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Preface

The electronic Schrödinger equation describes the motion of N electrons under
Coulomb interaction forces in a field of clamped nuclei. Solutions of this equation
depend on 3N variables, three spatial dimensions for each electron. Approximat-
ing the solutions is thus inordinately challenging, and it is conventionally believed
that a reduction to simplified models, such as those of the Hartree-Fock method
or density functional theory, is the only tenable approach. This book seeks to con-
vince the reader that this conventional wisdom need not be ironclad: the regularity
of the solutions, which increases with the number of electrons, the decay behavior
of their mixed derivatives, and the antisymmetry enforced by the Pauli principle
contribute properties that allow these functions to be approximated with an order
of complexity which comes arbitrarily close to that for a system of one or two
electrons. The present notes arose from lectures that I gave in Berlin during the
academic year 2008/09 to introduce beginning graduate students of mathematics
into this subject. They are kept on an intermediate level that should be accessible to
an audience of this kind as well as to physicists and theoretical chemists with a cor-
responding mathematical training. The text requires a good knowledge of analysis
to the extent taught at German universities in the first two years of study, including
Lebesgue integration and some basic facts on Banach and Hilbert spaces (comple-
tion, orthogonality, projection theorem, Lax-Milgram theorem, weak convergence),
but no deeper knowledge of the theory of partial differential equations, of functional
analysis, or quantum theory. I thank everybody with whom I had the opportunity
to discuss the topic during the past years, my coworkers both from Tübingen and
Berlin, above all Jerry Gagelman, who read this text very carefully, found many
inconsistencies, and to whom I owe many hints to improve my English, and par-
ticularly my colleagues Hanns Ruder, who raised my awareness of the physical
background, and Reinhold Schneider, who generously shared all his knowledge and
insight into quantum-chemical approximation methods. The Deutsche Forschungs-
gemeinschaft supported my work through several projects, inside and outside the
DFG-Research Center MATHEON. I dedicate this book to my sons Klaus and Max.

Berlin, September 2009 Harry Yserentant
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Chapter 1
Introduction and Outline

The approximation of high-dimensional functions, whether they be given explicitly
or implicitly as solutions of differential equations, represents one of the grand chal-
lenges of applied mathematics. High-dimensional problems arise in many fields of
application such as data analysis and statistics, but first of all in the sciences. One
of the most notorious and complicated problems of this type is the Schrödinger
equation. The Schrödinger equation forms the basis of quantum mechanics and is
of fundamental importance for our understanding of atoms and molecules. It links
chemistry to physics and describes a system of electrons and nuclei that interact by
Coulomb attraction and repulsion forces. As proposed by Born and Oppenheimer in
the nascency of quantum mechanics, the slower motion of the nuclei is mostly sepa-
rated from that of the electrons. This results in the electronic Schrödinger equation,
the problem to find the eigenvalues and eigenfunctions of the Hamilton operator

H = − 1
2

N

∑
i=1

Δi −
N

∑
i=1

K

∑
ν=1

Zν
|xi −aν | +

1
2

N

∑
i, j=1
i�= j

1
|xi − x j| (1.1)

written down here in dimensionless form or atomic units. It acts on functions with
arguments x1, . . . ,xN ∈R

3, which are associated with the positions of the considered
electrons. The aν are the fixed positions of the nuclei and the positive values Zν the
charges of the nuclei in multiples of the absolute electron charge.

The mathematical theory of the Schrödinger equation for a system of charged
particles is today a central, highly developed part of mathematical physics. Start-
ing point was Kato’s work [48] in which he showed that Hamilton operators of the
given form fit into the abstract framework that was laid by von Neumann [64] a
short time after Schrödinger [73] set up his equation and Born and Oppenheimer
[11] simplified it. An important breakthrough was the Hunziker-van Winter-Zhislin
theorem [46, 90, 98], which states that the spectrum of an atom or molecule con-
sists of isolated eigenvalues λ0 ≤ λ < Σ of finite multiplicity between a minimum
eigenvalue λ0 and a ionization bound Σ and an essential spectrum λ ≥ Σ . The math-
ematical theory of the Schrödinger equation traditionally centers on spectral theory.
Of at least equal importance in the given context are the regularity properties of
the eigenfunctions, whose study began with [49]. For newer developments in this
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c© Springer-Verlag Berlin Heidelberg 2010

1



2 1 Introduction and Outline

direction, see [32] and [45]. Surveys on the mathematical theory of Schrödinger
operators and the quantum N-body problem in particular are given in the articles
[47, 75] and in the monograph [38].

Because of its high-dimensionality, it seems to be completely hopeless to attack
the electronic Schrödinger equation directly. Dirac, one of the fathers of quantum
theory, commented on this in [25] with the often quoted words, “the underlying
physical laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated
to be soluble.” This situation has not changed much during the last eighty years,
and depending on what one understands by soluble, it will never change. Dirac
continued, “it therefore becomes desirable that approximate practical methods of ap-
plying quantum mechanics should be developed, which can lead to an explanation
of the main features of complex atomic systems without too much computation.”
Physicists and chemists followed Dirac’s advice and invented, during the previous
decades, a whole raft of such methods of steadily increasing sophistication. The
most prominent are the Hartree-Fock method that arose a short time after the ad-
vent of quantum mechanics, and its many variants, extensions, and successors, and
the density functional based methods, that have been introduced in the sixties of
the last century and are based on the observation that the ground state energy is
completely determined by the electron density. These methods present themselves a
challenge for mathematics. Lieb and Simon [60] proved the existence of a Hartree-
Fock ground state and Lions [62] the existence of infinitely many solutions of the
Hartree-Fock equations. The existence of solutions of the more general multiconfig-
uration Hartree-Fock equations was proven by Friesecke [33] and Lewin [59]. The
singularities of the solutions of the Hartree-Fock equations at the positions of the nu-
clei have recently been studied by Flad, Schneider, and Schulze [31]. Schneider [72]
gave an insightful interpretation and analysis of one of the most accurate methods
of this type, the coupled cluster method. See [42] and the Nobel lectures of Kohn
[51] and of Pople [66] for an overview on the present state of the art in quantum
chemistry, and [16, 56–58] for more mathematically oriented expositions.

The current methods are highly successful and are routinely applied in practice,
so that the goals Dirac formulated eighty years ago are today widely reached. Never-
theless the situation is not very satisfying from the point of view of a mathematician.
This is because the success of many of these methods can only be explained by
clever intuition. In the end, most of these methods resemble more simplified mod-
els than true, unbiased discretizations and, at least from the practical point of
view, do not allow for a systematic improvement of the approximations. That is
why mathematicians, encouraged by the progress in the approximation of high-
dimensional functions, have recently tried to find points of attack to treat the elec-
tronic Schrödinger equation directly. Promising tools are tensor product techniques
as they are developed on a broad basis in Wolfgang Hackbusch’s group at the Max
Planck Institute in Leipzig. Beylkin and Mohlenkamp [10] apply such techniques to
a reformulation of the electronic Schrödinger equation as an integral equation.

The present text intends to contribute to these developments. Aim is to identify
structural properties of the electronic wave functions, the solutions of the electronic
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Schrödinger equation, that will ideally enable breaking the curse of dimensional-
ity. We start from ideas to the approximation of high-dimensional functions that
emerged from the Russian school of numerical analysis and approximation theory
[7, 53, 54, 76] and have since then been reinvented several times [23, 24, 97]. They
are known under the name hyperbolic-cross or sparse-grid approximation. Since
the work of Zenger [97], approaches of this kind have become increasingly popu-
lar in the numerical solution of partial differential equations. For a comprehensive
survey of such techniques, see [15] and, as it regards their application to truly high-
dimensional problems, [35]. Among the first papers in which direct application of
such ideas has been tried for the Schrödinger equation are [34, 39, 43]. More recent
attempts are [27,28,36,37], and very recently the doctoral theses [40,96]. The order
of convergence that such methods can reach is limited since the involved basis func-
tions do not align with the singularities caused by the electron-electron interaction
[29,30]. Nevertheless such methods have a high potential as our considerations will
show, and be it only for the study of the complexity of electronic wave functions.

The principle behind these constructions can best be understood by means of a
model problem, the L2-approximation of functions u : R

d → R that are odd and 2π-
periodic in every coordinate direction on the cube Q = [−π ,π ]d by tensor products

φ(k,x) =
d

∏
i=1

φki(xi) (1.2)

of the one-dimensional trigonometric polynomials φ1,φ2,φ3, . . . given by

φki(ξ ) =
1√
π

sin(kiξ ). (1.3)

Functions with the given properties that are square integrable over Q can be ex-
panded into a multivariate Fourier series and possess therefore the representation

u(x) = ∑
k

û(k)φ(k,x), û(k) =
∫

Q
u(x)φ(k,x)dx, (1.4)

where the sum extends over the multi-indices k = (k1, . . . ,kd) ∈ N
d and its con-

vergence has to be understood in the L2-sense. The speed of convergence of this
series depends on that with which the expansion coefficients û(k) decay. Assume,
for example, that u is continuously differentiable, which implies that

|u |21 =
d

∑
i=1

∫

Q

∣

∣

∣

∂u
∂xi

∣

∣

∣

2
dx = ∑

k

( d

∑
i=1

k2
i

)

|û(k)|2 (1.5)

remains bounded. Consider now the finite part uε of the series (1.4) that extends over
the multi-indices k inside the ball of radius 1/ε around the origin, that is, for which

d

∑
i=1

k2
i <

1
ε2 . (1.6)
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Due to the orthonormality of the functions (1.2), uε is the best approximation of u by
a linear combination of the selected basis functions and satisfies the error estimate

‖u−uε‖2
0 ≤ ε2 ∑

k

( d

∑
i=1

k2
i

)

|û(k)|2 = ε2|u |21 (1.7)

in the L2-norm. Unfortunately, the number of these basis functions grows like

∼ 1
εd (1.8)

for ε tending to zero, which is out of every reach for higher space dimensions d. The
situation changes if one does not fix the smoothness of the functions to be approxi-
mated, but let it increase with the dimension. Assume, to avoid technicalities, that u
possesses corresponding partial derivatives and that these are continuous and set

|u |21,mix =
∫

Q

∣

∣

∣

∂ du
∂x1 . . .∂xd

∣

∣

∣

2
dx = ∑

k

( d

∏
i=1

ki

)2

|û(k)|2. (1.9)

Let u∗ε be the function represented by the finite part of the series (1.4) that extends
over the multi-indices k now not inside a ball but inside the hyperboloid given by

d

∏
i=1

ki <
1
ε
. (1.10)

The L2-error can then, by the same reasons as above, be estimated as

‖u−u∗ε‖2
0 ≤ ε2 ∑

k

( d

∏
i=1

ki

)2

|û(k)|2 = ε2|u |21,mix (1.11)

and tends again like O(ε) to zero. The difference is that the dimension of the space
spanned by the functions (1.2) for which (1.10) holds, now increases only like

∼ | logε |d−1 ε−1. (1.12)

This shows that a comparatively slow growth of the smoothness can help to re-
duce the complexity substantially, an observation that forms the basis of sparse grid
techniques. Due to the presence of the logarithmic term, the applicability of such
methods is, however, still limited to moderate space dimensions.

Because of the Pauli principle, physically admissible wave functions have typical
symmetry properties that will later be discussed in detail. Such symmetry prop-
erties represent a possibility to escape from this dilemma without forcing up the
smoothness requirements further, a fact that has first been noted by Hackbusch [39]
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and is basic for the present work. Assume that the functions u to be approximated
are antisymmetric with respect to the exchange of their variables, that is, that

u(Px) = sign(P)u(x) (1.13)

holds for all permutation matrices P. It is not astonishing that symmetry properties
such as the given one are immediately reflected in the expansion (1.4). Let

˜φ (k,x) =
1√
d!

∑
P

sign(P)φ(k,Px) (1.14)

denote the renormalized, antisymmetric parts of the functions (1.2), where the sums
extend over the d! permutation matrices P of order d. By means of the corresponding
permutations π of the indices 1, . . . ,d, they can be written as determinants

1√
d!

∑
π

sign(π)
d

∏
i=1

φki(xπ(i)) (1.15)

and easily evaluated in this way. For the functions u in the given symmetry class,
many terms in the expansion (1.4) can be combined. It finally collapses into

u(x) = ∑
k1>...>kd

(

u, ˜φ(k, ·))˜φ (k,x), (1.16)

where the expansion coefficients are the L2-inner products of u with the correspond-
ing functions (1.14). The number of basis functions needed to reach a given accuracy
is reduced by more than the factor d!, a significant gain. It can be shown (see Chap. 8
for details) that the number of ordered sequences k1 > k2 > .. . > kd of natural num-
bers that satisfy the condition (1.10) and with that also the number of basis function
(1.14) needed to reach the accuracy O(ε) does not increase faster than

∼ 1
ε1+ϑ , (1.17)

independent of d, where ϑ > 0 is an arbitrarily chosen small number. In cases such
as the given one the rate of convergence in terms of the number of basis functions
needed to reach a given accuracy becomes independent of the space dimension.

The present work is motivated by these observations. It has the aim to transfer
these techniques from our simple model problem to the electronic Schrödinger equa-
tion and to establish a mathematically sound basis for the development of numerical
approximation methods. One may wonder that this can work considering all the sin-
gularities in the Schrödinger equation. The deeper reason for that is that the terms
of which the interaction potentials are composed depend only on the coordinates
of one or two electrons. This and the symmetry properties enforced by the Pauli
principle suffice to show that the admissible solutions of the electronic Schrödinger
equation fit into the indicated framework.
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The Pauli principle is a basic physical principle that is associated with the indis-
tinguishability of electrons and is independent of the Schrödinger equation. It is of
fundamental importance for the structure of matter. Electrons have an internal prop-
erty called spin that behaves in many respects like angular momentum. Although
spin does not explicitly appear in the electronic Schrödinger equation, it influences
the structure of atoms and molecules decisively. The spin σi of an electron can attain
the two values ±1/2. Correspondingly, the true wave functions are of the form

ψ : (R3)N×{−1/2, 1/2}N → R : (x,σ) → ψ(x,σ), (1.18)

that is, depend not only on the positions xi, but also on the spins σi of the elec-
trons. The Pauli principle states that only those wave functions ψ are admissible
that change their sign under a simultaneous exchange of the positions xi and x j and
the spins σi and σ j of two electrons i and j, i.e., are antisymmetric in the sense that

ψ(Px,Pσ) = sign(P)ψ(x,σ) (1.19)

holds for arbitrary simultaneous permutations x→Px and σ →Pσ of the electron
positions and spins. The Pauli principle forces the admissible wave functions to van-
ish where xi = x j and σi = σ j for i �= j. Thus the probability that two electrons i and
j with the same spin meet is zero, a purely quantum mechanical effect. The admis-
sible solutions of the electronic Schrödinger equation are those that are components

u : (R3)N → R : x → ψ(x,σ) (1.20)

of an antisymmetric wave function (1.18). They are classified by the spin vector σ ,
being antisymmetric with respect to every permutation of the electrons that keeps
σ fixed. We will discuss these interrelations in Chap. 4 and will study the different
components (1.20) separately. Let σ be a spin vector that remains fixed throughout,
and let I− and I+ be the sets of the indices i of the electrons with spin σi = −1/2
and σi = +1/2. To both index sets we assign a norm that can best be expressed in
terms of the Fourier transforms of the considered functions and is given by

|||u|||2± =
∫

(

1 +
N

∑
i=1

∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

∏
i∈I±

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

|û(ω)|2 dω . (1.21)

These two norms are combined to a norm that is defined by

|||u|||2 = |||u|||2−+ |||u|||2+. (1.22)

The momentum vectors ωi ∈ R
3 form together the vector ω ∈ (R3)N . Their eu-

clidean length is |ωi|. The quantity Ω fixes a characteristic length scale that will be
discussed below. The norm given by (1.22) is related to the norm (1.9) and mea-
sures mixed derivatives whose order increases with the number of the electrons. It is
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first only defined for the functions in the space D(σ) of the infinitely differentiable
functions u with compact support that are antisymmetric in the described sense but
can be extended to the space X1(σ), the completion of D(σ) under this norm. The
space X1(σ) is a subspace of the Sobolev space H1 consisting of functions that
possess high-order mixed weak derivatives.

Our first result, which originates in the papers [92, 94] of the author and will be
proven in Chap. 6, is that the eigenfunctions u of the Schrödinger operator (1.1) of
corresponding (anti-)symmetry for eigenvalues below the ionization threshold, i.e.,
the infimum of the essential spectrum, are contained in X1(σ). This means that they
possess mixed weak derivatives whose order increases with the number of electrons.
The norm (1.22) of these eigenfunctions can be explicitly estimated in terms of the
L2-norm of the eigenfunctions. If Ω ≥C

√
N max(N,Z) is chosen

|||u||| ≤ 2
√

e ‖u‖0 (1.23)

holds, where Z denotes the total charge of the nuclei and C is a generic constant de-
pending neither on the number of the electrons nor on the number, the position, nor
the charge of the nuclei. Conversely, there is a minimum Ω ≤C

√
N max(N,Z) such

that (1.23) holds for all these eigenfunctions independent of the associated eigen-
value. There are hints that this Ω behaves like the square root of the ground state
energy. The estimate (1.23) depends on the partial antisymmetry of the eigenfunc-
tions, particularly on the fact that the admissible wave functions vanish at many of
the singular points of the electron-electron interaction potential, everywhere where
electrons with the same spin meet. Only small portions of the frequency domain
thus contribute substantially to the admissible eigenfunctions. This remark can be
quantified with help of the notion of hyperbolic crosses, hyperboloid-like regions in
the momentum space that consist of those ω for which

∏
i∈I−

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

+ ∏
i∈I+

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

≤ 1
ε2 , (1.24)

with ε > 0 given. If uε denotes that part of the wave function whose Fourier trans-
form coincides with that of u on this domain and vanishes outside of it, the H1-error

‖u−uε‖1 ≤ ε |||u−uε ||| ≤ ε |||u||| (1.25)

tends to zero like O(ε) with increasing size of the crosses. This estimate is a first
counterpart to the estimate (1.11) in the analysis of our model problem.

These observations, however, do not suffice to break the curse of dimensionality.
As is known from [20] and is proven in Chap. 5, the eigenfunctions u for eigenvalues
λ below the infimum Σ(σ) of the essential spectrum decay exponentially, the decay
rate depending on the eigenfunction. Let R > 0 satisfy the estimate

1
2R2 <

Σ(σ)−λ
N

, (1.26)
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that is, let it be big enough compared to the size of the gap between λ and Σ(σ),
and define the correspondingly exponentially weighted eigenfunction as

ũ(x) = exp

( N

∑
i=1

∣

∣

∣

xi

R

∣

∣

∣

)

u(x). (1.27)

The weighted eigenfunction ũ is then not only square integrable, as follows from
[20], it also belongs to the space X1(σ) and moreover satisfies the estimate

|||ũ ||| ≤ 2
√

e ‖ũ‖0. (1.28)

This is shown in Chap. 6 along with the proof of (1.23). The parameter Ω scaling
the frequencies is the same as before, common to all eigenfunctions for eigenvalues
below the essential spectrum. In the limit of R tending to infinity (1.28) reduces
to the estimate (1.23). With that the corresponding mixed derivatives of the given
eigenfunctions decay exponentially in the L2-sense. The estimate relates the decay
of the eigenfunctions in the position and the frequency space to one another, i.e.,
their spatial extension and the length scales on which they vary. Estimates like (1.23)
and (1.28) are characteristic for products of three-dimensional orbitals. Our results
show that the solutions of the full Schrödinger equation behave in the same way and
justify in this sense the picture of atoms and molecules that we have in our minds.

Estimates like (1.28) have striking consequences for the approximability of elec-
tronic wave functions and limit the complexity of the quantum-mechanical N-body
problem. The idea is to expand the eigenfunctions of the electronic Schrödinger
operator (1.1) into products of the eigenfunctions of three-dimensional operators

−Δ + V, lim
|x|→∞

V (x) = +∞, (1.29)

like the Hamilton operator of the harmonic oscillator with a locally square integrable
potential V ≥ 0, tending to infinity for its argument tending to infinity. The essential
spectrum of such operators is empty so that they possess a complete L2-orthonormal
system of eigenfunctions φ1,φ2,φ3, . . . for eigenvalues 0 < λ1 ≤ λ2 ≤ . . . . Every
L2-function u : R

3N → R can therefore be represented as L2-convergent series

u(x) = ∑
k∈NN

û(k)
N

∏
i=1

φki(xi), û(k) =
(

u,
N

∏
i=1

φki

)

. (1.30)

The speed of convergence of this expansion is examined in Chaps. 7 and 8 for the
given eigenfunctions u of the Schrödinger operator (1.1) under the condition

V (xi) ≤V ∗
i (x)2, V ∗

i (x) =
Λ0

R
exp

(∣

∣

∣

xi

R

∣

∣

∣

)

, (1.31)
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limiting the growth of the potential V , with R the length scale from (1.26) describing
the decay of the considered eigenfunctions and Λ0 a constant basically independent
of R. The result can again be best described in terms of a kind of norm estimate

∑
k

( N

∑
i=1

λki

Ω 2

)(

∏
i∈I−

λki

Ω 2 + ∏
i∈I+

λki

Ω 2

)

|û(k)|2 ≤ 4(u,Wu), (1.32)

where the weight function W = W− +W+ is composed of the two parts

W± =
(

1 +
N

∑
i=1

∣

∣

∣

V ∗
i

Ω

∣

∣

∣

2
)

∏
i∈I±

(

1 +
∣

∣

∣

V ∗
i

Ω

∣

∣

∣

2
)

(1.33)

and Ω chosen as in the estimates (1.23) or (1.28). Interestingly, the right hand side of
this estimate solely depends on the decay behavior of the considered eigenfunction.

The crucial point is the appearance of the two products of the eigenvalues λk in
the estimate (1.32). These products grow similar to factorials. The reason is that the
eigenvalues λk of corresponding operators (1.29) increase polynomially like

λk � kα/3 (1.34)

for potentials that grow sufficiently fast, at least as fast as polynomials. The three
comes from the fact that we start from an expansion into products of three-dimen-
sional eigenfunctions. The constant α < 2 is related to the growth behavior of the
potential V . It can come arbitrarily close to α = 2 for correspondingly chosen poten-
tials. Let ε > 0 be given and consider the finite dimensional space that is spanned
by the correspondingly antisymmetrized tensor products of the three-dimensional
eigenfunctions φki for which the associated eigenvalues λki satisfy the estimate

∏
i∈I−

λki

Ω 2 + ∏
i∈I+

λki

Ω 2 <
1
ε2 . (1.35)

Let uε be the L2-orthogonal projection of one of the given solutions u of the
Schrödinger equation onto this space. Moreover, let

‖u‖2 = ∑
k

( N

∑
i=1

λki

Ω 2

)

|û(k)|2. (1.36)

Since uε is the part of the expansion (1.30) of u associated with the selected product
functions, respectively the eigenvalues λki for which (1.35) holds,

‖u−uε‖ ≤ ε |||u−uε||| ≤ ε |||u|||. (1.37)

As the norm given by (1.36) dominates the H1-norm up to a rather harmless con-
stant, this means that uε approximates the solution with an H1-error of order ε if one
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lets ε tend to zero. The parameter ε determines the size of the hyperbolic crosses
(1.35). Therefore only a very small portion of the product eigenfunctions substan-
tially contributes to the considered wave functions and a surprisingly high rate of
convergence, related to the space dimension 3N, can be achieved.

One can even go a step further. Assume that the potential V in the three-
dimensional operator (1.29) is rotationally symmetric. The eigenfunctions, now
labeled by integers n, � ≥ 0 and |m| ≤ �, are then of the form

φn�m(x) =
1
r

fn�(r)Y m
� (x), r = |x |, (1.38)

where the radial parts fn� as well as the assigned eigenvalues λn� do not depend on
the index m and the Y m

� are the spherical harmonics, functions that are homogeneous
of degree zero and thus depend only on the angular part x/r of x. The L2-orthogonal
expansion (1.30) of a square integrable function u : (R3)N → R becomes then

u(x) = ∑
n,�,m

û(n, �,m)
N

∏
i=1

φni�imi(xi), (1.39)

where n, �, and m are multi-indices here. Define now the L2-orthogonal projections

(

Q(�,m)u
)

(x) = ∑
n

û(n, �,m)
N

∏
i=1

φni�imi(xi) (1.40)

in which the angular parts are kept fixed and the sum extends only over the corre-
sponding radial parts. These projections are in fact independent of the chosen three-
dimensional operator and can be defined without recourse to the given eigenfunction
expansion. They map the Sobolev space H1 into itself. For all functions in H1

‖u‖2
1 = ∑

�,m

‖Q(�,m)u‖2
1, (1.41)

as is shown in Chap. 9. The point is that for the eigenfunctions u of the electronic
Schrödinger operator (1.1) of corresponding antisymmetry the expression

∑
�

∑
m

{

∏
i∈I−

(

1 + �i (�i + 1)
)

+ ∏
i∈I+

(

1 + �i (�i + 1)
)

}

‖Q(�,m)u‖2
1 (1.42)

remains finite. This is another important consequence from the regularity theory
from Chap. 6. It states that only few of the projections contribute significantly to an
admissible solution of the electronic Schrödinger equation and estimates the speed
of convergence of the expansion (1.39) in terms of the angular momentum quantum
numbers �i. To reach an H1-error of order O(ε) hence it suffices to restrict oneself
to the contributions of the tensor products of eigenfunctions φni�imi for which
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∏
i∈I−

(

1 + �i (�i + 1)
)

+ ∏
i∈I+

(

1 + �i (�i + 1)
)

<
1
ε2 , (1.43)

∏
i∈I−

λni�i

Ω 2 + ∏
i∈I+

λni�i

Ω 2 <
1
ε2 , (1.44)

provided the potential V is adapted as described to the considered eigenfunction.
The condition (1.43) represents an additional selection principle that can help
substantially reduce the number of the antisymmetrized tensor products of eigen-
functions that are needed to reach a given accuracy. The expansion into tensor
products of Gauss functions forms an example for the efficacy of such measures.

The final result is truly surprising. Our estimates demonstrate that the rate of
convergence expressed in terms of the number of correspondingly antisymmetrized
tensor products of the three-dimensional eigenfunctions involved astonishingly does
not deteriorate with the space dimension 3N or the number N of electrons. It is
almost the same as that for a one-electron problem for the case that all electrons
have the same spin, and almost the same as that for a problem with two electrons
otherwise. What that means for the numerical solution of the Schrödinger equation
is not clear so far, but our considerations show at least that the complexity of the
quantum-mechanical N-body problem is much lower than generally believed.

Keeping the intended audience in mind, the exposition starts with a short chapter
on Fourier analysis and spaces of weakly differentiable functions. The third chapter
gives a short introduction to quantum mechanics that is tailored to the later needs.
An interesting point for physicists and chemists might be that we start from the
weak form of the Schrödinger equation, an approach that is common in the the-
ory of partial differential equations but less in the given context. Chapter 4 deals
with the electronic Schrödinger equation itself, formulates it precisely, and embeds
it into a functional analytic framework. As indicated we consider the spin compo-
nents of the eigenfunctions separately and do not exploit the symmetry properties of
the problem to the maximum extent. This approach is enforced by the distinct regu-
larity properties of the components. Chapter 5 contains a short introduction to some
notions from spectral theory, that are rewritten here in terms of the bilinear forms
underlying the weak form of the eigenvalue problem, and discusses the Rayleigh-
Ritz method for the approximate calculation of the eigenvalues and eigenfunctions.
We characterize the infimum of the essential spectrum in the spirit of Agmon [3]
and Persson [65] and prove a simple but for us basic result on the exponential decay
of the eigenfunctions. The Chaps. 6 to 9 form the core of this work. They contain a
lot of unpublished material going far beyond [92] and [94]. The results we have just
sketched are derived and proven there in detail.



Chapter 2
Fourier Analysis

Fourier analysis deals with the representation of functions as superpositions of plane
waves, of spatial or spatial-temporal nature. It plays in many respects a decisive role
in this work. The Schrödinger equation of a free particle is a wave equation whose
solutions are superpositions of such plane waves with a particular dispersion rela-
tion. The abstract framework of quantum mechanics is reflected in this picture and
can be motivated and derived from it. Fourier analysis plays moreover an extraor-
dinarily important role in the mathematical analysis of partial differential equations
like the Schrödinger equation and is basic for our considerations. We begin there-
fore with an elementary introduction to Fourier analysis. We start as usual from the
Fourier transformation of rapidly decreasing functions that is then extended to inte-
grable and square integrable functions. The third section of this chapter is devoted
to the concept of weak derivative and its relation to Fourier analysis. We introduce
rather general L2-based spaces of weakly differentiable functions that include the
usual isotropic Sobolev spaces but also spaces of functions with L2-bounded mixed
derivatives. Much more information on Fourier analysis can be found in monographs
like [70] or [77], and on function spaces in [2, 85, 99].

