

IFIP Advances in Information
and Communication Technology 313

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Mike Hinchey, Lero, Limerick, Ireland

Software: Theory and Practice
Bertrand Meyer, ETH Zurich, Switzerland

Education
Bernard Cornu, CNED-EIFAD, Poitiers, France

Information Technology Applications
Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA

Communication Systems
Guy Leduc, Université de Liège, Belgium

System Modeling and Optimization
Jacques Henry, Université de Bordeaux, France

Information Systems
Barbara Pernici, Politecnico di Milano, Italy

Relationship between Computers and Society
Chrisanthi Avgerou, London School of Economics, UK

Computer Systems Technology
Paolo Prinetto, Politecnico di Torino, Italy

Security and Privacy Protection in Information Processing Systems
Kai Rannenberg, Goethe University Frankfurt, Germany

Artificial Intelligence
Max A. Bramer, University of Portsmouth, UK

Human-Computer Interaction
Annelise Mark Pejtersen, Center of Cognitive Systems Engineering, Denmark

Entertainment Computing
Ryohei Nakatsu, National University of Singapore

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.

Christian Piguet Ricardo Reis
Dimitrios Soudris (Eds.)

VLSI-SoC:
Design Methodologies
for SoC and SiP

16th IFIP WG 10.5/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2008
Rhodes Island, Greece, October 13-15, 2008
Revised Selected Papers

13

Volume Editors

Christian Piguet
CSEM, Centre Suisse d’Electronique et de Microtechnique
Jaquet-Droz 1, Case Postale, 2002 Neuchâtel, Switzerland
E-mail: christian.piguet@csem.ch

Ricardo Reis
Universidade Federal do Rio Grande do Sul, Instituto de Informática
Porto Alegre, Brazil
E-mail: reis@inf.ufrgs.br

Dimitrios Soudris
National Technical University of Athens, Department of Computer Science
9 Heroon Polytechneiou, Zographou Campus, 15780 Athens, Greece
E-mail: dsoudris@microlab.ntua.gr

Library of Congress Control Number: 2010923483

CR Subject Classification (1998): B.7-8, C.0, F.2, J.2-3, C.2.1

ISSN 1868-4238
ISBN-10 3-642-12266-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12266-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© IFIP International Federation for Information Processing 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This book contains extended and revised versions of the best papers that were pre-
sented during the 16th edition of the IFIP/IEEE WG10.5 International Conference on
Very Large Scale Integration, a global System-on-a-Chip Design & CAD conference.
The 16th conference was held at the Grand Hotel of Rhodes Island, Greece (October
13–15, 2008). Previous conferences have taken place in Edinburgh, Trondheim, Van-
couver, Munich, Grenoble, Tokyo, Gramado, Lisbon, Montpellier, Darmstadt, Perth,
Nice and Atlanta.

VLSI-SoC 2008 was the 16th in a series of international conferences sponsored by
IFIP TC 10 Working Group 10.5 and IEEE CEDA that explores the state of the art
and the new developments in the field of VLSI systems and their designs. The purpose
of the conference was to provide a forum to exchange ideas and to present industrial
and research results in the fields of VLSI/ULSI systems, embedded systems and mi-
croelectronic design and test.

The 2008 edition of VLSI-SoC maintained the traditional structure of the previous
VLSI-SoC conferences. The quality of submissions (193 papers) made the selection
process difficult, but finally 56 full papers and 42 posters were accepted for presenta-
tion at VLSI-SoC 2008. Out of the 56 full papers presented at the conference, 14
regular papers were chosen by a selection committee to have an extended and revised
version included in this book. These selected papers have authors from France, Ger-
many, Italy, Greece, and Switzerland. Additionally, the selection committee invited
Eby Friedman, Rochester University, USA, keynote speaker at VLSI-SOC 2008, to
contribute a special chapter about "3-D Integrated Technologies".

VLSI-SoC 2008 was the culmination of many dedicated volunteers: paper authors,
reviewers, session chairs, invited speakers and various committee chairs, especially
the local arrangements organizers. Also, special thanks to the VLSI-SOC 2008 spon-
sors. We thank them all for their contribution.

This book is intended for the entire VLSI community and in particular those who
did not have a chance to take part in the VLSI-SoC 2008 Conference. The selected
papers cover a wide variety of excellence in VLSI technology and describe advanced
research in the area. We hope that the reader (professional, instructor, engineer, stu-
dent, etc.) will find the book useful, constructive and enjoyable, and that the technical
material presented will contribute to the continued progress of the VLSI community as
a whole.

July 2009

Christian Piguet
Ricardo Reis

Dimitrios Soudris

Organization

The IFIP/IEEE International Conference on Very Large Scale Integration-System-on-
Chip (VLSI-SoC) 2008 took place during October 13−15, 2008 in the Grand Hotel
Rhodes, on Rhodes, Greece. VLSI-SoC 2008 was the 16th in a series of international
conferences, sponsored by IFIP TC 10 Working Group 10.5 (VLSI) and IEEE CEDA.

General Chair

Dimitrios Soudris* Democritus University of Thrace, Greece

*National Technical University of Athens, Greece
(from 08/2008)

Program Co-chairs

Christian Piguet Centre Suisse d'Electronique et de Microtechnique,
Switzerland

Thanos Stouraitis University of Patras, Greece

Publicity Co-chairs

David Atienza Complutense University of Madrid, Spain
Bernard Courtois TIMA Labs, France

PhD Forum Co-chairs

Josef Haid Infineon Technologies, Austria
Bernard Courtois University of Patras, Greece

Keynote Speakers

O. Koufopavlou University of Patras, Greece

Tutorials

V. Paliouras University of Patras, Greece

Special Sessions

K. Pekmestzi National Technical University of Athens, Greece
G. Economakos National Technical University of Athens, Greece

 Organization VIII

Proceedings

Ricardo Reis Universidade Federal do Rio Grande do Sul, Brazil
S. Nikolaidis Aristotle University of Thessaloniki, Greece

Finance-Local Arrangements

G. Theodoridis Aristotle University of Thessaloniki, Greece

Conference Secretariat/Web Design

Christos Baloukas Democritus University of Thrace, Greece

Steering Committee

Manfred Glesner Technische Universität Darmstadt, Germany
Salvador Mir TIMA Labs, France
Ricardo Reis Universidade Federal do Rio Grande do Sul, Brazil
Michel Robert Université Montpellier, France
Luis Miguel Silveira Instituto de Engenharia de Sistemas e Computadores

Investigação, Portugal

Technical Program Committee

Amara Amara Institut Supérieur d’Electronique de Paris, France
Ioannis Andreadis Democritus University of Thrace, Greece
Federico Angiolini Bologna University, Italy
Antonios Argyriou Philips, The Netherlands
Nadine Azermad Laboratoire d'Informatique, de Robotique et de

Microélectronique de Montpellier, France
Magdy Bayoumi University of Louisiana at Lafayette, USA
Juergen Becker Universität Karlsruhe, Germany
Cécile Belleudy University Sophia-Antipolis Nice, France
Mladen Berekovic Technische Universität Braunschweig, Germany
Swarup Bhunia Case Western Reserve University, USA
Holger Blume Rheinisch-Westfälische Technische Hochschule

Aachen, Germany
Joao Cardoso

Instituto de Engenharia de Sistemas e Computadores
Investigação, Portugal

Wim Dehaene Katholieke Universiteit Leuven, Belgium
Yunsi Fei University of Connecticut, USA
Joan Figueras Universitat Politecnica de Catalunya, Spain
Georgi N. Gaydadjiev Delft University of Technology, The Netherlands
Dimitris Gizopoulos University of Piraeus, Greece
Carlo Guardiani PDF Solutions, Inc., Italy

 Organization IX

Frank Kagan Gurkaynak Ecole Polytechnique Fédérale de Lausanne,
Switzerland

Josef Haid Infineon Technologies, Austria
Alkis Hatzopoulos Aristotle University of Thessaloniki, Greece
Domenik Helms OFFIS, Germany
Ahmed Hemani KTH - Royal Institute of Technology, Sweden
Tang Hua University of Minnesota, USA
Nathalie Julien Université de Bretagne-Sud, France
Srinivas Katkoori University of South Florida, USA
Avinoam Kolodny Technion-Israel Institute of Technology, Israel
Hsien-Hsin S. Lee Georgia Institute of Technology, USA
Jean-Didier Legat University of Louvain-la-Neuve, Belgium
Yung-Hsiang Lu University of Purdue, USA
Alberto Macii Politecnico di Torino, Italy
Stylianos Mamagkakis IMEC, Belgium
Salvador Mir Laboratoire d'Informatique, de Robotique et de

Microélectronique de Montpellier, France
Vincent J. Mooney III Georgia Institute of Technology, USA
Srinivasan Murali Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Alex Orailoglu University of San Diego, USA
Vassilis Paliouras University of Patras, Greece
Marios Papaefthymiou University of Michigan, USA
Antonis Paschalis University of Athens, Greece
Zebo Peng Linkoping University, Sweden
Dionisios N. Pnevmatikatos Technical University of Crete, Greece
Massimo Poncino Politecnico di Torino, Italy
Ricardo Reis Universidade Federal do Rio Grande do Sul, Brazil
Marcos Sanchez-Elez Complutense University of Madrid, Spain
Dimitrios Serpanos University of Patras, Greece
Cristina Silvano Politecnico di Milano, Italy
Stylianos Siskos Aristotle University of Thessaloniki, Greece
Thanos Skodras Hellenic Open University, Greece
Konstantinos Tatas Frederick University, Cyprus
Yiorgos Tsiatouhas University of Ioannina, Greece
Dimitris Velenis University of Rochester, USA
Flavio R. Wagner Universidade Federal do Rio Grande do Sul, Brazil
Miroslav Velev University of Illinois, Chicago, USA
Shiyan Hu Michigan Technological University, USA

Table of Contents

Physical Design Issues in 3-D Integrated Technologies 1
Vasilis F. Pavlidis and Eby G. Friedman

Universal Methodology to Handle Differential Pairs during Pin
Assignment . 22

Tilo Meister, Jens Lienig, and Gisbert Thomke

Analysis and Design of Charge Pumps for Telecommunication
Applications . 43

Vassilis Kalenteridis, Konstantinos Papathanasiou, and
Stylianos Siskos

Comparison of Two Autonomous AC-DC Converters for Piezoelectric
Energy Scavenging Systems . 61

Enrico Dallago, Daniele Miatton, Giuseppe Venchi, Valeria Bottarel,
Giovanni Frattini, Giulio Ricotti, and Monica Schipani

Trapping Biological Species in a Lab-on-Chip Microsystem: Micro
Inductor Optimization Design and SU8 Process . 81

Christophe Escriba, Rémy Fulcrand, Philippe Artillan,
David Jugieu, Aurélien Bancaud, Ali Boukabache,
Anne-Marie Gue, and Jean-Yves Fourniols

Fine-Grain Reconfigurable Logic Cells Based on Double-Gate
MOSFETs . 97

Ian O’Connor, Ilham Hassoune, and David Navarro

Timed Coloured Petri Nets for Performance Evaluation of DSP
Applications: The 3GPP LTE Case Study . 114

Laura Frigerio, Kellie Marks, and Argy Krikelis

Real-Time Biologically-Inspired Image Exposure Correction 133
Vassilios Vonikakis, Chryssanthi Iakovidou, and Ioannis Andreadis

A Lifting-Based Discrete Wavelet Transform and Discrete Wavelet
Packet Processor with Support for Higher Order Wavelet Filters 154

Andre Guntoro and Manfred Glesner

On the Comparison of Different Number Systems in the Implementation
of Complex FIR Filters . 174

Gian Carlo Cardarilli, Alberto Nannarelli, and Marco Re

Time Efficient Dual-Field Unit for Cryptography-Related Processing . . . 191
Alessandro Cilardo and Nicola Mazzocca

XII Table of Contents

A Temperature-Aware Placement and Routing Algorithm Targeting
3D FPGAs . 211

Kostas Siozios and Dimitrios Soudris

A Reconfigurable Network-on-Chip Architecture for Optimal
Multi-Processor SoC Communication . 232

Vincenzo Rana, David Atienza, Marco Domenico Santambrogio,
Donatella Sciuto, and Giovanni De Micheli

Fast Instruction Memory Hierarchy Power Exploration for Embedded
Systems . 251

Nikolaos Kroupis and Dimitrios Soudris

Timing Error Detection and Correction by Time Dilation 271
Andreas Floros, Yiorgos Tsiatouhas, and Xrysovalantis Kavousianos

Author Index . 287

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 1–21, 2010.
© IFIP International Federation for Information Processing 2010

Physical Design Issues in 3-D Integrated Technologies

Vasilis F. Pavlidis1 and Eby G. Friedman2

1 LSI EPFL, 1015 Lausanne, Switzerland
2 Department of Electrical and Computer Engineering, University of Rochester,

Rochester, New York 14627, USA
vasileios.pavlidis@epfl.ch, friedman@ece.rochester.edu

Abstract. Design techniques for three-dimensional (3-D) ICs considerably lag
the significant strides achieved in 3-D manufacturing technologies. Advanced
design methodologies for 2-D circuits are not sufficient to manage the added
complexity caused by the third dimension. Consequently, design methodologies
that efficiently handle the added complexity and inherent heterogeneity of 3-D
circuits are necessary. These 3-D design methodologies should support robust
and reliable 3-D circuits, while considering different forms of vertical
integration, such as systems-in-package and 3-D ICs with fine grain vertical
interconnections. The techniques described in this chapter address important
physical design issues and fundamental interconnect structures in the 3-D
design process.

1 Introduction

Technology scaling and CMOS technologies have steadily supported an increase in
the performance of integrated circuits (ICs) over the past several decades. These
driving forces are expected, however, to lose momentum as the fabrication of
nanoscale devices at gigascale densities become increasingly difficult and
economically infeasible [1]. Three-dimensional (3-D) integration is a novel design
paradigm with great potential to fundamentally advance the computational power and
functionality of modern integrated systems [2].

The inherent advantage of 3-D integration is the drastic decrease in interconnect
length, particularly the long global interconnects, which directly results in increased
speed [3], [4], [5]. The interconnect power is also reduced as the capacitance of the
wires decreases [6]. Another characteristic of 3-D ICs of even greater importance than
the decrease in the interconnect length is the ability of these systems to include
disparate technologies, greatly extending the capabilities of modern systems-on-chip
(SoC) [7].

This defining feature of 3-D ICs offers unique opportunities for highly
heterogeneous and sophisticated systems [8]. This heterogeneity, however, greatly
complicates the interconnect design process within a multi-plane system, as potential
design methodologies need to manage the diverse interconnect impedance
characteristics and process variations caused by the different fabrication processes
and technologies employed in the multiple physical planes [9]. Additional primary
challenges in 3-D circuits include the development of methodologies at the front end

2 V.F. Pavlidis and E.G. Friedman

of the design process [10], [11], multi-plane functional testing [12], thermal
management techniques [13], and maturing manufacturing technologies [14].

Physical and interconnect design techniques for 3-D circuits are the main focus of
this chapter. A short description of vertical interconnects in 3-D circuits is offered in
the following section, demonstrating the diverse characteristics of this revolutionary
design paradigm. These traits, in turn, pose new constraints and requirements on the
physical and interconnect design process. The primary physical design issues, namely
floorplanning, placement, and routing for 3-D ICs, are discussed in Sections 3, 4, and
5, respectively. An approach to place the vertical interconnects to decrease the
interconnect delay is described in Section 6. The important task of synchronization is
considered in Section 7. Experimental results from a 3-D test circuit are also
presented. The concept of 3-D NoC for improving the communication throughput
within a system-on-chip while reducing interconnect design complexity is presented
in Section 8. Several topologies and related improvements in the speed and power
consumed by these global interconnects are also described in this section. The key
points of this chapter are summarized in Section 9.

2 Vertical Interconnects

There are multiple ways to vertically interconnect 3-D circuits. The characteristics of
the different vertical interconnects and the requirements associated with this type of
interconnect structure are discussed in this section. To exemplify the role of these
interconnects, consider the 3-D circuit shown in Fig. 1. Two different types of
interconnect can be distinguished in Fig. 1. The horizontal or intraplane interconnects
connecting circuits located within the same plane and the interplane interconnects
connecting circuits located on different planes. The interplane wires comprise
horizontal and vertical segments.

Substrate
Heat sink

Power pad Ground pad Signal pad

Fig. 1. Schematic of a 3-D IC consisting of four planes

The interconnects through the z-axis (i.e., vertical) can be implemented with
several means, such as solder balls, wire bonds, and vertical interconnects that are

 Physical Design Issues in 3-D Integrated Technologies 3

etched through the silicon substrate. The latter type of interconnects is typically called
a through silicon via (TSV) [15]-[18]. The density of the vertical interconnect dictates
the granularity of the interconnected planes of the 3-D system, directly affecting the
interplane communication bandwidth.

Coarsely interconnected 3-D systems include several either bare or packaged dice
connected along the third dimension which are typically described as a system-in-
package (SiP) [17]. The predominant benefits of SiP are the increased packaging
efficiency as compared to 2-D integrated systems and shorter off-chip interconnects.
The deleterious effects of the long on-chip interconnects, however, are not mitigated.
These issues are effectively resolved by another form of vertical integration, called
simply (and somewhat abstractly) 3-D ICs.

Three-dimensional circuits can be conceptualized as the bonding of multiple
wafers or bare dice. The distinctive difference between an SiP and a 3-D IC is the
granularity of the vertical interconnects. Examples of 3-D systems connected with
different means are illustrated in Fig. 2. In addition to the different types of vertical
interconnects, several bonding styles for 3-D ICs are also possible: front-to-front,
back-to-front, and back-to-back are some of these styles which are also depicted in
Fig. 2.

Other important criteria related to manufacturing TSVs include the reliability and
cost of these structures. A high TSV aspect ratio, the ratio of the diameter of the top
edge to the length of the via, may also be required for certain types of 3-D circuits.
The effect of forming the TSVs on the performance and reliability of neighboring
active devices should also be negligible.

(a) (b)

BOX

BOX
Handle wafer

BOX

W plug 3-D via

Solder balls

Fig. 2. Different forms of 3-D integration (not to scale), (a) system-in-package (SiP) [17] and
(b) a 3-D circuit with dense through silicon vias [20], [21]. Two different bonding styles, front-
to-front and front-to-back, are illustrated. The W plug is composed of tungsten.

Furthermore, producing TSVs with low impedance characteristics is another
primary goal of 3-D manufacturing technologies since these characteristics can
degrade the performance benefits that stem from the decreased wirelength in 3-D

4 V.F. Pavlidis and E.G. Friedman

circuits. Finally, not properly characterizing the contribution of the TSVs to the
overall delay of the critical interplane interconnect can result in significant inaccuracy
in estimating the performance of a 3-D system [19]. Consequently, these structures
must be carefully considered during the 3-D physical design process. Examples of a
TSV used in CMOS and SOI circuits are illustrated in Figs. 3a and 3b, respectively.
The impedance and physical characteristics of these structures are listed in Table 1. A
pitch equal to twice the diameter of the TSV is assumed where this dimension is not
provided.

The thermal traits of the TSVs are also significant as these vias can affect the
thermal behavior of a 3-D IC. TSVs can be used to provide high thermal conductivity
paths to facilitate the flow of heat from the upper planes to the plane attached to the
heat sink, maintaining the temperature of a 3-D circuit within acceptable levels. Since
the vertical interconnects affect the performance of 3-D systems, the treatment of
these interconnects is central to the development of 3-D physical and interconnect
design techniques. The most important steps of the 3-D design process and related
design methodologies are discussed in the remainder of this chapter.

(a)

Silicon
substrate

Insulator

Metal

(b)

Plane i

Plane i+1

Plane i+2

Fig. 3. Examples of a through silicon via (not to scale) used in (a) SiP and 3-D CMOS
technologies [14], [22] and (b) 3-D SOI processes [21]

Table 1. Impedance and physical characteristics of TSVs

Process Depth [μm] Diameter [μm] Total resistance [mΩ] Density [1/mm2]
[22] 25 4 140 ~1.6×104
[11] 30 1.2 <350 ~1.7×105
[23] 90 75 2.4 ~44

[21], [24] ~12 1.75 148 ~8.2×104

3 Floorplanning for 3-D Circuits

The predominant design objective for floorplanning a circuit has traditionally been to
achieve the minimum area or, alternatively, the maximum packing density while
interconnecting these blocks with minimum length wires. Most floorplanning
algorithms can be classified as either slicing [25] or non-slicing [26]. Floorplanning
techniques belonging to both of these categories have been proposed for 3-D circuits

 Physical Design Issues in 3-D Integrated Technologies 5

[27]-[29]. An efficient floorplanning technique for 3-D circuits should adequately
handle two important issues; representation of the third dimension and the related
increase in the solution space. Floorplanning techniques for 3-D circuits that address
these issues are discussed in this section. Multi-objective techniques are also
reviewed.

Notating the location (i.e., the x, y, z, coordinates) and dimensions (i.e., width, length,
and height) of the circuit cells in a volumetric system typically requires a considerable
amount of storage. A 3-D circuit, however, consists of a limited number of planes.
Consequently, such a system can be described as an array of two-dimensional planes,
where circuit cells are treated as rectangles that can be placed on any of the planes
within a 3-D system [13], [28], [29]. The second challenge for 3-D floorplanning is to
effectively explore the solution space, where a hierarchical approach can often be more
efficient for floorplanning 3-D circuits than a flat approach.

In non-hierarchical floorplanning algorithms, the floorplanning process proceeds
by assigning the cells to the planes of the stack followed by simultaneous intraplane
and interplane cell swapping, potentially exploring the entire solution space.
Interplane moves, however, result in a formidable increase in the solution space,
directly affecting the computational time of a flat floorplanning algorithm.

Alternatively, a hierarchical approach can be used to significantly reduce the
number of candidate solutions, where a two step solution to the floorplanning problem
is followed. Initially, the circuit cells are assigned to the physical planes. In the
second step, a simulated annealing based engine simultaneously generates the
floorplan of each of the planes by only permitting intraplane moves, considerably
decreasing the search space for the optimal floorplan [28]. An example of the increase
in the solution space due to the third dimension is illustrated in Figs. 4a and 4b.

The partitioning scheme adopted in the initial step of the hierarchical approach
plays a crucial role in determining the compactness of a particular floorplan, as
interplane moves are not allowed when floorplanning the planes. Different partitions
correspond to different subsets of the solution space which may exclude the optimal
solution(s). The criterion for partitioning should therefore be carefully selected.
Partitioning can, for example, be based on minimizing the estimated total wirelength
of the system [30] and/or the number of vertical interconnects [31]. Application of a
hierarchical approach to the MCNC and GSRC benchmark suites [32] demonstrates a
small reduction, on the order of 3%, in the number of vertical vias and a significant
14% reduction in wirelength, as compared to non-hierarchical 3-D floorplanning
techniques [13], [30], [31].

The complexity of three-dimensional integration requires several dissimilar metrics
for producing efficient floorplans for 3-D circuits beyond the use of traditional area
and wirelength metrics. These metrics can consider, for example, communication
throughput among the circuit blocks [33] or the number of interplane vias [13].
Techniques that include a thermal objective have also been developed [13]. The
thermal objective typically aims at producing a uniform temperature distribution
across each plane while peak temperatures are maintained sufficiently low. A multi-
objective cost function inevitably increases the total computational runtime. A
significant portion of this time is attributed to thermal profiling the 3-D circuit each
time a candidate floorplan is generated. To reduce this time, simple thermal models
are utilized, slightly degrading the quality of the solution [13].

6 V.F. Pavlidis and E.G. Friedman

(a) (b)

(c)
X0 X1

Y1

Y0

n

1

y
m

x

X0 X1

Y1
Y0

Z1

Z0

y

z

x

(d)

X0 X1

Y1

Y0

y

x

X0 X1

Y1

Y0

y

x

1

X0 X1

Y1

Y0

y

x

2

X0 X1

Y1

Y0

y

x

n

Fig. 4. Example of physical design solution space for floorplanning 2-D and 3-D circuits, (a)
available area for floorplanning a planar circuit, (b) available volume for floorplanning a 3-D
circuit, (c) a finite number of planes is considered to reduce the solution space, and (d) the
floorplan of the planes is generated after the circuit cells are assigned to each plane. The arrows
represent global constraints among planes that guide the floorplan of a 3-D system.

4 Placement for 3-D Circuits

Placement algorithms have traditionally targeted minimizing the area of a circuit and
the interconnect length among the cells, while reserving space for routing the
interconnect. In vertical 3-D integration, a “placement dilemma” arises in deciding
whether two circuit cells sharing a large number of interconnects can be more closely
placed within the same plane or placed on adjacent physical planes, decreasing the
interconnection length. Placing the circuit blocks on adjacent planes can often
produce a line with the shortest wirelength to connect these blocks. An exception is
the case of small blocks within an SiP where the length of the interplane vias is
greater than 100 μm [34]. Placement methodologies have also been discussed where
other objectives, such as thermal gradients among the physical planes and the
temperature of the planes [35], are considered.

Several approaches have been adopted for placing circuit cells within a volume
[29], [36]. Different types of circuit cells for various 3-D technologies have been
investigated in [37]. Layout algorithms for these cells have also been devised,
demonstrating the benefits of 3-D integration. Since TSVs consume silicon area,
possibly increasing the length of some interconnects, an upper bound on this type of
interconnect resource is necessary. Alternatively, sparse utilization of the vertical
interconnects can result in an insignificant savings in wirelength. To consider the
effect of the vertical interconnects, a weighting factor can be used to increase
the distance in the vertical direction, controlling the decision as to where to insert the
interplane vias [38]. This weight essentially behaves as a controlling parameter that

 Physical Design Issues in 3-D Integrated Technologies 7

favors the placement of highly interconnected cells within the same or adjacent
physical planes.

Alternatively, TSVs can be treated as circuit cells since these interconnects occupy
silicon area [39] and are included in the individual cell placement process within each
plane as illustrated in Fig. 5. Although these approaches consider the location of the
TSV, the fundamental objective is to decrease the interconnect length. The maximum
achievable reduction in the interconnect length for the longest on-chip interconnect is

proportional to n where n is the number of planes constituting a 3-D system [6].
Any further improvement in the performance of the interplane interconnects can be
obtained by considering the electrical characteristics of the TSV. A placement
methodology that exploits these characteristics is discussed in Section 6.

Circuit cells

TSVs

Fig. 5. Treating the TSVs as circuit cells on different planes can result in two different locations
for placing a TSV. These locations define a region in which the TSV can be placed to satisfy
different design objectives.

As with floorplanning, multi-objective placement techniques for 3-D circuits are
necessary. Additional objectives that affect both the cell placement and wirelength are
simultaneously considered. The force directed method is a well known technique used
for cell placement [40], where repulsive or attractive forces are placed on the cells as
if these cells are connected through a system of springs. The force directed method
has been extended to incorporate the thermal objective during the placement process
[41]. In this approach, repulsive forces are applied to those blocks that exhibit high
temperatures (i.e., “hot blocks”) to ensure that the high temperature blocks are placed
at a greater distance from each other. The efficiency of this force directed placement
technique has been evaluated on the MCNC [42] and IBM-PLACE benchmarks [43],
demonstrating a 1.3% decrease in the average temperature, a 12% reduction in the
maximum temperature, and a 17% reduction in the average thermal gradient. The
total wirelength, however, increases by 5.5%.

Alternatively, additional TSVs that do not function as a signal path can be utilized
to further enhance the heat transfer process. The design objective is to identify those
regions where thermal vias are most needed (the hot spots) and place thermal vias
within those regions at the appropriate density. Such an assignment, however, is
mainly restricted by two factors; the routing blockage caused by these vias and the
size of the unoccupied regions or white space that exist within each plane. Although

8 V.F. Pavlidis and E.G. Friedman

thermal via insertion can be applied as a post placement step, integrated techniques
produce a more efficient distribution of the thermal TSVs for the same temperature
constraint [30]. The integrated technique requires 16% fewer thermal vias for the
same temperature constraint, with a 21% increase in computational time and an
almost 3% reduction in total area.

5 Routing for 3-D Circuits

Routing is the most complex and least developed of the physical design techniques
used in 3-D circuits. The multiple metal layers available for routing on each physical
plane exacerbate the difficulty in routing a net connecting several cells located on
different planes. As these interconnects also compete with the transistors for silicon
area, routing is a formidable task for 3-D circuits. Early results on routing 3-D circuits
demonstrated several issues related to this physical design task [44]. Consequently,
several heuristics have been developed that address routing in the third dimension
[45], [46].

An effective approach for routing 3-D circuits is to convert the routing interplane
interconnect problem into a 2-D channel routing task, as the 2-D channel routing
problem has been efficiently solved [47]. A number of methods can be applied to
transform the problem of routing the interplane interconnects into a 2-D routing task,
which requires utilizing a portion of the available routing resources for interplane
routing (usually the top metal layers).

Alternatively, multi-level algorithmic techniques [48] have been applied to route 3-
D circuits. The advantages of multi-level routing are the lower computational time
and higher completion rates as compared to flat and hierarchical routers. Multi-level
routing can be treated as a three stage process, as illustrated in Fig. 6; a coarsening
phase, an initial solution generation at the coarsest level (level p) of the grid, and a
subsequent refinement process until the finest level of the grid is reached. Before the
coarsening phase is initiated, the routing resources in each unit block of the grid are
determined by a weighted area sum model. The routing resources are allocated during
each coarsening step. The resources for the local nets within a block are transferred at
each coarsening step. At the coarsest level, an initial routing tree is generated. This
initial routing task commences with a minimum spanning tree for each multi-terminal
net. A Steiner tree heuristic and a maze searching algorithm generate a 3-D Steiner
tree for each of these interconnects. Additionally, the TSVs are estimated for each
block. During the last phase, the initial routing tree is refined until the finest level is
reached. In this refinement phase, the signal (and thermal) TSVs are successively
assigned and distributed within each block. The routing of the wires follows the
refinement of the TSVs. At the finest level, a detailed router completes the routing of
the circuit [48].

Although this technique offers a routing solution for standard cell and gate array
circuits, alternative techniques that support different forms of vertical integration, for
example, systems-on-package (SOP), are also required. In an SOP, the routing
problem can be described as connecting the I/O terminals of the blocks located on the
planes of the SOP through interconnect and pin layers. For systems where the routing
resources, such as the number of pin distribution layers, are limited, multi-objective
routing is required to achieve a sufficiently small form factor [46].

 Physical Design Issues in 3-D Integrated Technologies 9

level 0

level i

level p

level i

level 0
Routing resource coarsening

Initial tree generation
Initial TSV (signal and thermal) assignment

Routing refinement
Signal TSV assignment
Thermal TSV assignment

Detailed routing
Routing resource estimation

Unit block

Block at level p

Fig. 6. Multi-level routing for 3-D circuits. The technique can be adapted to include multiple
objectives for routing a 3-D circuit [48].

Multi-level routing for 3-D ICs has been extended to include the thermal objective
[49]. In addition to routing resources, the power density within each block of the grid
is determined at each coarsening step. An initial TSV assignment to each block is
implemented during the coarser step along with generation of an initial routing tree.
The TSV assignment includes both signal and thermal TSVs, with priority given to
the signal TSVs. Alternatively, thermal TSVs are assigned to a block after insertion of
the signal TSVs without exceeding the maximum TSV capacity of the block.

6 Timing Optimization of Interplane Interconnects

Three-dimensional integration demonstrates many opportunities for heterogeneous
SoCs [9]. Integrating circuits from diverse fabrication processes into a single multi-
plane system can result in substantially different interconnect impedance
characteristics of each physical plane within a 3-D circuit. By considering the
disparate interconnect impedance characteristics of 3-D circuits, the performance of
the interplane interconnects can be significantly improved. An efficient technique to
decrease the delay of interplane interconnects by optimally placing the TSVs is
discussed in this section.

The interplane interconnects are modeled as an assembly of horizontal interconnect
segments with different impedance characteristics connected by interplane vias where
each segment is modeled as a distributed RC line. A schematic of an interplane
interconnect connecting two circuits located n planes apart is illustrated in Fig. 7. The
horizontal segments of the line are connected through the vias, which can traverse
more than one plane where each via is placed within a certain physical interval. The
via placement is constrained,

jj xx Δ≤≤0
, (1)

10 V.F. Pavlidis and E.G. Friedman

where Δxj is the length of the interval where the via connecting planes j and j+1 can
be placed. This interval length is called the “allowed interval” here for clarity. xj is the
distance of the via location from the edge of the allowed interval.

Fig. 7. Interplane interconnect connecting two circuits located n planes apart

A heuristic for near-optimal interplane via placement of two-terminal nets that
include several TSVs has been developed [50]. Based on the Elmore delay model
[51], the key concept in the heuristic is that the optimum via placement depends
primarily upon the size of the allowed interval (that is estimated or known after an
initial placement) rather than the exact location of the via.

This heuristic has been used to implement an algorithm that exhibits an optimal or
near-optimal TSV placement for two-terminal interplane interconnects in 3-D ICs and
has been applied to relatively short interconnects (< 2 mm) [50]. For these wires,
SPICE delay simulations demonstrate an average improvement of 8.9% as compared
to the case where the vias are placed at the center of the allowed intervals and 14.1%
as compared to random via placement, respectively. The two-terminal via placement
algorithm is also compared both in terms of optimality and efficiency to an
optimization solver, YALMIP [52]. The algorithm exhibits high accuracy as
compared to YALMIP independent of the number of planes that comprise the 3-D
interconnect and exhibits a maximum error of 0.01%. Furthermore, the algorithm is
approximately two orders of magnitude faster than YALMIP while the complexity of
the algorithm exhibits an almost linear dependence on the number of interplane vias.

The two-terminal heuristic can also be adapted to the important class of multi-
terminal nets. A simple interplane interconnect tree (also called an interconnect tree
for simplicity) is illustrated in Fig. 8. The leaves of the tree are located on different
physical planes within a 3-D stack. Sub-trees not directly connected to the interplane
vias which do not contain any interplane vias (i.e., intraplane trees) are also shown.
The weighted summation of the distributed Elmore delay of the branches of an
interconnect tree is considered as the objective function,

,∑
∀

=
pq

pqpq
s

ssw TwT (2)

 Physical Design Issues in 3-D Integrated Technologies 11

where wspq and Tspq are the weight and distributed Elmore delay of sink spq,
respectively. Weights are assigned to the sinks according to the relative criticality of
the sinks. The constrained optimization problem for placing a via within an interplane
interconnect tree can be described as

(P1) minimize Tw, subject to (1), ∀ via vj. (3)

The heuristic and related algorithm that solve (3) have been applied to interconnect
trees for two different 3-D technologies. These case studies include a 3-D IC
technology based on [20] where the TSV length is lv3-D = 10 μm and an SiP
technology where the TSV length is lvSiP = 70 μm [23]. The impedance characteristics
of the TSVs are rv3-D = 22 Ω/mm and cv3-D = 210 fF/mm and rvSiP = 22 Ω/mm and
cvSiP = 6 pF/mm for the 3-D IC and SiP technology, respectively. The savings in delay
achieved by optimally placing the vias is listed in Table 2 for different via placement
scenarios.

IN

s21

s22

s23

s12

s11

s31

s32s33

Intraplane via

Interplane via

spq : Sink q on plane p

Fig. 8. An example of an interplane interconnect tree

The improvement in delay of the interconnect trees is listed in columns 6 through 9
of Table 2. The results are compared to the case where the vias are initially placed at
the center of the allowed interval (i.e., xi = Δxi/2) and the case where the vias are
placed at the lower edge of the allowed interval (i.e., xi = 0). The improvement in
delay depends upon the length of the allowed interval. Note that the improvement in
delay achieved by optimally placing the TSVs in a 3-D IC is substantially greater than
the improvement for an SiP technology. This difference is due to the significantly
longer length and larger impedance characteristics of the TSVs utilized in an SiP.
Manufacturing processes that provide short vertical interconnects with low parasitic
impedances are therefore necessary; otherwise, the performance benefits due to the
reduction in interconnect length will decrease since the TSVs contribute significantly
to the overall interconnect delay.

From these results, exploiting the non-uniform impedance characteristics of the
interplane interconnects when placing the vias can improve the delay of multi-plane
lines. This improvement in delay can decrease the number of repeaters required to
drive a global line or eliminate the need for repeaters in semi-global (medium length)
lines. In addition, wire sizing can be avoided, thereby saving significant power.
Decreasing the number of repeaters and avoiding wide lines reduce the overall power
consumption, which is a particularly important issue in 3-D circuits.

12 V.F. Pavlidis and E.G. Friedman

Table 2. Delay of various interplane interconnect trees for different number of sinks, physical
planes n, and 3-D technologies

Delay improvement [%]
xi

* = Δxi/2 xi
* = 0 n Technology

Number
of sinks

Avg.
branch
length
[μm]

Δxi’s
[μm]

Avg Max Avg Max

Instances

3 3-D IC 4 216 50 1.31 7.11 5.33 13.00 10000
4 3-D IC 8 407 50 1.47 6.88 6.83 13.22 10212
3 3-D IC 4 815 150 1.15 5.74 4.42 10.02 11000
4 3-D IC 8 909 150 1.29 4.98 5.70 9.48 10219
3 SiP 4 216 50 1.21 4.99 1.78 5.58 10000
4 SiP 8 407 50 0.90 3.54 1.98 5.72 10212
3 SiP 4 815 150 1.31 4.10 1.98 5.68 11000
4 SiP 8 909 150 1.04 3.28 2.34 5.71 10219

7 Synchronization in 3-D Circuits

An omnipresent and challenging issue for synchronous digital circuits is the reliable
distribution of the clock signal to the many thousands of sequential elements
distributed throughout a synchronous circuit [53], [54]. The complexity is further
increased in 3-D ICs as sequential elements belonging to the same clock domain (i.e.,
synchronized by the same clock signal) can be located on different planes. Another
important issue in the design of clock distribution networks is low power
consumption, since the clock network dissipates a significant portion of the total
power consumed by a synchronous circuit [55]. This demand is stricter for 3-D ICs
due to the increased power density and related thermal limitations.

In 2-D circuits, symmetric interconnect structures, such as H- and X-trees, are
widely utilized to distribute the clock signal across a circuit [54]. The symmetry of
these structures permits the clock signal to arrive at the leaves of the tree at the same
time, resulting in synchronous data processing. Maintaining this symmetry within a 3-
D circuit, however, is a difficult task. Consequently, asymmetric structures are useful
candidates for distributing the clock signal within a 3-D circuit. Issues related to the
distribution of the clock signal within a 3-D system are discussed in this section.
Experimental results of a 3-D test circuit manufactured by MIT Lincoln Laboratories
composed of several different 3-D clock network architectures are also described.

To evaluate the specific requirements of a 3-D clock network, consider a traditional
H-tree topology. At each branch point of an H-tree, two branches emanate with the
same length. An extension of an H-tree to three dimensions does not guarantee
equidistant interconnect paths from the root to the leaves of the tree. Note that the
vertical interconnects are of significantly different length as compared to the
horizontal branches and exhibit different impedance characteristics.

A test circuit exploring four different clock network topologies for 3-D circuits has
been designed, manufactured, and measured. The test circuit is based on a 3-D fully
depleted silicon-on-insulator (FDSOI) fabrication technology recently developed by
MIT Lincoln Laboratories (MITLL) [20]. The MITLL process is a wafer level 3-D
integration technology with up to three FDSOI wafers bonded to form a 3-D circuit.
The minimum feature size of the devices is 180 nm, with one polysilicon layer and
three metal layers interconnecting the devices on each wafer. A backside metal layer

 Physical Design Issues in 3-D Integrated Technologies 13

also exists on the upper two planes, providing the starting and landing pads for the
TSVs, and the I/O, power supply, and ground pads for the entire 3-D circuit.

Each block contains the same logic circuit with different clock distribution
networks. The off-chip clock signal is received by the clock driver through an RF pad
located at the middle of each block. Additional RF pads are placed at different
locations on the topmost plane of each block for probing. The fabricated test circuit is
depicted in Fig. 9, where the RF and DC pads on the back side metal layer of the third
plane are shown.

Fig. 9. Fabricated 3-D test circuit. The total area is 3 mm × 3 mm. There are four different
blocks, with one input and three output RF pads for each block. The area of each block is
approximately 1 mm2.

The clock distribution networks combine commonly used networks such as H-
trees, meshes, and rings. These clock network topologies range from highly
symmetric topologies, such as H-trees, as the block shown in Fig. 10a, to fully
asymmetric topologies, such as a trunk-based topology. The clock input is a 1.5 V
peak-to-peak sinusoidal signal with 0.75 volt DC offset. The clock driver is
implemented with a traditional chain of tapered buffers [56], which produces a square
waveform at the root of the clock distribution network. The clock distribution network
of the block illustrated in Fig. 10a contains a four level H-tree (i.e., equivalent to 16
leaves) with identical interconnect characteristics in each plane. All of the H-trees are
connected through a group of interplane vias. Note that the H-tree on the second plane
is rotated by 90o with respect to the H-trees on the other two planes. This rotation
effectively eliminates inductive coupling between the H-trees. The second plane is
front-to-front bonded with the first plane and both of the H-trees are implemented on
the third metal layer. The vertical distance between these clock networks is
approximately 2 μm. All of the H-trees are shielded with two parallel lines connected
to ground. The waveform shown in Fig. 10b is the clock signal at a leaf of the H-tree
on the third plane, demonstrating operation of the circuit at 1 GHz. Experiments

14 V.F. Pavlidis and E.G. Friedman

demonstrate that a clock distribution network that combines an H-tree on the second
plane and meshes on the other two planes exhibits moderate skew, within 10% of the
clock period, and the lowest power consumption [57], [58]. The superior performance
of this topology is due to the symmetry of the H-tree and the balancing characteristic
of the meshes.

 (a) (b)

Fig. 10. Experimental results of the fabricated 3-D circuit, (a) tested circuit block and (b) clock
signal waveform from the H-tree on the third plane operating at 1 GHz

8 Communication Centric 3-D Architectures

A promising design paradigm to appease foreseen interconnect problems is networks-
on-chip (NoC) [59], where information is communicated among circuits within
packets in an internet-like fashion. The synergy between these two design paradigms,
namely NoC and 3-D ICs, can be exploited to significantly improve the performance
and decrease the power consumption of communications limited systems. Several
interesting topologies that emerge by incorporating the third dimension in networks-
on-chip are discussed in this section.

On-chip networks differ from traditional interconnection networks in that
communication among the network elements is implemented through the on-chip
routing layers rather than the metal tracks of the package or printed circuit board.
NoC provide communication among a variety of processing elements (PE), such as
processor and DSP cores, memory blocks, FPGAs, and dedicated hardware [60], [61].
Furthermore, the length of the communication channel is primarily determined by the
area of the PE, which is typically unaffected by the network structure. Mesh structures
have been a popular network topology for conventional 2-D NoC, as illustrated in Fig.
11a, where each processing element (PE) is connected to the network through a router
[59].

Integration in the third dimension introduces a variety of topological choices for
NoCs. For a 3-D NoC, as shown in Fig. 11b, the total number of nodes is N = n1 × n2

 Physical Design Issues in 3-D Integrated Technologies 15

× n3, where n1, n2, and n3 is the number of network nodes in the x, y, and z direction,
respectively. In this topology, each PE is on a single, yet possibly different physical
plane (2-D IC – 3-D NoC). In other words, a PE can be implemented on only one of
the n3 physical planes of the system and, therefore, the 3-D system contains n1 × n2
PEs on each of the n3 physical planes, where the total number of nodes is N [62]. A 3-
D topology is illustrated in Fig. 11c, where the interconnect network is contained
within one physical plane (i.e., n3 = 1), while each PE is integrated on multiple
planes, notated as np (3-D IC – 2-D NoC). Finally, a hybrid 3-D NoC based on the
two previous topologies is depicted in Fig. 11d. In this NoC topology, both the
interconnect network and the PEs can span more than one physical plane of the stack
(3-D IC – 3-D NoC).

Analytic models of the zero-load latency and power consumption with delay
constraints of these networks capturing the effects of the topology on the performance
of 3-D NoC have been developed. The overall zero-load network latency for a 3-D
NoC is [63]

,)(32 h

c

p
vDhDsanetwork t

w

L
thopsthopstthopsT ++++= −− (4)

where ta, ts, tv, and th are the delay of the arbiter, crossbar switch, and vertical and
horizontal channels, respectively. hops, hops2-D, and hops3-D denote the average
number of hops within the two dimensions n1 and n2, and within the third dimension
n3, respectively (see Fig. 11). Lp and wc denote, respectively, the length of a data
packet and the width of the interconnect buss connecting adjacent network routers. Lv
denotes the length of the vertical buss, which is equal to one or more TSV lengths.

These models do not incorporate the effects of the routing scheme and traffic load.
Since minimum distance paths and no contention are implicitly assumed in these
expressions, non-minimal path routing schemes and heavy traffic loads will increase
both the latency and power consumption of the network. These models can therefore
be treated as lower bounds for both the latency and the power consumption of the
network. Alternatively, these expressions provide the maximum improvement in the
performance of a conventional NoC that can be achieved with vertical integration.

The resulting decrease in network latency as compared to a standard 2-D IC – 2-D
NoC is illustrated in Fig. 12a for increasing network size where the area of each PE
is denoted by APE. The 2-D IC – 3-D NoC topology decreases the number of hops
while the interconnect buss delay remains constant. With a 3-D IC – 2-D NoC, the
buss delay is smaller but the number of hops remains unchanged. With a 3-D IC – 3-
D NoC, all of the latency components can be decreased by assigning a portion of the
available physical planes to the network while the remaining planes of the stack are
used for the PEs. A decrease in latency of 31.5% and 29.7% can be observed for N =
128 and N = 256 nodes, respectively, with APE = 1 mm2. Note that the 3-D IC – 3-D
NoC topology achieves the greatest savings in latency by optimally balancing n3
with np. Consequently, the tradeoff between the number of hops and the buss length
for various 3-D topologies can be exploited to improve the performance of a
network-on-chip.

16 V.F. Pavlidis and E.G. Friedman

NoC

IC
2-D 3-D

2-D

(a)

Router

PE

(b)

n1

n2

n3

3-D

(c)

np

(d)

Lh

Lv

Fig. 11. Various NoC topologies (not to scale), (a) 2-D IC – 2-D NoC, (b) 2-D IC – 3-D NoC,
(c) 3-D IC – 2-D NoC, and (d) 3-D IC – 3-D NoC

4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

16

18

La
te

nc
y

[n
s]

Number of nodes log2N

2D ICs - 2D NoCs
2D ICs - 3D NoCs
3D ICs - 2D NoCs
3D ICs - 3D NoCs

4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

P
ow

er
 p

er
 b

it
[m

W
]

Number of nodes log2N

2D ICs - 2D NoCs
2D ICs - 3D NoCs
3D ICs - 2D NoCs
3D ICs - 3D NoCs

 (a) (b)

Fig. 12. Performance of 3-D NoC topologies for a range of network sizes where APE = 1 mm2;
(a) zero-load latency and (b) power consumption with delay constraints

As with the zero-load latency, each topology affects the power consumption of a
network in a different way. The power consumption can be reduced by either
decreasing the number of hops that a packet travels or by decreasing the buss length.

 Physical Design Issues in 3-D Integrated Technologies 17

In Fig. 12b, the power consumption of a 2-D NoC topology is compared to the three-
dimensional topologies previously discussed. A power savings of 38.4% is achieved
for N = 128 with APE = 1 mm2. Allowing the available physical planes to be utilized
either for the third dimension of the network or for the PEs, the 3-D IC - 3-D NoC
scheme achieves the greatest savings in power in addition to the minimum delay.

Note that these topologies emphasize the latency and power consumption of a
network, neglecting the performance requirements of the individual PEs. If the
performance of the individual PEs is important, only one 3-D topology may be
available; however, despite this constraint, a significant savings in latency and power
can be achieved since in almost every case the network latency and power
consumption are lower than for the 2-D IC – 2-D NoC topology.

9 Conclusions

Developing a design flow for 3-D ICs is a complicated task with many ramifications.
Design methodologies at the front end and mature manufacturing processes at the
back end are required to effectively provide large scale 3-D systems. A variety of
floorplanning, placement, and routing techniques and algorithms for 3-D circuits have
been described that consider the unique characteristics of 3-D circuits. In these
techniques, the discrete nature of the third dimension is exploited to decrease the
number of candidate solutions and, consequently, the computational time required to
design a 3-D circuit.

In addition, due to increased power densities and greater distances between the
circuits on the upper planes and the heat sink, physical design techniques that embody
a thermal objective can be a useful mechanism to manage thermal issues in 3-D ICs.
Design techniques can reduce thermal gradients and temperatures in 3-D circuits by
redistributing the blocks among and within the planes of a 3-D circuit. Alternatively,
thermal vias can be utilized in 3-D circuits to convey heat to the heat sink.

Significant performance improvements can be achieved by optimally placing
interplane vias in 3-D circuits. Algorithms for determining the minimum delay of the
interplane interconnects are an integral element of the physical design process for 3-D
circuits. Interplane interconnect impedances of 3-D circuits vary considerably from 2-
D interconnect impedances. This difference is due to several reasons, such as the
heterogeneity of 3-D circuits, diverse fabrication technologies, and the variety of
bonding styles.

Another requirement for maximizing the speed of 3-D circuits is to reliably
distribute the clock signal. A 3-D clock distribution network, however, cannot be
directly extended from a 2-D circuit due to the asymmetry of a multi-plane 3-D circuit
and the effect of the interplane via impedances. Several clock distribution networks
have been developed to investigate synchronization issues in 3-D systems. These
clock distribution networks within a three plane 3-D circuit exhibit low clock skew
while operating into the gigahertz regime.

In addition to higher performance, 3-D integration offers significant opportunities
for designing highly diverse and complex systems. On-chip networks can be a useful
solution to provide sufficient communication throughput among the components of
these 3-D systems. 3-D NoC are a natural evolution of 2-D NoC, exhibiting superior

18 V.F. Pavlidis and E.G. Friedman

performance. These topologies decrease the latency and power consumption by
reducing both the number of hops per packet and the length of the communications
channels. These 3-D topologies demonstrate the tradeoff between the number of
planes required to implement a network and those planes required to implement the
PEs. Consequently and not surprisingly, the 3-D IC – 3-D NoC topology achieves the
greatest improvement in latency and power consumption by most effectively
exploiting the third dimension.

References

[1] International Technology Roadmap for Semiconductors (ITRS), Semiconductor Industry
Association (2007)

[2] Pavlidis, V.F., Friedman, E.G.: Three Dimensional Integrated Circuit Design. Morgan
Kaufmann Publishers, San Francisco (2009)

[3] Joyner, J.W., et al.: Impact of Three-Dimensional Architectures on Interconnects in
Gigascale Integration. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 9(6), 922–928 (2001)

[4] Rahman, A., Reif, R.: System Level Performance Evaluation of Three-Dimensional
Integrated Circuits. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 8(6), 671–678 (2000)

[5] Stroobandt, D., Van Campenhout, J.: Accurate Interconnection Lengths in Three-
Dimensional Computer Systems. IEICE Transactions on Information and System, Special
Issue on Physical Design in Deep Submicron 10(1), 99–105 (2000)

[6] Joyner, J.W., Meindl, J.D.: Opportunities for Reduced Power Distribution Using Three-
Dimensional Integration. In: Proceedings of the IEEE International Interconnect
Technology Conference, June 2002, pp. 148–150 (2002)

[7] Banerjee, K., Souri, S.K., Kapour, P., Saraswat, K.C.: 3-D ICs: A Novel Chip Design
Paradigm for Improving Deep-Submicrometer Interconnect Performance and Systems-
on-Chip Integration. Proceedings of the IEEE 89(5), 602–633 (2001)

[8] Koyanagi, M., et al.: Future System-on-Silicon LSI Chips. IEEE Micro 18(4), 17–22
(1998)

[9] Pavlidis, V.F., Friedman, E.G.: Interconnect-Based Design Methodologies for Three-
Dimensional Integrated Circuits. Proceedings of the IEEE, Special Issue on 3-D
Integration Technology 97(1), 123–140 (2009)

[10] Bernstein, K., et al.: Interconnects in the Third Dimension: Design Challenges for 3-D
ICs. In: Proceedings of the IEEE/ACM Design Automation Conference, June 2007, pp.
562–567 (2007)

[11] Patti, R.S.: Three-Dimensional Integrated Circuits and the Future of System-on-Chip
Designs. Proceedings of the IEEE 94(6), 1214–1224 (2006)

[12] Lewis, D.L., Lee, H.-H.S.: A Scan-Island Based Design Enabling Pre-Bond Testability in
Die-Stacked Microprocessors. In: Proceedings of the IEEE International Test Conference,
October 2007, pp. 1–8 (2007)

[13] Cong, J., Wei, J., Zhang, Y.: A Thermal-Driven Floorplanning Algorithm for 3-D ICs. In:
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,
November 2004, pp. 306–313 (2004)

[14] Henry, D., et al.: Low Electrical Resistance Silicon Through Vias: Technology and
Characterization. In: Proceedings of the IEEE International Electronic Components and
Technology Conference, June 2006, pp. 1360–1365 (2006)

 Physical Design Issues in 3-D Integrated Technologies 19

[15] Garrou, P.: Future ICs Go Vertical. Semiconductor International (February 2005)
[16] Karnezos, M.: 3-D Packaging: Where All Technologies Come Together. In: Proceedings

of IEEE/SEMI International Electronics Manufacturing Technology Symposium, July
2004, pp. 64–67 (2004)

[17] Miettinen, J., Mantysalo, M., Kaija, K., Ristolainen, E.O.: System Design Issues for 3D
System-in-Package (SiP). In: Proceedings of the IEEE International Electronic
Components and Technology Conference, June 2004, pp. 610–615 (2004)

[18] Beyne, E.: The Rise of the 3rd Dimension for System Integration. In: Proceedings of the
IEEE International Interconnect Technology Conference, June 2006, pp. 1–5 (2006)

[19] Pavlidis, V.F., Friedman, E.G.: Interconnect Delay Minimization through Interlayer Via
Placement in 3-D ICs. In: Proceedings of the ACM Great Lakes Symposium on VLSI,
April 2005, pp. 20–25 (2005)

[20] FDSOI Design Guide, MIT Lincoln Laboratories, Cambridge (2006)
[21] Burns, J.A., et al.: A Wafer-Scale 3-D Circuit Integration Technology. IEEE Transactions

on Electron Devices 53(10), 2507–2515 (2006)
[22] Bower, C.A., et al.: High Density Vertical Interconnect for 3-D Integration of Silicon

Integrated Circuits. In: Proceedings of the IEEE International Electronic Components and
Technology Conference, June 2006, pp. 399–403 (2006)

[23] Jang, D.M., et al.: Development and Evaluation of 3-D SiP with Vertically Interconnected
Through Silicon Vias (TSV). In: Proceedings of the IEEE International Electronic
Components and Technology Conference, June 2007, pp. 847–850 (2007)

[24] Savidis, I., Friedman, E.G.: Electrical Modeling and Characterization of 3-D Vias. In:
Proceedings of the IEEE International Symposium on Circuits and Systems, May 2008,
pp. 784–787 (2008)

[25] Otten, R.H.J.M.: Automatic Floorplan Design. In: Proceedings of the IEEE/ACM Design
Automation Conference, June 1982, pp. 261–267 (1982)

[26] Yong, E.F.Y., Chu, C.C.N., Zion, C.S.: Twin Binary Sequences: A Non-Redundant
Representation for General Non-Slicing Floorplan. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 22(4), 457–469 (2003)

[27] Cheng, L., Deng, L., Wong, D.F.: Floorplanning for 3-D VLSI Design. In: Proceedings of
the IEEE International Asia and South Pacific Design Automation Conference, January
2005, pp. 405–411 (2005)

[28] Li, Z., et al.: Hierarchical 3-D Floorplanning Algorithm for Wirelength Optimization.
IEEE Transactions on Circuits and Systems I: Regular Papers 53(12), 2637–2646 (2006)

[29] Deng, Y., Maly, W.P.: Interconnect Characteristics of 2.5-D System Integration Scheme.
In: Proceedings of the IEEE International Symposium on Physical Design, April 2001,
pp. 341–345 (2001)

[30] Li, Z., et al.: Efficient Thermal Via Planning Approach and its Application in 3-D
Floorplanning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 26(4), 645–658 (2007)

[31] Yan, T., Dong, Q., Takashima, Y., Kajitani, Y.: How Does Partitioning Matter for 3D
Floorplanning. In: Proceedings of the ACM International Great Lakes Symposium on
VLSI, April/May 2006, pp. 73–76 (2006)

[32] http://www.cse.ucsc.edu/research/surf/GSRC/progress.html
[33] Healy, M., et al.: Multiobjective Microarchitectural Floorplanning for 2-D and 3-D ICs.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 26(1),
38–52 (2007)

20 V.F. Pavlidis and E.G. Friedman

[34] Lo, W.-C., et al.: An Innovative Chip-to-Wafer and Wafer-to-Wafer Stacking. In: Proceedings
of the IEEE International Electronic Components and Technology Conference, June 2006, pp.
409–414 (2006)

[35] Goplen, B., Sapatnekar, S.: Placement of Thermal Vias in 3-D ICs Using Various
Thermal Objectives. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25(4), 692–709 (2006)

[36] Obenaus, S.T., Szymanski, T.H.: Gravity: Fast Placement for 3-D VLSI. ACM
Transactions on Design Automation of Electronic Systems 8(3), 298–315 (2003)

[37] Harter, A.: Three-Dimensional Integrated Circuit Layout. Cambridge University Press,
Cambridge (1991)

[38] Kaya, I., Olbrich, M., Barke, E.: 3-D Placement Considering Vertical Interconnects. In:
Proceedings of the IEEE International SOC Conference, September 2003, pp. 257–258
(2003)

[39] Davis, W.R., et al.: Demystifying 3D ICs: the Pros and Cons of Going Vertical. IEEE
Design and Test of Computers 22(6) (November/December 2005)

[40] Eisenmann, H., Johannnes, F.M.: Generic Global Placement and Floorplanning. In:
Proceedings of the IEEE/ACM Design Automation Conference, June 1998, pp. 269–274
(1998)

[41] Goplen, B., Sapatnekar, S.: Efficient Thermal Placement of Standard Cells in 3-D ICs
using a Force Directed Approach. In: Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, November 2003, pp. 86–89 (2003)

[42] http://er.cs.ucla.edu/benchmarks/ibm-place
[43] http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LayoutSynth92
[44] Enbody, R.J., Lynn, G., Tan, K.H.: Routing the 3-D Chip. In: Proceedings of the

IEEE/ACM Design Automation Conference, June 1991, pp. 132–137 (1991)
[45] Tong, C.C., Wu, C.-L.: Routing in a Three-Dimensional Chip. IEEE Transactions on

Computers 44(1), 106–117 (1995)
[46] Minz, J., Lim, S.K.: Block-Level 3-D Global Routing With an Application to 3-D

Packaging. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25(10), 2248–2257 (2006)

[47] Ohtsuki, T. (ed.): Advances in CAD for VLSI. Layout Design and Verification, vol. 4.
Elsevier, Amsterdam (1986)

[48] Cong, J., Xie, M., Zhang, Y.: An Enhanced Multilevel Routing System. In: Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design, November 2002,
pp. 51–58 (2002)

[49] Cong, J., Zhang, Y.: Thermal Driven Multilevel Routing for 3-D ICs. In: Proceedings of
the IEEE Asia and South Pacific Design Automation Conference, June 2005, pp. 121–126
(2005)

[50] Pavlidis, V.F., Friedman, E.G.: Timing Driven Via Placement Heuristics in 3-D ICs.
Integration, the VLSI Journal 41(4), 489–508 (2008)

[51] Boese, K.D., et al.: Fidelity and Near-Optimality of Elmore-Based Routing
Constructions. In: Proceedings of the IEEE International Conference on Computer
Design, October 1993, pp. 81–84 (1993)

[52] Löfberg, J.: YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In:
Proceedings of the IEEE International Symposium on Computer-Aided Control Systems
Design, September 2004, pp. 284–289 (2004)

[53] Friedman, E.G. (ed.): Clock Distribution Networks in VLSI Circuits and Systems. IEEE
Press, New Jersey (1995)

 Physical Design Issues in 3-D Integrated Technologies 21

[54] Friedman, E.G.: Clock Distribution Networks in Synchronous Digital Integrated Circuits.
Proceedings of the IEEE 89(5), 665–692 (2001)

[55] Xanthopoulos, T., et al.: The Design and Analysis of the Clock Distribution Network for
a 1.2 GHz Alpha Microprocessor. In: Proceedings of the IEEE International Solid-State
Circuits Conference, February 2001, pp. 402–403 (2001)

[56] Prunty, C., Gal, L.: Optimum Tapered Buffer. IEEE Journal of Solid-State Circuits 27(1),
1005–1008 (1992)

[57] Pavlidis, V.F., Savidis, I., Friedman, E.G.: Clock Distribution Networks for 3-D
Integrated Circuits. In: Proceedings of the IEEE International Conference on Custom
Integrated Circuits, September 2008, pp. 651–654 (2008)

[58] Pavlidis, V.F., Savidis, I., Friedman, E.G.: Clock Distribution Architectures for 3-D SOI
Integrated Circuits. In: Proceedings of the IEEE International Silicon-on-Insulator
Conference, October 2008, pp. 111–112 (2008)

[59] Jantsch, A., Tenhunen, H.: Networks on Chip. Kluwer Academic Publishers, Dordrecht
(2003)

[60] Benini, L., De Micheli, G.: Networks on Chip: A New SoC Paradigm. IEEE
Computer 31(1), 70–78 (2002)

[61] Kumar, S., et al.: A Network on Chip Architecture and Design Methodology. In:
Proceedings of the International IEEE Annual Symposium on VLSI, April 2002, pp. 105–
112 (2002)

[62] Li, F., et al.: Design and Management of 3D Chip Multiprocessors Using Network-in-
Memory. In: Proceedings of the IEEE International Symposium on Computer
Architecture, June 2006, pp. 130–142 (2006)

[63] Pavlidis, V.F., Friedman, E.G.: 3-D Topologies for Networks-on-Chip. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 15(10), 1081–1090 (2007)

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 22–42, 2010.
© IFIP International Federation for Information Processing 2010

Universal Methodology to Handle Differential Pairs
during Pin Assignment

Tilo Meister1, Jens Lienig1, and Gisbert Thomke2

1 Dresden University of Technology, Dresden, Germany
2 IBM Research and Development, Böblingen, Germany

Abstract. Differential signaling has been a major challenge in design automa-
tion. The routing of differential pairs requires a suitable pin assignment of the
respective nets. However, current automatic pin assignment algorithms lack the
ability to consider differential pairs. We present a methodology to include dif-
ferential pairs during pin assignment. Our solution can be applied to automatic
or manual pin assignment processes without changing the methodologies
already in place. This universality is achieved by using any established pin as-
signment approach as a black box, which is extended by pre and post process-
ing steps. Extensive studies in industrial design flows show that our differential
pair methodology does not compromise pin assignment quality with the added
benefit of effective differential pair allocations.

1 Introduction

Differential pairs are a common challenge during digital and analog/mixed-signal lay-
out generation of modern electronic devices. The challenge is to route as closely to-
gether as possible a pair of wiring paths (the so-called differential pair) in order to
improve the routing solution. The resulting routing geometry provides significantly
better electrical characteristics than single ended signaling. For example, interference
identically captured by both routing paths is filtered out. However, the routing of
differential pairs requires an adequate pin assignment that has to be generated
beforehand.

The pin assignment of a component, such as a chip, is the assignment of its
I/O signals to its I/O pins, often referred to as pads (Fig. 1). Usually, this pin assign-
ment is created after components are placed on the wiring substrate, such as a printed
circuit board (PCB) or a multi chip module (MCM). Optimizing this pin assignment is
a crucial stage because the routability of the substrate largely depends on both pin as-
signment and component placement. Due to rising I/O counts, the routability chal-
lenge has continued to increase rapidly in recent years, which puts enormous pressure
on a well-performed pin assignment.

Furthermore, there has been a growing demand for differential pairs, which have to
be considered during this stage. This is mostly due to more stringent electrical re-
quirements of signals in modern applications. However, to the best of our knowledge,
none of the published pin assignment approaches considers the implementation of dif-
ferential pairs.

 Universal Methodology to Handle Differential Pairs during Pin Assignment 23

(a) (b)

(c) (d)

Fig. 1. Illustration of pin assignment with the I/O pins of seven chips (a) to be assigned to sig-
nals that connect a wiring substrate such as an MCM (b). The pin assignment based on the
shortest Manhattan distances of the individual connections is depicted in (c) whereas (d) illus-
trates the pin assignment with minimum overall length of all Euclidean distances (flylines).

This chapter presents a universal methodology to extend pin assignment algorithms
to consider differential pairs. This methodology requires no significant changes to the
basic pin assignment algorithm, thereby respecting any individual pin assignment rou-
tines already in use. As shown below, this add-on approach has almost no impact on
the quality of the created pin assignments while at the same time efficiently consider-
ing all differential pair requirements. Furthermore, the algorithm can be used for any
given percentage (from zero to 100%) of differential pairs among the nets to be con-
sidered during pin assignment. As such, it allows a flexible inclusion of differential
pair requirements in digital and analog/mixed-signal real-world design flows.

The remainder of this chapter is organized as follows. Pin assignment and differential
pairs are introduced in the following two sections. The differential pair methodology is
proposed in the section thereafter. The effectiveness of the proposed methodology is
proven in the section presenting experimental results. At the end of this chapter, we pre-
sent limitations of our approach, an outlook, and conclusions.

24 T. Meister, J. Lienig, and G. Thomke

A
B

C
D

A
B

C
D

(a) (b)

Fig. 2. Example with four components A-D to illustrate the influence of pin assignment on the
routability. Pins are marked by circles on the outline of the components. Nets are shown as
flylines. If no wiring is allowed below components A through D, the design with pin assign-
ment (a) is not routable in one layer, whereas (b) allows single layer routing.

2 The Pin Assignment Problem

During logic design, logical pins are defined to be the signal interface between the
different components of a design. During the subsequently performed layout synthe-
sis, these logical pins, and thus the associated signals, have to be mapped to real,
physical pins, which serve as the actual electrical joints between the components.

This mapping of logical pins (signals) to physical pins is called pin assignment and
has great influence on the routability, electrical characteristics and the cost of the
design (see example in Fig. 2). Hence, the objective of pin assignment is to assign
signals to physical pins such that these circuit characteristics are fulfilled best for the
individual designs.

Pin assignment has been studied for all system levels such as digital and ana-
log/mixed-signal circuits (ICs), MCMs and PCBs. For ICs, the pin assignment of
macro blocks is usually optimized with regard to routability during placement [3][4],
buffer planning [5] or routing [6]. Pin assignment approaches for PCBs and MCMs
can be found in [7][8][9][10].

2.1 Context

Pin assignment is closely related to both component placement and routing. All three
design steps have in common that their individual optimal solutions depend on each
other. Finding the overall optimal solution for these design steps would require incorpo-
rating them into one optimization task. Due to complexity and the related NP-hardness
of physical design, this is unfeasible. Hence, the repeated sequential execution of these
design steps is currently the only accomplishable approach to physical design.

 Universal Methodology to Handle Differential Pairs during Pin Assignment 25

Preliminary Pin Assignment

Partitioning

Floorplanning

Placement

Routing

Pin Assignment

Fig. 3. Simplified physical design flow. The dashed arrows indicate iterations over the individ-
ual design steps.

Fig. 3 shows the major steps of the physical design flow [14][17], including pin as-
signment steps, of the design of electronic devices. Of these steps, placement is the
first stage that requires an exact pin assignment, because the target function of place-
ment depends on wire lengths and routing congestion. At this point a typical dilemma
of physical design becomes obvious. The objectives of pin assignment are a minimal
wire length and minimal routing congestion, which cannot be computed before de-
termining the component placement. At the same time, placement depends on the
chosen pin assignment. To come around this paradox either pin assignment has to be
incorporated into placement [15] or a preliminary pin assignment has to be chosen be-
fore component placement is being optimized. Such a preliminary pin assignment is
usually based on heuristics and the experience of designers and allows computing an
optimized component placement.

Having optimized the placement for a specific preliminary pin assignment, it is
then possible to improve the pin assignment for this optimized placement. To further
improve design quality, it is possible to go back (one or more iterations) and revise
the placement solution based on the optimized pin assignment (see Fig. 3).

A similar interdependency exists for pin assignment and routing. Routing largely
depends on placement and pin assignment. Unfortunately, only after routing has been
completed, which is extremely time consuming, it is possible to ultimately judge the
quality of placement and pin assignment. Therefore, good estimates of the routability
are essential for effective pin assignment algorithms.

It is further possible to integrate pin assignment into the global [16] and/or detailed
routing phase. By integrating pin assignment into global routing, it can be adapted to

26 T. Meister, J. Lienig, and G. Thomke

the global requirements of routing, whereas a combination with detailed routing
would support local adjustments of the pin assignment.

2.2 Pin Assignment Algorithms Used in This Work

We use four pin assignment algorithms to evaluate the differential pair methodology
presented. Three of them are heuristics, which either reduce signal intersections or
balance the lengths of nets within a bus. The fourth algorithm analytically minimizes
net lengths and the number of signal intersections. All four algorithms assume that pin
assignment is done in-between placement and routing (see Fig. 3). The details of the
four pin assignment algorithms are described in [7].

By using these four algorithms in various configurations, we obtain seven different
pin assignment procedures in order to evaluate the presented differential pair method-
ology. Specifically, the analytical algorithm can be utilized with different parameters
to its cost function. Also, one of the heuristic algorithms can be used to modify pin
assignment results of the remaining three algorithms.

3 Differential Pairs

A differential pair are two wires which are routed close together, have matched
electrical characteristics, and are used to transmit one signal. This signal is encoded in
the voltage difference between both wires. Differential pairs are essential for many
electronic devices, because differential signaling has superior electrical characteristics
to single ended signaling [1][2]. In particular, differential signaling leads to lower
cross-talk and lower electromagnetic interference. Both noise emission and noise ac-
ceptance are minimized by differential pairs if both (1) the distance between the two
routing paths is minimal and (2) the lengths and electrical characteristics of both paths
are matched.

The basic functional principle of a differential pair is shown in Fig. 4. The differen-
tial sender encodes the signal S = u(t) into the difference of two complementary sig-
nals a·S = up(t) and −a·S = un(t) propagating along the two routing paths n and p.
Where a is the gain of the differential sender. If both routing paths have the same
electrical characteristics and are routed close together, captured noise A can be pre-
sumed to be identical for both signals upA(t) = up(t) + A and unA(t) = un(t) + A. The sig-
nals upA(t) and unA(t) are then translated back to the original signal S by subtracting
upA(t) – unA(t) = Srcv= 2·a·S which at this point filters out any noise A identically cap-
tured along both paths.

