation based optimization algorithm on the GPU to solve the energy min-
imization problems, which achieved 4 times speedup compared to the sequential
algorithms. Our proposed algorithm achieves better performance than them.

4 Conclusion

In this paper, we presented the incremental α-expansion algorithm for high-
performance multilabel MRF optimization on GPU. We efficiently utilize the
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resources available on the current GPUs. We are able to get a speedup of 5-8
times on standard datasets on various problems. Our system brings a near-
real time processing of MRF to the reach of most users as the GPUs are now
very popular.
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Abstract. In this paper, we tackle the problem of finding correspon-

dences between three-dimensional reconstructions of a deformable sur-

face at different time steps. We suppose that (i) the mechanical under-

lying model imposes time-constant geodesic distances between points on

the surface; and that (ii) images of the real surface are available. This is

for instance the case in spatio-temporal shape from videos (e.g. multi-

view stereo, visual hulls, etc.) when the surface is supposed approxima-

tively unstretchable. These assumptions allow to exploit both geometry

and photometry. In particular we propose an energy based formulation

of the problem, extending the work of Bronstein et al. [1]. On the one

hand, we show that photometry (i) improves accuracy in case of locally

elastic deformations or noisy surfaces and (ii) allows to still find the right

solution when [1] fails because of ambiguities (e.g. symmetries). On the

other hand, using geometry makes it possible to match shapes that have

undergone large motion, which is not possible with usual photometric

methods. Numerical experiments prove the efficiency of our method on

synthetic and real data.

1 Introduction

Most of the objects observed in the real world are non-rigid. This makes them
particularly important for computer vision. What makes non-rigid shapes chal-
lenging is that their associated deformations exhibit a potentially infinite number
of degrees of freedom. As a consequence they are hard to analyze. One typical
example is the three-dimensional (3D) reconstruction of a person in a multiple
cameras environment. More generally, matching 3D-reconstructed shapes have
numerous applications, among which are reconstruction-based animation, mo-
tion analysis, shape recognition, physical phenomena analysis, etc.

A subject observed at different times usually results in meshes in different
poses. In such a situation, image-based matching algorithms [2,3] tend to fail, as
the motion in between the two poses is too large. Assuming the object surface is
approximately unstretchable, Bronstein et al. [1] designed a matching framework
where geodesic distances between automatically chosen key points are preserved.
Yet, such a criterion fails in case of ambiguities like symmetries. It also yields
inaccuracy when the unstretchability hypothesis is violated.

H. Zha, R.-i. Taniguchi, and S. Maybank (Eds.): ACCV 2009, Part III, LNCS 5996, pp. 644–654, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a) b)

c)

Fig. 1. a) Multiple views of a person in two different poses; b) Mesh based represen-

tation of the reconstructed object and heat map of the geodesic distance to the lower

left foot; c) Correspondence result after optimization

1.1 Our Contributions

Therefore we propose to take the best of both worlds and design an extension of
the work of [1] by adding a photometric term to their energy. We obtain a robust
multi-resolution 3D surface mapping procedure that combines photometric and
geometric information(c.f. Figure 1). We experiment it for non-rigid surface cor-
respondence between two surfaces observed a different time steps in a multiple
cameras environment and demonstrate its superiority.

The paper is organized as follows. Section 2 reviews previous work for non-
rigid shape matching. Section 3 states the problem formulation and Section 4
explores the algorithmic implementation. Finally, numerical experiments on real
data are reported in Section 5 and Section 6 concludes.

2 Related Work

The correspondence problem is one of the fundamental challenges in computer
vision. Might it be in the context of optical flow, calibration or surface regis-
tration. For rigid surface and point cloud registration, Iterative Closest Point
(ICP) and its variants [4] are the standard algorithms. Operating on a purely
geometric level, they rely on approximated differential quantities, e.g. curvature,
or more robust surface descriptors [5]. Recently, several algorithms also address
the problem of non rigid surface registration. They can be mainly divided into
two categories: geometric and photometric. Whereas geometric methods assume
the geometry known, photometric methods estimate structure and motion.

2.1 Geometric Methods

A non-rigid counterpart to ICP was introduced in [6]. Further in [7], the authors
propose a non rigid registration method by piecewise rigid registration and local
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a) b)
Fig. 2. a) Initialization using solely geometric information is sensible to symmetry in

shapes. b) Color coded labeling of the meshes (see text) and our photometric plus

geometric initialization, where ambiguities have been solved.

thin plate spline alignment of range scan images. Elad et al. [8] take an intrinsic
point of view of the matching problem. By isometrically embedding two surfaces
into a common Euclidean space the problem is reduced to the simpler of rigid
matching between surfaces. Following this idea, Bronstein et al. [9] take it one
step further and solve the correspondence problem by embedding the surface
directly into another. The major drawback of this approach is the difficulty to
handle ambiguities like shape symmetries. As the method solely relies on the
distance function of the surface, the algorithm tends to wrongly match pairs of
symmetric points (see Figure 2).

2.2 Photometric Methods

On the photometric side, non rigid registration is commonly known under the
name of scene flow. Vedula et al. [2] were the first to introduce the concept of
scene flow which is the 3D extension of 2D optical flow. It is the simultaneous
reconstruction of structure and motion between time frames. Further work on
scene flow was undertaken by other teams [10,11,3]. As pointed out by Starck et
al. [12], such approaches are limited to small displacements.

2.3 Where Geometry Meets Photometry

Lastly, one can take advantages of both approaches. Several recent papers ad-
dress this problem. In [13], Starck et al. provide a method to register shapes
from silhouette. The method embeds the two surfaces into a common spherical
domain. Using the analytic expression of geodesic distances on the sphere al-
lows to minimize the geometric distance between correspondences and distance
between the associated color feature. This work is the most related to ours in
the sense that they perform an isometric mapping into a common metric space
and use geodesic distances as regularization for the appearance minimization.
In order to be robust with respect to topological changes, hey then developed a
matching algorithm based on a Markov random field optimization [12]. A much
more heuristic approach is used by Ahmed et al. [14]. A set of SIFT features is
computed which are then used for initialization of a refinement model. Lastly,
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the work of Varanasi et al. [15] makes also use of SIFT. The 3D position of the
interest points are used to compute a sparse estimate of the motion field. By
applying a diffusion operator on the sparse motion field, they recover a dense
motion field.

Most of the algorithms presented so far rely on heuristics to put two tempo-
ral meshes into correspondence. In this work we want to consider a more rigorous
model and propose a variational refinement method using ideas from variational
stereo [16] and geometric embedding methods [8,9]. In this way, we recover tem-
poral correspondences between meshes at different resolution and independently
of the combinatorial configuration. Further, our method can handle local elastic
deformations such that the correspondence is consistent with the observed images.

3 Variational Matching

Let S1 and S2 be the two surfaces to match. Each of them is observed by a
certain number of cameras. Although not required, we simplify notations and
suppose that the number and positions of the cameras are constant, so that
both surfaces are observed by n cameras defined by their respective projections
Π1, . . . Πn. We denote by Ik

i the ith image of surface k.
Following [9], we use a Lagrangian point of view where a set of m corre-

spondences are constrained to move on the surface such that they minimize a
given energy. We denote (P 1

i , P 2
i ) such a correspondence where P k

i ∈ Sk and
Θ = {(P 1

i , P 2
i ), 1 ≤ i ≤ m} the set of all correspondences. m is a fixed integer

that can be estimated during initialization (see Section 4.2). Our energy is a
function of parameter Θ that writes:

Etot(Θ) = αEgeom(Θ) + βEphoto(Θ) (1)

The first term Egeom is the geometric part, taken from the work of Bronstein
et al. [1] while Ephoto is our photometric attachment. As usual, α and β are
positive constants that control the relative weights among these terms. Minimiz-
ing energy (1) with respect to Θ will position the correspondences on the mesh
such that their projections in the images minimize a photometric dissimilarity
measure while geodesic distances on the surfaces are respected.