2.1 Rapidly Decreasing Functions

A rapidly decreasing function u : R
n → C, or in later chapters also from R

n to R, is
an infinitely differentiable function whose polynomially weighted partial derivatives

x → xα(Dβu)(x) (2.1)

remain bounded for all multi-indices α = (α1, . . . ,αn) and β = (β1, . . . ,βn) with
nonnegative integer components. Here we have used the known multi-index notation
for the powers xα of order |α| = α1 + . . .+ αn of the vector x = (x1, . . . ,xn) in R

n

and the partial derivatives. An example of such a function is the Gauss function

x → exp
(

− 1
2
|x |2

)

, (2.2)

H. Yserentant, Regularity and Approximability of Electronic Wave Functions,
Lecture Notes in Mathematics 2000, DOI 10.1007/978-3-642-12248-4 2,
c© Springer-Verlag Berlin Heidelberg 2010
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where |x| denotes the norm of the vector x ∈ R
n induced by the inner product

x · y =
n

∑
i=1

xiyi. (2.3)

The rapidly decreasing functions form a complex vector space, the Schwartz space
S . The subspace D of S consists of the functions in S that have a compact sup-
port, that is, vanish outside bounded sets. The space D and with that also S are
dense subspaces of the spaces L1 and L2 of integrable respectively square integrable
complex-valued functions on the R

n. This follows from the fact that the characteris-
tic functions of axiparallel quadrilaterals, whose finite linear combinations are more
or less by definition dense in L1 and L2, can be approximated arbitrarily well by
functions in D . Our strategy will be to work as far as possible with functions in S
or even D and to transfer the corresponding results then by continuity arguments to
their completions with respect to the considered norms. This begins with the defini-
tion of the Fourier transformation, first only for rapidly decreasing functions.

Definition 2.1. The Fourier transform of a rapidly decreasing function u is given by

û(ω) =
( 1√

2π

)n ∫

u(x)e−iω ·x dx (2.4)

The Fourier integral (2.4) exists since rapidly decreasing functions are integrable.
As an example we calculate the Fourier transform of the Gauss function (2.2).

Lemma 2.1. The Fourier transform of the Gauss function (2.2) is

ω → exp
(

− 1
2
|ω |2

)

. (2.5)

Proof. The function (2.2) splits into a product of one-dimensional functions of same
type. The Fourier transform of such a product is by Fubini’s theorem the product of
the one-dimensional Fourier transforms of these factors. We can therefore restrict
ourselves to the case of one space dimension, to the function f (x) = e−x2/2 on R.
This function is the uniquely determined solution of the scalar initial value problem

f ′(x) = − x f (x), f (0) = 1.

Its Fourier transform has therefore the derivative

̂f ′(ω) = i
1√
2π

∫ ∞

−∞
f ′(x)e−iωx dx.

Integration by parts leads again to the differential equation

̂f ′(ω) = −ω ̂f (ω).
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Since the Fourier transform attains moreover at ω = 0 the value

̂f (0) =
1√
2π

∫ ∞

−∞
e−x2/2 dx = 1

and solves with that the same initial value problem as f , it coincides with f . �
The main reason to start with rapidly decreasing functions is the following:

Theorem 2.1. The Fourier transform of a function in S is again rapidly decreasing.

Proof. Since one is allowed to differentiate under the integral sign,

(iω)β (Dα û)(ω) =
( 1√

2π

)n ∫

uα(x)(iω)β e−iω ·x dx,

where uα(x) = (−ix)α u(x) is again a rapidly decreasing function. Since

(iω)β e−iω ·x = (−1)|β |Dβ
x {e−iω ·x}

and as uα and all partial derivatives of this function vanish sufficiently fast at infinity,
Fubini’s theorem and multiple integration by parts yield finally the representation

(iω)β (Dα û)(ω) =
( 1√

2π

)n ∫

(Dβuα)(x)e−iω ·x dx

of the expression to be estimated. Since x → (Dβuα)(x) is as rapidly decreasing
function integrable, the left hand side remains as required bounded in ω ∈ R

n. �
The Fourier transformation does therefore not lead out of the space of the rapidly
decreasing functions, which is not the case for the functions in D .

A fundamental property of the Fourier transformation is that functions can be
recovered from their Fourier transforms by a very similar kind of transformation:

Theorem 2.2. For all rapidly decreasing functions u : R
n → C,

u(x) =
( 1√

2π

)n ∫

û(ω)eiω ·x dω . (2.6)

Proof. One cannot simply insert (2.4) into (2.6) and apply Fubini’s theorem as one is
then led to a diverging integral, in this form mathematical nonsense. We approximate
the function u therefore first by the convolution integrals

(Kϑ ∗ u)(x) =
∫

Kϑ (x− y)u(y)dy,
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a kind of local averages, with the rescaled and normalized Gauss functions

Kϑ (x) =
( 1√

ϑ

)n
K

( x√
ϑ

)

, K(x) =
( 1√

2π

)n
exp

(

− 1
2
|x |2

)

,

as smoothing kernels. These kernels can with help of Lemma 2.1 be written as

Kϑ (x) =
( 1√

2π

)2n ∫

exp
(

− ϑ
2
|ω |2

)

eiω ·x dω ,

a formula that can in view of (2.5) be already interpreted as a special case of (2.6).
From Fubini’s theorem and the definition of the Fourier transform therefore

(Kϑ ∗ u)(x) =
( 1√

2π

)n ∫

exp
(

− ϑ
2
|ω |2

)

û(ω)eiω ·x dω

follows. Since û is integrable the right hand side of this equation converges by the
dominated convergence theorem for ϑ tending to 0 to the right hand side of (2.6).
To get the left hand side of (2.6), one rewrites the convolution integrals as

(Kϑ ∗ u)(x) =
∫

K(y)u(x +
√

ϑ y)dy.

Since u is as rapidly decreasing function bounded and continuous and since the
Gauss function K is integrable, the dominated convergence theorem leads to

lim
ϑ→0+

(Kϑ ∗ u)(x) =
∫

K(y)u(x)dy = u(x).

This completes the proof of the inversion formula (2.6). �
The Fourier inversion formula (2.6) shows that every rapidly decreasing function
can be represented as Fourier transform of another rapidly decreasing function, as

u(x) =
( 1√

2π

)n ∫

û(−ω)e−iω ·x dω . (2.7)

The Fourier transformation is therefore a one-to-one mapping from the space of the
rapidly decreasing functions to itself. Every rapidly decreasing function can in this
sense be represented as superposition of plane waves.

Another consequence of the Fourier inversion theorem is the Plancherel theorem,
often also denoted as Parseval identity in analogy to the corresponding property of
Fourier series. It belongs undoubtedly to the central results of Fourier analysis.

Theorem 2.3. For all rapidly decreasing functions u and v,

∫

û(ω) v̂(ω) dω =
∫

u(x)v(x) dx. (2.8)



2.2 Integrable and Square Integrable Functions 17

Proof. By the definition (2.4) of the Fourier transform of u,

∫

û(ω) v̂(ω) dω =
( 1√

2π

)n ∫∫

u(x) v̂(ω) e−iω ·x dxdω .

The Fourier inversion formula (2.6) applied to v leads conversely to

∫

u(x)v(x) dx =
( 1√

2π

)n ∫∫

u(x) v̂(ω) e−iω ·x dω dx.

The proposition follows from Fubini’s theorem. �
The Plancherel theorem shows particularly that the Fourier transformation preserves
the L2-norm of a rapidly decreasing function, that is, that for all such functions u

∫

|û(ω)|2 dω =
∫

|u(x)|2 dx. (2.9)

In other words, the Fourier transformation is a unitary mapping. This property is the
key to the definition of the Fourier transform of arbitrary square integrable functions.

Besides its obvious physical meaning, a main reason to introduce the Fourier
transformation is that it transforms derivatives to simple multiplications by polyno-
mials. This follows differentiating the Fourier inversion formula, that is, from

(Dαu)(x) =
( 1√

2π

)n ∫

(iω)α û(ω)eiω ·x dω , (2.10)

and the one-to-one relation between a function and its Fourier transform.

Theorem 2.4. The Fourier transforms of a rapidly decreasing function u and of its
partial derivatives of arbitrary order are connected via the relation

(̂Dαu)(ω) = (iω)α û(ω). (2.11)

The relation (2.11) allows it to transform differential equations with constant coeffi-
cients to algebraic equations, and (2.10) offers a possibility to generalize the notion
of derivative. This idea will be taken up in the next but one section.

2.2 Integrable and Square Integrable Functions

A much larger space than the space S of the rapidly decreasing functions and the
natural domain of definition of the Fourier transformation is the space L1, the space
of the integrable functions u : R

n →C, the measurable functions with finite L1-norm

‖u‖L1 =
∫

|u(x)|dx. (2.12)
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The rapidly decreasing functions and even the functions in D , the space of the
infinitely differentiable functions with compact support, form dense subsets of L1.

Definition 2.2. The Fourier transform of a function u in L1 is given by

û(ω) =
( 1√

2π

)n ∫

u(x)e−iω ·x dx. (2.13)

The Fourier transform of an integrable function does not need to be itself integrable,
which causes considerable difficulties and is one of the main reasons to start instead
with the rapidly decreasing functions. However:

Theorem 2.5. The Fourier transform of an integrable function is uniformly contin-
uous and tends uniformly to zero for its argument tending to infinity.

Proof. Let u ∈ L1 and u1,u2, . . . be a sequence of rapidly decreasing functions with

|û(ω)− ûk(ω)| ≤ ‖uk − u‖L1 → 0

for all ω ∈ R
n, that is, whose Fourier transforms converge uniformly to the Fourier

transform of u. Since the ûk are as rapidly decreasing functions uniformly continu-
ous, the limit function û is uniformly continuous, too. To prove the second assertion,
we fix an ε > 0 and choose a sufficiently large index k, such that

|û(ω)| ≤ |ûk(ω)| + ‖uk − u‖L1 ≤ |ûk(ω)| + ε/2.

As ûk is rapidly decreasing, there is an R > 0 with |ûk(ω)| < ε/2 for |ω | > R. For
these ω , |û(ω)| < ε , so that the function values û(ω) tend uniformly to zero. �
The fact that the Fourier transform û(ω) of an integrable function u tends to zero
for ω tending to infinity is usually denoted as the Riemann-Lebesgue theorem.

The Hilbert space L2 consists of the square integrable functions u from R
n to C,

the measurable functions for which the L2-norm given by the integral expression

‖u‖2
0 =

∫

|u(x)|2 dx (2.14)

remains finite. Square integrable functions do not need to be integrable. The Fourier
transform of such a function can therefore not simply be defined by the integral
expression above. The Plancherel theorem offers a remedy. It shows that the Fourier
transformation u → û can be uniquely extended from the dense subspace S of L2

to a norm preserving, unitary linear mapping F : L2 → L2. We define this mapping
as the Fourier transformation on the space L2 of the square integrable functions.

Theorem 2.6. The L2-Fourier transformation F : L2 → L2 is a bijective, unitary
linear mapping. If S denotes the reflection operator u(x) → u(−x), its inverse is

F−1 = SF. (2.15)
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Proof. By the Fourier inversion formula (2.6) and (2.7), u = SFFu = FSFu for all
rapidly decreasing functions u. As F and S are bounded linear operators, these rela-
tions transfer from S to the entire L2, which proves the rest of the proposition. �

Next we study the relation between the L1-Fourier transformation u → û given
by (2.13) and the L2-Fourier transformation u → Fu defined via the described limit
process. We start with the following intermediate result:

Lemma 2.2. The L2-Fourier transform Fu of a square integrable function u that
vanishes outside a bounded set coincides with its L1-Fourier transform û.

Proof. Since the rapidly decreasing functions form a dense subspace of L2, there
is a sequence u1,u2, . . . of such functions that converge in the L2-sense to u. We
can assume without restriction that the uk vanish outside a bounded set covering
the support of u. As this set has finite measure, the uk then converge also in the
L1-norm to u and their Fourier transforms ûk hence uniformly to the L1-Fourier
transform of u. The ûk converge on the other hand by definition in the L2-sense to the
L2-Fourier transform of u. Since uniform convergence implies local L2-convergence,
both limits coincide so that in this case indeed Fu = û. �
This observation allows it to determine the L2-Fourier transform by a limit process
that is better suited to explicit calculations and probably also easier to grasp.

Theorem 2.7. For u ∈ L2 and R > 0 let uR be the function that attains the same
values as u for |x| ≤ R and vanishes outside this ball. The L1-Fourier transforms

ûR(ω) =
( 1√

2π

)n ∫

uR(x)e−iω ·x dx (2.16)

of these band-limited functions uR, uniformly continuous, square integrable func-
tions, tend then in the L2-sense to the L2-Fourier transform of u.

Proof. The functions (2.16) are by Lemma 2.2 the L2-Fourier transforms of the uR.
Since the uR converge in the L2-sense to u and the L2-Fourier transform is a bounded
linear operator from L2 to L2, the ûR thus converge in the L2-norm or as one also
says in the quadratic mean to the L2-Fourier transform of u. �

Finally we can consider functions that are contained both in L1 and L2. For such
functions both kinds of Fourier transformation lead as expected to the same result.

Theorem 2.8. The L2-Fourier transform of a both integrable and square integrable
function u is its original L1-Fourier transform given by the integral expression

û(ω) =
( 1√

2π

)n ∫

u(x)e−iω ·x dx. (2.17)
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Proof. The function uR from the previous theorem converge in this case both in
L1 and L2 to u and their Fourier transforms therefore uniformly to the L1-Fourier
transform and in the L2-norm to the L2-Fourier transform of u. Since uniform con-
vergence implies local L2-convergence, both limits necessarily coincide. �
We are therefore allowed to denote the L2-Fourier transform of a square integrable
function u without any danger of confusion in the same way as the L1-Fourier trans-
form of an integrable function u by û and will do so from now on.

2.3 Spaces of Weakly Differentiable Functions

The space S of the rapidly decreasing functions from R
n to C or R and particularly

its subspace D consisting of the functions in S that vanish outside bounded sets
are easy to handle but are much too small for most purposes. In particular they are
not complete with respect to the considered norms, that is, Cauchy sequences do
not need to converge. As we know, the smallest space that contains the functions
in D and that is complete under the L2-norm (2.14) is L2 itself. The space L2 can
therefore be regarded as the completion of D under the L2-norm. The aim of this
section is to introduce subspaces of L2 that comprehend D and S and are complete
under norms measuring also the distance between certain, in an appropriate sense
defined partial derivatives. The in the given context most important of these spaces
is the space H1, the completion of D or S under the H1-norm that is given by

‖u‖2
1 = ‖u‖2

0 + |u |21, |u |21 = ‖∇u‖2
0, (2.18)

and is composed of the L2-norm of the considered function and the L2-norm of its
first order weak derivatives introduced below.

We begin with the discussion of an approximation process for locally integrable
functions that resembles that in the proof of Theorem 2.2. Let δ : R

n → R be an
infinitely differentiable function with values δ (x) ≥ 0 that vanishes outside the ball
of radius 1 around the origin and has L1-norm 1. Let δk(x) = knδ (kx) for k∈N. Then

δk(x) ≥ 0, δk(x) = 0 for |x| ≥ 1/k,
∫

δk(x)dx = 1. (2.19)

For all locally integrable functions u we then define the local averages

(δk ∗ u)(x) =
∫

δk(x− y)u(y)dy. (2.20)

Lemma 2.3. If u is an integrable function so are its smoothed counterparts given
by (2.20). These converge to u in the L1-sense as k goes to infinity.
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Proof. From (2.19) and Fubini’s theorem we get for u ∈ L1 the estimate

∫

|(δk ∗ u)(x)|dx ≤
∫∫

δk(x− y) |u(y)|dydx =
∫

|u(y)|dy

for the L1-norm of δk ∗ u. Let u ∈ L1 now be given and ũ a function in D with
‖u− ũ‖L1 < ε/4. The smoothed functions δk ∗u and δk ∗ ũ then also differ at most by

‖δk ∗ u− δk ∗ ũ‖L1 = ‖δk ∗ (u− ũ)‖L1 ≤ ‖u− ũ‖L1 < ε/4

and the error to be estimated can be bounded from above as follows:

‖δk ∗ u−u‖L1 < ‖δk ∗ ũ− ũ‖L1 + ε/2.

Utilizing again the properties (2.19) of the smoothing kernels, we obtain moreover

|(δk ∗ ũ)(x)− ũ(x)| =
∣

∣

∣

∫

δk(x− y){ũ(y)− ũ(x)}dy
∣

∣

∣ ≤ max
|x−y|≤1/k

|ũ(x)− ũ(y)|.

Since ũ is uniformly continuous, the δk ∗ ũ converge therefore uniformly to ũ. Since
the δk ∗ ũ and ũ itself vanish outside a fixed bounded set, the uniform convergence
implies convergence in the L1-norm. Hence for sufficiently large indices k

‖δk ∗ u−u‖L1 < ε/2 + ε/2,

which demonstrates that the δk ∗u tend in the L1-norm to u as k goes to infinity. �
This result can be generalized to the functions in the spaces Lp for 1 ≤ p < ∞. The
proof uses for p > 1 the Hölder inequality to bound the functions δk ∗ u.

Lemma 2.3 has a local counterpart. Let u be a locally integrable function. Con-
sider a ball of radius R and let v ∈ L1 coincide with u on the ball of radius R + 1
with same center and vanish outside this ball. The functions δk ∗ v tend then in the
L1-norm to v. Since u and v and δk ∗ u and δk ∗ v coincide on the original ball of
radius R, the δk ∗u tend on this ball, and with that on every bounded measurable set,
in the L1-sense to u. A rather immediate consequence of this fact is:

Lemma 2.4. A locally integrable function u, for which
∫

uϕ dx = 0 (2.21)

holds for all functions ϕ ∈ D , vanishes.

Proof. The assumption particularly implies that the integrals (2.20) vanish for all k
and all x. The proposition follows therefore from the just made observation. �
We remark that the proposition follows for locally square integrable functions more
or less directly from the density of the functions ϕ ∈ D in L2 and that in this case
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one does not need to make a detour via an approximation process as in the more
general case of only locally integrable functions. Lemma 2.4 forms the basis of the
following generalization of the notion of partial derivative:

Definition 2.3. A locally integrable function Dαu : R
n → C, α a multi-index with

nonnegative integer components, is denoted as weak partial derivative of corre-
sponding order of the locally integrable function u, if for all test functions ϕ ∈ D

∫

Dαuϕ dx = (−1)|α |
∫

u Dαϕ dx. (2.22)

This definition requires some comments. The first is that the weak derivative Dαu
is unique as long as it exists, a fact that first justifies the definition and that follows
from Lemma 2.4. The second observation is that sufficiently smooth functions are
weakly differentiable in the given sense. Their weak partial derivatives coincide in
this case with their normal, classically defined partial derivatives. This is shown with
help of Fubini’s theorem and integration by parts. The existence of weak derivatives
does not however mean that the corresponding classical derivatives must exist.

We recall from Sect. 2.1 that the Fourier transform of the partial derivative Dα u,
α a multi-index with nonnegative integer components, of a function u ∈ S is

(̂Dαu)(ω) = (iω)α û(ω) (2.23)

and that, due to Plancherel’s theorem, its L2 norm is given by

‖Dαu‖2
0 =

∫

ω2α |û(ω)|2 dω . (2.24)

These properties can be used to characterize weak derivatives in the L2-case.

Theorem 2.9. A square integrable function u possesses a square integrable weak
derivative Dα u if and only if the function

ω → (iω)α û(ω) (2.25)

is also in L2. The weak derivative Dα u of u is then the Fourier back-transform of the
function (2.25) and its L2-norm therefore again given by the expression (2.24).

Proof. Let the function (2.25) be square integrable and denote by uα its Fourier
back-transform. In terms of the L2-inner product and the L2-Fourier transform F then

(uα ,ϕ) = (Fuα ,Fϕ) = ((iω)α Fu,Fϕ) = (−1)|α |(Fu,(iω)α Fϕ)

= (−1)|α |(Fu,FDαϕ) = (−1)|α |(u,Dαϕ).

for all ϕ ∈ D , from which uα = Dαu follows. The proof of the opposite direction
requires some preparation. Let the weak derivative Dαu of u∈ L2 exist and be square
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integrable. Let ϕ be a rapidly decreasing function and χ an infinitely differentiable
function that takes the values χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. Let

ϕR(x) = χ
( x

R

)

ϕ(x).

As follows from the dominated convergence theorem then

lim
R→∞

(Dαu,ϕR) = (Dαu,ϕ), lim
R→∞

(u,DαϕR) = (u,Dαϕ).

Provided that both u and Dαu are in L2, the defining relation (2.22) holds therefore
not only for the functions ϕ ∈ D but for all ϕ ∈ S . This implies

(FDαu,Fϕ) = (Dαu,ϕ) = (−1)|α |(u,Dαϕ) = (−1)|α |(Fu,FDαϕ)

for all rapidly decreasing functions ϕ . Since FDαϕ = (iω)α Fϕ , thus

∫

FDαuFϕ dω =
∫

(iω)α FuFϕ dω

for all rapidly decreasing functions ϕ . As every function ϕ ∈D can itself be written
as Fourier transform of a rapidly decreasing function, hence for all functions ϕ ∈ D

∫

(iω)α Fuϕ dω =
∫

FDαuϕ dω .

The locally integrable function ω → (iω)α û(ω) and the function FDαu ∈ L2 thus
coincide by Lemma 2.4 and the first one is as asserted square integrable. �

Let A be a finite set of multi-indices α with nonnegative integer components
that contains the multi-index α = 0. To each such set of indices A we assign a
subspace HA of L2. It consists of the square integrable functions u that possess weak
derivatives Dαu ∈ L2 for all α ∈ A and is equipped with the norm given by

‖u‖2
A = ∑

α∈A

‖Dαu‖2
0. (2.26)

An example of such an index set A is the set of all multi-indices α = (α1, . . . ,αn) of
order |α| = α1 + . . . + αn ≤ m. The corresponding space is the Sobolev space Hm

that is invariant under rotations. It should however be emphasized that the construc-
tion is not restricted to such familiar cases. Another important example is the space
of the functions with L2-bounded m-th order mixed derivatives that corresponds to
the set A of the multi-indices α for which αi ≤ m for each component individually.

Theorem 2.10. The spaces HA are complete, that is, are Hilbert spaces.
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Proof. Let uk, k = 1,2, . . . , be square integrable functions in HA that form a Cauchy
sequence in the sense of the norm given by (2.26). Since L2 is complete, the func-
tions uk converge in the L2-sense to a limit function u∈ L2 and their weak derivatives
Dαuk, α ∈ A, in the L2-sense individually to limit functions vα ∈ L2. Then

(vα ,ϕ) = lim
k→∞

(Dαuk,ϕ) = (−1)|α | lim
k→∞

(uk,D
αϕ) = (−1)|α |(u,Dαϕ)

for all test functions ϕ ∈ D , that is, vα is the weak derivative Dαu of u. �
The norm (2.26) on HA can with help of Theorem 2.9 be written as

‖u‖2
A = ∑

α∈A

∫

ω2α |û(ω)|2 dω . (2.27)

The space HA can be considered as the completion of D or S under this norm:

Theorem 2.11. The space D of the infinitely differentiable functions with compact
support and with that also the space S of the rapidly decreasing functions are dense
subspaces of all these spaces HA, independent of the structure of the index sets A.

Proof. We assign to each function u ∈ L2 the infinitely differentiable functions

uR(x) =
( 1√

2π

)n ∫

|ω|≤R
û(ω)eiω ·x dω

whose partial derivatives are all square integrable. For u ∈ HA

‖u−uR‖2
A = ∑

α∈A

∫

|ω|>R
ω2α |û(ω)|2 dω ,

so that the uR converge for these u in the norm (2.27) to u for R tending to infinity.
It suffices therefore to show that every infinitely differentiable function v whose
partial derivatives of arbitrary order are square integrable can, in the sense of the
norm (2.26), be approximated arbitrarily well by functions in D . For that purpose
let χ be as above an infinitely differentiable cut-off function that attains the values
χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. The infinitely differentiable functions

x → χ
( x

R

)

v(x)

vanish then outside the balls of radius 2R around the origin and converge in the norm
(2.26) to v for R tending to infinity. �
The fact that the infinitely differentiable functions with compact support are dense
in such spaces is of great practical value since it allows to prove many results and
estimates first only for these functions and to transfer them then later with the help
of continuity arguments to the full space. We will utilize this property often.
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For nonnegative integer values m of s the norm on the spaces Hs introduced above
is equivalent to the norm given by the expression

‖u‖2
s =

∫

(

1 + |ω |2s)|û(ω)|2 dω . (2.28)

This expression can be used to define new norms for non-integer values s ≥ 0 and
to introduce corresponding spaces Hs as completions of the spaces S or D under
this norm. The smoothness of these functions depends on s as follows:

Theorem 2.12. The functions in Hs are continuous for all indices s > n/2 and even
m-times continuously differentiable if s > m+ n/2.

Proof. We approximate u ∈ Hs by the infinitely differentiable functions

uk(x) =
( 1√

2π

)n ∫

|ω|≤2k
û(ω)eiω ·x dω , k = 0,1, . . . ,

similarly as above. Their differences satisfy for indices � > k the estimate

∣

∣u�(x)−uk(x)
∣

∣

2 ≤
( 1

2π

)n ∫

2k≤|ω|≤2�
|ω |−2s dω

∫

2k≤|ω|≤2�
|ω |2s |û(ω)|2 dω .

The first of the two integrals on the right hand side takes the value

∫

2k≤|ω|≤2�
|ω |−2s dω =

�−1

∑
j=k

(2n−2s) j
∫

1≤|ω|≤2
|ω |−2s dω

and becomes arbitrarily small for sufficiently big k, provided that s > n/2, and the
second one can be estimated by the square of the Hs-norm of u. The uk converge
therefore not only in the L2-sense, but also uniformly so that the limit function is
continuous. The same kind of arguments shows that their derivatives up to order m
converge uniformly provided that s > m+ n/2. �

2.4 Fourier and Laplace Transformation

Let F : R≥0 → C be a measurable function for which there exists a real number s0

such that the functions t → F(t)e−st are square integrable over the interval t ≥ 0
for all s > s0, which is particularly the case if F(t)e−s0t is bounded. The function

f (z) =
∫ ∞

0
F(t)e−zt dt (2.29)

is then defined on the half-plane consisting of all complex numbers z with real
part Re z > s0. It is analytic there and is denoted as the Laplace transform of F .



26 2 Fourier Analysis

The Laplace and the one-dimensional Fourier transformation are closely related to
each other as becomes obvious from the proof of the following inversion theorem:

Theorem 2.13. Under the given assumptions

F(t)e−st =
1

2π

∫ ∞

−∞
f (s+ iω)eiωt dω (2.30)

holds for all real s > s0, where the function on the right hand side has to be un-
derstood as the L2-limit of the infinitely differentiable, square integrable functions

t → 1
2π

∫ R

−R
f (s+ iω)eiωt dω (2.31)

for R tending to infinity. The equation (2.30) has to be interpreted correspondingly
in the sense of the equality of functions in L2, that is, as equality almost everywhere.

Proof. The Laplace transform of F can be represented via the Fourier transforms

f (s+ iω) =
1√
2π

∫ ∞

−∞
gs(t)e−iωt dt = ĝs(ω)

of the both integrable and square integrable, parameter dependent functions gs

taking the values gs(t) =
√

2π F(t)e−st for t ≥ 0 and gs(t) = 0 for t < 0. These func-
tions, and with that also F , can be recovered from their Fourier transforms with help
of Theorem 2.6, the L2-version of the Fourier inversion theorem, and Theorem 2.7.
Translating the result into the original notations one obtains (2.30). �
The Laplace inversion formula (2.30) is mostly written as limit

F(t) = lim
R→∞

1
2π i

∫ s+iR

s−iR
f (z)ezt dz (2.32)

of complex line integrals. If f (z) is a rational function this limit can be calculated
with help of the residue calculus. The Laplace transform plays an important role in
electrical engineering and can, for example, be used to convert linear differential
equations to algebraic equations. In quantum chemistry it serves mainly to simplify
the calculation of integrals and to represent functions in terms of Gauss functions.
We will come back to the latter point at the very end of this text.



Chapter 3
The Basics of Quantum Mechanics

This chapter gives a short introduction to quantum mechanics starting from de
Broglie’s and Schrödinger’s wave picture. The emphasis is on the mathematical
structure of the theory with the aim to form a sound basis for the later study of
the electronic Schrödinger equation. The discussion starts in the first two sections
with a heuristic derivation of the Schrödinger equation for a single free particle
from which, in the third section, the general mathematical framework of quantum
mechanics is derived. The fourth section deals with a particular simple quantum-
mechanical system, the harmonic oscillator. The harmonic oscillator serves on one
hand as an example of a quantum-mechanical system with completely different
properties from the free particle and is ideal to exemplify and illustrate the gen-
eral concepts of quantum theory. On the other hand the explicit knowledge of its
solutions will in later chapters help to develop the mathematical theory further. In
the fifth section the weak form of the Schrödinger equation is derived and physi-
cally motivated. The equivalence of the weak formulation to the classical operator
formulation is shown. In later chapters we will exclusively work with the weak form
that is basic for the L2-theory of partial differential equations. The last section is de-
voted to many-particle systems. The central point here are the symmetry properties
of the many-particle wave functions that are not only fundamental for the structure
of matter and responsible for many of the strange properties of quantum systems
but that will also turn out to be essential for the regularity theory of the electronic
Schrödinger equation and for the study of its complexity.