In case routing paths n and p are not routed close together and/or have different
electrical properties, both tracks capture noise differently An and Ap leaving the re-
ceived signal Srcv = 2·a·S + (Ap – An) distorted with noise (Ap – An). Additionally, if
electrical characteristics of the tracks differ, propagation delays of the n- and p-signal
may be different, resulting in a distortion of the transmitted signal as shown in Fig. 5.

Assuming a signal frequency of 3GHz, a timing difference between signals n and
p of only 167 ps shifts signals by half a clock. In a FR4 printed circuit board that tim-
ing difference is equal to a difference in wiring lengths of roughly 2.5cm. That is, the
tolerance for propagation delays and wiring length differences for a differential pair at
3 GHz is in the domain of picoseconds and millimeters respectively.

 Universal Methodology to Handle Differential Pairs during Pin Assignment 27

S =S=u(t)rcv

−a·S=u (t)n

t

a·S=u (t)p

Noise

t

t

S=u(t)

t
p
n

Sender

−

+

Receiver

t

nA

t

pA

t
A(t)

u (t)

u (t)

Fig. 4. Functional principle of a differential pair

t

S=u(t)

p
n

Sender

−

+

Receiver

t
−a·S=u (t)n

t

a·S=u (t)p

rcvS =u (t)=Srcv

t

u (t)p

t

t
u (t)n

Fig. 5. Effect of unmatched propagation delays of a differential pair

The special wiring geometry of differential pairs requires suitable pin assignments.
Specifically, for the two nets n and p of a differential pair, the pin assignment has to
be chosen such that each pin of the routing path n has a so-called parallel pin at the
same distance from the sender in the routing path p and vice versa. The distance be-
tween those parallel pins must not exceed a maximum distance dmax. This parameter is
technology-dependent and for MCMs and PCBs usually ranges from one to two times
the pin grid. For the sake of simplicity, we call the parallel pins of a differential pair a
differential pin pair (DPP). If the distance between the pins of the DPP is not greater
than dmax, we call it a valid DPP, else it is labeled an invalid DPP.

12
6

(a) (b)

Pin Set A Pin Set B Pin Set A1

Pin Set A2

Pin Set B
6

Fig. 6. Two pin assignment tasks for 12 two terminal nets. (a) 12 nets need an assignment to pins
of sets A and B. (b) The nets of set B are to be assigned to two sets A1 and A2 and vice versa.

28 T. Meister, J. Lienig, and G. Thomke

4 Differential Pair Methodology

In this section, we present our novel methodology to handle differential pairs during
pin assignment. Our approach is used as an extension of any automatic or manual
procedure in place that solves the pin assignment problem (Fig. 6 shows two example
problems). The underlying basic pin assignment procedures, which are to be ex-
tended, are labeled PAA (pin assignment algorithm) throughout this paper.

4.1 Overview of the Algorithm

Our approach can be summarized in five steps (Fig. 7).

1. First, a transformation is applied to the original pins. This transformation embeds
data about valid DPPs. We call the transformed pins fat pins.

2. Second, the PAA in place is applied to these fat pins.
3. Third, the pin assignment for the fat pins (fat pin assignment) is split up to the

original pins. This back transformation returns a pin assignment only for a subset
of the pins and nets.

4. Therefore in the fourth step, a pin assignment without differential pairs is created for
the remaining unassigned nets with the same PAA as applied in the second step.

5. Finally, the two interim pin assignments created in steps (3) and (4) are merged
into one final pin assignment, which respects all constraints of both the pin as-
signment problem and differential pairs.

Pin assignment with differential pairs

(5) Merge fat pin assignment and pin

assignment of original pins into a final pin
assignment which respects differential pairs.

(2) Apply PAA to fat pins.

(1) Transform pins to fat pins.

(3)
to original pins.
Translate fat pin assignment

max

Input:

Output:

Netlist
Pin sets
Number of required differential pairs
d
Pin assignment algorithm (PAA)

(4) Apply PAA to original pins.

Fig. 7. Overview of our differential pair methodology

 Universal Methodology to Handle Differential Pairs during Pin Assignment 29

This methodology is a framework that allows considering any number of differential
pairs by utilizing any existing pin assignment algorithm (see above) without the need
to modify the existing pin assignment algorithm itself. Steps (1), (3) and (5) are pre
and post processing steps (white boxes in Fig. 7), while any already existing pin as-
signment procedure PAA can be plugged-in at steps (2) and (4) (gray boxes in Fig. 7).

The inputs for this framework are the netlist, the sets of pins, and an existing pin
assignment algorithm. In addition, the designer specifies dmax for each set of pins and
the number of differential pairs. The output is a pin assignment for all nets, which re-
spects the constraints for as many differential pairs as specified by the designer. This
pin assignment is topologically very similar to a pin assignment created by the basic
pin assignment algorithm (PAA) alone.

The individual steps as well as the indicated interactions (dashed arrows in Fig. 7)
are presented in the following three subsections.

4.2 Combine Pin Pairs to Fat Pins

In order to generate the so-called fat pins (Step 1 in Fig. 7), valid DPPs are automati-
cally determined among the original pins. This automatic selection of DPPs may be
controlled by the designer by manually specifying an arbitrary number of DPPs. As
outlined in this subsection, pins that cannot be combined to a valid DPP either ignored
or are paired to invalid DPPs. As described above, these so-called invalid pin pairs
cannot be used for differential signals in the final pin assignment. Nonetheless, allow-
ing invalid DPPs at this point has a significant impact on the quality of the final pin
assignment with differential pairs. The section presenting the experimental results
(see below) shows the influence of invalid DPPs on the final pin assignment.

A maximum weighted matching (as shown in [11]) has to be calculated to find
automatically as many DPPs as possible, with the least distance between the pins of
the individual pairs. The implementation presented in [12] has a complexity of O(p³)
(p number of pins). However, components with differential pairs have well-suited pin
configurations such that DPPs can be determined effectively by heuristic, greedy al-
gorithms. Therefore, we have developed two greedy algorithms, which are more time
efficient than the slower optimal algorithms presented in [11][12].

The first algorithm (MOST_PAIRS) creates as many pin pairs as possible. The
second algorithm (PREFERRED_PAIRS) focuses on pairs whose two pins are clos-
est. The complexity of both algorithms is defined by the sorting algorithm, which is
used to sort pins according to their distance to so-called partner pins and by the num-
ber of partner pins, respectively. Thereby, partner pins of one pin are those that are no
further away than dmax. We use insertion sort, which has a complexity of O(p²) in the
worst case. Still, the practical efficiency is much better since many pin pairs are of the
same distance and most pins have the same number of partner pins.

Both algorithms first locate the next pin to be paired. In MOST_PAIRS, this is the
pin with the least number of valid partner pins (distance ≤ dmax) but at least one part-
ner pin. In PREFFERED_PAIRS, it is the pin that has a valid partner pin that is clos-
est amongst all possible pairs of pins. The located pin and its closest partner pin are
then paired. This is repeated until no more pins can be paired. Fig. 8 (a) shows the
automatically selected pin pairs for a small area array component.

30 T. Meister, J. Lienig, and G. Thomke

dmax

(a) (b) (c)

Fig. 8. (a) Pin pairs of a small area array component. The black dots denote pins, the line be-
tween two pins represents a pin pair. (b) Fat pins created from the selected pin pairs. (c) Pin
configuration which prevents some pins (circled) to be used for differential pairs.

As depicted in Fig. 8 (c), there may be pins, which cannot be paired to valid DPPs.
Either those pins are ignored or they are paired to invalid DPPs by the same two
strategies described above thereby ignoring dmax. Thus, we can create four different
selections of pin pairs, which eventually lead to different pin assignments with differ-
ential pairs:

• PREFERRED_PAIRS with only valid DPPs
• PREFERRED_PAIRS with valid and invalid DPPs
• MOST_PAIRS with only valid DPPs
• MOST_PAIRS with valid and invalid DPPs

Which of the four variants are used depends on the number of differential pairs re-
quired (see Section Integrating Fat Pin Assignment with PAA).

Next, a fat pin is created for each computed pin pair, regardless whether it is valid
or invalid. The coordinate of a fat pin is the arithmetic mean of the coordinates of its
original two pins (see Fig. 8 b). Except for its coordinates, the new fat pin inherits all
characteristics, such as design rules, from the two original pins. At the same time,
specific nets are combined in order to ensure an identical number of nets and fat pins.

4.3 Fat Pin Assignment

Following fat pin creation, all fat pins are treated just like conventional pins and are
fed to any PAA that solves the pin assignment problem (Step 2 in Fig. 7). The result-
ing fat pin assignment is consequently transformed back to specify the assignment for
the individual pins (Step 3 in Fig. 7).

The transformations illustrated in Fig. 9 are applied to each pin pair: Fig. 9 (a)
shows the pin assignment task for two nets (lines) with two pins each (ending dots).
A1, A2, B1 and B2 are the pins that are arranged in two separate sets. A1 and A2 are in
the pin set named “From”. B1 and B2 are in the pin set named “To”. In Fig. 9 (b) pins
A1, A2, B1, and B2 are transformed to fat pins A and B. Thus, only one of the two nets
remains. Fig. 9 (c) shows the fat pin assignment by applying a PAA to the fat pin sets.
Fig. 9 (d1) and (d2) denotes the two possibilities for the subsequent inverse transfor-
mation. Either pins A1 and B1 (Fig. 9.d1) or pins A1 and B2 (Fig. 9.d2) are assigned to
the same net. We select the configuration with the smaller difference in the individual

 Universal Methodology to Handle Differential Pairs during Pin Assignment 31

(d2)

A

BB BBB B

AA AAA

(d1)(c)(b)(a)

A

B B

A

Fat From Pins From Pins From Pins

To PinsTo PinsFat To PinsFat To PinsTo Pins

From Pins Fat From Pins

2

211 2

1

1

1 221

2

Fig. 9. Fat pin transformation and inverse transformation. (a) Pin assignment task for two nets.
(b) Transformation from pins to fat pins. (c) Fat pin assignment. (d1) First alternative for in-
verse transformation. (d2) Second alternative for inverse transformation.

lengths and the shortest overall length of the flylines of both nets (which is (d1) in this
example). This choice supports the matching of the net lengths of a differential pair.

If fat pins A and B are valid fat pins (A1 and A2, as well as B1 and B2, respectively,
are no further apart than dmax), the two nets can be used for either a differential pair or
for two single ended signals. Consequently, the number of nets which have all their
pins assigned to valid fat pins defines the number of possible differential pairs in the
final pin assignment because they can, but need not, be used as differential pairs.

4.4 Integrating Fat Pin Assignment with PAA

All unpaired pins and dropped nets are ignored and do not receive a pin assignment
during fat pin assignment (Steps 1–3 in Fig. 7 and as described in the previous two
subsections). To find the pin assignment for those pins and nets, the basic PAA is ap-
plied to original pins and nets (Step 4). The thus created pin assignment is integrated
with the fat pin assignment to determine the final pin assignment with differential
pairs (Step 5).

We propose two methods to integrate the two interim pin assignments. Aggressive
blending creates more possible differential pairs than defensive blending, yet the
results of defensive blending are better with respect to the objective function of the
underlying PAA. Both methods can be used in combination with any of the four dif-
ferent methods to select pin pairs (see above), all together resulting in eight different
pin assignments with differential pairs.

Aggressive Blending. To determine the pin assignment for all pins that did not
receive a fat pin assignment (Fig. 10 c), the basic PAA is applied to these pins and
nets (Fig. 10 d). The final pin assignment (Fig. 10 m) with differential pairs results
from the combination of the fat pin assignment (see above and Fig. 10 k) with the pin
assignment created by applying the PAA to the leftover pins and nets (Fig. 10 d). For
aggressive blending, the fat pin assignment is applied to all pins that were paired,
while the basic PAA is limited to the remaining pins and nets and is not aware of
the fat pin assignment already created. Fig. 7 shows the flow of this algorithm. The
limitation of the basic PAA to pins without a fat pin assignment is indicated by the

32 T. Meister, J. Lienig, and G. Thomke

3

13

5

(j)

(k)

(h)

(m)

(c)

(d)

(b)(a)

Fig. 10. Example pin assignment procedure with differential pairs using aggressive blending.
(a) Pin assignment task with differential pairs for 13 nets. (b) Automatically selected fat pins.
(c) Pins that were not paired to fat pins during (b). (d) Basic pin assignment for unpaired pins.
(h) Automatically selected fat pins (leftover pins omitted). (j) Fat pin assignment. (k) Back-
transformation of fat pin assignment to original pins. (m) The final pin assignment with differ-
ential pairs is the combination of the basic pin assignment (d) and the fat pin assignment (k).

dashed arrow pointing from step 3 to step 4. A step-by-step example of pin
assignment using aggressive blending is shown in Fig. 10.

Compared to defensive blending (described in the following subsection), the result-
ing pin assignment is of lower quality with respect to the objective function of the
PAA, because the topologies of the two interim pin assignments differ in general.
However, their better topological similarity during defensive blending results in fewer
possible differential pairs, as shown in Figs. 11 and 12 and described in the following
subsection.

 Universal Methodology to Handle Differential Pairs during Pin Assignment 33

(a) (b) (c)

Fig. 11. Pin assignment for a single chip module using aggressive blending. (a) Fat pin assign-
ment. (b) Assignment of remaining pins and nets. (c) The final pin assignment with 468 possi-
ble differential pairs is the combination of (a) and (b).

(a) (b) (c)

Fig. 12. Pin assignment for a single chip module using defensive blending. (a) Fat pin assign-
ment. (b) Assignment of remaining pins and nets. (c) The final pin assignment with 454 possi-
ble differential pairs is the combination of (a) and (b).

Defensive Blending. Defensive blending is an iterative process to improve the
integratability of the fat pin assignment by incrementally adapting the selection of
differential pin pairs. The advantage of defensive blending, in contrast to aggressive
blending, is that all pins and nets are considered during the creation of the basic pin
assignment. However, fewer pins are combined to fat pins. Compared to aggressive
blending, this yields a better final pin assignment with respect to the basic objective
function at the cost of decreasing the number of possible differential pairs in the final
pin assignment.

In a first step, the basic PAA is applied to the original pins and nets (Fig. 13b).
This pin assignment is then used as a reference throughout the following iterations.
Next, pin pairs are selected as described above (Fig. 13c). Subsequently, all pins that
have not been paired receive their pin assignment from the reference pin assignment
of the first step (Fig. 10d). The pin assignment of those unpaired pins is final and is
never changed again. For all remaining unassigned pins, the current selection of pairs
is discarded and recreated (Fig. 13e) in order to optimize the selection. This process is
repeated until all pins either received their final pin assignment or are paired (Fig. 10f
and 10h).

All pins that are finally paired undergo fat pin assignment, and are then trans-
formed back to their original pins (see section on fat pin assignment above, Fig. 13j
and 13k). Hence, in defensive blending, the final pin assignment results from the

34 T. Meister, J. Lienig, and G. Thomke

9

3

(m)

(k)

(j)

(h)

(e)

(c)

(b)

(f)

(g)

(d)

(a)

Fig. 13. Using defensive blending to obtain differential pairs of two 9x9 pin arrays. (a) Pin as-
signment task with differential pairs. (b) Basic pin assignment (PAA) without differential pairs.
(c) Automatically selected fat pins. (d) Basic pin assignment for pins that were not paired to fat
pins during (c). (e) Newly selected fat pins (pins with an assignment from (d) are ignored).
(f) Basic pin assignment for pins that were not paired to fat pins during (e). (h) Newly selected
fat pins (pins with an assignment from (d) or (f) are ignored). (j) Create fat pin assignment,
since all remaining pins were paired to fat pins. (k) Back-transformation of fat pin assignment
to original pins. (g) Pins with basic pin assignments from (d) and (f). (m) Final pin assignment
with differential pairs is the combination of the basic pin assignment (g) and fat pin assignment
(k). In this example the final pin assignment with differential pairs contains three pairs of nets
usable for differential pairs, which were assigned during fat pin assignment (see (k)). It contains
one more net pair that happens to be usable as differential pair, which was assigned during the
basic PAA (see (g)).

 Universal Methodology to Handle Differential Pairs during Pin Assignment 35

(1.c) Fix pin assignment of unpaired

pins are ignored from now on.
pins to basic pin assignment. Those

(1.d) Clear selection of pin pairs.

(1.a) Select pin pairs (Section IV−B).

remain unpaired?
(1.b) Do any pins

finally paired using PAA.

No

(5) Merge fat pin assignment and basic pin
assignment of original pins into final pin pin
assignment which respects differential pairs.

(4) Create basic pin assignment for all
original pins and nets using PAA.

Create fat pin(2) and (3)
assignment for all pins

Yes

Fig. 14. Major steps of pin assignment with differential pairs using defensive blending. This
figure extends Fig. 7 in which the interaction of the basic pin assignment and the process of se-
lecting pin pairs is indicated as a dashed arrow from step 4 to step 1.

combination of the reference pin assignment for all finally unpaired pins and the back
transformation of the fat pin assignment (Fig. 13m). Fig. 14 shows the flowchart of
the defensive blending method.

Fig. 12 shows the two interim pin assignments (a) and (b) and the final pin assign-
ment (c) created with defensive blending for the same single chip module as in Fig. 11.

Defensive blending and aggressive blending do not differ and give identical results
in case all pins are paired to fat pins during the first iteration.

4.5 Summary

The eight possible combinations of methods for selecting fat pins and methods for in-
tegrating the interim pin assignments yield eight different pin assignments with dif-
ferential pairs. They vary in the number of possible differential pairs and in the mag-
nitude of changes compared to the basic pin assignment without differential pairs.

The number of possible differential pairs of each variant cannot be predicted ex-
actly. Yet, experimental results show that the different variants can be ranked with re-
spect to their quality and the number of possible differential pairs. In general, the
quality of the pin assignment deteriorates with an increase in possible differential
pairs. Therefore, the best pin assignment for a specific design is the one with just
enough possible differential pairs. We find this pin assignment by sequentially apply-
ing the different variants starting with the one that creates best pin assignment results
while providing the least differential pairs. Subsequently, pin assignment variants

36 T. Meister, J. Lienig, and G. Thomke

with more and more differential pairs are created, until the best pin assignment for the
design is found.

5 Experimental Results

The effectiveness of the presented methodology is proven by comparing pin assign-
ments with differential pairs to those without differential pairs. First, results from
PAAs (without differential pairs) applied to industrial designs are reported. Next,
these PAAs are extended by the fat pin methodology to include differential pairs. The
pin assignments are compared by means of SHPWL, HPWL MATCH, AVG Flylines,
STD Dev, and the number of signal intersections.

If (xai ,yai) and (xbi ,ybi) are the coordinates of the two pins of net i, p is the number of
nets in the pin assignment task and dxi = |xai – xbi|, dyi = |yai – ybi|, then the measurement
metrics are defined as follows:

• SHPWL: The sum of the HPWLs (half perimeter wire lengths) of all nets.

∑ +=
p

i
ii dydxSHPWL

• HPWL MATCH: The additional length necessary to match the HPWL routing
length of all nets. A lower value of HPWL MATCH indicates less routing effort,
especially for busses.

SHPWL) dy dx , ,dy (dx max · p HPWLMATCH pp11 −+…+=

• AVG Flylines: The average net length in Euclidean geometry.

∑ +=
p

i
ii dydx

p
FlylinesAVG 221

• STD Dev: The standard deviation of the net lengths in Euclidean geometry, which
similarly to HPWL MATCH evaluates the expected wiring effort necessary to
match wiring lengths.

∑ ⎟
⎠
⎞⎜

⎝
⎛ +−

−
=

p

i
ii dydxFlylinesAVG

p
Dev STD

2
22

1

1

• The number of signal intersections is calculated as the number of intersections
within the flylines of all nets.

In the following subsection, the differential pair methodology is compared with regular
PAAs using the above metrics. In the subsection after the following, an investigation of
the four proposed fat pin variants and the two proposed merging strategies is presented.

5.1 Quality of Fat Pin Methodology

The results presented in Table 1 are taken from a commercially fabricated IBM single
chip module (SCM) that carries one die on top and is covered with a regular array of
pins on the bottom side (1058 signal pins, 1058 power/ground pins). The pin assignment

 Universal Methodology to Handle Differential Pairs during Pin Assignment 37

algorithms are extended by our fat pin methodology and used to create an assignment
with differential pairs of die signal pins to bottom signal pins.

The used PAAs have the following objectives (a detailed description of these algo-
rithms can be found in [7]):

1. Heuristic to minimize HPWL MATCH and STD Dev
2. Heuristic to minimize signal intersections within busses for a specified direction of

fanout.
3. Same as 1. with subsequent removal of signal intersections.
4. Same as 2. with subsequent removal of signal intersections.
5. Minimum AVG Flylines.
6. Minimum SHPWL.
7. Concurrent minimization of SHPWL and signal intersections.

All pins of design SCM are transformed to valid fat pins by the PREFERRED_PAIRS
algorithm accordingly to Fig. 8 (a, b). As a result, the final pin assignment is com-
pletely defined by the fat pin assignment and no merging of interim pin assignments
is necessary. In addition, the creation of fat pins by the MOST_PAIRS algorithm re-
turns identical results. Hence, there are two relevant pin assignments with differential
pairs for each PAA. Firstly, the PAA unintentionally allows for a significant number
of differential pairs. Those pairs result from parallel pins (see section on differential
pairs) with a distance smaller than dmax (dmax is equal to the diagonal pin grid in our
experiments, Fig. 8 c). Secondly, the pin assignment created by fat pins allows all nets
to be used as differential pairs.

For each PAA 1–7, Table 1 compares the pin assignment created by the basic PAA
and its differential pair extension. Absolute values are given for the number of possi-
ble differential pairs (#Diff Pairs), intersections of flylines and the runtime. For meas-
ures SHPWL, HPWL MATCH, AVG Flylines and STD Dev the pin assignment results
with differential pairs are given as a the percentaged difference (Δ) to the respective
result of the basic PAA. Table 1 shows that the impact of fat pins on the objectives of
the basic PAAs is marginal. One exception are signal intersections estimated as inter-
sections of flylines, which increased considerably. Yet, closer inspection shows that
intersections are introduced in places where they can easily be resolved by the router

Table 1. Experimental pin assignment results of design SCM without and with differential
pairs (/o | w/ DP) using the seven PAAs 1–7 with different objectives, as listed in the text. Per-
centage values denote the difference between the basic PAA and its differential pair extension
with positive percentages indicating an increase of the respective value.

PAAs
#Diff Pairs
(/o | w/ DP) ΔSHPWL

ΔHPWL
MATCH

Δ AVG
Flylines

Δ STD
Dev

Intersect. of Flylines
 (/o | w/ DP)

Runtime in s
(/o | w/ DP)

1. 367 | 529 +0.17% +1.3% +0.17% +0.34 % 6159 | 7000 <1 |<1
2. 160 | 529 -0.52% -6.4% +0.70% -2.4 % 44686 | 46331 <1 |<1
3. 313 | 529 +0.17% -6.7% +0.18% +1.0 % 0 | 1633 1 |<1
4. 294 | 529 +0.00% -3.2% +0.01% -0.57 % 0 | 1551 <1 |<1
5. 283 | 529 +0.13% +1.6% +0.12% -0.28 % 80 | 1619 8 | 1
6. 93 | 529 +0.28% +5.2% -0.02% -0.92 % 27955 | 27212 3 |<1
7. 298 | 529 +0.13% -6.1% +0.09% -0.29 % 0 | 1564 10 | 1

Absolute
Average

 258 | 529 0.20% 4.4% 0.18% 0.83 % 11269 | 12416 3 |<1

38 T. Meister, J. Lienig, and G. Thomke

because they are either close to the endpoints of nets or the intersecting nets are al-
most parallel, thereby not affecting routability.

5.2 Comparison of Fat Pin Variants

In order to compare the four different variants of selecting pin pairs (PREFFERED_
PAIRS without invalid DPPs, PREFFERED_PAIRS with invalid DPPs, MOST_
PAIRS without invalid DPPs, and MOST_PAIRS with invalid DPPs) and the two
merging strategies (aggressive blending and defensive blending), the results of a multi
chip module (MCM) of an IBM industrial design are presented. This MCM has seven
dies on top, 2930 signal pins and 2112 power/ground pins (see Fig. 1). The arrange-
ment of the pins is irregular such that 68 of the signal pins cannot be used as differen-
tial pin pair because no other signal pin is closer than dmax. Additional 190 signal pins
are not usable for differential pin pairs because these pins are in 190 “islands of pins”
(which are further apart than dmax) with each having an odd number of pins (see
Fig. 8 c).

The PAA 5, which minimizes the overall length of the flylines, is used to create the
assignment of bottom signal pins (Fig. 1 b) to die signal pins (Fig. 1 a). The eight
variants of the fat pin methodology (#1– #8 in Table 2) and the basic PAA alone (#0
in Table 2) deliver nine pin assignments with differential pairs. The results (Table 2,
Figs. 15 and 16) show that along with an increasing number of available differential
pairs, the length of the flylines, which is the objective of the used PAA 5, slightly in-
creases. In six out of eight cases, the increase stayed below 0.25% (with no measur-
able increase in routing lengths when comparing the actual routing results with and
without differential pairs). For variants #7 and #8 (see # in Table 2) the increase in
lengths are 5.4% and 1.9%, which resulted in a similar increase in actual final routing
length (Cadence SPECCTRA autorouter).

The results show that aggressive blending (#5– #8) yields more differential pairs
than defensive blending (#1– #4). Furthermore, the selection of pin pairs by
MOST_PAIRS generally gives more differential pairs than PREFERRED_PAIRS.

Table 2. Results of differential pair pin assignment of the eight different fat pin variants (#1–
#8) and of the PAA 5 (#0) for design MCM. The used PAA 5 minimizes the overall length of
the flylines. The names of the algorithms PREFERRED_PAIRS and MOST_PAIRS are abbre-
viated as PREF_P and MOST_P, respectively.

Blending
Method

Invalid
DPPs

Selection
of Pin
Pairs

Number
of Diff.
Pairs SHPWL

AVG
Flylines

STD
Dev

Intersec-
tions of
Flylines

Runtime
in Sec

#0 n/a n/a None 376 46321 11.84 8.49 209 243
#1 defensive no PREF_P 237 46351 11.85 8.48 2365 245
#2 MOST_P 243 46350 11.85 8.48 2437 244
#3 yes PREF_P 1127 46452 11.87 8.46 4120 277
#4 MOST_P 1081 46430 11.86 8.52 3661 266
#5 aggressive yes PREF_P 1143 46410 11.86 8.48 3808 34
#6 MOST_P 1217 46440 11.86 8.51 4052 32
#7 no PREF_P 1251 48182 12.48 9.25 17008 20
#8 MOST_P 1336 47110 12.06 8.54 9750 23

 Universal Methodology to Handle Differential Pairs during Pin Assignment 39

1336

1251

1217
1143

1081

1127

243
237

376

3

6

9

12

15

18

#0 #1 #2 #3 #4 #5 #6 #7 #8

DP Method (refer to # in Table 2)

1
0

0
0

 In
te

rs
e

ct
io

n
s

o
f F

ly
lin

e
s

100%

101%

102%

103%

104%

105%

106%

L
e

n
g

h
t o

f f
ly

lin
e

s
in

 p
e

rc
e

n
t o

f
sh

o
rt

e
st

 r
e

su
lt

Differential Pairs

Intersections of Flylines

AVG Flylines

Fig. 15. The impact of the eight different fat pin variants (#1– #8) on the number of differential
pairs, flyline intersections and overall flyline lengths (results of design MCM, see also Table II)

 (a) (b)

Fig. 16. Details of a differential pair pin assignment. As illustrated by the shown subset of flylines
in (a), each differential pair is assigned adjoining chip and MCM pins (smaller and larger dots) with
distances of less than dmax. The final routing result of differential pairs is shown in (b). Note that (a)
contains only a small subset of differential pairs, non-differential pairs are omitted for simplicity.

40 T. Meister, J. Lienig, and G. Thomke

The effect of invalid DPPs depends on the method of blending. For defensive
blending, the number of created differential pairs is drastically increased by using in-
valid DPPs (variants #3 and #4), while the quality with respect to the basic objective
slightly decreases. (Without invalid DPPs, many pins are not transformed to fat pins
and receive their basic pin assignment, while only paired pins are treated via fat pin
assignment.)

For aggressive blending, invalid DPPs (#5 and #6) decrease the number of created
differential pairs, while improving the quality with respect to the basic objective. This
is because each pair of nets that is assigned at least one invalid DPP cannot be used
for a differential pair. However, more pins are considered during fat pin assignment,
hence, the overall pin assignment quality is better.

The number of created differential pairs by each variant is not predicable. There-
fore, we sequentially apply variant #0 (pin assignment with the best quality and least
possible differential pairs) followed by variants #3 through #8 (pin assignment with
the least quality and the most possible differential pairs) until the pin assignment with
enough differential pairs and the best quality achievable for the specific design is
found. This methodology has been proven effective in numerous industrial examples.

6 Limitations and Outlook

Conventional pin assignment algorithms that minimize the overall lengths of flylines,
the overall Manhattan lengths and the standard deviation of those lengths can easily
be combined with the fat pin methodology without solution degradation. Pin assign-
ment algorithms with the objective of minimum signal intersections have a limited
compatibility to the fat pin methodology. This is due to the difference in coordinates
of the fat pin and its two original pins that can lead to intersections near the end of the
routing path. However, these additional intersections are in places where they are eas-
ily resolved by the final router and thus, do not affect routability.

The presented algorithms to select pin pairs are based on the distances of pins. Pin
pairs have been specified manually if specific DPP patterns are needed (e.g., for spe-
cialized differential pair connectors). In the future, pairing algorithms must include
more complex constraints than only one spacing rule. Due to the modularity of our fat
pin methodology, the presented pairing algorithms can easily be replaced with any
other extended method for pairing.

One example for future design challenges is the signaling method presented in
[13]. It requires four nets and their pins to be handled in one group. Our methodology
can easily be modified for pin assignments suitable for this signaling method by se-
lecting groups of four pins that are to be represented by one fat pin.

7 Conclusions

In this chapter, a universal differential pair methodology that is applicable to all algo-
rithms or manual processes that solve the pin assignment problem has been presented.
This is the first algorithmic approach that includes differential pair constraints during
pin assignment. It has been shown that it has only a minor effect on the quality of the

 Universal Methodology to Handle Differential Pairs during Pin Assignment 41

underlying basic pin assignment algorithm (PAA). This has been verified not only
during pin assignment but also by considering the actual routing results.

The fundamental principle of the presented solution is that two nets, which can be
used for a differential pair (because their parallel pin pairs meet the spacing rules), do
not need to be used for a differential pair. Instead, they can also be used for any two
single ended nets. Based on this observation, the fat pin transformation approximately
halves the number of pins that have to be considered. Thereby, the complexity of the
pin assignment problem is significantly reduced, while still allowing for near optimal
solutions. A pin assignment of differential pairs can be retrieved from this reduced
number of pins by PAAs that originally do not respect differential pairs.

The methodology consists of different algorithms for selecting differential pin pairs
(DPPs) and integrating the fat pin assignment. They can be used in different combina-
tions to produce similar pin assignments with different numbers of possible differen-
tial pairs. The number of created possible differential pairs by the variants cannot be
predicted exactly. Yet, specific variants create more differential pairs than others
while in general the quality of the pin assignment decreases with an increasing num-
ber of differential pairs. Therefore, in order to find the best pin assignment with dif-
ferential pairs for a specific design, the variants are executed sequentially starting
with the one producing the least differential pairs, until the first pin assignment with
sufficient differential pairs is found.

Based on this add-on methodology, any present or future algorithms for the pin as-
signment problem can easily be extended to include differential pairs. The presented
differential pair methodology is in use in the industrial design flow at IBM. Here it
has shown its robustness and quality combined with a minimum of interference with
the design flow that had already been established.

References

1. Nakagawa, K., Watanabe, M., et al.: Giga-hertz electrical characteristics of flip-chip BGA
package exceeding 2,000 pin counts. In: 54th Conference Proceedings of Electronic Com-
ponents and Technology, vol. 1, pp. 334–341 (2004)

2. Yuan, W., Pang, K.H., et al.: Electrical analysis and design of differential pairs used in
high-speed flip-chip BGA packages. In: 17th International Zurich Symposium on Electro-
magnetic Compatibility 2006, pp. 578–581 (2006)

3. Westra, J., Groeneveld, P.: Post-placement pin optimization. In: IEEE Computer Society
Annual Symposium on VLSI, pp. 238–243 (2005)

4. Westra, J., Groeneveld, P.: Towards integration of quadratic placement and pin assign-
ment. In: Proceedings of IEEE Computer Society Annual Symposium on VLSI 2005, pp.
284–286 (2005)

5. Xiang, H., Tang, X., Wong, D.F.: An algorithm for integrated pin assignment and buffer
planning. In: Proceedings of 39th Design Automation Conference, pp. 584–589 (2002)

6. Xiang, H., Tang, X., Wong, D.F.: Min-cost flow-based algorithm for simultaneous pin as-
signment and routing. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 22(7), 870–878 (2003)

7. Meister, T., Lienig, J., Thomke, G.: Novel Pin Assignment Algorithms for Components
with Very High Pin Counts. In: Proceedings of Design, Automation and Test in Europe,
DATE 2008, pp. 837–842 (2008)

42 T. Meister, J. Lienig, and G. Thomke

8. Chen, S., Tseng, W., Yan, J., Chen, S.: Printed circuit board routing and package layout
codesign. In: APCCAS 2002, vol. 1, pp. 155–158 (2002)

9. Kubo, Y., Takahashi, A.: A global routing method for 2-layer ball grid array packages. In:
Proceedings of the 2005 ISPD, pp. 36–43 (2005)

10. Yu, M., Dai, W.W.-M.: Pin assignment and routing on a single-layer pin grid array. In:
Proceedings of the ASP-DAC 1995/CHDL 1995/VLSI 1995, pp. 203–208 (1995)

11. Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM Comput.
Surv. 18(1), 23–38 (1986)

12. Gabow, H.N.: An efficient implementation of Edmonds algorithm for maximum matching
on graphs. Journal of the ACM 23(2), 221–234 (1976)

13. Choi, S., Lee, H., Park, H.: A three-data differential signaling over four conductors with
pre-emphasis and equalization: a CMOS current mode implementation Solid-State Cir-
cuits. IEEE Journal of Solid-State Circuits 41, 633–641 (2006)

14. Sherwani, N.A.: Algorithms for VLSI Physcial Design Automation. Kluwer Academic
Publishers, Dordrecht (1998)

15. Westra, J., Groeneveld, P.: Towards integration of quadratic placement and pin assign-
ment. In: IEEE Computer Society Annual Symposium on VLSI, Proceedings, pp. 284–286
(2005)

16. Xiang, H., Tang, X., Wong, M.: Min-cost flow-based algorithm for simultaneous pin as-
signment and routing. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 22, 870–878 (2003)

17. Lienig, J.: Layoutsynthese elektronischer Schaltungen (Algorithms in Physical Design).
Springer, Heidelberg (2006)

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 43–60, 2010.
© IFIP International Federation for Information Processing 2010

Analysis and Design of Charge Pumps for
Telecommunication Applications

Vassilis Kalenteridis, Konstantinos Papathanasiou, and Stylianos Siskos

Electronics Laboratory, Physics Department,
Aristotle University of Thessaloniki 54124 Thessaloniki, Greece

Abstract. This chapter addresses modern telecommunication integrated circuits
from the synthesizer focal point; in particular it concentrates at the analysis and
the design of integrated charge pump circuit blocks. It presents an overview of
charge pump topologies in addition to a coherent analysis of the associated bene-
fits and shortcomings of all circuit alternatives. Moreover a novel favorable
charge pump combining current steering techniques with well utilized unity gain
buffers in a novel, noiseless feedback scheme, is introduced to improve on
switching speed, inherent charge pump ac noise, dead-zone interval, therefore
overall steady state aliased loop noise; while on the other hand this charge pump
exhibits superb DC matching characteristics in a wide output voltage range. Fur-
thermore a well documented estimation of the active devices that contributes
mostly to the overall charge pump noise performance is presented. Also an asso-
ciated mathematical analysis concerning the frequency content of the charge
pump noise current is given. This proposed topology manifests its applicability
to charge pump alternatives, as it is demonstrated by the associated simulation
results from a 0.18μm design. Because of the low-noise and accurate properties
of this improved charge pump, it is ideally suited to modern telecommunication
standards synthesizer realizations.

1 Introduction

Fully monolithic Phased-Locked Loops (PLLs) are essential building blocks, widely
used in modern communication or complex digital systems [1-8]. A PLL based on a
charge pump is often preferred over other synthesizer alternatives, because it exhibits
a wide capture range with no systematic phase offset and arguably provides one of the
simplest and most effective design platforms [9-14]. The Charge Pump based PLL
also provides flexible design tradeoffs by decoupling various design parameters such
as the loop bandwidth, damping factor and lock range [22]. Figure 1 shows a typical
implementation of a charge pump based PLL. It consists of a Phase/Frequency Detec-
tor (PFD), a Charge Pump (CP), a Loop Filter (LF), a Voltage Controlled Oscillator
(VCO) and a divider. The most widely used PFD generates a pair of digital pulses
corresponding to the phase/frequency error between the reference clock fref and the
VCO output, by comparing the positive (or negative) edges of the two inputs. The CP
circuit converts the digital pulses into an analogue current which is consequently inte-
grated producing a voltage on the passive (or active) loop filter. This voltage drives

44 V. Kalenteridis, K. Papathanasiou, and S. Siskos

the VCO circuit block which in turn produces the synthesized frequency of operation
as it is demanded by the system specification.

However, some non-idealities of the CP such as DC mismatch of the charg-
ing/discharging currents and glitches degrade the performance of the overall loop.
Moreover the noise of the charge pump is the dominant close-in phase noise contribu-
tor in a PLL [15]. Several charge pump implementations have been proposed in
the associated literature [16-18]. In [16, 17] an opamp has been used in order to keep
the dc mismatch current, and hence the resultant phase offset at a minimum level and
improve the overall performance. This in effect adds significant noise contribution at
the output of the proposed charge pump due to the increased gain introduced by the
opamp. Others [18] assume that the Up and Dn signals from the PFD that drive the
charge pump switches could not be simultaneously high, to avoid the dc mismatch be-
tween the pump-up and pump-down currents. This is a fallacy because at lock both
the Up and Dn signals are high for a given short time to ensure the elimination of the
PLL dead-zone, which if present will degrade significantly the in-band noise suppres-
sion characteristic function of the PLL.

The objective of this chapter is the design of an improved single-ended low noise
charge pump with low dc mismatch current, high voltage output range and program-
mable gain. The second section depicts some typical charge pump architectures either
for single-ended or differential design, along with the advantages and disadvantages
of each category. In the third section a detailed analysis of the improved charge pump
is presented and compared to other alternative designs. Also the noise contribution of
the improved charge pump active devices to the total output noise is given with the
appropriate mathematical noise analysis. In the fourth section the simulation results
from three alternative methods (DC, PSS and Pnoise) are presented, over temperature
and process corners for the charge-pump key specifications to signify the applicability
of the overall approach. Finally the key concluding remarks of this chapter are given
in the last section.

Fref

Fdiv
PFD

Up

Dn
LF VCO

Fout

DIVIDER

p

n

Charge Pump

Fig. 1. Block level diagram of a charge pump based PLL

2 CMOS Charge Pump Architectures

2.1 Single-Ended Charge Pump Architectures

Single-ended charge pump circuits are an elegant approach to system flexibility, low-
power consumption, minimization of pads and external components, or area. The output

 Analysis and Design of Charge Pumps for Telecommunication Applications 45

current of the charge pump can be as high as 4.5mA [23] at lock to provide better spur
performance thus less leakage current and to have high SNR for low noise contribution
to the PLL, while this current can be significantly more while the PLL is in the tracking
period, to improve on settling time. By using tri-state operation, the current consump-
tion of the charge pump is limited to a few hundred μA depending on the reference
clock frequency and the delay of the PFD. Figure 2 shows some typical single-ended
charge pump topologies.

ICP

Dn

ICP

M5 M6

Dn
M1M2M3M4

Dn Dn

+
-

IUP

I DN

Out

Up

Dn

Up

Dn

M2 M4

M1 M3

IUP

I DN

Out

Up

Dn M1

M2

M3

M4Up

Dn

Fig. 2. Single-ended charge pump architectures: a) with current steering switch, b) with unity
gain active amplifier and c) with NMOS switch only

Figure 2a shows a charge pump utilizing a current steering switch. This structure
provides high speed switching for a single-ended charge pump, since the switching
time is improved by the current steering properties of the associated switching pair
(M1-M3 and M2-M4). Another charge pump approach utilizing current steering with
an active amplifier [24-25] is shown in figure 2b. This unity gain amplifier, buffers
the voltage at the output node forcing the drain voltage of the current sources IDN and
IUP to be the same when M1 and M2 are on or when they are off. This reduces the
charge sharing effect, when the switch is turned on. This architecture ensures fast
transient response through current steering, reduces the effect of any parasitic capaci-
tance, at the expense of extra current. Finally, in figure 2c the inherent mismatch of
pmos and nmos transistor is avoided by using only nmos switches [26]. Since the cur-
rent does not flow in the current mirror, (M5 and M6), when the UP switch is turned
off, the current mirrors still limit the performance unless large current is used [3].

2.2 Differential Charge Pumps

A fully differential charge pump has several advantages over the conventional single-
ended charge pump [27-28]. Firstly, the switch mismatches between nmos and pmos
transistors do not substantially affect the overall performance. This relaxes the match-
ing requirement between the two type of transistors. Secondly, the differential charge
pump has only nmos switching transistors thus the inverter delays for the Up and
Dn signals are fully symmetric and therefore do not generate any offset. Thirdly, this

46 V. Kalenteridis, K. Papathanasiou, and S. Siskos

configuration doubles the range of the output voltage compliance compared to the sin-
gle-ended charge pump. This is a significant advantage for low voltage operation,
since the limited output voltage range of the charge pump makes it difficult for the
VCO to meet the specified tuning range. Fourthly, the differential output stage is less
sensitive to the leakage current, since the leakage current behaves as a common-mode
offset at the dual output stages. Lastly, the use of two on-chip loop filters provides
better immunity to the supply, ground and substrate noise, while the lack of bond wire
inductors facilitates faster switching speeds and reduces transient oscillations. How-
ever, these advantages can only be achieved at the cost of extra area due to the use of
two loop filters, common-mode feedback circuitry [3], higher noise levels and power
consumption imposed by the potential introduction of an active filter and most impor-
tantly the flexibility of altering the overall PLL loop characteristics by changing the
loop filter should this prove desirable.

3 Improved Charge Pump Design

The improved accurate low noise charge pump is shown in figure 2. It is a single-
ended tri-state charge pump with programmable gain. This topology exhibits im-
proved switching speed, since all nodes are precharged to the resultant operating
points and the current is either steered to the output or to the unity-gain buffer. The
two opamps OP1 and OP2 are used in order to minimize the DC mismatch current that
will be introduced by the output voltage variation. The OP1 and OP2 inputs are con-
nected at the drains of the corresponding transistors as it is shown in figure 3, while
the opamp outputs drive the gates of transistors M3 and P1 respectively.

+ -

+ -

+
-

M1

M2

M3

M4 M5

P1

P2 P3

Up

Dn

PS1

MS1

Op1

Op2

Op3

MS2

PS2
Up

Dn

Ibias

Vdd

Out

Fig. 3. Improved Charge Pump Circuit

3.1 Characteristics of the Improved Charge Pump Approach

In the improved circuit transistors M1, M2, M3 and M4 compose a cascode current
mirror with increased output resistance and minimized channel length modulation.

 Analysis and Design of Charge Pumps for Telecommunication Applications 47

Up

Dn
PFD

Up

Dn

Fref

Fdiv

L

L

Fig. 4. Buffer chain between PFD and CP

This cascode connection offers the advantage of low voltage operation for the charge
pump. The bias current (Ibias) from the input branch is mirrored to the output branch
where P3 and M5 act as current sources. The current source mirroring ratio is 4,
which means that the output current is four times larger than Ibias. MS1 and PS1 are
the transistor switches which are driven by the Dn and Up signals from the PFD.
When the Up signal is low, the PS1 switch is turned on and the current Iup from P3
charges the loop filter capacitor, increasing the output voltage. On the other hand
when the Dn signal is high, the MS1 switch is turned on and the output voltage is de-
creased by the discharging current Idn that flows through M5. Transistors MS2 and
PS2 are the switches which are driven by the complementary Up and Dn signals, pro-
viding a constant current flow path when the switches MS1 and PS1 are off. This im-
plies a fast switching operation at the expense of increased power consumption.

When the loop is locked, both switches are on for a small fraction of the time. At
lock both MS1 and PS1 have to switch on and off simultaneously to reduce the noise
introduced in the loop and the magnitude of the 2·fref and consequent spurs. For this
reason a buffer with a timing synchronization scheme which constitutes from two
chains is used; the first chain is used to generate the Up signal and the second to gen-
erate the Dn signal. This buffer placed between PFD and CP, as shown in figure 4.
The scaling ratio for the inverters is chosen to be close to 4 [19], in order to achieve
the best power, speed and area trade-off. Also the channel length L, of the nmos and
pmos transistor in the first inverter of the Up signal is increased to equalize the delay
between the two timing control signals introduced by the asymmetry of the two chains
[7]. Synchronization can also be achieved by using the two paths of the chain, where
the first one includes an extra inverter compared to the second one and introduce an
active resistor (a transmission gate adequately dimensioned) in the second path. In
addition to that the dimensions of the switches must be properly sized, in order to turn
on and off simultaneously.

An important advantage of the improved CP circuit is the low DC mismatch be-
tween the pump up and pump down currents. The two opamps OP1 and OP2 are used in
order to minimize this DC offset current. As it is shown in figure 3, the two inputs of
OP1 and OP2 are connected to the drains of P2-P3 and M4-M5 transistors respectively,
forming a closed loop. If the output voltage increases to lock at a higher frequency,
then the voltage at the drain of M5 increases as well. Because of the OP2 the same
voltage is forced on the drain of M4. Likewise OP1 forces the voltage to the drains of
P2 and P3 to be almost the same. As a result, the same amount of current flows be-
tween the two branches, for a wide output voltage dynamic range.

48 V. Kalenteridis, K. Papathanasiou, and S. Siskos

The dimensions W/L of the current source transistors that is M5 and P3 are chosen
in such a way to minimize the current mirroring mismatch from the input to the output
branch. Also the systematic current variation due to any residual in the VDS despite
the presence of the opamps has been remedied by choosing large gate lengths for the
current source transistors. In addition the PS1 and MS1 transistor switches, which op-
erate in the linear region, have been designed with minimum gate length, in order to
achieve maximum output voltage range.

Moreover the unity gain amplifier OP3 plays an important role, since it sets the
voltage at the drain of the switches PS1 and MS1 at the output node. Thus the charge
sharing effect becomes minimal when the switches turned on. It also increases the
switching-speed of the charge pump due to current constant flow from P3 to M5, even
when the PLL is locked. Hence the charge and discharge of the parasitic capacitances
at the drain node of P3 and M5 is avoided. This increases switching speed, therefore
the dead zone and the resultant noise contribution is reduced during the lock condition
at the expense of a small current consumption introduced by OP3, since it only needs
to source or sink a small P and N mismatch current. Finally a compensation capaci-
tance has been added at the output of the amplifier, to increase the phase margin, as
denoted by an associated stability analysis. Moreover it acts as a charge reservoir dur-
ing switching transitions.

3.2 Comparison to Alternative Approaches

The significant improvement compared to similar, alternative charge pump imple-
mentations [16, 17] is in essence due to the fact that the output of the opamps drives
the gates of the cascode transistors and not the gates of the current source transistors
directly. In the improved approach P1 is connected as a source follower, resulting to a
significant reduction of the OP1 noise contribution at the charge pump output.

Up

Vdd

+ -

+ -

+
-

M1

M2

M3

M4 M5

P1

P2 P3

Up

Dn

PS1

MS1

Op1

Op2

Op3

MS2

PS2

Dn

Ibias

Out

Vb1

Vb2

Fig. 5. Opamp drives directly the gates of P2 and P3

 Analysis and Design of Charge Pumps for Telecommunication Applications 49

For example in the case where the OP1 drives directly the gates of P3 and P2 tran-
sistors, as shown in figure 5, the noise current i*

out1
 generated at the output of P3 is

given by the following equation:

2*
3

22
1

*
nPout Vgmi ⋅= (1)

where Vn*2 represents the output referred voltage noise of the opamp OP1 (both
flicker and thermal) and gm is the transconductance of the current sinking transistor.
From the above equation it can be seen that the noise current is the product of the
noise voltage and the transconductance of P3. In our case, as shown in figure 3, the
output of Op1 is connected to the gate of P1 instead of P3. Taking into account that P2
acts as a current source with a finite large output resistance ro, the noise current of P2
is equal to:

2

2*
2

2
*

o

n
n

r

V
i = (2)

This current produces a noise voltage at the gate of P2 equal to

(3)

Thus the noise current that appears to the output of P3 is given by the equation:

(4)

Therefore the ratio of the improved charge-pump over the one in [16] is given by the
equation:

2
2

22
1

*

2
2

* 1

oPout

out

rgmi

i

⋅
= (5)

For example if common modern transistor values ro=72kΩ and gm=2.84mS are subsi-
dized in the above equation, a significant reduction by 45dB, of the Op1 induced
noise at the output is obtained.

3.3 Analysis and Estimation of Noise Contributors of the Improved Charge
Pump

The analytical estimation of the noise contribution, from the charge pump transistors
is presented in this section. As it is well known the flicker (1/f) and thermal (white)
noise from the active devices are the dominant noise sources that affect the overall
noise performance of the charge pump. The noise plot of an active device (MOS or
Bipolar transistor) is shown in figure 6, which has only two distinctive regions; ther-
mal noise and 1/f region. The 1/f noise corner is in the vicinity of 500kHz to 1MHz

2
2

2

2*
3

2
2*

23
22

2
*

oP

nP

nPout
rgm

Vgm
vgmi

⋅
⋅=⋅=

2
2

2
2

*
2*

2
P

n

n
gm

i
v =

50 V. Kalenteridis, K. Papathanasiou, and S. Siskos

for a sub-micron CMOS technology and it is in the vicinity of 1kHz to 10kHz for bi-
polar transistor [21].

There are three different combinations for the charge pump switching conditions
which are given in the following table:

Table 1.

Signals MS1 PS1
Up(low), Dn(high) On On
Up(low), Dn(low) Off On
Up(high), Dn(high) On Off

1/f
Flicker noise

f
1/f

Thermal Noise

f

20
lo

gV
2 n

Fig. 6. Noise characteristics of a MOS transistor at a fixed bias voltage

1. PS1 on and MS1 on

The first condition is when the two transistor switches are both on for a small fraction
of time corresponding to the locked condition of the loop.

For the flicker noise estimation a noise voltage source is placed at the appropriate
gate device and the resultant noise current is calculated at the output of the transistor.
So in this condition the transistors that affect the total noise of the charge pump are:

M2, M4, M5, P2, P3. mnig and mpig are the transconductances for nmos and pmos

transistors respectively, where index i indicates the number of the corresponding
transistor. For the noise calculation the flicker noise is easily modeled as an

equivalent voltage source
2*

nV in series with the gate of a MOS transistor and
roughly given by the following equation

fLWC

K
V

ox

f
n

12* ⋅
⋅⋅

= (6)

 Analysis and Design of Charge Pumps for Telecommunication Applications 51

where Kf is a process-dependent constant on the order of 10-25 V2F, Cox is the oxide
capacitance, W and L are the width and length of the transistor respectively. The in-
verse dependence of (7) on W, L suggests that to decrease 1/f noise, the device area
must be increased.

Taking into account that WM2=WM4, WP2=4·WM4 and WP3=4·WP2=16·WM2 the total
output noise current is given by the following expression:

=⋅+⋅+⋅+⋅= 2
5

*2
5

2
2

*2
3

2
3

*2
3

2
4

*2
3

2
,

*
nmnnpmpnpmpnmpoutn VgVgVgVgi

=⋅+⋅+⋅+⋅= 2
5

*2
5

2
2

*2
3

2
3

*2
3

2
4

*2
3 nmnnpmpnpmpnmp VgVgVgVg

2

2
*2

,
*2

2
*2

2
*2

2
*2

2
*

16
25

16
1

4
1

4
1

noutnnnnn iiiiii =⇒+++=

(7)

where
2

2
*

ni is the output reffered noise current of transistor M2. It should be noted
that the first two terms which are the summation of the noise current from M2
transistor are cancelled by the third term; the negative sign of this third term comes

from the fact that the two noise currents
2

2
*2

5 nmn Vg ⋅ and
2

2
*2

3 nmp Vg ⋅ are fully

correlated with a phase difference of 180 degrees to each other (for the actual CP
switching frequencies). This is because the P3 transistor sources current while M5
transistor sinks the same noise current. Moreover these transistors have equal
transconductances, since the ratio of their mobilites is equal to the ratio of the
dimensions W/L for the same current.

2. PS1 Off and MS1 On

In the second condition only M2 and M5 transistors are taken into account since they
affect the charge pump noise and the total output noise current is given by the
following expression:

2
2

*2
2

*2
2

*2
5

*
52

*2
2

2
,

*

4
5

4
1

nnnnmnnmnoutn iiiVgVgi =+=⋅+⋅= (8)

The diode connected M2 produces a noise current
2

2
*

ni which is mirrored at the
output of the charge pump. M5 acts as a current sink producing also a noise current
which is four times smaller than the noise current of M2, because its width is four
times larger than the width of M2, as depicted in (7).

3. PS1 On and MS1 Off

In the last operating condition the output noise current consists of the noise currents
of the M2, M4, P2 and P3 transistors. M5 does not contribute any noise at the output
because the MS1 switch is in the off state. Taking into account that WM2=WM4,
WP2=4·WM4 and WP3=4·WP2=16·WM2 the total output noise current is given by the
following expression:

52 V. Kalenteridis, K. Papathanasiou, and S. Siskos

=⋅+⋅+⋅+⋅= 2
3

*2
3

2
2

**
2

2
4

*
42

*2
2

2
,

*
npmpnpmpnmnnmnoutn VgVgVgVgi

2
2

*2
2

*2
2

*2
2

*2
2

*

16
37

16
1

4
1

nnnnn iiiii =+++=
(9)

Comparing the results from the three different operating conditions, a significant con-
clusion is obtained. In the first case, though both the switches MS1 and PS1 are on, the
circuit does not exhibit higher noise. This is because the noise current generated by the
M2 transistor is fully correlated in both the pmos and nmos branch and therefore can-
celled at the output of the charge pump. The most noisy operation state is the last one
where the PS1 switch is on and the MS1 switch is off. In the third section of the chapter
these noise calculations will be confirmed by the associated simulation results.

3.4 Spectral Components of the Charge Pump Output Signal

In this section an attempt to calculate the spectral components of the output signal
Iout, as a function of the phase error Δθ, between fref and fdiv, is presented. In the fol-
lowing analysis it is assumed that the output of the charge pump consists of current
pulses of amplitude Icp. It is also assumed that there is no mismatch between the cur-
rent sources (M5, P3) of figure 3. The duty cycle of the output pulse is equal to τ/Tref,
where τ is the active time of the charge pump output current and Tref is the period of
the reference signal. From the signal processing theory [20] it is known that the Fou-
rier series expansion for a periodic train of pulses of amplitude Icp and duration τ is:

)
2

cos(
/

)/sin(
2)(

1 refn ref

ref

ref

cp

ref

cp
out T

nt

Tn

Tn

T

I

T

I
tI

π
πτ

πτττ
∑

∞

=
+= (10)

The equation (11) can be expressed as a function of the phase error Δθ, taking into ac-
count that the ratio τ/Tref is proportional to Δθ/2π:

)
2

cos(

2

)
2

sin(

2
2

2
)(

1 refn

cpcp
out T

nt

n

nII
tI

π

π
θπ
π
θπ

π
θ

π
θ

∑
∞

= Δ

Δ
Δ

+
Δ

= (11)

If the duty cycle δcp equals to τ/Tref and for small values of the δcp, the sinc function
sin(nπτ/Tref)/(nπτ/Τref) can be approximated as unity. This results in the following ex-
pression for Iout:

∑
∞

=

+=
1

)2cos(2)(
n

refcpcpcpcpout tnfIItI πδδ (12)

which shows that the amplitude of the spectral components of Iout are twice as large as
its dc value Icpδcp. Therefore, if δcp=Δθ/2π equals to zero the charge pump output ide-
ally contains no dc or ac signal components.

The next step is to study the effect of mismatch in current sources. Mismatch
originates in the different type of devices used to implement the n-type current sink,
which sinks current from the output node to ground and the p-type current source

 Analysis and Design of Charge Pumps for Telecommunication Applications 53

which sources current from the supply to the output node. Moreover the nominal cur-
rent supplied by the n-type and p-type current sources is likely to be a function of the
voltage at the output node of the charge pump. This is filtered by the loop filter pro-
ducing the tuning voltage Vtune to the oscillator, and therefore it is a function of the
output frequency of the entire loop. If Vmismatch(n·fref) is the magnitude of the ripple
voltage at the fundamental and harmonics of the reference frequency, then the equa-
tion which relates the above voltage with the current-source mismatch is given below:

() ()refrefoutrefmismatch nfjZfnIfnV π2)(⋅⋅=⋅ (13)

where ()refnfjZ π2 is the magnitude of the transimpedance function of the loop fil-

ter and n ranging from 1 to ∞.
It is common to express the magnitude of the undesired signal components with re-

spect to the magnitude of the carrier frequency fLO. From the standard modulation
theory [20] the relationship of the peak phase deviation θp(fm) to the peak frequency
deviation Δf(fm) and the modulation frequency fm is given by

m

m
mp f

ff
f

)(
)(

Δ=θ (14)

The peak frequency deviation is the product of the magnitude of the spectral compo-
nents of the mismatch voltage Vmismatch(n·fref) with the gain KVCO(V/Hz) of the VCO:

() () VCOrefmismatchm KfnVff ⋅⋅=Δ (15)

Combining (14) and (16) and substituting into (15) we get the peak phase deviation
due to each of the spurious frequency components n·fref

() ()
ref

VCOrefrefout

refp fn

KnfjZfnI
fn

⋅
⋅⋅

=⋅
π

θ
2

)((16)

Each of the baseband modulation frequencies n·fref generates two RF spurious signals,
which are located at offset frequencies ± n·fref from the carrier frequency fLO. The am-
plitude of each spurious signal Asp is related to the magnitude of the carrier ALO and
to the peak phase deviation θp by

()
2

)(refp
LOrefLOsp

fn
AfnfA

⋅
=⋅±

ϑ
 (17)

Substituting (17) into the numerator of (18) the following expression in dB is obtained

() () []dBc
fn

KnfjZfnI

A

fnfA

ref

VCOrefrefout

dBcLO

refLOsp

⋅⋅
⋅⋅

⋅=⎥
⎦

⎤
⎢
⎣

⎡ ⋅±
2

2)(
log20

π
 (18)

An important conclusion that can be drawn from (19) is that the relative amplitude of
the spurious signals is independent on the absolute value of loop bandwidth or on the

54 V. Kalenteridis, K. Papathanasiou, and S. Siskos

nominal charge-pump current Icp. Instead, they are determined by the transimpedance
of the loop filter, by the magnitude of the reference spurious components, by the VCO
gain and by the value of the reference frequency.

3.5 Noise Performance of Charge Pump

An ideal CP-PLL with zero phase error neither sources current to, nor sinks current
from, the loop filter. However, PLLs with zero phase error are insensitive to small
loop-phase deviations due to finite rise times in the PFD and charge pump which is
also called the “dead zone”. A commonly employed solution to “dead-zone” is to use
an artificial phase offset so that CP pumps/sink current when PLL is locked. When the
PLL is locked the average output current flowing into the filter is zero. Both the cur-
rents from the P3 and M2 transistors in figure 3, are on for the duration of the “dead
zone” pulse. Even though the average current is zero, noise is injected from both tran-
sistors currents for the duration of the “dead zone” pulse. The charge pump noise cur-
rent injected to the loop filter under lock condition can be calculated as,

CPn

ref

cp
outn I

T
i ,

22
,

* 2 ⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=

δ
 (19)

where constant factor 2 is used to account for the source and sink current pulses. CPnI ,
2

is the noise current of the CP in A2/Hz. δCP is the dead zone pulse width and Tref is the
reference period signal. The above equation suggests that if the reference frequency is
increased then more noise will be injected into the loop filter and in consequence to the
VCO circuit block. Moreover the PLL close-in phase noise will increase with the refer-
ence frequency by a factor proportional to 10·log (fref). Also a “dead zone” pulse with
large duration leads to an increased noise as depicted by equation (20).

4 Simulation Results

The improved charge pump was designed using 0.18um CMOS technology. The sup-
ply voltage was 2.5Volt for the charge pump and inverters in the buffer chain. Simu-
lations were obtained by using Cadence design framework with spectre device models
from UMC 0.18um and 0.35um devices. The pump up and pump down currents are
1mA from a 2.4V power supply. The CP design includes a programmable gain by a
step of 250uA. Corner and temperature analysis has also been performed, in order to
further the demonstrability, applicability and robustness of the improved circuit. The
percentage of DC mismatch current over output voltage of the improved CP, for three
different process and temperature worst cases (typical─0·σ @ 27oC, slow─ -3·σ @
85o C, fast─+3·σ @ -45oC) as shown in figure 7.

The circuit is able to operate with a mismatch current less than 2.25% at the typical
case and 2.5% at the extreme process/temperature conditions. The output voltage ranges
from 300mV to 2.2V. Beyond these limits, transistors close to the supply rails (P3, M5),
leave the saturation and enter to the linear region of operation, which results to an in-
creased mismatch current. The power consumption of the improved charge pump includ-
ing the three opamp consumption is roughly 6.65mW for a 2.4 power supply voltage.

 Analysis and Design of Charge Pumps for Telecommunication Applications 55

Fig. 7. The dc mismatch of the output current vs output voltage

A periodic noise analysis (Pnoise) has also been performed in order to obtain the
noise contribution of the devices at the output of the charge pump. Figure 8 illustrates
the noise power spectral density of the output current, when the loop is locked, which
means that the transistors are on for a small fraction of time that is equal to the reset
delay of the PFD. This time delay is 500ps, which results in a duty cycle of 0.5%. Be-
cause of the fast switching characteristics of the improved charge-pump even smaller
duty cycles can be used, further reducing the close in noise contribution of the charge
pump by as much as 6dB!

Due to the delay added in the reset path of the PFD, the current sources (P3, M5)
are on for small or zero phase errors. The dumped charge on the capacitor of the loop
filter as a function of the phase error is illustrated in figure 9. The X axis represents
the phase error in time. A maximum 180 degrees phase deviation corresponds to 50ns.

In addition to that a second periodic noise analysis has been performed to confirm
the validity of equation (20). The three plots in figure 10 represent the power spectral
density of the charge pump noise current for three different duty cycles. As it can be
observed, increased duty cycle leads to an increased noise to the charge pump output.

To verify the theoretical noise analysis and highlight the active noise contributors
of the charge pump, an ac noise simulation has been done for the circuit. Three differ-
ent cases have been simulated for typical model transistor and room temperature
(27C) and the results are given in the following tables. At the first column is given the
corresponding noise contributor transistor and at the second column is the simulated
current noise at a specific spot frequency (f=1Hz for this case).

56 V. Kalenteridis, K. Papathanasiou, and S. Siskos

Table 2.

PS1 on MS1 on
Noise Contributors Noise Current (A2/Hz)
M4 2.3e-16
M5 5.8e-17
P2 3.15e-17
P3 7.95e-18

Table 3.

PS1 off MS1 on
Noise Contributors Noise Current (A2/Hz)
M2 1.875e-16
M5 5.61e-17

Table 4.

PS1 on MS1 off
Noise Contributors Noise Current (A2/Hz)
M4 8.4e-16
M5 2.3e-16
P2 5.25e-17
P3 13.15e-18

Fig. 8. Noise power spectral density from Pnoise analysis

 Analysis and Design of Charge Pumps for Telecommunication Applications 57

Fig. 9. Dumped charge as a function of phase error

Fig. 10. PSD of CP Current Noise for three different Duty Cycle

58 V. Kalenteridis, K. Papathanasiou, and S. Siskos

The most significant noise contributors have been obtained for each case in consis-
tency with the theoretical analysis, which is given in the previous section. It is worthy
to note that M2 in table 2 does not produce any noise contribution, due to the correla-
tion of the current noise components which cancel each other at the output. Moreover
nmos transistors contribute higher amount of noise current than pmos transistor due to
their higher mobility.

5 Conclusions

The design and analysis of a low noise charge pump has been presented in this chap-
ter. Low noise charge pumps are essential to modern telecommunication systems, be-
cause they dominate the close-in noise of the associated synthesizer. In modern GSM,
CDMA or OFDM standards the noise of the PLL is defined by the in-band noise,
since the VCO noise can be reduced by simply opening the loop bandwidth to hit the
VCO phase noise characteristic in a more attenuated level at a higher frequency which
is especially true nowadays with the evolution of the fractional-N synthesizers. There-
fore the low-noise properties of the charge pump are becoming increasingly more
essential.

The improved charge-pump (figure 3) performs better than older alternatives, be-
cause it uses the current steering technique to switch on and off, therefore minimizes
delays. Furthermore the introduction of OP3 at figure 3 ensures that all nodes are pre-
charged to their final levels, and therefore less time is needed for the circuit to settle,
furthering the initial speed improvement. Fast switching speed in essence demands a
smaller dead-zone time and thus minimizes the noise contribution of the charge pump
at lock (and non-lock) condition.

Inherent noise of the charge-pump is reduced by adding the stabilizing opamp cir-
cuits in an improved fashion compared to other alternatives [16, 17, 18]. By adding
this novel feedback approach it is possible though to improve on output matching,
without increasing noise. The improved charge-pump accuracy over the full output
range, expressed by an excellent P/N mismatch, ensures that there is a limited system-
atic DC offset and therefore the spurious content is smaller, thus making it easier to
meet the modern 2·fref spurious content specifications, which are steadily decreasing
in size.

In table 5 alternative advanced CP families are compared, to provide a good
perception of the improvement introduced by the circuits presented in the current
chapter.

Table 5.

CP version Switching Speed Noise Performance DC mismatch
Cheng et al. Very Good Good Good
Rapinoja et al. Medium Good Good
Chang et al. Good Medium Good
This approach Very Good Very Good Very Good

 Analysis and Design of Charge Pumps for Telecommunication Applications 59

References

[1] Parker, J.F., Ray, D.: A 1.6-GHz CMOS PLL with on-chip loop filter. IEEE Journal of
Solid State Circuits 33(3), 337–343 (1998)

[2] Craninckx, J., Steyaert, M.S.J.: A fully integrated CMOS DCS-1800 frequency synthe-
sizer. IEEE Journal of Solid-State Circuits 33(12), 2054–2065 (1998)

[3] Rhee, W.: Design of high-performance CMOS charge pumps in phase-locked loops. In:
IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2, pp. 545–548
(1999)

[4] Rategh, H.R., Samavati, H., Lee, T.H.: A CMOS frequency synthesizer with an injection-
locked frequency divider for a 5-GHz wireless LAN receiver. IEEE Journal of Solid-State
Circuits 35(5), 780–787 (2000)

[5] Rhee, W., Song, B.S., Ali, A.: A 1.1-GHz CMOS fractional-N frequency synthesizer with
a 3-b third-order ΔΣ modulator. IEEE Journal of Solid-State Circuits 35(10), 1453–1460
(2000)

[6] Hungand, C.-M., Kenneth, K.O.: A fully integrated 1.5-5.5-GHz CMOS phase-locked
loop. IEEE Journal of Solid-State Circuits 37(4), 521–525 (2002)

[7] De Muerand, B., Steyaert, M.S.J.: A CMOS monolithic δσ-controlled fractional-N fre-
quency synthesizer for DCS-1800. IEEE Journal of Solid-State Circuits 37(7), 835–844
(2002)

[8] Loke, A.L.S., Barnes, R.K., Wee, T.T., Oshima, M.M., Moore, C.E., Kennedy, R.R.,
Gilsdorf, M.J.: A versatile 90-nm CMOS charge-pump PLL for SerDes transmitter clock-
ing. IEEE Journal of Solid-State Circuits 41(8), 1894–1907 (2006)

[9] Perrott, M.H., Trott, M.D., Sodini, C.G.: A modeling approach for sigma-delta fractional-
N frequency synthesizers allowing straightforward noise analysis. IEEE Journal of Solid-
State Circuits 37(8), 1028–1038 (2002)

[10] Shu, K., Sanchez-Sinencio, E., Silva-Martinez, J., Embabi, S.H.K.: A 2.4-GHz mono-
lithic fractional-N frequency synthesizer with robust phase-switching prescaler and loop
capacitance multiplier. IEEE Journal of Solid-State Circuits 38(6), 866–874 (2003)

[11] Arora, H., Klemmer, N., Morizio, J.C., Wolf, P.D.: Enhanced phase noise modeling of
fractional-N frequency synthesizers. IEEE Transactions on Circuits and Systems I: Regu-
lar Papers 52(2), 379–395 (2005)

[12] Huh, H., Koo, Y., Lee, K.-Y., Ok, Y., Lee, S., Kwon, D., Lee, J., Park, J., Lee, K., Jeong,
D.K., Kim, W.: Comparison frequency doubling and charge pump matching techniques
for dual-band delta sigma fractional-N frequency synthesizer. IEEE Journal of Solid-State
Circuits 40(11), 2228–2236 (2005)

[13] Woo, K., Liu, Y., Nam, E., Ham, D.: Fast-lock hybrid PLL combining fractional-n and
integer-n modes of differing bandwidths. IEEE Journal of Solid-State Circuits 43, 379–
389 (2008)

[14] Mitomo, T., Fujimoto, R., Ono, N., Tachibana, R., Hoshino, H., Yoshihara, Y., Tsutsumi,
Y., Seto, I.: A 60-GHz CMOS receiver front-end with frequency synthesizer. IEEE Jour-
nal of Solid-State Circuits 43, 1030–1037 (2008)

[15] Fahimand, A.M., Elmasry, M.I.: A low-power CMOS frequency synthesizer design
methodology for wireless applications. In: The International Symposium on Circuits and
Systems (ISCAS), vol. 2, pp. 115–119 (1999)

[16] Cheng, S., Tong, H., Silva Martinez, J., Karsilayan, A.I.: Design and analysis of an ultra
high-speed glitch-free fully differential charge pump with minimum output current varia-
tion and accurate matching. IEEE Transactions on Circuits and Systems II: Express
Briefs 53, 843–847 (2006)

60 V. Kalenteridis, K. Papathanasiou, and S. Siskos

[17] Rapinoja, T., Stadius, K., Halonen, K.: A low-power phase-locked loop for uwb applica-
tions. Analog Integrated Circuits and Signal Processing 54, 95–103 (2007)

[18] Chang, R.C., Kuo, L.-C.: A new low-voltage charge pump circuit for PLL. In: The Inter-
national Symposium on Circuits and Systems (ISCAS), vol. 5, pp. 701–704 (2000)

[19] Rabaey, B.N.J.M., Chandrakasan, A.: Digital Integrated Circuits, A Design Perspective,
2nd edn. Prentice Hall, Englewood Cliffs (2002)

[20] Taub, H., Schilling, D.L.: Principles of Communication Systems, 2nd edn. McGraw-Hill,
New York (1986)

[21] Jones, D.A., Martin, K.: Analog Integrated Circuit Design, 1st edn. Wiley, Chichester
(1996)

[22] Hanumolu, P.K., Brownlee, M., Mayaram, K., Moon, U.-K.: Analysis of Charge Pump
Phase Locked Loops. IEEE Transactions on Circuits and Systems I: Regular Pa-
pers 51(9), 1665–1674 (2004)

[23] LMX2330A, National Datasheet
[24] Johnson, M., Hudson, E.: A variable delay line PLL for CPU-coprocessor synchroniza-

tion. IEEE Journal of Solid-State Circuits 23(10), 1218–1223 (1988)
[25] Young, I.A., Greason, J.K., Wong, K.L.: A PLL Clock Generator with 5 to 110MHz of

Lock Range for Microprocessors. IEEE Journal of Solid-State Circuits 27(11), 1599–
1607 (1992)

[26] Maneatis, J.: Low-Jitter and Process-Independent DLL and PLL Based on Self-Biased
Techniques, ISSCC Digest of Technical Papers (1996)

[27] Soyuer, M., Ewen, J.F., Chuang, H.L.: A Fully Monolithic 1.25GHz CMOS Frequency
Synthesizer. In: Symposium on VLSI Circuits, Digest of Technical Papers, vol. 6, pp.
127–128 (1994)

[28] Razavi, B.: Monolithic Phase-Locked Loops and Clock Recovery Circuits, pp. 1–39.
IEEE Press, Los Alamitos (1996)

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 61–80, 2010.
© IFIP International Federation for Information Processing 2010

Comparison of Two Autonomous AC-DC Converters for
Piezoelectric Energy Scavenging Systems

Enrico Dallago1, Daniele Miatton1, Giuseppe Venchi1, Valeria Bottarel2,
Giovanni Frattini2, Giulio Ricotti2, and Monica Schipani2

1 Department of Electrical Engineering, University of Pavia, 27100 Pavia, Italy
2 STMicroelectronics 20010 Cornaredo, Milan, Italy

Abstract. Piezoelectric Energy Scavenging Systems (PESS) are used to convert
the energy of mechanical vibrations into electrical energy exploiting the
piezoelectric effect. Their output is a voltage which strongly varies in time; to
obtain a suitable supply source an AC-DC conversion of the output voltage of
these transducers is needed. Since the output power level of the energy
transducer can be very low, the conversion should be as efficient as possible.