3.1 Geometry

Bronstein et al. [9] propose to embed near-isometric surfaces one into another
by minimizing the following energy:

Egeom(Θ) =
∑
i>j

(dS1(P 1
i , P 1

j ) − dS2(P 2
i , P 2

j ))2. (2)

where dSk is the geodesic distance on surface Sk. Again, this energy suffers
mainly from two weaknesses: (i) symmetries yield ambiguities and (ii) if the
object undergoes locally elastic deformations between shape S1 and shape S2,
geodesic distances are not exactly preserved. Note that this is also the case when
the surface are 3D reconstructions, since they are unavoidably noisy.
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3.2 Photometry

For our image matching term Ephoto, we chose the normalized cross-correlation
to measure similarity between corresponding points. Its simplicity, robustness
in the presence of varying lighting conditions and differentiability make it a
common choice in variational methods. Each surface point is generally seen from
several cameras and one might be tempted to correlate multiple pairs of images.
However, in our experiments, the number of cameras is relatively small. Thus,
using information from only one pair of camera for each surface point reveals to
be enough.

As a first step, for each surface Sk, we associate to each point M ∈ Sk an
optimal image Ik

lk(M). Choice of labels lk might be guided by different criteria.
Here, we compute partitions of the surfaces following [17]. This method assigns
smoothly each point to a label corresponding to the camera from which it is best
viewed. Using graph-cut optimization, the labeling is obtained by minimizing a
weighted sum of two terms which realizes a good trade off between resolution
and color continuity, while respecting occlusions (c.f. Figure 2b).

Let lk(i) be a short notation for lk(P k
i ), our photometric energy then writes:

Ephoto(Θ) =
m∑

i=1

g[NCC(I1
l1(i) ◦ Πl1(i), I

2
l2(i) ◦ Πl2(i))(P 1

i , P 2
i )] (3)

where g is a positive decreasing function and NCC(f1, f2)(M1, M2) denote
the normalized cross-correlation of functions f1 and f2 between two related
neighborhoods of points M1 and M2.

Following the stereovision work of Keriven et al. [16], we approximate locally
the surfaces by their tangent planes at points Mk. In their case, only one surface
is considered and M1 and M2 are the same point, with the same tangent plane,
thus the same neighborhood. Their correlation boils down to correlating image
regions related by a homography. In our case, we suppose that the tangent plane
to S1 at point M1 and the tangent plane to S2 at M2 are related by a given
two-dimensional isometry IM1,M2 sending M1 to M2. Under this assumption,
neighborhoods on the respective tangent planes are related and the correlation
NCC(f1, f2)(M1, M2) is correctly defined. Moreover, it (and its derivatives)
remains easy to compute since corresponding image regions are still related by
a homography.

Introducing the isometry IM1,M2 are each point pair (M1, M2) might be
thought as problematic since one would require to match the surfaces to know
it, yielding a chicken and egg problem. Practically, this is not the case. As usual,
we will minimize the energy by mean of a gradient descent starting from a coarse
initialization (see Section 4). This approximate solution reveals to be sufficient to
obtain a robust IM1,M2 . We proceed the following way: (i) each correspondence
point P k

i defines a geodesic distance map dSk(P k
i , .) on Sk; (ii) the gradients

of these distance maps at a given point Mk defines local directions that should
correspond from one surface to the other if M1 corresponds to M2; (iii) as a
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consequence, the best1 isometry from the tangent plane at M1 to the one at M2

that sends both M1 to M2, and the distance gradients directions at M1 to the
ones at M2, is a good estimate of IM1,M2 . Please note that computing distance
maps is no extra cost since it is part of Egeom. Note also that the isometries
I are actually needed only for the pairs (P 1

i , P 2
i ) and that they will be refined

during the gradient descent iterations as the pairs moves.

4 Optimization

4.1 Discretization

We suppose that the surfaces are both discretized as collections of triangles.
Following [9], points P k

i are taken as barycenters of triangle vertices. Θ consists
in a choice of triangles and corresponding barycentric coordinates. The geodesic
distances between all vertices of the mesh are computed using the Fast Marching
algorithm for triangular surfaces [18,19]. Geodesic distance is then interpolated
like in [9] (note that the problem is not only to interpolate the distance at some
barycenter, but also the distance to some barycenter).

For the photometric part of the energy, discretization is not a particular issue:
the labeling method [17] is designed for triangle meshes, and we use a standard
normal interpolation method to estimate the tangent planes.

Minimizing the energy with respect to both the P 1
i ’s and the P 2

i ’s is obviously
not well posed. Although different cases might happen, in our experiments we
have no further constraint on the choice of the points to be matched. Thus, we
fix points P 1

i to their initial position (see Section 4.2) and minimize the energy
with respect to the positions of points P 2

i .
As written above, we use a classical gradient descent. Properly minimizing

it is not trivial because the problem is non-convex. In order to cope with local
minima, we apply a multi resolution strategy, considering the problem at several
scales. Once a solution is found at a coarse scale, it is used to initialize the
problem at a finer scale. Our problem has two scalable dimensions. The first one
is the number of correspondences and the second is the scale of the images. This
leads to a two step multi resolution scheme. Starting with a small number of
correspondences, we iteratively increase the number of points by interpolating
the solution from the coarser level to the next finer level. This scheme is adapted
from [20]. Then, at each level, we perform a gradient descent in a multi scale
manner using a Gaussian pyramid of the images.

4.2 Initialization

We first have to initialize the correspondences. Copying [20], we take advantage
of the geodesic distance maps and use the farthest point sampling (FPS) strat-
egy [21] to get geometry-based feature points on the surfaces. For near isometric

1 In the least squares sense.
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surfaces we can expect the sampling to be almost identically distributed on
both surfaces S1 and S2 [9]. Taking photometry into account to avoid geometric
ambiguities, we then reject points that have an autocorrelation score below a
given threshold, thus corresponding to non textured regions. As in [20], points
are then associated using branch and bound optimization [22], yielding m initial
pairs. Here, to the initial geodesic distance based criterion, we add a photometric
one in order to get rid of geometric ambiguities. Because no correlation is possible
(at this stage, tangent planes cannot yet be related by isometries), we use SIFT
descriptor based similarity, being thus invariant to scale and orientation. The
results of the initialization of the correspondences can be viewed in Figure 2.
Note how geometric ambiguities are solved.

4.3 Gradient Descent

Optimization is performed at all scales until convergence is reached, i.e. norm
of the gradient is below a given threshold. The expressions of the gradients of
the geometric and the photometric parts of our energy can be found in [20]
and [16] respectively. Remember that Θ consists in these coordinate but also in
the choice of the triangles to which the barycenters are related. As in [9], the
gradients are computed for a fixed such choice. However, when a point P k

i gets
out of its related triangle, we force it to stop at the reached edge and assign it to
the triangle at the ”other side” of this edge. Doing this way, points travel gently
from one triangle to another if needed.

5 Results

In order to validate the proposed method, we run several experiments on real and
synthetic data. First, we test it on a synthetic dataset. In a second experiment,
we validate our algorithm on real images.

5.1 Validation

Our first experiment focuses on the validation of our energy by testing the algo-
rithm on a synthetic dataset (8 cameras) and comparing to the result of [9]. This
experiment aims at justifying the photometric part of the energy. The parameter
α is set to 1.0 whereas β equals 8.0. We take 12 pairs of correspondences and
a 3 level Gaussian pyramid. The advantages of our initialization having already
be demonstrated on Figure 2, we rather launch the original method proposed
by Bronstein et al. [9] with our initialization. The red dots in the left image
of Figure 3a are some of the P 1

i projected on the front image of S1. The red
dots in the right image of Figure 3a are the projections of the corresponding
P 2

i obtained after running the optimization of [9]. The green dots correspond
to the result obtained with our combined photometric-geometric optimization.
One can clearly see, the green dots are consistent with the initial sampling in
the left image although the zone around the knee and shoulder exhibit elastic
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a) b)

Fig. 3. a) On the left, the front image of the first mesh, red dots being the projec-

tions of some key points. On the right, the front image of the second mesh, showing

the reprojections of the corresponding points, in red obtained with the method in [9]

(initialized with our method), in green obtained with our method. b) Shows the same

correspondences directly on the meshes with the same color code. The inaccuracies of

[9], here due to local elastic deformations, are corrected by our photometric + geometric

criterion.

deformation. Whereas the red dots in the right image ignore the image signal
and are pushed away by the local elastic deformations. Figure 3b shows the same
points on the meshes.