The chapter is tailored to our later needs and can of course not replace the study
of basic textbooks in quantum mechanics like [18] or [63]. A standard reference
for quantum chemists is [6]. Mathematicians will like [79, 80], not only because
of the impressive visualizations and the accompanying software but also because
of its mathematical soundness. The historically most important and influential texts
are the monographs [25] of Dirac and [64] of von Neumann. The mathematical
framework of quantum mechanics presented in this chapter is due to von Neumann.

H. Yserentant, Regularity and Approximability of Electronic Wave Functions,
Lecture Notes in Mathematics 2000, DOI 10.1007/978-3-642-12248-4 3,
c© Springer-Verlag Berlin Heidelberg 2010
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3.1 Waves, Wave Packets, and Wave Equations

Waves are omnipresent in nature. Modern quantum mechanics had it seeds in the
early 1920’s in de Broglie’s insight into the wave-like behavior of electrons that
can be directly observed in scattering experiments and that finally leads to the
Schrödinger wave equation, the basic equation for our understanding of atoms and
molecules. The purpose of this introductory section is to present the general mathe-
matical framework for the description of such wave phenomena.

We first recall the notion of a plane wave, a complex-valued function

R
d ×R → C : (x, t) → eik·x−iωt , (3.1)

with k ∈R
d the wave vector and ω ∈R the frequency.1 At a fixed point x in space the

plane wave oscillates with the frequency ω and the period T = 2π/ω . The quantity
k · x−ωt is called phase. The points x in space for which the phase attains a given
value are located on (hyper-)planes orthogonal to k. These planes have the distance
λ = 2π/|k| to each other, which is the spatial wave length, and move with the phase
velocity ω/|k| in the direction of the wave vector. A dispersion relation

ω = ω(k) (3.2)

assigns to each wave vector k a characteristic frequency. Such dispersion relations
fix the physics that is described by this kind of waves. Most common is the case

ω = c |k|, (3.3)

which arises, for example, in the propagation of light in vacuum and of electromag-
netic waves in general. The phase velocity attains in this case the constant value c.

Plane waves are completely delocalized and attain at every point in space the
same absolute value 1. They can, however, be superimposed to wave packets

ψ(x,t) =
( 1√

2π

)d ∫

ψ̂0(k)eik·x−iω(k)t dk, (3.4)

where we preliminarily suppose that ψ̂0 is a rapidly decreasing function to avoid any
mathematical difficulty. The wave packets remain then for any given time t rapidly
decreasing functions of the spatial variable x with the spatial Fourier transform

ψ̂(k, t) = eP(ik)t ψ̂0(k), (3.5)

where we have set P(ik) = −iω(k). As this quantity is purely imaginary, for all t

1 We change the notation in this chapter and denote by ω the time frequency, not the argument of
the spatial Fourier transforms as before, which will in this chapter be denoted by k according to the
conventions in physics. In the forthcoming chapters we will return to the previously used notation.
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∫

|ψ(x, t)|2 dx =
∫

|ψ̂0(k)|2 dk. (3.6)

Correspondingly the L2-norms of the spatial derivatives of ψ remain constant in
time. Provided that the absolute value of P(ik) does not increase more rapidly than
a polynomial in k for |k| tending to infinity, the wave packets are infinitely differen-
tiable functions of t and have the time derivatives

∂ m

∂ tm ψ(x,t) =
( 1√

2π

)d ∫

P(ik)m ψ̂(k, t)eik·x dk. (3.7)

Remembering Theorem 2.4, that is, that a partial derivative corresponds in the
Fourier representation to the multiplication with a polynomial in ik, we can formally
write this equation as a so-called pseudo-differential equation

∂ m

∂ tm ψ(x, t) = P(D)m ψ(x, t) (3.8)

that becomes a true differential equation if ξ → P(ξ )m is a multivariate polynomial.
Consider as an example the dispersion relation (3.3). In this case, (3.8) becomes

∂ 2

∂ t2 ψ(x,t) = −c2
( 1√

2π

)d ∫

|k|2 ψ̂(k, t)eik·x dk. (3.9)

that is, the classical second-order wave equation

∂ 2ψ
∂ t2 = c2Δψ . (3.10)

3.2 The Schrödinger Equation for a Free Particle

When de Broglie postulated the wave nature of matter, the problem was to guess the
dispersion relation for the matter waves: to guess, as this hypothesis creates a new
kind of physics that cannot be deduced from known theories. A good starting point
is Einstein’s interpretation of the photoelectric effect. When polished metal plates
are irradiated by light of sufficiently short wave length they may emit electrons. The
magnitude of the electron current is as expected proportional to the intensity of the
light source, but their energy surprisingly to the wave length or the frequency of the
incoming light. Einstein’s explanation, for which he received the Nobel prize, was
that light consists of single light quanta with energy and momentum

E = h̄ω , p = h̄k (3.11)

depending on the frequency ω and the wave vector k. The quantity

h̄ = 1.0545716 ·10−34 kgm2s−1 (3.12)
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is Planck’s constant, an incredibly small quantity of the dimension energy × time
called action. The relations (3.11) alone are naturally not sufficient to obtain a dis-
persion relation. To establish a connection between ω and k or E and p, it is an
obvious idea to bring additionally the energy-momentum relation

E =
√

c2|p|2 + m2c4 (3.13)

of special relativity for a particle of rest mass m into play, where c denotes the speed
of light. For particles in rest it turns into the famous formula E = mc2. It yields the
desired dispersion relation and with that the second-order wave equation

∂ 2ψ
∂ t2 = c2Δψ +

m2c4

h̄2 ψ , (3.14)

that was later called the Klein-Gordon equation. This is what Schrödinger initially
tried. This equation did not meet his expectations, however, and led to the wrong
predictions, as it describes another kind of particles (those with spin zero), not elec-
trons. The correct relativistic equation for a single electron (but unfortunately only
for a single one) is the Dirac equation that was found a short time later. He therefore
fell back to classical physics and replaced (3.13) by the energy-momentum relation

E =
1

2m
|p|2 (3.15)

from Newtonian mechanics. It leads to the dispersion relation

ω =
h̄

2m
|k|2 (3.16)

and finally to the wave equation for a non-relativistic free particle of mass m in
absence of external forces, the Schrödinger equation

i h̄
∂ψ
∂ t

= − h̄2

2m
Δψ . (3.17)

In contrast to the classical wave equation (3.10) and also to the Klein-Gordon equa-
tion (3.14) it contains the imaginary unit and is therefore genuinely an equation for
complex-valued functions.

The Schrödinger equation (3.17) is of first order in time. Its solutions

ψ(x,t) =
( 1√

2π

)3 ∫

e−i h̄
2m |k|2 t ψ̂0(k)eik·x dk, (3.18)

the wave functions, are uniquely determined by their initial state ψ0. If ψ0 is a
rapidly decreasing function the solution possesses time derivatives of arbitrary or-
der, and all of them are rapidly decreasing functions of the spatial variables. To
avoid technicalities, we assume this for the moment. We further recall that
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∫

|ψ(x, t)|2 dx =
∫

|ψ̂(k, t)|2 dk. (3.19)

remains constant in time. We assume in the sequel that this value is normalized to 1,
which is basic for the statistical interpretation of the wave functions. The quantities
|ψ |2 and |ψ̂ |2 can then be interpreted as probability densities. The integrals

∫

Ω
|ψ(x, t)|2 dx,

∫

̂Ω
|ψ̂(k, t)|2 dk (3.20)

represent the probabilities to find the particle at time t in the region Ω of the position
space, respectively, the region ̂Ω of the momentum space. The quantity

∫

h̄2

2m
|k |2 |ψ̂(k, t)|2 dk, (3.21)

is the expectation value of the kinetic energy. With help of the Hamilton operator

H = − h̄2

2m
Δ , (3.22)

this expectation value can be rewritten as

∫

ψ Hψ dx = (ψ ,Hψ). (3.23)

The expectation values of the components of the momentum are in vector notation

∫

h̄k | ψ̂(k, t)|2 dk. (3.24)

Introducing the momentum operator

p = − i h̄∇ (3.25)

their position representation is the inner product

∫

ψ pψ dx = (ψ , pψ). (3.26)

The expectation values of the three components of the particle position are finally

∫

x |ψ(x, t)|2 dx = (ψ ,qψ), (3.27)

with q the position operator given by ψ → xψ . This coincidence between observable
physical quantities like energy, momentum, or position and operators acting upon
the wave functions is in no way accidental. It forms the heart of quantum mechanics.
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3.3 The Mathematical Framework of Quantum Mechanics

We have seen that the physical state of a free particle at a given time t is completely
determined by a function in the Hilbert space L2 that again depends uniquely on
the state at a given initial time. In the case of more general systems, the space L2 is
replaced by another Hilbert space, but the general concept remains:

Postulate 1. A quantum-mechanical system consists of a complex Hilbert space H
and a one-parameter group U(t), t ∈ R, of unitary linear operators on H with

U(0) = I, U(s+ t) = U(s)U(t) (3.28)

that is strongly continuous in the sense that for all ψ ∈H in the Hilbert space norm

lim
t→0

U(t)ψ = ψ . (3.29)

A state of the system corresponds to a normalized vector in H and the time evo-
lution of the system is described by the group of the propagators U(t). The state

ψ(t) = U(t)ψ(0) (3.30)

of the system at time t is uniquely determined by its state at time t = 0.

In the case of free particles considered so far, the solution of the Schrödinger equa-
tion and with that time evolution is given by (3.18). The evolution operators U(t),
or propagators, read therefore in the Fourier or momentum representation

ψ̂(k) → e−i h̄
2m |k|2t ψ̂(k). (3.31)

Strictly speaking, they have first only been defined for rapidly decreasing functions,
functions in a dense subspace of L2, but it is obvious from Plancherel’s theorem that
they can be uniquely extended from there to L2 and have the required properties.

The next step is to move from Postulate 1 to an abstract version of the Schrödinger
equation. For that we have to establish a connection between such strongly contin-
uous groups of unitary operators and abstract Hamilton operators.

Definition 3.1. Let D(H) be the linear subspace of the given system Hilbert space
H that consists of those elements ψ in H for which the limit

Hψ = i h̄ lim
τ→0

U(τ)− I
τ

ψ (3.32)

exists in the sense of norm convergence. The mapping ψ → Hψ from the domain
D(H) into the Hilbert space H is then called the generator H of the group.

To determine the generator for the case of the free particle, that is, for the unitary
operators U(t) from L2 to L2 given by (3.31), we first calculate the expression
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∥

∥

∥ i h̄
U(τ)− I

τ
ψ +

h̄2

2m
Δψ

∥

∥

∥

2

0
(3.33)

for functions ψ ∈ H2. Setting ϑ = h̄τ/2m, its Fourier representation reads

( h̄2

2m

)2 ∫
∣

∣

∣ i
e−i|k|2ϑ −1
|k |2ϑ

− 1
∣

∣

∣

2 |k |4 |ψ̂(k)|2 dk. (3.34)

The norm (3.33) tends therefore to zero as τ → 0 by the dominated convergence the-
orem. For every ψ ∈ L2 for which the limit (3.32) exists and every R > 0 conversely

‖Hψ‖2
0 ≥

( h̄2

2m

)2 ∫

|k|≤R
|k |4 |ψ̂(k)|2 dk, (3.35)

so that the H2-norm of such a function ψ must remain finite.2 The generator of the
evolution operator of the free particle is therefore the operator

H = − h̄2

2m
Δ (3.36)

with the Sobolev space H2 as domain of definition D(H). In view of this observation
the following result for the general abstract case is unsurprising:

Theorem 3.1. For all initial values ψ(0) in the domain D(H) of the generator of
the group of the propagators U(t), the elements (3.30) are contained in D(H), too,
depend continuously differentiable on t, and satisfy the differential equation

i h̄
d
dt

ψ(t) = Hψ(t). (3.37)

Proof. For all elements ψ(0) in D(H) and all t, the limit

lim
τ→0

U(τ)− I
τ

U(t)ψ(0) = lim
τ→0

U(t)
U(τ)− I

τ
ψ(0) = − i

h̄
U(t)Hψ(0)

exists, which means that ψ(t) = U(t)ψ(0) is contained in D(H). Therefore

i h̄ lim
τ→0

ψ(t + τ)−ψ(t)
τ

= i h̄ lim
τ→0

U(τ)− I
τ

ψ(t) = Hψ(t),

which shows that t → ψ(t) is a strong solution of (3.37), whose derivative

ψ ′(t) = − i
h̄

U(t)Hψ(0)

depends because of the strong continuity of the group continuously on t. �

2 Unfortunately, the Sobolev spaces H1,H2, . . . are denoted by the same letter as the generator H
of the group, the Hamiltonian of the system. Both notations are common, so we keep them here.
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It should noted once more, however, that the differential equation (3.37), the ab-
stract Schrödinger equation, makes sense only for initial values in the domain of the
generator H, but that the propagators are defined on the whole Hilbert space.

A little calculation shows that for the solutions ψ ,φ : R → D(H) of (3.37)

0 = i h̄
d
dt

(ψ(t),φ(t)) = (Hψ(t),φ(t))− (ψ(t),Hφ(t)). (3.38)

For all ψ and φ in the domain D(H) of the generator H therefore

(Hψ ,φ) = (ψ ,Hφ). (3.39)

The generators of one-parameter unitary groups are thus necessarily symmetric.
Symmetry alone does, however, not suffice to characterize them completely.

Definition 3.2. Let A : D(A) → H be a linear operator that is defined on a dense
subspace D(A) of H . Let D(A†) be the set of all φ ∈ H for which there exists an
element ξ ∈ H with (ξ ,ψ) = (φ ,Aψ) for all ψ ∈ D(A). As D(A) is dense in H
this ξ is then also uniquely determined, so that one can define by A†φ = ξ a new
mapping A† from D(A†) to H , called the adjoint of A. The operator A is called
self-adjoint if A† = A and in particular the domains D(A†) and D(A) coincide.

This is a very subtle definition. Self-adjointness is more than symmetry. Symmetry
only means that A† is an extension of A to a possibly larger domain D(A†), self-
adjointness that the domain of A is in some sense already maximal. The Hamilton
operator (3.36) is an example of a self-adjoint operator with the Sobolev space H2

as domain of definition. This can be easily proved with help of the Fourier represen-
tation and is no accidental coincidence, as follows from the next theorem, Stone’s
theorem, a cornerstone in the mathematical foundation of quantum mechanics:

Theorem 3.2. If U(t), t ∈R, is a one-parameter unitary group as in Postulate 1, the
domain D(H) of its generator H is a dense subset of the underlying Hilbert space
and the generator itself self-adjoint. Every self-adjoint operator H is conversely the
generator of such a one-parameter unitary group, that is usually denoted as

U(t) = e−
i
h̄ Ht . (3.40)

Proof. Since we are primarily interested in stationary states and will not further
refer to Stone’s theorem we give only a short sketch of the proof. For some spe-
cial cases the more important second part of the theorem is easily shown. When
H is bounded one defines the evolution operators (3.40) simply with help of the
power series expansion of the exponential function. If H possesses a complete set of
eigenvectors ψ1,ψ2, . . . , the evolution operator can be written down in terms of the
corresponding eigenvector expansion of the vector to which it is applied. The proof
for the general case is correspondingly based on the spectral decomposition



3.3 The Mathematical Framework of Quantum Mechanics 35

A =
∫ ∞

−∞
λ dEλ

of self-adjoint operators that von Neumann [64] developed to establish a sound
mathematical basis for quantum mechanics which was quite new at the time, essen-
tially the framework described here. The unitary group that a self-adjoint operator
generates can be easily given in terms of its spectral decomposition and reads

e−iAt =
∫ ∞

−∞
e−iλ tdEλ .

Details can be found in textbooks and monographs on functional analysis, like [69,
87], or [91]. The reverse direction, that the generator of such a unitary group is a
self-adjoint operator, can be proven by more elementary means; see [87]. �
Instead of the unitary group of the propagators, a quantum-mechanical system can
be thus equivalently fixed by the generator H of this group, the Hamilton operator,
or in the language of physics, the Hamiltonian of the system.

In our discussion of the free particle we have seen that there is a direct corre-
spondence between the expectation values of the energy, the momentum, and the
position of the particle and the energy or Hamilton operator (3.22), (3.36), the mo-
mentum operator (3.25), and the position operator x → xψ . Each of these operators
is self-adjoint. The Hamilton operator has already been discussed, its domain is the
Sobolev space H2. For the momentum operator this is seen by means of its Fourier
representation; its domain is the Sobolev space H1. The domain of the position
operator consists of all those wave functions ψ for which x → xψ is still square
integrable. This reflects the general structure of quantum mechanics:

Postulate 2. Observable physical quantities, or observables, are in quantum me-
chanics represented by self-adjoint operators A : D(A) → H defined on dense
subspaces D(A) of the system Hilbert space H . The quantity

〈A〉 = (ψ ,Aψ) (3.41)

is the expectation value of a measurement of A for the system in state ψ ∈ D(A).

At this point we have to recall the statistical nature of quantum mechanics. Quantum
mechanics does not make predictions on the outcome of a single measurement of
a quantity A but only on the mean result of a large number of measurements on
“identically prepared” states, that is, on a given ψ ∈ D(A). The quantity (3.41) has
thus to be interpreted as the mean result that one obtains from a large number of such
measurements. This gives reason to consider the standard deviation or uncertainty

ΔA = ‖Aψ − 〈A〉ψ‖. (3.42)

The uncertainty is zero if and only if Aψ = 〈A〉ψ , that is, if ψ is an eigenvector of
A for the eigenvalue λ = 〈A〉. Only in such eigenstates the quantity represented by
the operator A can be sharply measured without uncertainty.
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One of the fundamental results of quantum mechanics is that, only in exceptional
cases, can different physical quantities be measured simultaneously without uncer-
tainty, the Heisenberg uncertainty principle. Its abstract version reads as follows:

Theorem 3.3. Let A and B two self-adjoint operators and let ψ be a normalized
state in the intersection of D(A) and D(B) such that Aψ ∈ D(B) and Bψ ∈ D(A).
The product of the corresponding uncertainties is then bounded from below by

ΔAΔB ≥ 1
2
|((BA−AB)ψ ,ψ)|. (3.43)

Proof. For arbitrarily chosen real values λ and μ ,

((BA−AB)ψ ,ψ) = ((B− μI)(A−λ I)ψ ,ψ)− ((A−λ I)(B−μI)ψ ,ψ).

Since the operators A and B are self-adjoint, one can rearrange this to

((BA−AB)ψ ,ψ) = 2i Im((A−λ I)ψ ,(B− μI)ψ).

The Cauchy-Schwarz inequality yields

|((BA−AB)ψ ,ψ)| ≤ 2 ‖Aψ −λ ψ‖‖Bψ − μψ‖.

The expression on the right hand side attains its minimum if one inserts the expecta-
tion values 〈A〉 = (ψ ,Aψ) and 〈B〉 = (ψ ,Bψ) for λ and μ . This proves (3.43). �

As an example we consider the three components

qk = xk, pk = − i h̄
∂

∂xk
(3.44)

of the position and the momentum operator. Their commutators are

qk pk − pkqk = i h̄ I. (3.45)

This results in the Heisenberg uncertainty principle

Δ pk Δqk ≥ 1
2

h̄. (3.46)

Position and momentum therefore can never be determined simultaneously without
uncertainty, independent of the considered state of the system. The inequality (3.46)
and with that also (3.43) are sharp as the instructive example

ψ(x) =
( 1√

ϑ

)3
ψ0

( x
ϑ

)

, ψ0(x) =
( 1√

π

)3/2
exp

(

− 1
2
|x |2

)

, (3.47)

of three-dimensional Gauss functions of arbitrary width demonstrates. For these
wave functions the inequality (3.46) actually turns into an equality. From



3.4 The Harmonic Oscillator and Its Eigenfunctions 37

ψ̂(k) = (
√

ϑ)3 ψ0(ϑk) (3.48)

one recognizes that a sharp localization in space, that is, a small parameter ϑ deter-
mining the width of ψ , is combined with a loss of localization in momentum.

States with a well defined, sharp energy E play a particularly important role in
quantum mechanics, that is, solutions ψ �= 0 in H of the eigenvalue problem

Hψ = Eψ , (3.49)

the stationary Schrödinger equation. The functions

t → e−i E
h̄ tψ (3.50)

represent then solutions of the original time-dependent Schrödinger equation. Our
main focus in the forthcoming chapters will be on stationary Schrödinger equations.

3.4 The Harmonic Oscillator and Its Eigenfunctions

The Hamilton operator (3.36) of the free particle has no eigenfunction in its domain,
the Sobolev space H2, as can be shown switching to the Fourier representation. This
behavior differs completely from that of the system considered in this section, the
harmonic oscillator. The harmonic oscillator is one of the few quantum-mechanical
systems for which the Schrödinger equation can be solved exactly. It can serve to
describe the behavior of quantum-mechanical systems in the neighborhood of points
of equilibrium and plays therefore in quantum theory at least as important a role
as its classical counterpart in the description of macroscopic systems. The system
Hilbert space of the harmonic oscillator is again the space L2 of the square integrable
functions. To find its Hamiltonian, we start from the Hamilton function

H(p,q) =
1

2m
| p |2 +

mω2

2
|q |2 (3.51)

of classical mechanics, where m denotes the mass of the considered particle, p is its
momentum, q its position and ω the oscillator frequency. The first part on the right
hand side represents the kinetic energy and the second the potential energy

V (q) =
mω2

2
|q |2 (3.52)

as a function of the position. The correspondence principle, a collection of rules
describing the transition from classical mechanics to quantum mechanics, tells us
that the Hamilton operator of the harmonic oscillator reads therefore

H = − h̄2

2m
Δψ + V (x)ψ , (3.53)
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with V the potential (3.52) just introduced representing the potential energy and
the Laplacian part the kinetic energy as for the free particle. The domain of this
operator contains the rapidly decreasing functions. The Schrödinger equation (3.37)
of the quantum-mechanical harmonic oscillator is thus given by

i h̄
∂ψ
∂ t

= − h̄2

2m
Δψ +

mω2

2
|x |2 ψ , (3.54)

and its stationary counterpart counterpart (3.49) finally becomes

− h̄2

2m
Δψ +

mω2

2
|x |2 ψ = Eψ . (3.55)

The solutions of these equations for different values of the mass and the oscillator
frequency transfer to each other by scaling. In terms of the dimensionless quantities

x ′ =
x
L

, t ′ =
t
T

; L =

√

h̄
mω

, T =
1
ω

, (3.56)

omitting the dashes the time-dependent Schrödinger (3.54) equation reads

i
∂ψ
∂ t

= − 1
2

Δψ +
1
2
|x |2 ψ , (3.57)

and with the rescaled energies λ = E/h̄ω , its stationary counterpart (3.55) becomes

− 1
2

Δψ +
1
2
|x |2 ψ = λ ψ . (3.58)

Our next aim is to study the solutions of this eigenvalue problem. As the Hamilton
operator splits into a sum of operators each acting only on a single component, we
can restrict ourselves essentially to the one-dimensional case, that is, to the operator

H = − 1
2

d2

dx2 +
1
2

x2. (3.59)

Surprisingly, this eigenvalue problem can be solved almost without any computa-
tion. The crucial observation, due to Dirac, is that this operator can be written as

H = A†A +
1
2
, (3.60)

with A and A† the two formally adjoint first order “ladder” operators

A =
1√
2

( d
dx

+ x
)

, A† =
1√
2

(

− d
dx

+ x
)

, (3.61)

whose name becomes obvious from the following considerations.
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Fig. 3.1 The eigenfunctions φ0 and φ64 of the one-dimensional harmonic oscillator

Theorem 3.4. The Hamilton operator (3.59) has the normalized eigenfunctions

φ0(x) =
( 1

π

)1/4
e−x2/2, φn =

1√
n!

(A†)nφ0 (3.62)

that are polynomial multiples of the Gauss function φ0, with assigned eigenvalues

λn = n +
1
2
, n = 0,1,2, . . . . (3.63)

Proof. It suffices to show that the φn are eigenfunctions of A†A. The essential prop-
erty of the operators A and A† and the key to the proof is the commutation relation

AA† = A†A + 1. (3.64)

Since Aφ0 = 0 and (A†v,w) = (v,Aw) for all rapidly decreasing functions v and w,

A†Aφn = nφn, (φn,φn) = 1,

as follows by simple induction. This already completes the proof. �

The operator A† increases the excitation level by one, it climbs up the ladder. Its
counterpart A steps down and decreases the excitation level by one. In formulas:

φn+1 =
1√

n + 1
A†φn, φn−1 =

1√
n

Aφn. (3.65)

The next question is whether there are further eigenfunctions and eigenvalues, or
the other way around, whether the finite linear combinations of the functions (3.62)
form a dense subset of L2. The answer to this question requires some preparations.
We start from the following variant of Wiener’s density theorem:

Lemma 3.1. The finite linear combinations of the shifted Gauss functions

ga(x) = exp
(

− (x−a)2

2

)

, a ∈ R, (3.66)

form a dense subset of the space L2 of the square integrable functions.
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Proof. The Hilbert space L2 can be decomposed into the direct sum of the closure
of the linear combinations of the functions (3.66) and the orthogonal complement of
this subspace. It suffices therefore to prove that this orthogonal complement consists
only of the function f = 0, that is, that ( f ,ga) = 0 for all a ∈ R implies that the
function f vanishes. The Fourier transforms of the ga are by Lemma 2.1

ĝa(k) = e−ikag0(k).

Plancherel’s theorem yields therefore, for f ∈ L2 arbitrary,

( f ,ga) =
∫ ∞

−∞
̂f (k)g0(k)eika dk.

Since f ∈ L2 implies ̂f ∈ L2 and with that ̂f g0 ∈ L1∩ L2, the orthogonality of f ∈ L2

to all functions ga thus implies that the Fourier transform of ̂f g0 and with that ̂f g0

itself vanish. As g0(k) �= 0 for all k, this means ̂f = 0 and finally f = 0. �
We remark that result can be generalized; the arguments transfer to the translates of
every function in L2 with bounded, strictly positive Fourier transform.

Lemma 3.2. The shifted Gauss function (3.66) can be approximated arbitrarily
well in the L2-sense by finite linear combinations of the eigenfunctions (3.62).

Proof. Inserting the power series expansion of x → eax, one gets the representation

ga(x) = e−a2/2
∞

∑
n=0

an

n!
xn e−x2/2.

This series converges not only locally uniformly but also in the L2-sense, since the
sum of the L2-norms of the single summands remains finite and L2 is complete. As

∫ ∞

−∞
x2n e−x2

dx =
2n−1

2

∫ ∞

−∞
x2n−2 e−x2

ds ≤ n!
∫ ∞

−∞
e−x2

dx

for n ≥ 1, the squares of these norms satisfy namely the estimate

∫ ∞

−∞

∣

∣

∣

an

n!
xn e−x2/2

∣

∣

∣

2
dx ≤ a2n

n!

∫ ∞

−∞
e−x2

dx.

As the eigenfunction φn is the product of the function x → e−x2/2 with a polynomial
of order n with non-vanishing leading coefficient, the single summands in the series
can be written as finite linear combinations of the eigenfunctions (3.62). �
From Lemma 3.1 and Lemma 3.2 we can conclude that the process described in
Theorem 3.4 indeed yields all eigenfunctions of the Hamilton operator (3.59):
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Theorem 3.5. The set of the eigenfunctions (3.62) is complete. For all f ∈ L2

lim
N→∞

∥

∥

∥ f −
N

∑
n=0

( f ,φn)φn

∥

∥

∥

0
= 0. (3.67)

Proof. The two lemmata show that the finite linear combinations of the eigenfunc-
tions are dense in L2. Since the φn form an orthonormal system, being eigenfunctions
of a self-adjoint operator corresponding to distinct eigenvalues, the projection

PN f =
N

∑
n=0

( f ,φn)φn (3.68)

is the best approximation of f ∈ L2 by a linear combination of φ1,φ2, . . . ,φN . �

Particularly further eigenfunctions φ �= 0 that are orthogonal to all the eigenfunc-
tions φn from (3.62) cannot exist. Another consequence of (3.67) is the relation

‖ f‖2
0 =

∞

∑
n=0

|( f ,φn)|2 (3.69)

between the L2-norm of a square integrable function f and the �2-norm of the se-
quence of its expansion coefficients that is often denoted as Parseval identity.