The paper describes an active AC-DC converter, based on the voltage doubler
topology, in which two different driving circuitries have been implemented.

The proposed solutions are fully autonomous, i.e. they are supplied by the
energy that they harvest. To reduce and to optimize their power consumption a
bias circuit has been designed to make the total bias current supply independent.

A test chip has been diffused using STMicroelectronics 5V CMOS
technology. The performances of the two solutions were compared with the
ones of a passive Schottky based voltage doubler. The figures of merit were the
average power supplied by the piezoelectric transducer and the average power
delivered on a load resistance. Furthermore, the significance of such parameters
is also discussed, and a more general figure of merit is defined with the
advantage of also weighting the ability of the converter to harvest all the power
available at the transducer terminals.

Keywords: Piezoelectric energy harvesting, active AC-DC converter, low-power
circuits, environmental vibrations.

1 Introduction

Energy scavenging systems are used to harvest the normally lost environmental
energy (associated to vibrations, thermal gradients, solar radiation, pressure gradients)
and to convert it into electrical energy. This solution can be very attractive to supply
portable or low power electronic devices where batteries are a bottleneck for the
whole system (i.e. they have a finite life time and their replacement or recharge is not
feasible or too expensive). An energy scavenging system, instead, is a theoretically
endless energy source. For this reason they are rapidly gaining popularity in the
scientific and the industrial community. Typical applications are wireless sensing
(both single spot and multi-nodes systems), biomedical (patient monitoring, hearing
aids, etc.), automotive (using self supplied, wireless devices can help reducing the

62 E. Dallago et al.

cable length on board). The challenge is twofold: on one side the power requirements
of the supplied electronics should be as low as possible, on the other, given the very
low energetic content associated to environmental energy, the interface circuit has to
be as effective as possible in managing the harvested power.

In literature many papers can be found which describe methodologies to realize an
energy-scavenger [1], [6], [8], [10]. Each case has different requirements depending
on the environmental energy source considered, the characteristics of the transducer,
the typical frequency of the process. No universal solution exists: each scavenger
interface electronics has to be tailored to the specific transducer and application.

Many of the above mentioned works are focused on the conversion of the energy
associated to mechanical vibrations since they can be easily found in many
environments [1], [7]. Among the available vibration transducers this paper considers
a system based on a piezoelectric transducer since it is one of the most efficient which
can be used [1]-[2]. When exposed to vibrations coming from the real world the
electrical energy at the output of this transducer is a strong and irregular function of
time [1]-[4], [9], hence, to realize a DC supply source, an AC-DC conversion is
needed.

Two active AC-DC converters based on the voltage doubler topology (see Figure
1) are presented. The reasons behind the choice of this topology are the fact that is it
simple and that it is able to increase the value of the input voltage by approximately a
factor two. This last aspect is quite important: as it will be shown later, the
piezoelectric transducer exhibits a resonant behaviour; at resonance the output voltage
for a given acceleration can be quite high, but out of the resonance the same
acceleration will produce a voltage much lower. In perspective of an actual
application, the harvester will be exposed to an acceleration whose spectrum is spread
over a range, rather than being tuned at a particular frequency, so being able to step-
up the input voltage is a desired feature.

The idea of implementing an active rectifier, rather than a passive one, is basically
inspired by the observation that the voltage drop across the switches of the rectifier
causes power dissipation and, most of all, has to be subtracted from the output

CS

CP

VPO

RL

Equivalent circuit of
piezo transducer Load

Voltage Doubler

S1

Fig. 1. Piezoelectric energy harvesting system

 Comparison of Two Autonomous AC-DC Converters for PESS 63

voltage, decreasing it and consequently the energy that can be stored at the output (for
example across a capacitor as shown in Fig. 1). Of course the active circuitry comes at
the price of using a part of the harvested energy to supply the active circuitry itself:
active converters can be more efficient than passive solution [3-4], [11], but they are
more difficult to be designed because their whole power consumption has to be very
low.

To this purpose, and for other reasons which will be illustrated in the following,
two different driving circuitries were considered to command switches S1 and S2
(Figure 2). In particular, the topology shown in Figure 2a, which will be called
“hard”, uses comparators (CMP1-2), while in the one of Figure 2b, which will be
called “soft”, the switches are driven with operational amplifiers (OP1-2). Both
proposed solutions use only a fraction of the harvested energy to supply the active
circuitry and make the energy scavenging system autonomous. In particular, at the
output a capacitance (CS) of 1 μF is used to store the harvested energy and no external
power source is required, neither during start-up nor in normal operation1.

Since the voltage across the storage capacitor Cs increases as the energy is
harvested, a supply independent bias circuitry is used in both cases: it makes the
current consumption of the active part supply independent.

Both circuits were diffused as test chips exploiting a 5V CMOS STMicroelectronics
technology and were extensively tested. They were compared in terms of efficiency of
the converter and of the average output power, evaluated under the same input
conditions while varying the load. The significance of such parameters is also discussed,
and a more general figure of merit is defined with the advantage of also weighting the
ability of the converter to harvest all the power available at the transducer terminals.

Section 2 deals with the design of the two considered AC-DC driving circuitries
highlighting their pro and cons, while Section 3 shows the experimental results
compared with the simulated ones.

2 Piezoelectric Energy Scavenging System

2.1 Mechanical Aspects

The considered piezoelectric transducer is a cantilever which works in 31-mode when
it is excited by the mechanical vibrations, as shown in Figure 3. This means that the
cantilever is exposed to a strain in the direction of axis 1 while the resulting electrical
displacement is along axis 3.

To have a maximally efficient conversion of the mechanical vibrations into
electrical energy the cantilever should be excited at its resonant frequency which can

1 The presence of the output capacitor is not only required to supply the control circuitry or to

filter out the voltage ripple, but it often works as an energy tank. In fact, in most cases the
supplied electronics works with a duty cycle. For example a wireless sensor that transmits one
measurement every 10 seconds will be active only for a few hundreds of milliseconds, while
it will switch in a low consumption or standby mode for the rest of the time. During this
interval the scavenger is expected to accumulate the energy required during the burst of
operation.

64 E. Dallago et al.

CS
S2 -

+

CP

VPO

S1

VOS

+
-

VOS

OP2 OP1 RL

Front-end Circuitry with “soft”
driving

Equivalent circuit of
piezo transducer Load

Supply
Independent Bias

Circuitry

StoragePZT

CS
S2 -

+

CP

VPO

S1

CMP2 CMP1 RL

Supply
Independent Bias

Circuitry

StoragePZT

b)

a)

Front-end Circuitry with “hard”
driving

Equivalent circuit of
piezo transducer Load

Fig. 2. Schematics of the proposed ESS. Voltage doubler with “hard” driving circuitry (a) and
with “soft” driving circuitry (b).

Fig. 3. Piezoelectric energy transducer working in 31-mode

 Comparison of Two Autonomous AC-DC Converters for PESS 65

be varied adding a mass (m) on its free end [1]. This allows to move the resonance
frequency of the energy transducer around the frequency which is more likely in the
application. The experimental measurements shown in Table 1 and [1] show that the
frequency range of mechanical vibrations existing into civil environments is
approximately (10-380) Hz.

Table 1. Experimental measurements of environmental vibration sources

Environmental Vibration Source arms[m/s2] Bandwidth [Hz]

CD reader of a desktop PC 0,30 80

Pocket of a walking man 2,16 2

Man walking onto stairs 3,53 2

Into a woman bag 6,37 10

Vibracall of a mobile phone 3,83 90

Car dashboard [city street @ 20km/h] 0,78 30

Car dashboard tortuous street @ 50km/h] 0,88 20

Car front glass [primary street @ 50
km/h]

0,98 15

Guard rail near a busy street 0,10 50

Bridge over a railway 0,10 100

Bus stop near a busy street 0,19 10

Fun 1,40 100

Web server 0,20 12

The piezoelectric transducer can be modeled at resonance by the equivalent circuit

shown in Figure 1, [1]-[2]. Generator VPO is a sinusoidal voltage source whose
frequency is equal to the transducer resonance frequency and whose amplitude is
equal to the open circuit output voltage, while CP is the electrical capacitance of the
piezoelectric cantilever.

The presented results are based on a piezoelectric transducer with geometrical
dimensions equal to (30x15x0.2) mm3 (LxWxH). The piezoelectric material used was
a soft Lead Titanate Zirconate (PZT) and it was sputtered onto a Nichel alloy support.
The piezoelectric capacitance CP was measured to be 19 nF.

Figure 4 shows the experimental set-up which was used to shake the piezoelectric
transducer with a controlled acceleration. It is composed of an electrodynamic shaker
(Bruel&Kjiaer 4810), which moves the piezoelectric transducer, and by a triaxial
MEMS accelerometer (LIS3L02AS4 of STMicroelectronics); it was screwed to the
shaker movable table so to measure the acceleration given by the shaker itself and to
guarantee the repeatability of the measurements.

Figure 5 shows the experimental frequency response of the piezoelectric transducer
when it was excited with a sinusoidal acceleration with a peak to peak amplitude

66 E. Dallago et al.

equal to 0.8 g. It is possible to see that its resonance frequency is equal about to
130 Hz.

For example, the measured resonance frequency of the cantilever is about 64 Hz if
a lead mass of about 0.8 grams is added.

Fig. 4. Picture of the measurement set-up

60 100 140 180
0

2

4

6

8

10

12

14

Fig. 5. Frequency response of the piezoelectric transducer

 Comparison of Two Autonomous AC-DC Converters for PESS 67

2.2 Design of the Proposed Front-End Circuitries: Common Parts

During the start-up the voltage across CS is too low to supply the active devices. In
this case, for both solutions, the operation of the converter is guaranteed by the
body-drain diode of MOSFETs S1 and S2 which implement a standard, passive diode
voltage doubler rectifier. Hence, the proposed rectifiers can be seen as a parallel of
two AC-DC converters: an high efficiency active one and a lower efficiency passive
one, the latter working only during start-up. As soon as the output voltage is sufficient
the active one comes alive and flawlessly takes over the passive one; this switch does
not need any dedicated control circuitry.

Furthermore, after the active part starts working, the voltage across CS varies with
time as the energy is harvested. Since this voltage is used as the supply for the active
devices, it is advantageous to make their current consumption independent on the
supply voltage itself.

Figure 6 shows the circuital topology used to implement a supply independent bias;
it is modified with respect to [5] by introducing a diode connected MOSFET (M4). In
fact, since the system requires supply currents in the range of tens of nanoamperes, in
the scheme without M4 the resistance R1 would be in the order of tens of megaohms,
which is too area expensive for an integrated solution. The effect of M4 is to reduce
the voltage drop across R1 lowering its value for a given current. Furthermore, a start
up circuit is needed. This was obtained with dummy MOSFETs ML1 and ML2: the
leakage of their body-drain diode has been exploited to inject a current into nodes A
and B so to have the start-up aid. This solution allows us to avoid additional start-up
circuitry, reducing total power consumption.

Figure 7 shows the simulated behaviour of the two bias voltages versus the supply
voltage. In particular the circuitry starts to regulate when the supply voltage is higher
than about 680 mV. Above this value, the voltages VBiasP and VBiasN can be used to
mirror a supply independent current.

The current consumption of the whole bias circuitry is about 100nA.

VBiasN

VBiasP

670k

30/3

15/3 15/3

30/3 30/310/330/310/3

Storage

3pF

ML1 ML2M1 M2 M3

M4

M5 M6R1

A
B

I1

BP

BN

Fig. 6. Schematic of the proposed supply independent bias circuitry

68 E. Dallago et al.

Fig. 7. Simulation results of the supply independent bias circuitry, bias voltages (VBiasN and
VBiasP) versus supply voltage (in the figure supply voltage has been limited to 1V for clarity.
The behaviour has been verified for supply voltages up to 5V).

2.3 Working Principle of "Hard" Driving and Design Methodology

Figure 2a shows the active topology of the ac-dc converter that uses comparators
CMP1 and CMP2 to drive switches S1 and S2. The comparators sense the drain to
source voltages of the two MOSFETs and properly turn them on or off [11]. This is
the most straightforward way to implement an active version of the voltage doubler
converter, since the switches and their driving emulate some ideal diode with a very
low, almost zero, forward voltage drop, but the design of the two comparators is
critical because a very accurate choice of the threshold voltages is required. In
principle one could use a single threshold for each comparator equal to zero; in
practice the spread due to process mismatches has to be taken into account. In fact if
this voltage varies, during the diffusion process, with respect to the ideal value a
negative effect, (i.e. the oscillation of the driving signal), can take place [4]. To
reduce the probability to fall into this case the comparators has be designed with an
hysteretic transfer characteristic, with an hysteresis wide enough to accommodate the
expected variance of threshold. Among the two, the most critical threshold voltage,
for both comparators, is the one which switches S1 or S2 off, called "Th-OFF". To
prevent the above mentioned oscillations the designer has to guarantee it is positive
for CMP1 and negative for CMP2; but, at the same time, to minimize the unwanted
discharge of the piezoelectric or of the storage capacitance caused by a delayed
switching [4], the "Th-OFF'' should be as small as possible. These two requirements
are, of course, contrasting.

Figure 8a and Figure 8b show the electrical schemes of the two designed
comparators that are supply and ground compatible respectively, while Figure 8c
shows a picture of the diffused circuit. The bias voltages BN and BP are provided by

 Comparison of Two Autonomous AC-DC Converters for PESS 69

the supply independent bias circuitry. Referring, for example, to CMP1 (similar
considerations apply to CMP2) it is possible to see that the current in M4 depends on
the output voltage of CMP1 itself. This allows to obtain the hysteretic transfer
function for the comparator. In fact, when output voltage of CMP1 is low, (S1 is into
its ON condition) the current in M4 is equal to the current in M5; on the contrary,
when the output of CMP1 is high (S1 in OFF condition), an extra current, given by
M3, flows in M4. As a consequence, the two threshold voltages are different from
each other. To obtain a positive "Th-OFF" threshold voltage, a mismatch between the
aspect ratio of the MOSFET M4 and M5 was introduced. In order to assure that the
two "Th-OFF" voltages have the correct sign, 300 MonteCarlo simulations have been
performed. The resulting distribution diagrams of the critical "Th-OFF" threshold
voltages are shown in Figure 9 for both comparators. The chosen values are +9 mV
and -9 mV for CMP1 and CMP2 respectively.

The static current consumption of each comparator is about 110 nA and their
minimum operating supply voltage is about 650 mV.

The structures indicated with “OD” into Figure 8c are two common source
configuration MOSFETs whose gate terminals are connected to the output node of
CMP1 and CMP2 respectively and whose drain terminals are directly connected to
two output pads. These MOSFETs were added to allow the comparator output
voltages to be measured, so to verify their functionality, without adding a loading
capacitance too high to their output nodes.

2.4 Working Principle of "Soft" Driving and Design Methodology

Figure 2b shows the active topology of the voltage doubler converter where the
driving circuitry is realized with operational amplifiers OP1 and OP2.

To introduce its working principle let us consider Figure 10 which shows the case
of OP1. It is possible to apply Kirchhoff Voltage Law (KVL) to the external mesh:

0VVV OSSDIN =−+ (1)

If the operational amplifier has a DC gain equal to A the voltage on the gate of S1 is:

ING VAV ⋅= (2)

Equations (1) and (2) can be solved as a function of VG:

)VV(AV SDOSG −⋅= (3)

In the ideal case the DC gain A of the operational amplifier is infinite; as a
consequence the difference in equation (3) has to vanish in order to have a finite value
of the gate voltage. Thus a regulation loop modulates the gate voltage VG so to keep,
for each value of the drain current, the source to drain voltage is equal to Vos.

70 E. Dallago et al.

Fig. 8. a), b) Designed circuital topologies of CMP1 and CMP2 respectively; c) picture of the
diffused "hard" AC-DC converter

Fig. 9. MonteCarlo simulations of the most critical threshold voltage of the designed comparators

 Comparison of Two Autonomous AC-DC Converters for PESS 71

Fig. 10. Regulation loop composed by the operational amplifier OP1 and MOSFET S1

In the ideal case, when drain current is positive the regulation loop sets the
working point of the MOSFET at the intersection between its characteristics and
the offset voltage. When the current decreases, the loop moves the working point of
the MOSFET at lower values of its source to gate voltage, until the current is equal to
zero. At this point the regulation loop turns the MOSFET off: since there is no
intersection between the MOSFET characteristics and the offset voltage, negative
values of the current are not allowed and the regulation loop holds the transistor off.
This principle intrinsically guarantees that, differently from the “hard” topology, no
oscillations of the driving signal can take place. Furthermore, a negative current is
impeded and the discharge of the capacitances is prevented. Symmetrical
considerations apply to OP2. Differently from the “hard” approach, the value of Vos
is not critical because it has simply to be far enough from zero so that the process
mismatches will not change its sign. While it is true that an higher offset gives higher
losses on the switch, they are still negligible for practical offset values (which can be
easily designed in the tens of millivolts range).

In practice, the real operational amplifier has a finite DC gain; this means that the
value of the voltage across the MOSFET is slightly different from the theoretical one.
Nevertheless it can be demonstrated that, with the previously described choice of the
offset, this will not affect the operation of the circuit.

Figure 11a shows the designed operational amplifiers while Figure 11b contains a
picture of the diffused structure. Because of the level of their input voltages, OP1 and
OP2 have to be supply compatible and ground compatible respectively.

The bias of the operational amplifiers is given by the supply independent bias
circuitry. The operational amplifiers have been designed so that they are able to work
with the minimum possible value of the voltage supply. In this way the active rectifier
takes over the passive one as soon as a very low energy has been stored into
capacitance CS. A 5pF capacitance has been introduced to compensate the regulation
loop.

72 E. Dallago et al.

The offset voltage was obtained mismatching the aspect ratio of the input
MOSFETs MA and MB: the values of the obtained offset voltages are equal to 26mV
and 21mV for OP1 and OP2 respectively. Figure 12 presents the simulation results of
500 MonteCarlo iterations, showing the possible spread of these voltages. It is
possible to see that this spread is sufficiently small to have the correct sign also with
process mismatches.

Aspect ratio of the MOSFETs S1 and S2 has to be chosen to avoid the loop
saturation. The expression of the drain current when the MOSFET is turned on is, in a
first approximation, equal to:

DSthGSD V)VV(
L

W
ki −= (4)

where Vth is the threshold voltage of the MOSFET, W/L is its aspect ratio and k is its
characteristic constant.

The term into the parenthesis is the overdrive voltage: its value is modulated by the
regulation loop which, for each drain current, varies the gate voltage.

If the overdrive voltage is enough the source to drain voltage is equal to VOS, that is:

OSthGSD V)VV(
L

W
ki −= (5)

Fig. 11. a) Schematic of the proposed operational amplifiers; b) picture of the diffused "soft"
AC-DC converter

 Comparison of Two Autonomous AC-DC Converters for PESS 73

Fig. 12. MonteCarlo simulations of the offset voltages of the designed operational amplifiers

On the other hand if, for a given current, the overdrive is not enough (which means

that the op-amp is saturated) the regulation loop does not work and the source to drain
voltage of S1 or S2 is not equal to offset voltage.

The aspect ratio has to be designed to accommodate the maximum expected
current.

Tab. 2 resumes the characteristics obtained for the amplifiers: in particular the
current consumption is about 200 nA for each amplifier. Vdd-min is the minimum
supply voltage required by the operational amplifiers to work.

Table 2. Characteristics of the designed operational Amplifiers

 DC-GAIN
[dB]

Band-Width
[Hz]

Vdd-min
[mV]

Voffset
[V]

Current Consumption
[nA]

OP1 50.37 2500 730 26e-3 200
OP2 49.78 2610 675 21e-3 200

3 Experimental and Simulated Results

Before evaluating the performances of the proposed solutions an experimental
characterization of the supply independent bias circuit was realized. This was done
using a stand alone version of the circuit depicted in Figure 13b: three MOSFETs Ma,
Mb and Mc were added to amplify the bias current by a factor 30. This current is then
converted into a voltage drop by means of an external resistance, equal to 2 MΩ.
Experimental characterization was done supplying the bias circuit with a triangular
waveform in the range 0-5 V. Figure 13a shows that, as soon as the supply voltage is
higher than 680 mV, the circuit generates a constant voltage drop across the 2 MΩ
resistance which corresponds to a constant bias current, as it was predicted by the
simulations.

The performances of the proposed solutions have been evaluated at different values
of the load resistance RL; in particular, the considered figures of merit were the
average power at the output of the piezoelectric transducer (PP) and the average power
delivered to RL itself (PL). The load resistance was varied between 50 kΩ to 550 kΩ.

74 E. Dallago et al.

A passive voltage doubler, realized with BAT-86 Schottky diodes that have a
threshold voltage equal to 0.2 V, was considered as a benchmark. This comparison is
quite significant since the selected diodes as a forward voltage drop way lower than a
standard diode and the passive solution does not have any additional consumption due
to the control circuitry.

Supply
Indepedent

Bias
Circuitry

Vsupply

VbiasP

90/3

25/1
250/1

10 I1

5V

2 M

Vbias

Ma

Mb Mc

a)

b)

VSupply

Vbias

680 mV

~ 4.5 V

~ 2.7 V

Fig. 13. a) Experimental results of the supply independent bias circuitry; b) circuitry used to do
the characterization

Figure 14 compares the experimental results of the "hard" solution with those of

the passive converter. The piezoelectric transducer was mechanically excited at
130 Hz and the acceleration was regulated so that the peak value of VPO was equal to
1.5 V.

The powers drawn from the piezoelectric transducer are comparable between the
two cases. On the contrary, the output power of the "hard" solution is heavily affected
at low load resistance values. This is due to the fact that at values lower than 100 kΩ
the energy stored into CS, and hence the voltage across it, is not enough to switch the
driving circuitry on and, as a consequence, only the well-source diodes of the passive
path are exploited for the conversion. Conversely, at higher load values the converter
works in the active way and the output power is higher with respect to the passive
solution. This confirms that the lower forward voltage drop across the switches has
positive effects on the output power, consistent enough to compensate for the power
consumption of the control circuitry.

Furthermore, the accuracy of the design has guaranteed that, in spite of the fact S1
and S2 are switched off with a delay due to comparator threshold voltage, this does
not affect the energy harvesting and makes the “hard” active converter a competitive
solution with respect to the passive one.

 Comparison of Two Autonomous AC-DC Converters for PESS 75

0 1 2 3 4 5 6

x 10
5

0

2

4

6

8

0 1 2 3 4 5 6

x 10
5

5

6

7

8

9

10

Fig. 14. a, b) Experimental results about input and output powers (PP and PL) respectively.
Comparison between active "digital" converter and passive converter, this was realized with
Schottky BAT86 diodes.

The performances of the "soft" solutions were evaluated at different values of the

mechanical acceleration so to obtain different values of VPO (i.e., 1.5, 2 and 2.5 V);
Figure 15 a, b show the obtained results, comparing them with the corresponding
behaviour of the passive converter, as usual. It is possible to see that under any
condition the “soft” converter draws a lower power from the piezoelectric transducer
than the passive one. On an absolute scale this means that the combination of the
piezoelectric transducer and the “soft” converter makes a less effective energy
harvester.

Returning to the interpretation of the experimental results the “soft” converter is
generally less capable of extracting energy from the transducer with respect to both
the “hard” rectifier and the passive one.

At this point one should expect that also the power delivered to the load resistance
PL is lower, but the experimental results of Figure 15 show that the two rectifiers are
equivalent when VPO is 1.5V, that the active rectifier performs better at lower load
resistance values for VPO=2, and that finally it outperforms the diode converter on a
wide load range for VPO=2.5V.

This means that the "soft" converter has an efficiency higher than the passive one
and its advantage increases as VPO is higher. The reason is that the power
consumption of the driving circuitry weights most at lower values of PP, that is at the
lower values of input voltage.

Coming to a comparison between the two proposed converters, when the threshold
voltages have the correct sign, the performances of the "hard" solution (ref. Figure 14b)
are better with respect to both "soft" and passive converter.

Efficiency (η) of an energy conversion system is defined as the ratio between its
output power with respect to its input power. This is usually used as figure of merit
which allows to compare different solutions which work at the same output power;
this means that the system which requires the lower input power is the better one,
under the hypothesis that the input source could be able to supply an infinite input
power.

76 E. Dallago et al.

0 1 2 3 4 5 6

x 10
5

0

5

10

15

20

25

RL []

VPO=2.5 [V]

VPO=2 [V]

VPO=1.5 [V]

0 1 2 3 4 5 6

x 10
5

0

5

10

15

20

25
VPO=2.5 [V]

VPO=2 [V]

VPO=1.5 [V]

RL []

Active “Analog” Converter
Passive Converter

Fig. 15. Measured input (PP) and output (PL) powers at different values of VPO, comparison
between passive Schottky based converter and "analog" AC-DC converter

Comparing the experimental results obtained at VPO=1.5 V (see Figure 16) for the

three different AC-DC converters it is possible to see that their η can not be used as
figure of merit to evaluate the performances of the energy harvesting system. In fact,
the "soft" converter shows the better performance in terms of efficiency with respect
any other solution, but it is equivalent at the passive one in terms of output power.
Furthermore, "hard" solution outperforms any other converter in terms of output
power. This is due to the fact that the input energy source, that is the piezoelectric
transducer, is not an infinite energy source and its matching with the front-end
circuitry is an important aspect which makes effectiveness the energy harvesting
system. Furthermore, none of the systems is controlling the output voltage, hence the
output power is not fixed, but it is the natural result of the behaviour of the entire
system. All these considerations give strength to the choice of focusing on a different
figure of merit (FoM) to compare the converters; for example this could be the ratio
of the harvested power with respect to the maximum power theoretically available
from the transducer. This last quantity can be defined studying the behaviour of a
piezoelectric transducer, at no load condition, when exposed to a sinusoidal
acceleration at frequency f which strains the transducer as shown in Figure 17.

Starting from its rest condition at t0, that is no strain and no electrical charges on its
plates, the cantilever reaches its maximum positive bending (and strain) at t1. At this
point the collected electrical charge is QP and the piezoelectric output voltage is equal
to VPO. If an ideal front-end circuitry could recover all of this charge, completely
discharging the transducer, when the cantilever reaches its maximum negative
deflection at t3 it will collect a negative charge two times higher (-2QP) because the
deflection is doubled; in fact, at t2 the collected charge is already equal to -QP. As a
consequence the piezoelectric peak voltage at t3 is equal to -2VPO and the transduced
energy is:

() 2
POP

2
POPtt VC2V2C

2

1
E

31
=−=− (6)

Now imagine that at t3, again ideally, capacitor CP is newly, fully discharged while, at
the same time, the associated energy is stored. Since the excursion in the t3-t4 interval

 Comparison of Two Autonomous AC-DC Converters for PESS 77

starts with no charge on the capacitor plates, it evolves as a replica of what happened
in the t1-t3 interval, only the sign of the voltage is inverted. This means that the
available energy at t4 is equal to:

() 2
POP

2
POPtt VC2V2C

2

1
E

43
==− (7)

From this moment on the phenomenon continues to repeat itself with a periodicity
equal to t4-t1.

Summarizing the total energy that can be harvested during one cycle becomes:

2
POPttttcycle VC4EEE

4331
=+= −− (8)

Finally, the maximum power theoretically available from the transducer is:

fVC4P 2
POPmax = (9)

The quantity expressed by (9) will be used to weight the power actually delivered to
the load by the proposed rectifiers. This approach allows to compare the various
circuits, but is also allows to quantify how effective a given circuit is in harvesting the
power made available by the transducer.

The figure of merit, which is function of RL, can be defined as:

max

L

P

P
.M.o.F = (10)

0 1 2 3 4 5 6

x 10
5

0

20

40

60

80

100

Ef
fic

ie
nc

y
[%

]

Fig. 16. Efficiency of the AC-DC converters at VPO=1.5V against load resistance

78 E. Dallago et al.

Fig. 17. Mechanical strain of piezoelectric trasnducer when it is excited by a sinusoidal
mechanical acceleration

Figure 18 shows this figure of merit for the presented AC-DC converters in case of

VPO equal to 1.5V. It is possible to see that "hard" topology outperforms both "soft"
and passive ones but, at the same time, none of the converters is able to harvest all the
power the transducer could deliver.

0 1 2 3 4 5 6

x 10
5

0

5

10

15

20

25

30

35

Fig. 18. Power harvested by the AC-DC converters with respect to the maximum defined in
Equation 7

4 Conclusions

This paper presents two actives AC-DC converters which can be used into
piezoelectric energy scavenging systems. The basic circuit is the voltage doubler

 Comparison of Two Autonomous AC-DC Converters for PESS 79

topology, where the switches are actively driven. The two considered driving
circuitries are realized with comparators and operational amplifier respectively.

It was shown that the first configuration, called “hard” is slightly more difficult to
be designed than the second one, called “soft”. In particular the comparators need to
have an hysteretic characteristic and if the value of the thresholds is different from the
ideal one the efficiency of the converter could be significantly deteriorated. Hence a
lot of effort is needed to minimize the process dependence of the thresholds. On the
contrary, the “soft” configuration drives the switches with a regulation loop approach,
which is far less sensitive to process uncertainties.

A test chip has been diffused in STMicroelectronics 5V CMOS technology and
experimental results are presented. The tests were realized using a piezoelectric
transducer working in 31-mode, excited by a electro-dynamic shaker.

The performances of the proposed active solutions were evaluated at different
values of a load resistance and they were compared with the ones of a passive
Schottky-based voltage doubler. The average power supplied by the piezoelectric
transducer and the power delivered on a load resistance were measured. The
experimental results show that, under the same mechanical excitation, the "hard"
solution outperforms the other two converters in terms of power delivered to the
resistive load. The "soft" solution was less effective because the delivered average
power by the piezoelectric transducer was lower; this was probably due to a different
matching between the piezoelectric transducer and the converter itself which is better
in the "hard solution". The efficiencies of the three converters were compared at
different load conditions. The "soft" solution, despite its lower effectiveness, has the
higher efficiency values with respect to the other two converters: this means that the
converter efficiency can not be used as the only figure of merit for an energy
harvesting system, it is necessary to evaluate also the effectiveness of the converter in
terms of average power harvested from the transducer and delivered to the load.

To do this a dedicated figure of merit was introduced which compares the output
power with the power that the transducer can theoretically deliver rather than with the
power it actually delivers.

References

[1] Roundy, S.: Energy Scavenging for Wireless Sensor Nodes with a focus on Vibration to
Electricity Conversion. PhD Thesis, The University of California Berkeley (Spring 2003)

[2] Roundy, S., et al.: Improving Power Output for Vibration Based Energy Scavengers.
Pervasive Computing, 28–36 (January/March 2005); Published by the IEEE and IEEE
ComSoc.

[3] Le Jifeng Han, T.T., von Jouanne, A., Mayaram, K., Fiez, T.S.: Piezoelectric Micro
Power Generation Interface Circuits. IEEE Journal of Solid State Circuits 41(6), 1411–
1420 (2006)

[4] Dallago, E., Frattini, G., Miatton, D., Ricotti, G., Venchi, G.: Self Supplied Integrable
High Efficiency AC-DC Converter for Piezoelectric Energy Scavenging Systems. In:
International Sympoium on Circuits and Systems, ISCAS 2007, New Orleans, LO, May
27-30, pp. 1633–1636 (2007)

80 E. Dallago et al.

[5] Dong, Z., Allen, P.E.: Low Voltage, Supply Independent CMOS Bias Circuit. In: The
2002 45th Midwest Symposium on Circuits and Systems, August 4-7, vol. 3, pp. 568–570
(2002)

[6] Peano, F., Tambosso, T.: Design and Optimization of a MEMS Electret Based Capacitive
Energy Scavenger. Journal of Microelectromechanical Systems 14(3), 429–435 (2005)

[7] Renaud, M., Sterken, T., Fiorini, P., Puers, R., Baert, K., van Hoof, C.: Scavenging
Energy from Human Body, Design of a Piezoelectric Transducer. In: The 13th
International Conference on Solid State Sensors, Actuators and Mycrosystems, Seoul,
Korea, June 5-9, pp. 784–787 (2005)

[8] Stark, I.: Thermal Energy Harvesting with Thermo Life®. In: Proceedings of the
International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2006,
pp. 19–22. IEEE Computer Society, Los Alamitos (2006)

[9] Han, J., von Jouanne, A., Le, T., Mayaram, K., Fiez, T.S.: Novel power conditioning
Circuits for Piezoelectric Micro Power Generators. In: APEC 2004, February 2004,
vol. 3, pp. 1541–1546 (2004)

[10] Sterken, T., Fiorini, P., Baert, K., Puers, R., Borghs, G.: An Electret-Based Electrostatic
μ-generator. In: The 12th IEEE International Conference on Solid State Sensors,
Actuators and Microsystems, Boston, June 8-12, vol. 2, pp. 1291–1294 (2003)

[11] Dallago, E., Frattini, G., Miatton, D., Ricotti, G., Venchi, G.: Integrable High Efficiency
AC-DC converter for Piezoelectric Energy Scavenging System. In: IEEE International
Conference on Portable Information Devices, Orlando (FL), USA, March 25-29, pp. 1–5
(2007)

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 81–96, 2010.
© IFIP International Federation for Information Processing 2010

Trapping Biological Species in a Lab-on-Chip
Microsystem: Micro Inductor Optimization Design and

SU8 Process

Christophe Escriba1,2, Rémy Fulcrand1,2, Philippe Artillan1,2, David Jugieu1,2,
Aurélien Bancaud1,2, Ali Boukabache1,2, Anne-Marie Gue1,2,

and Jean-Yves Fourniols1,2

1 LAAS-CNRS ; Université de Toulouse ; 7, avenue du Colonel Roche, F-31077 Toulouse,
France

2 Université de Toulouse; UPS, INSA, INP, ISAE

Abstract. Micro-spiral inductor dedicated to microbeads manipulation in a
fluidic channel had been optimized by analytical modelling correlated to
multi physics fem numerical Maxwell®3D L software. Main advantage of the
analytical model described below is time analysis calculus decrease of and
the capability offered to optimize geometrical and electrical parameters of the
inductor. First experimental results show a good correlation between
simulation and realized integrating micro-devices in a fluidic channel.

Keywords: Analytical model, Finite element method, Magnetic field / force,
Magnetic actuators, magnetic bead separation.

1 Introduction

Lab-On-Chip micro-systems with embedded analysis are the two major concepts of
MEMS dedicated to fluidic applications. In order to realize biochemical analysis or
pharmacological screening, separation of biological species, we propose magnetic
bead as a very useful technique. In most cases, the magnetic activation is macroscopic
and positioned outside of the system. As these approaches limits strongly the MEMS
integrating process, we develop in LAAS-CNRS lab, a multi-functional magnetic
source in order to realize a complete fluidic micro-system for handling paramagnetic
beads.

By reporting here first works dedicated to model the behaviour of magnetic
sources and the forces generated on microbeads, we present two methods allowing to
determine magnetic field generated by a planar inductor: one entirely analytical and
other by using the multi-physics software Maxwell®3D. Comparisons are discussed
in terms of performances, accuracy, and CPU time computation. As a complementary
part, we present first technological results of research (in progress) in order to
integrate a family of inductors in channels. These preliminary devices confirm the
feasibility of our approach.

82 C. Escriba et al.

2 Determination of Magnetic Field Distribution in a 3D Space.
Analytical Modeling

The magnetostatic field induced by a DC current flowing in an electric conductor is
given by the following two Maxwell’s equations:

× = (1)

 (2)

With the following constitutive (material) relationship being also applicable:

µ µ µ

(3)

• H(x, y, z) is the magnetic field strength
• B(x, y, z) is the magnetic flux density.
• J(x, y, z) is the conduction current density.
• Mp(x, y, z) is the permanent magnetization.

• µ0 = 4 10 7 . 1 is the permeability of vacuum.

• µ is the relative permeability.

First, we consider all the segments constituting the inductor which coordinates are
[αi ωi] in ℜ frame (Figure 1).

Geometrical and electrical characteristics are:

• L1 : length to the first segment of the inductor (axis Ox)
• L2 : length to the second segment of the inductor (Oy)
• N : number of spires,
• s : inter-coil distance,
• I : current in all segments

α1 ω1

ω2

α2

α3 ω3

ω5

α4

α6 ω6

ω7

α7

α8 ω8

ω9

α9

α10
ω10

ω11

α11

α12 ω12

ωn

αn

L1

L2

Fig. 1. Equivalent topology of planar inductor and display results for five spires inductor

 Trapping Biological Species in a Lab-on-Chip Microsystem 83

In order to evaluate quickly magnetic field generated by the induction coil, we
consider the inductor in frame ℜ like a set of elementary segments where the
magnetic field B is first obtained for each segment [αi ωi], and the total magnetic field
will be determined by summation of each elementary field calculated in the frame ′ℜ

A. STEP1: Magnetic field expression B(x ',y',z ') created by a single segment in

′ℜ

We consider M point, included in the (x0y) area where we define [α, ω] segment. We
define the orthonormal frame ′ℜ with α origin, and first axis [α, ω], Figure 2.

z '
y'

x ′ I

B

B
α ω

d

1θ
2θ

M ′

1

2

M M

M M

θ α

θ ω

′=

′=

M

B

+

′ℜ

(x0y)

Lseg

Fig. 2. Magnetic field created by the [α ω] segment at point M

Distance d between point M and [α, ω] segment is evaluated by the equation:

2 2d y z= +
(4)

Using 2 1,θ θ angles defined in Figure 2, the magnetic field
'

B(x ',y ',z ') |ℜ in ′ℜ

frame is:

0
' 1 2

I
B(x ',y ',z ') | sin sin z '

4 d

μ
θ θ

πℜ
⎡ ⎤= −⎢ ⎥⎣ ⎦ (5)

where 1
1

x
tan

d
θ −

⎛ ⎞⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠
and seg1

2

L x
tan

d
θ −

⎛ ⎞− ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠

B. STEP2: Summation of all magnetic fieldB segments

The ′ℜ frame is obtained by a translation of T vector and a linear transformation
through [P] matrix (Figure 3).

84 C. Escriba et al.

'
OM | T | P M |αℜ ℜ ℜ

⎡ ⎤= + ⋅⎢ ⎥⎣ ⎦ (6)

With:

T Oα= , x '
αω

αω
= ,

M
z'

M

αω α

αω α

×
=

×
, y' z ' x '= × (7)

Where (× is vector product).

z ′
y ′

x ′

z y

x

M

0

′ℜ α

w

T

ℜ

P 'ℜ ⎯⎯→ℜ

Fig. 3. ℜ↔ ′ℜ frame definitions

Combining M coordinates with α and ω points, we obtain scalar elements of [P]

matrix by concatenation ofx ', y', z ' :

P x ' | y' | z '⎡ ⎤= ⎢ ⎥⎣ ⎦ (8)

M point coordinates are showing in ℜ frame. For calculus of every components of Bi,
it’s required to transfer this coordinates in ′ℜ according to (Figure 4):

()
i

T
i '
M | P OM | T |α

ℜ ℜ ℜ
= ⋅ − (9)

Considering,
ii i 'B | P B |ℜ ℜ= ⋅ magnetic field associated to [αi, ωi] segment, the total

magnetic field is obtain by summation of every Bi components:

segN

tot i
i 1

B | B |
ℜ ℜ

=

= ∑ (10)

 Trapping Biological Species in a Lab-on-Chip Microsystem 85

z y

x
ℜ

2 3B B B= + + +

2B

3B

2y '
2x '

2z '

3y '

3x '
3z '

3 'ℜ

2 'ℜ

M

Fig. 4. Coordinates systems describing the micro-inductor and the global magnetic field at M
point

C. Estimation of magnetic field of planar induction

Figure 5, represents the magnetic field computed with our algorithm, for a inductor
with 5 spires, side 100 µm by 100 µm covered by an electrical current I = 5 mA at
high z = 50 µm.

(a) (b)

(c) (d)

Fig. 5. Magnetic field computed: (a) modulus; (b) along Oz axis, (c) along Ox axis, (d) along
Oy axis

86 C. Escriba et al.

We can observe that the z component present an extrema above the center of the
inductor and a value close to zero along Ox and Oy.

3 Validation of the Analytical Approach

In order to check the validity of the previous analytical modelling, we compare results
obtained width the Maxwell®3D software and hence a FEM approach with those
obtained with our model.

The electric field is restricted to the objects modelled as real (non ideal) conductors
and is totally decoupled from the magnetic field. We consider that there no time
variation effects and objects are considered to be stationary. So previously, the
magnetostatic field solution verifies the Maxwell's equations. The MAXWELL3D
magnetostatic solver considers the magnetic field H with the following components:

H = Hp + + Hc
(11)

Where is the magnetic scalar potential, Hp is a particular solution constructed by

assigning values to all the edges in the mesh in such a way that Ampere's law holds on

all contours of all tetrahedral faces in the mesh, and Hc accounts for permanent magnet
if any. Thus, the Degrees Of Freedom (DOFs) are the nodal values of the magnetic
scalar potential with ten values per tetrahedron at each of the four vertices and all six
mid edge nodes, ensuring a quadratic approximation inside each finite element.

There are major advantages of this formulation over other existing ones, including
using considerably fewer computational resources (due to the scalar nature of the
DOFs), not requiring a gauge due to excellent numerical stability, significantly
reducing cancellation errors, and capably of automatically multiplying connected iron
regions. The magnetostatic solver handles both 3D linear and nonlinear problems. The
magnetostatic solver calculates the magnetic field distribution produced by a
combination of known DC current density vector distribution (Figure 6).

Fig. 6. 3D representation of the magnetic field. a) in (X, Z) plan and b) in (X, Y) plan

 Trapping Biological Species in a Lab-on-Chip Microsystem 87

Fig. 7. Magnetic field calculated by analytical and finite element methods

Various coil designs have been simulated with the use of MAXWELL3D. For
example, Figure 6 shows the magnetic field calculated for a micro-coil with 5 turns, a
conductor square section of 5µm × 5µm and a 50mA current.

The comparison between analytical and FEM modelling of magnetic field B is
detailed in Figure 7, where we have reported the values of B calculated at different
heights z from the coil.

These results confirm the good correlation between the two methods and fully
validate the efficiency of the analytical model. Thus we can assume that the analytical
model developed is powerful for parametric optimization.

4 Application: Magnetic Beads Trapping

Using our analytical model, we have optimized the design of an integrated magnetic
actuator dedicated to the manipulation of microbeads in lab on chip devices. The
criterion of optimization was to obtain magnetic force allowing the trapping super
paramagnetic microbeads in micro-channels. The magnetic forces have been
calculated starting from the simulation results. For this purpose, we have integrated
some micro-inductors in a micro-fluidic device made entirely with a biocompatible
SU-8 polymer. This prototype will undergo a series of characterization and validation.

5 Magnetic Force Exerted on a Magnetic Microbead

The force exerted by a magnetic field on a particle is represented by the gradient

of the magnetic interaction energy of the particle immersed in the magnetic field.

88 C. Escriba et al.

Fpm = Upm
(12)

The magnetic energy can be expressed by:

Upm = 1
2
μ0 Mp .H. dv

(13)

Where µ0 = 4 10 7 . 1 is the vacuum permeability and the

magnetizing of this particle by the magnetic field of excitation .
In the case of a particle with very small dimension, the integration of (13) is then

replaced by the value of the field in the center of the particle multiplied by the volume
 of this particle:

Upm = 1
2
Vpμ0Mp.H

(14)

In air or the vacuum, a diamagnetic or paramagnetic micro particle acquires a

magnetizing which a function of the magnetic susceptibility , the field of
excitation and the demagnetization coefficient D (D = 1/3 for a sphere, D=1 for a
parallelepiped, D = 0 long bar).

Mp =
p

1+ p .D
H

(15)

It is considered that 1 + . 1 and equation (15) can be simplified:

Mp = pH
(16)

Equation (14) becomes then:

Upm = 1
2
Vpμ0 p|H|²

(17)

The expression of the magnetic force deduced from (12) and (17) is given by:

Fpm = μ0Vp p(H.)H

(18)

This expression shows that direction of the force does not depend on the field sign but
of the product of field with its gradient. Its orientation is also related to the
susceptibility of the particle. The total magnetic force exerted on the particle is given
by:

FMagTtl = Fpm + Ffm = μ0Vp(p f)(H.)H

(19)

Because of very low value of susceptibility of the immersing medium

(we assume that the magnetic field induced by the
medium can be neglected and that:

B = Bcoil = 0H (20)

 Trapping Biological Species in a Lab-on-Chip Microsystem 89

The equation of the total magnetic force becomes:

(21)

The components of the magnetic force in a Cartesian reference mark are expressed by:

(22)

Thus in the case of a super paramagnetic particle in a conveying fluid like water, the
particle is attracted towards magnetic field maxima.

By convention, the magnetic actuator (coils) being in (X, Z) plan, the force is taken
into account only in the (X, Z) plan (Figure 8) and:

(23)

F

(24)

Fmz

Fmx

(a) (b)

Fig. 8. (a) Sight 3D of the device and the plan (X, Z) where is represented the distribution of
the magnetic field B. In red, the fluidic channel where calculations of the forces for different
height are localized. (b) Graphic of the magnetic forces according to X and Z obtained by the
post-processing.

90 C. Escriba et al.

6 Technological Realizations

6.1 Process Flow for the Fabrication of Integrated Microsystem

One of the main tasks of this work was to develop a generic polymer based
technology in order to manufacture a microfluidic device able to trap functionalized
micro beads. As it will be shown below, this technology combines standard
electroplating technique and lamination technologies in order to achieve flexible and
transparent full polymer systems with the precision and reliability of “stat-of-the-art”
microsystems. The requirements for the integrated microsystem are:

→ accurate alignment between the fluidic levels
→ high reliability process
→ flexible microsystem
→ optically transparent material
→ biocompatibility.

According to these criteria, we have chose to utilize the polyethylene terephthalate
layer (PET sheet, for the flexibility) as a “sacrificial” material, the epoxy-based
negative photoresist SU-8 on the structural material for the microfluidic network
(transparency, biocompatibility, very high aspect ratio…) and copper for the
electroplating process of the micro-coil. The technological process flow can be
described in Figure 9.

Substrate preparation: Si + PET Ti/Au deposition (1000/8000 Å):
lift-off

SU-8 deposition (1µm): L1,
electrical insulation

SU-8 structuring: L1, electrical
VIA

Ti/Cu (500/500 Å) deposition for
electroplating

Copper electroplating (5µm)

SU-8 deposition (10µm): L2,
channel bottom

SU-8 structuring (50µm): L3,
channel walls

SU-8 dry film (10µm) lamination:
L4, channel lid

Final integrated microsystem
released

Si substrate

PET sheet

Ti/ Au

SU-8 Microchem (3005, 3025, 3050)

Cu electroplated

Ti/ Cu

Fig. 9. Process flowchart for the fabrication of the flexible integrated microsystem

 Trapping Biological Species in a Lab-on-Chip Microsystem 91

As a first step, a PET sheet (50µm Polyethylene Terephthalate film) is laminated
on the top of a silicon wafer. The PET was chosen for its poor adhesion properties and
transparency. Then, conductive tracks are patterned (Ti/Au) by lift-off processing
(Figure 10 (a)). A layer of SU-8 (Microchem 3005) is deposited on top of the
structure in order to perform electrical insulation between conductive tracks and coils,
and to create electrical VIA (Figure 10 (b)). A seed layer of Ti/Cu (500/500 Å) is
deposited followed by the deposition and patterning of a positive photoresist
(AZ4562) in order to create the electroplating mold. Then, copper coils are
electroplated (5µm) into the resist mould (Figure 10 (c)) and the photoresist and seed
layers (Ti/Cu) are removed.

(a) (b) (c)

Fig. 10. SEM pictures of the different steps processing

A layer of SU-8 negative photoresist (Microchem 3005, 10µm) is spin-coated and
patterned to form the channel bottom and insulate microcoils from flowing liquids.
Microfluidic network is then fabricated: channel height and width are respectively 50
and 500µm, and thickness of the channel lid is 10µm. The SU-8 microfluidic network
is optically transparent (n = 1.8) as demonstrate on Figure 11 and allows therefore
optical detection and characterization of the microsystem. The resulting device was
finally released from the substrate thanks to the poor adhesion of the PET layer.

Micro-inductor

Micro-channel

Fig. 11. Photographs of the flexible integrated microsystem with SU-8 microfluidic network

6.2 Magnetic Microbeads Trapping

Magnetic micro and nano-beads have proven to be very interesting and reliable tool in
biological and chemical analysis in recent years. Separation or purification are often

92 C. Escriba et al.

practiced using magnetic labeled beads in biological laboratory and sometimes for
biomedical diagnosis [1, 2]. The experimental procedure for the realization of an
experimental bead separation is illustrated in Figure 12. In general, bead based
bioanalysis protocols use permanent magnet [3, 4] and repeat a specific sequence
manipulation.

(a) (b)

Fig. 12. Procedural sequences for magnetic bead separation. a) Magnetic bead labeled
incubation with antigen target. b) Separation of magnetic bead to the solution.

In a first step, magnetic microbeads are functionalized with a probe (antibody)
specific of the targeted molecule. Then, the target (antigen) contain in the sample is
recognized by the probe and adsorbs specifically on the microbead surface. Finally,
microbeads are trapped by an permanent magnet. The goal of our study was to
implement such kind of protocol in a lab on chip device integrating a
microelectromagnet. Compared to permanent magnets, electromagnets offer a higher
flexibility and a higher control of magnetic field. Since small dimensions are able to
be manufactured in microfluidic system, the combination of microelectromagnets and
microfluidic network offers an interesting approach to this integrated microsystem
[5, 6, 7 and 8].

6.3 Real Time Experimentation and Validation

The choice of the type of magnetic microbeads depends on the application
specifications. In this study, we choose to use Dynabeads® M500 Subcellular
microbeads and Dynabeads® M270 Carboxylic Acid with diameter of respectively 5
µm and 2.8µm. Figure 13 shows a SEM photograph of Dynabeads® M270 and an
optical picture of microbeads in microfluidic channel.

In order to validate our technological concept, chips integrating
microelectromagnets in a microfluidic channel have been fabricated. Magnetic bead
separation has been performed using these systems. Figure 14 shows a schematic
overview (a) and cross-section (b) of the system.

 Trapping Biological Species in a Lab-on-Chip Microsystem 93

(a) (b) (c) (d)

Fig. 13. SEM photographs of Dynabeads M270 (a, b and c), and optical picture of flow
microbeads in micro-channels (d)

Electromagnet

6 mm (a)

(b)

Fluid access
Micro-channel

Boundary

Microbead

Fz
Fx

Fig. 14. The complete microsystem. a) An overview of the chips with three
microelectromagnets, the micro-channel with flow inlet and outlet. b) A cross-section of the chip

The experimental setup is shown in Figure 15. The instrumental bench includes a
CCD camera for recording of bead trapping, a syringe for dispensing the liquid
sample and a DC power supply.

A driving current of 50mA was applied to the inductor. Experimentation were
performed using a square micro-coils with 5 turns and a square section (5µm*5µm).

The video frame is constituting by 12 frames per second. The main steps of
trapping are reported on Figure 16:

 Firsr we present the magnetic microbead contained in the microfluidic
channel before supplying current to the microelectromagnet (0s).

 Then, current was applied to the microelectromagnet and microbeads are
trapped at the micro-channel bottom just above the micro-coils (transient
analysis from 10s to 100s).

94 C. Escriba et al.

Fig. 15. Experimental setup to test and demonstrate our microbead handling

0s 10s 30s

60s 100s

Fig. 16. Magnetic beads trapping using our microelectromagnets. (0s) without excitation
applied. (10s to 100s) after excitation (I=50mA) applied to the microelectromagnet: trapping
beads.

Figure 17 shows a comparison between real time magnetic beads trapping and
modeling to magnetic field distribution around the microelectromagnets.

This example put the stress on the good correlation between our Finite Element
approach and our experimental realization. Future work will be done to further
improve the trapping and sorting efficiency of the flexible integrated microsystem by
a design optimization of our microelectromagnets and microfluidic network.

 Trapping Biological Species in a Lab-on-Chip Microsystem 95

(a) (b)

Fig. 17. Comparison between our real time experimentation and modeling: magnetic field
repartition around the microelectromagnet

7 Conclusion

In this study, we describe magnetic field modelling created by a planar micro-
inductor. A 3D model of the micro-spiral inductor was been realized by using our
own analytical model and by using a second method based on COMSOL
Multiphysics software. These two approaches allow us to check the magnetic field
distribution generated by the inductor and the force exerted on magnetic bead. All
these studies show that many parameters can influence the inter-action between the
bead and the micro-spiral inductor. The model offer the behaviour response to any
electrical current and can optimized geometrical coil parameters respect to
microbeads and fluid characteristics. The first experimental results with a fluidic
structure fabricated entirely in a biocompatible polymer give to our approach a novel
dynamic and validate the concept and its analytical model used for actuating the
biological species.

References

[1] Norgall, S., Papoutsi, M., Rôssler, J., Schweigerer, L., Wilting, J., Weich, H.A.: Elevated
expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas. BMC
Cancer 7, 105 (2007)

[2] Safarik, I., Safarikova, M.: Magnetic techniques for the isolation and purification of
proteins. Biomagnetic Research and Technology 2, 7 (2004)

[3] Pamme, N., Eijkela, J.C.T., Manza, A.: On-chip free-flow magnetophoresis: Separation
and detection of mixtures of magnetic particles in continuous flow. Journal of Magnetism
and Magnetic Materials 307, 237–244 (2006)

96 C. Escriba et al.

[4] Kim, Y.H., Hong, S., Kim, B., Yun, S., Kang, Y.R., Paek, K.K., Lee, J.W., Lee, S.H., Ju,
B.K.: Droplet-based Magnetically Activated Cell Separation. In: Proceedings of the 26th
Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September
1-5 (2004)

[5] Smistrup, K., Lund-Olesen, T., Hansen, M.F.: Microfluidic magnetic separator using an
array of soft magnetic elements. Journal of Applied Physics 99, 08P102 (2006)

[6] Deng, T., Whitesides, G.M.: Manipulation of magnetic microbeads in suspension using
micromagnetic systems fabricated with soft lithography. Applied Physics Letters 78,
1775–1777 (2001)

[7] Ramadan, Q., Samper, V., Poenar, D., Yu, C.: On-chip micro-electromagnets for
magnetic-based bio-molecules separation. Journal of Magnetism and Magnetic
Materials 281, 150–172 (2004)

[8] Rida, A., Fernandez, V., Gijs, M.A.M.: Long-range transport of magnetic microbeads
using simple planar coils placed in a uniform magnetostatic field. Applied Physics
Letters 83, 2396 (2003)

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 97–113, 2010.
© IFIP International Federation for Information Processing 2010

Fine-Grain Reconfigurable Logic Cells Based on
Double-Gate MOSFETs

Ian O'Connor, Ilham Hassoune, and David Navarro

University of Lyon, Lyon Institute of Nanotechnology UMR 5270
Ecole Centrale de Lyon

36 avenue Guy de Collongue, F-69134 Ecully cedex, France
ian.oconnor@ec-lyon.fr

Abstract. This work presents a new style of gate-level reconfigurable cells
based on the double-gate (DG) MOSFET device. The proposed dynamic- and
static-logic cells demonstrate significant gate area reductions compared to
conventional CMOS lookup table (LUT) techniques (between 80-95%) while
configuration memory requirements are also reduced (up to 60%). Simulation
results show that it can be used either in low power reconfigurable applications
(up to 90% power reduction is possible) or for speeds comparable to those of
CMOS-LUTs.

1 Introduction

The necessary structuring of the projected tens of billions of elementary, unreliable,
nanometric devices to achieve the computing capacities necessary for future software
applications will lead to the emergence of reconfigurable platforms as the principal
computing fabric before the end of the next decade. The reconfigurable approach
allows volume manufacturing and reduces the impact of the evolution of mask costs,
projected to move above the $10M mark in 2010 [1]; can efficiently cover a broad
range of applications while exceeding performance levels of programmable systems;
and couples naturally to fault-tolerant design techniques for robust architectures.

Gate-level, or fine-grain, reconfigurability enables benefits in terms of silicon real
estate, since it makes it possible to reduce the number of logic cells necessary to
implement a given switching function (in comparison to the implementation of these
functions with conventional logic). It also makes it possible to simplify the
interconnect network, reducing area and the parasitic capacitances due to routing. It
can thus be expected to reduce dynamic power dissipation and improve speed. These
two performance metrics are often the weak points of the various types of
reconfigurable circuits (FPGA, coarse-grain reconfigurable systems) compared to
"full-custom" solutions.

While CMOS device scaling has led to increasingly better performances, higher
packing density and lower cost per device, short channel effects have become difficult
to control [1]. To pursue performance improvement in conventional planar bulk
CMOS devices, channel doping will have to be increased with scaling to almost
impossibly high values, which will cause a reduction in mobility and high leakage
current (and static power dissipation) due to band-to-band tunneling between the drain

98 I. O'Connor, I. Hassoune, and D. Navarro

and the bulk. Also, the total number of dopants in the channel for very small
MOSFETs is increasingly low, resulting in extremely high fluctuataions in the
number of dopants, and hence unacceptably large statistical variation of the threshold
voltage. These difficulties, especially power dissipation and variability, have
introduced the need for new device architectures and the emergence of structures with
improved and more flexible electrostatic control of the channel.

Ultra-thin body, fully depleted (UTB FD) SOI MOSFETs represent one solution
where channel doping is relatively low; in these devices, the threshold voltage can be
set by adjusting the work function of the gate electrode, rather than by doping the
channel as in planar bulk MOSFETs. Metal gate electrodes with work functions
tunable within a few hundred meV above and below midgap should be used to set the
threshold voltage to the desired values. Single gate SOI MOSFETs are projected for
2010 for high-performance logic. Multiple-gate, ultra-thin body, fully depleted
MOSFETs, in both planar (DG MOSFET) and vertical dispositions (FinFET), are
both more complex and more scalable, and are projected to be implemented in 2011
for high-performance logic.

The Double-Gate (DG) MOSFET on FD SOI technology is known as a promising
advanced device which, thanks to the double-gate structure, is expected to overcome
drawbacks of the conventional MOSFET in nanometric technologies. Compared to its
counterpart single gate FD SOI MOSFET, the DG SOI MOSFET reduces the short
channel effects and improves the sub-threshold slope and drive current [2][3][4] while
benefiting from the advantages of FD SOI technology. These include reduced latch-
up, reduced parasitic source and drain capacitances, smaller sensitivity to temperature
variation and reduced leakage current [5]. The double-gate structure allows
independent switching of the gates or dynamic adjusting of the threshold voltage. In
more conventional (single gate) device structures, a dynamic Vth variation can be
achieved by varying the body or back gate voltage for bulk and fully depleted SOI
devices respectively. However, since all devices share the same well or substrate (for
bulk devices) or the same back-gate (for single gate FD SOI devices), dynamic Vth
variation for individual transistors is either highly impractical or impossible to
achieve.

Partially depleted SOI devices are better suited to dynamic adjustment of the
threshold voltage since the body is isolated and can thus be contacted to a separate
bias potential per device. However, double gate SOI MOSFETs offer the same
flexibility as PD SOI single gate MOSFETs with regard to this dynamic Vth
adjustment. Moreover, it has been demonstrated that an independent control of front
and back gates can be exploited to reduce both dynamic power and sensing delay in a
sense amplifier design [6]. It can also be used to merge parallel transistors [7] and
thus reduce dynamic power through the reduction of parasitic capacitance, as well as
static power. Furthermore, designers can choose between different types (symmetric
or asymmetric [3]) of DG MOSFET devices, in order to make the threshold voltage
tailored to the requirements of circuit operation. This makes it well-suited for some
leakage power management circuit techniques commonly used in digital circuit
design. Furthermore, it allows consideration of new design approaches. However, all
these advantages come at the expense of a higher switching gate capacitance (in the

 Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs 99

case of the connected gates scheme) and a die area penalty compared to the single
gate device.

Such devices enable designers to achieve improved density, power and speed
metrics [3][4][7][8] in logic cells. Further, with four accessible terminals, these
devices also offer the opportunity to design novel building blocks exploiting the
additional terminal for reconfigurability purposes [9]. In this work, we cover the
principles of the design of m-input DG MOSFET reconfigurable cells in both
dynamic- and static-logic forms. These principles are applied to the design of 2-input
cells, and the simulated results are then compared to those of conventional CMOS
LUT techniques.

2 Generic m-Input Reconfigurable Cell

The main tenet of our approach lies in the construction of cells containing n- and p-
networks for which the data-switching properties can be modified with control
voltages applied to the back gates of DGMOS transistors. This dynamically modifies
the threshold voltage of individual devices. The behavior of an n-type DGMOS
device according to the applied back gate voltage can be roughly described as
follows:

• when a sufficiently positive voltage V+ is applied, the device is always on
(regardless of front gate voltage). In other terms, the threshold voltage is lowered
to below the lowest voltage applied to the front gate (e.g. logic "0").

• when 0V is applied, normal operation is achieved, i.e. device switching depends on
the front gate voltage.

• when a sufficiently negative voltage V- is applied, the device is always off
(regardless of front gate voltage). In other terms, the threshold voltage is raised to
above the highest voltage applied to the front gate (e.g. logic "1").

This behavior is shown in simulations for both n-type and p-type devices in Figure 1.
These simulations are for individual devices with W/L=0.25µm/0.13µm with 1.2nm
front- and back-gate oxide thicknesses, and use a double-gate FD-SOI/CMOS
technology model implemented in Verilog-A. This explicit analytical charge-based
compact model of independent double gate MOSFET devices is based on Poisson and
field continuity equations and demonstrates <2% drain current value error with
respect to Atlas simulations over all regions of operation and for both long and short
channel devices. It has also been extensively validated against experimental device
characteristics. Further details of the model are outside the scope of this work and can
be found in [10].

For certain branches it is necessary to use asymmetric devices to achieve a
dominant influence of the control voltage on the transistor behavior. Previous work in
this field [9] has been inconclusive since only symmetric devices were used, resulting
in a circuit structure with limited functionality and unsatisfactory performance.
Asymmetric devices provide additional degrees of freedom and can be achieved with
different oxide thicknesses or different gate workfunctions (i.e. with different gate

100 I. O'Connor, I. Hassoune, and D. Navarro

metals). Our work is based on the former approach, with front-gate oxide thickness
Toxf=2.5nm or 5nm (depending on the degree of asymmetric control required –
increasing the oxide thickness also increases leakage current) and back-gate oxide
thickness Toxb=1.2nm. Simulated Ids-Vgs characteristics show (for an N-type device of
the previously cited dimensions with Toxf=2.5nm, Vbgn=0V) a slight (15%) increase in
Ioff, and a more significant (45%) decrease in Ion. Again, the model used has been
extensively corroborated against technology simulations.

10-14

10-13

10-12

10-11

10-10

10-09

10-08

10-07

10-06

10-05

10-04

10-14

10-13

10-12

10-11

10-10

10-09

10-08

10-07

10-06

10-05

10-04

P-type

N-type

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

I d
s

(A
)

Vgs (V)

Vbgn=0.8V

Vbgn=0.6V

Vbgn=0.4V

Vbgn=0.2V
Vbgp=-0.2V

Vbgp=-0.4V

Vbgp=-0.6V

Vbgp=-0.8V

Vbgn=0V Vbgp=0V

Fig. 1. Log Ids-Vgs plot of n-type and p-type DGMOS model with independent gate control

2.1 Dynamic-Logic Reconfigurable Cell DG-DLRC

The general principle for building an m-bit dynamic-logic reconfigurable cell (DG-
DLRC) is shown in Figure 2. This novel structure uses n-type dynamic logic, where a
switching network composed of n-type devices is sandwiched between clocked
precharge and evaluation switches (Mpc and Mev respectively), and allows conditional
discharge of the output node F during the evaluation phase. The n-type device
network that realizes the logic functions is composed of:

• one branch containing a stack of m symmetric DG MOSFETs
• (m-1) branches each containing a single asymmetric DG MOSFET (with Toxf >

Toxb).

The front gates of these devices are controlled by the m logic inputs. 2(m-1) control
signals are applied to the back gates to configure the logic function dynamically.

 Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs 101

clkclk

DmDm

D2D2

D1D1

D2D2

clkclk

DmDmC2bC2b CmbCmb

FF

C2aC2a

CmaCma

m
st

ac
ke

d
 s

ym
m

et
ri

c
de

vi
ce

s
in

 b
ra

n
ch

 1

m-1 parallel branches of
single asymmetric devices

asymmetric
double gate devices

Mpc

Mev

M1

M2a

Mma

M2b Mmb

Fig. 2. Generic DGMOS dynamic-logic reconfigurable cell (DG-DLRC)

Dynamic logic is generally more compact (in terms of device count) than static
complementary logic when implementing complex logic functions, since it does not
require a complementary p-device network and thus demonstrates reduced total parasitic
capacitance and silicon area, in particular for cells with a large number of inputs.
However, this approach requires clock lines and imposes more stringent constraints on
device off currents, since leakage leads to a deterioration of calculated results.

A simple set of configuration codes (i.e. back-gate voltage sets) can be applied to
configure an m-input reconfigurable cell to a particular logic function from those
available (NAND, NOR, INV). After having identified the type of function, the
presence of each input Dx (∀x∈{2,m}) is evaluated, enabling the corresponding
configuration codes {Cxa,Cxb} to be extracted from Table 1.

Table 1. General configuration code table for m-input DG-DLRC

Dx present in expression Dx absent from expression Function
Cxa Cxb Cxa Cxb

NAND 0 V- V+ V-
NOR V- 1 0 V- 1 V-
INV V- 0 V- 1 V-

For the NAND-configuration, 0V is applied to Cxa such that transistor Mxa operates

as a normal n-transistor (i.e. on or off for Dx equal to logic "1" or "0" respectively)
when Dx is present in the expression. If Dx is not in the expression, then transistor Mxa
is turned completely on with Cxa=V+. Independently of the presence of Dx in the
expression, V- is applied to Cxb to turn transistor Mxb off (regardless of the logic value

1 Unless D1 is present in the expression (in this case, Cxa=V+).

102 I. O'Connor, I. Hassoune, and D. Navarro

of Dx). An asymmetric device must be used for Mxb to increase the front-gate
threshold voltage and thus enable complete turn-off in the NAND-configuration.
The value of V- must be chosen with respect to the gate breakdown voltage limitation.
The resulting effective threshold voltage is chosen such that the functionality of the
NAND-configuration is met without affecting that of the NOR or INV configurations.

In the NOR-configuration and when D1 is present in the expression, V+ is applied
to Cxa in order to significantly decrease the threshold voltage of Mxa and turn it
completely on, regardless of the logic state of the signal at the front gate. If D1 is not
in the expression, then transistor Mxa must be turned off with Cxa=V-. If Dx is in the
expression, then 0V is applied to Cxb for normal operation of transistor Mxb, otherwise
Mxb is turned off with Cxb=V-.

In the INV-configurations, a single branch is activated to switch with D1 only (by
turning Mxa completely on with Cxa=V+, and turning Mxb completely off with Cxb=V-)
or with Dx only (by turning Mxa completely off with Cxa=V-, and selecting normal
operation with Mxb by applying Cxb=0). For the latter operation, it is also possible to
use Cxa=0V to include Mxa in switching with Dx (all other control voltages in this
branch should then be set to V+), but this results in non-deterministic timing behavior
(since the drive strength depends on the state of D1).

2.2 Static-Logic Reconfigurable Cell DG-SLRC

Static logic styles generally feature better noise immunity than dynamic logic, and thus
are well-suited to applications that require resistance to harsh environments. The novel
m-bit static-logic reconfigurable cell structure (DG-SLRC) is shown in Figure 3. In

C2cC2cD2D2D1D1

DmDm

D2D2

D1D1

D2D2 DmDmC2bC2b CmbCmb

FF

C2aC2a

CmaCma

m
 s

ta
ck

ed
 s

ym
m

et
ri

c
n

-d
ev

ic
es

 in
 b

ra
n

ch
 1

m-1 parallel
asymmetric
n-devices

asymmetric
double gate devices

CmcCmcDmDm

C2dC2dD2D2

CmdCmdDmDm

n parallel
asymmetric
p-devices

m
-1

 s
ta

ck
ed

sy

m
m

et
ri

c
p-

de
vi

ce
s

M1a

M2a

Mma

M2b Mmb

M2c
MmcM1c

M2d

Mmd

Fig. 3. Generic DGMOS static-logic reconfigurable cell (DG-SLRC)

 Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs 103

addition to the n-device branch described in the previous section, DG-SLRC requires a
p-device branch composed of:

• one network containing m parallel asymmetric DG MOSFETs (with Toxf > Toxb)
• a stack of (m-1) symmetric DG MOSFETs.

