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Abstract In this paper the field/circuit coupling is reconsidered for (non-linear)
lumped electric circuits refined by 3-D magnetoquasistatic conductor models, where
the circuit is described by modified nodal analysis and the field is discretized in
terms of the finite integration technique. This leads to the coupling of systems of
differential-algebraic equations, for which two numerical approaches are proposed,
the weak coupling (co-simulation) and strong coupling (monolithic). The DAE-
index of the subproblems and of the full problem are analyzed, then convergence
properties of the co-simulation are studied. Finally computational results of a simple
half rectifier circuit are exemplarily given to prove the applicability of the concepts.

1 Introduction

Basic elements in circuit analysis are described by (non-)linear relations, disregard-
ing distributed field effects. Sometimes complex companion models are employed
to meet reality. These give, however, only a partial insight into field effects. In con-
trast, refined models directly rely upon Maxwell’s equations and are coupled here
with electric network equations. We analyze this coupling with two distributed con-
ductor types, which exhibit proximity and skin effects related to eddy currents.

The coupled problem is a system of differential-algebraic equations (DAEs) orig-
inating from Kirchhoff’s laws and the discrete Maxwell equations. It can be directly
addressed by solving one monolithic system using a field- or circuit-oriented ap-
proach. In the field approach, commonly the circuit is described using loop/branch
techniques and is solved within the field simulator. This approach is quite success-
ful and well understood [1], but it is neither efficient for coupling with very large
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circuits nor usable within modern circuit simulators that are based on modified nodal
analysis (MNA). The circuit-oriented approach relies on MNA and although inten-
sive research has been carried out [2], companion models are still widespread.

Obviously, the strongly coupled approaches do not have the advantages of
problem-specific simulators. In this context co-simulation can becomes beneficial
[3]. It allows to use different simulators for each subproblem, and thus provides a
natural support for diversifying integration methods and time-stepping (multirate)
with respect to the subproblems. Here, the coupling is given mathematically by a
waveform relaxation scheme.

The paper is organized as follows: In Sections 2 and 3 the circuit and field settings
are recalled; in Section 4 we analyze the index of the field-system; in Section 5
we introduce the weak and strong coupling and provide an index and convergence
analysis; in Sections 6 and 7 we give an illustrative example and conclusions.

2 Lumped Electric Circuit

Electric circuits are described by basic element relations and Kirchhoff’s laws. Us-
ing standard MNA, this yields a DAE system since the variables are redundant. In
the charge-flux oriented formulation [4], the system reads

AC
d
dt q + ARr(AT

Re,t)+ ALiL + AViV + AIi(t)+ Aλ iλ (AT
λ e, t) = 0,

d
dt Φ −AT

Le = 0, AT
Ve− v(t) = 0,

q−qC(AT
Ce,t) = 0, Φ −ΦL(iL, t) = 0,

(1)

with incidence matrices A, node potentials e, independent and controlled current and
voltage sources i, iλ and v, currents through voltage and flux controlled elements iV
and iL, charges q and fluxes Φ , functions of charges, fluxes and resistances qC, ΦL

and r (with positive definite derivatives), respectively.
Several index concepts were introduced to classify DAEs. Since these notations

are equivalent for linear systems, we state here only the (differential) index, [5]: For
the given system F

(
t, d

dt x,x
)
= 0, the index ν ∈ N0 is the smallest number, such that

the enlarged set of equations

F
(
t, d

dt x,x
)

= 0, d
dt F

(
t, d

dt x,x
)

= 0, . . . , dν

dtν F
(
t, d

dt x,x
)

= 0

allows to deduce a system of ordinary differential equations (ODEs) by algebraic
manipulations. In this way, ν denotes the inherent number of derivatives and mea-
sures the expected numerical difficulties.

In this respect, the numerical properties of (1) are well known, the DAE-index
has been discussed by decomposing the unknown (e, iV, iL,q,Φ) into algebraic and
differential parts using a projector QC onto the kernel of AT

C , i.e.,

QC kerAT
C = kerAT

C and AT
CQC = 0

and its complement PC = I −QC. We assume in the above terms:
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C1 No loops of capacitors and voltage sources, i.e., kerQT
CAV = {0}.

