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Abstract Due to refined modelling of semiconductor devices and increasing pack-
ing densities, reduced order modelling of large nonlinear systems is of great im-
portance in the design of integrated circuits (ICs). Despite the linear case, method-
ologies for nonlinear problems are only beginning to develop. The most practical
approaches rely either on linearisation, making techniques from linear model order
reduction applicable, or on proper orthogonal decomposition (POD), preserving the
nonlinear characteristic. In this paper we focus on POD. We demonstrate the miss-
ing point estimation and propose a new adaption of POD to reduce both dimension
of the problem under consideration and cost for evaluating the full nonlinear system.

1 Introduction

The dynamics of electrical circuits at time t can be generally described by a nonlin-
ear, first order, differential-algebraic equation (DAE) system of the form:

{
d
dt [q(x(t))]+ j(x(t))+ Bu(t) = 0,

y(t) = CT x(t),
(1)

where x(t) ∈ Rn represents the unknown vector of circuit variables at time t ∈ R;
q, j : Rn → Rn describe the contribution of reactive and nonreactive elements, re-
spectively; B ∈ Rn×m distributes the input excitation u : R → Rm and C ∈ Rn×q
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maps the state x to the system response y(t) ∈ Rq. In circuit design the input u and
the output y are terminal voltages and terminal currents, respectively, or vice versa.
Therefore, we assume that they are linearly injected and extracted, respectively.

The dimension n of the unknown vector x(t) is of the order of the number of
elements in the circuit, which can easily reach hundreds of millions. Therefore, one
may solve the network equations (1) by means of computer algebra in an unreason-
able amount of time only.

Model order reduction (MOR) aims to replace the original model (1) by a system

{ d
dt [q̃(z(t))]+ j̃(z(t))+ B̃u(t) = 0,

ỹ(t) = C̃T x̃(t),
(2)

with z(t) ∈ Rr; q̃, j̃ : Rr → Rr and B̃ ∈ Rr×m and C̃ ∈ Rr×q, which can compute
a system response ỹ(t) ∈ Rq that is sufficiently close to y(t) given the same input
signal u(t), but in much less time.

2 Linear Versus Nonlinear Model Order Reduction

So far most research effort was spent on developing and analysing MOR techniques
suitable for linear problems. For an overview on these methods we refer to [1].

Research on and applications of MOR for nonlinear problems can still be found
less frequent. Some approaches like balanced truncation for nonlinear problems [2,
3] are accurate but yet hard to be applied in an industrial context. Others are only
feasible for weakly nonlinear dependencies. Then again, when trying to transfer
approaches from linear MOR, especially projection based methods, fundamental
differences emerge.

To see this, first consider a linear problem of the form

E
d
dt

x(t)+ Ax(t)+ Bu(t) = 0, with E,A ∈ R
n×n. (3)

Usually the state x(t) is approximated in a lower dimensional space of dimension
r � n, spanned by basis vectors which we subsume in V = (v1, . . . ,vr) ∈ Rn×r:

x(t) ≈ Vz(t), with z(t) ∈ R
r. (4)

The reduced state z, i.e., the coefficients of the expansion in the reduced space, is
defined by a reduced dynamical system that arises from projecting (3) on a test space
spanned by the columns of W. There, W and V are chosen, such that their columns
are biorthonormal, i.e., WT V = Ir×r. The Galerkin projection1 yields

Ẽ
d
dt

z(t)+ Ãz(t)+ B̃u(t) = 0, (5)

1 Most frequently V is constructed to be orthogonal, such that W = V can be chosen.
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with Ẽ = WT EV, Ã = WT AV ∈ Rr×r and B̃ = WT B ∈ Rr×m. The system matrices
Ẽ,Ã, B̃ of this reduced substitute model are of smaller dimension and fixed, i.e.,
need to be computed only once. However, Ẽ,Ã are usually dense whereas the system
matrices E and A are usually very sparse.

Applying the same technique directly to the nonlinear system means obtaining
the reduced formulation (2) by defining q̃(z) = WT q(Vz) and j̃(z) = WT j(Vz).
Clearly, q̃ and j̃ map from Rr to Rr.

To solve network problems of type (2) numerically, usually multistep methods
are used. This means that at each timepoint tl a nonlinear equation

αq̃(zl)+ β̃ + j̃(zl)+ B̃u(tl) = 0, (6)

has to be solved for zl which is the approximation of z(tl). In the above equation α is
the integration coefficient of the method and β̃ ∈ Rr contains history from previous
timesteps. Newton techniques that are used to solve (6) usually require an update of
the system’s Jacobian matrix in each iterations ν:

J̃(ν)
l =

(
α

∂ q̃
∂z

+
∂ j̃
∂z

)∣∣∣
z=z(ν)

l

= WT
[
α

∂q
∂x

+
∂ j
∂x

]∣∣∣
x(ν)=Vz(ν)

l

V. (7)

The evaluation of the reduced system, i.e., q̃ and j̃, necessitates in each step the back
projection of the argument z to its counterpart Vz followed by the evaluation of the
full system q and j and the projection to the reduced space with W and V.