5.2 Real Data

In order to see how our method performs, we run several experiments on image
data courtesy of J. Starck2 [23], again with 8 cameras. In this experiment the
number of correspondences is 150 and the number of image levels is set to 3. α
and β are set to 0.9 and 1.5 respectively. The results are depicted in Figure 4.
Notice how the method of [9] fails to solve the matching problem. Local elastic
deformations are observed in both cases (Figure 4a and 4c) and wrong matches
occur because of symmetry. Nevertheless, our method can handle the symmetries
and local elastic deformations as can be noticed the around the hair and the back
in Figure 4b and in the zones located on the skirt and the hair in Figure 4d.

2 http://personal.ee.surrey.ac.uk/Personal/J.Starck/
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Fig. 4. Results on a real-worl dataset[23]. a) and c) show the results obtained using

the method in [9]. b) and d) are obtained using our method.
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6 Conclusion

We have described a variational framework for the correspondence problem of
non-rigid surfaces coming from multi-view reconstruction or from any setup that
provides images of the scene. By using photometric and geometric information,
our method improves the one by Bronstein et al. [9] and allows to cope with elas-
tic stretches and symmetries of the shape. Like in the initial work, and contrary
to usual photometric methods, we are not limited to small deformations. Nu-
merical experiments show the success of our method. Our future work includes
extending our framework to surfaces with varying topology. A first step in this
direction could be the use of more robust embedding such as the one proposed in
[24]. Another improvement is the use of second order information in the gradient
descent in order to perform Newton steps. Finally, we notice that regularization
is important in low-textured image regions. Therefore we currently investigate
the effect of automatically setting the control weights as proposed in [25] in
another context.

Acknowledgement. We would like to thank A.M. and M.M. Bronstein for
their kind help and for providing their code.
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Abstract. This paper considers two major applications of shape match-

ing algorithms: (a) query-by-example, i. e. retrieving the most similar

shapes from a database and (b) finding clusters of shapes, each repre-

sented by a single prototype. Our approach goes beyond pairwise shape

similarity analysis by considering the underlying structure of the shape

manifold, which is estimated from the shape similarity scores between

all the shapes within a database. We propose a modified mutual kNN

graph as the underlying representation and demonstrate its performance

for the task of shape retrieval. We further describe an efficient, unsu-

pervised clustering method which uses the modified mutual kNN graph

for initialization. Experimental evaluation proves the applicability of our

method, e. g. by achieving the highest ever reported retrieval score of

93.40% on the well known MPEG-7 database.

1 Introduction

Shape is a key feature for computer vision applications. For example, contour-
based object recognition methods [1,2,3] have recently shown to outperform ap-
pearance based methods, because shape is a strong feature for recognition as
psychophysical studies [4] have shown. Object contours are invariant to extreme
illumination conditions and large variations in texture or color and for some
categories shape is more generic than appearance. Automated comparison and
grouping of shapes is very often the basis in the areas of human detection [5] or
action recognition [6].

The key part in all these applications is a robust and efficient shape matching
method, which allows quantifying the similarity between two input shapes. The
calculated similarity scores are the basis for different tasks, like retrieving most
similar shapes, identifying clusters within databases or finding exemplary shape
prototypes. These tasks are complicated by the fact that similarities of shapes do
not lie in a metric space, e. g. are asymmetric or violate the triangle inequality.
Therefore Euclidean analysis is not sufficient for handling shape similarities.
State-of-the-art shape matching performs pairwise analysis and ignores the fact
that distances between all other shapes contain important information about
the shape manifold. Therefore, recently some effort was put on post-processing
the obtained similarity scores by analyzing the estimated similarities between
� The authors gratefully acknowledge financial support from Research Studios Austria
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all given shapes to increase the discriminability between different shape groups
as e. g. in [7,8].

In this paper we focus on the analysis of given shape similarity scores. Hence,
we assume that we have a shape matching method which is invariant with respect
to geometric transformations like translation, rotation and scale and is also ro-
bust against noise and outliers. We have chosen the method of Ling and Jacobs [9]
which achieves state-of-the-art results on reference datasets. Our underlying idea
is to process shape similarities beyond the pairwise formulation based on analyz-
ing the emerging shape manifold and its geodesics. We show that it is possible
to significantly improve results for two important shape matching applications:
(a) query-by-example, i. e. the retrieval of most similar shapes and (b) the auto-
mated clustering of silhouettes. Although different outputs are desired for both
applications we show that we can use the same underlying representation for
both tasks.

The simplest shape retrieval approach is to compare the query shape to all
other shapes within a database and to sort the similarities by increasing dissim-
ilarity score. Such an approach ignores the fact that also distances to all other
shapes contain important information about the overall shape manifold. There-
fore, we propose a method that allows to improve retrieval results by analyzing
the underlying structure of the shape manifold. We capture the manifold struc-
ture of the data by defining a neighborhood for each data point in terms of a
modified version of a mutual k-nearest neighbor graph which yields improved
performance on all analyzed databases.

Shape clustering identifies similar groups of shapes and corresponding cluster
prototypes as e. g. presented in [10,11]. We propose a novel efficient clustering
approach and show that it is possible to use the same data-structure as in the
retrieval task, i. e. the modified mutual k-nearest neighbor graph, to obtain state-
of-the-art clustering results.

Section 2 of this paper describes the proposed combined normalization and
graph-based analysis scheme for given affinity matrices to improve shape re-
trieval. In Section 3 we present our novel, unsupervised clustering algorithm
which benefits from the previous sub-manifold analysis through initially sta-
ble label assignment. Finally Section 4 provides an exhaustive evaluation of the
shape retrieval and clustering results for reference databases.

2 Shape Retrieval by Modified Mutual kNN Graph

Given a set of N shapes, a shape matching algorithm e. g. [12,9,13] can be ap-
plied to obtain a N × N distance matrix A to describe the pairwise relations
between all shapes in terms of a dissimilarity measure. Such descriptions are typ-
ically asymmetric, violate the triangle inequality and are therefore non-metric.
Ideally the dissimilarities are low between intra-class shapes and high for extra-
class objects. Unfortunately, shape matching methods do not show this ideal
behavior, that is why we introduce a post-processing step that deploys matrix
normalization and subsequent analysis on the original distance matrices.
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The provided distance matrix allows comparing shapes beyond a pairwise for-
mulation, based on the emerging shape manifold and its geodesics. This was
e. g. considered in [7,14], where the authors aim on finding element-wise nor-
malization parameters σij which generates a N × N affinity matrix W from a
distance matrix A by

wij = exp

(
−a2

ij

σ2
ij

)
. (1)

The proper choice of σij allows to pull intra-class objects together (σij 
 aij)
and push extra-class objects apart (σij � aij). We normalize by using local
scaling which was proposed by Zelnik-Manor and Perona in [14]. They define

σij = σiσj with σi = aiK(i) , (2)

where K(i) is the index of the Kth nearest neighbor of object i. The normal-
ization scheme enforces embedding of sub-manifolds which represent separable
clusters for all objects within the regions defined by σij . Analysis of such regions
is typically performed using graph based methods which aim on capturing the
underlying local structure. Connected regions in such graphs are exploited to re-
flect the interdependence between objects, i. e. by finding shorter paths between
matching objects than between non-matching objects.

