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Preface 

This book contains extended and revised versions of the best papers that were pre-
sented during the 16th edition of the IFIP/IEEE WG10.5 International Conference on 
Very Large Scale Integration, a global System-on-a-Chip Design & CAD conference.  
The 16th conference was held at the Grand Hotel of Rhodes Island, Greece (October 
13–15, 2008). Previous conferences have taken place in Edinburgh, Trondheim, Van-
couver, Munich, Grenoble, Tokyo, Gramado, Lisbon, Montpellier, Darmstadt, Perth, 
Nice and Atlanta. 

VLSI-SoC 2008 was the 16th in a series of international conferences sponsored by 
IFIP TC 10 Working Group 10.5 and IEEE CEDA that explores the state of the art 
and the new developments in the field of VLSI systems and their designs. The purpose 
of the conference was to provide a forum to exchange ideas and to present industrial 
and research results in the fields of VLSI/ULSI systems, embedded systems and mi-
croelectronic design and test.  

The 2008 edition of VLSI-SoC maintained the traditional structure of the previous 
VLSI-SoC conferences. The quality of submissions (193 papers) made the selection 
process difficult, but finally 56 full papers and 42 posters were accepted for presenta-
tion at VLSI-SoC 2008. Out of the 56 full papers presented at the conference, 14 
regular papers were chosen by a selection committee to have an extended and revised 
version included in this book. These selected papers have authors from France, Ger-
many, Italy, Greece, and Switzerland. Additionally, the selection committee invited 
Eby Friedman, Rochester University, USA, keynote speaker at VLSI-SOC 2008, to 
contribute a special chapter about "3-D Integrated Technologies". 

VLSI-SoC 2008 was the culmination of many dedicated volunteers: paper authors, 
reviewers, session chairs, invited speakers and various committee chairs, especially 
the local arrangements organizers. Also, special thanks to the VLSI-SOC 2008 spon-
sors. We thank them all for their contribution.  

This book is intended for the entire VLSI community and in particular those who 
did not have a chance to take part in the VLSI-SoC 2008 Conference. The selected 
papers cover a wide variety of excellence in VLSI technology and describe advanced 
research in the area. We hope that the reader (professional, instructor, engineer, stu-
dent, etc.) will find the book useful, constructive and enjoyable, and that the technical 
material presented will contribute to the continued progress of the VLSI community as 
a whole. 
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Physical Design Issues in 3-D Integrated Technologies 

Vasilis F. Pavlidis1 and Eby G. Friedman2 

1 LSI EPFL, 1015 Lausanne, Switzerland 
2 Department of Electrical and Computer Engineering, University of Rochester, 

Rochester, New York 14627, USA 
vasileios.pavlidis@epfl.ch, friedman@ece.rochester.edu 

Abstract. Design techniques for three-dimensional (3-D) ICs considerably lag 
the significant strides achieved in 3-D manufacturing technologies. Advanced 
design methodologies for 2-D circuits are not sufficient to manage the added 
complexity caused by the third dimension. Consequently, design methodologies 
that efficiently handle the added complexity and inherent heterogeneity of 3-D 
circuits are necessary. These 3-D design methodologies should support robust 
and reliable 3-D circuits, while considering different forms of vertical 
integration, such as systems-in-package and 3-D ICs with fine grain vertical 
interconnections. The techniques described in this chapter address important 
physical design issues and fundamental interconnect structures in the 3-D 
design process. 

1   Introduction 

Technology scaling and CMOS technologies have steadily supported an increase in 
the performance of integrated circuits (ICs) over the past several decades. These 
driving forces are expected, however, to lose momentum as the fabrication of 
nanoscale devices at gigascale densities become increasingly difficult and 
economically infeasible [1]. Three-dimensional (3-D) integration is a novel design 
paradigm with great potential to fundamentally advance the computational power and 
functionality of modern integrated systems [2]. 

The inherent advantage of 3-D integration is the drastic decrease in interconnect 
length, particularly the long global interconnects, which directly results in increased 
speed [3], [4], [5]. The interconnect power is also reduced as the capacitance of the 
wires decreases [6]. Another characteristic of 3-D ICs of even greater importance than 
the decrease in the interconnect length is the ability of these systems to include 
disparate technologies, greatly extending the capabilities of modern systems-on-chip 
(SoC) [7]. 

This defining feature of 3-D ICs offers unique opportunities for highly 
heterogeneous and sophisticated systems [8]. This heterogeneity, however, greatly 
complicates the interconnect design process within a multi-plane system, as potential 
design methodologies need to manage the diverse interconnect impedance 
characteristics and process variations caused by the different fabrication processes 
and technologies employed in the multiple physical planes [9]. Additional primary 
challenges in 3-D circuits include the development of methodologies at the front end 
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of the design process [10], [11], multi-plane functional testing [12], thermal 
management techniques [13], and maturing manufacturing technologies [14]. 

Physical and interconnect design techniques for 3-D circuits are the main focus of 
this chapter. A short description of vertical interconnects in 3-D circuits is offered in 
the following section, demonstrating the diverse characteristics of this revolutionary 
design paradigm. These traits, in turn, pose new constraints and requirements on the 
physical and interconnect design process. The primary physical design issues, namely 
floorplanning, placement, and routing for 3-D ICs, are discussed in Sections 3, 4, and 
5, respectively. An approach to place the vertical interconnects to decrease the 
interconnect delay is described in Section 6. The important task of synchronization is 
considered in Section 7. Experimental results from a 3-D test circuit are also 
presented. The concept of 3-D NoC for improving the communication throughput 
within a system-on-chip while reducing interconnect design complexity is presented 
in Section 8. Several topologies and related improvements in the speed and power 
consumed by these global interconnects are also described in this section. The key 
points of this chapter are summarized in Section 9. 

2   Vertical Interconnects  

There are multiple ways to vertically interconnect 3-D circuits. The characteristics of 
the different vertical interconnects and the requirements associated with this type of 
interconnect structure are discussed in this section. To exemplify the role of these 
interconnects, consider the 3-D circuit shown in Fig. 1. Two different types of 
interconnect can be distinguished in Fig. 1. The horizontal or intraplane interconnects 
connecting circuits located within the same plane and the interplane interconnects 
connecting circuits located on different planes. The interplane wires comprise 
horizontal and vertical segments. 

 

Substrate
Heat sink

Power pad Ground pad Signal pad

 

Fig. 1. Schematic of a 3-D IC consisting of four planes 

The interconnects through the z-axis (i.e., vertical) can be implemented with 
several means, such as solder balls, wire bonds, and vertical interconnects that are 



 Physical Design Issues in 3-D Integrated Technologies 3 

 

etched through the silicon substrate. The latter type of interconnects is typically called 
a through silicon via (TSV) [15]-[18]. The density of the vertical interconnect dictates 
the granularity of the interconnected planes of the 3-D system, directly affecting the 
interplane communication bandwidth.  

Coarsely interconnected 3-D systems include several either bare or packaged dice 
connected along the third dimension which are typically described as a system-in-
package (SiP) [17]. The predominant benefits of SiP are the increased packaging 
efficiency as compared to 2-D integrated systems and shorter off-chip interconnects. 
The deleterious effects of the long on-chip interconnects, however, are not mitigated. 
These issues are effectively resolved by another form of vertical integration, called 
simply (and somewhat abstractly) 3-D ICs. 

Three-dimensional circuits can be conceptualized as the bonding of multiple 
wafers or bare dice. The distinctive difference between an SiP and a 3-D IC is the 
granularity of the vertical interconnects. Examples of 3-D systems connected with 
different means are illustrated in Fig. 2. In addition to the different types of vertical 
interconnects, several bonding styles for 3-D ICs are also possible: front-to-front, 
back-to-front, and back-to-back are some of these styles which are also depicted in 
Fig. 2. 

Other important criteria related to manufacturing TSVs include the reliability and 
cost of these structures. A high TSV aspect ratio, the ratio of the diameter of the top 
edge to the length of the via, may also be required for certain types of 3-D circuits. 
The effect of forming the TSVs on the performance and reliability of neighboring 
active devices should also be negligible.  

 

(a) (b)

BOX

BOX
Handle wafer

BOX

W plug 3-D via

Solder balls

 
Fig. 2. Different forms of 3-D integration (not to scale), (a) system-in-package (SiP) [17] and 
(b) a 3-D circuit with dense through silicon vias [20], [21]. Two different bonding styles, front-
to-front and front-to-back, are illustrated. The W plug is composed of tungsten. 

Furthermore, producing TSVs with low impedance characteristics is another 
primary goal of 3-D manufacturing technologies since these characteristics can 
degrade the performance benefits that stem from the decreased wirelength in 3-D 
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circuits. Finally, not properly characterizing the contribution of the TSVs to the 
overall delay of the critical interplane interconnect can result in significant inaccuracy 
in estimating the performance of a 3-D system [19]. Consequently, these structures 
must be carefully considered during the 3-D physical design process. Examples of a 
TSV used in CMOS and SOI circuits are illustrated in Figs. 3a and 3b, respectively. 
The impedance and physical characteristics of these structures are listed in Table 1. A 
pitch equal to twice the diameter of the TSV is assumed where this dimension is not 
provided. 

The thermal traits of the TSVs are also significant as these vias can affect the 
thermal behavior of a 3-D IC. TSVs can be used to provide high thermal conductivity 
paths to facilitate the flow of heat from the upper planes to the plane attached to the 
heat sink, maintaining the temperature of a 3-D circuit within acceptable levels. Since 
the vertical interconnects affect the performance of 3-D systems, the treatment of 
these interconnects is central to the development of 3-D physical and interconnect 
design techniques. The most important steps of the 3-D design process and related 
design methodologies are discussed in the remainder of this chapter. 

(a)

Silicon 
substrate

Insulator

Metal

(b)

Plane i

Plane i+1

Plane i+2

 

Fig. 3. Examples of a through silicon via (not to scale) used in (a) SiP and 3-D CMOS 
technologies [14], [22] and (b) 3-D SOI processes [21] 

Table 1. Impedance and physical characteristics of TSVs 

Process Depth [μm] Diameter [μm] Total resistance [mΩ] Density [1/mm2] 
[22]  25 4 140 ~1.6×104 
[11]  30 1.2 <350 ~1.7×105 
[23]  90 75 2.4 ~44 

[21], [24]  ~12 1.75 148 ~8.2×104 

3   Floorplanning for 3-D Circuits 

The predominant design objective for floorplanning a circuit has traditionally been to 
achieve the minimum area or, alternatively, the maximum packing density while 
interconnecting these blocks with minimum length wires. Most floorplanning 
algorithms can be classified as either slicing [25] or non-slicing [26]. Floorplanning 
techniques belonging to both of these categories have been proposed for 3-D circuits 
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[27]-[29]. An efficient floorplanning technique for 3-D circuits should adequately 
handle two important issues; representation of the third dimension and the related 
increase in the solution space. Floorplanning techniques for 3-D circuits that address 
these issues are discussed in this section. Multi-objective techniques are also 
reviewed. 

Notating the location (i.e., the x, y, z, coordinates) and dimensions (i.e., width, length, 
and height) of the circuit cells in a volumetric system typically requires a considerable 
amount of storage. A 3-D circuit, however, consists of a limited number of planes. 
Consequently, such a system can be described as an array of two-dimensional planes, 
where circuit cells are treated as rectangles that can be placed on any of the planes 
within a 3-D system [13], [28], [29]. The second challenge for 3-D floorplanning is to 
effectively explore the solution space, where a hierarchical approach can often be more 
efficient for floorplanning 3-D circuits than a flat approach. 

In non-hierarchical floorplanning algorithms, the floorplanning process proceeds 
by assigning the cells to the planes of the stack followed by simultaneous intraplane 
and interplane cell swapping, potentially exploring the entire solution space. 
Interplane moves, however, result in a formidable increase in the solution space, 
directly affecting the computational time of a flat floorplanning algorithm. 

Alternatively, a hierarchical approach can be used to significantly reduce the 
number of candidate solutions, where a two step solution to the floorplanning problem 
is followed. Initially, the circuit cells are assigned to the physical planes. In the 
second step, a simulated annealing based engine simultaneously generates the 
floorplan of each of the planes by only permitting intraplane moves, considerably 
decreasing the search space for the optimal floorplan [28]. An example of the increase 
in the solution space due to the third dimension is illustrated in Figs. 4a and 4b.  

The partitioning scheme adopted in the initial step of the hierarchical approach 
plays a crucial role in determining the compactness of a particular floorplan, as 
interplane moves are not allowed when floorplanning the planes. Different partitions 
correspond to different subsets of the solution space which may exclude the optimal 
solution(s). The criterion for partitioning should therefore be carefully selected. 
Partitioning can, for example, be based on minimizing the estimated total wirelength 
of the system [30] and/or the number of vertical interconnects [31]. Application of a 
hierarchical approach to the MCNC and GSRC benchmark suites [32] demonstrates a 
small reduction, on the order of 3%, in the number of vertical vias and a significant 
14% reduction in wirelength, as compared to non-hierarchical 3-D floorplanning 
techniques [13], [30], [31]. 

The complexity of three-dimensional integration requires several dissimilar metrics 
for producing efficient floorplans for 3-D circuits beyond the use of traditional area 
and wirelength metrics. These metrics can consider, for example, communication 
throughput among the circuit blocks [33] or the number of interplane vias [13]. 
Techniques that include a thermal objective have also been developed [13]. The 
thermal objective typically aims at producing a uniform temperature distribution 
across each plane while peak temperatures are maintained sufficiently low. A multi-
objective cost function inevitably increases the total computational runtime. A 
significant portion of this time is attributed to thermal profiling the 3-D circuit each 
time a candidate floorplan is generated. To reduce this time, simple thermal models 
are utilized, slightly degrading the quality of the solution [13]. 
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Fig. 4. Example of physical design solution space for floorplanning 2-D and 3-D circuits, (a) 
available area for floorplanning a planar circuit, (b) available volume for floorplanning a 3-D 
circuit, (c) a finite number of planes is considered to reduce the solution space, and (d) the 
floorplan of the planes is generated after the circuit cells are assigned to each plane. The arrows 
represent global constraints among planes that guide the floorplan of a 3-D system. 

4   Placement for 3-D Circuits 

Placement algorithms have traditionally targeted minimizing the area of a circuit and 
the interconnect length among the cells, while reserving space for routing the 
interconnect. In vertical 3-D integration, a “placement dilemma” arises in deciding 
whether two circuit cells sharing a large number of interconnects can be more closely 
placed within the same plane or placed on adjacent physical planes, decreasing the 
interconnection length. Placing the circuit blocks on adjacent planes can often 
produce a line with the shortest wirelength to connect these blocks. An exception is 
the case of small blocks within an SiP where the length of the interplane vias is 
greater than 100 μm [34]. Placement methodologies have also been discussed where 
other objectives, such as thermal gradients among the physical planes and the 
temperature of the planes [35], are considered. 

Several approaches have been adopted for placing circuit cells within a volume 
[29], [36]. Different types of circuit cells for various 3-D technologies have been 
investigated in [37]. Layout algorithms for these cells have also been devised, 
demonstrating the benefits of 3-D integration. Since TSVs consume silicon area, 
possibly increasing the length of some interconnects, an upper bound on this type of 
interconnect resource is necessary. Alternatively, sparse utilization of the vertical 
interconnects can result in an insignificant savings in wirelength. To consider the 
effect of the vertical interconnects, a weighting factor can be used to increase  
the distance in the vertical direction, controlling the decision as to where to insert the 
interplane vias [38]. This weight essentially behaves as a controlling parameter that 
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favors the placement of highly interconnected cells within the same or adjacent 
physical planes. 

Alternatively, TSVs can be treated as circuit cells since these interconnects occupy 
silicon area [39] and are included in the individual cell placement process within each 
plane as illustrated in Fig. 5. Although these approaches consider the location of the 
TSV, the fundamental objective is to decrease the interconnect length. The maximum 
achievable reduction in the interconnect length for the longest on-chip interconnect is 

proportional to n  where n is the number of planes constituting a 3-D system [6]. 
Any further improvement in the performance of the interplane interconnects can be 
obtained by considering the electrical characteristics of the TSV. A placement 
methodology that exploits these characteristics is discussed in Section 6. 

Circuit cells

TSVs
 

Fig. 5. Treating the TSVs as circuit cells on different planes can result in two different locations 
for placing a TSV. These locations define a region in which the TSV can be placed to satisfy 
different design objectives. 

As with floorplanning, multi-objective placement techniques for 3-D circuits are 
necessary. Additional objectives that affect both the cell placement and wirelength are 
simultaneously considered. The force directed method is a well known technique used 
for cell placement [40], where repulsive or attractive forces are placed on the cells as 
if these cells are connected through a system of springs. The force directed method 
has been extended to incorporate the thermal objective during the placement process 
[41]. In this approach, repulsive forces are applied to those blocks that exhibit high 
temperatures (i.e., “hot blocks”) to ensure that the high temperature blocks are placed 
at a greater distance from each other. The efficiency of this force directed placement 
technique has been evaluated on the MCNC [42] and IBM-PLACE benchmarks [43], 
demonstrating a 1.3% decrease in the average temperature, a 12% reduction in the 
maximum temperature, and a 17% reduction in the average thermal gradient. The 
total wirelength, however, increases by 5.5%. 

Alternatively, additional TSVs that do not function as a signal path can be utilized 
to further enhance the heat transfer process. The design objective is to identify those 
regions where thermal vias are most needed (the hot spots) and place thermal vias 
within those regions at the appropriate density. Such an assignment, however, is 
mainly restricted by two factors; the routing blockage caused by these vias and the 
size of the unoccupied regions or white space that exist within each plane. Although 



8 V.F. Pavlidis and E.G. Friedman 

 

thermal via insertion can be applied as a post placement step, integrated techniques 
produce a more efficient distribution of the thermal TSVs for the same temperature 
constraint [30]. The integrated technique requires 16% fewer thermal vias for the 
same temperature constraint, with a 21% increase in computational time and an 
almost 3% reduction in total area. 

5   Routing for 3-D Circuits 

Routing is the most complex and least developed of the physical design techniques 
used in 3-D circuits. The multiple metal layers available for routing on each physical 
plane exacerbate the difficulty in routing a net connecting several cells located on 
different planes. As these interconnects also compete with the transistors for silicon 
area, routing is a formidable task for 3-D circuits. Early results on routing 3-D circuits 
demonstrated several issues related to this physical design task [44]. Consequently, 
several heuristics have been developed that address routing in the third dimension 
[45], [46]. 

An effective approach for routing 3-D circuits is to convert the routing interplane 
interconnect problem into a 2-D channel routing task, as the 2-D channel routing 
problem has been efficiently solved [47]. A number of methods can be applied to 
transform the problem of routing the interplane interconnects into a 2-D routing task, 
which requires utilizing a portion of the available routing resources for interplane 
routing (usually the top metal layers). 

Alternatively, multi-level algorithmic techniques [48] have been applied to route 3-
D circuits. The advantages of multi-level routing are the lower computational time 
and higher completion rates as compared to flat and hierarchical routers. Multi-level 
routing can be treated as a three stage process, as illustrated in Fig. 6; a coarsening 
phase, an initial solution generation at the coarsest level (level p) of the grid, and a 
subsequent refinement process until the finest level of the grid is reached. Before the 
coarsening phase is initiated, the routing resources in each unit block of the grid are 
determined by a weighted area sum model. The routing resources are allocated during 
each coarsening step. The resources for the local nets within a block are transferred at 
each coarsening step. At the coarsest level, an initial routing tree is generated. This 
initial routing task commences with a minimum spanning tree for each multi-terminal 
net. A Steiner tree heuristic and a maze searching algorithm generate a 3-D Steiner 
tree for each of these interconnects. Additionally, the TSVs are estimated for each 
block. During the last phase, the initial routing tree is refined until the finest level is 
reached. In this refinement phase, the signal (and thermal) TSVs are successively 
assigned and distributed within each block. The routing of the wires follows the 
refinement of the TSVs. At the finest level, a detailed router completes the routing of 
the circuit [48]. 

Although this technique offers a routing solution for standard cell and gate array 
circuits, alternative techniques that support different forms of vertical integration, for 
example, systems-on-package (SOP), are also required. In an SOP, the routing 
problem can be described as connecting the I/O terminals of the blocks located on the 
planes of the SOP through interconnect and pin layers. For systems where the routing 
resources, such as the number of pin distribution layers, are limited, multi-objective 
routing is required to achieve a sufficiently small form factor [46]. 
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Fig. 6. Multi-level routing for 3-D circuits. The technique can be adapted to include multiple 
objectives for routing a 3-D circuit [48]. 

Multi-level routing for 3-D ICs has been extended to include the thermal objective 
[49]. In addition to routing resources, the power density within each block of the grid 
is determined at each coarsening step. An initial TSV assignment to each block is 
implemented during the coarser step along with generation of an initial routing tree. 
The TSV assignment includes both signal and thermal TSVs, with priority given to 
the signal TSVs. Alternatively, thermal TSVs are assigned to a block after insertion of 
the signal TSVs without exceeding the maximum TSV capacity of the block. 

6   Timing Optimization of Interplane Interconnects 

Three-dimensional integration demonstrates many opportunities for heterogeneous 
SoCs [9]. Integrating circuits from diverse fabrication processes into a single multi-
plane system can result in substantially different interconnect impedance 
characteristics of each physical plane within a 3-D circuit. By considering the 
disparate interconnect impedance characteristics of 3-D circuits, the performance of 
the interplane interconnects can be significantly improved. An efficient technique to 
decrease the delay of interplane interconnects by optimally placing the TSVs is 
discussed in this section. 

The interplane interconnects are modeled as an assembly of horizontal interconnect 
segments with different impedance characteristics connected by interplane vias where 
each segment is modeled as a distributed RC line. A schematic of an interplane 
interconnect connecting two circuits located n planes apart is illustrated in Fig. 7. The 
horizontal segments of the line are connected through the vias, which can traverse 
more than one plane where each via is placed within a certain physical interval. The 
via placement is constrained, 

jj xx Δ≤≤0
, (1) 
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where Δxj is the length of the interval where the via connecting planes j and j+1 can 
be placed. This interval length is called the “allowed interval” here for clarity. xj is the 
distance of the via location from the edge of the allowed interval. 

 

Fig. 7. Interplane interconnect connecting two circuits located n planes apart 

A heuristic for near-optimal interplane via placement of two-terminal nets that 
include several TSVs has been developed [50]. Based on the Elmore delay model 
[51], the key concept in the heuristic is that the optimum via placement depends 
primarily upon the size of the allowed interval (that is estimated or known after an 
initial placement) rather than the exact location of the via.  

This heuristic has been used to implement an algorithm that exhibits an optimal or 
near-optimal TSV placement for two-terminal interplane interconnects in 3-D ICs and 
has been applied to relatively short interconnects (< 2 mm) [50]. For these wires, 
SPICE delay simulations demonstrate an average improvement of 8.9% as compared 
to the case where the vias are placed at the center of the allowed intervals and 14.1% 
as compared to random via placement, respectively. The two-terminal via placement 
algorithm is also compared both in terms of optimality and efficiency to an 
optimization solver, YALMIP [52]. The algorithm exhibits high accuracy as 
compared to YALMIP independent of the number of planes that comprise the 3-D 
interconnect and exhibits a maximum error of 0.01%. Furthermore, the algorithm is 
approximately two orders of magnitude faster than YALMIP while the complexity of 
the algorithm exhibits an almost linear dependence on the number of interplane vias. 

The two-terminal heuristic can also be adapted to the important class of multi-
terminal nets. A simple interplane interconnect tree (also called an interconnect tree 
for simplicity) is illustrated in Fig. 8. The leaves of the tree are located on different 
physical planes within a 3-D stack. Sub-trees not directly connected to the interplane 
vias which do not contain any interplane vias (i.e., intraplane trees) are also shown. 
The weighted summation of the distributed Elmore delay of the branches of an 
interconnect tree is considered as the objective function, 

,∑
∀

=
pq

pqpq
s

ssw TwT  (2) 
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where wspq and Tspq are the weight and distributed Elmore delay of sink spq, 
respectively. Weights are assigned to the sinks according to the relative criticality of 
the sinks. The constrained optimization problem for placing a via within an interplane 
interconnect tree can be described as 

(P1) minimize Tw, subject to (1), ∀ via vj. (3) 

The heuristic and related algorithm that solve (3) have been applied to interconnect 
trees for two different 3-D technologies. These case studies include a 3-D IC 
technology based on [20] where the TSV length is lv3-D = 10 μm and an SiP 
technology where the TSV length is lvSiP = 70 μm [23]. The impedance characteristics 
of the TSVs are rv3-D = 22 Ω/mm and cv3-D = 210 fF/mm and rvSiP = 22 Ω/mm and 
cvSiP = 6 pF/mm for the 3-D IC and SiP technology, respectively. The savings in delay 
achieved by optimally placing the vias is listed in Table 2 for different via placement 
scenarios. 

IN

s21

s22

s23

s12

s11

s31

s32s33

Intraplane via

Interplane via

spq : Sink q on plane p 

 

Fig. 8. An example of an interplane interconnect tree 

The improvement in delay of the interconnect trees is listed in columns 6 through 9 
of Table 2. The results are compared to the case where the vias are initially placed at 
the center of the allowed interval (i.e., xi = Δxi/2) and the case where the vias are 
placed at the lower edge of the allowed interval (i.e., xi = 0). The improvement in 
delay depends upon the length of the allowed interval. Note that the improvement in 
delay achieved by optimally placing the TSVs in a 3-D IC is substantially greater than 
the improvement for an SiP technology. This difference is due to the significantly 
longer length and larger impedance characteristics of the TSVs utilized in an SiP. 
Manufacturing processes that provide short vertical interconnects with low parasitic 
impedances are therefore necessary; otherwise, the performance benefits due to the 
reduction in interconnect length will decrease since the TSVs contribute significantly 
to the overall interconnect delay. 

From these results, exploiting the non-uniform impedance characteristics of the 
interplane interconnects when placing the vias can improve the delay of multi-plane 
lines. This improvement in delay can decrease the number of repeaters required to 
drive a global line or eliminate the need for repeaters in semi-global (medium length) 
lines. In addition, wire sizing can be avoided, thereby saving significant power. 
Decreasing the number of repeaters and avoiding wide lines reduce the overall power 
consumption, which is a particularly important issue in 3-D circuits. 



12 V.F. Pavlidis and E.G. Friedman 

 

Table 2. Delay of various interplane interconnect trees for different number of sinks, physical 
planes n, and 3-D technologies 

Delay improvement [%] 
xi

* = Δxi/2 xi
* = 0 n Technology 

Number 
of sinks 

Avg. 
branch 
length 
[μm]  

Δxi’s 
[μm] 

Avg Max Avg Max 

Instances 

3 3-D IC 4 216 50 1.31 7.11 5.33 13.00 10000 
4 3-D IC 8 407 50 1.47 6.88 6.83 13.22 10212 
3 3-D IC 4 815 150 1.15 5.74 4.42 10.02 11000 
4 3-D IC 8 909 150 1.29 4.98 5.70 9.48 10219 
3 SiP 4 216 50 1.21 4.99 1.78 5.58 10000 
4 SiP 8 407 50 0.90 3.54 1.98 5.72 10212 
3 SiP 4 815 150 1.31 4.10 1.98 5.68 11000 
4 SiP 8 909 150 1.04 3.28 2.34 5.71 10219 

7   Synchronization in 3-D Circuits 

An omnipresent and challenging issue for synchronous digital circuits is the reliable 
distribution of the clock signal to the many thousands of sequential elements 
distributed throughout a synchronous circuit [53], [54]. The complexity is further 
increased in 3-D ICs as sequential elements belonging to the same clock domain (i.e., 
synchronized by the same clock signal) can be located on different planes. Another 
important issue in the design of clock distribution networks is low power 
consumption, since the clock network dissipates a significant portion of the total 
power consumed by a synchronous circuit [55]. This demand is stricter for 3-D ICs 
due to the increased power density and related thermal limitations. 

In 2-D circuits, symmetric interconnect structures, such as H- and X-trees, are 
widely utilized to distribute the clock signal across a circuit [54]. The symmetry of 
these structures permits the clock signal to arrive at the leaves of the tree at the same 
time, resulting in synchronous data processing. Maintaining this symmetry within a 3-
D circuit, however, is a difficult task. Consequently, asymmetric structures are useful 
candidates for distributing the clock signal within a 3-D circuit. Issues related to the 
distribution of the clock signal within a 3-D system are discussed in this section. 
Experimental results of a 3-D test circuit manufactured by MIT Lincoln Laboratories 
composed of several different 3-D clock network architectures are also described. 

To evaluate the specific requirements of a 3-D clock network, consider a traditional 
H-tree topology. At each branch point of an H-tree, two branches emanate with the 
same length. An extension of an H-tree to three dimensions does not guarantee 
equidistant interconnect paths from the root to the leaves of the tree. Note that the 
vertical interconnects are of significantly different length as compared to the 
horizontal branches and exhibit different impedance characteristics. 

A test circuit exploring four different clock network topologies for 3-D circuits has 
been designed, manufactured, and measured. The test circuit is based on a 3-D fully 
depleted silicon-on-insulator (FDSOI) fabrication technology recently developed by 
MIT Lincoln Laboratories (MITLL) [20]. The MITLL process is a wafer level 3-D 
integration technology with up to three FDSOI wafers bonded to form a 3-D circuit. 
The minimum feature size of the devices is 180 nm, with one polysilicon layer and 
three metal layers interconnecting the devices on each wafer. A backside metal layer 
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also exists on the upper two planes, providing the starting and landing pads for the 
TSVs, and the I/O, power supply, and ground pads for the entire 3-D circuit. 

Each block contains the same logic circuit with different clock distribution 
networks. The off-chip clock signal is received by the clock driver through an RF pad 
located at the middle of each block. Additional RF pads are placed at different 
locations on the topmost plane of each block for probing. The fabricated test circuit is 
depicted in Fig. 9, where the RF and DC pads on the back side metal layer of the third 
plane are shown. 

 

Fig. 9. Fabricated 3-D test circuit. The total area is 3 mm × 3 mm. There are four different 
blocks, with one input and three output RF pads for each block. The area of each block is 
approximately 1 mm2. 

The clock distribution networks combine commonly used networks such as H-
trees, meshes, and rings. These clock network topologies range from highly 
symmetric topologies, such as H-trees, as the block shown in Fig. 10a, to fully 
asymmetric topologies, such as a trunk-based topology. The clock input is a 1.5 V 
peak-to-peak sinusoidal signal with 0.75 volt DC offset. The clock driver is 
implemented with a traditional chain of tapered buffers [56], which produces a square 
waveform at the root of the clock distribution network. The clock distribution network 
of the block illustrated in Fig. 10a contains a four level H-tree (i.e., equivalent to 16 
leaves) with identical interconnect characteristics in each plane. All of the H-trees are 
connected through a group of interplane vias. Note that the H-tree on the second plane 
is rotated by 90o with respect to the H-trees on the other two planes. This rotation 
effectively eliminates inductive coupling between the H-trees. The second plane is 
front-to-front bonded with the first plane and both of the H-trees are implemented on 
the third metal layer. The vertical distance between these clock networks is 
approximately 2 μm. All of the H-trees are shielded with two parallel lines connected 
to ground. The waveform shown in Fig. 10b is the clock signal at a leaf of the H-tree 
on the third plane, demonstrating operation of the circuit at 1 GHz. Experiments 
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demonstrate that a clock distribution network that combines an H-tree on the second 
plane and meshes on the other two planes exhibits moderate skew, within 10% of the 
clock period, and the lowest power consumption [57], [58]. The superior performance 
of this topology is due to the symmetry of the H-tree and the balancing characteristic 
of the meshes. 

 

  
  (a)     (b) 

Fig. 10. Experimental results of the fabricated 3-D circuit, (a) tested circuit block and (b) clock 
signal waveform from the H-tree on the third plane operating at 1 GHz 

8   Communication Centric 3-D Architectures 

A promising design paradigm to appease foreseen interconnect problems is networks-
on-chip (NoC) [59], where information is communicated among circuits within 
packets in an internet-like fashion. The synergy between these two design paradigms, 
namely NoC and 3-D ICs, can be exploited to significantly improve the performance 
and decrease the power consumption of communications limited systems. Several 
interesting topologies that emerge by incorporating the third dimension in networks-
on-chip are discussed in this section. 

On-chip networks differ from traditional interconnection networks in that 
communication among the network elements is implemented through the on-chip 
routing layers rather than the metal tracks of the package or printed circuit board. 
NoC provide communication among a variety of processing elements (PE), such as 
processor and DSP cores, memory blocks, FPGAs, and dedicated hardware [60], [61]. 
Furthermore, the length of the communication channel is primarily determined by the 
area of the PE, which is typically unaffected by the network structure. Mesh structures 
have been a popular network topology for conventional 2-D NoC, as illustrated in Fig. 
11a, where each processing element (PE) is connected to the network through a router 
[59]. 

Integration in the third dimension introduces a variety of topological choices for 
NoCs. For a 3-D NoC, as shown in Fig. 11b, the total number of nodes is N = n1 × n2 
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× n3, where n1, n2, and n3 is the number of network nodes in the x, y, and z direction, 
respectively. In this topology, each PE is on a single, yet possibly different physical 
plane (2-D IC – 3-D NoC). In other words, a PE can be implemented on only one of 
the n3 physical planes of the system and, therefore, the 3-D system contains n1 × n2 
PEs on each of the n3 physical planes, where the total number of nodes is N [62]. A 3-
D topology is illustrated in Fig. 11c, where the interconnect network is contained 
within one physical plane (i.e., n3 = 1), while each PE is integrated on multiple 
planes, notated as np (3-D IC – 2-D NoC). Finally, a hybrid 3-D NoC based on the 
two previous topologies is depicted in Fig. 11d. In this NoC topology, both the 
interconnect network and the PEs can span more than one physical plane of the stack 
(3-D IC – 3-D NoC). 

Analytic models of the zero-load latency and power consumption with delay 
constraints of these networks capturing the effects of the topology on the performance 
of 3-D NoC have been developed. The overall zero-load network latency for a 3-D 
NoC is [63] 

,)( 32 h
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where ta, ts, tv, and th are the delay of the arbiter, crossbar switch, and vertical and 
horizontal channels, respectively. hops, hops2-D, and hops3-D denote the average 
number of hops within the two dimensions n1 and n2, and within the third dimension 
n3, respectively (see Fig. 11). Lp and wc denote, respectively, the length of a data 
packet and the width of the interconnect buss connecting adjacent network routers. Lv 
denotes the length of the vertical buss, which is equal to one or more TSV lengths. 

These models do not incorporate the effects of the routing scheme and traffic load. 
Since minimum distance paths and no contention are implicitly assumed in these 
expressions, non-minimal path routing schemes and heavy traffic loads will increase 
both the latency and power consumption of the network. These models can therefore 
be treated as lower bounds for both the latency and the power consumption of the 
network. Alternatively, these expressions provide the maximum improvement in the 
performance of a conventional NoC that can be achieved with vertical integration. 

The resulting decrease in network latency as compared to a standard 2-D IC – 2-D 
NoC is illustrated in Fig. 12a for increasing network size where the area of each PE 
is denoted by APE. The 2-D IC – 3-D NoC topology decreases the number of hops 
while the interconnect buss delay remains constant. With a 3-D IC – 2-D NoC, the 
buss delay is smaller but the number of hops remains unchanged. With a 3-D IC – 3-
D NoC, all of the latency components can be decreased by assigning a portion of the 
available physical planes to the network while the remaining planes of the stack are 
used for the PEs. A decrease in latency of 31.5% and 29.7% can be observed for N = 
128 and N = 256 nodes, respectively, with APE = 1 mm2. Note that the 3-D IC – 3-D 
NoC topology achieves the greatest savings in latency by optimally balancing n3 
with np. Consequently, the tradeoff between the number of hops and the buss length 
for various 3-D topologies can be exploited to improve the performance of a 
network-on-chip. 
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Fig. 11. Various NoC topologies (not to scale), (a) 2-D IC – 2-D NoC, (b) 2-D IC – 3-D NoC, 
(c) 3-D IC – 2-D NoC, and (d) 3-D IC – 3-D NoC 
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  (a)     (b) 

Fig. 12. Performance of 3-D NoC topologies for a range of network sizes where APE = 1 mm2; 
(a) zero-load latency and (b) power consumption with delay constraints 

As with the zero-load latency, each topology affects the power consumption of a 
network in a different way. The power consumption can be reduced by either 
decreasing the number of hops that a packet travels or by decreasing the buss length. 
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In Fig. 12b, the power consumption of a 2-D NoC topology is compared to the three-
dimensional topologies previously discussed. A power savings of 38.4% is achieved 
for N = 128 with APE = 1 mm2. Allowing the available physical planes to be utilized 
either for the third dimension of the network or for the PEs, the 3-D IC - 3-D NoC 
scheme achieves the greatest savings in power in addition to the minimum delay.  

Note that these topologies emphasize the latency and power consumption of a 
network, neglecting the performance requirements of the individual PEs. If the 
performance of the individual PEs is important, only one 3-D topology may be 
available; however, despite this constraint, a significant savings in latency and power 
can be achieved since in almost every case the network latency and power 
consumption are lower than for the 2-D IC – 2-D NoC topology. 

9   Conclusions 

Developing a design flow for 3-D ICs is a complicated task with many ramifications. 
Design methodologies at the front end and mature manufacturing processes at the 
back end are required to effectively provide large scale 3-D systems. A variety of 
floorplanning, placement, and routing techniques and algorithms for 3-D circuits have 
been described that consider the unique characteristics of 3-D circuits. In these 
techniques, the discrete nature of the third dimension is exploited to decrease the 
number of candidate solutions and, consequently, the computational time required to 
design a 3-D circuit. 

In addition, due to increased power densities and greater distances between the 
circuits on the upper planes and the heat sink, physical design techniques that embody 
a thermal objective can be a useful mechanism to manage thermal issues in 3-D ICs. 
Design techniques can reduce thermal gradients and temperatures in 3-D circuits by 
redistributing the blocks among and within the planes of a 3-D circuit. Alternatively, 
thermal vias can be utilized in 3-D circuits to convey heat to the heat sink.  

Significant performance improvements can be achieved by optimally placing 
interplane vias in 3-D circuits. Algorithms for determining the minimum delay of the 
interplane interconnects are an integral element of the physical design process for 3-D 
circuits. Interplane interconnect impedances of 3-D circuits vary considerably from 2-
D interconnect impedances. This difference is due to several reasons, such as the 
heterogeneity of 3-D circuits, diverse fabrication technologies, and the variety of 
bonding styles. 

Another requirement for maximizing the speed of 3-D circuits is to reliably 
distribute the clock signal. A 3-D clock distribution network, however, cannot be 
directly extended from a 2-D circuit due to the asymmetry of a multi-plane 3-D circuit 
and the effect of the interplane via impedances. Several clock distribution networks 
have been developed to investigate synchronization issues in 3-D systems. These 
clock distribution networks within a three plane 3-D circuit exhibit low clock skew 
while operating into the gigahertz regime. 

In addition to higher performance, 3-D integration offers significant opportunities 
for designing highly diverse and complex systems. On-chip networks can be a useful 
solution to provide sufficient communication throughput among the components of 
these 3-D systems. 3-D NoC are a natural evolution of 2-D NoC, exhibiting superior 
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performance. These topologies decrease the latency and power consumption by 
reducing both the number of hops per packet and the length of the communications 
channels. These 3-D topologies demonstrate the tradeoff between the number of 
planes required to implement a network and those planes required to implement the 
PEs. Consequently and not surprisingly, the 3-D IC – 3-D NoC topology achieves the 
greatest improvement in latency and power consumption by most effectively 
exploiting the third dimension. 
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Abstract. Differential signaling has been a major challenge in design automa-
tion. The routing of differential pairs requires a suitable pin assignment of the 
respective nets. However, current automatic pin assignment algorithms lack the 
ability to consider differential pairs. We present a methodology to include dif-
ferential pairs during pin assignment. Our solution can be applied to automatic 
or manual pin assignment processes without changing the methodologies  
already in place. This universality is achieved by using any established pin as-
signment approach as a black box, which is extended by pre and post process-
ing steps. Extensive studies in industrial design flows show that our differential 
pair methodology does not compromise pin assignment quality with the added 
benefit of effective differential pair allocations. 

1   Introduction 

Differential pairs are a common challenge during digital and analog/mixed-signal lay-
out generation of modern electronic devices. The challenge is to route as closely to-
gether as possible a pair of wiring paths (the so-called differential pair) in order to 
improve the routing solution. The resulting routing geometry provides significantly 
better electrical characteristics than single ended signaling. For example, interference 
identically captured by both routing paths is filtered out. However, the routing of  
differential pairs requires an adequate pin assignment that has to be generated  
beforehand. 

The pin assignment of a component, such as a chip, is the assignment of its 
I/O signals to its I/O pins, often referred to as pads (Fig. 1). Usually, this pin assign-
ment is created after components are placed on the wiring substrate, such as a printed 
circuit board (PCB) or a multi chip module (MCM). Optimizing this pin assignment is 
a crucial stage because the routability of the substrate largely depends on both pin as-
signment and component placement. Due to rising I/O counts, the routability chal-
lenge has continued to increase rapidly in recent years, which puts enormous pressure 
on a well-performed pin assignment. 

Furthermore, there has been a growing demand for differential pairs, which have to 
be considered during this stage. This is mostly due to more stringent electrical re-
quirements of signals in modern applications. However, to the best of our knowledge, 
none of the published pin assignment approaches considers the implementation of dif-
ferential pairs. 
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(a) (b) 

  

(c) (d) 

Fig. 1. Illustration of pin assignment with the I/O pins of seven chips (a) to be assigned to sig-
nals that connect a wiring substrate such as an MCM (b). The pin assignment based on the 
shortest Manhattan distances of the individual connections is depicted in (c) whereas (d) illus-
trates the pin assignment with minimum overall length of all Euclidean distances (flylines). 

 

This chapter presents a universal methodology to extend pin assignment algorithms 
to consider differential pairs. This methodology requires no significant changes to the 
basic pin assignment algorithm, thereby respecting any individual pin assignment rou-
tines already in use. As shown below, this add-on approach has almost no impact on 
the quality of the created pin assignments while at the same time efficiently consider-
ing all differential pair requirements. Furthermore, the algorithm can be used for any 
given percentage (from zero to 100%) of differential pairs among the nets to be con-
sidered during pin assignment. As such, it allows a flexible inclusion of differential 
pair requirements in digital and analog/mixed-signal real-world design flows. 

The remainder of this chapter is organized as follows. Pin assignment and differential 
pairs are introduced in the following two sections. The differential pair methodology is 
proposed in the section thereafter. The effectiveness of the proposed methodology is 
proven in the section presenting experimental results. At the end of this chapter, we pre-
sent limitations of our approach, an outlook, and conclusions. 
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Fig. 2. Example with four components A-D to illustrate the influence of pin assignment on the 
routability. Pins are marked by circles  on the outline of the components. Nets are shown as 
flylines. If no wiring is allowed below components A through D, the design with pin assign-
ment (a) is not routable in one layer, whereas (b) allows single layer routing. 

2   The Pin Assignment Problem 

During logic design, logical pins are defined to be the signal interface between the 
different components of a design. During the subsequently performed layout synthe-
sis, these logical pins, and thus the associated signals, have to be mapped to real, 
physical pins, which serve as the actual electrical joints between the components. 

This mapping of logical pins (signals) to physical pins is called pin assignment and 
has great influence on the routability, electrical characteristics and the cost of the  
design (see example in Fig. 2). Hence, the objective of pin assignment is to assign  
signals to physical pins such that these circuit characteristics are fulfilled best for the 
individual designs. 

Pin assignment has been studied for all system levels such as digital and ana-
log/mixed-signal circuits (ICs), MCMs and PCBs. For ICs, the pin assignment of 
macro blocks is usually optimized with regard to routability during placement [3][4], 
buffer planning [5] or routing [6]. Pin assignment approaches for PCBs and MCMs 
can be found in [7][8][9][10]. 

2.1   Context 

Pin assignment is closely related to both component placement and routing. All three 
design steps have in common that their individual optimal solutions depend on each 
other. Finding the overall optimal solution for these design steps would require incorpo-
rating them into one optimization task. Due to complexity and the related NP-hardness 
of physical design, this is unfeasible. Hence, the repeated sequential execution of these 
design steps is currently the only accomplishable approach to physical design. 
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Floorplanning

Placement

Routing

Pin Assignment

 

Fig. 3. Simplified physical design flow. The dashed arrows indicate iterations over the individ-
ual design steps. 

 

Fig. 3 shows the major steps of the physical design flow [14][17], including pin as-
signment steps, of the design of electronic devices. Of these steps, placement is the 
first stage that requires an exact pin assignment, because the target function of place-
ment depends on wire lengths and routing congestion. At this point a typical dilemma 
of physical design becomes obvious. The objectives of pin assignment are a minimal 
wire length and minimal routing congestion, which cannot be computed before de-
termining the component placement. At the same time, placement depends on the 
chosen pin assignment. To come around this paradox either pin assignment has to be 
incorporated into placement [15] or a preliminary pin assignment has to be chosen be-
fore component placement is being optimized. Such a preliminary pin assignment is 
usually based on heuristics and the experience of designers and allows computing an 
optimized component placement. 

Having optimized the placement for a specific preliminary pin assignment, it is 
then possible to improve the pin assignment for this optimized placement. To further 
improve design quality, it is possible to go back (one or more iterations) and revise 
the placement solution based on the optimized pin assignment (see Fig. 3). 

A similar interdependency exists for pin assignment and routing. Routing largely 
depends on placement and pin assignment. Unfortunately, only after routing has been 
completed, which is extremely time consuming, it is possible to ultimately judge the 
quality of placement and pin assignment. Therefore, good estimates of the routability 
are essential for effective pin assignment algorithms. 

It is further possible to integrate pin assignment into the global [16] and/or detailed 
routing phase. By integrating pin assignment into global routing, it can be adapted to 
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the global requirements of routing, whereas a combination with detailed routing 
would support local adjustments of the pin assignment.  

2.2   Pin Assignment Algorithms Used in This Work 

We use four pin assignment algorithms to evaluate the differential pair methodology 
presented. Three of them are heuristics, which either reduce signal intersections or 
balance the lengths of nets within a bus. The fourth algorithm analytically minimizes 
net lengths and the number of signal intersections. All four algorithms assume that pin 
assignment is done in-between placement and routing (see Fig. 3). The details of the 
four pin assignment algorithms are described in [7]. 

By using these four algorithms in various configurations, we obtain seven different 
pin assignment procedures in order to evaluate the presented differential pair method-
ology. Specifically, the analytical algorithm can be utilized with different parameters 
to its cost function. Also, one of the heuristic algorithms can be used to modify pin 
assignment results of the remaining three algorithms. 

3   Differential Pairs 

A differential pair are two wires which are routed close together, have matched  
electrical characteristics, and are used to transmit one signal. This signal is encoded in 
the voltage difference between both wires. Differential pairs are essential for many 
electronic devices, because differential signaling has superior electrical characteristics 
to single ended signaling [1][2]. In particular, differential signaling leads to lower 
cross-talk and lower electromagnetic interference. Both noise emission and noise ac-
ceptance are minimized by differential pairs if both (1) the distance between the two 
routing paths is minimal and (2) the lengths and electrical characteristics of both paths 
are matched. 

The basic functional principle of a differential pair is shown in Fig. 4. The differen-
tial sender encodes the signal S = u(t) into the difference of two complementary sig-
nals a·S = up(t) and −a·S = un(t) propagating along the two routing paths n and p. 
Where a is the gain of the differential sender. If both routing paths have the same 
electrical characteristics and are routed close together, captured noise A can be pre-
sumed to be identical for both signals upA(t) = up(t) + A and unA(t) = un(t) + A. The sig-
nals upA(t)  and unA(t) are then translated back to the original signal S by subtracting 
upA(t) – unA(t) = Srcv= 2·a·S  which at this point filters out any noise A identically cap-
tured along both paths. 

In case routing paths n and p are not routed close together and/or have different 
electrical properties, both tracks capture noise differently An and Ap leaving the re-
ceived signal Srcv = 2·a·S + (Ap – An) distorted with noise (Ap – An). Additionally, if 
electrical characteristics of the tracks differ, propagation delays of the n- and p-signal 
may be different, resulting in a distortion of the transmitted signal as shown in Fig. 5. 

Assuming a signal  frequency of 3GHz, a timing difference between signals n and 
p of only 167 ps shifts signals by half a clock. In a FR4 printed circuit board that tim-
ing difference is equal to a difference in wiring lengths of roughly 2.5cm. That is, the 
tolerance for propagation delays and wiring length differences for a differential pair at 
3 GHz is in the domain of picoseconds and millimeters respectively. 
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Fig. 4. Functional principle of a differential pair 
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Fig. 5. Effect of unmatched propagation delays of a differential pair 

 

The special wiring geometry of differential pairs requires suitable pin assignments. 
Specifically, for the two nets n and p of a differential pair, the pin assignment has to 
be chosen such that each pin of the routing path n has a so-called parallel pin at the 
same distance from the sender in the routing path p and vice versa. The distance be-
tween those parallel pins must not exceed a maximum distance dmax. This parameter is 
technology-dependent and for MCMs and PCBs usually ranges from one to two times 
the pin grid. For the sake of simplicity, we call the parallel pins of a differential pair a 
differential pin pair (DPP). If the distance between the pins of the DPP is not greater 
than dmax, we call it a valid DPP, else it is labeled an invalid DPP. 

12 
6 

(a) (b) 

Pin Set A Pin Set B Pin Set A1

Pin Set A2

Pin Set B
6 

 
Fig. 6. Two pin assignment tasks for 12 two terminal nets. (a) 12 nets need an assignment to pins 
of sets A and B. (b) The nets of set B are to be assigned to two sets A1 and A2 and vice versa. 
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4   Differential Pair Methodology 

In this section, we present our novel methodology to handle differential pairs during 
pin assignment. Our approach is used as an extension of any automatic or manual 
procedure in place that solves the pin assignment problem (Fig. 6 shows two example 
problems). The underlying basic pin assignment procedures, which are to be ex-
tended, are labeled PAA (pin assignment algorithm) throughout this paper.  

4.1   Overview of the Algorithm 

Our approach can be summarized in five steps (Fig. 7). 

1. First, a transformation is applied to the original pins. This transformation embeds 
data about valid DPPs. We call the transformed pins fat pins. 

2. Second, the PAA in place is applied to these fat pins. 
3. Third, the pin assignment for the fat pins (fat pin assignment) is split up to the 

original pins. This back transformation returns a pin assignment only for a subset 
of the pins and nets. 

4. Therefore in the fourth step, a pin assignment without differential pairs is created for 
the remaining unassigned nets with the same PAA as applied in the second step. 

5. Finally, the two interim pin assignments created in steps (3) and (4) are merged 
into one final pin assignment, which respects all constraints of both the pin as-
signment problem and differential pairs. 

 

Pin assignment with differential pairs

(5) Merge fat pin assignment and pin

assignment of original pins into a final pin
assignment which respects differential pairs.

(2) Apply PAA to fat pins.

(1) Transform pins to fat pins.

(3)
to original pins.
Translate fat pin assignment

max

Input:

Output:

Netlist
Pin sets
Number of required differential pairs
d
Pin assignment algorithm (PAA)

(4) Apply PAA to original pins.

 

Fig. 7. Overview of our differential pair methodology 
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This methodology is a framework that allows considering any number of differential 
pairs by utilizing any existing pin assignment algorithm (see above) without the need 
to modify the existing pin assignment algorithm itself. Steps (1), (3) and (5) are pre 
and post processing steps (white boxes in Fig. 7), while any already existing pin as-
signment procedure PAA can be plugged-in at steps (2) and (4) (gray boxes in Fig. 7). 

The inputs for this framework are the netlist, the sets of pins, and an existing pin 
assignment algorithm. In addition, the designer specifies dmax for each set of pins and 
the number of differential pairs. The output is a pin assignment for all nets, which re-
spects the constraints for as many differential pairs as specified by the designer. This 
pin assignment is topologically very similar to a pin assignment created by the basic 
pin assignment algorithm (PAA) alone. 

The individual steps as well as the indicated interactions (dashed arrows in Fig. 7) 
are presented in the following three subsections. 

4.2   Combine Pin Pairs to Fat Pins 

In order to generate the so-called fat pins (Step 1 in Fig. 7), valid DPPs are automati-
cally determined among the original pins. This automatic selection of DPPs may be 
controlled by the designer by manually specifying an arbitrary number of DPPs. As 
outlined in this subsection, pins that cannot be combined to a valid DPP either ignored 
or are paired to invalid DPPs. As described above, these so-called invalid pin pairs 
cannot be used for differential signals in the final pin assignment. Nonetheless, allow-
ing invalid DPPs at this point has a significant impact on the quality of the final pin 
assignment with differential pairs. The section presenting the experimental results 
(see below) shows the influence of invalid DPPs on the final pin assignment. 

A maximum weighted matching (as shown in [11]) has to be calculated to find 
automatically as many DPPs as possible, with the least distance between the pins of 
the individual pairs. The implementation presented in [12] has a complexity of O(p³) 
(p number of pins). However, components with differential pairs have well-suited pin 
configurations such that DPPs can be determined effectively by heuristic, greedy al-
gorithms. Therefore, we have developed two greedy algorithms, which are more time 
efficient than the slower optimal algorithms presented in [11][12].  

The first algorithm (MOST_PAIRS) creates as many pin pairs as possible. The 
second algorithm (PREFERRED_PAIRS) focuses on pairs whose two pins are clos-
est. The complexity of both algorithms is defined by the sorting algorithm, which is 
used to sort pins according to their distance to so-called partner pins and by the num-
ber of partner pins, respectively. Thereby, partner pins of one pin are those that are no 
further away than dmax. We use insertion sort, which has a complexity of O(p²) in the 
worst case. Still, the practical efficiency is much better since many pin pairs are of the 
same distance and most pins have the same number of partner pins. 

Both algorithms first locate the next pin to be paired. In MOST_PAIRS, this is the 
pin with the least number of valid partner pins (distance ≤ dmax) but at least one part-
ner pin. In PREFFERED_PAIRS, it is the pin that has a valid partner pin that is clos-
est amongst all possible pairs of pins. The located pin and its closest partner pin are 
then paired. This is repeated until no more pins can be paired. Fig. 8 (a) shows the 
automatically selected pin pairs for a small area array component.  
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dmax

 

(a) (b) (c) 

Fig. 8. (a) Pin pairs of a small area array component. The black dots denote pins, the line be-
tween two pins represents a pin pair. (b) Fat pins created from the selected pin pairs. (c) Pin 
configuration which prevents some pins (circled) to be used for differential pairs. 

 

As depicted in Fig. 8 (c), there may be pins, which cannot be paired to valid DPPs. 
Either those pins are ignored or they are paired to invalid DPPs by the same two 
strategies described above thereby ignoring dmax. Thus, we can create four different 
selections of pin pairs, which eventually lead to different pin assignments with differ-
ential pairs: 

• PREFERRED_PAIRS with only valid DPPs 
• PREFERRED_PAIRS with valid and invalid DPPs 
• MOST_PAIRS with only valid DPPs 
• MOST_PAIRS with valid and invalid DPPs 

Which of the four variants are used depends on the number of differential pairs re-
quired (see Section Integrating Fat Pin Assignment with PAA). 

Next, a fat pin is created for each computed pin pair, regardless whether it is valid 
or invalid. The coordinate of a fat pin is the arithmetic mean of the coordinates of its 
original two pins (see Fig. 8 b). Except for its coordinates, the new fat pin inherits all 
characteristics, such as design rules, from the two original pins. At the same time, 
specific nets are combined in order to ensure an identical number of nets and fat pins. 

4.3   Fat Pin Assignment 

Following fat pin creation, all fat pins are treated just like conventional pins and are 
fed to any PAA that solves the pin assignment problem (Step 2 in Fig. 7). The result-
ing fat pin assignment is consequently transformed back to specify the assignment for 
the individual pins (Step 3 in Fig. 7). 

The transformations illustrated in Fig. 9 are applied to each pin pair: Fig. 9 (a) 
shows the pin assignment task for two nets (lines) with two pins each (ending dots). 
A1, A2, B1 and B2 are the pins that are arranged in two separate sets. A1 and A2 are in 
the pin set named “From”. B1 and B2 are in the pin set named “To”. In Fig. 9 (b) pins 
A1, A2, B1, and B2 are transformed to fat pins A and B. Thus, only one of the two nets 
remains. Fig. 9 (c) shows the fat pin assignment by applying a PAA to the fat pin sets. 
Fig. 9 (d1) and (d2) denotes the two possibilities for the subsequent inverse transfor-
mation. Either pins A1 and B1 (Fig. 9.d1) or pins A1 and B2 (Fig. 9.d2) are assigned to 
the same net. We select the configuration with the smaller difference in the individual  
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Fig. 9. Fat pin transformation and inverse transformation. (a) Pin assignment task for two nets. 
(b) Transformation from pins to fat pins. (c) Fat pin assignment. (d1) First alternative for in-
verse transformation. (d2) Second alternative for inverse transformation. 

 

lengths and the shortest overall length of the flylines of both nets (which is (d1) in this 
example). This choice supports the matching of the net lengths of a differential pair.  

