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Abstract We discuss algorithms for balanced truncation (BT) based model reduc-
tion of linear systems. BT is known to have good global approximation properties
and to preserve important system properties. A computable error bound allows to
choose the order of the reduced-order model adaptively. We will emphasize those
aspects that makes the application of BT to models arising in circuit simulation a
non-straightforward task. In recent years, these issues have been addressed by sev-
eral authors. We will survey some of these developments and demonstrate that BT
is now suitable for linear descriptor systems encountered in circuit simulation.

1 Introduction

Model order reduction (MOR) is an indispensable tool in the design and analysis of
integrated circuits (ICs) and circuit simulation in general. This is due to the fact that
on the one hand, almost all IC design relies heavily on simulation and on the other
hand, the complexity of the mathematical models used to replicate the behavior
of an actual electronic circuit is growing more rapidly than computing resources.
This is caused by the increased packing density and multi-layer technology which
nowadays requires the modeling of thermic and other parasitic effects caused by
the interconnect. In many situations, only the use of MOR techniques allows the
numerical simulation of the usually very large systems of ordinary differential and
differential-algebraic equations used to describe (parts of) complex circuit layouts.
MOR has been particularly successful in reducing the complexity of large linear
subcircuits modeling parasitic effects of interconnect and in small signal analysis,
and it is becoming an increasingly useful tool also in other areas of circuit design [1].
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Linear circuit models can be described by linear descriptor systems of the form

Eẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t)+ Du(t), (1)

where A,E ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and x(t)∈ R
n,y(t)∈ R

p,u(t)∈
Rm denote generalized states, outputs, inputs, respectively. The corresponding trans-
fer function

G(s) = C(sE −A)−1B + D (2)

results from describing the input-to-output map u → y in frequency domain.1 One
difficulty for balancing-related model reduction methods arises from E being singu-
lar as it is usually the case in circuit simulation. In this paper we will mainly focus
on advances made for resolving this issue.

The model reduction problem now consists of finding a reduced-order system,

Ê ˙̂x(t) = Âx̂(t)+ B̂u(t), ŷ(t) = Ĉx̂(t)+ D̂u(t), (3)

of order r, r � n, with the same numbers of inputs (m) and outputs (p), i.e., Â, Ê ∈
Rr×r, B̂ ∈ Rr×m, . . . , and associated transfer function Ĝ(s) = Ĉ(sÊ − Â)−1B̂+ D̂, so
that for the same input function u ∈ L2(0,∞;Rm), we have y(t) ≈ ŷ(t).

The most popular MOR methods in circuit simulation are Padé(-type) approx-
imations, also known as moment-matching methods. The rth Padé approximant
Ĝ of G is defined by the property G(s) = Ĝ(s) +O((s − s0)2r), i.e., Mj = M̂j for
j = 0, . . . ,2r − 1, where the moments Mj,M̂j are the coefficients in a power (Lau-
rent) expansion of G,Ĝ, respectively, about some expansion point s0 �∈ Λ(A,E)2.
Moment-matching and Padé approximation properties are obtained for methods
based on the unsymmetric Lanczos process, called the (matrix) Padé-via-Lanczos
((M)PVL) method [2–4]. Padé-type methods are also based on the moment match-
ing property, but the approximations need not match the maximum possible number
of moments. One such method is PRIMA [5] which employs the Arnoldi process
to compute the reduced-order model. PRIMA is a success story in MOR for circuit
simulation as besides having moment-matching properties, it preserves stability and
passivity of RLC circuit models.

Despite the success with Padé(-type) approximation techniques based on the
moment-matching properties of Krylov subspace methods, some major difficulties
of this approach persist:

1. So far there exists in general no computable error estimate or bound for ‖y− ŷ‖
in some appropriate norm.

2. The reduced-order model provides good approximation quality only locally.
3. The preservation of physical properties like stability or passivity can only be

shown in very special cases; usually some post processing which (partially) de-
stroys the moment matching properties, is required.

1 Note that frequently in the area of circuit simulation, different notation is used: there E,A, and C
become C,G, and LT , respectively. The notation used here is standard in systems theory.
2 Λ(A,E) denotes the set of generalized eigenvalues of the matrix pencil A−λE.
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There are many recent advances with respect to items 1.–3. discussed in the recent
literature, see, e.g., [6, 7], but due to space limitations we can not discuss all these
new developments here.

