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Abstract We discuss methods for model order reduction (MOR) of linear systems
with many input and output variables, arising in the modeling of linear (sub) circuits
with a huge number of nodes and a large number of terminals, like power grids. Our
work is based on the approaches SVDMOR and ESVDMOR proposed in recent
publications [1–5]. In particular, we discuss efficient numerical algorithms for their
implementation. Only by using efficient tools from numerical linear algebra, these
methods become applicable for truly large-scale problems.

1 Introduction

Nowadays, MOR is an important and conventional step in the preprocessing of cir-
cuit simulation. The original model resulting from methods like modified nodal
analysis has to be simplified due to its complexity. One issue of this simplifica-
tion for VLSI design is the MOR of parasitic linear interconnect circuits. These
circuits form substructures in the design of ICs and contain linear elements with
comparatively little or no influence on the result of the simulation.

In some applications, the structure of these parasitic linear subcircuits has re-
cently changed in the following sense. So far, the number of elements in these in-
terconnect circuits was significantly larger than the number of connections to the
whole circuit, the so-called pins or terminals. This assumption is no longer valid in
all cases. Circuits with a lot of elements need extra power supply networks, so-called
power grids [6,7]. In clock distribution networks, the clock signal is distributed from
a common point to all the elements that need it for synchronization [8]. For simu-
lating these circuits new methods are needed. Often, a lot of their terminals behave
similar so that it is possible to compress the input-/output matrices in such a way that
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the I/O behavior can be realized through a few so-called virtual inputs/outputs [1–
5]. As a consequence we deal with these virtual terminals, the number of which is
much less than the original number of terminals. This allows the use of well known
MOR methods like balanced truncation or Krylov subspace methods to reduce the
number of inner nodes.

The intention of this paper is to explain the existing (E)SVDMOR approaches
[1,4] and show improvements within the implementation in particular for large scale
systems. In the following section, we review the fundamentals of the underlying ap-
proaches. We introduce the moments of a transfer function of the circuit describing
system and show how to use the information in these moments in order to reduce the
number of terminals. Later, we point out the weak point of the algorithm for really
large scale systems and present a solution for this problem. After the introduction of
this efficient algorithm to achieve a very compact model we show and discuss first
numerical results in Section 3.

2 SVDMOR and ESVDMOR

Recent studies [1–5] have shown that we can make use of correlations between
the plurality of input and output terminals. We use the singular value decomposition
(SVD) based method SVDMOR [1,5] as well as the extended version of SVDMOR,
the so-called ESVDMOR [2–5], which is the foundation for our work and will be
explained in the following.

2.1 Extended-SVDMOR

We assume that the linear system to be reduced has the following transfer function
in frequency domain:

H(s) = L(sC + G)−1B, (1)

with C,G ∈ Rn×n, B ∈ Rn×min , and L ∈ Rmout×n.
The number of inputs min is not necessarily equal to the number of outputs, here

mout . Consider the i-th block moment of (1) defined as

mi = L(−G−1C)iG−1B, (2)

in terms of mi as an mout ×min matrix

mi =

⎡
⎢⎢⎢⎣

mi
1,1 mi

1,2 . . . mi
1,min

mi
2,1 mi

2,2 . . . mi
2,min

...
...

. . .
...

mi
mout ,1 mi

mout ,2 . . . mi
mout ,min

⎤
⎥⎥⎥⎦ . (3)
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Note that the moments in (2) are equal to the coefficients of the Taylor series ex-
pansion of (1) in s = 0. The expansion in s = s0 leads to frequency shifted moments
defined as

mi(s0) = L(−(s0C + G)−1C)i(s0C + G)−1B. (4)

The ESVDMOR approach uses the information of a combination of these moments
to create a decomposition of (1) in the following way. To allow terminal reduction
for inputs and outputs separately, r different block moments forming two moment
matrices are used: the input response matrix MI and the output response matrix MO

defined as

MI =

⎡
⎢⎢⎢⎣

m0
m1

...
mr−1

⎤
⎥⎥⎥⎦ , MO =

⎡
⎢⎢⎢⎣

m0
T

m1
T

...
mr−1

T

⎤
⎥⎥⎥⎦ , (5)

where column k of MI represents the coefficients (moments) of the series expansion
of (1) at all outputs due to input k. Similarly, each column k of MO represents the
coefficients of output k due to all inputs. Note, that we expect the number of rows in
each matrix to be larger than the number of columns so that the rank is determined
by the column vectors. If not, r has to be increased.

