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Abstract Wavelet theory is a relatively recent area of scientific research, with a
very successful application in a broad range of problems such as image, audio and
signal processing, numerical analysis, electromagnetic scattering, data compression
and denoising, stohastics, mathematics and physics, (bio)medicine, astronomy and
many more. The key wavelet property contributing to its success in such a variety
of disciplines is the capability of a simultaneous time and frequency representation
of a signal embedded within a multi-resolution analysis (MRA) framework. The
potential exploitation of this property for next-generation, wavelet-based techniques
for analog circuit simulation is discussed in this paper.

1 Circuit Simulation

Analog circuit simulation is a standard industry approach to verify an integrated
circuit (IC) design at the transistor level before committing it to the expensive man-
ufacturing process. An Electronic Design Automation (EDA) suite takes the cir-
cuit description originating from a designer’s draft or fabrication data files, and
automatically generates a network description in form of a text file called netlist,
which describes circuit elements (resistors, capacitors, transistors, voltage and cur-
rent sources, etc.) and their connections. Then a circuit simulator (SPICE and its
derivatives), an integral part of an EDA suite, parses this input and translates it to
a data format reflecting the underlying mathematical model of the system. This is
done by applying the basic physical laws (energy and charge conservation) onto net-
work topology and taking the characteristic equations for the network elements into
account. The most used “translation” approach is the charge/flux oriented modified
nodal analysis (MNA) [1], which yields a mathematical model in the form of an
initial-value problem of differential-algebraic equations (DAEs):
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A
dq(x)

dt
+ f(x) = b(t). (1)

The matrix A is called an incidence matrix and, in general, is singular. x is the vec-
tor of node potentials and specific branch currents. q is the vector of charges and
fluxes. f comprises static contributions, while b contains the contributions of inde-
pendent sources. A numerical solution to (1) is found using the Newton’s method in
combination with implicit time integration schemes and sparse matrix techniques.

Instead of describing the system with a minimal set of unknowns, the mathemat-
ical modeling of an electric network via the charge/flux oriented MNA approach
aims to preserve the topological structure of the network [1], thus enabling a phys-
ical interpretation of simulation results by a user. Next, this approach preserves in-
formation on charge/flux conservation, a crucial property of many analog circuits
like charge pumps, switched capacitor filters, etc. Furthermore, the charge/flux for-
mulation enables more realistic modeling of nonlinear capacitors and inductivities.
In addition, (1) is suitable for the usage of special integrator schemes such as multi-
step methods (BDF-Gear, Trapezodial rule) and it does not require second partial
derivatives of charges resp. fluxes, which are usually not available in standard cir-
cuit simulation packages and may not even exist due to the lack of smoothness in
modern transistor models. On the other hand, in general (1) is a stiff system, i. e.
it involves characteristic time constants that differ by several orders of magnitude,
which is a serious hindrance to obtaining accurate results in a reasonable amount of
CPU time. In addition, this representation suffers from poor smoothness properties
of modern transistor models [2], which are struggling to describe complex physical
processes with the smallest possible set of mathematical equations. Furthermore, if
more general models for network elements are utilized or refined models are used
to include second order and parasitic effects, an ill-conditioned problem may arise
and very special care must be taken to avoid divergence while finding a numerical
solution to (1).

Today modern industrial analog circuit simulators are facing two serious chal-
lenges: qualitative and quantitative [1,3,4]. The qualitative challenge is highlighted
when simulating circuits containing mixed analog-digital parts. At present there is
no standardized framework within which is possible to simulate efficiently a mixed
analog-digital circuit. Analog circuits to be simulated are often multitone oscillatory
circuits, with widely separated carrier and modulation tones. A high-frequency car-
rier forces a small timestep while a low-frequency modulation forces a long simula-
tion interval, resulting in unacceptable long simulation times even for moderately-
sized RF circuits. Under the assumptions that the circuit behavior is periodic or at
most quasi-periodic and that its frequency spectrum contains only a small number
of frequencies, the multitone oscillatory circuits may be efficiently simulated using
a specialized RF simulator based on either the frequency-domain Harmonic Balance
or the time-domain Shooting algorithm [5]. However, a digital subpart in the circuit
introduces a substantial amount of high-frequency components and the efficiency of
these specialized solvers diminishes, if they can be applied at all. Hence the current
approach to an IC design is to simulate the analog RF front-end in a specialized
RF simulator, while the rest of the circuit is designed employing standard circuit
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simulation techniques. Due to this separation during the design process, subparts
of mixed analog-digital circuits are usually not realized on the same die in order to
keep spurious couplings between them as small as possible, since they cannot be
easily characterized in a common simulation environment. However, with the trend
towards ever-decreasing chip size, integration of analog and digital circuit parts on
the same die is eminent and new simulation tools that can support these mixed de-
signs are urgently needed.