All the above problems of moment-matching methods are avoided when using
balanced truncation (BT) or its relatives. Computable error bounds or estimates ex-
ist and come essentially for free as by-product of the computational procedures for
obtaining the reduced-order model. The methods have good global approximation
properties and thus, the reduced-order models can serve as surrogate for a large fre-
quency range. Stability of the linear system is preserved for all variants of BT, other
properties like passivity (which is important for passive devices) can be preserved
by a variant of BT called positive-real BT (PRBT) (see, e.g., [8, 9] and references
therein). Note that the error estimate for PRBT given, e.g., in [9], needs a good
estimate of the H∞-norm (defined below) of G(s)+ DT and thus is not as cheap to
evaluate as, e.g., the BT error bound (7) below. On the other hand, for any reasonable
approximation this quantity can be replaced without significant loss of information
by the H∞-norm of Ĝ(s)+ DT which can be computed at moderate cost.

It has been common belief until recently that BT-related methods are not appli-
cable in circuit simulation due to the O(n3) complexity required by matrix equation
solvers used to solve the underlying Lyapunov or algebraic Riccati equations. But
advances in numerical linear algebra nowadays allow to compute solutions to those
Lyapunov and Riccati equations arising in BT-related methods for linear systems at
a computational cost that scales with the cost for solving linear systems of equations
with coefficient matrix A+ s0E . Thus, these methods can now be applied to systems
of order O(106). Moreover, most of the difficulties resulting from a singular E ma-
trix have now also been overcome. Many of these developments are discussed in
[6, 10] and references therein.

In the main part of this paper (Section 2), we will focus on one possibility to
extend BT to descriptor systems. A parallel implementation of an earlier version
of this algorithm is already described in [11]. This method does not make use of
possible sparsity of the system matrices and can thus be applied in order to reduce
fairly small linear subcircuits with up to a few thousands elements. We will com-
ment briefly on extensions to the case of large-scale, sparse matrices in Section 3.
Some further issues like sparsification of the reduced-order model and passivity
preservation using balancing-related methods will also be discussed in Section 3.

2 A Balanced Truncation Algorithm for Descriptor Systems

The method described in this section is based on two stages. In the first stage, we
decompose the transfer function of the descriptor systems into a part corresponding
to all finite poles and a polynomial part. Standard BT can then be applied to the
first part while the transfer function of the polynomial part is preserved, but may be
realized by a system of smaller order.
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First, we briefly explain how we apply BT to the part corresponding to the fi-
nite poles, then we present a method to compute the required decomposition of the
transfer function. In subsection 2.3 we combine these algorithms to a BT algorithm
for descriptor systems and some numerical results are reported in subsection 2.4.

2.1 Balanced Truncation for Generalized State-Space Systems

In this section, we briefly describe BT for systems of the form (1) when E is non-
singular. Such systems will be called generalized state-space (GSS) systems in the
following. For more thorough descriptions and in particular the mathematical back-
ground of the method in case E = In see [8, 12, 13].

Throughout this and the following sections, we always assume λE − A to be
stable, i.e., to have all its (finite) eigenvalues in the open left half of the complex
plane. We call a GSS system, realized by (A,B,C,D,E) as in (1) with E nonsingular
balanced, if the solutions P,Q of the dual Lyapunov equations

APET + EPAT + BBT = 0, AT QE + ET QA +CTC = 0, (4)

satisfy

P = ET QE = diag(σ1, . . . ,σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0. (5)

The σ j are the Hankel singular values (HSVs) of the GSS system.

Remark 1. P,ET QE are the controllability and observability Gramians of the linear
time-invariant system ẋ(t) = E−1Ax(t)+ E−1Bu(t), y(t) = Cx(t)+ Du(t), which is
equivalent to (1). As our method is equivalent to applying BT to this standard state-
space system, this definition appears to be quite natural here. Our algorithm to solve
(4) computes ET QE directly rather than Q — this has a certain advantage over
using Q as observability Gramian as in [14, 15]. On the other hand, the definition
used in [14, 15] yields Gramians directly for the descriptor system (1) and turns
out to be the appropriate approach in this case. Note also that in case E is singular,
in contrast to common belief in many references in the literature, BT can not be
directly based on (4) as the Lyapunov equations may or may not have solutions [14,
15]. The BT method for descriptor systems developed in [14, 15] therefore makes
use of so-called projected Lyapunov equations. It turns out that Algorithm 4 below
is mathematically equivalent to this approach, but solves the projected Lyapunov
equations only implicitly.