Applying the SVD to these matrices, we can obtain a low rank approximation

MI = UIΣIV
T
I ≈ UIri

ΣIri
V T

Iri
, MO = UOΣOV T

O ≈ UOro
ΣOro

V T
Oro

, (6)

where

• ΣIri
is an ri × ri diagonal matrix,

• ΣOro
is an ro × ro diagonal matrix,

• V T
Iri

and V T
Oro

are orthogonal ri ×min and ro ×mout matrices that contain the dom-
inant column subspaces of MI and MO

• UIri
and UOro

are rmout × ri and rmin × ro matrices that are not used any further,
• ri and ro are the numbers of significant singular values as well as the numbers of

the reduced virtual input and output terminals.

Equations (6) are the crucial points for our improvements described in Section 2.2.
Due to the fact that the important information about the dependencies of the I/O-

ports is hidden in the matrices V T
Iri

and V T
Oro

, approximations of B and L using the
results of (6) lead to

B ≈ BrV
T
Iri

and L ≈ VOro
Lr, (7)

where Br ∈ R
n×ri and Lr ∈ R

ro×n are consequences of applying the Moore-Penrose
pseudoinverse (denoted by (·)+) of V T

Iri
and VOro

(which are isometric) to B and L,
respectively. In detail, we have

Br = BVIri
(V T

Iri
VIri

)−1 = BV T+
Iri

= BVIri
(8)
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and
Lr = (V T

Oro
VOro

)−1V T
Oro

L = V+
Oro

L = V T
Oro

L, (9)

where Br ∈ Rn×ri and Lr ∈ Rro×n. Consequently, we get a new internal transfer
function Hr(s),

H(s) ≈ Ĥ(s) = VOro
Lr(G+ sC)−1Br︸ ︷︷ ︸

:=Hr(s)

V T
Iri

. (10)

This terminal reduced transfer function is now reduced to

H̃r(s) = L̃r(G̃+ sC̃)−1B̃r ≈ Hr(s) = Lr(G+ sC)−1Br (11)

by some well known established MOR method, e. g., balanced truncation or a
Krylov subspace method. At the end we get a very compact terminal and reduced-
order model

H(s) ≈ VOro
H̃r(s)V T

Iri
. (12)

Note that SVDMOR can be considered as a special case of ESVDMOR, using only
one moment and one SVD, e. g. r = 1, and using m0 as moment.

2.2 Drawbacks and Solutions

For very large subcircuits the (E)SVDMOR methods are not suitable due to the use
of the SVD. Suppose we have a matrix with dimension n = 106 and a modern CPU
with 3 GHz. The computation of an SVD needs about 22n3 flops. This would mean
22 · 1018 flops and therefore a total CPU time of approximately 230 years. Obvi-
ously, this is computationally too expensive. Hence, we combine the (E)SVDMOR
approaches with cheaper matrix decomposition methods, like the truncated SVD
(TSVD), which computes the needed singular values and the corresponding singular
vectors only, see (6). Also other ideas to compute a truncated SVD-like decomposi-
tion cheaply can be used [9–11].

Furthermore, an explicit computation of the moments in (2) would be numeri-
cally unstable and too expensive. Without loss of generality we explain the decom-
position of MI , so that

MI ≈ UIri
ΣIri

V T
Iri

=
ri

∑
j=1

σ ju jv
T
j . (13)

Recall that ri � min denotes the number of significant singular values and vectors.
We do not know that number so we specify it depending on the error tolerance of the
approximation. Unfortunately, there is no global error bound for the whole reduction
yet (this is the topic of current research). We therefore simply use σr+1 < tolσ1 for a
user-defined tolerance. Naturally, it is helpful to have a rapid decrease of the singular
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values σ j, that means a lot of dependencies within the ports and enables a gainful
terminal reduction, see the examples in Section 3.