If fat pins A and B are valid fat pins (A1 and A2, as well as B1 and B2, respectively, 
are no further apart than dmax), the two nets can be used for either a differential pair or 
for two single ended signals. Consequently, the number of nets which have all their 
pins assigned to valid fat pins defines the number of possible differential pairs in the 
final pin assignment because they can, but need not, be used as differential pairs. 

4.4   Integrating Fat Pin Assignment with PAA 

All unpaired pins and dropped nets are ignored and do not receive a pin assignment 
during fat pin assignment (Steps 1–3 in Fig. 7 and as described in the previous two 
subsections). To find the pin assignment for those pins and nets, the basic PAA is ap-
plied to original pins and nets (Step 4). The thus created pin assignment is integrated 
with the fat pin assignment to determine the final pin assignment with differential 
pairs (Step 5). 

We propose two methods to integrate the two interim pin assignments. Aggressive 
blending creates more possible differential pairs than defensive blending, yet the  
results of defensive blending are better with respect to the objective function of the 
underlying PAA. Both methods can be used in combination with any of the four dif-
ferent methods to select pin pairs (see above), all together resulting in eight different 
pin assignments with differential pairs. 

Aggressive Blending. To determine the pin assignment for all pins that did not 
receive a fat pin assignment (Fig. 10 c), the basic PAA is applied to these pins and 
nets (Fig. 10 d). The final pin assignment (Fig. 10 m) with differential pairs results 
from the combination of the fat pin assignment (see above and Fig. 10 k) with the pin 
assignment created by applying the PAA to the leftover pins and nets (Fig. 10 d). For 
aggressive blending, the fat pin assignment is applied to all pins that were paired, 
while the basic PAA is limited to the remaining pins and nets and is not aware of  
the fat pin assignment already created. Fig. 7 shows the flow of this algorithm. The 
limitation of the basic PAA to pins without a fat pin assignment is indicated by the  
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Fig. 10. Example pin assignment procedure with differential pairs using aggressive blending. 
(a) Pin assignment task with differential pairs for 13 nets. (b) Automatically selected fat pins. 
(c) Pins that were not paired to fat pins during (b). (d) Basic pin assignment for unpaired pins. 
(h) Automatically selected fat pins (leftover pins omitted). (j) Fat pin assignment. (k) Back-
transformation of fat pin assignment to original pins. (m) The final pin assignment with differ-
ential pairs is the combination of the basic pin assignment (d) and the fat pin assignment (k). 

dashed arrow pointing from step 3 to step 4. A step-by-step example of pin 
assignment using aggressive blending is shown in Fig. 10. 

Compared to defensive blending (described in the following subsection), the result-
ing pin assignment is of lower quality with respect to the objective function of the 
PAA, because the topologies of the two interim pin assignments differ in general. 
However, their better topological similarity during defensive blending results in fewer 
possible differential pairs, as shown in Figs. 11 and 12 and described in the following 
subsection.  
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(a) (b) (c) 

Fig. 11. Pin assignment for a single chip module using aggressive blending. (a) Fat pin assign-
ment. (b) Assignment of remaining pins and nets. (c) The final pin assignment with 468 possi-
ble differential pairs is the combination of (a) and (b). 

 

   

(a) (b) (c) 

Fig. 12. Pin assignment for a single chip module using defensive blending. (a) Fat pin assign-
ment. (b) Assignment of remaining pins and nets. (c) The final pin assignment with 454 possi-
ble differential pairs is the combination of (a) and (b). 

Defensive Blending. Defensive blending is an iterative process to improve the 
integratability of the fat pin assignment by incrementally adapting the selection of 
differential pin pairs. The advantage of defensive blending, in contrast to aggressive 
blending, is that all pins and nets are considered during the creation of the basic pin 
assignment. However, fewer pins are combined to fat pins. Compared to aggressive 
blending, this yields a better final pin assignment with respect to the basic objective 
function at the cost of decreasing the number of possible differential pairs in the final 
pin assignment. 

In a first step, the basic PAA is applied to the original pins and nets (Fig. 13b). 
This pin assignment is then used as a reference throughout the following iterations. 
Next, pin pairs are selected as described above (Fig. 13c). Subsequently, all pins that 
have not been paired receive their pin assignment from the reference pin assignment 
of the first step (Fig. 10d). The pin assignment of those unpaired pins is final and is 
never changed again. For all remaining unassigned pins, the current selection of pairs 
is discarded and recreated (Fig. 13e) in order to optimize the selection. This process is 
repeated until all pins either received their final pin assignment or are paired (Fig. 10f 
and 10h). 

All pins that are finally paired undergo fat pin assignment, and are then trans-
formed back to their original pins (see section on fat pin assignment above, Fig. 13j 
and 13k). Hence, in defensive blending, the final pin assignment results from the  
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Fig. 13. Using defensive blending to obtain differential pairs of two 9x9 pin arrays. (a) Pin as-
signment task with differential pairs. (b) Basic pin assignment (PAA) without differential pairs. 
(c) Automatically selected fat pins. (d) Basic pin assignment for pins that were not paired to fat 
pins during (c). (e) Newly selected fat pins (pins with an assignment from (d) are ignored). 
(f) Basic pin assignment for pins that were not paired to fat pins during (e). (h) Newly selected 
fat pins (pins with an assignment from (d) or (f) are ignored). (j) Create fat pin assignment, 
since all remaining pins were paired to fat pins. (k) Back-transformation of fat pin assignment 
to original pins. (g) Pins with basic pin assignments from (d) and (f). (m) Final pin assignment 
with differential pairs is the combination of the basic pin assignment (g) and fat pin assignment 
(k). In this example the final pin assignment with differential pairs contains three pairs of nets 
usable for differential pairs, which were assigned during fat pin assignment (see (k)). It contains 
one more net pair that happens to be usable as differential pair, which was assigned during the 
basic PAA (see (g)). 
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(1.c) Fix pin assignment of unpaired

pins are ignored from now on.
pins to basic pin assignment. Those

(1.d) Clear selection of pin pairs.

(1.a) Select pin pairs (Section IV−B).

remain unpaired?
(1.b) Do any pins

finally paired using PAA.

No

(5) Merge fat pin assignment and basic pin
assignment of original pins into final pin pin
assignment which respects differential pairs.

(4) Create basic pin assignment for all
original pins and nets using PAA.

Create fat pin(2) and (3)
assignment for all pins

Yes

 

Fig. 14. Major steps of pin assignment with differential pairs using defensive blending. This 
figure extends Fig. 7 in which the interaction of the basic pin assignment and the process of se-
lecting pin pairs is indicated as a dashed arrow from step 4 to step 1. 

 

combination of the reference pin assignment for all finally unpaired pins and the back 
transformation of the fat pin assignment (Fig. 13m). Fig. 14 shows the flowchart of 
the defensive blending method. 

Fig. 12 shows the two interim pin assignments (a) and (b) and the final pin assign-
ment (c) created with defensive blending for the same single chip module as in Fig. 11. 

Defensive blending and aggressive blending do not differ and give identical results 
in case all pins are paired to fat pins during the first iteration. 

4.5   Summary 

The eight possible combinations of methods for selecting fat pins and methods for in-
tegrating the interim pin assignments yield eight different pin assignments with dif-
ferential pairs. They vary in the number of possible differential pairs and in the mag-
nitude of changes compared to the basic pin assignment without differential pairs. 

The number of possible differential pairs of each variant cannot be predicted ex-
actly. Yet, experimental results show that the different variants can be ranked with re-
spect to their quality and the number of possible differential pairs. In general, the 
quality of the pin assignment deteriorates with an increase in possible differential 
pairs. Therefore, the best pin assignment for a specific design is the one with just 
enough possible differential pairs. We find this pin assignment by sequentially apply-
ing the different variants starting with the one that creates best pin assignment results 
while providing the least differential pairs. Subsequently, pin assignment variants 
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with more and more differential pairs are created, until the best pin assignment for the 
design is found. 

5   Experimental Results 

The effectiveness of the presented methodology is proven by comparing pin assign-
ments with differential pairs to those without differential pairs. First, results from 
PAAs (without differential pairs) applied to industrial designs are reported. Next, 
these PAAs are extended by the fat pin methodology to include differential pairs. The 
pin assignments are compared by means of SHPWL, HPWL MATCH, AVG Flylines, 
STD Dev, and the number of signal intersections.  

If (xai ,yai) and (xbi ,ybi) are the coordinates of the two pins of net i, p is the number of 
nets in the pin assignment task and dxi = |xai – xbi|, dyi = |yai – ybi|, then the measurement 
metrics are defined as follows: 

• SHPWL: The sum of the HPWLs (half perimeter wire lengths) of all nets. 

∑ +=
p

i
ii dydxSHPWL  

• HPWL MATCH: The additional length necessary to match the HPWL routing 
length of all nets. A lower value of HPWL MATCH indicates less routing effort, 
especially for busses. 

SHPWL  ) dy  dx  , ,dy  (dx max · p  HPWLMATCH pp11 −+…+=  

• AVG Flylines: The average net length in Euclidean geometry. 

∑ +=
p

i
ii dydx

p
FlylinesAVG 221

 

• STD Dev: The standard deviation of the net lengths in Euclidean geometry, which 
similarly to HPWL MATCH evaluates the expected wiring effort necessary to 
match wiring lengths. 

∑ ⎟
⎠
⎞⎜

⎝
⎛ +−

−
=

p

i
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p
Dev STD

2
22

1

1  

• The number of signal intersections is calculated as the number of intersections 
within the flylines of all nets. 

In the following subsection, the differential pair methodology is compared with regular 
PAAs using the above metrics. In the subsection after the following, an investigation of 
the four proposed fat pin variants and the two proposed merging strategies is presented. 

5.1   Quality of Fat Pin Methodology 

The results presented in Table 1 are taken from a commercially fabricated IBM single 
chip module (SCM) that carries one die on top and is covered with a regular array of 
pins on the bottom side (1058 signal pins, 1058 power/ground pins). The pin assignment 
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algorithms are extended by our fat pin methodology and used to create an assignment 
with differential pairs of die signal pins to bottom signal pins. 

The used PAAs have the following objectives (a detailed description of these algo-
rithms can be found in [7]): 

1. Heuristic to minimize HPWL MATCH and STD Dev 
2. Heuristic to minimize signal intersections within busses for a specified direction of 

fanout. 
3. Same as 1. with subsequent removal of signal intersections. 
4. Same as 2. with subsequent removal of signal intersections. 
5. Minimum AVG Flylines. 
6. Minimum SHPWL. 
7. Concurrent minimization of SHPWL and signal intersections. 

All pins of design SCM are transformed to valid fat pins by the PREFERRED_PAIRS 
algorithm accordingly to Fig. 8 (a, b). As a result, the final pin assignment is com-
pletely defined by the fat pin assignment and no merging of interim pin assignments 
is necessary. In addition, the creation of fat pins by the MOST_PAIRS algorithm re-
turns identical results. Hence, there are two relevant pin assignments with differential 
pairs for each PAA. Firstly, the PAA unintentionally allows for a significant number 
of differential pairs. Those pairs result from parallel pins (see section on differential 
pairs) with a distance smaller than dmax (dmax is equal to the diagonal pin grid in our 
experiments, Fig. 8 c). Secondly, the pin assignment created by fat pins allows all nets 
to be used as differential pairs.  

For each PAA 1–7, Table 1 compares the pin assignment created by the basic PAA 
and its differential pair extension. Absolute values are given for the number of possi-
ble differential pairs (#Diff Pairs), intersections of flylines and the runtime. For meas-
ures SHPWL, HPWL MATCH, AVG Flylines and STD Dev the pin assignment results 
with differential pairs are given as a the percentaged difference (Δ) to the respective 
result of the basic PAA. Table 1 shows that the impact of fat pins on the objectives of 
the basic PAAs is marginal. One exception are signal intersections estimated as inter-
sections of flylines, which increased considerably. Yet, closer inspection shows that 
intersections are introduced in places where they can easily be resolved by the router  

 
Table 1. Experimental pin assignment results of design SCM without and with differential 
pairs (/o | w/ DP) using the seven PAAs 1–7 with different objectives, as listed in the text. Per-
centage values denote the difference between the basic PAA and its differential pair extension 
with positive percentages indicating an increase of the respective value. 

PAAs 
#Diff Pairs 
(/o | w/ DP) ΔSHPWL 

ΔHPWL 
MATCH 

Δ AVG 
Flylines

Δ STD 
Dev 

Intersect. of Flylines 
 (/o | w/ DP) 

Runtime in s 
(/o | w/ DP) 

1.  367 | 529 +0.17% +1.3% +0.17%  +0.34 %  6159 | 7000  <1 |<1 
2.  160 | 529 -0.52% -6.4% +0.70%  -2.4 %  44686 | 46331  <1 |<1 
3.  313 | 529 +0.17% -6.7% +0.18%  +1.0 %  0 | 1633  1 |<1 
4.  294 | 529 +0.00% -3.2% +0.01%  -0.57 %  0 | 1551  <1 |<1 
5.  283 | 529 +0.13% +1.6% +0.12%  -0.28 %  80 | 1619  8 | 1 
6.  93 | 529 +0.28% +5.2% -0.02%  -0.92 %  27955  | 27212  3 |<1 
7.  298 | 529 +0.13% -6.1% +0.09%  -0.29 %  0 | 1564  10 | 1 

Absolute 
Average 

 258 | 529 0.20% 4.4% 0.18%  0.83 %  11269 | 12416  3 |<1 
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because they are either close to the endpoints of nets or the intersecting nets are al-
most parallel, thereby not affecting routability. 

5.2   Comparison of Fat Pin Variants 

In order to compare the four different variants of selecting pin pairs (PREFFERED_ 
PAIRS without invalid DPPs, PREFFERED_PAIRS with invalid DPPs, MOST_ 
PAIRS without invalid DPPs, and MOST_PAIRS with invalid DPPs) and the two 
merging strategies (aggressive blending and defensive blending), the results of a multi 
chip module (MCM) of an IBM industrial design are presented. This MCM has seven 
dies on top, 2930 signal pins and 2112 power/ground pins (see Fig. 1). The arrange-
ment of the pins is irregular such that 68 of the signal pins cannot be used as differen-
tial pin pair because no other signal pin is closer than dmax. Additional 190 signal pins 
are not usable for differential pin pairs because these pins are in 190 “islands of pins” 
(which are further apart than dmax) with each having an odd number of pins (see 
Fig. 8 c). 

The PAA 5, which minimizes the overall length of the flylines, is used to create the 
assignment of bottom signal pins (Fig. 1 b) to die signal pins (Fig. 1 a). The eight 
variants of the fat pin methodology (#1– #8 in Table 2) and the basic PAA alone (#0 
in Table 2) deliver nine pin assignments with differential pairs. The results (Table 2, 
Figs. 15 and 16) show that along with an increasing number of available differential 
pairs, the length of the flylines, which is the objective of the used PAA 5, slightly in-
creases. In six out of eight cases, the increase stayed below 0.25% (with no measur-
able increase in routing lengths when comparing the actual routing results with and 
without differential pairs). For variants #7 and #8 (see # in Table 2) the increase in 
lengths are 5.4% and 1.9%, which resulted in a similar increase in actual final routing 
length (Cadence SPECCTRA autorouter).  

The results show that aggressive blending (#5– #8) yields more differential pairs 
than defensive blending (#1– #4). Furthermore, the selection of pin pairs by 
MOST_PAIRS generally gives more differential pairs than PREFERRED_PAIRS.  

 
Table 2. Results of differential pair pin assignment of the eight different fat pin variants (#1– 
#8) and of the PAA 5 (#0) for design MCM. The used PAA 5 minimizes the overall length of 
the flylines. The names of the algorithms PREFERRED_PAIRS and MOST_PAIRS are abbre-
viated as PREF_P and MOST_P, respectively. 

# Blending 
Method  

Invalid 
DPPs 

Selection 
of Pin 
Pairs  

Number 
of Diff. 
Pairs SHPWL 

AVG 
Flylines 

STD 
Dev 

Intersec-
tions of 
Flylines 

Runtime 
in Sec 

#0 n/a n/a None 376 46321 11.84 8.49 209 243 
#1 defensive no PREF_P 237 46351 11.85 8.48 2365 245 
#2   MOST_P 243 46350 11.85 8.48 2437 244 
#3  yes PREF_P 1127 46452 11.87 8.46 4120 277 
#4   MOST_P 1081 46430 11.86 8.52 3661 266 
#5 aggressive yes PREF_P 1143 46410 11.86 8.48 3808 34 
#6   MOST_P 1217 46440 11.86 8.51 4052 32 
#7  no PREF_P 1251 48182 12.48 9.25 17008 20 
#8   MOST_P 1336 47110 12.06 8.54 9750 23 
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Fig. 15. The impact of the eight different fat pin variants (#1– #8) on the number of differential 
pairs, flyline intersections and overall flyline lengths (results of design MCM, see also Table II) 

 

 

 (a) (b) 

Fig. 16. Details of a differential pair pin assignment. As illustrated by the shown subset of flylines 
in (a), each differential pair is assigned adjoining chip and MCM pins (smaller and larger dots) with 
distances of less than dmax. The final routing result of differential pairs is shown in (b). Note that (a) 
contains only a small subset of differential pairs, non-differential pairs are omitted for simplicity. 
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The effect of invalid DPPs depends on the method of blending. For defensive 
blending, the number of created differential pairs is drastically increased by using in-
valid DPPs (variants #3 and #4), while the quality with respect to the basic objective 
slightly decreases. (Without invalid DPPs, many pins are not transformed to fat pins 
and receive their basic pin assignment, while only paired pins are treated via fat pin 
assignment.)  

For aggressive blending, invalid DPPs (#5 and #6) decrease the number of created 
differential pairs, while improving the quality with respect to the basic objective. This 
is because each pair of nets that is assigned at least one invalid DPP cannot be used 
for a differential pair. However, more pins are considered during fat pin assignment, 
hence, the overall pin assignment quality is better. 

The number of created differential pairs by each variant is not predicable. There-
fore, we sequentially apply variant #0 (pin assignment with the best quality and least 
possible differential pairs) followed by variants #3 through #8 (pin assignment with 
the least quality and the most possible differential pairs) until the pin assignment with 
enough differential pairs and the best quality achievable for the specific design is 
found. This methodology has been proven effective in numerous industrial examples. 

6   Limitations and Outlook 

Conventional pin assignment algorithms that minimize the overall lengths of flylines, 
the overall Manhattan lengths and the standard deviation of those lengths can easily 
be combined with the fat pin methodology without solution degradation. Pin assign-
ment algorithms with the objective of minimum signal intersections have a limited 
compatibility to the fat pin methodology. This is due to the difference in coordinates 
of the fat pin and its two original pins that can lead to intersections near the end of the 
routing path. However, these additional intersections are in places where they are eas-
ily resolved by the final router and thus, do not affect routability. 

The presented algorithms to select pin pairs are based on the distances of pins. Pin 
pairs have been specified manually if specific DPP patterns are needed (e.g., for spe-
cialized differential pair connectors). In the future, pairing algorithms must include 
more complex constraints than only one spacing rule. Due to the modularity of our fat 
pin methodology, the presented pairing algorithms can easily be replaced with any 
other extended method for pairing. 

One example for future design challenges is the signaling method presented in 
[13]. It requires four nets and their pins to be handled in one group. Our methodology 
can easily be modified for pin assignments suitable for this signaling method by se-
lecting groups of four pins that are to be represented by one fat pin. 

7   Conclusions 

In this chapter, a universal differential pair methodology that is applicable to all algo-
rithms or manual processes that solve the pin assignment problem has been presented. 
This is the first algorithmic approach that includes differential pair constraints during 
pin assignment. It has been shown that it has only a minor effect on the quality of the 
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underlying basic pin assignment algorithm (PAA). This has been verified not only 
during pin assignment but also by considering the actual routing results. 

The fundamental principle of the presented solution is that two nets, which can be 
used for a differential pair (because their parallel pin pairs meet the spacing rules), do 
not need to be used for a differential pair. Instead, they can also be used for any two 
single ended nets. Based on this observation, the fat pin transformation approximately 
halves the number of pins that have to be considered. Thereby, the complexity of the 
pin assignment problem is significantly reduced, while still allowing for near optimal 
solutions. A pin assignment of differential pairs can be retrieved from this reduced 
number of pins by PAAs that originally do not respect differential pairs. 

The methodology consists of different algorithms for selecting differential pin pairs 
(DPPs) and integrating the fat pin assignment. They can be used in different combina-
tions to produce similar pin assignments with different numbers of possible differen-
tial pairs. The number of created possible differential pairs by the variants cannot be 
predicted exactly. Yet, specific variants create more differential pairs than others 
while in general the quality of the pin assignment decreases with an increasing num-
ber of differential pairs. Therefore, in order to find the best pin assignment with dif-
ferential pairs for a specific design, the variants are executed sequentially starting 
with the one producing the least differential pairs, until the first pin assignment with 
sufficient differential pairs is found.  

Based on this add-on methodology, any present or future algorithms for the pin as-
signment problem can easily be extended to include differential pairs. The presented 
differential pair methodology is in use in the industrial design flow at IBM. Here it 
has shown its robustness and quality combined with a minimum of interference with 
the design flow that had already been established. 
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Abstract. This chapter addresses modern telecommunication integrated circuits 
from the synthesizer focal point; in particular it concentrates at the analysis and 
the design of integrated charge pump circuit blocks. It presents an overview of 
charge pump topologies in addition to a coherent analysis of the associated bene-
fits and shortcomings of all circuit alternatives. Moreover a novel favorable 
charge pump combining current steering techniques with well utilized unity gain 
buffers in a novel, noiseless feedback scheme, is introduced to improve on 
switching speed, inherent charge pump ac noise, dead-zone interval, therefore 
overall steady state aliased loop noise; while on the other hand this charge pump 
exhibits superb DC matching characteristics in a wide output voltage range. Fur-
thermore a well documented estimation of the active devices that contributes 
mostly to the overall charge pump noise performance is presented. Also an asso-
ciated mathematical analysis concerning the frequency content of the charge 
pump noise current is given. This proposed topology manifests its applicability 
to charge pump alternatives, as it is demonstrated by the associated simulation 
results from a 0.18μm design. Because of the low-noise and accurate properties 
of this improved charge pump, it is ideally suited to modern telecommunication 
standards synthesizer realizations. 

1   Introduction 

Fully monolithic Phased-Locked Loops (PLLs) are essential building blocks, widely 
used in modern communication or complex digital systems [1-8]. A PLL based on a 
charge pump is often preferred over other synthesizer alternatives, because it exhibits 
a wide capture range with no systematic phase offset and arguably provides one of the 
simplest and most effective design platforms [9-14]. The Charge Pump based PLL 
also provides flexible design tradeoffs by decoupling various design parameters such 
as the loop bandwidth, damping factor and lock range [22]. Figure 1 shows a typical 
implementation of a charge pump based PLL. It consists of a Phase/Frequency Detec-
tor (PFD), a Charge Pump (CP), a Loop Filter (LF), a Voltage Controlled Oscillator 
(VCO) and a divider. The most widely used PFD generates a pair of digital pulses 
corresponding to the phase/frequency error between the reference clock fref and the 
VCO output, by comparing the positive (or negative) edges of the two inputs. The CP 
circuit converts the digital pulses into an analogue current which is consequently inte-
grated producing a voltage on the passive (or active) loop filter. This voltage drives 
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the VCO circuit block which in turn produces the synthesized frequency of operation 
as it is demanded by the system specification. 

However, some non-idealities of the CP such as DC mismatch of the charg-
ing/discharging currents and glitches degrade the performance of the overall loop. 
Moreover the noise of the charge pump is the dominant close-in phase noise contribu-
tor in a PLL [15]. Several charge pump implementations have been proposed in  
the associated literature [16-18]. In [16, 17] an opamp has been used in order to keep 
the dc mismatch current, and hence the resultant phase offset at a minimum level and 
improve the overall performance. This in effect adds significant noise contribution at 
the output of the proposed charge pump due to the increased gain introduced by the 
opamp. Others [18] assume that the Up and Dn signals from the PFD that drive the 
charge pump switches could not be simultaneously high, to avoid the dc mismatch be-
tween the pump-up and pump-down currents. This is a fallacy because at lock both 
the Up and Dn signals are high for a given short time to ensure the elimination of the 
PLL dead-zone, which if present will degrade significantly the in-band noise suppres-
sion characteristic function of the PLL. 

The objective of this chapter is the design of an improved single-ended low noise 
charge pump with low dc mismatch current, high voltage output range and program-
mable gain. The second section depicts some typical charge pump architectures either 
for single-ended or differential design, along with the advantages and disadvantages 
of each category. In the third section a detailed analysis of the improved charge pump 
is presented and compared to other alternative designs. Also the noise contribution of 
the improved charge pump active devices to the total output noise is given with the 
appropriate mathematical noise analysis. In the fourth section the simulation results 
from three alternative methods (DC, PSS and Pnoise) are presented, over temperature 
and process corners for the charge-pump key specifications to signify the applicability 
of the overall approach. Finally the key concluding remarks of this chapter are given 
in the last section. 
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Fig. 1. Block level diagram of a charge pump based PLL 

2   CMOS Charge Pump Architectures 

2.1   Single-Ended Charge Pump Architectures 

Single-ended charge pump circuits are an elegant approach to system flexibility, low-
power consumption, minimization of pads and external components, or area. The output 
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current of the charge pump can be as high as 4.5mA [23] at lock to provide better spur 
performance thus less leakage current and to have high SNR for low noise contribution 
to the PLL, while this current can be significantly more while the PLL is in the tracking 
period, to improve on settling time. By using tri-state operation, the current consump-
tion of the charge pump is limited to a few hundred μA depending on the reference 
clock frequency and the delay of the PFD. Figure 2 shows some typical single-ended 
charge pump topologies.  
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Fig. 2. Single-ended charge pump architectures: a) with current steering switch, b) with unity 
gain active amplifier and c) with NMOS switch only 

Figure 2a shows a charge pump utilizing a current steering switch. This structure 
provides high speed switching for a single-ended charge pump, since the switching 
time is improved by the current steering properties of the associated switching pair 
(M1-M3 and M2-M4). Another charge pump approach utilizing current steering with 
an active amplifier [24-25] is shown in figure 2b. This unity gain amplifier, buffers 
the voltage at the output node forcing the drain voltage of the current sources IDN and 
IUP to be the same when M1 and M2 are on or when they are off. This reduces the 
charge sharing effect, when the switch is turned on. This architecture ensures fast 
transient response through current steering, reduces the effect of any parasitic capaci-
tance, at the expense of extra current. Finally, in figure 2c the inherent mismatch of 
pmos and nmos transistor is avoided by using only nmos switches [26]. Since the cur-
rent does not flow in the current mirror, (M5 and M6), when the UP switch is turned 
off, the current mirrors still limit the performance unless large current is used [3].    

2.2   Differential Charge Pumps 

A fully differential charge pump has several advantages over the conventional single-
ended charge pump [27-28]. Firstly, the switch mismatches between nmos and pmos 
transistors do not substantially affect the overall performance. This relaxes the match-
ing requirement between the two type of transistors. Secondly, the differential charge 
pump has only nmos switching transistors thus the inverter delays for the Up and  
Dn signals are fully symmetric and therefore do not generate any offset. Thirdly, this 
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configuration doubles the range of the output voltage compliance compared to the sin-
gle-ended charge pump. This is a significant advantage for low voltage operation, 
since the limited output voltage range of the charge pump makes it difficult for the 
VCO to meet the specified tuning range. Fourthly, the differential output stage is less 
sensitive to the leakage current, since the leakage current behaves as a common-mode 
offset at the dual output stages. Lastly, the use of two on-chip loop filters provides 
better immunity to the supply, ground and substrate noise, while the lack of bond wire 
inductors facilitates faster switching speeds and reduces transient oscillations. How-
ever, these advantages can only be achieved at the cost of extra area due to the use of 
two loop filters, common-mode feedback circuitry [3], higher noise levels and power 
consumption imposed by the potential introduction of an active filter and most impor-
tantly the flexibility of altering the overall PLL loop characteristics by changing the 
loop filter should this prove desirable. 

3   Improved Charge Pump Design 

The improved accurate low noise charge pump is shown in figure 2. It is a single-
ended tri-state charge pump with programmable gain. This topology exhibits im-
proved switching speed, since all nodes are precharged to the resultant operating 
points and the current is either steered to the output or to the unity-gain buffer. The 
two opamps OP1 and OP2 are used in order to minimize the DC mismatch current that 
will be introduced by the output voltage variation. The OP1 and OP2 inputs are con-
nected at the drains of the corresponding transistors as it is shown in figure 3, while 
the opamp outputs drive the gates of transistors M3 and P1 respectively. 
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Fig. 3. Improved Charge Pump Circuit 

3.1   Characteristics of the Improved Charge Pump Approach 

In the improved circuit transistors M1, M2, M3 and M4 compose a cascode current 
mirror with increased output resistance and minimized channel length modulation.  
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Fig. 4. Buffer chain between PFD and CP 
 

 
This cascode connection offers the advantage of low voltage operation for the charge 
pump. The bias current (Ibias) from the input branch is mirrored to the output branch 
where P3 and M5 act as current sources. The current source mirroring ratio is 4, 
which means that the output current is four times larger than Ibias. MS1 and PS1 are 
the transistor switches which are driven by the Dn and Up signals from the PFD. 
When the Up signal is low, the PS1 switch is turned on and the current Iup from P3 
charges the loop filter capacitor, increasing the output voltage. On the other hand 
when the Dn signal is high, the MS1 switch is turned on and the output voltage is de-
creased by the discharging current Idn that flows through M5. Transistors MS2 and 
PS2 are the switches which are driven by the complementary Up and Dn signals, pro-
viding a constant current flow path when the switches MS1 and PS1 are off. This im-
plies a fast switching operation at the expense of increased power consumption.  

When the loop is locked, both switches are on for a small fraction of the time. At 
lock both MS1 and PS1 have to switch on and off simultaneously to reduce the noise 
introduced in the loop and the magnitude of the 2·fref and consequent spurs. For this 
reason a buffer with a timing synchronization scheme which constitutes from two 
chains is used; the first chain is used to generate the Up signal and the second to gen-
erate the Dn signal. This buffer placed between PFD and CP, as shown in figure 4. 
The scaling ratio for the inverters is chosen to be close to 4 [19], in order to achieve 
the best power, speed and area trade-off. Also the channel length L, of the nmos and 
pmos transistor in the first inverter of the Up signal is increased to equalize the delay 
between the two timing control signals introduced by the asymmetry of the two chains 
[7]. Synchronization can also be achieved by using the two paths of the chain, where 
the first one includes an extra inverter compared to the second one and introduce an 
active resistor (a transmission gate adequately dimensioned) in the second path. In 
addition to that the dimensions of the switches must be properly sized, in order to turn 
on and off simultaneously. 

An important advantage of the improved CP circuit is the low DC mismatch be-
tween the pump up and pump down currents. The two opamps OP1 and OP2 are used in 
order to minimize this DC offset current. As it is shown in figure 3, the two inputs of 
OP1 and OP2 are connected to the drains of P2-P3 and M4-M5 transistors respectively, 
forming a closed loop. If the output voltage increases to lock at a higher frequency, 
then the voltage at the drain of M5 increases as well. Because of the OP2 the same 
voltage is forced on the drain of M4. Likewise OP1 forces the voltage to the drains of 
P2 and P3 to be almost the same. As a result, the same amount of current flows be-
tween the two branches, for a wide output voltage dynamic range. 
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The dimensions W/L of the current source transistors that is M5 and P3 are chosen 
in such a way to minimize the current mirroring mismatch from the input to the output 
branch. Also the systematic current variation due to any residual in the VDS despite 
the presence of the opamps has been remedied by choosing large gate lengths for the 
current source transistors. In addition the PS1 and MS1 transistor switches, which op-
erate in the linear region, have been designed with minimum gate length, in order to 
achieve maximum output voltage range.   

Moreover the unity gain amplifier OP3 plays an important role, since it sets the 
voltage at the drain of the switches PS1 and MS1 at the output node. Thus the charge 
sharing effect becomes minimal when the switches turned on. It also increases the 
switching-speed of the charge pump due to current constant flow from P3 to M5, even 
when the PLL is locked. Hence the charge and discharge of the parasitic capacitances 
at the drain node of P3 and M5 is avoided. This increases switching speed, therefore 
the dead zone and the resultant noise contribution is reduced during the lock condition 
at the expense of a small current consumption introduced by OP3, since it only needs 
to source or sink a small P and N mismatch current. Finally a compensation capaci-
tance has been added at the output of the amplifier, to increase the phase margin, as 
denoted by an associated stability analysis. Moreover it acts as a charge reservoir dur-
ing switching transitions. 

3.2   Comparison to Alternative Approaches 

The significant improvement compared to similar, alternative charge pump imple-
mentations [16, 17] is in essence due to the fact that the output of the opamps drives 
the gates of the cascode transistors and not the gates of the current source transistors 
directly. In the improved approach P1 is connected as a source follower, resulting to a 
significant reduction of the OP1 noise contribution at the charge pump output.  
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Fig. 5. Opamp drives directly the gates of P2 and P3 
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For example in the case where the OP1 drives directly the gates of P3 and P2 tran-
sistors, as shown in figure 5, the noise current i*

out1
 generated at the output of P3 is 

given by the following equation: 

2*
3

22
1

*
nPout Vgmi ⋅=  (1) 

where Vn*2 represents the output referred voltage noise of the opamp OP1 (both 
flicker and thermal) and gm is the transconductance of the current sinking transistor. 
From the above equation it can be seen that the noise current is the product of the 
noise voltage and the transconductance of P3. In our case, as shown in figure 3, the 
output of Op1 is connected to the gate of P1 instead of P3. Taking into account that P2 
acts as a current source with a finite large output resistance ro, the noise current of P2 
is equal to: 
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This current produces a noise voltage at the gate of P2 equal to 

(3) 

Thus the noise current that appears to the output of P3 is given by the equation: 

(4) 

Therefore the ratio of the improved charge-pump over the one in [16] is given by the 
equation: 
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For example if common modern transistor values ro=72kΩ and gm=2.84mS are subsi-
dized in the above equation, a significant reduction by 45dB, of the Op1 induced 
noise at the output is obtained. 

3.3   Analysis and Estimation of Noise Contributors of the Improved Charge 
Pump 

The analytical estimation of the noise contribution, from the charge pump transistors 
is presented in this section. As it is well known the flicker (1/f) and thermal (white) 
noise from the active devices are the dominant noise sources that affect the overall 
noise performance of the charge pump. The noise plot of an active device (MOS or 
Bipolar transistor) is shown in figure 6, which has only two distinctive regions; ther-
mal noise and 1/f region. The 1/f noise corner is in the vicinity of 500kHz to 1MHz 
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for a sub-micron CMOS technology and it is in the vicinity of 1kHz to 10kHz for bi-
polar transistor [21]. 

There are three different combinations for the charge pump switching conditions 
which are given in the following table: 

Table 1. 

Signals MS1 PS1 
Up(low), Dn(high) On On 
Up(low), Dn(low) Off On 
Up(high), Dn(high) On Off 

1/f
Flicker noise

f
1/f

Thermal Noise

f

20
lo

gV
2 n

 

Fig. 6. Noise characteristics of a MOS transistor at a fixed bias voltage 

1. PS1 on and MS1 on 
 

The first condition is when the two transistor switches are both on for a small fraction 
of time corresponding to the locked condition of the loop.  

For the flicker noise estimation a noise voltage source is placed at the appropriate 
gate device and the resultant noise current is calculated at the output of the transistor. 
So in this condition the transistors that affect the total noise of the charge pump are: 

M2, M4, M5, P2, P3. mnig  and mpig are the transconductances for nmos and pmos 

transistors respectively, where index i indicates the number of the corresponding 
transistor. For the noise calculation the flicker noise is easily modeled as an 

equivalent voltage source 
2*

nV  in series with the gate of a MOS transistor and 
roughly given by the following equation 
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where Kf is a process-dependent constant on the order of 10-25 V2F, Cox is the oxide 
capacitance, W and L are the width and length of the transistor respectively. The in-
verse dependence of (7) on W, L suggests that to decrease 1/f noise, the device area 
must be increased. 

Taking into account that WM2=WM4, WP2=4·WM4 and WP3=4·WP2=16·WM2 the total 
output noise current is given by the following expression: 
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where 
2

2
*

ni is the output reffered noise current of transistor M2. It should be noted 
that the first two terms which are the summation of the noise current from M2 
transistor are cancelled by the third term; the negative sign of this third term comes 

from the fact that the two noise currents 
2

2
*2

5 nmn Vg ⋅  and 
2

2
*2

3 nmp Vg ⋅ are fully 

correlated with a phase difference of 180 degrees to each other (for the actual CP 
switching frequencies). This is because the P3 transistor sources current while M5 
transistor sinks the same noise current. Moreover these transistors have equal 
transconductances, since the ratio of their mobilites is equal to the ratio of the 
dimensions W/L for the same current. 
 
2.  PS1 Off and MS1 On 
 
In the second condition only M2 and M5 transistors are taken into account since they 
affect the charge pump noise and the total output noise current is given by the 
following expression: 
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The diode connected M2 produces a noise current 
2

2
*

ni which is mirrored at the 
output of the charge pump. M5 acts as a current sink producing also a noise current 
which is four times smaller than the noise current of M2, because its width is four 
times larger than the width of M2, as depicted in (7). 
 
3. PS1 On and MS1 Off 
 
In the last operating condition the output noise current consists of the noise currents 
of the M2, M4, P2 and P3 transistors. M5 does not contribute any noise at the output 
because the MS1 switch is in the off state. Taking into account that WM2=WM4, 
WP2=4·WM4 and WP3=4·WP2=16·WM2 the total output noise current is given by the 
following expression: 
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Comparing the results from the three different operating conditions, a significant con-
clusion is obtained. In the first case, though both the switches MS1 and PS1 are on, the 
circuit does not exhibit higher noise. This is because the noise current generated by the 
M2 transistor is fully correlated in both the pmos and nmos branch and therefore can-
celled at the output of the charge pump. The most noisy operation state is the last one 
where the PS1 switch is on and the MS1 switch is off. In the third section of the chapter 
these noise calculations will be confirmed by the associated simulation results.  

3.4   Spectral Components of the Charge Pump Output Signal 

In this section an attempt to calculate the spectral components of the output signal 
Iout, as a function of the phase error Δθ, between fref and fdiv, is presented. In the fol-
lowing analysis it is assumed that the output of the charge pump consists of current 
pulses of amplitude Icp. It is also assumed that there is no mismatch between the cur-
rent sources (M5, P3) of figure 3. The duty cycle of the output pulse is equal to τ/Tref, 
where τ is the active time of the charge pump output current and Tref is the period of 
the reference signal. From the signal processing theory [20] it is known that the Fou-
rier series expansion for a periodic train of pulses of amplitude Icp and duration τ is: 
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The equation (11) can be expressed as a function of the phase error Δθ, taking into ac-
count that the ratio τ/Tref is proportional to Δθ/2π: 
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If the duty cycle δcp equals to τ/Tref and for small values of the δcp, the sinc function 
sin(nπτ/Tref)/(nπτ/Τref) can be approximated as unity. This results in the following ex-
pression for Iout: 

∑
∞

=

+=
1

)2cos(2)(
n

refcpcpcpcpout tnfIItI πδδ  (12) 

which shows that the amplitude of the spectral components of Iout are twice as large as 
its dc value Icpδcp. Therefore, if δcp=Δθ/2π equals to zero the charge pump output ide-
ally contains no dc or ac signal components.  

The next step is to study the effect of mismatch in current sources. Mismatch 
originates in the different type of devices used to implement the n-type current sink, 
which sinks current from the output node to ground and the p-type current source 
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which sources current from the supply to the output node. Moreover the nominal cur-
rent supplied by the n-type and p-type current sources is likely to be a function of the 
voltage at the output node of the charge pump. This is filtered by the loop filter pro-
ducing the tuning voltage Vtune to the oscillator, and therefore it is a function of the 
output frequency of the entire loop. If Vmismatch(n·fref) is the magnitude of the ripple 
voltage at the fundamental and harmonics of the reference frequency, then the equa-
tion which relates the above voltage with the current-source mismatch is given below: 

( ) ( )refrefoutrefmismatch nfjZfnIfnV π2)( ⋅⋅=⋅  (13) 

where ( )refnfjZ π2  is the magnitude of the transimpedance function of the loop fil-

ter and n ranging from 1 to ∞. 
It is common to express the magnitude of the undesired signal components with re-

spect to the magnitude of the carrier frequency fLO. From the standard modulation 
theory [20] the relationship of the peak phase deviation θp(fm) to the peak frequency 
deviation Δf(fm) and the modulation frequency fm is given by 
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The peak frequency deviation is the product of the magnitude of the spectral compo-
nents of the mismatch voltage Vmismatch(n·fref) with the gain KVCO(V/Hz) of the VCO: 

( ) ( ) VCOrefmismatchm KfnVff ⋅⋅=Δ  (15) 

Combining (14) and (16) and substituting into (15) we get the peak phase deviation 
due to each of the spurious frequency components n·fref 
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Each of the baseband modulation frequencies n·fref generates two RF spurious signals, 
which are located at offset frequencies ± n·fref from the carrier frequency fLO. The am-
plitude of each spurious signal Asp is related to the magnitude of the carrier ALO and 
to the peak phase deviation θp by 
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Substituting (17) into the numerator of (18) the following expression in dB is obtained  
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An important conclusion that can be drawn from (19) is that the relative amplitude of 
the spurious signals is independent on the absolute value of loop bandwidth or on the 
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nominal charge-pump current Icp. Instead, they are determined by the transimpedance 
of the loop filter, by the magnitude of the reference spurious components, by the VCO 
gain and by the value of the reference frequency. 

3.5   Noise Performance of Charge Pump  

An ideal CP-PLL with zero phase error neither sources current to, nor sinks current 
from, the loop filter. However, PLLs with zero phase error are insensitive to small 
loop-phase deviations due to finite rise times in the PFD and charge pump which is 
also called the “dead zone”. A commonly employed solution to “dead-zone” is to use 
an artificial phase offset so that CP pumps/sink current when PLL is locked. When the 
PLL is locked the average output current flowing into the filter is zero. Both the cur-
rents from the P3 and M2 transistors in figure 3, are on for the duration of the “dead 
zone” pulse. Even though the average current is zero, noise is injected from both tran-
sistors currents for the duration of the “dead zone” pulse. The charge pump noise cur-
rent injected to the loop filter under lock condition can be calculated as, 

CPn

ref
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outn I

T
i ,

22
,

* 2 ⋅⎟
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⎠

⎞
⎜
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⎝
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⋅=

δ
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where constant factor 2 is used to account for the source and sink current pulses. CPnI ,
2  

is the noise current of the CP in A2/Hz. δCP is the dead zone pulse width and Tref is the 
reference period signal. The above equation suggests that if the reference frequency is 
increased then more noise will be injected into the loop filter and in consequence to the 
VCO circuit block. Moreover the PLL close-in phase noise will increase with the refer-
ence frequency by a factor proportional to 10·log (fref). Also a “dead zone” pulse with 
large duration leads to an increased noise as depicted by equation (20). 

4   Simulation Results 

The improved charge pump was designed using 0.18um CMOS technology. The sup-
ply voltage was 2.5Volt for the charge pump and inverters in the buffer chain. Simu-
lations were obtained by using Cadence design framework with spectre device models 
from UMC 0.18um and 0.35um devices. The pump up and pump down currents are 
1mA from a 2.4V power supply. The CP design includes a programmable gain by a 
step of 250uA. Corner and temperature analysis has also been performed, in order to 
further the demonstrability, applicability and robustness of the improved circuit. The 
percentage of DC mismatch current over output voltage of the improved CP, for three 
different process and temperature worst cases (typical─0·σ @ 27oC, slow─ -3·σ @ 
85o C, fast─+3·σ @ -45oC) as shown in figure 7. 

The circuit is able to operate with a mismatch current less than 2.25% at the typical 
case and 2.5% at the extreme process/temperature conditions. The output voltage ranges 
from 300mV to 2.2V. Beyond these limits, transistors close to the supply rails (P3, M5), 
leave the saturation and enter to the linear region of operation, which results to an in-
creased mismatch current. The power consumption of the improved charge pump includ-
ing the three opamp consumption is roughly 6.65mW for a 2.4 power supply voltage. 
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Fig. 7. The dc mismatch of the output current vs output voltage 

A periodic noise analysis (Pnoise) has also been performed in order to obtain the 
noise contribution of the devices at the output of the charge pump. Figure 8 illustrates 
the noise power spectral density of the output current, when the loop is locked, which 
means that the transistors are on for a small fraction of time that is equal to the reset 
delay of the PFD. This time delay is 500ps, which results in a duty cycle of 0.5%. Be-
cause of the fast switching characteristics of the improved charge-pump even smaller 
duty cycles can be used, further reducing the close in noise contribution of the charge 
pump by as much as 6dB! 

Due to the delay added in the reset path of the PFD, the current sources (P3, M5) 
are on for small or zero phase errors. The dumped charge on the capacitor of the loop 
filter as a function of the phase error is illustrated in figure 9. The X axis represents 
the phase error in time. A maximum 180 degrees phase deviation corresponds to 50ns.  

In addition to that a second periodic noise analysis has been performed to confirm 
the validity of equation (20). The three plots in figure 10 represent the power spectral 
density of the charge pump noise current for three different duty cycles. As it can be 
observed, increased duty cycle leads to an increased noise to the charge pump output. 

To verify the theoretical noise analysis and highlight the active noise contributors 
of the charge pump, an ac noise simulation has been done for the circuit. Three differ-
ent cases have been simulated for typical model transistor and room temperature 
(27C) and the results are given in the following tables. At the first column is given the 
corresponding noise contributor transistor and at the second column is the simulated 
current noise at a specific spot frequency (f=1Hz for this case).  
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Table 2. 

PS1 on MS1 on 
Noise Contributors Noise Current (A2/Hz) 
M4 2.3e-16 
M5 5.8e-17 
P2 3.15e-17 
P3 7.95e-18 

Table 3. 

PS1 off MS1 on 
Noise Contributors Noise Current (A2/Hz) 
M2 1.875e-16 
M5 5.61e-17 

Table 4. 

PS1 on MS1 off 
Noise Contributors Noise Current (A2/Hz) 
M4 8.4e-16 
M5 2.3e-16 
P2 5.25e-17 
P3 13.15e-18 

 

 

Fig. 8. Noise power spectral density from Pnoise analysis 
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Fig. 9. Dumped charge as a function of phase error 

 

Fig. 10. PSD of CP Current Noise for three different Duty Cycle 
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The most significant noise contributors have been obtained for each case in consis-
tency with the theoretical analysis, which is given in the previous section. It is worthy 
to note that M2 in table 2 does not produce any noise contribution, due to the correla-
tion of the current noise components which cancel each other at the output. Moreover 
nmos transistors contribute higher amount of noise current than pmos transistor due to 
their higher mobility.  

5   Conclusions 

The design and analysis of a low noise charge pump has been presented in this chap-
ter. Low noise charge pumps are essential to modern telecommunication systems, be-
cause they dominate the close-in noise of the associated synthesizer. In modern GSM, 
CDMA or OFDM standards the noise of the PLL is defined by the in-band noise, 
since the VCO noise can be reduced by simply opening the loop bandwidth to hit the 
VCO phase noise characteristic in a more attenuated level at a higher frequency which 
is especially true nowadays with the evolution of the fractional-N synthesizers. There-
fore the low-noise properties of the charge pump are becoming increasingly more  
essential. 

The improved charge-pump (figure 3) performs better than older alternatives, be-
cause it uses the current steering technique to switch on and off, therefore minimizes 
delays. Furthermore the introduction of OP3 at figure 3 ensures that all nodes are pre-
charged to their final levels, and therefore less time is needed for the circuit to settle, 
furthering the initial speed improvement. Fast switching speed in essence demands a 
smaller dead-zone time and thus minimizes the noise contribution of the charge pump 
at lock (and non-lock) condition. 

Inherent noise of the charge-pump is reduced by adding the stabilizing opamp cir-
cuits in an improved fashion compared to other alternatives [16, 17, 18]. By adding 
this novel feedback approach it is possible though to improve on output matching, 
without increasing noise. The improved charge-pump accuracy over the full output 
range, expressed by an excellent P/N mismatch, ensures that there is a limited system-
atic DC offset and therefore the spurious content is smaller, thus making it easier to 
meet the modern 2·fref spurious content specifications, which are steadily decreasing 
in size.  

In table 5 alternative advanced CP families are compared, to provide a good  
perception of the improvement introduced by the circuits presented in the current 
chapter. 

Table 5. 

CP version Switching Speed Noise Performance DC mismatch 
Cheng et al. Very Good Good Good 
Rapinoja et al. Medium Good Good 
Chang et al. Good Medium Good 
This approach Very Good Very Good Very Good 
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Abstract. Piezoelectric Energy Scavenging Systems (PESS) are used to convert 
the energy of mechanical vibrations into electrical energy exploiting the 
piezoelectric effect. Their output is a voltage which strongly varies in time; to 
obtain a suitable supply source an AC-DC conversion of the output voltage of 
these transducers is needed. Since the output power level of the energy 
transducer can be very low, the conversion should be as efficient as possible.  

The paper describes an active AC-DC converter, based on the voltage doubler 
topology, in which two different driving circuitries have been implemented. 

The proposed solutions are fully autonomous, i.e. they are supplied by the 
energy that they harvest. To reduce and to optimize their power consumption a 
bias circuit has been designed to make the total bias current supply independent. 

A test chip has been diffused using STMicroelectronics 5V CMOS 
technology. The performances of the two solutions were compared with the 
ones of a passive Schottky based voltage doubler. The figures of merit were the 
average power supplied by the piezoelectric transducer and the average power 
delivered on a load resistance. Furthermore, the significance of such parameters 
is also discussed, and a more general figure of merit is defined with the 
advantage of also weighting the ability of the converter to harvest all the power 
available at the transducer terminals. 

Keywords: Piezoelectric energy harvesting, active AC-DC converter, low-power 
circuits, environmental vibrations.   

1   Introduction 

Energy scavenging systems are used to harvest the normally lost environmental 
energy (associated to vibrations, thermal gradients, solar radiation, pressure gradients) 
and to convert it into electrical energy. This solution can be very attractive to supply 
portable or low power electronic devices where batteries are a bottleneck for the 
whole system (i.e. they have a finite life time and their replacement or recharge is not 
feasible or too expensive). An energy scavenging system, instead, is a theoretically 
endless energy source. For this reason they are rapidly gaining popularity in the 
scientific and the industrial community. Typical applications are wireless sensing 
(both single spot and multi-nodes systems), biomedical (patient monitoring, hearing 
aids, etc.), automotive (using self supplied, wireless devices can help reducing the 
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cable length on board). The challenge is twofold: on one side the power requirements 
of the supplied electronics should be as low as possible, on the other, given the very 
low energetic content associated to environmental energy, the interface circuit has to 
be as effective as possible in managing the harvested power. 

In literature many papers can be found which describe methodologies to realize an 
energy-scavenger [1], [6], [8], [10]. Each case has different requirements depending 
on the environmental energy source considered, the characteristics of the transducer, 
the typical frequency of the process. No universal solution exists: each scavenger 
interface electronics has to be tailored to the specific transducer and application.  

Many of the above mentioned works are focused on the conversion of the energy 
associated to mechanical vibrations since they can be easily found in many 
environments [1], [7]. Among the available vibration transducers this paper considers 
a system based on a piezoelectric transducer since it is one of the most efficient which 
can be used [1]-[2]. When exposed to vibrations coming from the real world the 
electrical energy at the output of this transducer is a strong and irregular function of 
time [1]-[4], [9], hence, to realize a DC supply source, an AC-DC conversion is 
needed.  

Two active AC-DC converters based on the voltage doubler topology (see Figure 
1) are presented. The reasons behind the choice of this topology are the fact that is it 
simple and that it is able to increase the value of the input voltage by approximately a 
factor two. This last aspect is quite important: as it will be shown later, the 
piezoelectric transducer exhibits a resonant behaviour; at resonance the output voltage 
for a given acceleration can be quite high, but out of the resonance the same 
acceleration will produce a voltage much lower. In perspective of an actual 
application, the harvester will be exposed to an acceleration whose spectrum is spread 
over a range, rather than being tuned at a particular frequency, so being able to step-
up the input voltage is a desired feature. 

The idea of implementing an active rectifier, rather than a passive one, is basically 
inspired by the observation that the voltage drop across the switches of the rectifier 
causes power dissipation and, most of all, has to be subtracted from the output  
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Fig. 1. Piezoelectric energy harvesting system 
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voltage, decreasing it and consequently the energy that can be stored at the output (for 
example across a capacitor as shown in Fig. 1). Of course the active circuitry comes at 
the price of  using a part of the harvested energy to supply the active circuitry itself: 
active converters can be more efficient than passive solution [3-4], [11], but they are 
more difficult to be designed because their whole power consumption has to be very 
low.  

To this purpose, and for other reasons which will be illustrated in the following, 
two different driving circuitries were considered to command switches S1 and S2 
(Figure 2). In particular, the topology shown in Figure 2a, which will be called 
“hard”, uses comparators (CMP1-2), while in the one of Figure 2b, which will be 
called “soft”, the switches are driven with operational amplifiers (OP1-2). Both 
proposed solutions use only a fraction of the harvested energy to supply the active 
circuitry and make the energy scavenging system autonomous. In particular, at the 
output a capacitance (CS) of 1 μF is used to store the harvested energy and no external 
power source is required, neither during start-up nor in normal operation1. 

Since the voltage across the storage capacitor Cs increases as the energy is 
harvested, a supply independent bias circuitry is used in both cases: it makes the 
current consumption of the active part supply independent.  

Both circuits were diffused as test chips exploiting a 5V CMOS STMicroelectronics 
technology and were extensively tested. They were compared in terms of efficiency of 
the converter and of the average output power, evaluated under the same input 
conditions while varying the load. The significance of such parameters is also discussed, 
and a more general figure of merit is defined with the advantage of also weighting the 
ability of the converter to harvest all the power available at the transducer terminals. 

Section 2 deals with the design of the two considered AC-DC driving circuitries 
highlighting their pro and cons, while Section 3 shows the experimental results 
compared with the simulated ones. 

2   Piezoelectric Energy Scavenging System 

2.1   Mechanical Aspects 

The considered piezoelectric transducer is a cantilever which works in 31-mode when 
it is excited by the mechanical vibrations, as shown in Figure 3. This means that the 
cantilever is exposed to a strain in the direction of axis 1 while the resulting electrical 
displacement is along axis 3. 

To have a maximally efficient conversion of the mechanical vibrations into 
electrical energy the cantilever should be excited at its resonant frequency which can  
 

                                                           
1 The presence of the output capacitor is not only required to supply the control circuitry or to 

filter out the voltage ripple, but it often works as an energy tank. In fact, in most cases the 
supplied electronics works with a duty cycle. For example a wireless sensor that transmits one 
measurement every 10 seconds will be active only for a few hundreds of milliseconds, while 
it will switch in a low consumption or standby mode for the rest of the time. During this 
interval the scavenger is expected to accumulate the energy required during the burst of 
operation. 
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Fig. 2. Schematics of the proposed ESS. Voltage doubler with “hard” driving circuitry (a) and 
with “soft” driving circuitry (b). 
 

 

 
 

Fig. 3. Piezoelectric energy transducer working in 31-mode 
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be varied adding a mass (m) on its free end [1]. This allows to move the resonance 
frequency of the energy transducer around the frequency which is more likely in the 
application. The experimental measurements shown in Table 1 and [1] show that the 
frequency range of mechanical vibrations existing into civil environments is 
approximately (10-380) Hz.  

Table 1. Experimental measurements of environmental vibration sources 

Environmental Vibration Source arms[m/s2] Bandwidth [Hz] 

CD reader of a desktop PC 0,30 80 

Pocket of a walking man 2,16 2 

Man walking onto stairs 3,53 2 

Into a woman bag 6,37 10 

Vibracall of a mobile phone 3,83 90 

Car dashboard [city street @ 20km/h] 0,78 30 

Car dashboard tortuous street @ 50km/h] 0,88 20 

Car front glass [primary street @ 50 
km/h] 

0,98 15 

Guard rail near a busy street 0,10 50 

Bridge over a railway 0,10 100 

Bus stop near a busy street 0,19 10 

Fun 1,40 100 

Web server 0,20 12 
 

 
The piezoelectric transducer can be modeled at resonance by the equivalent circuit 

shown in Figure 1, [1]-[2]. Generator VPO is a sinusoidal voltage source whose 
frequency is equal to the transducer resonance frequency and whose amplitude is 
equal to the open circuit output voltage, while CP is the electrical capacitance of the 
piezoelectric cantilever.  

The presented results are based on a piezoelectric transducer with geometrical 
dimensions equal to (30x15x0.2) mm3 (LxWxH). The piezoelectric material used was 
a soft Lead Titanate Zirconate (PZT) and it was sputtered onto a Nichel alloy support. 
The piezoelectric capacitance CP was measured to be 19 nF. 