A balanced realization of a minimal GSS system can be computed via a system
equivalence transformation

T : (A,B,C,D,E) %→ (LAT,LB,CT,D,LET )

=
([

A11 A12

A21 A22

]
,

[
B1

B2

]
,
[

C1 C2
]
,D,

[
E11 E12

E21 E22

])
, (6)
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where L,T are nonsingular matrices so that (5) is true for the transformed system.
Such a transformation always exists which easily follows from the theory for stan-
dard systems [12].

Now if σr > σr+1 and the partitioning in (6) is chosen according to r, simple
truncation leads to the reduced-order model (Â, B̂,Ĉ,D̂, Ê) = (A11,B1,C1,D,E11)
with some benign properties: first, it can be shown that the reduced-order model is
again stable, and second, the error bound

‖G− Ĝ‖H∞ ≤ 2
n

∑
j=r+1

σ j, (7)

holds. Here, ‖ .‖H∞ denotes the H∞-norm, i.e., the 2-induced Hardy operator norm
of real rational matrix functions having no poles in the right half plane (see, e.g., [8]
and references therein). Due to its nature as 2-induced operator norm, the bound (7)
implies (using the Paley-Wiener theorem)

‖y− ŷ‖L2(0,∞;Rp) = ‖y− ŷ‖H
p

2
= ‖Gu− Ĝu‖H

p
2

≤ ‖G− Ĝ‖H∞‖u‖H m
2

≤ 2

(
n

∑
j=r+1

σ j

)
‖u‖H m

2
= 2

(
n

∑
j=r+1

σ j

)
‖u‖L2(0,∞;Rm),

where H q
2 is the frequency domain equivalent of L2(0,∞;Rq) obtained by the (nor-

malized) Laplace transform. Thus, the output error in both, frequency and time do-
main, can be bounded. The existence of this bound is considered to be the main
advantage of BT over other MOR methods, in particular as it can be computed as
a by-product of the BT procedure without additional cost and allows to adaptively
choose the order of the reduced-order model if it is requested that ‖y− ŷ‖ ≤ τ‖u‖
for a given tolerance τ and either one of the 2-norms in frequency or time domain.

It remains to show how to solve (4) and how to compute L,T as in (6). First we
note that it is actually not necessary to compute P,Q and L,T explicitly. Following
the ideas for standard systems from [13], one can show that the reduced-order model
can be computed (even for non-minimal systems) by the following procedure: as
P,Q are positive semidefinite, there exist matrices S ∈ RrP×n,R ∈ RrQ×n (by rP,rQ

we denote the ranks of P,Q, respectively) so that P = ST S and ET QE = RT R. Now
compute a singular value decomposition (SVD)

SRT = [U1, U2 ]

[
Σ1

Σ2

][
V T

1
V T

2

]
, Σ1 = diag(σ1, . . . ,σr)

and set L̂ = Σ−1/2
1 V1RE−1 ∈ R

r×n, T̂ = STU1Σ
−1/2
1 ∈ R

n×r. Then it is easy to verify
that L̂ and T̂ are the first r rows and columns of L,T from (6) and thus the reduced-
order model can equivalently be computed by

(Â, B̂,Ĉ,D̂, Ê) = (L̂AT̂ , L̂B,CT̂ ,D, L̂ET̂ ).
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Algorithm 2 Coupled Newton iteration for dual Lyapunov equations

INPUT: (A,B,C,E) ∈ Rn×n ×Rn×m ×Rp×n ×Rn×n as in (4); a convergence tolerance τ .
OUTPUT: Numerical full-rank factors such that P = ST S, ET QE = RT R, where P,Q are the solu-

tions of (4).
1: A0 ← A, S0 ← B, R0 ← C, j = 0.
2: while ‖A j +E‖1 > τ do
3: Determine scaling factor c j .

4: S j+1 ← full-rank factor of 1√
2c j

[
S j c jEA−1

j S j

]
.

