
Chapter 6
Existence and Decay of Mixed Derivatives

A primary aim of this work, and the decisive step to our analysis of the complexity
of electronic wave functions, is to study the regularity of these functions. We want
to show that they possess certain high-order square integrable weak derivatives and
that these derivatives even decay exponentially, in the same way as the wave func-
tions themselves. This goal is reached in the present chapter. A central idea of the
proof is to examine instead of the solutions of the original Schrödinger equation the
solutions of a modified equation for the correspondingly exponentially weighted
wave functions. This equation is set up in the first section of this chapter and is
based on the result on the exponential decay of the wave functions from Sect. 5.5.
The study of the regularity in isotropic Hölder spaces in [32] is based on a similar
idea. In Sect. 6.2 we introduce the high-order solution spaces and the correspond-
ing norms. The actual proof relies on a mixture of variational techniques and Fourier
analysis. The key is the estimates for the arising low-order terms, particularly for the
nucleus-electron and the electron-electron interaction potential. These estimates are
proven in Sect. 6.3 and Sect. 6.4. The estimates for the nucleus-electron interaction
potential and an additional term coming from the exponential weights are in the end
based on the Hardy inequality from Sect. 4.1, whose central role is reflected here
again. In contrast to these estimates the estimates for the electron-electron interac-
tion potential require that the considered functions satisfy the Pauli principle, that
is, are antisymmetric with respect to the exchange of the positions of electrons with
the same spin. The reason is that such functions vanish at the places where electrons
with the same spin meet, which counterbalances the singularities of the electron-
electron interaction potential. To derive these estimates and to master the arising
singularities a further three-dimensional Hardy-type estimate is needed that holds
only for functions vanishing at the origin. In Sect. 6.5 the regularity theorem for the
exponentially weighted wave functions is stated and proven. This result serves then
to derive bounds for the exponential decay of the mixed derivatives of the original
wave functions. The present chapter is partly based on two former papers [92,94] of
the author in which the existence of the mixed derivatives has been proven and es-
timates for their L2-norms were given. The result on the exponential decay of these
derivatives [95] was up to now only available on the author’s website.
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88 6 Existence and Decay of Mixed Derivatives

6.1 A Modified Eigenvalue Problem

First we replace the rotationally symmetric exponential weight functions in (5.56)
by products of weight functions that depend only on the coordinates of one sin-
gle electron. Such weights are easier to analyze and fit into the framework that we
will develop in the following sections. Let u ∈ H1(σ) be an eigenfunction for the
eigenvalue λ < Σ(σ). Let θ1, . . . ,θN ≥ 0 be given weight factors and let

F(x) = γ
N

∑
i=1

θi |xi|,
N

∑
i=1

θ 2
i = 1. (6.1)

Let γ be a decay rate as in Theorem 5.17, that is,

γ <
√

2(Σ(σ)−λ ) , (6.2)

and define the correspondingly exponentially weighted eigenfunction as

ũ(x) = exp
(
F(x)

)
u(x). (6.3)

This exponentially weighted eigenfunction solves then an eigenvalue equation that
is similar to the original one. To derive it we start from the following two lemmata:

Lemma 6.1. Let the function u ∈ H1 and the constant γ ∈ R be first arbitrary. The
function ũ defined as in (6.3) is then not only locally square integrable but has also
locally square integrable first-order weak partial derivatives. They read

Dkũ = eF DkF u + eFDku, (6.4)

where the operator Dk denotes weak differentiation for u and pointwise for F.

Proof. We first consider functions u ∈ D , that is, infinitely differentiable functions
with bounded support, and replace the function (6.1) by its smooth counterparts

Fε(x) = γ
N

∑
i=1

θi

√
|xi|2 + ε2. (6.5)

Integration by parts then yields, for all test functions ϕ of the same type,

∫ (
eFε DkFε u + eFε Dku

)
ϕ dx =

∫
Dk

(
eFε u

)
ϕ dx = −

∫
eFε u Dkϕ dx.

Letting ε tend to zero, one obtains, from the dominated convergence theorem,

∫ (
eFDkF u + eFDku

)
ϕ dx = −

∫
eFu Dkϕ dx.
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Since F and its first-order partial derivatives are bounded on the support of ϕ and
D is a dense subspace of H1, this relation transfers to all u ∈ H1. This proves the
differentiation formula above and transfers the product rule to the given case. ��
Lemma 6.2. For all functions u ∈ H1 and all test functions v ∈ D ,

a
(
u,eFv

) − a
(
eFu,v

)
= c

(
eFu,v

)
, (6.6)

where c(u,v) denotes the H1-bounded bilinear form

c(u,v) =
1
2

∫ {
2∇F ·∇u +

(
ΔF − |∇F |2)u

}
v dx. (6.7)

Proof. We consider again first only functions u ∈ D and replace F by its infinitely
differentiable counterparts (6.5). A short calculation yields

Δ
(
eFε u

) − eFε Δu = 2∇Fε ·∇
(
eFε u

)
+

(
ΔFε − |∇Fε |2

)
eFε u.

If one multiplies this equation with a test function v ∈ D and integrates by parts

∫
∇u ·∇(

eFε v
)

dx −
∫

∇
(
eFε u

) ·∇v dx

=
∫ {

2∇Fε ·∇
(
eFε u

)
+

(
ΔFε − |∇Fε |2

)
eFε u

}
v dx

follows. As Fε and ∇Fε are locally uniformly bounded in ε ≤ ε0 and |ΔiFε | � 1/|xi|,
one can let ε tend to zero in this expression and recognizes with help of the dom-
inated convergence theorem that (6.6) holds for all functions u and v in D . The
H1-boundedness of the bilinear form (6.7) follows from the Hardy inequality. As
the functions in D have a bounded support, both sides of equation (6.6) thus rep-
resent, by Lemma 6.1, bounded linear functionals in u ∈ H1 for v ∈ D given. The
equation transfers therefore to all functions u ∈ H1 and all test functions v ∈D . ��
After these preparations we can now return to the initially introduced eigenfunction
u ∈ H1(σ) for the eigenvalue λ and its exponentially weighted counterpart (6.3).

Theorem 6.1. The exponentially weighted eigenfunction ũ defined by (6.3) is itself
contained in the space H1 and solves the eigenvalue equation

a(ũ,v) + γ s(ũ,v) = λ̃(ũ,v), v ∈ H1, (6.8)

where the expression s(u,v) denotes the H1-bounded bilinear form

s(u,v) =
N

∑
i=1

θi

∫ {
xi

|xi| ·∇iu +
1
|xi| u

}
v dx (6.9)
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and the real eigenvalue λ̃ < Σ(σ) ≤ 0 is given by

λ̃ = λ +
1
2

γ 2. (6.10)

Proof. The function (6.1) satisfies the estimate F(x) ≤ γ |x |. Under the condition
(6.2) the exponentially weighted eigenfunction (6.3) is therefore, by Theorem 5.17
and Lemma 6.1, contained in H1. Setting ṽ = eFv, by Lemma 6.1 and Lemma 6.2

a(ũ,v) + c(ũ,v) = a(u, ṽ) = λ (u, ṽ) = λ (ũ,v)

for all test functions v ∈ D and hence for all v ∈ H1. The proposition follows calcu-
lating ∇F and ΔF explicitly and observing that |∇F |2 = γ 2. ��

The next sections are devoted to the study of the modified eigenvalue problem
(6.8) that the exponentially weighted eigenfunctions (6.3) satisfy. Hereby we take
up a slightly more general approach and relax the symmetry properties prescribed
by the Pauli principle a little bit. Let I be a nonempty subset of the set of the electron
indices 1, . . . ,N. Let DI denote the subspace of D that consists of those functions in
D that change their sign under the exchange of the electron positions xi and x j in R

3

for indices i �= j in I. The closure of the subspace DI in H1 is the Hilbert space H 1
I .

Our modified eigenvalue problem then consists in finding functions u �= 0 in H 1
I and

values λ < 0 that satisfy the condition

a(u,v) + γ s(u,v) = λ (u,v), v ∈ H 1
I . (6.11)

Our aim is to study the regularity of the solutions of this eigenvalue problem in
Hilbert spaces of mixed derivatives. Conditions on the parameter γ enter only im-
plicitly since, with u a solution of (6.11) and with that also of equation (6.12) below,
ũ = e−Fu is conversely a solution of the original eigenvalue equation (4.17) for
which eFũ is then a square integrable function. We assume γ ≥ 0 in the sequel.

Theorem 6.2. Provided that the function (6.1) is symmetric with respect to the per-
mutations of the electrons with indices i ∈ I, which is the case if and only if all θi

for i ∈ I are equal, a function u ∈ H 1
I that solves (6.11) also solves the full equation

a(u,v) + γ s(u,v) = λ (u,v), v ∈ H1. (6.12)

That is, (6.11) does not only hold for test functions v ∈ H 1
I , but for all v ∈ H1.