C2 No cutsets of inductors and current sources1, i.e., ker(AC,AR,AV )T = {0}.
C3 Voltage controlled current sources parallel to capacitors, i.e., QT

CAλ iλ = 0.

This splits the unknown into a differential part y := (PCe, jL)T and an algebraic part
z := (QCe, jV ,q,Φ)T , such that

d
dt y = f1(y,z, iλ ), 0 = g1(y,z), (2)

is an index-1 description of (1) since the derivative ∂
∂ z g1 can be shown to be non-

singular assuming C1-C3. It is possible to prove [6]:

Theorem 1. Let us consider a lumped electric circuit in form (1) that respects C3,
then the flux/charged oriented MNA leads to an index-1 DAE iff C1-C2 hold, it leads
otherwise to an index-2 DAE.

3 Electromagnetic Field

The electromagnetic field is described by Maxwell’s equations. We assume a spatial
discretization based on staggered grids (e.g. the finite integration technique) [7, 8].
In magnetoquasistatics with linear materials one can deduce the curl-curl equation

Mσ
d
dt

�a(t)+ Kν
�a(t) =

��
j src(t) , (3)

where �a denotes the discrete magnetic vector potential (MVP), Mσ the diagonal
positive semi-definite conductivity matrix,

��
j src the source current density and Kν :=

C̃MνC is the curl-curl matrix composed of the curl-operators for the primary and
dual grid C and C̃, respectively and the diagonal positive definite reluctivity matrix
Mν . Due to the non-trivial nullspace of Mσ this is a DAE, which is generally not
uniquely solvable because of the additional nullspace of the curl-operators. Thus a
gauge is needed to select one solution within the equivalent class

��
b = C�a, [10].

4 Field Models as Refined Network Elements

Conductor models for connecting field and circuit parts are well-known. Most com-
mon are solid and stranded conductors (Fig. 1). We use the given symbol for a (mul-
tiport) device that consists of (multiple) conductors of both types which are tightly
coupled by the field. The field is described by the curl-curl equation and excited
by

��
j src due to the connected circuit [9]. Typically voltage drops of solid conductors

(vsol) and the currents through stranded conductors (istr) are considered to be given
and thus the excitation reads

1 neither independent nor voltage controlled current sources, i.e., solid/stranded conductors
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vsol

isol

(a) Solid

vstr

istr

(b) Stranded (c) Symbol

Fig. 1: Conductor models (a), (b) and device symbol (c) that embeds both into the circuit

��
j src = MσQsolvsol + Qstristr . (4)

Here Q = [Qsol,Qstr] denotes the coupling matrix. Each column corresponds to a
conductor model and imposes currents/voltages onto edges of the grid. The un-
known currents isol and voltages vstr are obtained by the additional equations

isol = Gsolvsol −QT
solMσ

d
dt

�a , vstr = Rstristr + QT
str

d
dt

�a , (5)

with the diagonal conductance matrices Gsol for solid and the diagonal resistance
matrix Rstr = G−1

str for stranded conductors. Let us assume the following:

F1 The matrix pencil is regular, i.e., [Mσ ,Kν ] := det(λMσ + Kν) �= 0 for a λ .
F2 The models are non-overlapping, i.e., QT

(i) Q( j) = 0, for all i �= j.

F3 The excitation is consistent, i.e., ker(CQsol) = {0}, ker(CM+
σ ,anisoQstr) = {0}.

where M+
σ ,aniso is the pseudoinverse of the anisotropic conductivity matrix for

stranded conductors. F1 is equivalent to a gauging of (3) and F2 prohibits the smear-
ing of spatially separate models into each other, this allows to obtain (6) from (3-5),

Mσ ,fillin
d
dt

�a + Kν
�a = MσQsolvsol + QstrGstrvstr :=

��
j
∗
src , (6a)

QT
solKν

�a = isol , (6b)

GstrQ
T
strM

+
σ ,anisoKν

�a = istr , (6c)

where Mσ ,fillin := Mσ +QstrGstrQT
str is the (dense) conductivity matrix for both types.