The TSVD can be computed in several ways [9,10,12]. Consider the augmented
matrix A ∈ Rr·mout+min×r·mout+min of the form

A =
(

0 MI

MT
I 0

)
. (14)

One possibility is to compute the eigenvalues of matrix A by the implicitly restarted
Arnoldi method [13,14]. It can be shown that the positive eigenvalues of A are equal
to the square roots of the eigenvalues of MT

I MI , and those square roots are equal to
the singular values of MI . Using an established algorithm we only need to provide
a function applying the matrix A to a vector x to build the needed Krylov subspace
in order to determine the eigenvalues. This functions input arguments are a vector
x ∈ Rr·mout+min and a scalar r, which is equal to the number of used moments r, see
(5). Output argument is a vector y ∈ R

r·mout+min ,

Ax =: y = ((y1)T ,(y2)T , . . . ,(yr+1)T )T , (15)

where for i = 1, . . . ,r

yi =

⎛
⎜⎝

y(i−1)·mout+1
...

yi·mout

⎞
⎟⎠ and yr+1 =

⎛
⎜⎝

yr·mout+1
...

yr·mout+min

⎞
⎟⎠ . (16)

Please note that we use the analog notation for the components x j , j = 1, . . . ,r + 1
of vector x. If we insert (14) and (5) into (15) we get

y =

⎛
⎜⎜⎜⎜⎜⎝

0

⎡
⎢⎢⎢⎣

m0
m1

...
mr−1

⎤
⎥⎥⎥⎦

[
m0

T m1
T · · · mT

r−1

]
0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xr+1

⎞
⎟⎟⎟⎠ . (17)

After a simple step of matrix multiplication we get the components yi for i = 1, . . . ,r
and yr+1 of vector y as

yi = mi−1xr+1 and yr+1 = m0
T x1 + · · ·+ mr−1

T xr. (18)

To compute these components efficiently we replace the block moments by their
factors. In fact, we compute the r + 1 parts of y by repeatedly applying the same
factors to parts of x, depending on whether it is a part of (18a) or (18b). We want to
emphasize that we use the same factors each time. According to (2) the computa-
tion for (18a) follows Algorithm 6. The computation of (18b) is more involved, but
follows the same recursive principle laid out in Algorithm 6. The computation of
the decomposition of MO works analogously. These methods become numerically
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Algorithm 6 Computation of the components yi

a = Bxr+1

a = G−1a
for i = 1 to r do

yi = La
a = Ca
a = −G−1a

end for

unstable for large r but in practice r often is small. For linear circuits with the same
number of inputs and outputs, mostly one moment of the transfer function in (5),
i. e., r = 1 so that we use the SVDMOR approach, is sufficient. Summarizing, this
is a quite easy way which allows us to apply the SVD to large scale systems in a
truncated way.

3 Numerical Results and Conclusions

The decay of the singular values of the moment used for computing the SVD is
essential for (E)SVDMOR, so we firstly concentrate on this issue. Figure 1 shows
the decrease of the 500 largest singular values of a circuit provided by the NEC
Laboratories Europe, IT Research Division, NEC Europe Ltd. in St. Augustin, Ger-
many. The circuit is called circuit3 and consist of 3916 nodes, 1905 of them are
terminals. We choose about 130 singular values to be significant based on the tol-
erance σr+1 < 10−2σ1. That means, after the reduction we have 130 virtual input
and output pins instead of 1905 terminals originally. Figure 2 shows the range of the
30 largest singular values of another circuit. It was provided by the Qimonda AG,
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Fig. 1: Range of the largest 500 singular values of m0 of circuit circuit3
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Fig. 3: Relative error εrel of RC549 by using SVDMOR with m0 and m0(s0 = 108) and ESVDMOR
with MI/O consisting the information of the first 3 moments m0, m1, and m2

Munich, Germany. It is a test circuit called RC549 and consists of 141 nodes and
therefrom 70 terminals. Figure 2 points out clearly one significant singular value.
Consequently, we reduce the system to one virtual terminal. The relative approxi-
mation error for circuit RC549 is shown in Figure 3. We can observe that the error
is sufficiently small up to the Gigahertz range which is enough for the application
behind this problem (subcircuit of a memory chip).

Finalizing we would like to draw a few conclusions. If the pencil sC + G of (1)
is stable and a stability preserving MOR methods is used in (11), then the whole
MOR algorithm described is stability preserving. Also, for typical classes of RLC
circuits, the procedure is passivity preserving if the inner MOR method in (11) is.
Due to space limitation, we will elaborate on this aspect elsewhere. In the future
we want to present a global error bound as well as other approaches to perform the
decomposition in (6) and (13) efficiently.
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