Proof. The proof is based on the observation that the affected bilinear forms are
invariant under the considered permutations of the electrons, that is, on the fact that

a(u(P ·),v(P ·)) = a(u,v), s(u(P ·),v(P ·)) = s(u,v)

for these permutations P, which follows from the invariance of the potential (4.9)
and the function (6.1) under these permutations. Let G denote the group of
permutations that fix the indices in the complement of I and define the operator
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(A v)(x) =
1
|G| ∑

P∈G

sign(P)v(Px),

that reproduces functions in DI and H 1
I , respectively, and maps functions in H1 to

partially antisymmetric functions in H 1
I . Since, for arbitrary functions u,v ∈ H1,

a(A u,v) = a(u,A v), s(A u,v) = s(u,A v), (A u,v) = (u,A v),

a solution u ∈ H 1
I of (6.11) satisfies the equation

a(u,v) + γ s(u,v) = a(A u,v)+ γ s(A u,v) = a(u,A v)+ γ s(u,A v)
= λ (u,A v) = λ (A u,v) = λ (u,v)

for all v ∈ H1, that is, solves the full equation (6.12). ��
In the limit case γ = 0, the modified eigenvalue problem therefore transfers again
into the original eigenvalue equation (4.17) from which our discussion started.

6.2 Spaces of Functions with High-Order Mixed Derivatives

We attempt to prove that the solutions of the equation (6.11) possess, regardless
of their origin, high-order mixed derivatives and that it is possible to estimate the
L2-norms of these derivatives by the L2-norm of the solutions themselves. Let

Δi =
3

∑
k=1

∂ 2

∂x2
i,k

(6.13)

denote the Laplacian that acts on the spatial coordinates xi,1, xi,2, and xi,3 of the
electron i and let the differential operator L of order 2|I| be the product

L = (−1)|I|∏
i∈I

Δi (6.14)

of the second-order operators −Δi. The seminorms | · |I,0 and | · |I,1 on the space D
of the infinitely differentiable functions with compact support are then defined by

|u |2I,0 = (u,L u), |u |2I,1 = −(u,ΔL u). (6.15)

Correspondingly, we introduce, for s = 0,1, the norms given by

‖u‖2
I,s = ‖u‖2

s + |u |2I,s. (6.16)
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Let I∗ be the set of all mappings α : I →{1,2,3}. The operator L and with that the
given seminorms can then be written in terms of the products

Lα = ∏
i∈I

∂
∂xi,α(i)

, α ∈ I∗, (6.17)

of first-order differential operators, more precisely as the sum

L = (−1)|I| ∑
α∈I∗

L2
α . (6.18)

Correspondingly, since all partial derivatives of a function in D commute,

|u |2I,0 = ∑
α∈I∗

‖Lαu‖2
0, |u |2I,1 = ∑

α∈I∗
|Lα u|21. (6.19)

The completions of DI under the norms given by (6.16) are the spaces Xs
I . They

consist of functions that possess, for big |I|, very high order weak partial derivatives.
We will show in that the solutions of the equation (6.11) are contained in X 1

I .
The structure of the proof of our regularity theorems is in the end very simple.

Expressed naively, we transform the strong form

H̃u := Hu + γ
N

∑
i=1

θi

{
xi

|xi| ·∇iu +
1
|xi| u

}
= λ u, (6.20)

of the second-order equation (6.12) into the high-order equation

(εI +L )H̃u = λ (εI +L )u (6.21)

with correspondingly smooth solutions. As the operator εI + L is invertible for
ε > 0, both equations are equivalent and our regularity theorem is proved. Of course,
this does not work in this simple way, one reason being all the singularities of the
coefficient functions of the operator H̃. However, we can switch to the weak form

a(u,εv +L v) + γ s(u,εv +L v) = λ (u,εv +L v), v ∈ DI , (6.22)

of this equation, that is formally obtained from (6.21) if one multiplies both sides of
the equation with a test function v∈DI , integrates, and then transforms the resulting
integrals integrating by parts, or simply by replacing the test functions v in (6.12)
by test functions εv + L v. The solutions of equation (6.12) obviously satisfy the
equation (6.22). The idea is to interpret this equation as an equation on X 1

I and
to show that its solutions are conversely solutions of the original equation (6.12).
Before we can realize this idea, we have, however, to show that the bilinear form

ã(u,v) = a(u,εv +L v) + γ s(u,εv +L v) (6.23)
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on DI ×DI can be extended to a bounded bilinear form on X 1
I ×X 1

I . This is trivial
for its leading part. The problem is to estimate its singular low-order terms corre-
spondingly. The next two sections exclusively deal with this task.

6.3 Estimates for the Low-Order Terms, Part 1

As stated, the key to our regularity theory is estimates for the low-order terms in the
bilinear form (6.23), that is, for the terms involving the interaction potentials

Vne(x) = −
N

∑
i=1

K

∑
ν=1

Zν

|xi −aν | , Vee(x) =
1
2

N

∑
i, j=1
i�= j

1
|xi − x j| (6.24)

between the nuclei and the electrons and between the electron among each other, and
estimates for the part arising from the bilinear form (6.9). This bilinear form con-
sists, like the nucleus-electron interaction potential, of a sum of one-electron terms.
The terms involving only one single electron represent the simple part. The corre-
sponding estimates are in the end based on the Hardy inequality from Lemma 4.1.
They do not rely on symmetry properties of the wave functions. The situation is dif-
ferent for the terms of which the electron-electron interaction potential is composed.
These estimates are therefore treated in a separate section.

The first of the estimates we need to study the regularity properties, namely the
estimate (4.11) from Theorem 4.1, has already been stated in Chap. 4 and formed
the basis of the variational formulation of the eigenvalue problem. The aim of the
present section is to complement this estimate by estimates for the expressions

(Vneu,L v), s(u,L v), s(u,v). (6.25)

in the bilinear form (6.23) respectively in (6.11). The crucial observation is that most
of the partial derivatives of which the differential operator L is composed commute
with the single parts of the interaction potentials (6.24) and can be shifted from one
to the other side in the single parts of the bilinear form (6.9), up to those few that
act on a component of the position vectors of the electrons under consideration.

Theorem 6.3. For all infinitely differentiable functions u and v in the space D ,

(Vneu,L v) ≤ 2N1/2Z |u |I,0 |v |I,1. (6.26)

Proof. We first consider a single electron i and have then to distinguish the cases
i /∈ I and i ∈ I. The first case is the easier one. We start from the representation (6.18)
of L . Since the partial derivatives of which the Lα are composed in this case do not
act on the components of xi, Fubini’s theorem and integration by parts yield
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∫
1

|xi −aν | uL v dx = (−1)|I| ∑
α∈I∗

∫
1

|xi −aν |
(∫

uL2
α v dx̃

)
dxi

= ∑
α∈I∗

∫ (∫
1

|xi −aν | Lα uLα v dxi

)
dx̃,

where we have split x into xi and x̃. By the Cauchy-Schwarz and the Hardy inequal-
ities, the inner integrals on the right hand side can be estimated by the expressions

(∫ ∣
∣Lα u

∣
∣2

dxi

)1/2(
4

3

∑
�=1

∫ ∣
∣ ∂
∂xi,�

Lα v
∣
∣2

dxi

)1/2

.

With help of the Cauchy-Schwarz inequality, now first applied to the resulting outer
integrals and then to the sum over the single α ∈ I∗, the estimate

∫
1

|xi −aν | uL v dx

≤ 2

(

∑
α∈I∗

∫ ∣
∣Lα u

∣
∣2

dx

)1/2 (

∑
α∈I∗

3

∑
�=1

∫ ∣
∣ ∂
∂xi,�

Lα v
∣
∣2

dx

)1/2

follows. In more compact notion, this estimate reads

∫
1

|xi −aν | uL v dx ≤ 2 |u |I,0 |∇iv|I,0. (6.27)

It transfers without change to the case of indices i ∈ I, but the proof is somewhat
more complicated then. In this case, we decompose the operator L into the sum

L = (−1)|I| ∑
α∈I∗

L2
α = (−1)|I| ∑

β∈I∗i

Lβ ΔiLβ , Lβ = ∏
j∈Ii

∂
∂x j,β ( j)

,

where Ii = I \ {i} and I∗i denotes the set of the mappings β that assign one of the
components 1, 2, or 3 to the electron indices j in Ii. Since the Lβ do not act upon the
components of xi, integration by parts and Fubini’s theorem lead as above to

∫
1

|xi −aν | uL v dx = (−1)|I| ∑
β∈I∗i

∫
1

|xi −aν |
(∫

uLβ ΔiLβ v dx̃

)
dxi

= − ∑
β∈I∗i

∫ (∫
1

|xi −aν | Lβ uΔiLβ v dxi

)
dx̃.