Consequently, with respect to computation time no reduction will be obtained
unless additional measures are taken or other strategies are pursued.

Up to now, approaches based on linearisation, especially the approach of trajec-
tory piecewise linearisation (TPWL) [4, 5], and projection methods based on the
Proper Orthogonal Decomposition (POD) are popular. In the following we concen-
trate on POD and discuss adaptions.

3 Proper Orthogonal Decomposition and Adaptions

The POD method, also known as the principal component analysis and Karhunen–
Loève expansion, provides a technique for analysing multidimensional data [6–8].

POD sets work on data extracted from a benchmark simulation. In a finite di-
mensional setup like it is given by (1), K snapshots of the state x(t), the system is in
during the training interval [t0,te], are collected in a snapshot matrix

X = (x1, . . . ,xK) ∈ R
n×K . (8)

The snapshots, i.e., the columns of X, span a space of dimension k ≤ K. We
search for an orthonormal basis {v1, . . . ,vk} of this space that is optimal in the sense
that the time-averaged error that is made when the snapshots are expanded in the
space spanned by just r < k basis vectors to x̃r,i,
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〈‖x− x̃r‖2
2〉 with the averaging operator 〈f〉 =

1
K

K

∑
i=1

fi (9)

is minimised. This least squares problem is solved by computing the eigenvalue
decomposition of the state covariance matrix 1

K XXT or, equivalently by the singular
value decomposition (SVD) of the snapshot matrix (assuming K > n)

X = UST with U ∈ R
n×n,T ∈ R

K×K and S =

(σ1

. . .
σn

∣∣∣ 0n×(K−n)

)
, (10)

where U and T are orthogonal and the singular values satisfy σ1 ≥ σ2 ≥ ·· ·σn ≥ 0.
The matrix V ∈ Rn×r whose columns span the reduced subspace is now build from
the first r columns of U, where the truncation r is chosen such that

1− ∑n
i=1 σ2

i

∑r
i=1 σ2

i

≤ tol. (11)

For the, in this way constructed matrix, it holds VT V = Ir×r. Therefore, Galerkin
projection as described above can be applied to create a reduced system (2).

For a more detailed introduction to POD in MOR we refer to [9]. For further
studies we point to [8] which addresses error analysis for the MOR with POD and
[10] where the connection of POD to balanced model reduction can be found.

In the following we reflect two adaptions of POD to overcome the problems that
occur in MOR for nonlinear problems and where described in Sec. 2.

3.1 Missing Point Estimation

The missing point estimation (MPE) was proposed in [11] to reduce the cost of
updating system information in the solution process of time varying systems arising
in computational fluid dynamics. In [12] the MPE approach was brought forward to
circuit simulation.

Here, once a POD basis is found, such that (4) holds, there is no Galerkin pro-
jection applied. Instead a numerical integration scheme is applied which in general
leads to system of n nonlinear equations, analogue to (6), for the r dimensional un-
known z. In MPE this system is reduced to dimension g with r ≤ g < n by discarding
n−g equations. Formally this can be described by multiplying the system with a se-
lection matrix2 Pg ∈ {0,1}g×n, stating a g-dimensional overdetermined problem

αPgq(Vzl)+ Pgβ + Pgj(Vzl)+ PgBu(tl) = 0, (12)

2 This means, the matrix has exactly one non-zero entry per row.
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which is solved at each timepoint tl for zl in the least-squares sense [12]. The benefit
is that due to the structure of Pg not the full nonlinear functions q, j have to be
evaluated but just g components.

The choice of Pg is motivated by identifying the g most dominant state variables,
i.e., components of x. In terms of the POD basis this is connected to restricting the
orthogonal V to Ṽ = PgV ∈ Rg×r in an optimal way. This in turn goes down to
minimising

‖(ṼT Ṽ
)−1 − Ir×r‖. (13)

Details on reasoning and solving (13) can be found in [13, 14]

3.2 Adapted POD

We put a new approach up for discussion that combines the Galerkin projection
with the MPE method. Like described in Sec. 3 we collect snapshots in X on
which we apply an SVD (10). Then we define the matrix L = UΣ ∈ Rn×n, with
Σ = diag(σ1, . . . ,σn), i.e., we first scale the left-singular vectors with the corre-
sponding singular values. Next we transform the original system (1) by writing
x(t) = Lw(t) and using Galerkin projection:

d
dt

[
LT q(Lw(t))

]
+ LT j(Lw(t))+ LT Bu(t) = 0. (14)