As before, the front gates of these devices are controlled by the m logic inputs. 4(m-1)
control signals are applied to the back gates in order to configure the logic function at
the output dynamically. The configuration codes {Cxa,Cxb} to be extracted for the
various functions are given in Table 2.

Table 2. General configuration code table for m-input DG-SLRC

Dx present in expression Dx absent from expression Function
Cxa Cxb Cxc Cxd Cxa Cxb Cxc Cxd

NAND 0 V- V+ 0 V+ V- V+ 0
NOR V- 2 0 V+ V+ V- 2 V- 0 2 0
INV V- 0 0 V+ V- 2 V- V+ 0

In the NAND-configuration and when Dx is present in the expression, 0V is applied

to Cxa for normal operation of transistor Mxa, while V- is applied to Cxb. Since Mxb is
asymmetric, this device is turned completely off, regardless of the value of Dx. V

+ is
applied to Cxc for normal operation of Mxc, while 0V is applied to Cxd in order to turn
Mxd on regardless of the value of Dx. If Dx is not present in the expression, then Mxa is
turned completely on (Cxa=V+) and Mxb completely off (Cxa=V-). Here again, 0V is
applied to Cxd in order to turn Mxd on regardless of the value of Dx. V

+ is applied to Cxc;
this voltage does not ensure that the p-type DG MOSFET Mxc is switched completely
off, although the off-state is nearly reached due to the asymmetric structure of Mxc with
high Toxf. However, this situation means that power performance is likely to be poor,
and the output logic "0" level is degraded (simulation results in the 2-input case show
60mV). To avoid this, the strength (i.e. W/L) of Mxc must be reduced.

In the NOR-configuration and when D1 is present in the expression, V+ is applied
to Cxa in order to ensure Mxa is always on, while 0V is applied to Cxb for normal
operation of transistor Mxb (if Dx is in the expression; otherwise Mxb is turned off with
Cxb=V-). If D1 is not in the expression, then transistor Mxa must be turned off and V- is
applied to Cxa. In the p-device network, V+ is applied to Cxc to approach the off-state
of Mxc if D1 is in the expression (Cxc=0V and Mxc is completely on if not) and V+ is
applied to Cxd for normal operation of Mxd (if Dx is in the expression; otherwise Mxd is
turned on with Cxd=0V).

In the INV-configurations, a single branch is activated to switch with D1 only or with
Dx only. In the first case, in the n-device network Mxa is turned completely on with
Cxa=V+, and Mxb completely off with Cxb=V-; while in the p-device network we apply
Cxd=0V to turn Mxd completely on, and Cxc=V+ to approach the off-state for Mxc. In the
second case, we turn Mxa completely off with Cxa=V-, and select normal operation for
Mxb by applying Cxb=0V in the n-device network; while in the p-device network we set
Cxd=V+ to achieve Dx-dependent switching, and Cxc=0V to turn Mxc completely on.

2 Unless D1 is present in the expression (in this case, Cxa=V+).

104 I. O'Connor, I. Hassoune, and D. Navarro

3 Tests with Two-Input DG-XLRC

In this section we consider the implementation, in both dynamic- and static-logic
forms, of the previously presented reconfigurable cell in its 2-input form. The design
of the cells was based on the double-gate FD-SOI/CMOS technology model
mentioned earlier, and simulations were performed throughout with a calculation rate
of 50Mbit/s (i.e. data period=20ns), using signal rise and fall times of 40ps. The load
capacitance considered was 5fF.

3.1 Two-Input DG-DLRC

Figure 4 illustrates the 2-input reconfigurable cell (with logic inputs D1=A and D2=B),
implemented with DG devices and based on dynamic logic [11]. Transistors M1, M4,
and M5 depict symmetric DG devices (i.e. symmetric oxide thicknesses and
workfunctions for the front and back gates) with connected front and back gates.
Transistor M2 depicts a symmetric DG device, while transistor M3 depicts an
asymmetric DG device. Both M2 and M3 use independent gate control. For this mixed
(symmetric and asymmetric devices) cell denoted DG-DLRC_mixed, asymmetric
biasing is used with {V+,V-}={1.0V,-0.5V}.

Another variant of the cell, DG-DLRC_asymm, uses only asymmetric DG
MOSFETs. The use of the same device type in the cell can be more convenient since
it eases circuit fabrication. In this case, Vdd=0.6V to achieve symmetric gate biasing
on C2a and C2b where {V+,V-}={+0.6V,-0.6V} while using a maximum absolute gate-
source and gate-drain voltage value of 1.2V .

0.5µ/0.13µ

M2
0.5µ/0.13µ

M3

clkclk

BB

AA

BB

clkclk

C2bC2b

FF

C2aC2a

0.5µ/0.13µ
M1

0.5µ/0.13µ
M4

0.35µ/0/13µ
M5

Fig. 4. Two-input DG-DLRC

 Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs 105

Table 3 shows the logic state of the cell output (node F) with respect to the applied
back gate voltages on the C2a and C2b terminals, as a 2-input implementation of Table 1.
As can be observed from Table 3, the cell can implement the NAND, NOR, INV and
unconditional '1' and '0' logic functions.

Table 3. Truth table of two-input DG-DLRC

C2a C2b Function
0 V- NAND(A,B)
V+ 0 NOR(A,B)
V+ V- INV(A)

{0, V-} 0 INV(B)
V- V- 1
X V+ 0

This cell has been evaluated using the simulation conditions described previously.

The simulation waveforms for DG-DLRC_mixed are shown in Figure 5, where
the switching from one configuration to another, as can be observed at the output F,

0
0.25

0.5
0.75

1

A
 (

V
)

0
0.25

0.5
0.75

1

B
 (

V
)

0
0.25

0.5
0.75

1

cl
k

(V
)

0
0.25

0.5
0.75

1

C
2

a
(V

)

-1
-0.75

-0.5
-0.25

0

C
2

b
(V

)

0
0.25

0.5
0.75

1

0 100 200 300 400 500 600 700

t (ns)

F
(V

)

A B A.B A+B

Fig. 5. Simulated configuration of the two-input DG-DLRC to NAND, NOR and INV functions

106 I. O'Connor, I. Hassoune, and D. Navarro

is obtained through the dynamic configuration of signals C2a and C2b. Similar
waveforms are obtained with DG-DLRC_asymm.

The power and delay performance characteristics of both variants are summarized
in Table 4 for each function configuration. The reconfigurable cell performance
(average power and worst case delay) depends not only on the activity factor, the total
switched capacitance and device number lying on the critical path, but also on the
different back gate biasing used in each configuration. These factors affect, differently
from one configuration to another, the total drive current, sub-threshold and gate
leakages, and consequently the total power and the worst case delay.

Table 4. Simulated performance figures for the two-input DG-DLRC

DG-DLRC_mixed DG-DLRC_asymm Function
Av.

power
(nW)

Worst-
case delay

(ps)

PDP
(fJ)

Av.
power
(nW)

Worst-
case delay

(ps)

PDP
(fJ)

NAND(A,B) 256 140.6 0.04 33.2 540 0.02
NOR(A,B) 476.7 740.6 0.35 96.2 2590 0.25
INV(A) 361 140.6 0.05 71.9 2590 0.19
INV(B) 476.3 667 0.32 46.8 2440 0.11

3.2 Two-Input DG-SLRC

The 2-input static reconfigurable cell (with logic inputs D1=A and D2=B) is shown in
Figure 6. The truth table of the cell is shown in Table 5, as a 2-input implementation

0.5µ/0.13µ

M3

0.5µ/0.13µ

M2

0.25µ/0.15µ

M4

1.0µ/0.13µ

M6

C2cC2cBBAA

BB

AA

BB C2bC2b

FF

C2aC2a

C2dC2dBB

0.5µ/0.13µ
M1

1.0µ/0.13µ
M5

Fig. 6. Two-input DG-SLRC

 Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs 107

Table 5. Truth table of two-input DG-SLRC

C2a C2b C2c C2d F
0 V- V+ 0 NAND(A,B)
V+ 0 V+ V+ NOR(A,B)
V+ V- V+ 0 INV(A)

{0, V-} 0 0 V+ INV(B)
V- V- 0 0 1
X V+ V+ V+ 0

of Table 2. As with DG-DLRC, this cell implements the NAND, NOR and INV
functions. Each logic function is obtained by applying the relevant configuration
codes in terms of back gate biases C2a-d, as shown in Table 5.

0
0.25

0.5
0.75

1

A
 (

V
)

A B A.B A+B

0
0.25

0.5
0.75

1

B
 (

V
)

0
0.25

0.5
0.75

1

C
2

a
(V

)

-1
-0.75

-0.5
-0.25

0

C
2

b
 (

V
)

0
0.25

0.5
0.75

1

C
2

c
(V

)

0
0.25

0.5
0.75

1

C
2

d
 (

V
)

0
0.25

0.5
0.75

1

0 50 100 150 200 250 300 350

t (ns)

F
(V

)

Fig. 7. Simulated configuration of the two-input DG-SLRC to NAND, NOR and INV functions

108 I. O'Connor, I. Hassoune, and D. Navarro

As with DG-DLRC, the static variant can also be implemented using all
asymmetric DG devices (as DG-SLRC_asymm). In this case Vdd=0.6V and
symmetric biasing is used with {V+,V-}={+0.6V,-0.6V}. Correct functionality is
observed with this cell due to:

• the reduced Vdd/Vth ratio (Vth ≈0.4V with Vbg=0V), thus allowing cut-off of
transistor M3 when V- is applied to its back gate

• the small W/L ratio for transistor M4 combined with the small Vdd/Vth ratio.

The simulation results obtained from both DG-SLRC_mixed and DG-SLRC_asymm
are shown in Figure 7. The power and delay performance characteristics of both variants
are summarized in Table 6 for each function configuration.

Table 6. Simulated performance figures for the two-input DG-SLRC

DG-SLRC_mixed DG-SLRC_asymm Function
Av.

power
(nW)

Worst-
case delay

(ps)

PDP
(fJ)

Av.
power
(nW)

Worst-
case delay

(ps)

PDP
(fJ)

NAND(A,B) 1189 590.5 0.70 126 1620 0.20
NOR(A,B) 182 309.4 0.06 197 660 0.13
INV(A) 2800 111.5 0.31 331 660 0.22
INV(B) 397 295.3 0.12 102 1740 0.18

4 Comparison to Conventional LUT and Discussion

We have carried out experiments to evaluate the performance gain of DG-xLRC with
respect to conventional solutions. While this technique can be considered to open up
many possibilities for new system-level programming paradigms, it is also possible to

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

F[2m-2]
F[2m-1]

F[2m-3]
F[2m-4]

F[0]
F[1]

F[2]
F[3]

0

1

0

1

0

1

0

1

D1 D2

0

1

0

1

m
u

x
st

ag
es

 {
3

,m
-1

}

Dm

Fig. 8. Reference m-bit MUX-based look-up table

 Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs 109

consider the cell family to be a set of incomplete look-up tables (LUTs) [12] and make a
direct comparison to conventional m-bit MUX-based LUTs (the reference structure of
which is shown in Figure 8). It should be noted that the aim of this section is to provide
an objective comparison at the circuit level using individual characteristics, rather than a
system-level comparison where the impact of cell characteristics is not so clear.

4.1 Gate Area and Memory Requirements

For 2-, 3- and 4-input LUTs and DGMOS-based reconfigurable cells, we evaluated
the gate area (i.e. channel dimensions only), and the required number of memory cells
to retain the configuration codes (Figure 9).

The gate area results reflect the exponential and linear growth of transistor count in
LUTs and DG-xLRCs respectively. For LUTs, the transistor count grows with
Nmux*(2m-1) (where m represents the number of inputs and Nmux represents the 2-1
MUX transistor count, usually equal to 12), while transistor count grows with 3+2(m-
1) and 2+4(m-1) for DG-DLRC and DG-SLRC respectively. Total area comparisons
incorporate extra interconnect requirements (an extra -V power line, precharge and
evaluation lines for the dynamic cell, double inputs) with some reduction in
configuration lines for certain variants. The complete layouts (including all routing
but excluding configuration memory cells and precharge/evaluate logic buffers) for
the 2-input dynamic and static cells show area reduction factors of 6.5 and 4.7
respectively as compared to the CMOS-LUT, instead of 7.8 and 4.9 considering gate
area only. The precharge/evaluate logic and signal distribution tree was not included
in the analysis.

The number of memory cells required has an impact not only on auxiliary
hardware requirements, but also on configuration time. For LUTs, this increases with
2m, while for DG-DLRC and DG-SLRC it is equal to 2(m-1) and 4(m-1) respectively.

0

2

4

6

8

10

12

14

16

18

20

2-input 3-input 4-input

g
at

e
ar

ea
 /

 u
m

2

CMOS-LUT

DG-DLRC

DG-SLRC

0

2

4

6

8

10

12

14

16

18

2-input 3-input 4-input

no
. m

em
or

y
ce

lls

CMOS-LUT

DG-DLRC

DG-SLRC

(a) (b)

Fig. 9. Comparison of m-input DG-xLRC and CMOS-LUT characteristics (a) gate area (b) no.
memory cells

110 I. O'Connor, I. Hassoune, and D. Navarro

It should of course however be borne in mind that while a LUT potentially offers
configurations, DG-xLRC offers rather less. The number of available functions
corresponding to m-input cells is plotted in Figure 10 and compared to the figures for
CMOS-LUTs for values of m ranging from 2 to 6. In practice, the number of inputs
that the reconfigurable cells can reasonably handle is 4. Beyond this figure, the
number of series devices in a stack becomes too high.

4.3E+09

4 11 26 37 50

1.8E+19

65536

16
256

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

1.0E+14

1.0E+16

1.0E+18

1.0E+20

1.0E+22

2 3 4 5 6

no. of inputs m

no
. o

f f
un

ct
io

ns

CMOS-LUT

DG-xLRC

Fig. 10. Number of available functions for m-input reconfigurable cells

It is clear from this figure that a direct transposition of this cell as a LUT in
conventional configurable logic blocks will result in limited flexibility. For this
reason we believe that further work must be carried out to explore new programming
paradigms to benefit from the cell performance (and in particular its reduced
configuration memory requirements for easier dynamic reconfiguration) at system
level.

4.2 Average Power and Worst-Case Delay

We have also carried out detailed simulations of the 2-input solutions to compare
average power and worst-case delay performance metrics. To this end we have
simulated the LUTs in a 65nm CMOS technology. The choice of this reference
technology was based on a comparison of oxide thicknesses, doping levels, mobility
parameters and gate metal types. However, since the reconfigurable cells use 130nm
gate lengths (for reasons of model validity and lack of technological maturity) the 65nm
CMOS standard cell transistor dimensions were scaled to match the gate lengths and
achieve comparable parasitic capacitance values and a fair basis for comparison.

Identical simulation conditions were used, i.e. 50Mbit/s calculation rate, load
capacitance CL=5fF, 40ps rise and fall times on inputs. Comparisons of the CMOS-
based LUT figures were carried out for the four operational functions with respect to
both DG-DLRC and DG-SLRC, in mixed and all-asymmetric variants (Figure 11).

 Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs 111

0

500

1000

1500

2000

2500

3000

NAND NOR INVA INVB

av
. p

o
w

er
 /

n
W

CMOS-LUT

DG-DLRC_mixed

DG-DLRC_asymm
DG-SLRC_mixed

DG-SLRC_asymm

(a)

0

500

1000

1500

2000

2500

3000

3500

NAND NOR INVA INVB

w
o

rs
t-

ca
se

 d
el

ay
 /

p
s

CMOS-LUT
DG-DLRC_mixed
DG-DLRC_asymm
DG-SLRC_mixed
DG-SLRC_asymm

(b)

Fig. 11. Comparison of two-input DG-xLRC and CMOS-LUT characteristics (a) average power
(b) worst-case delay

These figures clearly show that, apart from the mixed implementation of DG-
SLRC, total power performance is systematically better with DG-xLRC solutions, in
one case achieving an average of over 90% reduction in power over the four function
configurations. For static power, it should be noted that all configurations of both
static and dynamic logic cells (except the unconditional '0' configuration) bias N-type
and P-type DGMOS back gates to 0V / V- and V+ respectively (leading to either the
same or lower Ioff as with connected gates), except when an unconditional short is
required – in which case the off current of the branch is defined by another transistor
in the equivalent configuration to that of a connected gates transistor. This means that
the low Ioff values of DGMOS transistors are exploited in the proposed cells (our
simulations show Ioff = 0.7pA for an N-type DGMOS of 0.5µm/0.13µm with
toxf=2.5nm and toxb=1.2nm) – however the Ion values are lower than a connected-gates
equivalent transistor since the back gate is set to 0V or V+ for N- and P-type

112 I. O'Connor, I. Hassoune, and D. Navarro

conducting transistors respectively. The peak current value for a transistor with the
previously cited characteristics (i.e. for Vfg=V+ and Vbg=0V) is around 50µA. This has
an impact on the cell drive current, and the consequences are visible in Figure 11 in
terms of the mediocre worst-case delay comparison. The best achievement is an
overall 20-30% delay penalty for the mixed solutions. Additional technology and
circuit optimization should enable some tradeoff between power and speed through
the improvement of cell drive current (by increasing device width) – but clearly the
power, gate area and Ioff will all deteriorate by such a strategy.

Overall recommendations are that (i) the all-asymmetric device reconfigurable
logic cells using {V+,V-}={0.6V,-0.6V} are best-suited to low power reconfigurable
circuits operating with moderate speed, while (ii) the mixed-device reconfigurable
cells using {V+,V-}={1.0V,-0.5V} can operate at comparable speeds to CMOS-LUTs
but only the dynamic-logic variant shows benefits in terms of power.

5 Conclusion

In this paper, we have presented a new style of reconfigurable cell dedicated to
programmable logic applications and based on the DG MOSFET device, particularly
exploiting those with asymmetric oxide thicknesses for the front and back gates and
independently controlled gates. Significant gate area reductions are possible
compared to conventional CMOS LUT techniques (between 80-95%) while
configuration memory requirements are also reduced (up to 60%). The 2-input
reconfigurable cell used as a benchmark was implemented in both static and dynamic
logic styles. Simulation results in DG FD SOI/CMOS technology of the proposed cell
have shown that it can be used either as an all-asymmetric device variant with low Vdd
(0.6V) in low power reconfigurable applications (up to 90% power reduction is
possible) or as a mixed-device variant with a higher Vdd (1V) to achieve comparable
speeds to CMOS-LUTs (20-30% penalty).

References

1. International Technology Roadmap for Semiconductors, 2007 edn.
2. Fossum, J.-G., Kim, K., Chong, Y.: Extremely Scaled Double-Gate CMOS Performance

Projections, Including GIDL-Controled Off-State Current. IEEE Trans. on Electron
Devices 46(11), 2195–2199 (1999)

3. Roy, K., Mahmoodi, H., Mukhopadhyay, S., Ananthan, H., Bansal, A., Cakici, T.: Double-
Gate SOI Devices for Low-Power and High-Performance Applications. In: International
Conference on Computer Aided Design (2005)

4. Dao, T.: Advanced double-gate fully-depleted silicon-on-insulator (DG-FDSOI) device
and device impact on circuit design & power management. In: Proc. IEEE International
Conference on Integrated Circuit Design and Technology, pp. 99–103 (2004)

5. Colinge, J.-P.: Silicon-on-Insulator Technology – Materials to VLSI, 3rd edn. Kluwer
Academic Publishers, Dordrecht (2004)

6. Mukhopadhyay, S., Mahmoodi, H., Roy, K.: Design of High Performance Sense Amplifier
Using Independent Gate Control in sub-50nm Double-Gate MOSFET. In: Proc. IEEE
ISQUED 2005 (2005)

 Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs 113

7. Chiang, M.-H., Kim, K., Tretz, C., Chuang, C.-T.: Novel High-Density Low-Power High-
Performance Double-Gate Logic Techniques. In: Proc. IEEE Int. SOI Conference (2004)

8. Hassoune, I., O’Connor, I., Navarro, D.: On the performance of Double-Gate MOSFET
circuit applications. In: Proc. IEEE NEWCAS (2007)

9. Beckett, P.: A fine-grained reconfigurable logic array based on double gate transistors. In:
Proc. IEEE International Conference on Field-Programmable Technology (FPT), pp. 260–
267 (2002)

10. Reyboz, M., et al.: Explicit short channel compact model of independent double gate
MOSFET. In: Proc. Workshop on Compact Modeling (2007)

11. Hassoune, I., O’Connor, I.: Double-Gate MOSFET Based Reconfigurable Cells.
Electronics Letters 43(23), 1273–1274 (2007)

12. Hutton, M., Schleicher, J., Lewis, D., Pedersen, B., Yuan, R., Kaptanoglu, S., Baeckler, G.,
Ratchev, B., Padalia, K., Bourgeault, M., Lee, A., Kim, H., Saini, R.: Improving FPGA
Performance and Area Using an Adaptable Logic Module. In: Becker, J., Platzner, M.,
Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 135–144. Springer, Heidelberg (2004)

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 114–132, 2010.
© IFIP International Federation for Information Processing 2010

Timed Coloured Petri Nets for Performance Evaluation
of DSP Applications: The 3GPP LTE Case Study

Laura Frigerio1, Kellie Marks2, and Argy Krikelis2

1 Dipartimento di Elettronica e Informazione
Politecnico di Milano

Milano, Italy
laura.frigerio@polimi.it

2 European Technology Center
Altera Corporation

High Wycombe, United Kingdom
{kmarks,akrikeli}@altera.com

Abstract. In this paper we propose the use of Timed Coloured Petri Nets for the
Performance Evaluation of Hardware/Software systems for DSP applications.
Complex systems on chip, composed by hardware and software parts, are often
required to meet strict timing constraints, both in terms of throughput and
latency. However, the verification of the suitability of a system configuration
can usually be performed only after the integration of the hardware and
software components, when design modifications and optimizations are
particularly expensive. This article proposes a framework to evaluate the
performance of HW/SW systems in which Timed Coloured Petri Nets can be
exploited in the early phases of the design. The framework is tested by
modelling the Physical Uplink Shared Channel (PUSCH) bit-rate receiver
portion of 3GPP (3rd Generation Partnership Project) LTE (Long Term
Evolution) standard, the next generation of 3G wireless systems.

1 Introduction

Complex DSP systems nowadays include heterogeneous hardware and software
components, like multithreaded CPUs, hardware accelerators and fast interconnections.
Due to the systems complexity and to the time-to-market pressure, IP (Intellectual
Property) based methodologies are often used to reduce the development time and
enhance module reuse [1].

Embedded systems for DSP applications have strict constraints on performance
that designers try to meet by efficiently combine pre-verified IPs and ad-hoc
implementations. However, the evaluation of the system performance, in order to
verify the system throughput and latency, is usually very difficult due to both the high
degree of concurrency and the heterogeneity of modules. The system verification can
therefore be completed only in final stages of the development, when the hardware
and software modules are integrated into the system. At this stage however, very little
flexibility is left for optimizations and problems in meeting the required constraints
lead to expensive and time consuming modifications of the systems.

 Timed Coloured Petri Nets for Performance Evaluation of DSP Applications 115

For this reason this paper presents a framework for the early evaluation of the
system performance, that can be used to tune and improve the system design before
the actual integration of the components takes place.

Different methods can be used to evaluate the performance of a system and can
generally be classified in 1) simulation techniques and 2) formal models. Simulation
techniques provide information on the system behaviour by tracing the results
obtained when applying stimuli to a system model. Pure simulative approaches using
for example the SystemC Library have been applied in [2] and [3]. However,
simulation approaches alone, cannot provide information on system properties like the
absence of deadlocks or system bottlenecks.

Formal models describe the system in a mathematical form and can provide accurate
information on its behaviour. Example of formal models used for performance
evaluation are Markov processes [4], Queuing Networks [5] and Timed Petri Nets [6].
In this paper, we consider Timed Petri Nets since they are especially suited for
describing HW/SW systems in general and DSP applications in particular. First of all,
Petri Nets are an intuitive and powerful way to define concurrent and asynchronous
processing, useful to describe HW/SW systems. Moreover, with respect to other
methods that consider Stochastic timing models only, Petri Nets allow to consider both
Deterministic and Stochastic timing models. In DSP applications, where IP blocks are
often used in the design, the availability of Deterministic times allows to build accurate
models, since the exact timing required to process input data is often available (e.g.
number of clock cycles of an hardware module) and can be considered in the model.
Finally, several tools are provided to support both the extraction of analytical properties
and the simulation of Petri Nets models.

Petri Nets have been used to model a broad range of applications (refer to [7] for
examples of industrial use). They have also been used to model digital hardware
(many references can be found in [8]). In the context of SoC, the description of
communication infrastructure [9] and the formal verification of the implementation
[10] have been considered. In this paper, Timed Coloured Petri Nets (TCPN) are used
to evaluate the Performance of Hardware/Software systems in early phases of the
system design. The use of Coloured Petri Nets enriches the timing description with
high level elements, such as complex data types and hierarchy decomposition.

Differently from other works on HW/SW systems based on Petri Nets (like [11],
[12], [13]), Petri Nets are not used to support the system design or partitioning, but to
perform a rapid Performance Evaluation at IP-blocks granularity, by seamlessly
integrate HW and SW models.

The rest of the paper is organized as follows. The next Section provides the formal
definition of the Timed Coloured Petri Nets (TCPN) used thorough the paper. A
framework to model a HW/SW system with Petri Nets is then introduced. The
following Section describes the 3GPP LTE application, used as a case study to verify
the proposed framework. The reference HW/SW platform is then presented followed
by the description of the mapping of the LTE application on it, using the Petri Net
framework previously introduced. The following Section compares the results
obtained by applying the Petri Net model to those obtained by the integration of the
hardware and software systems. Finally, last Section concludes the work.

116 L. Frigerio, K. Marks, and A. Krikelis

2 Formal Definitions

Coloured Petri Nets are an extension of classical Petri Nets, introduced by
C. A. Petri [14]. A Coloured Petri Net is defined [15] as a nine-tuple

()SEGCNATPCPN ,,,,,,,,Σ= , where:

1. Σ is a set of non-empty types, also called colour sets.
2. P is a finite non-empty set of places.
3. T is a finite non-empty set of transitions
4. A is a finite non-empty set of arcs such that: Ø=∩=∩=∩ ATAPTP
5. N is a node function, defined from A into PTTP ×∪× , which maps each arc into

a tuple where the first element is the source node and the second element is the
destination node.

6. C is a colour function, defined from P into Σ, which means that C maps the place p
to a colour set;

7. G is a boolean expressions, called guard function, which maps the transition t to
the Boolean function needed to be evaluated as “true” to enable the transition;

8. E is an arc expression function. A transition is enabled if there exists, for each
input arc, a token in the input place bounded to that arc.

9. S is the initialization function, which specifies the initial state of the Petri Net.

The initial marking M0 assigns to the place the initial (coloured) Tokens. For a formal
definition, refer to [15]. In Timed Coloured Petri Nets, transition occurrences fire in
’real-time’ associated with each occurrence of each transition. In this paper we
consider deterministic (D-times) nets, where the times are deterministic [6]. Any
enabled transition starts its firing in the same instant in which it becomes enabled.

Each firing can be considered as a three phase event; first, the (coloured) tokens are
removed from the input places as indicated by the arc functions of the firing
occurrence, the second phase is the firing time period, and when it is finished,
(coloured) tokens are deposited to output places as indicated by the arc functions of
the firing occurrence. If a transition occurrence becomes enabled while it is firing a
new independent firing cycle begins.

Formally, a Timed Coloured Petri Nets is a couple TCPN = (CPN, f), where:

1. CPN is a coloured Petri Net, ()SEGCNATPCPN ,,,,,,,,Σ= .

2. f is a firing-time function which assign the firing time to each occurrence colour of
each transition of the net, +→× RCTf : .

3 Modelling with Petri Nets

A typical DSP application, can be decomposed in a sequence of functions elaborating
data. Each function is intended as an operation, or set of operations, to be applied to a
data unit. A simple representation is given by the application graph (Figure 1a) where
circles identify functions and arcs are used to specify their dependencies. If there are
different data going through different paths, an extension of the previous representation
is considered using different types of arcs (Figure 1b).

 Timed Coloured Petri Nets for Performance Evaluation of DSP Applications 117

Fig. 1. Application graphs for a sequence of F1; F2; … ; Fm functions

However, this situation can be represented as the first one by considering two
separated graphs like in Figure 1c. Each function is executed by an executor that can
be a processor (if the function is implemented in software) or a hardware module (if
the function is implemented in hardware). There can exist multiple instances of the
same executor, in order to satisfy the performance requirements. In the following, we
indicate as resource class (or in short resource) a set of identical executors, and as
availability the number of instances of executors in the same resource class. For
example, we can compute a DFT (function) by the use of a DFT hardware module, or
a processor executing a DFT software algorithm (resources). Let us consider, for
performance reasons, to include in the design two DFT hardware modules in order to
be able to process two requests of the DFT function in parallel. In this case the
availability of the resource DFT is equal to two.

More formally, given a set of functions F and a set of resources R we define for
each function a mapping m on the resource on which it is executed, m : F R. The
execution of a function fi on a resource rj requires a certain amount of time tij . Values
tij are known if the design process is based on IPs (Intellectual Property) or can be
estimated on the basis of previous and similar implementations. In case of variability
a timing distribution or an average time value can be considered.

Starting from these definitions, we can generate the Timed Coloured Petri Net
modelling the application, as represented in Figure 2 for a simple example. For each
function and each resource we introduce respectively two places (an F-Place and an
R-Place). We also add a Q-place for each function to represent the queue of data
waiting to execute the function. The output transition of the F-Place is annotated with
time tij and the initial marking of each R-Place is defined by its availability. F-Places
are connected according to the application graph; if a resource is shared by different
functions, a single R-Place is used and appropriate arcs are used to connect different
F-Places to the same R-Place.

118 L. Frigerio, K. Marks, and A. Krikelis

Fig. 2. TCPN generated from an application graph, where the availability of R1 is equal to 1,
the availability of R2 is equal to 2. D-tokens in the Q-Place represent three data units waiting
for the execution.

Coloured tokens are used to represent both the resource availability (R-Tokens
contained in R-Places) and the data units (D-Tokens contained in F-Places and Q-
places). The type of D-Tokens is defined according to the parameters needed to
determine the system execution. For example, a D-Token can contain an integer value
corresponding to the input dimension of the DFT function, that affects the time it
takes to execute that function.

In the following we introduce some extension of the presented model.

3.1 Multiple Data Management

If there are data that take different paths, we could exploit the availability of
expressions and bindings in CPN to represent this situation. For example, in Figure 3
the D-Token contains two fields, and the value of the first one is used to select the
path the token follows in the net.

Fig. 3. TCPN for multiple data management

 Timed Coloured Petri Nets for Performance Evaluation of DSP Applications 119

3.2 Pipeline Hardware

A pipelined hardware resource can accept a new data in input every clock cycle (stage
time). The execution is completed after the total number of clock cycles required by
the function. The execution on a pipelined resource is therefore characterized by two
values: a time tij representing the total time to execute the function and a time sij
representing the stage time. The stage time is equal to one considering the common
definition of pipeline, but in a more generic module it is a value greater that one and
smaller than tij.

An example is represented in Figure 4.

Fig. 4. TCPN to model a pipelined hardware resource

3.3 Data Ordering

If data ordering must be considered, we can exploit the use of FIFOs in CPN [16]. For
example, Figure 5 represents two functions executing on the same resource, where the
requests for the use of the resource are queued in a FIFO. An additional place, that
contains one token of type FIFO, is introduced. Each time an element has to be added,
the FIFO token is removed, and replaced with an updated version with the new
element at the end. Each time an element has to be extracted, the FIFO-token is
removed, and replaced with an updated version without the first element.

Fig. 5. TCPN to model data ordering

120 L. Frigerio, K. Marks, and A. Krikelis

3.4 Design Granularity

The concepts of functions and resources are not necessary restricted to IPs
granularity, but can be adapted according to the specific needs when modelling the
application. We can model, for example, the internal behaviour of a hardware module
or take into consideration the availability of memory space as an additional resource
to perform an operation. Example of finer granularity are provided in the rest of the
paper.

4 Introduction to the LTE Application

This Section gives an overview of the LTE application, and explains the reasons for
needing to model the system using the Petri-net approach. After providing an
introduction on the LTE main features, we highlight the LTE criticalities, in particular
latency requirements and complexity. The presence of these criticalities constitutes a
major obstacle in evaluating a HW/SW solution before its actual implementation. The
following Sections show how Petri Nets can help doing this type of evaluation.

4.1 Application Description

3GPP Long Term Evolution (LTE) is next generation of 3G networks aimed at
delivering lower latencies, with greater capacity and throughput. It is based on OFDM
in the downlink and Single Carrier Frequency Division Multiple Access (SCFDMA)
in the uplink.

LTE has evolved from previous 3GPP standards with each evolution providing
greater network throughput and lower latencies. The first 3GPP standard, known as
release 99, used a radio access technique called Wideband Code Division Multiple
Access (WCDMA). It could provide data rates of up to 384kbps in the downlink and
384kbps in the Uplink with round-trip latencies of approximately 150ms. The next
two 3GPP releases, High Speed Downlink Packet Access (HSDPA) and High Speed
Uplink Packet Access (HSUPA), improved the data rate to 14.4Mbps in the Downlink
and 5.7Mbps in the Uplink. The round-trip time reduced from approximately 100ms
to approximately 50ms respectively. In Release 7 or HSPA+ (High Speed Packet
Access +) a new multiple antenna technique known as MIMO (Multiple Input
Multiple Output) was introduced, which improved the data rates by using multiple
transmit antennas to carry parallel streams of data which are then extracted separately
in the receiver. This technique improved the data rates to 28/42Mbps (depending on
the number of antennas used) in the downlink and 11Mbps in the uplink.

Release 8 or 3GPP LTE, represents a new generation of wireless techniques by
moving away from WCDMA, and employed OFDMA (orthogonal frequency division
multiple access) in the Downlink and SC-FDMA in the uplink. Higher data rates (up
to 172Mbps in the downlink and 86Mbps in the Uplink) are achieved in LTE through
the efficient use of the available spectrum by the use of higher order modulation
schemes (up to 64QAM) and MIMO techniques. In addition to this, LTE provides
greater flexibility for network operators allowing variable spectrum allocations up to
20MHz, and for the mobile devices, the use of SC-FDMA in the uplink means greater
terminal or mobile efficiency and longer battery life.

 Timed Coloured Petri Nets for Performance Evaluation of DSP Applications 121

The uplink bit-rate receiver portion (Physical Uplink Shared Channel - PUSCH) of
the LTE system has been chosen to illustrate the use of Petri-net models to evaluate
the performance of the system. An overview of the PUSCH may be found in [17], and
a technical specification of the PUSCH including the processing steps required may
be found in [18].

Fig. 6. Functions composing the LTE application

Figure 6 shows basic processing steps of the SC-FDMA uplink bit-rate receiver.
The shaded blocks have been considered, for illustration purposes, to present the use
of Petri-net models for complex DSP systems.

Table 1. Blocks and parameters of the LTE uplink application

Block

Function Parameters affecting
functionality/latency

Ex. Parameter
Ranges

IIDFT Transform Precoding Number of resource Blocks 12-1296
Demapper Demodulation Modulation scheme QPSK,16QAM,

64QAM
Rate De-Matcher Channel coding Code block size,

Coding rate,
Filter bits,
Redundancy version

40 – 6144
1/9 – 5/6
0 – 64
1 – 4

CTC (Turbo) Channel coding Code Block size 40-6144

Blocks are characterized by parameters that can affect not only the functionality

but also the latency of the block. Table I gives examples of the different parameters
and the range of values the parameters may take.

Users are allocated a number of resource blocks for transmission. The modulation
scheme and coding rate determine the number of data-bits transmitted during the slot.

Due to the low latency target for LTE, the uplink SC-FDMA link budget is in the
order of 1ms. Meeting this latency target is a key requirement of the system, and
requires careful analysis of the latency of the system. The number of possible
parameter combinations and the interaction between the latency and throughput of
each block in the system makes this a difficult task to perform without a tool to model
these interactions.

In the following the main features of each block being modelled are summarized.

122 L. Frigerio, K. Marks, and A. Krikelis

4.1.1 IDFT
In the transmitter the OFDM symbol is “orthogonally spread” onto the subcarriers
using a Discrete Fourier Transform (DFT). The number of subcarriers that it is spread
across represents the number of resource blocks allocated for the users transmission,
and is equivalent to the DFT size.

In the receiver the IDFT is used to retrieve the DFT-Spread OFDM symbol
transmitted across the air interface. The IDFT accepts a sequence of complex data
samples and produces a complex output sequence of the same length.

4.1.2 Demapper
The symbol demapper (demapper) translates the complex data samples produced by
the IDFT into soft-valued bits. Each bit in the symbol is given a log-likelihood ratio
value based on the exact position of the received symbol in the IQ plane.

The soft-decision values depend on the modulation scheme used (and therefore the
constellation pattern produced). Possible modulation schemes used for LTE Uplink
Shared Data channel (PUSCH) include QPSK, 16QAM and 64QAM.

4.1.3 Rate De-Matcher
The rate dematcher maps the size of the data in the transport layer onto the appropriate
physical layer resources by inserting or removing redundancy.

The rate dematcher takes soft-value bits as input from the symbol demapper and
produces systematic (S) and parity bits (P1, P2) for the turbo.

4.1.4 CTC (Turbo Decoder)
The turbo decoder is used to perform forward error correction of the input data stream
by utilizing the redundancy in the encoded data stream. Turbo codecs have become
the coding technique of choice in many communication systems due to their near
Shannon limit error correction capability.

The turbo decoder takes the systematic and parity bits produced by the rate
dematcher and produces a stream of bits, representing the recovered data bits. The
turbo block operates on the code blocks produced by the rate dematcher.

4.2 Understanding LTE Latency Requirements

Providing low network latency is a key network metric for LTE systems. Services
such as voice over IP, video conferencing and network gaming applications are
particularly sensitive to latency as it has a major impact on the user’s experience of
these services.

To provide this reduction in latency, LTE employs two main mechanisms [21]

1. Reducing the Transmission Time Interval (TTI). LTE will use a TTI of 1ms,
50% less than the previous generation wireless standard HSUPA (High
Speed Uplink Packet Access).

2. Faster HARQ or retransmission processes for lost or damaged blocks of data.
By providing faster feedback mechanisms, LTE will enable the transmitter to
resend the lost blocks earlier, making the radio transmission more efficient.

 Timed Coloured Petri Nets for Performance Evaluation of DSP Applications 123

The LTE user-plane latency is defined in [21] as: “the one-way transit time between a
packet being available at the IP layer in either the UE/RAN edge node and the
availability of this packet at IP layer in the RAN edge node/UE. The RAN edge node
is the node providing the RAN interface towards the core network”, where UE stands
for User Equipment, or the mobile device and RAN stands for Remote Access
Network, referring to the eNB (Evolved Node B) or base station. The requirement for
the LTE user-plane latency is 5ms.

 UE eNB

1 ms

1 ms

HARQ RTT
5 ms

1 ms

1 ms

TTI + frame
alignment

1.5 ms

1.5 ms

Fig. 7. User Plane Latency components in LTE[22]

This latency figure contains several identifiable latency components as shown in
Figure 7. The times shown in the Figure are a lower bound as to what is achievable
with LTE, as they assume that a single user system, transmitting small IP packets (0
byte payload with IP headers). This implies that the network is not loaded and that
there are no delays due to queuing or scheduling. In addition to this, the HARQ round
trip time must be 5ms.

For eNB providers, this means that providing these latency targets are met, a trade
off may be made between the Uplink and Downlink processing times in the eNB. It
may be possible for the provider to use only 0.6ms for the DL processing time leaving
an extra 0.4ms for the UL processing. Since the UL processing is significantly more
complex hat the DL processing such an analysis might prove valuable, requiring
careful analysis of the latency in each individual components.

4.3 Understanding LTE Complexity

The LTE specification is characterized by an increase in the complexity of the signal
processing over other OFDM systems, such as WIMAX. LTE requires high data rate
forward error correction, Multiple Input, Multiple Output antenna techniques, and in
the uplink, SC FDMA requires an extra stage of processing to transform from the
frequency domain to the time domain. This additional complexity in the signal
processing, is also matched by commensurate increase in complexity of the control
required to manage the signal processing elements. Therefore the LTE system is
highly suited for a HW/SW approach whereby the complex data processing is done in
HW, and the control is performed in SW.

124 L. Frigerio, K. Marks, and A. Krikelis

5 Reference Architecture

The reference architecture considered to implement the LTE system is based on the
Altera Hardware/Software solution for high performance datapath applications [20].
The solution is based on a combination of a multithreaded soft processor and
hardware accelerators.

The overall processing is based on an asynchronous execution paradigm triggered by
task (i.e. software process) and event (i.e. hardware accelerated process) requests. The
overall system is composed of the multithreaded processor with supporting control and
interfaces that manage the communication with dedicated accelerator modules through
buses and queues. The details of the Hardware/Software interaction and communication
are hidden from the applications developer and Hardware/Software communication
introduces an almost negligible latency of very few clock cycles.

Fig. 8. Instruction interleaving

The soft processor can execute 8 threads simultaneously by means of a

simultaneous multithreading. In a traditional multithreading, a new thread is executed
when the previous thread stalls; however, in this design, instructions corresponding to
8 different threads are mixed (interleaved) in the pipeline. This allows to avoid the
overhead for thread switching and pipeline stalls since whatever hazard in a given
thread instruction is resolved before the next instruction of the same thread is
executed. The execution scheme is depicted in Figure 8 for an exemplified pipeline
with 4 stages. One of the advantages of this approach is that the software execution
time becomes deterministic given an execution path, since all the sources of
indeterminism are avoided. Hazards and context switching introduce no penalty, and
no cache is used in the system (in the great majority of datapath applications data and
program code are limited in size and can be stored directly on the chip).

For each independent flow a unique ID is assigned (PID). The number of PIDs is
defined during the hardware synthesis of the soft processor and it can be adjusted to
suit the application performance requirements.

 Timed Coloured Petri Nets for Performance Evaluation of DSP Applications 125

Fig. 9. Execution Flow on the Hardware/Software Altera architecture for datapath processing

A typical processing flow combines Tasks that are executed in software and Events
executed by dedicated hardware blocks, as schematically depicted in Figure 9. The
inherent parallelism of the multithreaded processor and the multiplicity of dedicated
hardware blocks allows for several independent flows to be processed concurrently.

5.1 Architecture Modelling with TCPN

Since the hardware and software parts can generally run at two different frequencies
Fhard and Fsoft, we consider a reference frequency Fref. The modelling of this
architecture with a Petri Net can be done as following:

• Multithreading. The execution of eight threads on the same processor at frequency
Fsoft, with the instruction interleaving described in the previous Section, is
functionally equivalent to the execution of eight threads on eight identical
processors each one running at a frequency Fsoft/8. The multithreaded processor is
therefore represented with a resource class having availability equal to eight and
frequency equal to Fsoft/8.

• Timing. Both hardware and software times can be considered as deterministic.
Each function fi executing on a resource rj is associated with the execution ticks tij
computed as:
− tij = (Num. of instructions * Fref)/(Fsoft/8) (SW).
− tij = (Num. of clock cycles * Fref)/(Fhard) (HW).

• Number of PIDs. An additional place (PID-Place) is added, having as initial
marking a number of R-Tokens equal to the number of PIDs. Each time a new
block of data enters the system an R-Token in consumed from the PID-Place and is
produced when the block of data exits the system. In a more generic architecture
this place can be used to represent the maximum depth of queues for
Hardware/Software communications.

• Communication. Since the overhead for the Hardware/Software communication is
negligible, it is not modelled. In a more generic architecture, if the communication
introduces substantial overhead, this can be represented exploiting the same
framework used for the rest of the system (for example, a data transfer between
two modules is the function and a bus is the resource).

126 L. Frigerio, K. Marks, and A. Krikelis

6 Mapping of the LTE Application on the Platform

The implementation of the LTE application has been organized as follows. The
majority of the complex DSP processing is done with hardware accelerators; this
includes IDFT, Symbol Demapper, Rate De-matcher, and Turbo.

The control of the data flow through these blocks, and the configuration of the
blocks with the relevant parameters (see Table I) is done using software running on
the threads in the processor.

Fig. 10. a) Application Graph for the LTE application, b) Sketch of the TCPN associated to the
LTE application graph

Figure 10 represents the application graph and a sketch of the correspondent
TCPN.

Coloured tokens that flow into the net contain all the information needed to
influence the system evolution, in particular timing and computational path.

The most important parameters are: pid, number of resource block, modulation
scheme, coding block size, coding rate, filter bits, redundancy version and constitute
the fields characterizing the tokens. Other parameters (like the number of subcarriers
or the number of symbols per TTI) constitutes system settings and are therefore
associated to the system model instead of being stored into the tokens.

The times associated to the transitions depend on the number of hardware clock
cycles and software instructions required to process the functions. For each function
composing the system appropriate timing has been considered, often dependent on the
parameters cited before.

In the LTE system where there are multiple complex IP Blocks interacting, it is
often necessary to buffer blocks of data before the processing. This may be because
the function requires all data present in order to calculate the result or it may be done
to achieve the required throughput of the system.

In order to obtain a more accurate model, the behaviour of the hardware modules
have been described with a finer grain of detail, by decomposing the functions in
more steps and considering additional resources like buffers and memories.

In the following, we present the Petri Nets schemes developed for the blocks of the
LTE architecture, highlighting the strategies used to enhance the accuracy of the
model.

 Timed Coloured Petri Nets for Performance Evaluation of DSP Applications 127

6.1 IDFT

The IDFT is characterized by the loading, executing and unloading phases. For each
phase, the computing time is function of the resource block size. The three phases
must be completed for each data before the computing can start for a new one. The
situation is represented in Figure 11 where the computing is decomposed in three
steps and the R-Place associated with the IDFT core is connected respectively to the
transition entering the first phase and the transition exiting the last phase.

Fig. 11. Petri Net structure of the IDFT block

6.2 Demapper

The symbol demapper module is responsible for transforming the IQ samples
representing the constellation points as dictated by the modulation scheme, to soft
decision bits or LLR (log-likelihood ratio) values.

The Petri Net scheme correspondent to the SDM is represented in Figure 12. The
hardware resource that implements the function is pipelined, therefore it is modelled
as explained previously, by distinguish the time required for the stage (that is equal to
one clock cycle in this case) and the time required for the computing.

Fig. 12. Petri Net structure for the Symbol demapper

The module operates with the granularity of a “complex data sample”, that for each
user is proportional to the number of resource blocks (in particular it is equal to the
number of resource blocks multiplied by the subcarriers sub and symbols per TTI

128 L. Frigerio, K. Marks, and A. Krikelis

STTI). The first transition therefore generates the tokens corresponding to the data
samples that will be processed by the engine and put them in the input place. To
generate the next software task the processing of all the tokens must be terminated,
therefore a place representing a repository is used to activate the next software task
when the processing is finished. Some extra checks, that for simplicity are not shown
in the Figure, are used to guarantee the correct execution order.

Each sample generates a number of soft bits dependent on the modulation scheme
(represented by parameter Qm in the Figure). For each processed sample, the total
number of bits generated is updated, by the use of the place “count” that contains an
integer value token. The token is withdrawn and put back with its value updated. This
is an alternative to the use of many tokens representing the soft bits, that has been
chosen in order to increase the model efficiency. Indeed, for the simulation engine,
updating the value of a single token is simpler and quicker than maintaining all the
information related to a large number of tokens.

6.3 Rate De-Matcher

The rate de-matcher is activated when a request is ready and the symbol demapper
has produced enough bits to start the computation. Therefore, we use a condition on
the module input transition that checks if enough bits are available to start the
computation. In this case, the transition fires, with the effect that the number of bits is
updated and the computation is started. Figure 13 represents the corresponding net.

Fig. 13. Petri Net structure for the rate de-matcher

6.4 CTC (Turbo Decoder)

The Turbo model has two input buffers, a core execution module and two output
buffers. The functioning is divided into 3 stages: loading, executing and unloading.

The corresponding PN is represented in Figure 14. The load operation can start
when the input port and a input buffer are available. After that, data are ready to be
processed by the core. The processing can start if an output buffer is available (to
write the produced data) and the execution core is free. At the end of the execution the
input buffer is freed and can be used to load new data. Finally data are unloaded when
an output port is available and at the end the output buffer is freed.

The transitions timing depends on the parameters affecting the system, and on the
configuration of the hardware module.

 Timed Coloured Petri Nets for Performance Evaluation of DSP Applications 129

Fig. 14. Petri Net structure of the Turbo block

7 Experimental Results

In order to collect information about the application performance, the Petri Net model
has been simulated using the CPNtool developed by CPN Group of University of
Aarhus in Denmark [19]. The tool allows to describe a TCPN, to automate the
simulations and to collect statistics. The results obtained from the model have been
compared with accurate simulation results obtained by implementing the application
on the reference architecture. These results have been collected by integrating the ISS
simulator of the Altera multithreaded CPU with software models of the hardware
event modules annotated with high level latencies.

In the following, we investigate different transmission scenarios. Each
configuration specifies the number of users, and for each user the assigned number of
Resource Blocks (RB), the coding rate (CR) and the modulation scheme. The number
of users and resource blocks affect the number of blocks processed by the system. The
coding rate and the modulation scheme affect the block dimension. In particular the
block dimension increases with a lower coding rate and a modulation scheme with
more constellation points.

The considered scenarios are the following:

1. 110 users, with 1 resource block each, coding rate 5/6, modulation 64 QAM.
2. 5 users with different spectrum allocations: (RB=10,CR= 5/6), (RB=36,CR=1/9),

(RB=20,CR=1/9), (RB=4,CR=3/4), (RB=40, CR=1/4), modulation 64 QAM.
3. 2 users, with different spectrum allocations (RB=100,CR=5/6), (RB=10,CR=5/6),

modulation 64 QAM.
4. 50 users with 1 resource block each, coding rate 1/3, modulation QPSK.
5. 18 users with 6 resource blocks each, coding rate 2/3, modulation 16 QAM.

Figure 15 shows the data chunks output times obtained for in the five scenarios, for
both the simulations. The dimension and number of the data chunks elaborated for
each user are computed according to the LTE specification [18].

The performance evaluation shows that the system composed of the shaded blocks
represented in Figure 6 is able to support the strict timing performance (1ms for 110
resource blocks) in all the tested configurations. The use of the Petri Net model allows
to obtain such evaluation in early stages of the system development, without requiring
an actual hardware/software integration.

130 L. Frigerio, K. Marks, and A. Krikelis

Fig. 15. Comparison between the system output times obtained through TCPN and the real
system simulation for different scenarios. Each colour represents a user.

The comparison with the results obtained by combining the hardware and software
modules shows that the TCPN model can provide a good accuracy. Figure 16
represents the errors in the arrival times for all the data chunks in all the five
scenarios. The difference between the arrival times obtained using the Petri Net and
the ones obtained simulating the system are always inferior to 35 microseconds, as
shown by the left Y-axis in the graph. Normalizing the values with the greatest arrival
time (first scenario) we obtain errors inferior to 5%, as shown by the right Y-axis in
the graph. Considering for each scenario a normalization to the greatest arrival time of
that scenario, we still obtain errors inferior to 5%.

0 100 200 300 400 500 600 700 800

TCPN

Sim.

0 100 200 300 400 500 600 700 800

TCPN

Sim.

0 100 200 300 400 500 600 700 800

TCPN

Sim.

0 100 200 300 400 500 600 700 800

TCPN

Sim.

Microseconds

0 100 200 300 400 500 600 700 800

TCPN

Sim.

a)

b)

c)

d)

e)

 Timed Coloured Petri Nets for Performance Evaluation of DSP Applications 131

0

5

10

15

20

25

30

35

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106

Blocks

M
ic

ro
se

co
nd

s

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

%
E

rr
or

First Scenario Second Scenario Third Scenario Fourth Scenario Fifth scenario

Fig. 16. Absolute and percentage errors of the blocks arrival times in each scenario

8 Conclusion

One of the main problems, when designing a DSP application, is the meeting of strict
timing constraints; however, the verification of the system can usually be performed
very late in design phase. This paper proposes the use of Timed Coloured Petri Net
for the early evaluation of the system Performance of Hardware/Software DSP
applications. We show how to model an application by generating a TCPN that
considers the functions and the resources composing the system. The modelling of the
3GPP LTE application has been considered as case study. The experimental results
are quite accurate when compared with hardware/software simulations and, as a
substantial advantage, can be generated in early stages of the design, when
modifications and improvements of the system are still possible. The proposed
approach reduces the risk of highly expensive re-spins for the modification of the
final system and provides room for the exploration of the solution space.

References

1. Gajski, D.D.: IP-based methodology. In: Proc. of 36th DAC (1999)
2. Haubelt, C., Falk, J., Keinert, J., Schlichter, T., Streubühr, M., Deyhle, A., Hadert, A.,

Teich, J.: A SystemC-based design methodology for digital signal processing systems.
EURASIP J. Embedded Syst. 1 (2007)

3. Ueda, K., Sakanushi, K., Takeuchi, Y., Imai, M.: Architecture-level Performance
Estimation for IP-based Embedded Systems. In: DATE 2004 (2004)

4. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, pp. 515–553.
McGraw-Hill, New York (1984)

5. Bunday, B.D.: An Introduction to Queueing Theory. Oxford University Press, Oxford
(1996)

132 L. Frigerio, K. Marks, and A. Krikelis

6. Zubereck, W.M.: Timed Petri Nets – definitions, properties and applications. Microelectronic
and Reliability, 627–644 (1991)

7. Zurawski, R., Zhou, M.: Petri Nets and Industrial Applications: A Tutorial. IEEE
Transactions on industrial electronics 41(6) (1994)

8. Yakovlev, A., Gomes, L.: Luciano Lavagno, Hardware Design and Petri Nets. Springer,
Heidelberg (2000)

9. Blume, H., Von Sydow, T., Noll, T.G.: A case Study for the application of Deterministic
and Stochastic Petri Nets in SoC communication Domain. Journal of VLSI Signal
Processing (2006)

10. Zhan, J., Sang, N., Xiong, G.: Formal Co-verification for SoC Design with Colored Petri
Net. LNCS. Springer, Heidelberg (2005)

11. Maciel, P., Barros, E., Rosenstiel, W.: A Petri Net Model for Hardware/Software
Codesign. Design Automation for Embedded Systems Journal (1999)

12. Rust, C., Tacken, J., Böke, C.: Pr/T-Net Based Seamless Design of Embedded Real-Time
Systems. In: ATPN 2001 (2001)

13. Gomes, L., Costa, A.: Petri nets as supporting formalism within Embedded Systems Co-
design. In: Industrial Embedded Systems Symposium (2006)

14. Petri, C.A.: Communication with Automatas, PhD Dissertation, University of Bonn (1962)
(in German)

15. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Basic Concepts. Monographs in Theoretical Computer Science, vol. 1. Springer,
Heidelberg (1997)

16. Bourcerie, M., Morel, J.Y.: Algebraically structured colored Petri nets to model sequential
processes. IEEE Transactions on Systems, Man, and Cybernetics 27(4), 681–686 (1997)

17. 3GPP TS 36.300 Technical Specification group radio Access Network, E-UTRA, E-
UTRAM, Overall Description, Stage 2

18. 3GPP TS 36.201, 36.211-14
19. CPN Tools, Coloured Petri Net Group, University of Aarhus, Denmark,

http://www.daimi.au.dk/CPnets/
20. Altera Corporation, http://www.altera.com
21. R2-061402, Concept evaluation of user plane latency in LTE, Ericsson
22. R2-072187, LS on LTE latency analysis, Ericsson

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 133–153, 2010.
© IFIP International Federation for Information Processing 2010

Real-Time Biologically-Inspired
Image Exposure Correction

Vassilios Vonikakis, Chryssanthi Iakovidou, and Ioannis Andreadis

Democritus University of Thrace
Department of Electrical & Computer Engineering

Laboratory of Electronics
Xanthi, Greece

Abstract. This chapter presents a real-time FPGA implementation of a
biologically-inspired image enhancement algorithm. The algorithm compensates
for the under/over-exposed image regions, emerging when High Dynamic Range
(HDR) scenes are captured by contemporary imaging devices. The transforma-
tions of the original algorithm, which are necessary in order to meet the
requirements of an FPGA-based hardware system, are presented in detail. The
proposed implementation, which is synthesized in Altera’s Stratix II GX:
EP2SGX130GF1508C5 FPGA device, features pipeline architecture, allowing the
real-time rendering of color video sequences (25fps) with frame sizes up to
2.5Mpixels.

Keywords: FPGA, Real-Time Image Enhancement, Human Visual System,
High Dynamic Range Imaging.

1 Introduction

Conventional Standard Dynamic Range (SDR) sensors, which are the case in most
consumer-electronics cameras, fail to adequately reproduce HDR scenes, which can
be common in outdoor capturing conditions. The main reason for this problem is the
low dynamic range of the capturing device, compared to the dynamic range of the
scene. As a result, the captured images usually suffer from under/over-exposed
regions, in which, little or no information is available to the observer. Adjusting the
exposure time is not a solution to the problem, since acceptable reproduction can only
be achieved for the dark or the bright image regions but not for both. This is clearly
depicted in Fig. 1.

A straight-forward solution to this problem is the use of HDR capturing devices
instead of the conventional SDR ones. Nevertheless, HDR cameras cannot always
provide a practical solution. Their increased cost has limited their use, while the
majority of the existing vision systems are already designed for SDR cameras.
Furthermore, an additional algorithm is required in order to perform the mapping of
the HDR data to an SDR monitor. Another possible solution is to acquire an HDR
image by combining multiple SDR images, captured with different exposures [1].
Nevertheless, this solution can be applied only to static scenes, since it is impossible
to have multiple exposures of a moving object, always, at the same background.

134 V. Vonikakis, C. Iakovidou, and I. Andreadis

Consequently, this approach cannot be applied to time-critical applications i.e. video.
A third solution to the above problem is the use of an unsupervised tone-enhancement
algorithm, which will compensate for the under/overexposed regions of SDR images,
without affecting the correctly exposed ones. This approach overcomes the limitations
of the previous two solutions: it does not increase considerably the total cost of the
system and it can be used in video sequences as well.

Fig. 1. There is not a single exposure that can adequately capture both the dark and light
regions of an HDR scene

Several enhancement algorithms have been proposed in this direction, yet, very
few have been implemented in hardware. Some of the most important are the Retinex
family of algorithms (Retinex: Retina + Cortex), among which, the more widespread
are the “Multi Scale Retinex with Color Restoration” (MSRCR) [2] and the
“Variational Framework for Retinex” [3]. The first has been implemented on a Digital
Signal Processor (DSP) [4, 5], allowing the real-time, single-scale rendering of
grayscale images, with sizes up to 256×256 pixels. A variation of the second has been
implemented on an Application Specific Instruction-set Processor (ASIP) [6],
allowing the processing of SXGA (1280×768 pixels) or WXGA (1366×768 pixels)
still images in 1 sec, or the a real-time rendering of video frames with size 256×256
pixels and frame rates up to 29 frames per second (fps). Both implementations do not
meet the VGA standard (color images of 640×480 pixels size and 25fps) in video
rendering. Recently, an alternative enhancement algorithm, inspired by the shunting
characteristics of the center-surround cells of the Human Visual System (HVS), has
been presented in [7]. It exhibits low complexity, as well as the fastest execution
times, compared to the algorithms of the previous two implementations.
Consequently, it constitutes a good basis for a hardware implementation.

This chapter presents an FPGA implementation of this algorithm. It focuses on the
transformations which are necessary in order to optimize the original algorithm for
meeting the requirements of an FPGA-based system. The main objective is to
implement a pipeline architecture, which will allow the real-time rendering of color
video sequences, with sizes greater than the contemporary implementations (256×256

 Real-Time Biologically-Inspired Image Exposure Correction 135

pixels). Two alternative architectures are presented, both synthesized in Altera’s
Stratix II GX: EP2SGX130GF1508C5 FPGA device. The first allows the real-time
(25fps) rendering of color images, with sizes up to 640×480 pixels. The second
architecture can render, in real-time, images with sizes up to 2.5MPixels. Both
architectures are designed in a way that easily allows future improvements in the core
of the algorithm. This, in addition to the FPGA platform, results into a low-cost,
robust solution, which can be used to other vision systems as preprocessing,
compensating for the low dynamic range of the SDR image sensor.

The chapter is organized as follows. In Section 2 the structure of the original
algorithm is briefly described. In Section 3, the transformations of the original
algorithm, which will make it suitable for hardware implementation, are presented.
The proposed implementations are presented in Section 4, with gate level integrated
circuits. The comparison between the hardware and the software are provided in
Section 5. Finally, conclusions and a discussion are provided in Section 6.

2 Structure of the Algorithm

In this section the original algorithm, which compensates for the under/over-exposed
regions, will be briefly described in order to underline the modifications made in the
proposed hardware implementation. A detailed description of the algorithm is out of
the scope of this chapter. Extensive details can be found in [7].

The block diagram of the original algorithm is depicted in Fig. 2. In order not to
distort the colors of the image, the YCbCr color space is employed, which decorrelates
the chromatic and achromatic information. The original method works only on the
luminance component and comprises three different stages: a linear stretch of the
luminance component, a parameter estimation block and the local enhancement stage.
The core of the algorithm is depicted in the equations (1)-(7). Equation (1) stretches
linearly the luminance values to the interval [0,B], in order to use the full range of the Y
channel. B is the maximum value of the luminance data (255 for 8-bit values), Ymin and
Ymax are the minimum and maximum luminance values of the image, while (i, j) denotes
the spatial coordinates of the pixel.

Fig. 2. The block diagram of the original algorithm used in the hardware implementation

136 V. Vonikakis, C. Iakovidou, and I. Andreadis

min

max min

ij
ij

Y Y
Y B

Y Y

−
′ = ×

−
 (1)

()

()
()
()

()

,

2

,

2

ij

ij

ij

ij

ij

ij

K
ij

K

K
ijK

out ij
K

ij K

K
ij

B A S Y B
S

A S Y
Y Y S

A S Y B
S

A S B Y

⎧ ⎡ ⎤ ′+ ⋅⎢ ⎥⎪ ⎣ ⎦ ∀ <⎪ ′+⎪′ = ⎨
⎪ ′⋅
⎪ ∀ ≥
⎪ ′+ −
⎩

 (2)

()
() ()

() ()

2

2

dark

bright

B
M q S d S S

A S
B

M q B S d B S S

⎧ ⎡ ⎤+ ⋅ ∀ <⎣ ⎦⎪⎪= ⎨
⎪ ⎡ ⎤+ − ⋅ − ∀ ≥⎣ ⎦⎪⎩

(3)

() [)2
 0, 2

2

B
d x x B

B x
= ∀ ∈

−
(4)

()
2x

q x
Lobe

= (5)

()2

1

2 1

K K

ij

K K

i b j b
K

yx
y i b x j bK

S Y
b

+ +

= − = −

′=
+

∑ ∑ (6)

1 2 3
, , ,

, 1 2 3, with
3

K K K
out ij out ij out ij

out ij K K K

Y Y Y
Y b b b

+ +
= < <

(7)

Equations (2)-(5) describe the enhancement function of the algorithm. As it is
clearly depicted in Fig. 2, the enhancement function uses two local and three global
parameters. The local parameters, which depend on the local characteristics of the
image, are the stretched luminance value Y’ij of the pixel and the average luminance
SK

ij of its square surrounding region. K denotes the scale upon which the surround is
calculated. Equation (6) describes the surround calculation. Three different
surround sizes are employed, with bK denoting the radius of the square surrounding
region for scale K. The final corrected value Yout,ij for every pixel, is calculated by

 Real-Time Biologically-Inspired Image Exposure Correction 137

equation (7) and it is the average between the corrected values YK
out,ij of the three

spatial scales. The global parameters, which depend on the global image statistics,
are Mdark, Mbright and Lobe. Their exact calculation is described by the following
equations.

1 1 3
_ 100

py px

ij
i j

B
u Y

bin low
px py

= =

⎛ ⎞′−⎜ ⎟
⎝ ⎠

= ×
⋅

∑∑
 (8)

()270
100 _ 30

100darkM bin low= − + (9)

1 1

2
3

_ 100

py px

ij
i j

B
u Y

bin high
px py

= =

⎛ ⎞′ −⎜ ⎟
⎝ ⎠

= ×
⋅

∑∑

(10)

()270
100 _ 30

100brightM bin high= − + (11)

_ 100 _ _bin middle bin low bin high= − − (12)

()29
100 _ 1

100
Lobe bin middle= − + (13)

where px, py are the dimensions of the original image and u(·) is the unitary step
function. bin_low, bin_middle and bin_high are the bins of a 3-bin normalized
histogram (bin_low[0, B/3], bin_middle(B/3, 2B/3), bin_high[2B/3, B]) that divides
the range of the stretched luminance channel Y’ into 3 equal tone intervals: dark,
medium and bright. For a detailed analysis on the characteristics of the global
parameters, refer to [7].

3 Algorithm Optimization

3.1 Optimizing the Structure of the Algorithm

The straight-forward conversion of an algorithm’s software implementation to hardware,
usually leads to unsatisfactory results. Most of the times many transformations are
necessary in order to optimize the algorithm for hardware implementation. This section

138 V. Vonikakis, C. Iakovidou, and I. Andreadis

focuses on these optimizations. The original algorithm, as depicted in Figure 2, requires
three different scans of the image, in order to get the final result. This is depicted in
Figure 3.

Fig. 3. The structure of the original software implementation

The first scan of the image is necessary in order to find Ymin and Ymax. In the second
scan, equation (1) is applied to all pixels, stretching their luminance values to [0,255].
The second scan can be eliminated using a Look-Up-Table (LUT). Instead of
applying the stretching transformation to all image pixels separately, equation (1) can
be executed only 256 times, one for each luminance value. These precomputed values
are stored in the “Stretching LUT”. Feeding the original luminance value Yij of a pixel
to the StretchingLUT module, will output its stretched luminance value Y’ij, as
equation (14) indicates.

ij ijY StretchingLUT Y⎡ ⎤′ = ⎣ ⎦ (14)

This simple transformation reduces the required scans of the image to two, as Figure 4
indicates.

 Real-Time Biologically-Inspired Image Exposure Correction 139

Fig. 4. The structure of the algorithm after the Stretching LUT transformation

3.2 Requirements for a Pipelined Architecture

Implementing a pipelined architecture is a primary objective, since it will allow a high
throughput, which is essential for real-time applications. For this reason, two identical
modules are needed for the original histogram generator (OH1, OH2), the stretching
LUT (StretchingLUT1, StretchingLUT2) and the global parameters (Parameters1,
Parameters2). The first modules process the odd frames, while the second modules
process the even ones. This is depicted in Figure 5. When frame k is in the adjust
state, the 1st scan is performed for frame k+1. Consequently, OH1 processes frame k,

Fig. 5. Double components are necessary in order to achieve a pipelined architecture

140 V. Vonikakis, C. Iakovidou, and I. Andreadis

while OH2 generates the histogram of frame k+1. When frame k is in the 2nd scan,
frame k+1 is in the adjust state. Then, StretchingLUT1 processes frame k, while
StretchingLUT2 is being loaded with the stretching values for frame k+1. Similarly,
when frame k is in the 2nd scan, its image data are enhanced using the global
parameters from module Parameters1. At the same time, the global parameters of
frame k+1 are calculated using the module Parameters2.

4 Hardware Implementation

This section presents the key stages of the proposed hardware implementation. Figure
6 depicts the block diagram of the system. We assume that the frames are fed into the
FPGA sequentially, pixel by pixel, in the RGB color space format. Consequently, in
order to create the second scan, the data are fed into a FIFO memory, after the
transformation from RGB to YCbCr. This FIFO should have an appropriate length in
order to introduce a delay to the data, equal to the execution time of both 1st scan and
adjust stages. Taking into consideration that the adjust stage requires 300 clock
cycles, the FIFO length should comprise 1frame+300 memory elements. As a result,
when the 2nd scan is about to begin, the YCbCr data will be ready for processing.

As mentioned in the previous section, two StretchingLUT modules are required for a
pipelined architecture: one for the odd and one for the even frames. Figure 6 however

Fig. 6. The proposed hardware implementation

 Real-Time Biologically-Inspired Image Exposure Correction 141

shows that two extra StretchingLUT modules are required: one for the luminance value
of the pixel Yij and one for its surround luminance Sij. This increases the total number of
modules to four. StretchingLUT 1A and 1B are identical and are used simultaneously
for the luminance values Yij and Sij of the odd frames. Similarly, StretchingLUT 2A and
2B are also identical and are used simultaneously for the luminance values Yij and Sij of
the even frames. While the odd LUTs are used to transform the luminance values, the
even LUTs are loaded with data. In the following frame, the even LUTs are used for
transforming luminance values and the odd LUTs are stored with data.

4.1 Color Space Transforms

The transformations RGB→YCbCr and YCbCr→RGB are the first and last processing
stages of the system. The original mathematical forms of the transformations comprise
floating point arithmetic, which can be computationally intensive in a straight-forward
implementation. In order to avoid the floating point operations, the transformations are
altered as follows:

 0.230 0.661 0.109

0.101 0.338 0.439 128

 0.439 0.399 0.040 128

 236 677 112
1

 103 346 450 131072
1024

 450 409 41 131072

Y R G B

Cb R G B

Cr R G B

R G B

R G B

R G B

+ +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − + + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − +⎣ ⎦ ⎣ ⎦

+ +⎡ ⎤
⎢ ⎥= − − + +⎢ ⎥
⎢ ⎥− − +⎣ ⎦

 (15)

()
() ()
()

1.084 1.793 128

1.084 0.534 128 0.213 128

1.084 2.115 128

1110 1836 235012
1

 1110 547 218 97911
1024

1110 2166 277217

Y CrR

G Y Cr Cb

B Y Cb

Y Cr

Y Cr Cb

Y Cb

⎡ ⎤+ −⎡ ⎤
⎢ ⎥⎢ ⎥ = − − − − =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + −⎣ ⎦ ⎣ ⎦

+ −⎡ ⎤
⎢ ⎥= − − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 (16)

The floating point numbers are multiplied by 1024 and the appropriate divider is
introduced at the front of the matrix. The number 1024 is selected for two reasons.
First, the multiplication with any integer number greater or equal to 1000 results to
another integer number, thus, avoiding the decimal points of the original
transformation. Second, 1024 is a power of 2 (210=1024) and, therefore, the divider
can be implemented with 10 right shifts of the final result. The implementation of
equations (15) and (16) is depicted in Figure 7 and Figure 8, respectively.