The set of neighborhood graphs is shortly described in the following: Let each
shape be represented by a vertex v ∈ V in the graph G(V, E). The edge weights
e(vi, vj) between vertices (vi, vj) are determined by the non-negative normalized
affinity matrix distances wij , where wij = 0 means that there is no connection
between vertices (vi, vj). The amount of connections between the vertices can
be regularized with respect to the chosen neighborhood graph:

– The ε-neighborhood graph Gε(W, ε) connects all vertices (vi, vj) if wij ≤ ε
– The (symmetric) k nearest neighbor graph Gk(W, k) connects all vertices

(vi, vj) if vi ∈ kNN(vj) or vj ∈ kNN(vi)
– The mutual k nearest neighbor graph Gm(W, k) connects all vertices (vi, vj)

if vi ∈ kNN(vj) and vj ∈ kNN(vi)

kNN(vj) denotes the set of k nearest neighbors of vertex vj . The use of ε-
neighborhood graphs requires wij on same scales which means that the object
points in the underlying regions have to form non-elongated, tight clusters. In
contrast, k nearest neighbor graphs are able to connect regions on different scales,
since only the absolute neighborhood ranking is of interest. k nearest neighbor
and ε-neighborhood graphs are widely used for analyses while mutual k nearest
neighbor graphs are mostly ignored despite their interesting properties.

The mutual kNN graph does not allow mixing differently scaled regions and
may thus be considered as a hybrid form of ε-neighborhood and k nearest neigh-
bor graphs since it is able to cluster regions with both, high or low density. As
the normalization step is trying to enforce an establishment of tight and densely
settled sub-manifolds, the mutual neighborhood constraint (which requires that
two connected objects belong to each others k neighborhood) intuitively seems
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to be supportive for the analysis step. The major limitation of the mutual k near-
est neighbor graph lies in its inherent inability to generate single clusters from
mixed density regions, especially if there are isolated regions or single isolated
objects within a cluster. In order not to relinquish on the mutual neighborhood
constraint but enclose such objects or regions, we introduce a non-symmetric
mutual neighborhood criterion that allows edge construction in a modified mu-
tual k nearest neighbor graph Gmm(N, k) between vi and vj if

vj ∈ kNN(vi) and vi ∈ ckNN(vj) , (3)

where c ≥ 1. The asymmetry coefficient c allows to control the range of neigh-
borhood incorporation during the mutual k nearest neighbor graph construction.
Considering extremal values for {c = 1, c = ∞}, this parameter allows tuning
between symmetric mutual and standard kNN graph behaviour.

In addition to the modification in the graph construction, we exploit possible
asymmetries of the input affinity matrix W . We exchange edge weights e(vi, vj)
with the smaller distance of wij and wji according to

e(vi, vj) = min(wij , wji) where e(vi, vj) > 0 (4)

which leads to an undirected graph, i. e. a symmetric affinity matrix W .
For a certain query shape, shape retrieval is performed by exploiting the

graph structure in terms of connectivity and path lengths. Thus, the order of
the retrieved shapes is determined by the path lengths of connected objects in
the graph.

3 Shape Clustering and Prototype Identification

Shape clustering finds groups of similar shapes. Since we focus on analyzing
affinity matrices, any pairwise clustering algorithm can be considered for this
step. Instead of applying one of the standard approaches we propose a novel,
unsupervised clustering method which is based on the modified mutual kNN
graph Gmm presented in Section 2. We use the same underlying data structure
for retrieval and clustering. As it is shown in Section 4, our method outperforms
the recently proposed affinity propagation [15] algorithm, which is considered as
state of the art for non-metric clustering.

Our method is inspired by the graph-based segmentation framework of Felzen-
szwalb and Huttenlocher [16] but significantly differs due to a different merging
criterion and beneficial initialization derived from the modified mutual kNN
graph. In addition, our method intrinsically provides representative prototypes
for each cluster. The algorithm consists of two subsequent steps: First, we iden-
tify a set of stable initial labels derived from the vertex degrees of potential
cluster prototypes. Second, an agglomerative clustering approach iteratively re-
fines the initial labeling effort until certain cluster merging conditions are not
fulfilled anymore.
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3.1 Label Initialization

The initialization of our clustering method uses the proposed modified mutual
kNN graph Gmm(V, E). The aim of label initialization is to find an initial par-
tition of the graph by assigning a unique label l(vi) to all its nodes in such a
way that (structurally) coherent and connected nodes receive identical labels. To
identify the initial cluster prototypes we first determine the degree d of a vertex
vi by the cardinality of its neighborhood M(vi) = {vj|e(vi, vj) ∈ E} according to

d(vi) = |M(vi)| . (5)

We define a set of triples D = ({v1, d1, M1}, . . . , {vN , dN , MN}) which stores
the degree and the set of neighbors for all nodes. Let D̃ be the sorted triples
from D with respect to d in a non-decreasing order. The degree (and thus the
position) of a vertex in D̃ can be associated with its ’popularity’ to be connected
to within the graph (remember that di ≤ (c ·k) and hence |E| ≤ c ·kV ). Vertices
with high degrees are considered to be more stable and thus more appropriate
as cluster prototypes than those with lower degrees. Label initialization is an
iterative process which starts with assignment of labels from lowest to highest
degree nodes according to

l(Mi) = vi with {vi, di, Mi} ∈ D̃, ∀ i = 1 . . .N (6)

and delivers a set of initial labels LI = (l1, . . . , lq), q ≤ N . Since objects are likely
to be found in each others neighboring sets multiple times, the labels may also be
overwritten multiple times during the initialization process. In a subsequent step
we check that every initially assigned label in LI is also its own label l(vi) = vi.

In such a way, the provided labeling defines an initial partition of the input
graph Gmm(V, E), which we refer to as clusters C = {C1, . . . , Cq}. The assigned
labels simultaneously identify the sets of cluster members M1, . . . , Mq, along
with the cluster prototypes

vCi = l(vi) . (7)

Please note that our subsequent clustering algorithm is generic and can be
initialized with different strategies.

3.2 Clustering

The main idea of our clustering method is to iteratively merge the clusters
C = {C1, . . . , Cq} provided by the initialization described in Section 3.1. In each
step, we evaluate a criterion comparing intra to inter-cluster distances which
decides whether two currently considered clusters should be merged or not.

The clustering algorithm is based on the evaluation of four different distance
measures: the intra-cluster distance Intra(Ci), the intra-cluster path length
PIntra(vCi , Ci), the inter-cluster distance Inter(Ci, Cj) and the inter-class up-
per bound distance Interbnd(Ci, Cj). While the first two analyze intra cluster
distances and therefore compactness of single clusters, the latter two describe
the dissimilarity between two given clusters.
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The intra-cluster distance Intra(Ci) is defined as

Intra(Ci) = max
e∈Ci

w(e), (8)

which is the maximum edge weight w(e) between all cluster nodes associated to
the cluster Ci.

The intra-cluster path length PIntra(vCi , Ci) is defined as the sum of shortest
paths between the cluster prototype vCi and all associated intra-cluster elements
M by

PIntra(vCi , Ci) =
|M|∑
m=1

u(vCi , Mm), (9)

where u(vi, vj) denotes the shortest path between two nodes of the graph, which
can be calculated by e. g. using Johnson’s or Dijkstra’s algorithm. The intra-
cluster path length quantifies how suitable a node vi is to be a cluster prototype.

In contrast to using the minimal distances between clusters as proposed in [13],
we define the inter-class distance Inter(Ci, Cj) between two clusters as the short-
est path between the corresponding cluster prototype as

Inter(Ci, Cj) = u(vCi , vCj ), (10)

where for cluster pairs (Ci, Cj) with non-existing paths u(vCi , vCj ) we set
Inter(Ci, Cj) = ∞.

Finally, we define a cluster-pair specific upper bound for the inter-cluster
distances Interbnd(Ci, Cj) which regulates the compatibility of two clusters to
be merged as

Interbnd(Ci, Cj) = min (Intra(Ci) + Tτ(Ci), Intra(Cj) + Tτ(Cj)) . (11)

τ(Ci) is the normalized intra-cluster path length defined as

τ(Ci) =
PIntra(vCi , Ci)

|Ci| (12)

and is a self-scaling tolerance value, which together with the parameter T influ-
ences the overall granularity of the clustering results.