The quantitative challenge lies in the simulation of extremely large circuits fea-
turing several millions transistors, e. g. memory chips. The sheer size of the un-
derlying MNA representation of such large circuits yields simulations that can last
weeks, even longer than a month. Or they simply cannot be performed due to ex-
treme memory and computational requirements. To cope with this situation, design-
ers are forced to aggressively simplify these very large circuits and simulate only
the most critical parts, an approach which is error prone. Or they use so called fast-
SPICE simulators, which utilize speed-up techniques such as table look-up models,
circuit partitioning, event-driven algorithms, hierarchical and parallel computations,
etc. In this manner a fast-SPICE simulator is able to achieve a speed up of factor
1000 in comparison to a standard circuit simulator but at the price of reduced ac-
curacy (usually as high as 3–5%), a mismatch that sometimes leads to sub-optimal
designs and failure of produced ICs, thus necessitating expensive re-design cycles.

2 Introduction to Wavelets

Wavelet theory emerged during the 20th century from the study of Calderon-
Zygmund operators in mathematics, the study of the theory of subband coding in
engineering and the study of renormalisation group theory in physics. The common
foundation for the wavelet theory was laid down at the end of the 80’s and begin-
ning of the 90’s by work of Daubechies [6, 7], Morlet and Grossman [8], Donoho
[9], Coifman [10], Meyer [11], Mallat [12] and others. Today wavelet-based algo-
rithms are already in productive use in a broad range of applications [11–18], such
as image and signal compression (JPEG2000 standard, FBI fingerprints database),
speech recognition), numerical analysis (solving operator equations, boundary value
problems), stohastics, smoothing/denoising data, physics (molecular dynamics, geo-
physics, turbulence), medicine (heart-rate and ECG analysis, DNA analysis) to
name just a few. Recent approaches [19–23] to the problem of multirate envelope
simulation indicate that wavelets could also be used to address the qualitative chal-
lenge by a development of novel wavelet-based circuit simulation techniques capa-
ble of an efficient simulation of a mixed analog-digital circuit.

A wavelet is a waveform of finite duration, with zero average value. Its shape is
usually irregular and asymmetric, unlike sines and cosines in Fourier series repre-
sentation. Nevertheless, just like sines and cosines in the classical Fourier expansion,
wavelets may be used as basis functions for a wavelet expansion to represent elec-
trical signals. The wavelet basis is formed via translations and dilations of a single
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wavelet function ψ(x), called mother wavelet, according to

ψs,τ(x) = s−1/2 ψ
(

x− τ
s

)
, (2)

where (s,τ) ∈ R+ × R. All wavelets from a specific basis are shifted (parameter τ)
and dilated/compressed (by factor s) versions of this mother wavelet. The translation
parameter τ is responsible for the localization in time of a corresponding wavelet.
The scaling or resolution parameter s, usually called the scale, is generally under-
stood as the frequency inverse. Therefore, the high scale (resolution) corresponds
to low frequencies or a global view of the signal and low scale (resolution) corre-
sponds to high frequencies or a detailed view of the signal. The factor s−1/2 is used
for energy normalization across different scales. From (2) it is clear that a wavelet
basis intrinsically supports a simultaneous time-frequency representation of a sig-
nal, where the translation parameter τ is responsible for the time localization and the
scaling parameter s for localization in the frequency domain. One particular wavelet
property should be noted at this point: with wavelets it is not possible to exactly
know a single frequency that exists at a single time instance, rather it is possible
only to know what frequency bands exist at what time intervals [24].

There are numerous types of wavelets, each with different sets of features.
Wavelets are usually grouped in wavelet families, according to several properties
such as the support of wavelet and scaling functions, the number of vanishing mo-
ments, the symmetry, the regularity, existence of a scaling function φ , the orthogo-
nality and biorthogonality, existence of explicit expression and others [13]. Some of
the most famous wavelets families include: Haar, Daubechies, spline, biorthogonal,
Morlet, Mexican hat, symlet, coiflet, Meyer, Bessel, Cauchy, Gaussian, etc.