142 V. Vonikakis, C. Iakovidou, and I. Andreadis

Fig. 7. Implementation of the RGB→YCbCr transformation

Fig. 8. Implementation of the YCbCr→RGB transformation

 Real-Time Biologically-Inspired Image Exposure Correction 143

The above implementations employ many multiplications, which are considered to be
computationally intensive operations. For this reason these multiplications are
implemented with parallel shifts, as the following example indicates.

Fig. 9. Implementation of one of the multiplications of Figures 7 and 8

4.2 Calculation of StretchingLUT Modules

The stretching function of equation (1) comprises among others, a multiplication and a
division. A straight-forward implementation of these operations would be inefficient,
since they are considered expensive in terms of recourses. For this reason, equation (1)
is implemented in an incremental way.

() () []min max
max min

255
1 ,Stretching x Stretching x x Y Y

Y Y
= − + ∀ ∈

−
 (17)

The idea behind this alternative approach is that the stretching transformation divides
the luminance channel into equal increments whose size is determined by the
incremental factor 255/(Ymax–Ymin). Consequently, every stretched value differs from
the previous and from the next by the incremental factor. This means that a LUT
could store all the possible incremental factors and feed the appropriate to an
accumulator, which would calculate the stretched luminance values. This is depicted
in Figure 10a.

144 V. Vonikakis, C. Iakovidou, and I. Andreadis

Fig. 10. a. Calculation of the StretchingLUTs. b. Calculation of the 3-bin histogram.

Similarly to the previous subsection, in order to avoid floating point arithmetic and
maintain the accuracy of the calculations, the LUT stores the incremental factors
multiplied by 1024. The final result is calculated by 10 right shifts (division by 1024).
This is depicted in the following equations.

() () []min max
max min

255 1024
1 ,accumulator x accumulator x x Y Y

Y Y

×= − + ∀ ∈
−

with ()min 0accumulator Y =
(18)

() ()
1024

accumulator x
StretchingLUTs x = (19)

4.3 Global Parameter Calculation

The global parameters, which are necessary for the main enhancement function, depend
upon a 3-bin histogram of the stretched luminance component, as equations (8)-(13)
indicate. Figure 10b depicts their implementation. The stretched luminance value Y’ is
driven into two comparators, while the original luminance value Y is driven into the

 Real-Time Biologically-Inspired Image Exposure Correction 145

address bus of the appropriate original histogram (OH1 for odd frames or OH2 for even
frames). The data output of the original histogram is sent to two accumulators. Depending
on the output of the two comparators, the corresponding accumulator is activated and
sums the number of pixels having the current Y’ luminance value. When all the luminance
values of the interval [Ymin, Ymax] have been processed, the three registers, that are depicted
in Figure 10b, will store the number of pixels of the stretched luminance component that
belong to the high bin (light tones), the middle bin (mid-tones) and the low bin (dark
tones). Despite the fact that the accumulators are 19-bit wide, only the 8 most significant
bits are registered, since high precision is not vital for global image statistics.

Fig. 11. Implementation of the global parameters

146 V. Vonikakis, C. Iakovidou, and I. Andreadis

Figure 11 depicts the proposed implementation for the calculation of the global
parameters. The 3-bin histogram is correlated with the desired values of the global
parameters. These are 2-bit parameters which can have four different values. Their
values are inversely proportional to the percentage of image pixels that a particular
bin has. If for example bin_low occupies more than ¾ of the image size, the value of
Mdark will be 00. On the contrary, if bin_low occupies less than ¼ of the image size,
Mdark will be 11. The same associations hold for bin_middle with the Lobe parameter
and bin_high with Mbright.

Fig. 12. a. A 3×3 serpentine architecture. b. The proposed serpentine architecture.

 Real-Time Biologically-Inspired Image Exposure Correction 147

4.4 Surround Calculation

The average surrounding luminance of every pixel is a key local parameter of the
main enhancement function. Its calculation introduces a considerable challenge: the
surround calculation is principally a parallel operation, since many pixel values have
to be averaged instantly, while the pixel values are fed to the system sequentially from
the camera. For this reason, a serpentine memory architecture [8] is employed,
allowing parallel access to many pixel values. Figure 12a depicts a 3×3 serpentine
architecture.

The original enhancement algorithm requires large surround sizes of three different
spatial scales. In order to implement this, a wider serpentine architecture is employed.
The whole layout of the serpentine memory consists of 61×61, 24-bit registers and
(60 × py)-61 wide FIFOs, (where py is the width of the picture). Five different types
of registers are located in the proposed mask. At every clock cycle the central register
contains the original luminance value of the pixel to be enhanced. The registers that
appear white in Figure12b are not used in the computation, while the three different
concentric areas of registers S1, S2, S3 represent the three scales of surrounding
neighborhoods. The number of registers in each spatial scale has been carefully
selected in order to be a power of 2. This bypasses the expensive divisions, which are
required for averaging, by using right shifts in the final result.

1 1 1 1 1 128S S a S b S c S d pixels= + + + = (20)

2 1 2 2 2 2 1024S S S a S b S c S d pixels= + + + + = (21)

3 2 3 3 3 3 2048S S S a S b S c S d pixels= + + + + = (22)

1
1 128

S
Surround =

7 right shifts (23)

2
2 1024

S
Surround =

10 right shifts (24)

3
3 2048

S
Surround = 11 right shifts (25)

The third scale (S3) is different than the other two. Some of the registers participating
in the computation are symmetrically scattered, in order to minimize the number of
needed registers and cover a wider area of pixels. In order to sum at the same time the
registers of the serpentine, large parallel adders are employed as Figure 13 depicts.

The final multiscale surround value is obtained by averaging the three surround
values as follows:

1 2 32

4

S S S
S

× + += (26)

148 V. Vonikakis, C. Iakovidou, and I. Andreadis

Fig. 13. Parallel summation of the serpentine registers

For every pixel (i,j) its luminance value Yij and its multiscale surround value Sij are
fed to the StretchingLUT modules, in order to get the stretched values. This is
depicted in Figure 14.

Fig. 14. Calculation of the local parameters

 Real-Time Biologically-Inspired Image Exposure Correction 149

4.5 Enhancement Function

The enhancement function, as described by the equations (2)-(5), comprises several
divisions and multiplications, which are expensive in terms of resources. In order to
bypass the use of dividers and multiplicators, the enhancement function is stored into
a LUT. This FinalLUT module, shown in Figure 6, is a ROM which is addressed with
the four parameters of the main enhancement function and outputs at every clock
cycle the equations’ result. Figure 15 depicts the addressing of the FinalLUT module.

Fig. 15. Addressing of the FinalLUT

A reduction of the precision of the local parameters (7bits instead of 8bits) is

introduced, in order to maintain the size of the FinalLUT within the ranges of current
FPGA technology. The size of the ROM memory used is 218×8 bits = 256ΚΒ. As it
will be shown later, this precision reduction does not affect the image quality of the
final output of the system. Apart from resource efficiency, the use of the LUT allows
rapid future improvements to the system. This can be done by simply changing the
data of the LUT, instead of redesigning the whole system.

4.6 Alternative Implementation

As the frame sizes increase, the FPGA’s memory resources become inadequate, and
the FIFO memory that was used to create the second scan must be relocated outside
the FPGA, as an external memory. An external memory is a costly component to
include in a hardware implementation. Furthermore, it increases considerably the
complexity of the system.

The only reason for the existence of the FIFO memory is the requirement to find the
minimum and maximum luminance values of every frame. In a video sequence however,
adjacent frames usually present small differences, since not much can change in 1/25 of a
second. In fact, the global statistics of the frames remain practically unchanged. Taking
this into consideration, the first stage of the hardware implementation described in the
previous sections can be omitted. This can be done by using the global parameters Mdark,
Mbright and Lobe and the StretchingLUTs of the previous frame. The pipelining structure
of this alternative architecture is depicted in Figure 16.

As it is shown in Figure 16 only one scan for every frame is needed. Frame k
enters the FPGA and is enhanced using the StretchingLUT and the global parameters
(Mdark, Mbright and Lobe) of frame k-2. At the same time, its global statistics
(histogram, Ymax and Ymin) and the parameters of frame k-1 (StretchingLUT, Mdark,
Mbright and Lobe) are computed, in order to be used for the enhancement of the next
frame. This implementation presents the highest performance in terms of execution
time and frame size.

150 V. Vonikakis, C. Iakovidou, and I. Andreadis

Fig. 16. The pipelining procedure of the alternative implementation

5 Hardware and Software Comparison

The accuracy reduction of the local parameters inevitably induces errors, compared to
the software implementation of the algorithm. Figure 17 depicts the results of an error

Fig. 17. Error analysis for the accuracy reduction in local parameters

 Real-Time Biologically-Inspired Image Exposure Correction 151

Fig. 18. Comparison between hardware and software

152 V. Vonikakis, C. Iakovidou, and I. Andreadis

analysis for the accuracy reduction of the local parameters. This analysis shows that
the maximum induced error can only be of three gray levels. A human observer is not
capable of discriminating such errors, especially in video sequences. This conclusion
is also confirmed in Figure 18, which depicts a visual comparison between the two
results, as well as the standard deviation of their absolute difference.

6 Discussion and Conclusions

The proposed hardware architectures were synthesized in Altera’s Stratix II GX:
EP2SGX130GF1508C5 FPGA device. Table 1 depicts the simulation results from
Altera Quartus II 5.1 CAD tool.

Table 1. Simulation results in Altera Quartus II 5.1 CAD tool

Altera Stratix II Simulation Results

Original
Implementation

Alternative
Implementation

Color (24bit) Grayscale (8bit) Color (24bit)

Frame size 400×400 pixels 640×480 pixels 2.5 MPixels

Frame rate 25 fps 25 fps 25 fps

Total ALUTs
50,037/106,032

(47%)
44,034/106,032

(41%)
49,763/106,032

(47%)

Total registers 43,873 43,873 43,793

Total
memory bits

5,492,736/
6,747,840

(81%)

5,099,522/
6,747,840
(75%)

2,609,151/
6,747,840
(39%)

Total
Combinational

Functions
19,405 18,476 18,841

DSP Blocks 0 0 0

Maximum
Frequency

66.66 MHz

For both implementations, the maximum frequency of the system is 66.66MHz. This

frequency is determined by the slowest module of the system, which are the parallel
adders in the surround calculation. The original implementation allows the real-time
rendering of color frames with size 400×400 pixels, or grayscale frames with size
640×480 pixels. The alternative implementation on the contrary, allows the real-time

 Real-Time Biologically-Inspired Image Exposure Correction 153

processing of color frames with sizes up to 2.5MPixels. Both implementations
outperform all the similar existing systems.

The above characteristics of the proposed implementations, allows the system to
have many potential applications. Such applications are consumer electronics (e.g.,
digital cameras, mobile phones, video-call systems, and video surveillance systems),
robotics (machine vision, assembly lines), driver’s assistance (automotive), aerial/
satellite photography and medical imaging.

References

1. Battiato, S., Castorina, A., Mancuso, M.: High Dynamic Range Imaging for Digital Still
Camera: an overview. Journal of Electronic Imaging 12, 459–469 (2003)

2. Jobson, D., Rahman, Z., Woodell, G.: A Multi-scale Retinex for Bridging the Gap between
Color Images and the Human Observation of Scenes. IEEE Transactions Image
Processing 6, 965–976 (1997)

3. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A Variational Framework for
Retinex. International Journal of Computer Vision 52, 7–23 (2003)

4. Hines, G., Rahman, Z., Jobson, D., Woodell, G.: DSP Implementation of the Retinex Image
Enhancement Algorithm. In: Proceedings of the SPIE 5438: Visual Information Processing
XIII, pp. 13–24 (2004)

5. Hines, G., Rahman, Z., Jobson, D., Woodell, G., Harrah, S.: Real-time Enhanced Vision
System. In: Proceedings of the SPIE 5802: Enhanced and Synthetic Vision, pp. 127–134
(2005)

6. Seponara, S., Fanucci, L., Marsi, S., Ramponi, G.: Algorithmic and Architectural Design for
Real-time and Power-efficient Retinex Image/Video Processing. Journal of Real-Time
Image Processing 1, 267–283 (2007)

7. Vonikakis, V., Andreadis, I., Gasteratos, A.: Fast Centre-surround Contrast Modification.
IET Image Processing 2(1), 19–34 (2008)

8. Benedetti, A.: Image Convolution on FPGAs: the Implementation of a Multi-FPGA FIFO
structure. EUROMICRO 1, 123–130 (1998)

A Lifting-Based Discrete Wavelet Transform
and Discrete Wavelet Packet Processor with
Support for Higher Order Wavelet Filters

Andre Guntoro and Manfred Glesner

Department of Electrical Engineering and Information Technology,
Institute of Microelectronic Systems,
Technische Universität Darmstadt,

Karlstr. 15, 64283 Darmstadt, Germany
{guntoro,glesner}@mes.tu-darmstadt.de

Abstract. The major challenge in the wavelet transforms is that there
exist different classes of wavelet filters for different kinds of applications.
In this chapter, we propose a generalized lifting-based wavelet processor
that can perform various forward and inverse Discrete Wavelet Trans-
forms (DWTs) and Discrete Wavelet Packets (DWPs) that also sup-
ports higher order wavelet filters. Our architecture is based on Processing
Elements (PEs) which can perform either prediction or update on a con-
tinuous data stream in every two clock cycles. We also consider the nor-
malization step which takes place at the end of the forward DWT/DWP
or at the beginning of the inverse DWT/DWP. Because different applica-
tions require different number of samples for the transforms, we propose
a flexible memory size that can be implemented in the design. To cope
with different wavelet filters, we feature a multi-context configuration to
select among various forward and inverse DWTs/DWPs. For the 16-bit
implementation, the estimated area of the proposed wavelet processor
with 8 PEs configuration and 2×2×512 words memory in a 0.18-µm
technology is 2.5 mm square and the estimated operating frequency is
319 MHz.

1 Introduction

For the last two decades the wavelet theory has been studied extensively [4,
7, 11, 17, 19] to answer the demand for better and more appropriate functions
to represent signals than the ones offered by the Fourier analysis. Contrary to
the Fourier analysis, which decomposes signals into sine and cosine functions,
wavelets study each component of the signal on different resolutions and scales.
In analogy, if we observe the signal with a large window, we will get a coarse
feature of the signal, and if we observe the signal with a small window, we will
extract the details of the signal.

One of the most attractive features that wavelet transforms provide is their
capability to analyze the signals which contain sharp spikes and discontinuities.
The better energy compacting support the wavelet transforms offer and also the

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 154–173, 2010.
c© IFIP International Federation for Information Processing 2010

A Lifting-Based DWT and DWP Processor 155

localizing feature [5] of the signal in both time and frequency domains these
transforms support have made wavelet outperforms the Fourier transform in
signal processing and has made itself into the new standard of JPEG2000 [9,15].

Along with recent trends and research focuses in applying wavelets in image
processing, the application of wavelets is essentially not only limited to this area.
The benefits of wavelets have been studied by many scientists from different
fields such as mathematics, physics, and electrical engineering. In the field of
electrical engineering wavelets have been known with the name multi-rate signal
processing. Due to numerous interchanging fields, wavelets have been used in
many applications such as image compression, feature detection, seismic geology,
human vision, etc.

Contrary to the Fourier transform, which uses one basis function (and its
inverse) to transform between domains, there are different classes of wavelet
kernels which can be applied on the signal depending on the application. Be-
cause different applications require different treatments, researchers have tried
to cope with their own issues and implemented only a subset of wavelets which
are suitable for their own needs such as ones that can be found in image com-
pression [6, 10, 15, 22] and speech processing [1, 8, 14, 16]. The power of wavelet
tools is then limited due to these approaches.

In this chapter we propose a novel architecture to compute forward and inverse
transforms of numerous DWTs (Discrete Wavelet Transforms) and also DWPs
(Discrete Wavelet Packets) based on their lifting scheme representations. Most
lifting-based wavelet processors are dedicated to compute wavelet filters which
are used only in JPEG2000 image compression where the wavelet coefficients
can be represented as integers such as Andra in [2] which required two adders,
one multiplier, and one shifter on each row and column processor to compute
(5,3) and (9,7) filters with the prerequisite that prediction or update constants
of the actual and the delayed samples are equal (i.e. c(1 + z−1)). Barua in [3]
described the similar architecture for FPGAs that optimizes the internal memory
usage. Dillen in [13] detailed the combined architecture of (5,3) and (9,7) filters
for JPEG2000. Another example is from Martina, which encompassed multiple
MAC structure with recursive architecture in [18].

Our new proposed architecture takes into account that each lifting step repre-
sentation of an arbitrary wavelet filter may have two different update constants
and the Laurent polynomial may have higher order factors (i.e. c1z

−p + c2z
−q),

which are common in various classes of wavelet filters such as Symlet and Coiflet
wavelet filters. Additionally, the proposed architecture also considers the normal-
ization step which takes place at the end of the forward DWT/DWP or at the
beginning of the inverse DWT/DWP for the applications that require to conserve
the energy during the transform. In order to be flexible, the proposed architec-
ture provides a multi-context configuration to choose between various forward
and inverse DWTs/DWPs. Because wavelet transforms work with large number
of samples, the proposed architecture can be configured to have an arbitrary
memory size (i.e. the powers of two) to cope with the application demands.

156 A. Guntoro and M. Glesner

The rest of the chapter is organized as follows. Section 2.1 describes the sec-
ond generation of wavelets and the concepts regarding wavelet transforms and
wavelet packets. The proposed architecture, including the processing element,
the MAC-unit, the configuration and the context switch, the memory, the con-
troller, are explained in Section 3. Section 4 discusses the performance of the
proposed architecture and finally Section 5 concludes the contribution.

2 Backgrounds

2.1 Lifting Scheme

Contrary to the filter approach, which separates the signal into low and high
frequency parts and performs the decimation on both signals afterwards, the
second generation of wavelets reduces the computation by performing the deci-
mation in advance. The second generation of wavelets, more popular under the
name of lifting scheme, was introduced by Sweldens [21]. The basic principle of
lifting scheme is to factorize the wavelet filter into alternating upper and lower
triangular 2 × 2 matrix.

Let H(z) and G(z) be a pair of low-pass and high-pass wavelet filters:

H(z) =
kh∑

n=kl

hnz−n (1)

G(z) =
kh∑

n=kl

gnz−n (2)

where hn and gn are the corresponding filter coefficients. N = |kh − kl| + 1 is
the filter length and the corresponding Laurent polynomial degree is given by
h = N − 1. By splitting the filter coefficients into even and odd parts, the filters
can be rewritten as:

H(z) = He(z2) + z−1Ho(z2) (3)

G(z) = Ge(z2) + z−1Go(z2) (4)

and the corresponding polyphase representation is:

P (z) =
[

He(z) Ge(z)
Ho(z) Go(z)

]
(5)

Daubechies and Sweldens in [12,21] have shown that the polyphase representa-
tion can always be factored into lifting steps by using the Euclidean algorithm to
find the greatest common divisors. Thus the polyphase representation becomes:

P (z) =
[
K 0
0 1/K

] 1∏
i=n

[
1 ai(z)
0 1

] [
1 0

bi(z) 1

]
(6)

A Lifting-Based DWT and DWP Processor 157

Sj

Sj−1

Dj−1

Sjodd

Sjeven

SPLIT

K

1/K

P1(z) U1(z) P2(z) U2(z) Pn(z) Un(z)

Fig. 1. Forward lifting steps

where ai(z) and bi(z) are the Laurent polynomials and K is the normalization
factor.

Fig. 1 shows the arrangement of the lifting scheme representation. The Laurent
polynomials bi(z) and ai(z) are expressed as predictor Pi(z) and updater Ui(z).
The signal Sj is split into even and odd parts. Prediction and update steps occur
alternately. The predictor Pi(z) predicts the odd part from the even part. The
difference between the odd part and the predicted part is computed and used
by the updater Ui(z) to update the even part. At the end, the low-pass and the
high-pass signals are normalized with a factor of K and 1/K respectively.

By factoring the wavelet filters into lifting steps, it is expected that the com-
putation performed on each stage (either it is a prediction or an update) will be
much less complex. As an example, the famous Daub-4 wavelet filter with the
low-pass filter response:

H(z) =
1 +

√
3

4
√

2
+

3 +
√

3
4
√

2
z−1 +

3 −√
3

4
√

2
z−2 +

1 −√
3

4
√

2
z−3 (7)

can be factored into lifting steps:

P (z) =

[√
3−1√
2

0

0
√

3+1√
2

][
1 −z
0 1

] [
1 0

−
√

3
4 + 2−√

3
4 z−1 1

] [
1
√

3
0 1

]
(8)

Since the finding of the greatest common divisors is not necessarily unique, the
result of the Laurent polynomials may also differ. The Daub-6 and the popular
(5,3) and (9,7) wavelet filters can be factored into lifting steps with maximum
degree of ±1 [12] whereas Symlet-6 and Coiflet-2 (the lifting computations are
not detailed here due to page limitation) may have two update/prediction terms
and also z±5 factor on its Laurent polynomials.

2.2 Wavelet Transform and Wavelet Packet

Wavelet transform is a multi-resolution signal analysis. In the traditional wavelet
transforms, only the low-pass signal is used on the next transformation level to
generate a multi-resolution representation of the corresponding signal. In wavelet
packets, both low-pass and high-pass signals are analyzed, resulting equally

158 A. Guntoro and M. Glesner

LP↓2
LP↓2

HP↓2

HP↓2

(a) DWT

LP↓2

LP↓2
LP↓2

HP↓2

HP↓2

HP↓2

(b) DWP

Fig. 2. Two different transformations

spaced frequency bands. Fig. 2 depicts both schemes. Note that the illustra-
tion uses wavelet transforms based on filter-approach instead of lifting-scheme
in order to ease understanding the concept for both schemes. LP and HP corre-
spond to low-pass and high-pass filter pair and ↓2 corresponds to down-sampling
by two. It is obvious that DWT will require less computation time compared to
DWP, because at each level, the number of samples is decreased by two. Also,
the controller that controls the processor to perform DWTs and their inverses is
straightforward, while the controller to perform DWPs and their inverses is more
complicated due to the fact that the number of frequency bands that need to be
processed increases two fold at each transform. As an example, performing four
levels wavelet packet on a signal leads to 16 frequency bands whereas performing
four levels wavelet transform generates 5 frequency bands.

Not only the challenges on the controller, the major issue in DWP is that
the resulting HP signals are much smaller than the LP parts in normal circum-
stances. Thus performing multi-level DWP using integer arithmetics would make
these HP signals go to zero, which lead to lower achievable SNR values, if it is
not carefully performed.

3 Proposed Architecture

The lifting-based forward DWT/DWP splits the signal into even and odd parts
at the first stage. The split signals are processed by an alternating series of pre-
dictors and updaters (on some wavelet filters, an updater may come before a
predictor). On the final stage, the multiplication with the normalization factor
takes place in order to conserve the energy. The inverse DWT/DWP performs
exactly everything backwards. It starts with the multiplication with normaliza-
tion factor, continues with a series of updaters and predictors, and finishes with
the merging of the outputs.

As a predictor and an updater perform a similar computation, the hardware
architecture for both functions is exactly the same. Taking this into account, we
propose a novel wavelet processor which is based on M processing elements to
cope with M lifting steps. Due to the nature of the lifting scheme, wavelet filters

A Lifting-Based DWT and DWP Processor 159

that have longer lifting scheme representations can easily be broken down into
smaller lifting steps that the processor can compute (i.e. M lifting steps each).
Which means that the processor that implements M processing elements is not
limited to perform the transform up to M lifting steps only.

The core behind our proposed architecture is the processing element (PE),
which performs the prediction or the update. To maximize the performance,
the PE utilizes the parallelism by using a pipeline mechanism to guarantee the
outputs to be available in every clock cycle (actually every two clock cycles as
detailed later). As the lifting scheme breaks a wavelet filter into smaller predic-
tions and updates, the resulting predictor and updater can be limited to have a
maximum Laurent polynomial degree of one. Nevertheless, the predictor or the
updater of higher order wavelet filters may have the higher factors as well. With-
out loss of generality, we can formulate the predictor or the updater polynomial
as:

l(z) = c1z
−p + c2z

−q (9)

with c1 and c2 as the polynomial constants and |p − q| ≤ N . This implies that
on each stage (either as a predictor or an updater), the PE would perform two
multiplications and two additions. As an example, the first predict and update
steps of Daub-4 can be written as:[

s′

d

]
=

[
1
√

3
0 1

] [
s
d

]
=

[
s + d · √3

d

]
(10)

[
s′

d′

]
=

[
1 0

−
√

3
4 + 2−√

3
4 z−1 1

] [
s′

d

]

=
[

s′

d + s′ · −√
3

4 + s′ · 2−√
3

4 z−1

] (11)

which perform one multiplication and one addition in order to solve s′ (as shown
at the top resulting term in Eq. 10) and two multiplications and two additions
to solve d′ (as shown at the bottom resulting term in Eq. 11).

3.1 Architecture of the Processing Element

Taking into account that multipliers are expensive in term of area and the PE
receives two samples (s and d) at once, we have decided to lower the input rate
by half. From the performance point of view, the processing rate of the PE will
be equal to the processor speed and no longer twice as fast. This also implies that
the bottleneck issues on the input and output ports with the memory will not
occur. From the hardware implementation point of view, the PE requires only one
multiplier and one adder. This optimization, as detailed later, is accomplished
by multiplexing the operands of the multiplier inputs (the multiplier and the
multiplicand) and by feeding the adder result back via the multiplexer.

Fig. 3 depicts the proposed PE. The PE has two selectors S1 and S2 to choose
the prediction or the update samples that correspond to the factors p and q from
the Laurent polynomial. Two constants which represent the filter coefficients are

160 A. Guntoro and M. Glesner

C1

C2

S2

S1

S3

S4

N N

N N

A B

A’ B’

C
O

N
T

R
O

L
L

E
R 2M

M

M

N

N

1−level
FIFO MUX

MUX

1−level
FIFO

FIFO
2−level

MUX

MUX MUX

z−mz−mz−m

Fig. 3. Block diagram of the processing element

defined and configured by the controller. By delaying the actual samples, selector
S3 controls the prediction or the update that requires future samples. Selector
S4 is a bypass selector. Because lifting steps of the higher order wavelet filters
may require distance prediction or update samples, the maximum depth of the
unit delay z−m, that determines the maximum delay level, can be freely chosen
during the design.

Fig. 4 details the MAC (Multiply-and-Accumulate) unit which is implemented
inside the PE. Both multiplier unit and adder unit require only one clock cycle
to perform their function. C1 and C2 correspond to the Laurent polynomial
constants, whereas M1 and M2 correspond to the outputs of the samples that
are selected by S1 and S2. The multiplexer for M1 and M2 as a matter of fact
does not exist and is drawn here only to illustrate the MAC process. A shifter
is utilized as a replacement of the more expensive divider.

The PE is divided into 3 blocks. The first block organizes the input samples
from both channels. The second block chooses the inputs of the multiplier and
performs the multiplication. As mentioned earlier, the PE utilizes only one mul-
tiplier which is time-shared in order to perform two multiplications. The first

A Lifting-Based DWT and DWP Processor 161

SHIFTER

MUX MUX

MUX

C1 C2 M1 M2 D

O

Fig. 4. Multiply-And-Accumulate unit

clock cycle performs the first multiplication (i.e. C1 × M1) and the second cy-
cle performs the second multiplication (i.e. C2 ×M2). The third block performs
the summation between the reference sample and the prediction/update values.
Similar technique is applied here in order to utilize only one adder. As shown
in Fig. 4, the first addition cycle performs D + 2−R(C1 × M1) and the second
addition cycle adds-up the first one with 2−R(C2 × M2). Whilst the input data
are integer, the shifter performs the division on the multiplication result with
2R where R can be freely chosen. Two 1-level FIFOs (First In First Out) are
implemented to deal with the multiplier delay and a 2-level FIFO is implemented
to compensate the delay which is introduced by the adder.

3.2 Normalization

As the multiplication with the normalization factor can take place at the end of
the transform in case of forward DWT/DWP or at the beginning of the transform
in case of inverse DWT/DWP, two special processing elements to handle this
function are required. Although the normalization step is different compared
to the prediction or the update step in a manner that both inputs s and d
are multiplied with constants K and 1/K respectively, we know for sure that
two multiplications take place. To perform this normalization step, we extend
the functionality of the PEs that are located on the top and on the bottom of
the proposed wavelet processor instead of implementing a dedicated normalizer
unit. Three additional multiplexers are needed to add the normalization factor
unit into the PE. Fig. 5 shows the PE which is used on the top and on the
bottom of the proposed architecture. By enabling S5 and setting S1 and S3 to
zero, two inputs of the multiplexer before the multiplier correspond to the actual
samples s and d (with the normalization factors K = C1 and 1/K = C2). The
first multiplication product passes through the multiplexer and the 1-level FIFO

162 A. Guntoro and M. Glesner

S5

C1

C2

S2

S1

S3

S4

NN

N N

A’ B’

A B

C
O

N
T

R
O

L
L

E
R 2M

M

M

N

N

MUX MUX

1−level
FIFO

MUX

MUX

MUX MUX

FIFO
1−level

MUX

MUX

1−level
FIFO

1−level
FIFO

z−mz−mz−m

Fig. 5. Block diagram of the processing element which is located on the top and on
the bottom of wavelet processor

resulting s′ = Ks (the left side) and the second multiplication product passes
through the multiplexer resulting d′ = d/K (the right side). Whereas the first
normalization (i.e. s′ = Ks) takes place first, instead of adding a 1-level FIFO
on the right output port, the 2-level FIFO is split into two 1-level FIFOs to make
both outputs synchronized and to minimize the latency.

3.3 Context Switch

To cope with various lifting-based forward and inverse DWTs/DWPs, we have
separated the configuration dependent parameters from the PE. Figs. 3 and 5
show how the inputs of the multiplexer selectors and the multiplier constants
are separately drawn on the left side of the figures to emphasize the separation.

A Lifting-Based DWT and DWP Processor 163

SELECTOR
CONTEXT

ID A B C

N N

N

N

C
O

N
FI

G
U

R
A

T
IO

N
O

U
T

PU
T

COMP

WE

CONST
C1

CONST
C2

CTRL

Fig. 6. Context Switch for the PE

In addition the PE is designed to be simple. Thus, no finite state machine is
required to control the PE. To support different classes of wavelet filters that
require different types of configurations, we have implemented a multi-context
configuration on each PE as depicted in Fig. 6. Each PE is assigned with a
row index as a unique ID for the configuration. Multiplier constants use the
signal data paths to save the wiring cost whereas the multiplexers configuration
requires additional controller path. Context switch is implemented as a memory
module where the address is controlled by the context selector and the write
enable signal is controlled by the output comparator.

The active configuration can easily be selected by using this context-based
controller to cope with various wavelet filters. One benefit of having a multi-
context configuration is that the proposed wavelet processor can be configured
to perform the corresponding inverse DWTs/DWPs in a very simple manner.
Additionally, the issues regarding the boundary condition can be relaxed by
utilizing special wavelet filters on the signal boundaries which require less or no
delayed/future samples (e.g. Haar wavelet) instead of exploiting the periodicity
or the mirroring of the signal. Lastly, by using the context-based configuration,
the DWTs/DWPs that exercise longer wavelet filters can simply be broken into
smaller lifting steps. The configuration of each group of the lifting steps will be
stored in the context memory and will be used to compute the transform.

3.4 Memory Controller

Taking into account that the predictions and the updates occur alternately, the
outputs of a PE will be cross-linked with the input of the next PE. Due to the
nature of lifting steps, the prediction and the update are computed in-place. It

164 A. Guntoro and M. Glesner

CONFIG

MEM
2x2

BANK

MAIN
FSM

SOURCE CTRL PE

CTRL PE

CTRL PE

CTRL PESINK

LATENCY
COUNTER

START

FINISH

RUN

DONE

CONTEXT

Fig. 7. The Proposed Wavelet Processor

means that it is not necessary to save the result or the temporary result into a
different memory. One simple implementation of the proposed wavelet processor
would consist of one PE. By configuring each context with the corresponding lift-
ing step, the DWT/DWP and their inverses could be computed with this simple
implementation. Although it is possible to use only one PE, a typical wavelet
processor will have M chained PEs configuration to boost the performance and
to minimize memory access.

Wavelet transform is a multi-resolutional signal processing tool. To achieve
the required results, the signal needs to be transformed iteratively. In case of a
DWT, only the low-pass part of the signal is taken into account as an input for
the next transform. As a pair of low-pass and high-pass wavelet filter is used
to compute the transform, the size of the signal decreases by two after each
transformation level in this case. In contrary, a DWP uses both low-pass and
high-pass parts of the signal in order to achieve equally spaced frequency bands
after each transformation level. The total size of the signal on DWP remains the
same and the amount of the processed data will slightly increase. It is due to
the fact that low-pass and high-pass parts are treated independently during the
computation and for each part of the signal, a signal extension, which will be
detailed later on, is required to compute the transform on the boundary regions.

Fig. 7 depicts the block diagram of the processor along with the PEs and their
configuration controller. The PEs that are located on the top and on the bottom
of the wavelet processor have an extra capability to perform the normalization.

Main FSM

The main finite state machine controls the wavelet processor. When the trans-
form is initiated, the FSM reads the necessary configurations, such as the trans-
formation level, forward/inverse mode, transform/packet mode, used contexts,

A Lifting-Based DWT and DWP Processor 165

etc. from the config block. This configuration, as detailed later, is divided into
two categories. The first category is related to the functionalities of the processor
and the second one is related to the lifting configuration.

The main FSM prepares the source and the sink addresses where the data
will be read and stored, and also the length of the data needed to be processed.
We exploit the periodicity extension to cope with the boundaries issue in order
to compute the transform on those regions. This implies that source address
does not always start on the top of the page. Address masking techniques are
applied here to localize the page. The FSM takes care of the possibility of having
a longer wavelet transform that has to be split into several lifting steps on the
target PEs. The FSM allows multi-level forward/inverse DWT and DWP to take
place by means of iteration process.

Config

The config block contains the configuration of the wavelet transform. Two differ-
ent configuration categories are managed by this block. The functionality part
manages:

– Selecting the type of the transform that will be performed: DWT or DWP.
– Selecting the transform mode: forward transform or inverse transform.
– The amount of memory that will be involved during the transform. Note that

the processor can perform the transform on an arbitrary size of the sample.
For an example, the value 0 indicates that the transform will be performed
on the whole memory. The value 1 will make the transform processes the
half of the memory and so on.

– Number of levels the transform will compute. This is effective to perform
multi-level transform on a 1D signal. In contrary, for a 2D or higher dimen-
sion, the number of levels should always be set to 1.

The lifting part stores the configuration of the contexts used during the trans-
form. It holds an important key to support wavelet transforms that use longer
wavelet filters. If the number of lifting steps of the wavelet filters used for the
transforms are larger than the available PEs, these lifting steps have to be split
into several smaller steps that can be fit into the available PEs. The configu-
ration of each lifting itself is stored on the context configuration of the PEs.
This block stores only the corresponding context IDs that will be used. Thus,
by selecting the right ID one after another, the wavelet transform with longer
lifting steps can be performed. Basically, it tells us which context should be used
for the corresponding lifting step.

Beside storing the context IDs, it also holds the read and write offset addresses
to start the transform and also the latency value for each lifting. It is important
to note that in order to compute the wavelet transform, except for Haar wavelet
filter, past and future samples are required. This becomes an issue when the
transform on the signal boundary is performed. To cope with this boundary
issue, the periodicity extension is used to locate these samples. These offsets
hold the information of the corresponding starting sample for this periodicity
extension.

166 A. Guntoro and M. Glesner

Memory

The memory is organized as 2×2 banks. This configuration describes that the
processor has two main banks (which are called bank 0 and bank 1) and each
main bank consists of one primary bank and one shadow bank. With this tech-
nique, while the processor performs the transform on one bank (either bank 0 or
bank 1), the next data can be placed on the other bank. Thus, it improves the
overall performance by minimizing the delay caused by the data preparation.

The memory write and read accesses are exclusive, which means that writing
to the memory will write to the primary bank and reading from the memory
will read from its shadow. This state is switchable automatically, controlled by
the FSM. When the transform takes place, the FSM grants the memory access
of the selected bank to the source and sink blocks. Writing to or reading from
this bank is forbidden and it will generate an error (as an indication of a busy
signal). Nevertheless, the external interface can still read from and write to the
memory of the other non-selected bank. Thus, the previous resulting transform,
which is stored in this non-selected bank, can be read, and also the external
interface can prepare the new data for the next transform.

Source and Sink

These blocks generate and automatically increment the read and write addresses.
The source reads data from the memory and transfers it to the PEs. The sink
reads data from the PEs and writes it to the memory. A special case is consid-
ered when performing transformations that are longer than the available PEs.
During the in-between transformation, in case of forward transform, the sink will
write the data (which corresponds to the intermediate results) to the memory
in adjacent manner (resulting L-H-L-H-...). During the final transformation, the
sink writes the LP and the HP signals into two different pages (resulting L-L-...-
H-H-...). The similar handling is also performed by the source when performing
the inverse transform.

To access the correct page, two address masks are used. The first mask is
responsible for the data indexing, and the second mask is responsible for the
page indexing.

Latency Counter

This block delays the run signal from the main FSM to initiate the sink process.
The delay amount is different for every lifting steps and it is defined in the config
block.

Details of the Memory Access

Fig. 8 illustrates the N-level and multiple lifting steps DWT. White and grey
represent the primary and the shadow banks and diagonal pattern represents the
in-between transformation. During the setup, the data is prepared and stored
in one bank (this bank is write-only and its shadow is read-only). When the

A Lifting-Based DWT and DWP Processor 167

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

L0

H0H0

L1

H1

Fig. 8. Forward DWT Process

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����

����
����
����
��������
����
����
����

����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

L0

H0

LL1

LH1

HL1

HH1

Fig. 9. Forward DWP Process

transformation is initiated, this state is reversed, and the source and the sink
control the address lines. For each lifting steps, the source reads the written data,
and the sink writes the in-between transformation result to the shadow bank.
This state is reversed again every time one lifting step is finished, which makes
the shadow bank as the primary bank and vice versa. During the last lifting
step, the sink stores the LP and the HP results into two different pages. This
whole process is performed N times with each iteration decreases the data by
half. At each finishing level, a memory copy to transfer the previous HP result
to the shadow bank is performed when necessary, e.g. when the lifting steps are
odd.

For the DWPs, the HP signal is also transformed, as depicted in Fig. 9. Instead
of executing/finalizing the transformation on each signal (LP, and then HP) on
each level, the in-between transformations are performed on both signals. With
this technique, the banks are not switched during the in-between transformation
for both LP and HP signals. Thus, the FSM can trigger the source to initiate the
next data transfer for the next band/page (e.g. HP) without waiting the sink to
finish from the previous transform. This solution decreases the data preparation
time that is caused by exploiting the periodicity extension and the PEs latency.
No copy transfer is performed on the DWPs/IDWPs.

4 Results and Performances

Our wavelet processor is written in VHDL and is based on the modular and
parametric approach to make the design adaptable. In this paper, we provide
the synthesis results of our wavelet processor that contains 8 PEs to process
forward/inverse DWTs/DWPs with 8-level unit delays to support higher order

168 A. Guntoro and M. Glesner

Table 1. Estimated area and frequency of proposed wavelet processor with 8 PEs and
2×2 memory banks

Data Width
Est. Area % Area for Est. Frequency
(in mm2) Logic (in MHz)

16-bit 2.501 30.60 % 319.49
20-bit 3.120 31.38 % 298.51
24-bit 3.780 32.63 % 285.71
28-bit 4.376 32.57 % 262.47
32-bit 5.134 34.63 % 241.55

Table 2. Comparison with other Lifting-Based Architectures

Arch. Speed Area Filter Transform Data Width Mem. Size

Andra [2]
200 MHz

2.8 mm2 (5,3) DWT
16-bit 128

(0.18-µm) (9,7) IDWT

Dillen [13]
110 MHz

–
(5,3) DWT

16-bit 256
(FPGA) (9,7) IDWT

Seo [20] 150 MHz
5.6 mm2 (5,3) DWT

12-bit 512
(0.35-µm) (9,7) IDWT

Wang [23]
100 MHz

1.1 mm2 Daub-4 DWP 18-bit 8
(0.18-µm)

Ours
242 MHz

5.1 mm2 Arbitary
DWT,IDWT 32-bit* 512*

(0.18-µm) DWP,IDWP Configurable Configurable

wavelet filters and 16 available contexts to configure 16 different transforms.
The design is synthesized using 0.18-μm technology. Because wavelet transforms
deal with large numbers of samples, 2×2×512 words memory is integrated into
the processor for this implementation. Note that the wavelet processor is also
designed to be flexible in respect with the number of the samples the processor
can handle. In other word, the processor can be synthesized with an arbitrary
size of the memory, as long as it follows an integer power of two rule. The size
of the memory corresponds to the maximum number of samples the wavelet
transforms can be performed by the processor.

The estimated area and frequency of various data width implementations are
reported in Table 1. For the 16-bit configuration, the proposed wavelet processor
consumes 2.5 mm2 chip area and has a maximum operating speed of 319 MHz.
As a comparison, architecture from Andra with 16-bit data width in [2] can only
compute (5,3) and (9,7) filters and required 2.8 mm2 with 200 MHz operating
frequency. The details of the comparisons with the other architectures are sum-
marized in Table 2. Note that our proposed architecture has flexible data width
and memory size.

A Lifting-Based DWT and DWP Processor 169

Table 3. Lifting coefficients of Daub-6, Symlet-6, and Coiflet-2 wavelet filters

Type Daub-6 Symlet-6 Coiflet-2

Updater 2.425 z0 -0.227 z0 -2.530 z0

Predictor 0.079 z−1 -0.352 z0 -1.267 z−1 0.216 z0 -0.240 z−1 0.342 z0

Updater -2.895 z1 0.561 z2 0.505 z1 -4.255 z2 3.163 z1 15.268 z2

Predictor -0.020 z−2 0.045 z−3 0.233 z−2 0.006 z−3 -0.065 z−2

Updater -18.389 z3 6.624 z4 -63.951 z3 13.591 z4

Predictor 0.144 z−5 -0.057 z−4 0.001 z−5 0.002 z−4

Updater -5.512 z5 -3.793 z5

Normalizer 0.432 2.315 -0.599 -1.671 0.108 9.288

Table 4. SNR values of different data width implementations (in dB) for 4-level forward
and inverse DWT

Daub-6
Source 16-bit 20-bit 24-bit 28-bit 32-bit

Sinusoid 42.90 67.04 89.38 115.00 138.52
Sawtooth 40.93 65.19 88.34 113.31 137.03
Step 44.98 67.07 87.95 114.19 138.88
Random 40.17 64.92 88.62 113.06 136.87

Symlet-6

Sinusoid 37.04 61.95 88.40 111.85 134.88
Sawtooth 35.75 60.22 85.84 108.89 133.17
Step 34.97 64.94 91.83 112.53 140.07
Random 36.52 61.18 85.93 109.37 133.51

Coiflet-2

Sinusoid 31.35 55.13 78.56 101.70 124.05
Sawtooth 29.80 52.85 76.83 100.13 123.19
Step 31.86 56.75 79.89 101.45 123.60
Random 29.01 52.83 77.53 101.93 125.27

In order to realize the fixed-point multiplication between the samples and the
coefficients, we utilized an integer multiplier and a shifter to reduce the hardware
cost. As the compensation, this implementation leads to errors caused by the
rounding of the wavelet coefficients and the cropping of the multiplication results.
To measure the level of correctness of our design, we perform DWTs/DWPs
and their corresponding inverse transforms on some predefined signals. Four
different 8-bit full-swing signals, which are used as references, are forward and
inverse transformed using Daub-4, Symlet-6, and Coiflet-2 wavelet filters with
no integer coefficients. The random signal has a uniform distribution.

170 A. Guntoro and M. Glesner

Table 5. SNR values of different data width implementations (in dB) for 4-level forward
and inverse DWP

Daub-6
Source 16-bit 20-bit 24-bit 28-bit 32-bit

Sinusoid 39.66 63.92 87.49 111.65 136.02
Sawtooth 37.45 62.05 85.26 109.80 134.00
Step 41.11 63.85 86.79 112.82 137.83
Random 37.19 61.75 84.11 109.34 133.41

Symlet-6

Sinusoid 35.41 60.03 85.22 108.95 131.86
Sawtooth 33.79 58.24 82.98 106.96 130.10
Step 34.25 62.31 87.14 108.17 134.37
Random 33.35 58.40 82.67 106.87 129.71

Coiflet-2

Sinusoid 29.26 53.07 76.74 100.13 123.01
Sawtooth 27.09 51.00 74.44 98.75 121.57
Step 29.49 53.75 76.65 98.84 122.46
Random 26.75 51.33 74.64 98.49 120.88

The lifting step coefficients of these wavelet filters are summarized in Table 3.
These coefficients are shortened to save space. Because the coefficients have to
be represented as integers, depending on the data width, they will be magnified
with some factor, and the result will be rounded and used as lifting coefficients.
ModelSim is used to compare and verify the results. The SNR is computed using:

SNR(dB) = 20 × log10

(∑ |signal|∑ |signal − result|
)

(12)

where signal corresponds the input vector and result corresponds the output of
the forward and inverse transforms.

Because wavelet transform is a multi-resolution signal processing tool, we per-
form four-level DWTs and DWPs to give a better overview of the performance
of our wavelet processor. The SNR values of the different data width imple-
mentations for 4-level DWTs and DWPs are reported in Table 4 and Table 5
respectively. Depending on the data widths, SNR values vary between 29 dB and
140 dB in case of DWTs and between 27 dB and 138 dB in case of DWPs, which
are sufficient for most applications. DWPs achieve slightly lower SNR values due
to the fact that the high-pass signals after each transformation level get smaller
and tend toward zero. Thus information losses are affected at these bands. The
16-bit implementation achieves lower SNR values due to the fact that the lifting
coefficients have a large dynamic range that is between 0.001 and 64. The same

A Lifting-Based DWT and DWP Processor 171

reason applies for Coiflet-2 wavelet filter. The improvement of the SNR values
can be achieved by increasing the data width.

The proposed wavelet processor can accept input data stream and perform the
computation in every two clock cycles made possible by the pipeline structure
and the resource sharing. The total latency on each PE is 4 clock cycles. One
clock cycle is consumed by the input registers, 1+1 by the multiplier (two multi-
plications are performed), and 1+0 by the adder (two summations are performed
where one cycle is “stolen” from the multiplier). Additional sample latency (2
clock cycles per future sample) will add-up to the total latency on the PEs which
require this feature. The PE that is configured to perform the normalization step
has latency of 3 clock cycles.

For the wavelet processor with M PEs, the total time needed to compute
L-stage forward/inverse DWT is:

TDWT = L(Ts + Td) + 2S(1 − 0.5L) + S(1 − 0.5L−1) (13)

where S is the signal length, Ts is the setup delay and Td =
∑m=M

1 TPEm is the
circuit delay with TPEm as the PE latency delay of the m-th PE. The second
term is the contribution of the actual transform whereas the last term is the
result of the memory copy process.

In case of a L-stage forward/inverse DWP, the total time is formulated as:

TDWP = L(Ts + Td) + LS (14)

The second term is the contribution of the low-pass and high-pass parts which
have to be processed as well. No memory copy process takes place on performing
forward/inverse DWP.

5 Conclusions

The facts are that wavelets have a very wide spectrum and there exists different
classes of wavelet filters that can be used depending on the application. We have
proposed a novel architecture that is able to compute various wavelet transforms
and their inverses based on their lifting scheme representations. Because of di-
versities in application’s need, we have designed the wavelet processor that can
perform not only DWTs, but also DWPs.

The proposed wavelet processor is based on M chained PEs to compute the
prediction/update of the lifting steps, and it can be configured easily to sup-
port higher order lifting polynomials, as the result of the factorization of the
higher order wavelet filters. To cope with different wavelet filters, the devel-
oped wavelet processor includes a multi-context configuration so that users can
easily switch between transforms (including their inverses). The wavelet proces-
sor is full-customized to manage different application demands which require
different accuracy. Additionally, the architecture takes into account the energy
conservation property of the wavelet transform by providing the normalization
step that occurs at the end of the forward DWT/DWP or at the beginning

172 A. Guntoro and M. Glesner

of the inverse DWT/DWP. Due to its locality property, wavelet transform has
a straightforward implementation in hardware. Considering also that wavelet
transforms work with arbitrary number of samples, we deliver this freedom into
our wavelet processor. Using 0.18-μm technology, the estimated area of the pro-
posed wavelet processor with 16-bit configuration and 2×2×512 words memory
is 2.5 mm2 and the estimated operating speed is 319 MHz.

References

1. Agbinya, J.: Discrete wavelet transform techniques in speech processing. In: Proc.
of the IEEE TENCON. Digital Signal Processing Applications, TENCON 1996,
vol. 2, pp. 514–519 (1996)

2. Andra, K., Chakrabarti, C., Acharya, T.: A VLSI architecture for liftingbased
forward and inverse wavelet transform 50(4), 966–977 (2002)

3. Barua, S., Carletta, J., Kotteri, K., Bell, A.: An Efficient Architecture for Lifting-
based Two-Dimensional Discrete Wavelet Transforms. In: Proc. of the Great Lakes
Symposium on VLSI, GLSVLSI 2004 (2004)

4. Blinowska, K.J., Durka, P.J.: Introduction to wavelet analysis. Br. J. Audiol. 31(6),
449–459 (1997)

5. Bultheel, A.: Wavelets with applications in signal and image processing (2003)
6. Calderbank, R., Daubechies, I., Sweldens, W., Yeo, B.-L.: Lossless image compres-

sion using integer to integer wavelet transforms. In: Proc. of the Intl. Conference
on Image Processing, ICIP 1997, vol. 1, pp. 596–599. IEEE Press, Los Alamitos
(1997)

7. Calderbank, R., Daubechies, I., Sweldens, W., Yeo, B.-L.: Wavelet transforms that
map integers to integers. Appl. Comput. Harmon. Anal. 5(3), 332–369 (1998)

8. Carnero, B., Drygajlo, A.: Perceptual speech coding and enhancement using frame-
synchronized fast wavelet packet transform algorithms 47, 1622–1634 (1999)

9. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding
system: an overview 46(4), 1103–1127 (2000)

10. Dang, P., Chau, P.: Reduce complexity hardware implementation of discrete
wavelet transform for JPEG 2000 standard. In: Proc. of the IEEE Intl. Confer-
ence on Multimedia and Expo., ICME 2002, August 26-29, vol. 1, pp. 321–324
(2002)

11. Daubechies, I.: The wavelet transform, time-frequency localization and signal anal-
ysis. IEEE Trans. on Information Theory 36, 961–1005 (1990)

12. Daubechies, I., Sweldens, W.: Factoring Wavelet Transforms into Lifting Steps. J.
Fourier Anal. Appl. 4(3), 245–267 (1998)

13. Dillen, G., Georis, B., Legat, J., Cantineau, O.: Combined line-based architecture
for the 5-3 and 9-7 wavelet transform of JPEG 2000 13(9), 944–950 (September
2003)

14. Ferens, K., Kinsner, W.: Adaptive wavelet subband coding for music compression.
In: Kinsner, W. (ed.) Proc. of the Data Compression Conference, DCC 1995 (1995)

15. Grgic, S., Kers, K., Grgic, M.: Image compression using wavelets. In: Kers, K.
(ed.) Proc. of the IEEE Intl. Symposium on Industrial Electronics, ISIE 1999,
vol. 1 (1999)

16. Kaisheng, Y., Zhigang, C.: A wavelet filter optimization algorithm for speech recog-
nition. In: Intl. Conference on Communication Technology Proc., ICCT 1998, Oc-
tober 22-24, vol. 2, p. 5 (1998)

A Lifting-Based DWT and DWP Processor 173

17. Mallat, S. (ed.): A Wavelet Tour of Signal Processing. Academic Press, Incorpo-
rated, London (1998)

18. Martina, M., Masera, G., Piccinini, G., Zamboni, M.: A VLSI architecture for IWT
(Integer wavelet Transform). In: Masera, G. (ed.) Proc. of the 43rd IEEE Midwest
Symposium on Circuits and Systems, vol. 3 (2000)

19. Meyer, Y.: Wavelets and Operators. Press Syndicate of the University of Cambridge
(1992)

20. Seo, Y.-H., Kim, D.-W.: A New VLSI Architecture of Lifting-Based DWT. In:
Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp.
146–151. Springer, Heidelberg (2006)

21. Sweldens, W.: The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet
Constructions. Wavelet Applications in Signal and Image Processing 3, 68–79
(1995)

22. Usevitch, B.: A tutorial on modern lossy wavelet image compression: foundations
of JPEG2000 18(5), 22–35 (2001)

23. Wang, C., Gan, W.: Efficient VLSI Architecture for Lifting-Based Discrete Wavelet
Packet Transform 54(5), 422–426 (2007)

On the Comparison of Different Number
Systems in the Implementation of Complex

FIR Filters

Gian Carlo Cardarilli1, Alberto Nannarelli2, and Marco Re1

1 Department of Electronics, University of Rome Tor Vergata, Rome, Italy
{g.cardarilli,marco.re}@uniroma2.it

2 DTU Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
an@imm.dtu.dk

1 Introduction

In modern electronic systems, complex arithmetic computation plays an impor-
tant role in the implementation of different Digital Signal Processing (DSP) and
scientific computation algorithms [1], [2]. Most of the interest in complex signal
processing is related to the implementation of wireless communication systems
based on new concepts and architectures [3]. A very interesting tutorial paper
on complex signal processing and its applications has been presented recently
[4]. In [4], the importance of the use of complex signal processing in wireless
communications systems has been shown. Regarding communication systems,
one of the most critical computation to be implemented in hardware is complex
FIR filtering. In fact, FIR filters are generally characterized by a high order
(number of taps) to obtain sharp transition bands that, in case of high speed
real time computation, require many resources and have high power dissipation.
In particular, for complex FIR filters, the hardware complexity is mostly deter-
mined by the number of complex multipliers (i.e. each complex multiplication is
actually implemented with four scalar multiplications). Different solutions have
been proposed to lower the hardware complexity of the complex multiplication
either at algorithmic level (Golub Rule) [5], or by using different number sys-
tems such as the Quadratic Residue Number System (QRNS) [6], [2] and the
Quater-Imaginary Number System (QINS) [7].

The aim of this work is to compare in terms of performance, area and power
dissipation, the implementations of complex FIR filters based on the traditional
Two’s Complement System (TCS), the QRNS and the QINS (or radix-2j) im-
plemented in the Redundant Complex Number Systems (RCNS) [8].

Previous work was done on both the QRNS ([6], [9]) and on the radix-2j and
the RCNS ([10], [11], [12]). In this work, we compare for a specific application, the
complex FIR filter, the performance and the tradeoffs of TCS, QRNS and RCNS.
The results of the implementations show that the complex filter implemented in
QRNS has the lowest power dissipation and the smallest area with respect to
filters implemented in TCS and RCNS.

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 174–190, 2010.
c© IFIP International Federation for Information Processing 2010

Comparison of Different Number Systems for Complex Filters 175

The work is organized as follows: in Section 2 a background on the QRNS
and the radix-2j number systems is given; the FIR filter architectures for the
three number systems are described in Section 3; the synthesis results and the
comparisons are discussed in Section 4. Finally, the conclusions are drawn in
Section 5.

2 The Quadratic Residue Number System

A Residue Number System (RNS) is defined by a set of P relatively prime
integers {m1, m2, . . . , mP } which identify the RNS base. Its dynamic range is
given by the product M = m1 · m2 · . . . · mP .

Any integer X ∈ {0, 1, 2, . . .M − 1} has a unique RNS representation given
by:

X
RNS→ (〈X〉m1 , 〈X〉m2 , . . . , 〈X〉mP)

where 〈X〉mi denotes the operation X mod mi [13]. Operations on different mi

(moduli) are done in parallel

Z = X op Y
RNS→

⎧⎪⎪⎨
⎪⎪⎩

Zm1 = 〈Xm1 op Ym1〉m1

Zm2 = 〈Xm2 op Ym2〉m2

.
ZmP = 〈XmP op YmP 〉mP

(1)

As a consequence, operations on large wordlengths can be split into several
modular operations executed in parallel and with reduced wordlength [13].

The conversion of the RNS representation of Z can be accomplished by the
Chinese Remainder Theorem (CRT):

Z =

〈
P∑

i=0

mi · 〈mi
−1〉mi · Zmi

〉
M

with mi =
M

mi
(2)

and mi
−1 obtained by 〈mi · mi

−1〉mi = 1.
To better explain the CRT, we show an example in which we convert the RNS

representation {3, 6, 5}, with RNS base { 5, 7, 8 }, to integer. The dynamic
range of the RNS base { 5, 7, 8 } is M = 280. We start by computing the values
mi = M

mi

m1 =
280
5

= 56 m2 =
280
7

= 40 m3 =
280
8

= 35

To compute mi
−1, we have to find a number x such that

〈mi · x〉mi = 1 (3)

For this reason, x is called the multiplicative inverse of mi and indicated as
mi

−1. By computer iterations, we find

m1
−1 = 1 m2

−1 = 3 m3
−1 = 3

176 G.C. Cardarilli, A. Nannarelli, and M. Re

Finally, applying (2) to the set of residues {3, 6, 5} we get〈
3∑

i=1

mi · 〈mi
−1〉mi · Zi

〉
280

= 〈 56 · 1 · 3 + 40 · 3 · 6 + 35 · 3 · 5 〉280 =

〈 1413 〉280 = 13

We can easily verify that

〈13〉5 = 3, 〈13〉7 = 6, 〈13〉8 = 5

In the complex case, we can transform the imaginary term into an integer if
the equation q2 + 1 = 0 has two distinct roots q1 and q2 in the ring of integers
modulo M (ZM). A complex number xR + jxI = (xR, xI) ∈ ZM × ZM , with q
root of q2 + 1 = 0 in ZM , has a unique Quadratic Residue Number System rep-
resentation given by

(xR, xI)
QRNS→ (Xi, X̂i) i = 1, 2, . . . , P

Xi = 〈xR + q · xI〉mi

X̂i = 〈xR − q · xI〉mi

(4)

The inverse QRNS transformation is given by

(Xi, X̂i)
RNS→ (XRi, XIi) i = 1, 2, . . . , P

XRi = 〈2−1(Xi + X̂i)〉mi

XIi = 〈2−1 · q−1(Xi − X̂i)〉mi

(5)

where 2−1 and q−1 are the multiplicative inverses of 2 and q, respectively, modulo
mi:

〈2 · 2−1〉mi = 1 and 〈q · q−1〉mi = 1 .

Then, by applying the CRT we get

(XR1, XR2, . . . , XRP) CRT→ xR

(XI1, XI2, . . . , XIP) CRT→ xI

(6)

Moreover, it can be proved that for all the prime integers which satisfy

p = 4k + 1 k ∈ N

the equation q2 + 1 = 0 has two distinct roots q1 and q2.
As a consequence, the product of two complex numbers xR + jxI and yR + jyI

is in QRNS

(xR + jxI)(yR + jyI)
QRNS→ (〈XiYi〉mi , 〈X̂iŶi〉mi) (7)

and it is realized by using two integer multiplications instead of four.

Comparison of Different Number Systems for Complex Filters 177

We illustrate an example of QRNS multiplication in the ring modulo 13. The
complex multiplication to perform is

(xR + jxI)(yR + jyI) = (3 + j)(2 + j2) = 4 + j8

For m = 13 the root is q = q1 = 5 ↔ 〈5 · 5〉13 = −1. The conversion to QRNS
according to (4) gives

X = 〈3 + 5 · 1〉13 = 8 Y = 〈2 + 5 · 2〉13 = 12
X̂ = 〈3 − 5 · 1〉13 = 11 Ŷ = 〈2 − 5 · 2〉13 = 5

The two QRNS multiplications (modulus 13) are:

X · Y = 〈8 · 12〉13 = 5 X̂ · Ŷ = 〈11 · 5〉13 = 3

And finally, the conversion QRNS to integer according to (5) gives

zR = 〈7(5 + 3)〉13 = 4 being 2−1 = 7
zI = 〈7 · 8(5 − 3)〉13 = 8 and q−1 = 8

3 The Radix-2j Number System

It is well known that an integer x can be represented by a digit-vector

X = (xn−1, . . . , x1, x0)r

such that

x =
n−1∑
i=0

xi · ri

where r is the radix of the representation. By choosing r = 2j, we obtain a
Quater-Imaginary Number System (QINS) [7]. Complex numbers can be repre-
sented in QINS by vectors with the non-redundant digit set {0, 1, 2, 3}. Therefore,
a complex number a + jb is represented in QINS as:

a + jb = xn−1(2j)n−1 + xn−2(2j)n−2 + . . . +
+x3(−8j) + x2(−4) + x1(2j) + x0(1)

= (xn−1, . . . , x1, x0)2j

(8)

The above expression, shows that the real part is represented by the digits of
even weight, while the imaginary one by the digits of odd weight. Furthermore,
the sign is embedded in the representation. The imaginary number j cannot be
represented by (8). To represent j, we need the power −1, which corresponds
to − 1

2j, that in the conventional number systems (e.g. binary) is only needed
to represent fractional numbers. Table 1 shows how the real and imaginary

178 G.C. Cardarilli, A. Nannarelli, and M. Re

Table 1. Representation of real and imaginary integers in QINS

Real Imaginary
-8 00200.0 -8j 01000.0
-7 00201.0 -7j 01010.2
-6 00202.0 -6j 01010.0
-5 00203.0 -5j 01020.2
-4 00100.0 -4j 01020.0
-3 00101.0 -3j 01030.2
-2 00102.0 -2j 01030.0
-1 00103.0 -1j 00000.2
0 00000.0 0j 00000.0
1 00001.0 1j 00010.2
2 00002.0 2j 00010.0
3 00003.0 3j 00020.2
4 10300.0 4j 00020.0
5 10301.0 5j 00030.2
6 10302.0 6j 00030.0
7 10303.0 7j 103000.2
8 10200.0 8j 103000.0

numbers, in the range [−8, 8] and [−8j, 8j] respectively, are represented in QINS.
Every complex number xR + jxI can be obtained by overlapping the real and
imaginary parts. For example, according to Table 1, 4− 5j is represented by the
digit vector 11320.2.

From Table 1 we can notice that for a given number of digits the representation
is not symmetric with respect to the zero. For example, in the two’s complement
binary system with 8 digits we can represent the dynamic range {−128, 127}. In
the QINS, for the real part, with 3 digits (equivalent to 64 different values) the
dynamic range representable is {−12, 51}.

3.1 Addition

The addition of two QINS numbers can be performed by changing the carry rule
according to (8). First, because the even weight digits represent the real part and
the odd weight the imaginary one, the carry is propagated by skipping a digit.
Second, because two adjacent even (or odd) weight digits have opposite sign,
the carry propagated acts as a borrow. For example, if a positive weight digit
generates a carry, this positive value will decrement the next digit with negative
weight, and vice-versa. In addition, the propagation of borrows can generate
negative digits (e.g. -1). Therefore, because of the quaternary representation of
the QINS, the negative digits are converted into positive (modulo operation)
and an always positive carry propagated. Summarizing the addition algorithm
is implemented as:

Comparison of Different Number Systems for Complex Filters 179

xi, yi, si ∈ {0, 1, 2, 3}
ci ∈ {1, 0, 1}

si = (xi + yi + ci) mod 4

ci+2 =

⎧⎨
⎩

1 if (xi + yi + ci) ≥ 4
1 if (xi + yi + ci) < 0
0 otherwise

For example, if we wnat to add xR = 1 and yR = 3 in QINS we get:

X : 0 0 0 0 3. 0 +
Y : 0 0 0 0 1. 0 +
c: 1 0 1 0 0. 0 =
S: 1 0 3 0 0. 0 → sR = 4

3.2 The Redundant Complex Number Systems

The implementation of the basic arithmetic operators in radix-2j can take ad-
vantage of the Signed-Digit (SD) representation [14], which allows carry free
addition. The combination of radix-2j and SD representation, resulted in the
Redundant Complex Number Systems (RCNS), which is described in [8], [10],
[11], [12] and [15].

We now briefly recall the characteristics of the RCNS. The RCNS is a redun-
dant positional number system based on the radix rj where its digits can assume
the 2α + 1 values: Aα = {α, · · · , 1, 0, 1, · · · , α} where α = −α.

In the case of the radix 2j, two possible RCNSs [10] are:

1. RCNS 2j, 2 with digit set A2 = {2, 1, 0, 1, 2}
2. RCNS 2j, 3 with digit set A3 = {3, 2, 1, 0, 1, 2, 3}

In this work, RCNS 2j, 2 is used to recode the multiplier, and RCNS 2j, 3 is
used for the signed-digit additions, as illustrated next.

4 FIR Filter Architecture

A complex FIR filter of order N is expressed by

y(n) =
N−1∑
k=0

akx(n − k) (9)

where x, y and ak denote complex numbers. We consider the implementation
of a FIR filter in transposed form because its structure is more regular with
respect to the filter order N and it does not require a tree of adders. The filter

180 G.C. Cardarilli, A. Nannarelli, and M. Re

Z
−1

+

+ Z
−1

+

+Z
−1 +

++
a

0
a

1
a a

n−1

y(t)

x(t)

n−2

Fig. 1. Structure of FIR filter in transposed form

in transposed form (Fig. 1) can be regarded as the sequence of groups, often
referred as taps, composed of:

– a complex multiplier;
– a complex adder implemented with one adder for the real part, and one for

the imaginary part;
– a register to store the real and imaginary parts.

We perform our design space exploration for programmable N-tap complex FIR
filters with input and coefficients size of 10 bits for both the real part and
imaginary parts. The 20 bit dynamic range of the filter guarantees error free
operations1.

4.1 TCS FIR Filter

A single tap of the The programmable N-tap TCS complex FIR filter is realized
as sketched in Fig. 2. It is composed of two branches: the real branch (top part of
Fig. 2) and the imaginary branch (bottom part of Fig. 2). The real and imaginary
products are both realized with two Booth multipliers each, and the resulting
partial products are accumulated in a Wallace’s tree structure which produces
a carry-save (CS) representation of the product at each side of the filter. We
chose to keep the product in carry-save (CS) format to speed-up the operation,
and delayed the assimilation of the CS representation to the last stage of the
filter. In both branches (real and imaginary) of each tap we need to add the CS
representation of the product to the value stored in the register (previous tap).
Again, to avoid the propagation of the carry, we can store the CS representation.
For this reason, we need to implement the addition with an array of 4:2 carry-
save adders (CSA), as shown in Fig. 2.

We convert the CS representation of yRe and yIm with two carry-propagate
adders at the filter output.

1 These wordlengths are derived from the specification of an actual digital filter for
satellite TV broadcasting.

Comparison of Different Number Systems for Complex Filters 181

CSA 4:2

R
E

G

C
S

A
 4

:2

CSA 4:2

X

X

X

X

R
E

G

C
S

A
 4

:2

XRE

XIM

ARE

ARE
AIM

- AIM

COMPLEX FILTER TAP

CSA 4:2

R
E

G

C
S

A
 4

:2

CSA 4:2

X

X

X

X

R
E

G

C
S

A
 4

:2

XRE

XIM

ARE

ARE
AIM

- AIM

COMPLEX FILTER TAP

Fig. 2. Structure of tap in TCS complex FIR filter

4.2 QRNS FIR Filter

The architecture of the QRNS filter, is a direct consequence of (1), (7) and (9),
and it can be realized by two RNS filters in parallel as shown in Fig. 3. Each
RNS filter is then decomposed into P filters working in parallel, where P is the
number of moduli used in the RNS representation. In addition, the RNS filter
requires both binary to QRNS and QRNS to binary converters.

In order to have a dynamic range of 20 bits, as required by the specifications,
we chose the following set of moduli:

mi = {5, 13, 17, 29, 41}
such that

log2(5 · 13 · 17 · 29 · 41) > 20.

For each path mod mi, we have to build a FIR filter with a structure similar
to that of Fig. 1. Therefore, we need to implement modular multiplication and
addition.

Implementation of Modular Addition

The modular addition
〈a1 + a2〉m

182 G.C. Cardarilli, A. Nannarelli, and M. Re

m1

m2

m P

...

m1

m2

m P

...

co
nv

er
si

on
 T

C
S

 −
−>

 Q
R

N
S

co
nv

er
si

on
 Q

R
N

S
 −

−>
 T

C
S

y(n)_x(n)_

X Y

ŶX̂

RNS FIR

RNS FIR

Fig. 3. QRNS FIR Filter architecture

can be implemented by two additions. If the result of a1 +a2 exceeds the modulo
(it is larger than m−1), we have to subtract the modulo m. In order to speed-up
the operation we can execute in parallel the two operations:

(a1 + a2) and (a1 + a2 − m).

If the sign of the three-term addition is negative, it means than the sum
(a1 + a2) < m and the modular sum is a1 + a2, otherwise the modular addition
is the result of the three-term addition. The above algorithm can be implemented
with two binary adders as shown in Fig. 4.

Comparison of Different Number Systems for Complex Filters 183

n−bit adder

carry−save adder

m u x

n−bit adder

0 1

−m 1 2

MSB

n
n

nn

n

1

a a

Fig. 4. Architecture of the modular adder

Table 2. Example of isomorphic transformation for m = 5 (q = 2)

n w 〈qw〉m = n

0 N/A
1 0 〈20〉5 = 1
2 1 〈21〉5 = 2
3 3 〈23〉5 = 3
4 2 〈22〉5 = 4

Implementation of Modular Multiplication by Isomorphism

Because of the complexity of modular multiplication, it is convenient to im-
plement the product of residues by the isomorphism technique [16] . By using
isomorphisms, the product of the two residues is transformed into the sum of
their indices which are obtained by an isomorphic transformation. According to
[16], if m is prime there exists a primitive radix q such that its powers modulo
m cover the set [1, m − 1]:

n = 〈qw〉m with n ∈ [1, m − 1] and w ∈ [0, m − 2].

An example of isomorphic transformation is shown in Table 2 for m = 5. In this
case, the primitive radix is q = 2.

Both transformations n → w and w → n can be implemented with m − 1
entries look-up tables, if the moduli are not too large (less than 8-bit wide).
Therefore, the product of a1 and a2 modulo m can be obtained as:

〈a1 · a2〉m = 〈qw〉m
where

w = 〈w1 + w2〉m−1 with a1 = 〈qw1〉m and a2 = 〈qw2〉m

184 G.C. Cardarilli, A. Nannarelli, and M. Re

1
w

2
w

mod(m−1) adder

w

.
m

a
2

a
1

IIT Table

DIT Table DIT Table

a
1

a
2

Fig. 5. Structure of isomorphic multiplication

In order to implement the modular multiplication the following operations are
performed:

1) Two Direct Isomorphic Transformations (DIT) to obtain w1 and w2;
2) One modulo m − 1 addition 〈w1 + w2〉m−1;
3) One Inverse Isomorphic Transformations (IIT) to obtain the product.