Lemma 1. Let the field problem consist of solid and stranded conductors which
fulfill F1-F2, then the curl-curl equation (6a) is index-1 for given voltages and the
algebraic part of the MVP is zero.

Proof. By F1, the symmetric positive semi-definiteness of Mσ ,fillin implies that (6a)
is index-1 and the Kronecker Normal Form [5] for this system reads

d
dt

�a1(t)+U1KνV1
�a1(t) = U1

��
j
∗
src , (7a)

�a2(t) = U2
��
j
∗
src , (7b)

and this splits the MVP �a = V1
�a1 +V2

�a2 into differential and algebraic parts by
using the regular matrices UT =

(
UT

1 ,UT
2

)
and V = (V1 , V2). From
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U2Mσ ,fillin = U2
(
Mσ + QstrGstrQ

T
str

)
= 0

follows that both U2Mσ and U2QstrGstr vanish because the images of Mσ and Qstr

are distinct, since F2 is assumed. Hence we finally conclude that the algebraic part
of the MVP is zero: �a2 = U2

��
j
∗
src = 0. �

Let us now study the full system (6) in the abstract form

d
dt

�a = f2a(�a,vλ ), 0 = f2b(�a,vλ ), 0 = g2(�a, iλ ), (8)

where the voltages vλ = (vsol,vstr)T and the currents iλ = (isol, istr)T are combined
in vectors. The algebraic evaluation f2b is trivial in our case because of Lemma 1
and the algebraic function g2 consists of (6b), (6c), which can be written in the form

0 = gsol(�a, isol), 0 = gstr(�a, istr).

System (8) establishes a relation between currents (isol, istr) and voltages (vsol, vstr)
and we can choose which quantity is treated as unknown for each conductor type
in the field system, since then the other quantity is defined by the coupled electric
circuit. Therefore we will distinguish between the possible sets in the following.

Theorem 2. Let the field problem consist of solid and stranded conductors which
fulfill F1-F3. Iff all the voltages (vsol, vstr) are given, then system (6) is index-1 and
in all other cases it is index-2.

Proof. In the case of given voltages the currents iλ are obtained by evaluations of
the algebraic equation g2. Thus one differentiation with respect to time yields an
ODE, hence we have index-1. In all other cases the arguments are analogue to the
case of given isol and vstr. Now the function f2a in (8) depends on the unknown vsol

and one time derivative yields the additional hidden constraint:

0 =
d
dt

gsol(�a, isol) =
∂
∂�a

gsol · f2(�a,vsol)+
d
dt

isol =: hsol(�a,vsol,
d
dt

isol),

and since the conductivity matrices Mσ and Mσ ,aniso reflect F2 (Mσ ,anisoQsol = 0),
another differentiation of this constraint gives

∂
∂vsol

hsol = QT
solKνM+

σ ,fillinMσQsol = QT
solKνQsol = QT

solC
T MνCQsol ,

which is non-singular due to F3; thus it is index-2. �

If voltages are considered unknown, then (6) is an index-2 Hessenberg system (with
index-1 evaluations), [11]. Since the index-2 variables enter only linearly and with-
out time-dependence, the differential variables are not affected by the derivatives of
perturbations and thus the numerical difficulties still correspond to index-1 [12].
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5 Coupling

We assign vλ to the differences of applied node potentials e for elements with topol-
ogy Aλ and assign the iλ to the currents through the conductors

vλ = AT
λ e , iλ = (isol, istr)T . (9)

Now, the monolithic system is composed of (1), (6) and (9).

Theorem 3. Let us consider an electric circuit in the form (1) with C1-C2, which is
monolithically coupled via (9) to a field model (6) of solid and stranded conductors
fulfilling F1-F3, then the full system is index-1.