Next we want to measure and characterize the speed of convergence of the eigen-
function expansion. For that purpose we introduce a scale of norms given by

‖ f‖2
s =

∞

∑
n=0

(n + 1)2s |( f ,φn)|2 (3.70)

for s ≥ 0 arbitrary. These norms should not be confused with the norms on the
Sobolev spaces Hs from Sect. 2.3 and have a very direct interpretation for integer
values of s in terms of the smoothness and the decay rate of the considered functions:

Lemma 3.3. For rapidly decreasing functions f and integer values s, the norm
given by the expression (3.70) is equivalent to the L2-norm of the functions Hs f .

Proof. The central observation is that with f also the functions Hs f are rapidly
decreasing. From the representation (3.69) of the L2-norm, from the fact that the
operator H is self-adjoint, and the fact that Hφn = λnφn one obtains therefore

‖Hs f‖2
0 =

∞

∑
n=0

λ 2s
n |( f ,φn)|2

for all nonnegative integers s. Since λn = n + 1/2, this proves the proposition. �
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The lemma shows particularly that the norms (3.70) remain finite for the rapidly
decreasing functions. For all r less than s, one gets the error estimate

‖ f −PN f‖r ≤ N r−s ‖ f‖s. (3.71)

Hence the approximation error tends faster to zero than any given power of 1/N for
functions that are sufficiently smooth and decay rapidly enough. The approximation
is not saturated, as with Fourier series. Compared to Fourier series the convergence
rate halves with given order of differentiability, a fact that is owed to the infinite
extension of the real axis. With help of the usual techniques from approximation
theory one can link the convergence rate directly to the given kind of regularity.

If one expresses the wave functions in terms of their eigenfunction expansions,
everything reduces to a very simple diagonal form. The Hamilton operator (3.59)
itself reads in terms of the eigenfunction expansion

Hψ =
∞

∑
n=0

λn(ψ ,φn)φn (3.72)

Its domain consists of all those square integrable functions ψ for which the series

∞

∑
n=0

λ 2
n |(ψ ,φn)|2 (3.73)

converges. Remarkably it is much smaller than the subspace of L2 that consists of
the functions ψ with finite energy expectation value, for which the quadratic form

(ψ ,Hψ) =
∞

∑
n=0

λn |(ψ ,φn)|2 (3.74)

attains a finite value. This quadratic form induces a norm that is equivalent to the
norm given by (3.70) for s = 1/2. We will come back to this important observa-
tion in the next section. The uncertainty ΔE of a measurement of the energy in the
normalized state ψ in the domain of the Hamilton operator H is given by

(ΔE)2 =
∞

∑
n=0

(λn − (ψ ,Hψ))2|(ψ ,φn)|2. (3.75)

The likelihood that the measurement returns a value α < λ ≤ β is

∑
α<λn≤β

|(ψ ,φn)|2, (3.76)

and the probability that it yields a value outside the spectrum, that is, no eigenvalue,
is therefore zero. The unitary group that H generates in the given case is simply

U(t)ψ =
∞

∑
n=0

eiλnt(ψ ,φn)φn. (3.77)
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It is instructive at this place to return for a moment to physical units. If we insert
for the mass m of the particle in the Schrödinger equation (3.54) the mass

m = 9.1093822 ·10−31 kg (3.78)

of the electron and choose the frequency ω so that the ground state energy E = h̄ω/2
of the oscillator coincides with the binding energy of the electron in the hydrogen
atom, the characteristic length and the characteristic time in (3.56) become

L = 5.2917721 ·10−11 m, T = 2.4188843 ·10−17 s (3.79)

in meters and seconds. The constant L is the atomic length unit, the Bohr, and the
constant T the atomic time unit. The atomic energy unit, the Hartree, is E = h̄ω , or

E = 4.3597439 ·10−18 kgm2 s−2. (3.80)

The Planck constant itself attains in these units the value h̄ = 1. These numbers give
an impression of the dimensions of the objects that quantum mechanics studies.

The eigenvalue problem for the two-, three- or higher-dimensional case can be
easily reduced to the case of one space dimension; all our considerations directly
transfer. Since the three-dimensional operator (3.58) splits into the sum

− 1
2

Δ +
1
2
|x |2 =

3

∑
i=1

{

− 1
2

∂ 2

∂x2
i

+
1
2

x2
i

}

(3.81)

of three one-dimensional operators (3.59) each of which acts only on one of the
three components of x, the eigenfunctions are simply the tensor products

ψ(x) = φn1(x1)φn2(x2)φn3(x3), n1,n2,n3 = 0,1,2, . . . . (3.82)

In contrast to the one-dimensional case the eigenvalues

λ = n +
3
2
, n = 0,1,2, . . . , (3.83)

are highly degenerate. The dimension

(n + 1)(n + 2)
2

(3.84)

of the corresponding eigenspaces is equal to the number of possibilities to write the
nonnegative integer n as a sum n = n1+ n2+ n3 of three other nonnegative integers.
The eigenfunctions (3.82) span the linear space of the products

x → P(x)e−|x|2/2 (3.85)
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of polynomials P in three variables with a fixed rotationally symmetric Gaussian, a
class of functions that is therefore dense in L2 and is itself invariant under rotations.

3.5 The Weak Form of the Schrödinger Equation

In our discussion of the harmonic oscillator we started from an expression for the
total energy of the system which led us to its Hamilton operator H. This approach
can be generalized and offers at the same time an elegant possibility to escape from
often very serious mathematical difficulties dealing with self-adjoint extensions of
Hamilton operators that are in the beginning only defined on much too small spaces
of smooth functions. The approach starts from a subspace H1 of the system Hilbert
space H that is dense in H and is itself a Hilbert space under a norm ‖ · ‖1 that
dominates the given norm ‖ · ‖ on H . This space is associated with the elements
ψ ∈ H with finite expectation value B(ψ ,ψ) of the total energy, where

B : H1 ×H1 → C : (ψ ,φ) → B(ψ ,φ) (3.86)

is a hermitian bounded bilinear form on H1, a hermitian bilinear form for which

|B(ψ ,φ)| ≤ M‖ψ‖1‖φ‖1 (3.87)

holds for all elements φ ,ψ ∈ H1. Moreover we assume that for all ψ ∈ H1

B(ψ ,ψ) ≥ δ ‖ψ‖2
1 − μ ‖ψ‖2, (3.88)

with δ a positive and μ an arbitrary real constant. In both cases considered so far, in
the case of the free particle and of the harmonic oscillator, this bilinear form reads

B(ψ ,φ) = (Hψ ,φ), (3.89)

for rapidly decreasing wave function φ and ψ and can be extended to a much larger
Hilbert space. In the case of the free particle, this is the Sobolev space H1, the space
of the square integrable functions for which the expectation value of the kinetic en-
ergy remains finite, and in the case of the harmonic oscillator a subspace of H1. The
key observation is that every such bilinear form induces conversely a self-adjoint
operator H that is then the Hamilton operator of the system and can in cases as just
given be considered as self-adjoint extension of the original differential operator.
This is the famous Friedrichs extension that can be summarized as follows:

Theorem 3.6. The set D(H) of all ψ ∈H1 for which there exists an element ξ ∈H
with B(ψ ,φ) = (ξ ,φ) for all φ ∈ H1 forms a dense subspace of H1 and with that
also of H . There is a unique self-adjoint operator H : D(H) → H with



3.5 The Weak Form of the Schrödinger Equation 45

B(ψ ,φ) = (Hψ ,φ) (3.90)

for all elements ψ ∈ D(H) and all elements φ ∈ H1.

Proof. Under the given assumptions, the expression

〈ψ ,φ〉 = B(ψ ,φ)+ μ(ψ ,φ)

defines an inner product on H1 which induces a norm on H1 that is equivalent to the
original norm and under which H1 is complete. The Riesz representation theorem
thus guarantees that for every ξ ∈ H there is a unique Gξ ∈ H1 with

〈Gξ ,φ〉 = (ξ ,φ), φ ∈ H1.

The mapping G : H → H : ξ → Gξ is linear, bounded, symmetric, and injective.
As B(ψ ,φ) = (ξ ,φ) for all φ ∈H1 if and only if ψ = G(ξ +μψ) and as conversely
B(Gξ ,φ) = (ξ −μGξ ,φ) for all φ ∈H1, the range of G is the set D(H) introduced
above. It is a dense subset of H1 and with that also of H . Let H0 : D(H) → H be
the inverse of G and set H = H0 − μI. For all ψ ∈ D(H) and φ ∈ H1 then

(Hψ ,φ) = B(ψ ,φ).

To calculate the adjoint of H and its domain, let φ ∈ H and ξ ∈ H be given. Then

(ξ ,ψ) = (φ ,Hψ)

for all ψ ∈ D(H), or (ξ ,Gχ) = (φ ,HGχ) = (φ ,χ − μGχ) for all χ ∈ H , if and
only if Gξ = φ −μGφ or φ ∈ D(H) and ξ = Hφ . This shows that H is self-adjoint.
The uniqueness of H follows simply from the density of H1 in H . �

Let us now consider the stationary Schrödinger equation (3.49), the problem to
find the solutions ψ �= 0 in D(H) of the eigenvalue equation

Hψ = Eψ . (3.91)

By (3.90) a solution ψ ∈ D(H) of this equation also solves the equation

B(ψ ,φ) = E (ψ ,φ), φ ∈ H1. (3.92)

If conversely ψ ∈ H1 solves the equation (3.92), ψ is by definition contained in the
domain D(H) of H and solves therefore, due to (3.90) and as H1 is dense in H , the
equation (3.91). Both equations, the eigenvalue equation (3.91) and its weak form
(3.92), are thus completely equivalent and can be replaced by each other. Similar
considerations are possible for the time-dependent Schrödinger equation (3.37).

In the forthcoming chapters we will focus our attention almost exclusively on
the weak form (3.92) of the eigenvalue equation that is –one might believe it or
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not– mathematically much easier to handle than the original form (3.91) and fits
perfectly into the framework of the L2-theory of elliptic partial differential equations.

3.6 The Quantum Mechanics of Multi-Particle Systems

So far we have only considered single, isolated particles moving freely in space or
inside an external potential as in the case of the harmonic oscillator. Let us now
assume that we have a finite collection of N such particles with the spaces L2(Ωi)
as system Hilbert spaces. The Hilbert space describing the system that is composed
of these particles is then the tensor product of these Hilbert spaces or a subspace of
this space, i.e., in the given case a space of square integrable wave functions

ψ : Ω1 × . . .×ΩN → C : (ξ1, . . . ,ξN) → ψ(ξ1, . . . ,ξN). (3.93)

From the point of view of mathematics, this is of course another postulate that can
in a strict sense not be derived from anything else, but is motivated by the statistical
interpretation of the wave functions and particular of the quantity |ψ |2 as a proba-
bility density. Assume that the particles can be distinguished from each other. The
probability to find the particles i in the subsets Ω ′

i of Ωi is then the integral of this
probability density over the cartesian product Ω ′

1 × . . .×Ω ′
N of these Ω ′

i . If

ψ(ξ1, . . . ,ξN) =
N

∏
i=1

φi(ξi), (3.94)

which means that the particles do not interact and are thus statistically independent
of each other, this probability is the product of the individual probabilities

∫

Ω ′
i

|φi(ξi)|2 dξi, (3.95)

as the statistical interpretation requires. The space of the square integrable wave
functions (3.93) is the completion of the space spanned by the products (3.94) of
the square integrable functions φi from the configuration spaces Ωi to C.

Quantum mechanical particles of the same type, like electrons, cannot be dis-
tinguished from each other by any means or experiment. This is both a physical
statement and a mathematical postulate that needs to be specified precisely. It has
striking consequences for the form of the physically admissible wave functions and
of the Hilbert spaces that describe such systems of indistinguishable particles.

To understand these consequences, we have to recall that an observable quantity
like momentum or energy is described in quantum mechanics by a self-adjoint op-
erator A and that the inner product (ψ ,Aψ) represents the expectation value for the
outcome of a measurement of this quantity in the physical state described by the
normalized wave function ψ . The question is whether two distinct normalized wave
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functions, that is, unit vectors in the Hilbert space of the system, can represent the
same physical state and how such wave function are then related.

At least a necessary condition that two normalized elements or unit vectors ψ
and ψ ′ in the system Hilbert space H describe the same physical state is surely
that (ψ ,Aψ) = (ψ ′,Aψ ′) for all self-adjoint operators A : D(A) ⊆ H → H whose
domain D(A) contains both ψ and ψ ′, that is, that the expectation values of all
possible observables coincide. This requirement fixes such states almost completely:

Lemma 3.4. Let f and g be given unit vectors in the complex Hilbert space H and
assume that ( f ,S f ) = (g,Sg) for all bounded symmetric operators S : H → H .
Then there exists a real number θ such that g = eiθ f and vice versa.

Proof. The proof is an easy exercise in linear algebra. Assume that f and g are
linearly independent, that is, span a two-dimensional subspace. The vectors f and

h = g− (g, f ) f �= 0

form then an orthogonal basis of this subspace and every vector

v = α f + β h + v ′

in H can be uniquely decomposed into a linear combination of f and h and a further
vector v ′ that is orthogonal to these two. We consider the symmetric operator

Sv = α f + 2β h

defined in terms of this decomposition. A short calculation shows that

1 = ( f ,S f ) = (g,Sg) = 2 − |( f ,g)|2

or, since f and g are unit vectors, |( f ,g)| = ‖ f‖‖g‖. This is a contradiction to the
linear independence of f and g. Thus g = eiθ f for some real number θ . �
Wave functions that describe the same physical state can therefore differ at most by
a constant phase shift ψ → eiθ ψ , θ a real number. Wave functions that differ by
such a phase shift lead to the same expectation values of observable quantities.

In view of this discussion the requirements on the wave functions describing a
system of indistinguishable particles are rather obvious and can be formulated in
terms of the operations that formally exchange the single particles:

Postulate 3. The Hilbert space of a system of N indistinguishable particles with
system Hilbert space L2(Ω) consists of complex-valued, square integrable functions

ψ : Ω × . . .×Ω → C : (ξ1, . . . ,ξN) → ψ(ξ1, . . . ,ξN) (3.96)

on the N-fold cartesian product of Ω , that is, is a subspace of L2(Ω N). For every ψ in
this space and every permutation P of the arguments ξi, the function ξ → ψ(Pξ ) is
also in this space, and moreover it differs from ψ at most by a constant phase shift.
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This postulate can be rather easily translated into a symmetry condition on the wave
functions that governs the quantum mechanics of multi-particle systems:

Theorem 3.7. The Hilbert space describing a system of indistinguishable particles
either consists completely of antisymmetric wave functions, functions ψ for which

ψ(Pξ ) = sign(P)ψ(ξ ) (3.97)

holds for all permutations P of the components ξ1, . . . ,ξN of ξ , that is, of the single
particles, or only of symmetric wave functions, wave functions for which

ψ(Pξ ) = ψ(ξ ) (3.98)

holds for all permutations P of the arguments.

Proof. We first fix a single wave function ψ and show that it must be symmetric or
antisymmetric. Let α(P) be the phase shift assigned to the permutation P, that is, let

ψ(Pξ ) = α(P)ψ(ξ )

for all arguments ξ ∈ Ω N . For all permutations P and Q then necessarily

α(PQ) = α(P)α(Q).

Next we consider transpositions, permutations that exchange two components.
Transposition are conjugate to each other, which means that for every pair of trans-
positions T and T ′ there is a permutation P with T ′ = P−1T P, from which by the
relation above α(T ′) = α(T ) follows. Since transpositions are self-inverse,

α(T )2 = α(T 2) = α(I) = 1.

Thus there remain only two cases: either α(T ) = −1 for all transpositions T and
with that α(P) = sign(P) for all permutations P, or α(T ) = 1 for all transpositions
and α(P) = 1 for all permutations. In the first case, the given wave function ψ is
antisymmetric, and in the second one symmetric.

The Hilbert space can therefore only contain symmetric and antisymmetric
functions. But a sum of a symmetric and an antisymmetric function can only be
symmetric if the antisymmetric part vanishes, and antisymmetric if the symmetric
part vanishes. The Hilbert space must therefore either completely consist of sym-
metric functions, or completely of antisymmetric functions. �
Which of the two choices is realized depends solely on the kind of particles and
cannot be decided in the present framework. Particles with antisymmetric wave
functions are called fermions and particles with symmetric wave functions bosons.

We are interested in electrons. Electrons have a position in space and an internal
property called spin that in many respects behaves like an angular momentum. The
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spin σ of an electron can attain the two values σ = ±1/2. The configuration space
of an electron is therefore not the R

3 but the cartesian product

Ω = R
3 ×{−1/2, +1/2}. (3.99)

The space L2(Ω) consists of the functions ψ : Ω → C with square integrable com-
ponents x → ψ(x,σ), σ = ±1/2, and is equipped with the inner product

(ψ ,φ) = ∑
σ=±1/2

∫

ψ(x,σ)φ(x,σ) dx. (3.100)

A system of N electrons is correspondingly described by wave functions

ψ : (R3)N×{−1/2, 1/2}N → C : (x,σ) → ψ(x,σ) (3.101)

with square integrable components x → ψ(x,σ), with σ now a vector consisting of
N spins σi = ±1/2. These wave functions are equipped with the inner product

(ψ ,φ) = ∑
σ

∫

ψ(x,σ)φ(x,σ) dx, (3.102)

where the sum now runs over the corresponding 2N spin vectors σ . Electrons are
fermions, as all particles with half-integer spin. That is, the wave functions change
their sign under a simultaneous exchange of the positions xi and x j and the spins σi

and σ j of electrons i �= j. They are, in other words, antisymmetric in the sense that

ψ(Px,Pσ) = sign(P)ψ(x,σ) (3.103)

holds for arbitrary simultaneous permutations x→Px and σ →Pσ of the electron
positions and spins. This is a general version of the Pauli principle, a principle that
is of fundamental importance for the physics of atoms and molecules.

The Pauli principle has stunning consequences. It entangles the electrons with
each other, without the presence of any direct interaction force. A wave function
(3.101) describing such a system vanishes at points (x,σ) at which xi = x j and
σi = σ j for indices i �= j. This means that two electrons with the same spin cannot
meet at the same place, a purely quantum mechanical repulsion effect that has no
counterpart in classical physics and will play a decisive role in our further reasoning.

Finally we consider again the harmonic oscillator and begin with the case of
a single electron. The Hamiltonian is the same as discussed in Sect. 3.3, but it
acts now on wave functions ψ with two components x → ψ(x,σ), one for each
of the two possible values of the spin. The eigenfunctions are therefore products
of the known position-dependent eigenfunctions with functions χ depending only
on the spin variable. These functions χ form a two-dimensional space. That is, the
eigenvalues remain the old ones but their multiplicity is doubled. The Hamiltonian
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for a system of N electrons that move in the potential of a harmonic oscillator but
do not directly interact with each other reads in dimensionless form

H =
N

∑
i=1

{

− 1
2

Δi +
1
2
|xi|2

}

, (3.104)

where Δi denotes the three-dimensional Laplacian acting upon the components of
the position vector xi of the electron i. The eigenfunctions of this Hamiltonian are
the antisymmetric linear combinations of the products of the one-particle eigenfunc-
tions discussed in Sect. 3.4, the so-called Slater determinants

1√
N!

det
(

φi(x j,σ j)
)

(3.105)

built up from them. Such Slater determinants are only different from zero when the
functions φi are linearly independent of each other and, up to a possible change of
sign, do not depend on their ordering. To find the ground states of the aggregate sys-
tem, that is, the eigenfunctions for the minimum eigenvalue, one therefore has to fill
up these orbitals consecutively with eigenfunctions of minimum possible energy, a
procedure that is denoted as aufbau principle in the physical and chemical literature.
One starts with the two eigenfunctions for the eigenvalue 3/2, one corresponding to
spin −1/2 and the other to spin +1/2, proceeds with the 2× 3 eigenfunctions for
the eigenvalue 5/2, and so on, until all N electrons are distributed. The minimum
eigenvalue in the case of 10 electrons is, for example,

2× 3
2

+ 6× 5
2

+ 2× 7
2

= 25

Since the eigenvalue 7/2 of the one-particle operator has multiplicity 12, there are

(

12
2

)

= 66

possibilities to choose the two orbitals of highest energy, which means that the mul-
tiplicity of the minimum eigenvalue 25 of the ten-particle operator is 66.

In reality, the electrons interact with each other. The Hamiltonians therefore
no longer split into distinct parts, each acting only on the coordinates of a single
electron, and the eigenfunctions can no longer be built up from one-particle eigen-
functions. For a system consisting of N electrons, they depend on 3N variables and
have 2N components. The challenge is to reduce the horrifying complexity of these
objects to a level that comes into the reach of numerical methods.



Chapter 4
The Electronic Schrödinger Equation

Atoms, molecules, and ions are described by the Schrödinger equation for a system
of charged particles that interact by Coulomb attraction and repulsion forces. As
the nuclei are much heavier than the electrons, the electrons almost instantaneously
follow their motion. Therefore it is usual in quantum chemistry and related fields
to separate the motion of the nuclei from that of the electrons and to start from the
electronic Schrödinger equation, the equation that describes the motion of a finite
set of electrons in the field of a finite number of clamped nuclei, or in other words
to look for the eigenvalues and eigenfunctions of the Hamilton operator

H = − 1
2

N

∑
i=1

Δi −
N

∑
i=1

K

∑
ν=1

Zν
|xi −aν | +

1
2

N

∑
i, j=1
i�= j

1
|xi − x j| (4.1)

written down here in dimensionless form or atomic units. It acts on functions with
arguments x1, . . . ,xN ∈R

3, which are associated with the positions of the considered
electrons. The a1, . . . ,aK ∈ R

3 are the fixed positions of the nuclei and the positive
values Zν the charges of the nuclei in multiples of the electron charge.

Like the Hamilton operator for a system of electrons moving in the potential of
a harmonic oscillator, the Hamilton operator (4.1) is derived via the correspondence
principle from its counterpart in classical physics, the Hamilton function or total
energy of a system of point-like particles in a potential field. It is again composed of
two parts, a first part representing the kinetic energy of the electrons, built up from
the Laplacians Δi acting upon their position vectors xi, and the potential part

V = −
N

∑
i=1

K

∑
ν=1

Zν
|xi −aν | +

1
2

N

∑
i, j=1
i�= j

1
|xi − x j| (4.2)

describing the interaction of the electrons among each other and with the nuclei.
The difficulty is not only that these potentials are singular but that the electrons are
coupled to each other so that the eigenfunctions are no longer products or linear
combinations of products of three-dimensional one-electron eigenfunctions.
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The transition from the full, time-dependent Schrödinger equation taking also
into account the motion of the nuclei to the electronic Schrödinger equation is a
mathematically very subtle problem that is not addressed here; we refer to [78]
and the literature cited therein. The present book is concerned with the study of
the analytical properties of the eigenfunctions of the operator (4.1) with the aim
to find points of attack to approximate them efficiently. This chapter is devoted to
the precise mathematical formulation of the electronic Schrödinger equation. Our
approach is based on the weak formulation of the problem outlined in Sect. 3.5.

4.1 The Hardy Inequality and the Interaction Energy

We first neglect the spin-dependence of the wave functions that will then be taken
into account in the next section. Since the eigenvalues of a self-adjoint operator are
always real, the electronic Schrödinger equation splits into two separate equations
of the same form for the real and the imaginary part of the wave functions. We can
therefore restrict ourselves in the sequel to real-valued wave functions

u : (R3)N → R : (x1, . . . ,xN) → u(x1, . . . ,xN), (4.3)

which, of course, need to be square integrable. Their L2-norm given by

‖u‖2
0 =

∫

|u(x)|2 dx (4.4)

is usually normalized to one. The integral of the function x → |u(x)|2 over a subdo-
main of the R

3N then represents the probability that the electrons are located in this
part of the configuration space and the quantity

− 1
2

N

∑
i=1

∫

uΔiudx =
1
2

N

∑
i=1

∫

|∇iu|2 dx, (4.5)

provided that it exists, the expectation value of the kinetic energy. That is, wave
functions must possess first-order weak derivatives and the H1-seminorm given by

|u |21 =
∫

|(∇u)(x)|2 dx (4.6)

must remain finite. The solution space of the eigenvalue problem must be a subspace
of the Hilbert space H1(R3N) or briefly H1, the space that consists of the square
integrable functions (4.3) with square integrable first-order weak partial derivatives
and that is equipped with the H1-norm given by the expression

‖u‖2
1 = ‖u‖2

0 + |u |21. (4.7)
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In Sect. 2.1 we introduced the space D of the infinitely differentiable functions with
compact support. From Sect. 2.3 we know that the functions in D form a dense sub-
set of H1 and H1 can thus be considered as completion of D under the norm (4.7).

The rest of this section is based on a classical inequality, the Hardy inequality for
functions defined on R

3. Hardy-type inequalities play a central role in this work.

Lemma 4.1. For all infinitely differentiable functions v in the variable x ∈ R
3 that

have a compact support,

∫

1
|x|2 v2 dx ≤ 4

∫

|∇v|2 dx . (4.8)

Proof. Let d(x) = |x| for abbreviation. To avoid any difficulty, we assume at first
that v vanishes on a neighborhood of the origin. Using the relation

1
d2 = −∇

(1
d

)

·∇d ,

integration by parts then yields

∫

1
d2 v2 dx =

∫

1
d

∇ · (v2∇d)dx

or, using Δd = 2/d and resolving for the left-hand side, the representation

∫

1
d2 v2 dx = −2

∫

1
d

v∇d ·∇v dx

of the integral to be estimated. The Cauchy-Schwarz inequality yields

∫

1
d2 v2 dx ≤ 2

(
∫

1
d2 v2 dx

)1/2(∫

|∇d ·∇v|2 dx

)1/2

or, using |∇d| = 1, the estimate (4.8) for functions v vanishing near the origin. To
complete the proof, let ω : R

3 → [0,1] be an infinitely differentiable cut-off function
with ω(x) = 0 for |x| ≤ 1/2 and with ω(x) = 1 for |x| ≥ 1. Set

vk(x) = ω(kx)v(x).

The estimate (4.8) then holds for the functions vk as just proved. Using

|ω(kx)| ≤ 1, |k (∇ω)(kx)| ≤ c
|x|
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with a constant c independent of k and the local integrability of

x → 1
|x|2 ,

the proposition follows with help of the dominated convergence theorem. �

The Hardy inequality (4.8) first serves to estimate terms involving the potential

V (x) = −
N

∑
i=1

K

∑
ν=1

Zν
|xi −aν | +

1
2

N

∑
i, j=1
i�= j

1
|xi − x j| (4.9)

in the Hamilton operator (4.1) that is composed of the nucleus-electron interaction
potential, the first term in (4.9), and the electron-electron interaction potential. Let
Z denote the total charge of the nuclei, the sum of the charges Zν , and set

θ (N,Z) =
√

N max(N,Z). (4.10)

A simple calculation on the basis of the Hardy inequality (4.8), Fubini’s theorem,
and the Cauchy-Schwarz inequality then yields our first important estimate:

Theorem 4.1. The functions u and v in D satisfy the estimate

∫

Vuv dx ≤ 3θ (N,Z)‖u‖0|v |1. (4.11)

Next we write the Hamilton operator (4.1) in the form

H = − 1
2

Δ +V (4.12)

and introduce the bilinear form

a(u,v) = (Hu,v) (4.13)

on D , where ( , ) denotes the L2-inner product. Since

(−Δu,v) =
∫

∇u ·∇v dx, (4.14)

there exists, by Theorem 4.1, a constant M depending on N and on Z with

a(u,v) ≤ M ‖u‖1‖v‖1 (4.15)
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for all u,v ∈ D . The bilinear form (4.13) can therefore be extended to a bounded,
symmetric bilinear form on H1. Furthermore, for μ ≥ 9θ 2+1/4 and all u,v ∈ H1,

a(u,u)+ μ(u,u) ≥ 1
4
‖u‖2

1. (4.16)

Neglecting the spin, the Sobolev space H1 would therefore be the proper Hilbert
space associated with the given system of electrons and the value a(u,u) the expec-
tation value of the total energy in the state described by the normed wave function
u ∈ H1. A function u �= 0 in H1 is an eigenfunction of the Hamilton operator (4.1)
or (4.12), and the real number λ the associated eigenvalue, if the relation

a(u,χ) = λ (u,χ) (4.17)

holds for all χ ∈ H1. That is, we consider weak solutions of the eigenvalue equation

Hu = λ u, (4.18)

in the same way as this has been discussed in Sect. 3.5 in conjunction with the
Friedrichs extension and as one defines weak solutions of boundary value problems.
The relation (4.16) shows that the eigenvalues λ are bounded from below.