Our clustering algorithm is described in detail in Algorithm 1. We expect the
initially derived clusters C = {C1, . . . , Cq} (found by label initialization) with
higher cardinality to be better suited as prototypes than those with lower cardi-
nality. Let C̃ = {C̃1, . . . , C̃q} with |C̃1| ≤ |C̃2| ≤, . . . ,≤ |C̃q| denote the initially
obtained clusters, sorted with respect to their cardinality in non-decreasing way.
The merging process now iteratively considers cluster pairs for merging, analyz-
ing the criterion

Inter(C̃i, Cj) ≤ Interbnd(C̃i, Cj) , (13)

where for Cj all other clusters are iteratively considered.
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The merging process simply assigns the joined set of members Mi∪Mj to the
prototype with the smaller intra-cluster path length, updates the prototype label
and deletes the deprecated cluster from C. Please note that as it is described in
Algorithm 1, clusters containing only a single node are separately handled. The
merging process is either halted by graph-topological issues (when only isolated
or connected components are left) or by insuperable inter-cluster dissimilarities.

Algorithm 1: Clustering
Input: 1. Modified mutual kNN graph Gmm(V, E) with |V | = N ver-
tices. The number of edge connections in the graph has an upper bound-
ary of |E| ≤ ckN . 2. Initial partition C = {C1, . . . , Cq}, q ≤ N of
Gmm(V, E), together with associated prototypes vCi as defined in Sec-
tion 3.1.
Output: Resulting clusters CR = {C1, . . . , Cr}, r ≤ q together with
their labels LR = (l1, . . . , lr), simultaneously denoting the respective
cluster prototypes.
1. Determine shortest paths U between all initial cluster prototypes vCi

and V .
2. Store cluster members M = {M1, . . .Mq} for all clusters C =

{C1, . . . Cq} together with current internal distances Intra(Ci).
3. Sort C with respect to its cardinality in non-decreasing order in C̃.
4. Iterate sub-steps (a). . .(c) through C̃ until no further merging is

possible.
(a) If |C̃i| = 1: Find smallest relative change for

PIntra(vCj , [Cj ])

PIntra(vCj , [C̃i ∪ Cj ])
, ∀ C̃i �= Cj and mark for merge.

(b) Else: If
(
Inter(C̃i, Cj) ≤ Interbnd(C̃i, Cj)

)
, ∀ C̃i �= Cj , Mark

C̃i and Cj for merge.
(c) Merge: If marked clusters are found: Determine new prototype

vC ← argminv∈{v
C̃i

,vCj
} PIntra(v, [C̃i ∪ Cj ]), update member

list and Intra(C). Remove deprecated cluster from C̃.
5. Return final clustering result CR with labels LR.

4 Experimental Results

We evaluate the proposed methods for the tasks of shape retrieval (Sec-
tion 4.1) and clustering (Section 4.2) on the well-known KIMIA99 and MPEG-7
databases. The KIMIA99 database consists of 99 shapes which can be grouped
into 9 classes, each consisting of 11 objects [17]. The MPEG-7 CE-Shape-1
database is widely used for testing the performance of shape description and
matching algorithms [9,13]. It consists of 1400 silhouette images which are
grouped into 70 classes with 20 objects per class.

In all experiments we use the shape matching method IDSC+DP (inner dis-
tance shape context with dynamic programming matching) proposed by Ling
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and Jacobs in [9] to build the input dissimilarity matrices. This algorithm can
be considered as state of the art, i. e. it is one of the top ranking algorithms
on MPEG-7.

4.1 Shape Retrieval Experiments

For evaluating the shape retrieval performance we apply the proposed normal-
ization and analysis scheme described in Section 2 on the similarity matrices of
KIMIA99 and MPEG-7. In all experiments we set K = 8 for the local scaling
normalization and use k = 6 nearest neighbors with asymmetry coefficient c = 2.

Table 1 shows the results for KIMIA99. Scores are calculated as the sum of
correctly retrieved shapes from all classes within the first 10 objects. Therefore
the best resulting score for each of them is 99. We show the best shape matching
results achieved without post-processing and in addition the results of Yang
et al. [7] who presented improvements which analogously to ours are set on top
of existing shape similarity matrices. They worked on the same shape similarity
matrix provided by IDSC-DP which allows a fair and direct comparison. As can
be seen, our approach is the first to achieve a perfect retrieval score of 100% and
boosts the results of the non-processed similarity matrix by approximately 3%.

Table 1. Perfect retrieval results for KIMIA99 database with proposed method. We

compare to results of state-of-the-art approaches (taken from [7]).

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Score [%]

Shock Edit [17] 99 99 99 98 98 97 96 95 93 82 96.57

IDSC+DP [9] 99 99 99 98 98 97 97 98 94 79 96.77

Shape Tree [13] 99 99 99 99 99 99 99 97 93 86 97.88

Graph Transduction [7] 99 99 99 99 99 99 99 99 97 99 99.79

Our method 99 99 99 99 99 99 99 99 99 99 100.00

The retrieval rate for the MPEG-7 database is measured by the so-called
bullseye score which counts all matching objects within the 40 most similar can-
didates. Since each class consists of 20 objects, the retrieved score is normalized
with the highest possible number of hits (20×1400). The results confirm the pro-
posed normalization and analysis scheme by delivering the highest ever reported
retrieval score of 93.40%, boosting the non-processed results by 8%. Table 2
lists a comparison with state-of-the-art approaches. Our post-processing scheme
clearly outperforms the recently proposed method of Yang et al. in [7] in terms
of retrieval score and execution time with a speed-up of more than 2000. We
use their publicly available MATLAB-implementation for comparison. We also
implemented our method in MATLAB and the computation time was evaluated
for both approaches using a single-core standard desktop PC with 2.3GHz.

In Figure 1 we show some selected shape retrieval results from the MPEG-7
database. We show the query shape (in red) and its first 19 retrieval results
without and with application of our proposed method.
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Table 2. Highest ever reported bulls eye score for MPEG-7 database with proposed

method. We compare to results of state-of-the-art approaches (taken from [7,8]).

Algorithm

Shape description & matching Post-proc.

CSS IDSC Hier. Shape Graph Densified Our
[18] + DP [9] Procr. [12] Tree [13] Transd. [7] Spaces [8] method

Score [%] 75.44 85.40 86.35 87.70 91.00 93.32 93.40
Time [s] - - - - 6444 - 3.2

Fig. 1. Comparison of retrieval results before (odd rows) and after improving affinity

matrix (even rows) on samples from MPEG-7 database. The first column shows the

query shapes (in red) followed by their best 19 matching objects.

To evaluate the influence of different parameter settings on the retrieval scores
we show parameter dependent retrieval scores for the MPEG-7 database in
Table 3. As can be seen the results are quite stable when using parameters
in the range of 5 ≤ k ≤ 8 and 2 ≤ c ≤ 4. Furthermore Table 3 clearly shows that
the introduction of our asymmetry criterion c for the construction of the modi-
fied mutual kNN graph performs substantially better than a standard symmetric
mutual nearest neighbor graph (c = 1).

Table 3. Retrieval scores in % for MPEG-7 database with previous local scaling nor-

malization (K = 8) as a function of the modified mutual kNN graph construction

parameters c (asymmetry criterion) and k (number of nearest neighbors)

c vs. k 4 5 6 7 8

1 65.61 80.49 88.88 90.28 92.03

2 89.64 92.66 93.40 93.36 92.99

3 90.99 93.19 93.01 92.95 92.73

4 91.40 93.02 92.95 92.75 92.52
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4.2 Shape Clustering Experiments

For evaluating clustering performance we applied our method presented in Sec-
tion 3 again on the KIMIA99 and the MPEG-7 databases. We compare our
results with the MATLAB implementation of affinity propagation [15]. Affinity
propagation is considered as state of the art in the area of non-metric clustering.
It iteratively maximizes the total similarity between data points and their ex-
emplars through message passing. It works in an unsupervised manner and the
desired granularity of the clustering result can be controlled via a so-called pref-
erence parameter. For standard parameterization, affinity propagation suggests
to use the median of the input affinity matrix as preference parameter. In our
method we set the granularity parameter T = 1, see Equation (11).