5: R j+1 ← full-rank factor of 1√
2c j

[
R j

c jR jA
−1
j E

]
.

6: A j+1 ← 1
2c j

(
A j + c2

jEA−1
j E

)
.

7: j ← j +1.
8: end while
9: Solve SET = ST

j for S and set R := R j .

Note that Ê = Ir and thus the corresponding computations can be saved. Also ob-
serve that Σ−1/2

1 V1R ∈ Rr×n and thus L̂ can be obtained as the solution of the linear

system of equations L̂E = Σ−1/2
1 V1R with only r right-hand sides so that E−1 needs

not be formed explicitly.
In many cases, the numerical ranks of P,Q are small (rP,rQ � n) and thus it is

desirable to compute S,R as above directly without first computing Cholesky fac-
tors of P and ET QE as it is done in Hammarling’s method for (4) [14–16]. A very
efficient method to get S,R directly can be based on the sign function method, for
details see [17,18]. The resulting algorithm is given in Algorithm 2. There, the scalar
c j is a scaling factor used to accelerate convergence of this iteration (which is ulti-
mately quadratic). The full-rank factors are computed using rank-revealing LQ/QR
factorizations (RRLQ/RRQR) with respect to a tolerance ε for rank determination,
without accumulation of orthogonal factors which makes their computation fairly
cheap with a computational complexity bounded by 4nmax{rP,rQ}2 operations per
iteration step. For details on the scaling parameter c j and the column/row compres-
sion step see [17]. As lim j→∞ A j = −E , the iteration can easily be stopped as soon
as ‖A + E‖ ≤ τ · ‖E‖ for an appropriate convergence tolerance τ and an easy to
compute matrix norm. After convergence, we obtain the desired full-rank factors
of the Gramians as S = 1√

2
(E−1 lim j→∞ S j)T , R = 1√

2
lim j→∞ R j. Note that again,

there is no need to compute E−1 as S can be obtained by solving a system of linear
equations with rP right-hand sides. In [17] a variant of this iteration is discussed
that employs the R-factor of the QR factorization of E in the iteration instead of E
itself. In this way, each iteration step becomes a lot cheaper and furthermore, the
QR factorization can be used to solve the required linear systems of equations with
coefficient matrix E (when computing L̂ and S) just by application of the transposed
orthogonal factor of E and backward substitution.
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2.2 Additive Decomposition of the Transfer Function

In this section we show how to compute an explicit additive decomposition of the
transfer function G(s) as in (2) so that G(s) = G f (s) + G∞(s), where G f (s) and
G∞(s) have exclusively finite and infinite poles, respectively. Such an algorithm
was already proposed in [19]. Here, we suggest a method which employs different
computational kernels to achieve this decomposition. The required computations are
particularly efficient on computer architectures where matrix multiplication can be
performed (almost) at peak performance.

The additive decomposition is achieved by computing nonsingular matrices
U,V ∈ Rn×n that block-diagonalize λE −A, i.e.,

λ Ê − Â := U(λE −A)V = λ

[
E0 0

0 E∞

]
−
[

A f 0

0 A∞

]
,

and setting B̂ := UB =:
[

B f
B∞

]
, Ĉ := CV =:

[
Cf C∞

]
, D̂ := D. Then

G(s) = C(sE −A)−1B + D = Ĉ(sÊ − Â)−1B̂ + D̂

=
[

Cf C∞
][ sE f −A f

sE∞ −A∞

]−1 [
B f

B∞

]
+ D (8)

= Cf (sE f −A f )−1B f︸ ︷︷ ︸
=:Gf (s)

+C∞(sE∞ −A∞)−1B∞ + D︸ ︷︷ ︸
:=G∞(s)

.

Thus, we can apply balanced truncation as described in the previous subsection to
G f in order to obtain a reduced-order system with transfer function Ĝ f .

The block-diagonalization is achieved using a two stage process. First, a block-
triangularization of λE −A is computed using the disk function method as described
next, then a block diagonalization is achieved by solving a certain generalized
Sylvester equation.

Block-triangularization using the disk function method. The algorithm discussed
here is adapted from [20], and is based on earlier work by Malyshev [21]. This
algorithm is referred to as disk function method as it can be used to compute the disk
function of a matrix pencil, for details see [22]. We also make use of improvements
suggested in [23] to reduce its cost.