The architecture of the isomorphic multiplier is shown in Fig. 5. Special attention
has to be paid when one of the two operands is zero. In this case there exists no
isomorphic correspondence and the modular adder has to be bypassed.

For example, for the modular multiplication 〈3 · 4〉5 = 2 using the isomorphic
transformation of Table 2, we have

1) 3 = 〈23〉5 DIT→ w1 = 3
4 = 〈22〉5 DIT→ w2 = 2

2) 〈2 + 3〉4 = 1
3) 1 IIT→ 〈21〉5 = 2

Implementation of FIR Filter Modulo m

By using the isomorphism technique, the product of the two residues is trans-
formed into the sum of their indices which are obtained by an isomorphic trans-
formation. As a result, in each tap, the modular multiplication is reduced to
a modular addition followed by an access to table (inverse isomorphism). The
two input DIT tables of Fig. 5 do not need to be replicated in every tap. By
observing that in computing the product AkX(n− k) the term X is common to
all taps and it can be converted once in the input conversion unit, and that the
term Ak can be stored directly as the index of the isomorphism. Therefore, the
structure of each modular tap can be simplified as shown in Fig. 6.

Comparison of Different Number Systems for Complex Filters 185

adder mod (m −1)
i

adder mod m i

inv. isomorphism

register

from prev.
 tap

to next
 tap

isomorphic
multiplier

modular
adder

X A
k

(Isomorphic representation)

Fig. 6. Structure of RNS tap for filter in transposed form

4.3 Radix-2j Filter (RCNS)

Because of the radix-2j representation, the filter tap is simply implemented with
a multiplier and an adder. We implement the multiplier as described in [10]. The
complex x and ak are converted in non-redundant QINS and then ak is recoded
into RCNS 2j, 2. The partial products (PPs) are then accumulated by a tree of
arrays of signed-digit full-adders (SDFA) which operates in RCNS 2j, 3.

In RCNS 2j, 3, the complex number

X = (Xn−1, . . . , Xi, . . . , X1, X0, X−1)

has digits in the set Xi = {3, 2, 1, 0, 1, 2, 3}, which encoded in binary as

Xi = 2x1
i + x0

i with x1
i , x

0
i ∈ {1, 0, 1} (10)

Both x1
i and x0

i are then encoded with two bits each as shown in Table 3.
Therefore, the resulting binary encoding of Xi is illustrated in Table 4. Four bits
are necessary to represent each RCNS 2j, 3 digit. With the encoding of Table 4
the SDFA of Fig. 7 can be derived.

By arranging the SDFAs in a tree the 10 PPs are reduced to 2 as shown in
Fig. 8. An extra array of SDFAs adds the product x·ak to the partial sum coming
from the previous tap. As for the TCS case, we keep the carry-save representation
of the digits until the last stage of the filter where we perform the conversion
from RCNS 2j, 3 to radix-2 (binary) integers. Due to the CS representation of
digits we need to store 8N bits in the tap’s registers.

186 G.C. Cardarilli, A. Nannarelli, and M. Re

Table 3. Binary encoding of x1
i and x0

i

x1
i xP1

i xM1
i x0

i xP0
i xM0

i

1 0 1 1 0 1
0 0 0 0 0 0
0 1 1 0 1 1
1 1 0 1 1 0

Table 4. Binary encoding of Xi

Xi x1
i x0

i xP1
i xM1

i xP0
i xM0

i

3 1 1 0 1 0 1
2 1 0 0 1 0 0

0 1 1 1
1 0 1 0 0 0 1

1 1 0 1
1 1 0 1 1 0

0 0 0 0 0 0 0
1 1 0 0
0 0 1 1
1 1 1 1

1 0 1 0 0 1 0
1 1 1 0

1 1 1 0 0 1
2 1 0 1 0 0 0

1 0 1 1
3 1 1 1 0 1 0

0 1

mux

0 1

mux

binary SDFA

0 1

mux

0 1

mux

binary SDFA

y
i

x
i

s
i

P1 P0M1 M0P1 P0 M0

P1 P0M1 M0

x
i

x
i

x
i

y
i

y
i

y
i

M1

i−2
c

i−2
c M1

P1

c
i

P0

c
i

M0

c
i

c
i

P1

M1

s
i

s
i

s
i

Fig. 7. Implementation of SD full-adder (SDFA)

Comparison of Different Number Systems for Complex Filters 187

Booth’s Recoding
&

PP Generator

R
E

G

SDFA

x(n)

Ak

N

N

8N
8N

Booth’s Recoding
&

PP Generator

R
E

G

SDFA

x(n)

Ak

N

N

8N
8N

Fig. 8. Structure of RCNS tap

5 Filters Implementation

The filters are implemented in the 90 nm STM library of standard cells [17] and
they have been synthesized by Synopsys Design Compiler. All the filters can be
clocked at fmax = 300 MHz. By interpolating the results obtained by synthesis
on filters of different order (number of taps), we obtain the trends shown in Fig. 9
for the area and Fig. 10 for the power. The values of area and power dissipation
for the single tap (Fig. 2, Fig. 6 and Fig. 8) determine the slopes of the curves
in the figures. The conversions from the TCS to the other number systems (and
vice versa) are a constant contribution that does not depend on the number of
taps, but only on the dynamic range of the filters. Table 5 reports the data for
tap and conversion contribution for the three number systems.

The results show that complex filters implemented in QRNS consume signifi-
cantly less power than the corresponding ones in TCS and RCNS. The expression
for the power dissipated dynamically [18] in a system composed of n cells is

Pdyn = V 2
DDf ·

n∑
i=1

CLiai (11)

where

VDD is the power supply voltage;
f is the clock frequency;
CLi is the load connected to the i-th cell (both active load and interconnections);

188 G.C. Cardarilli, A. Nannarelli, and M. Re

0 10 20 30 40 50 60
0

500

1000

1500
Area for different Number Systems

A
re

a
(μ

 m
2)*

10
E

3

Number of taps

TCS Filter
QRNS Filter
RCNS Filter

Fig. 9. Trends in area for increasing N

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70
Power consumption for different Number Systems

P
ow

er
 (

m
W

)

Number of taps

TCS Filter
QRNS Filter
RCNS Filter

Fig. 10. Trends in power dissipation (at 100 MHz) for increasing N

ai is the activity factor of the i-th cell, which is the measure of how many
transitions occur at its output. The activity factor is normally related to the
clock ai ∈ [0, 1].

Comparison of Different Number Systems for Complex Filters 189

Table 5. Values of area and power dissipation

Area P at 100 MHz
tap conv. tap conv.

TCS 21.8K 2.0K 1.00 0.10
QRNS 9.6K 12.0K 0.25 1.20
RCNS 23.9K 8.0K 1.05 0.30

[µm2] [mW]

The lower power dissipation in the QRNS filter is due to the combination of two
factors:

1. As clearly shown in Fig. 9, the smaller area results in a global reduced
capacitance

∑n
i=1 CLi (including shorter interconnections).

2. The work in [19] showed that the number of transitions, i.e. the switching
activity, for vectors of the same number of bits k, in RNS is lower than in
TCS (

k∑
i=1

ai

)
RNS

<

(
k∑

i=1

ai

)
TCS

Therefore, the switched capacitance
∑n

i=1 CLiai, and by (11) the power con-
sumption, in QRNS is smaller than in TCS and RCNS.

6 Conclusions

In this work, the use of different number representations for the implementation
of complex FIR filters has been investigated.

Complex multipliers determine the performance, area and power dissipation
of complex filters. Previously in [10], complex multipliers in TCS and RCNS were
evaluated, while in [9], complex filters in QRNS and TCS were compared. Here
we extended the comparison to complex filters implemented in TCS, QRNS and
RCNS.

The experimental results on complex filters with 20 bit dynamic range show
that for the TCS and the RCNS the area and power dissipation are similar
and confirms the findings of [10]. As for the QRNS, the results presented here,
confirm those of [9], based on the implementation of TCS and QRNS complex
filters in a 0.35 μm technology.

To summarize, this work shows that for complex high order FIR filters im-
plementations based on QRNS offer significant advantages in area and power
dissipation without any performance degradation.

References

1. Oppenheim, A.V., Shafer, R.V.: Digital Signal Processing. Prentice Hall, Engle-
wood Cliffs (1995)

2. Mitra, S.K., Kaiser, K.: Handbook for Digital Signal Processing. Wiley-
Interscience, Hoboken (1993)

190 G.C. Cardarilli, A. Nannarelli, and M. Re

3. Brodersen, R.W., Chen, M.S.-W.: Digital Complex Signal Processing Techniques
for Impulse Radio. In: Proc. of IEEE GLOBECOM 2006 Global Telecommunica-
tions Conference, November 2006, pp. 1–5 (2006)

4. Martin, K.W.: Complex signal processing is not complex. IEEE Transactions on
Circuits and Systems I, 51, 1823–1836 (2004)

5. Moharir, P.S.: Extending the scope of Golub’s method beyond complex multipli-
cation to binary converters. IEEE Transactions on Computers C-34(5), 484–487
(1985)

6. Sodestrand, M., Jenkins, W., Jullien, G.A., Taylor, F.J.: Residue Number System
Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, New
York (1986)

7. Knuth, D.E.: The Art of Computer Programming 2: Seminumerical Algorithms,
3rd edn. Addison-Wesley Publishing Company, Reading (1998)

8. Aoki, T., Amada, H., Higuchi, T.: Real/Complex Reconconfigurable Arithmetic
using Redundant Complex Number Systems. In: Proc. of 13th IEEE Symposium
on Computer Arithmetic, July 1997, pp. 200–207 (1997)

9. D’Amora, A., Nannarelli, A., Re, M., Cardarilli, G.C.: Reducing Power Dissipation
in Complex Digital Filters by using the Quadratic Residue Number System. In:
Proc. of 34th Asilomar Conference on Signals, Systems, and Computers, November
2000, pp. 879–883 (2000)

10. Aoki, T., Hosci, K., Higuchi, T.: Reduntant Complex Arithmetic and its Applica-
tion to Complex Multiplier Design. In: Proc. of 29th IEEE International Sympo-
sium on Multiple-Valued Logic, May 1999, pp. 200–207 (1999)

11. Ohi, Y., Aoki, T., Higuchi, T.: Redundant Complex Number Systems. In: Proc.
of 25th IEEE International Symposium on Multiple-Valued Logic, May 1995, pp.
14–19 (1995)

12. Aoki, T., Ohi, Y., Higuchi, T.: Redundant Complex Number Arithmetic for High-
Speed Signal Processing. In: VLSI Signal Processing VIII (1995 IEEE Workshop
on VLSI Signal Processing), October 1995, pp. 523–532 (1995)

13. Szabo, N., Tanaka, R.: Residue Arithmetic and its Applications in Computer Tech-
nology. McGraw-Hill, New York (1967)

14. Avizienis, A.: Signed-Digit Number Representations for Fast Parallel Arithmetic.
IRE Trans. Electronic Computers EC-10, 389–400 (1961)

15. Nielsen, A.M., Muller, J.-M.: Borrow-Save Adders for Real and Complex Number
Systems. In: Proc. 2nd Conf. on Real Numbers and Computers (April 1996)

16. Vinogradov, I.: An Introduction to the Theory of Numbers. Pergamon Press, New
York (1955)

17. STMicroelectronics, 90nm CMOS090 Design Platform,
http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm

18. Weste, N.H.E., Eshraghian, K.: Principles of CMOS VLSI Design, 2nd edn.
Addison-Wesley Publishing Company, Reading (1993)

19. Stouraitis, T., Paliouras, V.: Considering the alternatives in low-power design.
IEEE Circuits and Devices Magazine 17, 22–29 (2001)

http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm

Time Efficient Dual-Field Unit for
Cryptography-Related Processing

Alessandro Cilardo and Nicola Mazzocca

Università degli Studi di Napoli Federico II
Dipartimento di Informatica e Sistemistica

via Claudio 21, 80125 Naples, Italy
acilardo@unina.it

Abstract. Computational demanding public key cryptographic algo-
rithms, such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve (EC)
cryptosystems, are critically dependent on modular multiplication for
their performance. Modular multiplication used in cryptography may
be performed in two different algebraic structures, namely GF (N) and
GF (2n), which normally require distinct hardware solutions for speed-
ing up performance. For both fields, Montgomery multiplication is the
most widely adopted solution, as it enables efficient hardware implemen-
tations, provided that a slightly modified definition of modular multi-
plication is adopted. In this paper we propose a novel unified architec-
ture for parallel Montgomery multiplication supporting both GF (N) and
GF (2n) finite field operations, which are critical for RSA ad ECC public
key cryptosystems. The hardware scheme interleaves multiplication and
modulo reduction. Furthermore, it relies on a modified Booth recoding
scheme for the multiplicand and a radix-4 scheme for the modulus, en-
abling reduced time delays even for moderately large operand widths.
In addition, we present a pipelined architecture based on the parallel
blocks previously introduced, enabling very low clock counts and high
throughput levels for long operands used in cryptographic applications.
Experimental results, based on 0.18µm CMOS technology, prove the ef-
fectiveness of the proposed techniques, and outperform the best results
previously presented in the technical literature.

1 Introduction

The increasing centrality of networking and Internet applications are stimulat-
ing an ever-growing demand for high-performance implementations of crypto-
graphic algorithms and protocols. Two widely adopted public-key cryptosystems,
in particular, are the Rivest-Shamir-Adleman (RSA) [11] and the Elliptic Curve
(EC) [1] cryptosystems. While various standardization bodies recommend prime
fields GF (N) or binary extension fields GF (2n) for elliptic curve cryptosystems,
RSA cryptography is essentially based on integer modular arithmetic, similar
in its implementation to GF (N) operations. Both types of finite fields have in
common that the multiplication of elements implies a reduction operation, either
modulo a prime N or modulo an irreducible binary polynomial N(x) of degree n.

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 191–210, 2010.
c© IFIP International Federation for Information Processing 2010

192 A. Cilardo and N. Mazzocca

The so-called Montgomery algorithm [9] has proved to be the most effective im-
plementation technique for modular multiplication [2, 17]. It is in fact based on
a slightly different definition of the modular product, which enables particularly
efficient implementations.

Originally introduced for integer numbers (and thus for GF (N) arithmetic),
Montgomery multiplication has been effectively extended to binary fields GF (2n)
[8]. As a consequence, during the last years several works have addressed the
problem of implementing unified arithmetic blocks, suitable for computing op-
erations in both fields using the same underlying hardware [4, 6, 12, 13, 14, 18].

In this paper, we propose a novel unified architecture for parallel Montgomery
multiplication supporting both GF (N) and GF (2n) operations. The hardware
unit interleaves multiplication and modulo reduction in a parallel scheme. Fur-
thermore, it relies on a modified Booth recoding technique for the multiplicand
and a radix-4 scheme for the modulus, enabling reduced time delays for moder-
ately large operand widths. We also present a pipelined architecture based on the
parallel component previously introduced, enabling very low clock counts and
high throughput levels for long operands used in cryptographic applications. Ex-
perimental results, based on 0.18μm CMOS technology, prove the effectiveness
of the proposed techniques, and outperform the best results previously presented
in the technical literature.

The paper is structured as follows. Section 2 provides a brief introduction to
the properties of Montgomery multiplication algorithm. Section 3 presents the
state-of-the-art of architectures suitable for unified integer/GF (N) and GF (2n)
arithmetic. Section 4 describes the proposed parallel arithmetic unit support-
ing unified Montgomery multiplication. Section 5 presents a high-throughput
pipelined core based on the previously introduced parallel multiplier. Section 6
presents our results and compares them to the state-of-the-art. Section 7 con-
cludes the paper with some final remarks.

2 Modular Multiplication Algorithm

A slight variant of standard modular multiplication, Montgomery multiplication
performs the following operation:

A · B · R−1 mod N

where R = 2n is a power of two and n is equal to, or slightly larger than the
number of bits in the modulus N , ensuring R > N . The value R−1 is the inverse
of R modulo N , i.e. a number such that R−1R mod N = 1. In order for such
a number to exist, it suffices that gcd(N, R) = 1. Since in both Elliptic Curve
cryptography based on prime fields and in RSA cryptography N is always an odd
number, this condition is always satisfied when R is a power of two. Montgomery
multiplication can be performed with the following algorithm.

Time Efficient Dual-Field Unit for Cryptography-Related Processing 193

Algorithm 1. Montgomery Modular Multiplication

Input:
N , R and Ñ such that R · R−1 − N · Ñ = 1,
A, B < N

Output:
P ≡ A · B · R−1 mod N , P < N

Algorithm:
1. Q = AB · Ñ mod R

2. P = AB+Q·N
R

3. if P > N then P = P − N

The above algorithm returns a quantity P which is congruent with AB · R−1

modulo N (step 2), and is less than N (at step 2, P = AB+Q·N
R < N ·N+Q·N

R <[
N
R + Q

R

]
· N < 2N). The multiple Q · N of the modulus is defined at step 1 in

such a way as to make the quantity AB + Q · N divisible by R [9].
An interesting property enabled by Montgomery multiplication is the possibil-

ity to work on N -residues of numbers, defined as A = A·R mod N . It can be eas-
ily seen that the Montgomery product of two numbers in N -residue form is still in
N -residue form: A ·B ·R−1 mod N = AR ·BR ·R−1 mod N = (AB)·R mod N =
AB. This also holds true for modular addition: (A + B) mod N = A + B. All
operations used in RSA and EC cryptography can be reduced to a composition
of modular multiplications and additions, and can thus always handle operands
in Montgomery form.

Fig. 1. An example of Montgomery multiplication execution

194 A. Cilardo and N. Mazzocca

Notice that Algorithm 1 requires a magnitude comparison (Step 3) in or-
der to ensure the result is actually less than the modulus N . However, when
many consecutive multiplications are to be performed, we can allow interme-
diate results to be in the range [0, 2N [with a proper choice for R. In fact, if
we choose R > 4N , it can be easily seen that the reduction algorithm accepts
multiplicands A, B < 2N , i.e. not necessarily less than N : P = AB+Q·N

R <
2N ·2N+Q·N

R <
[

4N
R + Q

R

]
·N < 2N , so the algorithm preserves the invariant that

inputs and output are less than 2N . By avoiding magnitude comparison, the
above version of Montgomery algorithm greatly improves performance, so we
will refer to this version of the algorithm in the following. Figure 1 provides an
example of execution of the Montgomery algorithm variant exploiting the above
property.

The central operation of Montgomery algorithm, i.e. the computation of the
product A · B and the multiple of the modulus Q · N , can be implemented in
a very efficient way, as it is suitable for deeply pipelined and systolic imple-
mentations [2, 10, 16, 17]. For scalable implementations, a natural choice is to
partition operands into words, and process them separately. Precisely, we will
refer in this paper to the so-called finely integrated operand scanning (FIOS)
method [7], reported below.

Algorithm 2. FIOS method for w-bit words

Input:
A =

∑m−1
i=0 Ai(2w)i, B =

∑m−1
i=0 Bi(2w)i,

N =
∑m−1

i=0 Ni(2w)i, Ñ =
∑m−1

i=0 Ñi(2w)i,
with Ai, Bi, Ni, Ñi < 2w and
0 ≤ A, B < 2N , m · w ≥ 2 + �log2 N (i.e. 2m·w > 4N)

Output:
P ≡ A · B · 2−n mod N , with n = m · w

Algorithm:
1. P = 0
2. for j = 0 to m − 1
3. C = 0
4. Qj = (P0 + BjA0)Ñ0 mod 2w

5. for i = 0 to m − 1
6. S := Pi + BjAi + QjNi + C

7. if (i �= 0) then Pi−1 := S mod 2w

8. C := S/2w

9. Pm−1 := C

The w-bit words of operands A, B, and N are processed in two nested loops.
During the execution of the algorithm, temporary variables S and C can be
stored in a 2w + 1 bit and w + 1 bit register, respectively, while variable P

Time Efficient Dual-Field Unit for Cryptography-Related Processing 195

needs a full precision register since it is shared among consecutive “rows” (i.e.,
m iterations of the inner loop with constant j).

Authors in [8] extended Montgomery multiplication to binary fields GF (2n),
by adopting polynomial representation and replacing the factor R−1 = 2−n with
x−n. With polynomial representation, GF (2n) field elements can be handled as
binary polynomials and multiplication can be performed modulo an irreducible
polynomial N(x). Addition of GF (2n) elements is performed as a bitwise XOR
of their components, while multiplication/division by powers of x are performed
by left/right-shifting an element’s components. As a result, the structure and
the basic operations of Montgomery algorithm in GF (2n) turn out to be very
similar to the integer/GF (N) case. Essentially, the control-flow of the algorithm
(including the above FIOS variant) remains unchanged, shift operations are also
identical, while integer addition is replaced by a bitwise XOR. The GF (2n)
counterpart of Algorithm 2 is presented, for example, in [13].

3 State-of-the-Art in Unified Field Arithmetic

Since the structure of Montgomery variants for GF (N) and GF (2n) are sim-
ilar, several authors have proposed unified hardware solutions for computing
both operations with the same processing unit. To enable this approach, Savaş
et al. proposed in [14] a basic building block able to perform a one-digit addi-
tion in both GF (N) and GF (2n) fields. The basic component is the Dual Field
Adder, i.e. an ordinary full adder whose carry input can be disabled, so that the
sum output is simply the XOR of the two input bits (i.e., their GF (2) sum).
Figure 2 shows a possible implementation of such a component. Based on a
similar idea, Großschädl [4] proposed a bit-serial unified multiplier processing
the multiplicand in full precision. Montgomery modular reduction is computed
by interleaving the addition of partial products and the modulus. A hardware

Fig. 2. An implementation of the Dual Field Adder [5, 6]

196 A. Cilardo and N. Mazzocca

solution for dual-field arithmetic is also presented by Wolkerstorfer in [18]. The
author introduces a low power design enabling short critical paths and high clock
frequencies by using carry save adders. In [6], the authors present the design of
a low-power multiply/accumulate (MAC) unit for efficient arithmetic in finite
fields. The unit combines integer and polynomial arithmetic into a single func-
tional unit supporting both GF (N) and GF (2n) fields. The emphasis is mostly
put on power consumption, as the authors show that a properly designed uni-
fied multiplier may consume significantly less power if used in polynomial mode
compared to integer mode.

The fastest solution for unified field multiplication was proposed by Satoh
and Takano [13]. They present a scalable elliptic curve cryptographic processor
supporting both GF (N) and GF (2n) finite fields. The core of the processor is
a parallel dual-field multiplier, based on a Wallace tree scheme. The delay for a
multiplication is logarithmic in the input-size, although it is different for the two
types of fields. In fact, a sub-portion of the Wallace tree is used for obtaining a
GF (2n) product, while the whole structure, including a fast carry propagation
adder, is required for GF (N) operations. The authors evaluate different paral-
lelisms, developing the multiplier for word sizes of 8, 16, 32, or 64 bits, depending
on the desired trade-off between area requirements and performance. One ad-
vantage of their approach is that it does not require any special full adder, such
as the dual-field adder, unlike works in [4, 6, 14] and others. This makes it pos-
sible to optimize the partial product addition network. Furthermore, at a higher
level, the performance of point multiplication over an elliptic curve is improved
by converting on-the-fly the integer multiplicand in a redundant form.

Finally, a recent solution proposes a fast modular arithmetic-logic unit [12]
that is scalable in the digit size and the field size. The datapath is based on
chains of carry save adders to speed up arithmetic operations over large inte-
gers in GF (N). This enables efficient execution of modular multiplication and
addition/subtraction. The unit is prototyped in FPGA technology achieving in-
teresting throughput levels, although inferior to the ASIC-based work presented
in [13].

4 Parallel Montgomery Multiplier

In this section, we propose a novel unified architecture for parallel Montgomery
multiplication supporting both GF (N) and GF (2n) operations. Unlike previ-
ously proposed parallel multipliers, such as the solution in [6, 13], the hardware
unit merges multiplication and Montgomery reduction, allowing a word-level
modular multiplication to be performed is a single cycle. The proposed multi-
plier relies on a modified Booth recoding scheme for integer multiplication, and
a radix-4 scheme for GF (2n) multiplication and Montgomery reduction. As a
result, the number of partial products to be added in the parallel unit can be
approximately halved, resulting in both reduced area and improved speed.

The basic full-precision algorithm for a radix-4 digit-serial interleaved Mont-
gomery multiplication is given below (see for example [15]). For the sake of

Time Efficient Dual-Field Unit for Cryptography-Related Processing 197

clarity, we refer to the integer/GF (N) version of the algorithm. As explained
in Section 2, the extension to binary fields GF (2n) is straightforward, provided
that a dual-field data path is available.

Algorithm 3. Radix-4 Montgomery Modular Multiplication

Input:
2 < N < 4k,
Ñ such that 4k+1 · 4−(k+1) − N · Ñ = 1,
A =

∑k
i=0 Ai4i < 2N , B =

∑k
i=0 Bi4i < 2N , with Ai, Bi < 4

Output:
P ≡ A · B · 4−(k+1) mod N , P < 2N

Algorithm:
1. P = 0
2. for i = 0 to k

3. Qi = (P0 + Bi · A0) · Ñ0 mod 4
4. P = (P + Bi · A + Qi · N)/4

It can be easily proved that, by using k + 1 iterations (i.e., by computing A ·B ·
4−(k+1) mod N , A, B < 2N) the final value of P is still less than 2N . In fact, we
have P = A·B+Q·N

4k+1 <
[

4N
4k+1 + Q

4k+1

]
· N < 2N , where Q =

∑k
i=0 Qi4i. Notice

that Qi only depends on the two least significant bits of (P0 + Bi · A0) and N ,
so it can be computed by a simple circuit or a look-up table. Its value is defined
in such a way as to make the least significant digit of (P +BiA+ QiN)4 zero at
each iteration. Figure 3 gives an example of radix-4 Montgomery multiplication
execution.

In the following, we will call AA(i) and NN (i) a partial product Bi · A and a
multiple of the modulus Qi · N , respectively. In the case of radix-4, Bi and Qi

are 2-bit numbers. Thus, the value sets of AA(i) and NN (i) are as follows:

AA(i) ∈ {0, A, 2A, 3A}, NN (i) ∈ {0, N, 2N, 3N}
requiring two extra adders to compute 3A and 3N on the fly. In the case of
GF (2n) operations, using polynomial representation, Bi(x) and Qi(x) are poly-
nomial of degree less than 2, so the value sets of AA(i)(x) and NN (i)(x) are as
follows:

AA(i)(x) ∈ {0, A(x), xA(x), xA(x) + A(x)}
NN (i)(x) ∈ {0, N(x), xN(x), xN(x) + N(x)}

In standard multipliers, Booth recoding scheme is normally used in order to
avoid the expensive calculation of the multiple 3A in the AA(i) value set. The
recoding scheme takes the bits of the multiplier (b2i+1, b2i, b2i−1) as input and
generates a recoded AA(i) according to Table 1, where b−1 is defined to be 0.
As a consequence, Booth recoding scheme transforms the value set of AA(i) into
{−2A,−A, 0, +A, +2A}. All elements in the set are calculated with simple oper-
ations such as bit inversion and/or bit shift. For GF (2n) operations, elements are

198 A. Cilardo and N. Mazzocca

Fig. 3. An example of radix-4 Montgomery multiplication execution

Table 1. Partial product generation for integers and binary polynomials

Field Three Recoded Recoded Control
Select input bits digit partial product signals

fsel b2i+1 b2i b2i−1 Bi AA(i) inv trp shl

1 0 0 0 0 0 − 0 0
1 0 0 1 1 +A 0 1 0
1 0 1 0 1 +A 0 1 0
1 0 1 1 +2 +2A 0 0 1
1 1 0 0 −2 −2A 1 0 1
1 1 0 1 −1 −A 1 1 0
1 1 1 0 −1 −A 1 1 0
1 1 1 1 0 0 − 0 0
0 0 0 0 0 0 − 0 0
0 0 0 1 0 0 − 0 0
0 0 1 0 1 A(x) 0 1 0
0 0 1 1 1 A(x) 0 1 0
0 1 0 0 x xA(x) 0 0 1
0 1 0 1 x xA(x) 0 0 1
0 1 1 0 x + 1 xA(x) + A(x) 0 1 1
0 1 1 1 x + 1 xA(x) + A(x) 0 1 1

handled as binary polynomials. In this case, a pure radix-4 polynomial multipli-
cation is adopted. In other words, multiples AA(i)(x), calculated as in Table 1,
only depend on radix-4 digits (b2i+1, b2i).

Time Efficient Dual-Field Unit for Cryptography-Related Processing 199

For the proposed parallel Montgomery multiplier, in addition to summing par-
tial products AA(i), we also need to sum modulus multiples NN (i) (or NN (i)(x)
for GF (2n) multiplication). In [15] authors adopt a method named Montgomery
recoding scheme to change the possible values of NN (i) so that they can all be ob-
tained by simple shifts and inversions, similar to Booth recoding. Let (sp1, sp0)
be the 2 bits in the least significant digit (LSD) of the partial product to be
reduced SP = P + AA and (n1, n0) be the 2 bits in the LSD of the modulus
N . According to the input condition that N has to be odd, n0 is always 1.
Then, Montgomery recoding scheme takes (sp1, sp0, n1) as input and generates
a recoded NN (i) value according to Table 2, where Qi represents the recoded
quotient digit for an NN (i) multiple at the i-th iteration. Montgomery recoding
scheme transforms the value set of NN into {−N, 0, +N, +2N}.

In polynomial mode the addition becomes a bitwise XOR. For this reason, we
need to sum a different value of NN (i)(x) in order to reduce the least significant
digits (sp1, sp0)2 of SP (x) = P (x) + AA(x). Notice that, in order to perform
modular multiplication in GF (2n) with the same recoding scheme, we use an
additional control signal, fsel (field select), which allows us to switch between
integer-mode (fsel = 1) and polynomial mode (fsel = 0). In Table 2 we show the
unified Montgomery recoding scheme, including polynomial mode for GF (2n).

Due to the two recoding schemes, it is easy to calculate all the elements in
the value sets of AA(i) and NN (i). Notice that, for integer multiplication, this
technique changes the range of the Montgomery algorithm output, which may
now be negative.

Table 2. Montgomery moduli generation for integers and binary polynomials

Field Three Recoded Recoded Control
Select input bits quotient modulus signals

fsel sp1 sp0 n1 Qi NN (i) inv trp shl

1 0 0 0 0 0 − 0 0
1 0 0 1 0 0 − 0 0
1 0 1 0 −1 −N 1 1 0
1 0 1 1 +1 +N 0 1 0
1 1 0 0 +2 +2N 0 0 1
1 1 0 1 +2 +2N 0 0 1
1 1 1 0 +1 +N 0 1 0
1 1 1 1 −1 −N 1 1 0
0 0 0 0 0 0 − 0 0
0 0 0 1 0 0 − 0 0
0 0 1 0 1 N(x) 0 1 0
0 0 1 1 x + 1 xN(x) + N(x) 0 1 1
0 1 0 0 x xN(x) 0 0 1
0 1 0 1 x xN(x) 0 0 1
0 1 1 0 x + 1 xN(x) + N(x) 0 1 1
0 1 1 1 1 N(x) 0 1 0

200 A. Cilardo and N. Mazzocca

The core of the proposed parallel Montgomery multiplier is made of a sequence
of Partial Product Generators (PPGs) and Montgomery Modulues Generators
(MMGs), wired as in Figure 4. Their outputs are summed together, making up
an unrolled implementation of the loop in Algorithm 3.

Fig. 4. The basic row in the proposed radix-4 parallel Montgomery multiplier

Fig. 5. The internal structure of a Partial Product Generator (PPG) [6]. A similar
circuit is used for the Montgomery Modulus Generator (MMG).

The structures of PPGs and MMGs are identical, and are similar to that
described in [6]. The corresponding circuit is depicted in Figure 5. PPGs and
MMGs are controlled by an encoder via the three signals inv (invert), trp (trans-
port), and shl (shift left), which represent the recoded digit Bi and the recoded

Time Efficient Dual-Field Unit for Cryptography-Related Processing 201

quotients Qi, respectively. Precisely, when inv = 1, the corresponding modulus
is negative, i.e. NN (i) = −N . Control signal trp = 1 means NN (i) = N (no left-
shift). On the other hand, when shl = 1, a 1-bit left-shift has to be performed,
i.e. NN (i) = 2N . Finally, NN (i) = 0 is generated by trp = shl = 0. Notice
that in GF (2n) mode, i.e. when fsel = 0, the input value inv = 0, trp = 1,
shl = 1 generates the multiple xN(x) + N(x) needed for radix-4 Montgomery
reduction. Similar considerations hold true for the Partial Product Generator
used to calculate the values of AA(i).

Selection signals inv, trp, and shl depend on the multiplier digit bits
b2i+1, b2i, b2i−1, in the case of PPG, and the two least significant bits (sp1, sp0)
of SP and n1, in the case of MMG, according to the equations below, derived
from Table 2. For PPGs, selection signals can be written as follows:

inv = fsel · b2i+1

trp = fsel · b2i + b2i · b2i−1 + fsel · b2i · b2i−1

shl = fsel · b2i+1 + b2i+1b2i · b2i−1 + fsel · b2i+1 · b2i · b2i−1

(1)

For MMGs, selection signals can be written as follows:

inv = fsel · sp1 · n1 + fsel · sp1 · sp0 · n1
trp = sp0

shl = sp1 · sp0 + fsel · sp1 · n1 + fsel · sp1 · sp0 · n1

(2)

A parallel (w×w)-bit multiplier for signed/unsigned modular multiplication con-
tains �w/2�+1 PPGs and �w/2�+1 MMGs and the same number of PPG/MMG
encoder circuits generating selection signals inv, trp, and shl.

Partial products AA(i) and moduli NN (i) are w + 2 bits long as they are
represented in two’s complement form. Besides a bitwise complement of their
binary representation, negative multiples need a 1 to be added at the least sig-
nificant position of the partial product. Let ca(i), cn(i) denote such bits. We
will thus have ca(i) = 1 and cn(i) = 1 when the partial products AA(i) and the
Montgomery moduli NN (i) are negative, respectively.

Notice that the parallel multiplier handles internal operands in carry-save
form to reduce the architectural critical path. Special care must be put, in this
case, for summing negative numbers. In principle, we would need to sign extend
possibly negative partial products AA(i) and moduli NN (i) to full 2w-bit length,
causing a large waste of full-adders in each row of the multiplier. By recoding
the addends, however, we can have only positive-weight bits to be added in the
multiplier, provided that a suitable constant K is added along with them as the
last row in the multiplier array [3]. Let P = (−2n)pn +

∑n−1
i=0 2ipi be a two’s

complement number. Recoding works as follows:

P = (−2n)pn +
n−1∑
i=0

2ipi = −2n +

[
2npn +

n−1∑
i=0

2ipi

]

where all number’s components have a positive weight, while the only negative
term is constant. If we have many partial products P to be summed together,

202 A. Cilardo and N. Mazzocca

we can thus recode them as shown above, sum their positive components pi

(including pn) by adopting a usual array multiplier, separate their constant terms
−2n and accumulate them in a single full-length constant K to be added as the
last row.

Some further optimizations can be applied to reduce the architectural critical
path of the design. Let (S, C) denote a carry-save pair. In a non-optimized
Montgomery multiplier with modified Booth recoding, the sum of the partial
products and the Montgomery moduli in the carry-save stages (CSAs) proceeds
as follows:

· · ·(
Stmp(i), Ctmp(i)

)
= AA(i) + S(i) + C(i)(

S(i+1), C(i+1)
)

= N (i) + Stmp(i) + Ctmp(i)(
Stmp(i+1), Ctmp(i+1)

)
= AA(i+1) + S(i+1) + C(i+1)

· · ·

(Stmp(i), Ctmp(i)) is given by the sum of the i-th recoded partial product AA(i)

and the previous AA(j), 0 ≤ j < i with the recoded moduli NN (j), 0 ≤ j < i.
Recoding of partial products and moduli, however, also implies the sum of the
sign bits ca and cn. In principle, this would require the use of two additional
CSA stages. Indeed, since ca and cn are in the right-most positions of partial
products and moduli, we can juxtapose them with other partial products and
moduli down in the multiplier array, since these are left-shifted and so leave free
slots on the right. For the sake of clarity, Figure 6 gives a practical example of
this organization, for the case w = 6. The generic stage within the proposed
multiplier scheme performs the following operation:

· · ·(
Stmp(i), Ctmp(i)

)
= S(i−1) + C(i−1) + AA(i+1) + ca(i)(

S(i), C(i)
)

= Stmp(i) + Ctmp(i) + NN (i) + cn(i)

· · ·
Overall, we need:

– �w/2� + 1 CSA stages to compute Stmp(i), Ctmp(i)

– �w/2� + 1 CSA stages to compute S(i), C(i)

The main optimizations adopted consist in (see Figure 6):

– reorganizing the sum of the LSB ca(i) and cn(i) of the output carry vector in
order to avoid additional CSA stages. Notice that, although interchangeable
for the accumulation of partial products and moduli, bits ca(i) are needed for
the determination of the next modulus NN (i+1) to be summed. The MMG
selection circuit must take this into account, and read also the bit ca(i) to
anticipate the evaluation of NN (i+1)

– postponing the sum of the least significant bits {s(i)
1 , s

(i)
0 , c

(i)
0 } of S(i) and C(i)

respectively, to save area and CSA stages. Similar to the previous optimiza-
tion, these operations imply a complication of the MMG selection network,

Time Efficient Dual-Field Unit for Cryptography-Related Processing 203

Fig. 6. Addition of Partial Products and Montgomery Moduli with Booth Recoding
in an optimized scheme for w = 6

which needs more inputs to infer the values of bits sp1, sp0, handled here in
redundant, carry-save form

– reversing the order of the sum of AA(i), NN (i), in order to improve the
critical path. This operation does not alter the computation of NN (i), due

204 A. Cilardo and N. Mazzocca

to the encoding network previously described, which tests the bits needed for
the computation of the modulus before the addition of the AA(i+1) vector.

After the final stage, we need a Dual-Field Carry-Look-Ahead adder (not shown
in Figure 6) that converts the Carry/Sum pair back to non-redundant form.
The structure of the Dual-Field Carry Look-Ahead is depicted in Figure 7. The
essential idea is to disable carry generation throughout the adder structure in
GF (2n) mode, i.e. when fsel = 0. In this case, all internal carry signals Ci are
zero, independent of propagate conditions Pi. As a result, output bits Si coincide
with propagate signals Pi = ai⊕bi, i.e. a GF (2) sum. The fundamental advantage
of this solution is that it enables the reuse of highly-optimized fast carry look-
ahead circuits which are normally available for a given target technology.

Fig. 7. Dual-Field Carry Look-Ahead adder

5 Pipelined Montgomery Multiplier

Previous works (e.g. Satoh and Takano’s 64-bit multiplier [13]) suggest that it is
normally convenient to adopt a large parallelism for achieving higher through-
put levels. Our parallel architecture has a relatively complex selection network
and a linear critical path, which results in large time delays as the word size
increases. In order to achieve high throughput levels and propose a scalable
scheme, we present in this section a pipelined architecture, using the parallel

Time Efficient Dual-Field Unit for Cryptography-Related Processing 205

unit as the basic building block. The architecture can process single words of w
bits. By partitioning long operands into w-bit words, a full-length Montgomery
multiplication can be carried out based on the FIOS variant of the Montgomery
algorithm (see Algorithm 2).

We implemented the unit for a bit length w of 64 bits. Figure 8 shows the
internal structure of a 64x64-bit unit composed of eight pipelined modules. The
“smaller” multipliers on the right are in fact four instances of the parallel unit
presented in the previous section: in other words, they can generate the recoded
multiples (i.e. Qi recoded as the signals shl, trp, inv) of the modulus N and
the multiplicand A for the whole row, in addition to adding them. The four
“larger” multipliers on the left side of Figure 8, on the other hand, only need
to sum the multiples of N and A, as determined by right-multipliers. Since left-
multipliers are much simpler in their structure and have consequently a shorter
delay, they are designed so that they process longer data. Furthemore, right-
multipliers also need an additional input signal, called first word, which can
enable/disable the generation of multiples of the modulus Qi. This is necessary
to process intermediate words during a row scanning of the FIOS algorithm
(steps 5-8 in Algorithm 2), where we need to process new w-bit words in the
pipelined unit reusing a previously generated value of Qi.

As we use two’s complement representation in the carry-save form, it is de-
sirable to keep intermediate sums in carry-save form and convert the final result
back to binary form only at the end of the pipelined structure. We thus need
to transfer carry-save numbers between subsequent multiplier modules having
different output/input sizes. This required the use of a suitable technique [19]
to sign-extend the carry-save pair and properly propagate sign information.

Figure 9 describes how the pipelined unit is used to process multi-word
operands, showing how the portions of the operands are scheduled in the pipeline.
Numbers in parentheses indicate which of the eight blocks in the unit works on
which portion of operands A, N , and B at which clock cycle (starting from cycle
1 for the top right-most multiplier). The unit has a latency of eight cycles, intro-
ducing a stall at the end of each row only if the number of words m is less than
8. This makes the unit particularly suitable for high-performance multiplication
on large multi-word operands, when many words on the same row are to be pro-
cessed consecutively. The throughput of the architecture is one multiplication
word per clock cycle in this case.

Right modules in Figure 8 have a 16 × 16 bit size, while left modules have a
48×16 bit size. The architecture is designed so that the single blocks, especially
the smaller right-multipliers, can be optimized to minimize the clock period.
Notice that, with a slight modification to the scheme of Figure 8, the first and
the last row (possibly connected to an external bus) may be designed with a
smaller height than the multipliers in the second and third row, so as to balance
the delay of each stage in the pipeline. The carry-save stages are followed by a
Dual-Field Carry-Look-Ahead adder, not shown in Figure 8, converting results
back to the non-redundant form.

206 A. Cilardo and N. Mazzocca

Fig. 8. Pipelined architecture of the arithmetic core. Superscript numbers in parenthe-
ses indicate the different portions into which a single w-bit word is partitioned inside
the pipelined unit.

The overall architecture of the dual-field multiplication unit is shown in Fig-
ure 10. From the scheme in Figure 9 it is clear that at the beginning of each
row we need to drive in the unit three different words, namely A0, N0, and Bj ,
while the words of the intermediate result P are stored internally in a dedicated
memory. This is the only case when we need three concurrent accesses to the
external memory. To overcome this problem and limit the number of external
buses, we observe that it is convenient to store the first word of the modulus
N , N0, in an internal register. This trick only requires w additional flip-flops
and some selection logic, independent of the full size of the operands and the
modulus. N0 is stored before starting a multiplication (or a sequence of mul-
tiplications sharing the same modulus). As a consequence, at the beginning of
each row in the multiplication pipeline we only need A0 and Bj , while for the
subsequent words we need Ai and Ni (Bj is constant through the row), which
are driven into the multiplication unit through the same pair of buses.

Time Efficient Dual-Field Unit for Cryptography-Related Processing 207

....

....

....

....

....

....

(1)(2)

(3)(4)

(5)(6)

(7)(8)

(2)(3)

(4)(5)

(6)(7)

(8)(9)

(m)(m+1)

(m+3)

(m+5)

(m+7)

(m)+2

(m)+4

(m)+6

(m)+8

(m+2)

(m+4)

(m+6)

(m)+1

(m)+3

(m)+5

(m)+7

............

....

....

....

word

w
o
rd

A /N

m-1 m-1

A /N

1 1

A

0

/N

0

B

0

B

1

Fig. 9. Scheduling for a multi-word Montgomery multiplication. Ai, Ni, and Bj are w-
bit words. Word sub-portions enter the pipelined w-bit unit according to the schedule
indicated in parentheses.

Fig. 10. Overall architecture of the dual-field multiplication unit

6 Experimental Results and Comparisons

The pipelined multiplier core of Figure 8 was described in VHDL and then syn-
thesized for a CM0S 0.18μm standard cell library technology by using Cadence
Build Gates synthesis tool. Post-synthesis area requirements are estimated to be
1316kμm2, while the minimum clock period is 12.2ns.

208 A. Cilardo and N. Mazzocca

Although there are different related works presenting unified Montgomery
multiplication (see Section 3), we only compare our results with the multiplier
introduced in [13], since it achieves the highest throughput among the various
works available in the literature. Both their work and ours are synthesized as a
CMOS ASIC, but the design in [13] relies on a 0.13μm technology, more advanced
than the 0.18μm target used in our design. When implemented in the same
technology, our solution is thus likely to enable even better improvements than
emphasized in the following discussion. The table below reports some results
referred to integer (i.e. GF (N)) modular multiplication for different operand
lengths, choosing the field sizes indicated by NIST standards for elliptic curve
cryptography. Performance improvements are especially evident in terms of clock
counts.

Satoh and Takano [13] This work

ASIC 0.13µm ASIC 0.18µm
clock period: 7.26 ns clock period: 12.2 ns

GF (N) clock throughput clock throughput
field
size

count [Mbit/s] count [Mbit/s]

192 45 587.7 27 582.9
224 66 467.5 36 510.0
256 66 534.3 36 582.9
284 91 429.9 45 517.3
521 231 310.7 90 474.5

Authors in [13] emphasize that a higher frequency could be used if the unified
multiplier were used only in GF (2n) mode, since the output of their unit is
connected, in this case, to a subportion of the Wallace tree in the multiplier. If
a dual clock frequency were allowed, GF (2n) operations would be worse in our
case, while remaining superior for the more critical integer/GF (N) arithmetic.
In the case a dual frequency implementation is not possible, on the other hand,
our multiplier has better performance also for GF (2m), and comparisons with
the multiplier in [13] appear similar to those given in the above table for the
integer/GF (N) case.

7 Conclusions

The approach presented in this paper, based on dual-field parallel Montgomery
multiplication, proves to be a promising choice, especially for the reduction in
clock count. As a future work, we plan to study new techniques to further re-
duce the delay of the parallel Montgomery unit, described in Section 4, thereby
improving the clock period and the throughput achievable by the pipelined unit.

Acknowledgements

This work was partially supported by Regione Campania and Ditron S.R.L.
in the framework of “Progetto Metadistretto del settore ICT - Misura 3.17:

Time Efficient Dual-Field Unit for Cryptography-Related Processing 209

Sistema di comunicazione per l’integrazione delle informazioni nella distribuzione
commerciale dei punti vendita”.

References

1. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge
University Press, Cambridge (1999)

2. Blum, T., Paar, C.: High-Radix Montgomery Modular Exponentiation on Recon-
figurable Hardware. IEEE Transactions on Computers 50, 759–764 (2001)

3. Burgess, N.: Removal Of Sign-Extension Circuitry From Booth’s Algorithms
Multiplier-Accumulators. Electronics Letters 26, 1413–1415 (1990)

4. Großschädl, J.: A bit-serial unified multiplier architecture for finite fields GF (p)
and GF (2n). In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, p. 202. Springer, Heidelberg (2001)

5. Großschädl, J., Kamendje, G.A.: Instruction set extension for fast elliptic curve
cryptography over binary finite fields GF (2m). In: Proceedings of the 14th IEEE
Int. Conference on Application-specific Systems, Architectures and Processors
(ASAP 2003), pp. 455–468. IEEE Computer Society Press, Los Alamitos (2003)

6. Großschädl, J., Kamendje, G.A.: Low Power Design of a Functional Unit for Arith-
metic in Finite Fields GF (p) and GF (2m). In: Chae, K.-J., Yung, M. (eds.) WISA
2003. LNCS, vol. 2908, pp. 227–243. Springer, Heidelberg (2004)

7. Koç, Ç.K., Acar, T., Kaliski, B.S.: Analyzing and Comparing Montgomery Multi-
plication Algorithms. IEEE Micro 16, 26–33 (1996)

8. Koç, Ç.K., Acar, T.: Montgomery Multiplication GF (2n). Designs, Codes and
Cryptography 14, 57–69 (1998)

9. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44, 519–521 (1985)

10. Örs, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware Implementation of a
Montgomery Modular Multiplier in a Systolic Array. In: Proceedings of the Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2003), p. 184b
(2003)

11. Rivest, R.L., Shamir, A., Adleman, L.: A Method for obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21, 120–126 (1978)

12. Sakiyama, K., Preneel, B., Verbauwhede, I.: A Fast Dual-Field Modular Arith-
metic Logic Unit and its Hardware Implementation. In: Proc. IEEE International
Symposium on Circuits and Systems (ISCAS 2006), pp. 787–790 (2006)

13. Satoh, A., Takano, K.: A Scalable Dual-Field Elliptic Curve Cryptographic Pro-
cessor. IEEE Transanctions on Computers 52, 449–460 (2003)

14. Savaş, E., Tenca, A.F., Koç, Ç.K.: A Scalable and Unified Multiplier Architecture
for Finite Fields GF (p) and GF (2m). In: Paar, C., Koç, Ç.K. (eds.) CHES 2000.
LNCS, vol. 1965, pp. 281–296. Springer, Heidelberg (2000)

15. Son, H.K., Oh, S.G.: Design and Implementation of Scalable Low-Power Mont-
gomery Multiplier. In: Proceedings of the IEEE International Conference on Com-
puter Design (ICCD 2004), pp. 524–531 (2004)

16. Tsai, W.C., Shung, C.B., Wang, S.J.: Two systolic architectures for modular mul-
tiplication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8,
103–107 (2000)

210 A. Cilardo and N. Mazzocca

17. Walter, C.D.: Systolic Modular Multiplication. IEEE Transactions on Comput-
ers 42, 376–378 (1993)

18. Wolkerstorfer, J.: Dual-field arithmetic unit for GF (p) and GF (2m). In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 500–514.
Springer, Heidelberg (2003)

19. Tenca, A.F., Tawalbeh, L.A.: Carry-Save Representation is Shift-Unsafe: The Prob-
lem and Its Solution. IEEE Transanctions on Computers 55, 630–635 (2006)

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 211–231, 2010.
© IFIP International Federation for Information Processing 2010

A Temperature-Aware Placement and Routing
Algorithm Targeting 3D FPGAs

Kostas Siozios and Dimitrios Soudris

National Technical University of Athens (NTUA),
School of Electrical & Computer Engineering,

9 Heroon Polytechneiou, Zographou Campus, 157 80 Athens, Greece
{ksiop, dsoudris}@microlab.ntua.gr

Abstract. In current reconfigurable architectures, the interconnect structures
increasingly contribute to the delay and power consumption budget. The demand
for increased clock frequencies and logic availability (smaller area foot print)
makes the problem even more important, leading among others to rapid elevation
in power density. Three-dimensional (3D) architectures are able to alleviate this
problem by accommodating a number of functional layers, each of which might
be fabricated in different technology. Since power consumption is a critical
challenge for implementing applications onto reconfigurable hardware, a novel
temperature-aware placement and routing (P&R) algorithm targeting 3D FPGAs,
is introduced. The proposed algorithm achieves to redistribute the switched
capacitance over identical hardware resources in a rather “balanced” profile,
reducing among others the number of hotspot regions, the maximal values of
power sources at hotspots, as well as the percentage of device area that consumes
high power. For evaluation purposes, the proposed approach is realized as a new
CAD tool, named 3DPRO (3D-Placement-and-Routing-Optimization), which is
part of the complete framework, named 3D MEANDER. Comparing to
alternative solutions, the proposed one reduces the percentage of silicon area that
operates under high power by 63%, while it leads to energy savings (about 9%),
with an almost negligible penalty in application’s delay ranging from 1% up
to 5%.

1 Introduction

For decades, semiconductor manufacturers have been shrinking transistor size in ICs
to achieve the yearly increases in speed and performance described by Moore's Law,
which exists only because the RC delay was negligible in comparison with signal
propagation delay [1]. For submicron technology, however, the RC delay becomes a
dominant factor. This has generated many discussions concerning the end of device
scaling as we know it, and has hastened the search for solutions beyond the perceived
limits of current 2D devices.

One emerging solution to this problem is the 3D integration, which replaces a large
number of long interconnects needed in 2D structures with shorter ones. Such
architectures mitigate many of the limitations that the 2D devices exhibit. Among
others, they provide: (i) higher logic density in the same foot print area, (ii) shorter

212 K. Siozios and D. Soudris

interconnections among the logic blocks, (iii) reduced signal propagation delay, (iv)
greater versatility and resource utilization, and (v) lower power consumption.

One of the most critical challenges for efficient application implementation in 3D
FPGAs is the power management, and hence the thermal problem, which has already
been studied for 2D architectures [6, 7, 17]. This problem is exacerbated in the 3D
devices for two reasons: (i) the vertically stacked layers cause a rapid increase of
power density [9], and (ii) the thermal conductivity of the dielectric layers inserted
between device layers for insulation is very low compared to silicon and metal.

Moreover, an obvious consequence of this trend is the increased power
consumption per area unit. In recent years, power density in 2D FPGAs has doubled
every three years [1], and this rate is expected to increase as feature sizes, frequencies
and technologies scale faster than operating voltages. As the power density will
continue increasing in future technologies (according to “A-power” law), the power
consumption is regarded as a limiting factor to the increasing scales of integration
predicted by Moore's law [1].

Thermal management of Field-Programmable Gate Array (FPGA) devices is more
critical compared to ASIC solutions, as they dissipate more power, while their
operating temperatures usually exceed the critical one. Also, the leakage current
increases exponentially with temperature, causing a positive feedback loop between
leakage power and temperature.

Eliminating and managing power consumption for reconfigurable architecture
requires appropriate algorithm support. Realizing applications on 2D FPGAs is a well
studied problem; however, there are only a few solutions regarding 3D architectures
[8, 13, 14, 16].

In [13] a P&R approach for 3D ICs is presented, having as criterion to minimize
the total wire-length, the applications delay, and the on-chip temperature. Even
though the framework supports reconfigurable architectures, however, the thermal
feature is available sorely for ASIC designs.

A similar approach is shown in [14], where the P&R algorithm optimizes the
energy consumption and the thermal profile of a 3D standard-cell device under the
supplied timing constraint. The employed algorithm focuses on the energy
consumption of interconnect-related components. Unfortunately, the software
implementation is not publically available, in order to evaluate this approach against
to our proposed solution.

In [16] a thermal-driven 3D floor-planning algorithm that provides a trade-off
between runtime and quality is presented. The algorithm tries to reduce the total
wire-length, as well as the maximum on-chip temperature, compared to a non
thermal-driven approach.

In [8] a P&R algorithm and its software implementation targeting to explore
alternative interconnection schemes for 3D FPGAs are introduced. The employed cost
functions pay effort to minimize the application delay, the power/energy
consumption, as well as the total wire length, ignoring about their distribution. This
tool is part from an open-source CAD framework, named 3D MEANDER, for
mapping applications onto 3D FPGAs.

All these approaches realize digital applications on 3D devices having as goal to
minimize the total power/energy consumption of the design, ignoring about the spatial
distribution of its sources. Moreover, none of them is aware during the P&R

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 213

procedure about spatial distribution of parameters that affect the power/energy
consumption (i.e., switched capacitance). This results both to increased power/energy
consumption, as well as to significant variations of on-chip temperature values across
the 3D device. Among others, this non-uniformity in power consumption leads to
increased cooling costs, as the IC packaging has to be designed for the worst case
scenario.

The rest paper is organized as follows. In Section 2, we formulate the temperature-
aware P&R problem, while the employed methodology in order to derive the
temperature model is described in Section 3. The algorithmic steps of the proposed
temperature-aware P&R algorithms are introduced in Section 4. Section 5 evaluates
the efficiency of applying such a temperature-aware approach against to other
implementations for application mapping, while conclusions are summarized in
Section 6.

2 Problem Formulation

Power consumption of FPGAs is generally grouped into three categories: (i) dynamic
power, (ii) static power, and (iii) interface (I/O) power. These components are
governed by the process technology and traditionally maintain constant percentages
of the device’s total power. The dynamic part of power consumption (formulated in
the Equation (1)), occurring due to signal transition as the load capacitance is charged
(or discharged), still dominates the total power consumption. In this equation,
represents the clock frequency of the signal, is the supply voltage, while and

 are the capacitance and switching activity, respectively, of element .

0.5 · · · · (1)

When a lower bound on the supply voltage is set by external constraints (as often
happens in real-world designs), or when the performance degradation due to lowering
of the supply voltage is intolerable, then the only means of reducing power
consumption is by lowering the effective capacitance and/or the switching activity
(i.e., switched capacitance). Throughout this paper, we discuss an algorithm for
managing the spatial distribution of this product · over the 3-D
FPGA device, leading to a more “uniform” temperature profile.

Definition: Application Hypergraph
We consider as application hypergraph a directed hypergraph , , where
each vertex represents a logic functionality of the target application, while the
directed hyperedge , encodes the communication between logic functionalities

 and . The weight associated to hyperedge , , denoted as _ , , represents the communication load/bandwidth from
vertex to .

214 K. Siozios and D. Soudris

Definition: Platform Graph
We consider as platform graph a directed graph , where each vertex

 represents an element of the target architecture (e.g., logic block, processor,
memory, etc.), while the directed edge , denotes a communication path
between hardware elements and . The weight of the edge , , denoted as _ , , encodes the fabricated interconnection hardware
resources among these logic blocks.

3D Temperature-Aware Placement and Routing Problem
Given the architecture graph , consisted by a set of V
slices , where , , , , , , find a placement : and a routing : of the application hypergraph on the
available hardware resources (platform graph), in order each logic function and
the appropriate communication to occupy uniquely a logic resource and the
available routing fabric , respectively. The derived P&R solution is accepted if
the following conditions are satisfied:

(i) 0 for all the , .
(ii) The interconnection of each layer is accomplished with the minimum routing

resources.
(iii) Distribute uniformly the switched capacitance over the 3D device.
(iv) Meeting timing/power/area constraints of the application.
(v) Employ an acceptable number of vertical links (in terms of the selected 3D

bonding technology).

The proposed temperature-aware P&R solution was evaluated against to existing
(i.e., non temperature-aware) P&R algorithms with the usage of the 20 biggest
MCNC benchmarks [15]. During this experimental setup, the P&R algorithms were
applied to identical (i.e., with same amount of logic resources and interconnection
fabric) 3D FPGAs. The results show significant reduction (about 63%) on area
percentage that operates under high temperatures, while we also achieve energy
savings about 9%.

3 Methodology for Deriving the Temperature Model

The proposed methodology for deriving the employed temperature model that
calibrates our P&R algorithms, is depicted in Figure 1. For this reason, a
representative number of benchmarks from [15] were implemented (with the same
P&R algorithms) onto 3D FPGAs. Then we visualize the variation of switched
capacitance over each layer, in order to determine the number, as well as the spatial
distribution of hotspot regions. As a hotspot we refer to the device region where the
temperature is higher than 70% of the maximum temperature of the 3D FPGA. This
step was presented in a previous work regarding the 2D architectures [7]. Then, the
application is P&R on the target 3D architecture with the derived temperature-aware
algorithm. This step is described in more detail in upcoming sections.

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 215

Fig. 1. Proposed methodology for temperature-aware P&R

Our interest lies to control the temperature sources across the 3D device. In order
to model this, each of the functional layers is divided into a grid with dimensions

, where every point , , is assumed to be small enough in order its
temperature to be constant. In general, the steady-state temperature of each location
across the FPGA is a function of the total power consumption regarding all the on-
chip heat sources. Equation (2) gives the parameters of the thermal circuit [7] that
models the temperature across the device.

111 (2)

In this equation, the value of refers to the transfer thermal resistance, while the
 represents the power consumption of the slice placed at spatial location , , .

The on-chip temperature for this point is represented as .

4 Proposed P&R Algorithm Targeting 3D FPGA Devices

Fundamentally, the problem of 3D P&R is related to topological arrangements of the
application’s functionality to slices (i.e., logic blocks) of the 3D FPGA, while
satisfying the design timing, power and area constraints. The proposed temperature-
aware P&R algorithm pays effort to minimize the on-chip temperature gradient,
obtaining an even uniformly spatial distribution of switched capacitance, in respect to
the application’s timing constraints. This approach can be though as a power
management strategy. The result is an application mapping with fewer hotspot
regions, as compared to a conventional (i.e., timing-aware) approach.

216 K. Siozios and D. Soudris

Fig. 2. The 3D MEANDER Framework

Figure 2 shows the tool flow, named 3D MEANDER, for realizing applications on
3D FPGAs. This flow adopts some existing CAD tools from the 2D toolset [5], which
do not need to be aware of the 3D FPGA topology (i.e., technology platform
independent). To the best of our knowledge, this toolset is the first complete
framework in academia for mapping applications on 3D reconfigurable devices
starting from hardware description language up to configuration file generation.

The proposed temperature-aware algorithm (shown in Algorithm 1) is
implemented within the 3DPRO tool [8]. The calculation of application’s delay is
based on Elmore model [12]. Regarding the algorithmic complexity of this tool, it is
similar to existing solutions [10, 13]. Regarding the calculation of temperature
variations across the 3D FPGA, we employ models introduced in [2], appropriately
extended in order to be aware about the third dimension. These models were
integrated in the 3DPower tool.

Function TEMPERATURE-AWARE P&R FOR 3D FPGAs()
 Input netlist: technology mapped application
 Input target architecture: target 3D FPGA device
 Partition(netlist, target architecture);
 Place(netlist, target architecture);
 Route(netlist, target architecture);
 Calculate statistics(netlist);
End Function

Algorithm 1. The proposed temperature-aware P&R

Since our proposed P&R approach is temperature-aware, it poses new challenges

to application implementation on 3D devices. Detail description of each algorithmic
step (i.e., partitioning, placement, routing) will be given in the upcoming sections.

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 217

4.1 Application Partitioning and Layer Assignment

The first step of the proposed temperature-aware P&R algorithm deals with the
application partitioning into Z balanced sections. This number (Z) is equal to the 3D
device layers. The employed partitioning algorithm (shown in Algorithm 2) is based
on [11], as it tries to minimize the interlayer communication, however its cost
function was appropriately extended to spread as much as possible the spatial
distribution of application’s switched capacitance across the 3D device, without
affecting the total power/energy consumption, the application’s delay or the area
requirements.

This procedure is done by recursive bi-partitioning of the application hypergraph
, such that to minimize the value of the employed cost function (depicted in

Equation (3)). Since the net length is tightly firmed to its resistance and capacitance
values, we can manage the power consumption sources by weighting each net
according to its switched capacitance.

Function PARTITION(netlist, number of layers)
 while accept (partition=True) do
 Subgraphs split(netlist, number of layers);
 C calculate(connections among subgraphs);
 If (C > crititcal) then
 try to repartition the netlist;
 else
 accept partitions True
 end if
 end while
end Function

Algorithm 2. The proposed temperature-aware partitioning

We associate the switched capacitance criticality of a logic element as weight to
the corresponding vertex in the hypergraph, while the timing criticality is shown as
weight to the corresponding hyperedge. These weights encourage the partitioning
algorithm to split the application in a way that balances both of these factors. The
criticalities of the graph (i.e., weights of vertexes and hyperedges) are updated at each
partitioning level, while the partitioning process stops when both the switched
capacitance distribution and the timing constraints are met.

Next, the algorithm assigns the derived application segments on the device layers by
taking into consideration a number of design parameters. More specifically, the
algorithm tries not to assign segments that consume high power close to each other, or
on the middle of the 3D stack, as it is more difficult to dissipate heat. This task is
accomplished in conjunction to the effort for minimizing the interlayer communication
or other design constraints (i.e., delay, power/energy consumption, etc).

Additionally, since our algorithm can be used for architecture-level exploration,
rather than providing only an output, we calculate the Pareto-based space of
alternative application partitions. These solutions balance the area occupied by active
hardware resources, the number of interlayer connections and the variation of power

218 K. Siozios and D. Soudris

consumption (i.e., power sources) among layers. In order to quantify each of the
derived application partitioning, we employ cost function shown in Equation (3). 1 1 (3)

where denotes the variation of power sources over the 3D FPGA,
the is equal to the total amount of hyperedge-cut, while the

 corresponds to the variation of area occupied by active hardware
resources among the device layers. The employed factors and provide
higher flexibility to the cost function, as they can be used to tune the algorithm
for further optimizing the partitioning result. Finally, we have to mention that
both the cost function, as well as the criticalities of the hypergraph (i.e.,
 weights of vertexes and edges), are updated after each iteration, while the
partitioning stops when both the distribution of switched capacitance and the
timing constraints are met.

4.2 Application Placement

After the partitioning step, the placement algorithm assigns the application’s logic
functionalities to available hardware modules . As the majority of applications
realized onto FPGAs utilize only a subset of the available hardware resources, this
non-uniformity leads to high variation of power consumption across the device [8].
This problem gets even worst in 3D devices due to high power/temperature variation
among layers.

The proposed temperature-aware placement algorithm tries to place the logic
functionalities in a way that minimizes the maximal switched capacitance values
(referred as hotspots), as well as to distribute it across the whole 3D FPGA. As the
switching activity depends on the functionality implemented inside the logic blocks,
while the capacitance is proportional to the interconnection length and the number of
hardware modules that form each network, the proposed algorithm pays effort to
handle in an efficient way their product (i.e., switched capacitance).

More specifically, by placing on adjacent spatial locations logic functionalities
connected through nets with high switching activity, these nets probably will be
shorter (exhibit smaller capacitance), leading to reduced power consumption.
Unfortunately, it is not always possible to place close all these blocks, as this might
lead to increased application delay (i.e., delay of the slowest path). Also, the
placement of functionalities with high bandwidth requirements should be assigned
onto the same functional layer, since there is plethora of routing resources, as
compared to the reduced connectivity of vertical connectivity.

The proposed placement approach (shown in Algorithm 3) is based on simulated
annealing. During the placement pairs of logic blocks are selected and swapped
randomly, until either the resulted placement is good enough, or the maximum
number of iterations is reached. The efficiency of a placement is characterized by
calculating its cost function, shown in Equation (4), where:

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 219

 1
1

(4)

where

, , ,

 , , ,
_

,,

In this cost function, factors of cost function balance the effort for reducing either
the total wire length or the delay. However, in both cases, the algorithm tries to
reduce the switching activity. The , and parameters denote the
dimensions of the 3D bounding box for network , while the is a scaling factor of
the bounding box, used to make more accurate estimations about the wire-length for
nets with more than 3 terminals [10]. The , denotes the delay between a
source-sink path of a network, the factor const is a constant, while the
gives the importance, in terms of how close to the critical path, is the network .
Finally, the represents the switching activity value for the network . In
order to calculate this parameter, the transition density for all the hardware elements
of network has to be summarized.

The , , , and , parameters represent the average width of
routing tracks across the x, y and z direction, respectively, for the bounding box of
network i, while they are used in order to be taken into consideration the available
routing resources during the placement. Their values depend solely on the fabricated
interconnection resources, while they are constant during the placement. The values
of and control the relative cost of employing narrower and wider routing
channels. More specifically, when their values are 0, then the cost function results to
the conventional bounding box approach. Otherwise, as higher the values of these
parameters are, then more and more tracks from narrowest routing channels have
increased cost value, compared to the wider channels. We employ a different relative
cost for the vertical interconnections, as the placement algorithm has to pay
effort to not waste this kind of connections. Finally, by using an additional factor,
denoted as , we discourage the placer to put functions that exchange data in
different layers.

220 K. Siozios and D. Soudris

Function PLACE(netlist, target architecture)
P Make an initial Placement();
T Initial Temperature;
Rlimit Initial Rlimit;
While (Exit_Criterion() not TRUE) // outer loop
 {
 While (loop_criterion() not TRUE) //inner loop
 {
 Pnew Random swap placements(P, Plimit);
 ΔCost Cost(Pnew) – Cost(P);
 r random value(0,1);
 if (r<e-ΔCT) P Pnew; // accept movement
 }
 Rlimit Update(Rlimit);
 T Update(Temperature)
 }
End Function

Algorithm 3. The proposed temperature-aware placement algorithm

Even though it is true that such an approach can reach arbitrary close to the global
minimum, if the cooling schedule is slow enough, it suffers from long run times for
large circuits. In contrast to most of the existing approaches that start from a random
initial placement, our solution employs a more “sophisticated” assignment of logic
blocks, leading to shorter runtimes. This is achieved by taking into consideration
during the initial placement apart from the timing and the wire-length constraints, the
minimization of switched capacitance variation. Such info is available from the
partitioning step (shown in previous section).

4.3 Application Routing

By defining the placement on the 3D FPGA, the routing algorithm forms the
appropriate connections among the utilized logic blocks through the available
interconnection fabric . As the vertical interconnections are limited, compared to
horizontal tracks, the routing algorithm sets their weight to a higher value, in order to
discourage the unnecessary bends between horizontal and vertical wires. Also, this
penalty forces the router not to connect logic blocks placed on one layer by using
interconnection fabric from different layers.

The proposed routing algorithm (shown in Algorithm 4) is based on Pathfinder
negotiated congestion [4]. Initially, a number of networks are allowed to share the
same routing fabric, which is gradually prohibited, until to the final routing where
every network employs dedicated routing fabric. Such an approach finds the
narrowest horizontal and vertical channels for which the application is fully
routable.

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 221

Function ROUTE(netlist, target architecture)
horizontal initial horizontal channel width;
vertical initial vertical channel width;
while (routing optimal connection of logic blocks) do
route netlist();
 if (succeed routing) then
 optimal routing find narrowest channels;
 do
 T meet timing constraints();
 if(T True) distribute switched
capacitance();
 while(T True)
 else increase horizontal/vertical channel widths;
end while
end Function

Algorithm 4. The proposed temperature-aware routing

By discouraging routing algorithm to form connections that cross hotspot regions,
it is possible to spread the switched capacitance over the 3D device, while it also
achieve the timing and total power/energy constraints. However, this is not always
feasible, as it might increase the application’s delay or its power/energy consumption.
The efficiency of a derived application routing, is quantified with the cost function.
The mathematical expression regarding this function is shown in Equation (5). , 1 1

(5)

In this expression, the factor defines the importance of temperature control during
the routing procedure. The parameters , and represent the base cost,
the historical congestion cost and the present congestion cost for the hardware
element , respectively. In order to come to acceptable solutions the value of
increases with the execution time, in order to avoid the overuse of routing resources.
The factor corresponds to the normalized capacitance of resource ,
while the refers to the importance of the switching activity for the
network . Equation (6) gives the mathematic expression of this parameter. min _ , _ (6)

Here the _ corresponds to the maximum allowed value of switching

activity regarding the network , while the ratio _ gives the

normalized switching activity over all the application’s interconnection networks. As
the value of the _ parameter closes to 1 (e.g., 0.99), then more and
more interconnection networks with high switching activity will be taken in
consideration during the routing congestion.

222 K. Siozios and D. Soudris

Comparing the proposed cost function with existing from literature [8, 10, 13], it
has identical timing parameter. So, whenever a routing connection is timing critical,
the routing algorithm pays effort to reduce the delay of the network. However, the
second part of the cost function tries to handle the spatial distribution of switched
capacitance. Whenever a connection exhibits high switching activity, the proposed
algorithm tries to form the required connections through paths that exhibit reduced
capacitance (in order to eliminate the temperature values). On the other hand, when
the networks do not exhibit increased switching activity, the routing algorithm
reduces the routing congestion and increases the application’s operation frequency.