4.2 Spin and the Pauli Principle

As described in Sect. 3.6, electrons have an internal property called spin that be-
haves similar to angular momentum. Although spin does not explicitly appear in the
electronic Schrödinger equation, it influences the structure of atoms and molecules
decisively. The purpose of this section is to explain how spin can be incorporated
into the variational framework. The spin of an electron can attain the two half-
integer values ±1/2. Correspondingly, the true wave functions are of the form

ψ : (R3)N×{−1/2, 1/2}N → R : (x,σ) → ψ(x,σ), (4.19)

that is, depend not only on the positions xi ∈ R
3, but also on the spins σi = ±1/2

of the electrons. The Pauli principle, one of the fundamental principles of quantum
mechanics, states that only those eigenfunctions are admissible that change their
sign under a simultaneous exchange of the positions xi and x j and the spins σi and
σ j of two electrons i and j, that is, are antisymmetric in the sense that

ψ(Px,Pσ) = sign(P)ψ(x,σ) (4.20)

holds for arbitrary simultaneous permutations x→Px and σ →Pσ of the electron
positions and spins. The Pauli principle forces the admissible wave functions to
vanish where xi = x j and σi = σ j for i �= j, that is, that the probability that two
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electrons i and j with the same spin meet is zero. The admissible solutions of the
scalar Schrödinger equation (4.17) are those that are components

u : (R3)N → R : x → ψ(x,σ) (4.21)

of an antisymmetric wave function (4.19). To clarify these relations and deduce
(4.17) from the full equation incorporating spin, we introduce the bilinear forms

B(ψ ,ψ ′) = ∑
σ

a
(

ψ( · ,σ),ψ ′( · ,σ)
)

, (4.22)

(ψ ,ψ ′) = ∑
σ

(

ψ( · ,σ),ψ ′( · ,σ)
)

(4.23)

on the spaces of functions (4.19) with components in H1, respectively, L2 where the
sums extend over the 2N possible spin vectors σ . The quantity B(ψ ,ψ) represents
the expectation value of the total energy for normed ψ and B is thus the bilinear
form that is induced by the complete Hamilton operator of the system, the operator
whose eigenvalues and eigenfunctions are sought. An antisymmetric function ψ
with components in H1 is a solution of the full problem if and only if

B(ψ ,ψ ′) = λ (ψ ,ψ ′) (4.24)

for all test functions ψ ′ of this kind. This eigenvalue problem decouples into eigen-
value problems for the components of the eigenfunctions ψ due to the fact that the
bilinear form (4.13) is invariant under permutations of the positions xi, i.e., that

a
(

u(P ·),v(P ·)) = a(u,v) (4.25)

holds for all such permutations P and all functions u,v∈H1. This property translates
into a statement on the antisymmetrization operator A given by

(A ψ)(x,σ) =
1

N! ∑
P

sign(P)ψ(Px,Pσ) (4.26)

where the sum extends over the N! possible permutations of the electrons. It maps
an arbitrary function (4.19) into an antisymmetric function and reproduces antisym-
metric functions. For all functions (4.19) with components in H1 respectively L2,

B(ψ ,A ψ ′) = B(A ψ ,ψ ′), (ψ ,A ψ ′) = (A ψ ,ψ ′). (4.27)

Theorem 4.2. An antisymmetric function ψ with components in H1 satisfies the
eigenvalue equation (4.24) if and only if its components solve the equations

a
(

ψ( · ,σ), v
)

= λ
(

ψ( · ,σ), v
)

, v ∈ H1. (4.28)
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Proof. Let δ (η ,σ) = 1 if η = σ and δ (η ,σ) = 0 otherwise. Every function (4.19)
with components in H1 can then be written as

ψ(x,η) = ∑
σ

ψ(x,σ)δ (η ,σ),

that is, as a linear combination of functions of the form

ψ ′(x,η) = v(x)δ (η ,σ)

with v ∈ H1 and some given σ , and every antisymmetric function therefore as a
linear combination of antisymmetrized functions of this form. It suffices therefore
to restrict oneself to test functions A ψ ′ where ψ ′ is a function of the given form.
Let ψ now be an arbitrary antisymmetric function with components in H1. Then

B(ψ ,A ψ ′) = B(A ψ ,ψ ′) = B(ψ ,ψ ′) = a(ψ( · ,σ),v),

(ψ ,A ψ ′) = (A ψ ,ψ ′) = (ψ ,ψ ′) = (ψ( · ,σ),v),

from which the proposition follows. �
The components of the solutions ψ of the full equation (4.24) are therefore indeed
solutions of the scalar equation (4.17). To characterize these components, let D(σ)
denote the space of all functions u ∈ D with

u(Px) = sign(P)u(x) (4.29)

for all permutations P that leave σ invariant and let L2(σ) and H1(σ) be the closure
of D(σ) in the corresponding spaces.

Theorem 4.3. A function in D is the component (4.21) of an antisymmetric function
(4.19) with components in D if and only if it belongs to D(σ). The corresponding
statement holds for functions with components in L2 and H1, respectively.

Proof. If ψ is antisymmetric, u(x) = ψ(x,σ), and Pσ = σ , then

u(Px) = ψ(Px,σ) = ψ(Px,Pσ) = sign(P)ψ(x,σ) = sign(P)u(x),

so that the components (4.21) of an antisymmetric function are of the form (4.29).
A function u satisfying (4.29) is conversely the component u(x) = ψ(x,σ) of

ψ(x,η) = ∑P
sign(P)u(Px)δ (Pη ,σ)

∑P
δ (Pσ ,σ)

,

and can thus be recovered from an antisymmetric function. �
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The components u = ψ(·,σ) in H1(σ) of the full, spin-dependent eigenfunctions ψ
solve, by Theorem 4.2, particularly the reduced eigenvalue equation

a(u,v) = λ (u,v), v ∈ H1(σ), (4.30)

that results from (4.28) replacing the test space H1 by its subspace H1(σ). From
the solutions of these equations, one can conversely recover solutions of the full
equation (4.24) combining all 2N components of the eigenfunctions ψ .

Theorem 4.4. If the function u �= 0 in H1(σ) solves the eigenvalue equation (4.30)
reduced to the space H1(σ), the antisymmetric function ψ �= 0 defined by

ψ(x,η) =
1

N! ∑
P

sign(P)u(Px)δ (Pη ,σ) (4.31)

solves the full equation (4.24) and the function u itself solves the original equation

a(u,v) = λ (u,v), v ∈ H1. (4.32)

Proof. Let ψ ′ be an antisymmetric function with components in H1. Its component
x → ψ ′(x,σ) then belongs to H1(σ). Since, as in the proof of Theorem 4.2,

B(ψ ,ψ ′) = B(ψ ′,ψ) = a(ψ ′( · ,σ),u) = a(u,ψ ′( · ,σ)),
(ψ ,ψ ′) = (ψ ′,ψ) = (ψ ′( · ,σ),u) = (u,ψ ′( · ,σ)),

the function (4.31) therefore solves the equation (4.24) for the complete, spin-
dependent wave functions. As u(x) = sign(P)u(Px) whenever P fixes σ , u is a
constant multiple of the function ψ( · ,σ). The rest follows from Theorem 4.2. �
With that the circle is closed. Since the functions u ∈ H1(σ) and ũ(x) = u(Q−1x)
in H1(Qσ) generate, up to a possible change of sign, the same function (4.31) for
arbitrary permutations Q of the electrons, and since ũ∈ H1(Qσ) solves the equation

a(ũ, ṽ) = λ (ũ, ṽ), ṽ ∈ H1(Qσ), (4.33)

if and only if u solves (4.30), one can restrict oneself to the reduced equations (4.30)
on the �N/2� essentially different spaces H1(σ) instead of solving the system (4.24)
for the 2N components of a wave function (4.19) directly. Every solution of such a
reduced equation also solves the eigenvalue problem (4.17) on the bigger space H1.



Chapter 5
Spectrum and Exponential Decay

In this chapter we begin to study the solutions of the electronic Schrödinger equa-
tion and compile and prove some basic, for the most part well-known, facts about its
solutions in suitable form. Parts of this chapter are strongly influenced by Agmon’s
monograph [3] on the exponential decay of the solutions of second-order elliptic
equations. Starting point are two constants associated with the solution spaces in-
troduced in the previous chapter, the minimum energy that the given system can
attain and the ionization threshold. Both constants are intimately connected with the
spectral properties of the Hamilton operator and are introduced in the first section
of this chapter. The second section deals with some notions and simple results from
spectral theory that are rewritten here in terms of bilinear forms as they underly the
weak form of the Schrödinger equation. The weak form of the equation will not
only be the starting point of the regularity theory that we will develop later, but is
also the basis for many approximation methods of variational type, from the basic
Ritz method discussed in the third section to the many variants and extensions of the
Hartree-Fock method. Our exposition is based on simple, elementary properties of
Hilbert spaces like the projection theorem, the Riesz representation theorem, or the
fact that every bounded sequence contains a weakly convergent subsequence. Hence
only a minimum of prerequisites from functional analysis is required. For a com-
prehensive treatment of spectral theory and its application to quantum mechanics,
we refer to texts like [44, 69–71], or [87, 88]. We finally show, in the fourth section,
that the essential spectrum of the electronic Schrödinger operator is non-empty and
that the ionization threshold represents its lower bound. We will assume that the
minimum energy is located below the ionization threshold. It is then an eigenvalue,
the ground state energy. The corresponding eigenfunctions are the ground states.
The knowledge of the ground states and particularly of the ground state energy is of
main interest in quantum chemistry. The last section is devoted to the exponential
decay of the eigenfunctions for eigenvalues below the ionization threshold, a re-
sult that goes back to O’Connor [20] and has later been substantially refined [3]. In
contrast to many other presentations the symmetry properties of the wave functions
enforced by the Pauli principle are hereby carefully taken into account.

H. Yserentant, Regularity and Approximability of Electronic Wave Functions,
Lecture Notes in Mathematics 2000, DOI 10.1007/978-3-642-12248-4 5,
c© Springer-Verlag Berlin Heidelberg 2010
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5.1 The Minimum Energy and the Ionization Threshold

Recall that we denoted by D the space of the infinitely differentiable functions with
bounded support and that the space D(σ) consists of the functions in D that are
antisymmetric under the permutations of the positions of the electrons that leave the
given spin vector σ invariant. The Sobolev space H1 is the completion of D under
the norm (4.7) and the space H1(σ) the closure of D(σ) in H1. Let a(u,v) be the
extension of the bilinear form (4.13) from D to H1. From (4.16) we know that the
total energy is bounded from below. Hence we are allowed to define the constant

Λ(σ) = inf
{

a(u,u)
∣

∣u ∈ D(σ), ‖u‖0 = 1
}

, (5.1)

the minimum energy that the system can attain with the given distribution of spins.
Its counterpart is the ionization threshold. To prepare its definition let

Σ(R,σ) = inf
{

a(u,u)
∣

∣u ∈ D(σ), ‖u‖0 = 1, u(x) = 0 for |x| ≤ R
}

. (5.2)

Lemma 5.1. The constants Σ(R,σ) are bounded from above by the value zero.

Proof. Let u �= 0 in D(σ) be a normed infinitely differentiable function that van-
ishes on the ball of radius 1 around the origin of the R

3N . The rescaled functions

uR(x) =
1

R3N/2
u
( x

R

)

then have L2-norm 1, too, and vanish on the ball of radius R around the origin.
Therefore, by the definition (5.1) of the constant Σ(R,σ),

Σ(R,σ) ≤ a(uR,uR).

At this place, the particular properties of the given potential enter. By Theorem 4.1,

a(uR,uR) ≤ 1
2
|uR|21 + 3θ (N,Z)‖uR‖0|uR|1.

This estimate can be rewritten in terms of the original function u using the relations

‖uR‖0 = ‖u‖0, |uR|1 =
1
R
|u |1.

For arbitrarily given ε > 0 and R chosen sufficiently large, therefore Σ(R,σ) ≤ ε .
As the Σ(R,σ) are monotonely increasing in R, Σ(R,σ) ≤ ε for all R > 0 follows.
Since ε can be chosen arbitrarily small, this implies the proposition. �
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As the Σ(R,σ) are monotonely increasing in R, we can therefore define the constant

Σ(σ) = lim
R→∞

Σ(R,σ) ≤ 0, (5.3)

the energy threshold above which at least one electron has moved arbitrarily far
away from the nuclei, the ionization threshold. As one knows from [65], and as we
will show in the fourth section, it is closely linked to the spectral properties of the
Hamilton operator (4.1), respectively the corresponding bilinear form a(u,v), and
represents the infimum of the essential spectrum. Our main assumption is that

Λ(σ) < Σ(σ), (5.4)

that is, that it is energetically more advantageous for the electrons to stay in the
vicinity of the nuclei than to fade away at infinity. As we will see later, this assump-
tion implies that the minimum energy (5.1) is an isolated eigenvalue and that the
corresponding eigenfunctions, the ground states of the system, decay exponentially.
The condition thus means that the nuclei can bind all electrons, which evidently does
not always need to be the case, but of course holds for stable atoms and molecules.

5.2 Discrete and Essential Spectrum

The purpose of this section is to introduce some basic concepts and facts from spec-
tral theory that are here rewritten in terms of bilinear forms as they are considered
in the L2-theory of linear elliptic differential equations. We start from an abstract
framework with two real Hilbert spaces H0 and H1 ⊆ H0. Let (· , ·) denote the
inner product and ‖ · ‖0 the induced norm on H0 and ‖ · ‖1 the norm on H1. We
suppose that H1 is a dense subspace of H0 and that there exists a constant c with

‖u‖0 ≤ c‖u‖1, u ∈ H1, (5.5)

that is, H1 is densely embedded in H0. Furthermore, let

a : H1×H1 → R : u,v → a(u,v) (5.6)

be a symmetric bilinear form that is bounded in the sense that

a(u,v) ≤ M ‖u‖1‖v‖1, u,v ∈ H1, (5.7)

and coercive in the sense that there is a constant δ > 0 with

a(u,u) ≥ δ ‖u‖2
1, u ∈ H1. (5.8)

These properties imply that a(u,v) is an inner product on H1 that induces a norm
which is equivalent to the original norm and can substitute it.
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In the case that we have in mind H0 is the Hilbert space L2, respectively one of
its subspaces L2(σ) with the corresponding symmetries built in, and H1 the Hilbert
space H1 of the square integrable, one times weakly differentiable functions from
R

3N to R, respectively its corresponding subspace H1(σ). The condition (5.8) is
formally more restrictive than the condition (4.16) that the bilinear form (4.13) sat-
isfies. It is, however, possible to replace bilinear forms like (4.13) by shifted versions
as in (4.16) that satisfy (5.8) since this results only in a shift of the spectrum.

Eigenvalues and eigenvectors (or eigenfunctions in concrete applications) are de-
fined in weak sense, in the same way as weak solutions of differential equations.

Definition 5.1. An eigenvalue λ of the bilinear form (5.6) is a real number for
which there exists an element u ∈ H1 that is different from zero and for which

a(u,v) = λ (u,v), v ∈ H1. (5.9)

Every such u is called an eigenvector for the eigenvalue λ . The linear subspace Eλ
consisting of these eigenvectors is the corresponding eigenspace. The multiplicity
of the eigenvalue λ is the dimension of this eigenspace.

The problem is that, unlike the finite dimensional case, the fact that the number λ is
not an eigenvalue does not necessarily mean that the equation

a(u,v)−λ (u,v) = ( f ,v), v ∈ H1, (5.10)

possesses a unique solution u∈H1 depending continuously on the data f ∈H0.

Definition 5.2. A real number λ belongs to the resolvent of the bilinear form (5.6)
if and only if the equation (5.10) possesses a unique solution u ∈ H1 for all given
f ∈ H0 that depends continuously on the data, that is, if the linear mapping

Rλ : H0 → H1 : f → u =: Rλ f (5.11)

is bounded. The values λ which do not belong to the resolvent form its spectrum.

The spectrum obviously contains the eigenvalues but can be much larger, which is
the case with the bilinear forms induced by the Hamilton operators of atoms and
molecules. It should be noted that, because of the identity

a(Rλ f ,Rλ f ) = λ (Rλ f ,Rλ f )+ ( f ,Rλ f ) (5.12)

and the coercivity (5.8) of the bilinear form, it suffices to require that the resolvent
mapping (5.11) is bounded as a mapping from H0 to H0. Because of

( f ,Rλ g) = a(Rλ f ,Rλ g)−λ (Rλ f ,Rλ g) (5.13)

the resolvent mappings are symmetric in the sense that

(Rλ f ,g) = ( f ,Rλ g), f ,g ∈ H0. (5.14)
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The spectrum of the bilinear form (5.6) is bounded from below. A first lower bound
can be given in terms of the constants from (5.5) and (5.8).

Theorem 5.1. All real numbers λ < δ/c2 belong to the resolvent of the bilinear
form; its spectrum is therefore a subset of the interval λ ≥ δ/c2 > 0.

Proof. For λ ≤ 0, the coercivity (5.8) implies

a(u,u)−λ (u,u) ≥ a(u,u) ≥ δ ‖u‖2
1,

and for λ > 0 correspondingly

a(u,u)−λ (u,u) ≥ (δ −λ c2)‖u‖2
1.

The shifted bilinear form

u,v → a(u,u)−λ (u,u)

is therefore coercive for λ < δ/c2. The proposition thus follows from the Riesz
representation theorem applied to this bilinear form as the inner product on H1. �
In particular there is a symmetric bounded linear operator G : H0 → H1 with

a(G f ,v) = ( f ,v), v ∈ H1, (5.15)

the resolvent mapping (5.11) for λ = 0. A given element u ∈ H1 is an eigenvector
of the bilinear form (5.6) for the eigenvalue λ if and only if

u−λ Gu = 0. (5.16)

That is, in view of Theorem 5.1, the eigenvalues and eigenvectors of the bilinear
form and of the linear mapping G correspond to each other.

Since G is injective, G has an inverse A with the range D(A) of G as domain. For
all u ∈ D(A), Au ∈ H0 is characterized by the relation (Au,v) = a(u,v) for v ∈ H1.
It can be shown that A is self-adjoint and that the spectrum of A and of the bilinear
form coincide. The operator A and the bilinear form determine each other. In the
case in that we are mainly interested, A is the self-adjoint extension of the given
Hamilton operator discussed in Sect. 3.5. We will not utilize these facts here.

Theorem 5.2. The real number λ belongs to the resolvent of the bilinear form if
and only if the bounded linear mapping

I −λ G : H0 → H0 (5.17)

possesses a bounded inverse Tλ : H0 → H0.
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Proof. Let λ belong to the resolvent. We first observe that, for all given f ∈ H0,

a(G f ,v)−λ (G f ,v) = ( f −λ G f , v), v ∈ H1.

By definition of Rλ this implies G f = Rλ ( f −λ G f ) or G = Rλ (I−λ G). Moreover,

a((I−λ G)Rλ f ,v) = ( f ,v), v ∈ H1,

from which (I−λ G)Rλ = G follows. Therefore

I = (I + λ Rλ )(I−λ G) = (I −λ G)(I + λ Rλ ),

that is, the operator Tλ = I + λ Rλ is a bounded inverse of I−λ G.
Let the operator I−λ G conversely have a bounded inverse Tλ . For f ∈H0 given

the equation (5.10) can then have at most one solution because

a(u,v)−λ (u,v) = 0, v ∈ H1,

implies u−λ Gu = 0 and with that u = 0. On the other hand, u = GTλ f solves the
equation (5.10). Thus λ belongs to the resolvent and Rλ = GTλ . �
Theorem 5.3. The resolvent is an open and the spectrum a closed set.

Proof. Let λ0 belong to the resolvent and T0 be the inverse of I − λ0G. We start
observing that u ∈ H1 solves the equation (5.10) if and only if u−λ Gu = G f or

u = T0G f +(λ −λ0)T0Gu.

The Banach fixed point theorem guarantees that this equation possesses a unique
solution depending continuously on f for all λ in a sufficiently small neighborhood
of the given λ0. All λ in this neighborhood of λ0 belong therefore to the resolvent.
Hence the resolvent is open and the spectrum correspondingly closed. �
Theorem 5.4. The value λ belongs to the spectrum of the bilinear form if and only
if there exists a sequence of elements fn ∈ H0 with

lim
n→∞

‖(I−λ G) fn‖0 = 0, ‖ fn‖0 = 1, (5.18)

that is, if λ is a so-called approximate eigenvalue.

Proof. Let λ first belong to the resolvent and let Tλ be the bounded inverse of the
operator I−λ G. If the vectors rn = (I−λ G) fn tend then to zero in H0 as n goes to
infinity, the same holds for the vectors fn = Tλ rn. Thus λ cannot be an approximate
eigenvalue and the approximate eigenvalues form a part of the spectrum.

Let λ conversely belong to the spectrum. If λ is an eigenvalue, nothing has to
be shown. If λ is not an eigenvalue, I −λ G is injective. Furthermore, the range of
I −λ G is a dense subset of H0: Let ( f ,(I −λ G)g) = 0 for all g ∈ H0. Since G is
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symmetric, then also ((I −λ G) f ,g) = 0 for all g ∈ H0. This is only possible for
(I −λ G) f = 0, that is, for f = 0 by the injectivity of I−λ G.

Therefore the inverse operator of I −λ G mapping the range of I −λ G back to
its domain H0 cannot be bounded. Otherwise it could namely be extended to a
bounded inverse Tλ of I−λ G and λ would belong to the resolvent by Theorem 5.2.
This means that there is a sequence of elements gn in the range of I−λ G such that

lim
n→∞

‖gn‖0 = 0, ‖(I−λ G)−1gn‖0 = 1.

The vectors fn = (I −λ G)−1gn have then the properties (5.18) so that λ is indeed
an approximate eigenvalue. �
Definition 5.3. An eigenvalue λ of the bilinear form (5.6) is called isolated, if there
exists a constant ϑ > 0 with

‖ f‖0 ≤ ϑ−1‖(I −λ G) f ‖0, f ∈ E ⊥
λ , (5.19)

where E ⊥
λ is the H0-orthogonal complement of the corresponding eigenspace

Eλ =
{

f ∈ H0
∣

∣(I −λ G) f = 0
}

(5.20)

of the bilinear form. The isolated eigenvalues of finite multiplicity form the discrete
spectrum, the other values in the spectrum the essential spectrum.

The discrete spectrum is of special importance in the study of atoms and molecules.
As we will see, it fixes the energies of the bound states and with that the frequencies
of the light that the atom or molecule emits and absorbs, its spectrum.

Theorem 5.5. All λ �= λ0 sufficiently close to an isolated eigenvalue λ0 of finite
multiplicity belong to the resolvent and all accumulation points of the spectrum to
the essential spectrum.

Proof. As G maps the corresponding eigenspace E0 and its orthogonal complement
E ⊥

0 into itself, the problem to solve equation (5.10) or equivalently u−λ Gu = G f
for f ∈ H0 given splits into the subproblem to find an element v ∈ E⊥

0 with

v−λ Gv = G f ′,

where f ′ denotes the orthogonal projection of f onto the subspace E ⊥
0 of H0, and

a corresponding subproblem on E0. The restriction of I − λ0G to E ⊥
0 possesses a

bounded inverse T ′
0 : E ⊥

0 → E ⊥
0 , as can be shown using an argument as in the proof

of Theorem 5.4 and utilizing (5.19). The equation on E ⊥
0 is therefore equivalent to

v = T ′
0 f ′ +(λ −λ0)T ′

0Gv.

By the Banach fixed point theorem it possesses again a unique solution for all λ
sufficiently close to λ0. There remains the subproblem on E0. Because

w−λ Gw = (1−λ/λ0)w
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for w ∈ E0, this subproblem is solvable for λ �= λ0. The discrete spectrum contains
therefore only isolated points, as the notion ‘isolated eigenvalue’ suggests. Since the
spectrum is a closed subset of R, this proves also the second proposition. �
Theorem 5.6. The value λ belongs to the essential spectrum of the bilinear form if
and only if there exists a sequence of elements fn ∈ H0 with

lim
n→∞

‖(I−λ G) fn‖0 = 0, ‖ fn‖0 = 1, (5.21)

and additionally
fn → 0 weakly in H0. (5.22)

Proof. Let λ belong to the essential spectrum. If the subspace

Eλ =
{

f ∈ H0
∣

∣(I −λ G) f = 0
}

of H0 is infinite dimensional, Eλ contains a sequence of pairwise orthogonal ele-
ments fn of norm 1. Because

∞

∑
i=1

|( fn,v)|2 ≤ ‖v‖2
0

for all v ∈ H0, then necessarily

lim
n→∞

( fn,v) = 0

for all v ∈ H0. Hence the fn converge weakly to zero and nothing is left to be done.
Otherwise we decompose H0 into the direct sum

H0 = Eλ ⊕E ⊥
λ

of Eλ and its orthogonal complement E ⊥
λ in H0. The restriction of I−λ G to E ⊥

λ is
injective by definition. However, its inverse mapping the image of E ⊥

λ under I−λ G
back to E ⊥

λ cannot be bounded because λ would then not belong to the essential
spectrum. Therefore there exists a sequence of elements fn ∈ E ⊥

λ with

lim
n→∞

‖(I−λ G) fn‖0 = 0, ‖ fn‖0 = 1.

As every bounded sequence in a Hilbert space contains a weakly convergent subse-
quence, we can assume that the fn converge weakly in H0 to a limit element f . As

( f ,v) = lim
n→∞

( fn,v) = 0, v ∈ Eλ ,

this f belongs itself to the orthogonal complement E ⊥
λ of Eλ . Since

((I −λ G) f , g) = lim
n→∞

((I −λ G) fn, g) = 0
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for all g ∈ H0, f is also contained in Eλ . Therefore f = 0, and we have found a
sequence of elements in H0 that satisfy both (5.21) and (5.22).

Conversely, let λ be an isolated eigenvalue of finite multiplicity and let ( fn) be a
sequence of elements satisfying (5.21) and (5.22). Decompose the fn as

fn = vn + wn, vn ∈ Eλ , wn ∈ E ⊥
λ .

Since (I −λ G)vn = 0, by condition (5.19)

‖wn‖0 ≤ ϑ−1‖(I−λ G)wn‖0 = ϑ−1‖(I −λ G) fn‖0

so that wn → 0 strongly. As fn → 0 weakly by assumption, this means vn → 0
weakly. Because Eλ is finite dimensional, this implies vn → 0 strongly. But then
also fn → 0 strongly, which contradicts ‖ fn‖0 = 1. �
There is a simple, but very useful corollary from Theorem 5.6 that often plays an
important role in dealing with the essential spectrum.

Corollary 5.1. For every λ in the essential spectrum there exist un∈H1 with

‖un‖0 = 1, un → 0 weakly in H0, (5.23)

lim
n→∞

a(un,un) = λ . (5.24)

Proof. Choosing the un proportional to G fn with the fn from Theorem 5.6,

a(un,un) = λ +
( fn −λ G fn,G fn)

‖G fn‖2
0

→ λ . �
By calculating the directional derivatives one can easily recognize that the eigen-
vectors are the stationary points of the Rayleigh quotient

u → a(u,u)
(u,u)

, (5.25)

and that at an eigenvector u the Rayleigh quotient attains the corresponding eigen-
value λ . In particular the minimum of the Rayleigh quotient is the minimum
eigenvalue in finite space dimensions. The goal is to transfer these properties to
the infinite dimensional case. The situation is much more subtle there because it is
not even a priori clear whether the Rayleigh quotient attains its minimum. The most
general result, at the same time demonstrating that the spectrum is never empty, is:

Theorem 5.7. The constant

Λ = inf
{

a(u,u)
∣

∣u ∈ H1, ‖u‖0 = 1
}

(5.26)

belongs to the spectrum and represents its infimum.
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Proof. The range of G is a dense subspace of H1. This results from

‖u‖2
0 = a(u,Gu), u ∈ H1.

If therefore a(u,χ) = 0 for all χ in the range of G, u = 0 follows. Thus

Λ = inf
( f ,G f )
‖G f‖2

0

,

where the infimum is now taken over all f �= 0 in H0. Due to the coercivity of the
bilinear form, Λ > 0. We first express Λ in terms of the norm of G and show that

‖G‖ = Λ−1. (5.27)

By the representation above, the estimate

‖G f‖2
0 ≤ Λ−1( f ,G f ) ≤ Λ−1‖ f‖0‖G f‖0

and therefore the upper estimate ‖G‖ ≤ Λ−1 follow. As the expression

( f ,Gg) = a(G f ,Gg)

defines an inner product on H0, the Cauchy-Schwarz inequality yields

(G f ,g) ≤ ( f ,G f )1/2(g,Gg)1/2.

Inserting g = G f one obtains

‖G f‖2
0 ≤ ‖G‖( f ,G f ), (5.28)

which implies the lower estimate Λ−1 ≤ ‖G‖ and proves (5.27).
Let ( fn) now be a sequence of elements in H0 with

‖ fn‖0 = 1, lim
n→∞

‖G fn‖0 = ‖G‖.

As, by equation (5.28),

‖G fn‖2
0

‖G‖ ≤ ( fn,G fn) ≤ ‖G‖‖ fn‖2
0,

one obtains from (5.27)

lim
n→∞

( fn,G fn) = Λ−1 = lim
n→∞

‖G fn‖0.
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The relation

‖ fn −ΛG fn‖2
0 = Λ 2 ‖G fn‖2

0 − 2Λ( fn,G fn) + ‖ fn‖2
0

yields therefore finally
lim
n→∞

‖ fn −ΛG fn‖0 = 0.