Given a regular matrix pencil λE −A having all finite eigenvalues inside the unit
circle, Algorithm 3 provides an implementation of the disk function method which
computes Ũ ,Ṽ such that

Ũ(λE −A)Ṽ = λ

[
E f WE

0 E∞

]
−
[

A f WA

0 A∞

]
, (9)
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Algorithm 3 Disk function method

INPUT: A matrix pencil λE −A, E,A ∈ Rn×n with no eigenvalues on the unit circle.
OUTPUT: Orthogonal Ũ ,Ṽ ∈ Rn×n that block-triangularize λE −A.
1: Set E0 = E, A0 = A.
2: for j = 0,1, . . . until convergence do

3:

[
E j

−A j

]
→

[
Q11 Q12

Q21 Q22

][
R j

0

]
(QR factorization),

4: A j+1 ← QT
12A j and E j+1 ← QT

22E j,
5: s = j +1.
6: end for
7: Use the subspace extraction procedure from [23] in order to compute Ũ ,Ṽ .

where E f ∈ R
n f ×n f ,A∞ ∈ Rn∞×n∞ are nonsingular, n f is the number of eigenvalues

inside the unit circle (here, this equals the number of finite eigenvalues), n∞ := n−n f

is the number of infinite eigenvalues, and E∞ ∈ Rn∞×n∞ is of nilpotency index ν
which is the index of λE − A. (Note that in general, if there are also finite eigen-
values outside the unit circle, a block-triangularization is achieved where λE∞−A∞
contains the finite eigenvalues of modulus larger than 1 and the infinite eigenvalues.)

Algorithm 3 is based on a generalized power iteration (see [23, 24] for more
details) and the fact that (see [21, 24])

lim
j→∞

(A j + E j)−1E j = P0, lim
j→∞

(A j + E j)−1A j = P∞,

where P0 and P∞ are projectors onto the right deflating subspaces of A−λE cor-
responding to the eigenvalues inside and outside the unit disk D1(0). Convergence
of the algorithm is usually checked based on the relative change in R j. Note that
the QR decomposition in Step 1 is unique if we choose positive diagonal elements

as
[

ET
j , −AT

j

]T
has full rank in all steps [25]. The convergence rate of the iter-

ation in Algorithm 3 is globally quadratic [20] with deferred convergence in the
presence of eigenvalues very close to the unit circle and stagnation in the limiting
case of eigenvalues on the unit circle. Also, the method is proven to be numerically
backward stable in [20]. Again, accuracy problems are related to eigenvalues close
to the unit circle due to the fact that the spectral decomposition problem becomes
ill-conditioned in this case.

It should be noted that for our purposes, neither the disk function nor the projec-
tors P0 nor P∞ need to be computed explicitly. All we need are the related matrices
Ũ ,Ṽ from (9). This only requires orthogonal bases for the range and nullspace of
these projectors. These can be obtained using a clever subspace extraction technique
proposed in [23]. Due to space limitations, we can not provide further details here.

In order to separate finite from infinite eigenvalues using the disk function
method for a stable matrix pencil λE −A, Algorithm 3 is applied to (A,αE), where
α is the radius of a circle, centered at the origin, enclosing the finite eigenvalues of
λE −A. Sometimes, α can be estimated from the physical background, otherwise a
generalization of the Geršgorin circles to matrix pencils [26, 27] may be employed.
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Block-diagonalization. After block-triangularization as described above, the ma-
trix pencil λE − A has the form (9). A block-diagonal form can now be obtained
using the solution matrices Y,Z of the generalized Sylvester equation

A fY + ZA∞ +WA = 0, E fY + ZE∞ +WE = 0. (10)

Then

λ Ê − Â := U(λE −A)V :=

[
I Z

0 I

]
Ũ(λE −A)Ṽ

[
I Y

0 I

]
(11)

=

[
I Z

0 I

](
λ

[
E f WE

0 E∞

]
−
[

A f WA

0 A∞

])[
I Y

0 I

]
= λ

[
E f 0

0 E∞

]
−
[

A f 0

0 A∞

]
.