Figure 4 shows the experimental set-up which was used to shake the piezoelectric 
transducer with a controlled acceleration. It is composed of an electrodynamic shaker 
(Bruel&Kjiaer 4810), which moves the piezoelectric transducer, and by a triaxial 
MEMS accelerometer (LIS3L02AS4 of STMicroelectronics); it was screwed to the 
shaker movable table so to measure the acceleration given by the shaker itself and to 
guarantee the repeatability of the measurements. 

Figure 5 shows the experimental frequency response of the piezoelectric transducer 
when it was excited with a sinusoidal acceleration with a peak to peak amplitude 
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equal to 0.8 g. It is possible to see that its resonance frequency is equal about to 
130 Hz. 

For example, the measured resonance frequency of the cantilever is about 64 Hz if 
a lead mass of about 0.8 grams is added. 

 

 
 

Fig. 4. Picture of the measurement set-up 
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Fig. 5. Frequency response of the piezoelectric transducer 
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2.2   Design of the Proposed Front-End Circuitries: Common Parts 

During the start-up the voltage across CS is too low to supply the active devices. In 
this case, for both solutions, the operation of the converter is guaranteed by the 
body-drain diode of MOSFETs S1 and S2 which implement a standard, passive diode 
voltage doubler rectifier. Hence, the proposed rectifiers can be seen as a parallel of 
two AC-DC converters: an high efficiency active one and a lower efficiency passive 
one, the latter working only during start-up. As soon as the output voltage is sufficient 
the active one comes alive and flawlessly takes over the passive one; this switch does 
not need any dedicated control circuitry. 

Furthermore, after the active part starts working, the voltage across CS varies with 
time as the energy is harvested. Since this voltage is used as the supply for the active 
devices, it is advantageous to make their current consumption independent on the 
supply voltage itself.  

Figure 6 shows the circuital topology used to implement a supply independent bias; 
it is modified with respect to [5] by introducing a diode connected MOSFET (M4). In 
fact, since the system requires supply currents in the range of tens of nanoamperes, in 
the scheme without M4 the resistance R1 would be in the order of tens of megaohms, 
which is too area expensive for an integrated solution. The effect of M4 is to reduce 
the voltage drop across R1 lowering its value for a given current. Furthermore, a start 
up circuit is needed. This was obtained with dummy MOSFETs ML1 and ML2: the 
leakage of their body-drain diode has been exploited to inject a current into nodes A 
and B so to have the start-up aid. This solution allows us to avoid additional start-up 
circuitry, reducing total power consumption.  

Figure 7 shows the simulated behaviour of the two bias voltages versus the supply 
voltage. In particular the circuitry starts to regulate when the supply voltage is higher 
than about 680 mV. Above this value, the voltages VBiasP and VBiasN can be used to 
mirror a supply independent current. 

The current consumption of the whole bias circuitry is about 100nA. 
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Fig. 6. Schematic of the proposed supply independent bias circuitry 
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Fig. 7. Simulation results of the supply independent bias circuitry, bias voltages (VBiasN and 
VBiasP) versus supply voltage (in the figure supply voltage has been limited to 1V for clarity. 
The behaviour has been verified for supply voltages up to 5V). 

 

2.3   Working Principle of "Hard" Driving and Design Methodology 

Figure 2a shows the active topology of the ac-dc converter that uses comparators 
CMP1 and CMP2 to drive switches S1 and S2. The comparators sense the drain to 
source voltages of the two MOSFETs and properly turn them on or off [11]. This is 
the most straightforward way to implement an active version of the voltage doubler 
converter, since the switches and their driving emulate some ideal diode with a very 
low, almost zero, forward voltage drop, but the design of the two comparators is 
critical because a very accurate choice of the threshold voltages is required. In 
principle one could use a single threshold for each comparator equal to zero; in 
practice the spread due to process mismatches has to be taken into account. In fact if 
this voltage varies, during the diffusion process, with respect to the ideal value a 
negative effect, (i.e. the oscillation of the driving signal), can take place [4]. To 
reduce the probability to fall into this case the comparators has be designed with an 
hysteretic transfer characteristic, with an hysteresis wide enough to accommodate the 
expected variance of threshold. Among the two, the most critical threshold voltage, 
for both comparators, is the one which switches S1 or S2 off, called "Th-OFF". To 
prevent the above mentioned oscillations the designer has to guarantee it is positive 
for CMP1 and negative for CMP2; but, at the same time, to minimize the unwanted 
discharge of the piezoelectric or of the storage capacitance caused by a delayed 
switching [4], the "Th-OFF'' should be as small as possible. These two requirements 
are, of course, contrasting. 

Figure 8a and Figure 8b show the electrical schemes of the two designed 
comparators that are supply and ground compatible respectively, while Figure 8c 
shows a picture of the diffused circuit. The bias voltages BN and BP are provided by  
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the supply independent bias circuitry. Referring, for example, to CMP1 (similar 
considerations apply to CMP2) it is possible to see that the current in M4 depends on 
the output voltage of CMP1 itself. This allows to obtain the hysteretic transfer 
function for the comparator. In fact, when output voltage of CMP1 is low, (S1 is into 
its ON condition) the current in M4 is equal to the current in M5; on the contrary, 
when the output of CMP1 is high (S1 in OFF condition), an extra current, given by 
M3, flows in M4. As a consequence, the two threshold voltages are different from 
each other. To obtain a positive "Th-OFF" threshold voltage, a mismatch between the 
aspect ratio of the MOSFET M4 and M5 was introduced. In order to assure that the 
two "Th-OFF" voltages have the correct sign, 300 MonteCarlo simulations have been 
performed. The resulting distribution diagrams of the critical "Th-OFF" threshold 
voltages are shown in Figure 9 for both comparators. The chosen values are +9 mV 
and -9 mV for CMP1 and CMP2 respectively.  

The static current consumption of each comparator is about 110 nA and their 
minimum operating supply voltage is about 650 mV. 

The structures indicated with “OD” into Figure 8c are two common source 
configuration MOSFETs whose gate terminals are connected to the output node of 
CMP1 and CMP2 respectively and whose drain terminals are directly connected to 
two output pads. These MOSFETs were added to allow the comparator output 
voltages to be measured, so to verify their functionality, without adding a loading 
capacitance too high to their output nodes. 

2.4   Working Principle of "Soft" Driving and Design Methodology 

Figure 2b shows the active topology of the voltage doubler converter where the 
driving circuitry is realized with operational amplifiers OP1 and OP2. 

To introduce its working principle let us consider Figure 10 which shows the case 
of OP1. It is possible to apply Kirchhoff Voltage Law (KVL) to the external mesh: 

 
0VVV OSSDIN =−+                                     (1) 

 
If the operational amplifier has a DC gain equal to A the voltage on the gate of S1 is: 

 

ING VAV ⋅=                                            (2) 

 
Equations (1) and (2) can be solved as a function of VG: 

 
)VV(AV SDOSG −⋅=                                       (3) 

 
In the ideal case the DC gain A of the operational amplifier is infinite; as a 
consequence the difference in equation (3) has to vanish in order to have a finite value 
of the gate voltage. Thus a regulation loop modulates the gate voltage VG so to keep, 
for each value of the drain current, the source to drain voltage is equal to Vos. 
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Fig. 8. a), b) Designed circuital topologies of CMP1 and CMP2 respectively; c) picture of the 
diffused "hard" AC-DC converter 

 

 
 

Fig. 9. MonteCarlo simulations of the most critical threshold voltage of the designed comparators 
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Fig. 10. Regulation loop composed by the operational amplifier OP1 and MOSFET S1 

In the ideal case, when drain current is positive the regulation loop sets the 
working point of the MOSFET at the intersection between its characteristics and  
the offset voltage. When the current decreases, the loop moves the working point of 
the MOSFET at lower values of its source to gate voltage, until the current is equal to 
zero. At this point the regulation loop turns the MOSFET off: since there is no 
intersection between the MOSFET characteristics and the offset voltage, negative 
values of the current are not allowed and the regulation loop holds the transistor off. 
This principle intrinsically guarantees that, differently from the “hard” topology, no 
oscillations of the driving signal can take place. Furthermore, a negative current is 
impeded and the discharge of the capacitances is prevented. Symmetrical 
considerations apply to OP2. Differently from the “hard” approach, the value of Vos 
is not critical because it has simply to be far enough from zero so that the process 
mismatches will not change its sign. While it is true that an higher offset gives higher 
losses on the switch, they are still negligible for practical offset values (which can be 
easily designed in the tens of millivolts range). 

In practice, the real operational amplifier has a finite DC gain; this means that the 
value of the voltage across the MOSFET is slightly different from the theoretical one. 
Nevertheless it can be demonstrated that, with the previously described choice of the 
offset, this will not affect the operation of the circuit.  

Figure 11a shows the designed operational amplifiers while Figure 11b contains a 
picture of the diffused structure. Because of the level of their input voltages, OP1 and 
OP2 have to be supply compatible and ground compatible respectively. 

The bias of the operational amplifiers is given by the supply independent bias 
circuitry. The operational amplifiers have been designed so that they are able to work 
with the minimum possible value of the voltage supply. In this way the active rectifier 
takes over the passive one as soon as a very low energy has been stored into 
capacitance CS. A 5pF capacitance has been introduced to compensate the regulation 
loop. 
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The offset voltage was obtained mismatching the aspect ratio of the input 
MOSFETs MA and MB: the values of the obtained offset voltages are equal to 26mV 
and 21mV for OP1 and OP2 respectively. Figure 12 presents the simulation results of 
500 MonteCarlo iterations, showing the possible spread of these voltages. It is 
possible to see that this spread is sufficiently small to have the correct sign also with 
process mismatches.  

Aspect ratio of the MOSFETs S1 and S2 has to be chosen to avoid the loop 
saturation. The expression of the drain current when the MOSFET is turned on is, in a 
first approximation, equal to: 

 

DSthGSD V)VV(
L

W
ki −=                                    (4) 

 
where Vth is the threshold voltage of the MOSFET, W/L is its aspect ratio and k is its 
characteristic constant. 

The term into the parenthesis is the overdrive voltage: its value is modulated by the 
regulation loop which, for each drain current, varies the gate voltage. 

If the overdrive voltage is enough the source to drain voltage is equal to VOS, that is: 
 

OSthGSD V)VV(
L

W
ki −=                                 (5) 

 

 

 
 

Fig. 11. a) Schematic of the proposed operational amplifiers; b) picture of the diffused "soft" 
AC-DC converter 
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Fig. 12. MonteCarlo simulations of the offset voltages of the designed operational amplifiers 

 
On the other hand if, for a given current, the overdrive is not enough (which means 

that the op-amp is saturated) the regulation loop does not work and the source to drain 
voltage of S1 or S2 is not equal to offset voltage. 

The aspect ratio has to be designed to accommodate the maximum expected 
current.  

Tab. 2 resumes the characteristics obtained for the amplifiers: in particular the 
current consumption is about 200 nA for each amplifier. Vdd-min is the minimum 
supply voltage required by the operational amplifiers to work. 

Table 2. Characteristics of the designed operational Amplifiers 

 DC-GAIN 
[dB] 

Band-Width 
[Hz] 

Vdd-min 
[mV] 

Voffset 
[V] 

Current Consumption 
[nA] 

OP1 50.37 2500 730 26e-3 200 
OP2 49.78 2610 675 21e-3 200 

3   Experimental and Simulated Results 

Before evaluating the performances of the proposed solutions an experimental 
characterization of the supply independent bias circuit was realized. This was done 
using a stand alone version of the circuit depicted in Figure 13b: three MOSFETs Ma, 
Mb and Mc were added to amplify the bias current by a factor 30. This current is then 
converted into a voltage drop by means of an external resistance, equal to 2 MΩ. 
Experimental characterization was done supplying the bias circuit with a triangular 
waveform in the range 0-5 V. Figure 13a shows that, as soon as the supply voltage is 
higher than 680 mV, the circuit generates a constant voltage drop across the 2 MΩ 
resistance which corresponds to a constant bias current, as it was predicted by the 
simulations. 

The performances of the proposed solutions have been evaluated at different values 
of the load resistance RL; in particular, the considered figures of merit were the 
average power at the output of the piezoelectric transducer (PP) and the average power 
delivered to RL itself (PL). The load resistance was varied between 50 kΩ to 550 kΩ. 
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A passive voltage doubler, realized with BAT-86 Schottky diodes that have a 
threshold voltage equal to 0.2 V, was considered as a benchmark. This comparison is 
quite significant since the selected diodes as a forward voltage drop way lower than a 
standard diode and the passive solution does not have any additional consumption due 
to the control circuitry. 
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Fig. 13. a) Experimental results of the supply independent bias circuitry; b) circuitry used to do 
the characterization 

 
Figure 14 compares the experimental results of the "hard" solution with those of 

the passive converter. The piezoelectric transducer was mechanically excited at 
130 Hz and the acceleration was regulated so that the peak value of VPO was equal to 
1.5 V. 

The powers drawn from the piezoelectric transducer are comparable between the 
two cases. On the contrary, the output power of the "hard" solution is heavily affected 
at low load resistance values. This is due to the fact that at values lower than 100 kΩ 
the energy stored into CS, and hence the voltage across it, is not enough to switch the 
driving circuitry on and, as a consequence, only the well-source diodes of the passive 
path are exploited for the conversion. Conversely, at higher load values the converter 
works in the active way and the output power is higher with respect to the passive 
solution. This confirms that the lower forward voltage drop across the switches has 
positive effects on the output power, consistent enough to compensate for the power 
consumption of the control circuitry. 

Furthermore, the accuracy of the design has guaranteed that, in spite of the fact S1 
and S2 are switched off with a delay due to comparator threshold voltage, this does 
not affect the energy harvesting and makes the “hard” active converter a competitive 
solution with respect to the passive one. 
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Fig. 14. a, b) Experimental results about input and output powers (PP and PL) respectively. 
Comparison between active "digital" converter and passive converter, this was realized with 
Schottky BAT86 diodes. 

 
The performances of the "soft" solutions were evaluated at different values of the 

mechanical acceleration so to obtain different values of VPO (i.e., 1.5, 2 and 2.5 V); 
Figure 15 a, b show the obtained results, comparing them with the corresponding 
behaviour of the passive converter, as usual. It is possible to see that under any 
condition the “soft” converter draws a lower power from the piezoelectric transducer 
than the passive one. On an absolute scale this means that the combination of the 
piezoelectric transducer and the “soft” converter makes a less effective energy 
harvester.  

Returning to the interpretation of the experimental results the “soft” converter is 
generally less capable of extracting energy from the transducer with respect to both 
the “hard” rectifier and the passive one. 

At this point one should expect that also the power delivered to the load resistance 
PL is lower, but the experimental results of Figure 15 show that the two rectifiers are 
equivalent when VPO is 1.5V, that the active rectifier performs better at lower load 
resistance values for VPO=2, and that finally it outperforms the diode converter on a 
wide load range for VPO=2.5V. 

This means that the "soft" converter has an efficiency higher than the passive one 
and its advantage increases as VPO is higher. The reason is that the power 
consumption of the driving circuitry weights most at lower values of PP, that is at the 
lower values of input voltage. 

Coming to a comparison between the two proposed converters, when the threshold 
voltages have the correct sign, the performances of the "hard" solution (ref. Figure 14b) 
are better with respect to both "soft" and passive converter. 

Efficiency (η) of an energy conversion system is defined as the ratio between its 
output power with respect to its input power. This is usually used as figure of merit 
which allows to compare different solutions which work at the same output power; 
this means that the system which requires the lower input power is the better one, 
under the hypothesis that the input source could be able to supply an infinite input 
power. 
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Fig. 15. Measured input (PP) and output (PL) powers at different values of VPO, comparison 
between passive Schottky based converter and "analog" AC-DC converter 

 
Comparing the experimental results obtained at VPO=1.5 V (see Figure 16) for the 

three different AC-DC converters it is possible to see that their η can not be used as 
figure of merit to evaluate the performances of the energy harvesting system. In fact, 
the "soft" converter shows the better performance in terms of efficiency with respect 
any other solution, but it is equivalent at the passive one in terms of output power. 
Furthermore, "hard" solution outperforms any other converter in terms of output 
power. This is due to the fact that the input energy source, that is the piezoelectric 
transducer, is not an infinite energy source and its matching with the front-end 
circuitry is an important aspect which makes effectiveness the energy harvesting 
system. Furthermore, none of the systems is controlling the output voltage, hence the 
output power is not fixed, but it is the natural result of the behaviour of the entire 
system. All these considerations give strength to the choice of focusing on a different 
figure of merit (FoM) to compare the converters; for example this could be the ratio 
of the harvested power with respect to the maximum power theoretically available 
from the transducer. This last quantity can be defined studying the behaviour of a 
piezoelectric transducer, at no load condition, when exposed to a sinusoidal 
acceleration at frequency f which strains the transducer as shown in Figure 17.  

Starting from its rest condition at t0, that is no strain and no electrical charges on its 
plates, the cantilever reaches its maximum positive bending (and strain) at t1. At this 
point the collected electrical charge is QP and the piezoelectric output voltage is equal 
to VPO. If an ideal front-end circuitry could recover all of this charge, completely 
discharging the transducer, when the cantilever reaches its maximum negative 
deflection at t3 it will collect a negative charge two times higher (-2QP) because the 
deflection is doubled; in fact, at t2 the collected charge is already equal to -QP. As a 
consequence the piezoelectric peak voltage at t3 is equal to -2VPO and the transduced 
energy is: 

 

( ) 2
POP

2
POPtt VC2V2C

2

1
E

31
=−=−                                  (6) 

 

Now imagine that at t3, again ideally, capacitor CP is newly, fully discharged while, at 
the same time, the associated energy is stored. Since the excursion in the t3-t4 interval 
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starts with no charge on the capacitor plates, it evolves as a replica of what happened 
in the t1-t3 interval, only the sign of the voltage is inverted. This means that the 
available energy at t4 is equal to: 
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==−                                   (7) 

 
From this moment on the phenomenon continues to repeat itself with a periodicity 
equal to t4-t1. 

Summarizing the total energy that can be harvested during one cycle becomes: 
 

2
POPttttcycle VC4EEE

4331
=+= −−                            (8) 

 
Finally, the maximum power theoretically available from the transducer is: 

 

fVC4P 2
POPmax =                                            (9) 

 

The quantity expressed by (9) will be used to weight the power actually delivered to 
the load by the proposed rectifiers. This approach allows to compare the various 
circuits, but is also allows to quantify how effective a given circuit is in harvesting the 
power made available by the transducer. 

The figure of merit, which is function of RL, can be defined as: 
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Fig. 16. Efficiency of the AC-DC converters at VPO=1.5V against load resistance 
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Fig. 17. Mechanical strain of piezoelectric trasnducer when it is excited by a sinusoidal 
mechanical acceleration 

 
Figure 18 shows this figure of merit for the presented AC-DC converters in case of 

VPO equal to 1.5V. It is possible to see that "hard" topology outperforms both "soft" 
and passive ones but, at the same time, none of the converters is able to harvest all the 
power the transducer could deliver.  
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Fig. 18. Power harvested by the AC-DC converters with respect to the maximum defined in 
Equation 7 

4   Conclusions 

This paper presents two actives AC-DC converters which can be used into 
piezoelectric energy scavenging systems. The basic circuit is the voltage doubler 
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topology, where the switches are actively driven. The two considered driving 
circuitries are realized with comparators and operational amplifier respectively.  

It was shown that the first configuration, called “hard” is slightly more difficult to 
be designed than the second one, called “soft”. In particular the comparators need to 
have an hysteretic characteristic and if the value of the thresholds is different from the 
ideal one the efficiency of the converter could be significantly deteriorated. Hence a 
lot of effort is needed to minimize the process dependence of the thresholds. On the 
contrary, the “soft” configuration drives the switches with a regulation loop approach, 
which is far less sensitive to process uncertainties. 

A test chip has been diffused in STMicroelectronics 5V CMOS technology and 
experimental results are presented. The tests were realized using a piezoelectric 
transducer working in 31-mode, excited by a electro-dynamic shaker. 

The performances of the proposed active solutions were evaluated at different 
values of a load resistance and they were compared with the ones of a passive 
Schottky-based voltage doubler. The average power supplied by the piezoelectric 
transducer and the power delivered on a load resistance were measured. The 
experimental results show that, under the same mechanical excitation, the "hard" 
solution outperforms the other two converters in terms of power delivered to the 
resistive load. The "soft" solution was less effective because the delivered average 
power by the piezoelectric transducer was lower; this was probably due to a different 
matching between the piezoelectric transducer and the converter itself which is better 
in the "hard solution". The efficiencies of the three converters were compared at 
different load conditions. The "soft" solution, despite its lower effectiveness, has the 
higher efficiency values with respect to the other two converters: this means that the 
converter efficiency can not be used as the only figure of merit for an energy 
harvesting system, it is necessary to evaluate also the effectiveness of the converter in 
terms of average power harvested from the transducer and delivered to the load. 

To do this a dedicated figure of merit was introduced which compares the output 
power with the power that the transducer can theoretically deliver rather than with the 
power it actually delivers.  
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Abstract. Micro-spiral inductor dedicated to microbeads manipulation in a 
fluidic channel had been optimized by analytical modelling correlated to 
multi physics fem numerical Maxwell®3D L software. Main advantage of the 
analytical model described below is time analysis calculus decrease of and 
the capability offered to optimize geometrical and electrical parameters of the 
inductor. First experimental results show a good correlation between 
simulation and realized integrating micro-devices in a fluidic channel. 

Keywords: Analytical model, Finite element method, Magnetic field / force, 
Magnetic actuators, magnetic bead separation. 

1   Introduction 

Lab-On-Chip micro-systems with embedded analysis are the two major concepts of 
MEMS dedicated to fluidic applications. In order to realize biochemical analysis or 
pharmacological screening, separation of biological species, we propose magnetic 
bead as a very useful technique. In most cases, the magnetic activation is macroscopic 
and positioned outside of the system. As these approaches limits strongly the MEMS 
integrating process, we develop in LAAS-CNRS lab, a multi-functional magnetic 
source in order to realize a complete fluidic micro-system for handling paramagnetic 
beads. 

By reporting here first works dedicated to model the behaviour of magnetic 
sources and the forces generated on microbeads, we present two methods allowing to 
determine magnetic field generated by a planar inductor: one entirely analytical and 
other by using the multi-physics software Maxwell®3D. Comparisons are discussed 
in terms of performances, accuracy, and CPU time computation. As a complementary 
part, we present first technological results of research (in progress) in order to 
integrate a family of inductors in channels. These preliminary devices confirm the 
feasibility of our approach.  
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2   Determination of Magnetic Field Distribution in a 3D Space. 
Analytical Modeling 

The magnetostatic field induced by a DC current flowing in an electric conductor is 
given by the following two Maxwell’s equations:  

× =   (1) 

 (2) 

With the following constitutive (material) relationship being also applicable: 

µ µ µ
 

(3) 

• H(x, y, z) is the magnetic field strength 
• B(x, y, z) is the magnetic flux density. 
• J(x, y, z) is the conduction current density. 
• Mp(x, y, z) is the permanent magnetization. 

• µ0 = 4 10 7 . 1 is the permeability of vacuum. 

• µ   is the relative permeability. 

First, we consider all the segments constituting the inductor which coordinates are  
[αi ωi] in ℜ  frame (Figure 1). 

Geometrical and electrical characteristics are:  

• L1 : length to the first segment of the inductor (axis Ox) 
• L2 : length to the second segment of the inductor (Oy) 
• N : number of spires, 
• s : inter-coil distance, 
• I : current in all segments 
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Fig. 1. Equivalent topology of planar inductor and display results for five spires inductor 
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In order to evaluate quickly magnetic field generated by the induction coil, we 
consider the inductor in frame ℜ  like a set of elementary segments where the 
magnetic field B is first obtained for each segment [αi ωi], and the total magnetic field 
will be determined by summation of each elementary field calculated in the frame ′ℜ  

A. STEP1: Magnetic field expression B(x ',y',z ')  created by a single segment in 

′ℜ  

We consider M point, included in the (x0y) area where we define [α, ω] segment. We 
define the orthonormal frame ′ℜ  with α origin, and first axis [α, ω], Figure 2. 
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Fig. 2. Magnetic field created by the [α ω] segment at point M 

Distance d between point M and [α, ω] segment is evaluated by the equation:  

2 2d y z= +  
(4) 

Using 2 1,θ θ  angles defined in Figure 2, the magnetic field 
'

B( x ',y ',z ') |ℜ  in ′ℜ  

frame is: 

0
' 1 2

I
B( x ',y ',z ') | sin sin z '

4 d

μ
θ θ

πℜ
⎡ ⎤= −⎢ ⎥⎣ ⎦  (5) 

where 1
1

x
tan

d
θ −

⎛ ⎞⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠
and seg1

2

L x
tan

d
θ −

⎛ ⎞− ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
 

B. STEP2: Summation of all magnetic fieldB segments  

The ′ℜ  frame is obtained by a translation of T vector and a linear transformation 
through [P] matrix (Figure 3).  
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'
OM | T | P M |αℜ ℜ ℜ

⎡ ⎤= + ⋅⎢ ⎥⎣ ⎦  (6) 

With: 

T Oα= , x '
αω

αω
=  , 

M
z'

M

αω α

αω α

×
=

×
, y' z ' x '= ×  (7) 

Where (× is vector product). 
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Fig. 3. ℜ↔ ′ℜ frame definitions 

Combining M coordinates with α and ω points, we obtain scalar elements of [P] 

matrix by concatenation ofx ', y', z ' : 

P x ' | y' | z '⎡ ⎤= ⎢ ⎥⎣ ⎦  (8) 

M point coordinates are showing in ℜ  frame. For calculus of every components of Bi, 
it’s required to transfer this coordinates in ′ℜ  according to (Figure 4): 

( )
i

T
i '
M | P OM | T |α

ℜ ℜ ℜ
= ⋅ −  (9) 

Considering, 
ii i 'B | P B |ℜ ℜ= ⋅ magnetic field associated to [αi, ωi] segment, the total 

magnetic field is obtain by summation  of every Bi components:  

segN

tot i
i 1

B | B |
ℜ ℜ

=

= ∑  (10) 
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Fig. 4. Coordinates systems describing the micro-inductor and the global magnetic field at M 
point 

C. Estimation of magnetic field of planar induction  

Figure 5, represents the magnetic field computed with our algorithm, for a inductor 
with 5 spires, side 100 µm by 100 µm covered by an electrical current I = 5 mA at 
high z = 50 µm. 
 

(a) (b) 

(c) (d) 
 

 

Fig. 5. Magnetic field computed: (a) modulus; (b) along Oz axis, (c) along Ox axis, (d) along 
Oy axis 
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We can observe that the z component present an extrema above the center of the 
inductor and a value close to zero along Ox and Oy. 

3   Validation of the Analytical Approach 

In order to check the validity of the previous analytical modelling, we compare results 
obtained width the Maxwell®3D software and hence a FEM approach with those 
obtained with our model. 

The electric field is restricted to the objects modelled as real (non ideal) conductors 
and is totally decoupled from the magnetic field. We consider that there no time 
variation effects and objects are considered to be stationary. So previously, the 
magnetostatic field solution verifies the Maxwell's equations. The MAXWELL3D 
magnetostatic solver considers the magnetic field H with the following components: 

H = Hp + + Hc  
(11) 

Where  is the magnetic scalar potential, Hp  is a particular solution constructed by 

assigning values to all the edges in the mesh in such a way that Ampere's law holds on 

all contours of all tetrahedral faces in the mesh, and Hc  accounts for permanent magnet 
if any. Thus, the Degrees Of Freedom (DOFs) are the nodal values of the magnetic 
scalar potential with ten values per tetrahedron at each of the four vertices and all six 
mid edge nodes, ensuring a quadratic approximation inside each finite element. 

There are major advantages of this formulation over other existing ones, including 
using considerably fewer computational resources (due to the scalar nature of the 
DOFs), not requiring a gauge due to excellent numerical stability, significantly 
reducing cancellation errors, and capably of automatically multiplying connected iron 
regions. The magnetostatic solver handles both 3D linear and nonlinear problems. The 
magnetostatic solver calculates the magnetic field distribution produced by a 
combination of known DC current density vector distribution (Figure 6). 

 

 

 

Fig. 6. 3D representation of the magnetic field. a) in (X, Z) plan and b) in (X, Y) plan 



 Trapping Biological Species in a Lab-on-Chip Microsystem 87 

 
 

Fig. 7. Magnetic field calculated by analytical and finite element methods 

Various coil designs have been simulated with the use of MAXWELL3D. For 
example, Figure 6 shows the magnetic field calculated for a micro-coil with 5 turns, a 
conductor square section of 5µm × 5µm and a 50mA current.  

The comparison between analytical and FEM modelling of magnetic field B  is 
detailed in Figure 7, where we have reported the values of B calculated at different 
heights z from the coil. 

These results confirm the good correlation between the two methods and fully 
validate the efficiency of the analytical model. Thus we can assume that the analytical 
model developed is powerful for parametric optimization. 

4   Application: Magnetic Beads Trapping 

Using our analytical model, we have optimized the design of an integrated magnetic 
actuator dedicated to the manipulation of microbeads in lab on chip devices. The 
criterion of optimization was to obtain magnetic force allowing the trapping super 
paramagnetic microbeads in micro-channels. The magnetic forces have been 
calculated starting from the simulation results. For this purpose, we have integrated 
some micro-inductors in a micro-fluidic device made entirely with a biocompatible 
SU-8 polymer. This prototype will undergo a series of characterization and validation. 

5   Magnetic Force Exerted on a Magnetic Microbead 

The force  exerted by a magnetic field on a particle is represented by the gradient 

of the magnetic interaction energy of the particle immersed in the magnetic field. 
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Fpm = Upm  
(12) 

The magnetic energy can be expressed by: 

Upm = 1
2
μ0 Mp .H. dv  

(13) 

Where µ0 = 4 10 7 . 1 is the vacuum permeability and  the 

magnetizing of this particle by the magnetic field of excitation . 
In the case of a particle with very small dimension, the integration of (13) is then 

replaced by the value of the field in the center of the particle multiplied by the volume 
 of this particle: 

Upm = 1
2
Vpμ0Mp.H

 
(14) 

In air or the vacuum, a diamagnetic or paramagnetic micro particle acquires a 

magnetizing  which a function of the magnetic susceptibility , the field of 
excitation  and the demagnetization coefficient D (D = 1/3 for a sphere, D=1 for a 
parallelepiped, D = 0 long bar). 

Mp =
p

1+ p .D
H

 
(15) 

It is considered that 1 + . 1  and equation (15) can be simplified: 

Mp = pH  
(16) 

Equation (14) becomes then: 

Upm = 1
2
Vpμ0 p|H|²

 
(17) 

The expression of the magnetic force deduced from (12) and (17) is given by: 

Fpm = μ0Vp p(H. )H
 

(18) 

This expression shows that direction of the force does not depend on the field sign but 
of the product of field with its gradient. Its orientation is also related to the 
susceptibility of the particle. The total magnetic force exerted on the particle is given 
by: 

FMagTtl = Fpm + Ffm = μ0Vp( p f)(H. )H
 

(19) 

Because of very low value of susceptibility of the immersing medium 

(  we assume that the magnetic field induced by the 
medium can be neglected and that: 

B = Bcoil = 0H  (20) 
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The equation of the total magnetic force becomes: 

 
(21) 

The components of the magnetic force in a Cartesian reference mark are expressed by: 

 

(22) 

Thus in the case of a super paramagnetic particle in a conveying fluid like water, the 
particle is attracted towards magnetic field maxima. 

By convention, the magnetic actuator (coils) being in (X, Z) plan, the force is taken 
into account only in the (X, Z) plan (Figure 8) and: 

 
(23) 

F
 

(24) 

 

 

Fmz 

Fmx 

(a) (b) 

Fig. 8. (a) Sight 3D of the device and the plan (X, Z) where is represented the distribution of 
the magnetic field B. In red, the fluidic channel where calculations of the forces for different 
height are localized. (b) Graphic of the magnetic forces according to X and Z obtained by the 
post-processing. 
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6   Technological Realizations 

6.1   Process Flow for the Fabrication of Integrated Microsystem 

One of the main tasks of this work was to develop a generic polymer based 
technology in order to manufacture a microfluidic device able to trap functionalized 
micro beads. As it will be shown below, this technology combines standard 
electroplating technique and lamination technologies in order to achieve flexible and 
transparent full polymer systems with the precision and reliability of “stat-of-the-art” 
microsystems. The requirements for the integrated microsystem are: 

→ accurate alignment between the fluidic levels 
→ high reliability process 
→ flexible microsystem 
→ optically transparent material 
→ biocompatibility. 

According to these criteria, we have chose to utilize the polyethylene terephthalate 
layer (PET sheet, for the flexibility) as a “sacrificial” material, the epoxy-based 
negative photoresist SU-8 on the structural material for the microfluidic network 
(transparency, biocompatibility, very high aspect ratio…) and copper for the 
electroplating process of the micro-coil. The technological process flow can be 
described in Figure 9. 

 
 

Substrate preparation: Si + PET  Ti/Au deposition (1000/8000 Å): 
lift-off 

SU-8 deposition (1µm): L1, 
electrical insulation 

SU-8 structuring: L1, electrical 
VIA  

Ti/Cu (500/500 Å) deposition for 
electroplating  

Copper electroplating (5µm) 

SU-8 deposition (10µm): L2, 
channel bottom 

SU-8 structuring (50µm): L3, 
channel walls 

SU-8 dry film (10µm) lamination: 
L4, channel lid 

Final integrated microsystem 
released  

Si substrate

PET sheet

Ti/ Au 

SU-8 Microchem (3005, 3025, 3050)

Cu electroplated

Ti/ Cu 

 

Fig. 9. Process flowchart for the fabrication of the flexible integrated microsystem 
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As a first step, a PET sheet (50µm Polyethylene Terephthalate film) is laminated 
on the top of a silicon wafer. The PET was chosen for its poor adhesion properties and 
transparency. Then, conductive tracks are patterned (Ti/Au) by lift-off processing 
(Figure 10 (a)). A layer of SU-8 (Microchem 3005) is deposited on top of the 
structure in order to perform electrical insulation between conductive tracks and coils, 
and to create electrical VIA (Figure 10 (b)). A seed layer of Ti/Cu (500/500 Å) is 
deposited followed by the deposition and patterning of a positive photoresist 
(AZ4562) in order to create the electroplating mold. Then, copper coils are 
electroplated (5µm) into the resist mould (Figure 10 (c)) and the photoresist and seed 
layers (Ti/Cu) are removed.  

  

(a) (b) (c) 
 

Fig. 10. SEM pictures of the different steps processing 

A layer of SU-8 negative photoresist (Microchem 3005, 10µm) is spin-coated and 
patterned to form the channel bottom and insulate microcoils from flowing liquids. 
Microfluidic network is then fabricated: channel height and width are respectively 50 
and 500µm, and thickness of the channel lid is 10µm. The SU-8 microfluidic network 
is optically transparent (n = 1.8) as demonstrate on Figure 11 and allows therefore 
optical detection and characterization of the microsystem. The resulting device was 
finally released from the substrate thanks to the poor adhesion of the PET layer. 

 
 

Micro-inductor 

Micro-channel 

 

Fig. 11. Photographs of the flexible integrated microsystem with SU-8 microfluidic network 

6.2   Magnetic Microbeads Trapping 

Magnetic micro and nano-beads have proven to be very interesting and reliable tool in 
biological and chemical analysis in recent years. Separation or purification are often 
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practiced using magnetic labeled beads in biological laboratory and sometimes for 
biomedical diagnosis [1, 2]. The experimental procedure for the realization of an 
experimental bead separation is illustrated in Figure 12. In general, bead based 
bioanalysis protocols use permanent magnet [3, 4] and repeat a specific sequence 
manipulation. 

(a) (b)
 

Fig. 12. Procedural sequences for magnetic bead separation. a) Magnetic bead labeled 
incubation with antigen target. b) Separation of magnetic bead to the solution. 

In a first step, magnetic microbeads are functionalized with a probe (antibody) 
specific of the targeted molecule. Then, the target (antigen) contain in the sample is 
recognized by the probe and adsorbs specifically on the microbead surface. Finally, 
microbeads are trapped by an permanent magnet. The goal of our study was to 
implement such kind of protocol in a lab on chip device integrating a 
microelectromagnet. Compared to permanent magnets, electromagnets offer a higher 
flexibility and a higher control of magnetic field. Since small dimensions are able to 
be manufactured in microfluidic system, the combination of microelectromagnets and 
microfluidic network offers an interesting approach to this integrated microsystem  
[5, 6, 7 and 8].  

6.3   Real Time Experimentation and Validation 

The choice of the type of magnetic microbeads depends on the application 
specifications. In this study, we choose to use Dynabeads® M500 Subcellular 
microbeads and Dynabeads® M270 Carboxylic Acid with diameter of respectively 5 
µm and 2.8µm. Figure 13 shows a SEM photograph of Dynabeads® M270 and an 
optical picture of microbeads in microfluidic channel. 

In order to validate our technological concept, chips integrating 
microelectromagnets in a microfluidic channel have been fabricated. Magnetic bead 
separation has been performed using these systems. Figure 14 shows a schematic 
overview (a) and cross-section (b) of the system. 
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(a) (b) (c) (d) 
 

 

Fig. 13. SEM photographs of Dynabeads M270 (a, b and c), and optical picture of flow 
microbeads in micro-channels (d) 

Electromagnet

6 mm (a)

(b)

Fluid access
Micro-channel

Boundary 

Microbead

Fz
Fx

 

Fig. 14. The complete microsystem. a) An overview of the chips with three 
microelectromagnets, the micro-channel with flow inlet and outlet. b) A cross-section of the chip 

The experimental setup is shown in Figure 15. The instrumental bench includes a 
CCD camera for recording of bead trapping, a syringe for dispensing the liquid 
sample and a DC power supply. 

A driving current of 50mA was applied to the inductor. Experimentation were 
performed using a square micro-coils with 5 turns and a square section (5µm*5µm). 

The video frame is constituting by 12 frames per second. The main steps of 
trapping are reported on Figure 16: 

 Firsr we present the magnetic microbead contained in the microfluidic 
channel before supplying current to the microelectromagnet (0s). 

 Then, current was applied to the microelectromagnet and microbeads are 
trapped at the micro-channel bottom just above the micro-coils (transient 
analysis from 10s to 100s). 
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Fig. 15. Experimental setup to test and demonstrate our microbead handling 

  
  

0s 10s 30s 

60s 100s 
 

Fig. 16. Magnetic beads trapping using our microelectromagnets. (0s) without excitation 
applied. (10s to 100s) after excitation (I=50mA) applied to the microelectromagnet: trapping 
beads. 

Figure 17 shows a comparison between real time magnetic beads trapping and 
modeling to magnetic field distribution around the microelectromagnets. 

This example put the stress on the good correlation between our Finite Element 
approach and our experimental realization. Future work will be done to further 
improve the trapping and sorting efficiency of the flexible integrated microsystem by 
a design optimization of our microelectromagnets and microfluidic network. 
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(a) (b) 
 

 

Fig. 17. Comparison between our real time experimentation and modeling: magnetic field 
repartition around the microelectromagnet 

7   Conclusion 

In this study, we describe magnetic field modelling created by a planar micro-
inductor. A 3D model of the micro-spiral inductor was been realized by using our 
own analytical model and by using a second method based on COMSOL 
Multiphysics software. These two approaches allow us to check the magnetic field 
distribution generated by the inductor and the force exerted on magnetic bead. All 
these studies show that many parameters can influence the inter-action between the 
bead and the micro-spiral inductor. The model offer the behaviour response to any 
electrical current and can optimized geometrical coil parameters respect to 
microbeads and fluid characteristics. The first experimental results with a fluidic 
structure fabricated entirely in a biocompatible polymer give to our approach a novel 
dynamic and validate the concept and its analytical model used for actuating the 
biological species.  
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Abstract. This work presents a new style of gate-level reconfigurable cells 
based on the double-gate (DG) MOSFET device. The proposed dynamic- and 
static-logic cells demonstrate significant gate area reductions compared to 
conventional CMOS lookup table (LUT) techniques (between 80-95%) while 
configuration memory requirements are also reduced (up to 60%). Simulation 
results show that it can be used either in low power reconfigurable applications 
(up to 90% power reduction is possible) or for speeds comparable to those of 
CMOS-LUTs. 

1   Introduction 

The necessary structuring of the projected tens of billions of elementary, unreliable, 
nanometric devices to achieve the computing capacities necessary for future software 
applications will lead to the emergence of reconfigurable platforms as the principal 
computing fabric before the end of the next decade. The reconfigurable approach 
allows volume manufacturing and reduces the impact of the evolution of mask costs, 
projected to move above the $10M mark in 2010 [1]; can efficiently cover a broad 
range of applications while exceeding performance levels of programmable systems; 
and couples naturally to fault-tolerant design techniques for robust architectures. 

Gate-level, or fine-grain, reconfigurability enables benefits in terms of silicon real 
estate, since it makes it possible to reduce the number of logic cells necessary to 
implement a given switching function (in comparison to the implementation of these 
functions with conventional logic). It also makes it possible to simplify the 
interconnect network, reducing area and the parasitic capacitances due to routing. It 
can thus be expected to reduce dynamic power dissipation and improve speed. These 
two performance metrics are often the weak points of the various types of 
reconfigurable circuits (FPGA, coarse-grain reconfigurable systems) compared to 
"full-custom" solutions. 

While CMOS device scaling has led to increasingly better performances, higher 
packing density and lower cost per device, short channel effects have become difficult 
to control [1]. To pursue performance improvement in conventional planar bulk 
CMOS devices, channel doping will have to be increased with scaling to almost 
impossibly high values, which will cause a reduction in mobility and high leakage 
current (and static power dissipation) due to band-to-band tunneling between the drain 
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and the bulk. Also, the total number of dopants in the channel for very small 
MOSFETs is increasingly low, resulting in extremely high fluctuataions in the 
number of dopants, and hence unacceptably large statistical variation of the threshold 
voltage. These difficulties, especially power dissipation and variability, have 
introduced the need for new device architectures and the emergence of structures with 
improved and more flexible electrostatic control of the channel. 

Ultra-thin body, fully depleted (UTB FD) SOI MOSFETs represent one solution 
where channel doping is relatively low; in these devices, the threshold voltage can be 
set by adjusting the work function of the gate electrode, rather than by doping the 
channel as in planar bulk MOSFETs. Metal gate electrodes with work functions 
tunable within a few hundred meV above and below midgap should be used to set the 
threshold voltage to the desired values. Single gate SOI MOSFETs are projected for 
2010 for high-performance logic. Multiple-gate, ultra-thin body, fully depleted 
MOSFETs, in both planar (DG MOSFET) and vertical dispositions (FinFET), are 
both more complex and more scalable, and are projected to be implemented in 2011 
for high-performance logic. 

The Double-Gate (DG) MOSFET on FD SOI  technology is known as a promising 
advanced device which, thanks to the double-gate structure, is expected to overcome 
drawbacks of the conventional MOSFET in nanometric technologies. Compared to its 
counterpart single gate FD SOI MOSFET, the DG SOI MOSFET reduces the short 
channel effects and improves the sub-threshold slope and drive current [2][3][4] while 
benefiting from the advantages of FD SOI technology. These include reduced latch-
up, reduced parasitic source and drain capacitances, smaller sensitivity to temperature 
variation and reduced leakage current [5]. The double-gate structure allows 
independent switching of the gates or dynamic adjusting of the threshold voltage. In 
more conventional (single gate) device structures, a dynamic Vth variation can be 
achieved by varying the body or back gate voltage for bulk and fully depleted SOI 
devices respectively. However, since all devices share the same well or substrate (for 
bulk devices) or the same back-gate (for single gate FD SOI devices), dynamic Vth 
variation for individual transistors is either highly impractical or impossible to 
achieve. 

Partially depleted SOI devices are better suited to dynamic adjustment of the 
threshold voltage since the body is isolated and can thus be contacted to a separate 
bias potential per device. However, double gate SOI MOSFETs offer the same 
flexibility as PD SOI single gate MOSFETs with regard to this dynamic Vth 
adjustment. Moreover, it has been demonstrated that an independent control of front 
and back gates can be exploited to reduce both dynamic power and sensing delay in a 
sense amplifier design [6]. It can also be used to merge parallel transistors [7] and 
thus reduce dynamic power through the reduction of parasitic capacitance, as well as 
static power. Furthermore, designers can choose between different types (symmetric 
or asymmetric [3]) of DG MOSFET devices, in order to make the threshold voltage 
tailored to the requirements of circuit operation. This makes it well-suited for some 
leakage power management circuit techniques commonly used in digital circuit 
design. Furthermore, it allows consideration of new design approaches. However, all 
these advantages come at the expense of a higher switching gate capacitance (in the  
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case of the connected gates scheme) and a die area penalty compared to the single 
gate device. 

Such devices enable designers to achieve improved density, power and speed 
metrics [3][4][7][8] in logic cells. Further, with four accessible terminals, these 
devices also offer the opportunity to design novel building blocks exploiting the 
additional terminal for reconfigurability purposes [9]. In this work, we cover the 
principles of the design of m-input DG MOSFET reconfigurable cells in both 
dynamic- and static-logic forms. These principles are applied to the design of 2-input 
cells, and the simulated results are then compared to those of conventional CMOS 
LUT techniques. 

2   Generic m-Input Reconfigurable Cell 

The main tenet of our approach lies in the construction of cells containing n- and p-
networks for which the data-switching properties can be modified with control 
voltages applied to the back gates of DGMOS transistors. This dynamically modifies 
the threshold voltage of individual devices. The behavior of an n-type DGMOS 
device according to the applied back gate voltage can be roughly described as 
follows: 

 

• when a sufficiently positive voltage V+ is applied, the device is always on 
(regardless of front gate voltage). In other terms, the threshold voltage is lowered 
to below the lowest voltage applied to the front gate (e.g. logic "0"). 

• when 0V is applied, normal operation is achieved, i.e. device switching depends on 
the front gate voltage. 

• when a sufficiently negative voltage V- is applied, the device is always off 
(regardless of front gate voltage). In other terms, the threshold voltage is raised to 
above the highest voltage applied to the front gate (e.g. logic "1"). 
 

This behavior is shown in simulations for both n-type and p-type devices in Figure 1. 
These simulations are for individual devices with W/L=0.25µm/0.13µm with 1.2nm 
front- and back-gate oxide thicknesses, and use a double-gate FD-SOI/CMOS 
technology model implemented in Verilog-A. This explicit analytical charge-based 
compact model of independent double gate MOSFET devices is based on Poisson and 
field continuity equations and demonstrates <2% drain current value error with 
respect to Atlas simulations over all regions of operation and for both long and short 
channel devices. It has also been extensively validated against experimental device 
characteristics. Further details of the model are outside the scope of this work and can 
be found in [10]. 

For certain branches it is necessary to use asymmetric devices to achieve a 
dominant influence of the control voltage on the transistor behavior. Previous work in 
this field [9] has been inconclusive since only symmetric devices were used, resulting 
in a circuit structure with limited functionality and unsatisfactory performance. 
Asymmetric devices provide additional degrees of freedom and can be achieved with 
different oxide thicknesses or different gate workfunctions (i.e. with different gate  
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metals). Our work is based on the former approach, with front-gate oxide thickness 
Toxf=2.5nm or 5nm (depending on the degree of asymmetric control required – 
increasing the oxide thickness also increases leakage current) and back-gate oxide 
thickness Toxb=1.2nm. Simulated Ids-Vgs characteristics show (for an N-type device of 
the previously cited dimensions with Toxf=2.5nm, Vbgn=0V) a slight (15%) increase in 
Ioff, and a more significant (45%) decrease in Ion. Again, the model used has been 
extensively corroborated against technology simulations. 
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Fig. 1. Log Ids-Vgs plot of n-type and p-type DGMOS model with independent gate control 

2.1   Dynamic-Logic Reconfigurable Cell DG-DLRC 

The general principle for building an m-bit dynamic-logic reconfigurable cell (DG-
DLRC) is shown in Figure 2. This novel structure uses n-type dynamic logic, where a 
switching network composed of n-type devices is sandwiched between clocked 
precharge and evaluation switches (Mpc and Mev respectively), and allows conditional 
discharge of the output node F during the evaluation phase. The n-type device 
network that realizes the logic functions is composed of: 

 
• one branch containing a stack of m symmetric DG MOSFETs 
• (m-1) branches each containing a single asymmetric DG MOSFET (with Toxf > 

Toxb). 
 

The front gates of these devices are controlled by the m logic inputs. 2(m-1) control 
signals are applied to the back gates to configure the logic function dynamically. 
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Fig. 2. Generic DGMOS dynamic-logic reconfigurable cell (DG-DLRC) 

Dynamic logic is generally more compact (in terms of device count) than static 
complementary logic when implementing complex logic functions, since it does not 
require a complementary p-device network and thus demonstrates reduced total parasitic 
capacitance and silicon area, in particular for cells with a large number of inputs. 
However, this approach requires clock lines and imposes more stringent constraints on 
device off currents, since leakage leads to a deterioration of calculated results. 

A simple set of configuration codes (i.e. back-gate voltage sets) can be applied to 
configure an m-input reconfigurable cell to a particular logic function from those 
available (NAND, NOR, INV). After having identified the type of function, the 
presence of each input Dx (∀x∈{2,m}) is evaluated, enabling the corresponding 
configuration codes {Cxa,Cxb} to be extracted from Table 1. 

Table 1. General configuration code table for m-input DG-DLRC 

Dx present in expression Dx absent from expression Function 
Cxa Cxb Cxa Cxb 

NAND 0 V- V+ V- 
NOR     V-    1 0    V-    1 V- 
INV V- 0    V-    1 V- 
 
For the NAND-configuration, 0V is applied to Cxa such that transistor Mxa operates 

as a normal n-transistor (i.e. on or off for Dx equal to logic "1" or "0" respectively) 
when Dx is present in the expression. If Dx is not in the expression, then transistor Mxa 
is turned completely on with Cxa=V+. Independently of the presence of Dx in the 
expression, V- is applied to Cxb to turn transistor Mxb off (regardless of the logic value 
                                                           
1 Unless D1 is present in the expression (in this case, Cxa=V+). 
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of Dx). An asymmetric device must be used for Mxb to increase the front-gate 
threshold voltage and thus enable complete turn-off in the NAND-configuration.  
The value of V- must be chosen with respect to the gate breakdown voltage limitation. 
The resulting effective threshold voltage is chosen such that the functionality of the 
NAND-configuration is met without affecting that of the NOR or INV configurations. 

In the NOR-configuration and when D1 is present in the expression, V+ is applied 
to Cxa in order to significantly decrease the threshold voltage of Mxa and turn it 
completely on, regardless of the logic state of the signal at the front gate. If D1 is not 
in the expression, then transistor Mxa must be turned off with Cxa=V-. If Dx is in the 
expression, then 0V is applied to Cxb for normal operation of transistor Mxb, otherwise 
Mxb is turned off with Cxb=V-. 

In the INV-configurations, a single branch is activated to switch with D1 only (by 
turning Mxa completely on with Cxa=V+, and turning Mxb completely off with Cxb=V-) 
or with Dx only (by turning Mxa completely off with Cxa=V-, and selecting normal 
operation with Mxb by applying Cxb=0). For the latter operation, it is also possible to 
use Cxa=0V to include Mxa in switching with Dx (all other control voltages in this 
branch should then be set to V+), but this results in non-deterministic timing behavior 
(since the drive strength depends on the state of D1). 

2.2   Static-Logic Reconfigurable Cell DG-SLRC 

Static logic styles generally feature better noise immunity than dynamic logic, and thus 
are well-suited to applications that require resistance to harsh environments. The novel 
m-bit static-logic reconfigurable cell structure (DG-SLRC) is shown in Figure 3. In  
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Fig. 3. Generic DGMOS static-logic reconfigurable cell (DG-SLRC) 
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addition to the n-device branch described in the previous section, DG-SLRC requires a 
p-device branch composed of: 
 

• one network containing m parallel asymmetric DG MOSFETs (with Toxf > Toxb) 
• a stack of (m-1) symmetric DG MOSFETs. 

 

As before, the front gates of these devices are controlled by the m logic inputs. 4(m-1) 
control signals are applied to the back gates in order to configure the logic function at 
the output dynamically. The configuration codes {Cxa,Cxb} to be extracted for the 
various functions are given in Table 2. 

Table 2. General configuration code table for m-input DG-SLRC 

Dx present in expression Dx absent from expression Function 
Cxa Cxb Cxc Cxd Cxa Cxb Cxc Cxd 

NAND 0 V- V+ 0 V+ V- V+ 0 
NOR    V-  2 0 V+ V+    V-    2 V-    0    2 0 
INV V- 0 0 V+    V-    2 V- V+ 0 

 
In the NAND-configuration and when Dx is present in the expression, 0V is applied 

to Cxa for normal operation of transistor Mxa, while V- is applied to Cxb. Since Mxb is 
asymmetric, this device is turned completely off, regardless of the value of Dx. V

+ is 
applied to Cxc for normal operation of Mxc, while 0V is applied to Cxd in order to turn 
Mxd on regardless of the value of Dx. If Dx is not present in the expression, then Mxa is 
turned completely on (Cxa=V+) and Mxb completely off (Cxa=V-). Here again, 0V is 
applied to Cxd in order to turn Mxd on regardless of the value of Dx. V

+ is applied to Cxc; 
this voltage does not ensure that the p-type DG MOSFET Mxc is switched completely 
off, although the off-state is nearly reached due to the asymmetric structure of Mxc with 
high Toxf. However, this situation means that power performance is likely to be poor, 
and the output logic "0" level is degraded (simulation results in the 2-input case show 
60mV). To avoid this, the strength (i.e. W/L) of Mxc must be reduced. 

In the NOR-configuration and when D1 is present in the expression, V+ is applied 
to Cxa in order to ensure Mxa is always on, while 0V is applied to Cxb for normal 
operation of transistor Mxb (if Dx is in the expression; otherwise Mxb is turned off with 
Cxb=V-). If D1 is not in the expression, then transistor Mxa must be turned off and V- is 
applied to Cxa. In the p-device network, V+ is applied to Cxc to approach the off-state 
of Mxc if D1 is in the expression (Cxc=0V and Mxc is completely on if not) and V+ is 
applied to Cxd for normal operation of Mxd (if Dx is in the expression; otherwise Mxd is 
turned on with Cxd=0V). 

In the INV-configurations, a single branch is activated to switch with D1 only or with 
Dx only. In the first case, in the n-device network Mxa is turned completely on with 
Cxa=V+, and Mxb completely off with Cxb=V-; while in the p-device network we apply 
Cxd=0V to turn Mxd completely on, and Cxc=V+ to approach the off-state for Mxc. In the 
second case, we turn Mxa completely off with Cxa=V-, and select normal operation for 
Mxb by applying Cxb=0V in the n-device network; while in the p-device network we set 
Cxd=V+ to achieve Dx-dependent switching, and Cxc=0V to turn Mxc completely on. 

                                                           
2 Unless D1 is present in the expression (in this case, Cxa=V+). 
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3   Tests with Two-Input DG-XLRC 

In this section we consider the implementation, in both dynamic- and static-logic 
forms, of the previously presented reconfigurable cell in its 2-input form. The design 
of the cells was based on the double-gate FD-SOI/CMOS technology model 
mentioned earlier, and simulations were performed throughout with a calculation rate 
of 50Mbit/s (i.e. data period=20ns), using signal rise and fall times of 40ps. The load 
capacitance considered was 5fF. 

3.1   Two-Input DG-DLRC 

Figure 4 illustrates the 2-input reconfigurable cell (with logic inputs D1=A and D2=B), 
implemented with DG devices and based on dynamic logic [11]. Transistors M1, M4, 
and M5 depict symmetric DG devices (i.e. symmetric oxide thicknesses and 
workfunctions for the front and back gates) with connected front and back gates. 
Transistor M2 depicts a symmetric DG device, while transistor M3 depicts an 
asymmetric DG device. Both M2 and M3 use independent gate control. For this mixed 
(symmetric and asymmetric devices) cell denoted DG-DLRC_mixed, asymmetric 
biasing is used with {V+,V-}={1.0V,-0.5V}. 

Another variant of the cell, DG-DLRC_asymm, uses only asymmetric DG 
MOSFETs. The use of the same device type in the cell can be more convenient since 
it eases circuit fabrication. In this case, Vdd=0.6V to achieve symmetric gate biasing 
on C2a and C2b where {V+,V-}={+0.6V,-0.6V} while using a maximum absolute gate-
source and gate-drain voltage value of 1.2V . 
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Fig. 4. Two-input DG-DLRC 
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Table 3 shows the logic state of the cell output (node F) with respect to the applied 
back gate voltages on the C2a and C2b terminals, as a 2-input implementation of Table 1. 
As can be observed from Table 3, the cell can implement the NAND, NOR, INV and 
unconditional '1' and '0' logic functions. 

Table 3. Truth table of two-input DG-DLRC 

C2a C2b Function 
0 V- NAND(A,B) 
V+ 0 NOR(A,B) 
V+ V- INV(A) 

{0, V-} 0 INV(B) 
V- V- 1 
X V+ 0 

 
This cell has been evaluated using the simulation conditions described previously. 