5 Experimental Results

We implement the proposed temperature-aware P&R algorithm in C++, as part to an
existing open-source tool for 3D FPGAs, named 3DPRO [8]. The experimental results
were retrieved using the 3DPRO tool, without and with the power-aware P&R
feature. This section provides comparisons among the proposed temperature-aware
P&R algorithm and the alternative solutions found in relevant literature, considering
the 20 biggest MCNC benchmarks. The average complexity of the employed
benchmark circuits, as listed in Table 1, is about 3,410 4-input LUTs, while each of
the layers contains an array of 56×56 slices. In terms of the target 3-D devices, the
average percentage of utilized logic resources is almost 97%.

The target 3D PFGA platforms (were each of the benchmarks is mapped) is inspired
by the one proposed in [8]. Such a 3D device is constructed by stacking a number of
identical 2D FPGAs on individual functional layers, providing appropriate
communication among them by interlayer vias. These connections are realized inside
vertically adjacent 3D Switch Boxes (SBs). The employed 3D architecture has a vias
distribution with smaller fabrication costs compared to conventional 3D FPGAs, without
any degradation in application performance, or increment of total power/energy
consumption. The features of this architecture are summarized as follows:

• It consists of four functional layers 4 .
• The percentage of vertical interconnections (i.e. vias) per functional layer is

30% (as derived in [8]).
• The spatial location , of each vertical interconnection per layer remains

invariant.
• The vertical interconnection fabric was modeled based on the approach

shown in [3].
• There are 4 bit connections between layers for each 3D SB.
• The hardware resources (both logic and interconnection) among layers are

identical.
• Each application is P&R onto the smallest 3D FPGA.
• The employed 3D devices for the alternative mappings have identical

hardware resources.

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 223

Table 1. Complexity of the employed benchmark applications, and utilization of the logic
resources of the target 3-D FPGA

Benchmark
of

4-LUTs

2D FPGA 3D FPGA
FPGA
array

% utilized
logic resources

FPGA
array

% utilized
logic resources

alu4 1544 40×40 96.50% 20×20×4 96.50%
apex2 1920 44×44 99.17% 22×22×4 99.17%
apex4 1290 36×36 99.54% 18×18×4 99.54%
bigkey 2391 49×49 99.58% 25×25×4 95.64%
clma 8879 95×95 98.38% 48×48×4 96.34%
des 2092 46×46 98.87% 23×23×4 98.87%
diffeq 1974 45×45 97.48% 23×23×4 93.29%
dsip 2020 45×45 99.75% 23×23×4 95.46%
elliptic 4969 71×71 98.57% 36×36×4 95.85%
ex1010 4618 68×68 99.87% 34×34×4 99.87%
ex5p 1135 34×34 98.18% 17×17×4 98.18%
frisc 4561 68×68 98.64% 34×34×4 98.64%
misex3 1425 38×38 98.68% 19×19×4 98.68%
pdc 4631 69×69 97.27% 35×35×4 94.51%
s298 1948 45×45 96.20% 23×23×4 92.06%
s38417 7694 88×88 99.35% 44×44×4 99.35%
s38584 7884 89×89 99.53% 45×45×4 97.33%
seq 1826 43×43 98.76% 22×22×4 94.32%
spla 3752 62×62 97.61% 31×31×4 97.61%
Tseng 1605 41×41 95.48% 21×21×4 90.99%

Average: 3407.9 56×56 98.37% 29×29×4 96.61%

Figure 3 depicts the variation of switched capacitance over the layers of the 3D

FPGA, with a timing-aware mapping. The employed application, named alu4, is one
of the 20 biggest MCNC benchmarks, consisted of 1522 4-input LUTs. These logic
modules are assigned to four equal sized layers, each of which occupies an array of
20 20 slices. The picture of Figure 3 is a very useful instrument to architecture
designers, in order to specify the spatial distribution of hotspot regions over the
device.

From this figure we conclude that the switched capacitance vary a lot, even for
hardware resources assigned to adjacent spatial locations onto the same layer. Also, it
is possible to locate regions on the layers with excessive high values of switched
capacitance. In order to understand the thermal characteristics and prevent circuit
failure, it is important to detect such hotspots regions. By specifying their spatial
distribution, the designer can concentrate his/her efforts to control the switched
capacitance on certain regions only, but not on the whole device, reducing among
others the design/fabrication cost.

224 K. Siozios and D. Soudris

Fig. 3. The variation of switched capacitance for alu4 benchmark with a conventional P&R
algorithm

The proposed temperature-aware P&R algorithm can assist to provide a solution to
this problem, as it is aware about the distribution of switched capacitance across the
3D FPGA. Figure 4 plots the corresponding variation of switched capacitance
regarding the same application and 3D device, for the proposed algorithm. In contrast
to the conventional approach (shown in Figure 3), the proposed one exhibits more
balanced variation of switched capacitance, and hence for power consumption and for
on-chip temperature.

Additionally, the maximal values of switched capacitance are lower, leading to
cheaper and more reliable devices. One more conclusion might be derived from these
two graphs. More specifically, the proposed approach distributes more uniformly the
switched capacitance for the layers placed on the middle of the 3D stack. This feature
is critical for the thermal efficiency of the target 3D architecture, as it is more difficult
to dissipate heat from these layers.

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 225

Fig. 4. The variation of switched capacitance for alu4 benchmark with the proposed
temperature-aware P&R

For shake of completeness we employ the proposed temperature-aware P&R
algorithm for two setups. Both of them were realized by appropriately tuning the
parameters of the cost functions. More specifically, the first of them affects an
approach where the importance of application’s delay is thought to be similar to the
temperature distribution, while in the second experimental setup, the employed cost
functions are tuned to achieve even more uniform temperature distribution on the 3D
FPGA.

Figure 5 compares the average (over the 20 biggest MCNC benchmarks) area
percentage of the 3D FPGA that operates under high power sources for the two
flavors of the proposed approach (non-aggressive and aggressive) against to
conventional P&R. As we may conclude, the proposed solution achieves to reduce the
percentage of area that operates under high power values (i.e., belonging to hotspot

226 K. Siozios and D. Soudris

Fig. 5. Variation of area percentage that operates under specific power consumption for
alternative P&R algorithms

Table 2. Comparison in terms of total wire-length (×10 m) for alternative P&R algorithms

Benchmark

2D FPGA 3D FPGA
Timing-
aware
P&R

Temperature-
aware P&R

[18]

Timing-
aware
P&R

Proposed
(Temperature-aware) P&R

non- Aggressive Aggressive
alu4 50.23 54.46 37.09 35.65 37.81
apex2 67.67 65.63 53.16 56.06 58.99
apex4 62.39 65.69 37.92 38.16 37.76
bigkey 60.01 68.15 43.68 48.57 32.71
clma 301.42 309.4 280.5 294.6 430.44
des 57.46 62.09 43.82 45.44 52.7
diffeq 46.77 54.48 31.08 36.31 34.88
dsip 45.81 49.56 33.69 35.46 29.9
elliptic 114.74 121.38 94.91 92.15 102.24
ex1010 41.34 46.55 31.47 33.78 36.9
ex5p 163.43 169.93 146.42 167 129.65
Frisk 108.35 114.56 91.26 99.83 174.05
misex3 50.56 56.91 37.88 38.26 39.31
pdc 174.33 183.36 160.37 173.32 238.78
s298 59.68 65.44 42.3 44.65 55.85
s38417 170.63 182.39 155.97 169.52 172.01
s38584 147.55 160.01 136.39 152.62 129.14
seq 63.46 68.55 48.74 54.49 52.8
spla 139.45 148.62 125.03 113.47 148.19
tseng 35.45 41.09 21.07 23.85 25.89

Average: 98.04 104.41 82.64 87.66 101.00

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 227

Table 3. Comparison in terms of delay (10 sec) for alternative P&R algorithms

Benchmark

2D FPGA 3D FPGA
Timing-
aware
P&R

Temperature-
aware P&R

[18]

Timing-
aware
P&R

Proposed
(Temperature-aware) P&R

non-Aggressive Aggressive
alu4 9.77 8.69 7.32 7.51 7.71
apex2 9.37 9.65 7.87 8.04 8.12
apex4 8.86 9.1 6.78 6.96 7.29
bigkey 6.03 9.71 5.14 4.96 5.22
clma 10.1 9.23 8.84 9.95 10.47
des 7.76 11.1 6.78 6.65 7.34
diffeq 6.15 6.32 7.71 7.67 7.77
dsip 7.99 10.9 5.14 4.99 5.13
elliptic 10.9 11.7 7.34 7.63 7.69
ex1010 18.3 18.3 7.87 8.29 8.52
ex5p 9.26 7.17 5.95 5.96 6.28
Frisk 16.1 13.4 6.51 6.62 6.87
misex3 11.7 8.34 7.32 7.68 7.79
pdc 20.4 18.7 8.41 8.37 8.52
s298 13.4 13.4 11.69 11.54 11.69
s38417 9.85 9.79 10.95 11.35 11.43
s38584 7.45 7.85 10.47 10.12 10.64
seq 9.52 8.17 7.32 7.41 7.72
spla 15.6 18 7.87 7.62 8.14
tseng 5.55 5.53 7.61 7.48 7.88

Average: 10.70 10.75 7.74 7.84 8.11

regions), while it spreads these power sources on the rest device in a more uniformly
manner. This is especially critical for designing reliable and cheaper devices, as there
is no need for expensive packaging solutions. Moreover, by transferring power
consumption from hotspot regions to the rest architecture, we increase the device
reliability and reduce its fabrication cost.

Apart from distributing uniformly the on-chip temperature; the proposed P&R
algorithm pays effort not to increase either the application’s delay or its total
power/energy consumption. The upcoming Tables summarize the evaluation results
of applying the proposed strategy to the 20 biggest MCNC benchmarks. The target
3D FPGA device was described in the beginning of this section, while the array
dimensions for each benchmark is derived from Table 1.

As we have already mentioned, the interconnection network contributes to the
temperature of target 3D architectures. Table 2 compares the total wire-length for
application mapping onto 2D and 3D FPGAs. Based on the results, the proposed
temperature-aware approach leads to increased wire-length (between 6% and 22%), as
compared to a timing-aware P&R. However, both of temperature-aware flavors

228 K. Siozios and D. Soudris

Table 4. Comparison in terms of energy dissipation (10 Joule) for alternative P&R algorithms

Benchmark

2D FPGA 3D FPGA
Timing-
aware
P&R

Temperature-
aware P&R

[18]

Timing-
aware
P&R

Proposed
(Temperature-aware) P&R

non- Aggressive Aggressive
alu4 5.83 5.82 4.45 4.21 4.38
apex2 6.75 6.81 6.39 5.28 4.85
apex4 4.17 4.23 3.68 3.26 2.96
bigkey 7.95 8.27 7.10 8.49 7.76
clma 75.6 79.9 32.49 33.44 33.69
des 10.5 11.4 10.14 9.76 9.22
diffeq 3.51 3.5 9.28 8.35 8.27
dsip 7.82 8.01 5.58 5.77 5.10
elliptic 12.4 12.8 9.71 9.87 10.17
ex1010 16.2 16.3 9.91 8.31 8.68
ex5p 4.32 4.1 3.19 3.10 2.97
Frisk 12.1 11.2 19.01 17.02 15.70
misex3 5.55 5.25 4.12 3.79 4.01
pdc 22.3 21.4 14.02 15.83 13.70
s298 6.88 6.95 7.45 7.49 6.83
s38417 22.9 23.1 34.48 29.10 26.99
s38584 43.2 35.6 23.95 24.08 21.28
seq 6.32 6.08 5.72 4.70 5.02
spla 13.1 13.9 9.58 9.04 8.55
tseng 3.18 3.2 15.05 16.09 14.30

Average: 15.13 14.98 11.76 11.35 10.72

results to smaller wire-lengths than the implementation targeting 2D architectures [8]
about 19%. As we will prove later, the increased values of this parameter cannot
outperform the advantages of realizing applications with the proposed power-aware
P&R algorithm.

Table 3 gives the delay for each of the 20 biggest MCNC benchmark with the
usage of alternative P&R algorithms for 2D and 3D FPGAs. Based on the results, the
proposed temperature-aware P&R algorithm increases slightly the application’s delay,
ranging from 1% up to 5%, while the performance improvement compared to solution
targeting 2D FPGAs [7] is up to 27%. The almost negligible performance degradation
(due to the extra constraints for forming connections) is acceptable, as it does not lead
to significant variation of the application’s functionality.

Table 4 gives the energy requirements for each of the 20 biggest MCNC
benchmarks. As we may conclude from the results, the proposed temperature-aware
P&R algorithms (non-aggressive and aggressive) lead to energy savings, compared to
conventional (i.e., timing-aware) P&R that range between 4% and 9%, respectively.
Additionally, the energy savings compared to corresponding solution from literature
[7] is up to 29%.

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 229

Table 5. Comparison in terms of area percentage that operates under high temperature values
(i.e., hotspot regions) for alternative P&R algorithms

Benchmark

2D FPGA 3D FPGA
Timing-
aware
P&R

Temperature-
aware P&R

[18]

Timing-
aware
P&R

Proposed
(Temperature-aware) P&R

non- Aggressive Aggressive
alu4 34% 17% 26% 14% 9%
apex2 41% 23% 30% 18% 9%
apex4 42% 29% 31% 23% 14%
bigkey 34% 19% 24% 15% 8%
clma 25% 12% 18% 10% 6%
des 39% 26% 30% 21% 9%
diffeq 37% 25% 28% 20% 9%
dsip 39% 27% 30% 22% 11%
elliptic 42% 30% 30% 26% 15%
ex1010 26% 15% 19% 12% 5%
ex5p 27% 17% 20% 14% 8%
Frisk 33% 24% 25% 19% 9%
misex3 31% 23% 23% 18% 11%
pdc 31% 26% 23% 17% 10%
s298 31% 24% 23% 14% 9%
s38417 27% 13% 20% 10% 7%
s38584 45% 30% 34% 25% 12%
seq 40% 31% 30% 24% 13%
spla 32% 23% 23% 18% 10%
tseng 33% 23% 25% 19% 8%

Average: 34% 23% 26% 18% 9.6%

Finally, we study the percentage of device area that operates under high power.

This part of device area is mentioned as hotspot region, while its reduction is the main
goal of the developed research. The two flavors of the proposed power-aware P&R
algorithm achieve to reduce this percentage, compared to conventional (i.e., timing-
aware) P&R for the same 3D FPGA ranging from 30% up to 63%. Moreover, the
reduction of area coverage for hotspot regions compared to existing approaches for
2D FPGAs [7] is about 58%.

The results presented in this section prove that the proposed temperature-aware
P&R achieves to reduce the percentage of silicon area that operates under high
power/temperatures (hotspot regions), which is the main goal of our research, without
impact on other critical design parameters, even though there is an increase in total
wire-length. This occurs due to the better application partitioning, partition to layer
assignment, placement and routing.

The gains of employing the proposed temperature-aware P&R approach targeting
3D FPGAs can be summarized as follows: (i) it spreads the power/temperature
sources across the 3D FPGA in a way that it is more easy to dissipate heat, (ii) it

230 K. Siozios and D. Soudris

reduces the peak values of power/temperature sources leading to cheaper fabrication
cost for cooling, (iii) it reduces the total energy consumption increasing among other
the battery life and the system’s reliability, and (iv) it reduces significantly the
percentage of silicon area that operates under high power/temperature consumption
values (i.e. hotspot regions), which can be thought as a power/temperature
management approach.

6 Conclusions

A novel temperature-aware P&R algorithm targeting to 3D FPGAs, as well as its
software implementation at 3DPRO tool, was presented. This approach could also be
used as a power management strategy, since it achieves to re-distribute the power
budget over identical hardware resources in a way that the produced heat is easily to
be dissipated. More specifically, the proposed P&R algorithm reduces about 63%, in
average, the percentage of device area that operates under high temperature by
appropriately controlling the switched capacitance. In addition to that, we achieve
energy savings about 9% (in average), with an almost negligible penalty (ranging
from 1% up to 5%) in application’s delay.

Acknowledgment

This paper is part of the 03ED593 research project, implemented within the framework of
the “Reinforcement Program of Human Research Manpower” (PENED) and co-financed
by National and Community Funds (75% from E.U.-European Social Fund and 25% from
the Greek Ministry of Development-General Secretariat of Research and Technology).

References

[1] International Technology Roadmap for Semiconductors,
http://www.intel.com/technology/silicon/itroadmap.htm

[2] Poon, K., Yan, A., Wilton, S.: A Flexible Power Model for FPGAs. In: Glesner, M., Zipf,
P., Renovell, M. (eds.) FPL 2002. LNCS, vol. 2438, pp. 312–321. Springer, Heidelberg
(2002)

[3] Gupta, S., Hilbert, M., Hong, S., Patti, R.: Techniques for producing 3D ICs with High-
Density Interconnect. In: VLSI Multi-Level Interconnection Conference (2004)

[4] McMurchie, L., Ebeling, C.: Pathfinder: A Negotiation-Based Performance-Driven
Router for FPGAs. In: ACM/SIGDA Int. Sym. on Field-Programmable Gate Arrays, pp.
111–117 (1995)

[5] http://proteas.microlab.ntua.gr
[6] Telikepalli, A.: Designing for Power Budgets and Effective Thermal Management. Xcell

Journal (56) (2006)
[7] Siozios, K., Soudris, D.: A Novel Methodology for Temperature-Aware Placement and

Routing of FPGAs. In: IEEE Computer Society Annual Symposium on VLSI, pp. 55–60
(2007)

 A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs 231

[8] Siozios, K., et al.: Exploring Alternative 3D FPGA Architectures: Design Methodology
and CAD Tool Support. In: 17th Int. Conference on Field-Programmable Logic and
Applications, pp. 652–655 (2007)

[9] Chiang, T.Y., et al.: Thermal Analysis of Heterogeneous 3D ICs with Various Integration
Scenarios. In: International Electron Devices Meeting (IEDM), pp. 31.2.1–31.2.4 (2001)

[10] Betz, V., et al.: Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, Dordrecht (1999)

[11] Selvakkumaran, N., Karypis, G.: Multiobjective Hypergraph-Partitioning Algorithms for
Cut and Maximum Subdomain-Degree Minimization. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems 25(3), 504–517 (2006)

[12] Okamoto, T., Cong, J.: Buffered Steiner Tree Construction with Wire Sizing for
Interconnect Layout Optimization. In: Int. Conference on Computer Aided Design, pp.
44–49 (1996)

[13] Ababei, C., et al.: Placement and Routing in 3D Integrated Circuits. IEEE Design & Test
of Computers 22(6), 520–531 (2005)

[14] Das, S., et al.: Timing, Energy, and Thermal Performance of Three Dimensional
Integrated Circuits. In: 14th ACM Great Lakes symposium on VLSI, pp. 338–343 (2004)

[15] Yang, S.: Logic Synthesis and Optimization Benchmarks, Version 3, Microelectronics
Centre of North Carolina (1991)

[16] Cong, J., Wei, J., Zhang, Y.: A Thermal-Driven Floorplanning Algorithm for 3D ICs. In:
International Conference on Computer Aided Design, pp. 306–313 (2004)

[17] Lesea, et al.: Powering Xilinx FPGAs (2002)

A Reconfigurable Network-on-Chip Architecture
for Optimal Multi-Processor SoC

Communication

Vincenzo Rana1, David Atienza2,3, Marco Domenico Santambrogio1,
Donatella Sciuto1, and Giovanni De Micheli4

1 Dipartimento di Elettronica e Informazione (DEI) - Politecnico di Milano,
Via Ponzio 34/5, 20133 - Milano, Italy

{rana, santambr, sciuto}@elet.polimi.it
2 Embedded Systems Laboratory (ESL) - Ecole Polytechnique Fédérale de Lausanne

(EPFL), ESL-IEL-STI-EPFL, Station 11, 1015-Lausanne, Switzerland
david.atienza@epfl.ch

3 Depto. de Arquitectura de Computadores y Automática (DACYA) - Universidad
Complutense de Madrid (UCM), Avda. Complutense S/N, 28040-Madrid, Spain
4 Integrated Systems Laboratory (LSI) - EPFL, LSI-ISIM-IC-EPFL, Station 14,

1015-Lausanne, Switzerland
giovanni.demicheli@epfl.ch

Abstract. Network-on-Chip (NoC) has emerged as a very promising
paradigm for designing scalable communication architecture for Systems-
on-Chips (SoCs). However, NoCs designed to fulfill the bandwidth re-
quirements between the cores of an SoC for a certain set of running
applications may be highly sub-optimal for another set of applications.
In this context, methods that can lead to versatility enhancements of
initial NoC designs to changing working conditions, imposed by variable
sets of executed real-life applications at each moment in time, are very
important for designing competitive NoCs in industrial SoCs.

In this work, we present a run-time reconfigurable NoC frame-
work based on the partial dynamic reconfiguration capabilities of
Field-Programmable Gate Arrays (FPGAs). This new NoC framework
can dynamically create/delete express lines between SoC components
(implementing dynamically circuit-switching channels) and perform
run-time NoC topology and routing-table reconfigurations to handle
interconnection congestion, with a very limited performance overhead.
Moreover, we show in our experimental results that the addition of
these dynamic reconfiguration capabilities into basic NoCs using our
framework only implies a very limited area overhead (around 10% on
average) with respect to the initial NoC designs; thus, it can bring great
benefits when compared to traditional non-reconfigurable NoC design
approaches for worst-case bandwidth requirements in SoCs with many
possible sets of running applications.

Keywords: Networks on Chips, Systems on Chips, Topology Reconfig-
uration, Express Lines, Dynamic Reconfiguration, FPGA.

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 232–250, 2010.
c© IFIP International Federation for Information Processing 2010

A Reconfigurable Network-on-Chip Architecture 233

1 Introduction and Problem Description

Latest applications ported to embedded systems (e.g., scalable video rendering,
communication protocols) demand a large computation power, while must re-
spect other critical embedded design constraints, such as, short time-to-market,
low energy consumption or reduced implementation size.

Thus, embedded systems are complex Systems-on-Chip (SoCs) that consist of
a large number of components, such as, processing elements, storage devices and
even reconfigurable devices, such as Field-Programmable Gate Arrays (FPGAs),
to enhance the flexibility of final SoCs to be used in different environments [5, 15].
Nevertheless, one of the most critical areas of MPSoC design is the definition
of the suitable interconnect subsystem for all these SoC components, due to
architectural and physical scalability concerns [3]. In fact, traditional shared bus
interconnects are relatively easy to design, but do not scale well for latest and
forthcoming SoC consumer platforms.

In order to cope with the large communication demands of such SoCs, the
use of modular and scalable Networks-on-Chips (NoCs) has been proposed [3].
Then, designing custom-tailored NoC interconnects that satisfy the performance
and design constraints of the SoC for all the different combinations of possible
executed applications is a key goal to achieve optimal commercial products [2,
13]. However, as general-purpose processor cores are used to run software tasks
of different applications in SoCs, the communication between the cores cannot
be precharacterized and fully optimized, since the application processes can be
mapped differently to the cores, typically with the support of the compiler. Thus,
to provide predictable performance of the NoC, the bandwidth capacity of the
different links must be sufficient to support the peak rate of traffic on the links
of the possible different mappings of the tasks onto the final SoC. Otherwise,
the network might experience traffic congestion and the latency for the traffic
streams and, hence, the interconnect performance will become unacceptable,
which needs to be avoided to provide appropriate consumer devices. As a result,
NoCs designs that guarantee worst-case bandwidth conditions of SoC operation
with multiple concurrent application often leads to over-sized topologies and
links on regular operation of the SoC. In this context, the development of new
methods and frameworks that increase the run-time versatility of initial static
NoC designs to adapt to different working conditions, originated by the diversity
of sets of applications at each moment, is an important research area in the NoC
domain.

In this paper we introduce a novel run-time reconfigurable NoC framework,
which exploits the partial dynamic reconfiguration capabilities of FPGAs to
adapt at run-time the implemented NoC interconnect to the specific working
requirements of the final SoC at each moment in time. In particular, the pro-
posed NoC framework is able to reduce the latency of interconnecting the in-
cluded SoC components by dynamically establishing or deleting a number of
dedicated point-to-point connections between them (or express lines in the NoC
literature [3]), which is particularly suited for video and audio streaming. Thus,
circuit-switching communication can be dynamically configured in the SoC. In

234 V. Rana et al.

addition, our framework enables a fast dynamic reconfiguration of routing tables
(few cycles) and overall NoC topologies (few milliseconds), which provides new
promising means to overcome congestion and consequently provide more reli-
able and high-performance NoC designs. Furthermore, our experimental results
show that the addition of the dynamic reconfiguration capabilities in basic NoCs
using our framework only involves limited area overheads (around 10% on av-
erage) with respect to initial NoC designs without reconfiguration capabilities.
Hence, the proposed reconfigurable NoC framework is viable to be considered in
commercial designs of SoCs.

It is possible to fully exploit the reconfigurable NoC proposed in this work
in order to establish dedicated (among 2 or more switches of the network) and
long (circuit-switching) communication channels among the cores of the recon-
figurable system. This can be really useful, for instance, in the case of audio and
video streaming that have to be dynamically carried out at run-time, without
the possibility to obtain detailed information at design time. In this case, in fact,
the proposed approach enables to dynamically reconfigure the communication
infrastructure accordingly to the need that arise at run-time, in order to meet
both latency and throughput requirements. This is possible since the reduction
of the number of hops between two switches directly decreases the latency be-
tween them and the introduction of a new express line in the topology directly
increases the overall throughput of the NoC.

The rest of the paper is organized as follows. In Section 2 we overview previ-
ous work in the field on reconfigurable NoCs. Then, in Section 3 we introduce
our reconfigurable NoC architecture, spanning from the included basic NoC ar-
chitecture to the additional components to enable the NoC Next, in Section 4 we
discuss the major reconfiguration capabilities and methods to implement them in
the proposed adaptive NoC framework. Later, in Section 5 we present the area,
performance and latency evaluation of the reconfiguration capabilities of our
framework in a real implementation on a large commercial FPGA implementing
a multi-processor SoC. Finally, in Section 6 we draw the main conclusions of this
work.

2 State of the Art

In recent years, several works focused their attention into the definition of a
reconfigurable communication infrastructure for reconfigurable Systems-on-chip.
For instance, in [11] the authors present a methodology for developing dynamic
network reconfiguration processes, but they define a reconfiguration just as the
change from one routing function to another while the network is up and running.
For this reason they present a theoretical work based on the limiting assumption
(not valid in the approach presented in this paper) that the network topology
can be considered fixed (like in [7]).

The work presented in [6] describes an integrated modeling, simulation and
implementation tool for reconfigurable NoCs. The work is based on the optimiza-
tion of a single given application and no details are given about the reconfigurable

A Reconfigurable Network-on-Chip Architecture 235

architecture of the NoC and about reconfiguration mechanisms. In addition to
this, flow control is not supported and the proposed NoCs are quite expensive
in terms of area usage (2733 slices, around 30% of the total slices of a Xilinx
Virtex II Pro XC2VP20 device), for a 2x2 torus running at 85 MHz, while the
proposed approach, with a lower area usage, allows the creation of a 3x3 mesh
running at 170 MHz.

In [1], a dynamically reconfigurable NoC architecture is presented. This NoC
can be dynamically configured with respect to routing, switching and data packet
size, but all the required resources have to be allocated at design time, since
at run-time it is only possible to dynamically change a limited number of pa-
rameters. A similar approach can be found in [10], where the proposed NoC
can be configured at run-time, but only with respect to memories content, re-
sources addressing and control parameters, while topology, buffers size and port
connections have to be determined at design time.

In [9], a scalable dynamic NoC for dynamically reconfigurable FPGAs
(CuNoC) is presented. The main idea behind CuNoC approach is to fill the
whole reconfigurable devices with very small communication units called CUs,
that can establish a communication channel between two different cores. The
main drawback of this approach is, in addition to the huge power consumption,
the high latency for each communication. In fact, the number of hops required
for a communication is very high on average, as each packet has to pass through
a high number of CUs (each one having a latency of 2 clock cycles), since it is
not possible neither to define a custom topology nor to configure express lines
between CUs. Furthermore, if an obstacle is present between two cores that need
to communicate, it is necessary to go around it, which increases the number of
hops of each packet.

In [14] the authors present CoNoChi, that is an adaptable NoC for dynami-
cally reconfigurable hardware design. The reconfigurable device is divided in a
matrix, and each cell of this matrix can hold either a computational module or a
communication element (a switch or point-to-point interconnect). Since it is not
possible to pass through a computational module, each communication channel
has to go around all the computational elements placed on the reconfigurable
device; thus, express lines cannot be configured at run-time. In addition to this,
the area requirement for a single switch is very high, as it varies from 463 to 493
slices (around 5% of a XC2VP20 device). Then, the working frequency is quite
low (it ranges from 66 to 73 MHz) and the actual latency of each switch is 5
clock cycles, which can be a significant penalty for interconnection mechanisms
nowadays.

3 The Proposed Reconfigurable Architecture

3.1 Reconfiguration Support

In order to configure an FPGA with the desired functionality, we need to use
one or more bitstreams. A bitstream is a binary file in which configuration in-
formation for a particular Xilinx device is stored, that is where all the data to

236 V. Rana et al.

Fig. 1. Configuration memory setup

be copied on to the configuration SRAM cells, the configuration memory, are
stored, along with the proper commands for controlling the chip functionalities.
Therefore Virtex devices, such as Virtex II Pro and Virtex 4, are configured by
loading application specific data into their configuration memory, as shown in
Figure 1. On the Virtex FPGAs the configuration memory is segmented into
frames. Virtex devices are partially reconfigurable and a frame is the smallest
unit of reconfiguration. According to the device, this element can span the en-
tire length of the FPGA, such as in the Virtex II Pro context, or just part of
it, as in Virtex 4 devices. The number of frames and the bits per frame are
specific for each device family. The number of frames is proportional to CLB
width. Bitstreams can be either partial or full. A full bitstream configures the
whole configuration memory and is used for static design or at the beginning of
the execution of a dynamic reconfiguration system, to define the initial state of
SRAM cells. Partial bitstreams configure only a portion of the device and are
one of the end products of any partial reconfiguration flow.

FPGAs provide different means for configuration, under the form of different
interfaces to the configuration logic on the chip. There are several modes and
interfaces to configure a specific FPGA family, among them the the IEEE 1149.1
Joint Test Action Group (JTAG) download cable (the one used in this work), the
SelectMAP interface, for daisy-chaining the configuration process of multiple FP-
GAs, configuration loading from PROMs or compact flash cards, microcontroller-
based configuration, an Internal Configuration Access Port (ICAP) and so on,
depending on the specific family. The ICAP provides an interface which can be

A Reconfigurable Network-on-Chip Architecture 237

used by internal logic to reconfigure and read back the configuration memory.
In every FPGA a configuration logic is built on the chip, with the purpose of
implementing the different interfaces for exchanging configuration data and to
interpret the bitstream to configure the device. A set of configuration registers
defines the state of this configuration logic at a given moment in time. Con-
figuration registers are the memory where the bitstream file has direct access.
Actual configuration data is first written by the bitstream into these registers
and then copied by the configuration logic on the configuration SRAMs.

3.2 Architecture Description

As previously hinted, the communication infrastructure of the proposed architec-
ture is based on the NoC paradigm. Furthermore, in order to exploit a 2-layered
approach, in which the computational layer is completely decoupled from the
communication layer, the proposed reconfigurable architecture mainly consists
of two different parts: a static part and a reconfigurable part.

The static part consists of all the computational elements and the network
interfaces. On the one hand, computational elements can be further divided into
two categories. The first one consists of masters, that are the active components
of the system, such as microprocessors (either a soft-core, as a MicroBlaze, or
a hard-core as a PowerPC), that can initialize new transactions on the network
(deployed in the communication layer); these components are connected to the
communication infrastructure through NI initiators (see Figure 2). The second
one consists of slaves, such as memories, that represent the components that act
in a passive mode, by receiving and answering transaction coming from active
elements; these components are connected to the communication infrastructure
through NI targets (see Figure 2).

The static part consists of all the computational elements and the network
interfaces. Computational elements can be further divided into masters (that are
the active components of the system, such as microprocessors, that can initialize
new transactions on the network and that are connected to the communication
infrastructure through NI initiators, as shown in Figure 2) and slaves (such as
memories, that represent the components that act in a passive mode, by receiving
and answering transaction coming from active elements, and that are connected
to the communication infrastructure through NI targets, as shown in Figure 2).

The reconfigurable part is composed by all the reconfigurable elements, used
to adapt at run-time the structure of the system implemented on the FPGA. These
elements can be either computational components or elements used to update the
communication infrastructure. Network interfaces toward the communication in-
frastructure can implement bridges between On-chip Peripheral Bus (OPB), Pro-
cessor Local Bus (PLB) or Open Core Protocol (OCP) and the network protocol,
as shown in Figure 2. The only part of network interfaces (both initiator and tar-
get network interfaces) that has to be modified at run-time are routing tables,
that are used to dynamically change the routing of packets on the network. Thus,
all the network interfaces have been placed into the static part of the system and
routing tables have been deployed on BRAM blocks. In this way it is possible to

238 V. Rana et al.

Static Reconfigurable

MB

PPC

Slave

NI
Initiator

NI
Target

NI
Initiator

Static

MB

Slave

NI
Initiator

NI
Target

OPB

OPB

PLB

OPB

PLB

NoC Slave
NI

Target
PLB

NoC protocol
OPB / PLB bus
Busmacro

Fig. 2. Interfaces between static and reconfigurable parts

dynamically modify routing tables by changing the content of BRAM blocks at
run-time, as described in Section 4.1.

This architectural solution enables connecting the static parts to the reconfig-
urable ones by using network interfaces that are considerably thinner of the ones
used within the static part of the system. Regarding this static part, the used
interconnect can be either OPB and PLB buses, or on an ad-hoc point-to-point
communication infrastructure, as shown in Figure 2.

4 Reconfiguration Features

Each reconfigurable part of the system can be dynamically reconfigured at run-
time to modify either a part or the whole underlying communication infras-
tructure. This reconfiguration can be done by the reconfiguration controller (see
Figure 3), which is a master component present on the static part, trough partial
reconfiguration operations.

The reconfiguration controller is connected both to the external dynamic
memory (DDR) interface and to the ICAP interface through the OPB bus. The
DDR memory is used to store partial bitstreams that can be used to reconfigure
at run-time the reconfigurable device. In order to perform a reconfiguration pro-
cess, the reconfiguration controller has to read the desired bitstream from the
memory and to pass it to the ICAP interface, connected to the ICAP component,
that will take care of the physical reconfiguration process. The reconfiguration
controller is aware of both the current configuration of the reconfigurable NoC
(routing tables, topology and express lines) and the current communication re-
quirements, such as the cores that have to communicate and the required band-
width and latency. In this way, the controller is able to adapt the underlying
communication infrastructure in order to satisfy communication requirements,
even when they vary at run-time.

As previously hinted, the proposed reconfigurable NoC can be dynamically
adapted to the current operating scenario by modifying network interfaces

A Reconfigurable Network-on-Chip Architecture 239

Static

MB

PPC

Slave

Initiator

Target

Initiator

OPB

OPB

PLB

BRAM
block

BRAM
block

BRAM
block

Read

Read

Read

Reconfiguration
controller ICAP interfaceOPB

Memory (DDR) interface

Fig. 3. A static part with a reconfiguration controller

routing tables at run-time, as described in Section 4.1. Furthermore, a dynamic
change into the proposed reconfigurable NoC can also involve either the con-
nection among switches (by inserting or removing express lines) or the whole
topology, as described in Section 4.2.

4.1 Path Reconfiguration

Storing routing tables in BRAM blocks allows to dynamically change them at
run-time in two different ways. The first solution is to write the new routing table
with a simple write operation on the selected BRAM block. This write operation
can be performed by the reconfiguration controller, that has to manage both the
physical reconfiguration and the modification of BRAMs content, since routing
tables have to be always consistent with respect to the current topology of the
network. Using the reconfiguration controller for writing on BRAM blocks makes
it necessary to directly connect it to each BRAM block, increasing the complexity
and the area usage of the reconfigurable system.

A second solution consists of performing a partial dynamic reconfiguration of
BRAM blocks, as described in [12]. This reconfiguration has to be performed by
the reconfiguration controller, but in this case there is no need to directly connect
it to each BRAM block, since these elements are updated by the controller using
the configuration memory; thus, no area overhead is introduced. Performing
this kind of reconfiguration enables dynamically changing BRAM blocks content
(routing tables), in order to change the functionality of the network interfaces
at run-time, while leaving unaltered all the logic implementing the functionality
of the system; this allows a complete decoupling between routing tables and the
logic that implements both the static and the reconfigurable components. The

240 V. Rana et al.

main drawback of this solution is the increment of the time overhead of the
network reconfigurations, as stated in Section 5.

4.2 Express Lines and Topology Reconfiguration

In order to exploit express lines reconfiguration, it is necessary to define a recon-
figurable architecture that consists of several reconfigurable parts, in which it is
possible to deploy the switches of the NoC. This can be done by means of the
Early Access Partial Reconfiguration design flow [8] defined by Xilinx. This flow
allows to implement a reconfigurable architecture containing an arbitrary set of
reconfigurable regions (which shape is a rectangle spanning the whole height of
the reconfigurable device, for FPGA of Virtex, Virtex II and Virtex II Pro fam-
ilies, or an arbitrary rectangle for FPGA of Virtex IV and Virtex V families).
Both the static architecture and each reconfigurable module, which need to be
placed in a single reconfigurable region, can be configured on the target device
by using a specific bitstream, namely, a complete bitstream for the static part
and a partial bitstreams for the reconfigurable modules. All the bitstreams gen-
erated by this flow are the ones used by the previously described reconfiguration
controller to change the current configuration of the system; in other words, the
reconfiguration controller is able to select a partial bitstream to be configured
on the device in order to change the underlying communication infrastructure.
In particular, if an express line has to be placed between to switches that belong
to the same reconfigurable region, the reconfiguration controller has to configure
a new version of the reconfigurable region in which the two switches are directly
connected (through a new connection). A similar procedure can be applied to
completely change the topology of the NoC. In this case, a deeper modification
of the selected reconfigurable part is needed, in order to make it possible to
change the number and the kind of the switches of the same reconfigurable part
(and thus of the whole NoC).

The number of express lines that can be established between two reconfig-
urable regions has to be decided at design-time, since each bus-macro (which
enables to establish a single reliable communication channel among different
regions) has to be placed during the place and route phase of the architecture.
Furthermore, the maximum number of express lines, which is always in the order
of tens for FPGA of Virtex II, Virtex II Pro, Virtex IV and Virtex V families, is
limited by the amount of available resources along the edge among reconfigurable
and static regions; hence, it strictly depends both on the target reconfigurable
device and on the shape of each reconfigurable or static region.

5 Experimental Results

This section presents a set of experimental results that validate the performance
of the proposed reconfigurable architecture. These results have been achieved
by implementing the proposed reconfigurable architectures on a Xilinx Virtex II
Pro (XC2VP20) device. However, the same approach can be easily adapted to
another device, even in a different family, such as Virtex IV and Virtex V.

A Reconfigurable Network-on-Chip Architecture 241

5.1 Routing Tables Reconfiguration Analysis

Regarding routing tables reconfiguration, it can be performed in a few clock
cycles if it is performed with a simple write operation. In particular, if routing
tables reconfiguration is performed directly by the reconfiguration controller, the
latency of the reconfiguration is only 2 clock cycles (0.02 μs at 100 MHz). On the
other hand, by performing a partial dynamic configuration of BRAMs, even if
both the area and the complexity overheads are not increased, the latency of the
reconfiguration is considerably higher (2.24 ms at 100 MHz). Table 1 summarizes
all the experimental results related to dynamic routing table reconfiguration.

Table 1. Routing tables reconfiguration experimental results

Reconfiguration Timing overhead Timing overhead Area Complexity
model (Clock cycles) (ms) @ 100 MHz overhead increment

Write operation
(reconfiguration controller) 2 0.00002 yes yes

Partial dynamic
reconfiguration of a
single BRAM block 224242 2.24 no no

5.2 Express Lines and Topology Reconfiguration Analysis

Even if express lines reconfiguration and topology reconfiguration can be
used in order to achieve different modifications of the underlying network, from
the timing overhead point of view, they are characterized by the same values, be-
cause the time required to reconfigure a reconfigurable region is exactly the same
in both cases. Since the reconfiguration on Xilinx Virtex II Pro devices can only
be performed with a 1D approach, the reconfiguration latency is directly related
to the width of the reconfigurable region that has to be reconfigured. For instance
the reconfiguration latency for a 4 slices width region, which can be filled with up
to two switches, is around 21 ms, while a 20 slices width region, which can include
up to ten switches, requires around 104 ms, as shown in Table 2,

In particular, regarding express lines reconfiguration, it can be exploited
both to reduce the traffic on a part of the NoC and to decrease the latency
between two switches. In order to better explain how it is possible to dynami-
cally configure express lines on the proposed reconfigurable architecture, let us
consider a simple 3x3 mesh network, similar to the one presented in Figure 4
(A). Without any express line, if the MicroBlaze 0 (MB 0) has to communicate
with Slave 4, 3 hops (a path to a destination on a network can be considered as
a series of hops, through switches) are necessary in order to go from Switch 0
(to which MB 0 is connected through an initiator network interface) to Switch 5
(to which Slave 4 is connected through a target network interface). To this end,
each packet has to pass, for instance, through Switch 1 and Switch 2, in order
to reach its final destination. In a similar way, the communication between PPC
0 and Slave 3 requires at least 2 hops (between Switch 6 and Switch 8), since
each packet has also to pass through Switch 7.

242 V. Rana et al.

Table 2. Express lines and topology reconfiguration results

Width of the Reconfiguration Bitstream
reconfigurable slot (slices) latency (ms) size (Kb)

4 21 32
6 30 46
8 41 62
10 52 78
12 63 94
14 75 112
16 80 120
18 93 140
20 104 156

In the proposed reconfigurable architecture, it is possible to configure a direct
connection between the port 3 of Switch 0 and the port 4 of Switch 5, and
another one between the port 4 of Switch 6 and the port 3 of Switch 8. In
this way, in addition to considerably reduce the congestion of Switches 1, 2 and
7, each communication between MB 0 and Slave 4 or PPC 0 and Slave 3 can
be achieved with a single hop (from Switch 0 to Switch 4 and from Switch 6
and Switch 8), thus notably reducing the latency between these elements. The
number of express lines that have to cross static parts has to be defined at design
time (since the involved static parts have to be aware of them), while the number
of express lines that lies within a single reconfigurable region only depends on
the available resources of the selected region.

Since communication among the elements of the system can change at run-
time in a non-predictable way, it is possible that the system reaches a status
(for instance when the applications running on MB 0 and on PPC 0 change) in
which MB 0 has to communicate with Slave 3 and PPC 0 has to communicate
with Slave 4. With the configuration of Figure 4 (A), each master can reach the
desired slave, by using both express lines, with 2 hops (from Switch 0 to Switch 8
and from Switch 6 to Switch 5). However, a problem that can arise is that these
two paths share the link between the port 1 of Switch 5 and the port 2 of Switch
8, thus leading to a contention of the same resource. A possible solution is the
partial dynamic reconfiguration of the reconfigurable region number 2 (Reconfig-
urable 2 in Figure 4), in order to achieve the configuration of the system shown
in Figure 5, which can be achieved by adapting the routing tables according to
the new configuration of the system, as described in Section 4.1). In this way,
not only the congestion of the link between Switch 5 and Switch 8 is completely
resolved, but also the latency of the two communication paths decreases to a
single hop, i.e., providing a circuit-based switching connection. Table 3 presents
a comparison among the latency introduced by the NoC of Figure 4, the NoC of
Figure 5 and a NoC in which express lines are not taken into account.

An important consideration is that, while the partial reconfiguration of the
reconfigurable region 2 is performed, the communication among other parts of
the system does not need to be interrupted, as long as it does not affect the

A Reconfigurable Network-on-Chip Architecture 243

Switch
0

Switch
1

Switch
2

Switch
3

Switch
4

Switch
5

Switch
6

Switch
7

Switch
8

Initiator

Target

Initiator

Initiator

Target

Target

Target Initiator

Initiator
Target

3

20

1

3

20

1

3

20

1

3

20

1

3

20

1

3

20

1

2

0

1

2

10

2

10

3

3

3

MB 0

Slave
0

PPC
0

Slave
1

Slave
2

MB 2

Slave
3

MB 3

Slave
4

MB 1

4

4

Static 0 Reconfigurable 0 Static 1 Reconfigurable 1 Static 2 Reconfigurable 2 Static 3

Fig. 4. Complete reconfigurable system schema, with an express line between Switch
0 and Switch 5 and another one between Switch 6 and Switch 8

Switch
0

Switch
1

Switch
2

Switch
3

Switch
4

Switch
5

Switch
6

Switch
7

Switch
8

Initiator

Target

Initiator

Initiator

Target

Target

Target Initiator

Initiator
Target

3

20

1

3

20

1

3

20

1

3

20

1

3

20

1

3

20

1

2

0

1

2

10

2

10

3

3

3

MB 0

Slave
0

PPC
0

Slave
1

Slave
2

MB 2

Slave
3

MB 3

Slave
4

MB 1

4

4

Static 0 Reconfigurable 0 Static 1 Reconfigurable 1 Static 2 Reconfigurable 2 Static 3

Fig. 5. Complete reconfigurable system schema, with an express line between Switch
0 and Switch 8 and another one between Switch 6 and Switch 5

region that is reconfigured. For instance, if MB 1 has to communicate with Slave
0 or Slave 1, this communication can take place even during the reconfiguration
of the reconfigurable region 2.

The physical implementation of the previously presented architecture is shown
in Figure 6, where A indicates the static part, while B, C and D represent the

244 V. Rana et al.

Table 3. Latency introduced by the NoC

Source Target Figure 4 Figure 5 Mesh without express lines
(number of hops) (number of hops) (number of hops)

MB 0 Slave 0 2 2 2
MB 0 Slave 1 2 2 2
MB 0 Slave 2 3 3 3
MB 0 Slave 3 3 2 5
MB 0 Slave 4 2 3 4
PPC 0 Slave 0 2 2 2
PPC 0 Slave 1 4 4 4
PPC 0 Slave 2 1 1 1
PPC 0 Slave 3 2 3 3
PPC 0 Slave 4 3 2 4

Fig. 6. Physical implementation of the reconfigurable 3x3 mesh

three reconfigurable regions (which width is, respectively, 16, 20, and 14 slices -
the 18%, 22% and 16% of a XC2VP20 device). All the reconfigurable regions have
been filled with three switches each one, in order to implement the previously
presented 3x3 mesh.

Table 4 shows the experimental results regarding area usage and reconfigura-
tion latency of the proposed architecture on a XC2VP20 device. The bus-macro
overhead consists of 288 slices, while the complete 3x3 mesh requires 2237 slices.

A Reconfigurable Network-on-Chip Architecture 245

Table 4. Area usage and reconfiguration latency results

Area usage Area Reconfiguration
(slices) usage (%) latency (ms)

Reconfigurable
region B 800 8.6 80

Reconfigurable
region C 637 6.9 104

Reconfigurable
region D 800 8.6 75
Complete
3x3 mesh 2237 24.1 259
Bus-macro
overhead 288 3.1

Switch
0

Switch
3

Switch
6

3

20

1

3

20

1

2

10

3

4

Reconfigurable 0

Switch
0

Switch
6

3

20

1

2

10

3

Reconfigurable 0

4

Switch
0

Switch
6

3

20

1

2

10

3

Reconfigurable 0

4

B) C)A)

Fig. 7. Alteration of the original mesh topology through the reconfiguration of the
original reconfigurable slot 0 (Reconfigurable 0) (A) with two different versions of the
subnetwork (B and C)

Thus, the overhead introduced by the proposed approach represents the 10% (on
average) of the initial NoC.

Furthermore, it is possible to configure at least two express lines in the im-
plemented architecture, and since each express line of the presented design has
a latency lower than 4 ns, it is possible to exploit each direct connection within
a single clock cycle at 100 MHz (while the latency required by the connection
passing through Switch 1, Switch 2 and Switch 5 is greater then 40 ns, i.e., 4
clock cycles).

On the other hand, a topology reconfiguration can be exploited on the
same architecture in order to adopt a specific NoC for each application that

246 V. Rana et al.

A B C

Static NoC

Application

Static CI

NoC 1 NoC 2Proposed CI NoC 3

Time1 2 3 4 5 6 7

X Y

Fig. 8. Temporal evolution of a generic system

Fig. 9. Topology of the static NoC

has to be run on the system. In order to completely change the topology of
the Network-On-Chip, a deeper modification of the selected reconfigurable part
is needed, since both the number and the kind of the switches of the same
reconfigurable part can be changed. As an example, let us consider that MB
0 has to communicate with both Slave 0 and Slave 2 with the lowest latency
possible. In order to satisfy this strict requirement, it is necessary to change the
original topology of the network, by altering the mesh (in particular, the original
reconfigurable slot number 0 shown in Figure 7 A) as shown in Figure 7 B. In
the reconfigurable module shown in Figure 7 B, in fact, MB 0, Slave 0 and Slave
2 are all connected to Switch 0, in order to make it possible for MB 0 to reach
Slave 0 and Slave 2 without any hop.

Another case in which a reconfiguration of the topology can lead to meet com-
munication requirements is, for instance, when both MB 0 has to communicate

A Reconfigurable Network-on-Chip Architecture 247

Table 5. Specific NoCs experimental results

NoC Number Average latency Average power
of switches (clock cycles) consumption (mW)

Static NoC 6 5.96 278.021
NoC 1 4 3.9 211.789
NoC 2 4 4 204.308
NoC 3 4 4.07 216.519

Fig. 10. Topology of the NoC 2

with Slave 2 and MB 1 has to communicate with Slave 0 with the lowest latency
possible. In this case, the reconfigurable module shown in Figure 7 C can be
configured in the reconfigurable slot number 0 (Reconfigurable 0), in order to
connect both MB 0 and Slave 2 to Switch 0, and MB1 and Slave 0 to Switch
6. Thanks to this reconfiguration of the topology it is possible to establish both
the required communication channels without any overhead in terms of hops
between switches, since all the components that has to communicate between
them have been connected to the same switch.

We have validated the proposed approach with three different versions of
real-life SoC benchmarks, namely, a video processing application of 32 cores

248 V. Rana et al.

Table 6. Area overhead, timing performance and features comparison among state of
the art solutions and the proposed approach

Approach CuNoC CoNoChi Proposed
([9]) ([14]) work

Switch size (slices) from 72 to 491 from 363 to 493 from 86 to 267
Communication All the
infrastructure available 2727 for
size (slices) resources NA a 3x3 mesh

Frequency (MHz) from 272 to 336 from 66 to 111 170
Single switch

latency (clock cycles) 2 5 1
Single switch
latency (ns) from 6 to 7.4 from 45 to 76 5.9
Flow control NA NA Supported

Path
reconfiguration Not supported NA Supported
Express lines

reconfiguration Not supported Not supported Supported
Topology

reconfiguration Not supported Supported Supported

(A), a Video Object Plane Decoder of 34 cores (B) and an image processing
application of 23 cores (C). We refer the readers to [4] for the communication
characteristics of these benchmarks. As shown in Figure 8, if these different
applications have to deployed on the same system, it is possible to employ either a
static network or three specific NoCs, each one designed ad-hoc for the particular
application. The second choice can be adopted if the time interval that occurs
between two consecutive applications is greater than the time overhead required
by the reconfiguration process; thus, it is possible to transparently change the
underlying NoC.

In order to test the application of our dynamically reconfigurable framework
in this context, we have developed a static NoC and three specific ones for
each of the three aforementioned SoC benchmarks application. As shown in
Figure 9, the static NoC consists of 6 switches (1 switch of 8x8, 2 switches of
9x9, 2 switches 10x10 and 1 switch of 11x11), whileboth NoC 1 (for application
A) and NoC 3 (for application C) consists of 4 switches (3 switches of 10x10
and 1 switch of 11x11) and NoC 2 (for application B) consists of 4 switches
(1 switch of 10x9, 2 switches of 10x10 and 1 switch of 10x11), as shown in
Figure 10. The static NoC option, as shown in Table 5, is characterized by a
higher area usage, a higher average power consumption (evaluated as proposed
in [2]) and a higher average latency, with respect to the three ad-hoc NoCs
specifically designed for each application. Using the specific NoCs, it can be
reported reductions of 34% in latency and 24% in power consumption. Finally,
the overall latency for the reconfiguration of the NoC to be used at run-time is
very limited, making it applicable in real-life scenarios where applications are
switched dynamically by users.

A Reconfigurable Network-on-Chip Architecture 249

As previously hinted, the reconfiguration latency of a reconfigurable region
strictly depends on its size. For instance, the reconfiguration latency for a 4
slices width region (that can be filled with up to two switches) is around 21 ms,
while a 20 slices width region (that can be filled with up to ten switches) requires
around 104 ms.

Finally, Table 6 presents a comparison among state-of-the-art solutions and
our approach, which shows the clear benefits of our approach regarding area
overhead reduction, timing performance improvements and enhancements of the
reconfiguration features.

6 Conclusions

NoCs have been proposed as a very promising scalable communication paradigm
SoCs. However, methods that provide versatility enhancements of initial NoC
designs to changing working conditions, imposed by variable sets of executed
applications at run-time, are key to design competitive NoCs in industrial SoCs.
In this work we have presented a novel NoC reconfigurable framework that can
reconfigure the NoC topology at run-time, as well as enabling path reconfig-
uration and express lines creation/removal, while introducing an overhead on
average of 10% of an initial static NoC design. Moreover, our experimental re-
sults have shown that in the proposed framework, on average, a reconfigurable
switch only occupies 41% of the slices needed by a CoNoChi switch, the state-of-
the-art reconfigurable NoC approach, whereas our reconfigurable NoC can run at
almost double the frequency (170 MHz vs. 88.5 MHz) of CoNoChi. Finally, our
approach introduces less than one tenth of the latency introduced by a CoNochi
switch (respectively, 5.9 ms and 60.5 ms). Thus, it is a promising framework to
be applied to commercial NoC-based SoC solutions.

Acknowledgments

This work was partially supported by the HiPEAC network of excellence
(www.hipeac.net), the Swiss NSF Research Grant 20021-109450/1 and Spanish
Government Research Grants TIN2005-5619, TIN2008-00508 and CSD00C-07-
20811.

References

1. Ahmad, B., Erdogan, A.T., Khawam, S.: Architecture of a dynamically reconfig-
urable noc for adaptive reconfigurable mpsoc. In: First NASA/ESA Conference on
Adaptive Hardware and Systems, AHS 2006, June 15-18, pp. 405–411 (2006)

2. Angiolini, F., Meloni, P., Carta, S., Benini, L., Raffo, L.: Contrasting a NoC and
a traditional interconnect fabric with layout awareness. In: Proceedings of Design,
Automation and Test in Europe Conference (DATE 2006), Munich, Germany, pp.
124–129 (2006)

250 V. Rana et al.

3. Benini, L., De Micheli, G. (eds.): Networks on chips: Technology and Tools. Morgan
Kaufmann Publishers, San Francisco (2006)

4. Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L.,
De Micheli, G.: Noc synthesis flow for customized domain specific multiprocessor
systems-on-chip. IEEE Trans. Parallel Distrib. Syst. 16(2), 113–129 (2005)

5. Brebner, G., Levi, D.: Networking on chip with platform fpgas. In: Proceedings
of the 2003 International Conference on Field-Programmable Technology (FPT),
December 2003, pp. 13–20 (2003)

6. Ching, D., Schaumont, P., Verbauwhede, I.: Integrated modeling and generation of
a reconfigurable network-on-chip. In: Proceedings of 18th International Conference
on Parallel and Distributed Processing Symposium, April 26-30, p. 139 (2004)

7. Hansson, A., Goossens, K.: Trade-offs in the configuration of a network on chip
for multiple use-cases. In: First International Symposium on Networks-on-Chip,
NOCS 2007, May 7-9, pp. 233–242 (2007)

8. Xilinx Inc. Early Access Partial Reconfiguration Guide. Xilinx Inc. (2006)
9. Jovanovic, S., Tanougast, C., Weber, S., Bobda, C.: Cunoc: A scalable dynamic noc

for dynamically reconfigurable fpgas. In: International Conference on Field Pro-
grammable Logic and Applications, FPL 2007, August 27-29, pp. 753–756 (2007)

10. Kumar, A., Hansson, A., Huisken, J., Corporaal, H.: An fpga design flow for recon-
figurable network-based multi-processor systems on chip. In: Design, Automation
and Test in Europe Conference and Exhibition, DATE 2007, April 16-20, pp. 1–6
(2007)

11. Lysne, O., Pinkston, T.M., Duato, J.: A methodology for developing dynamic
network reconfiguration processes. In: ICPP, p. 77 (2003)

12. Montone, A., Rana, V., Santambrogio, M.D., Sciuto, D.: Harpe: a harvard-based
processing element tailored for partial dynamic reconfigurable architectures. In:
22nd IEEE International Parallel and Distributed Processing Symposium - 15th
Reconfigurable Architectures Workshop (April 2008)

13. Murali, S., Coenen, M., Radulescu, A., Goossens, K., De Micheli, G.: Mapping
and configuration methods for multi-use-case networks on chips. In: Proceedings
of the 2006 conference on Asia South Pacific design automation (ASP-DAC), pp.
146–151. ACM Press, New York (2006)

14. Pionteck, T., Koch, R., Albrecht, C.: Applying partial reconfiguration to networks-
on-chips. In: International Conference on Field Programmable Logic and Applica-
tions, FPL 2006, August 28-30, pp. 1–6 (2006)

15. Vicentelli, A., Martin, G.: A vision for embedded systems: Platform-based design
and software. IEEE Design and Test - Special Issue of Computers 18(6), 23–33
(2001)

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 251–270, 2010.
© IFIP International Federation for Information Processing 2010

Fast Instruction Memory Hierarchy Power Exploration
for Embedded Systems

Nikolaos Kroupis1 and Dimitrios Soudris2

1 Department of Information and Telecommunication Technology,
Technological Institute of Larisa,

411 10 Larisa, Greece
nkroup@gmail.com

2 School of Electrical & Computer Engineering, Department of Computer Science,
National Technical University of Athens,

9 Heroon Polytechneiou, Zographou Campus, 157 80 Athens, Greece
dsoudris@microlab.ntua.gr

Abstract. A typical instruction memory design exploration process using simu-
lation tools for various cache parameters is a rather time-consuming process,
even for low complexity applications. In order to design a power efficient
memory hierarchy of an embedded system, a huge number of system simula-
tions are needed for all the different instruction memory hierarchies, because
many cache memory parameters should be explored. Exhaustive search of de-
sign space using simulation is too slow procedure and needs hundreds of simu-
lations to find the optimal cache configuration. This chapter provides fast and
accurate estimates of a multi-level instruction memory hierarchy. Using a detail
methodology for estimating the number of instruction cache misses of the in-
struction cache levels and power models; we estimate within a reasonable time
the power consumption among these hierarchies. In order to automate the esti-
mation procedure, a novel software tool named FICA implements the proposed
methodology, which automatically estimates the total energy in instruction
memory hierarchy and reports the optimal one.

1 Introduction to Instruction Caches

Cache memories have become a major factor to bridge the bottleneck between the
relatively slow access time to main memory and the faster clock rate of today’s proc-
essors. The power consumed by the memory hierarchy of a micro-processor can con-
tribute to as much as 50% of the total microprocessor system power [1].

A cache is a small but fast memory and it is placed closer to the CPU. A cache
block is the amount of data transferred between the main memory and the cache from
any memory operation. A cache can also be divided into sets where each set contains
N (usually N is 1,2,4,8 etc.) cache blocks. Fig. 1 classifies a cache on the basis of its
contents and organization. For a direct mapped cache, each set contains only one
cache block. For an n-way set associative cache each set contains n cache blocks. Fig.
2 shows the implementation of a direct mapped cache.

252 N. Kroupis and D. Soudris

Caches

Direct Mapped cache: each
cache set contains only cache
block

n-way Set associative cache:
each cache set contains n cache
block

Instruction cache: stores only the
instructions of the application

Data cache: stores only the data
of the application

Unified cache: stores both
instructions and data

OrganizationContent

Fig. 1. Caches are classified on the basis of their content and organization

Each cache block includes a tag to show which memory location is present in this
block, a data field holding the contents of that memory location, and a valid tag to
show whether the contents of this cache block is valid or not. An address (referenced
location) is divided into three sections. The index is used to select which cache block
to check. The tag is compared against to the tag value in the line selected by the in-
dex. If the address tag matches the tag value in the block, that block contains the de-
sired memory location. If the tag does not match the tag value in the block, then it is a
cache miss. If the length of the data field is longer than the minimum addressable unit,
then the least significant bits of the address are used as an offset to select the required
value from the data field.

Nowadays the programmable systems usually contain one or two levels of caches,
in order to reduce the main memory transfer delay and the power consumption. Tun-
ing cache parameters to the needs of a particular application can save energy. Every
application has different cache requirements that cannot be efficiently satisfied with
one predetermined cache configuration. A single-level cache may have dozens of dif-
ferent cache configurations, and interdependent multi-level caches lead to thousands
of different cache configurations. The simulation of cache memories is common prac-
tice to determine the best configuration of caches during the design of computer archi-
tectures. It has also been used to evaluate compiler optimizations with respect to
cache performance. Exhaustively searching the design space is a too slow procedure,
even if it would be fully automatic.

Unfortunately, the cache analysis of a program can increase significantly the pro-
gram’s execution time frequently by two orders of a magnitude. Thus, cache simula-
tion has been limited to the analysis of programs with a small or moderate execution
time and still requires considerable experimentation time before yielding results. In
reality programs often run for a long time, but cache simulation simply becomes un-
feasible with conventional methods. The huge time overhead of cache simulation is
imposed by the necessity of tracking the execution order of instructions.

No certain cache configuration would be efficient for all applications, seeing as
every application has different cache requirements. Thus, finding the best cache con-
figuration for a particular application could save energy and time. But, to explore all
possible cache configurations it is not so easy task it would not be a viable solution,

 Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems 253

Fig. 2. Cache Memory Architecture

due to the prolonged of exploration time involved. For instance, if we consider only
variations in the parameters of one level cache such as cache size, block (line) size
and associativity, an designspace of dozens of configurations [2] will be explored ed
in order to find out the optimal one for a given application. In the case of multilevel
memory hierarchies, for instance hat include a second level of cache, where both lev-
els have separated instruction and data caches, few hundreds of configurations have to
be tested.

Each instruction memory hierarchy has different energy consumption. The energy
consumed in the instructions memories is directly-related to the memory architectures
parameters (e.g., cache size, block size, associativity) and to the number of accesses
to every memory hierarchy level. In order to design an efficient embedded system the
total instruction memory energy consumption should be shrank. Defining the instruc-
tion memory and the instruction cache parameters, the total energy consumed by the
instruction memory hierarchy can be computed.

2 Simulation and Estimation Methods: Overview

Adjusting the parameters of an application’s cache memory can save 60% of energy
consumption, on average [2]. By tuning these parameters, the cache can be custom-
ized to a particular application. However, no single cache configuration would be ef-
fective for all applications. Thus, strategies to explore the cache parameters can be
applied to customize the cache structure to a given application. The proposed tech-
niques can be classified into two categories. The techniques of the first category are

254 N. Kroupis and D. Soudris

targeting to reduce the exploration search space, while the second one to reduce the
miss rate estimation time for simulation of a certain cache hierarchy.

In [3], an automated method for adjusting two-level cache memory hierarchy in
order to reduce energy consumption in embedded applications was presented. The
proposed method, two-level cache exploration heuristic considering TECH-CYCLES
method, make a small search in the space of configurations of the two-level cache hi-
erarchy, analyzing the impact of each parameter in terms of energy and number of cy-
cles spent for a given application.

Zhang and Vahid [2] presented a cache architecture that can find the optimal set of
cache configurations for a given application. Such architecture would be very useful
in prototyping platforms, eliminating the need for time-consuming simulations to find
optimal cache configurations. Gordon et. al [4] presented an automated method for
tuning two-level caches to embedded applications for reducing energy consumption.
The method is applicable to both a simulation-based exploration environment and a
hardware based system prototyping environment. Platune was introduced by Givargis
and Vahid in [5], which is used to explore automatically the large configuration space
of such a SoC platform. The power estimation techniques for processors, caches,
memories, buses, and peripherals combined with the design space exploration algo-
rithm deployed by Platune, form a methodology for design of tuning frameworks for
parameterized SOC platforms.

The previously-referred methods are based on the instruction set simulator, which
provides cycle accurate estimations, but from the other hand it is a very slow proce-
dure. Their main disadvantage is the huge needed time cost when we have to explore
a large number of different instruction memory hierarchies.

New techniques have been proposed to reduce the simulation time, which were
presented in [6], [7], [8] and [9]. In particular, a technique called inline tracing can be
used to generate the trace of addresses with much less overhead than trapping or
simulation. Measurement instructions are inserted in the program to record the ad-
dresses that are referenced during the execution. Borg, Kessler, and Wall [6] modified
some programs at link time to write addresses to a trace buffer, and these addresses
were analyzed by a separate higher priority process. The time required to generate the
trace of addresses was reduced by reserving five of the general purpose registers to
avoid memory references in the trace generation code.

Mueller and Whalley [7] provided a method for instruction cache analysis, which
outperforms the conventional trace-driven methods. This method, named static cache
simulation, analyzes a program for a given cache configuration and determines, prior
to execution time, if an instruction reference will result in a cache hit or miss. The to-
tal number of cache hits and misses can be extracted from the frequency counters at
program exit. In order to use this technique, the designer should make changes in the
compiler of the processor, which are restricted most of the times, when we use
commercial tools and compilers.

A simulation-based methodology, focused on an approximate model of the cache
and the multi-tasking reactive software, that allows one to trade off-smoothly between
accuracy and simulation speed, has been proposed by Lajolo et. al. [8]. The method-
ology reduces the simulation time, taking into account the intra-task conflicts and
considering only a finite number of previous task executions.

 Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems 255

Nohl et. al [9] presented a simulation-based technique, which meets the require-
ments for both, the high simulation speed and maximum flexibility. This simulation
technique, called just-in-time cache compiled simulation technique, can be utilized for
architecture design, as well as for end-user software development. This technique is
integrated into the retargetable LISA processor design platform [10].

A brief description of the simulation/estimation methods and techniques were
available in [11]. In this chapter, a novel methodology aiming to find the optimal in-
struction cache memory hierarchy of the system in terms of the power consumption.
High estimation accuracy can be achieved within an affordable estimation time cost.
The high-level estimation decisions are very useful for a fast exploration among sev-
eral instruction cache configurations. The developed software tool based on the meth-
odology explores many instruction cache configurations considering multi-level cache
memory hierarchy. The basic concept of the methodology is the straightforward rela-
tionship for specific characteristics between the high-level application description
code and its corresponding assembly code. The developed tool achieves speedup or-
ders of magnitude in the miss rate and power consumption estimation and time cost
comparing to existing methods, while the estimation accuracy is higher than 90%.
The experimental results show the efficiency of the proposed methodology and the es-
timation tool in terms of accuracy and the exploration time for a system consisting by
one or two levels of instruction cache.

3 Instruction Cache Miss Rate Estimation

The power consumption of the instruction memory hierarchy depends on the number
of accesses to each memory level. The crucial point is to estimate the number of ac-
cesses to each cache level and to find the miss rate of each level as well as the total
number of executed instructions. A miss rate estimation methodology based on the
correlation between the high-level description code (e.g. C) of the application and its
associated assembly code was proposed in [12]. In particular, the methodology is
based on a set of analytical equations which calculate the number of cache misses of a
loop proposed by Liveris et.al. [13]. Using the compiler of the chosen processor, the
assembly code of the application can be derived. The crucial point of the methodol-
ogy is that the number of conditional branches in both the C code and its assembly
code is equal. Thus, executing the C code we can find the number of passes from
every branch. The values correspond to the assembly code, and thus we can find how
many times each assembly branch instruction is executed. Creating the Control Flow
Graph (CFG) of the assembly code, the number of executions of all application’s as-
sembly instructions can be calculated. The miss rate estimation is accomplished by
the assembly code processing procedure and the data extracted from the application
execution. Thus, the estimation time depends on the code (assembly and C) process-
ing time and the application execution time in a general-purpose processor. The total
estimation time cost is much smaller than that obtained by the trace-driven simulation
techniques.

A cache read miss from an instruction cache generally causes increased delay, be-
cause the processor has to wait (stall) until the instruction is fetched from main

256 N. Kroupis and D. Soudris

memory. Cache misses can be classified into three categories the compulsory, the
capacity and the conflict misses as following:

• Compulsory misses are those misses caused by the first reference to a datum.
Cache size and associativity make no difference to the number of compulsory
misses. Compulsory misses are sometimes referred to as cold misses.

• Capacity misses are those misses that occur regardless of associativity or block
size, solely due to the finite size of the cache. The curve of capacity miss rate ver-
sus cache size gives some measure of the temporal locality of a particular reference
stream.

• Conflict misses are those misses that could have been avoided, had the cache not
evicted an entry earlier. Conflict misses can be further broken down into mapping
misses, that are unavoidable given a particular amount of associativity, and replace-
ment misses, which are due to the particular victim choice of the replacement policy.

In order to model the number of cache misses of a nested loop, analytical formulas
have been proposed in [13]. Given the cache size (cache parameters), these analytical
formulas can estimate the number of cache misses. The explanation of these formulas
is presented in [13]. Here, we provide only the necessary information regarding with
the high-level estimation formulas. Assuming a specific cache, in order to estimate
the misses of an application, we split an application into a number of nested loops.
For every loop the misses are estimated individually.

Depending on the loop size mapped to the cache size, the assumed loops are cate-
gorized in three different types: Loop Type 1, Loop Type 2 and Loop Type 3, each of
which the capacity misses, in number of blocks, is shown in Fig. 3.