By the Cauchy-Schwarz and the Hardy inequality, the inner integrals on the right
hand side can, up to the factor 2, be estimated by the expressions

(∫
|∇iLβ u|2 dxi

)1/2(∫
|ΔiLβ v|2 dxi

)1/2

.
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These expressions can be rewritten as

( 3

∑
k=1

∫ ∣
∣
∣

∂Lβ u

∂xi,k

∣
∣
∣
2

dxi

)1/2( 3

∑
k=1

3

∑
�=1

∫ ∣
∣
∣

∂
∂xi,�

∂Lβ v

∂xi,k

∣
∣
∣
2

dxi

)1/2

,

where we have applied the relation

3

∑
k=1

3

∑
�=1

∫ ∂ 2w

∂x2
i,k

∂ 2w

∂x2
i,�

dxi =
3

∑
k=1

3

∑
�=1

∫ ∣
∣
∣

∂ 2w
∂xi,�∂xi,k

∣
∣
∣
2

dxi

to the functions w = Lβ v. This relation is proved by integrating by parts. Since the
set of the differential operators Lα , α ∈ I∗, coincides with the set of the operators

∂
∂xi,k

Lβ , k = 1,2,3, β ∈ I∗i ,

summation over all β , the Cauchy-Schwarz inequality (applied twice, to the outer
integrals and then to the sum over the β ), and Fubini’s theorem lead again to (6.27).

Summation over the single contributions in the potential finally yields

(Vneu,L v) ≤ 2Z |u |I,0
N

∑
i=1

|∇iv|I,0,

from which the proposition follows with the elementary estimate

N

∑
i=1

|∇iv|I,0 ≤ N1/2
( N

∑
i=1

|∇iv|2I,0
)1/2

= N1/2 |v |I,1,

that is responsible for the factor N1/2. ��
The proof of the estimates for the expression s(u,L v) resembles that of Theorem

6.3. It is prepared by the following lemma for functions of three real variables.

Lemma 6.3. For all infinitely differentiable functions u,v : R
3 →R that vanish out-

side a bounded subset of their domain,

∫ {
x
|x | ·∇u +

1
|x | u

}
v dx ≤ 3

(∫
|u |2 dx

)1/2(∫
|∇v|2 dx

)1/2

. (6.28)

Proof. The difficulty is that the derivatives have to be shifted to v. We first assume
that u vanishes on a neighborhood of the origin. Integration by parts then yields

∫ {
x
|x | ·∇u +

1
|x | u

}
v dx = −

∫
u

x
|x | ·∇v dx −

∫
1
|x | uv dx.
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This relation remains true for the general case, as one can show by an argument
as in the proof of Lemma 4.1, that is, by multiplying u with a sequence of cut-off
functions and applying the dominated convergence theorem. The proposition then
follows again from the Cauchy-Schwarz inequality and the Hardy inequality. ��
Theorem 6.4. For all infinitely differentiable functions u and v in the space D ,

s(u,L v) ≤ 3 |u |I,0 |v |I,1. (6.29)

Proof. We consider again a single electron i and have, as in the proof of
Theorem 6.3, to distinguish the cases i ∈ I and i /∈ I. For indices i ∈ I, one obtains

∫ {
xi

|xi| ·∇iu +
1
|xi| u

}
L v dx

= ∑
β∈I∗i

∫∫ {
xi

|xi| ·∇iLβ u +
1
|xi| Lβ u

}
ΔiLβ v dxi dx̃.

With help of the Cauchy-Schwarz and the Hardy inequality the inner integrals on
the right hand side can, up to the factor 3, be estimated by the expressions

(∫
|∇iLβ u|2 dxi

)1/2(∫
|ΔiLβ v|2 dxi

)1/2

.

Rewriting these expressions as in the proof of Theorem 6.3, from this the estimate

∫ {
xi

|xi| ·∇iu +
1
|xi| u

}
L v dx ≤ 3 |u |I,0 |∇iv|I,0

follows. This estimate also holds if i /∈ I, as is shown starting directly from the
representation of L as the sum of the differential operators L2

α , that is, from

∫ {
xi

|xi| ·∇iu +
1
|xi| u

}
L v dx

= ∑
α∈I∗

∫∫ {
xi

|xi| ·∇iLα u +
1
|xi| Lα u

}
Lα v dxi dx̃.

The inner integrals are now, with Lemma 6.3, up to the factor 3 estimated as

(∫
|Lα u|2 dxi

)1/2(∫
|∇iLα v|2 dxi

)1/2

.

From that then again the estimate above follows. Summation over the i, the Cauchy-
Schwarz inequality, and the fact that the θ 2

i sum up to 1 complete the proof. ��
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The group of estimates for the one-electron parts in the bilinear form (6.23) is
completed by the following estimate for the expression s(u,v) itself:

Theorem 6.5. For all infinitely differentiable functions u and v in the space D ,

s(u,v) ≤ 3‖u‖0 |v |1. (6.30)

Proof. With help of Lemma 6.3, the single parts can again be estimated as

∫ {
xi

|xi| ·∇iu +
1
|xi| u

}
v dx ≤ 3 ‖u‖0‖∇iv‖0.

The proposition follows from that in the way already employed. ��

6.4 Estimates for the Low-Order Terms, Part 2

The part in the bilinear form resulting from the electron-electron interaction poten-
tial is estimated basically in the same way as the terms considered in the previous
section. The central observation is again that most of the derivatives of which the
differential operators Lα are composed commute with the single parts of the poten-
tial. However, there is one important difference. In the cases already studied only
one derivative remained, in contrast to the two derivatives we have to face here. One
of these derivatives has to be shifted to the other side. This causes an additional
problem since the partial derivatives of the interaction potential entering into the
estimates are not locally square integrable in three space dimensions. Therefore the
Pauli principle has to be brought into play. A wave function that is compatible with
the Pauli principle vanishes where two electrons with the same spin meet, a fact
which counterbalances the singular behavior of the derivatives of the interaction
potential and enables us to estimate the terms under consideration.

To master the most singular terms, the Hardy estimate from Lemma 4.1 has to be
complemented by a second, closely related estimate for functions of three variables.

Lemma 6.4. For all infinitely differentiable functions v in the variable x ∈ R
3 that

have a compact support and that vanish at the origin,
∫

1
|x|4 v2 dx ≤ 4

∫
1
|x|2 |∇v|2 dx . (6.31)

Proof. The estimate is proved in the same way as the Hardy inequality (4.8). Setting
temporarily d(x) = |x|, it starts from the relation

1
d4 = − 1

3
∇

( 1
d3

)
·∇d,

with the help of which (6.31) is proved for functions v that vanish on a neighborhood
of the origin. To transfer this estimate to functions v that vanish only at the origin
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itself, one has to utilize that in this case there exists a constant K with

|v(x)| ≤ K|x|

and can then complete the proof in the same way as that of (4.8) with help of the
dominated convergence theorem, multiplying v with cut-off functions. ��
It should be noted that the estimate (6.31) does not hold for functions not vanishing
at the origin since the function x → 1/|x|4 is not locally integrable in three space
dimensions, which is the source of our problems.

The single parts of which the electron-electron interaction potential is composed
involve only two electrons so that the estimates that we have to prove are essentially
two-electron estimates. To simplify the notation, we restrict ourselves for a while to
the two-electron case and denote the three-dimensional coordinate vectors of these
electrons by x and y. Correspondingly, the real numbers x1, x2, and x3 and y1, y2,
and y3 are the components of these vectors. For abbreviation, let

φ(x,y) =
1

|x− y| . (6.32)

In this notation, our task is essentially to estimate the integrals like

∫
φu

3

∑
k,�=1

∂ 4v

∂x2
k ∂y2

�

d(x,y) (6.33)

for infinitely differentiable functions u and v that have a compact support and that
are antisymmetric under the exchange of x and y.

The first step is to combine the inequality (6.31) and the Hardy inequality (4.8)
to the estimate for antisymmetric functions on which our argumentation is founded.

Lemma 6.5. For all infinitely differentiable functions u in the variables x,y ∈ R
3

that have a compact support and are antisymmetric under the exchange of x and y,

∫
1

|x− y|4 u2 d(x,y) ≤ 16
3

∑
k,�=1

∫ ( ∂ 2u
∂xk∂y�

)2
d(x,y). (6.34)

Proof. Since such functions vanish where y = x, Lemma 6.4 yields

∫ (∫
1

|x− y|4 u2 dy

)
dx ≤

∫ (
4 ∑

�

∫
1

|x− y|2
( ∂u

∂y�

)2
dy

)
dx.