Figure 2 compares results for the KIMIA99 database. Each row denotes one
identified cluster, starting with its respective cluster prototype. As can be seen
we get a perfect clustering result, in contrast to affinity propagation which is not
able to merge some of the clusters.

Fig. 2. Clustering results on KIMIA99 database with standard parameterization, where

each row represents one identified cluster with its associated prototype in the first col-

umn (red). Left: Perfect results of our proposed algorithm. Right: Affinity propagation

identifies 13 clusters.

Figure 3 compares the algorithms on the MPEG-7 database. Figure 3(a) shows
the execution time as a function of the number of input shapes with default pa-
rameterization. It is clearly demonstrated that our approach outperforms affin-
ity propagation in terms of execution time. In Figure 3(b) we show the achieved
clustering quality results with respect to the number of detected clusters for the
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Fig. 3. Comparisons between affinity propagation and our clustering method on

MPEG-7 database

whole 1400 × 1400 MPEG-7 database. We changed the granularity parameters
(T in our approach and the preference vector for affinity propagation) to deliver
different numbers of cluster. We used the normalized mutual information (NMI)
to quantify the final clustering quality [19]. As can be seen, we get a substan-
tially better NMI-value (the higher, the better), close to the true number of
clusters (70).

5 Conclusion

In this work we have presented a novel shape retrieval and clustering method
that, applied on top of any existing shape matching algorithm, allows to
significantly improve results in shape retrieval and clustering. We take a step
beyond the conventional, pairwise shape comparison by investigating the emerg-
ing shape-manifolds through efficient normalization and a novel, graph-based
analysis. Experiments demonstrated the applicability of out method concerning
execution time, retrieval rates and clustering performance, e. g. by achieving the
highest ever reported retrieval scores on the well-known MPEG-7 and KIMIA99
databases. Since our approach is generic and can be applied to any similarity
matrix, we plan to further evaluate our method on standard machine learning
databases.
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Abstract. We propose a method for multi-view reconstruction from

videos adapted to dynamic cluttered scenes under uncontrolled imaging

conditions. Taking visibility into account and being based on a global

optimization of a true spatio-temporal energy, it offers several desir-

able properties: no need for silhouettes, robustness to noise, independent

from any initialization, no heuristic force, reduced flickering results, etc.

Results on real-world data proves the potential of what is, to our knowl-

edge, the only globally optimal spatio-temporal multi-view reconstruc-

tion method.

1 Introduction

In recent years, several methods for automatic generation of complete spatio-
temporal models of dynamic scenes from multiple videos have been proposed
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. In particular, the most recent ones have
proven effective for full-body marker-less motion capture. Many of these tech-
niques rely on the visual hull concept[16], among which [1,3,15]. Computationally
efficient, they suffer from several limitations: they provide an approximate re-
construction; this one has to be a closed surface; and, above all, silhouettes have
to be segmented in the videos, practically limiting the method to controlled con-
dition capture with a known background. This latest limitation may be lifted
when prior knowledge about the geometry is available: free-form deformation of
a template body model [2,11,15], Laplacian deformation of a laser scan of the
initial pose [4,5], etc. Yet, these methods are unable to recover genuine geometric
details such as facial expressions and clothing folds and wrinkles. An exception
might be the method proposed by Furukawa et al. [6]. Yielding visually impres-
sive results, this method does not rely on global optimization and handles the
occlusion problem via heuristics.

1.1 Our Approach

In this paper, we propose a method for multi-view reconstruction from videos
adapted to dynamic cluttered scenes under uncontrolled imaging conditions.
Taking visibility into account and being based on a global optimization of a true
spatio-temporal energy, it offers several desirable properties.
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c© Springer-Verlag Berlin Heidelberg 2010
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Starting from work by Labatut et al. [17], our method might be seen as its
spatio-temporal extension. It is based on modeling an evolving three-dimensional
surface as a four-dimensional surface [1,18,7]. More precisely, we first generate
a quasi-dense 3D point cloud of the scene at each time step and merge the
result into a 4D point cloud. This process is conducted in a lenient manner, thus
possibly retaining many false matches. Then, we build an adaptive decomposition
of the 3D+time space by computing the 4D Delaunay triangulation of this cloud.
Finally, we label the Delaunay pentatopes as empty or occupied thus generating a
4D surface. Graph-cut based, this assignment is globally optimal and compatible
with the visibility in input images. Optionally but not necessarily, the 3D surfaces
corresponding to each time step might be obtained considering 3D slices.

1.2 Contributions

Our method has several significant advantages. First, it is not based on visual
hulls:

– The videos do not have to be taken under controlled conditions. The back-
ground might be cluttered.

– It can handle closed as well as open scenes. For example, it can simulta-
neously recover the walls and (potentially moving!) furnitures of an indoor
scene and a complete reconstruction of subjects seen from all sides in the
input images.

Second, it is based on a global optimum:

– It is robust and does not depend on some initialization.
– It exploits visibility information to guide the position of the surface. As a re-

sult, it avoids the minimum cut solution from being an empty surface. Hence
it exonerates from the usual techniques proposed so far to solve this prob-
lem (ballooning term, silhouette information, photo-flux, etc.). Moreover,
this visibility information is not enforced as a hard constraint but integrated
in the very optimization framework, hence yielding robustness to outliers.

Finally, and mainly, compared to the independent frame-by-frame computations
of [17], it profits from the 4D representation:

– Regularization is handled both in space and time, yielding more robustness
to noise both in geometry and in visibility reasoning.

– Points extracted at one given time step transfer information to the surround-
ing time steps. As a result, more details are obtained at each time step.

– Flicking artifacts in synthesized views are reduced, as consecutive 3D slices
have similar geometry and connectivity by construction.

– The temporally continuous representation, which is defined at any time,
optionally enables interpolation of objects shape between consecutive frames.

The output of our method might be use for different purposes: as a 4D com-
pact representation; as a list of consecutive 3D meshes; as an initialization for
variational spatio-temporal stereovision methods [7].
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The remainder of this paper is organized as follows. Section 2 gives some
background on the different techniques needed in our approach. In Section 3,
we describe in detail the different steps of our algorithm. Section 4 discusses
numerical experiments that demonstrate the potential of our approach for re-
constructing cluttered scenes from real-world data.

2 Background

2.1 Delaunay Triangulation

Most of the following definitions are taken from [19]. We also refer the interested
reader to some computational geometry textbooks [20,21]. In the sequel, we call
k-simplex the convex hull of k + 1 affinely independent points. For example, a
0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle and a
3-simplex is a tetrahedron. In this paper, we will also consider 4-simplices: they
are known as pentachorons or pentatopes. Let E = {p1, . . . , pn} be set of points
in Rd. The Voronoi region, or Voronoi cell, denoted by V (pi), associated to a
point pi is the region of space that is closer from pi than from all other points
in E: V (pi) = {p ∈ Rd : ∀j, ‖p − pi‖ ≤ ‖p− pj‖}.

The Voronoi diagram of E, denoted by Vor(E), is the partition of space in-
duced by the Voronoi cells V (pi). See Figure 1(a) for a two-dimensional example
of a Voronoi diagram.

(a) (b)

Fig. 1. (a) Voronoi diagram of a set of points in the plane. (b) Its dual Delaunay

triangulation.

