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Abstract Further downscaling of the integrated circuits pushes the limits of litho-
graphic technologies and certain variability effects previously considered negligible
now should be taken into account. This paper proposes an efficient approach that ad-
dresses the problem of interconnect process variations. New models for line param-
eters parameterized with respect to the geometric transversal dimensions, subject
to small or large variations are proposed. The parametric models are solely based
on the computation of first order sensitivities. In the multiparametric case the use of
multiplicative models can be a better choice than the use of traditional models based
on first order Taylor Series truncation.

1 Introduction

Continuous improvements in today’s fabrication processes determine smaller chip
sizes and smaller device geometries. The impact of interconnect performances has
become important as millions of closely spaced interconnections in one or more
levels connect various components on the integrated circuit [1]. Process induced
variations induce changes in the properties of metallic interconnect between de-
vices, pushing the limits of lithographic technologies. Parasitic capacitances, resis-
tances and inductances of the interconnections have become major factors in the
evolution of very high speed IC technology. This paper focuses on the variability of
the numerical extracted models for long interconnects modeled as transmission lines
with respect to geometric parameters. The authors investigate promising alternatives
beside the classic models of first-order truncations of Taylor expansions. The self -
imposed restriction is to use in the extracted model exclusively the values of first-
order sensitivities and not those of superior orders. The advantage of this approach
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is obvious. This represents one of the goals of the research carried out within the
European project FP6/IST/Chameleon [2].

This paper is structured as follows: first the basic approach used is discussed,
second, the approach is validated in the case of a microstrip line having one or
multiple variable parameters. Next, results on technology variability are shown and
conclusions are drawn at the end.

2 Parametric Models Based on First Order Sensitivities

First order sensitivities are essential for the analysis of the parameter variability
[3, 4]. Parametric models are often obtained by truncating the Taylor series expan-
sion for the quantity of interest. This requires the computation of the derivatives
of the device characteristics with respect to the design parameters [5]. Let us as-
sume that y(p1, p2, · · · , pn) = y(p) is the device characteristic which depends on
the design parameters p = [p1, p2, · · · , pn]. The quantity y may be, for instance the
real or the imaginary part of the device admittance at a given frequency. In our
case this quantity is any of the p.u.l. parameters. The parameter variability is thus
completely described by the real function, y, defined over the design space S, a
subset of Rn. The nominal design parameters correspond to the particular choice
p0 = [p01 p02 · · · p0n].

2.1 Additive Model (A)

If y is smooth enough then its truncated Taylor Series expansion is the best poly-
nomial approximation in the vicinity of the expansion point p0. For one parameter
(n = 1), the additive model is the first order truncation of the Taylor series:

ŷ(p) = y(p0)+
∂y
∂ p

(p0)(p− p0). (1)

If we denote by y(p0) = y0 the nominal value of the output function, by ∂y
∂ p(y0)

p0
y0

=
Sy

p the relative first order sensitivity and by (p− p0)/p0 = δ p the relative variation
of the parameter p, then the variability model based on (1) defines an affine [6] or
additive model (A):

ŷ(p) = y0(1 + Sy
pδ p). (2)

According to the Taylor Series theory the neglected terms can be expressed function
of the second order derivative in an intermediate point, ξ :

y(p) = y(p0)+
∂y
∂ p

(p0)(p− p0)+
∂ 2y
∂ 2 p

(ξ )(p− p0). (3)

It follows that the relative variation of the output quantity δy = (y(p)− y0)/y0 can
be expressed as

δy = Sy
pδ p + ε, (4)
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where the approximation error ε depends on the second order derivative of the out-
put quantity:

ε =
p2

0

2y0

∂ 2y
∂ 2 p

(ξ )(δy)2. (5)

Thus, to ensure a relative validity range of the first order approximation of the output
quantity less a given threshold t1, the absolute variation of the parameter must be
less than

Vd =
√

2y0t1
D2

, (6)

where D2 is an upper limit of the second order derivative of the output quantity y
with respect to parameter p.