The simulation waveforms for DG-DLRC_mixed are shown in Figure 5, where  
the switching from one configuration to another, as can be observed at the output F,  
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Fig. 5. Simulated configuration of the two-input DG-DLRC to NAND, NOR and INV functions 
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is obtained through the dynamic configuration of signals C2a and C2b. Similar 
waveforms are obtained with DG-DLRC_asymm. 

The power and delay performance characteristics of both variants are summarized 
in Table 4 for each function configuration. The reconfigurable cell performance 
(average power and worst case delay) depends not only on the activity factor, the total 
switched capacitance and device number lying on the critical path, but also on the 
different back gate biasing used in each configuration. These factors affect, differently 
from one configuration to another, the total drive current, sub-threshold and gate 
leakages, and consequently the total power and the worst case delay. 

 

Table 4. Simulated performance figures for the two-input DG-DLRC 

DG-DLRC_mixed DG-DLRC_asymm Function 
Av. 

power 
(nW) 

Worst- 
case delay 

(ps) 

PDP 
(fJ) 

Av. 
power 
(nW) 

Worst- 
case delay 

(ps) 

PDP 
(fJ) 

NAND(A,B) 256 140.6 0.04 33.2 540 0.02 
NOR(A,B) 476.7 740.6 0.35 96.2 2590 0.25 
INV(A) 361 140.6 0.05 71.9 2590 0.19 
INV(B) 476.3 667 0.32 46.8 2440 0.11 

3.2   Two-Input DG-SLRC 

The 2-input static reconfigurable cell (with logic inputs D1=A and D2=B) is shown in 
Figure 6.  The truth table of the cell is shown in Table 5, as a 2-input implementation  
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Fig. 6. Two-input DG-SLRC 
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Table 5. Truth table of two-input DG-SLRC 

C2a C2b C2c C2d F 
0 V- V+ 0 NAND(A,B) 
V+ 0 V+ V+ NOR(A,B) 
V+ V- V+ 0 INV(A) 

{0, V-} 0 0 V+ INV(B) 
V- V- 0 0 1 
X V+ V+ V+ 0 

 
of Table 2. As with DG-DLRC, this cell implements the NAND, NOR and INV 
functions. Each logic function is obtained by applying the relevant configuration 
codes in terms of back gate biases C2a-d, as shown in Table 5. 
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Fig. 7. Simulated configuration of the two-input DG-SLRC to NAND, NOR and INV functions 
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As with DG-DLRC, the static variant can also be implemented using all 
asymmetric DG devices (as DG-SLRC_asymm). In this case Vdd=0.6V and 
symmetric biasing is used with {V+,V-}={+0.6V,-0.6V}. Correct functionality is 
observed with this cell due to: 

 

• the reduced Vdd/Vth ratio (Vth ≈0.4V with Vbg=0V), thus allowing cut-off of 
transistor M3 when V- is applied to its back gate 

• the small W/L ratio for transistor M4 combined with the small Vdd/Vth ratio. 
 

The simulation results obtained from both DG-SLRC_mixed and DG-SLRC_asymm 
are shown in Figure 7. The power and delay performance characteristics of both variants 
are summarized in Table 6 for each function configuration. 

Table 6. Simulated performance figures for the two-input DG-SLRC 

DG-SLRC_mixed DG-SLRC_asymm Function 
Av. 

power 
(nW) 

Worst- 
case delay 

(ps) 

PDP 
(fJ) 

Av. 
power  
(nW) 

Worst- 
case delay 

(ps) 

PDP 
(fJ) 

NAND(A,B) 1189 590.5 0.70 126 1620 0.20 
NOR(A,B) 182 309.4 0.06 197 660 0.13 
INV(A) 2800 111.5 0.31 331 660 0.22 
INV(B) 397 295.3 0.12 102 1740 0.18 

4   Comparison to Conventional LUT and Discussion 

We have carried out experiments to evaluate the performance gain of DG-xLRC with 
respect to conventional solutions. While this technique can be considered to open up 
many possibilities for new system-level programming paradigms, it is also possible to  
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consider the cell family to be a set of incomplete look-up tables (LUTs) [12] and make a 
direct comparison to conventional m-bit MUX-based LUTs (the reference structure of 
which is shown in Figure 8). It should be noted that the aim of this section is to provide 
an objective comparison at the circuit level using individual characteristics, rather than a 
system-level comparison where the impact of cell characteristics is not so clear. 

4.1   Gate Area and Memory Requirements 

For 2-, 3- and 4-input LUTs and DGMOS-based reconfigurable cells, we evaluated 
the gate area (i.e. channel dimensions only), and the required number of memory cells 
to retain the configuration codes (Figure 9). 

The gate area results reflect the exponential and linear growth of transistor count in 
LUTs and DG-xLRCs respectively. For LUTs, the transistor count grows with 
Nmux*(2m-1) (where m represents the number of inputs and Nmux represents the 2-1 
MUX transistor count, usually equal to 12), while transistor count grows with 3+2(m-
1) and 2+4(m-1) for DG-DLRC and DG-SLRC respectively. Total area comparisons 
incorporate extra interconnect requirements (an extra -V power line, precharge and 
evaluation lines for the dynamic cell, double inputs) with some reduction in 
configuration lines for certain variants. The complete layouts (including all routing 
but excluding configuration memory cells and precharge/evaluate logic buffers) for 
the 2-input dynamic and static cells show area reduction factors of 6.5 and 4.7 
respectively as compared to the CMOS-LUT, instead of 7.8 and 4.9 considering gate 
area only. The precharge/evaluate logic and signal distribution tree was not included 
in the analysis. 

The number of memory cells required has an impact not only on auxiliary 
hardware requirements, but also on configuration time. For LUTs, this increases with 
2m, while for DG-DLRC and DG-SLRC it is equal to 2(m-1) and 4(m-1) respectively.  
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It should of course however be borne in mind that while a LUT potentially offers   
configurations, DG-xLRC offers rather less. The number of available functions 
corresponding to m-input cells is plotted in Figure 10 and compared to the figures for 
CMOS-LUTs for values of m ranging from 2 to 6. In practice, the number of inputs 
that the reconfigurable cells can reasonably handle is 4. Beyond this figure, the 
number of series devices in a stack becomes too high. 
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Fig. 10. Number of available functions for m-input reconfigurable cells 

It is clear from this figure that a direct transposition of this cell as a LUT in 
conventional configurable logic blocks will result in limited flexibility. For this 
reason we believe that further work must be carried out to explore new programming 
paradigms to benefit from the cell performance (and in particular its reduced 
configuration memory requirements for easier dynamic reconfiguration) at system 
level. 

4.2   Average Power and Worst-Case Delay 

We have also carried out detailed simulations of the 2-input solutions to compare 
average power and worst-case delay performance metrics. To this end we have 
simulated the LUTs in a 65nm CMOS technology. The choice of this reference 
technology was based on a comparison of oxide thicknesses, doping levels, mobility 
parameters and gate metal types. However, since the reconfigurable cells use 130nm 
gate lengths (for reasons of model validity and lack of technological maturity) the 65nm 
CMOS standard cell transistor dimensions were scaled to match the gate lengths and 
achieve comparable parasitic capacitance values and a fair basis for comparison.  

Identical simulation conditions were used, i.e. 50Mbit/s calculation rate, load 
capacitance CL=5fF, 40ps rise and fall times on inputs. Comparisons of the CMOS-
based LUT figures were carried out for the four operational functions with respect to 
both DG-DLRC and DG-SLRC, in mixed and all-asymmetric variants (Figure 11). 
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Fig. 11. Comparison of two-input DG-xLRC and CMOS-LUT characteristics (a) average power 
(b) worst-case delay 

These figures clearly show that, apart from the mixed implementation of DG-
SLRC, total power performance is systematically better with DG-xLRC solutions, in 
one case achieving an average of over 90% reduction in power over the four function 
configurations. For static power, it should be noted that all configurations of both 
static and dynamic logic cells (except the unconditional '0' configuration) bias N-type 
and P-type DGMOS back gates to 0V / V- and V+ respectively (leading to either the 
same or lower Ioff as with connected gates), except when an unconditional short is 
required – in which case the off current of the branch is defined by another transistor 
in the equivalent configuration to that of a connected gates transistor. This means that 
the low Ioff values of DGMOS transistors are exploited in the proposed cells (our 
simulations show Ioff = 0.7pA for an N-type DGMOS of 0.5µm/0.13µm with 
toxf=2.5nm and toxb=1.2nm) – however the Ion values are lower than a connected-gates 
equivalent transistor since the back gate is set to 0V or V+ for N- and P-type 
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conducting transistors respectively. The peak current value for a transistor with the 
previously cited characteristics (i.e. for Vfg=V+ and Vbg=0V) is around 50µA. This has 
an impact on the cell drive current, and the consequences are visible in Figure 11 in 
terms of the mediocre worst-case delay comparison. The best achievement is an 
overall 20-30% delay penalty for the mixed solutions. Additional technology and 
circuit optimization should enable some tradeoff between power and speed through 
the improvement of cell drive current (by increasing device width) – but clearly the 
power, gate area and Ioff will all deteriorate by such a strategy. 

Overall recommendations are that (i) the all-asymmetric device reconfigurable 
logic cells using {V+,V-}={0.6V,-0.6V} are best-suited to low power reconfigurable 
circuits operating with moderate speed, while (ii) the mixed-device reconfigurable 
cells using {V+,V-}={1.0V,-0.5V} can operate at comparable speeds to CMOS-LUTs 
but only the dynamic-logic variant shows benefits in terms of power. 

5   Conclusion 

In this paper, we have presented a new style of reconfigurable cell dedicated to 
programmable logic applications and based on the DG MOSFET device, particularly 
exploiting those with asymmetric oxide thicknesses for the front and back gates and 
independently controlled gates. Significant gate area reductions are possible 
compared to conventional CMOS LUT techniques (between 80-95%) while 
configuration memory requirements are also reduced (up to 60%). The 2-input 
reconfigurable cell used as a benchmark was implemented in both static and dynamic 
logic styles. Simulation results in DG FD SOI/CMOS technology of the proposed cell 
have shown that it can be used either as an all-asymmetric device variant with low Vdd 
(0.6V) in low power reconfigurable applications (up to 90% power reduction is 
possible) or as a mixed-device variant with a higher Vdd (1V) to achieve comparable 
speeds to CMOS-LUTs (20-30% penalty). 
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Abstract. In this paper we propose the use of Timed Coloured Petri Nets for the 
Performance Evaluation of Hardware/Software systems for DSP applications. 
Complex systems on chip, composed by hardware and software parts, are often 
required to meet strict timing constraints, both in terms of throughput and 
latency. However, the verification of the suitability of a system configuration 
can usually be performed only after the integration of the hardware and 
software components, when design modifications and optimizations are 
particularly expensive. This article proposes a framework to evaluate the 
performance of HW/SW systems in which Timed Coloured Petri Nets can be 
exploited in the early phases of the design. The framework is tested by 
modelling the Physical Uplink Shared Channel (PUSCH) bit-rate receiver 
portion of 3GPP (3rd Generation Partnership Project) LTE (Long Term 
Evolution) standard, the next generation of 3G wireless systems. 

1   Introduction 

Complex DSP systems nowadays include heterogeneous hardware and software 
components, like multithreaded CPUs, hardware accelerators and fast interconnections. 
Due to the systems complexity and to the time-to-market pressure, IP (Intellectual 
Property) based methodologies are often used to reduce the development time and 
enhance module reuse [1].  

Embedded systems for DSP applications have strict constraints on performance 
that designers try to meet by efficiently combine pre-verified IPs and ad-hoc 
implementations. However, the evaluation of the system performance, in order to 
verify the system throughput and latency, is usually very difficult due to both the high 
degree of concurrency and the heterogeneity of modules. The system verification can 
therefore be completed only in final stages of the development, when the hardware 
and software modules are integrated into the system. At this stage however, very little 
flexibility is left for optimizations and problems in meeting the required constraints 
lead to expensive and time consuming modifications of the systems. 
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For this reason this paper presents a framework for the early evaluation of the 
system performance, that can be used to tune and improve the system design before 
the actual integration of the components takes place. 

Different methods can be used to evaluate the performance of a system and can 
generally be classified in 1) simulation techniques and 2) formal models. Simulation 
techniques provide information on the system behaviour by tracing the results 
obtained when applying stimuli to a system model. Pure simulative approaches using 
for example the SystemC Library have been applied in [2] and [3]. However, 
simulation approaches alone, cannot provide information on system properties like the 
absence of deadlocks or system bottlenecks.  

Formal models describe the system in a mathematical form and can provide accurate 
information on its behaviour. Example of formal models used for performance 
evaluation are Markov processes [4], Queuing Networks [5] and Timed Petri Nets [6]. 
In this paper, we consider Timed Petri Nets since they are especially suited for 
describing HW/SW systems in general and DSP applications in particular. First of all, 
Petri Nets are an intuitive and powerful way to define concurrent and asynchronous 
processing, useful to describe HW/SW systems. Moreover, with respect to other 
methods that consider Stochastic timing models only, Petri Nets allow to consider both 
Deterministic and Stochastic timing models. In DSP applications, where IP blocks are 
often used in the design, the availability of Deterministic times allows to build accurate 
models, since the exact timing required to process input data is often available (e.g. 
number of clock cycles of an hardware module) and can be considered in the model. 
Finally, several tools are provided to support both the extraction of analytical properties 
and the simulation of Petri Nets models.  

Petri Nets have been used to model a broad range of applications (refer to [7] for 
examples of industrial use). They have also been used to model digital hardware 
(many references can be found in [8]). In the context of SoC, the description of 
communication infrastructure [9] and the formal verification of the implementation 
[10] have been considered. In this paper, Timed Coloured Petri Nets (TCPN) are used 
to evaluate the Performance of Hardware/Software systems in early phases of the 
system design. The use of Coloured Petri Nets enriches the timing description with 
high level elements, such as complex data types and hierarchy decomposition. 

Differently from other works on HW/SW systems based on Petri Nets (like [11], 
[12], [13]), Petri Nets are not used to support the system design or partitioning, but to 
perform a rapid Performance Evaluation at IP-blocks granularity, by seamlessly 
integrate HW and SW models.  

The rest of the paper is organized as follows. The next Section provides the formal 
definition of the Timed Coloured Petri Nets (TCPN) used thorough the paper. A 
framework to model a HW/SW system with Petri Nets is then introduced. The 
following Section describes the 3GPP LTE application, used as a case study to verify 
the proposed framework. The reference HW/SW platform is then presented followed 
by the description of the mapping of the LTE application on it, using the Petri Net 
framework previously introduced. The following Section compares the results 
obtained by applying the Petri Net model to those obtained by the integration of the 
hardware and software systems. Finally, last Section concludes the work. 
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2   Formal Definitions 

Coloured Petri Nets are an extension of classical Petri Nets, introduced by  
C. A. Petri [14]. A Coloured Petri Net is defined [15] as a nine-tuple 

( )SEGCNATPCPN ,,,,,,,,Σ= , where: 
 

1. Σ is a set of non-empty types, also called colour sets. 
2. P is a finite non-empty set of places. 
3. T is a finite non-empty set of transitions 
4. A is a finite non-empty set of arcs such that: Ø=∩=∩=∩ ATAPTP   
5. N is a node function, defined from A into PTTP ×∪× , which maps each arc into 

a tuple where the first element is the source node and the second element is the 
destination node.  

6. C is a colour function, defined from P into Σ, which means that C maps the place p 
to a colour set; 

7. G is a boolean expressions, called guard function, which maps the transition t to 
the Boolean function needed to be evaluated as “true” to enable the transition; 

8. E is an arc expression function. A transition is enabled if there exists, for each 
input arc, a token in the input place bounded to that arc. 

9. S is the initialization function, which specifies the initial state of the Petri Net. 
 

The initial marking M0 assigns to the place the initial (coloured) Tokens. For a formal 
definition, refer to [15]. In Timed Coloured Petri Nets, transition occurrences fire in 
’real-time’ associated with each occurrence of each transition. In this paper we 
consider deterministic (D-times) nets, where the times are deterministic [6]. Any 
enabled transition starts its firing in the same instant in which it becomes enabled. 

Each firing can be considered as a three phase event; first, the (coloured) tokens are 
removed from the input places as indicated by the arc functions of the firing 
occurrence, the second phase is the firing time period, and when it is finished, 
(coloured) tokens are deposited to output places as indicated by the arc functions of 
the firing occurrence. If a transition occurrence becomes enabled while it is firing a 
new independent firing cycle begins. 

Formally, a Timed Coloured Petri Nets is a couple TCPN = (CPN, f), where: 
 

1. CPN  is a coloured Petri Net, ( )SEGCNATPCPN ,,,,,,,,Σ=  . 

2. f is a firing-time function which assign the firing time to each occurrence colour of 
each transition of the net, +→× RCTf : . 

3   Modelling with Petri Nets 

A typical DSP application, can be decomposed in a sequence of functions elaborating 
data. Each function is intended as an operation, or set of operations, to be applied to a 
data unit. A simple representation is given by the application graph (Figure 1a) where 
circles identify functions and arcs are used to specify their dependencies. If there are  
different data going through different paths, an extension of the previous representation 
is considered using different types of arcs (Figure 1b). 
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Fig. 1. Application graphs for a sequence of F1; F2; … ; Fm functions  

However, this situation can be represented as the first one by considering two 
separated graphs like in Figure 1c. Each function is executed by an executor that can 
be a processor (if the function is implemented in software) or a hardware module (if 
the function is implemented in hardware). There can exist multiple instances of the 
same executor, in order to satisfy the performance requirements. In the following, we 
indicate as resource class (or in short resource) a set of identical executors, and as 
availability the number of instances of executors in the same resource class. For 
example, we can compute a DFT (function) by the use of a DFT hardware module, or 
a processor executing a DFT software algorithm (resources). Let us consider, for 
performance reasons, to include in the design two DFT hardware modules in order to 
be able to process two requests of the DFT function in parallel. In this case the 
availability of the resource DFT is equal to two. 

More formally, given a set of functions F and a set of resources R we define for 
each function a mapping m on the resource on which it is executed, m : F  R. The 
execution of a function fi on a resource rj requires a certain amount of time tij . Values 
tij are known if the design process is based on IPs (Intellectual Property) or can be 
estimated on the basis of previous and similar implementations. In case of variability 
a timing distribution or an average time value can be considered. 

Starting from these definitions, we can generate the Timed Coloured Petri Net 
modelling the application, as represented in Figure 2 for a simple example. For each 
function and each resource we introduce respectively two places (an F-Place and an 
R-Place). We also add a Q-place for each function to represent the queue of data 
waiting to execute the function. The output transition of the F-Place is annotated with 
time tij and the initial marking of each R-Place is defined by its availability. F-Places 
are connected according to the application graph; if a resource is shared by different 
functions, a single R-Place is used and appropriate arcs are used to connect different 
F-Places to the same R-Place.  
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Fig. 2. TCPN generated from an application graph, where the availability of R1 is equal to 1, 
the availability of R2 is equal to 2. D-tokens in the Q-Place represent three data units waiting 
for the execution. 

Coloured tokens are used to represent both the resource availability (R-Tokens 
contained in R-Places) and the data units (D-Tokens contained in F-Places and Q-
places). The type of D-Tokens is defined according to the parameters needed to 
determine the system execution. For example, a D-Token can contain an integer value 
corresponding to the input dimension of the DFT function, that affects the time it 
takes to execute that function.  

In the following we introduce some extension of the presented model. 

3.1   Multiple Data Management 

If there are data that take different paths, we could exploit the availability of 
expressions and bindings in CPN to represent this situation. For example, in Figure 3 
the D-Token contains two fields, and the value of the first one is used to select the 
path the token follows in the net. 

 

 
 

Fig. 3. TCPN for multiple data management 
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3.2   Pipeline Hardware 

A pipelined hardware resource can accept a new data in input every clock cycle (stage 
time). The execution is completed after the total number of clock cycles required by 
the function. The execution on a pipelined resource is therefore characterized by two 
values: a time tij representing the total time to execute the function and a time sij 
representing the stage time. The stage time is equal to one considering the common 
definition of pipeline, but in a more generic module it is a value greater that one and 
smaller than tij.  

An example is represented in Figure 4. 

 

 

Fig. 4. TCPN to model a pipelined hardware resource 

3.3   Data Ordering 

If data ordering must be considered, we can exploit the use of FIFOs in CPN [16]. For 
example, Figure 5 represents two functions executing on the same resource, where the 
requests for the use of the resource are queued in a FIFO. An additional place, that 
contains one token of type FIFO, is introduced. Each time an element has to be added, 
the FIFO token is removed, and replaced with an updated version with the new 
element at the end. Each time an element has to be extracted, the FIFO-token is 
removed, and replaced with an updated version without the first element. 

 

 
Fig. 5. TCPN to model data ordering 
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3.4   Design Granularity 

The concepts of functions and resources are not necessary restricted to IPs 
granularity, but can be adapted according to the specific needs when modelling the 
application. We can model, for example, the internal behaviour of a hardware module 
or take into consideration the availability of memory space as an additional resource 
to perform an operation. Example of finer granularity are provided in the rest of the 
paper. 

4   Introduction to the LTE Application 

This Section gives an overview of the LTE application, and explains the reasons for 
needing to model the system using the Petri-net approach. After providing an 
introduction on the LTE main features, we highlight the LTE criticalities, in particular 
latency requirements and complexity. The presence of these criticalities constitutes a 
major obstacle in evaluating a HW/SW solution before its actual implementation. The 
following Sections show how Petri Nets can help doing this type of evaluation. 

4.1   Application Description 

3GPP Long Term Evolution (LTE) is next generation of 3G networks aimed at 
delivering lower latencies, with greater capacity and throughput. It is based on OFDM 
in the downlink and Single Carrier Frequency Division Multiple Access (SCFDMA) 
in the uplink.  

LTE has evolved from previous 3GPP standards with each evolution providing 
greater network throughput and lower latencies. The first 3GPP standard, known as 
release 99, used a radio access technique called Wideband Code Division Multiple 
Access (WCDMA). It could provide data rates of up to 384kbps in the downlink and 
384kbps in the Uplink with round-trip latencies of approximately 150ms. The next 
two 3GPP releases, High Speed Downlink Packet Access (HSDPA) and High Speed 
Uplink Packet Access (HSUPA), improved the data rate to 14.4Mbps in the Downlink 
and 5.7Mbps in the Uplink. The round-trip time reduced from approximately 100ms 
to approximately 50ms respectively.  In Release 7 or HSPA+ (High Speed Packet 
Access +) a new multiple antenna technique known as MIMO (Multiple Input 
Multiple Output) was introduced, which improved the data rates by using multiple 
transmit antennas to carry parallel streams of data which are then extracted separately 
in the receiver. This technique improved the data rates to 28/42Mbps (depending on 
the number of antennas used) in the downlink and 11Mbps in the uplink.  

Release 8 or 3GPP LTE, represents a new generation of wireless techniques by 
moving away from WCDMA, and employed OFDMA (orthogonal frequency division 
multiple access) in the Downlink and SC-FDMA in the uplink. Higher data rates (up 
to 172Mbps in the downlink and 86Mbps in the Uplink) are achieved in LTE through 
the efficient use of the available spectrum by the use of higher order modulation 
schemes (up to 64QAM) and MIMO techniques. In addition to this, LTE provides 
greater flexibility for network operators allowing variable spectrum allocations up to 
20MHz, and for the mobile devices, the use of SC-FDMA in the uplink means greater 
terminal or mobile efficiency and longer battery life.  
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The uplink bit-rate receiver portion (Physical Uplink Shared Channel - PUSCH) of 
the LTE system has been chosen to illustrate the use of Petri-net models to evaluate 
the performance of the system. An overview of the PUSCH may be found in [17], and 
a technical specification of the PUSCH including the processing steps required may 
be found in [18].  

 

 

Fig. 6. Functions composing the LTE application 

Figure 6 shows basic processing steps of the SC-FDMA uplink bit-rate receiver. 
The shaded blocks have been considered, for illustration purposes, to present the use 
of Petri-net models for complex DSP systems. 

Table 1. Blocks and parameters of the LTE uplink application 

Block  
 

Function Parameters affecting  
functionality/latency 

Ex. Parameter 
Ranges 

IIDFT Transform Precoding Number of resource Blocks 12-1296 
Demapper Demodulation Modulation scheme QPSK,16QAM, 

64QAM 
Rate De-Matcher Channel coding  Code block size, 

Coding rate, 
Filter bits, 
Redundancy version 

40 – 6144 
1/9 – 5/6 
0 – 64 
1 – 4 

CTC (Turbo) Channel coding Code Block size 40-6144 

 
Blocks are characterized by parameters that can affect not only the functionality 

but also the latency of the block. Table I gives examples of the different parameters 
and the range of values the parameters may take. 

Users are allocated a number of resource blocks for transmission. The modulation 
scheme and coding rate determine the number of data-bits transmitted during the slot. 

Due to the low latency target for LTE, the uplink SC-FDMA link budget is in the 
order of 1ms. Meeting this latency target is a key requirement of the system, and 
requires careful analysis of the latency of the system. The number of possible 
parameter combinations and the interaction between the latency and throughput of 
each block in the system makes this a difficult task to perform without a tool to model 
these interactions. 

In the following the main features of each block being modelled are summarized. 
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4.1.1   IDFT 
In the transmitter the OFDM symbol is “orthogonally spread” onto the subcarriers 
using a Discrete Fourier Transform (DFT). The number of subcarriers that it is spread 
across represents the number of resource blocks allocated for the users transmission, 
and is equivalent to the DFT size. 

In the receiver the IDFT is used to retrieve the DFT-Spread OFDM symbol 
transmitted across the air interface. The IDFT accepts a sequence of complex data 
samples and produces a complex output sequence of the same length. 

4.1.2   Demapper 
The symbol demapper (demapper) translates the complex data samples produced by 
the IDFT into soft-valued bits. Each bit in the symbol is given a log-likelihood ratio 
value based on the exact position of the received symbol in the IQ plane.  

The soft-decision values depend on the modulation scheme used (and therefore the 
constellation pattern produced). Possible modulation schemes used for LTE Uplink 
Shared Data channel (PUSCH) include QPSK, 16QAM and 64QAM. 

4.1.3   Rate De-Matcher 
The rate dematcher maps the size of the data in the transport layer onto the appropriate 
physical layer resources by inserting or removing redundancy.  

The rate dematcher takes soft-value bits as input from the symbol demapper and 
produces systematic (S) and parity bits (P1, P2) for the turbo. 

4.1.4   CTC (Turbo Decoder) 
The turbo decoder is used to perform forward error correction of the input data stream 
by utilizing the redundancy in the encoded data stream. Turbo codecs have become 
the coding technique of choice in many communication systems due to their near 
Shannon limit error correction capability. 

The turbo decoder takes the systematic and parity bits produced by the rate 
dematcher  and produces a stream of bits, representing the recovered data bits. The 
turbo block operates on the code blocks produced by the rate dematcher. 

4.2   Understanding LTE Latency Requirements 

Providing low network latency is a key network metric for LTE systems. Services 
such as voice over IP, video conferencing and network gaming applications are 
particularly sensitive to latency as it has a major impact on the user’s experience of 
these services.  

To provide this reduction in latency, LTE employs two main mechanisms [21] 

1. Reducing the Transmission Time Interval (TTI). LTE will use a TTI of 1ms, 
50% less than the previous generation wireless standard HSUPA (High 
Speed Uplink Packet Access). 

2. Faster HARQ or retransmission processes for lost or damaged blocks of data. 
By providing faster feedback mechanisms, LTE will enable the transmitter to 
resend the lost blocks earlier, making the radio transmission more efficient. 
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The LTE user-plane latency is defined in [21] as: “the one-way transit time between a 
packet being available at the IP layer in either the UE/RAN edge node and the 
availability of this packet at IP layer in the RAN edge node/UE. The RAN edge node 
is the node providing the RAN interface towards the core network”, where UE stands 
for User Equipment, or the mobile device and RAN stands for Remote Access 
Network, referring to the eNB (Evolved Node B) or base station. The requirement for 
the LTE user-plane latency is 5ms.  
 

 UE eNB

1 ms

1 ms

HARQ RTT 
5 ms 

1 ms 

1 ms 

TTI + frame
alignment 

1.5 ms

1.5 ms

 

Fig. 7. User Plane Latency components in LTE[22] 

This latency figure contains several identifiable latency components as shown in 
Figure 7. The times shown in the Figure are a lower bound as to what is achievable 
with LTE, as they assume that a single user system, transmitting small IP packets (0 
byte payload with IP headers). This implies that the network is not loaded and that 
there are no delays due to queuing or scheduling. In addition to this, the HARQ round 
trip time must be 5ms. 

For eNB providers, this means that providing these latency targets are met, a trade 
off may be made between the Uplink and Downlink processing times in the eNB. It 
may be possible for the provider to use only 0.6ms for the DL processing time leaving 
an extra 0.4ms for the UL processing. Since the UL processing is significantly more 
complex hat the DL processing such an analysis might prove valuable, requiring 
careful analysis of the latency in each individual components.  

4.3   Understanding LTE Complexity 

The LTE specification is characterized by an increase in the complexity of the signal 
processing over other OFDM systems, such as WIMAX. LTE requires high data rate 
forward error correction, Multiple Input, Multiple Output antenna techniques, and in 
the uplink, SC FDMA requires an extra stage of processing to transform from the 
frequency domain to the time domain. This additional complexity in the signal 
processing, is also matched by commensurate increase in complexity of the control 
required to manage the signal processing elements. Therefore the LTE system is 
highly suited for a HW/SW approach whereby the complex data processing is done in 
HW, and the control is performed in SW. 
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5   Reference Architecture 

The reference architecture considered to implement the LTE system is based on the 
Altera Hardware/Software solution for high performance datapath applications [20]. 
The solution is based on a combination of a multithreaded soft processor and 
hardware accelerators. 

The overall processing is based on an asynchronous execution paradigm triggered by 
task (i.e. software process) and event (i.e. hardware accelerated process) requests. The 
overall system is composed of the multithreaded processor with supporting control and 
interfaces that manage the communication with dedicated accelerator modules through 
buses and queues. The details of the Hardware/Software interaction and communication 
are hidden from the applications developer and Hardware/Software communication 
introduces an almost negligible latency of very few clock cycles. 

 

 
 

Fig. 8. Instruction interleaving 

 
The soft processor can execute 8 threads simultaneously by means of a 

simultaneous multithreading. In a traditional multithreading, a new thread is executed 
when the previous thread stalls; however, in this design, instructions corresponding to 
8 different threads are mixed (interleaved) in the pipeline. This allows to avoid the 
overhead for thread switching and pipeline stalls since whatever hazard in a given 
thread instruction is resolved before the next instruction of the same thread is 
executed. The execution scheme is depicted in Figure 8 for an exemplified pipeline 
with 4 stages. One of the advantages of this approach is that the software execution 
time becomes deterministic given an execution path, since all the sources of 
indeterminism are avoided. Hazards and context switching introduce no penalty, and  
no cache is used in  the system (in the great majority of datapath applications data and 
program code are limited in size and can be stored directly on the chip). 

For each independent flow a unique ID is assigned (PID). The number of PIDs is 
defined during the hardware synthesis of the soft processor and it can be adjusted to 
suit the application performance requirements. 
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Fig. 9. Execution Flow on the Hardware/Software Altera architecture for datapath processing 

A typical processing flow combines Tasks that are executed in software and Events 
executed by dedicated hardware blocks, as schematically depicted in Figure 9. The 
inherent parallelism of the multithreaded processor and the multiplicity of dedicated 
hardware blocks allows for several independent flows to be processed concurrently. 

5.1   Architecture Modelling with TCPN  

Since the hardware and software parts can generally run at two different frequencies 
Fhard and Fsoft, we consider a reference frequency Fref. The modelling of this 
architecture with a Petri Net can be done as following: 

• Multithreading. The execution of eight threads on the same processor at frequency 
Fsoft, with the instruction interleaving described in the previous Section, is 
functionally equivalent to the execution of eight threads on eight identical 
processors each one running at a frequency Fsoft/8. The multithreaded processor is 
therefore represented with a resource class having availability equal to eight and 
frequency equal to Fsoft/8. 

• Timing. Both hardware and software times can be considered as deterministic. 
Each function fi executing on a resource rj is associated with the execution ticks tij 
computed as:  
− tij = (Num. of instructions * Fref)/(Fsoft/8) (SW). 
− tij = (Num. of clock cycles * Fref)/(Fhard) (HW). 

• Number of PIDs. An additional place (PID-Place) is added, having as initial 
marking a number of R-Tokens equal to the number of PIDs. Each time a new 
block of data enters the system an R-Token in consumed from the PID-Place and is 
produced when the block of data exits the system. In a more generic architecture 
this place can be used to represent the maximum depth of queues for 
Hardware/Software communications. 

• Communication. Since the overhead for the Hardware/Software communication is 
negligible, it is not modelled. In a more generic architecture, if the communication 
introduces substantial overhead, this can be represented exploiting the same 
framework used for the rest of the system (for example, a data transfer between 
two modules is the function and a bus is the resource). 
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6   Mapping of the LTE Application on the Platform 

The implementation of the LTE application has been organized as follows. The 
majority of the complex DSP processing is done with hardware accelerators; this 
includes IDFT, Symbol Demapper, Rate De-matcher, and Turbo. 

The control of the data flow through these blocks, and the configuration of the 
blocks with the relevant parameters (see Table I) is done using software running on 
the threads in the processor. 

 

 

Fig. 10. a) Application Graph for the LTE application, b) Sketch of the TCPN associated to the 
LTE application graph 

Figure 10 represents the application graph and a sketch of the correspondent 
TCPN.  

Coloured tokens that flow into the net contain all the information needed to 
influence the system evolution, in particular timing and computational path. 

The most important parameters are: pid, number of resource block, modulation 
scheme, coding block size, coding rate, filter bits, redundancy version and constitute 
the fields characterizing the tokens. Other parameters (like the number of subcarriers 
or the number of symbols per TTI) constitutes system settings and are therefore 
associated to the system model instead of being stored into the tokens. 

The times associated to the transitions depend on the number of hardware clock 
cycles and software instructions required to process the functions. For each function 
composing the system appropriate timing has been considered, often dependent on the 
parameters cited before. 

In the LTE system where there are multiple complex IP Blocks interacting, it is 
often necessary to buffer blocks of data before the processing. This may be because 
the function requires all data present in order to calculate the result or it may be done 
to achieve the required throughput of the system. 

In order to obtain a more accurate model, the behaviour of the hardware modules 
have been described with a finer grain of detail, by decomposing the functions in 
more steps and considering additional resources like buffers and memories. 

In the following, we present the Petri Nets schemes developed for the blocks of the 
LTE architecture, highlighting the strategies used to enhance the accuracy of the 
model. 
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6.1   IDFT 

The IDFT is characterized by the loading, executing and unloading phases. For each 
phase, the computing time is function of the resource block size. The three phases 
must be completed for each data before the computing can start for a new one. The 
situation is represented in Figure 11 where the computing is decomposed in three 
steps and the R-Place associated with the IDFT core is connected respectively to the 
transition entering the first phase and the transition exiting the last phase. 

 

Fig. 11. Petri Net structure of the IDFT block 

6.2   Demapper 

The symbol demapper module is responsible for transforming the IQ samples 
representing the constellation points as dictated by the modulation scheme, to soft 
decision bits or LLR (log-likelihood ratio) values. 

The Petri Net scheme correspondent to the SDM is represented in Figure 12. The 
hardware resource that implements the function is pipelined, therefore it is modelled 
as explained previously, by distinguish the time required for the stage (that is equal to 
one clock cycle in this case) and the time required for the computing. 

 

 

Fig. 12. Petri Net structure for the Symbol demapper 

The module operates with the granularity of a “complex data sample”, that for each 
user is proportional to the number of resource blocks (in particular it is equal to the 
number of resource blocks multiplied by the subcarriers sub and symbols per TTI  
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STTI). The first transition therefore generates the tokens corresponding to the data 
samples that will be processed by the engine and put them in the input place. To 
generate the next software task the processing of all the tokens must be terminated, 
therefore a place representing a repository is used to activate the next software task 
when the processing is finished. Some extra checks, that for simplicity are not shown 
in the Figure, are used to guarantee the correct execution order. 

Each sample generates a number of soft bits dependent on the modulation scheme 
(represented by parameter Qm in the Figure). For each processed sample, the total 
number of bits generated is updated, by the use of the place “count” that contains an 
integer value token. The token is withdrawn and put back with its value updated. This 
is an alternative to the use of many tokens representing the soft bits, that has been 
chosen in order to increase the model efficiency. Indeed, for the simulation engine, 
updating the value of a single token is simpler and quicker than maintaining all the 
information related to a large number of tokens. 

6.3   Rate De-Matcher 

The rate de-matcher is activated when a request is ready and the symbol demapper 
has produced enough bits to start the computation. Therefore, we use a condition on 
the module input transition that checks if enough bits are available to start the 
computation. In this case, the transition fires, with the effect that the number of bits is 
updated and the computation is started. Figure 13 represents the corresponding net. 

 

 

Fig. 13. Petri Net structure for the rate de-matcher 

6.4   CTC (Turbo Decoder) 

The Turbo model has two input buffers, a core execution module and two output 
buffers. The functioning is divided into 3 stages: loading, executing and unloading.  

The corresponding PN is represented in Figure 14. The load operation can start 
when the input port and a input buffer are available. After that, data are ready to be 
processed by the core. The processing can start if an output buffer is available (to 
write the produced data) and the execution core is free. At the end of the execution the 
input buffer is freed and can be used to load new data. Finally data are unloaded when 
an output port is available and at the end the output buffer is freed. 

The transitions timing depends on the parameters affecting the system, and on the 
configuration of the hardware module.  
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Fig. 14. Petri Net structure of the Turbo block 

7   Experimental Results 

In order to collect information about the application performance, the Petri Net model 
has been simulated using the CPNtool developed by CPN Group of University of 
Aarhus in Denmark [19]. The tool allows to describe a TCPN, to automate the 
simulations and to collect statistics. The results obtained from the model have been 
compared with accurate simulation results obtained by implementing the application 
on the reference architecture. These results have been collected by integrating the ISS 
simulator of the Altera multithreaded CPU with software models of the hardware 
event modules annotated with high level latencies. 

In the following, we investigate different transmission scenarios. Each 
configuration specifies the number of users, and for each user the assigned number of 
Resource Blocks (RB), the coding rate (CR) and the modulation scheme. The number 
of users and resource blocks affect the number of blocks processed by the system. The 
coding rate and the modulation scheme affect the block dimension. In particular the 
block dimension increases with a lower coding rate and a modulation scheme with 
more constellation points. 

The considered scenarios are the following: 
 

1. 110 users, with 1 resource block each, coding rate 5/6, modulation 64 QAM. 
2. 5 users with different spectrum allocations: (RB=10,CR= 5/6), (RB=36,CR=1/9), 

(RB=20,CR=1/9), (RB=4,CR=3/4), (RB=40, CR=1/4), modulation 64 QAM. 
3. 2 users, with different spectrum allocations (RB=100,CR=5/6), (RB=10,CR=5/6), 

modulation 64 QAM. 
4. 50 users with 1 resource block each, coding rate 1/3, modulation QPSK. 
5. 18 users with 6 resource blocks each, coding rate 2/3, modulation 16 QAM. 

 

Figure 15 shows the data chunks output times obtained for in the five scenarios, for 
both the simulations. The dimension and number of the data chunks elaborated for 
each user are computed according to the LTE specification [18]. 

The performance evaluation shows that the system composed of the shaded blocks 
represented in Figure 6 is able to support the strict timing performance (1ms for 110 
resource blocks) in all the tested configurations. The use of the Petri Net model allows 
to obtain such evaluation in early stages of the system development, without requiring 
an actual hardware/software integration.  
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Fig. 15. Comparison between the system output times obtained through TCPN and the real 
system simulation for different scenarios. Each colour represents a user. 

The comparison with the results obtained by combining the hardware and software 
modules shows that the TCPN model can provide a good accuracy. Figure 16 
represents the errors in the arrival times for all the data chunks in all the five 
scenarios. The difference between the arrival times obtained using the Petri Net and 
the ones obtained simulating the system are always inferior to 35 microseconds, as 
shown by the left Y-axis in the graph. Normalizing the values with the greatest arrival 
time (first scenario) we obtain errors inferior to 5%, as shown by the right Y-axis in 
the graph. Considering for each scenario a normalization to the greatest arrival time of 
that scenario, we still obtain errors inferior to 5%. 
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Fig. 16. Absolute and percentage errors of the blocks arrival times in each scenario 

8   Conclusion 

One of the main problems, when designing a DSP application, is the meeting of strict 
timing constraints; however, the verification of the system can usually be performed 
very late in design phase. This paper proposes the use of Timed Coloured Petri Net 
for the early evaluation of the system Performance of Hardware/Software DSP 
applications. We show how to model an application by generating a TCPN that 
considers the functions and the resources composing the system. The modelling of the 
3GPP LTE application has been considered as case study. The experimental results 
are quite accurate when compared with hardware/software simulations and, as a 
substantial advantage, can be generated in early stages of the design, when 
modifications and improvements of the system are still possible. The proposed 
approach reduces the risk of highly expensive re-spins for the modification of the 
final system and provides room for the exploration of the solution space. 
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Abstract. This chapter presents a real-time FPGA implementation of a 
biologically-inspired image enhancement algorithm. The algorithm compensates 
for the under/over-exposed image regions, emerging when High Dynamic Range 
(HDR) scenes are captured by contemporary imaging devices. The transforma- 
tions of the original algorithm, which are necessary in order to meet the 
requirements of an FPGA-based hardware system, are presented in detail. The 
proposed implementation, which is synthesized in Altera’s Stratix II GX: 
EP2SGX130GF1508C5 FPGA device, features pipeline architecture, allowing the 
real-time rendering of color video sequences (25fps) with frame sizes up to 
2.5Mpixels. 

Keywords: FPGA, Real-Time Image Enhancement, Human Visual System, 
High Dynamic Range Imaging. 

1   Introduction 

Conventional Standard Dynamic Range (SDR) sensors, which are the case in most 
consumer-electronics cameras, fail to adequately reproduce HDR scenes, which can 
be common in outdoor capturing conditions. The main reason for this problem is the 
low dynamic range of the capturing device, compared to the dynamic range of the 
scene. As a result, the captured images usually suffer from under/over-exposed 
regions, in which, little or no information is available to the observer. Adjusting the 
exposure time is not a solution to the problem, since acceptable reproduction can only 
be achieved for the dark or the bright image regions but not for both. This is clearly 
depicted in Fig. 1. 

A straight-forward solution to this problem is the use of HDR capturing devices 
instead of the conventional SDR ones. Nevertheless, HDR cameras cannot always 
provide a practical solution. Their increased cost has limited their use, while the 
majority of the existing vision systems are already designed for SDR cameras. 
Furthermore, an additional algorithm is required in order to perform the mapping of 
the HDR data to an SDR monitor. Another possible solution is to acquire an HDR 
image by combining multiple SDR images, captured with different exposures [1]. 
Nevertheless, this solution can be applied only to static scenes, since it is impossible 
to have multiple exposures of a moving object, always, at the same background. 
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Consequently, this approach cannot be applied to time-critical applications i.e. video. 
A third solution to the above problem is the use of an unsupervised tone-enhancement 
algorithm, which will compensate for the under/overexposed regions of SDR images, 
without affecting the correctly exposed ones. This approach overcomes the limitations 
of the previous two solutions: it does not increase considerably the total cost of the 
system and it can be used in video sequences as well.  

 

 

Fig. 1. There is not a single exposure that can adequately capture both the dark and light 
regions of an HDR scene 

Several enhancement algorithms have been proposed in this direction, yet, very 
few have been implemented in hardware. Some of the most important are the Retinex 
family of algorithms (Retinex: Retina + Cortex), among which, the more widespread 
are the “Multi Scale Retinex with Color Restoration” (MSRCR) [2] and the 
“Variational Framework for Retinex” [3]. The first has been implemented on a Digital 
Signal Processor (DSP) [4, 5], allowing the real-time, single-scale rendering of 
grayscale images, with sizes up to 256×256 pixels. A variation of the second has been 
implemented on an Application Specific Instruction-set Processor (ASIP) [6], 
allowing the processing of SXGA (1280×768 pixels) or WXGA (1366×768 pixels) 
still images in 1 sec, or the a real-time rendering of video frames with size 256×256 
pixels and frame rates up to 29 frames per second (fps). Both implementations do not 
meet the VGA standard (color images of 640×480 pixels size and 25fps) in video 
rendering. Recently, an alternative enhancement algorithm, inspired by the shunting 
characteristics of the center-surround cells of the Human Visual System (HVS), has 
been presented in [7]. It exhibits low complexity, as well as the fastest execution 
times, compared to the algorithms of the previous two implementations. 
Consequently, it constitutes a good basis for a hardware implementation.  

This chapter presents an FPGA implementation of this algorithm. It focuses on the 
transformations which are necessary in order to optimize the original algorithm for 
meeting the requirements of an FPGA-based system. The main objective is to 
implement a pipeline architecture, which will allow the real-time rendering of color 
video sequences, with sizes greater than the contemporary implementations (256×256 
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pixels). Two alternative architectures are presented, both synthesized in Altera’s 
Stratix II GX: EP2SGX130GF1508C5 FPGA device. The first allows the real-time 
(25fps) rendering of color images, with sizes up to 640×480 pixels. The second 
architecture can render, in real-time, images with sizes up to 2.5MPixels. Both 
architectures are designed in a way that easily allows future improvements in the core 
of the algorithm. This, in addition to the FPGA platform, results into a low-cost, 
robust solution, which can be used to other vision systems as preprocessing, 
compensating for the low dynamic range of the SDR image sensor.      

The chapter is organized as follows. In Section 2 the structure of the original 
algorithm is briefly described. In Section 3, the transformations of the original 
algorithm, which will make it suitable for hardware implementation, are presented. 
The proposed implementations are presented in Section 4, with gate level integrated 
circuits. The comparison between the hardware and the software are provided in 
Section 5. Finally, conclusions and a discussion are provided in Section 6. 

2   Structure of the Algorithm 

In this section the original algorithm, which compensates for the under/over-exposed 
regions, will be briefly described in order to underline the modifications made in the 
proposed hardware implementation. A detailed description of the algorithm is out of 
the scope of this chapter. Extensive details can be found in [7].  

The block diagram of the original algorithm is depicted in Fig. 2. In order not to 
distort the colors of the image, the YCbCr color space is employed, which decorrelates 
the chromatic and achromatic information. The original method works only on the 
luminance component and comprises three different stages: a linear stretch of the 
luminance component, a parameter estimation block and the local enhancement stage. 
The core of the algorithm is depicted in the equations (1)-(7). Equation (1) stretches 
linearly the luminance values to the interval [0,B], in order to use the full range of the Y 
channel. B is the maximum value of the luminance data (255 for 8-bit values), Ymin and 
Ymax are the minimum and maximum luminance values of the image, while (i, j) denotes 
the spatial coordinates of the pixel. 

 

 

 

Fig. 2. The block diagram of the original algorithm used in the hardware implementation 
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Equations (2)-(5) describe the enhancement function of the algorithm. As it is 
clearly depicted in Fig. 2, the enhancement function uses two local and three global 
parameters. The local parameters, which depend on the local characteristics of the 
image, are the stretched luminance value Y’ij of the pixel and the average luminance 
SK

ij of its square surrounding region. K denotes the scale upon which the surround is 
calculated. Equation (6) describes the surround calculation. Three different 
surround sizes are employed, with bK denoting the radius of the square surrounding 
region for scale K. The final corrected value Yout,ij for every pixel, is calculated by  
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equation (7) and it is the average between the corrected values YK
out,ij of the three 

spatial scales. The global parameters, which depend on the global image statistics,  
are Mdark, Mbright and Lobe. Their exact calculation is described by the following 
equations. 
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where px, py are the dimensions of the original image and u(·) is the unitary step 
function. bin_low, bin_middle and bin_high are the bins of a 3-bin normalized 
histogram (bin_low[0, B/3], bin_middle(B/3, 2B/3), bin_high[2B/3, B]) that divides 
the range of the stretched luminance channel  Y’ into 3 equal tone intervals: dark, 
medium and bright. For a detailed analysis on the characteristics of the global 
parameters, refer to [7].  

3   Algorithm Optimization 

3.1   Optimizing the Structure of the Algorithm 

The straight-forward conversion of an algorithm’s software implementation to hardware, 
usually leads to unsatisfactory results. Most of the times many transformations are 
necessary in order to optimize the algorithm for hardware implementation. This section  
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focuses on these optimizations. The original algorithm, as depicted in Figure 2, requires 
three different scans of the image, in order to get the final result. This is depicted in 
Figure 3.  

 

 

Fig. 3. The structure of the original software implementation 

The first scan of the image is necessary in order to find Ymin and Ymax. In the second 
scan, equation (1) is applied to all pixels, stretching their luminance values to [0,255]. 
The second scan can be eliminated using a Look-Up-Table (LUT). Instead of 
applying the stretching transformation to all image pixels separately, equation (1) can 
be executed only 256 times, one for each luminance value. These precomputed values 
are stored in the “Stretching LUT”. Feeding the original luminance value Yij of a pixel 
to the StretchingLUT module, will output its stretched luminance value Y’ij, as 
equation (14) indicates. 

 

ij ijY StretchingLUT Y⎡ ⎤′ = ⎣ ⎦  (14) 

This simple transformation reduces the required scans of the image to two, as Figure 4 
indicates.  
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Fig. 4. The structure of the algorithm after the Stretching LUT transformation 

3.2   Requirements for a Pipelined Architecture 

Implementing a pipelined architecture is a primary objective, since it will allow a high 
throughput, which is essential for real-time applications. For this reason, two identical 
modules are needed for the original histogram generator (OH1, OH2), the stretching 
LUT (StretchingLUT1, StretchingLUT2) and the global parameters (Parameters1, 
Parameters2). The first modules process the odd frames, while the second modules 
process the even ones. This is depicted in Figure 5. When frame k is in the adjust 
state, the 1st scan is performed for frame k+1. Consequently, OH1 processes frame k,  
 

 

Fig. 5. Double components are necessary in order to achieve a pipelined architecture 
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while OH2 generates the histogram of frame k+1. When frame k is in the 2nd scan, 
frame k+1 is in the adjust state. Then, StretchingLUT1 processes frame k, while 
StretchingLUT2 is being loaded with the stretching values for frame k+1. Similarly, 
when frame k is in the 2nd scan, its image data are enhanced using the global 
parameters from module Parameters1. At the same time, the global parameters of 
frame k+1 are calculated using the module Parameters2.  

4   Hardware Implementation 

This section presents the key stages of the proposed hardware implementation. Figure 
6 depicts the block diagram of the system. We assume that the frames are fed into the 
FPGA sequentially, pixel by pixel, in the RGB color space format. Consequently, in 
order to create the second scan, the data are fed into a FIFO memory, after the 
transformation from RGB to YCbCr. This FIFO should have an appropriate length in 
order to introduce a delay to the data, equal to the execution time of both 1st scan and 
adjust stages. Taking into consideration that the adjust stage requires 300 clock 
cycles, the FIFO length should comprise 1frame+300 memory elements. As a result, 
when the 2nd scan is about to begin, the YCbCr data will be ready for processing.  

As mentioned in the previous section, two StretchingLUT modules are required for a 
pipelined architecture: one for the odd and one for the even frames. Figure 6 however  
 

 
 

Fig. 6. The proposed hardware implementation 
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shows that two extra StretchingLUT modules are required: one for the luminance value 
of the pixel Yij and one for its surround luminance Sij. This increases the total number of 
modules to four. StretchingLUT 1A and 1B are identical and are used simultaneously 
for the luminance values Yij and Sij of the odd frames. Similarly, StretchingLUT 2A and 
2B are also identical and are used simultaneously for the luminance values Yij and Sij of 
the even frames. While the odd LUTs are used to transform the luminance values, the 
even LUTs are loaded with data. In the following frame, the even LUTs are used for 
transforming luminance values and the odd LUTs are stored with data. 

4.1   Color Space Transforms 

The transformations RGB→YCbCr and YCbCr→RGB are the first and last processing 
stages of the system. The original mathematical forms of the transformations comprise 
floating point arithmetic, which can be computationally intensive in a straight-forward 
implementation. In order to avoid the floating point operations, the transformations are 
altered as follows: 
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  0.439 0.399 0.040 128
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 (16) 

 

The floating point numbers are multiplied by 1024 and the appropriate divider is 
introduced at the front of the matrix. The number 1024 is selected for two reasons. 
First, the multiplication with any integer number greater or equal to 1000 results to 
another integer number, thus, avoiding the decimal points of the original 
transformation. Second, 1024 is a power of 2 (210=1024) and, therefore, the divider 
can be implemented with 10 right shifts of the final result. The implementation of 
equations (15) and (16) is depicted in Figure 7 and Figure 8, respectively.  
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Fig. 7. Implementation of the RGB→YCbCr transformation 
 

 
 

Fig. 8. Implementation of the YCbCr→RGB transformation 
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The above implementations employ many multiplications, which are considered to be 
computationally intensive operations. For this reason these multiplications are 
implemented with parallel shifts, as the following example indicates. 

 

 
 

Fig. 9. Implementation of one of the multiplications of Figures 7 and 8 

4.2   Calculation of StretchingLUT Modules 

The stretching function of equation (1) comprises among others, a multiplication and a 
division. A straight-forward implementation of these operations would be inefficient, 
since they are considered expensive in terms of recourses. For this reason, equation (1) 
is implemented in an incremental way. 

  

( ) ( ) [ ]min max
max min

255
1 ,Stretching x Stretching x x Y Y

Y Y
= − + ∀ ∈

−
 (17) 

 
The idea behind this alternative approach is that the stretching transformation divides 
the luminance channel into equal increments whose size is determined by the 
incremental factor 255/(Ymax–Ymin). Consequently, every stretched value differs from 
the previous and from the next by the incremental factor. This means that a LUT 
could store all the possible incremental factors and feed the appropriate to an 
accumulator, which would calculate the stretched luminance values. This is depicted 
in Figure 10a. 
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Fig. 10. a. Calculation of the StretchingLUTs. b. Calculation of the 3-bin histogram. 

Similarly to the previous subsection, in order to avoid floating point arithmetic and 
maintain the accuracy of the calculations, the LUT stores the incremental factors 
multiplied by 1024. The final result is calculated by 10 right shifts (division by 1024). 
This is depicted in the following equations. 

 

( ) ( ) [ ]min max
max min

255 1024
1 ,accumulator x accumulator x x Y Y

Y Y

×= − + ∀ ∈
−

 

with ( )min 0accumulator Y =  
(18) 

( ) ( )
1024

accumulator x
StretchingLUTs x =   (19) 

4.3   Global Parameter Calculation 

The global parameters, which are necessary for the main enhancement function, depend 
upon a 3-bin histogram of the stretched luminance component, as equations (8)-(13) 
indicate. Figure 10b depicts their implementation. The stretched luminance value Y’ is 
driven into two comparators, while the original luminance value Y is driven into the 
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address bus of the appropriate original histogram (OH1 for odd frames or OH2 for even 
frames). The data output of the original histogram is sent to two accumulators. Depending 
on the output of the two comparators, the corresponding accumulator is activated and 
sums the number of pixels having the current Y’ luminance value. When all the luminance 
values of the interval [Ymin, Ymax] have been processed, the three registers, that are depicted 
in Figure 10b, will store the number of pixels of the stretched luminance component that 
belong to the high bin (light tones), the middle bin (mid-tones) and the low bin (dark 
tones). Despite the fact that the accumulators are 19-bit wide, only the 8 most significant 
bits are registered, since high precision is not vital for global image statistics. 
 

 

 
 

Fig. 11. Implementation of the global parameters 
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Figure 11 depicts the proposed implementation for the calculation of the global 
parameters. The 3-bin histogram is correlated with the desired values of the global 
parameters. These are 2-bit parameters which can have four different values. Their 
values are inversely proportional to the percentage of image pixels that a particular 
bin has. If for example bin_low occupies more than ¾ of the image size, the value of 
Mdark will be 00. On the contrary, if bin_low occupies less than ¼ of the image size, 
Mdark will be 11. The same associations hold for bin_middle with the Lobe parameter 
and bin_high with Mbright.  

 

 
 

Fig. 12. a. A 3×3 serpentine architecture. b. The proposed serpentine architecture. 
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4.4   Surround Calculation 

The average surrounding luminance of every pixel is a key local parameter of the 
main enhancement function. Its calculation introduces a considerable challenge: the 
surround calculation is principally a parallel operation, since many pixel values have 
to be averaged instantly, while the pixel values are fed to the system sequentially from 
the camera. For this reason, a serpentine memory architecture [8] is employed, 
allowing parallel access to many pixel values. Figure 12a depicts a 3×3 serpentine 
architecture. 

The original enhancement algorithm requires large surround sizes of three different 
spatial scales. In order to implement this, a wider serpentine architecture is employed. 
The whole layout of the serpentine memory consists of 61×61, 24-bit registers and 
(60 × py)-61 wide FIFOs, (where py is the width of the picture). Five different types 
of registers are located in the proposed mask.  At every clock cycle the central register 
contains the original luminance value of the pixel to be enhanced. The registers that 
appear white in Figure12b are not used in the computation, while the three different 
concentric areas of registers S1, S2, S3 represent the three scales of surrounding 
neighborhoods. The number of registers in each spatial scale has been carefully 
selected in order to be a power of 2. This bypasses the expensive divisions, which are 
required for averaging, by using right shifts in the final result.  