Thus Λ is an approximate eigenvalue and hence belongs to the spectrum.
Conversely, every point λ > 0 in the spectrum is an approximate eigenvalue.

Therefore there exists, for every ε > 0, an f ∈ H0 of norm 1 with

λ−1 = ‖G f + λ−1( f −λ G f )‖0 ≤ ‖G‖ + ε

so that λ−1 ≤ ‖G‖ = Λ−1 or Λ ≤ λ . Because all λ in the spectrum are positive as
already stated in Theorem 5.1, this proves the proposition. �

The typical situation with molecular Hamiltonians as ours is that the spectrum
splits into an essential spectrum with a greatest lower bound Σ∗ > Λ and a dis-
crete spectrum then necessarily containing eigenvalues λ < Σ∗. In the case of the
hydrogen atom, for example, the discrete spectrum consists of the eigenvalues

λ = − 1
2n2 , n = 1,2,3, . . .

that cluster at the minimum of the essential spectrum. This had been interpreted by
Bohr as a quantum effect and was explained by Schrödinger in his seminal paper
[73] in which he first stated his equation. The hydrogen eigenvalues are calculated
in Sect. 9.4 and are depicted in Fig. 5.1. Our next theorems aim at such situations.
They form the mathematical basis of the Ritz method to compute the eigenvalues
corresponding to the ground state and the excited states of atoms and molecules.

Fig. 5.1 Discrete spectrum and minimum of the essential spectrum of the hydrogen atom

Theorem 5.8. Let the interval λ < Σ contain only points of the discrete spectrum,
that is, isolated eigenvalues of finite multiplicity. Let the subspace E of H0 be in-
variant under G and contain the eigenvectors for all eigenvalues in this interval and
let E ⊥ be the orthogonal complement of E in H0. The value

λ∗ = inf
{

a(u,u)
∣

∣u ∈ H1∩E ⊥, ‖u‖0 = 1
}

(5.29)

belongs then itself to the spectrum and is greater than or equal Σ .
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Proof. The vector spaces E ⊥ and H1∩ E ⊥ are closed subspaces of H0 and H1,
respectively, and therefore themselves Hilbert spaces to which our theory applies.
As with E also E ⊥ is invariant under G, the restriction of G to E ⊥ plays then the
role of G. By Theorem 5.7 and Theorem 5.4, applied to E⊥ and H1∩E ⊥ in place
of H0 and H1, there exist therefore elements fn ∈ E ⊥ for which

lim
n→∞

‖(I−λ∗G) fn‖0 = 0, ‖ fn‖0 = 1. (5.30)

The quantity λ∗ thus belongs, by Theorem 5.4, to the spectrum in the original sense.
We show that the assumption λ∗ < Σ leads to a contradiction. The reason is that,
under the given assumptions, λ∗ would then be an isolated eigenvalue of finite
multiplicity and the associated eigenspace E∗ a subspace of E , or conversely E ⊥
a subspace of E ⊥∗ . The fn above would then belong to E ⊥∗ so that, by (5.19),

‖ fn‖0 ≤ ϑ−1‖(I−λ∗G) fn ‖0

with a certain constant ϑ . But this contradicts (5.30). �
Our considerations now culminate in the min-max principle on which the Rayleigh-
Ritz variational method to compute the eigenvalues and eigenvectors is based.

Theorem 5.9. Let u1, . . . ,um be pairwise orthogonal normed eigenvectors for the
isolated eigenvalues λ1 ≤ . . . ≤ λm of finite multiplicity. Let the interval λ ≤ λm

contain no other point of the spectrum and let, for m ≥ 2, the vectors u1, . . . ,um−1

span the eigenspaces for the eigenvalues λ <λm. Then

λm = min
Vm

max
v∈Vm

a(v,v)
(v,v)

, (5.31)

where the minimum is taken over all m-dimensional subspaces Vm of H1 and the
maximum, without explicitly stating this every time, over all v �=0 in Vm.

Proof. Let E j be the subspace spanned by the vectors u1, . . . ,u j. If m = 1, the proof
starts from the observation that, by Theorem 5.7, λ1 = Λ is the infimum of the
Rayleigh quotient and λ1 therefore represents a lower bound for the right-hand side
of (5.31). Choosing the subspace V1 = E1, one sees that the value λ1 is attained.

If m > 1, λm is an upper bound for the right-hand side of (5.31), as one rec-
ognizes inserting Em for Vm. To prove that the maximum over an arbitrarily given
m-dimensional subspace Vm is ≥ λm and λm therefore also a lower bound for the
right-hand side of (5.31), fix a basis v1, . . . ,vm of Vm. Let a ∈ R

m, a �=0, be a vector
that is orthogonal to the vectors x1, . . . ,xm−1 ∈ R

m with the components

xk|i = (vi,uk), i = 1, . . . ,m.

The vector

v∗ =
m

∑
i=1

a|i vi ∈ Vm
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satisfies then the orthogonality conditions

(v∗,uk) =
m

∑
i=1

(vi,uk)a|i = xT
k a = 0

for k = 1, . . . ,m−1. Therefore v∗ ∈ E ⊥
m−1 and

max
v∈Vm

a(v,v)
(v,v)

≥ a(v∗,v∗)
(v∗,v∗)

≥ min
v∈E ⊥

m−1

a(v,v)
(v,v)

.

As Em−1 contains by assumption all eigenvectors for the eigenvalues λ below λm,
Theorem 5.8 finally shows that the rightmost expression is ≥ λm. �
The crucial point with the min-max principle is that no a priori information on the
eigenvalues or eigenspaces is needed, which makes it an extremely powerful tool
not only to give bounds for the eigenvalues but also to compute them.

5.3 The Rayleigh-Ritz Method

The Rayleigh-Ritz method is a variational method to compute the eigenvalues below
the essential spectrum and the corresponding eigenvectors. It has the advantage of
being based on minimal, very general assumptions and produces optimal solutions
in terms of the approximation properties of the underlying trial spaces. We do not
advocate the method as standard numerical procedure for the electronic Schrödinger
equation but include this section to show how the approximation properties of finite
dimensional subspaces transfer to the solution of the eigenvalue problem. The theory
of the Rayleigh-Ritz method has to a large extent been developed in the context of
finite element methods, see [8,9], or [68]. A recent convergence theory and a survey
of the current literature can be found in [50].

We start from the same abstract framework as in the preceding section and from
assumptions as in Theorem 5.9 in particular. Let u1, . . . ,um be pairwise orthogonal
normed eigenvectors for the isolated eigenvalues λ1 ≤ . . .≤ λm of finite multiplicity.
Let the interval λ ≤λm contain no other point of the spectrum and let, in the case that
m≥ k ≥ 2, the vectors u1, . . . ,uk−1 span the eigenvectors for the eigenvalues λ < λk.
As in the preceding section, let Ek denote the subspace spanned by u1, . . . ,uk.

Let S be a subspace of H1 of a dimension n ≥ m. Then there exist pairwise
orthogonal normed vectors u′1, . . . ,u

′
n ∈ S and real numbers λ ′

1, . . . ,λ
′
n with

a(u′k,v) = λ ′
k (u′k,v), v ∈ S . (5.32)

Without restriction, let λ ′
1 ≤ . . . ≤ λ ′

n. As will be shown, the quantities λ ′
1, . . . ,λ ′

m
approximate then the eigenvalues λ1, . . . ,λm of the original problem and the u′k the
corresponding eigenvectors in a sense explained later. This already fixes the method,
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which replicates the weak form of the eigenvalue problem and is completely
determined by the choice of the subspace S replacing the original solution space.

Computationally, one starts from a basis ϕ1, . . . ,ϕn of S and calculates the sym-
metric and positive definite (n×n)-matrices A and M with the entries

A|i j = a(ϕi,ϕ j), M|i j = (ϕi,ϕ j). (5.33)

If the discrete eigenvectors u′k ∈ S have the representation

u′k =
n

∑
i=1

xk|i ϕi, (5.34)

the coefficient vectors xk ∈ R
n solve the algebraic eigenvalue problem

Axk = λ ′
kMxk, xT

k Mxl = δkl . (5.35)

The existence of a complete set of M-orthogonal eigenvectors xk follows from the
spectral theorem of linear algebra. The relevant xk and λ ′

k can be computed by the
standard methods of numerical linear algebra like the Lanczos method or, often
the better choice in the present context, by preconditioned inverse iteration methods.

A first, but fundamental and very important observation on the relation between
the original eigenvalues λk and their discrete counterparts λ ′

k is:

Theorem 5.10. Independent of the choice of the subspace S , always

λk ≤ λ ′
k, k = 1, . . . ,m. (5.36)

Proof. The proof is a simple consequence from the min-max principle. Let Vk be
the k-dimensional subspace of H1 spanned by u′1, . . . ,u

′
k. Then

λ ′
k = max

v∈Vk

a(v,v)
(v,v)

,

from which the proposition follows with Theorem 5.9. �
To give lower estimates and to bound the error, the approximation properties of
the spaces S have to be brought into play. They are measured in terms of the
a-orthogonal projection operator P : H1 → S defined by

a(Pu,v) = a(u,v), v ∈ S . (5.37)

With respect to the energy norm given by ‖v‖2 = a(v,v), the projection Pu is the
best approximation of u ∈ H1 by an element of S , which means that for all v ∈ S

‖u−Pu‖ ≤ ‖u− v‖. (5.38)
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We remark that the approximation Pu of the solution u ∈ H1 of the equation

a(u,v) = f ∗(v), v ∈ H1, (5.39)

with f ∗ a given bounded linear functional on H1 can be computed without the
knowledge of u. In finite element methods, Pu is the approximate solution.

Theorem 5.11. For k = 1, . . . ,m given, let

dk = sup
{‖u−Pu‖ ∣

∣u ∈ Ek, ‖u‖0 = 1
}

(5.40)

denote the distance from Ek to S . Provided that d 2
k ≤ λ1/4 then

0 ≤ λ ′
k − λk

λk
≤ 4

λ1
d 2

k . (5.41)

Proof. We first introduce the constant

σk = inf
{‖Pu‖0

∣

∣u ∈ Ek, ‖u‖0 = 1
}

.

If we suppose for a moment that this σk is greater than zero, the subspace of S
spanned by the vectors Pu1, . . . ,Puk has dimension k. By the min-max principle
from Theorem 5.9, now applied to the restricted eigenvalue problem on S ,

λ ′
k ≤ max

u∈Ek

a(Pu,Pu)
‖Pu‖2

0

.

As Pu is the a-orthogonal projection of u onto S , one further obtains

λ ′
k ≤ max

u∈Ek

a(u,u)
‖Pu‖2

0

≤ 1

σ2
k

max
u∈Ek

a(u,u)
(u,u)

=
1

σ2
k

λk

by the definition of σk, or, using Theorem 5.10 for the lower estimate,

0 ≤ λ ′
k −λk

λk
≤ 1

σ2
k

− 1.

Therefore it remains to estimate σk in terms of the constant (5.40). Let

u =
k

∑
i=1

αiui ∈ Ek

be an arbitrary vector in Ek of norm ‖u‖0 = 1. Then

‖Pu‖2
0 = ‖u‖2

0 −2(u,u−Pu)+‖u−Pu‖2
0 ≥ 1−2(u,u−Pu).
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Utilizing (ui,v) = λ−1
i a(ui,v) and λi ≥ λ1 > 0, one gets

|(u,u−Pu)| =
∣

∣

∣

∣

k

∑
i=1

αi λ−1
i a(ui,u−Pu)

∣

∣

∣

∣

≤ λ−1
1

k

∑
i=1

|αi a(ui,u−Pu)|.

Choosing constants θi = ±1 such that

θiαi a(ui,u−Pu) ≥ 0

and introducing the new vector

v =
k

∑
i=1

θiαiui ∈ Ek,

one obtains the estimate

|(u,u−Pu)| ≤ λ−1
1

k

∑
i=1

θiαi a(ui,u−Pu) = λ−1
1 a(v,u−Pu).

Due to the symmetry of the bilinear form and the definition of P thus

|(u,u−Pu)| ≤ λ−1
1 a(v−Pv,u−Pu) ≤ λ−1

1 ‖v−Pv‖‖u−Pu‖.

As also ‖v‖2
0 = 1, by the definition of dk this implies

∣

∣(u,u−Pu)
∣

∣ ≤ 1
λ1

d 2
k .

Hence, passing to the infimum over the normed vectors u ∈ Ek,

σ2
k ≥ 1 − 2

λ1
d 2

k .

Inserting this above and using d 2
k ≤ λ1/4, the proposition follows. �

The point is that the square of the distance (5.40) enters into the error estimate (5.41).
The eigenvalues are thus much better approximated than is possible for the eigen-
vectors. For the minimum eigenvalue the estimate (5.41) reduces to

0 ≤ λ ′
1 − λ1 ≤ 4 ‖u1−Pu1‖2. (5.42)

We now turn to the approximation of the eigenvectors. The problem here is that
in general there is no unique correspondence between the original eigenvectors and
their discretized counterparts and that a multiple eigenvalue can split into a cluster
of discrete eigenvalues. The following theorem reflects this:
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Theorem 5.12. Let u ∈ H1 be an eigenvector for the eigenvalue λ . Then

∥

∥

∥u − ∑
|μ ′

k−μ|<r

(u,u′k)u′k
∥

∥

∥

0
≤ 1

rλ
‖u−Pu‖0, (5.43)

where μ = 1/λ and μ ′
k = 1/λ ′

k has been set and 0 < r ≤ 1/λ is arbitrary.

Proof. We first represent the difference to be estimated in the form

u − ∑
|μ ′

k−μ|<r

(u,u′k)u′k = ∑
|μ ′

k−μ|≥r

(u,u′k)u′k + u −
n

∑
k=1

(u,u′k)u′k

and replace the inner products in the first sum on the right hand side by

(u,u′k) =
μ

μ − μ ′
k
(u−Pu,u′k).

This is possible as u is an eigenvector and the u′k are discrete eigenvectors. With that

(u,u′k) = λ−1a(u,u′k) = λ−1a(u′k,Pu) = λ−1λ ′
k (Pu,u′k).

The resulting error representation reads in abbreviated form

u − ∑
|μ ′

k−μ|<r

(u,u′k)u′k =
1

λ
R(u−Pu) + (I −P0)(u−Pu),

where the operator R and the H0-orthogonal projection P0 onto S are given by

R f = ∑
|μ ′

k−μ|≥r

1
μ − μ ′

k
( f ,u′k)u′k, P0 f =

n

∑
k=1

( f ,u′k)u′k.

Expressing the norms in terms of the expansion coefficients in the orthonormal basis
of S consisting of the discrete eigenvectors u′1, . . . ,u

′
n, one finds

‖R f‖2
0 = ∑

|μ ′
k−μ|≥r

∣

∣

∣

1
μ − μ ′

k
( f ,u′k)

∣

∣

∣

2 ≤ 1
r2 ‖P0 f‖2

0.

This estimate is used to estimate the first term in the error representation. The propo-
sition follows from the orthogonality properties of the different terms. �
The larger r is chosen, the more discrete eigenvectors u′k are used to approximate
the given eigenvector u and the smaller the error is, but the less specific the rela-
tion between the original and the discrete eigenvectors becomes. If the considered
eigenvalue λ is sufficiently well separated from its neighbors λ ′, one can set
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r =
1
2

min
λ ′ �=λ

∣

∣

∣

1
λ
− 1

λ ′
∣

∣

∣, (5.44)

or r = 1/λ should this lead to a value rλ > 1. As the approximate eigenvalues cluster
around the exact ones, asymptotically then only approximate eigenvalues tending to
λ are taken into account. The choice (5.44) for the parameter r results in the factor

1
rλ

= 2 max
λ ′ �=λ

∣

∣

∣

λ ′

λ ′ −λ

∣

∣

∣ (5.45)

in front of the norm on the right hand side of the error estimate. The smaller it is, the
better the given eigenvalue λ is separated from its neighbors. For an eigenvector u
for the minimum eigenvalue λ1, the error estimate transfers then to

∥

∥

∥u − ∑
|μ ′

k−μ1|<r

(u,u′k)u′k
∥

∥

∥

0
≤ 2

λ2

λ2 −λ1
‖u−Pu‖0. (5.46)

If the eigenvalue λ belongs to a cluster of closely neighboring eigenvalues, the pa-
rameter r should be chosen accordingly and (5.43) be interpreted as a result on the
approximation by an element in the corresponding discrete invariant subspace.

The natural norm associated with the problem is the energy norm induced by the
bilinear form. This error norm is considered in the following theorem which applies
to eigenvectors for eigenvalues that are well separated from their neighbors:

Theorem 5.13. Denoting by u′ the given projection of the eigenvector u from
Theorem 5.12 onto the chosen span of discrete eigenvectors,

‖u−u′‖2 ≤ λ ‖u−u′‖2
0 + max

|μ ′
k−μ|<r

|λ ′
k − λ |‖u‖2

0 . (5.47)

Proof. The estimate immediately follows from the relation

‖u−u′‖2 = λ ‖u−u′‖2
0 + ∑

|μ ′
k−μ|<r

(λ ′
k − λ )(u,u′k)

2

that is shown by a straightforward computation. �

If the parameter r is chosen sufficiently small the discrete eigenvalues λ ′
k in-

side the selected interval tend asymptotically to λ . Combining the estimate from
Theorem 5.13 with those from Theorem 5.11 and Theorem 5.12, one recognizes
that the energy norm of the error tends to zero as fast as the energy norm distance
(5.40) of the corresponding invariant subspace to the trial spaces. The Rayleigh-Ritz
method in this respect fully exhibits the approximation properties of the trial spaces,
however these are chosen, and is in this sense optimal.

Remarkably only the approximation error ‖u−Pu‖0 of the considered eigenvec-
tor u enters into the estimate (5.43). The estimate (5.43) differs in this respect from
the error estimate (5.42) for the eigenvalues and the energy norm estimate (5.47)
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into which additionally the approximation error of all eigenvectors for eigenvalues
below the considered one enters. To overcome this drawback, we assume for the
rest of this section that the H0-orthogonal projection P0 onto the ansatz space S is
stable in the energy, or equivalently, the H1-norm, that is, that there is a κ with

‖P0v‖ ≤ κ ‖v‖, v ∈ H1. (5.48)

The idea is that κ should be independent of hidden discretization parameters. This
holds, for example, for certain spectral methods, for wavelets, and in the finite ele-
ment case, there at least under some restrictions on the underlying grids [14, 17].

Theorem 5.14. Let u ∈ H1 be an eigenvector for the eigenvalue λ . Then

∥

∥

∥u − ∑
|μ ′

k−μ|<r

(u,u′k)u′k
∥

∥

∥ ≤ 2κ + 1

rλ
‖u−Pu‖, (5.49)

where μ = 1/λ and μ ′
k = 1/λ ′

k has been set and 0 < r ≤ 1/λ is arbitrary.

Proof. The proof of (5.49) is based on the same error representation as that of
Theorem 5.12 and transfers almost verbatim. Particularly it uses the norm estimate

‖R f‖2 = ∑
|μ ′

k−μ|≥r

λ ′
k

∣

∣

∣

1
μ − μ ′

k
( f ,u′k)

∣

∣

∣

2 ≤ 1
r2 ‖P0 f‖2.

The only exception is that in the final step one can no longer argue using the orthog-
onality properties of the different terms but has to switch to the triangle inequality.
At this point the bound for the norm of the operator P0 enters in form of the estimate

‖P0(u−Pu)‖ ≤ κ ‖u−Pu‖

for the projection of the approximation error. �
It is not astonishing that a similar error estimate holds for the higher eigenvalues, at
least for those that are sufficiently well separated from the eigenvalues below them:

Theorem 5.15. Let u ∈ H1 be a normed eigenvector for the eigenvalue λ . Assume
that λ ′

k ≥ λ for all discrete eigenvalues λ ′
k in the neighborhood of λ fixed by the

condition |μ ′
k − μ | < r, where again μ = 1/λ , μ ′

k = 1/λ ′
k, and 0 < r ≤ 1/λ . Then

min
λ ′

k≥λ
(λ ′

k − λ ) ≤
(2κ + 1

rλ

)2 ‖u−Pu‖2, (5.50)

provided that there is already a discrete eigenvalue λ ′
k ≥ λ for which λ ′

k −λ ≤ λ .

Proof. Denoting by u′ the given projection of u from Theorem 5.12 or Theorem 5.14
onto the chosen span of discrete eigenvectors, as in the proof of Theorem 5.13

‖u−u′‖2 = λ ‖u−u′‖2
0 + ∑

|μ ′
k−μ|<r

(λ ′
k − λ )(u,u′k)

2.
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Since the given differences λ ′
k − λ are by assumption nonnegative, this implies

‖u−u′‖2 ≥ λ ‖u−u′‖2
0 + min

λ ′
k≥λ

(λ ′
k − λ )‖u′‖2

0.

Since u′ and u−u′ are by definition H0-orthogonal and ‖u‖0 = 1, this means

‖u−u′‖2 ≥ min
λ ′

k≥λ
(λ ′

k − λ ) + λ
(

1− min
λ ′

k≥λ

λ ′
k − λ

λ

)

‖u−u′‖2
0.

As the second term on the right-hand side of this inequality is by assumption non-
negative, the proposition follows from Theorem 5.14. �
We remark that one can even get rid of the assumption that there is already a discrete
eigenvalue λ ′

k ≥ λ for which λ ′
k −λ ≤ λ at the price of a slightly more complicated

expression on the right hand side of the error estimate. If there is a discrete eigen-
value λ ′

k < λ , the best possible choice for the parameter r is given by

1
rλ

= max

{

1, max
λ ′

k<λ

λ ′
k

λ − λ ′
k

}

. (5.51)

Assuming the energy norm stability (5.48) of the H0-orthogonal projection onto
the ansatz space, the method can thus take full advantage of a higher regularity of
the considered eigenvector or eigenfunction compared to the other ones, particu-
larly compared to those for lower eigenvalues. It should further be noted that in
the finite-element context one gains, depending on the regularity of the problem,
up to one order of approximation in the H0-norm compared to the H1-norm. By
Theorem 5.12 this property transfers to the approximate eigenfunctions.

5.4 The Lower Bound of the Essential Spectrum

We return in this section to the electronic Schrödinger equation, that is, the bilinear
form introduced in Sect. 4.1. The results of the previous two sections transfer to
this case if one replaces the given bilinear form by a shifted variant as in (4.16).
We recall the definition (4.1) of the minimum energy Λ(σ) and of the ionization
threshold Σ(σ) from Sect. 5.1. The aim of this section is to translate our basic
assumption (5.4) on these two quantities into a statement about the spectrum.

We begin with an intermediate result that holds for much more general cases than
only for the electronic Schrödinger equation, for example for Schrödinger operators
with locally integrable potentials that are bounded from below. If necessary, the
solution space H1(σ) has then to be replaced by a corresponding subspace.
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Lemma 5.2. For all λ in the essential spectrum and all R > 0,

λ ≥ Σ(R,σ), (5.52)

that is, the Σ(R,σ) remain bounded if the essential spectrum is non-empty.

Proof. The proof relies on the fact that there exists, for every R > 0, an infinitely
differentiable function η that depends on R, has a compact support, and for which

a(u,u)+ (ηu,u) ≥ Σ(R,σ)‖u‖2
0 (5.53)

holds for all functions u in D(σ) and with that also in the solution space H1(σ).
To construct η , let φ1,φ2 : R→ [0,1] be a pair of infinitely differentiable functions

such that φ1(r) = 0 for r ≤ R and φ1(r) = 1 for r ≥ R+1 and such that φ2
1 +φ2

2 = 1
everywhere. Let χ1(x) = φ1(|x|) and χ2(x) = φ2(|x|). Then

χ1(x)2 + χ2(x)2 = 1

for all x ∈ R
3N . This implies

|∇u|2 = |∇(χ1u)|2 + |∇(χ2u)|2 − ( |∇χ1|2 + |∇χ2|2
)

u2

for all infinitely differentiable functions u with compact support. Thus

a(u,u) = a(χ1u,χ1u)+ a(χ2u,χ2u) −
∫

( |∇χ1|2 + |∇χ2|2
)

u2 dx.

Since the bilinear form (4.13) satisfies for sufficiently large μ the estimate (4.16),

a(u,u) ≥ a(χ1u,χ1u) −
∫

(

μχ2
2 + |∇χ1|2 + |∇χ2|2

)

u2 dx

follows. If u ∈ D(σ), also χ1u ∈ D(σ). Since χ1(x) = 0 for |x| ≤ R therefore

a(χ1u,χ1u) ≥ Σ(R,σ)‖χ1u‖2
0

by the definition (5.2) of the constant Σ(R,σ). Because

‖χ1u‖2
0 = ‖u‖2

0 −
∫

χ2
2 u2 dx,

this proves the estimate (5.53) with the infinitely differentiable function

η(x) = (Σ(R,σ)+ μ)φ2(r)2 + φ ′
1(r)

2 + φ ′
2(r)

2

vanishing for r ≥ R + 1, where |x| = r has been set.
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The second main ingredient of the proof is the fact that every H1-bounded
sequence of functions possesses a subsequence that converges on every bounded
set in the L2-sense. Let λ now be a point in the essential spectrum. By the corollary
from Theorem 5.6 there exists then a sequence of functions un ∈ H1(σ) with

‖un‖0 = 1, un → 0 weakly in L2(σ),

lim
n→∞

a(un,un) = λ .

The estimate (4.16) shows that then also a joint bound for the H1-norms of these
functions exists. We can thus additionally assume that the un converge in the
L2-sense to a limit function u∗ on the bounded support of the function η from (5.53).
But as the functions un converge weakly to zero in L2, necessarily u∗ = 0. Hence

lim
n→∞

(ηun,un) = 0.

As, by (5.53) and because ‖un‖0 = 1, for all n

a(un,un)+ (ηun,un) ≥ Σ(R,σ),

one obtains in the limit the upper bound λ ≥ Σ(R,σ) for the the constants (5.2) or,
the other way around, a lower bound for the essential spectrum. �

In other words, if the essential spectrum is non-empty the limit

Σ(σ) = lim
R→∞

Σ(R,σ) (5.54)

remains finite and forms a lower bound of the essential spectrum. Conversely, if the
Σ(R,σ) tend to infinity, the essential spectrum is empty. The subspace spanned by
the eigenfunctions for the eigenvalues in the discrete spectrum is then dense in the
solution space as can be seen applying Theorem 5.7 to its orthogonal complement.

The next lemma shows that the limit (5.54) is, if finite, not only a lower bound
for the essential spectrum but in fact its greatest lower bound, its infimum:

Lemma 5.3. If there is no point λ ≤ Σ in the essential spectrum, then for all ε > 0,

Σ − ε ≤ Σ(R,σ) (5.55)

for all R that are sufficiently large in dependence of ε .

Proof. By Theorem 5.5, all accumulation points of eigenvalues belong to the essential
spectrum. By Theorem 5.7, the interval λ <Λ(σ) is a subset of the resolvent. The
interval λ ≤Σ can thus contain at most finitely many eigenvalues of finite multiplicity
and no other point in the spectrum. If it does not contain a point of the spectrum,
the proposition follows from Theorem 5.7. Otherwise, let the L2-orthogonal normed
eigenfunctions u1, . . . ,un span the corresponding eigenspaces and let



5.4 The Lower Bound of the Essential Spectrum 81

Pu =
n

∑
k=1

(u,uk)uk

denote the L2- and a-orthogonal projection onto the subspace spanned by these
eigenfunctions. For all functions u ∈ D(σ) by Theorem 5.8 then

a(u−Pu,u−Pu) ≥ Σ ‖u−Pu‖2
0.

A short calculation shows

a(u,u) = a(u−Pu, u−Pu) +
n

∑
k=1

λk(u,uk)2,

‖u−Pu‖2
0 = ‖u‖2

0 −
n

∑
k=1

(u,uk)2.

With help of the relation above one concludes that

a(u,u) ≥ Σ ‖u‖2
0 −

n

∑
k=1

(Σ −λk)(u,uk)2

holds for all functions u ∈D(σ) and particularly for those that vanish on the ball of
radius R around the origin and have L2-norm 1. Taking the infimum over all these u

Σ(R,σ) ≥ Σ −
n

∑
k=1

(Σ −λk)‖χRuk‖2
0

follows, where χR denotes the characteristic function of the exterior of the ball of
radius R around the origin. Since the L2-norm of the functions the χRuk tends to zero
as R tends to infinity, the proposition follows choosing R sufficiently large. �
Like the previous lemma, this lemma holds for much more general cases than only
the electronic Schrödinger equation, particularly for Schrödinger operators with lo-
cally integrable potentials. We can conclude that the essential spectrum is empty if
and only if the constants (5.2) tend to infinity as R tends to infinity. In this case,
the linear combinations of the eigenfunctions are dense in the given Hilbert space.
Every function in this space can be expanded into these eigenfunctions. If the limit
(5.54) remains finite, the essential spectrum is non-empty and the ionization thresh-
old Σ(σ) is not only its greatest lower bound but even its minimum, since it is an
accumulation point of the essential spectrum. Remembering Lemma 5.1 we obtain:

Theorem 5.16. The essential spectrum of the electronic Schrödinger operator is
non-empty. Its minimum is the ionization threshold Σ(σ) ≤ 0 from (5.3). The mini-
mum energy Λ(σ) < Σ(σ) from (5.1) is an isolated eigenvalue of finite multiplicity.
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The eigenfunctions for the eigenvalue λ = Λ(σ) are the ground states of the system
with the spin distribution kept fixed, and the minimum eigenvalue Λ(σ) itself the
ground state energy. The greatest lower bound of the essential spectrum for the full,
spin-dependent problem can be determined with the same techniques. It is equal the
minimum of the bounds Σ(σ) obtained for the components.