Transforms involving wavelets can roughly be divided into three classes: con-
tinuous (CWT), discretised (DWT) and multi-resolution based (MRA). Contrary to
the name, DWT is a continuous-time transform, as is CWT. The discreteness here
refers to the fact that discrete wavelets are not continuously scalable and translatable
functions but can only be scaled and translated in discrete steps determined by some
integers ( j,k). For example, a discrete wavelet suggested by Daubechies [7] is

ψ j,k(x) = 2− j/2ψ(2− jx− k). (3)

DWT in combination with MRA is a very efficient transform with its linear compu-
tational complexity O(N), it is even more efficient than the Fast Fourier Transform
(FFT) with its O(N logN) complexity. Against the background of the circuit simu-
lation, MRA is of particular interest and it will be further explored in more details.

2.1 Multi-resolution Analysis

Formally defined, a multi-resolution analysis (MRA) in L2(R) is a set of closed sub-
spaces Vs with s ∈ Z such that the following five properties are satisfied [25]
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1. . . .V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R), that is Vs ⊂ Vs+1 for all s ∈ Z
2.

⋃+∞
s=−∞Vs is dense in L2(R); and in addition

⋂+∞
s=−∞Vs = {0}

3. f (t) ∈ Vs iff f (2t) ∈ Vs+1

4. if f (t) ∈ V0, then f (t − k) ∈ V0 for all k ∈ Z
5. ∃ scaling function φ(t) ∈ V0, so that set {φ(t − k) | k ∈ Z} is a Riesz basis of V0

The first (structural) property states that subspaces Vs in MRA are nested and the
information at the resolution level s is entirely included in the information at higher
resolution level s + 1. The second (resolution) property states that the Vs, s ∈ Z,
cover L2(R), i. e. the approximation approaches any signal in the entire initial space
L2(R) as more details are added, i. e. resolution goes to infinity. On the other hand,
as more and more details are removed, i. e. resolution gets coarser, only constant
functions are left. In a limit, only the zero function remains, since the functions
are squarely integrable. The third (dilation) property states that all Vs are scaled
(dilated) versions of the central space V0. The fourth (translation) property states
that translation of f (t) for some k does not change its resolution, i. e. V0 is integral
translation-invariant. From the properties 3 and 4 it directly follows that if a function
f is in V0, then its scaled and translated version f (2 jt − k) is in Vj, i. e. if f (t) ∈ V0,
then f (2 jt − k) ∈ Vj for all k ∈ Z. Finally, the fifth property states that similarly to
the function e jωt in Fourier analysis, there exists one function φ(t) which generates
the basis functions for all Vs. More precisely, if we define φs,k = 2s/2φ(2st −k), then
{φs,k(t)}k∈Z forms a Riesz basis of Vs.

To obtain the required resolution in a representation of an arbitrary signal, a se-
quence of scaling function expansions with wavelets of successively higher resolu-
tions are used within the MRA. Interestingly, only one scaling function φ(t), called
father wavelet, and one wavelet function ψ(t), called mother wavelet, are needed to
construct complete basis sets for systems of function spaces.

2.2 The Wavelet Expansion

Let us now consider a wavelet expansion embedded in the MRA framework. We
start by considering an electrical signal as a combination of a smooth background
and fluctuations superimposed on it, as is done for electrical field representation
[26]. At a given resolution level s the signal is approximated in Vs by ignoring all
the fluctuations above this level in Vk with k > s. Let fs(t) ∈ Vs denote the approx-
imation of a signal f (t) at given level s. In order to get better approximation, the
level is increased to s + 1 and a new approximation is obtained by adding the de-
tails, denoted as ds(t) to the approximation on previous level, i. e.

fs+1(t) = fs(t)+ ds(t). (4)

Equation (4) means that at the resolution level s + 1 a signal f (t) is approxi-
mated with fs(t) in the scale subspace Vs and ds(t) in the detail subspace Ws. The
scale subspace Vs consists of functions that contain the signal information down
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to scale 2−s. The members of the detail subspace Ws = Vs+1 �Vs are differences
ds(t) = fs+1(t)− fs(t) and it comprises the additional information regarding details
on scales between 2−s and 2−(s+1). For best approximation in terms of Vs the dif-
ference ds(t) = fs+1(t)− fs(t) should be orthogonal to fs(t). This is convenient to
assume but not necessary. Assuming orthogonality means that Ws ⊥ Vs and

Vs+1 = Ws ⊕Vs = Ws ⊕Ws−1 ⊕Vs−1 = . . . =
i=S

∑
i=0

Ws−i ⊕Vs−S. (5)

Furthermore, any two detail spaces at different resolutions are orthogonal, and the
detail space Ws is orthogonal to an approximation space Vs′ , only when s > s′, i. e.
when the detail space is at a higher resolution level.