The Delaunay triangulation Del(E) of E is defined as the geometric dual
of the Voronoi diagram: there is an edge between two points pi and pj in the
Delaunay triangulation if and only if their Voronoi cells V (pi) and V (pj) have a
non-empty intersection. It yields a triangulation of E, that is to say a partition
of the convex hull of E into d-dimensional simplices (i.e. into triangles in 2D, into
tetrahedra in 3D, into pentatopes in 4D and so on). See Figure 1(b) for a two-
dimensional example of a Delaunay triangulation. The fundamental property
of the Delaunay triangulation is called the empty circle (resp. empty sphere in
3D, resp. empty hypersphere in higher dimensions) property: in 2D (resp. in
3D, resp. in 4D), a triangle (resp. tetrahedron, resp. pentatope) belongs to the
Delaunay triangulation if and only if its circumcircle (resp. circumsphere, resp.
circumscribed hypersphere) does not contain any other points of E in its interior.
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2.2 Energy Minimization by Graph Cuts

Given a finite directed graph G = (V , E) with nodes V and edges E with non-
negative weights (capacities), and two special vertices, the source s and the sink
t, an s-t-cut C = (S, T ) is a partition of V into two disjoint sets S and T such
that s ∈ S and t ∈ T . The cost of the cut is the sum of the capacity of all
the edges going from S to T : c(S, T ) =

∑
(p,q)∈S×T |p→q∈E wpq. The minimum

s-t-cut problem consists in finding a cut C with the smallest cost: the Ford-
Fulkerson theorem [22] states that this problem is equivalent to computing the
maximum flow from the source s to the sink t and many classical algorithms
exist to efficiently solve this problem. Such a cut can be viewed as a binary
labeling of the nodes: by building an appropriate graph, many segmentation
problems in computer vision can be solved very efficiently [23]. More generally,
global minimization of a whole class of energy is achievable by graph cuts [24].

Kirsanov and Gortler [25] first proposed to use graph cuts on complexes to
globally optimize surface functionals and also developed the idea of using random
sparse complexes for their flexibility over regular subdivisions: this differs from
the graphs commonly used in computer vision, which are often regular grids in
the input images or in the bounding volume of the scene. Our approach similarly
relies on a sparse complex-based graph: this graph however directly derives from
an adaptive space decomposition efficiently provided by the Delaunay triangu-
lation. Moreover the specifies of our graph construction are quite different and
tailored to the multi-view reconstruction problem.

3 Method

Our spatio-temporal reconstruction algorithm consists in four steps: (i) a quasi-
dense 3D point cloud is generated for each frame, each point memorizing the
two or more images from which it has been triangulated. An spatio-temporal 4D
point cloud is obtained by adding time as the fourth dimension to all the 3D
points; (ii) the Delaunay triangulation of the 4D point cloud is computed; (iii)
the Delaunay pentatopes (full-dimensional simplices in R4) are labeled inside
or outside the spatio-temporal object minimizing some energy, a 4D oriented
surface is then extracted as the set of 4D tetrahedra lying between inside and
outside pentatopes; (iv) the 3D surface at a given time is obtained by intersecting
this 4D hyper-surface with a temporal plane.

3.1 4D Point Cloud Generation, 4D Delaunay Triangulation

Given multiple video sequences of a dynamic scene, we first make a dense 3D
point cloud for each time instant. Let It

k, k ∈ {1, · · · , n}, t ∈ [0, T ] denote the
input video sequence. For each image we extract interest points xt

k,i of several
types (in practice Harris points and DOGs) without any scale information and
with thresholds such that their number is high enough. For each image pair in
a time instant t, (It

k, It
k′ ) whose visual fields intersect, for all (xt

k,i, x
t
k′,j) of the

same type verifying the epipolar constraint up to a certain error (due to point



Globally Optimal Spatio-temporal Reconstruction from Cluttered Videos 671

extraction but also to calibration), we triangulate the corresponding 3D point
Xt

kk′,ij . Let H be the homography from It
k to It

k′ induced by the plane at Xt
kk′,ij

normal to the optical ray of xt
k,i, we evalute the normalized cross correlation

(NCC) between a given neighborhood of xt
k,i and its image by H around xt

k′,j .
Then for each xt

k,i, we keep the m best point xt
k′,j according to NCC, only if

their NCC is higher than a given threshold, and add the corresponding Xt
kk′,ij

to the point cloud at time instant t (in practice m = 1 or 2). The final 3D point
cloud is then obtained by merging close 3D points, so that a point of the cloud
comes from possibly more than two images.

Now we construct a “global” spatio-temporal point cloud by regarding time as
a fourth dimension, and treating it similarly to the three spatial dimensions. At
first sight, this is questionable since space is not homogenous to time regarding
physical units. We obtain physical homogeneity of our 4D space by considering
a scaling factor v between space and time dimensions. This scaling factor is
homogeneous to a speed, and can be interpreted as a reference displacement per
time unit. The global point cloud is obtained by taking a 4D point (Xt

i , vt) ∈ R4

for the point Xt
i generated from the input images in time t. At the end, we

compute the 4D Delaunay triangulation of the spatio-temporal cloud storing in
each vertex the list of the views and keypoints from which it has been generated.

3.2 4D Hyper-surface Extraction

In this step we compute a four-dimensional representation of the dynamic scene
by extracting a 4D mesh from the Delaunay triangulation of the point cloud.
This is done by labeling Delaunay pentatopes as inside or outside of the spatio-
temporal scene. The final oriented hypersurface is then extracted as the set of
facets between inside and outside pentatopes. The exact nature of these “facets”
deserves clarification: they are tetrahedra with 4D coordinates, so they are indeed
simplicial pieces of a hypersurface in R4. Now we make a graph of neighbor
pentatopes which we will use to find the optimal label assignment. For that,
we take Delaunay pentatopes as vertices and we add edges between every two
pentatopes which are neighbor via a two or three dimensional face. In addition,
we add a link between each vertex of the graph and the sink and the source. A
globally optimal label assignment is then efficiently found by applying the graph
cuts optimization method on this graph.

In the sequel, we note S the surface to be reconstructed. As discussed above,
S is a union of 4D Delaunay facets. In order to find an optimal solution satisfying
both spatial and temporal constraints, we minimize an energy composed of two
terms, one dealing with visibility, and the other dealing with spatial and temporal
smoothness,

E(S) = Evis(S) + Esmooth(S) (1)

In the rest of this section, we give the exact definition of these two terms and
we describe how they can be implemented in the graph cuts framework.
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a

b

e

c

f

d

o

Frame 1 Frame 2

Fig. 2. The tetrahedra acde and bcdf have a one-dimensional intersection (the segment

cd), but they should be connected in the graph (refer to text for details)

Visibility term. The visibility term that we propose for a spatio-temporal scene
is a careful extension of the static case proposed in [17]. The idea of their work is
that if a point belongs to the final surface then it should be visible in the views
from which it has been triangulated. This yields to the penalization of all the
facets intersecting the ray between the point and the cameras from which it has
been generated. In the dynamic case the same argument holds. A point which
belongs to the final hypersurface should be visible in all its generating views.
Consequently, all 4D pentatopes which intersect a 4D ray emanating from the
point to the camera center of one of its generating views should be labeled as
outside, and the pentatope behind the point should be labeled as inside. We
remark that the spatio-temporal center of a camera at a given frame is its 3D
center positioned in the temporal plane of that frame. Similarly to the static
case, in order to make an energy which can be minimized via graph cuts, we
take the number of intersections of a ray with the oriented hypersurface as the
visibility term. At this point, there are several important remarks to be made.

First, the visibility of a point at a given frame is defined only in the temporal
plane corresponding to that frame. Therefore, the rays between the point and
its generating views lie completely in the temporal plane which passes through
that point.

Second, a 4D facet of the Delaunay triangulation passes generally through
several consecutive frames. As a consequence, each intersection of a ray with a
facet is considered as a penalizing “vote” for the facet. The final vote is then
computed as the sum of all votes coming from different frames intersecting the
facet. This is an important property since it makes a global visibility vote on
every 4D facet taking in account the temporal coherence.