By the Hardy inequality from Lemma 4.1,

∫ (∫
1

|x− y|2
( ∂u

∂y�

)2
dx

)
dy ≤

∫ (
4 ∑

k

∫ ( ∂ 2u
∂xk∂y�

)2
dx

)
dy.

The proposition follows with Fubini’s theorem. ��
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The counterparts to this estimate are the following variants

∫
1

|x− y|2 v2 d(x,y) ≤ 4
3

∑
k=1

∫ ( ∂v
∂xk

)2
d(x,y), (6.35)

∫
1

|x− y|2 v2 d(x,y) ≤ 4
3

∑
�=1

∫ ( ∂v
∂y�

)2
d(x,y) (6.36)

of the Hardy inequality (4.8) that, in contrast to (6.34), do not rely on the antisym-
metry of the considered function. They are proved in the same way as (6.34). The
argumentation in this section centers in the estimates (6.34), (6.35), and (6.36).

Now we can begin to estimate the integrals (6.33). In the first step we shift one
of the partial derivatives from the function v to the function u.

Lemma 6.6. Let u and v be infinitely differentiable functions in the variables x and
y in R

3 that have a compact support. Then, for all indices k and �,

∫
φu

∂ 4v

∂x2
k ∂y2

�

d(x,y) = −
∫ ∂

∂xk
(φu)

∂ 3v

∂xk∂y2
�

d(x,y). (6.37)

Proof. The problem is the singularity of φ that does not allow to integrate by parts
directly. Let ϕ(r) thus be a continuously differentiable function of the real variable
r ≥ 0 that coincides with the function 1/r for r ≥ 1 and is constant for r ≤ 1/2. Let

φn(x,y) = nϕ(n |x− y|), n ∈ N.

The φn are then itself continuously differentiable and coincide with the original
function φ for all x and y of distance |x− y| ≥ 1/n. Integration by parts leads to

∫
φnu

∂ 4v

∂x2
k ∂y2

�

d(x,y) = −
∫ ∂

∂xk
(φnu)

∂ 3v

∂xk∂y2
�

d(x,y).

The integral on the right hand side of this equation splits, because of

∂
∂xk

(φnu) =
∂φn

∂xk
u + φn

∂u
∂xk

,

into two parts. We claim that there is a constant M, independent of n, such that

∣
∣∣

∂
∂xk

(φnu)
∣
∣∣ ≤ M

|x− y|2 .

This is because, for the function φn itself and its first-order derivatives, the estimates

|φn| ≤ c
|x− y| ,

∣
∣∣
∂φn

∂xk

∣
∣∣ ≤ c

|x− y|2 ,
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hold, where c is independent of n. As u vanishes outside a bounded set, the integrands
are thus uniformly bounded by an integrable function. Since the φn and their first-
order partial derivatives converge to φ and its respective derivatives outside the
diagonal x = y, a set of measure zero, the dominated convergence theorem yields

lim
n→∞

∫ ∂
∂xk

(φnu)
∂ 3v

∂xk∂y2
�

d(x,y) =
∫ ∂

∂xk
(φu)

∂ 3v

∂xk∂y2
�

d(x,y).

For the other side of the equation, one can argue correspondingly and obtains

lim
n→∞

∫
φnu

∂ 4v

∂x2
k ∂y2

�

d(x,y) =
∫

φu
∂ 4v

∂x2
k ∂y2

�

d(x,y),

which then completes the proof of (6.37). ��
The next estimate is the place where the antisymmetry crucially enters. It depends
on the fact that the corresponding functions u vanish on the diagonal x = y.

Lemma 6.7. Let u and v be infinitely differentiable functions in the variables x,y in
R

3 that have a compact support and let the function u be antisymmetric with respect
to the exchange of x and y. Then the estimate

3

∑
k,�=1

∫
φu

∂ 4v

∂x2
k ∂y2

�

d(x,y) (6.38)

≤ C

{ 3

∑
k,�=1

∥∥
∥

∂ 2u
∂xk∂y�

∥∥
∥

2

0

}1/2{ 3

∑
k,�=1

∣∣
∣

∂ 2v
∂xk∂y�

∣∣
∣
2

1

}1/2

,

holds, where the constant C is specified in the proof.

Proof. We first rewrite the expression to be estimated with help of (6.37) and obtain

−
3

∑
k,�=1

∫
1

|x− y|
∂u
∂xk

∂ 3v

∂xk∂y2
�

d(x,y) +
3

∑
k,�=1

∫
1

|x− y|2
xk− yk

|x− y| u
∂ 3v

∂xk∂y2
�

d(x,y).

The first double sum is estimated by the expression

(
3

3

∑
k=1

∫
1

|x− y|2
( ∂u

∂xk

)2
d(x,y)

)1/2( 3

∑
k,�=1

∫ ( ∂ 3v

∂xk∂y2
�

)2
d(x,y)

)1/2

.

As u vanishes on the diagonal x = y, there is a constant K with

|u(x,y)| ≤ K |x− y|.

The second double sum is thus bounded by the therefore finite expression
(

3
∫

1
|x− y|4 u2 d(x,y)

)1/2( 3

∑
k,�=1

∫ ( ∂ 3v

∂xk∂y2
�

)2
d(x,y)

)1/2

.
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The estimates (6.36), applied to the partial derivatives of u, and (6.34) show that the
estimate (6.38) holds with C = 6

√
3. Since the role of x and y can be exchanged, the

constant can be improved to C = 3
√

6, combining the two resulting estimates. ��
Correspondingly one proves the estimate

3

∑
k=1

∫
φu

∂ 2v

∂x2
k

d(x,y) ≤ 2

{ 3

∑
k=1

∥
∥
∥

∂u
∂xk

∥
∥
∥

2

0

}1/2{ 3

∑
k=1

∣
∣
∣

∂v
∂xk

∣
∣
∣
2

1

}1/2

(6.39)

applying (6.35) to u, and finally, with help of (6.35) and (6.36), the estimate

∫
φuv d(x,y) ≤

√
2 ‖u‖0|v |1 (6.40)

for all infinitely differentiable functions u and v that have a compact support, in
these cases regardless their antisymmetry with respect to the exchange of x and y.

We can now return to the full set of the electron coordinate vectors x1,x2, . . . ,xN

in R
3 and the old notation and merge the building blocks (6.38) to (6.40) into the

last missing estimate for the interaction potentials.

Theorem 6.6. For all infinitely differentiable functions u ∈ DI and v ∈ D ,

(Veeu,L v) ≤ CN3/2 |u |I,0 |v |I,1, (6.41)

where the constant C ≤ 3
√

3 is independent of the number N of electrons.

Proof. We first turn our attention to the interaction potential

φi j(x) =
1

|xi − x j|
of two electrons i �= j and estimate the expression

∫
φi juL v dx = (−1)|I| ∑

α∈I∗

∫
φi juL2

α v dx.

The strategy is the same as in the previous section. We split the operators Lα into
the product of operators Lβ that do not act upon the components of xi and x j and a
remaining part. Here we have to distinguish three cases, namely that both indices i
and j belong to the index set I, that only one of these indices belongs to I, and that
none of these indices is contained in I.

The first case is the most critical one because of the singularities of the derivatives
of the interaction potential and the dependence on the antisymmetry. It is therefore
considered first. Let Ii j = I\{i, j} �= /0 and let I∗i j again denote the set of the mappings
β that assign one of the components 1, 2, or 3 to an electron index in Ii j. The set of
the differential operators Lα , α ∈ I∗, coincides then with the set of the operators

∂
∂xi,k

∂
∂xi,�

Lβ , k, � = 1,2,3, β ∈ I∗i j,
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and the integral to be estimated can, as in the previous section, be written as sum

(−1)|I| ∑
α∈I∗

∫
φi juL2

α v dx = ∑
β∈I∗i j

∫ ( 3

∑
k,l=1

∫∫
φi jLβ u

∂ 4Lβ v

∂x2
i,k∂x2

j,�

dxidx j

)
dx̃,

where x is split into xi, x j, and the remaining components x̃. Like u itself, its partial
derivatives Lβ u, β ∈ I∗i j, are antisymmetric under the exchange of xi and x j. This is
due to the fact that the operators Lβ do not act upon the components of xi and x j and
can be seen as follows. Let w be an arbitrary function that changes its sign under
the permutation P that exchanges xi for x j and let e �= 0 be a vector that is invariant
under P. Let w̃(x) = w(Px). Since e = Pe and w̃(x) = −w(x), then

(∇w)(Px) · e = PT (∇w)(Px) · e = (∇w̃)(x) · e = − (∇w)(x) · e,

so that the directional derivative of w in direction e inherits the antisymmetry of w.
The proposition follows from that by induction on the order of Lβ . The inner inte-
grals on the right hand side of the equation above can therefore be estimated with
the help of (6.38). In the same fashion as in the previous section, finally the estimate

(−1)|I| ∑
α∈I∗

∫
φi juL2

α v dx ≤ C |u |I,0
{
|∇iv|2I,0 + |∇ jv|2I,0

}1/2
(6.42)

follows, where C ≤ 3
√

6 is the same constant as in (6.38). The case that Ii j is empty,
that is, I consists only of the indices i and j, is treated in the same way.