Now, we identify separately the r and g most dominant columns of L and LT , re-
spectively, where the predominance of a column vector v ∈ Rn is determined by its
2-norm ‖v‖2. Note that this selection is directly connected to the singular values,
i.e., if they decrease rapidly we can expect r and g to be small. We use this infor-
mation to approximate L and LT by matrices that agree with the respective matrix
in the selected r and g selected columns but have the n − r and n − g remaining
columns set to 0 ∈ Rn, respectively. Again, formally this can be expressed with the
help of selection matrices Pr ∈ {0,1}r×n and Pg ∈ {0,1}g×n, respectively:

L ≈ LPT
r Pr and LT ≈ LT PT

g Pg. (15)

From this we conclude LT ≈ PT
r PrLT PT

g Pg. We insert these approximations in (14)
and multiply with Pr, bearing in mind that PrPT

r = Ir×r:

d
dt

[
PrLT PT

g Pgq(LPT
r Prw̃)

]
+ PrLT PT

g Pgj(LPT
r Prw̃)+ PT

r LT Bu = 0. (16)

Note that due to the approximations to L and LT in the above equation w has
changed to w̃ which can merely be an approximation to the former. We introduce
Sr = diag(σ1, . . . ,σr) and keep the first r columns of U in V ∈ Rn×r. Therewith we
express LPT

r = VSr. Finally we scale (16) with S−1
r and introduce a new unknown
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z = SrPrw̃ ∈ Rr from which we can reconstruct the full state by approximation
x ≈ Vz. We end up with

d
dt

[Wr,gPgq(Vz)]+ Wr,gPgj(Vz)+ B̃u(t) = 0, (17)

with Wr,g = VT PT
g ∈ Rr×g and B̃ = VT B. Like in the MPE approach just g compo-

nents of the nonlinear function q and j have to be evaluated.

4 Numerical Results

We consider the academic diode chain model shown in Fig. 1 with 300 nodes. The
current traversing a diode with potential Va and Vb at the input- and output-node,
respectively is described by the nonlinear equation

q(Va,Vb) =

{
Is(e

Va−Vb
VT −1) if Va −Vb > 0.5,

0 otherwise,

with threshold voltage VT = 0.0256V and static current Is = 10−14 A. The resistors
and capacitors have uniform size R = 10kΩ and C = 1pF.

Fig. 1 Diode chain

The voltage source defines the input u(t). For the model extraction we choose
the step given by

u(t) =

⎧⎨
⎩

20 if t ≤ 10ns,
170−15 ·109 · t if 10ns < t ≤ 11ns,
5 if t > 11ns.

As Fig. 2 shows, the signal dies out very quickly and just the first 30 diodes
operate. This reflects also in the singular values which drop very rapidly. Therefore,
for extracting a reduced order model we start the algorithm with the parameters
r = 30 and g = 35, i.e., the state space is reduced to dimension 30 and the nonlinear
functions are downsized to dimension 35.

Of special interest is how a reduced substitute model behaves when signals dif-
ferent to the training signal are applied. For testing purposes we choose

ū1(t) = 7.5cos

(
2πt

60 ·10−9

)
+ 12.5 and ū2(t) = 9.5cos

(
2πt

60 ·10−9

)
+ 12.5.
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Fig. 2: Diode chain: system’s response (left) and singular values (right)

Note that the maximum of ū1(t) is less than the maximum of the signal u(t) applied
for training, whereas ū2 exceeds u(t).

Figure 3 shows the voltages of different nodes as they were produced by solving
both the full and the reduced nonlinear system. With the reduced model we were
able to accurately reproduce the behaviour of the full system when ū1(t) was taken
as the input. From Table 1 we see that we also achieved a high speedup. Here we
also see that the classical POD, i.e, the combination with direct Galerkin projection
may even cause more computational work. But, considering the trajectory that was
produced with ū2(t), we see one of the limitations. An explanation might be that
the energy in the system during resimulation was higher than during training and
extraction. Similar statements can be found in [15] with respect to TPWL.
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Fig. 3: Resimulation with differing input signal ū1(t) and ū2(t)

Table 1: Comparison of cpu time [s]

Input Full Classical POD Adapted POD

Like training 42.01 35.51 5.12
7.5cos . . . 40.22 45.34 6.28
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5 Conclusion and Outlook

In this paper we study reduced order modelling of nonlinear IC models. We review
the problems that show up when MOR techniques for linear problems are applied to
nonlinear systems. These problems arise from the necessity to still evaluate the full
nonlinear system. To this point ways to overcome the problem are to either linearise
the nonlinear system and apply MOR to the arising linear systems, like done in
TPWL, or to adapt projection methods, like done in MPE in connection with POD.
We introduce a new adaption of the latter approach. Put to test with an academic
example it shows nice results, especially with input signals that differ from training
signals. However, the new approach has to be studied more carefully regarding its
general applicability.
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