Given a nested loop with N iterations and a total size of instructions in assembly
code, L_s, a cache memory with size, C_s, (in instructions), and a block size, B_s,
(cache line length), the number of misses, N_misses, can be calculated by using the
following formulas [13]:

Loop Type 1: if sCsL __ ≤ then:

sB

sL
missesNum

_

_
_ = (1)

Loop Type 2: if sCsLsC _2__ ×<< then:

()
sB

sCsL
N

sB

sL
missesNum

_

mod
21

_

_
_ ××−+= (2)

Loop Type 3: if sLsC __2 ≤× then:

sB

sL
NmissesNum

_

_
_ ×= (3)

The miss rate is given by the formula:

referencesNum

missesNum
rateMiss

_

_
_ = (4)

 Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems 257

Loop Type 2 : C_s < L_s < 2*C_s
L_s = 6 blocks

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

BLOCK 5

C_s = 4 blocks

BLOCK 1 / 5

BLOCK 2

BLOCK 3

BLOCK 4

2 Capacity Misses /

Loop Iteration

Loop Type 1 : L_s < C_s

L_s = 3 blocks C_s = 4 blocks

No Capacity Misses

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 1

BLOCK 2

BLOCK 3

L_s = 9 blocks C_s= 4 blocks

Loop Type 3 : L_s > 2*C_s

9 Capacity Misses /

Loop Iteration

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

BLOCK 5

BLOCK 6

BLOCK 7

BLOCK 8

BLOCK 9

BLOCK 1 / 5 / 9

BLOCK 2 / 6

BLOCK 3 / 7

BLOCK 4 / 8

Fig. 3. Depending on the loop’s size compared to cache size, the nested loops are classified into
three categories

where Num_references is the number of memory references from the processor to
memory with

N
sB

sL
referencesNum ×=

_

_
_ (5)

The proposed methodology consists of four stages illustrated in Fig. 4. The first stage
aims at the calculation of the number of executions (passes) of all branches of the ap-
plication C code. Thus, the number of executions of every leaf of the Control Flow
Graph (CFG) is evaluated by the application execution. Determining the branches of
the high-level application code, we can find the number of executions within these
branches executing the code. This stage is a platform-independent process and thus,
its results can be used in any programmable platform.

The second stage estimates the number of executions of each instruction and even-
tually, the total number of the executed instructions. Given the assembly code of the
application, the second step creates the CFG of the application and associates the
number of executions executed from the first stage. It consists of: (i) the determina-
tion of assembly code branches, (ii) the creation of CFG, (iii) the assignment of
counter values to CFG nodes and (iv) the calculation of the execution cost of the rest
CFG nodes.

The third stage of the methodology is platform-dependent and contains two steps:
(i) the creation of all the unique execution paths of each loop and (ii) the computation
of number of instructions and iterations associated with a unique path. Exploring all

258 N. Kroupis and D. Soudris

Fig. 4. The proposed methodology for estimating the miss rate and the power consumption of a
multi-level instruction memory cache hierarchy

the paths of the CFG of an application, we determine the loops and the size (in num-
bers of instructions), as well as the number of executions of each loop. Furthermore,
from the rest of the conditional branches (if / else), we create all the unique execution
paths inside every loop, together with the number of executions of each unique path.
Comparing the size in terms of number of instruction of every unique path with the
instruction cache size the number of cache misses is estimated. The number of cache
misses can be computed all together for variable cache sizes and architectures and
multi-level memories, by a single run of FICA tool. This is one of the advantages of
the methodology. The fourth stage contains the power model of the instruction cache
and the memory, which is described in the next paragraph.

 Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems 259

4 Instruction Memory Power Consumption

An architecture exploration among the variable instruction cache configurations is
needed in order to find the optimal memory hierarchy in terms of power consumption.
The power consumption of the memory depends on their characteristics (type, size
etc.) and number of accesses. Power consumption models are estimates of the energy
consumed by a cache per memory access [14] [15]. Cacti 4.0 power model [14] was
developed to estimate the power consumption of on-chip cache memories. Given the
basic cache parameters such as size, block size, associativity and design technology, it
estimates the energy consumption per access (read and write) to this cache memory.
The power model proposed by Micron [15] is targeting to the estimation of off-chip
SDRAM and DDR memories based on memory parameters. Such, the most important
parameter to estimate the power consumption on a memory is the number of accesses.
Based on the cache miss ratio estimation of the third stage, analytical questions define
the number of accesses of every cache memory. The last step of the fourth stage as-
signs the energy consumption per access to every cache level and computes the appli-
cation’s energy consumption of every level. Summing up the energy of each level, the
total consumed energy of the instruction memory hierarchy is estimated.

Power models for the memory hierarchy are needed to find the optimal instruction
memory hierarchy. Using the number of accesses (read/write) of each cache level,
which are computed in the third stage and memory power models, the tool automati-
cally estimates the total energy consumed in instruction hierarchy. The number of in-
struction cache levels varies from one to n, but typical embedded system contains
usually one or two. The developed software tool with one run estimates all the cache
miss rates and the energy consumed on them, architectures which contains from one
to n and for all cache parameters and combination between the different caches. The
tool reports the power consumption of every cache hierarchy and the designer can
choose the optimal in terms of energy consumption.

5 The Estimation Methodology Using an Example

The proposed methodology is based on the correlation between the high-level descrip-
tion code (e.g. C) of the application and its corresponding assembly code. Using the
compiler of the chosen processor, we can derive the assembly code of the application.
Here, we are providing the proposed methodology using an example with a simple C
code. The procedure of the four stages of the methodology of the sample C code are
presented in detail in Fig. 5-6. The sample code contains one loop and a conditional
branch into the loop, such there are two branches. The first stage detects (Stage 1,
Step 1) the two branches and automatically inserts counters after every branch in C
code (Stage 1, Step 2) and executing the C code (Stage 1, Step 3) we can find the
number of executions of every branch (Stage 1, Output). The values of the counters
provide the number of executions of every branch of the C code.

The second stage has as input the equivalent assembly code of the application, and
parsing the assembly code (Stage 2, Step 1), the Control Flow Graph (CFG) of the ap-
plication (Stage 2, Step 2) can be derived. Corresponding the values of the counters to
the specific places in the CFG (Stage 2, Step 3), we can calculate how many times the

260 N. Kroupis and D. Soudris

(a)

Results after code execution

Branch 1 :

 Type : loop

 Counter 1: 10 executions

Branch 2 :

 Type : if

 Counter 2: 3 executions

Output

Step 2 : Counter insertion
Step 3 : Code executions

 for(i=0;i<10;i++)
 {
 counter[1]++;
 if(i<3)
 {
 counter[2]++;
 a=a+i;
 }
 else
 {
 a=a-i;
 }
 }

Counter Insertion

Step 1 : Pinpoint the
code branches

 for(i=0;i<10;i++)
 {
 if(i<3)
 a=a+i;
 else
 a=a-i;
 }

Input: C code
Branch 1

Branch 2

1
s

t S
ta

g
e

(b)

Output : Number of executed instructions
Step 4 : Computation of #
executions of every instruction

Step 1 : Pinpoint the
assembly code branches

$L2:
 lw $2,16($fp)
 slt $3,$2,10
 bne $3,$0,$L5
 j $L1
$L5:
 lw $2,16($fp)
 slt $3,$2,3
 beq $3,$0,$L6
 lw $2,20($fp)
 lw $3,16($fp)
 addu$2,$2,$3
 sw $2,20($fp)
 j $L4
$L6:
 lw $2,20($fp)
 lw $3,16($fp)
 subu$2,$2,$3
 sw $2,20($fp)
$L4:
 lw $3,16($fp)
 addu$2,$3,1
 move$3,$2
 sw $3,16($fp)
 j $L2
$L1:

Assembly
Code

Branch 2

Branch 1

Step 2 : Create the Control Flow Graph
Step 3 : Associate counter values with
the execution tree nodes

2
n

d
 S

ta
g

e

Total Executed Instructions : 161

11
11
11
 1

10
10
10
 7
 7
 7
 7
 7

 3
 3
 3
 3

10
10
10
10
10

executions

BEGIN

END

1 pass

Node 1

Node 2 10
Node 3

3
Node 4

Node 5

Node 6

Branch 1

Branch 2

BEGIN

END

1 pass

11
Node 1

1
Node 2 10

Node 3

7 3
Node 4

Node 5

10
Node 6

Branch 1

Branch 2

$L2:
 lw $2,16($fp)
 slt $3,$2,10
 bne $3,$0,$L5
 j $L1
$L5:
 lw $2,16($fp)
 slt $3,$2,3
 beq $3,$0,$L6
 lw $2,20($fp)
 lw $3,16($fp)
 addu$2,$2,$3
 sw $2,20($fp)
 j $L4
$L6:
 lw $2,20($fp)
 lw $3,16($fp)
 subu$2,$2,$3
 sw $2,20($fp)
$L4:
 lw $3,16($fp)
 addu$2,$3,1
 move$3,$2
 sw $3,16($fp)
 j $L2
$L1:

Fig. 5. First and second stage of the estimation methodology

 Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems 261

4
th

 S
ta

g
e

/* Instruction Memory Hierarchy Energy Consumption */

for (each cache_size and parameters of L1)

{

 /* Energy model per Read/Write Access of L1 */

 create cache power model for L1 using CACTI

 E_readL1 and E_writeL1 calculation

 EL1 = #instructions * (E_readL1 + Miss_RateL1 * E_writeL1)

 for (each cache_size and parameters of L2)

 {

 /* Energy model per Read/Write Access of L2 */

 create cache power model for L2 using CACTI

 E_readL2 and E_writeL2 calculation

 EL2 = #instructions * Miss_RateL1 * (E_readL2 + Miss_RateL2 * E_writeL2)

 EMM = #instructions * Miss_RateL1 * Miss_RateL2 * E_readMM

 }

}

Step 1 : Extract all the unique
execution paths of assembly code
loops.

3

11

10

10

1
st

 unique path

3 iterations

$L2:
 lw $2,16($fp)
 slt $3,$2,10
 bne $3,$0,$L5
$L5:
 lw $2,16($fp)
 slt $3,$2,3
 beq $3,$0,$L6
$L6:
 lw $2,20($fp)
 lw $3,16($fp)
 subu $2,$2,$3
 sw $2,20($fp)
$L4:
 lw $3,16($fp)
 addu $2,$3,1
 move $3,$2
 sw $3,16($fp)
 j $L2
$L1:

2
nd

 unique path

7 iterations

11

10

7

10

$L2:
 lw $2,16($fp)
 slt $3,$2,10
 bne $3,$0,$L5
$L5:
 lw $2,16($fp)
 slt $3,$2,3
 beq $3,$0,$L6
 lw $2,20($fp)
 lw $3,16($fp)
 addu $2,$2,$3
 sw $2,20($fp)
 j $L4

$L4:
 lw $3,16($fp)
 addu $2,$3,1
 move $3,$2
 sw $3,16($fp)
 j $L2

$L1:

MIPS IV 64 bits

1 instr. = 8 bytes

Unique Path 1 :

Consists of : 15 instr.

Size : 120 bytes

Iterations : 3

Unique Path 2 :

Consists of : 16 instr.

Size : 128 bytes

Iterations :7

Step 2 : Computation of
of instructions and #
iterations of each
execution path

Output : Number of
instruction cache misses and
miss rate

Direct Mapped Cache with

Block Size 8 bytes:

Using Equations (1)-(5) for

variable cache sizes:

Num_References = 157

Cache Size: 32 bytes

Num_Misses1 = 45

Num_Misses2 = 112

Miss rate = 100%

Cache Size: 64 bytes

Num_Misses1 = 42

Num_Misses2 = 112

Miss rate = 98%

Cache Size: 128 bytes

Num_Misses1 = 15

Num_Misses2 = 16

Miss rate = 20%

Cache Size: 256 bytes

Num_Misses1 = 15

Num_Misses2 = 16

Miss rate = 20%

Output

3
rd

 S
ta

g
e

(c)

Node 1

Node 3

Node 5

Node 6

Node 1

Node 3

Node 4

Node 6

(d)

Fig. 6. Third and forth stage of the estimation methodology

branches of the assembly code are executed. Using an iterative procedure we calculate
the number of executions from all nodes of the CFG (Stage 2, Step 4). Thus, summa-
rizing the number of executions of all application’s assembly instructions, the total
number of executed instructions can be calculated (Stage 2, Output).

The third stage the methodology explores the CFG of the application and can de-
termine the loops and the size (in number of instructions) as well as the number of
executions of each loop (Stage 3, Step 1). Taking into account the conditional

262 N. Kroupis and D. Soudris

branches (if / else), we create all the unique execution paths inside every loop and
eventually, we calculate the number of executions of every unique path (Stage 3,
Step 2). Comparing the size of every unique path in terms of number of instruction
with the instruction cache size, the number of cache misses is estimated. The number
of cache misses is computed for variable cache memory sizes through a single run of
the developed tool (Stage 3, Output), which is one of the main advantages of the
proposed methodology.

The forth stage aims at the estimation of energy consumption of the instruction
memory hierarchy. The energy consumed by the memory is dependent on the memory
technology, the memory type and the number of accesses (reads/writes). Using the
CACTI power model for the cache memories, we can create detail power parameters
for various cache types. In the case of two levels of instruction cache, we need two
loops to cover all the possible combinations between the two caches in terms of size
and parameters. Thus, in the Fig. 6 (Stage 4) the outer loop explores all the possible
L1 cache architectures, while the second one explores all the possible L2 cache archi-
tectures for every L1 architecture. Firstly, we create the power model for each cache
architecture using the CACTI power model. Applying the cache parameter to CACTI
for each cache architecture, we compute the E_read and E_write power parameters of
the cache, for every read and write access, respectively. Secondly, multiplying the
number of read and writes of every cache with the power values we compute the total
energy consumption to each cache level. Finally, using the power model of memories
we can also compute the energy consumed of the system’s main memory.

6 Comparison Results

In order to evaluate the proposed estimation technique we compare the results, which
are taken using the developed tool with the simulation-based measurements. We con-
sidered as implementation platform the 64-bit processor core MIPS IV, while the
measurements were taken by Simplescalar tool [16], the accurate instruction set
simulator of MIPS processor. Simplescalar includes instruction set simulator, fast-
instruction simulator and cache simulator, and can simulate architectures with instruc-
tion, data and mixed instruction-data caches with one or two memory hierarchy
layers. In order to evaluate the proposed methodology, a set of benchmarks from vari-
ous signal processing applications, such as MPEG-4, JPEG, Filtering and H.263 are
used. In particular, we use five Motion Estimation algorithms: (i) Full Search (FS)
[17], (ii) Hierarchical Search (HS) [18], (iii) Three Step Logarithmic Step (3SLOG)
[17], (iv) Parallel Hierarchical One Dimensional Search (PHODS) [17] and (v) Spiral
Search (SS) [19]. It has been noted that their complexity ranged from 60 to 80% of
the total complexity of video encoding (MPEG-4) [17]. Also, we have used the 1-D
Wavelet transformation [20], the Cavity Detector [21] and the Self Organized Feature
Map Color Quantization (CQ) [22]. We assumed L1 instruction cache memory size
ranging from 64 bytes to 1024 bytes with block sizes 8 and direct-mapped cache ar-
chitecture and L2 instruction cache with sizes varying between 128 bytes and 4
Kbytes. We performed both simulation and estimation computations in terms of the
miss rate of instruction cache on L1 and L2. Moreover, we computed the actual time

 Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems 263

cost for running the simulation and the estimation-based approaches as well as the
average accuracy level of the proposed methodology.

Every cache level has its own local miss rate, which is the misses in this cache divided
by the total number of memory accesses to this cache. Average miss rate is the misses in
this cache divided by the total number of memory accesses generated by the processor.
For example, in the case where there are two level of cache memories the average miss
rate is given by the product of the two local miss rates of the two levels, i.e., (Miss-
RateL1×MissRateL2). Average miss rate is what matters to overall performance, while
local miss rate is a factor for evaluating the effectiveness of every cache level.

The accuracy of the proposed estimation technique is provided by the average
estimation error. Table 1-3 presents the average percentage error of the proposed
methodology compared to the simulation results taken using the Simplescalar tool,
considering the abovementioned nine DSP applications. The last row of each table
provides the average estimation error of miss rate of a two-level instruction cache
memory hierarchy of each application. We choose to present the results of only
two-level cache hierarch due to lack of space. Also, in order to reduce the results we
present only the miss rate of L2 cache which its size is four times greater that L1, oth-
erwise a lot tables and results must be presented. Depending on the application, the
corresponding average values of estimation error ranges from 1% to 12%, while the
total average estimation error of the proposed approach is less than 4% (i.e. 3.77%).
The latter value implies that the proposed methodology exhibits high accuracy.

Table 1. Comparison between the estimation and the simulation results of the miss rate in L1
cache

L1 Cache Size (bytes)
Applications

64 128 256 512 1024
Av. Error

(%)

Simplescalar 100,0 100,0 99,8 99,2 76,8
FS

FICA 100,0 100,0 99,9 99,6 71,9
1,10

Simplescalar 99,9 97,3 92,6 66,4 2,8
HS

FICA 100,0 96,0 87,5 60,8 3,4
2,55

Simplescalar 100,0 100,0 99,6 96,7 31,7
PHODS

FICA 100,0 100,0 98,8 96,1 22,7
2,08

Simplescalar 100,0 99,7 93,1 15,9 1,9
3SLOG

FICA 100,0 99,4 96,9 7,4 0,9
2,71

Simplescalar 99,9 99,9 98,8 79,9 0,5
SS

FICA 100,0 99,2 98,4 75,0 0,0
1,31

Simplescalar 100,0 100,0 94,3 61,4 16,9
CAVITY

FICA 100,0 100,0 94,6 45,7 0,8
6,43

Simplescalar 100,0 99,4 89,1 46,5 9,6
CQ

FICA 100,0 98,7 84,2 3,5 0,0
11,66

Simplescalar 98,7 89,9 50,3 1,3 1,1
WAVELET

FICA 99,3 92,7 43,3 0,4 1,1
2,30

Simplescalar 99,8 98,7 95,7 87,7 7,1
FFT

FICA 100,0 100,0 96,1 75,3 6,0
3,07

264 N. Kroupis and D. Soudris

Table 2. Comparison between the estimation and the simulation results of the miss rate in L2
cache

L2 Cache Size (bytes) Applications
256 512 1024 2048 4096

Av.Error
(%)

Simplescalar 99,8 99,2 77,0 0,1 0,0FS
FICA 99,9 99,6 72,0 0,2 0,2

1,16

Simplescalar 92,7 68,2 3,0 2,3 53,3HS
FICA 87,5 63,3 3,9 5,3 15,9

10,28

Simplescalar 99,6 96,8 31,8 0,8 0,7PHODS
FICA 98,8 96,1 23,0 1,0 4,2

2,81

Simplescalar 93,1 15,9 2,0 11,0 0,43SLOG
FICA 96,9 7,4 1,0 7,2 2,2

3,79

Simplescalar 99,0 80,0 0,5 0,1 0,1SS
FICA 98,4 75,6 0,0 0,0 9,4

2,95

Simplescalar 94,3 61,4 17,9 0,5 0,5CAVITY
FICA 94,6 45,7 0,8 0,0 0,0

6,82

Simplescalar 89,2 46,8 10,8 0,8 0,4CQ
FICA 84,2 3,5 0,0 0,0 100,0

31,90

Simplescalar 50,9 1,5 2,1 1,5 1,4WAVELET
FICA 43,6 0,4 0,2 4,4 14,3

5,22

Simplescalar 96,0 88,8 7,4 0,6 3,1FFT
FICA 96,1 75,3 9,8 7,9 63,1

16,68

Table 3. Comparison between the estimation and the simulation results of the global miss rate
in instruction cache memory hierarchy

L 1 C a c h e S i z e : L 2 = 4 × L 1 (b y t e s)Applications
64 128 256 512 1024

Av. Error
(%)

Simplescalar 99,8 99,2 76,8 0,1 0,0FS
FICA 99,9 99,6 71,9 0,2 0,1

1,13

Simplescalar 92,5 66,4 2,8 1,6 1,5HS
FICA 87,5 60,8 3,4 3,2 0,5

2,78

Simplescalar 99,6 96,7 31,7 0,8 0,2PHODS
FICA 98,8 96,1 22,7 1,0 1,0

2,26

Simplescalar 93,1 15,9 1,9 1,7 0,03SLOG
FICA 96,9 7,4 0,9 0,5 0,0

2,90

Simplescalar 98,8 79,9 0,5 0,1 0,0SS
FICA 98,4 75,0 0,0 0,0 0,0

1,16

Simplescalar 94,3 61,4 16,9 0,3 0,1CAVITY
FICA 94,6 45,7 0,8 0,0 0,0

6,50

Simplescalar 89,1 46,5 9,6 0,3 0,0CQ
FICA 84,2 3,5 0,0 0,0 0,0

11,61

Simplescalar 50,3 1,3 1,1 0,0 0,0WAVELE
T FICA 43,3 0,4 0,1 0,0 0,2

1,82

Simplescalar 95,7 87,7 7,1 0,5 0,2FFT
FICA 96,1 75,3 9,5 6,0 3,8

4,81

Based on the equations and using the number of accesses in each cache memory,

the tool estimates the number of accesses of each cache level. We use CACTI 4.0 [14]
power models for the caches design in technology 90nm and Micron [15] model for
the off-chip system memory. The fourth stage of the methodology estimates the total

 Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems 265

power consumption of the instruction memory hierarchy. The comparison results be-
tween the energy estimated by the FICA tool and using the conventional method
(simulation and power models) are presented in Fig. (7)-(10). The simulation results
from all these figures are produced by using a huge number of simulation with all the
different cache hierarchies, while the estimated results only running once the tool.
Fig. 7 presents the energy consumption results of the application FS for a system
which contains only one level of cache. It can be easily deduced that the estimated re-
sults are similar to the simulation for all the cache sizes.

Fig. 7. Energy consumption comparison results between simulation and estimation for a system
with L1 instruction cache of Full Search algorithm

Fig. 8. Energy consumption comparison results between simulation and estimation for a system
with L1 instruction cache of Full Search algorithm

266 N. Kroupis and D. Soudris

Fig. 9. Energy consumption comparison results between simulation and estimation for a system
with L1 instruction cache of Cavity Detector

Fig. 10. Energy consumption comparison results between simulation and estimation for a
system with L1 and L2 instruction caches of Cavity Detector

Apart from the accuracy of an estimation methodology (and tool), a second pa-
rameter very crucial for its efficiency is the required time cost to obtain the accurate
estimates. Table 4 provides the required (average) time cost, in seconds, for perform-
ing the simulation and estimation procedure for all benchmarks. It is assumed an ar-
chitecture with two levels of instruction cache and cache sizes for L1 from 64 bytes to
1024 bytes and L2 from 128 up to 4096 bytes there are 20 different combinations as-
suming that L2>L1. Using variable cache block sizes for L1 and L2 caches from 8
bytes to 32 bytes, there are totally 6 combinations assuming that L1block_size ≤
L2block_size. In order to complete explorer the two-level instruction cache architecture
20×6=120 simulation procedures are needed for every application. The estimation and

 Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems 267

Table 4. Speed up comparison results using our proposed methodology compared to the
simulation time in a host machine Intel Pentium IV CPU 2GHz

Applications Time (sec)
FS HS 3SLOG PHODS SS Wavelet Cavity CQ

Simulation 73,200 1,920 2,760 3,480 77,520 4,320 1,081,080 795,240

Estimation 4.8 27.3 7.2 9.45 7.2 105 15.3 27.45

Speed up 15,250 70 383 368 10,767 41 70,659 28,970

Table 5. Comparisons between existing and proposed methods

Method Tech-
nique

Processor
type

Tool
support Accuracy Time Code Remarks

Processor Simula-
tor [16]

MIPS Simplescalar 100%
exec instr.

(GBytes)
-

Silva-Filho [3] MIPS - 100%
exec instr.

(GBytes)
Reduce the

search space

Zhang [2] MIPS - 100%
exec instr.

(GBytes)
Reduce the

search space

Gordon [4] MIPS - 100%
exec instr.

(GBytes)
Reduce the

search space

Givargis [5] MIPS Platune 93%
exec instr.

(GBytes)
System Simu-

lation

Borg [6] MIPS - -
exec instr.

(GBytes)
Trace analysis

Lajolo [8]
Motorola

68332
POLIS 98%

exec instr.
(GBytes)

Task level es-
timation

Nohl [9] LISA JIT-CCS 100%
exec instr.

(GBytes)
Simulator

modifications

FICA MIPS FICA 95%
Size of

source code
(Kbytes)

-

simulation computations were performed by a personal computer with Pentium IV, 2
GHz and 1 Gbyte RAM. It can be inferred that the proposed methodology offers a
huge time speedup (orders of magnitude) compared with the simulation-based
approach. Consequently, the new methodology/tool is suitable for performing
estimations with a very high accuracy at the early design phases of an application.

The exploration time cost of the simulation-based approach is proportional to the
size of the trace file of the application considered (order of GBs). In contrary, the cor-
responding time cost of the proposed methodology is (almost) proportional (linear)
to the code size of the assembly code (order of KBs). From Table 4, it can be seen
that the larger the number of loop iterations in C code (and of course in assembly
code) is, the larger is the speedup factor of the new methodology. Regarding the pro-
posed approach, we achieved time cost reduction between 40 to 70,000 times (i.e. up
to four (4) orders of magnitude), depending on the application characteristics. Thus,
accurate estimation within an affordable time cost allows a designer to perform design
exploration of larger search space (i.e. exploration of additional design parameters).

268 N. Kroupis and D. Soudris

In addition, the increasing complexity of modern applications, for instance im-
age/video frame with higher resolution, will render the usage of simulation tools im-
practical. Therefore, the design of such complex systems, the high-level estimation
tool will be the only viable and pragmatic solution.

Table 5 presents the comparison results between the methods referred in related
work and the proposed one. The first column shows the list of methods, while the
second one presents the used processor core on which each method has been devel-
oped. The third column provides the name of the software tool that supports the esti-
mation/simulation of each method while the forth one shows the estimation accuracy.
The most important comparison is presented in the fifth column; the time which needs
each method to explore the instruction memory hierarchy is proportional to the num-
ber of executed instructions, while the proposed one is proportional to source code of
the application. The time cost of the existing methods is increasing with the applica-
tion computational complexity, while, the corresponding estimation time of the
proposed method is dependent on the application’s source code size.

7 Conclusions

A novel methodology for estimating the cache misses of multilevel instruction caches
realized by an embedded programmable platform, was presented. The methodology
was based on the straightforward relationship between the application high-level de-
scription code and its corresponding assembly code. Having as inputs both types of
code, we extract specific features. Using the proposed methodology, we can perform
estimation of application critical parameters during the early design phases, avoiding
the time-consuming simulation-based approaches. The FICA tool is based on the pro-
posed methodology and it is an accurate instruction cache miss rate estimator. The
proposed methodology achieved estimations with smaller time cost than the simula-
tion process, (i.e. orders of magnitude).

Acknowledgments

This work was partially supported by 03ED593 research project, implemented within
the framework of the “Reinforcement Programme of Human Research Manpower”
(PENED) and co-financed by National and Community Funds.

Also, it was partially sponsored by MOSART project (Mapping Optimization
for Scalable multi-core ARchiTecture) funded by the EU (IST-215244),
http://www.mosart-project.org.

References

[1] Segars, S.: Low power design techniques for micro-processors. In: International Solid
State Circuit Conference (February 2001)

[2] Zhang, D., Vahid, F.: Cache configuration exploration on prototyping platforms. In: 14th
IEEE International Workshop on Rapid System Prototyping, June 2003, pp. 164–170
(2003)

 Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems 269

[3] Silva-Filho, A.G., et al.: Heuristic for Two-Level Cache Hierarchy Exploration Consider-
ing Energy Consumption and Performance. In: Vounckx, J., Azémard, N., Maurine, P.
(eds.) PATMOS 2006. LNCS, vol. 4148, pp. 75–83. Springer, Heidelberg (2006)

[4] Gordon-Ross, A., Vahid, F., Dutt, N.: Automatic Tuning of Two-Level Caches to Em-
bedded Applications. In: Design, Automation and Test in Europe, DATE, February 2004,
pp. 208–213 (2004)

[5] Givargis, T., Vahid, F.: Platune: A Tuning framework for system-on-a-chip platforms.
IEEE Trans. Computer-Aided Design 21, 1–11 (2002)

[6] Borg, A., Kessler, R., Wall, D.: Generation and analysis of very long address traces. In:
International Symposium on Computer Architecture, May 1990, pp. 270–279 (1990)

[7] Mueller, F., Whalley, D.: Fast Instruction Cache Analysis via Static Cache Simulation.
In: Proc. of 28th Annual Simulation Symposium, pp. 105–114 (1995)

[8] Lajolo, M., Lavagno, L., Sangiovanni-Vincentelli, A.: Fast instruction cache simulation
strategies in a hardware/software co-design environment. In: Proc. of the Asian and South
Pacific Design Automation Conference, ASP-DAC 1999 (January 1999)

[9] Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H.: A Universal Technique for
Fast and Flexible Instruction-Set Architecture Simulation. In: Proc. of the 39th confer-
ence on Design automation, DAC 2002, New Orleans, Louisiana, USA, pp. 22–27 (2002)

[10] Hoffmann, A., Kogel, T., Nohl, A., Braun, G., Schliebusch, O., Wieferink, A., Meyr, H.:
A Novel Methodology for the Design of Application Specific Instruction Set Processors
(ASIP) Using a Machine Description Language. IEEE Transactions on Computer-Aided
Design 20(11), 1338–1354 (2001)

[11] Balaji, R.: Fast Design Space Exploration of Instruction Caches. Msc Thesis, National
University of Singapore (2003)

[12] Kroupis, N., Mamagkakis, S., Soudris, D.: An Estimation Methodology for Designing In-
struction Cache Memory of Embedded Systems. In: ESTIMedia 2006, Fourth IEEE
Workshop on Embedded Systems for Real Time Multimedia, Seoul, Korea, October 26-
27 (2006)

[13] Liveris, N., Zervas, N., Soudris, D., Goutis, C.: A Code Transformation-Based Method-
ology for Improving I-Cache Performance of DSP Applications. In: Proc. of DATE,
Paris, pp. 977–984 (2002)

[14] Tarjan, D., Shyamkumar, T., Jouppi, N.: CACTI 4.0 HPL Tech. Report HPL-2006-86
(June 2006)

[15] Calculating Memory System Power for DDR2, Technical Note, Micron Technology Inc.
(2007)

[16] Austin, T., Larson, E., Ernst, D.: SimpleScalar: An Infrastructure for Computer System
Modeling. Computer 35(2), 59–67 (2002)

[17] Kuhn, P.: Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion
Estimation. Kluwer Academic Publisher, Boston (1999)

[18] Nam, K., et al.: A fast hierarchical motion vector estimation algorithm using mean pyra-
mid. IEEE Transactions on Circuits and Systems for Video Technology 5(4), 344–351
(1995)

[19] Cheung, C.-K., Po, L.-M.: Normalized Partial Distortion Search Algorithm for Block Mo-
tion Estimation. Proc. IEEE Transaction on Circuits and Systems for Video Technol-
ogy 10(3), 417–422 (2000)

[20] Lafruit, G., Nachtergaele, L., Vahnhoof, B., Catthoor, F.: The Local Wavelet Transform:
A Memory-Efficient, High-Speed Architecture Optimized to a Region-Oriented Zero-
Tree Coder. Integrated Computer-Aided Engineering 7(2), 89–103 (2000)

270 N. Kroupis and D. Soudris

[21] Danckaert, K., Catthoor, F., De Man, H.: Platform independent data transfer and storage
exploration illustrated on a parallel cavity detection algorithm. In: ACM Conference on
Parallel and Distributed Processing Techniques and Applications III, pp. 1669–1675
(1999)

[22] Dekker, A.: Kohonen neural networks for optimal colour quantization. Network: Compu-
tation in Neural Systems 5, 351–367 (1994)

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 271–285, 2010.
© IFIP International Federation for Information Processing 2010

Timing Error Detection and Correction by Time Dilation

Andreas Floros, Yiorgos Tsiatouhas, and Xrysovalantis Kavousianos

Department of Computer Science
University of Ioannina

Abstract. Timing failures in high complexity - high frequency integrated circuits,
which are mainly caused by test escapes and environmental as well as operating
conditions, are a real concern in nanometer technologies. The Time Dilation design
technique supports both on-line (concurrent) error detection/correction and off-line
scan testing. It is based on a new scan Flip-Flop and provides multiple error detec-
tion and correction at the minimum penalty of one clock cycle delay at the normal
circuit operation for each error correction. No extra memory elements are required,
like in earlier design approaches in the open literature, reducing drastically the sili-
con area overhead, while the performance degradation is negligible since no extra
circuitry is inserted in the critical paths of a design.

Keywords: On-Line Testing, Concurrent Testing, Timing Errors, Error
Detection, Error Correction.

1 CMOS Nanotechnologies and Timing Errors

As modern CMOS technologies scale down in the nanometer era and the complexity
of integrated circuits and systems increases, an ongoing difficulty to achieve adequate
reliability levels and keep the cost of testing within acceptable bounds is reported
[1-2]. The device size scaling, the operating frequency increase and the power supply
reduction affect circuits’ noise margins and reliability. The probability of transient
faults generation increases and many times it is hard to achieve error rate specification
levels.

Various mechanisms like crosstalk, power supply disturbance or ground bounce
have been accused for timing error generation. The increased path delay deviations,
due to process variations, and the manufacturing defects that affect circuit speed may
also result in timing errors that are not easily detectable (in terms of test cost) in high
frequency and/or high device count ICs. The already complex testing process can not
sufficiently exercise the huge number of paths in modern circuit designs, and thus it
can not effectively screen out all timing related defective ICs. Consequently, a con-
siderable part of defective ICs may escape the fabrication tests. Additionally, and for
the same reasons, timing verification turns to be a hard task escalating the probability
of timing failures in a design. Furthermore, modern systems running at multiple fre-
quency and voltage levels may suffer from an increased timing error rate due to nu-
merous environmental and process related as well as data dependent variabilities that
can affect circuit performance. Besides, dynamic voltage scaling (DVS) techniques for

272 A. Floros, Y. Tsiatouhas, and X. Kavousianos

low power operation that reduces power supply voltage with marginal performance
degradation have been proposed in the literature [3]. These exploit timing error detec-
tion and correction mechanisms to overcome increased timing error rates. In addition,
transistor aging problems significantly impact the performance of nanometer circuits
resulting in the appearance of timing errors during their normal lifetime [4-5]. Such
an example is the Negative Bias Temperature Instability (NBTI) induced aging of
PMOS transistors which degrades their threshold voltage over time increasing path
delays. From the above, it is evident that concurrent on-line testing techniques for
timing error detection and correction are becoming mandatory in order to achieve
acceptable levels of error robustness and meet reliability requirements.

2 Timing Error Detection and Correction

Timing failures in a combinational logic circuit result in delayed responses at its out-
puts. As it is shown in Figure 1, in case of a delayed response arrival, after the trigger-
ing edge of the system clock CLK, the memory element will capture an erroneous
value and a timing error is generated.

CLK

Memory
Element

Combinational
Logic

Register

D Q

CLK

D
d

Q

Delayed Response by d

Timing
Error

Fig. 1. Timing error generation

Various timing error detection techniques have been proposed in the open literature
[6-11] that are based on the delayed response of timing faults to provide error toler-
ance using time redundancy techniques. A well known error detection scheme is
based on the use of a comparator that is realized by a simple XOR gate [8-9, 11]. The

 Timing Error Detection and Correction by Time Dilation 273

monitoring circuitry consists of an additional memory element plus a XOR gate for
every memory element (main latch or Flip-Flop) in the design (see Figure 2a). The
secondary memory element is clocked by a delayed version of the system clock that
feeds the main memory element. This delay is equal to the maximum signal delay
(dmax) that must be tolerated in order to achieve an acceptable level of timing error
rate, plus the setup time of the used memory elements (tsu). Thus, the secondary
memory element captures a delayed version of the data stored in the main memory
element. In the presence of a timing error the stored data in the two memory elements
differ, while the secondary memory element holds the correct delayed response of the
combinational logic. The XOR gate “compares” the contents of the two memory ele-
ments and in case of discrepancy it raises its output to high indicating the error detec-
tion. The local error indication signals (Error_L) are collected by an OR gate (real-
ized as an OR tree) to generate a global error indication signal (Error_R). This signal
can be exploited to achieve error tolerance by performing a retry procedure after each
error detection. During the retry operation the period of the system clock must be in-
creased to provide the necessary time for correct response evaluation.

Alternatively, a cost efficient approach is to use only the XOR gate for error detec-
tion as it is shown in Figure 2b [8]. The XOR gate compares the data input and output
signals of the main memory element for a predefined time period after the triggering

Error_R

Memory Element

CLK

D_CLK = CLK + dmax + tsu

Error_L

Main
Memory
Element

Combinational
Logic

XOR

Register

Secondary
Memory
Element

D Q

Error_R

Memory Element

CLK

Error_L

Main
Memory
Element

XOR

Register

Error
Capture
Memory
Element

D Q
Combinational

Logic

D_CLK = CLK + dmax + tsu

(b)

(a)

Fig. 2. Timing error detection: a) memory duplication and b) cost efficient design

274 A. Floros, Y. Tsiatouhas, and X. Kavousianos

edge of the system clock. This time period is also equal to the maximum signal delay
that must be tolerated plus the setup time of the memory elements. In case of discrep-
ancy between the two signals, the error indication signal raises at the XOR output.
Possible very fast paths with propagation times close to or less than dmax+tsu must be
excluded from the timing error monitoring process, since they will induce false
alarms. In general, fast paths with propagation times less than the system clock period
minus (dmax+tsu), with a proper tolerance, can be also excluded.

2.1 The Razor Pipeline Architecture

A pipeline architecture (named Razor) with timing error detection and correction ca-
pabilities, targeting the substantial energy reduction of integrated circuits exploiting
dynamic voltage scaling, has been presented in [3]. According to this architecture, the
stage registers are constructed using the Razor Flip-Flops. Figure 3 illustrates a Razor
Flip-Flop, which consists of the main system Flip-Flop plus an assistant shadow latch,
a multiplexer (MUX) and a XOR gate. As discussed earlier, the shadow latch cap-
tures, with a proper delay with respect to the main Flip-Flop, the responses of the
combinational logic. The XOR gate acts as a comparator and compares the outputs of
the main Flip-Flop and the shadow latch.

In the error free case both the main Flip-Flop and the shadow latch will capture the
same data. The comparison by the XOR gate provides a low local error indication sig-
nal (Error_L) and the pipeline continues to operate in the normal mode. In case of a
delay in the evaluation of the logic stage Sj that exceeds circuit specifications, errone-
ous data are latched in the main Flip-Flop while the shadow latch will capture the cor-
rect (delayed) data, since it operates with a delayed clock. Consequently, the XOR out-
put (Error_L) will rise to high indicating the detection of an error. The generation of a

Error_Rj

Razor Flip-Flop

CLK

Logic Stage

Sj+1
0

1

Error_L

Main
Flip-Flop

Shadow
Latch

MUX

Logic Stage

Sj

XOR

Razor Register

D_CLK

Error
Capture
Circuitry

...

...

Error_R1

Error_Rm

Redirect

OR

Fig. 3. The Razor timing error detection and correction design approach

 Timing Error Detection and Correction by Time Dilation 275

(a)

Time in cycles

Processed
Operations

LS1 LS2 LS3 LS4

LS1 2SL Bubble LS2 LS3

LS1 LS2

LS1 LS1 LS2

LS1

Error Detection.
Forward Bubble Propagation

Failing stage

Detection
cycle

Flush Train

LS4

Flush2 LS1 LS2 LS3Flush1

Flush1LS2

(b)

Fig. 4. Razor counterflow recovery: a) pipeline architecture and b) pipeline operation

timing error in a clock cycle (i+1) at a pipeline stage Sj implies that the data of stage
Sj+1 in the following cycle (i+2) are incorrect and must be flushed. This action is easy
to be accomplished since the shadow latch contains the correct data without the need to
re-compute them through the failing stage. The local error indication signal Error_L
activates the register error indication signal Error_Rj which is captured by the Error
Capture Circuitry. This in turn sets the Redirect signal to high enabling the shadow
latch to feed the main Flip-Flop with the correct data. These are injected into the
pipeline in the next cycle (i+3) allowing stage Sj+1 to compute the correct responses.

In the Razor architecture two approaches for pipeline error recovery have been
adopted [3]. The first one is the clock gating technique where in case of an error de-
tection the entire pipeline stalls by gating the next global clock edge for one cycle.
This period is exploited by each stage to re-compute its result using the correct data of
the shadow latches. The second approach used in Razor is the counterflow pipelining
which is based on the namesake processor architecture [12]. This technique is illus-
trated in Figure 4 and is characterized by negligible timing constraints in the pipeline
operation at the expense of few cycles, depending on the pipeline depth, for error re-
covery. When a register error indication signal is generated, there are two actions that
follow. First, a Bubble signal is generated to nullify the computation in the following

276 A. Floros, Y. Tsiatouhas, and X. Kavousianos

stage. This signal indicates to all subsequent stages that the pipeline slot is empty.
Second, a flush train is activated by asserting the ID of the stage generating the error
indication signal. In the next cycle the correct data of the corresponding register
shadow latches are injected into the pipeline allowing the errant instruction to con-
tinue its execution. In parallel, the flush train propagates the ID of the failing stage in
the opposite direction to this of the instructions flow. At each stage that the flush train
visits, the computation is nullified. When the first stage of the pipeline is reached the
pipeline restarts its operation with the instruction that follows the failing one.

The Razor approach suffers from high silicon area cost since for every main Flip-
Flop an extra latch, a multiplexer and a XOR gate are required. In addition an extra
clock signal is used.

2.2 Scan Based Error Detection and Correction

Soft error detection and correction techniques for special purpose scan Flip-Flops in
microprocessor circuits have been proposed in [1]. These techniques are suitable in
designs where each system Flip-Flop consists of a pair of Flip-Flops (i.e. the main
Flip-Flop and the scan Flip-Flop as it is shown in Figure 5) and can be also exploited
to cover timing errors. The scan Flip-Flop is modified to operate as a shadow of the
main Flip-Flop, latching the same data with a proper delay as discussed earlier (sig-
nals CAPTURE and SCB are delayed with respect to the system clock CLK). A XOR
gate is used to compare the outputs of the Flip-Flop pair and detect possible errors in
the system Flip-Flop. Three additional logic gates (a second XOR, an OR and an
AND) are used in order to enable the trapping of any error indication signal (Error_L)
in the pertinent scan Flip-Flop. This error indication is shifted out using the existing
scan path in order to activate system recovery through re-execution. The main draw-
backs of this technique are: a) the high silicon area cost due to Flip-Flop duplication
and the insertion of extra logic gates, b) the performance degradation due to the com-
plexity of the main Flip-Flop, c) the large number of control signals and d) although
the global routing of error signals is reduced reusing existing scan facilities, there is a
high penalty in error detection latency.

Error_L

Main
Flip-Flop

CLK

Logic

Stage Sj+1
Latch
PH2

Latch
LA

Logic Stage

Sj

Scan Flip-Flop

Latch
PH1

C1

D1

C2
C1

UPDATE

D2

D1

Latch
LB

D1

C1

SCA SCB

C1
D1

D2

C2CAPTURE

Scan_IN

Scan_OUT

XOR

XOR

OR

AND

Fig. 5. Error trapping scan cell

 Timing Error Detection and Correction by Time Dilation 277

3 The Time Dilation Scan Architecture

Recently, a low cost pipeline architecture has been proposed in [13] that is character-
ized by the ability to detect and correct timing errors. This architecture utilizes only a
multiplexer and a XOR gate per system Flip-Flop reducing drastically the silicon area
cost, while only a single clock cycle is required for error correction. This technique has
been extended in [14] to scan designs forming the Time Dilation scan architecture.

Figure 6 illustrates the classical scan register configuration which is based on stan-
dard scan Flip-Flops. All scan Flip-Flops are connected together as one or more scan
registers. The Scan_IN input of a scan Flip-Flop is driven by the Q output of the pre-
ceding scan Flip-flop in the shift register. When the Scan_EN signal is “high” the cir-
cuit is in the scan mode of operation, for testing purposes, and the scan Flip-Flops are
driven by the Scan_IN inputs, else they are driven by the D inputs capturing the
response data of the combinational logic.

Scan Flip-Flop

CLK

Logic Stage

Sj+1
0

1

Main
Flip-Flop

Register

D
QM

MUX

Logic Stage

Sj

Scan_EN

Scan_IN

Fig. 6. The standard scan Flip-Flop design

3.1 The Time Dilation Scan Flip-Flop

The scan Flip-Flop used in the Time Dilation (TIMED) architecture is presented in
Figure 7. The TIMED Flip-Flop provides the capability of error detection and correc-
tion by appending only a multiplexer (MUX-B) and a XOR gate in the structure of the
standard (main) scan Flip-Flop. This hardware overhead is much lower than this of
the next most attractive choice, the Razor topology, where except of the above two
cells an additional shadow latch is required. Although we will present for convenience
the application of the Time Dilation technique in pipeline architectures, it can be also
applied in any sequential circuit design.

When the scan enable signal (Scan_EN) is “high” the TIMED Flip-Flop operates
like a scan Flip-Flop to support the pertinent off-line testing activity. In the normal
mode of operation (Scan_EN=“low”) the TIMED Flip-Flop behaves like an ordinary
Flip-Flop enhanced with the ability to detect and correct timing errors. The XOR gate
is used to directly compare the data at the M input and the Q output of the Main Flip-
Flop for error detection, while the two multiplexers and the feedback path from the M
line to the input of the additional MUX-B forms the required memory element
(MUX-latch) that holds valid data for error correction.

278 A. Floros, Y. Tsiatouhas, and X. Kavousianos

Error_Rj

TIMED
Flip-Flop

CLK

Logic Stage

Sj+1
0

1

Mem_CLK

Error_L

Main
Flip-Flop

Memory

TIMED Register

D

QM

Error
Capture
Circuitry

Logic Stage

Sj

0

1
Scan Flip-Flop

Scan_EN

Scan_IN

XOR
OR

...

...

Error_R1

Error_Rm

M
U
X
A

M
U
X
B

MUX-Latch

Fig. 7. The TIMED Flip-Flop and support circuitry

Briefly, the Time Dilation technique operates as follows. Suppose that a timing er-
ror is detected at the inputs of the combinational logic stage Sj+1, due to a delayed re-
sponse of the previous stage Sj. Thus, the response of Sj+1 will be erroneous and must
be corrected. Then, the evaluation time of the circuit is extended by one clock cycle
and Sj+1 is fed with the delayed, but valid, response of Sj that has been captured in the
MUX-latch, for error correction.

The MUX-latch is clocked by the Memory signal. In the error free case the Mem-
ory signal is exclusively controlled by the Mem_CLK signal, a delayed version of the
clock signal CLK with a proper duty cycle. When the Mem_CLK signal is “high” the
Memory signal is activated (turns also to “high”) and the MUX-latch enters the mem-
ory state; else the MUX-latch is transparent. The time interval that the Memory signal
is active must coincide with the time interval where new values arrive at the D inputs
of the TIMED Flip-Flops, in all stage registers, due to an earlier evaluation of the per-
tinent logic stages according to the circuit specifications. Any signal transition at the
D inputs of the TIMED Flip-Flops, earlier than the activation time of the Memory sig-
nal, is considered as violation of the timing specifications and must be detected. Ob-
viously, the deactivation of the Memory signal (falling edge), and accordingly of the
Mem_CLK signal, must occur before the triggering edge of the CLK signal and at a
time distance at least equal to the delay time of the MUX-A plus the setup time of the
Main Flip-Flop.

The XOR gate in the TIMED Flip-Flop detects timing errors and indicates them by
setting signal Error_L to “high”. An OR gate is used to collect the Error_L signals
and to generate the register error indication signal Error_Rj. Any register error indica-
tion signal is captured by a single Flip-Flop (Error Flip-Flop) triggered by the
Mem_CLK signal which has been properly delayed. The final error indication signal,
Error, is used to activate the error correction mechanism.

 Timing Error Detection and Correction by Time Dilation 279

3.2 Timing Error Detection and Correction Using Time Dilation

In Figure 8 the operation of the TIMED Flip-Flop is presented. We study the normal
mode of operation (not the scan mode) therefore the Scan_EN signal is considered
always “low”. In the ith clock cycle the response of the logic stage Sj is within the tim-
ing specifications of the circuit. This means that it occurs during the high state of the
Memory signal. Consequently, after the triggering edge of the clock CLK both the
data input M and the output Q of the Main Flip-Flop will carry the same value until
the falling edge of the Memory signal. Thus, the Error_L signal as well as the subse-
quent Error_Rj signal will be both zero at the time that the Error Flip-Flop is trig-
gered. In that case, the pipeline’s operation remains unaltered (Error=“low”). In the
next cycle (i+1) a timing fault occurs which induce a delayed response of stage Sj.
Thus, a timing error is generated at the next triggering edge of the clock CLK. The
data captured in the TIMED register between the Sj and Sj+1 stages are erroneous and
consequently the response of Sj+1 stage at the (i+2) cycle will be also erroneous.
Moreover, due to the fault, a transition occurs at the D input of a TIMED Flip-Flop,
inside (i+2) cycle, after the triggering edge and before the activation of the Memory
signal. Since the MUX-latch is transparent during this time interval, the transition
passes to the M line. Now the value at the output of the MUX-latch (M line) differs
from this at the output of the Main Flip-Flop (Q line). The first one is the correct re-
sponse of Sj and the second the erroneous value captured on Q. So, the comparison by
the XOR gate of the MUX-latch valid data with the erroneous data stored in the Main
Flip-Flop sets the local error signal Error_L to “high” and generates a register error
indication signal Error_Rj at the output of the register’s OR gate. Next, the triggering
edge of the Mem_CLK signal activates the Memory signal, setting the MUX-latches in
the memory state, and after a proper delay captures the register error indication in the
Error Flip-Flop, raising the Error signal to “high”. This “high” value will extend the
active duration of the Memory signal keeping all MUX-latches in the memory state.
At this point the error has been detected. In addition, all the MUX-latches hold the
correct (valid) responses of the Sj logic stage for the (i+1) clock cycle. The new re-
sponses of the Sj and Sj+1 logic stages at the (i+2) cycle are blocked at the D inputs of
the pertinent TIMED Flip-Flops and will be discarded since the response of Sj+1 is er-
roneous. Entering the next cycle (i+3), the triggering edge of the clock CLK forces the
valid data to move from the MUX-latches to the Main Flip-Flops in order to be avail-
able to the next pipeline stage Sj+1. Consequently, the error is corrected since the logic
stage has correct data to perform, inside the (i+3) clock cycle, the failed evaluation of
the (i+2) cycle. This is an one cycle penalty for correction. Next, the error indication
signals Error_L, Error_Rj and Error turn successively to “low” and the Memory
signal returns to its routine operation.

According to the above discussion, if a timing error occurs in a pipeline stage Sj
during a particular clock cycle, then the data in the subsequent stage Sj+1 are incorrect,
during the next clock cycle, and must be flushed from the pipeline. However, the
MUX-latches contain the correct data and thus the re-execution of the failed evalua-
tion in the Sj stage is avoided. On the other hand, the Sj+1 stage re-executes its evalua-
tion using this time the correct input data with only one-cycle penalty in the pipeline
operation.

280 A. Floros, Y. Tsiatouhas, and X. Kavousianos

Mem_CLK

Memory

Data k

Data k Data k+1

CLK

D

Error

Q

Cycle i Cycle i+1 Cycle i+2 Cycle i+3

Valid Data
On-Time Arrival

Erroneous Data
Timing Error

Valid Data
Delayed Arrival

Error
Correction

Correct Data Correct Data

MUX-Latch
Memory State

MUX-Latch
Extended

Memory State

Data k

Timing Fault

Detection Cycle Correction Cycle

Data k-1

Error_L

Uninteresting Data
to be Rejected

Data k+1

Fig. 8. TIMED Flip-Flop operation with a timing error in cycle i+2 and recovery in cycle i+3

A main characteristic and an advantage of the proposed topology is that no cir-
cuitry is inserted in the critical path from the D input to the Q output of the Flip-Flop
or in the distribution path of the clock signal CLK. The additional MUX-B is inserted
in the scan path which is not critical. A minor performance penalty is introduced by
the small parasitic capacitances of the MUX-B and the XOR gate inputs that are
driven by the M and Q signal lines. In addition, note that the silicon overhead of the
OR gate at the output of a TIMED register is small (especially when a Domino design
style is used), while the rest circuitry (the Error Capture Circuitry) is shared on the
whole pipeline and thus its cost is insignificant. The area overhead related to the OR
gates and the Error Capture Circuitry is also present in the Razor topology.

3.3 Pipeline Recovery

Every error detection is succeeded by a pipeline state recovery action. Figure 9 illus-
trates the pipeline recovery mechanism. The event of a timing error in a logic stage
(lets say the LS2 stage) generates an error indication signal Error_R2 at the following
TIMED register. This means that the response of the next stage LS3 at the subsequent
clock cycle is incorrect (as indicated in Figure 9b) since its input data are not valid.

The error indication signal is latched by the Error Flip-Flop and the Memory signal
remains “high” keeping all the MUX-latches of the TIMED Flip-Flops in all stage
registers in the memory state. Thus, in the next clock cycle every stage is allowed to
re-compute its response using the correct data stored in the MUX-latches. Actually,
this seems to be like a “time dilation” in the duration of the failing clock cycle. Note
here that there is no need for the failing stage LS2 to re-compute its response in the
cycle where the failure occurred since the correct responses are already available in

 Timing Error Detection and Correction by Time Dilation 281

(a)

(b)

Time in cycles

Processed
Operations

LS1 LS2 LS3 LS4

LS1 2SL 3SL LS3 LS4

LS4

LS1 LS2 LS2 LS3 LS4

LS1 LS1 LS2 LS3

LS1 LS2

Re-execution with
correct values at stage

inputs

Stage with erroneous
input data

Failing stage

Detection
cycle

Correction
cycle

Fig. 9. Time Dilation recovery: a) pipeline organization and b) pipeline operation

the following MUX-latches. The Time Dilation pipeline architecture can tolerate any
number of errors in a clock cycle since all stages re-compute their responses with cor-
rect data at their inputs. In case that one or more stages fail in each clock cycle, the
pipeline will continue to run at half of the normal speed.

282 A. Floros, Y. Tsiatouhas, and X. Kavousianos

Referring to the analysis of the Time Dilation architecture, there is no need to ap-
ply main clock gating to accomplish pipeline recovery, neither the Counterflow pipe-
line design technique [12] as in the Razor case. This is due to the fact that the pipeline
performance is not affected by the recovery mechanism since there is not any prohibi-
tive delay in the feedback path from the error indication signal generation to the acti-
vation of the memory state of the MUX-latches. The MUX-latches in the TIMED
Flip-Flops are set to the memory state, by the Memory signal, independently of the
generation or not of an error signal. Thus, at the time an error indication signal (Er-
ror=“high”) is captured in the Error Flip-Flop, the Memory signal is already active
(“high”) and the MUX-latches are in the memory state. This error indication signal
simply extends the active state of the Memory signal for one clock period. Conse-
quently, the following triggering edge of the clock CLK injects the correct data from
the MUX-latches into the pipeline, allowing the “swerved” operation to continue.
Later operations inside the pipeline are not flushed and continue to run after recovery.
Hence, only a single cycle is required in the Time Dilation architecture for pipeline
recovery as it is shown in Figure 9b.

Note that the delay of the Mem_CLK signal with respect to the system clock CLK,
and consequently its duty cycle, must be properly selected to prevent data corruption
in the MUX-latches due to possible existence of short paths in the combinational
logic. To avoid this, a minimum path delay constraint is considered in the design. In
order to meet this constraint in the presence of short paths, gates constructed of mini-
mum size and high-threshold voltage transistors can be used and buffers may be
added during logic synthesis (like in Razor [3]) to slow them down. The minimum
path delay constraint is equal to the delay of the Memory signal with respect to the
system clock CLK, plus the hold time of the MUX-latch. However, a trade-off arises.
A large value for the minimum path delay constraint may increase the number of the
required buffers in the design and consequently the silicon area penalty. On the other
side, a small value for this delay constraint reduces the error tolerance due to the re-
duction of the maximum detectable signal delay.

4 Time Dilation Application

The Time Dilation architecture was applied in a 32-bit four stages pipeline datapath,
that has been designed in a 90nm CMOS technology (VDD=1V), with 870MHz clock
frequency (1150ps period). The TIMED Flip-Flop has been designed in transistor
level as a library standard-cell. Since the fastest response of the combinational logic is
higher than 400ps, the delay of the Mem_CLK signal with respect to CLK is set to
300ps and its “on” time duration is equal to 550ps. The extra delay inserted to the
Mem_CLK signal to drive the Error Flip-Flop is 250ps. Signal delays up to 350ps
(30% of the clock cycle) from the triggering edge of the system clock CLK can be de-
tected and corrected. The performance penalty introduced in the original scan design
with the use of the TIMED Flip-Flop is less than 4o/oo and thus it is negligible.

In Figure 10 electrical simulations using SPECTRE are presented. A timing fault is
injected at the first stage of the pipeline during the 4th clock cycle. Consequently, the
data captured at the Q1_5 output of the corresponding TIMED Flip-Flop are errone-
ous and the same stands for the response of second stage at the 5th cycle. Due to the

 Timing Error Detection and Correction by Time Dilation 283

fault, a delayed response appears at the D1_5 input of the TIMED Flip-Flop in the 5th
cycle, after the triggering edge of CLK. This response is propagated to the M1_5 (not
shown) input of the main Flip-Flop since the MUX-latch is transparent (Mem-
ory1=“low”) during this time interval. Next, the Memory1 signal is activated and the
MUX-latch captures the correct data on M1_5. The XOR gate detects the difference
between M1_5 and Q1_5 (due to the erroneous data on Q1_5) and sets signal Er-
ror_R1 to “high”. Consequently, the triggering edge of Mem_CLK also forces the
global Error signal to “high”. This extends the memory state of the MUX-latch hold-
ing the Memory1 signal active (“high”) within the 6th clock cycle. In this cycle the
pipeline re-executes the stage responses with the correct data that are available in the
MUX-latches. Thus, the error is corrected and the pipeline proceeds with its normal
operation.

Erroneous
Data

Error
Detection – Indication

Delayed
Response

Timing
Fault

Corrected
Data

New Valid
Response

Re-execution

MUX-Latch
Memory State

1 2 3 4 5 6 7 8

MUX-Latch
Extended Memory State

Fig. 10. Simulated waveforms from Time Dilation application in a 32-bit pipeline

5 Conclusions

Timing error detection and correction techniques are of great importance in today
nanometer CMOS technologies. To cope with them, a new scan Flip-Flop design that
provides timing error detection/correction capabilities and a pipeline architecture (un-
der the name Time Dilation) which exploits this scan Flip-Flop for pipeline recovery
after a timing error occurrence, have been proposed. This design approach is charac-
terized by low silicon area requirements (about 24% reduction in Flip-Flop area with
respect to Razor the most attractive alternative topology), negligible performance
penalty and the minimum cost of only one clock cycle for pipeline recovery after each

284 A. Floros, Y. Tsiatouhas, and X. Kavousianos

error detection. Although the proposed technique is illustrated for pipeline architec-
tures, it can be applied in general to any sequential circuit.

The Time Dilation technique can be utilized to provide aggressive power reduc-
tions in Dynamic Voltage Scaling (DVS) based circuits by tolerating timing errors in
critical paths under worst case process and environmental variabilities or the presence
of noise sources like di/dt noise in supply voltage and signal crosstalk. Moreover,
Time Dilation offers the ability of using more relaxed design constraints or voltage
and noise margins to ensure correct operation. Those constraints/margins are inserted
to protect a design against uncertainty in circuit model parameters and worst case
combination of variabilities. However, such a combination might be very rare or even
impossible making this approach overly conservative from the performance point of
view and demanding in design effort [3]. With technology scaling, process variations
are increased and noise effects are getting more and more serious worsening the re-
quired constraints and margins in a design. Time Dilation accounts for both local and
global process and temperature variations as well as noise sources that affect timing,
eliminating the need to meet severe constraints and apply wide margins to ensure cor-
rect operation at a given (desired) performance.

References

[1] Mitra, S., Seifert, N., Zhang, M., Shi, Q., Kim, K.S.: Robust System Design with Built-In
Soft-Error Resilience. IEEE Computer 38(2), 43–52 (2005)

[2] Mitra, S., Zhang, M., Waqas, S., Seifert, N., Gill, B., Kim, K.-S.: Combinational Logic
Soft Error Correction. In: IEEE International Test Conference (2006)

[3] Austin, T., Blaauw, D., Mudge, T., Flautner, K.: Making Typical Silicon Matter with Ra-
zor. IEEE Computer 37(3), 57–65 (2004)

[4] Agarwal, M., Paul, B.C., Zhang, M., Mitra, S.: Circuit Failure Prediction and its Applica-
tion to Transistor Aging. In: IEEE VLSI Test Symposium, pp. 277–284 (2007)

[5] Agarwal, M., Balakrishnan, V., Bhuyan, A., Kim, K., Paul, B.C., Wang, W., Yang, B.,
Cao, Y., Mitra, S.: Optimized Circuit Failure Prediction for Aging: Practicality and Prom-
ise. In: IEEE International Test Conference (2008)

[6] Nicolaidis, M., Zorian, Y.: On-Line Testing for VLSI – A Compendium of Approaches.
Journal of Electronic Testing: Theory and Applications 12(1-2), 7–20 (1998)

[7] Metra, C., Degiampietro, R., Favalli, M., Ricco, B.: Concurrent Detection and Diagnosis
Scheme for Transient, Delay and Crosstalk Faults. In: IEEE International On-Line Test-
ing Workshop, pp. 66–70 (1999)

[8] Tsiatouhas, Y., Haniotakis, T.: A Zero Aliasing Built-In Self Test Technique for Delay
Fault Testing. In: IEEE Symposium on Design for Testability of VLSI Systems, pp. 95–
100 (1999)

[9] Anghel, L., Nicolaidis, M.: Cost Reduction and Evaluation of Temporary Faults Detect-
ing Technique. In: Design Automation and Test in Europe Conference, pp. 591–598
(2000)

[10] Matakias, S., Tsiatouhas, Y., Arapoyanni, A., Haniotakis, T.: A Circuit for Concurrent
Detection of Soft and Timing Errors in Digital CMOS ICs. Journal of Electronic Testing:
Theory and Applications 20(5), 523–531 (2004)

[11] Nicolaidis, M.: Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer
Technologies. In: IEEE VLSI Test Symposium, pp. 86–94 (1999)

 Timing Error Detection and Correction by Time Dilation 285

[12] Sproull, R.F., Sutherland, I.E., Molnar, C.E.: The Counterflow Pipeline Processor Archi-
tecture. IEEE Design and Test of Computers 11(4), 48–59 (1994)

[13] Floros, A., Tsiatouhas, Y., Arapoyanni, A., Haniotakis, T.: A Pipeline Architecture In-
corporating a Low-Cost Error Detection and Correction Mechanism. In: IEEE Interna-
tional Conference on Electronics, Circuits and Systems, pp. 692–695 (2006)

[14] Floros, A., Tsiatouhas, Y., Kavousianos, X.: The Time Dilation Scan Architecture for
Timing Error Detection and Correction. In: IFIP/IEEE International Conference on Very
Large Scale Integration, pp. 569–574 (2008)

Author Index

Andreadis, Ioannis 133
Artillan, Philippe 81
Atienza, David 232

Bancaud, Aurélien 81
Bottarel, Valeria 61
Boukabache, Ali 81

Cardarilli, Gian Carlo 174
Cilardo, Alessandro 191

Dallago, Enrico 61
De Micheli, Giovanni 232

Escriba, Christophe 81

Floros, Andreas 271
Fourniols, Jean-Yves 81
Frattini, Giovanni 61
Friedman, Eby G. 1
Frigerio, Laura 114
Fulcrand, Rémy 81

Glesner, Manfred 154
Gue, Anne-Marie 81
Guntoro, Andre 154

Hassoune, Ilham 97

Iakovidou, Chryssanthi 133

Jugieu, David 81

Kalenteridis, Vassilis 43
Kavousianos, Xrysovalantis 271

Krikelis, Argy 114
Kroupis, Nikolaos 251

Lienig, Jens 22

Marks, Kellie 114
Mazzocca, Nicola 191
Meister, Tilo 22
Miatton, Daniele 61

Nannarelli, Alberto 174
Navarro, David 97

O’Connor, Ian 97

Papathanasiou, Konstantinos 43
Pavlidis, Vasilis F. 1

Rana, Vincenzo 232
Re, Marco 174
Ricotti, Giulio 61

Santambrogio, Marco Domenico 232
Schipani, Monica 61
Sciuto, Donatella 232
Siozios, Kostas 211
Siskos, Stylianos 43
Soudris, Dimitrios 211, 251

Thomke, Gisbert 22
Tsiatouhas, Yiorgos 271

Venchi, Giuseppe 61
Vonikakis, Vassilios 133

	Title page
	Preface
	Organization
	Table of Contents
	Physical Design Issues in 3-D Integrated Technologies
	Introduction
	Vertical Interconnects
	Floorplanning for 3-D Circuits
	Placement for 3-D Circuits
	Routing for 3-D Circuits
	Timing Optimization of Interplane Interconnects
	Synchronization in 3-D Circuits
	Communication Centric 3-D Architectures
	Conclusions
	References

	Universal Methodology to Handle Differential Pairs during Pin Assignment
	Introduction
	The Pin Assignment Problem
	Context
	Pin Assignment Algorithms Used in This Work

	Differential Pairs
	Differential Pair Methodology
	Overview of the Algorithm
	Combine Pin Pairs to Fat Pins
	Fat Pin Assignment
	Integrating Fat Pin Assignment with PAA
	Summary

	Experimental Results
	Quality of Fat Pin Methodology
	Comparison of Fat Pin Variants

	Limitations and Outlook
	Conclusions
	References

	Analysis and Design of Charge Pumps for Telecommunication Applications
	Introduction
	CMOS Charge Pump Architectures
	Single-Ended Charge Pump Architectures
	Differential Charge Pumps

	Improved Charge Pump Design
	Characteristics of the Improved Charge Pump Approach
	Comparison to Alternative Approaches
	Analysis and Estimation of Noise Contributors of the Improved Charge Pump
	Spectral Components of the Charge Pump Output Signal
	Noise Performance of Charge Pump

	Simulation Results
	Conclusions
	References

	Comparison of Two Autonomous AC-DC Converters for Piezoelectric Energy Scavenging Systems
	Introduction
	Piezoelectric Energy Scavenging System
	Mechanical Aspects
	Design of the Proposed Front-End Circuitries: Common Parts
	Working Principle of "Hard" Driving and Design Methodology
	Working Principle of "Soft" Driving and Design Methodology

	Experimental and Simulated Results
	Conclusions
	References

	Trapping Biological Species in a Lab-on-Chip Microsystem: Micro Inductor Optimization Design and SU8 Process
	Introduction
	Determination of Magnetic Field Distribution in a 3D Space. Analytical Modeling
	Validation of the Analytical Approach
	Application: Magnetic Beads Trapping
	Magnetic Force Exerted on a Magnetic Microbead
	Technological Realizations
	Process Flow for the Fabrication of Integrated Microsystem
	Magnetic Microbeads Trapping
	Real Time Experimentation and Validation

	Conclusion
	References

	Fine-Grain Reconfigurable Logic Cells Based on Double-Gate MOSFETs
	Introduction
	Generic m-Input Reconfigurable Cell
	Dynamic-Logic Reconfigurable Cell DG-DLRC
	Static-Logic Reconfigurable Cell DG-SLRC

	Tests with Two-Input DG-XLRC
	Two-Input DG-DLRC
	Two-Input DG-SLRC

	Comparison to Conventional LUT and Discussion
	Gate Area and Memory Requirements
	Average Power and Worst-Case Delay

	Conclusion
	References

	Timed Coloured Petri Nets for Performance Evaluation of DSP Applications: The 3GPP LTE Case Study
	Introduction
	Formal Definitions
	Modelling with Petri Nets
	Multiple Data Management
	Pipeline Hardware
	Data Ordering
	Design Granularity

	Introduction to the LTE Application
	Application Description
	Understanding LTE Latency Requirements
	Understanding LTE Complexity

	Reference Architecture
	Architecture Modelling with TCPN

	Mapping of the LTE Application on the Platform
	IDFT
	Demapper
	Rate De-Matcher
	CTC (Turbo Decoder)

	Experimental Results
	Conclusion
	References

	Real-Time Biologically-Inspired Image Exposure Correction
	Introduction
	Structure of the Algorithm
	Algorithm Optimization
	Optimizing the Structure of the Algorithm
	Requirements for a Pipelined Architecture

	Hardware Implementation
	Color Space Transforms
	Calculation of StretchingLUT Modules
	Global Parameter Calculation
	Surround Calculation
	Enhancement Function
	Alternative Implementation

	Hardware and Software Comparison
	Discussion and Conclusions
	References

	A Lifting-Based Discrete Wavelet Transform and Discrete Wavelet Packet Processor with Support for Higher Order Wavelet Filters
	Introduction
	Backgrounds
	Lifting Scheme
	Wavelet Transform and Wavelet Packet

	Proposed Architecture
	Architecture of the Processing Element
	Normalization
	Context Switch
	Memory Controller

	Results and Performances
	Conclusions
	References

	On the Comparison of Different Number Systems in the Implementation of Complex FIR Filters
	Introduction
	The Quadratic Residue Number System
	The Radix-2j Number System
	Addition
	The Redundant Complex Number Systems

	FIR Filter Architecture
	TCS FIR Filter
	QRNS FIR Filter
	Radix-2j Filter (RCNS)

	Filters Implementation
	Conclusions
	References

	Time Efficient Dual-Field Unit for Cryptography-Related Processing
	Introduction
	Modular Multiplication Algorithm
	State-of-the-Art in Unified Field Arithmetic
	Parallel Montgomery Multiplier
	Pipelined Montgomery Multiplier
	Experimental Results and Comparisons
	Conclusions
	References

	A Temperature-Aware Placement and Routing Algorithm Targeting 3D FPGAs
	Introduction
	Problem Formulation
	Methodology for Deriving the Temperature Model
	Proposed P&R Algorithm Targeting 3D FPGA Devices
	Application Partitioning and Layer Assignment
	Application Placement
	Application Routing

	Experimental Results
	Conclusions
	References

	A Reconfigurable Network-on-Chip Architecture for Optimal Multi-Processor SoC Communication
	Introduction and Problem Description
	State of the Art
	The Proposed Reconfigurable Architecture
	Reconfiguration Support
	Architecture Description

	Reconfiguration Features
	Path Reconfiguration
	Express Lines and Topology Reconfiguration

	Experimental Results
	Routing Tables Reconfiguration Analysis
	Express Lines and Topology Reconfiguration Analysis

	Conclusions
	References

	Fast Instruction Memory Hierarchy Power Exploration for Embedded Systems
	Introduction to Instruction Caches
	Simulation and Estimation Methods: Overview
	Instruction Cache Miss Rate Estimation
	Instruction Memory Power Consumption
	The Estimation Methodology Using an Example
	Comparison Results
	Conclusions
	References

	Timing Error Detection and Correction by Time Dilation
	CMOS Nanotechnologies and Timing Errors
	Timing Error Detection and Correction
	The Razor Pipeline Architecture
	Scan Based Error Detection and Correction

	The Time Dilation Scan Architecture
	The Time Dilation Scan Flip-Flop
	Timing Error Detection and Correction Using Time Dilation
	Pipeline Recovery

	Time Dilation Application
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