In the case that i ∈ I, but j /∈ I, we set Ii = I \{i} and denote by I∗i again the set of
the mappings β from Ii to the set of the indices 1, 2, and 3. The set of the differential
operators Lα , α ∈ I∗, then coincides with the set of the operators

∂
∂xi,k

Lβ , k = 1,2,3, β ∈ I∗i ,

and the integral to be estimated splits into the sum

(−1)|I| ∑
α∈I∗

∫
φi juL2

α v dx = − ∑
β∈I∗i

∫ ( 3

∑
k=1

∫∫
φi jLβ u

∂ 2Lβ v

∂x2
i,k

dxidx j

)
dx̃.

The inner sum on the right hand side can be estimated with help of (6.39), which
then finally again results in the estimate (6.42), where C ≤ 2 is now the constant
from (6.39). The same estimate holds, of course, for the case that i /∈ I and j ∈ I.

If neither i nor j are contained in I, one simply starts from

(−1)|I| ∑
α∈I∗

∫
φi juL2

αv dx = ∑
α∈I∗

∫ (∫∫
φi jLα uLα v dxidx j

)
dx̃,
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from which one obtains, with the help of (6.40), again the estimate (6.42), now with
a constant C ≤√

2. Independent of whether two, one, or none of the indices i and j
is contained in I, the estimate (6.42) holds with a constant C ≤ 3

√
6.

The proposition finally follows from the elementary estimate

1
2 ∑

i, j

(
η2

i + η2
j

)1/2 ≤ 1√
2

N3/2
(
∑

i
η2

i

)1/2
, (6.43)

summing over all particle pairs. ��
Again, the dependence of the bound on the problem parameters, here the number N
of electrons, enters only in the very last step, through the estimate (6.43).

6.5 The Regularity of the Weighted Eigenfunctions

We are now in the position to prove that the solutions u ∈ H 1
I of the modified eigen-

value equation (6.11) are located in the space X 1
I from Sect. 6.2, the completion of

the space DI of the infinitely differentiable functions (4.3) with compact support that
are antisymmetric under the exchange of arguments xi and x j in R

3 for all indices
i �= j in the given subset I of the set of indices 1, . . . ,N under a norm measuring
high-order mixed derivatives. The key to our results is the estimates for the low-
order terms, those discussed in the preceding two sections, that can be summarized
as follows. For all functions u in DI and v in D , first the estimates

(Vu,L v) ≤C θ (N,Z) |u |I,0 |v |I,1, s(u,L v) ≤ 3 |u |I,0 |v |I,1 (6.44)

in terms of the seminorms (6.15) hold, where the first one for the term with the
interaction potential (4.9) represents a combination of the estimates (6.26) from
Theorem 6.3 and (6.41) from Theorem 6.6, and the second one is the estimate (6.29)
from Theorem 6.4. The constant C is independent of the number N of electrons,
of the considered index set I, of the number, the position, and the charge of the
nuclei, and particularly of their total charge Z. The proofs yielded the upper bound
C = 2 + 3

√
3 for C. The quantity θ (N,Z) has been defined in (4.10) and covers the

growth of the bound in N and Z. The antisymmetry of the functions u with respect
to the exchange of the corresponding electron coordinates substantially enters into
the proof of the first estimate, since without this property it is not possible to get a
handle on the electron-electron interaction terms. The estimates (6.44) potentially
involving very high-order derivatives are complemented by the estimates

(Vu,v)≤ 3θ (N,Z)‖u‖0 |v |1, s(u,v) ≤ 3‖u‖0 |v |1 (6.45)

from Theorem 4.1 and Theorem 6.5 for functions u and v in D , that generally hold
and do not rely on the given antisymmetry properties. The estimates show that the
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bilinear forms (Vu,L v) and s(u,L v) can be uniquely extended from DI ×DI to
bounded bilinear forms on X 0

I ×X 1
I , and that particularly the bilinear form

ã(u,v) = a(u,εv +L v) + γ s(u,εv +L v) (6.46)

from Sect. 6.2 can be uniquely extended from DI to a bounded bilinear form on X 1
I .

For the ease of presentation, we will keep the notation (Vu,L v) and s(u,L v) for
arguments u ∈ X 0

I and v ∈ X 1
I and mean the extended forms then, where, of course,

some care has to be taken to avoid misinterpretations and fallacies.
The second ingredient of the proof of the regularity theorems is Fourier analysis.

Recall from Chap. 2 the definition of the space S of the rapidly decreasing func-
tions. As with DI , let SI denotes the space of the rapidly decreasing functions of
corresponding antisymmetry. The seminorms (6.15) of a rapidly decreasing function
read in terms of its Fourier transform

|u |2I,s =
∫ ( N

∑
i=1

|ωi|2
)s(

∏
i∈I

|ωi|2
)
|û(ω)|2 dω . (6.47)

Correspondingly, the H1-seminorm |u |1 and the L2-norm ‖u‖0 = |u |0 are given by

|u |2s =
∫ ( N

∑
i=1

|ωi|2
)s

|û(ω)|2 dω . (6.48)

We call a rapidly decreasing function a rapidly decreasing high-frequency function
if its Fourier transform vanishes on a ball of radius Ω , to be fixed later, around the
origin of the frequency space. The closures of the corresponding space

SI,H = {v ∈ SI | v̂(ω)= 0 for |ω | ≤ Ω } (6.49)

of rapidly decreasing functions with the given symmetry properties in H 1
I and X 1

I ,
respectively, are the Hilbert spaces H 1

I,H and X 1
I,H . The closures of the space

SI,L = {v ∈ SI | v̂(ω)= 0 for |ω | ≥ Ω } (6.50)

in H 1
I and X 1

I are the spaces H 1
I,L and X 1

I,L, respectively, of low-frequency functions.
The low-frequency and the high-frequency functions decompose the spaces

H 1
I = H 1

I,L ⊕H 1
I,H , X 1

I = X 1
I,L ⊕X 1

I,H (6.51)

into orthogonal parts. By the Fourier representation (6.47) and (6.48) of the norms,

|uL|I,s ≤ Ω s
(

Ω
√| I |

)| I |
‖uL‖0 (6.52)
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for the low-frequency functions uL ∈ SI,L. The space H 1
I,L and its subspace X 1

I,L
therefore coincide. The relation (6.52) transfers to all functions in these spaces. In
fact, the functions in H 1

I,L are infinitely differentiable and all their derivatives are
square integrable. Fourier analysis also shows that

‖uH‖0 ≤ Ω−1|uH |1, |uH |I,0 ≤ Ω−1|uH |I,1 (6.53)

for all high-frequency functions in uH in H 1
I,H and X 1

I,H respectively. On H 1
I,H , the

seminorm | · |1 and the norm ‖ · ‖1 thus are equivalent. For uL ∈ H 1
I,L, conversely

|uL|1 ≤ Ω ‖uL‖0, |uL|I,1 ≤ Ω |uL|I,0. (6.54)

The central observation, on which the proof of the regularity theorems is based,
is that the low-order terms in the bilinear form in the second-order equation (6.11),
as well as in the high-order bilinear form (6.23), behave like small perturbations on
the corresponding spaces of high-frequency functions. The reason is that the norms
of such functions themselves and that of their derivatives as well can be estimated
by the norms of derivatives of higher order. By (6.44) and (6.53),

(VuH,L vH) ≤C θ (N,Z)Ω−1|uH |I,1 |vH |I,1, (6.55)

s(uH ,L vH) ≤ 3Ω−1|uH |I,1 |vH |I,1 (6.56)

for all uH ,vH ∈ SI,H . Correspondingly, by (6.45) and (6.53), for these uH and vH

(VuH,vH) ≤ 3θ (N,Z)Ω−1|uH |1 |vH |1, (6.57)

s(uH ,vH) ≤ 3Ω−1|uH |1 |vH |1. (6.58)

This implies that the two bilinear forms become coercive on the corresponding
spaces of high-frequency functions, provided that the bound Ω separating the low
from the high frequencies is chosen large enough. If we assume C ≥ 3 and choose

Ω ≥ 4C θ (N,Z)+ 12γ, (6.59)

for all high-frequency functions uH ∈ H 1
I,H the estimate

a(uH ,uH)+ γ s(uH ,uH) ≥ 1
4
|uH |21 (6.60)

holds, and correspondingly, for the functions uH ∈ X 1
I,H , the estimate

ã(uH ,uH) ≥ 1
4

(
ε |uH |21 + |uH|2I,1

)
. (6.61)