The information that Theorem 5.16 provides is by far not all what is known for
Hamilton operators of atoms and molecules. Important results are the Hunziker-van
Winter-Zishlin theorem [46,90,98] that characterizes the ionization threshold as the
energy threshold above which such a system can break apart, or the fact that atoms
and positively charged ions have an infinite discrete spectrum below the ioniza-
tion threshold. We refer to the survey article [47] or monographs on mathematical
physics like [38, 71], or [88] for an in-depth discussion of such topics.

5.5 The Exponential Decay of the Eigenfunctions

The spectral properties of Schrödinger operators are strongly intertwined with
the exponential decay of their eigenfunctions for eigenvalues below the essential
spectrum. The first results of this type for more than three electrons are due to
Ahlrichs [4] for the case of a single nucleus, that is, an atom, and to O’Connor [20],
who treated the general case and derived an isotropic L2-bound. O’Connor’s result
was a short time after improved by Combes and Thomas [19]. Simon [74] found a
pointwise isotropic bound. The actual decay behavior of the eigenfunctions is com-
plicated and in general highly anisotropic. A first result in this direction was proven
by Deift, Hunziker, Simon, and Vock [22]. In some sense the final study is Agmon’s
monograph [3]. Agmon introduced the Agmon distance, named after him, with the
help of which the decay of the eigenfunctions can be described rather precisely.

The isotropic L2-decay of the eigenfunctions plays a central role for this work
because we want to show, on the basis of this result, that also many of the high-
order mixed derivatives of the eigenfunctions decay exponentially. For this reason,
and to keep the presentation as self-contained as possible, we give a short proof
of O’Connor’s theorem that closely follows Agmon’s argumentation [3]. It starts
directly from the definition (5.3) of the ionization threshold and does not utilize the
fact that it represents the infimum of the essential spectrum.

Theorem 5.17. Let λ < Σ(σ) be an eigenvalue below the ionization threshold (5.3)
and u ∈ H1(σ) be an assigned eigenfunction. For λ < Σ < Σ(σ), the functions

x → exp
(
√

2(Σ −λ ) |x |
)

u(x), exp
(
√

2(Σ −λ ) |x |
)

(∇u)(x) (5.56)

are then square integrable, that is, u and ∇u decay exponentially in the L2-sense.

Proof. We begin choosing a radius R such that

Σ(R,σ)−Σ =: α > 0. (5.57)
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We further introduce the bounded functions

δ (x) =
√

2(Σ −λ )
|x|

1 + ε |x| ,

with ε >0 given arbitrarily, and observe that

|(∇δ )(x)|2 ≤ 2(Σ −λ )

for all x �= 0 independent of the choice of ε . Since

∇(e−δ v) ·∇(eδ v) = ∇v ·∇v −|∇δ |2v2,

this leads to the estimate

a(e−δ v,eδ v) ≥ a(v,v)− (Σ −λ )‖v‖2
0 (5.58)

for all infinitely differentiable functions v that have a compact support and that van-
ish on a neighborhood of the origin. In particular, the estimate holds for the functions
v ∈D(σ) that takes the value 0 on the ball of radius R around the origin. For these v,

a(v,v) ≥ Σ(R,σ)‖v‖2
0.

In combination with (5.57) and (5.58), this yields

α ‖v‖2
0 ≤ a(e−δ v,eδ v)−λ ‖v‖2

0. (5.59)

Next, we fix a rotationally symmetric, infinitely differentiable function χ that van-
ishes on the ball of radius R around the origin and takes the value χ(x) = 1 for
|x| ≥ R + 1. Let u in D(σ) be arbitrary. Setting v = χeδ u, (5.59) becomes

α ‖χeδ u‖2
0 ≤ a(χu,χe2δ u)−λ (χu,χe2δu). (5.60)

To shift the factor χ to the right hand side, we introduce the function

η =
2 χ∇χ ·∇δ + |∇χ |2

2

that takes the value η(x) = 0 for |x| ≤ R and |x| ≥ R + 1. With help of the relation

∇(χu) ·∇(χe2δ u) = ∇u ·∇(χ2e2δ u)+ 2ηe2δ u2,

the estimate (5.60) for the functions u ∈ D(σ) can then be rewritten as

α ‖χeδ u‖2
0 ≤ a(u,χ2e2δ u)−λ (u,χ2e2δ u) + (u,ηe2δ u). (5.61)
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As χeδ , the first-order derivatives of χeδ , and ηe2δ are bounded and as D(σ) is a
dense subspace of H1(σ), the estimate transfers to arbitrary functions u ∈ H1(σ).

Since χ2e2δ u ∈ H1(σ), the first two terms on the right hand side of (5.61) cancel
for the given eigenfunction u for the eigenvalue λ . The estimate thus reduces to

α ‖χeδ u‖2
0 ≤ (u,ηe2δ u) (5.62)

for this u. To estimate the H1-norm of χeδ u, we recall that, by (4.16) and (5.58),

1
4
‖v‖2

1 ≤ a(v,v)+ μ ‖v‖2
0 ≤ a(e−δ v,eδ v)+ (Σ −λ + μ)‖v‖2

0

for all infinitely differentiable functions v that have a compact support and that van-
ish on a neighborhood of the origin, where the constant μ > 0 was more precisely
specified in Sect. 4.1. From that one obtains, in the same way as above, the estimate

1
4
‖χeδ u‖2

1 ≤ (u,ηe2δ u)+ (Σ + μ)‖χeδ u‖2
0

for the given eigenfunction u and, with (5.62), finally the estimate

‖χeδ u‖2
1 ≤

(

4 + 4
Σ + μ

α

)

(u,ηe2δ u).

Since the functions ηe2δ and ∇δ are uniformly bounded in ε , the L2-norms of the
functions eδ u and eδ ∇u therefore remain bounded uniformly in ε . The proposition
follows with the monotone convergence theorem letting ε tend to zero. �
The given decay rates cannot be improved without further assumptions on the con-
sidered system. This can already be recognized by the case of a single electron that
moves in the field of a nucleus of charge Z, that is, by the Hamilton operator

H = − 1
2

Δ − Z
|x| . (5.63)

In this case, the ionization threshold and with that the bottom of the essential spec-
trum is Σ∗ = 0. The ground state wave function and the associated eigenvalue are

u(x) = e−Z|x|, λ = − 1
2

Z2, (5.64)

up to normalization of u. For this example,

exp
(
√

2(Σ∗−λ ) |x |
)

u(x) = 1 (5.65)

so that the functions (5.56) cannot be square integrable for Σ ≥ Σ∗. The same ap-
plies for the higher eigenfunctions of the operator (5.63), which can be found in
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almost every textbook on quantum mechanics and which are calculated in Chap. 9.
Figure 5.2 shows a cross section through the exponentially decaying, rotationally
symmetric ground state eigenfunction (5.64). Its singularity at the origin is typical
for the behavior of electronic wave functions in the vicinity of the nuclei.

Fig. 5.2 The rotationally symmetric ground state eigenfunction of the hydrogen atom

The given technique of proof is by far not restricted to the electronic Schrödinger
equation and can, for example, be applied to any Schrödinger operator

H = −Δ +V, (5.66)

with a locally integrable potential V (x) tending to infinity as |x| goes to infinity.
Our considerations show that the essential spectrum of such operators is empty, that
their eigenvalues tend to infinity, and that all their eigenfunctions tend in the L2-
sense faster to zero than any exponential function x → eγ|x|, γ > 0, grows.



Chapter 6
Existence and Decay of Mixed Derivatives

A primary aim of this work, and the decisive step to our analysis of the complexity
of electronic wave functions, is to study the regularity of these functions. We want
to show that they possess certain high-order square integrable weak derivatives and
that these derivatives even decay exponentially, in the same way as the wave func-
tions themselves. This goal is reached in the present chapter. A central idea of the
proof is to examine instead of the solutions of the original Schrödinger equation the
solutions of a modified equation for the correspondingly exponentially weighted
wave functions. This equation is set up in the first section of this chapter and is
based on the result on the exponential decay of the wave functions from Sect. 5.5.
The study of the regularity in isotropic Hölder spaces in [32] is based on a similar
idea. In Sect. 6.2 we introduce the high-order solution spaces and the correspond-
ing norms. The actual proof relies on a mixture of variational techniques and Fourier
analysis. The key is the estimates for the arising low-order terms, particularly for the
nucleus-electron and the electron-electron interaction potential. These estimates are
proven in Sect. 6.3 and Sect. 6.4. The estimates for the nucleus-electron interaction
potential and an additional term coming from the exponential weights are in the end
based on the Hardy inequality from Sect. 4.1, whose central role is reflected here
again. In contrast to these estimates the estimates for the electron-electron interac-
tion potential require that the considered functions satisfy the Pauli principle, that
is, are antisymmetric with respect to the exchange of the positions of electrons with
the same spin. The reason is that such functions vanish at the places where electrons
with the same spin meet, which counterbalances the singularities of the electron-
electron interaction potential. To derive these estimates and to master the arising
singularities a further three-dimensional Hardy-type estimate is needed that holds
only for functions vanishing at the origin. In Sect. 6.5 the regularity theorem for the
exponentially weighted wave functions is stated and proven. This result serves then
to derive bounds for the exponential decay of the mixed derivatives of the original
wave functions. The present chapter is partly based on two former papers [92,94] of
the author in which the existence of the mixed derivatives has been proven and es-
timates for their L2-norms were given. The result on the exponential decay of these
derivatives [95] was up to now only available on the author’s website.

H. Yserentant, Regularity and Approximability of Electronic Wave Functions,
Lecture Notes in Mathematics 2000, DOI 10.1007/978-3-642-12248-4 6,
c© Springer-Verlag Berlin Heidelberg 2010
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6.1 A Modified Eigenvalue Problem

First we replace the rotationally symmetric exponential weight functions in (5.56)
by products of weight functions that depend only on the coordinates of one sin-
gle electron. Such weights are easier to analyze and fit into the framework that we
will develop in the following sections. Let u ∈ H1(σ) be an eigenfunction for the
eigenvalue λ < Σ(σ). Let θ1, . . . ,θN ≥ 0 be given weight factors and let

F(x) = γ
N

∑
i=1

θi |xi|,
N

∑
i=1

θ 2
i = 1. (6.1)

Let γ be a decay rate as in Theorem 5.17, that is,

γ <
√

2(Σ(σ)−λ ) , (6.2)

and define the correspondingly exponentially weighted eigenfunction as

ũ(x) = exp
(

F(x)
)

u(x). (6.3)

This exponentially weighted eigenfunction solves then an eigenvalue equation that
is similar to the original one. To derive it we start from the following two lemmata:

Lemma 6.1. Let the function u ∈ H1 and the constant γ ∈ R be first arbitrary. The
function ũ defined as in (6.3) is then not only locally square integrable but has also
locally square integrable first-order weak partial derivatives. They read

Dkũ = eF DkF u + eFDku, (6.4)

where the operator Dk denotes weak differentiation for u and pointwise for F.

Proof. We first consider functions u ∈ D , that is, infinitely differentiable functions
with bounded support, and replace the function (6.1) by its smooth counterparts

Fε(x) = γ
N

∑
i=1

θi

√

|xi|2 + ε2. (6.5)

Integration by parts then yields, for all test functions ϕ of the same type,

∫

(

eFε DkFε u + eFε Dku
)

ϕ dx =
∫

Dk
(

eFε u
)

ϕ dx = −
∫

eFε u Dkϕ dx.

Letting ε tend to zero, one obtains, from the dominated convergence theorem,

∫

(

eFDkF u + eFDku
)

ϕ dx = −
∫

eFu Dkϕ dx.



6.1 A Modified Eigenvalue Problem 89

Since F and its first-order partial derivatives are bounded on the support of ϕ and
D is a dense subspace of H1, this relation transfers to all u ∈ H1. This proves the
differentiation formula above and transfers the product rule to the given case. �
Lemma 6.2. For all functions u ∈ H1 and all test functions v ∈ D ,

a
(

u,eFv
) − a

(

eFu,v
)

= c
(

eFu,v
)

, (6.6)

where c(u,v) denotes the H1-bounded bilinear form

c(u,v) =
1
2

∫

{

2∇F ·∇u +
(

ΔF − |∇F |2)u
}

v dx. (6.7)

Proof. We consider again first only functions u ∈ D and replace F by its infinitely
differentiable counterparts (6.5). A short calculation yields

Δ
(

eFε u
) − eFε Δu = 2∇Fε ·∇

(

eFε u
)

+
(

ΔFε − |∇Fε |2
)

eFε u.

If one multiplies this equation with a test function v ∈ D and integrates by parts

∫

∇u ·∇(

eFε v
)

dx −
∫

∇
(

eFε u
) ·∇v dx

=
∫

{

2∇Fε ·∇
(

eFε u
)

+
(

ΔFε − |∇Fε |2
)

eFε u
}

v dx

follows. As Fε and ∇Fε are locally uniformly bounded in ε ≤ ε0 and |ΔiFε | � 1/|xi|,
one can let ε tend to zero in this expression and recognizes with help of the dom-
inated convergence theorem that (6.6) holds for all functions u and v in D . The
H1-boundedness of the bilinear form (6.7) follows from the Hardy inequality. As
the functions in D have a bounded support, both sides of equation (6.6) thus rep-
resent, by Lemma 6.1, bounded linear functionals in u ∈ H1 for v ∈ D given. The
equation transfers therefore to all functions u ∈ H1 and all test functions v ∈D . �
After these preparations we can now return to the initially introduced eigenfunction
u ∈ H1(σ) for the eigenvalue λ and its exponentially weighted counterpart (6.3).

Theorem 6.1. The exponentially weighted eigenfunction ũ defined by (6.3) is itself
contained in the space H1 and solves the eigenvalue equation

a(ũ,v) + γ s(ũ,v) = ˜λ(ũ,v), v ∈ H1, (6.8)

where the expression s(u,v) denotes the H1-bounded bilinear form

s(u,v) =
N

∑
i=1

θi

∫
{

xi

|xi| ·∇iu +
1
|xi| u

}

v dx (6.9)
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and the real eigenvalue ˜λ < Σ(σ) ≤ 0 is given by

˜λ = λ +
1
2

γ 2. (6.10)

Proof. The function (6.1) satisfies the estimate F(x) ≤ γ |x |. Under the condition
(6.2) the exponentially weighted eigenfunction (6.3) is therefore, by Theorem 5.17
and Lemma 6.1, contained in H1. Setting ṽ = eFv, by Lemma 6.1 and Lemma 6.2

a(ũ,v) + c(ũ,v) = a(u, ṽ) = λ (u, ṽ) = λ (ũ,v)

for all test functions v ∈ D and hence for all v ∈ H1. The proposition follows calcu-
lating ∇F and ΔF explicitly and observing that |∇F |2 = γ 2. �

The next sections are devoted to the study of the modified eigenvalue problem
(6.8) that the exponentially weighted eigenfunctions (6.3) satisfy. Hereby we take
up a slightly more general approach and relax the symmetry properties prescribed
by the Pauli principle a little bit. Let I be a nonempty subset of the set of the electron
indices 1, . . . ,N. Let DI denote the subspace of D that consists of those functions in
D that change their sign under the exchange of the electron positions xi and x j in R

3

for indices i �= j in I. The closure of the subspace DI in H1 is the Hilbert space H 1
I .

Our modified eigenvalue problem then consists in finding functions u �= 0 in H 1
I and

values λ < 0 that satisfy the condition

a(u,v) + γ s(u,v) = λ (u,v), v ∈ H 1
I . (6.11)

Our aim is to study the regularity of the solutions of this eigenvalue problem in
Hilbert spaces of mixed derivatives. Conditions on the parameter γ enter only im-
plicitly since, with u a solution of (6.11) and with that also of equation (6.12) below,
ũ = e−Fu is conversely a solution of the original eigenvalue equation (4.17) for
which eFũ is then a square integrable function. We assume γ ≥ 0 in the sequel.

Theorem 6.2. Provided that the function (6.1) is symmetric with respect to the per-
mutations of the electrons with indices i ∈ I, which is the case if and only if all θi

for i ∈ I are equal, a function u ∈ H 1
I that solves (6.11) also solves the full equation

a(u,v) + γ s(u,v) = λ (u,v), v ∈ H1. (6.12)

That is, (6.11) does not only hold for test functions v ∈ H 1
I , but for all v ∈ H1.

Proof. The proof is based on the observation that the affected bilinear forms are
invariant under the considered permutations of the electrons, that is, on the fact that

a(u(P ·),v(P ·)) = a(u,v), s(u(P ·),v(P ·)) = s(u,v)

for these permutations P, which follows from the invariance of the potential (4.9)
and the function (6.1) under these permutations. Let G denote the group of
permutations that fix the indices in the complement of I and define the operator
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(A v)(x) =
1
|G| ∑

P∈G

sign(P)v(Px),

that reproduces functions in DI and H 1
I , respectively, and maps functions in H1 to

partially antisymmetric functions in H 1
I . Since, for arbitrary functions u,v ∈ H1,

a(A u,v) = a(u,A v), s(A u,v) = s(u,A v), (A u,v) = (u,A v),

a solution u ∈ H 1
I of (6.11) satisfies the equation

a(u,v) + γ s(u,v) = a(A u,v)+ γ s(A u,v) = a(u,A v)+ γ s(u,A v)
= λ (u,A v) = λ (A u,v) = λ (u,v)

for all v ∈ H1, that is, solves the full equation (6.12). �
In the limit case γ = 0, the modified eigenvalue problem therefore transfers again
into the original eigenvalue equation (4.17) from which our discussion started.

6.2 Spaces of Functions with High-Order Mixed Derivatives

We attempt to prove that the solutions of the equation (6.11) possess, regardless
of their origin, high-order mixed derivatives and that it is possible to estimate the
L2-norms of these derivatives by the L2-norm of the solutions themselves. Let

Δi =
3

∑
k=1

∂ 2

∂x2
i,k

(6.13)

denote the Laplacian that acts on the spatial coordinates xi,1, xi,2, and xi,3 of the
electron i and let the differential operator L of order 2|I| be the product

L = (−1)|I|∏
i∈I

Δi (6.14)

of the second-order operators −Δi. The seminorms | · |I,0 and | · |I,1 on the space D
of the infinitely differentiable functions with compact support are then defined by

|u |2I,0 = (u,L u), |u |2I,1 = −(u,ΔL u). (6.15)

Correspondingly, we introduce, for s = 0,1, the norms given by

‖u‖2
I,s = ‖u‖2

s + |u |2I,s. (6.16)
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Let I∗ be the set of all mappings α : I →{1,2,3}. The operator L and with that the
given seminorms can then be written in terms of the products

Lα = ∏
i∈I

∂
∂xi,α(i)

, α ∈ I∗, (6.17)

of first-order differential operators, more precisely as the sum

L = (−1)|I| ∑
α∈I∗

L2
α . (6.18)

Correspondingly, since all partial derivatives of a function in D commute,

|u |2I,0 = ∑
α∈I∗

‖Lαu‖2
0, |u |2I,1 = ∑

α∈I∗
|Lα u|21. (6.19)

The completions of DI under the norms given by (6.16) are the spaces Xs
I . They

consist of functions that possess, for big |I|, very high order weak partial derivatives.
We will show in that the solutions of the equation (6.11) are contained in X 1

I .
The structure of the proof of our regularity theorems is in the end very simple.

Expressed naively, we transform the strong form

˜Hu := Hu + γ
N

∑
i=1

θi

{

xi

|xi| ·∇iu +
1
|xi| u

}

= λ u, (6.20)

of the second-order equation (6.12) into the high-order equation

(εI +L ) ˜Hu = λ (εI +L )u (6.21)

with correspondingly smooth solutions. As the operator εI + L is invertible for
ε > 0, both equations are equivalent and our regularity theorem is proved. Of course,
this does not work in this simple way, one reason being all the singularities of the
coefficient functions of the operator ˜H. However, we can switch to the weak form

a(u,εv +L v) + γ s(u,εv +L v) = λ (u,εv +L v), v ∈ DI , (6.22)

of this equation, that is formally obtained from (6.21) if one multiplies both sides of
the equation with a test function v∈DI , integrates, and then transforms the resulting
integrals integrating by parts, or simply by replacing the test functions v in (6.12)
by test functions εv + L v. The solutions of equation (6.12) obviously satisfy the
equation (6.22). The idea is to interpret this equation as an equation on X 1

I and
to show that its solutions are conversely solutions of the original equation (6.12).
Before we can realize this idea, we have, however, to show that the bilinear form

ã(u,v) = a(u,εv +L v) + γ s(u,εv +L v) (6.23)
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on DI ×DI can be extended to a bounded bilinear form on X 1
I ×X 1

I . This is trivial
for its leading part. The problem is to estimate its singular low-order terms corre-
spondingly. The next two sections exclusively deal with this task.

6.3 Estimates for the Low-Order Terms, Part 1

As stated, the key to our regularity theory is estimates for the low-order terms in the
bilinear form (6.23), that is, for the terms involving the interaction potentials

Vne(x) = −
N

∑
i=1

K

∑
ν=1

Zν

|xi −aν | , Vee(x) =
1
2

N

∑
i, j=1
i�= j

1
|xi − x j| (6.24)

between the nuclei and the electrons and between the electron among each other, and
estimates for the part arising from the bilinear form (6.9). This bilinear form con-
sists, like the nucleus-electron interaction potential, of a sum of one-electron terms.
The terms involving only one single electron represent the simple part. The corre-
sponding estimates are in the end based on the Hardy inequality from Lemma 4.1.
They do not rely on symmetry properties of the wave functions. The situation is dif-
ferent for the terms of which the electron-electron interaction potential is composed.
These estimates are therefore treated in a separate section.

The first of the estimates we need to study the regularity properties, namely the
estimate (4.11) from Theorem 4.1, has already been stated in Chap. 4 and formed
the basis of the variational formulation of the eigenvalue problem. The aim of the
present section is to complement this estimate by estimates for the expressions

(Vneu,L v), s(u,L v), s(u,v). (6.25)

in the bilinear form (6.23) respectively in (6.11). The crucial observation is that most
of the partial derivatives of which the differential operator L is composed commute
with the single parts of the interaction potentials (6.24) and can be shifted from one
to the other side in the single parts of the bilinear form (6.9), up to those few that
act on a component of the position vectors of the electrons under consideration.

Theorem 6.3. For all infinitely differentiable functions u and v in the space D ,

(Vneu,L v) ≤ 2N1/2Z |u |I,0 |v |I,1. (6.26)

Proof. We first consider a single electron i and have then to distinguish the cases
i /∈ I and i ∈ I. The first case is the easier one. We start from the representation (6.18)
of L . Since the partial derivatives of which the Lα are composed in this case do not
act on the components of xi, Fubini’s theorem and integration by parts yield
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∫

1
|xi −aν | uL v dx = (−1)|I| ∑

α∈I∗

∫

1
|xi −aν |

(
∫

uL2
α v dx̃

)

dxi

= ∑
α∈I∗

∫
(

∫

1
|xi −aν | Lα uLα v dxi

)

dx̃,

where we have split x into xi and x̃. By the Cauchy-Schwarz and the Hardy inequal-
ities, the inner integrals on the right hand side can be estimated by the expressions

(
∫

∣

∣Lα u
∣

∣

2
dxi

)1/2(

4
3

∑
�=1

∫

∣

∣

∂
∂xi,�

Lα v
∣

∣

2
dxi

)1/2

.

With help of the Cauchy-Schwarz inequality, now first applied to the resulting outer
integrals and then to the sum over the single α ∈ I∗, the estimate

∫

1
|xi −aν | uL v dx

≤ 2

(

∑
α∈I∗

∫

∣

∣Lα u
∣

∣

2
dx

)1/2 (

∑
α∈I∗

3

∑
�=1

∫

∣

∣

∂
∂xi,�

Lα v
∣

∣

2
dx

)1/2

follows. In more compact notion, this estimate reads

∫

1
|xi −aν | uL v dx ≤ 2 |u |I,0 |∇iv|I,0. (6.27)

It transfers without change to the case of indices i ∈ I, but the proof is somewhat
more complicated then. In this case, we decompose the operator L into the sum

L = (−1)|I| ∑
α∈I∗

L2
α = (−1)|I| ∑

β∈I∗i

Lβ ΔiLβ , Lβ = ∏
j∈Ii

∂
∂x j,β ( j)

,

where Ii = I \ {i} and I∗i denotes the set of the mappings β that assign one of the
components 1, 2, or 3 to the electron indices j in Ii. Since the Lβ do not act upon the
components of xi, integration by parts and Fubini’s theorem lead as above to

∫

1
|xi −aν | uL v dx = (−1)|I| ∑

β∈I∗i

∫

1
|xi −aν |

(
∫

uLβ ΔiLβ v dx̃

)

dxi

= − ∑
β∈I∗i

∫
(

∫

1
|xi −aν | Lβ uΔiLβ v dxi

)

dx̃.

By the Cauchy-Schwarz and the Hardy inequality, the inner integrals on the right
hand side can, up to the factor 2, be estimated by the expressions

(
∫

|∇iLβ u|2 dxi

)1/2(∫

|ΔiLβ v|2 dxi

)1/2

.
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These expressions can be rewritten as

( 3

∑
k=1

∫
∣

∣

∣

∂Lβ u

∂xi,k

∣

∣

∣

2
dxi

)1/2( 3

∑
k=1

3

∑
�=1

∫
∣

∣

∣

∂
∂xi,�

∂Lβ v

∂xi,k

∣

∣

∣

2
dxi

)1/2

,

where we have applied the relation

3

∑
k=1

3

∑
�=1

∫ ∂ 2w

∂x2
i,k

∂ 2w

∂x2
i,�

dxi =
3

∑
k=1

3

∑
�=1

∫
∣

∣

∣

∂ 2w
∂xi,�∂xi,k

∣

∣

∣

2
dxi

to the functions w = Lβ v. This relation is proved by integrating by parts. Since the
set of the differential operators Lα , α ∈ I∗, coincides with the set of the operators

∂
∂xi,k

Lβ , k = 1,2,3, β ∈ I∗i ,

summation over all β , the Cauchy-Schwarz inequality (applied twice, to the outer
integrals and then to the sum over the β ), and Fubini’s theorem lead again to (6.27).

Summation over the single contributions in the potential finally yields

(Vneu,L v) ≤ 2Z |u |I,0
N

∑
i=1

|∇iv|I,0,

from which the proposition follows with the elementary estimate

N

∑
i=1

|∇iv|I,0 ≤ N1/2
( N

∑
i=1

|∇iv|2I,0
)1/2

= N1/2 |v |I,1,

that is responsible for the factor N1/2. �
The proof of the estimates for the expression s(u,L v) resembles that of Theorem

6.3. It is prepared by the following lemma for functions of three real variables.

Lemma 6.3. For all infinitely differentiable functions u,v : R
3 →R that vanish out-

side a bounded subset of their domain,

∫
{

x
|x | ·∇u +

1
|x | u

}

v dx ≤ 3

(
∫

|u |2 dx

)1/2(∫

|∇v|2 dx

)1/2

. (6.28)

Proof. The difficulty is that the derivatives have to be shifted to v. We first assume
that u vanishes on a neighborhood of the origin. Integration by parts then yields

∫
{

x
|x | ·∇u +

1
|x | u

}

v dx = −
∫

u
x
|x | ·∇v dx −

∫

1
|x | uv dx.
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This relation remains true for the general case, as one can show by an argument
as in the proof of Lemma 4.1, that is, by multiplying u with a sequence of cut-off
functions and applying the dominated convergence theorem. The proposition then
follows again from the Cauchy-Schwarz inequality and the Hardy inequality. �
Theorem 6.4. For all infinitely differentiable functions u and v in the space D ,

s(u,L v) ≤ 3 |u |I,0 |v |I,1. (6.29)

Proof. We consider again a single electron i and have, as in the proof of
Theorem 6.3, to distinguish the cases i ∈ I and i /∈ I. For indices i ∈ I, one obtains

∫
{

xi

|xi| ·∇iu +
1
|xi| u

}

L v dx

= ∑
β∈I∗i

∫∫
{

xi

|xi| ·∇iLβ u +
1
|xi| Lβ u

}

ΔiLβ v dxi dx̃.

With help of the Cauchy-Schwarz and the Hardy inequality the inner integrals on
the right hand side can, up to the factor 3, be estimated by the expressions

(
∫

|∇iLβ u|2 dxi

)1/2(∫

|ΔiLβ v|2 dxi

)1/2

.