 

1 1 1 1 1 128S S a S b S c S d pixels= + + + =  (20) 

2 1 2 2 2 2 1024S S S a S b S c S d pixels= + + + + =  (21) 

3 2 3 3 3 3 2048S S S a S b S c S d pixels= + + + + =  (22) 

1
1 128

S
Surround =

 
7 right shifts (23) 

2
2 1024

S
Surround =

 
10 right shifts (24) 

3
3 2048

S
Surround =  11 right shifts (25) 

 

The third scale (S3) is different than the other two. Some of the registers participating 
in the computation are symmetrically scattered, in order to minimize the number of 
needed registers and cover a wider area of pixels. In order to sum at the same time the 
registers of the serpentine, large parallel adders are employed as Figure 13 depicts. 

The final multiscale surround value is obtained by averaging the three surround 
values as follows:  

1 2 32

4

S S S
S

× + +=  (26) 
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Fig. 13. Parallel summation of the serpentine registers 

 

For every pixel (i,j) its luminance value Yij and its multiscale surround value Sij are 
fed to the StretchingLUT modules, in order to get the stretched values. This is 
depicted in Figure 14.  

 

 
 

Fig. 14. Calculation of the local parameters 
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4.5   Enhancement Function 

The enhancement function, as described by the equations (2)-(5), comprises several 
divisions and multiplications, which are expensive in terms of resources. In order to 
bypass the use of dividers and multiplicators, the enhancement function is stored into 
a LUT. This FinalLUT module, shown in Figure 6, is a ROM which is addressed with 
the four parameters of the main enhancement function and outputs at every clock 
cycle the equations’ result. Figure 15 depicts the addressing of the FinalLUT module. 

 

 
 

Fig. 15. Addressing of the FinalLUT 
 
A reduction of the precision of the local parameters (7bits instead of 8bits) is 

introduced, in order to maintain the size of the FinalLUT within the ranges of current 
FPGA technology. The size of the ROM memory used is 218×8 bits = 256ΚΒ. As it 
will be shown later, this precision reduction does not affect the image quality of the 
final output of the system. Apart from resource efficiency, the use of the LUT allows 
rapid future improvements to the system. This can be done by simply changing the 
data of the LUT, instead of redesigning the whole system.  

4.6   Alternative Implementation 

As the frame sizes increase, the FPGA’s memory resources become inadequate, and 
the FIFO memory that was used to create the second scan must be relocated outside 
the FPGA, as an external memory. An external memory is a costly component to 
include in a hardware implementation. Furthermore, it increases considerably the 
complexity of the system. 

The only reason for the existence of the FIFO memory is the requirement to find the 
minimum and maximum luminance values of every frame. In a video sequence however, 
adjacent frames usually present small differences, since not much can change in 1/25 of a 
second. In fact, the global statistics of the frames remain practically unchanged. Taking 
this into consideration, the first stage of the hardware implementation described in the 
previous sections can be omitted. This can be done by using the global parameters Mdark, 
Mbright and Lobe and the StretchingLUTs of the previous frame. The pipelining structure 
of this alternative architecture is depicted in Figure 16. 

As it is shown in Figure 16 only one scan for every frame is needed. Frame k 
enters the FPGA and is enhanced using the StretchingLUT and the global parameters 
(Mdark, Mbright and Lobe) of frame k-2. At the same time, its global statistics 
(histogram, Ymax and Ymin) and the parameters of frame k-1 (StretchingLUT, Mdark, 
Mbright and Lobe) are computed, in order to be used for the enhancement of the next 
frame. This implementation presents the highest performance in terms of execution 
time and frame size. 
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Fig. 16. The pipelining procedure of the alternative implementation 

5   Hardware and Software Comparison 

The accuracy reduction of the local parameters inevitably induces errors, compared to 
the software implementation of the algorithm. Figure 17 depicts the results of an error  
 

 
 

Fig. 17. Error analysis for the accuracy reduction in local parameters 
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Fig. 18. Comparison between hardware and software 
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analysis for the accuracy reduction of the local parameters. This analysis shows that 
the maximum induced error can only be of three gray levels. A human observer is not 
capable of discriminating such errors, especially in video sequences. This conclusion 
is also confirmed in Figure 18, which depicts a visual comparison between the two 
results, as well as the standard deviation of their absolute difference. 

6   Discussion and Conclusions 

The proposed hardware architectures were synthesized in Altera’s Stratix II GX: 
EP2SGX130GF1508C5 FPGA device. Table 1 depicts the simulation results from 
Altera Quartus II 5.1 CAD tool.  

 
Table 1. Simulation results in Altera Quartus II 5.1 CAD tool 

 

Altera Stratix II Simulation Results 

Original 
Implementation 

Alternative 
Implementation  

Color (24bit) Grayscale (8bit) Color (24bit) 

Frame size 400×400 pixels 640×480 pixels 2.5 MPixels 

Frame rate 25 fps 25 fps 25 fps 

Total ALUTs 
50,037/106,032 

(47%) 
44,034/106,032 

(41%) 
49,763/106,032 

(47%) 

Total registers 43,873 43,873 43,793 

Total 
memory bits 

5,492,736/ 
6,747,840 

(81%) 

5,099,522/ 
6,747,840 
(75%) 

2,609,151/ 
6,747,840 
(39%) 

Total 
Combinational 

Functions 
19,405 18,476 18,841 

DSP Blocks 0 0 0 

Maximum 
Frequency 

66.66 MHz 

 
For both implementations, the maximum frequency of the system is 66.66MHz. This 

frequency is determined by the slowest module of the system, which are the parallel 
adders in the surround calculation. The original implementation allows the real-time 
rendering of color frames with size 400×400 pixels, or grayscale frames with size 
640×480 pixels. The alternative implementation on the contrary, allows the real-time 
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processing of color frames with sizes up to 2.5MPixels. Both implementations 
outperform all the similar existing systems.   

The above characteristics of the proposed implementations, allows the system to 
have many potential applications. Such applications are consumer electronics (e.g., 
digital cameras, mobile phones, video-call systems, and video surveillance systems), 
robotics (machine vision, assembly lines), driver’s assistance (automotive), aerial/ 
satellite photography and medical imaging.  
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Abstract. The major challenge in the wavelet transforms is that there
exist different classes of wavelet filters for different kinds of applications.
In this chapter, we propose a generalized lifting-based wavelet processor
that can perform various forward and inverse Discrete Wavelet Trans-
forms (DWTs) and Discrete Wavelet Packets (DWPs) that also sup-
ports higher order wavelet filters. Our architecture is based on Processing
Elements (PEs) which can perform either prediction or update on a con-
tinuous data stream in every two clock cycles. We also consider the nor-
malization step which takes place at the end of the forward DWT/DWP
or at the beginning of the inverse DWT/DWP. Because different applica-
tions require different number of samples for the transforms, we propose
a flexible memory size that can be implemented in the design. To cope
with different wavelet filters, we feature a multi-context configuration to
select among various forward and inverse DWTs/DWPs. For the 16-bit
implementation, the estimated area of the proposed wavelet processor
with 8 PEs configuration and 2×2×512 words memory in a 0.18-µm
technology is 2.5 mm square and the estimated operating frequency is
319 MHz.

1 Introduction

For the last two decades the wavelet theory has been studied extensively [4,
7, 11, 17, 19] to answer the demand for better and more appropriate functions
to represent signals than the ones offered by the Fourier analysis. Contrary to
the Fourier analysis, which decomposes signals into sine and cosine functions,
wavelets study each component of the signal on different resolutions and scales.
In analogy, if we observe the signal with a large window, we will get a coarse
feature of the signal, and if we observe the signal with a small window, we will
extract the details of the signal.

One of the most attractive features that wavelet transforms provide is their
capability to analyze the signals which contain sharp spikes and discontinuities.
The better energy compacting support the wavelet transforms offer and also the

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 154–173, 2010.
c© IFIP International Federation for Information Processing 2010
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localizing feature [5] of the signal in both time and frequency domains these
transforms support have made wavelet outperforms the Fourier transform in
signal processing and has made itself into the new standard of JPEG2000 [9,15].

Along with recent trends and research focuses in applying wavelets in image
processing, the application of wavelets is essentially not only limited to this area.
The benefits of wavelets have been studied by many scientists from different
fields such as mathematics, physics, and electrical engineering. In the field of
electrical engineering wavelets have been known with the name multi-rate signal
processing. Due to numerous interchanging fields, wavelets have been used in
many applications such as image compression, feature detection, seismic geology,
human vision, etc.

Contrary to the Fourier transform, which uses one basis function (and its
inverse) to transform between domains, there are different classes of wavelet
kernels which can be applied on the signal depending on the application. Be-
cause different applications require different treatments, researchers have tried
to cope with their own issues and implemented only a subset of wavelets which
are suitable for their own needs such as ones that can be found in image com-
pression [6, 10, 15, 22] and speech processing [1, 8, 14, 16]. The power of wavelet
tools is then limited due to these approaches.

In this chapter we propose a novel architecture to compute forward and inverse
transforms of numerous DWTs (Discrete Wavelet Transforms) and also DWPs
(Discrete Wavelet Packets) based on their lifting scheme representations. Most
lifting-based wavelet processors are dedicated to compute wavelet filters which
are used only in JPEG2000 image compression where the wavelet coefficients
can be represented as integers such as Andra in [2] which required two adders,
one multiplier, and one shifter on each row and column processor to compute
(5,3) and (9,7) filters with the prerequisite that prediction or update constants
of the actual and the delayed samples are equal (i.e. c(1 + z−1)). Barua in [3]
described the similar architecture for FPGAs that optimizes the internal memory
usage. Dillen in [13] detailed the combined architecture of (5,3) and (9,7) filters
for JPEG2000. Another example is from Martina, which encompassed multiple
MAC structure with recursive architecture in [18].

Our new proposed architecture takes into account that each lifting step repre-
sentation of an arbitrary wavelet filter may have two different update constants
and the Laurent polynomial may have higher order factors (i.e. c1z

−p + c2z
−q),

which are common in various classes of wavelet filters such as Symlet and Coiflet
wavelet filters. Additionally, the proposed architecture also considers the normal-
ization step which takes place at the end of the forward DWT/DWP or at the
beginning of the inverse DWT/DWP for the applications that require to conserve
the energy during the transform. In order to be flexible, the proposed architec-
ture provides a multi-context configuration to choose between various forward
and inverse DWTs/DWPs. Because wavelet transforms work with large number
of samples, the proposed architecture can be configured to have an arbitrary
memory size (i.e. the powers of two) to cope with the application demands.
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The rest of the chapter is organized as follows. Section 2.1 describes the sec-
ond generation of wavelets and the concepts regarding wavelet transforms and
wavelet packets. The proposed architecture, including the processing element,
the MAC-unit, the configuration and the context switch, the memory, the con-
troller, are explained in Section 3. Section 4 discusses the performance of the
proposed architecture and finally Section 5 concludes the contribution.

2 Backgrounds

2.1 Lifting Scheme

Contrary to the filter approach, which separates the signal into low and high
frequency parts and performs the decimation on both signals afterwards, the
second generation of wavelets reduces the computation by performing the deci-
mation in advance. The second generation of wavelets, more popular under the
name of lifting scheme, was introduced by Sweldens [21]. The basic principle of
lifting scheme is to factorize the wavelet filter into alternating upper and lower
triangular 2 × 2 matrix.

Let H(z) and G(z) be a pair of low-pass and high-pass wavelet filters:

H(z) =
kh∑

n=kl

hnz−n (1)

G(z) =
kh∑

n=kl

gnz−n (2)

where hn and gn are the corresponding filter coefficients. N = |kh − kl| + 1 is
the filter length and the corresponding Laurent polynomial degree is given by
h = N − 1. By splitting the filter coefficients into even and odd parts, the filters
can be rewritten as:

H(z) = He(z2) + z−1Ho(z2) (3)

G(z) = Ge(z2) + z−1Go(z2) (4)

and the corresponding polyphase representation is:

P (z) =
[

He(z) Ge(z)
Ho(z) Go(z)

]
(5)

Daubechies and Sweldens in [12,21] have shown that the polyphase representa-
tion can always be factored into lifting steps by using the Euclidean algorithm to
find the greatest common divisors. Thus the polyphase representation becomes:

P (z) =
[
K 0
0 1/K

] 1∏
i=n

[
1 ai(z)
0 1

] [
1 0

bi(z) 1

]
(6)
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Sjodd
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P1(z) U1(z) P2(z) U2(z) Pn(z) Un(z)

Fig. 1. Forward lifting steps

where ai(z) and bi(z) are the Laurent polynomials and K is the normalization
factor.

Fig. 1 shows the arrangement of the lifting scheme representation. The Laurent
polynomials bi(z) and ai(z) are expressed as predictor Pi(z) and updater Ui(z).
The signal Sj is split into even and odd parts. Prediction and update steps occur
alternately. The predictor Pi(z) predicts the odd part from the even part. The
difference between the odd part and the predicted part is computed and used
by the updater Ui(z) to update the even part. At the end, the low-pass and the
high-pass signals are normalized with a factor of K and 1/K respectively.

By factoring the wavelet filters into lifting steps, it is expected that the com-
putation performed on each stage (either it is a prediction or an update) will be
much less complex. As an example, the famous Daub-4 wavelet filter with the
low-pass filter response:

H(z) =
1 +

√
3

4
√

2
+

3 +
√

3
4
√

2
z−1 +

3 −√
3

4
√

2
z−2 +

1 −√
3

4
√

2
z−3 (7)

can be factored into lifting steps:

P (z) =

[ √
3−1√
2

0

0
√

3+1√
2

][
1 −z
0 1

] [
1 0

−
√

3
4 + 2−√

3
4 z−1 1

] [
1
√

3
0 1

]
(8)

Since the finding of the greatest common divisors is not necessarily unique, the
result of the Laurent polynomials may also differ. The Daub-6 and the popular
(5,3) and (9,7) wavelet filters can be factored into lifting steps with maximum
degree of ±1 [12] whereas Symlet-6 and Coiflet-2 (the lifting computations are
not detailed here due to page limitation) may have two update/prediction terms
and also z±5 factor on its Laurent polynomials.

2.2 Wavelet Transform and Wavelet Packet

Wavelet transform is a multi-resolution signal analysis. In the traditional wavelet
transforms, only the low-pass signal is used on the next transformation level to
generate a multi-resolution representation of the corresponding signal. In wavelet
packets, both low-pass and high-pass signals are analyzed, resulting equally
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HP↓2

HP↓2

(a) DWT

LP↓2

LP↓2
LP↓2

HP↓2

HP↓2

HP↓2

(b) DWP

Fig. 2. Two different transformations

spaced frequency bands. Fig. 2 depicts both schemes. Note that the illustra-
tion uses wavelet transforms based on filter-approach instead of lifting-scheme
in order to ease understanding the concept for both schemes. LP and HP corre-
spond to low-pass and high-pass filter pair and ↓2 corresponds to down-sampling
by two. It is obvious that DWT will require less computation time compared to
DWP, because at each level, the number of samples is decreased by two. Also,
the controller that controls the processor to perform DWTs and their inverses is
straightforward, while the controller to perform DWPs and their inverses is more
complicated due to the fact that the number of frequency bands that need to be
processed increases two fold at each transform. As an example, performing four
levels wavelet packet on a signal leads to 16 frequency bands whereas performing
four levels wavelet transform generates 5 frequency bands.

Not only the challenges on the controller, the major issue in DWP is that
the resulting HP signals are much smaller than the LP parts in normal circum-
stances. Thus performing multi-level DWP using integer arithmetics would make
these HP signals go to zero, which lead to lower achievable SNR values, if it is
not carefully performed.

3 Proposed Architecture

The lifting-based forward DWT/DWP splits the signal into even and odd parts
at the first stage. The split signals are processed by an alternating series of pre-
dictors and updaters (on some wavelet filters, an updater may come before a
predictor). On the final stage, the multiplication with the normalization factor
takes place in order to conserve the energy. The inverse DWT/DWP performs
exactly everything backwards. It starts with the multiplication with normaliza-
tion factor, continues with a series of updaters and predictors, and finishes with
the merging of the outputs.

As a predictor and an updater perform a similar computation, the hardware
architecture for both functions is exactly the same. Taking this into account, we
propose a novel wavelet processor which is based on M processing elements to
cope with M lifting steps. Due to the nature of the lifting scheme, wavelet filters
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that have longer lifting scheme representations can easily be broken down into
smaller lifting steps that the processor can compute (i.e. M lifting steps each).
Which means that the processor that implements M processing elements is not
limited to perform the transform up to M lifting steps only.

The core behind our proposed architecture is the processing element (PE),
which performs the prediction or the update. To maximize the performance,
the PE utilizes the parallelism by using a pipeline mechanism to guarantee the
outputs to be available in every clock cycle (actually every two clock cycles as
detailed later). As the lifting scheme breaks a wavelet filter into smaller predic-
tions and updates, the resulting predictor and updater can be limited to have a
maximum Laurent polynomial degree of one. Nevertheless, the predictor or the
updater of higher order wavelet filters may have the higher factors as well. With-
out loss of generality, we can formulate the predictor or the updater polynomial
as:

l(z) = c1z
−p + c2z

−q (9)

with c1 and c2 as the polynomial constants and |p − q| ≤ N . This implies that
on each stage (either as a predictor or an updater), the PE would perform two
multiplications and two additions. As an example, the first predict and update
steps of Daub-4 can be written as:[

s′

d

]
=

[
1
√

3
0 1

] [
s
d

]
=

[
s + d · √3

d

]
(10)

[
s′

d′

]
=

[
1 0

−
√

3
4 + 2−√

3
4 z−1 1

] [
s′

d

]

=
[

s′

d + s′ · −√
3

4 + s′ · 2−√
3

4 z−1

] (11)

which perform one multiplication and one addition in order to solve s′ (as shown
at the top resulting term in Eq. 10) and two multiplications and two additions
to solve d′ (as shown at the bottom resulting term in Eq. 11).

3.1 Architecture of the Processing Element

Taking into account that multipliers are expensive in term of area and the PE
receives two samples (s and d) at once, we have decided to lower the input rate
by half. From the performance point of view, the processing rate of the PE will
be equal to the processor speed and no longer twice as fast. This also implies that
the bottleneck issues on the input and output ports with the memory will not
occur. From the hardware implementation point of view, the PE requires only one
multiplier and one adder. This optimization, as detailed later, is accomplished
by multiplexing the operands of the multiplier inputs (the multiplier and the
multiplicand) and by feeding the adder result back via the multiplexer.

Fig. 3 depicts the proposed PE. The PE has two selectors S1 and S2 to choose
the prediction or the update samples that correspond to the factors p and q from
the Laurent polynomial. Two constants which represent the filter coefficients are
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Fig. 3. Block diagram of the processing element

defined and configured by the controller. By delaying the actual samples, selector
S3 controls the prediction or the update that requires future samples. Selector
S4 is a bypass selector. Because lifting steps of the higher order wavelet filters
may require distance prediction or update samples, the maximum depth of the
unit delay z−m, that determines the maximum delay level, can be freely chosen
during the design.

Fig. 4 details the MAC (Multiply-and-Accumulate) unit which is implemented
inside the PE. Both multiplier unit and adder unit require only one clock cycle
to perform their function. C1 and C2 correspond to the Laurent polynomial
constants, whereas M1 and M2 correspond to the outputs of the samples that
are selected by S1 and S2. The multiplexer for M1 and M2 as a matter of fact
does not exist and is drawn here only to illustrate the MAC process. A shifter
is utilized as a replacement of the more expensive divider.

The PE is divided into 3 blocks. The first block organizes the input samples
from both channels. The second block chooses the inputs of the multiplier and
performs the multiplication. As mentioned earlier, the PE utilizes only one mul-
tiplier which is time-shared in order to perform two multiplications. The first
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Fig. 4. Multiply-And-Accumulate unit

clock cycle performs the first multiplication (i.e. C1 × M1) and the second cy-
cle performs the second multiplication (i.e. C2 ×M2). The third block performs
the summation between the reference sample and the prediction/update values.
Similar technique is applied here in order to utilize only one adder. As shown
in Fig. 4, the first addition cycle performs D + 2−R(C1 × M1) and the second
addition cycle adds-up the first one with 2−R(C2 × M2). Whilst the input data
are integer, the shifter performs the division on the multiplication result with
2R where R can be freely chosen. Two 1-level FIFOs (First In First Out) are
implemented to deal with the multiplier delay and a 2-level FIFO is implemented
to compensate the delay which is introduced by the adder.

3.2 Normalization

As the multiplication with the normalization factor can take place at the end of
the transform in case of forward DWT/DWP or at the beginning of the transform
in case of inverse DWT/DWP, two special processing elements to handle this
function are required. Although the normalization step is different compared
to the prediction or the update step in a manner that both inputs s and d
are multiplied with constants K and 1/K respectively, we know for sure that
two multiplications take place. To perform this normalization step, we extend
the functionality of the PEs that are located on the top and on the bottom of
the proposed wavelet processor instead of implementing a dedicated normalizer
unit. Three additional multiplexers are needed to add the normalization factor
unit into the PE. Fig. 5 shows the PE which is used on the top and on the
bottom of the proposed architecture. By enabling S5 and setting S1 and S3 to
zero, two inputs of the multiplexer before the multiplier correspond to the actual
samples s and d (with the normalization factors K = C1 and 1/K = C2). The
first multiplication product passes through the multiplexer and the 1-level FIFO
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the bottom of wavelet processor

resulting s′ = Ks (the left side) and the second multiplication product passes
through the multiplexer resulting d′ = d/K (the right side). Whereas the first
normalization (i.e. s′ = Ks) takes place first, instead of adding a 1-level FIFO
on the right output port, the 2-level FIFO is split into two 1-level FIFOs to make
both outputs synchronized and to minimize the latency.

3.3 Context Switch

To cope with various lifting-based forward and inverse DWTs/DWPs, we have
separated the configuration dependent parameters from the PE. Figs. 3 and 5
show how the inputs of the multiplexer selectors and the multiplier constants
are separately drawn on the left side of the figures to emphasize the separation.
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In addition the PE is designed to be simple. Thus, no finite state machine is
required to control the PE. To support different classes of wavelet filters that
require different types of configurations, we have implemented a multi-context
configuration on each PE as depicted in Fig. 6. Each PE is assigned with a
row index as a unique ID for the configuration. Multiplier constants use the
signal data paths to save the wiring cost whereas the multiplexers configuration
requires additional controller path. Context switch is implemented as a memory
module where the address is controlled by the context selector and the write
enable signal is controlled by the output comparator.

The active configuration can easily be selected by using this context-based
controller to cope with various wavelet filters. One benefit of having a multi-
context configuration is that the proposed wavelet processor can be configured
to perform the corresponding inverse DWTs/DWPs in a very simple manner.
Additionally, the issues regarding the boundary condition can be relaxed by
utilizing special wavelet filters on the signal boundaries which require less or no
delayed/future samples (e.g. Haar wavelet) instead of exploiting the periodicity
or the mirroring of the signal. Lastly, by using the context-based configuration,
the DWTs/DWPs that exercise longer wavelet filters can simply be broken into
smaller lifting steps. The configuration of each group of the lifting steps will be
stored in the context memory and will be used to compute the transform.

3.4 Memory Controller

Taking into account that the predictions and the updates occur alternately, the
outputs of a PE will be cross-linked with the input of the next PE. Due to the
nature of lifting steps, the prediction and the update are computed in-place. It
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means that it is not necessary to save the result or the temporary result into a
different memory. One simple implementation of the proposed wavelet processor
would consist of one PE. By configuring each context with the corresponding lift-
ing step, the DWT/DWP and their inverses could be computed with this simple
implementation. Although it is possible to use only one PE, a typical wavelet
processor will have M chained PEs configuration to boost the performance and
to minimize memory access.

Wavelet transform is a multi-resolutional signal processing tool. To achieve
the required results, the signal needs to be transformed iteratively. In case of a
DWT, only the low-pass part of the signal is taken into account as an input for
the next transform. As a pair of low-pass and high-pass wavelet filter is used
to compute the transform, the size of the signal decreases by two after each
transformation level in this case. In contrary, a DWP uses both low-pass and
high-pass parts of the signal in order to achieve equally spaced frequency bands
after each transformation level. The total size of the signal on DWP remains the
same and the amount of the processed data will slightly increase. It is due to
the fact that low-pass and high-pass parts are treated independently during the
computation and for each part of the signal, a signal extension, which will be
detailed later on, is required to compute the transform on the boundary regions.

Fig. 7 depicts the block diagram of the processor along with the PEs and their
configuration controller. The PEs that are located on the top and on the bottom
of the wavelet processor have an extra capability to perform the normalization.

Main FSM

The main finite state machine controls the wavelet processor. When the trans-
form is initiated, the FSM reads the necessary configurations, such as the trans-
formation level, forward/inverse mode, transform/packet mode, used contexts,
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etc. from the config block. This configuration, as detailed later, is divided into
two categories. The first category is related to the functionalities of the processor
and the second one is related to the lifting configuration.

The main FSM prepares the source and the sink addresses where the data
will be read and stored, and also the length of the data needed to be processed.
We exploit the periodicity extension to cope with the boundaries issue in order
to compute the transform on those regions. This implies that source address
does not always start on the top of the page. Address masking techniques are
applied here to localize the page. The FSM takes care of the possibility of having
a longer wavelet transform that has to be split into several lifting steps on the
target PEs. The FSM allows multi-level forward/inverse DWT and DWP to take
place by means of iteration process.

Config

The config block contains the configuration of the wavelet transform. Two differ-
ent configuration categories are managed by this block. The functionality part
manages:

– Selecting the type of the transform that will be performed: DWT or DWP.
– Selecting the transform mode: forward transform or inverse transform.
– The amount of memory that will be involved during the transform. Note that

the processor can perform the transform on an arbitrary size of the sample.
For an example, the value 0 indicates that the transform will be performed
on the whole memory. The value 1 will make the transform processes the
half of the memory and so on.

– Number of levels the transform will compute. This is effective to perform
multi-level transform on a 1D signal. In contrary, for a 2D or higher dimen-
sion, the number of levels should always be set to 1.

The lifting part stores the configuration of the contexts used during the trans-
form. It holds an important key to support wavelet transforms that use longer
wavelet filters. If the number of lifting steps of the wavelet filters used for the
transforms are larger than the available PEs, these lifting steps have to be split
into several smaller steps that can be fit into the available PEs. The configu-
ration of each lifting itself is stored on the context configuration of the PEs.
This block stores only the corresponding context IDs that will be used. Thus,
by selecting the right ID one after another, the wavelet transform with longer
lifting steps can be performed. Basically, it tells us which context should be used
for the corresponding lifting step.

Beside storing the context IDs, it also holds the read and write offset addresses
to start the transform and also the latency value for each lifting. It is important
to note that in order to compute the wavelet transform, except for Haar wavelet
filter, past and future samples are required. This becomes an issue when the
transform on the signal boundary is performed. To cope with this boundary
issue, the periodicity extension is used to locate these samples. These offsets
hold the information of the corresponding starting sample for this periodicity
extension.
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Memory

The memory is organized as 2×2 banks. This configuration describes that the
processor has two main banks (which are called bank 0 and bank 1) and each
main bank consists of one primary bank and one shadow bank. With this tech-
nique, while the processor performs the transform on one bank (either bank 0 or
bank 1), the next data can be placed on the other bank. Thus, it improves the
overall performance by minimizing the delay caused by the data preparation.

The memory write and read accesses are exclusive, which means that writing
to the memory will write to the primary bank and reading from the memory
will read from its shadow. This state is switchable automatically, controlled by
the FSM. When the transform takes place, the FSM grants the memory access
of the selected bank to the source and sink blocks. Writing to or reading from
this bank is forbidden and it will generate an error (as an indication of a busy
signal). Nevertheless, the external interface can still read from and write to the
memory of the other non-selected bank. Thus, the previous resulting transform,
which is stored in this non-selected bank, can be read, and also the external
interface can prepare the new data for the next transform.

Source and Sink

These blocks generate and automatically increment the read and write addresses.
The source reads data from the memory and transfers it to the PEs. The sink
reads data from the PEs and writes it to the memory. A special case is consid-
ered when performing transformations that are longer than the available PEs.
During the in-between transformation, in case of forward transform, the sink will
write the data (which corresponds to the intermediate results) to the memory
in adjacent manner (resulting L-H-L-H-...). During the final transformation, the
sink writes the LP and the HP signals into two different pages (resulting L-L-...-
H-H-...). The similar handling is also performed by the source when performing
the inverse transform.

To access the correct page, two address masks are used. The first mask is
responsible for the data indexing, and the second mask is responsible for the
page indexing.

Latency Counter

This block delays the run signal from the main FSM to initiate the sink process.
The delay amount is different for every lifting steps and it is defined in the config
block.

Details of the Memory Access

Fig. 8 illustrates the N-level and multiple lifting steps DWT. White and grey
represent the primary and the shadow banks and diagonal pattern represents the
in-between transformation. During the setup, the data is prepared and stored
in one bank (this bank is write-only and its shadow is read-only). When the
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Fig. 9. Forward DWP Process

transformation is initiated, this state is reversed, and the source and the sink
control the address lines. For each lifting steps, the source reads the written data,
and the sink writes the in-between transformation result to the shadow bank.
This state is reversed again every time one lifting step is finished, which makes
the shadow bank as the primary bank and vice versa. During the last lifting
step, the sink stores the LP and the HP results into two different pages. This
whole process is performed N times with each iteration decreases the data by
half. At each finishing level, a memory copy to transfer the previous HP result
to the shadow bank is performed when necessary, e.g. when the lifting steps are
odd.

For the DWPs, the HP signal is also transformed, as depicted in Fig. 9. Instead
of executing/finalizing the transformation on each signal (LP, and then HP) on
each level, the in-between transformations are performed on both signals. With
this technique, the banks are not switched during the in-between transformation
for both LP and HP signals. Thus, the FSM can trigger the source to initiate the
next data transfer for the next band/page (e.g. HP) without waiting the sink to
finish from the previous transform. This solution decreases the data preparation
time that is caused by exploiting the periodicity extension and the PEs latency.
No copy transfer is performed on the DWPs/IDWPs.

4 Results and Performances

Our wavelet processor is written in VHDL and is based on the modular and
parametric approach to make the design adaptable. In this paper, we provide
the synthesis results of our wavelet processor that contains 8 PEs to process
forward/inverse DWTs/DWPs with 8-level unit delays to support higher order
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Table 1. Estimated area and frequency of proposed wavelet processor with 8 PEs and
2×2 memory banks

Data Width
Est. Area % Area for Est. Frequency
(in mm2) Logic (in MHz)

16-bit 2.501 30.60 % 319.49
20-bit 3.120 31.38 % 298.51
24-bit 3.780 32.63 % 285.71
28-bit 4.376 32.57 % 262.47
32-bit 5.134 34.63 % 241.55

Table 2. Comparison with other Lifting-Based Architectures

Arch. Speed Area Filter Transform Data Width Mem. Size

Andra [2]
200 MHz

2.8 mm2 (5,3) DWT
16-bit 128

(0.18-µm) (9,7) IDWT

Dillen [13]
110 MHz

–
(5,3) DWT

16-bit 256
(FPGA) (9,7) IDWT

Seo [20] 150 MHz
5.6 mm2 (5,3) DWT

12-bit 512
(0.35-µm) (9,7) IDWT

Wang [23]
100 MHz

1.1 mm2 Daub-4 DWP 18-bit 8
(0.18-µm)

Ours
242 MHz

5.1 mm2 Arbitary
DWT,IDWT 32-bit* 512*

(0.18-µm) DWP,IDWP Configurable Configurable

wavelet filters and 16 available contexts to configure 16 different transforms.
The design is synthesized using 0.18-μm technology. Because wavelet transforms
deal with large numbers of samples, 2×2×512 words memory is integrated into
the processor for this implementation. Note that the wavelet processor is also
designed to be flexible in respect with the number of the samples the processor
can handle. In other word, the processor can be synthesized with an arbitrary
size of the memory, as long as it follows an integer power of two rule. The size
of the memory corresponds to the maximum number of samples the wavelet
transforms can be performed by the processor.

The estimated area and frequency of various data width implementations are
reported in Table 1. For the 16-bit configuration, the proposed wavelet processor
consumes 2.5 mm2 chip area and has a maximum operating speed of 319 MHz.
As a comparison, architecture from Andra with 16-bit data width in [2] can only
compute (5,3) and (9,7) filters and required 2.8 mm2 with 200 MHz operating
frequency. The details of the comparisons with the other architectures are sum-
marized in Table 2. Note that our proposed architecture has flexible data width
and memory size.
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Table 3. Lifting coefficients of Daub-6, Symlet-6, and Coiflet-2 wavelet filters

Type Daub-6 Symlet-6 Coiflet-2

Updater 2.425 z0 -0.227 z0 -2.530 z0

Predictor 0.079 z−1 -0.352 z0 -1.267 z−1 0.216 z0 -0.240 z−1 0.342 z0

Updater -2.895 z1 0.561 z2 0.505 z1 -4.255 z2 3.163 z1 15.268 z2

Predictor -0.020 z−2 0.045 z−3 0.233 z−2 0.006 z−3 -0.065 z−2

Updater -18.389 z3 6.624 z4 -63.951 z3 13.591 z4

Predictor 0.144 z−5 -0.057 z−4 0.001 z−5 0.002 z−4

Updater -5.512 z5 -3.793 z5

Normalizer 0.432 2.315 -0.599 -1.671 0.108 9.288

Table 4. SNR values of different data width implementations (in dB) for 4-level forward
and inverse DWT

Daub-6
Source 16-bit 20-bit 24-bit 28-bit 32-bit

Sinusoid 42.90 67.04 89.38 115.00 138.52
Sawtooth 40.93 65.19 88.34 113.31 137.03
Step 44.98 67.07 87.95 114.19 138.88
Random 40.17 64.92 88.62 113.06 136.87

Symlet-6

Sinusoid 37.04 61.95 88.40 111.85 134.88
Sawtooth 35.75 60.22 85.84 108.89 133.17
Step 34.97 64.94 91.83 112.53 140.07
Random 36.52 61.18 85.93 109.37 133.51

Coiflet-2

Sinusoid 31.35 55.13 78.56 101.70 124.05
Sawtooth 29.80 52.85 76.83 100.13 123.19
Step 31.86 56.75 79.89 101.45 123.60
Random 29.01 52.83 77.53 101.93 125.27

In order to realize the fixed-point multiplication between the samples and the
coefficients, we utilized an integer multiplier and a shifter to reduce the hardware
cost. As the compensation, this implementation leads to errors caused by the
rounding of the wavelet coefficients and the cropping of the multiplication results.
To measure the level of correctness of our design, we perform DWTs/DWPs
and their corresponding inverse transforms on some predefined signals. Four
different 8-bit full-swing signals, which are used as references, are forward and
inverse transformed using Daub-4, Symlet-6, and Coiflet-2 wavelet filters with
no integer coefficients. The random signal has a uniform distribution.
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Table 5. SNR values of different data width implementations (in dB) for 4-level forward
and inverse DWP

Daub-6
Source 16-bit 20-bit 24-bit 28-bit 32-bit

Sinusoid 39.66 63.92 87.49 111.65 136.02
Sawtooth 37.45 62.05 85.26 109.80 134.00
Step 41.11 63.85 86.79 112.82 137.83
Random 37.19 61.75 84.11 109.34 133.41

Symlet-6

Sinusoid 35.41 60.03 85.22 108.95 131.86
Sawtooth 33.79 58.24 82.98 106.96 130.10
Step 34.25 62.31 87.14 108.17 134.37
Random 33.35 58.40 82.67 106.87 129.71

Coiflet-2

Sinusoid 29.26 53.07 76.74 100.13 123.01
Sawtooth 27.09 51.00 74.44 98.75 121.57
Step 29.49 53.75 76.65 98.84 122.46
Random 26.75 51.33 74.64 98.49 120.88

The lifting step coefficients of these wavelet filters are summarized in Table 3.
These coefficients are shortened to save space. Because the coefficients have to
be represented as integers, depending on the data width, they will be magnified
with some factor, and the result will be rounded and used as lifting coefficients.
ModelSim is used to compare and verify the results. The SNR is computed using:

SNR(dB) = 20 × log10

( ∑ |signal|∑ |signal − result|
)

(12)

where signal corresponds the input vector and result corresponds the output of
the forward and inverse transforms.

Because wavelet transform is a multi-resolution signal processing tool, we per-
form four-level DWTs and DWPs to give a better overview of the performance
of our wavelet processor. The SNR values of the different data width imple-
mentations for 4-level DWTs and DWPs are reported in Table 4 and Table 5
respectively. Depending on the data widths, SNR values vary between 29 dB and
140 dB in case of DWTs and between 27 dB and 138 dB in case of DWPs, which
are sufficient for most applications. DWPs achieve slightly lower SNR values due
to the fact that the high-pass signals after each transformation level get smaller
and tend toward zero. Thus information losses are affected at these bands. The
16-bit implementation achieves lower SNR values due to the fact that the lifting
coefficients have a large dynamic range that is between 0.001 and 64. The same
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reason applies for Coiflet-2 wavelet filter. The improvement of the SNR values
can be achieved by increasing the data width.

The proposed wavelet processor can accept input data stream and perform the
computation in every two clock cycles made possible by the pipeline structure
and the resource sharing. The total latency on each PE is 4 clock cycles. One
clock cycle is consumed by the input registers, 1+1 by the multiplier (two multi-
plications are performed), and 1+0 by the adder (two summations are performed
where one cycle is “stolen” from the multiplier). Additional sample latency (2
clock cycles per future sample) will add-up to the total latency on the PEs which
require this feature. The PE that is configured to perform the normalization step
has latency of 3 clock cycles.

For the wavelet processor with M PEs, the total time needed to compute
L-stage forward/inverse DWT is:

TDWT = L(Ts + Td) + 2S(1 − 0.5L) + S(1 − 0.5L−1) (13)

where S is the signal length, Ts is the setup delay and Td =
∑m=M

1 TPEm is the
circuit delay with TPEm as the PE latency delay of the m-th PE. The second
term is the contribution of the actual transform whereas the last term is the
result of the memory copy process.

In case of a L-stage forward/inverse DWP, the total time is formulated as:

TDWP = L(Ts + Td) + LS (14)

The second term is the contribution of the low-pass and high-pass parts which
have to be processed as well. No memory copy process takes place on performing
forward/inverse DWP.

5 Conclusions

The facts are that wavelets have a very wide spectrum and there exists different
classes of wavelet filters that can be used depending on the application. We have
proposed a novel architecture that is able to compute various wavelet transforms
and their inverses based on their lifting scheme representations. Because of di-
versities in application’s need, we have designed the wavelet processor that can
perform not only DWTs, but also DWPs.

The proposed wavelet processor is based on M chained PEs to compute the
prediction/update of the lifting steps, and it can be configured easily to sup-
port higher order lifting polynomials, as the result of the factorization of the
higher order wavelet filters. To cope with different wavelet filters, the devel-
oped wavelet processor includes a multi-context configuration so that users can
easily switch between transforms (including their inverses). The wavelet proces-
sor is full-customized to manage different application demands which require
different accuracy. Additionally, the architecture takes into account the energy
conservation property of the wavelet transform by providing the normalization
step that occurs at the end of the forward DWT/DWP or at the beginning
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of the inverse DWT/DWP. Due to its locality property, wavelet transform has
a straightforward implementation in hardware. Considering also that wavelet
transforms work with arbitrary number of samples, we deliver this freedom into
our wavelet processor. Using 0.18-μm technology, the estimated area of the pro-
posed wavelet processor with 16-bit configuration and 2×2×512 words memory
is 2.5 mm2 and the estimated operating speed is 319 MHz.
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1 Introduction

In modern electronic systems, complex arithmetic computation plays an impor-
tant role in the implementation of different Digital Signal Processing (DSP) and
scientific computation algorithms [1], [2]. Most of the interest in complex signal
processing is related to the implementation of wireless communication systems
based on new concepts and architectures [3]. A very interesting tutorial paper
on complex signal processing and its applications has been presented recently
[4]. In [4], the importance of the use of complex signal processing in wireless
communications systems has been shown. Regarding communication systems,
one of the most critical computation to be implemented in hardware is complex
FIR filtering. In fact, FIR filters are generally characterized by a high order
(number of taps) to obtain sharp transition bands that, in case of high speed
real time computation, require many resources and have high power dissipation.
In particular, for complex FIR filters, the hardware complexity is mostly deter-
mined by the number of complex multipliers (i.e. each complex multiplication is
actually implemented with four scalar multiplications). Different solutions have
been proposed to lower the hardware complexity of the complex multiplication
either at algorithmic level (Golub Rule) [5], or by using different number sys-
tems such as the Quadratic Residue Number System (QRNS) [6], [2] and the
Quater-Imaginary Number System (QINS) [7].

The aim of this work is to compare in terms of performance, area and power
dissipation, the implementations of complex FIR filters based on the traditional
Two’s Complement System (TCS), the QRNS and the QINS (or radix-2j) im-
plemented in the Redundant Complex Number Systems (RCNS) [8].

Previous work was done on both the QRNS ([6], [9]) and on the radix-2j and
the RCNS ([10], [11], [12]). In this work, we compare for a specific application, the
complex FIR filter, the performance and the tradeoffs of TCS, QRNS and RCNS.
The results of the implementations show that the complex filter implemented in
QRNS has the lowest power dissipation and the smallest area with respect to
filters implemented in TCS and RCNS.

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 174–190, 2010.
c© IFIP International Federation for Information Processing 2010
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The work is organized as follows: in Section 2 a background on the QRNS
and the radix-2j number systems is given; the FIR filter architectures for the
three number systems are described in Section 3; the synthesis results and the
comparisons are discussed in Section 4. Finally, the conclusions are drawn in
Section 5.

2 The Quadratic Residue Number System

A Residue Number System (RNS) is defined by a set of P relatively prime
integers {m1, m2, . . . , mP } which identify the RNS base. Its dynamic range is
given by the product M = m1 · m2 · . . . · mP .

Any integer X ∈ {0, 1, 2, . . .M − 1} has a unique RNS representation given
by:

X
RNS→ ( 〈X〉m1 , 〈X〉m2 , . . . , 〈X〉mP )

where 〈X〉mi denotes the operation X mod mi [13]. Operations on different mi

(moduli) are done in parallel

Z = X op Y
RNS→

⎧⎪⎪⎨
⎪⎪⎩

Zm1 = 〈Xm1 op Ym1〉m1

Zm2 = 〈Xm2 op Ym2〉m2

. . . . . . . . .
ZmP = 〈XmP op YmP 〉mP

(1)

As a consequence, operations on large wordlengths can be split into several
modular operations executed in parallel and with reduced wordlength [13].

The conversion of the RNS representation of Z can be accomplished by the
Chinese Remainder Theorem (CRT):

Z =

〈
P∑

i=0

mi · 〈mi
−1〉mi · Zmi

〉
M

with mi =
M

mi
(2)

and mi
−1 obtained by 〈mi · mi

−1〉mi = 1.
To better explain the CRT, we show an example in which we convert the RNS

representation {3, 6, 5}, with RNS base { 5, 7, 8 }, to integer. The dynamic
range of the RNS base { 5, 7, 8 } is M = 280. We start by computing the values
mi = M

mi

m1 =
280
5

= 56 m2 =
280
7

= 40 m3 =
280
8

= 35

To compute mi
−1, we have to find a number x such that

〈mi · x〉mi = 1 (3)

For this reason, x is called the multiplicative inverse of mi and indicated as
mi

−1. By computer iterations, we find

m1
−1 = 1 m2

−1 = 3 m3
−1 = 3
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Finally, applying (2) to the set of residues {3, 6, 5} we get〈
3∑

i=1

mi · 〈mi
−1〉mi · Zi

〉
280

= 〈 56 · 1 · 3 + 40 · 3 · 6 + 35 · 3 · 5 〉280 =

〈 1413 〉280 = 13

We can easily verify that

〈13〉5 = 3, 〈13〉7 = 6, 〈13〉8 = 5

In the complex case, we can transform the imaginary term into an integer if
the equation q2 + 1 = 0 has two distinct roots q1 and q2 in the ring of integers
modulo M (ZM ). A complex number xR + jxI = (xR, xI) ∈ ZM × ZM , with q
root of q2 + 1 = 0 in ZM , has a unique Quadratic Residue Number System rep-
resentation given by

(xR, xI)
QRNS→ (Xi, X̂i) i = 1, 2, . . . , P

Xi = 〈xR + q · xI〉mi

X̂i = 〈xR − q · xI〉mi

(4)

The inverse QRNS transformation is given by

(Xi, X̂i)
RNS→ (XRi, XIi) i = 1, 2, . . . , P

XRi = 〈2−1(Xi + X̂i)〉mi

XIi = 〈2−1 · q−1(Xi − X̂i)〉mi

(5)

where 2−1 and q−1 are the multiplicative inverses of 2 and q, respectively, modulo
mi:

〈2 · 2−1〉mi = 1 and 〈q · q−1〉mi = 1 .

Then, by applying the CRT we get

(XR1, XR2, . . . , XRP ) CRT→ xR

(XI1, XI2, . . . , XIP ) CRT→ xI

(6)

Moreover, it can be proved that for all the prime integers which satisfy

p = 4k + 1 k ∈ N

the equation q2 + 1 = 0 has two distinct roots q1 and q2.
As a consequence, the product of two complex numbers xR + jxI and yR + jyI

is in QRNS

(xR + jxI)(yR + jyI)
QRNS→ (〈XiYi〉mi , 〈X̂iŶi〉mi) (7)

and it is realized by using two integer multiplications instead of four.
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We illustrate an example of QRNS multiplication in the ring modulo 13. The
complex multiplication to perform is

(xR + jxI)(yR + jyI) = (3 + j)(2 + j2) = 4 + j8

For m = 13 the root is q = q1 = 5 ↔ 〈5 · 5〉13 = −1. The conversion to QRNS
according to (4) gives

X = 〈3 + 5 · 1〉13 = 8 Y = 〈2 + 5 · 2〉13 = 12
X̂ = 〈3 − 5 · 1〉13 = 11 Ŷ = 〈2 − 5 · 2〉13 = 5

The two QRNS multiplications (modulus 13) are:

X · Y = 〈8 · 12〉13 = 5 X̂ · Ŷ = 〈11 · 5〉13 = 3

And finally, the conversion QRNS to integer according to (5) gives

zR = 〈7(5 + 3)〉13 = 4 being 2−1 = 7
zI = 〈7 · 8(5 − 3)〉13 = 8 and q−1 = 8

3 The Radix-2j Number System

It is well known that an integer x can be represented by a digit-vector

X = (xn−1, . . . , x1, x0)r

such that

x =
n−1∑
i=0

xi · ri

where r is the radix of the representation. By choosing r = 2j, we obtain a
Quater-Imaginary Number System (QINS) [7]. Complex numbers can be repre-
sented in QINS by vectors with the non-redundant digit set {0, 1, 2, 3}. Therefore,
a complex number a + jb is represented in QINS as:

a + jb = xn−1(2j)n−1 + xn−2(2j)n−2 + . . . +
+x3(−8j) + x2(−4) + x1(2j) + x0(1)

= (xn−1, . . . , x1, x0)2j

(8)

The above expression, shows that the real part is represented by the digits of
even weight, while the imaginary one by the digits of odd weight. Furthermore,
the sign is embedded in the representation. The imaginary number j cannot be
represented by (8). To represent j, we need the power −1, which corresponds
to − 1

2j, that in the conventional number systems (e.g. binary) is only needed
to represent fractional numbers. Table 1 shows how the real and imaginary
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Table 1. Representation of real and imaginary integers in QINS

Real Imaginary
-8 00200.0 -8j 01000.0
-7 00201.0 -7j 01010.2
-6 00202.0 -6j 01010.0
-5 00203.0 -5j 01020.2
-4 00100.0 -4j 01020.0
-3 00101.0 -3j 01030.2
-2 00102.0 -2j 01030.0
-1 00103.0 -1j 00000.2
0 00000.0 0j 00000.0
1 00001.0 1j 00010.2
2 00002.0 2j 00010.0
3 00003.0 3j 00020.2
4 10300.0 4j 00020.0
5 10301.0 5j 00030.2
6 10302.0 6j 00030.0
7 10303.0 7j 103000.2
8 10200.0 8j 103000.0

numbers, in the range [−8, 8] and [−8j, 8j] respectively, are represented in QINS.
Every complex number xR + jxI can be obtained by overlapping the real and
imaginary parts. For example, according to Table 1, 4− 5j is represented by the
digit vector 11320.2.

From Table 1 we can notice that for a given number of digits the representation
is not symmetric with respect to the zero. For example, in the two’s complement
binary system with 8 digits we can represent the dynamic range {−128, 127}. In
the QINS, for the real part, with 3 digits (equivalent to 64 different values) the
dynamic range representable is {−12, 51}.

3.1 Addition

The addition of two QINS numbers can be performed by changing the carry rule
according to (8). First, because the even weight digits represent the real part and
the odd weight the imaginary one, the carry is propagated by skipping a digit.
Second, because two adjacent even (or odd) weight digits have opposite sign,
the carry propagated acts as a borrow. For example, if a positive weight digit
generates a carry, this positive value will decrement the next digit with negative
weight, and vice-versa. In addition, the propagation of borrows can generate
negative digits (e.g. -1). Therefore, because of the quaternary representation of
the QINS, the negative digits are converted into positive (modulo operation)
and an always positive carry propagated. Summarizing the addition algorithm
is implemented as:
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xi, yi, si ∈ {0, 1, 2, 3}
ci ∈ {1, 0, 1}

si = (xi + yi + ci) mod 4

ci+2 =

⎧⎨
⎩

1 if (xi + yi + ci) ≥ 4
1 if (xi + yi + ci) < 0
0 otherwise

For example, if we wnat to add xR = 1 and yR = 3 in QINS we get:

X : 0 0 0 0 3. 0 +
Y : 0 0 0 0 1. 0 +
c: 1 0 1 0 0. 0 =
S: 1 0 3 0 0. 0 → sR = 4

3.2 The Redundant Complex Number Systems

The implementation of the basic arithmetic operators in radix-2j can take ad-
vantage of the Signed-Digit (SD) representation [14], which allows carry free
addition. The combination of radix-2j and SD representation, resulted in the
Redundant Complex Number Systems (RCNS), which is described in [8], [10],
[11], [12] and [15].

We now briefly recall the characteristics of the RCNS. The RCNS is a redun-
dant positional number system based on the radix rj where its digits can assume
the 2α + 1 values: Aα = {α, · · · , 1, 0, 1, · · · , α} where α = −α.

In the case of the radix 2j, two possible RCNSs [10] are:

1. RCNS 2j, 2 with digit set A2 = {2, 1, 0, 1, 2}
2. RCNS 2j, 3 with digit set A3 = {3, 2, 1, 0, 1, 2, 3}

In this work, RCNS 2j, 2 is used to recode the multiplier, and RCNS 2j, 3 is
used for the signed-digit additions, as illustrated next.

4 FIR Filter Architecture

A complex FIR filter of order N is expressed by

y(n) =
N−1∑
k=0

akx(n − k) (9)

where x, y and ak denote complex numbers. We consider the implementation
of a FIR filter in transposed form because its structure is more regular with
respect to the filter order N and it does not require a tree of adders. The filter
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Fig. 1. Structure of FIR filter in transposed form

in transposed form (Fig. 1) can be regarded as the sequence of groups, often
referred as taps, composed of:

– a complex multiplier;
– a complex adder implemented with one adder for the real part, and one for

the imaginary part;
– a register to store the real and imaginary parts.

We perform our design space exploration for programmable N-tap complex FIR
filters with input and coefficients size of 10 bits for both the real part and
imaginary parts. The 20 bit dynamic range of the filter guarantees error free
operations1.

4.1 TCS FIR Filter

A single tap of the The programmable N-tap TCS complex FIR filter is realized
as sketched in Fig. 2. It is composed of two branches: the real branch (top part of
Fig. 2) and the imaginary branch (bottom part of Fig. 2). The real and imaginary
products are both realized with two Booth multipliers each, and the resulting
partial products are accumulated in a Wallace’s tree structure which produces
a carry-save (CS) representation of the product at each side of the filter. We
chose to keep the product in carry-save (CS) format to speed-up the operation,
and delayed the assimilation of the CS representation to the last stage of the
filter. In both branches (real and imaginary) of each tap we need to add the CS
representation of the product to the value stored in the register (previous tap).
Again, to avoid the propagation of the carry, we can store the CS representation.
For this reason, we need to implement the addition with an array of 4:2 carry-
save adders (CSA), as shown in Fig. 2.

We convert the CS representation of yRe and yIm with two carry-propagate
adders at the filter output.

1 These wordlengths are derived from the specification of an actual digital filter for
satellite TV broadcasting.
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Fig. 2. Structure of tap in TCS complex FIR filter

4.2 QRNS FIR Filter

The architecture of the QRNS filter, is a direct consequence of (1), (7) and (9),
and it can be realized by two RNS filters in parallel as shown in Fig. 3. Each
RNS filter is then decomposed into P filters working in parallel, where P is the
number of moduli used in the RNS representation. In addition, the RNS filter
requires both binary to QRNS and QRNS to binary converters.

In order to have a dynamic range of 20 bits, as required by the specifications,
we chose the following set of moduli:

mi = {5, 13, 17, 29, 41}
such that

log2(5 · 13 · 17 · 29 · 41) > 20.

For each path mod mi, we have to build a FIR filter with a structure similar
to that of Fig. 1. Therefore, we need to implement modular multiplication and
addition.

Implementation of Modular Addition

The modular addition
〈a1 + a2〉m
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can be implemented by two additions. If the result of a1 +a2 exceeds the modulo
(it is larger than m−1), we have to subtract the modulo m. In order to speed-up
the operation we can execute in parallel the two operations:

(a1 + a2) and (a1 + a2 − m).

If the sign of the three-term addition is negative, it means than the sum
(a1 + a2) < m and the modular sum is a1 + a2, otherwise the modular addition
is the result of the three-term addition. The above algorithm can be implemented
with two binary adders as shown in Fig. 4.
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Table 2. Example of isomorphic transformation for m = 5 (q = 2)

n w 〈qw〉m = n

0 N/A
1 0 〈20〉5 = 1
2 1 〈21〉5 = 2
3 3 〈23〉5 = 3
4 2 〈22〉5 = 4

Implementation of Modular Multiplication by Isomorphism

Because of the complexity of modular multiplication, it is convenient to im-
plement the product of residues by the isomorphism technique [16] . By using
isomorphisms, the product of the two residues is transformed into the sum of
their indices which are obtained by an isomorphic transformation. According to
[16], if m is prime there exists a primitive radix q such that its powers modulo
m cover the set [1, m − 1]:

n = 〈qw〉m with n ∈ [1, m − 1] and w ∈ [0, m − 2].

An example of isomorphic transformation is shown in Table 2 for m = 5. In this
case, the primitive radix is q = 2.

Both transformations n → w and w → n can be implemented with m − 1
entries look-up tables, if the moduli are not too large (less than 8-bit wide).
Therefore, the product of a1 and a2 modulo m can be obtained as:

〈a1 · a2〉m = 〈qw〉m
where

w = 〈w1 + w2〉m−1 with a1 = 〈qw1〉m and a2 = 〈qw2〉m
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In order to implement the modular multiplication the following operations are
performed:

1) Two Direct Isomorphic Transformations (DIT) to obtain w1 and w2;
2) One modulo m − 1 addition 〈w1 + w2〉m−1;
3) One Inverse Isomorphic Transformations (IIT) to obtain the product.

The architecture of the isomorphic multiplier is shown in Fig. 5. Special attention
has to be paid when one of the two operands is zero. In this case there exists no
isomorphic correspondence and the modular adder has to be bypassed.

For example, for the modular multiplication 〈3 · 4〉5 = 2 using the isomorphic
transformation of Table 2, we have

1) 3 = 〈23〉5 DIT→ w1 = 3
4 = 〈22〉5 DIT→ w2 = 2

2) 〈2 + 3〉4 = 1
3) 1 IIT→ 〈21〉5 = 2

Implementation of FIR Filter Modulo m

By using the isomorphism technique, the product of the two residues is trans-
formed into the sum of their indices which are obtained by an isomorphic trans-
formation. As a result, in each tap, the modular multiplication is reduced to
a modular addition followed by an access to table (inverse isomorphism). The
two input DIT tables of Fig. 5 do not need to be replicated in every tap. By
observing that in computing the product AkX(n− k) the term X is common to
all taps and it can be converted once in the input conversion unit, and that the
term Ak can be stored directly as the index of the isomorphism. Therefore, the
structure of each modular tap can be simplified as shown in Fig. 6.
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4.3 Radix-2j Filter (RCNS)

Because of the radix-2j representation, the filter tap is simply implemented with
a multiplier and an adder. We implement the multiplier as described in [10]. The
complex x and ak are converted in non-redundant QINS and then ak is recoded
into RCNS 2j, 2. The partial products (PPs) are then accumulated by a tree of
arrays of signed-digit full-adders (SDFA) which operates in RCNS 2j, 3.