The claimed coercivity follows from that by the equivalence of the seminorm | · |1
and the norm ‖·‖1 on the given spaces of high-frequency functions. We still combine
the low-order terms in ã(u,v), respectively a(u,v), in the bilinear forms
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b̃(ϕ ,v) = (Vϕ ,εv +L v)+ γ s(ϕ ,εv +L v), (6.62)

b(ϕ ,χ) = (V ϕ ,χ)+ γ s(ϕ ,χ) (6.63)

on X 0
I ×X 1

I and L2 ×H1, respectively. They satisfy, for Ω as in (6.59), the estimates

b̃(ϕ ,v) ≤ 1
4

Ω
(
ε ‖ϕ‖2

0 + |ϕ |2I,0
)1/2(ε |v |21 + |v |2I,1

)1/2
, (6.64)

b(ϕ ,χ) ≤ 1
4

Ω ‖ϕ‖0 |χ |1 (6.65)

for functions ϕ , v, and χ in the corresponding spaces.
Due to the orthogonality properties of the low- and the high-frequency functions,

the low- and the high-frequency part of a solution of the eigenvalue equation (6.11)

a(u,χ)+ γ s(u,χ) = λ (u,χ), χ ∈ H 1
I , (6.66)

interact only by the low-order part in the bilinear form on the left hand side. The aim
is to control the high-frequency part and its mixed derivatives by the low-frequency
part of the given solution. The first step to reach this goal is the following lemma
that immediately results from the orthogonality of the low- and the high-frequency
functions both with respect to the L2 - and the H1-inner product.

Lemma 6.8. Let u = uL + uH be the decomposition of a solution u ∈ H 1
I of the

equation (6.11), (6.66) into its low-frequency and its high-frequency part. Then

a(uH ,χH)+ γ s(uH ,χH)−λ (uH,χH) = −b(uL,χH), χH ∈ H 1
I,H . (6.67)

We will keep the low-frequency part uL fixed for a while and will consider (6.67)
as an equation for the high-frequency part uH . We will show that such equations are
uniquely solvable for frequency bounds (6.59) and that the regularity of the right
hand side transfers to the regularity of the solution.

Lemma 6.9. For frequency bounds Ω as in (6.59), the equation

a(uH ,χH)+ γ s(uH ,χH)+ μ(uH,χH) = b(ϕ ,χH), χH ∈ H 1
I,H , (6.68)

possesses a unique solution uH ∈ H 1
I,H for all given functions ϕ ∈ L2 and arbitrary

nonnegative parameters μ . This solution satisfies the estimates

‖uH‖0 ≤ ‖ϕ‖0, |uH |1 ≤ Ω ‖ϕ‖0. (6.69)

Proof. As μ ≥ 0, the additional term does not alter the coercivity (6.60) of the
bilinear form on the left hand side of the equation (6.68). The Lax-Milgram theo-
rem hence guarantees the existence and uniqueness of a solution. The estimate for
the H1-seminorm of the solution follows directly from (6.60) and (6.65) inserting
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χH =uH . The L2-norm of the solution can be estimated by its H1-seminorm utiliz-
ing the property (6.53) of high-frequency functions. ��
A corresponding result holds for the high-order counterpart of the equation (6.68),
that formally results from this equation replacing the test function χH by test func-
tions εvH +L vH , with all the care that has to be taken with this type of arguments.

Lemma 6.10. For frequency bounds Ω as in (6.59), the equation

ã(uH ,vH)+ μ(uH ,εvH +L vH) = b̃(ϕ ,vH), vH ∈ X 1
I,H , (6.70)

possesses a unique solution uH ∈ X 1
I,H for all given functions ϕ ∈ X 0

I and arbitrary
nonnegative parameters μ . This solution satisfies the estimate

|uH |I,1 ≤ Ω
(
ε ‖ϕ‖2

0 + |ϕ |2I,0
)1/2

. (6.71)

Proof. As μ ≥ 0 and (u,εu + L u) ≥ 0 for u ∈ X 1
I , the proposition again follows

from the coercivity (6.61) of the bilinear form ã(uH ,vH), from the bound (6.64) for
the bilinear form b̃(ϕ ,v) on the right hand side, and the Lax-Milgram theorem. ��
We want to show that the solutions of the equations (6.68) and (6.70) coincide for
ϕ ∈ X 0

I . For that we need the following, at first sight seemingly obvious lemma:

Lemma 6.11. The solution uH ∈ X 1
I,H of the equation (6.70) satisfies the equation

(6.68) for all rapidly decreasing functions χH ∈ SI,H of the particular form

χH = εvH +L vH , vH ∈ SI,H . (6.72)

Proof. It suffices to show that the representation (6.46) holds not only for functions
u and v in DI but for all functions u ∈ X 1

I and v ∈ SI , and to prove a corresponding
relation for the bilinear form (6.62), that, in a strict sense, is defined by (6.62) only
for functions ϕ and v in DI and then continuously extended to X 0

I ×X 1
I . We begin

with the case that u ∈ DI and approximate v ∈ SI by the functions

vR(x) = φ
( x

R

)
v(x), R > 0,

in DI , where φ is an infinitely differentiable, rotationally symmetric function with
values φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for |x| ≥ 2. For sufficiently large R, vR and
v coincide on the support of u. As vR tends to v in the X 1

I -norm, by the definition
(6.46) of the bilinear form ã(u,v) for functions in DI

ã(u,v) = lim
R→∞

ã(u,vR) = a(u,εv +L v) + γ s(u,εv +L v)

for all u ∈ DI and v ∈ SI . Since the left and the right hand sides of this equation
represent bounded linear functionals in u ∈ X 1

I for v ∈ SI given, and since DI is a
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dense subset of X 1
I , the equation transfers to all u∈X 1

I and v∈SI . Correspondingly,

b̃(ϕ ,v) = b(ϕ ,εv +L v)

for all ϕ ∈ X 0
I and v ∈ SI , from which the proposition then follows. ��

The argument that closes the gap between the equations (6.68) and (6.70) is the
observation that every function in χH ∈ SI,H can be represented in the form (6.72).
The proof requires that the parameter ε is strictly positive and breaks down for ε = 0.

Lemma 6.12. For all rapidly decreasing high-frequency functions χH ∈SI,H there
is a rapidly decreasing high-frequency function vH ∈ SI,H that solves the equation

ε vH +L vH = χH . (6.73)

Proof. The antisymmetry of a function with respect to the given permutations trans-
fers to its Fourier transform and vice versa. The function vH ∈ SI,H given by

v̂H(ω) =
1

ε + ∏i∈I |ωi|2 χ̂H(ω)

has by this reason the required symmetry properties and solves the equation. ��
The solution of the modified equation (6.70) therefore satisfies the equation (6.68)
for all χH ∈SI,H and, as SI,H is dense in H 1

I,H , for all χH ∈H 1
I,H . Since the equation

(6.68) possesses only one solution, the solutions of both equations coincide for ϕ in
X 0

I given. Since ε > 0 was arbitrary, this observation and (6.53) prove:

Lemma 6.13. If the bound Ω separating the high from the low frequencies is cho-
sen according to (6.59) and ϕ ∈X 0

I , the solution uH ∈H 1
I,H of the equation (6.68) is

contained in the space X 1
I,H and satisfies the estimates

|uH |I,0 ≤ |ϕ |I,0, |uH |I,1 ≤ Ω |ϕ |I,0. (6.74)

Since the low-frequency part uL of the solution u of the equation (6.11), (6.66) is
contained in X 0

I and even in X 1
I , we can apply the result just proved to the equation

(6.67), from which it follows that also the high-frequency part uH of u and with
that u itself are contained in X 1

I . The quantitative version of this result reads:

Theorem 6.7. The solutions u ∈ H 1
I of the modified eigenvalue problem (6.11) for

negative λ are contained in X 1
I . For frequency bounds (6.59), their seminorms

(6.15), (6.19) can be estimated as follows in terms of their low-frequency parts:

|u |I,0 ≤
√

2 |uL|I,0, |u |I,1 ≤
√

2Ω |uL|I,0. (6.75)
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Proof. By Lemma 6.13, the high frequency parts uH of these u satisfy the estimates

|uH |I,0 ≤ |uL|I,0, |uH |I,1 ≤ Ω |uL|I,0.

They can thus be controlled by the corresponding low-frequency parts uL inde-
pendent of the given λ < 0. The proposition follows from the orthogonality of the
decomposition into the two parts uL and uH and the inverse estimate in (6.54). ��
The estimates (6.75) for the mixed derivatives of the solutions have a counterpart
for the solutions themselves that follows in the same way directly from Lemma 6.9.