Third, contrarily to the static case presented in [17] where edges of the graph
are only “full dimensional facets” (3D triangles) between Delaunay simplices, in
the dynamic case, in addition to these facets we add an edge between every two
pentatopes which are not neighbors via a full-dimensional facet (4D) but via a
3D facet. Figure 2 shows an example of this situation. For simplicity reasons we
consider a lower dimensional scene: points are on 2D planes, time is the third
dimension and the spatio-temporal object is extracted from the 3D Delaunay
triangulation of the point cloud. Points a and b are on frame 1, and points c,d,e
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Fig. 3. Top: A 3D slice of the 4D triangulation. A ray emanating from a vertex to a

camera center intersects 3D cells. Bottom: The corresponding visibility-related energy

term that penalizes the number of intersections with the ray and the edge weights of

the crossed pentatope in the graph.

and f are on frame 2. Point o is the center of a camera from which f has been
generated. The tetrahedra acde and bcdf have a one-dimensional intersection
(the segment cd), but they should be connected in the graph since the ray fo
intersects cd and therefore a penalization term should be added between them.
It is important to note that despite the 3D intersection of the ray with the face
acd, no penalization term should be added between the tetrahedra abcd and
bcdf . That is because abcd does not appear in the static representation of the
scene on frame 2.

The intersections of the ray with the triangulation can be computed in the
four-dimensional space handling carefully the situation discussed above. How-
ever, as a ray always lies completely in a temporal plane, we propose to find
these intersections more easily by intersecting the 3D ray with the 3D intersec-
tion of the triangulation with the temporal plane. Obviously only the pentatopes
which make a full-dimensional (4D) temporal intersection should appear in the
temporal slice. In this case, a 3D facet intersected by a ray will correspond to an
edge of the graph, and the unnecessary intersections discussed in the example
above will be omitted by definition.

We should remark that the 3D intersection of a 4D Delaunay triangulation
with a plane is a polyhedron which contains generally cells with more than four
vertices. Figure 3 shows the 3D object and a ray intersecting the cells. The
vertices p0, p1, q1, p2 and q2 shown in Figure 3(bottom) are the vertices of the
graph which correspond to the pentatopes whose temporal intersections make
the cells p0, p1, q1, p2 and q2 shown in Figure 3(top) respectively. Different
visibility terms are added. The cell containing the camera should be labeled as
outside: a term λ∞ is added to the edge from source to p0. A 3D facet crossed
by the ray from inside to outside should be penalized: a term λout is added to
the edge from p1 to q1. The cell behind the origin of the ray should be labeled as
inside: a term λin is added to the edge from q2 to the sink. The positive weights
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λin, λout and λ∞ take into account the confidence in the reconstructed vertex
yielding the ray. By summing up these visibility terms over all the frames, we
make a complex distribution of “vote” for each pentatope taking in account the
time coherence.

Spatio-temporal smoothness. In order to take in account both spatial smooth-
ness and temporal continuity, we propose to minimize the area of the 4D surface
in R4. This yields to the sum of volumes over all the 4D tetrahedra between
inside and outside pentatopes,

Esmooth(S) = A(S) =
∫

S
dS =

∑
T∈S A(T ) where S is the 4D surface to be

reconstructed, T is a 4D tetrahedra, and A(T ) is the volume of the tetrahedra
T in R4. Minimizing this term encourages smoothness in time and in space. As
in the static case, this is trivially minimized in the graph cuts framework: for
each pair of pentatopes (sharing a tetrahedra T ) represented by vertices p and
q in our graph, a term w = A(T ) is added the edge p → q and to its opposite
edge q → p.

3.3 3D Surface Extraction

The output 4D mesh cannot be used directly for rendering. Fortunately, the 3D
scene at a given time instant is easily obtained by intersecting this 4D mesh with
a temporal plane. This task can be performed very efficiently, even in real-time
on GPUs (Graphics Processor Units), since it reduces to a marching tetrahedra
algorithm [26] on the tetrahedra of the 4D mesh, with the temporal coordinate
of vertices used as the scalar field for isocontouring. It produces one triangle or
one quad per boundary tetrahedron intersected by the selected temporal plane.

4 Experimental Results

We have implemented our method using CGAL (Computational Geometry Al-
gorithms Library, homepage: www.cgal.org) [27]. CGAL defines most data struc-
ture and algorithms needed in our method. For the computation of 4D Delaunay
triangulation we have used the Quickhull algorithm library (QHull) [28] (home-
page: www.qhull.org).

Fig. 4. Some images of the “Trousers” dataset
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Fig. 5. A comparison between our method and the method of [17] applied independly

in each frame. Top: 3D meshes obtained by the method of [17]. Bottom: corresponding

3D slices of the 4D representation obtained by our method.

Fig. 6. The first three consecutive frames of the Trousers dataset reconstructed by

(Top): the method of [17] (Bottom): our method. The frame-by-frame reconstruction

of the method [17] makes no temporal continuity. In contrast, our method reconstructs

correctly the trouser, avoids flicking artifacts and provides a much more continuous

motion.
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In our first experiment, we have tested our method on the first 60 frames
of the “Trousers” sequence which is courtesy of R. White, K. Crane and D.A.
Forsyth [29]. The sequence is acquired by 8 cameras at a 640 × 480 resolution.
Figure 4 shows some images of this dataset. Despite their highly textured images,
it is in fact a quite challenging dataset because of the very fast and complex
motion of cloth and folds and severe self occlusion in various parts of the video.
Regarding to an approximate size of the object we have chosen a spatio-temporal
scaling factor v = 30 (space unit/frame). Figure 5 shows a comparison between
our method and the method of [17] applied independly in each frame. We have
compared the 3D meshes output by their method for some frames of the sequence
with the corresponding 3D slices of our 4D spatio-temporal scene. A total number
of 793769 points have been generated for the initial point cloud. To provide a
fair comparison, we have used the same point clouds in both methods.

We observe that the method of [17] fails to separate correctly the two trouser
legs when there is not enough distance between them. In addition, as shown in
figure 6, their frame-by-frame reconstruction makes no temporal continuity. In
contrast, relying on a global optimization, our method reconstructs correctly the
trouser, avoids flicking artifacts and provides a much more continuous motion.
This perfectly illustrates the capability of our approach to take advantage of
temporal coherence in order to obtain more detailed and more continuous result.
Please see supplemental material for a video illustrating better the result of our
method. The computational times of our method and the method of [17] for this

Fig. 7. Top: Some images of the “Dancer” dataset. Bottom: Some 3D slices extracted

from the 4D representation of the “Danser” dataset, obtained by our method.
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experiment are 210 and 112 minutes respectively on a standard workstation.
However, the most expensive part of our method is the computation of the
4D Delaunay triangulation. Fortunately, this can be strongly reduced using an
optimized 4D Delaunay code.

In a second experiment, we have tested our method on the first 40 frames of
the “Dancer” dataset which was made available to us by the 4Dviews company
(http://4dviews.com). It is acquired by 14 calibrated and synchronized video
cameras. Figure 7(top) shows some images of this dataset. The result shows that
despite the lowly textured parts of the images, our method makes a correct 4D
representation of the dancer. Figure 7(bottom) shows some 3D slices extracted
from the 4D object.

Finally, we should remark that in order to have better visualization and to
make better comparisons we have smoothed the results of our experiments. How-
ever, the output of our method might be used as a 4D compact representation,
as a list of consecutive 3D meshes or as an initialization for variational spatio-
temporal stereovision methods.

5 Discussion and Conclusion

We have presented a new method for multi-view reconstruction from videos
adapted to dynamic cluttered scenes under uncontrolled imaging conditions. The
main idea of our method is to regard time as the fourth dimension, and to extract
a hyper-surface from the 4D Delaunay triangulation of the input points as the
spatio-temporal representation of the scene. This is done by labeling Delaunay
pentatopes as empty or occupied. A globally optimal assignment is efficiently
found using graph cuts. We have validated our method on real video sequences.
Our results prove the potential of what is, to our knowledge, the only globally
optimal spatio-temporal multiview reconstruction method.

References

1. Aganj, E., Pons, J.P., Ségonne, F., Keriven, R.: Spatio-temporal shape from sil-

houette using four-dimensional Delaunay meshing. In: ICCV (2007)

2. Ahmed, N., de Aguiar, E., Theobalt, C., Magnor, M., Seidel, H.P.: Automatic

generation of personalized human avatars from multi-view video. In: Proc. VRST

2005, pp. 257–260 (2005)
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