In RCNS 2j, 3, the complex number

X = (Xn−1, . . . , Xi, . . . , X1, X0, X−1)

has digits in the set Xi = {3, 2, 1, 0, 1, 2, 3}, which encoded in binary as

Xi = 2x1
i + x0

i with x1
i , x

0
i ∈ {1, 0, 1} (10)

Both x1
i and x0

i are then encoded with two bits each as shown in Table 3.
Therefore, the resulting binary encoding of Xi is illustrated in Table 4. Four bits
are necessary to represent each RCNS 2j, 3 digit. With the encoding of Table 4
the SDFA of Fig. 7 can be derived.

By arranging the SDFAs in a tree the 10 PPs are reduced to 2 as shown in
Fig. 8. An extra array of SDFAs adds the product x·ak to the partial sum coming
from the previous tap. As for the TCS case, we keep the carry-save representation
of the digits until the last stage of the filter where we perform the conversion
from RCNS 2j, 3 to radix-2 (binary) integers. Due to the CS representation of
digits we need to store 8N bits in the tap’s registers.
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Table 3. Binary encoding of x1
i and x0

i

x1
i xP1

i xM1
i x0

i xP0
i xM0

i

1 0 1 1 0 1
0 0 0 0 0 0
0 1 1 0 1 1
1 1 0 1 1 0

Table 4. Binary encoding of Xi

Xi x1
i x0

i xP1
i xM1

i xP0
i xM0

i

3 1 1 0 1 0 1
2 1 0 0 1 0 0

0 1 1 1
1 0 1 0 0 0 1

1 1 0 1
1 1 0 1 1 0

0 0 0 0 0 0 0
1 1 0 0
0 0 1 1
1 1 1 1

1 0 1 0 0 1 0
1 1 1 0

1 1 1 0 0 1
2 1 0 1 0 0 0

1 0 1 1
3 1 1 1 0 1 0
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Fig. 7. Implementation of SD full-adder (SDFA)
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5 Filters Implementation

The filters are implemented in the 90 nm STM library of standard cells [17] and
they have been synthesized by Synopsys Design Compiler. All the filters can be
clocked at fmax = 300 MHz. By interpolating the results obtained by synthesis
on filters of different order (number of taps), we obtain the trends shown in Fig. 9
for the area and Fig. 10 for the power. The values of area and power dissipation
for the single tap (Fig. 2, Fig. 6 and Fig. 8) determine the slopes of the curves
in the figures. The conversions from the TCS to the other number systems (and
vice versa) are a constant contribution that does not depend on the number of
taps, but only on the dynamic range of the filters. Table 5 reports the data for
tap and conversion contribution for the three number systems.

The results show that complex filters implemented in QRNS consume signifi-
cantly less power than the corresponding ones in TCS and RCNS. The expression
for the power dissipated dynamically [18] in a system composed of n cells is

Pdyn = V 2
DDf ·

n∑
i=1

CLiai (11)

where

VDD is the power supply voltage;
f is the clock frequency;
CLi is the load connected to the i-th cell (both active load and interconnections);
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ai is the activity factor of the i-th cell, which is the measure of how many
transitions occur at its output. The activity factor is normally related to the
clock ai ∈ [0, 1].
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Table 5. Values of area and power dissipation

Area P at 100 MHz
tap conv. tap conv.

TCS 21.8K 2.0K 1.00 0.10
QRNS 9.6K 12.0K 0.25 1.20
RCNS 23.9K 8.0K 1.05 0.30

[µm2] [mW ]

The lower power dissipation in the QRNS filter is due to the combination of two
factors:

1. As clearly shown in Fig. 9, the smaller area results in a global reduced
capacitance

∑n
i=1 CLi (including shorter interconnections).

2. The work in [19] showed that the number of transitions, i.e. the switching
activity, for vectors of the same number of bits k, in RNS is lower than in
TCS (

k∑
i=1

ai

)
RNS

<

(
k∑

i=1

ai

)
TCS

Therefore, the switched capacitance
∑n

i=1 CLiai, and by (11) the power con-
sumption, in QRNS is smaller than in TCS and RCNS.

6 Conclusions

In this work, the use of different number representations for the implementation
of complex FIR filters has been investigated.

Complex multipliers determine the performance, area and power dissipation
of complex filters. Previously in [10], complex multipliers in TCS and RCNS were
evaluated, while in [9], complex filters in QRNS and TCS were compared. Here
we extended the comparison to complex filters implemented in TCS, QRNS and
RCNS.

The experimental results on complex filters with 20 bit dynamic range show
that for the TCS and the RCNS the area and power dissipation are similar
and confirms the findings of [10]. As for the QRNS, the results presented here,
confirm those of [9], based on the implementation of TCS and QRNS complex
filters in a 0.35 μm technology.

To summarize, this work shows that for complex high order FIR filters im-
plementations based on QRNS offer significant advantages in area and power
dissipation without any performance degradation.
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Università degli Studi di Napoli Federico II
Dipartimento di Informatica e Sistemistica

via Claudio 21, 80125 Naples, Italy
acilardo@unina.it

Abstract. Computational demanding public key cryptographic algo-
rithms, such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve (EC)
cryptosystems, are critically dependent on modular multiplication for
their performance. Modular multiplication used in cryptography may
be performed in two different algebraic structures, namely GF (N) and
GF (2n), which normally require distinct hardware solutions for speed-
ing up performance. For both fields, Montgomery multiplication is the
most widely adopted solution, as it enables efficient hardware implemen-
tations, provided that a slightly modified definition of modular multi-
plication is adopted. In this paper we propose a novel unified architec-
ture for parallel Montgomery multiplication supporting both GF (N) and
GF (2n) finite field operations, which are critical for RSA ad ECC public
key cryptosystems. The hardware scheme interleaves multiplication and
modulo reduction. Furthermore, it relies on a modified Booth recoding
scheme for the multiplicand and a radix-4 scheme for the modulus, en-
abling reduced time delays even for moderately large operand widths.
In addition, we present a pipelined architecture based on the parallel
blocks previously introduced, enabling very low clock counts and high
throughput levels for long operands used in cryptographic applications.
Experimental results, based on 0.18µm CMOS technology, prove the ef-
fectiveness of the proposed techniques, and outperform the best results
previously presented in the technical literature.

1 Introduction

The increasing centrality of networking and Internet applications are stimulat-
ing an ever-growing demand for high-performance implementations of crypto-
graphic algorithms and protocols. Two widely adopted public-key cryptosystems,
in particular, are the Rivest-Shamir-Adleman (RSA) [11] and the Elliptic Curve
(EC) [1] cryptosystems. While various standardization bodies recommend prime
fields GF (N) or binary extension fields GF (2n) for elliptic curve cryptosystems,
RSA cryptography is essentially based on integer modular arithmetic, similar
in its implementation to GF (N) operations. Both types of finite fields have in
common that the multiplication of elements implies a reduction operation, either
modulo a prime N or modulo an irreducible binary polynomial N(x) of degree n.

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 191–210, 2010.
c© IFIP International Federation for Information Processing 2010
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The so-called Montgomery algorithm [9] has proved to be the most effective im-
plementation technique for modular multiplication [2, 17]. It is in fact based on
a slightly different definition of the modular product, which enables particularly
efficient implementations.

Originally introduced for integer numbers (and thus for GF (N) arithmetic),
Montgomery multiplication has been effectively extended to binary fields GF (2n)
[8]. As a consequence, during the last years several works have addressed the
problem of implementing unified arithmetic blocks, suitable for computing op-
erations in both fields using the same underlying hardware [4, 6, 12, 13, 14, 18].

In this paper, we propose a novel unified architecture for parallel Montgomery
multiplication supporting both GF (N) and GF (2n) operations. The hardware
unit interleaves multiplication and modulo reduction in a parallel scheme. Fur-
thermore, it relies on a modified Booth recoding technique for the multiplicand
and a radix-4 scheme for the modulus, enabling reduced time delays for moder-
ately large operand widths. We also present a pipelined architecture based on the
parallel component previously introduced, enabling very low clock counts and
high throughput levels for long operands used in cryptographic applications. Ex-
perimental results, based on 0.18μm CMOS technology, prove the effectiveness
of the proposed techniques, and outperform the best results previously presented
in the technical literature.

The paper is structured as follows. Section 2 provides a brief introduction to
the properties of Montgomery multiplication algorithm. Section 3 presents the
state-of-the-art of architectures suitable for unified integer/GF (N) and GF (2n)
arithmetic. Section 4 describes the proposed parallel arithmetic unit support-
ing unified Montgomery multiplication. Section 5 presents a high-throughput
pipelined core based on the previously introduced parallel multiplier. Section 6
presents our results and compares them to the state-of-the-art. Section 7 con-
cludes the paper with some final remarks.

2 Modular Multiplication Algorithm

A slight variant of standard modular multiplication, Montgomery multiplication
performs the following operation:

A · B · R−1 mod N

where R = 2n is a power of two and n is equal to, or slightly larger than the
number of bits in the modulus N , ensuring R > N . The value R−1 is the inverse
of R modulo N , i.e. a number such that R−1R mod N = 1. In order for such
a number to exist, it suffices that gcd(N, R) = 1. Since in both Elliptic Curve
cryptography based on prime fields and in RSA cryptography N is always an odd
number, this condition is always satisfied when R is a power of two. Montgomery
multiplication can be performed with the following algorithm.
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Algorithm 1. Montgomery Modular Multiplication

Input:
N , R and Ñ such that R · R−1 − N · Ñ = 1,
A, B < N

Output:
P ≡ A · B · R−1 mod N , P < N

Algorithm:
1. Q = AB · Ñ mod R

2. P = AB+Q·N
R

3. if P > N then P = P − N

The above algorithm returns a quantity P which is congruent with AB · R−1

modulo N (step 2), and is less than N (at step 2, P = AB+Q·N
R < N ·N+Q·N

R <[
N
R + Q

R

]
· N < 2N). The multiple Q · N of the modulus is defined at step 1 in

such a way as to make the quantity AB + Q · N divisible by R [9].
An interesting property enabled by Montgomery multiplication is the possibil-

ity to work on N -residues of numbers, defined as A = A·R mod N . It can be eas-
ily seen that the Montgomery product of two numbers in N -residue form is still in
N -residue form: A ·B ·R−1 mod N = AR ·BR ·R−1 mod N = (AB)·R mod N =
AB. This also holds true for modular addition: (A + B) mod N = A + B. All
operations used in RSA and EC cryptography can be reduced to a composition
of modular multiplications and additions, and can thus always handle operands
in Montgomery form.

Fig. 1. An example of Montgomery multiplication execution
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Notice that Algorithm 1 requires a magnitude comparison (Step 3) in or-
der to ensure the result is actually less than the modulus N . However, when
many consecutive multiplications are to be performed, we can allow interme-
diate results to be in the range [0, 2N [ with a proper choice for R. In fact, if
we choose R > 4N , it can be easily seen that the reduction algorithm accepts
multiplicands A, B < 2N , i.e. not necessarily less than N : P = AB+Q·N

R <
2N ·2N+Q·N

R <
[

4N
R + Q

R

]
·N < 2N , so the algorithm preserves the invariant that

inputs and output are less than 2N . By avoiding magnitude comparison, the
above version of Montgomery algorithm greatly improves performance, so we
will refer to this version of the algorithm in the following. Figure 1 provides an
example of execution of the Montgomery algorithm variant exploiting the above
property.

The central operation of Montgomery algorithm, i.e. the computation of the
product A · B and the multiple of the modulus Q · N , can be implemented in
a very efficient way, as it is suitable for deeply pipelined and systolic imple-
mentations [2, 10, 16, 17]. For scalable implementations, a natural choice is to
partition operands into words, and process them separately. Precisely, we will
refer in this paper to the so-called finely integrated operand scanning (FIOS)
method [7], reported below.

Algorithm 2. FIOS method for w-bit words

Input:
A =

∑m−1
i=0 Ai(2w)i, B =

∑m−1
i=0 Bi(2w)i,

N =
∑m−1

i=0 Ni(2w)i, Ñ =
∑m−1

i=0 Ñi(2w)i,
with Ai, Bi, Ni, Ñi < 2w and
0 ≤ A, B < 2N , m · w ≥ 2 + �log2 N (i.e. 2m·w > 4N)

Output:
P ≡ A · B · 2−n mod N , with n = m · w

Algorithm:
1. P = 0
2. for j = 0 to m − 1
3. C = 0
4. Qj = (P0 + BjA0)Ñ0 mod 2w

5. for i = 0 to m − 1
6. S := Pi + BjAi + QjNi + C

7. if (i �= 0) then Pi−1 := S mod 2w

8. C := S/2w

9. Pm−1 := C

The w-bit words of operands A, B, and N are processed in two nested loops.
During the execution of the algorithm, temporary variables S and C can be
stored in a 2w + 1 bit and w + 1 bit register, respectively, while variable P
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needs a full precision register since it is shared among consecutive “rows” (i.e.,
m iterations of the inner loop with constant j).

Authors in [8] extended Montgomery multiplication to binary fields GF (2n),
by adopting polynomial representation and replacing the factor R−1 = 2−n with
x−n. With polynomial representation, GF (2n) field elements can be handled as
binary polynomials and multiplication can be performed modulo an irreducible
polynomial N(x). Addition of GF (2n) elements is performed as a bitwise XOR
of their components, while multiplication/division by powers of x are performed
by left/right-shifting an element’s components. As a result, the structure and
the basic operations of Montgomery algorithm in GF (2n) turn out to be very
similar to the integer/GF (N) case. Essentially, the control-flow of the algorithm
(including the above FIOS variant) remains unchanged, shift operations are also
identical, while integer addition is replaced by a bitwise XOR. The GF (2n)
counterpart of Algorithm 2 is presented, for example, in [13].

3 State-of-the-Art in Unified Field Arithmetic

Since the structure of Montgomery variants for GF (N) and GF (2n) are sim-
ilar, several authors have proposed unified hardware solutions for computing
both operations with the same processing unit. To enable this approach, Savaş
et al. proposed in [14] a basic building block able to perform a one-digit addi-
tion in both GF (N) and GF (2n) fields. The basic component is the Dual Field
Adder, i.e. an ordinary full adder whose carry input can be disabled, so that the
sum output is simply the XOR of the two input bits (i.e., their GF (2) sum).
Figure 2 shows a possible implementation of such a component. Based on a
similar idea, Großschädl [4] proposed a bit-serial unified multiplier processing
the multiplicand in full precision. Montgomery modular reduction is computed
by interleaving the addition of partial products and the modulus. A hardware

Fig. 2. An implementation of the Dual Field Adder [5, 6]
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solution for dual-field arithmetic is also presented by Wolkerstorfer in [18]. The
author introduces a low power design enabling short critical paths and high clock
frequencies by using carry save adders. In [6], the authors present the design of
a low-power multiply/accumulate (MAC) unit for efficient arithmetic in finite
fields. The unit combines integer and polynomial arithmetic into a single func-
tional unit supporting both GF (N) and GF (2n) fields. The emphasis is mostly
put on power consumption, as the authors show that a properly designed uni-
fied multiplier may consume significantly less power if used in polynomial mode
compared to integer mode.

The fastest solution for unified field multiplication was proposed by Satoh
and Takano [13]. They present a scalable elliptic curve cryptographic processor
supporting both GF (N) and GF (2n) finite fields. The core of the processor is
a parallel dual-field multiplier, based on a Wallace tree scheme. The delay for a
multiplication is logarithmic in the input-size, although it is different for the two
types of fields. In fact, a sub-portion of the Wallace tree is used for obtaining a
GF (2n) product, while the whole structure, including a fast carry propagation
adder, is required for GF (N) operations. The authors evaluate different paral-
lelisms, developing the multiplier for word sizes of 8, 16, 32, or 64 bits, depending
on the desired trade-off between area requirements and performance. One ad-
vantage of their approach is that it does not require any special full adder, such
as the dual-field adder, unlike works in [4, 6, 14] and others. This makes it pos-
sible to optimize the partial product addition network. Furthermore, at a higher
level, the performance of point multiplication over an elliptic curve is improved
by converting on-the-fly the integer multiplicand in a redundant form.

Finally, a recent solution proposes a fast modular arithmetic-logic unit [12]
that is scalable in the digit size and the field size. The datapath is based on
chains of carry save adders to speed up arithmetic operations over large inte-
gers in GF (N). This enables efficient execution of modular multiplication and
addition/subtraction. The unit is prototyped in FPGA technology achieving in-
teresting throughput levels, although inferior to the ASIC-based work presented
in [13].

4 Parallel Montgomery Multiplier

In this section, we propose a novel unified architecture for parallel Montgomery
multiplication supporting both GF (N) and GF (2n) operations. Unlike previ-
ously proposed parallel multipliers, such as the solution in [6, 13], the hardware
unit merges multiplication and Montgomery reduction, allowing a word-level
modular multiplication to be performed is a single cycle. The proposed multi-
plier relies on a modified Booth recoding scheme for integer multiplication, and
a radix-4 scheme for GF (2n) multiplication and Montgomery reduction. As a
result, the number of partial products to be added in the parallel unit can be
approximately halved, resulting in both reduced area and improved speed.

The basic full-precision algorithm for a radix-4 digit-serial interleaved Mont-
gomery multiplication is given below (see for example [15]). For the sake of
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clarity, we refer to the integer/GF (N) version of the algorithm. As explained
in Section 2, the extension to binary fields GF (2n) is straightforward, provided
that a dual-field data path is available.

Algorithm 3. Radix-4 Montgomery Modular Multiplication

Input:
2 < N < 4k,
Ñ such that 4k+1 · 4−(k+1) − N · Ñ = 1,
A =

∑k
i=0 Ai4i < 2N , B =

∑k
i=0 Bi4i < 2N , with Ai, Bi < 4

Output:
P ≡ A · B · 4−(k+1) mod N , P < 2N

Algorithm:
1. P = 0
2. for i = 0 to k

3. Qi = (P0 + Bi · A0) · Ñ0 mod 4
4. P = (P + Bi · A + Qi · N)/4

It can be easily proved that, by using k + 1 iterations (i.e., by computing A ·B ·
4−(k+1) mod N , A, B < 2N) the final value of P is still less than 2N . In fact, we
have P = A·B+Q·N

4k+1 <
[

4N
4k+1 + Q

4k+1

]
· N < 2N , where Q =

∑k
i=0 Qi4i. Notice

that Qi only depends on the two least significant bits of (P0 + Bi · A0) and N ,
so it can be computed by a simple circuit or a look-up table. Its value is defined
in such a way as to make the least significant digit of (P +BiA+ QiN)4 zero at
each iteration. Figure 3 gives an example of radix-4 Montgomery multiplication
execution.

In the following, we will call AA(i) and NN (i) a partial product Bi · A and a
multiple of the modulus Qi · N , respectively. In the case of radix-4, Bi and Qi

are 2-bit numbers. Thus, the value sets of AA(i) and NN (i) are as follows:

AA(i) ∈ {0, A, 2A, 3A}, NN (i) ∈ {0, N, 2N, 3N}
requiring two extra adders to compute 3A and 3N on the fly. In the case of
GF (2n) operations, using polynomial representation, Bi(x) and Qi(x) are poly-
nomial of degree less than 2, so the value sets of AA(i)(x) and NN (i)(x) are as
follows:

AA(i)(x) ∈ {0, A(x), xA(x), xA(x) + A(x)}
NN (i)(x) ∈ {0, N(x), xN(x), xN(x) + N(x)}

In standard multipliers, Booth recoding scheme is normally used in order to
avoid the expensive calculation of the multiple 3A in the AA(i) value set. The
recoding scheme takes the bits of the multiplier (b2i+1, b2i, b2i−1) as input and
generates a recoded AA(i) according to Table 1, where b−1 is defined to be 0.
As a consequence, Booth recoding scheme transforms the value set of AA(i) into
{−2A,−A, 0, +A, +2A}. All elements in the set are calculated with simple oper-
ations such as bit inversion and/or bit shift. For GF (2n) operations, elements are
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Fig. 3. An example of radix-4 Montgomery multiplication execution

Table 1. Partial product generation for integers and binary polynomials

Field Three Recoded Recoded Control
Select input bits digit partial product signals

fsel b2i+1 b2i b2i−1 Bi AA(i) inv trp shl

1 0 0 0 0 0 − 0 0
1 0 0 1 1 +A 0 1 0
1 0 1 0 1 +A 0 1 0
1 0 1 1 +2 +2A 0 0 1
1 1 0 0 −2 −2A 1 0 1
1 1 0 1 −1 −A 1 1 0
1 1 1 0 −1 −A 1 1 0
1 1 1 1 0 0 − 0 0
0 0 0 0 0 0 − 0 0
0 0 0 1 0 0 − 0 0
0 0 1 0 1 A(x) 0 1 0
0 0 1 1 1 A(x) 0 1 0
0 1 0 0 x xA(x) 0 0 1
0 1 0 1 x xA(x) 0 0 1
0 1 1 0 x + 1 xA(x) + A(x) 0 1 1
0 1 1 1 x + 1 xA(x) + A(x) 0 1 1

handled as binary polynomials. In this case, a pure radix-4 polynomial multipli-
cation is adopted. In other words, multiples AA(i)(x), calculated as in Table 1,
only depend on radix-4 digits (b2i+1, b2i).
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For the proposed parallel Montgomery multiplier, in addition to summing par-
tial products AA(i), we also need to sum modulus multiples NN (i) (or NN (i)(x)
for GF (2n) multiplication). In [15] authors adopt a method named Montgomery
recoding scheme to change the possible values of NN (i) so that they can all be ob-
tained by simple shifts and inversions, similar to Booth recoding. Let (sp1, sp0)
be the 2 bits in the least significant digit (LSD) of the partial product to be
reduced SP = P + AA and (n1, n0) be the 2 bits in the LSD of the modulus
N . According to the input condition that N has to be odd, n0 is always 1.
Then, Montgomery recoding scheme takes (sp1, sp0, n1) as input and generates
a recoded NN (i) value according to Table 2, where Qi represents the recoded
quotient digit for an NN (i) multiple at the i-th iteration. Montgomery recoding
scheme transforms the value set of NN into {−N, 0, +N, +2N}.

In polynomial mode the addition becomes a bitwise XOR. For this reason, we
need to sum a different value of NN (i)(x) in order to reduce the least significant
digits (sp1, sp0)2 of SP (x) = P (x) + AA(x). Notice that, in order to perform
modular multiplication in GF (2n) with the same recoding scheme, we use an
additional control signal, fsel (field select), which allows us to switch between
integer-mode (fsel = 1) and polynomial mode (fsel = 0). In Table 2 we show the
unified Montgomery recoding scheme, including polynomial mode for GF (2n).

Due to the two recoding schemes, it is easy to calculate all the elements in
the value sets of AA(i) and NN (i). Notice that, for integer multiplication, this
technique changes the range of the Montgomery algorithm output, which may
now be negative.

Table 2. Montgomery moduli generation for integers and binary polynomials

Field Three Recoded Recoded Control
Select input bits quotient modulus signals

fsel sp1 sp0 n1 Qi NN (i) inv trp shl

1 0 0 0 0 0 − 0 0
1 0 0 1 0 0 − 0 0
1 0 1 0 −1 −N 1 1 0
1 0 1 1 +1 +N 0 1 0
1 1 0 0 +2 +2N 0 0 1
1 1 0 1 +2 +2N 0 0 1
1 1 1 0 +1 +N 0 1 0
1 1 1 1 −1 −N 1 1 0
0 0 0 0 0 0 − 0 0
0 0 0 1 0 0 − 0 0
0 0 1 0 1 N(x) 0 1 0
0 0 1 1 x + 1 xN(x) + N(x) 0 1 1
0 1 0 0 x xN(x) 0 0 1
0 1 0 1 x xN(x) 0 0 1
0 1 1 0 x + 1 xN(x) + N(x) 0 1 1
0 1 1 1 1 N(x) 0 1 0
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The core of the proposed parallel Montgomery multiplier is made of a sequence
of Partial Product Generators (PPGs) and Montgomery Modulues Generators
(MMGs), wired as in Figure 4. Their outputs are summed together, making up
an unrolled implementation of the loop in Algorithm 3.

Fig. 4. The basic row in the proposed radix-4 parallel Montgomery multiplier

Fig. 5. The internal structure of a Partial Product Generator (PPG) [6]. A similar
circuit is used for the Montgomery Modulus Generator (MMG).

The structures of PPGs and MMGs are identical, and are similar to that
described in [6]. The corresponding circuit is depicted in Figure 5. PPGs and
MMGs are controlled by an encoder via the three signals inv (invert), trp (trans-
port), and shl (shift left), which represent the recoded digit Bi and the recoded
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quotients Qi, respectively. Precisely, when inv = 1, the corresponding modulus
is negative, i.e. NN (i) = −N . Control signal trp = 1 means NN (i) = N (no left-
shift). On the other hand, when shl = 1, a 1-bit left-shift has to be performed,
i.e. NN (i) = 2N . Finally, NN (i) = 0 is generated by trp = shl = 0. Notice
that in GF (2n) mode, i.e. when fsel = 0, the input value inv = 0, trp = 1,
shl = 1 generates the multiple xN(x) + N(x) needed for radix-4 Montgomery
reduction. Similar considerations hold true for the Partial Product Generator
used to calculate the values of AA(i).

Selection signals inv, trp, and shl depend on the multiplier digit bits
b2i+1, b2i, b2i−1, in the case of PPG, and the two least significant bits (sp1, sp0)
of SP and n1, in the case of MMG, according to the equations below, derived
from Table 2. For PPGs, selection signals can be written as follows:

inv = fsel · b2i+1

trp = fsel · b2i + b2i · b2i−1 + fsel · b2i · b2i−1

shl = fsel · b2i+1 + b2i+1b2i · b2i−1 + fsel · b2i+1 · b2i · b2i−1

(1)

For MMGs, selection signals can be written as follows:

inv = fsel · sp1 · n1 + fsel · sp1 · sp0 · n1
trp = sp0

shl = sp1 · sp0 + fsel · sp1 · n1 + fsel · sp1 · sp0 · n1

(2)

A parallel (w×w)-bit multiplier for signed/unsigned modular multiplication con-
tains �w/2�+1 PPGs and �w/2�+1 MMGs and the same number of PPG/MMG
encoder circuits generating selection signals inv, trp, and shl.

Partial products AA(i) and moduli NN (i) are w + 2 bits long as they are
represented in two’s complement form. Besides a bitwise complement of their
binary representation, negative multiples need a 1 to be added at the least sig-
nificant position of the partial product. Let ca(i), cn(i) denote such bits. We
will thus have ca(i) = 1 and cn(i) = 1 when the partial products AA(i) and the
Montgomery moduli NN (i) are negative, respectively.

Notice that the parallel multiplier handles internal operands in carry-save
form to reduce the architectural critical path. Special care must be put, in this
case, for summing negative numbers. In principle, we would need to sign extend
possibly negative partial products AA(i) and moduli NN (i) to full 2w-bit length,
causing a large waste of full-adders in each row of the multiplier. By recoding
the addends, however, we can have only positive-weight bits to be added in the
multiplier, provided that a suitable constant K is added along with them as the
last row in the multiplier array [3]. Let P = (−2n)pn +

∑n−1
i=0 2ipi be a two’s

complement number. Recoding works as follows:

P = (−2n)pn +
n−1∑
i=0

2ipi = −2n +

[
2npn +

n−1∑
i=0

2ipi

]

where all number’s components have a positive weight, while the only negative
term is constant. If we have many partial products P to be summed together,
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we can thus recode them as shown above, sum their positive components pi

(including pn) by adopting a usual array multiplier, separate their constant terms
−2n and accumulate them in a single full-length constant K to be added as the
last row.

Some further optimizations can be applied to reduce the architectural critical
path of the design. Let (S, C) denote a carry-save pair. In a non-optimized
Montgomery multiplier with modified Booth recoding, the sum of the partial
products and the Montgomery moduli in the carry-save stages (CSAs) proceeds
as follows:

· · ·(
Stmp(i), Ctmp(i)

)
= AA(i) + S(i) + C(i)(

S(i+1), C(i+1)
)

= N (i) + Stmp(i) + Ctmp(i)(
Stmp(i+1), Ctmp(i+1)

)
= AA(i+1) + S(i+1) + C(i+1)

· · ·

(Stmp(i), Ctmp(i)) is given by the sum of the i-th recoded partial product AA(i)

and the previous AA(j), 0 ≤ j < i with the recoded moduli NN (j), 0 ≤ j < i.
Recoding of partial products and moduli, however, also implies the sum of the
sign bits ca and cn. In principle, this would require the use of two additional
CSA stages. Indeed, since ca and cn are in the right-most positions of partial
products and moduli, we can juxtapose them with other partial products and
moduli down in the multiplier array, since these are left-shifted and so leave free
slots on the right. For the sake of clarity, Figure 6 gives a practical example of
this organization, for the case w = 6. The generic stage within the proposed
multiplier scheme performs the following operation:

· · ·(
Stmp(i), Ctmp(i)

)
= S(i−1) + C(i−1) + AA(i+1) + ca(i)(

S(i), C(i)
)

= Stmp(i) + Ctmp(i) + NN (i) + cn(i)

· · ·
Overall, we need:

– �w/2� + 1 CSA stages to compute Stmp(i), Ctmp(i)

– �w/2� + 1 CSA stages to compute S(i), C(i)

The main optimizations adopted consist in (see Figure 6):

– reorganizing the sum of the LSB ca(i) and cn(i) of the output carry vector in
order to avoid additional CSA stages. Notice that, although interchangeable
for the accumulation of partial products and moduli, bits ca(i) are needed for
the determination of the next modulus NN (i+1) to be summed. The MMG
selection circuit must take this into account, and read also the bit ca(i) to
anticipate the evaluation of NN (i+1)

– postponing the sum of the least significant bits {s(i)
1 , s

(i)
0 , c

(i)
0 } of S(i) and C(i)

respectively, to save area and CSA stages. Similar to the previous optimiza-
tion, these operations imply a complication of the MMG selection network,
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Fig. 6. Addition of Partial Products and Montgomery Moduli with Booth Recoding
in an optimized scheme for w = 6

which needs more inputs to infer the values of bits sp1, sp0, handled here in
redundant, carry-save form

– reversing the order of the sum of AA(i), NN (i), in order to improve the
critical path. This operation does not alter the computation of NN (i), due
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to the encoding network previously described, which tests the bits needed for
the computation of the modulus before the addition of the AA(i+1) vector.

After the final stage, we need a Dual-Field Carry-Look-Ahead adder (not shown
in Figure 6) that converts the Carry/Sum pair back to non-redundant form.
The structure of the Dual-Field Carry Look-Ahead is depicted in Figure 7. The
essential idea is to disable carry generation throughout the adder structure in
GF (2n) mode, i.e. when fsel = 0. In this case, all internal carry signals Ci are
zero, independent of propagate conditions Pi. As a result, output bits Si coincide
with propagate signals Pi = ai⊕bi, i.e. a GF (2) sum. The fundamental advantage
of this solution is that it enables the reuse of highly-optimized fast carry look-
ahead circuits which are normally available for a given target technology.

Fig. 7. Dual-Field Carry Look-Ahead adder

5 Pipelined Montgomery Multiplier

Previous works (e.g. Satoh and Takano’s 64-bit multiplier [13]) suggest that it is
normally convenient to adopt a large parallelism for achieving higher through-
put levels. Our parallel architecture has a relatively complex selection network
and a linear critical path, which results in large time delays as the word size
increases. In order to achieve high throughput levels and propose a scalable
scheme, we present in this section a pipelined architecture, using the parallel
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unit as the basic building block. The architecture can process single words of w
bits. By partitioning long operands into w-bit words, a full-length Montgomery
multiplication can be carried out based on the FIOS variant of the Montgomery
algorithm (see Algorithm 2).

We implemented the unit for a bit length w of 64 bits. Figure 8 shows the
internal structure of a 64x64-bit unit composed of eight pipelined modules. The
“smaller” multipliers on the right are in fact four instances of the parallel unit
presented in the previous section: in other words, they can generate the recoded
multiples (i.e. Qi recoded as the signals shl, trp, inv) of the modulus N and
the multiplicand A for the whole row, in addition to adding them. The four
“larger” multipliers on the left side of Figure 8, on the other hand, only need
to sum the multiples of N and A, as determined by right-multipliers. Since left-
multipliers are much simpler in their structure and have consequently a shorter
delay, they are designed so that they process longer data. Furthemore, right-
multipliers also need an additional input signal, called first word, which can
enable/disable the generation of multiples of the modulus Qi. This is necessary
to process intermediate words during a row scanning of the FIOS algorithm
(steps 5-8 in Algorithm 2), where we need to process new w-bit words in the
pipelined unit reusing a previously generated value of Qi.

As we use two’s complement representation in the carry-save form, it is de-
sirable to keep intermediate sums in carry-save form and convert the final result
back to binary form only at the end of the pipelined structure. We thus need
to transfer carry-save numbers between subsequent multiplier modules having
different output/input sizes. This required the use of a suitable technique [19]
to sign-extend the carry-save pair and properly propagate sign information.

Figure 9 describes how the pipelined unit is used to process multi-word
operands, showing how the portions of the operands are scheduled in the pipeline.
Numbers in parentheses indicate which of the eight blocks in the unit works on
which portion of operands A, N , and B at which clock cycle (starting from cycle
1 for the top right-most multiplier). The unit has a latency of eight cycles, intro-
ducing a stall at the end of each row only if the number of words m is less than
8. This makes the unit particularly suitable for high-performance multiplication
on large multi-word operands, when many words on the same row are to be pro-
cessed consecutively. The throughput of the architecture is one multiplication
word per clock cycle in this case.

Right modules in Figure 8 have a 16 × 16 bit size, while left modules have a
48×16 bit size. The architecture is designed so that the single blocks, especially
the smaller right-multipliers, can be optimized to minimize the clock period.
Notice that, with a slight modification to the scheme of Figure 8, the first and
the last row (possibly connected to an external bus) may be designed with a
smaller height than the multipliers in the second and third row, so as to balance
the delay of each stage in the pipeline. The carry-save stages are followed by a
Dual-Field Carry-Look-Ahead adder, not shown in Figure 8, converting results
back to the non-redundant form.
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Fig. 8. Pipelined architecture of the arithmetic core. Superscript numbers in parenthe-
ses indicate the different portions into which a single w-bit word is partitioned inside
the pipelined unit.

The overall architecture of the dual-field multiplication unit is shown in Fig-
ure 10. From the scheme in Figure 9 it is clear that at the beginning of each
row we need to drive in the unit three different words, namely A0, N0, and Bj ,
while the words of the intermediate result P are stored internally in a dedicated
memory. This is the only case when we need three concurrent accesses to the
external memory. To overcome this problem and limit the number of external
buses, we observe that it is convenient to store the first word of the modulus
N , N0, in an internal register. This trick only requires w additional flip-flops
and some selection logic, independent of the full size of the operands and the
modulus. N0 is stored before starting a multiplication (or a sequence of mul-
tiplications sharing the same modulus). As a consequence, at the beginning of
each row in the multiplication pipeline we only need A0 and Bj , while for the
subsequent words we need Ai and Ni (Bj is constant through the row), which
are driven into the multiplication unit through the same pair of buses.
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Fig. 9. Scheduling for a multi-word Montgomery multiplication. Ai, Ni, and Bj are w-
bit words. Word sub-portions enter the pipelined w-bit unit according to the schedule
indicated in parentheses.

Fig. 10. Overall architecture of the dual-field multiplication unit

6 Experimental Results and Comparisons

The pipelined multiplier core of Figure 8 was described in VHDL and then syn-
thesized for a CM0S 0.18μm standard cell library technology by using Cadence
Build Gates synthesis tool. Post-synthesis area requirements are estimated to be
1316kμm2, while the minimum clock period is 12.2ns.
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Although there are different related works presenting unified Montgomery
multiplication (see Section 3), we only compare our results with the multiplier
introduced in [13], since it achieves the highest throughput among the various
works available in the literature. Both their work and ours are synthesized as a
CMOS ASIC, but the design in [13] relies on a 0.13μm technology, more advanced
than the 0.18μm target used in our design. When implemented in the same
technology, our solution is thus likely to enable even better improvements than
emphasized in the following discussion. The table below reports some results
referred to integer (i.e. GF (N)) modular multiplication for different operand
lengths, choosing the field sizes indicated by NIST standards for elliptic curve
cryptography. Performance improvements are especially evident in terms of clock
counts.

Satoh and Takano [13] This work

ASIC 0.13µm ASIC 0.18µm
clock period: 7.26 ns clock period: 12.2 ns

GF (N) clock throughput clock throughput
field
size

count [Mbit/s] count [Mbit/s]

192 45 587.7 27 582.9
224 66 467.5 36 510.0
256 66 534.3 36 582.9
284 91 429.9 45 517.3
521 231 310.7 90 474.5

Authors in [13] emphasize that a higher frequency could be used if the unified
multiplier were used only in GF (2n) mode, since the output of their unit is
connected, in this case, to a subportion of the Wallace tree in the multiplier. If
a dual clock frequency were allowed, GF (2n) operations would be worse in our
case, while remaining superior for the more critical integer/GF (N) arithmetic.
In the case a dual frequency implementation is not possible, on the other hand,
our multiplier has better performance also for GF (2m), and comparisons with
the multiplier in [13] appear similar to those given in the above table for the
integer/GF (N) case.

7 Conclusions

The approach presented in this paper, based on dual-field parallel Montgomery
multiplication, proves to be a promising choice, especially for the reduction in
clock count. As a future work, we plan to study new techniques to further re-
duce the delay of the parallel Montgomery unit, described in Section 4, thereby
improving the clock period and the throughput achievable by the pipelined unit.
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10. Örs, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware Implementation of a
Montgomery Modular Multiplier in a Systolic Array. In: Proceedings of the Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2003), p. 184b
(2003)

11. Rivest, R.L., Shamir, A., Adleman, L.: A Method for obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21, 120–126 (1978)

12. Sakiyama, K., Preneel, B., Verbauwhede, I.: A Fast Dual-Field Modular Arith-
metic Logic Unit and its Hardware Implementation. In: Proc. IEEE International
Symposium on Circuits and Systems (ISCAS 2006), pp. 787–790 (2006)

13. Satoh, A., Takano, K.: A Scalable Dual-Field Elliptic Curve Cryptographic Pro-
cessor. IEEE Transanctions on Computers 52, 449–460 (2003)
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Abstract. In current reconfigurable architectures, the interconnect structures 
increasingly contribute to the delay and power consumption budget. The demand 
for increased clock frequencies and logic availability (smaller area foot print) 
makes the problem even more important, leading among others to rapid elevation 
in power density. Three-dimensional (3D) architectures are able to alleviate this 
problem by accommodating a number of functional layers, each of which might 
be fabricated in different technology. Since power consumption is a critical 
challenge for implementing applications onto reconfigurable hardware, a novel 
temperature-aware placement and routing (P&R) algorithm targeting 3D FPGAs, 
is introduced. The proposed algorithm achieves to redistribute the switched 
capacitance over identical hardware resources in a rather “balanced” profile, 
reducing among others the number of hotspot regions, the maximal values of 
power sources at hotspots, as well as the percentage of device area that consumes 
high power. For evaluation purposes, the proposed approach is realized as a new 
CAD tool, named 3DPRO (3D-Placement-and-Routing-Optimization), which is 
part of the complete framework, named 3D MEANDER. Comparing to 
alternative solutions, the proposed one reduces the percentage of silicon area that 
operates under high power by 63%, while it leads to energy savings (about 9%), 
with an almost negligible penalty in application’s delay ranging from 1% up  
to 5%. 

1   Introduction 

For decades, semiconductor manufacturers have been shrinking transistor size in ICs 
to achieve the yearly increases in speed and performance described by Moore's Law, 
which exists only because the RC delay was negligible in comparison with signal 
propagation delay [1]. For submicron technology, however, the RC delay becomes a 
dominant factor. This has generated many discussions concerning the end of device 
scaling as we know it, and has hastened the search for solutions beyond the perceived 
limits of current 2D devices. 

One emerging solution to this problem is the 3D integration, which replaces a large 
number of long interconnects needed in 2D structures with shorter ones. Such 
architectures mitigate many of the limitations that the 2D devices exhibit. Among 
others, they provide: (i) higher logic density in the same foot print area, (ii) shorter 
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interconnections among the logic blocks, (iii) reduced signal propagation delay, (iv) 
greater versatility and resource utilization, and (v) lower power consumption. 

One of the most critical challenges for efficient application implementation in 3D 
FPGAs is the power management, and hence the thermal problem, which has already 
been studied for 2D architectures [6, 7, 17]. This problem is exacerbated in the 3D 
devices for two reasons: (i) the vertically stacked layers cause a rapid increase of 
power density [9], and (ii) the thermal conductivity of the dielectric layers inserted 
between device layers for insulation is very low compared to silicon and metal.  

Moreover, an obvious consequence of this trend is the increased power 
consumption per area unit. In recent years, power density in 2D FPGAs has doubled 
every three years [1], and this rate is expected to increase as feature sizes, frequencies 
and technologies scale faster than operating voltages. As the power density will 
continue increasing in future technologies (according to “A-power” law), the power 
consumption is regarded as a limiting factor to the increasing scales of integration 
predicted by Moore's law [1]. 

Thermal management of Field-Programmable Gate Array (FPGA) devices is more 
critical compared to ASIC solutions, as they dissipate more power, while their 
operating temperatures usually exceed the critical one. Also, the leakage current 
increases exponentially with temperature, causing a positive feedback loop between 
leakage power and temperature. 

Eliminating and managing power consumption for reconfigurable architecture 
requires appropriate algorithm support. Realizing applications on 2D FPGAs is a well 
studied problem; however, there are only a few solutions regarding 3D architectures 
[8, 13, 14, 16]. 

In [13] a P&R approach for 3D ICs is presented, having as criterion to minimize 
the total wire-length, the applications delay, and the on-chip temperature. Even 
though the framework supports reconfigurable architectures, however, the thermal 
feature is available sorely for ASIC designs.  

A similar approach is shown in [14], where the P&R algorithm optimizes the 
energy consumption and the thermal profile of a 3D standard-cell device under the 
supplied timing constraint. The employed algorithm focuses on the energy 
consumption of interconnect-related components. Unfortunately, the software 
implementation is not publically available, in order to evaluate this approach against 
to our proposed solution.  

In [16] a thermal-driven 3D floor-planning algorithm that provides a trade-off 
between runtime and quality is presented. The algorithm tries to reduce the total  
wire-length, as well as the maximum on-chip temperature, compared to a non 
thermal-driven approach.  

In [8] a P&R algorithm and its software implementation targeting to explore 
alternative interconnection schemes for 3D FPGAs are introduced. The employed cost 
functions pay effort to minimize the application delay, the power/energy 
consumption, as well as the total wire length, ignoring about their distribution. This 
tool is part from an open-source CAD framework, named 3D MEANDER, for 
mapping applications onto 3D FPGAs. 

All these approaches realize digital applications on 3D devices having as goal to 
minimize the total power/energy consumption of the design, ignoring about the spatial 
distribution of its sources. Moreover, none of them is aware during the P&R 
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procedure about spatial distribution of parameters that affect the power/energy 
consumption (i.e., switched capacitance). This results both to increased power/energy 
consumption, as well as to significant variations of on-chip temperature values across 
the 3D device. Among others, this non-uniformity in power consumption leads to 
increased cooling costs, as the IC packaging has to be designed for the worst case 
scenario. 

The rest paper is organized as follows. In Section 2, we formulate the temperature-
aware P&R problem, while the employed methodology in order to derive the 
temperature model is described in Section 3. The algorithmic steps of the proposed 
temperature-aware P&R algorithms are introduced in Section 4. Section 5 evaluates 
the efficiency of applying such a temperature-aware approach against to other 
implementations for application mapping, while conclusions are summarized in 
Section 6. 

2   Problem Formulation 

Power consumption of FPGAs is generally grouped into three categories: (i) dynamic 
power, (ii) static power, and (iii) interface (I/O) power. These components are 
governed by the process technology and traditionally maintain constant percentages 
of the device’s total power. The dynamic part of power consumption (formulated in 
the Equation (1)), occurring due to signal transition as the load capacitance is charged 
(or discharged), still dominates the total power consumption. In this equation,  
represents the clock frequency of the signal,  is the supply voltage, while  and 

 are the capacitance and switching activity, respectively, of element . 

0.5 · · · ·  (1) 

When a lower bound on the supply voltage is set by external constraints (as often 
happens in real-world designs), or when the performance degradation due to lowering 
of the supply voltage is intolerable, then the only means of reducing power 
consumption is by lowering the effective capacitance and/or the switching activity 
(i.e., switched capacitance). Throughout this paper, we discuss an algorithm for 
managing the spatial distribution of this product ·  over the 3-D 
FPGA device, leading to a more “uniform” temperature profile. 

 
Definition: Application Hypergraph 
We consider as application hypergraph a directed hypergraph , , where 
each vertex  represents a logic functionality of the target application, while the 
directed hyperedge ,  encodes the communication between logic functionalities 

 and . The weight associated to hyperedge , , denoted as _ , , represents the communication load/bandwidth from 
vertex  to . 
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Definition: Platform Graph 
We consider as platform graph a directed graph ,  where each vertex 

 represents an element of the target architecture (e.g., logic block, processor, 
memory, etc.), while the directed edge ,  denotes a communication path 
between hardware elements  and . The weight of the edge , , denoted as _ , , encodes the fabricated interconnection hardware 
resources among these logic blocks.  
 
3D Temperature-Aware Placement and Routing Problem 
Given the architecture graph ,  consisted by a set of V  
slices , where , , , , , ,  find a placement :   and a routing :  of the application hypergraph on the 
available hardware resources (platform graph), in order each logic function  and 
the appropriate communication  to occupy uniquely a logic resource  and the 
available routing fabric , respectively. The derived P&R solution is accepted if 
the following conditions are satisfied:  

(i) 0 for all the ,  . 
(ii) The interconnection of each layer is accomplished with the minimum routing 

resources. 
(iii) Distribute uniformly the switched capacitance over the 3D device. 
(iv) Meeting timing/power/area constraints of the application. 
(v) Employ an acceptable number of vertical links (in terms of the selected 3D 

bonding technology). 
 

The proposed temperature-aware P&R solution was evaluated against to existing 
(i.e., non temperature-aware) P&R algorithms with the usage of the 20 biggest 
MCNC benchmarks [15]. During this experimental setup, the P&R algorithms were 
applied to identical (i.e., with same amount of logic resources and interconnection 
fabric) 3D FPGAs. The results show significant reduction (about 63%) on area 
percentage that operates under high temperatures, while we also achieve energy 
savings about 9%. 

3   Methodology for Deriving the Temperature Model 

The proposed methodology for deriving the employed temperature model that 
calibrates our P&R algorithms, is depicted in Figure 1. For this reason, a 
representative number of benchmarks from [15] were implemented (with the same 
P&R algorithms) onto 3D FPGAs. Then we visualize the variation of switched 
capacitance over each layer, in order to determine the number, as well as the spatial 
distribution of hotspot regions. As a hotspot we refer to the device region where the 
temperature is higher than 70% of the maximum temperature of the 3D FPGA. This 
step was presented in a previous work regarding the 2D architectures [7]. Then, the 
application is P&R on the target 3D architecture with the derived temperature-aware 
algorithm. This step is described in more detail in upcoming sections. 
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Fig. 1. Proposed methodology for temperature-aware P&R 

Our interest lies to control the temperature sources across the 3D device. In order 
to model this, each of the functional layers is divided into a grid with dimensions 

, where every point , ,  is assumed to be small enough in order its 
temperature to be constant. In general, the steady-state temperature of each location 
across the FPGA is a function of the total power consumption regarding all the on-
chip heat sources.  Equation (2) gives the parameters of the thermal  circuit [7] that 
models the temperature across the device.  

111  (2) 

In this equation, the value of  refers to the transfer thermal resistance, while the 
 represents the power consumption of the slice placed at spatial location , , . 

The on-chip temperature for this point is represented as . 

4   Proposed P&R Algorithm Targeting 3D FPGA Devices 

Fundamentally, the problem of 3D P&R is related to topological arrangements of the 
application’s functionality to slices (i.e., logic blocks) of the 3D FPGA, while 
satisfying the design timing, power and area constraints. The proposed temperature-
aware P&R algorithm pays effort to minimize the on-chip temperature gradient, 
obtaining an even uniformly spatial distribution of switched capacitance, in respect to 
the application’s timing constraints. This approach can be though as a power 
management strategy. The result is an application mapping with fewer hotspot 
regions, as compared to a conventional (i.e., timing-aware) approach.  
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Fig. 2. The 3D MEANDER Framework 

Figure 2 shows the tool flow, named 3D MEANDER, for realizing applications on 
3D FPGAs. This flow adopts some existing CAD tools from the 2D toolset [5], which 
do not need to be aware of the 3D FPGA topology (i.e., technology platform 
independent). To the best of our knowledge, this toolset is the first complete 
framework in academia for mapping applications on 3D reconfigurable devices 
starting from hardware description language up to configuration file generation.  

The proposed temperature-aware algorithm (shown in Algorithm 1) is 
implemented within the 3DPRO tool [8]. The calculation of application’s delay is 
based on Elmore model [12]. Regarding the algorithmic complexity of this tool, it is 
similar to existing solutions [10, 13]. Regarding the calculation of temperature 
variations across the 3D FPGA, we employ models introduced in [2], appropriately 
extended in order to be aware about the third dimension. These models were 
integrated in the 3DPower tool.  

 
Function TEMPERATURE-AWARE P&R FOR 3D FPGAs()
     Input netlist: technology mapped application 
     Input target architecture: target 3D FPGA device 
     Partition(netlist, target architecture); 
     Place(netlist, target architecture); 
     Route(netlist, target architecture); 
     Calculate statistics(netlist); 
End Function 

Algorithm 1. The proposed temperature-aware P&R 
 
Since our proposed P&R approach is temperature-aware, it poses new challenges 

to application implementation on 3D devices. Detail description of each algorithmic 
step (i.e., partitioning, placement, routing) will be given in the upcoming sections. 
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4.1   Application Partitioning and Layer Assignment 

The first step of the proposed temperature-aware P&R algorithm deals with the 
application partitioning into Z balanced sections. This number (Z) is equal to the 3D 
device layers. The employed partitioning algorithm (shown in Algorithm 2) is based 
on [11], as it tries to minimize the interlayer communication, however its cost 
function was appropriately extended to spread as much as possible the spatial 
distribution of application’s switched capacitance across the 3D device, without 
affecting the total power/energy consumption, the application’s delay or the area 
requirements.  

This procedure is done by recursive bi-partitioning of the application hypergraph 
, such that to minimize the value of the employed cost function (depicted in 

Equation (3)). Since the net length is tightly firmed to its resistance and capacitance 
values, we can manage the power consumption sources by weighting each net 
according to its switched capacitance.  
 
Function PARTITION(netlist, number of layers)
     while accept (partition=True) do 
          Subgraphs  split(netlist, number of layers); 
          C  calculate(connections among subgraphs); 
          If (C > crititcal) then 
               try to repartition the netlist; 
          else 
               accept partitions  True 
          end if 
     end while 
end Function 

Algorithm 2. The proposed temperature-aware partitioning 

We associate the switched capacitance criticality of a logic element as weight to 
the corresponding vertex in the hypergraph, while the timing criticality is shown as 
weight to the corresponding hyperedge. These weights encourage the partitioning 
algorithm to split the application in a way that balances both of these factors. The 
criticalities of the graph (i.e., weights of vertexes and hyperedges) are updated at each 
partitioning level, while the partitioning process stops when both the switched 
capacitance distribution and the timing constraints are met.  

Next, the algorithm assigns the derived application segments on the device layers by 
taking into consideration a number of design parameters. More specifically, the 
algorithm tries not to assign segments that consume high power close to each other, or 
on the middle of the 3D stack, as it is more difficult to dissipate heat. This task is 
accomplished in conjunction to the effort for minimizing the interlayer communication 
or other design constraints (i.e., delay, power/energy consumption, etc). 

Additionally, since our algorithm can be used for architecture-level exploration, 
rather than providing only an output, we calculate the Pareto-based space of 
alternative application partitions. These solutions balance the area occupied by active 
hardware resources, the number of interlayer connections and the variation of power 



218 K. Siozios and D. Soudris 

consumption (i.e., power sources) among layers. In order to quantify each of the 
derived application partitioning, we employ cost function shown in Equation (3). 1 1  (3) 

where  denotes the variation of power sources over the 3D FPGA, 
the  is equal to the total amount of hyperedge-cut, while the 

 corresponds to the variation of area occupied by active hardware 
resources among the device layers. The employed factors  and  provide  
higher flexibility to the cost function, as they can be used to tune the algorithm  
for further optimizing the partitioning result. Finally, we have to mention that  
both the cost function, as well as the criticalities of the hypergraph (i.e., 
 weights of vertexes and edges), are updated after each iteration, while the 
partitioning stops when both the distribution of switched capacitance and the 
timing constraints are met. 

4.2   Application Placement 

After the partitioning step, the placement algorithm assigns the application’s logic 
functionalities  to available hardware modules . As the majority of applications 
realized onto FPGAs utilize only a subset of the available hardware resources, this 
non-uniformity leads to high variation of power consumption across the device [8]. 
This problem gets even worst in 3D devices due to high power/temperature variation 
among layers.  

The proposed temperature-aware placement algorithm tries to place the logic 
functionalities  in a way that minimizes the maximal switched capacitance values 
(referred as hotspots), as well as to distribute it across the whole 3D FPGA. As the 
switching activity depends on the functionality implemented inside the logic blocks, 
while the capacitance is proportional to the interconnection length and the number of 
hardware modules that form each network, the proposed algorithm pays effort to 
handle in an efficient way their product (i.e., switched capacitance).  

More specifically, by placing on adjacent spatial locations logic functionalities 
connected through nets with high switching activity, these nets probably will be 
shorter (exhibit smaller capacitance), leading to reduced power consumption. 
Unfortunately, it is not always possible to place close all these blocks, as this might 
lead to increased application delay (i.e., delay of the slowest path). Also, the 
placement of functionalities with high bandwidth requirements should be assigned 
onto the same functional layer, since there is plethora of routing resources, as 
compared to the reduced connectivity of vertical connectivity. 

The proposed placement approach (shown in Algorithm 3) is based on simulated 
annealing. During the placement pairs of logic blocks are selected and swapped 
randomly, until either the resulted placement is good enough, or the maximum 
number of iterations is reached. The efficiency of a placement is characterized by 
calculating its cost function, shown in Equation (4), where: 
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 1
1  

(4) 

where  

, , ,  

 , , ,
_

 

,,   

In this cost function, factors  of cost function balance the effort for reducing either 
the total wire length or the delay. However, in both cases, the algorithm tries to 
reduce the switching activity. The ,  and  parameters denote the 
dimensions of the 3D bounding box for network , while the  is a scaling factor of 
the bounding box, used to make more accurate estimations about the wire-length for 
nets with more than 3 terminals [10]. The ,  denotes the delay between a 
source-sink path of a network, the factor const is a constant, while the  
gives the importance, in terms of how close to the critical path, is the network . 
Finally, the  represents the switching activity value for the network . In 
order to calculate this parameter, the transition density for all the hardware elements 
of network  has to be summarized. 

The , , ,  and ,  parameters represent the average width of 
routing tracks across the x, y and z direction, respectively, for the bounding box of 
network i, while they are used in order to be taken into consideration the available 
routing resources during the placement. Their values depend solely on the fabricated 
interconnection resources, while they are constant during the placement. The values 
of  and  control the relative cost of employing narrower and wider routing 
channels. More specifically, when their values are 0, then the cost function results to 
the conventional bounding box approach. Otherwise, as higher the values of these 
parameters are, then more and more tracks from narrowest routing channels have 
increased cost value, compared to the wider channels. We employ a different relative 
cost  for the vertical interconnections, as the placement algorithm has to pay 
effort to not waste this kind of connections. Finally, by using an additional factor, 
denoted as , we discourage the placer to put functions that exchange data in 
different layers. 
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Function PLACE(netlist, target architecture) 
P  Make an initial Placement(); 
T  Initial Temperature; 
Rlimit  Initial Rlimit; 
While (Exit_Criterion() not TRUE)  // outer loop 
   { 
   While (loop_criterion() not TRUE)  //inner loop 
      { 
      Pnew  Random swap placements(P, Plimit); 
      ΔCost  Cost(Pnew) – Cost(P); 
      r  random value(0,1); 
      if (r<e-ΔCT) P  Pnew;  // accept movement 
      } 
   Rlimit  Update(Rlimit); 
   T  Update(Temperature) 
   } 
End Function 

Algorithm 3. The proposed temperature-aware placement algorithm 

Even though it is true that such an approach can reach arbitrary close to the global 
minimum, if the cooling schedule is slow enough, it suffers from long run times for 
large circuits. In contrast to most of the existing approaches that start from a random 
initial placement, our solution employs a more “sophisticated” assignment of logic 
blocks, leading to shorter runtimes. This is achieved by taking into consideration 
during the initial placement apart from the timing and the wire-length constraints, the 
minimization of switched capacitance variation. Such info is available from the 
partitioning step (shown in previous section). 