Theorem 6.8. Under the same assumptions as in Theorem 6.7, the solutions of the
modified eigenvalue problem (6.11) satisfy the two estimates

‖u‖0 ≤
√

2‖uL‖0, |u |1 ≤
√

2Ω ‖uL‖0. (6.76)

A solution u ∈ H 1
I of the equation (6.11), (6.66) is trivially contained in H 1

I′ for all
nonempty subsets I′ of I. As s(u,v) is obviously invariant under the exchange of all
electrons i in the subset I′ of I, Theorem 6.2 ensures that u solves the equations

a(u,χ)+ γ s(u,χ) = λ (u,χ), χ ∈ H 1
I′ , (6.77)

on all of these spaces H 1
I′ and thus satisfies, by Theorem 6.7, the estimates

|u |I′,0 ≤
√

2 |uL|I′,0, |u |I′,1 ≤
√

2Ω |uL|I′,0 (6.78)

for all nonempty subsets I′ of the given index set I. Therefore the norms given by

|||u|||2I,1 =
∫ ( N

∑
i=1

∣∣
∣
ωi

Ω

∣∣
∣
2
)

∏
i∈I

(
1 +

∣∣
∣
ωi

Ω

∣∣
∣
2
)
|û(ω)|2 dω , (6.79)

|||u|||2I,0 =
∫

∏
i∈I

(
1 +

∣
∣∣
ωi

Ω

∣
∣∣
2
)
|û(ω)|2 dω . (6.80)

of these functions, that combine the H1-norm and H1-norms of the corresponding
mixed derivatives, remain finite. The frequency bound Ω fixes a length scale. Such
length scales naturally appear in every estimate that relates derivatives of distinct or-
der to each other. They have to be incorporated in the definition of the corresponding
norms to compensate the different scaling behavior of the derivatives and to obtain
physically meaningful estimates that are independent of the choice of units.

With these notations, we can now formulate and prove our final and conclusive
regularity theorem for the solutions of the modified eigenvalue problem (6.11):

Theorem 6.9. The solutions u ∈ H 1
I of the modified eigenvalue problem (6.11) for

negative values λ satisfy, for frequency bounds (6.59), the estimates

|||u|||I,0 ≤
√

2e ‖u‖0, |||u|||I,1 ≤
√

2e ‖u‖0. (6.81)
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Proof. By the estimates (6.76) for the L2-norm of the solution itself, respectively
the estimates (6.78) for the L2-norms of its corresponding mixed derivatives,

∫

∏
i∈I′

∣
∣
∣
ωi

Ω

∣
∣
∣
2 |û(ω)|2 dω ≤ 2

∫

|ω|≤Ω
∏
i∈I′

∣
∣
∣
ωi

Ω

∣
∣
∣
2 |û(ω)|2 dω (6.82)

for all subsets I′ of I, where the empty product is by definition 1. As

∑
I′⊆I

∏
i∈I′

∣
∣∣
ωi

Ω

∣
∣∣
2
= ∏

i∈I

(
1 +

∣
∣∣
ωi

Ω

∣
∣∣
2
)

, (6.83)

one obtains from (6.82) first the estimate

|||u|||2I,0 ≤ 2
∫

|ω|≤Ω
∏
i∈I

(
1 +

∣
∣
∣
ωi

Ω

∣
∣
∣
2
)
|û(ω)|2 dω . (6.84)

The product on the right hand side of (6.83) is, because of

∏
i∈I

(
1 +

∣
∣∣
ωi

Ω

∣
∣∣
2
)
≤ exp

(

∑
i∈I

∣
∣∣
ωi

Ω

∣
∣∣
2
)

, (6.85)

bounded by the constant e for all ω in the ball of radius Ω around the origin. This
proves the first of the two estimates. The second is treated in the same way. ��

Theorem 6.9 particularly states that the solutions u of the electronic Schrödinger
equation (4.30) itself possess high-order mixed derivatives. Only small portions of
the frequency domain substantially contribute to the wave functions. This remark
can be quantified with help of the notion of hyperbolic crosses, hyperboloid-like
regions in the frequency or momentum-space that consist of those ω for which

∏
i∈I−

(
1 +

∣∣
∣
ωi

Ω

∣∣
∣
2
)

+ ∏
i∈I+

(
1 +

∣∣
∣
ωi

Ω

∣∣
∣
2
)

≤ 1
ε2 , (6.86)

where ε > 0 is a control parameter that determines their size, and I− and I+ are
again the sets of the indices i of the electrons with spin σi = −1/2 and σi = +1/2
respectively. If uε denotes that part of the wave function whose Fourier transform
coincides with that of u on this domain and vanishes outside of it, the H1-error

‖u−uε‖1 = O(ε) (6.87)

tends to zero like O(ε) with increasing size of the crosses. This observation might
serve as a basis for the construction of approximation methods, for example utiliz-
ing the fact that functions like the projections uε with Fourier transforms vanishing
outside such hyperbolic crosses can be sampled on sparse grids [93]. The solutions
of the electronic Schrödinger equation in some sense behave like products



6.6 Atoms as Model Systems 111

u(x) =
N

∏
i=1

φi(xi) (6.88)

of orbitals, that is, exponentially decaying functions in H1, a fact that roughly justi-
fies the picture of atoms and molecules that we have in our minds.

It is remarkable that Theorem 6.9 not only ensures that the given high-order
mixed derivatives of the correspondingly exponentially weighted or unweighted
eigenfunctions exist and are square integrable, but also gives a rather explicit es-
timate for their norms in terms of the L2-norm of the weighted or unweighted
eigenfunctions themselves. The estimate (4.11) from Theorem 4.1 implies the lower
bound λ ≥−9θ 2/2 for the eigenvalues. As Σ(σ)≤ 0, this results in the upper bound

γ <
√

2(Σ(σ)−λ ) ≤ 3θ (N,Z) (6.89)

for the decay rates γ considered in Sect. 6.1. Theorem 6.9 tells us therefore that the
estimates (6.81) hold at least for the scaling parameters

Ω ≥ (4C + 36)
√

N max(N,Z), (6.90)

independent of the considered eigenvalue below the ionization threshold, and in par-
ticular for the Ω that is equal to the right hand side. There is conversely a minimum

Ω ≤ (4C + 36)
√

N max(N,Z) (6.91)

independent of the choice of the coefficients θi in the definition of the exponential
weight (provided that the choice of the θi maintains the given antisymmetry, of
course) such that these estimates hold for all eigenfunctions for these eigenvalues.
This minimum Ω can principally be much smaller than the given upper bound and
fixes an intrinsic length scale of the considered atomic or molecular system.

6.6 Atoms as Model Systems

The scaling parameter Ω limits the local variation of the wave functions quantita-
tively. It can be assumed that the right hand side of (6.91) considerably overestimates
the optimum Ω for spatially extended molecules that are composed of a big number
of light atoms. The question is how sharp this bound is for compact systems with
many electrons tightly bound to the nuclei, like heavier atoms. Atoms are, in the
given Born-Oppenheimer approximation, described by the Hamilton operator

H =
N

∑
i=1

{
− 1

2
Δi − Z

|xi|
}

+
1
2

N

∑
i, j=1
i�= j

1
|xi − x j| . (6.92)

The first term covers the attraction of the electrons by the nucleus and the second
their interaction with each other. The crucial property that we utilize here is that the
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potential in this operator is homogeneous of degree minus one, i.e., that

V (ϑx) = ϑ−1V (x) (6.93)

for all ϑ > 0. The H1-seminorm and the L2-norm of eigenfunctions of such oper-
ators are linked to each other by the famous virial theorem, a proof of which we
include for the sake of completeness. This proof is essentially a reformulation of
that in [86] in terms of weak solutions of the eigenvalue problem.

Theorem 6.10. The H1-seminorm and the L2-norm of an eigenfunction u ∈ H1 for
the eigenvalue λ of the atomic Hamilton operator (6.92) are linked via the relation

|u |21 = −2λ‖u‖2
0. (6.94)

Proof. Let uϑ (x) = u(ϑx) for ϑ > 0. A short calculation only utilizing the fact that
u is an eigenfunction for the eigenvalue λ then shows that

∫
∇uϑ ·∇v dx = 2ϑ 2λ

∫
uϑ v dx − 2ϑ 2

∫
V (ϑx)uϑ v dx

for arbitrary test functions v ∈ H1. Because of V (ϑx) = ϑ−1V (x), this reduces to

∫
∇uϑ ·∇v dx = 2ϑ 2λ

∫
uϑ v dx − 2ϑ

∫
Vuϑ v dx.

On the other hand, for all test functions v ∈ H1,
∫

∇u ·∇v dx = 2λ
∫

uv dx − 2
∫

Vuv dx.