The validity range of the first approximation can be increased in some cases if
the Taylor Series expansion is used for the “reversed” quantity 1/y(p). In this case,
to obtain the same validity range of the first order approximation for the reversed
output quantity, the variation of the parameter has to be less than

Vr =

√
2t1

y0D′
2
, (7)

where D′
2 is an upper limit of the second order derivative of the reversed output

quantity.
For the multiparametric case, one gets:

y(p) = y(p0)+∇y(p0) · (p−p0) = y0 +
n

∑
k=1

∂y
∂ pk

(p0)(pk − p0k). (8)

Similar with one parameter case, the relative sensitivities w.r.t. each parameter are
denoted by ∂y

∂ pk
(p0)

p0k
y0

= Sy
pk and the relative variations of the parameters by δ pk =

(pk − p0k)/p0k, the additive model (A) for n parameters being given by:

ŷ(p) = y0(1 +
n

∑
k=1

Sy
pk
δ pk). (9)

Thus, each new independent parameter taken into account adds a new term to the
sum [7]. The additive model is simply a normalized standard version of a linearly
truncated Taylor expansion. Instead of using this truncated expansion may be nu-
merically favorable to expand some transformation F(y) of y instead. Two particular
choices for F have practical importance: identity and inversion as it will be indicated
below. The originality of the algorithm for parametric model extraction proposed by
authors is the automation of the choice of transformation F , based on the numerical
estimation for the validity ranges (6), (7).

2.2 Rational Model (R)

The rational model is the additive model for the reverse quantity 1/y. It is obtained
from the first order truncation of the Taylor Series expansion for the function 1/y.
For n = 1, if we denote by r(p) = 1

y(p) , it follows that:
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r̂(p) = r(p0)+
∂ r
∂ p

(p0)(p− p0). (10)

We define the relative first order sensitivity of the reverse circuit function: ∂ r
∂ p(p0)

p0
r(p0) = Sr

p = S1/y
p . Consequently, we obtain the rational model for n = 1:

y(p) =
y0

1 + S1/y
p δ p

. (11)

It can be easily shown that the reverse relative sensitivity is S
1
y
p = −Sy

p. For the
multiple parameter case, the rational model is:

ŷ(p) =
y0

1 +∑n
k=1 S1/y

pk δ pk

. (12)

2.3 Multi-parametric Model (M)

Let us assume that in the multiparametric case the quantity of interest can be written
as a product of functions with separated variables:

y(p) = y1(p1)y2(p2) · · ·yn(pn). (13)

Each component function, yk depends only on a single parameter, pk and for each
one we can use either an additive or a rational model:

ŷ(p) =
y0(1 +∑m

k=1 Sy
pkδ pk)

1 +∑n
k=m+1 S1/y

pk δ pk

. (14)

The tensor product representation (13) seems to be a very particular case, however it
fits perfectly the variation of RLC parameters w.r.t. geometric parameters extracted
from uniform electric or magnetic field. The factorization and the choice of m are
dictated by physics of the problem itself, however the modeling algorithm we pro-
pose is a numerical approach based on the expressions (6) and (7) for the validity
ranges. For instance, in the case of two variable parameters, p1, p2 four versions of
model M are possible:

- MAA- additive models for both parameters

ŷ(p) = y0(1 + Sy
p1

)(1 + Sy
p2

); (15)

- MRR - rational models for both parameters

ŷ(p) = y0
1

(1 + S1/y
p1 )(1 + S1/y

p2 )
; (16)

- MAR - additive model for the first parameter and rational model for the second
one

ŷ(p) = y0
(1 + Sy

p1)

(1 + S1/y
p2 )

; (17)
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- MRA - rational model for the first parameter and additive model for the second
one

ŷ(p) = y0
(1 + Sy

p2)

(1 + S1/y
p1 )

. (18)

Together with the two “classical” A and R models, there are six possible parametric
models for the two parameter case.

3 Case Study

In order to validate our approach and to evaluate different parametric models, sev-
eral experiments have been performed on a test structure that consists of a mi-
crostrip (MS) transmission line having one Aluminum conductor embedded in a
SIO2 layer. The line has a rectangular cross section, parameterized by several pa-
rameters (Fig. 1). The return path is the grounded surface placed at y = 0. The nom-
inal values used are: xmax = 20μm, h2 = 10μm, h3 = 5μm, h0 = 1μm, p1 = 1μm,
p2 = 0.67μm, p3 = 3μm, σSi = 10000 MS/m, σAl = 3.3MS/m, εr−SiO2 = 3.9. In
order to comply with designer’s requirements, the model should include the field
propagation along the line, taking into consideration the distributed parameters and
the high frequency effects.

y
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SiO2

0 Ground

z

xmax

x

a

h3

h2

h0

p3
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p2

Fig. 1: Stripline parameterized structure
Fig. 2: Frequency characteristic Re(S11): numer-
ical model vs measurements