If the improvement of approximation (4) was continued to infinity, the original
signal f (t) would be recovered as:

f (t) = fs(t)+
∞

∑
j=s

d j(t). (6)

Hence an arbitrary electrical signal expanded as a summation of scaling and wavelet
basis functions may be denoted in a hierarchical manner as:

f (t) =
s

∑
i=−∞

ciφi(t)+
+∞

∑
j=s

+∞

∑
k=−∞

d j,kψ j,k(t). (7)

The first term in (7) is the projection of f (t) into the scaling subspace Vs. It corre-
sponds to a coarse approximation of f (t) at a previously selected resolution level s.
The second term consists of projections of f (t) into the wavelet subspaces Wk.

In practical computations only finite sums can be used and hence the sums in
(7) must be truncated. In general, we are interested in the behavior of the circuit
over a certain finite time interval of length L. This implies that the upper limit of a
sum in the first term (index i) and the inner sum of the second term (index k) would
naturally depend on the interval considered, i. e. the parameter L. The outer sum of
the second term (index j) defines the number of levels of detail that are to be taken
into account, and hence the resolution level of the approximation will be defined by
the upper boundary of this sum. For example, a finite approximation of an electrical
signal over the time interval [0,L] on a Jth resolution level could be denoted as:

f (t) ≈
2sL−1

∑
i=0

ciφi(t)+
(J−1)

∑
j=s

(2 jL−1)

∑
k=0

d j,kψ j,k(t) (8)

At each resolution level j there are 2 jL basis functions, thus there are in total (2J−s)L
wavelet coefficients to be computed. In addition, there are 2sL coefficients corre-
sponding to scaling functions at a resolution level s. Hence the total number of
coefficients in a finite wavelet expansion (8) over the interval [0,L] on a Jth resolu-
tion level sums up to 2JL. For efficient computations the resolution level s should be



Wavelets in Circuit Simulation 137

chosen so that the coarse level is satisfied for most values of t and more details, i. e.
wavelets, are added only at the points where they are needed to capture the abrupt
signal fluctuations.

3 Wavelets in Circuit Simulation

Recent investigations into the use of wavelets in simulation of electronic circuits
[19–23] have shown that these intrinsic properties make wavelets a natural can-
didate for a successful successor of time-domain (e. g. transient analysis, shoot-
ing analysis) and/or frequency domain (e. g. Harmonic Balance analysis) paradigms
used in circuit simulation today. For example, Zhou and Cai propose the use of the
wavelet collocation method in the time-domain [19] and the frequency domain [27]
circuit simulation of mostly-linear circuits. For the computation of periodic steady
state Soveiko and Nakhla [20,28] advocate a wavelet technique in combination with
the Harmonic Balance approach, while Li et al. [29] use wavelet balance method.
Christoffersen and Steer [21] used wavelets for transient circuit simulation within a
state-variable based approach. Dautbegovic and Condon [22] use multitime partial
differential equations (MPDE) in combination with wavelets for efficient simulation
of multirate nonlinear RF circuits. Although valuable as a proof-of-concept, unfor-
tunately these algorithms are still not mature enough to be used in industrial design
flows.

We propose a wavelet expansion (8) embedded in the MRA framework as an ap-
proach to take when developing wavelet-based circuit simulation techniques. Con-
sider the electrical signal depicted in Fig. 1, which is a typical time-domain output
signal of a ring oscillator featuring a large amount of digital content. It can be con-
sidered as a “sum” of a digital signal and some irregular analog fluctuations. To
describe such a signal efficiently, some sort of an adaptive approximation is needed.
In such approximation an expansion of an electrical signal in those intervals where
the signal varies smoothly and slowly should be simple and with as little degrees of
freedom as possible, but whose resolution could be easily increased in places where
the signal changes quickly and abruptly. For example, the smooth part could be rep-
resented by the low-resolution expansion of the signal, capturing the average signal
behavior. A quickly changing part or details can only be captured by high-resolution
components.