4.3   Application Routing 

By defining the placement on the 3D FPGA, the routing algorithm forms the 
appropriate connections among the utilized logic blocks  through the available 
interconnection fabric . As the vertical interconnections are limited, compared to 
horizontal tracks, the routing algorithm sets their weight to a higher value, in order to 
discourage the unnecessary bends between horizontal and vertical wires. Also, this 
penalty forces the router not to connect logic blocks placed on one layer by using 
interconnection fabric from different layers. 

The proposed routing algorithm (shown in Algorithm 4) is based on Pathfinder 
negotiated congestion [4]. Initially, a number of networks are allowed to share the 
same routing fabric, which is gradually prohibited, until to the final routing where 
every network employs dedicated routing fabric. Such an approach finds the 
narrowest horizontal and vertical channels for which the application is fully 
routable. 
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Function ROUTE(netlist, target architecture)
horizontal  initial horizontal channel width; 
vertical  initial vertical channel width; 
while (routing  optimal connection of logic blocks) do 
route netlist(); 
   if (succeed routing) then 
      optimal routing  find narrowest channels; 
      do 
         T  meet timing constraints(); 
         if(T  True) distribute switched 
capacitance(); 
      while(T  True)  
   else increase horizontal/vertical channel widths; 
end while 
end Function 

Algorithm 4. The proposed temperature-aware routing 

By discouraging routing algorithm to form connections that cross hotspot regions, 
it is possible to spread the switched capacitance over the 3D device, while it also 
achieve the timing and total power/energy constraints. However, this is not always 
feasible, as it might increase the application’s delay or its power/energy consumption. 
The efficiency of a derived application routing, is quantified with the cost function. 
The mathematical expression regarding this function is shown in Equation (5). , 1 1

 
(5) 

In this expression, the factor  defines the importance of temperature control during 
the routing procedure. The parameters ,  and  represent the base cost, 
the historical congestion cost and the present congestion cost for the hardware 
element , respectively. In order to come to acceptable solutions the value of  
increases with the execution time, in order to avoid the overuse of routing resources. 
The factor  corresponds to the normalized capacitance of resource , 
while the  refers to the importance of the switching activity for the 
network . Equation (6) gives the mathematic expression of this parameter. min _ , _  (6) 

Here the _  corresponds to the maximum allowed value of switching 

activity regarding the network , while the ratio _   gives the 

normalized switching activity over all the application’s interconnection networks. As 
the value of the _  parameter closes to 1 (e.g., 0.99), then more and 
more interconnection networks with high switching activity will be taken in 
consideration during the routing congestion.  
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Comparing the proposed cost function with existing from literature [8, 10, 13], it 
has identical timing parameter. So, whenever a routing connection is timing critical, 
the routing algorithm pays effort to reduce the delay of the network. However, the 
second part of the cost function tries to handle the spatial distribution of switched 
capacitance. Whenever a connection exhibits high switching activity, the proposed 
algorithm tries to form the required connections through paths that exhibit reduced 
capacitance (in order to eliminate the temperature values). On the other hand, when 
the networks do not exhibit increased switching activity, the routing algorithm 
reduces the routing congestion and increases the application’s operation frequency. 

5   Experimental Results 

We implement the proposed temperature-aware P&R algorithm in C++, as part to an 
existing open-source tool for 3D FPGAs, named 3DPRO [8]. The experimental results 
were retrieved using the 3DPRO tool, without and with the power-aware P&R 
feature. This section provides comparisons among the proposed temperature-aware 
P&R algorithm and the alternative solutions found in relevant literature, considering 
the 20 biggest MCNC benchmarks. The average complexity of the employed 
benchmark circuits, as listed in Table 1, is about 3,410 4-input LUTs, while each of 
the layers contains an array of 56×56 slices. In terms of the target 3-D devices, the 
average percentage of utilized logic resources is almost 97%. 

The target 3D PFGA platforms (were each of the benchmarks is mapped) is inspired 
by the one proposed in [8]. Such a 3D device is constructed by stacking a number of 
identical 2D FPGAs on individual functional layers, providing appropriate 
communication among them by interlayer vias. These connections are realized inside 
vertically adjacent 3D Switch Boxes (SBs). The employed 3D architecture has a vias 
distribution with smaller fabrication costs compared to conventional 3D FPGAs, without 
any degradation in application performance, or increment of total power/energy 
consumption. The features of this architecture are summarized as follows: 

• It consists of four functional layers 4 . 
• The percentage of vertical interconnections (i.e. vias) per functional layer is 

30% (as derived in [8]). 
• The spatial location ,  of each vertical interconnection per layer remains 

invariant. 
• The vertical interconnection fabric was modeled based on the approach 

shown in [3]. 
• There are 4 bit connections between layers for each 3D SB. 
• The hardware resources (both logic and interconnection) among layers are 

identical. 
• Each application is P&R onto the smallest 3D FPGA. 
• The employed 3D devices for the alternative mappings have identical 

hardware resources. 
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Table 1. Complexity of the employed benchmark applications, and utilization of the logic 
resources of the target 3-D FPGA 

Benchmark 
# of 

4-LUTs 

2D FPGA 3D FPGA 
FPGA 
array 

% utilized 
logic resources 

FPGA 
array 

% utilized 
logic resources 

alu4 1544 40×40 96.50% 20×20×4 96.50% 
apex2 1920 44×44 99.17% 22×22×4 99.17% 
apex4 1290 36×36 99.54% 18×18×4 99.54% 
bigkey 2391 49×49 99.58% 25×25×4 95.64% 
clma 8879 95×95 98.38% 48×48×4 96.34% 
des 2092 46×46 98.87% 23×23×4 98.87% 
diffeq 1974 45×45 97.48% 23×23×4 93.29% 
dsip 2020 45×45 99.75% 23×23×4 95.46% 
elliptic 4969 71×71 98.57% 36×36×4 95.85% 
ex1010 4618 68×68 99.87% 34×34×4 99.87% 
ex5p 1135 34×34 98.18% 17×17×4 98.18% 
frisc 4561 68×68 98.64% 34×34×4 98.64% 
misex3 1425 38×38 98.68% 19×19×4 98.68% 
pdc 4631 69×69 97.27% 35×35×4 94.51% 
s298 1948 45×45 96.20% 23×23×4 92.06% 
s38417 7694 88×88 99.35% 44×44×4 99.35% 
s38584 7884 89×89 99.53% 45×45×4 97.33% 
seq 1826 43×43 98.76% 22×22×4 94.32% 
spla 3752 62×62 97.61% 31×31×4 97.61% 
Tseng 1605 41×41 95.48% 21×21×4 90.99% 

Average: 3407.9 56×56 98.37% 29×29×4 96.61% 

 
Figure 3 depicts the variation of switched capacitance over the layers of the 3D 

FPGA, with a timing-aware mapping. The employed application, named alu4, is one 
of the 20 biggest MCNC benchmarks, consisted of 1522 4-input LUTs. These logic 
modules are assigned to four equal sized layers, each of which occupies an array of 
20 20 slices. The picture of Figure 3 is a very useful instrument to architecture 
designers, in order to specify the spatial distribution of hotspot regions over the 
device. 

From this figure we conclude that the switched capacitance vary a lot, even for 
hardware resources assigned to adjacent spatial locations onto the same layer. Also, it 
is possible to locate regions on the layers with excessive high values of switched 
capacitance. In order to understand the thermal characteristics and prevent circuit 
failure, it is important to detect such hotspots regions. By specifying their spatial 
distribution, the designer can concentrate his/her efforts to control the switched 
capacitance on certain regions only, but not on the whole device, reducing among 
others the design/fabrication cost. 
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Fig. 3. The variation of switched capacitance for alu4 benchmark with a conventional P&R 
algorithm 

The proposed temperature-aware P&R algorithm can assist to provide a solution to 
this problem, as it is aware about the distribution of switched capacitance across the 
3D FPGA. Figure 4 plots the corresponding variation of switched capacitance 
regarding the same application and 3D device, for the proposed algorithm. In contrast 
to the conventional approach (shown in Figure 3), the proposed one exhibits more 
balanced variation of switched capacitance, and hence for power consumption and for 
on-chip temperature.  

Additionally, the maximal values of switched capacitance are lower, leading to 
cheaper and more reliable devices. One more conclusion might be derived from these 
two graphs. More specifically, the proposed approach distributes more uniformly the 
switched capacitance for the layers placed on the middle of the 3D stack. This feature 
is critical for the thermal efficiency of the target 3D architecture, as it is more difficult 
to dissipate heat from these layers. 
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Fig. 4. The variation of switched capacitance for alu4 benchmark with the proposed 
temperature-aware P&R 

For shake of completeness we employ the proposed temperature-aware P&R 
algorithm for two setups. Both of them were realized by appropriately tuning the 
parameters of the cost functions. More specifically, the first of them affects an 
approach where the importance of application’s delay is thought to be similar to the 
temperature distribution, while in the second experimental setup, the employed cost 
functions are tuned to achieve even more uniform temperature distribution on the 3D 
FPGA. 

Figure 5 compares the average (over the 20 biggest MCNC benchmarks) area 
percentage of the 3D FPGA that operates under high power sources for the two 
flavors of the proposed approach (non-aggressive and aggressive) against to 
conventional P&R. As we may conclude, the proposed solution achieves to reduce the 
percentage of area that operates under high power values (i.e., belonging to hotspot 
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Fig. 5. Variation of area percentage that operates under specific power consumption for 
alternative P&R algorithms 

Table 2. Comparison in terms of total wire-length (×10 m) for alternative P&R algorithms 

Benchmark 

2D FPGA 3D FPGA 
Timing-
aware 
P&R 

Temperature- 
aware P&R 

[18] 

Timing-
aware 
P&R 

Proposed 
(Temperature-aware) P&R 

non- Aggressive Aggressive  
alu4 50.23 54.46 37.09 35.65 37.81 
apex2 67.67 65.63 53.16 56.06 58.99 
apex4 62.39 65.69 37.92 38.16 37.76 
bigkey 60.01 68.15 43.68 48.57 32.71 
clma 301.42 309.4 280.5 294.6 430.44 
des 57.46 62.09 43.82 45.44 52.7 
diffeq 46.77 54.48 31.08 36.31 34.88 
dsip 45.81 49.56 33.69 35.46 29.9 
elliptic 114.74 121.38 94.91 92.15 102.24 
ex1010 41.34 46.55 31.47 33.78 36.9 
ex5p 163.43 169.93 146.42 167 129.65 
Frisk 108.35 114.56 91.26 99.83 174.05 
misex3 50.56 56.91 37.88 38.26 39.31 
pdc 174.33 183.36 160.37 173.32 238.78 
s298 59.68 65.44 42.3 44.65 55.85 
s38417 170.63 182.39 155.97 169.52 172.01 
s38584 147.55 160.01 136.39 152.62 129.14 
seq 63.46 68.55 48.74 54.49 52.8 
spla 139.45 148.62 125.03 113.47 148.19 
tseng 35.45 41.09 21.07 23.85 25.89 

Average: 98.04 104.41 82.64 87.66 101.00 
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Table 3. Comparison in terms of delay (10 sec) for alternative P&R algorithms 

Benchmark 

2D FPGA 3D FPGA 
Timing-
aware 
P&R 

Temperature- 
aware P&R 

[18] 

Timing-
aware 
P&R 

Proposed 
(Temperature-aware) P&R 

non-Aggressive Aggressive  
alu4 9.77 8.69 7.32 7.51 7.71 
apex2 9.37 9.65 7.87 8.04 8.12 
apex4 8.86 9.1 6.78 6.96 7.29 
bigkey 6.03 9.71 5.14 4.96 5.22 
clma 10.1 9.23 8.84 9.95 10.47 
des 7.76 11.1 6.78 6.65 7.34 
diffeq 6.15 6.32 7.71 7.67 7.77 
dsip 7.99 10.9 5.14 4.99 5.13 
elliptic 10.9 11.7 7.34 7.63 7.69 
ex1010 18.3 18.3 7.87 8.29 8.52 
ex5p 9.26 7.17 5.95 5.96 6.28 
Frisk 16.1 13.4 6.51 6.62 6.87 
misex3 11.7 8.34 7.32 7.68 7.79 
pdc 20.4 18.7 8.41 8.37 8.52 
s298 13.4 13.4 11.69 11.54 11.69 
s38417 9.85 9.79 10.95 11.35 11.43 
s38584 7.45 7.85 10.47 10.12 10.64 
seq 9.52 8.17 7.32 7.41 7.72 
spla 15.6 18 7.87 7.62 8.14 
tseng 5.55 5.53 7.61 7.48 7.88 

Average: 10.70 10.75 7.74 7.84 8.11 

 
regions), while it spreads these power sources on the rest device in a more uniformly 
manner. This is especially critical for designing reliable and cheaper devices, as there 
is no need for expensive packaging solutions. Moreover, by transferring power 
consumption from hotspot regions to the rest architecture, we increase the device 
reliability and reduce its fabrication cost. 

Apart from distributing uniformly the on-chip temperature; the proposed P&R 
algorithm pays effort not to increase either the application’s delay or its total 
power/energy consumption. The upcoming Tables summarize the evaluation results 
of applying the proposed strategy to the 20 biggest MCNC benchmarks. The target 
3D FPGA device was described in the beginning of this section, while the array 
dimensions for each benchmark is derived from Table 1. 

As we have already mentioned, the interconnection network contributes to the 
temperature of target 3D architectures. Table 2 compares the total wire-length for 
application mapping onto 2D and 3D FPGAs. Based on the results, the proposed 
temperature-aware approach leads to increased wire-length (between 6% and 22%), as 
compared to a timing-aware P&R. However, both of temperature-aware flavors 
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Table 4. Comparison in terms of energy dissipation (10  Joule) for alternative P&R algorithms 

Benchmark 

2D FPGA 3D FPGA 
Timing-
aware 
P&R 

Temperature- 
aware P&R 

[18] 

Timing-
aware 
P&R 

Proposed 
(Temperature-aware) P&R 

non- Aggressive Aggressive  
alu4 5.83 5.82 4.45 4.21 4.38 
apex2 6.75 6.81 6.39 5.28 4.85 
apex4 4.17 4.23 3.68 3.26 2.96 
bigkey 7.95 8.27 7.10 8.49 7.76 
clma 75.6 79.9 32.49 33.44 33.69 
des 10.5 11.4 10.14 9.76 9.22 
diffeq 3.51 3.5 9.28 8.35 8.27 
dsip 7.82 8.01 5.58 5.77 5.10 
elliptic 12.4 12.8 9.71 9.87 10.17 
ex1010 16.2 16.3 9.91 8.31 8.68 
ex5p 4.32 4.1 3.19 3.10 2.97 
Frisk 12.1 11.2 19.01 17.02 15.70 
misex3 5.55 5.25 4.12 3.79 4.01 
pdc 22.3 21.4 14.02 15.83 13.70 
s298 6.88 6.95 7.45 7.49 6.83 
s38417 22.9 23.1 34.48 29.10 26.99 
s38584 43.2 35.6 23.95 24.08 21.28 
seq 6.32 6.08 5.72 4.70 5.02 
spla 13.1 13.9 9.58 9.04 8.55 
tseng 3.18 3.2 15.05 16.09 14.30 

Average: 15.13 14.98 11.76 11.35 10.72 
 

results to smaller wire-lengths than the implementation targeting 2D architectures [8] 
about 19%. As we will prove later, the increased values of this parameter cannot 
outperform the advantages of realizing applications with the proposed power-aware 
P&R algorithm. 

Table 3 gives the delay for each of the 20 biggest MCNC benchmark with the 
usage of alternative P&R algorithms for 2D and 3D FPGAs. Based on the results, the 
proposed temperature-aware P&R algorithm increases slightly the application’s delay, 
ranging from 1% up to 5%, while the performance improvement compared to solution 
targeting 2D FPGAs [7] is up to 27%. The almost negligible performance degradation 
(due to the extra constraints for forming connections) is acceptable, as it does not lead 
to significant variation of the application’s functionality. 

Table 4 gives the energy requirements for each of the 20 biggest MCNC 
benchmarks. As we may conclude from the results, the proposed temperature-aware 
P&R algorithms (non-aggressive and aggressive) lead to energy savings, compared to 
conventional (i.e., timing-aware) P&R that range between 4% and 9%, respectively. 
Additionally, the energy savings compared to corresponding solution from literature 
[7] is up to 29%. 
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Table 5. Comparison in terms of area percentage that operates under high temperature values 
(i.e., hotspot regions) for alternative P&R algorithms 

Benchmark 

2D FPGA 3D FPGA 
Timing-
aware 
P&R 

Temperature- 
aware P&R 

[18] 

Timing-
aware 
P&R 

Proposed 
(Temperature-aware) P&R 

non- Aggressive Aggressive  
alu4 34% 17% 26% 14% 9% 
apex2 41% 23% 30% 18% 9% 
apex4 42% 29% 31% 23% 14% 
bigkey 34% 19% 24% 15% 8% 
clma 25% 12% 18% 10% 6% 
des 39% 26% 30% 21% 9% 
diffeq 37% 25% 28% 20% 9% 
dsip 39% 27% 30% 22% 11% 
elliptic 42% 30% 30% 26% 15% 
ex1010 26% 15% 19% 12% 5% 
ex5p 27% 17% 20% 14% 8% 
Frisk 33% 24% 25% 19% 9% 
misex3 31% 23% 23% 18% 11% 
pdc 31% 26% 23% 17% 10% 
s298 31% 24% 23% 14% 9% 
s38417 27% 13% 20% 10% 7% 
s38584 45% 30% 34% 25% 12% 
seq 40% 31% 30% 24% 13% 
spla 32% 23% 23% 18% 10% 
tseng 33% 23% 25% 19% 8% 

Average: 34% 23% 26% 18% 9.6% 

 
Finally, we study the percentage of device area that operates under high power. 

This part of device area is mentioned as hotspot region, while its reduction is the main 
goal of the developed research. The two flavors of the proposed power-aware P&R 
algorithm achieve to reduce this percentage, compared to conventional (i.e., timing-
aware) P&R for the same 3D FPGA ranging from 30% up to 63%. Moreover, the 
reduction of area coverage for hotspot regions compared to existing approaches for 
2D FPGAs [7] is about 58%. 

The results presented in this section prove that the proposed temperature-aware 
P&R achieves to reduce the percentage of silicon area that operates under high 
power/temperatures (hotspot regions), which is the main goal of our research, without 
impact on other critical design parameters, even though there is an increase in total 
wire-length. This occurs due to the better application partitioning, partition to layer 
assignment, placement and routing. 

The gains of employing the proposed temperature-aware P&R approach targeting 
3D FPGAs can be summarized as follows: (i) it spreads the power/temperature 
sources across the 3D FPGA in a way that it is more easy to dissipate heat, (ii) it 
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reduces the peak values of power/temperature sources leading to cheaper fabrication 
cost for cooling, (iii) it reduces the total energy consumption increasing among other 
the battery life and the system’s reliability, and (iv) it reduces significantly the 
percentage of silicon area that operates under high power/temperature consumption 
values (i.e. hotspot regions), which can be thought as a power/temperature 
management approach. 

6   Conclusions 

A novel temperature-aware P&R algorithm targeting to 3D FPGAs, as well as its 
software implementation at 3DPRO tool, was presented. This approach could also be 
used as a power management strategy, since it achieves to re-distribute the power 
budget over identical hardware resources in a way that the produced heat is easily to 
be dissipated. More specifically, the proposed P&R algorithm reduces about 63%, in 
average, the percentage of device area that operates under high temperature by 
appropriately controlling the switched capacitance. In addition to that, we achieve 
energy savings about 9% (in average), with an almost negligible penalty (ranging 
from 1% up to 5%) in application’s delay. 
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Abstract. Network-on-Chip (NoC) has emerged as a very promising
paradigm for designing scalable communication architecture for Systems-
on-Chips (SoCs). However, NoCs designed to fulfill the bandwidth re-
quirements between the cores of an SoC for a certain set of running
applications may be highly sub-optimal for another set of applications.
In this context, methods that can lead to versatility enhancements of
initial NoC designs to changing working conditions, imposed by variable
sets of executed real-life applications at each moment in time, are very
important for designing competitive NoCs in industrial SoCs.

In this work, we present a run-time reconfigurable NoC frame-
work based on the partial dynamic reconfiguration capabilities of
Field-Programmable Gate Arrays (FPGAs). This new NoC framework
can dynamically create/delete express lines between SoC components
(implementing dynamically circuit-switching channels) and perform
run-time NoC topology and routing-table reconfigurations to handle
interconnection congestion, with a very limited performance overhead.
Moreover, we show in our experimental results that the addition of
these dynamic reconfiguration capabilities into basic NoCs using our
framework only implies a very limited area overhead (around 10% on
average) with respect to the initial NoC designs; thus, it can bring great
benefits when compared to traditional non-reconfigurable NoC design
approaches for worst-case bandwidth requirements in SoCs with many
possible sets of running applications.
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1 Introduction and Problem Description

Latest applications ported to embedded systems (e.g., scalable video rendering,
communication protocols) demand a large computation power, while must re-
spect other critical embedded design constraints, such as, short time-to-market,
low energy consumption or reduced implementation size.

Thus, embedded systems are complex Systems-on-Chip (SoCs) that consist of
a large number of components, such as, processing elements, storage devices and
even reconfigurable devices, such as Field-Programmable Gate Arrays (FPGAs),
to enhance the flexibility of final SoCs to be used in different environments [5, 15].
Nevertheless, one of the most critical areas of MPSoC design is the definition
of the suitable interconnect subsystem for all these SoC components, due to
architectural and physical scalability concerns [3]. In fact, traditional shared bus
interconnects are relatively easy to design, but do not scale well for latest and
forthcoming SoC consumer platforms.

In order to cope with the large communication demands of such SoCs, the
use of modular and scalable Networks-on-Chips (NoCs) has been proposed [3].
Then, designing custom-tailored NoC interconnects that satisfy the performance
and design constraints of the SoC for all the different combinations of possible
executed applications is a key goal to achieve optimal commercial products [2,
13]. However, as general-purpose processor cores are used to run software tasks
of different applications in SoCs, the communication between the cores cannot
be precharacterized and fully optimized, since the application processes can be
mapped differently to the cores, typically with the support of the compiler. Thus,
to provide predictable performance of the NoC, the bandwidth capacity of the
different links must be sufficient to support the peak rate of traffic on the links
of the possible different mappings of the tasks onto the final SoC. Otherwise,
the network might experience traffic congestion and the latency for the traffic
streams and, hence, the interconnect performance will become unacceptable,
which needs to be avoided to provide appropriate consumer devices. As a result,
NoCs designs that guarantee worst-case bandwidth conditions of SoC operation
with multiple concurrent application often leads to over-sized topologies and
links on regular operation of the SoC. In this context, the development of new
methods and frameworks that increase the run-time versatility of initial static
NoC designs to adapt to different working conditions, originated by the diversity
of sets of applications at each moment, is an important research area in the NoC
domain.

In this paper we introduce a novel run-time reconfigurable NoC framework,
which exploits the partial dynamic reconfiguration capabilities of FPGAs to
adapt at run-time the implemented NoC interconnect to the specific working
requirements of the final SoC at each moment in time. In particular, the pro-
posed NoC framework is able to reduce the latency of interconnecting the in-
cluded SoC components by dynamically establishing or deleting a number of
dedicated point-to-point connections between them (or express lines in the NoC
literature [3]), which is particularly suited for video and audio streaming. Thus,
circuit-switching communication can be dynamically configured in the SoC. In
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addition, our framework enables a fast dynamic reconfiguration of routing tables
(few cycles) and overall NoC topologies (few milliseconds), which provides new
promising means to overcome congestion and consequently provide more reli-
able and high-performance NoC designs. Furthermore, our experimental results
show that the addition of the dynamic reconfiguration capabilities in basic NoCs
using our framework only involves limited area overheads (around 10% on av-
erage) with respect to initial NoC designs without reconfiguration capabilities.
Hence, the proposed reconfigurable NoC framework is viable to be considered in
commercial designs of SoCs.

It is possible to fully exploit the reconfigurable NoC proposed in this work
in order to establish dedicated (among 2 or more switches of the network) and
long (circuit-switching) communication channels among the cores of the recon-
figurable system. This can be really useful, for instance, in the case of audio and
video streaming that have to be dynamically carried out at run-time, without
the possibility to obtain detailed information at design time. In this case, in fact,
the proposed approach enables to dynamically reconfigure the communication
infrastructure accordingly to the need that arise at run-time, in order to meet
both latency and throughput requirements. This is possible since the reduction
of the number of hops between two switches directly decreases the latency be-
tween them and the introduction of a new express line in the topology directly
increases the overall throughput of the NoC.

The rest of the paper is organized as follows. In Section 2 we overview previ-
ous work in the field on reconfigurable NoCs. Then, in Section 3 we introduce
our reconfigurable NoC architecture, spanning from the included basic NoC ar-
chitecture to the additional components to enable the NoC Next, in Section 4 we
discuss the major reconfiguration capabilities and methods to implement them in
the proposed adaptive NoC framework. Later, in Section 5 we present the area,
performance and latency evaluation of the reconfiguration capabilities of our
framework in a real implementation on a large commercial FPGA implementing
a multi-processor SoC. Finally, in Section 6 we draw the main conclusions of this
work.

2 State of the Art

In recent years, several works focused their attention into the definition of a
reconfigurable communication infrastructure for reconfigurable Systems-on-chip.
For instance, in [11] the authors present a methodology for developing dynamic
network reconfiguration processes, but they define a reconfiguration just as the
change from one routing function to another while the network is up and running.
For this reason they present a theoretical work based on the limiting assumption
(not valid in the approach presented in this paper) that the network topology
can be considered fixed (like in [7]).

The work presented in [6] describes an integrated modeling, simulation and
implementation tool for reconfigurable NoCs. The work is based on the optimiza-
tion of a single given application and no details are given about the reconfigurable
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architecture of the NoC and about reconfiguration mechanisms. In addition to
this, flow control is not supported and the proposed NoCs are quite expensive
in terms of area usage (2733 slices, around 30% of the total slices of a Xilinx
Virtex II Pro XC2VP20 device), for a 2x2 torus running at 85 MHz, while the
proposed approach, with a lower area usage, allows the creation of a 3x3 mesh
running at 170 MHz.

In [1], a dynamically reconfigurable NoC architecture is presented. This NoC
can be dynamically configured with respect to routing, switching and data packet
size, but all the required resources have to be allocated at design time, since
at run-time it is only possible to dynamically change a limited number of pa-
rameters. A similar approach can be found in [10], where the proposed NoC
can be configured at run-time, but only with respect to memories content, re-
sources addressing and control parameters, while topology, buffers size and port
connections have to be determined at design time.

In [9], a scalable dynamic NoC for dynamically reconfigurable FPGAs
(CuNoC) is presented. The main idea behind CuNoC approach is to fill the
whole reconfigurable devices with very small communication units called CUs,
that can establish a communication channel between two different cores. The
main drawback of this approach is, in addition to the huge power consumption,
the high latency for each communication. In fact, the number of hops required
for a communication is very high on average, as each packet has to pass through
a high number of CUs (each one having a latency of 2 clock cycles), since it is
not possible neither to define a custom topology nor to configure express lines
between CUs. Furthermore, if an obstacle is present between two cores that need
to communicate, it is necessary to go around it, which increases the number of
hops of each packet.

In [14] the authors present CoNoChi, that is an adaptable NoC for dynami-
cally reconfigurable hardware design. The reconfigurable device is divided in a
matrix, and each cell of this matrix can hold either a computational module or a
communication element (a switch or point-to-point interconnect). Since it is not
possible to pass through a computational module, each communication channel
has to go around all the computational elements placed on the reconfigurable
device; thus, express lines cannot be configured at run-time. In addition to this,
the area requirement for a single switch is very high, as it varies from 463 to 493
slices (around 5% of a XC2VP20 device). Then, the working frequency is quite
low (it ranges from 66 to 73 MHz) and the actual latency of each switch is 5
clock cycles, which can be a significant penalty for interconnection mechanisms
nowadays.

3 The Proposed Reconfigurable Architecture

3.1 Reconfiguration Support

In order to configure an FPGA with the desired functionality, we need to use
one or more bitstreams. A bitstream is a binary file in which configuration in-
formation for a particular Xilinx device is stored, that is where all the data to
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Fig. 1. Configuration memory setup

be copied on to the configuration SRAM cells, the configuration memory, are
stored, along with the proper commands for controlling the chip functionalities.
Therefore Virtex devices, such as Virtex II Pro and Virtex 4, are configured by
loading application specific data into their configuration memory, as shown in
Figure 1. On the Virtex FPGAs the configuration memory is segmented into
frames. Virtex devices are partially reconfigurable and a frame is the smallest
unit of reconfiguration. According to the device, this element can span the en-
tire length of the FPGA, such as in the Virtex II Pro context, or just part of
it, as in Virtex 4 devices. The number of frames and the bits per frame are
specific for each device family. The number of frames is proportional to CLB
width. Bitstreams can be either partial or full. A full bitstream configures the
whole configuration memory and is used for static design or at the beginning of
the execution of a dynamic reconfiguration system, to define the initial state of
SRAM cells. Partial bitstreams configure only a portion of the device and are
one of the end products of any partial reconfiguration flow.

FPGAs provide different means for configuration, under the form of different
interfaces to the configuration logic on the chip. There are several modes and
interfaces to configure a specific FPGA family, among them the the IEEE 1149.1
Joint Test Action Group (JTAG) download cable (the one used in this work), the
SelectMAP interface, for daisy-chaining the configuration process of multiple FP-
GAs, configuration loading from PROMs or compact flash cards, microcontroller-
based configuration, an Internal Configuration Access Port (ICAP) and so on,
depending on the specific family. The ICAP provides an interface which can be
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used by internal logic to reconfigure and read back the configuration memory.
In every FPGA a configuration logic is built on the chip, with the purpose of
implementing the different interfaces for exchanging configuration data and to
interpret the bitstream to configure the device. A set of configuration registers
defines the state of this configuration logic at a given moment in time. Con-
figuration registers are the memory where the bitstream file has direct access.
Actual configuration data is first written by the bitstream into these registers
and then copied by the configuration logic on the configuration SRAMs.

3.2 Architecture Description

As previously hinted, the communication infrastructure of the proposed architec-
ture is based on the NoC paradigm. Furthermore, in order to exploit a 2-layered
approach, in which the computational layer is completely decoupled from the
communication layer, the proposed reconfigurable architecture mainly consists
of two different parts: a static part and a reconfigurable part.

The static part consists of all the computational elements and the network
interfaces. On the one hand, computational elements can be further divided into
two categories. The first one consists of masters, that are the active components
of the system, such as microprocessors (either a soft-core, as a MicroBlaze, or
a hard-core as a PowerPC), that can initialize new transactions on the network
(deployed in the communication layer); these components are connected to the
communication infrastructure through NI initiators (see Figure 2). The second
one consists of slaves, such as memories, that represent the components that act
in a passive mode, by receiving and answering transaction coming from active
elements; these components are connected to the communication infrastructure
through NI targets (see Figure 2).

The static part consists of all the computational elements and the network
interfaces. Computational elements can be further divided into masters (that are
the active components of the system, such as microprocessors, that can initialize
new transactions on the network and that are connected to the communication
infrastructure through NI initiators, as shown in Figure 2) and slaves (such as
memories, that represent the components that act in a passive mode, by receiving
and answering transaction coming from active elements, and that are connected
to the communication infrastructure through NI targets, as shown in Figure 2).

The reconfigurable part is composed by all the reconfigurable elements, used
to adapt at run-time the structure of the system implemented on the FPGA. These
elements can be either computational components or elements used to update the
communication infrastructure. Network interfaces toward the communication in-
frastructure can implement bridges between On-chip Peripheral Bus (OPB), Pro-
cessor Local Bus (PLB) or Open Core Protocol (OCP) and the network protocol,
as shown in Figure 2. The only part of network interfaces (both initiator and tar-
get network interfaces) that has to be modified at run-time are routing tables,
that are used to dynamically change the routing of packets on the network. Thus,
all the network interfaces have been placed into the static part of the system and
routing tables have been deployed on BRAM blocks. In this way it is possible to
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Fig. 2. Interfaces between static and reconfigurable parts

dynamically modify routing tables by changing the content of BRAM blocks at
run-time, as described in Section 4.1.

This architectural solution enables connecting the static parts to the reconfig-
urable ones by using network interfaces that are considerably thinner of the ones
used within the static part of the system. Regarding this static part, the used
interconnect can be either OPB and PLB buses, or on an ad-hoc point-to-point
communication infrastructure, as shown in Figure 2.

4 Reconfiguration Features

Each reconfigurable part of the system can be dynamically reconfigured at run-
time to modify either a part or the whole underlying communication infras-
tructure. This reconfiguration can be done by the reconfiguration controller (see
Figure 3), which is a master component present on the static part, trough partial
reconfiguration operations.

The reconfiguration controller is connected both to the external dynamic
memory (DDR) interface and to the ICAP interface through the OPB bus. The
DDR memory is used to store partial bitstreams that can be used to reconfigure
at run-time the reconfigurable device. In order to perform a reconfiguration pro-
cess, the reconfiguration controller has to read the desired bitstream from the
memory and to pass it to the ICAP interface, connected to the ICAP component,
that will take care of the physical reconfiguration process. The reconfiguration
controller is aware of both the current configuration of the reconfigurable NoC
(routing tables, topology and express lines) and the current communication re-
quirements, such as the cores that have to communicate and the required band-
width and latency. In this way, the controller is able to adapt the underlying
communication infrastructure in order to satisfy communication requirements,
even when they vary at run-time.

As previously hinted, the proposed reconfigurable NoC can be dynamically
adapted to the current operating scenario by modifying network interfaces
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routing tables at run-time, as described in Section 4.1. Furthermore, a dynamic
change into the proposed reconfigurable NoC can also involve either the con-
nection among switches (by inserting or removing express lines) or the whole
topology, as described in Section 4.2.

4.1 Path Reconfiguration

Storing routing tables in BRAM blocks allows to dynamically change them at
run-time in two different ways. The first solution is to write the new routing table
with a simple write operation on the selected BRAM block. This write operation
can be performed by the reconfiguration controller, that has to manage both the
physical reconfiguration and the modification of BRAMs content, since routing
tables have to be always consistent with respect to the current topology of the
network. Using the reconfiguration controller for writing on BRAM blocks makes
it necessary to directly connect it to each BRAM block, increasing the complexity
and the area usage of the reconfigurable system.

A second solution consists of performing a partial dynamic reconfiguration of
BRAM blocks, as described in [12]. This reconfiguration has to be performed by
the reconfiguration controller, but in this case there is no need to directly connect
it to each BRAM block, since these elements are updated by the controller using
the configuration memory; thus, no area overhead is introduced. Performing
this kind of reconfiguration enables dynamically changing BRAM blocks content
(routing tables), in order to change the functionality of the network interfaces
at run-time, while leaving unaltered all the logic implementing the functionality
of the system; this allows a complete decoupling between routing tables and the
logic that implements both the static and the reconfigurable components. The
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main drawback of this solution is the increment of the time overhead of the
network reconfigurations, as stated in Section 5.

4.2 Express Lines and Topology Reconfiguration

In order to exploit express lines reconfiguration, it is necessary to define a recon-
figurable architecture that consists of several reconfigurable parts, in which it is
possible to deploy the switches of the NoC. This can be done by means of the
Early Access Partial Reconfiguration design flow [8] defined by Xilinx. This flow
allows to implement a reconfigurable architecture containing an arbitrary set of
reconfigurable regions (which shape is a rectangle spanning the whole height of
the reconfigurable device, for FPGA of Virtex, Virtex II and Virtex II Pro fam-
ilies, or an arbitrary rectangle for FPGA of Virtex IV and Virtex V families).
Both the static architecture and each reconfigurable module, which need to be
placed in a single reconfigurable region, can be configured on the target device
by using a specific bitstream, namely, a complete bitstream for the static part
and a partial bitstreams for the reconfigurable modules. All the bitstreams gen-
erated by this flow are the ones used by the previously described reconfiguration
controller to change the current configuration of the system; in other words, the
reconfiguration controller is able to select a partial bitstream to be configured
on the device in order to change the underlying communication infrastructure.
In particular, if an express line has to be placed between to switches that belong
to the same reconfigurable region, the reconfiguration controller has to configure
a new version of the reconfigurable region in which the two switches are directly
connected (through a new connection). A similar procedure can be applied to
completely change the topology of the NoC. In this case, a deeper modification
of the selected reconfigurable part is needed, in order to make it possible to
change the number and the kind of the switches of the same reconfigurable part
(and thus of the whole NoC).

The number of express lines that can be established between two reconfig-
urable regions has to be decided at design-time, since each bus-macro (which
enables to establish a single reliable communication channel among different
regions) has to be placed during the place and route phase of the architecture.
Furthermore, the maximum number of express lines, which is always in the order
of tens for FPGA of Virtex II, Virtex II Pro, Virtex IV and Virtex V families, is
limited by the amount of available resources along the edge among reconfigurable
and static regions; hence, it strictly depends both on the target reconfigurable
device and on the shape of each reconfigurable or static region.

5 Experimental Results

This section presents a set of experimental results that validate the performance
of the proposed reconfigurable architecture. These results have been achieved
by implementing the proposed reconfigurable architectures on a Xilinx Virtex II
Pro (XC2VP20) device. However, the same approach can be easily adapted to
another device, even in a different family, such as Virtex IV and Virtex V.
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5.1 Routing Tables Reconfiguration Analysis

Regarding routing tables reconfiguration, it can be performed in a few clock
cycles if it is performed with a simple write operation. In particular, if routing
tables reconfiguration is performed directly by the reconfiguration controller, the
latency of the reconfiguration is only 2 clock cycles (0.02 μs at 100 MHz). On the
other hand, by performing a partial dynamic configuration of BRAMs, even if
both the area and the complexity overheads are not increased, the latency of the
reconfiguration is considerably higher (2.24 ms at 100 MHz). Table 1 summarizes
all the experimental results related to dynamic routing table reconfiguration.

Table 1. Routing tables reconfiguration experimental results

Reconfiguration Timing overhead Timing overhead Area Complexity
model (Clock cycles) (ms) @ 100 MHz overhead increment

Write operation
(reconfiguration controller) 2 0.00002 yes yes

Partial dynamic
reconfiguration of a
single BRAM block 224242 2.24 no no

5.2 Express Lines and Topology Reconfiguration Analysis

Even if express lines reconfiguration and topology reconfiguration can be
used in order to achieve different modifications of the underlying network, from
the timing overhead point of view, they are characterized by the same values, be-
cause the time required to reconfigure a reconfigurable region is exactly the same
in both cases. Since the reconfiguration on Xilinx Virtex II Pro devices can only
be performed with a 1D approach, the reconfiguration latency is directly related
to the width of the reconfigurable region that has to be reconfigured. For instance
the reconfiguration latency for a 4 slices width region, which can be filled with up
to two switches, is around 21 ms, while a 20 slices width region, which can include
up to ten switches, requires around 104 ms, as shown in Table 2,

In particular, regarding express lines reconfiguration, it can be exploited
both to reduce the traffic on a part of the NoC and to decrease the latency
between two switches. In order to better explain how it is possible to dynami-
cally configure express lines on the proposed reconfigurable architecture, let us
consider a simple 3x3 mesh network, similar to the one presented in Figure 4
(A). Without any express line, if the MicroBlaze 0 (MB 0) has to communicate
with Slave 4, 3 hops (a path to a destination on a network can be considered as
a series of hops, through switches) are necessary in order to go from Switch 0
(to which MB 0 is connected through an initiator network interface) to Switch 5
(to which Slave 4 is connected through a target network interface). To this end,
each packet has to pass, for instance, through Switch 1 and Switch 2, in order
to reach its final destination. In a similar way, the communication between PPC
0 and Slave 3 requires at least 2 hops (between Switch 6 and Switch 8), since
each packet has also to pass through Switch 7.
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Table 2. Express lines and topology reconfiguration results

Width of the Reconfiguration Bitstream
reconfigurable slot (slices) latency (ms) size (Kb)

4 21 32
6 30 46
8 41 62
10 52 78
12 63 94
14 75 112
16 80 120
18 93 140
20 104 156

In the proposed reconfigurable architecture, it is possible to configure a direct
connection between the port 3 of Switch 0 and the port 4 of Switch 5, and
another one between the port 4 of Switch 6 and the port 3 of Switch 8. In
this way, in addition to considerably reduce the congestion of Switches 1, 2 and
7, each communication between MB 0 and Slave 4 or PPC 0 and Slave 3 can
be achieved with a single hop (from Switch 0 to Switch 4 and from Switch 6
and Switch 8), thus notably reducing the latency between these elements. The
number of express lines that have to cross static parts has to be defined at design
time (since the involved static parts have to be aware of them), while the number
of express lines that lies within a single reconfigurable region only depends on
the available resources of the selected region.

Since communication among the elements of the system can change at run-
time in a non-predictable way, it is possible that the system reaches a status
(for instance when the applications running on MB 0 and on PPC 0 change) in
which MB 0 has to communicate with Slave 3 and PPC 0 has to communicate
with Slave 4. With the configuration of Figure 4 (A), each master can reach the
desired slave, by using both express lines, with 2 hops (from Switch 0 to Switch 8
and from Switch 6 to Switch 5). However, a problem that can arise is that these
two paths share the link between the port 1 of Switch 5 and the port 2 of Switch
8, thus leading to a contention of the same resource. A possible solution is the
partial dynamic reconfiguration of the reconfigurable region number 2 (Reconfig-
urable 2 in Figure 4), in order to achieve the configuration of the system shown
in Figure 5, which can be achieved by adapting the routing tables according to
the new configuration of the system, as described in Section 4.1). In this way,
not only the congestion of the link between Switch 5 and Switch 8 is completely
resolved, but also the latency of the two communication paths decreases to a
single hop, i.e., providing a circuit-based switching connection. Table 3 presents
a comparison among the latency introduced by the NoC of Figure 4, the NoC of
Figure 5 and a NoC in which express lines are not taken into account.

An important consideration is that, while the partial reconfiguration of the
reconfigurable region 2 is performed, the communication among other parts of
the system does not need to be interrupted, as long as it does not affect the
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Fig. 5. Complete reconfigurable system schema, with an express line between Switch
0 and Switch 8 and another one between Switch 6 and Switch 5

region that is reconfigured. For instance, if MB 1 has to communicate with Slave
0 or Slave 1, this communication can take place even during the reconfiguration
of the reconfigurable region 2.

The physical implementation of the previously presented architecture is shown
in Figure 6, where A indicates the static part, while B, C and D represent the
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Table 3. Latency introduced by the NoC

Source Target Figure 4 Figure 5 Mesh without express lines
(number of hops) (number of hops) (number of hops)

MB 0 Slave 0 2 2 2
MB 0 Slave 1 2 2 2
MB 0 Slave 2 3 3 3
MB 0 Slave 3 3 2 5
MB 0 Slave 4 2 3 4
PPC 0 Slave 0 2 2 2
PPC 0 Slave 1 4 4 4
PPC 0 Slave 2 1 1 1
PPC 0 Slave 3 2 3 3
PPC 0 Slave 4 3 2 4

Fig. 6. Physical implementation of the reconfigurable 3x3 mesh

three reconfigurable regions (which width is, respectively, 16, 20, and 14 slices -
the 18%, 22% and 16% of a XC2VP20 device). All the reconfigurable regions have
been filled with three switches each one, in order to implement the previously
presented 3x3 mesh.

Table 4 shows the experimental results regarding area usage and reconfigura-
tion latency of the proposed architecture on a XC2VP20 device. The bus-macro
overhead consists of 288 slices, while the complete 3x3 mesh requires 2237 slices.
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Table 4. Area usage and reconfiguration latency results

Area usage Area Reconfiguration
(slices) usage (%) latency (ms)

Reconfigurable
region B 800 8.6 80

Reconfigurable
region C 637 6.9 104

Reconfigurable
region D 800 8.6 75
Complete
3x3 mesh 2237 24.1 259
Bus-macro
overhead 288 3.1
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Fig. 7. Alteration of the original mesh topology through the reconfiguration of the
original reconfigurable slot 0 (Reconfigurable 0) (A) with two different versions of the
subnetwork (B and C)

Thus, the overhead introduced by the proposed approach represents the 10% (on
average) of the initial NoC.

Furthermore, it is possible to configure at least two express lines in the im-
plemented architecture, and since each express line of the presented design has
a latency lower than 4 ns, it is possible to exploit each direct connection within
a single clock cycle at 100 MHz (while the latency required by the connection
passing through Switch 1, Switch 2 and Switch 5 is greater then 40 ns, i.e., 4
clock cycles).

On the other hand, a topology reconfiguration can be exploited on the
same architecture in order to adopt a specific NoC for each application that
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Fig. 9. Topology of the static NoC

has to be run on the system. In order to completely change the topology of
the Network-On-Chip, a deeper modification of the selected reconfigurable part
is needed, since both the number and the kind of the switches of the same
reconfigurable part can be changed. As an example, let us consider that MB
0 has to communicate with both Slave 0 and Slave 2 with the lowest latency
possible. In order to satisfy this strict requirement, it is necessary to change the
original topology of the network, by altering the mesh (in particular, the original
reconfigurable slot number 0 shown in Figure 7 A) as shown in Figure 7 B. In
the reconfigurable module shown in Figure 7 B, in fact, MB 0, Slave 0 and Slave
2 are all connected to Switch 0, in order to make it possible for MB 0 to reach
Slave 0 and Slave 2 without any hop.

Another case in which a reconfiguration of the topology can lead to meet com-
munication requirements is, for instance, when both MB 0 has to communicate
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Table 5. Specific NoCs experimental results

NoC Number Average latency Average power
of switches (clock cycles) consumption (mW)

Static NoC 6 5.96 278.021
NoC 1 4 3.9 211.789
NoC 2 4 4 204.308
NoC 3 4 4.07 216.519

Fig. 10. Topology of the NoC 2

with Slave 2 and MB 1 has to communicate with Slave 0 with the lowest latency
possible. In this case, the reconfigurable module shown in Figure 7 C can be
configured in the reconfigurable slot number 0 (Reconfigurable 0), in order to
connect both MB 0 and Slave 2 to Switch 0, and MB1 and Slave 0 to Switch
6. Thanks to this reconfiguration of the topology it is possible to establish both
the required communication channels without any overhead in terms of hops
between switches, since all the components that has to communicate between
them have been connected to the same switch.

We have validated the proposed approach with three different versions of
real-life SoC benchmarks, namely, a video processing application of 32 cores
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Table 6. Area overhead, timing performance and features comparison among state of
the art solutions and the proposed approach

Approach CuNoC CoNoChi Proposed
([9]) ([14]) work

Switch size (slices) from 72 to 491 from 363 to 493 from 86 to 267
Communication All the
infrastructure available 2727 for
size (slices) resources NA a 3x3 mesh

Frequency (MHz) from 272 to 336 from 66 to 111 170
Single switch

latency (clock cycles) 2 5 1
Single switch
latency (ns) from 6 to 7.4 from 45 to 76 5.9
Flow control NA NA Supported

Path
reconfiguration Not supported NA Supported
Express lines

reconfiguration Not supported Not supported Supported
Topology

reconfiguration Not supported Supported Supported

(A), a Video Object Plane Decoder of 34 cores (B) and an image processing
application of 23 cores (C). We refer the readers to [4] for the communication
characteristics of these benchmarks. As shown in Figure 8, if these different
applications have to deployed on the same system, it is possible to employ either a
static network or three specific NoCs, each one designed ad-hoc for the particular
application. The second choice can be adopted if the time interval that occurs
between two consecutive applications is greater than the time overhead required
by the reconfiguration process; thus, it is possible to transparently change the
underlying NoC.

In order to test the application of our dynamically reconfigurable framework
in this context, we have developed a static NoC and three specific ones for
each of the three aforementioned SoC benchmarks application. As shown in
Figure 9, the static NoC consists of 6 switches (1 switch of 8x8, 2 switches of
9x9, 2 switches 10x10 and 1 switch of 11x11), whileboth NoC 1 (for application
A) and NoC 3 (for application C) consists of 4 switches (3 switches of 10x10
and 1 switch of 11x11) and NoC 2 (for application B) consists of 4 switches
(1 switch of 10x9, 2 switches of 10x10 and 1 switch of 10x11), as shown in
Figure 10. The static NoC option, as shown in Table 5, is characterized by a
higher area usage, a higher average power consumption (evaluated as proposed
in [2]) and a higher average latency, with respect to the three ad-hoc NoCs
specifically designed for each application. Using the specific NoCs, it can be
reported reductions of 34% in latency and 24% in power consumption. Finally,
the overall latency for the reconfiguration of the NoC to be used at run-time is
very limited, making it applicable in real-life scenarios where applications are
switched dynamically by users.
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As previously hinted, the reconfiguration latency of a reconfigurable region
strictly depends on its size. For instance, the reconfiguration latency for a 4
slices width region (that can be filled with up to two switches) is around 21 ms,
while a 20 slices width region (that can be filled with up to ten switches) requires
around 104 ms.

Finally, Table 6 presents a comparison among state-of-the-art solutions and
our approach, which shows the clear benefits of our approach regarding area
overhead reduction, timing performance improvements and enhancements of the
reconfiguration features.

6 Conclusions

NoCs have been proposed as a very promising scalable communication paradigm
SoCs. However, methods that provide versatility enhancements of initial NoC
designs to changing working conditions, imposed by variable sets of executed
applications at run-time, are key to design competitive NoCs in industrial SoCs.
In this work we have presented a novel NoC reconfigurable framework that can
reconfigure the NoC topology at run-time, as well as enabling path reconfig-
uration and express lines creation/removal, while introducing an overhead on
average of 10% of an initial static NoC design. Moreover, our experimental re-
sults have shown that in the proposed framework, on average, a reconfigurable
switch only occupies 41% of the slices needed by a CoNoChi switch, the state-of-
the-art reconfigurable NoC approach, whereas our reconfigurable NoC can run at
almost double the frequency (170 MHz vs. 88.5 MHz) of CoNoChi. Finally, our
approach introduces less than one tenth of the latency introduced by a CoNochi
switch (respectively, 5.9 ms and 60.5 ms). Thus, it is a promising framework to
be applied to commercial NoC-based SoC solutions.
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Abstract. A typical instruction memory design exploration process using simu-
lation tools for various cache parameters is a rather time-consuming process, 
even for low complexity applications. In order to design a power efficient 
memory hierarchy of an embedded system, a huge number of system simula-
tions are needed for all the different instruction memory hierarchies, because 
many cache memory parameters should be explored. Exhaustive search of de-
sign space using simulation is too slow procedure and needs hundreds of simu-
lations to find the optimal cache configuration. This chapter provides fast and 
accurate estimates of a multi-level instruction memory hierarchy. Using a detail 
methodology for estimating the number of instruction cache misses of the in-
struction cache levels and power models; we estimate within a reasonable time 
the power consumption among these hierarchies. In order to automate the esti-
mation procedure, a novel software tool named FICA implements the proposed 
methodology, which automatically estimates the total energy in instruction 
memory hierarchy and reports the optimal one. 

1   Introduction to Instruction Caches 

Cache memories have become a major factor to bridge the bottleneck between the 
relatively slow access time to main memory and the faster clock rate of today’s proc-
essors. The power consumed by the memory hierarchy of a micro-processor can con-
tribute to as much as 50% of the total microprocessor system power [1]. 

A cache is a small but fast memory and it is placed closer to the CPU. A cache 
block is the amount of data transferred between the main memory and the cache from 
any memory operation. A cache can also be divided into sets where each set contains 
N (usually N is 1,2,4,8 etc.) cache blocks. Fig. 1 classifies a cache on the basis of its 
contents and organization. For a direct mapped cache, each set contains only one 
cache block. For an n-way set associative cache each set contains n cache blocks. Fig. 
2 shows the implementation of a direct mapped cache. 
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Caches

Direct Mapped cache: each 
cache set contains only cache 
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Unified cache: stores both 
instructions and data
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Fig. 1. Caches are classified on the basis of their content and organization 

Each cache block includes a tag to show which memory location is present in this 
block, a data field holding the contents of that memory location, and a valid tag to 
show whether the contents of this cache block is valid or not. An address (referenced 
location) is divided into three sections. The index is used to select which cache block 
to check. The tag is compared against to the tag value in the line selected by the in-
dex. If the address tag matches the tag value in the block, that block contains the de-
sired memory location. If the tag does not match the tag value in the block, then it is a 
cache miss. If the length of the data field is longer than the minimum addressable unit, 
then the least significant bits of the address are used as an offset to select the required 
value from the data field. 

Nowadays the programmable systems usually contain one or two levels of caches, 
in order to reduce the main memory transfer delay and the power consumption. Tun-
ing cache parameters to the needs of a particular application can save energy. Every 
application has different cache requirements that cannot be efficiently satisfied with 
one predetermined cache configuration. A single-level cache may have dozens of dif-
ferent cache configurations, and interdependent multi-level caches lead to thousands 
of different cache configurations. The simulation of cache memories is common prac-
tice to determine the best configuration of caches during the design of computer archi-
tectures. It has also been used to evaluate compiler optimizations with respect to 
cache performance. Exhaustively searching the design space is a too slow procedure, 
even if it would be fully automatic. 

Unfortunately, the cache analysis of a program can increase significantly the pro-
gram’s execution time frequently by two orders of a magnitude. Thus, cache simula-
tion has been limited to the analysis of programs with a small or moderate execution 
time and still requires considerable experimentation time before yielding results. In 
reality programs often run for a long time, but cache simulation simply becomes un-
feasible with conventional methods. The huge time overhead of cache simulation is 
imposed by the necessity of tracking the execution order of instructions.  

No certain cache configuration would be efficient for all applications, seeing as 
every application has different cache requirements. Thus, finding the best cache con-
figuration for a particular application could save energy and time. But, to explore all 
possible cache configurations it is not so easy task it would not be a viable solution, 
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Fig. 2. Cache Memory Architecture 

due to the prolonged of exploration time involved. For instance, if we consider only 
variations in the parameters of one level cache such as cache size, block (line) size 
and associativity, an designspace of dozens of configurations [2] will be explored ed 
in order to find out the optimal one for a given application. In the case of multilevel 
memory hierarchies, for instance hat include a second level of cache, where both lev-
els have separated instruction and data caches, few hundreds of configurations have to 
be tested. 

Each instruction memory hierarchy has different energy consumption. The energy 
consumed in the instructions memories is directly-related to the memory architectures 
parameters (e.g., cache size, block size, associativity) and to the number of accesses 
to every memory hierarchy level. In order to design an efficient embedded system the 
total instruction memory energy consumption should be shrank. Defining the instruc-
tion memory and the instruction cache parameters, the total energy consumed by the 
instruction memory hierarchy can be computed. 

2   Simulation and Estimation Methods: Overview 

Adjusting the parameters of an application’s cache memory can save 60% of energy 
consumption, on average [2]. By tuning these parameters, the cache can be custom-
ized to a particular application. However, no single cache configuration would be ef-
fective for all applications. Thus, strategies to explore the cache parameters can be 
applied to customize the cache structure to a given application. The proposed tech-
niques can be classified into two categories. The techniques of the first category are 
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targeting to reduce the exploration search space, while the second one to reduce the 
miss rate estimation time for simulation of a certain cache hierarchy. 

In [3], an automated method for adjusting two-level cache memory hierarchy in 
order to reduce energy consumption in embedded applications was presented. The 
proposed method, two-level cache exploration heuristic considering TECH-CYCLES 
method, make a small search in the space of configurations of the two-level cache hi-
erarchy, analyzing the impact of each parameter in terms of energy and number of cy-
cles spent for a given application. 

Zhang and Vahid [2] presented a cache architecture that can find the optimal set of 
cache configurations for a given application. Such architecture would be very useful 
in prototyping platforms, eliminating the need for time-consuming simulations to find 
optimal cache configurations. Gordon et. al [4] presented an automated method for 
tuning two-level caches to embedded applications for reducing energy consumption. 
The method is applicable to both a simulation-based exploration environment and a 
hardware based system prototyping environment. Platune was introduced by Givargis 
and Vahid in [5], which is used to explore automatically the large configuration space 
of such a SoC platform. The power estimation techniques for processors, caches, 
memories, buses, and peripherals combined with the design space exploration algo-
rithm deployed by Platune, form a methodology for design of tuning frameworks for 
parameterized SOC platforms. 

The previously-referred methods are based on the instruction set simulator, which 
provides cycle accurate estimations, but from the other hand it is a very slow proce-
dure. Their main disadvantage is the huge needed time cost when we have to explore 
a large number of different instruction memory hierarchies.  

New techniques have been proposed to reduce the simulation time, which were 
presented in [6], [7], [8] and [9]. In particular, a technique called inline tracing can be 
used to generate the trace of addresses with much less overhead than trapping or 
simulation. Measurement instructions are inserted in the program to record the ad-
dresses that are referenced during the execution. Borg, Kessler, and Wall [6] modified 
some programs at link time to write addresses to a trace buffer, and these addresses 
were analyzed by a separate higher priority process. The time required to generate the 
trace of addresses was reduced by reserving five of the general purpose registers to 
avoid memory references in the trace generation code.  