A significant simplification can be observed for matrix pencils of index ν = 1: in
this case, E∞ = 0 so that (10) boils down to the subsequent solution of the two linear
systems of equations

E fY = WE , ZA∞ = −(WA + A fY ). (12)

Otherwise, i.e., for ν > 1, one can use an appropriate solver for generalized
Sylvester equations, e.g., the Fortran 77 subroutine SB04OD from the Subroutine
Library in Control Theory (SLICOT)3 or its MATLAB gateway function slgesg
from the SLICOT Basic Systems and Control Toolbox in order to solve (10).

2.3 Balanced Truncation for Descriptor Systems

In this section, we combine the algorithms from the previous two sections in order to
derive a method for balanced truncation for descriptor systems. The resulting algo-
rithm is mathematically equivalent to an algorithm proposed in [14, 15], but differs
in the underlying computational routines employed. Our method may be more effi-
cient in computing environments where matrix multiplication is very fast compared
to the fine-grain computations required in the GUPTRI algorithm [28] employed in
[14,15], while our method may suffer from wrong rank decisions in situations when
it is difficult to numerically distinguish finite and infinite eigenvalues of λE −A.

Employing a minimal realization of G∞, the reduced-order descriptor system be-
comes Ĝ(s) = Ĝ f (s)+ G∞(s). In [14, 15] it is shown that the order n̂∞ of a minimal
realization of G∞ satisfies n̂∞ ≤ min{νm,ν p,n∞}. In case of ν = 1, we get

G∞(s) ≡ D̂ := D−C∞A−1
∞ B∞.

3 See www.slicot.org.

www.slicot.org
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Algorithm 4 BT algorithm for descriptor systems

INPUT: A stable descriptor system realized by (A,B,C,D,E) as in (1).
OUTPUT: A stable reduced-order model (Â, B̂,Ĉ, D̂, Ê) of order r satisfying the error bound (7).

1: {Compute the additive decomposition of the transfer function.}
2: Compute α > 0 so that Λ(A,αE) ⊂ D1(0).
3: Apply Algorithm 3 to (A,αE) in order to block-triangularize λE −A as in (9).
4: if ν = 1 then
5: Solve the linear systems of equations (12).
6: else
7: Solve the generalized Sylvester equation (10).
8: end if
9: Compute the block-diagonalization as in (11).

10: Apply the resulting system equivalence transformation in order to obtain (8).
11: {Compute the reduced-order model.}
12: Apply BT as described in subsection 2.1 to G f and obtain Ĝ f .
13: if ν = 1 then
14: Set D̂ := D−C∞A−1

∞ B∞ and Ĝ(s) = Ĝ f + D̂.
15: else
16: Compute a minimal realization of G∞ and set Ĝ(s) = Ĝ f +G∞.
17: end if

In case no feed-through term (“D term”) is allowed in the simulation software
for which the reduced-order model is generated, Ĝ(s) can then be realized as

Ĝ(s) =
[

Ĉ, D̂
](

s

[
Ê 0

0 0

]
−
[

Â 0

0 −Im

])−1 [
B̂
Im

]
.

Procedures for computing a minimal realization of G∞ in case of index ν > 1 can
be found in [14, 15] and amount to applying discrete-time balanced truncation with
zero error to the polynomial part. The cost of this procedure is in general O(n3

∞). It
can be reduced if the corresponding discrete Lyapunov equations can be solved for
their low-rank factors directly similar to Algorithm 2, see, e.g., [29].

As G∞ is not reduced, just a different realization of possibly smaller order is
employed so that G(s)− Ĝ(s) = G f (s)− Ĝ f (s), the error bound (7) applies.

The resulting BT algorithm for descriptor systems is summarized in Algorithm 4.

2.4 Numerical Examples

Algorithm 4 was implemented as C subroutine in the circuit simulator TITAN4 [30].
In the following, we will present simulation results for two examples provided by
Qimonda AG, München, obtained by using reduced-order circuits computed by this
subroutine within TITAN.

4 Copyrighted software, developed by Qimonda AG, München
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Fig. 1: TITAN simulation results for small nonlinear circuit, 1 linear subcircuit (n = 297) replaced
by reduced-order model (r = 31)

Fig. 2: TITAN simulation results for industrial circuit, 14 linear subcircuits are reduced

In the first example, a small nonlinear circuit model, designed for testing and ver-
ification of algorithms, is used. The circuit consists of 297 resistors,
268 capacitors, 4 voltage sources, and 8 MOSFETs. A linear subcircuit of order
n = 297 was extracted and replaced by a model of order r = 31 computed by Algo-
rithm 4. Simulation results are shown in Fig. 1. The figure shows results obtained
by a MATLAB implementation of Algorithm 4 developed by the author and the C
implementation from [30]. A slightly larger error results from using the C version
which hints to an unresolved bug in the software. This is under current investigation.