The wavelet expansion (8) is exactly the kind of the adaptive approximation that
we are looking for. Embedded in the MRA framework, scaling functions can be used
for an expansion of an electrical signal at a lower resolution level in those intervals
where the signal varies smoothly and slowly, but in places where signal changes
are quick and abrupt more details (i. e. wavelets) should be added. Therefore, the
approximation effort is considerably reduced since only the “troublesome” regions
are treated on a high-resolution level (i. e. with a larger number of coefficients),
while smooth regions described on lower levels are captured by a smaller set of
(possibly only) scaling coefficients. Compared to time-domain transient analysis,
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Fig. 1: An output voltage of a 1 GHz ring oscillator

taking fewer coefficients for the wavelet expansion in smooth regions is analogous
to taking fewer time-steps during the transient analysis in intervals in which no large
changes in signals are detected.

3.1 Advantages of the Wavelet-Based Approach in Circuit
Simulation

Let us now explore particularly advantageous properties of the wavelet expansion
against the target application of circuit simulation.

Time-Frequency Representation. The truncated wavelet expansion (8) may be
written in general form as f (t) = ∑I∈I aI( f ) ΨI , where ΨI comprises all scaling
and wavelet basis functions and aI are the corresponding expansion coefficients on
a finite index set I ↔ ( j,k). In fact, these basis functions are generated by scaling
(determined by the value of j) and translating (determined by the value of k) a
single function ψ , i. e. ψ j,k = 2 j/2 ψ(2 jt − k). Such an expansion associates with a
function f , the array of coefficients a = {aI( f )}I∈I as is the case for the classical
expansions. However, the coefficients aI convey very detailed information on f due
to the structure of I [30]. Each I comprises two-fold information on time (spatial)
location encoded by k and information on scale, determined by j. Furthermore a
scale is closely related to a frequency band and can be thought of as its inverse.
Therefore, each coefficient in a wavelet expansion (8) carries simultaneously both
the time-domain and the frequency-domain information.

Adaptive Resolution. In contrast to approximating the function f of a given opera-
tor equation on some mesh (of fixed highest resolution), wavelet based schemes aim
to determine its representation with respect to a basis [30]. This means that during
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the solution process, wavelet based algorithms will track only those coefficients in
the unknown array a that are the most significant for approximating f with as few
as possible degrees of freedom. This property contributes immensely towards the
efficiency of such algorithms.

In addition, an adaptive resolution equips a wavelet expansion with a natural way
for an easy trade-off between required accuracy and reasonable simulation time. If
the amplitude of a fast-changing fluctuation is below the noise-floor or the design
process is in its early stages, when a designer is interested only in an average be-
havior of a designed IC, fluctuations above certain pre-defined cut-off level can be
neglected. While a-priori definition of this cut-off level can be tricky with standard
approaches, with wavelets it is a trivial task of setting the required resolution level
s.

Furthermore, if the approximation is not satisfactory, we can continue with pro-
gressively increasing the resolution level, thus adding finer resolution details to the
signal. Theoretically, by continuing this process to infinity resolution level, the sig-
nal will be exactly recovered just like for example in case of Taylor series expansion
in the time domain or Fourier expansion in the frequency domain.

Mixed Analog-Digital Simulation. As briefly discussed in Section 1, at present
there is no simulation framework (neither in the time nor in the frequency domain)
in which a mixed analog-digital circuit can be efficiently simulated. The reason for
this is a considerable approximation effort needed to capture a signal corresponding
to one circuit part type when simulated in a simulator suitable for the other circuit
type. For example, when a digital signal is to be simulated in a frequency-domain
analog simulator, well suited for the analog RF front-end simulations, an extremely
large number of Fourier coefficients is needed to accurately describe falling/rising
edges of a digital signal. This is due to the poor time-domain localization property
of the frequency-domain Fourier representation. In contrast, only a small number
of coefficients corresponding to appropriately chosen scaling functions should be
needed to approximate the signal well everywhere except in short intervals of sharp
transitions. For those and only for those short intervals, additional coefficients cor-
responding to wavelet functions at higher resolution levels are needed to obtain
equivalent or better accuracy to the Fourier representation, but at significantly re-
duced computation cost.

Validity Range. A Taylor expansion places strong demands on the regularity of f
such as analyticity, while wavelet expansion is typically valid for a much larger class
of functions such as squarely integrable ones. This means that it is only required
that the series on the right-hand side of (7) converges in the corresponding norm.
Consequently the space of functions describing an electrical signal only needs to be
a space of squarely integrable functions. Hence, a wavelet expansion has a potential
to reduce negative influence of poor smoothness of transistor models on numerical
convergence. However, this can only be confirmed after extensive testing on the
existing industry models is performed within a working prototype of a wavelet-
method.