Setting v = u in the first and v = uϑ in the second case, for ϑ �= 1 it follows that

(ϑ + 1)λ
∫

uuϑ dx =
∫

Vuuϑ dx.

For all square integrable functions u and v

lim
ϑ→1

∫
v(x)u(ϑx)dx =

∫
v(x)u(x)dx,

as can be shown approximating u by continuous functions with bounded support.
Since for u ∈ H1 the product Vu is square integrable, too, this yields

2λ
∫

u2 dx =
∫

Vuu dx.

Using once more that u is an eigenfunction, one finally gets the proposition. ��
The virial theorem relates the expectation values of the kinetic energy, the potential
energy, and the total energy to each other, but also determines, through the different
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scaling behavior of both sides of the equation, the length scale on which the consid-
ered eigenfunction varies. Hence it is no surprise that a lower bound for the optimal
scaling parameter Ω can be derived in terms of the eigenvalues.

Theorem 6.11. If the estimates from Theorem 6.9 hold for the eigenfunction u in
H1(σ) for the eigenvalue λ of the atomic Hamilton operator (6.92), necessarily

Ω ≥
√

|λ |
e

. (6.95)

Proof. From the virial theorem, from the Fourier representation (6.48) of the
H1-seminorm and of the norm given by (6.79), and from Theorem 6.9 one gets

−2λ ‖u‖2
0 = |u |21 ≤ Ω 2 |||u|||2I,1 ≤ 2eΩ 2 ‖u‖2

0.

Because u �= 0, one can divide by the L2-norm of u and obtain the proposition. ��
Since the ionization threshold Σ(σ) is less than or equal to zero by Theorem 5.16,

the upper estimate resulting from Theorem 6.9 and the lower estimate just derived
resulting from the virial theorem lead to the bounds

√
|Λ(σ)| � Ω �

√
N max(N,Z)+

√
|Λ(σ)| (6.96)

for the optimum Ω that is independent of the considered eigenvalues λ < Σ(σ).
The second term on the right hand side of (6.96) that comes from the additional
part (6.9) in the equation (6.8) for the exponentially weighted eigenfunctions will
therefore never dominate the asymptotic behavior of the optimum Ω in N and Z.

The problem thus reduces to the question of how well the bound (6.91) reflects
the growth of the optimum scaling parameter Ω in N and Z for unweighted eigen-
functions, in which case the second term on the right hand side of (6.91) can be
omitted. To answer this question at least partially, we consider the operator

H =
N

∑
i=1

{
− 1

2
Δi − Z

|xi|
}

(6.97)

in which the electron-electron interaction is completely neglected and to which The-
orem 6.11 can be literally transferred. Due to the absence of the electron-electron
interaction potential, the estimates (6.81) hold then regardless of any symmetry
property. The eigenfunctions of this operator are linear combinations of the products

u(x) =
N

∏
i=1

φi(xi) (6.98)

of hydrogen-like wave functions, solutions of the Schrödinger equation

− 1
2

Δφ − Z
|x| φ = λ φ (6.99)
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for a single electron in the field of a nucleus of charge Z. The hydrogen-like
wave functions are explicitly known and are calculated in almost every textbook
on quantum mechanics; see Chap. 9 for details. The corresponding eigenvalues

λ = − Z2

2n2 , n = 1,2, . . . , (6.100)

are highly degenerate. The associated eigenspaces are spanned by the eigenfunc-
tions with the given principal quantum number n, the angular momentum quantum
numbers l = 0, . . . ,n− 1, and the magnetic quantum numbers m = −l, . . . , l and
have dimension n2. The knowledge about these eigenfunctions forms the basis of
our understanding of the periodic table.

If we ignore the Pauli principle, every product (6.98) becomes an admissible
eigenfunction. The ground state energy of the corresponding system is then N times
the minimum eigenvalue (6.100), i.e., λ = −NZ2/2, from which the lower bound

Ω � N1/2Z (6.101)

follows, which behaves like the upper bound (6.91) in the number N of electrons
and the nuclear charge Z for the case of neutral atoms or positively charged ions.
Thus neither the upper bound (6.91) nor the lower bound (6.95) can be improved
without bringing the Pauli principle or the electron-electron interaction into play.

If the Pauli principle is taken into account, the orbitals φi in (6.98) have to be par-
titioned into two groups associated with the electrons with spin up and spin down.
The orbitals in each group have to be linearly independent of each other as the prod-
uct otherwise vanishes under the corresponding antisymmetrization. That increases
the ground state energy and correspondingly decreases the lower bound for the scal-
ing parameter. Unlike a real atom, the system attains its minimum energy λ in states
in which the numbers of electrons with spin up and spin down differs at most by
one, that is, with at most one unpaired electron. Consider, for example, the case that
the electrons can be distributed to M doubly occupied shells n = 1,2, . . . ,M with 2n2

electrons in the shell n, n2 with spin up and n2 with spin down. Then λ = −MZ2.
Because N ∼ 2M3/3, the minimum eigenvalue hence behaves in the described situ-
ation like λ ∼ N1/3Z2 and the scaling parameter needs therefore to grow at least like

Ω � N1/6Z. (6.102)

There remains some gap between this lower bound and the upper bound (6.91), but
the estimate shows at least that the actual growth of the optimal scaling parameter
in N and Z is not substantially overestimated by the right hand side of (6.91) for
systems like the ones considered here.

In fact, the observed behavior is not restricted to the model Hamiltonian (6.97).
Lieb and Simon [61] proved that the minimum eigenvalue of the full operator (6.92)
grows like � Z7/3 with the nuclear charge Z in the case Z = N, i.e., of neutral sys-
tems, which confirms the lower estimate (6.102). A more detailed study [94] of the
product eigenfunctions (6.98) moreover shows that the optimum Ω behaves in this
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case indeed like the square root of the ground state energy, which can be explained
from the behavior of the orbitals. One may conjecture that this generally holds.

6.7 The Exponential Decay of the Mixed Derivatives

In Sect. 6.5 we have proven that the eigenfunctions themselves as well as the
correspondingly exponentially weighted eigenfunctions possess square integrable
high-order mixed weak derivatives. In this short concluding section it is shown that
the exponentially weighted mixed derivatives of the eigenfunctions are square inte-
grable. This follows essentially from the fact that the corresponding partial deriva-
tives of the exponential weight factors can be estimated by these factors themselves:

Theorem 6.12. Let Dνu = Lα u, Lα as in (6.17), be one of the weak partial deriva-
tives of the eigenfunction u whose existence and square integrability follows from
the results of Sect. 6.5, and let eF be one of the associated weight factors for which
Dν(eFu) has been shown to be square integrable too. The weighted derivatives

eFDνu, eF ∂
∂xi,k

Dν u (6.103)

are then square integrable as well.

Proof. The proof is based on the representation

Dν(eFu) = ∑
μ≤ν

eF FμDν−μ u

of the corresponding weak derivatives of eFu, that is a generalization of the product
rule from Lemma 6.1 and can be derived from it taking into account the special
structure of the multi-indices ν considered. The coefficient functions are products

Fμ(x) = γ |μ| ∏
i

θi
xi,α(i)

|xi|

that run over the components upon which Dμ acts. This representation allows us
to express eF Dνu in terms of Dν (eFu) and the weighted lower order derivatives
eF Dν−μu of u. Since the Fμ are uniformly bounded, the square integrability of
eF Dνu follows by induction on the order of differentiation. The square integrability
of the second function is proven differentiating the representation above. To cover
the resulting derivatives of the Fμ one needs again the Hardy inequality. ��
The exponential functions x → exp(F(x)) dominate every polynomial, regardless
the decay rate γ determined by the gap between the considered eigenvalue λ and the
ionization threshold. This results in the following corollary of Theorem 6.12:
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Theorem 6.13. Let Dνu = Lα u, Lα as in (6.17), be one of the weak partial deriva-
tives of the eigenfunction u whose existence and square integrability follows from
the results of Sect. 6.5, and let P be an arbitrary polynomial. Then

PDνu, P
∂

∂xi,k
Dν u ∈ L2. (6.104)

This statement can again be reversed. For every multi-index μ the function Dν(x μu)
and the weighted derivative ωνD μ û of its Fourier transform are square integrable.
The μ are not subject to restrictions, due to the exponential decay of the wave func-
tions and their mixed derivatives, but the ν are, because of the restricted regularity.


	6 Existence and Decay of Mixed Derivatives
	6.1 A Modified Eigenvalue Problem
	6.2 Spaces of Functions with High-Order Mixed Derivatives
	6.3 Estimates for the Low-Order Terms, Part 1
	6.4 Estimates for the Low-Order Terms, Part 2
	6.5 The Regularity of the Weighted Eigenfunctions
	6.6 Atoms as Model Systems
	6.7 The Exponential Decay of the Mixed Derivatives



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