In the second example, an industrial example with 14,677 resistors, 15,404 ca-
pacitors, 14 voltage sources, and 4,800 MOSFETs was investigated. The analysis
showed that 14 linear subcircuit of varying order could be extracted and reduced.
Simulation results for the original circuit and for a model where the 14 linear sub-
circuits were replaced by BT reduced-order models are shown in Fig. 2. Here we
see again that the reduced-order model behaves well in time domain simulation.
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3 Further Developments

Besides the aspect of singular E often arising in circuit simulation, a number of
further issues need to be addressed when applying BT for MOR in this area.

Large-scale, sparse systems. Large-scale Lyapunov equations can nowadays be
solved by using, e.g., the low-rank ADI method, at a cost that scales with the cost of
solving linear systems of equations with coefficient matrices A−μE; see the surveys
[10,31] and references therein. Thus, BT can be implemented at a cost proportional
to Krylov-subspace based methods. Usually more sparse factorizations have to be
computed using ADI methods, but the resulting MOR method has the advantageous
properties of BT5. The ADI method for Lyapunov equations can also be extended
to descriptor systems, see [32].

Sparsification of reduced-order models. BT is often criticized for producing dense
reduced-order models. (Note: this is also true for most moment-matching methods
like PRIMA, except for PVL-like methods.) Mostly, reduced-order models are used
when solving linear systems of equations of the form

(iωÊ − Â)x = b in frequency-domain analysis, (13)

(Ê −hkÂ)xk+1 = Êxk + . . . in implicit integrators (transient analysis,. . . ). (14)

The cost for solving the linear systems may not benefit from the smaller order, if
efficient sparse direct solvers for the full-size sparse system matrices are available.

A significant reduction can be achieved by transforming (Â, Ê) to Hessenberg-
triangular form [25, Algorithm 7.7.1], i.e., compute orthogonal Q,Z such that

Q(λ Ê − Â)Z = λ
[
�

��

]
−
[
��
�

��

]
≡
[
��
�

��

]
.

The new reduced-order system is then (QÂZ,QB̂,ĈZ,D̂,QÊZ), the linear systems
of equations (13) and (14) then have Hessenberg form, and can thus be solved using
r−1 Givens rotations only! This only requires the introduction of a dedicated solver
for Hessenberg systems in the simulation software.

Passivity preservation. An important physical property in circuit simulation is pas-
sivity as, e.g., RLC circuits only contain passive devices. Thus, the reduced-order
model should preserve this property. For symmetric transfer functions as they are
usually encountered in RLC circuit models, BT automatically preserves passiv-
ity. Other possibilities are balancing-related methods such as PRBT, see [8, 9] and
references therein. A number of recent papers deal with the efficient implementa-
tion of PRBT, see [9] for a review. Current efforts are directed towards extending
the method to large-scale descriptor systems with sparse coefficient matrices and

5 Despite unavoidable errors, loss of the theoretical properties of BT is usually not observed in
practice.
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employing the structure of circuit matrices more efficiently so that explicit compu-
tation of projectors can be avoided6.

Synthesis. BT variants based on split-congruence transformations as in [33] are un-
der current investigation. As split-congruence BT preserves reciprocity of the trans-
fer function, this allows synthesis of the reduced-order model as circuit. The basic
idea here is to exploit the structure of RLC circuits, leading to a “symmetric” trans-
fer function with (for networks without voltage sources)

sE −A = s

[
E1 0

0 E2

]
+

[
A1 AT

2

−A2 0

]
, B =

[
B1

0

]
= CT , D = 0,

where A1,E1 ≥ 0, E2 > 0. This structure can be preserved in the reduced-order
model if the BT truncation matrices L̂, T̂ are embedded in a so-called split-
congruence transformation [33]. The mathematical properties of this approach are
not clear yet; we will report on this BT variant in the future.
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