Mueller and Whalley [7] provided a method for instruction cache analysis, which 
outperforms the conventional trace-driven methods. This method, named static cache 
simulation, analyzes a program for a given cache configuration and determines, prior 
to execution time, if an instruction reference will result in a cache hit or miss. The to-
tal number of cache hits and misses can be extracted from the frequency counters at 
program exit. In order to use this technique, the designer should make changes in the 
compiler of the processor, which are restricted most of the times, when we use  
commercial tools and compilers.  

A simulation-based methodology, focused on an approximate model of the cache 
and the multi-tasking reactive software, that allows one to trade off-smoothly between 
accuracy and simulation speed, has been proposed by Lajolo et. al. [8]. The method-
ology reduces the simulation time, taking into account the intra-task conflicts and 
considering only a finite number of previous task executions.  
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Nohl et. al [9] presented a simulation-based technique, which meets the require-
ments for both, the high simulation speed and maximum flexibility. This simulation 
technique, called just-in-time cache compiled simulation technique, can be utilized for 
architecture design, as well as for end-user software development. This technique is 
integrated into the retargetable LISA processor design platform [10]. 

A brief description of the simulation/estimation methods and techniques were 
available in [11]. In this chapter, a novel methodology aiming to find the optimal in-
struction cache memory hierarchy of the system in terms of the power consumption. 
High estimation accuracy can be achieved within an affordable estimation time cost. 
The high-level estimation decisions are very useful for a fast exploration among sev-
eral instruction cache configurations. The developed software tool based on the meth-
odology explores many instruction cache configurations considering multi-level cache 
memory hierarchy. The basic concept of the methodology is the straightforward rela-
tionship for specific characteristics between the high-level application description 
code and its corresponding assembly code. The developed tool achieves speedup or-
ders of magnitude in the miss rate and power consumption estimation and time cost 
comparing to existing methods, while the estimation accuracy is higher than 90%. 
The experimental results show the efficiency of the proposed methodology and the es-
timation tool in terms of accuracy and the exploration time for a system consisting by 
one or two levels of instruction cache. 

3   Instruction Cache Miss Rate Estimation 

The power consumption of the instruction memory hierarchy depends on the number 
of accesses to each memory level. The crucial point is to estimate the number of ac-
cesses to each cache level and to find the miss rate of each level as well as the total 
number of executed instructions. A miss rate estimation methodology based on the 
correlation between the high-level description code (e.g. C) of the application and its 
associated assembly code was proposed in [12]. In particular, the methodology is 
based on a set of analytical equations which calculate the number of cache misses of a 
loop proposed by Liveris et.al. [13]. Using the compiler of the chosen processor, the 
assembly code of the application can be derived. The crucial point of the methodol-
ogy is that the number of conditional branches in both the C code and its assembly 
code is equal. Thus, executing the C code we can find the number of passes from 
every branch. The values correspond to the assembly code, and thus we can find how 
many times each assembly branch instruction is executed. Creating the Control Flow 
Graph (CFG) of the assembly code, the number of executions of all application’s as-
sembly instructions can be calculated. The miss rate estimation is accomplished by 
the assembly code processing procedure and the data extracted from the application 
execution. Thus, the estimation time depends on the code (assembly and C) process-
ing time and the application execution time in a general-purpose processor. The total 
estimation time cost is much smaller than that obtained by the trace-driven simulation 
techniques. 

A cache read miss from an instruction cache generally causes increased delay, be-
cause the processor has to wait (stall) until the instruction is fetched from main  
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memory. Cache misses can be classified into three categories the compulsory, the  
capacity and the conflict misses as following: 

• Compulsory misses are those misses caused by the first reference to a datum. 
Cache size and associativity make no difference to the number of compulsory 
misses. Compulsory misses are sometimes referred to as cold misses. 

• Capacity misses are those misses that occur regardless of associativity or block 
size, solely due to the finite size of the cache. The curve of capacity miss rate ver-
sus cache size gives some measure of the temporal locality of a particular reference 
stream. 

• Conflict misses are those misses that could have been avoided, had the cache not 
evicted an entry earlier. Conflict misses can be further broken down into mapping 
misses, that are unavoidable given a particular amount of associativity, and replace-
ment misses, which are due to the particular victim choice of the replacement policy. 

In order to model the number of cache misses of a nested loop, analytical formulas 
have been proposed in [13]. Given the cache size (cache parameters), these analytical 
formulas can estimate the number of cache misses. The explanation of these formulas 
is presented in [13]. Here, we provide only the necessary information regarding with 
the high-level estimation formulas. Assuming a specific cache, in order to estimate 
the misses of an application, we split an application into a number of nested loops. 
For every loop the misses are estimated individually.  

Depending on the loop size mapped to the cache size, the assumed loops are cate-
gorized in three different types: Loop Type 1, Loop Type 2 and Loop Type 3, each of 
which the capacity misses, in number of blocks, is shown in Fig. 3.  

Given a nested loop with N iterations and a total size of instructions in assembly 
code, L_s, a cache memory with size, C_s, (in instructions), and a block size, B_s, 
(cache line length), the number of misses, N_misses, can be calculated by using the 
following formulas [13]: 

Loop Type 1: if  sCsL __ ≤  then: 

sB

sL
missesNum

_

_
_ =  (1) 

Loop Type 2: if  sCsLsC _2__ ×<<  then:  

( )
sB

sCsL
N

sB

sL
missesNum

_

_mod_
21

_

_
_ ××−+=  (2) 

Loop Type 3: if  sLsC __2 ≤×  then: 

sB

sL
NmissesNum

_

_
_ ×=  (3) 

The miss rate is given by the formula: 

  
referencesNum

missesNum
rateMiss

_

_
_ =  (4) 
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Loop Type 2 : C_s < L_s < 2*C_s
L_s  = 6 blocks

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

BLOCK 5

C_s = 4 blocks

BLOCK 1 / 5

BLOCK 2

BLOCK 3

BLOCK 4

2 Capacity Misses / 

Loop Iteration

Loop Type 1 : L_s < C_s

L_s = 3 blocks C_s = 4 blocks

No Capacity Misses

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 1

BLOCK 2

BLOCK 3

L_s  = 9 blocks  C_s= 4 blocks

Loop Type 3 : L_s > 2*C_s

9 Capacity Misses / 

Loop Iteration

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

BLOCK 5

BLOCK 6

BLOCK 7

BLOCK 8

BLOCK 9

BLOCK 1 / 5 / 9

BLOCK 2 / 6

BLOCK 3 / 7

BLOCK 4 / 8

 

Fig. 3. Depending on the loop’s size compared to cache size, the nested loops are classified into 
three categories 

where Num_references is the number of memory references from the processor to 
memory with 

N
sB

sL
referencesNum ×=

_

_
_  (5) 

The proposed methodology consists of four stages illustrated in Fig. 4. The first stage 
aims at the calculation of the number of executions (passes) of all branches of the ap-
plication C code. Thus, the number of executions of every leaf of the Control Flow 
Graph (CFG) is evaluated by the application execution. Determining the branches of 
the high-level application code, we can find the number of executions within these 
branches executing the code. This stage is a platform-independent process and thus, 
its results can be used in any programmable platform. 

The second stage estimates the number of executions of each instruction and even-
tually, the total number of the executed instructions. Given the assembly code of the 
application, the second step creates the CFG of the application and associates the 
number of executions executed from the first stage. It consists of: (i) the determina-
tion of assembly code branches, (ii) the creation of CFG, (iii) the assignment of 
counter values to CFG nodes and (iv) the calculation of the execution cost of the rest 
CFG nodes. 

The third stage of the methodology is platform-dependent and contains two steps: 
(i) the creation of all the unique execution paths of each loop and (ii) the computation 
of number of instructions and iterations associated with a unique path. Exploring all 
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Fig. 4. The proposed methodology for estimating the miss rate and the power consumption of a 
multi-level instruction memory cache hierarchy 

the paths of the CFG of an application, we determine the loops and the size (in num-
bers of instructions), as well as the number of executions of each loop. Furthermore, 
from the rest of the conditional branches (if / else), we create all the unique execution 
paths inside every loop, together with the number of executions of each unique path. 
Comparing the size in terms of number of instruction of every unique path with the 
instruction cache size the number of cache misses is estimated. The number of cache 
misses can be computed all together for variable cache sizes and architectures and 
multi-level memories, by a single run of FICA tool. This is one of the advantages of 
the methodology. The fourth stage contains the power model of the instruction cache 
and the memory, which is described in the next paragraph. 
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4   Instruction Memory Power Consumption 

An architecture exploration among the variable instruction cache configurations is 
needed in order to find the optimal memory hierarchy in terms of power consumption. 
The power consumption of the memory depends on their characteristics (type, size 
etc.) and number of accesses. Power consumption models are estimates of the energy 
consumed by a cache per memory access [14] [15]. Cacti 4.0 power model [14] was 
developed to estimate the power consumption of on-chip cache memories. Given the 
basic cache parameters such as size, block size, associativity and design technology, it 
estimates the energy consumption per access (read and write) to this cache memory. 
The power model proposed by Micron [15] is targeting to the estimation of off-chip 
SDRAM and DDR memories based on memory parameters. Such, the most important 
parameter to estimate the power consumption on a memory is the number of accesses. 
Based on the cache miss ratio estimation of the third stage, analytical questions define 
the number of accesses of every cache memory. The last step of the fourth stage as-
signs the energy consumption per access to every cache level and computes the appli-
cation’s energy consumption of every level. Summing up the energy of each level, the 
total consumed energy of the instruction memory hierarchy is estimated. 

Power models for the memory hierarchy are needed to find the optimal instruction 
memory hierarchy. Using the number of accesses (read/write) of each cache level, 
which are computed in the third stage and memory power models, the tool automati-
cally estimates the total energy consumed in instruction hierarchy. The number of in-
struction cache levels varies from one to n, but typical embedded system contains 
usually one or two. The developed software tool with one run estimates all the cache 
miss rates and the energy consumed on them, architectures which contains from one 
to n and for all cache parameters  and combination between the different caches. The 
tool reports the power consumption of every cache hierarchy and the designer can 
choose the optimal in terms of energy consumption. 

5   The Estimation Methodology Using an Example 

The proposed methodology is based on the correlation between the high-level descrip-
tion code (e.g. C) of the application and its corresponding assembly code. Using the 
compiler of the chosen processor, we can derive the assembly code of the application. 
Here, we are providing the proposed methodology using an example with a simple C 
code. The procedure of the four stages of the methodology of the sample C code are 
presented in detail in Fig. 5-6. The sample code contains one loop and a conditional 
branch into the loop, such there are two branches. The first stage detects (Stage 1, 
Step 1) the two branches and automatically inserts counters after every branch in C 
code (Stage 1, Step 2) and executing the C code (Stage 1, Step 3) we can find the 
number of executions of every branch (Stage 1, Output). The values of the counters 
provide the number of executions of every branch of the C code.  

The second stage has as input the equivalent assembly code of the application, and 
parsing the assembly code (Stage 2, Step 1), the Control Flow Graph (CFG) of the ap-
plication (Stage 2, Step 2) can be derived. Corresponding the values of the counters to 
the specific places in the CFG (Stage 2, Step 3), we can calculate how many times the 
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(a)

Results after code execution

Branch 1 : 

         Type : loop

         Counter 1: 10 executions

Branch 2 :

         Type : if 

        Counter 2: 3  executions

Output

Step 2 : Counter insertion
Step 3 : Code executions

 for(i=0;i<10;i++)
 {
  counter[1]++;
  if(i<3)
  {
   counter[2]++;
   a=a+i;
  }
  else
  {
   a=a-i;
  }
 }

Counter Insertion

Step 1 : Pinpoint the 
code branches

 for(i=0;i<10;i++)
 {
  if(i<3)
   a=a+i;
  else
   a=a-i;
 }

Input: C code
Branch 1

Branch 2

1
s

t  S
ta

g
e

(b)

Output : Number of executed instructions
Step 4 : Computation of # 
executions of every instruction

Step 1 : Pinpoint the 
assembly code branches

$L2:
   lw $2,16($fp)
   slt $3,$2,10
   bne $3,$0,$L5
   j $L1
$L5:
   lw $2,16($fp)
   slt $3,$2,3
   beq $3,$0,$L6
   lw $2,20($fp)
   lw $3,16($fp)
   addu$2,$2,$3
   sw $2,20($fp)
   j $L4
$L6:
   lw $2,20($fp)
   lw $3,16($fp)
   subu$2,$2,$3
   sw $2,20($fp)
$L4:
   lw $3,16($fp)
   addu$2,$3,1
   move$3,$2
   sw $3,16($fp)
   j $L2
$L1:

Assembly
Code

Branch 2

Branch 1

Step 2 : Create the Control Flow Graph
Step 3 : Associate counter values with 
the execution tree nodes

2
n

d
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ta
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e

Total Executed Instructions : 161

11
11
11
 1

10
10
10
 7
 7
 7
 7
 7

 3
 3
 3
 3

10
10
10
10
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# executions

BEGIN

END

1 pass

Node 1

Node 2 10
Node 3

3
Node 4

Node 5

Node 6

Branch 1

Branch 2

BEGIN

END

1 pass

11
Node 1

1
Node 2 10

Node 3

7 3
Node 4

Node 5

10
Node 6

Branch 1

Branch 2

$L2:
   lw $2,16($fp)
   slt $3,$2,10
   bne $3,$0,$L5
   j $L1
$L5:
   lw $2,16($fp)
   slt $3,$2,3
   beq $3,$0,$L6
   lw $2,20($fp)
   lw $3,16($fp)
   addu$2,$2,$3
   sw $2,20($fp)
   j $L4
$L6:
   lw $2,20($fp)
   lw $3,16($fp)
   subu$2,$2,$3
   sw $2,20($fp)
$L4:
   lw $3,16($fp)
   addu$2,$3,1
   move$3,$2
   sw $3,16($fp)
   j $L2
$L1:

 

Fig. 5. First and second stage of the estimation methodology 
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/* Instruction Memory Hierarchy Energy Consumption */

for (each cache_size and parameters of L1)

{

    /* Energy model per Read/Write Access of L1 */

    create cache power model for L1 using CACTI 

    E_readL1 and E_writeL1 calculation 

    EL1 = #instructions * (E_readL1 +  Miss_RateL1 * E_writeL1)

    for (each cache_size and parameters of L2)

    {

         /* Energy model per Read/Write Access of L2 */

         create cache power model for L2 using CACTI

         E_readL2 and E_writeL2 calculation

         EL2 = #instructions * Miss_RateL1 * (E_readL2 +  Miss_RateL2 * E_writeL2)

         EMM =  #instructions * Miss_RateL1 * Miss_RateL2 * E_readMM

    }

}

Step 1 : Extract all the unique 
execution paths of assembly code 
loops.

3

11

10

10

1
st

 unique path

3 iterations

$L2:
  lw   $2,16($fp)
  slt  $3,$2,10
  bne  $3,$0,$L5
$L5:
  lw   $2,16($fp)
  slt  $3,$2,3
  beq  $3,$0,$L6
$L6:
  lw   $2,20($fp)
  lw   $3,16($fp)
  subu $2,$2,$3
  sw   $2,20($fp)
$L4:
  lw   $3,16($fp)
  addu $2,$3,1
  move $3,$2
  sw   $3,16($fp)
  j    $L2
$L1:

2
nd

 unique path

7 iterations

11

10

7

10

$L2:
  lw   $2,16($fp)
  slt  $3,$2,10
  bne  $3,$0,$L5
$L5:
  lw   $2,16($fp)
  slt  $3,$2,3
  beq  $3,$0,$L6
  lw   $2,20($fp)
  lw   $3,16($fp)
  addu $2,$2,$3
  sw   $2,20($fp)
  j    $L4

$L4:
  lw   $3,16($fp)
  addu $2,$3,1
  move $3,$2
  sw   $3,16($fp)
  j    $L2

$L1:

MIPS IV 64 bits

1 instr. = 8 bytes

Unique Path 1 : 

Consists of : 15 instr.

Size : 120 bytes

Iterations : 3

Unique Path  2 :

Consists of : 16 instr.

Size : 128 bytes

Iterations :7

Step 2 : Computation of 
# of instructions and # 
iterations of each 
execution path

Output : Number of 
instruction cache misses and 
miss rate

Direct Mapped Cache with 

Block Size 8 bytes:

Using Equations (1)-(5) for 

variable cache sizes:

Num_References = 157

Cache Size: 32 bytes

Num_Misses1 = 45

Num_Misses2 = 112

Miss rate = 100%

Cache Size: 64 bytes

Num_Misses1 = 42

Num_Misses2 = 112

Miss rate = 98%

Cache Size: 128 bytes

Num_Misses1 = 15

Num_Misses2 = 16

Miss rate = 20%

Cache Size: 256 bytes

Num_Misses1 = 15

Num_Misses2 = 16

Miss rate = 20%

Output
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(c)

Node 1

Node 3

Node 5

Node 6

Node 1

Node 3

Node 4

Node 6

(d)  

Fig. 6. Third and forth stage of the estimation methodology 

branches of the assembly code are executed. Using an iterative procedure we calculate 
the number of executions from all nodes of the CFG (Stage 2, Step 4). Thus, summa-
rizing the number of executions of all application’s assembly instructions, the total 
number of executed instructions can be calculated (Stage 2, Output).  

The third stage the methodology explores the CFG of the application and can de-
termine the loops and the size (in number of instructions) as well as the number of 
executions of each loop (Stage 3, Step 1). Taking into account the conditional 
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branches (if / else), we create all the unique execution paths inside every loop and 
eventually, we calculate the number of executions of every unique path (Stage 3,  
Step 2). Comparing the size of every unique path in terms of number of instruction 
with the instruction cache size, the number of cache misses is estimated. The number 
of cache misses is computed for variable cache memory sizes through a single run of 
the developed tool (Stage 3, Output), which is one of the main advantages of the  
proposed methodology.  

The forth stage aims at the estimation of energy consumption of the instruction 
memory hierarchy. The energy consumed by the memory is dependent on the memory 
technology, the memory type and the number of accesses (reads/writes). Using the 
CACTI power model for the cache memories, we can create detail power parameters 
for various cache types. In the case of two levels of instruction cache, we need two 
loops to cover all the possible combinations between the two caches in terms of size 
and parameters. Thus, in the Fig. 6 (Stage 4) the outer loop explores all the possible 
L1 cache architectures, while the second one explores all the possible L2 cache archi-
tectures for every L1 architecture. Firstly, we create the power model for each cache 
architecture using the CACTI power model. Applying the cache parameter to CACTI 
for each cache architecture, we compute the E_read and E_write power parameters of 
the cache, for every read and write access, respectively. Secondly, multiplying the 
number of read and writes of every cache with the power values we compute the total 
energy consumption to each cache level. Finally, using the power model of memories 
we can also compute the energy consumed of the system’s main memory. 

6   Comparison Results 

In order to evaluate the proposed estimation technique we compare the results, which 
are taken using the developed tool with the simulation-based measurements. We con-
sidered as implementation platform the 64-bit processor core MIPS IV, while the 
measurements were taken by Simplescalar tool [16], the accurate instruction set  
simulator of MIPS processor. Simplescalar includes instruction set simulator, fast-
instruction simulator and cache simulator, and can simulate architectures with instruc-
tion, data and mixed instruction-data caches with one or two memory hierarchy  
layers. In order to evaluate the proposed methodology, a set of benchmarks from vari-
ous signal processing applications, such as MPEG-4, JPEG, Filtering and H.263 are 
used. In particular, we use five Motion Estimation algorithms: (i) Full Search (FS) 
[17], (ii) Hierarchical Search (HS) [18], (iii) Three Step Logarithmic Step (3SLOG) 
[17], (iv) Parallel Hierarchical One Dimensional Search (PHODS) [17] and (v) Spiral 
Search (SS) [19]. It has been noted that their complexity ranged from 60 to 80% of 
the total complexity of video encoding (MPEG-4) [17]. Also, we have used the 1-D 
Wavelet transformation [20], the Cavity Detector [21] and the Self Organized Feature 
Map Color Quantization (CQ) [22]. We assumed L1 instruction cache memory size 
ranging from 64 bytes to 1024 bytes with block sizes 8 and direct-mapped cache ar-
chitecture and L2 instruction cache with sizes varying between 128 bytes and 4 
Kbytes. We performed both simulation and estimation computations in terms of the 
miss rate of instruction cache on L1 and L2. Moreover, we computed the actual time 
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cost for running the simulation and the estimation-based approaches as well as the  
average accuracy level of the proposed methodology. 

Every cache level has its own local miss rate, which is the misses in this cache divided 
by the total number of memory accesses to this cache. Average miss rate is the misses in 
this cache divided by the total number of memory accesses generated by the processor. 
For example, in the case where there are two level of cache memories the average miss 
rate is given by the product of the two local miss rates of the two levels, i.e., (Miss-
RateL1×MissRateL2). Average miss rate is what matters to overall performance, while 
local miss rate is a factor for evaluating the effectiveness of every cache level. 

The accuracy of the proposed estimation technique is provided by the average  
estimation error. Table 1-3 presents the average percentage error of the proposed 
methodology compared to the simulation results taken using the Simplescalar tool, 
considering the abovementioned nine DSP applications. The last row of each table 
provides the average estimation error of miss rate of a two-level instruction cache 
memory hierarchy of each application. We choose to present the results of only  
two-level cache hierarch due to lack of space. Also, in order to reduce the results we 
present only the miss rate of L2 cache which its size is four times greater that L1, oth-
erwise a lot tables and results must be presented. Depending on the application, the 
corresponding average values of estimation error ranges from 1% to 12%, while the 
total average estimation error of the proposed approach is less than 4% (i.e. 3.77%). 
The latter value implies that the proposed methodology exhibits high accuracy. 

Table 1. Comparison between the estimation and the simulation results of the miss rate in L1 
cache 

L1 Cache Size (bytes) 
Applications 

64 128 256 512 1024 
Av. Error 

(%) 

Simplescalar 100,0 100,0 99,8 99,2 76,8
FS 

FICA 100,0 100,0 99,9 99,6 71,9
1,10 

Simplescalar 99,9 97,3 92,6 66,4 2,8
HS 

FICA 100,0 96,0 87,5 60,8 3,4
2,55 

Simplescalar 100,0 100,0 99,6 96,7 31,7
PHODS 

FICA 100,0 100,0 98,8 96,1 22,7
2,08 

Simplescalar 100,0 99,7 93,1 15,9 1,9
3SLOG 

FICA 100,0 99,4 96,9 7,4 0,9
2,71 

Simplescalar 99,9 99,9 98,8 79,9 0,5
SS 

FICA 100,0 99,2 98,4 75,0 0,0
1,31 

Simplescalar 100,0 100,0 94,3 61,4 16,9
CAVITY 

FICA 100,0 100,0 94,6 45,7 0,8
6,43 

Simplescalar 100,0 99,4 89,1 46,5 9,6
CQ 

FICA 100,0 98,7 84,2 3,5 0,0
11,66 

Simplescalar 98,7 89,9 50,3 1,3 1,1
WAVELET 

FICA 99,3 92,7 43,3 0,4 1,1
2,30 

Simplescalar 99,8 98,7 95,7 87,7 7,1
FFT 

FICA 100,0 100,0 96,1 75,3 6,0
3,07 
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Table 2. Comparison between the estimation and the simulation results of the miss rate in L2 
cache  

L2 Cache Size (bytes) Applications 
256 512 1024 2048 4096 

Av.Error 
(%) 

Simplescalar 99,8 99,2 77,0 0,1 0,0FS 
FICA 99,9 99,6 72,0 0,2 0,2

1,16 

Simplescalar 92,7 68,2 3,0 2,3 53,3HS 
FICA 87,5 63,3 3,9 5,3 15,9

10,28 

Simplescalar 99,6 96,8 31,8 0,8 0,7PHODS 
FICA 98,8 96,1 23,0 1,0 4,2

2,81 

Simplescalar 93,1 15,9 2,0 11,0 0,43SLOG 
FICA 96,9 7,4 1,0 7,2 2,2

3,79 

Simplescalar 99,0 80,0 0,5 0,1 0,1SS 
FICA 98,4 75,6 0,0 0,0 9,4

2,95 

Simplescalar 94,3 61,4 17,9 0,5 0,5CAVITY 
FICA 94,6 45,7 0,8 0,0 0,0

6,82 

Simplescalar 89,2 46,8 10,8 0,8 0,4CQ 
FICA 84,2 3,5 0,0 0,0 100,0

31,90 

Simplescalar 50,9 1,5 2,1 1,5 1,4WAVELET 
FICA 43,6 0,4 0,2 4,4 14,3

5,22 

Simplescalar 96,0 88,8 7,4 0,6 3,1FFT 
FICA 96,1 75,3 9,8 7,9 63,1

16,68 

Table 3. Comparison between the estimation and the simulation results of the global miss rate 
in instruction cache memory hierarchy 

L 1  C a c h e  S i z e  :  L 2  =  4 × L 1  ( b y t e s )Applications 
64 128 256 512 1024 

Av. Error 
(%) 

Simplescalar 99,8 99,2 76,8 0,1 0,0FS 
FICA 99,9 99,6 71,9 0,2 0,1

1,13 

Simplescalar 92,5 66,4 2,8 1,6 1,5HS 
FICA 87,5 60,8 3,4 3,2 0,5

2,78 

Simplescalar 99,6 96,7 31,7 0,8 0,2PHODS 
FICA 98,8 96,1 22,7 1,0 1,0

2,26 

Simplescalar 93,1 15,9 1,9 1,7 0,03SLOG 
FICA 96,9 7,4 0,9 0,5 0,0

2,90 

Simplescalar 98,8 79,9 0,5 0,1 0,0SS 
FICA 98,4 75,0 0,0 0,0 0,0

1,16 

Simplescalar 94,3 61,4 16,9 0,3 0,1CAVITY 
FICA 94,6 45,7 0,8 0,0 0,0

6,50 

Simplescalar 89,1 46,5 9,6 0,3 0,0CQ 
FICA 84,2 3,5 0,0 0,0 0,0

11,61 

Simplescalar 50,3 1,3 1,1 0,0 0,0WAVELE
T FICA 43,3 0,4 0,1 0,0 0,2

1,82 

Simplescalar 95,7 87,7 7,1 0,5 0,2FFT 
FICA 96,1 75,3 9,5 6,0 3,8

4,81 

 
Based on the equations and using the number of accesses in each cache memory, 

the tool estimates the number of accesses of each cache level. We use CACTI 4.0 [14] 
power models for the caches design in technology 90nm and Micron [15] model for 
the off-chip system memory. The fourth stage of the methodology estimates the total 
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power consumption of the instruction memory hierarchy. The comparison results be-
tween the energy estimated by the FICA tool and using the conventional method 
(simulation and power models) are presented in Fig. (7)-(10). The simulation results 
from all these figures are produced by using a huge number of simulation with all the 
different cache hierarchies, while the estimated results only running once the tool. 
Fig. 7 presents the energy consumption results of the application FS for a system 
which contains only one level of cache. It can be easily deduced that the estimated re-
sults are similar to the simulation for all the cache sizes. 

 

Fig. 7. Energy consumption comparison results between simulation and estimation for a system 
with L1 instruction cache of Full Search algorithm 

 

Fig. 8. Energy consumption comparison results between simulation and estimation for a system 
with L1 instruction cache of Full Search algorithm 
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Fig. 9. Energy consumption comparison results between simulation and estimation for a system 
with L1 instruction cache of Cavity Detector   

 

Fig. 10. Energy consumption comparison results between simulation and estimation for a  
system with L1 and L2 instruction caches of Cavity Detector 

Apart from the accuracy of an estimation methodology (and tool), a second pa-
rameter very crucial for its efficiency is the required time cost to obtain the accurate 
estimates. Table 4 provides the required (average) time cost, in seconds, for perform-
ing the simulation and estimation procedure for all benchmarks. It is assumed an ar-
chitecture with two levels of instruction cache and cache sizes for L1 from 64 bytes to 
1024 bytes and L2 from 128 up to 4096 bytes there are 20 different combinations as-
suming that L2>L1. Using variable cache block sizes for L1 and L2 caches from 8 
bytes to 32 bytes, there are totally 6 combinations assuming that L1block_size ≤ 
L2block_size. In order to complete explorer the two-level instruction cache architecture 
20×6=120 simulation procedures are needed for every application. The estimation and 
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Table 4. Speed up comparison results using our proposed methodology compared to the  
simulation time in a host machine Intel Pentium IV CPU 2GHz 

Applications Time (sec) 
FS HS 3SLOG PHODS SS Wavelet Cavity CQ 

Simulation  73,200 1,920 2,760 3,480 77,520 4,320 1,081,080 795,240 

Estimation  4.8 27.3 7.2 9.45 7.2 105 15.3 27.45 

Speed up 15,250 70 383 368 10,767 41 70,659 28,970 

Table 5. Comparisons between existing and proposed methods  

Method Tech-
nique 

Processor 
type 

Tool 
support Accuracy Time Code Remarks 

Processor Simula-
tor [16]  

MIPS Simplescalar 100% 
# exec instr. 

(GBytes) 
- 

Silva-Filho [3] MIPS - 100% 
# exec instr. 

(GBytes) 
Reduce the 

search space 

Zhang [2] MIPS - 100% 
# exec instr. 

(GBytes) 
Reduce the 

search space 

Gordon [4]  MIPS - 100% 
# exec instr. 

(GBytes) 
Reduce the 

search space 

Givargis [5] MIPS Platune 93% 
# exec instr. 

(GBytes) 
System Simu-

lation 

Borg [6] MIPS - - 
# exec instr. 

(GBytes) 
Trace analysis 

Lajolo [8] 
Motorola 

68332 
POLIS 98% 

# exec instr. 
(GBytes) 

Task level es-
timation 

Nohl [9] LISA JIT-CCS 100% 
# exec instr. 

(GBytes) 
Simulator 

modifications 

FICA  MIPS FICA 95% 
Size of 

source code 
(Kbytes) 

- 

 
simulation computations were performed by a personal computer with Pentium IV, 2 
GHz and 1 Gbyte RAM. It can be inferred that the proposed methodology offers a 
huge time speedup (orders of magnitude) compared with the simulation-based  
approach. Consequently, the new methodology/tool is suitable for performing  
estimations with a very high accuracy at the early design phases of an application.  

The exploration time cost of the simulation-based approach is proportional to the 
size of the trace file of the application considered (order of GBs). In contrary, the cor-
responding time cost of the proposed methodology is (almost) proportional (linear)  
to the code size of the assembly code (order of KBs). From Table 4, it can be seen 
that the larger the number of loop iterations in C code (and of course in assembly 
code) is, the larger is the speedup factor of the new methodology. Regarding the pro-
posed approach, we achieved time cost reduction between 40 to 70,000 times (i.e. up 
to four (4) orders of magnitude), depending on the application characteristics. Thus, 
accurate estimation within an affordable time cost allows a designer to perform design 
exploration of larger search space (i.e. exploration of additional design parameters). 
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In addition, the increasing complexity of modern applications, for instance im-
age/video frame with higher resolution, will render the usage of simulation tools im-
practical. Therefore, the design of such complex systems, the high-level estimation 
tool will be the only viable and pragmatic solution. 

Table 5 presents the comparison results between the methods referred in related 
work and the proposed one. The first column shows the list of methods, while the 
second one presents the used processor core on which each method has been devel-
oped. The third column provides the name of the software tool that supports the esti-
mation/simulation of each method while the forth one shows the estimation accuracy. 
The most important comparison is presented in the fifth column; the time which needs 
each method to explore the instruction memory hierarchy is proportional to the num-
ber of executed instructions, while the proposed one is proportional to source code of 
the application. The time cost of the existing methods is increasing with the applica-
tion computational complexity, while, the corresponding estimation time of the  
proposed method is dependent on the application’s source code size. 

7   Conclusions 

A novel methodology for estimating the cache misses of multilevel instruction caches 
realized by an embedded programmable platform, was presented. The methodology 
was based on the straightforward relationship between the application high-level de-
scription code and its corresponding assembly code. Having as inputs both types of 
code, we extract specific features. Using the proposed methodology, we can perform 
estimation of application critical parameters during the early design phases, avoiding 
the time-consuming simulation-based approaches. The FICA tool is based on the pro-
posed methodology and it is an accurate instruction cache miss rate estimator. The 
proposed methodology achieved estimations with smaller time cost than the simula-
tion process, (i.e. orders of magnitude). 
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Timing Error Detection and Correction by Time Dilation 
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Abstract. Timing failures in high complexity - high frequency integrated circuits, 
which are mainly caused by test escapes and environmental as well as operating 
conditions, are a real concern in nanometer technologies. The Time Dilation design 
technique supports both on-line (concurrent) error detection/correction and off-line 
scan testing. It is based on a new scan Flip-Flop and provides multiple error detec-
tion and correction at the minimum penalty of one clock cycle delay at the normal 
circuit operation for each error correction. No extra memory elements are required, 
like in earlier design approaches in the open literature, reducing drastically the sili-
con area overhead, while the performance degradation is negligible since no extra 
circuitry is inserted in the critical paths of a design.  

Keywords: On-Line Testing, Concurrent Testing, Timing Errors, Error  
Detection, Error Correction.  

1   CMOS Nanotechnologies and Timing Errors 

As modern CMOS technologies scale down in the nanometer era and the complexity 
of integrated circuits and systems increases, an ongoing difficulty to achieve adequate 
reliability levels and keep the cost of testing within acceptable bounds is reported  
[1-2]. The device size scaling, the operating frequency increase and the power supply 
reduction affect circuits’ noise margins and reliability. The probability of transient 
faults generation increases and many times it is hard to achieve error rate specification 
levels.   

Various mechanisms like crosstalk, power supply disturbance or ground bounce 
have been accused for timing error generation. The increased path delay deviations, 
due to process variations, and the manufacturing defects that affect circuit speed may 
also result in timing errors that are not easily detectable (in terms of test cost) in high 
frequency and/or high device count ICs. The already complex testing process can not 
sufficiently exercise the huge number of paths in modern circuit designs, and thus it 
can not effectively screen out all timing related defective ICs. Consequently, a con-
siderable part of defective ICs may escape the fabrication tests. Additionally, and for 
the same reasons, timing verification turns to be a hard task escalating the probability 
of timing failures in a design. Furthermore, modern systems running at multiple fre-
quency and voltage levels may suffer from an increased timing error rate due to nu-
merous environmental and process related as well as data dependent variabilities that 
can affect circuit performance. Besides, dynamic voltage scaling (DVS) techniques for 
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low power operation that reduces power supply voltage with marginal performance 
degradation have been proposed in the literature [3]. These exploit timing error detec-
tion and correction mechanisms to overcome increased timing error rates. In addition, 
transistor aging problems significantly impact the performance of nanometer circuits 
resulting in the appearance of timing errors during their normal lifetime [4-5]. Such 
an example is the Negative Bias Temperature Instability (NBTI) induced aging of 
PMOS transistors which degrades their threshold voltage over time increasing path 
delays. From the above, it is evident that concurrent on-line testing techniques for 
timing error detection and correction are becoming mandatory in order to achieve  
acceptable levels of error robustness and meet reliability requirements.  

2   Timing Error Detection and Correction 

Timing failures in a combinational logic circuit result in delayed responses at its out-
puts. As it is shown in Figure 1, in case of a delayed response arrival, after the trigger-
ing edge of the system clock CLK, the memory element will capture an erroneous 
value and a timing error is generated.  

CLK

Memory
Element

Combinational
Logic

Register

D Q

CLK

D
d

Q

Delayed Response by d

Timing
Error

 

Fig. 1. Timing error generation 

Various timing error detection techniques have been proposed in the open literature 
[6-11] that are based on the delayed response of timing faults to provide error toler-
ance using time redundancy techniques. A well known error detection scheme is 
based on the use of a comparator that is realized by a simple XOR gate [8-9, 11]. The 
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monitoring circuitry consists of an additional memory element plus a XOR gate for 
every memory element (main latch or Flip-Flop) in the design (see Figure 2a). The 
secondary memory element is clocked by a delayed version of the system clock that 
feeds the main memory element. This delay is equal to the maximum signal delay 
(dmax) that must be tolerated in order to achieve an acceptable level of timing error 
rate, plus the setup time of the used memory elements (tsu). Thus, the secondary 
memory element captures a delayed version of the data stored in the main memory 
element. In the presence of a timing error the stored data in the two memory elements 
differ, while the secondary memory element holds the correct delayed response of the 
combinational logic. The XOR gate “compares” the contents of the two memory ele-
ments and in case of discrepancy it raises its output to high indicating the error detec-
tion. The local error indication signals (Error_L) are collected by an OR gate (real-
ized as an OR tree) to generate a global error indication signal (Error_R). This signal 
can be exploited to achieve error tolerance by performing a retry procedure after each 
error detection. During the retry operation the period of the system clock must be in-
creased to provide the necessary time for correct response evaluation.  

Alternatively, a cost efficient approach is to use only the XOR gate for error detec-
tion as it is shown in Figure 2b [8]. The XOR gate compares the data input and output 
signals of the main memory element for a predefined time period after the triggering 
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Fig. 2. Timing error detection: a) memory duplication and b) cost efficient design 
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edge of the system clock. This time period is also equal to the maximum signal delay 
that must be tolerated plus the setup time of the memory elements. In case of discrep-
ancy between the two signals, the error indication signal raises at the XOR output. 
Possible very fast paths with propagation times close to or less than dmax+tsu must be 
excluded from the timing error monitoring process, since they will induce false 
alarms. In general, fast paths with propagation times less than the system clock period 
minus (dmax+tsu), with a proper tolerance, can be also excluded.  

2.1   The Razor Pipeline Architecture 

A pipeline architecture (named Razor) with timing error detection and correction ca-
pabilities, targeting the substantial energy reduction of integrated circuits exploiting 
dynamic voltage scaling, has been presented in [3]. According to this architecture, the 
stage registers are constructed using the Razor Flip-Flops. Figure 3 illustrates a Razor 
Flip-Flop, which consists of the main system Flip-Flop plus an assistant shadow latch, 
a multiplexer (MUX) and a XOR gate. As discussed earlier, the shadow latch cap-
tures, with a proper delay with respect to the main Flip-Flop, the responses of the 
combinational logic. The XOR gate acts as a comparator and compares the outputs of 
the main Flip-Flop and the shadow latch.  

In the error free case both the main Flip-Flop and the shadow latch will capture the 
same data. The comparison by the XOR gate provides a low local error indication sig-
nal (Error_L) and the pipeline continues to operate in the normal mode. In case of a 
delay in the evaluation of the logic stage Sj that exceeds circuit specifications, errone-
ous data are latched in the main Flip-Flop while the shadow latch will capture the cor-
rect (delayed) data, since it operates with a delayed clock. Consequently, the XOR out-
put (Error_L) will rise to high indicating the detection of an error. The generation of a 
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Fig. 3. The Razor timing error detection and correction design approach 
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(a)
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Fig. 4. Razor counterflow recovery: a) pipeline architecture and b) pipeline operation 

timing error in a clock cycle (i+1) at a pipeline stage Sj implies that the data of stage 
Sj+1 in the following cycle (i+2) are incorrect and must be flushed. This action is easy 
to be accomplished since the shadow latch contains the correct data without the need to 
re-compute them through the failing stage. The local error indication signal Error_L 
activates the register error indication signal Error_Rj which is captured by the Error 
Capture Circuitry. This in turn sets the Redirect signal to high enabling the shadow 
latch to feed the main Flip-Flop with the correct data. These are injected into the  
pipeline in the next cycle (i+3) allowing stage Sj+1 to compute the correct responses.  

In the Razor architecture two approaches for pipeline error recovery have been 
adopted [3]. The first one is the clock gating technique where in case of an error de-
tection the entire pipeline stalls by gating the next global clock edge for one cycle. 
This period is exploited by each stage to re-compute its result using the correct data of 
the shadow latches. The second approach used in Razor is the counterflow pipelining 
which is based on the namesake processor architecture [12]. This technique is illus-
trated in Figure 4 and is characterized by negligible timing constraints in the pipeline 
operation at the expense of few cycles, depending on the pipeline depth, for error re-
covery. When a register error indication signal is generated, there are two actions that 
follow. First, a Bubble signal is generated to nullify the computation in the following 
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stage. This signal indicates to all subsequent stages that the pipeline slot is empty. 
Second, a flush train is activated by asserting the ID of the stage generating the error 
indication signal. In the next cycle the correct data of the corresponding register 
shadow latches are injected into the pipeline allowing the errant instruction to con-
tinue its execution. In parallel, the flush train propagates the ID of the failing stage in 
the opposite direction to this of the instructions flow. At each stage that the flush train 
visits, the computation is nullified. When the first stage of the pipeline is reached the 
pipeline restarts its operation with the instruction that follows the failing one.  

The Razor approach suffers from high silicon area cost since for every main Flip-
Flop an extra latch, a multiplexer and a XOR gate are required. In addition an extra 
clock signal is used.  

2.2   Scan Based Error Detection and Correction 

Soft error detection and correction techniques for special purpose scan Flip-Flops in 
microprocessor circuits have been proposed in [1]. These techniques are suitable in 
designs where each system Flip-Flop consists of a pair of Flip-Flops (i.e. the main 
Flip-Flop and the scan Flip-Flop as it is shown in Figure 5) and can be also exploited 
to cover timing errors. The scan Flip-Flop is modified to operate as a shadow of the 
main Flip-Flop, latching the same data with a proper delay as discussed earlier (sig-
nals CAPTURE and SCB are delayed with respect to the system clock CLK). A XOR 
gate is used to compare the outputs of the Flip-Flop pair and detect possible errors in 
the system Flip-Flop. Three additional logic gates (a second XOR, an OR and an 
AND) are used in order to enable the trapping of any error indication signal (Error_L) 
in the pertinent scan Flip-Flop. This error indication is shifted out using the existing 
scan path in order to activate system recovery through re-execution. The main draw-
backs of this technique are: a) the high silicon area cost due to Flip-Flop duplication 
and the insertion of extra logic gates, b) the performance degradation due to the com-
plexity of the main Flip-Flop, c) the large number of control signals and d) although 
the global routing of error signals is reduced reusing existing scan facilities, there is a 
high penalty in error detection latency.  
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Fig. 5. Error trapping scan cell 
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3   The Time Dilation Scan Architecture 

Recently, a low cost pipeline architecture has been proposed in [13] that is character-
ized by the ability to detect and correct timing errors. This architecture utilizes only a 
multiplexer and a XOR gate per system Flip-Flop reducing drastically the silicon area 
cost, while only a single clock cycle is required for error correction. This technique has 
been extended in [14] to scan designs forming the Time Dilation scan architecture.  

Figure 6 illustrates the classical scan register configuration which is based on stan-
dard scan Flip-Flops. All scan Flip-Flops are connected together as one or more scan 
registers. The Scan_IN input of a scan Flip-Flop is driven by the Q output of the pre-
ceding scan Flip-flop in the shift register. When the Scan_EN signal is “high” the cir-
cuit is in the scan mode of operation, for testing purposes, and the scan Flip-Flops are 
driven by the Scan_IN inputs, else they are driven by the D inputs capturing the  
response data of the combinational logic.  
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Fig. 6. The standard scan Flip-Flop design 

3.1   The Time Dilation Scan Flip-Flop 

The scan Flip-Flop used in the Time Dilation (TIMED) architecture is presented in 
Figure 7. The TIMED Flip-Flop provides the capability of error detection and correc-
tion by appending only a multiplexer (MUX-B) and a XOR gate in the structure of the 
standard (main) scan Flip-Flop. This hardware overhead is much lower than this of 
the next most attractive choice, the Razor topology, where except of the above two 
cells an additional shadow latch is required. Although we will present for convenience 
the application of the Time Dilation technique in pipeline architectures, it can be also 
applied in any sequential circuit design.  

When the scan enable signal (Scan_EN) is “high” the TIMED Flip-Flop operates 
like a scan Flip-Flop to support the pertinent off-line testing activity. In the normal 
mode of operation (Scan_EN=“low”) the TIMED Flip-Flop behaves like an ordinary 
Flip-Flop enhanced with the ability to detect and correct timing errors. The XOR gate 
is used to directly compare the data at the M input and the Q output of the Main Flip-
Flop for error detection, while the two multiplexers and the feedback path from the M 
line to the input of the additional MUX-B forms the required memory element  
(MUX-latch) that holds valid data for error correction.  
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Fig. 7. The TIMED Flip-Flop and support circuitry 

Briefly, the Time Dilation technique operates as follows. Suppose that a timing er-
ror is detected at the inputs of the combinational logic stage Sj+1, due to a delayed re-
sponse of the previous stage Sj. Thus, the response of Sj+1 will be erroneous and must 
be corrected. Then, the evaluation time of the circuit is extended by one clock cycle 
and Sj+1 is fed with the delayed, but valid, response of Sj that has been captured in the 
MUX-latch, for error correction.  

The MUX-latch is clocked by the Memory signal. In the error free case the Mem-
ory signal is exclusively controlled by the Mem_CLK signal, a delayed version of the 
clock signal CLK with a proper duty cycle. When the Mem_CLK signal is “high” the 
Memory signal is activated (turns also to “high”) and the MUX-latch enters the mem-
ory state; else the MUX-latch is transparent. The time interval that the Memory signal 
is active must coincide with the time interval where new values arrive at the D inputs 
of the TIMED Flip-Flops, in all stage registers, due to an earlier evaluation of the per-
tinent logic stages according to the circuit specifications. Any signal transition at the 
D inputs of the TIMED Flip-Flops, earlier than the activation time of the Memory sig-
nal, is considered as violation of the timing specifications and must be detected. Ob-
viously, the deactivation of the Memory signal (falling edge), and accordingly of the 
Mem_CLK signal, must occur before the triggering edge of the CLK signal and at a 
time distance at least equal to the delay time of the MUX-A plus the setup time of the 
Main Flip-Flop.  

The XOR gate in the TIMED Flip-Flop detects timing errors and indicates them by 
setting signal Error_L to “high”. An OR gate is used to collect the Error_L signals 
and to generate the register error indication signal Error_Rj. Any register error indica-
tion signal is captured by a single Flip-Flop (Error Flip-Flop) triggered by the 
Mem_CLK signal which has been properly delayed. The final error indication signal, 
Error, is used to activate the error correction mechanism.  
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3.2   Timing Error Detection and Correction Using Time Dilation 

In Figure 8 the operation of the TIMED Flip-Flop is presented. We study the normal 
mode of operation (not the scan mode) therefore the Scan_EN signal is considered 
always “low”. In the ith clock cycle the response of the logic stage Sj is within the tim-
ing specifications of the circuit. This means that it occurs during the high state of the 
Memory signal. Consequently, after the triggering edge of the clock CLK both the 
data input M and the output Q of the Main Flip-Flop will carry the same value until 
the falling edge of the Memory signal. Thus, the Error_L signal as well as the subse-
quent Error_Rj signal will be both zero at the time that the Error Flip-Flop is trig-
gered. In that case, the pipeline’s operation remains unaltered (Error=“low”). In the 
next cycle (i+1) a timing fault occurs which induce a delayed response of stage Sj. 
Thus, a timing error is generated at the next triggering edge of the clock CLK. The 
data captured in the TIMED register between the Sj and Sj+1 stages are erroneous and 
consequently the response of Sj+1 stage at the (i+2) cycle will be also erroneous. 
Moreover, due to the fault, a transition occurs at the D input of a TIMED Flip-Flop, 
inside (i+2) cycle, after the triggering edge and before the activation of the Memory 
signal. Since the MUX-latch is transparent during this time interval, the transition 
passes to the M line. Now the value at the output of the MUX-latch (M line) differs 
from this at the output of the Main Flip-Flop (Q line). The first one is the correct re-
sponse of Sj and the second the erroneous value captured on Q. So, the comparison by 
the XOR gate of the MUX-latch valid data with the erroneous data stored in the Main 
Flip-Flop sets the local error signal Error_L to “high” and generates a register error 
indication signal Error_Rj at the output of the register’s OR gate. Next, the triggering 
edge of the Mem_CLK signal activates the Memory signal, setting the MUX-latches in 
the memory state, and after a proper delay captures the register error indication in the 
Error Flip-Flop, raising the Error signal to “high”. This “high” value will extend the 
active duration of the Memory signal keeping all MUX-latches in the memory state. 
At this point the error has been detected. In addition, all the MUX-latches hold the 
correct (valid) responses of the Sj logic stage for the (i+1) clock cycle. The new re-
sponses of the Sj and Sj+1 logic stages at the (i+2) cycle are blocked at the D inputs of 
the pertinent TIMED Flip-Flops and will be discarded since the response of Sj+1 is er-
roneous. Entering the next cycle (i+3), the triggering edge of the clock CLK forces the 
valid data to move from the MUX-latches to the Main Flip-Flops in order to be avail-
able to the next pipeline stage Sj+1. Consequently, the error is corrected since the logic 
stage has correct data to perform, inside the (i+3) clock cycle, the failed evaluation of 
the (i+2) cycle. This is an one cycle penalty for correction. Next, the error indication 
signals Error_L, Error_Rj and Error turn successively to “low” and the Memory  
signal returns to its routine operation.  

According to the above discussion, if a timing error occurs in a pipeline stage Sj 
during a particular clock cycle, then the data in the subsequent stage Sj+1 are incorrect, 
during the next clock cycle, and must be flushed from the pipeline. However, the 
MUX-latches contain the correct data and thus the re-execution of the failed evalua-
tion in the Sj stage is avoided. On the other hand, the Sj+1 stage re-executes its evalua-
tion using this time the correct input data with only one-cycle penalty in the pipeline 
operation.  
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Fig. 8. TIMED Flip-Flop operation with a timing error in cycle i+2 and recovery in cycle i+3 

A main characteristic and an advantage of the proposed topology is that no cir-
cuitry is inserted in the critical path from the D input to the Q output of the Flip-Flop 
or in the distribution path of the clock signal CLK. The additional MUX-B is inserted 
in the scan path which is not critical. A minor performance penalty is introduced by 
the small parasitic capacitances of the MUX-B and the XOR gate inputs that are 
driven by the M and Q signal lines. In addition, note that the silicon overhead of the 
OR gate at the output of a TIMED register is small (especially when a Domino design 
style is used), while the rest circuitry (the Error Capture Circuitry) is shared on the 
whole pipeline and thus its cost is insignificant. The area overhead related to the OR 
gates and the Error Capture Circuitry is also present in the Razor topology.  

3.3   Pipeline Recovery 

Every error detection is succeeded by a pipeline state recovery action. Figure 9 illus-
trates the pipeline recovery mechanism. The event of a timing error in a logic stage 
(lets say the LS2 stage) generates an error indication signal Error_R2 at the following 
TIMED register. This means that the response of the next stage LS3 at the subsequent 
clock cycle is incorrect (as indicated in Figure 9b) since its input data are not valid.  

The error indication signal is latched by the Error Flip-Flop and the Memory signal 
remains “high” keeping all the MUX-latches of the TIMED Flip-Flops in all stage 
registers in the memory state. Thus, in the next clock cycle every stage is allowed to 
re-compute its response using the correct data stored in the MUX-latches. Actually, 
this seems to be like a “time dilation” in the duration of the failing clock cycle. Note 
here that there is no need for the failing stage LS2 to re-compute its response in the 
cycle where the failure occurred since the correct responses are already available in 
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Fig. 9. Time Dilation recovery: a) pipeline organization and b) pipeline operation 

the following MUX-latches. The Time Dilation pipeline architecture can tolerate any 
number of errors in a clock cycle since all stages re-compute their responses with cor-
rect data at their inputs. In case that one or more stages fail in each clock cycle, the 
pipeline will continue to run at half of the normal speed.  
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Referring to the analysis of the Time Dilation architecture, there is no need to ap-
ply main clock gating to accomplish pipeline recovery, neither the Counterflow pipe-
line design technique [12] as in the Razor case. This is due to the fact that the pipeline 
performance is not affected by the recovery mechanism since there is not any prohibi-
tive delay in the feedback path from the error indication signal generation to the acti-
vation of the memory state of the MUX-latches. The MUX-latches in the TIMED 
Flip-Flops are set to the memory state, by the Memory signal, independently of the 
generation or not of an error signal. Thus, at the time an error indication signal (Er-
ror=“high”) is captured in the Error Flip-Flop, the Memory signal is already active 
(“high”) and the MUX-latches are in the memory state. This error indication signal 
simply extends the active state of the Memory signal for one clock period. Conse-
quently, the following triggering edge of the clock CLK injects the correct data from 
the MUX-latches into the pipeline, allowing the “swerved” operation to continue. 
Later operations inside the pipeline are not flushed and continue to run after recovery. 
Hence, only a single cycle is required in the Time Dilation architecture for pipeline 
recovery as it is shown in Figure 9b.  

Note that the delay of the Mem_CLK signal with respect to the system clock CLK, 
and consequently its duty cycle, must be properly selected to prevent data corruption 
in the MUX-latches due to possible existence of short paths in the combinational 
logic. To avoid this, a minimum path delay constraint is considered in the design. In 
order to meet this constraint in the presence of short paths, gates constructed of mini-
mum size and high-threshold voltage transistors can be used and buffers may be 
added during logic synthesis (like in Razor [3]) to slow them down. The minimum 
path delay constraint is equal to the delay of the Memory signal with respect to the 
system clock CLK, plus the hold time of the MUX-latch. However, a trade-off arises. 
A large value for the minimum path delay constraint may increase the number of the 
required buffers in the design and consequently the silicon area penalty. On the other 
side, a small value for this delay constraint reduces the error tolerance due to the re-
duction of the maximum detectable signal delay.  

4   Time Dilation Application 

The Time Dilation architecture was applied in a 32-bit four stages pipeline datapath, 
that has been designed in a 90nm CMOS technology (VDD=1V), with 870MHz clock 
frequency (1150ps period). The TIMED Flip-Flop has been designed in transistor 
level as a library standard-cell. Since the fastest response of the combinational logic is 
higher than 400ps, the delay of the Mem_CLK signal with respect to CLK is set to 
300ps and its “on” time duration is equal to 550ps. The extra delay inserted to the 
Mem_CLK signal to drive the Error Flip-Flop is 250ps. Signal delays up to 350ps 
(30% of the clock cycle) from the triggering edge of the system clock CLK can be de-
tected and corrected. The performance penalty introduced in the original scan design 
with the use of the TIMED Flip-Flop is less than 4o/oo and thus it is negligible.  

In Figure 10 electrical simulations using SPECTRE are presented. A timing fault is 
injected at the first stage of the pipeline during the 4th clock cycle. Consequently, the 
data captured at the Q1_5 output of the corresponding TIMED Flip-Flop are errone-
ous and the same stands for the response of second stage at the 5th cycle. Due to the 
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fault, a delayed response appears at the D1_5 input of the TIMED Flip-Flop in the 5th 
cycle, after the triggering edge of CLK. This response is propagated to the M1_5 (not 
shown) input of the main Flip-Flop since the MUX-latch is transparent (Mem-
ory1=“low”) during this time interval. Next, the Memory1 signal is activated and the 
MUX-latch captures the correct data on M1_5. The XOR gate detects the difference 
between M1_5 and Q1_5 (due to the erroneous data on Q1_5) and sets signal Er-
ror_R1 to “high”. Consequently, the triggering edge of Mem_CLK also forces the 
global Error signal to “high”. This extends the memory state of the MUX-latch hold-
ing the Memory1 signal active (“high”) within the 6th clock cycle. In this cycle the 
pipeline re-executes the stage responses with the correct data that are available in the 
MUX-latches. Thus, the error is corrected and the pipeline proceeds with its normal 
operation.  
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Fig. 10. Simulated waveforms from Time Dilation application in a 32-bit pipeline 

5   Conclusions 

Timing error detection and correction techniques are of great importance in today 
nanometer CMOS technologies. To cope with them, a new scan Flip-Flop design that 
provides timing error detection/correction capabilities and a pipeline architecture (un-
der the name Time Dilation) which exploits this scan Flip-Flop for pipeline recovery 
after a timing error occurrence, have been proposed. This design approach is charac-
terized by low silicon area requirements (about 24% reduction in Flip-Flop area with 
respect to Razor the most attractive alternative topology), negligible performance 
penalty and the minimum cost of only one clock cycle for pipeline recovery after each 
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error detection. Although the proposed technique is illustrated for pipeline architec-
tures, it can be applied in general to any sequential circuit.   

The Time Dilation technique can be utilized to provide aggressive power reduc-
tions in Dynamic Voltage Scaling (DVS) based circuits by tolerating timing errors in 
critical paths under worst case process and environmental variabilities or the presence 
of noise sources like di/dt noise in supply voltage and signal crosstalk. Moreover, 
Time Dilation offers the ability of using more relaxed design constraints or voltage 
and noise margins to ensure correct operation. Those constraints/margins are inserted 
to protect a design against uncertainty in circuit model parameters and worst case 
combination of variabilities. However, such a combination might be very rare or even 
impossible making this approach overly conservative from the performance point of 
view and demanding in design effort [3]. With technology scaling, process variations 
are increased and noise effects are getting more and more serious worsening the re-
quired constraints and margins in a design. Time Dilation accounts for both local and 
global process and temperature variations as well as noise sources that affect timing, 
eliminating the need to meet severe constraints and apply wide margins to ensure cor-
rect operation at a given (desired) performance.  
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