140 E. Dautbegovic

3.2 Challenges of Wavelet-Based Algorithms

The foreseen advantages of the use of wavelet-based techniques in circuit simulation
highlighted in Section 3.1 give us a solid justification for investing efforts for devel-
oping wavelet-based algorithms. However before an industry-wide exploitation of
these techniques is possible, the following issues need to be addressed.

Size of the Wavelet Expansion. For a numerically effective wavelet method it is
crucial to setup near-optimal wavelet expansions, so that only a small number of
wavelet coefficients is needed for a signal representation. Unlike with the Fourier
basis, in which the shape of a basis function is predefined and cannot be changed,
wavelet basis functions can have many shapes, varying from smooth to highly ir-
regular. A wavelet algorithm can be setup without having a priori knowledge on the
type of the wavelet basis set to be used for signal representation. In fact, if a user
has some previous insights about the expected results, drawn upon experience or
on some prior simulation results, then a suitable wavelet set may be chosen prior to
simulation start, as one of simulation parameters. For example, a smooth wavelet set
could be chosen for ICs involving smoother functions and more irregular ones for
digital-like signals. Matching a wavelet basis set to a signal shape to reduce the num-
ber of needed expansion coefficients is analogous to choosing the appropriate base
frequency in the Fourier expansion to describe periodic signals with a minimum set
of coefficients corresponding to the expected maximum harmonic in a signal’s spec-
trum prior to the HB computations. In addition, an adaptive selection of expansion
time points as well as both hard- and soft-thresholding techniques [31–34] can help
to further decrease the size of a system to be solved.

Numerical Considerations. Even with a near-optimal selection of the wavelet ba-
sis the total number of wavelet coefficients is still very large; it equals the number of
circuit variables times the number of coefficients in the chosen wavelet expansion
for each node. For an efficient wavelet method a critical issue is how to store and
invert a huge but relatively sparse Jacobian matrix arising from a Newton method
applied to solve this nonlinear system. The investigations are ongoing into a setup of
wavelet Jacobian in a block-diagonal form, which does not require storing the com-
plete Jacobian at any point and is also easy to invert. Furthermore, one needs to be
aware that significant matrix conditioning problems can arise due to a poor smooth-
ness of MOSFET models (modeling problem) as well as solving higher-index DAEs
(topological problem) and take appropriate care to minimize their negative influence
on a solution process.

Applicability and Functional Considerations. The Harmonic Balance algorithm
is an efficient tool for analyzing periodic or at most quasi-periodic circuits, unfor-
tunately its use on any other type of circuits is a priori excluded. No such limitation
is envisaged with wavelet based techniques and they are universal in the sense that
they may be applied to any type of circuits. However, it is obvious that for pure si-
nusoidal signals there cannot exist a wavelet basis that is better than a Fourier basis
in which a single expansion coefficient is needed to completely describe the signal.
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But since the periodicity is not excluded from wavelet expansions, a wavelet basis
can be found, such that it minimizes this expansion inefficiency and takes a small
penalty when simulating pure sinusoidal circuits for the sake of generality.

Next, assuming that the previously mentioned challenges are successfully re-
solved and a wavelet solution is obtained, the question of the interpretation of these
qualitatively new results arises. Wavelets are a powerful analysis tool but what can
we conclude from a just performed wavelet analysis to enable a more robust design?
An important point to enable faster adoption of wavelet based techniques in wider
design community, governed by time- and frequency-domain specifications, is the
derivation of a hopefully simple connection of wavelet-domain results to time- and
frequency-domain design specifications.

4 Conclusion

With an ever-shrinking size and ever-increasing demand on functional complexity
of a modern IC chip, a fast and scalable circuit simulation is a key design and veri-
fication approach in semiconductor industry. But increasing difficulties that current
industrial circuit simulators are facing today, in particular in a simulation of mixed
analog-digital circuit as well as circuits featuring millions of active devices, have
highlighted the need for a novel approach to circuit simulation.

Intrinsic properties make wavelets a natural candidate for a successful succes-
sor of time- and frequency-domain paradigms used in circuit simulation today. This
paper has discussed the advantages of wavelet expansions, which can be well uti-
lized in circuit simulation, but also pointed out the challenges that must be resolved
before an industry-wide acceptance and utilization of wavelet-based methods oc-
curs. However, the expected benefits of a wavelet-based simulation engine, both in
quantitative terms (efficient simulation of mixed-signal circuits) as well as quali-
tative terms (analyzing electrical signals with resolutions adapted to a problem at
hands), is well worth allocating effort in a bid to develop the next-generation circuit
simulators capable of answering industrial challenges of tomorrow.
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