Proof. The algebraic components of the MVP are insignificant for solid and stranded
conductors according to Lemma 1. Hence after embedding the field into the circuit
system the separated unknowns of the full system read

y := (PCe, jL,�a1)T , z := (QCe, jV ,q,φ , iλ )T . (10)

The critical partial derivative of the algebraic equation ∂
∂ z g consisting of g1 and g2

is non-singular, since the first is regular due to C1-C2 and the second is just an
evaluation of a differential variable (�a1). Thus we have index-1. �

Assumption C3 is not required in the monolithic coupling because the algebraic
part of the MVP was shown to vanish for any excitement of solid and stranded
conductors.

Alternatively, the subproblems could be treated separately by a waveform re-
laxation scheme (of Jacobi or Gau-Seidel type). When applying these schemes to
DAEs one has to pay attention to algebraic constraints to avoid numerical instabili-
ties, [13]. We suggest the Gau-Seidel scheme (11) that computes the functions a(1),
y(1) and z(1) on a time frame T = [t0,t0 + H] for given initial values at time t0 and
previous iterates y(0) and z(0).

d
dt

�a(1) = f2(�a(1),v(0)), v(0) := AT
λ (y(0) + z(0)), d

dt y(1) = f1(y(1),z(1), i(1)
λ ),

0 = g2(�a(1), i(1)
λ ), 0 = g1(y(1),z(1), i(1)

λ ).
(11)

The convergence is guaranteed since there is no dependence in algebraic constraints

(g1, g2) on previous algebraic iterates (i(0)
λ , z(0)), [14]. Hence we obtain:

Lemma 2. Let us consider an electric circuit (1) fulfilling C1-C2 and a field
model (6) respecting F1-F3 and employing the interface (9). Then the waveform-
relaxation (11) will converge.

The additional assumption C3 can eliminate the iλ -dependence of the algebraic
equation g1 and allows us to exchanges the computational order of the subprob-
lems (we may compute the circuit first) without losing the convergence guarantee.
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1 2 3

R
loadv(t) C

0

(a) Half rectifier: veff = 250V, f = 50Hz,
Rload = 100Ω and Shockley diode Is =1μA

-200
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200

0 0.01 0.02 0.03 0.04

e
e3

1

(b) Voltage in nodes 1 and 3, ob-
tained by mono, H = 5μs

Fig. 2: Refined half rectifier circuit and its input and computed output voltages

6 Numerical Experiments

The simulations were obtained with code that is implemented within the COMSON
DP using field models constructed by EM Studio from CST (www.comson.org
and www.cst.com). The code is capable of both, the monolithic (mono) and the
co-simulation of non-linear circuits refined by conductor models. The co-simulation
uses scheme (11) with no (cosim1) and two iterations (cosim3) of each time
frame T . The integration was kept simple by applying backward Euler.

The example of Fig. 2 is a refined half rectifier with a transformer consisting
of two stranded conductors and a solid core. cosim1 performs slightly faster than
mono using the step size H and it yields better results if the accuracy requirement
is quite low. For decreasing step sizes cosim1 does not linearly improve its ac-
curacy as mono and cosim3 do (Fig. 3), but cosim3 suffers from an increased
computational effort due to the additional iterations.

Adaptive time-integrators in the co-simulation apply the same step size to both
subproblems, as long as they do not have multirate potential itself. This is in line
with the fact that the field reflects the dynamics of the coupled circuit nodes.

7 Conclusions

The field problem is essentially an index-1 DAE, the monolithic coupled system is
still index-1 and the convergence of the proposed co-simulation is guaranteed, as
illustrated by the computation of a refined rectifier circuit. The co-simulation may
use problem-specific software packages and exploits multirate potentials if available
in the circuit, but its efficiency can be improved, for example by applying a time
frame and iteration control, and the use of more complex equivalent circuits (e.g.
additional inductivities) might require fewer field updates [15, 16].
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(d) mono, H = 10μs
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(f) cosim1, H = 10μs

Fig. 3: Errors in the voltages compared to the results of mono, H = 5 ·10−6 from Fig. 2b
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