3.1 Validation of the Nominal Model

Before considering the parametric model, the results obtained for the nominal values
of p.u.l. parameters were validated by deriving from them the scattering parameters
(S) and compare the results with the measurements provided within the European
project FP5/Codestar (www.imec.be/codestar). For the nominal case, by using dFIT
+ dELOB [7], at low frequencies, the following values are obtained:
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Fig. 3: Left: Reconstruction of the p.u.l. C from Taylor Series first order expansion; Right: Relative
error w.r.t. the relative variation of parameter p3

R = 18.11kΩ/m,L = 322nH/m,C = 213pF/m (19)

Actually p.u.l. resistance and inductance are frequency dependent, and they can
be computed with the method described in [7]. The frequency response of the entire
line having the length d was computed using Transmission Line equations [6]. The
comparison between the simulations and the measurements is shown in Fig. 2 and
validates the nominal model described before. The sensitivities of p.u.l. parameters
are computed using the CHAMY software [2], by direct differentiation method ap-
plied to the state space equations [5]. They can also be computed by Adjoint Field
Technique (AFT) [8, 9].

3.2 Parametric Models

In this section, the accuracy of the A, R and M models for the line capacitance is
investigated.

One Parameter Case
The first sets of tests considered only one parameter that varies, namely the width
of the line, p3. The nominal value chosen was p3 = 3μm and samples in the inter-
val [1,5]μm were considered. The reference result was obtained by doing “exact”
simulations for the samples. These were compared with the approximate values ob-
tained from models A and R (Fig. 3). As expected intuitively, the dependence w.r.t.
p3 is almost linear and the A model is better than the R model. Considering the
relative variation of the parameters less than 15% (which is the typical limit for the
technological variations nowadays) the relative variation of the output parameter is
obtained (Fig. 3, right). The errors of both affine and rational first order models for
p.u.l. parameters are given in Table 1. Model A based on the first order Taylor se-
ries approximation has a maximal error for technologic variations 1.78% for p.u.l.
resistance when p3 is variable, while model R has an approximation error of only
0.6% for the same range of the technological variations for p.u.l. capacitance when
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Fig. 4: Left: Relative error w.r.t. the relative variation of parameter p1, for a variation of p3 of 5%;
Right: Relative error w.r.t. the relative variation of parameter p3, for a variation of p1 of 10%

p3 is variable. Using (6) and (7) can be easily identified which is the best model in
any case.

Table 1: Maximal errors [%] of p.u.l. parameters for technology variation of ± 15%

Parameter Quantity Affine (A1) Rational (R1)

p1 L 0.11 0.15
C 0.65 0.25

p3 R 1.78 0.22
L 0.34 0.04
C 0.035 0.6

Multiple Parametric Case
Let us consider now two parameters that vary simultaneously: p1 and p3. For ref-
erence, a set of samples in [0.8,1.2]μm × [2,4]μm were considered. The p.u.l. ca-
pacitance was approximated using the additive, rational and multiplicative models
described above. In this case, model M is computed using an additive model for p3

and a rational one for p1, which is the best choice. Fig. 4a compares the relative
variation of the errors w.r.t. a relative variation of parameter p1 for a variation of
p3 of 5%. Model M provides lower errors (maximum error is 2%) than models A
(3.7%) and R (2.2%). Fig. 4b illustrates that in the range from 20% to 40% model
M is the best one if we look at the variation w.r.t. p3 for a variation of p1 of 10%.
Thus, by using the appropriate multiplicative models in the modeling of the techno-
logical variability, the necessity of higher order approximations may be eliminated.

4 Conclusions

This paper analyzes variability models for TL structures considering the dependency
of p.u.l. parameters w.r.t. geometric parameters, at a given frequency. A detailed
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study of the line sensitivity was made by using numeric techniques. For one param-
eter case, the proposed methods avoid the evaluation of higher order sensitivities,
maintaining the accuracy by introducing rational models. The multi-parametric case
has been analyzed, in addition, a multiplicative parametric model (M) has been pro-
posed. This is based on the assumption that the quantity of interest can be expressed
with separated variables, for which A and/or R models are used. Model M is some-
times better than A and R models obtained from Taylor Series expansion. Its specific
terms (products of first order sensitivities) can thus approximate higher order, cross-
terms of Taylor Series. In order to automatically select the best first order model for
a multiparametric problem, the validity ranges of direct and reversed quantities have
to be evaluated. Once we establish the best model (A or R) for each parameter, the
M model will be easily computed by multiplication of individual submodels. Our
numerical experiments with the proposed algorithm in all particular structures we
investigated prove that the technological variability (e.g. ±20% variation of geomet-
ric parameters, which is typical for the technology node of 65 nm) can be modeled
with acceptable accuracy (relative errors under 5%) using only first order parametric
models for line parameters.
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