Rewriting these expressions as in the proof of Theorem 6.3, from this the estimate

∫
{

xi

|xi| ·∇iu +
1
|xi| u

}

L v dx ≤ 3 |u |I,0 |∇iv|I,0

follows. This estimate also holds if i /∈ I, as is shown starting directly from the
representation of L as the sum of the differential operators L2

α , that is, from

∫
{

xi

|xi| ·∇iu +
1
|xi| u

}

L v dx

= ∑
α∈I∗

∫∫
{

xi

|xi| ·∇iLα u +
1
|xi| Lα u

}

Lα v dxi dx̃.

The inner integrals are now, with Lemma 6.3, up to the factor 3 estimated as

(
∫

|Lα u|2 dxi

)1/2(∫

|∇iLα v|2 dxi

)1/2

.

From that then again the estimate above follows. Summation over the i, the Cauchy-
Schwarz inequality, and the fact that the θ 2

i sum up to 1 complete the proof. �
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The group of estimates for the one-electron parts in the bilinear form (6.23) is
completed by the following estimate for the expression s(u,v) itself:

Theorem 6.5. For all infinitely differentiable functions u and v in the space D ,

s(u,v) ≤ 3‖u‖0 |v |1. (6.30)

Proof. With help of Lemma 6.3, the single parts can again be estimated as

∫
{

xi

|xi| ·∇iu +
1
|xi| u

}

v dx ≤ 3 ‖u‖0‖∇iv‖0.

The proposition follows from that in the way already employed. �

6.4 Estimates for the Low-Order Terms, Part 2

The part in the bilinear form resulting from the electron-electron interaction poten-
tial is estimated basically in the same way as the terms considered in the previous
section. The central observation is again that most of the derivatives of which the
differential operators Lα are composed commute with the single parts of the poten-
tial. However, there is one important difference. In the cases already studied only
one derivative remained, in contrast to the two derivatives we have to face here. One
of these derivatives has to be shifted to the other side. This causes an additional
problem since the partial derivatives of the interaction potential entering into the
estimates are not locally square integrable in three space dimensions. Therefore the
Pauli principle has to be brought into play. A wave function that is compatible with
the Pauli principle vanishes where two electrons with the same spin meet, a fact
which counterbalances the singular behavior of the derivatives of the interaction
potential and enables us to estimate the terms under consideration.

To master the most singular terms, the Hardy estimate from Lemma 4.1 has to be
complemented by a second, closely related estimate for functions of three variables.

Lemma 6.4. For all infinitely differentiable functions v in the variable x ∈ R
3 that

have a compact support and that vanish at the origin,
∫

1
|x|4 v2 dx ≤ 4

∫

1
|x|2 |∇v|2 dx . (6.31)

Proof. The estimate is proved in the same way as the Hardy inequality (4.8). Setting
temporarily d(x) = |x|, it starts from the relation

1
d4 = − 1

3
∇

( 1
d3

)

·∇d,

with the help of which (6.31) is proved for functions v that vanish on a neighborhood
of the origin. To transfer this estimate to functions v that vanish only at the origin
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itself, one has to utilize that in this case there exists a constant K with

|v(x)| ≤ K|x|

and can then complete the proof in the same way as that of (4.8) with help of the
dominated convergence theorem, multiplying v with cut-off functions. �
It should be noted that the estimate (6.31) does not hold for functions not vanishing
at the origin since the function x → 1/|x|4 is not locally integrable in three space
dimensions, which is the source of our problems.

The single parts of which the electron-electron interaction potential is composed
involve only two electrons so that the estimates that we have to prove are essentially
two-electron estimates. To simplify the notation, we restrict ourselves for a while to
the two-electron case and denote the three-dimensional coordinate vectors of these
electrons by x and y. Correspondingly, the real numbers x1, x2, and x3 and y1, y2,
and y3 are the components of these vectors. For abbreviation, let

φ(x,y) =
1

|x− y| . (6.32)

In this notation, our task is essentially to estimate the integrals like

∫

φu
3

∑
k,�=1

∂ 4v

∂x2
k ∂y2

�

d(x,y) (6.33)

for infinitely differentiable functions u and v that have a compact support and that
are antisymmetric under the exchange of x and y.

The first step is to combine the inequality (6.31) and the Hardy inequality (4.8)
to the estimate for antisymmetric functions on which our argumentation is founded.

Lemma 6.5. For all infinitely differentiable functions u in the variables x,y ∈ R
3

that have a compact support and are antisymmetric under the exchange of x and y,

∫

1
|x− y|4 u2 d(x,y) ≤ 16

3

∑
k,�=1

∫
( ∂ 2u

∂xk∂y�

)2
d(x,y). (6.34)

Proof. Since such functions vanish where y = x, Lemma 6.4 yields

∫
(

∫

1
|x− y|4 u2 dy

)

dx ≤
∫

(

4 ∑
�

∫

1
|x− y|2

( ∂u
∂y�

)2
dy

)

dx.

By the Hardy inequality from Lemma 4.1,

∫
(

∫

1
|x− y|2

( ∂u
∂y�

)2
dx

)

dy ≤
∫

(

4 ∑
k

∫
( ∂ 2u

∂xk∂y�

)2
dx

)

dy.

The proposition follows with Fubini’s theorem. �
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The counterparts to this estimate are the following variants

∫

1
|x− y|2 v2 d(x,y) ≤ 4

3

∑
k=1

∫
( ∂v

∂xk

)2
d(x,y), (6.35)

∫

1
|x− y|2 v2 d(x,y) ≤ 4

3

∑
�=1

∫
( ∂v

∂y�

)2
d(x,y) (6.36)

of the Hardy inequality (4.8) that, in contrast to (6.34), do not rely on the antisym-
metry of the considered function. They are proved in the same way as (6.34). The
argumentation in this section centers in the estimates (6.34), (6.35), and (6.36).

Now we can begin to estimate the integrals (6.33). In the first step we shift one
of the partial derivatives from the function v to the function u.

Lemma 6.6. Let u and v be infinitely differentiable functions in the variables x and
y in R

3 that have a compact support. Then, for all indices k and �,

∫

φu
∂ 4v

∂x2
k ∂y2

�

d(x,y) = −
∫ ∂

∂xk
(φu)

∂ 3v

∂xk∂y2
�

d(x,y). (6.37)

Proof. The problem is the singularity of φ that does not allow to integrate by parts
directly. Let ϕ(r) thus be a continuously differentiable function of the real variable
r ≥ 0 that coincides with the function 1/r for r ≥ 1 and is constant for r ≤ 1/2. Let

φn(x,y) = nϕ(n |x− y|), n ∈ N.

The φn are then itself continuously differentiable and coincide with the original
function φ for all x and y of distance |x− y| ≥ 1/n. Integration by parts leads to

∫

φnu
∂ 4v

∂x2
k ∂y2

�

d(x,y) = −
∫ ∂

∂xk
(φnu)

∂ 3v

∂xk∂y2
�

d(x,y).

The integral on the right hand side of this equation splits, because of

∂
∂xk

(φnu) =
∂φn

∂xk
u + φn

∂u
∂xk

,

into two parts. We claim that there is a constant M, independent of n, such that

∣

∣

∣

∂
∂xk

(φnu)
∣

∣

∣ ≤ M
|x− y|2 .

This is because, for the function φn itself and its first-order derivatives, the estimates

|φn| ≤ c
|x− y| ,

∣

∣

∣

∂φn

∂xk

∣

∣

∣ ≤ c
|x− y|2 ,
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hold, where c is independent of n. As u vanishes outside a bounded set, the integrands
are thus uniformly bounded by an integrable function. Since the φn and their first-
order partial derivatives converge to φ and its respective derivatives outside the
diagonal x = y, a set of measure zero, the dominated convergence theorem yields

lim
n→∞

∫ ∂
∂xk

(φnu)
∂ 3v

∂xk∂y2
�

d(x,y) =
∫ ∂

∂xk
(φu)

∂ 3v

∂xk∂y2
�

d(x,y).

For the other side of the equation, one can argue correspondingly and obtains

lim
n→∞

∫

φnu
∂ 4v

∂x2
k ∂y2

�

d(x,y) =
∫

φu
∂ 4v

∂x2
k ∂y2

�

d(x,y),

which then completes the proof of (6.37). �
The next estimate is the place where the antisymmetry crucially enters. It depends
on the fact that the corresponding functions u vanish on the diagonal x = y.

Lemma 6.7. Let u and v be infinitely differentiable functions in the variables x,y in
R

3 that have a compact support and let the function u be antisymmetric with respect
to the exchange of x and y. Then the estimate

3

∑
k,�=1

∫

φu
∂ 4v

∂x2
k ∂y2

�

d(x,y) (6.38)

≤ C

{ 3

∑
k,�=1

∥

∥

∥

∂ 2u
∂xk∂y�

∥

∥

∥

2

0

}1/2{ 3

∑
k,�=1

∣

∣

∣

∂ 2v
∂xk∂y�

∣

∣

∣

2

1

}1/2

,

holds, where the constant C is specified in the proof.

Proof. We first rewrite the expression to be estimated with help of (6.37) and obtain

−
3

∑
k,�=1

∫

1
|x− y|

∂u
∂xk

∂ 3v

∂xk∂y2
�

d(x,y) +
3

∑
k,�=1

∫

1
|x− y|2

xk− yk

|x− y| u
∂ 3v

∂xk∂y2
�

d(x,y).

The first double sum is estimated by the expression

(

3
3

∑
k=1

∫

1
|x− y|2

( ∂u
∂xk

)2
d(x,y)

)1/2( 3

∑
k,�=1

∫
( ∂ 3v

∂xk∂y2
�

)2
d(x,y)

)1/2

.

As u vanishes on the diagonal x = y, there is a constant K with

|u(x,y)| ≤ K |x− y|.

The second double sum is thus bounded by the therefore finite expression
(

3
∫

1
|x− y|4 u2 d(x,y)

)1/2( 3

∑
k,�=1

∫
( ∂ 3v

∂xk∂y2
�

)2
d(x,y)

)1/2

.
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The estimates (6.36), applied to the partial derivatives of u, and (6.34) show that the
estimate (6.38) holds with C = 6

√
3. Since the role of x and y can be exchanged, the

constant can be improved to C = 3
√

6, combining the two resulting estimates. �
Correspondingly one proves the estimate

3

∑
k=1

∫

φu
∂ 2v

∂x2
k

d(x,y) ≤ 2

{ 3

∑
k=1

∥

∥

∥

∂u
∂xk

∥

∥

∥

2

0

}1/2{ 3

∑
k=1

∣

∣

∣

∂v
∂xk

∣

∣

∣

2

1

}1/2

(6.39)

applying (6.35) to u, and finally, with help of (6.35) and (6.36), the estimate

∫

φuv d(x,y) ≤
√

2 ‖u‖0|v |1 (6.40)

for all infinitely differentiable functions u and v that have a compact support, in
these cases regardless their antisymmetry with respect to the exchange of x and y.

We can now return to the full set of the electron coordinate vectors x1,x2, . . . ,xN

in R
3 and the old notation and merge the building blocks (6.38) to (6.40) into the

last missing estimate for the interaction potentials.

Theorem 6.6. For all infinitely differentiable functions u ∈ DI and v ∈ D ,

(Veeu,L v) ≤ CN3/2 |u |I,0 |v |I,1, (6.41)

where the constant C ≤ 3
√

3 is independent of the number N of electrons.

Proof. We first turn our attention to the interaction potential

φi j(x) =
1

|xi − x j|
of two electrons i �= j and estimate the expression

∫

φi juL v dx = (−1)|I| ∑
α∈I∗

∫

φi juL2
α v dx.

The strategy is the same as in the previous section. We split the operators Lα into
the product of operators Lβ that do not act upon the components of xi and x j and a
remaining part. Here we have to distinguish three cases, namely that both indices i
and j belong to the index set I, that only one of these indices belongs to I, and that
none of these indices is contained in I.

The first case is the most critical one because of the singularities of the derivatives
of the interaction potential and the dependence on the antisymmetry. It is therefore
considered first. Let Ii j = I\{i, j} �= /0 and let I∗i j again denote the set of the mappings
β that assign one of the components 1, 2, or 3 to an electron index in Ii j. The set of
the differential operators Lα , α ∈ I∗, coincides then with the set of the operators

∂
∂xi,k

∂
∂xi,�

Lβ , k, � = 1,2,3, β ∈ I∗i j,
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and the integral to be estimated can, as in the previous section, be written as sum

(−1)|I| ∑
α∈I∗

∫

φi juL2
α v dx = ∑

β∈I∗i j

∫
( 3

∑
k,l=1

∫∫

φi jLβ u
∂ 4Lβ v

∂x2
i,k∂x2

j,�

dxidx j

)

dx̃,

where x is split into xi, x j, and the remaining components x̃. Like u itself, its partial
derivatives Lβ u, β ∈ I∗i j, are antisymmetric under the exchange of xi and x j. This is
due to the fact that the operators Lβ do not act upon the components of xi and x j and
can be seen as follows. Let w be an arbitrary function that changes its sign under
the permutation P that exchanges xi for x j and let e �= 0 be a vector that is invariant
under P. Let w̃(x) = w(Px). Since e = Pe and w̃(x) = −w(x), then

(∇w)(Px) · e = PT (∇w)(Px) · e = (∇w̃)(x) · e = − (∇w)(x) · e,

so that the directional derivative of w in direction e inherits the antisymmetry of w.
The proposition follows from that by induction on the order of Lβ . The inner inte-
grals on the right hand side of the equation above can therefore be estimated with
the help of (6.38). In the same fashion as in the previous section, finally the estimate

(−1)|I| ∑
α∈I∗

∫

φi juL2
α v dx ≤ C |u |I,0

{

|∇iv|2I,0 + |∇ jv|2I,0
}1/2

(6.42)

follows, where C ≤ 3
√

6 is the same constant as in (6.38). The case that Ii j is empty,
that is, I consists only of the indices i and j, is treated in the same way.

In the case that i ∈ I, but j /∈ I, we set Ii = I \{i} and denote by I∗i again the set of
the mappings β from Ii to the set of the indices 1, 2, and 3. The set of the differential
operators Lα , α ∈ I∗, then coincides with the set of the operators

∂
∂xi,k

Lβ , k = 1,2,3, β ∈ I∗i ,

and the integral to be estimated splits into the sum

(−1)|I| ∑
α∈I∗

∫

φi juL2
α v dx = − ∑

β∈I∗i

∫
( 3

∑
k=1

∫∫

φi jLβ u
∂ 2Lβ v

∂x2
i,k

dxidx j

)

dx̃.

The inner sum on the right hand side can be estimated with help of (6.39), which
then finally again results in the estimate (6.42), where C ≤ 2 is now the constant
from (6.39). The same estimate holds, of course, for the case that i /∈ I and j ∈ I.

If neither i nor j are contained in I, one simply starts from

(−1)|I| ∑
α∈I∗

∫

φi juL2
αv dx = ∑

α∈I∗

∫
(

∫∫

φi jLα uLα v dxidx j

)

dx̃,
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from which one obtains, with the help of (6.40), again the estimate (6.42), now with
a constant C ≤√

2. Independent of whether two, one, or none of the indices i and j
is contained in I, the estimate (6.42) holds with a constant C ≤ 3

√
6.

The proposition finally follows from the elementary estimate

1
2 ∑

i, j

(

η2
i + η2

j

)1/2 ≤ 1√
2

N3/2
(

∑
i

η2
i

)1/2
, (6.43)

summing over all particle pairs. �
Again, the dependence of the bound on the problem parameters, here the number N
of electrons, enters only in the very last step, through the estimate (6.43).

6.5 The Regularity of the Weighted Eigenfunctions

We are now in the position to prove that the solutions u ∈ H 1
I of the modified eigen-

value equation (6.11) are located in the space X 1
I from Sect. 6.2, the completion of

the space DI of the infinitely differentiable functions (4.3) with compact support that
are antisymmetric under the exchange of arguments xi and x j in R

3 for all indices
i �= j in the given subset I of the set of indices 1, . . . ,N under a norm measuring
high-order mixed derivatives. The key to our results is the estimates for the low-
order terms, those discussed in the preceding two sections, that can be summarized
as follows. For all functions u in DI and v in D , first the estimates

(Vu,L v) ≤C θ (N,Z) |u |I,0 |v |I,1, s(u,L v) ≤ 3 |u |I,0 |v |I,1 (6.44)

in terms of the seminorms (6.15) hold, where the first one for the term with the
interaction potential (4.9) represents a combination of the estimates (6.26) from
Theorem 6.3 and (6.41) from Theorem 6.6, and the second one is the estimate (6.29)
from Theorem 6.4. The constant C is independent of the number N of electrons,
of the considered index set I, of the number, the position, and the charge of the
nuclei, and particularly of their total charge Z. The proofs yielded the upper bound
C = 2 + 3

√
3 for C. The quantity θ (N,Z) has been defined in (4.10) and covers the

growth of the bound in N and Z. The antisymmetry of the functions u with respect
to the exchange of the corresponding electron coordinates substantially enters into
the proof of the first estimate, since without this property it is not possible to get a
handle on the electron-electron interaction terms. The estimates (6.44) potentially
involving very high-order derivatives are complemented by the estimates

(Vu,v)≤ 3θ (N,Z)‖u‖0 |v |1, s(u,v) ≤ 3‖u‖0 |v |1 (6.45)

from Theorem 4.1 and Theorem 6.5 for functions u and v in D , that generally hold
and do not rely on the given antisymmetry properties. The estimates show that the



104 6 Existence and Decay of Mixed Derivatives

bilinear forms (Vu,L v) and s(u,L v) can be uniquely extended from DI ×DI to
bounded bilinear forms on X 0

I ×X 1
I , and that particularly the bilinear form

ã(u,v) = a(u,εv +L v) + γ s(u,εv +L v) (6.46)

from Sect. 6.2 can be uniquely extended from DI to a bounded bilinear form on X 1
I .

For the ease of presentation, we will keep the notation (Vu,L v) and s(u,L v) for
arguments u ∈ X 0

I and v ∈ X 1
I and mean the extended forms then, where, of course,

some care has to be taken to avoid misinterpretations and fallacies.
The second ingredient of the proof of the regularity theorems is Fourier analysis.

Recall from Chap. 2 the definition of the space S of the rapidly decreasing func-
tions. As with DI , let SI denotes the space of the rapidly decreasing functions of
corresponding antisymmetry. The seminorms (6.15) of a rapidly decreasing function
read in terms of its Fourier transform

|u |2I,s =
∫

( N

∑
i=1

|ωi|2
)s(

∏
i∈I

|ωi|2
)

|û(ω)|2 dω . (6.47)

Correspondingly, the H1-seminorm |u |1 and the L2-norm ‖u‖0 = |u |0 are given by

|u |2s =
∫

( N

∑
i=1

|ωi|2
)s

|û(ω)|2 dω . (6.48)

We call a rapidly decreasing function a rapidly decreasing high-frequency function
if its Fourier transform vanishes on a ball of radius Ω , to be fixed later, around the
origin of the frequency space. The closures of the corresponding space

SI,H = {v ∈ SI | v̂(ω)= 0 for |ω | ≤ Ω } (6.49)

of rapidly decreasing functions with the given symmetry properties in H 1
I and X 1

I ,
respectively, are the Hilbert spaces H 1

I,H and X 1
I,H . The closures of the space

SI,L = {v ∈ SI | v̂(ω)= 0 for |ω | ≥ Ω } (6.50)

in H 1
I and X 1

I are the spaces H 1
I,L and X 1

I,L, respectively, of low-frequency functions.
The low-frequency and the high-frequency functions decompose the spaces

H 1
I = H 1

I,L ⊕H 1
I,H , X 1

I = X 1
I,L ⊕X 1

I,H (6.51)

into orthogonal parts. By the Fourier representation (6.47) and (6.48) of the norms,

|uL|I,s ≤ Ω s
(

Ω
√| I |

)| I |
‖uL‖0 (6.52)
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for the low-frequency functions uL ∈ SI,L. The space H 1
I,L and its subspace X 1

I,L
therefore coincide. The relation (6.52) transfers to all functions in these spaces. In
fact, the functions in H 1

I,L are infinitely differentiable and all their derivatives are
square integrable. Fourier analysis also shows that

‖uH‖0 ≤ Ω−1|uH |1, |uH |I,0 ≤ Ω−1|uH |I,1 (6.53)

for all high-frequency functions in uH in H 1
I,H and X 1

I,H respectively. On H 1
I,H , the

seminorm | · |1 and the norm ‖ · ‖1 thus are equivalent. For uL ∈ H 1
I,L, conversely

|uL|1 ≤ Ω ‖uL‖0, |uL|I,1 ≤ Ω |uL|I,0. (6.54)

The central observation, on which the proof of the regularity theorems is based,
is that the low-order terms in the bilinear form in the second-order equation (6.11),
as well as in the high-order bilinear form (6.23), behave like small perturbations on
the corresponding spaces of high-frequency functions. The reason is that the norms
of such functions themselves and that of their derivatives as well can be estimated
by the norms of derivatives of higher order. By (6.44) and (6.53),

(VuH,L vH) ≤C θ (N,Z)Ω−1|uH |I,1 |vH |I,1, (6.55)

s(uH ,L vH) ≤ 3Ω−1|uH |I,1 |vH |I,1 (6.56)

for all uH ,vH ∈ SI,H . Correspondingly, by (6.45) and (6.53), for these uH and vH

(VuH,vH) ≤ 3θ (N,Z)Ω−1|uH |1 |vH |1, (6.57)

s(uH ,vH) ≤ 3Ω−1|uH |1 |vH |1. (6.58)

This implies that the two bilinear forms become coercive on the corresponding
spaces of high-frequency functions, provided that the bound Ω separating the low
from the high frequencies is chosen large enough. If we assume C ≥ 3 and choose

Ω ≥ 4C θ (N,Z)+ 12γ, (6.59)

for all high-frequency functions uH ∈ H 1
I,H the estimate

a(uH ,uH)+ γ s(uH ,uH) ≥ 1
4
|uH |21 (6.60)

holds, and correspondingly, for the functions uH ∈ X 1
I,H , the estimate

ã(uH ,uH) ≥ 1
4

(

ε |uH |21 + |uH|2I,1
)

. (6.61)

The claimed coercivity follows from that by the equivalence of the seminorm | · |1
and the norm ‖·‖1 on the given spaces of high-frequency functions. We still combine
the low-order terms in ã(u,v), respectively a(u,v), in the bilinear forms
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˜b(ϕ ,v) = (Vϕ ,εv +L v)+ γ s(ϕ ,εv +L v), (6.62)

b(ϕ ,χ) = (V ϕ ,χ)+ γ s(ϕ ,χ) (6.63)

on X 0
I ×X 1

I and L2 ×H1, respectively. They satisfy, for Ω as in (6.59), the estimates

˜b(ϕ ,v) ≤ 1
4

Ω
(

ε ‖ϕ‖2
0 + |ϕ |2I,0

)1/2(ε |v |21 + |v |2I,1
)1/2

, (6.64)

b(ϕ ,χ) ≤ 1
4

Ω ‖ϕ‖0 |χ |1 (6.65)

for functions ϕ , v, and χ in the corresponding spaces.
Due to the orthogonality properties of the low- and the high-frequency functions,

the low- and the high-frequency part of a solution of the eigenvalue equation (6.11)

a(u,χ)+ γ s(u,χ) = λ (u,χ), χ ∈ H 1
I , (6.66)

interact only by the low-order part in the bilinear form on the left hand side. The aim
is to control the high-frequency part and its mixed derivatives by the low-frequency
part of the given solution. The first step to reach this goal is the following lemma
that immediately results from the orthogonality of the low- and the high-frequency
functions both with respect to the L2 - and the H1-inner product.

Lemma 6.8. Let u = uL + uH be the decomposition of a solution u ∈ H 1
I of the

equation (6.11), (6.66) into its low-frequency and its high-frequency part. Then

a(uH ,χH)+ γ s(uH ,χH)−λ (uH,χH) = −b(uL,χH), χH ∈ H 1
I,H . (6.67)

We will keep the low-frequency part uL fixed for a while and will consider (6.67)
as an equation for the high-frequency part uH . We will show that such equations are
uniquely solvable for frequency bounds (6.59) and that the regularity of the right
hand side transfers to the regularity of the solution.

Lemma 6.9. For frequency bounds Ω as in (6.59), the equation

a(uH ,χH)+ γ s(uH ,χH)+ μ(uH,χH) = b(ϕ ,χH), χH ∈ H 1
I,H , (6.68)

possesses a unique solution uH ∈ H 1
I,H for all given functions ϕ ∈ L2 and arbitrary

nonnegative parameters μ . This solution satisfies the estimates

‖uH‖0 ≤ ‖ϕ‖0, |uH |1 ≤ Ω ‖ϕ‖0. (6.69)

Proof. As μ ≥ 0, the additional term does not alter the coercivity (6.60) of the
bilinear form on the left hand side of the equation (6.68). The Lax-Milgram theo-
rem hence guarantees the existence and uniqueness of a solution. The estimate for
the H1-seminorm of the solution follows directly from (6.60) and (6.65) inserting
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χH =uH . The L2-norm of the solution can be estimated by its H1-seminorm utiliz-
ing the property (6.53) of high-frequency functions. �
A corresponding result holds for the high-order counterpart of the equation (6.68),
that formally results from this equation replacing the test function χH by test func-
tions εvH +L vH , with all the care that has to be taken with this type of arguments.

Lemma 6.10. For frequency bounds Ω as in (6.59), the equation

ã(uH ,vH)+ μ(uH ,εvH +L vH) = ˜b(ϕ ,vH), vH ∈ X 1
I,H , (6.70)

possesses a unique solution uH ∈ X 1
I,H for all given functions ϕ ∈ X 0

I and arbitrary
nonnegative parameters μ . This solution satisfies the estimate

|uH |I,1 ≤ Ω
(

ε ‖ϕ‖2
0 + |ϕ |2I,0

)1/2
. (6.71)

Proof. As μ ≥ 0 and (u,εu + L u) ≥ 0 for u ∈ X 1
I , the proposition again follows

from the coercivity (6.61) of the bilinear form ã(uH ,vH), from the bound (6.64) for
the bilinear form ˜b(ϕ ,v) on the right hand side, and the Lax-Milgram theorem. �
We want to show that the solutions of the equations (6.68) and (6.70) coincide for
ϕ ∈ X 0

I . For that we need the following, at first sight seemingly obvious lemma:

Lemma 6.11. The solution uH ∈ X 1
I,H of the equation (6.70) satisfies the equation

(6.68) for all rapidly decreasing functions χH ∈ SI,H of the particular form

χH = εvH +L vH , vH ∈ SI,H . (6.72)

Proof. It suffices to show that the representation (6.46) holds not only for functions
u and v in DI but for all functions u ∈ X 1

I and v ∈ SI , and to prove a corresponding
relation for the bilinear form (6.62), that, in a strict sense, is defined by (6.62) only
for functions ϕ and v in DI and then continuously extended to X 0

I ×X 1
I . We begin

with the case that u ∈ DI and approximate v ∈ SI by the functions

vR(x) = φ
( x

R

)

v(x), R > 0,

in DI , where φ is an infinitely differentiable, rotationally symmetric function with
values φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for |x| ≥ 2. For sufficiently large R, vR and
v coincide on the support of u. As vR tends to v in the X 1

I -norm, by the definition
(6.46) of the bilinear form ã(u,v) for functions in DI

ã(u,v) = lim
R→∞

ã(u,vR) = a(u,εv +L v) + γ s(u,εv +L v)

for all u ∈ DI and v ∈ SI . Since the left and the right hand sides of this equation
represent bounded linear functionals in u ∈ X 1

I for v ∈ SI given, and since DI is a
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dense subset of X 1
I , the equation transfers to all u∈X 1

I and v∈SI . Correspondingly,

˜b(ϕ ,v) = b(ϕ ,εv +L v)

for all ϕ ∈ X 0
I and v ∈ SI , from which the proposition then follows. �

The argument that closes the gap between the equations (6.68) and (6.70) is the
observation that every function in χH ∈ SI,H can be represented in the form (6.72).
The proof requires that the parameter ε is strictly positive and breaks down for ε = 0.

Lemma 6.12. For all rapidly decreasing high-frequency functions χH ∈SI,H there
is a rapidly decreasing high-frequency function vH ∈ SI,H that solves the equation

ε vH +L vH = χH . (6.73)

Proof. The antisymmetry of a function with respect to the given permutations trans-
fers to its Fourier transform and vice versa. The function vH ∈ SI,H given by

v̂H(ω) =
1

ε + ∏i∈I |ωi|2 χ̂H(ω)

has by this reason the required symmetry properties and solves the equation. �
The solution of the modified equation (6.70) therefore satisfies the equation (6.68)
for all χH ∈SI,H and, as SI,H is dense in H 1

I,H , for all χH ∈H 1
I,H . Since the equation

(6.68) possesses only one solution, the solutions of both equations coincide for ϕ in
X 0

I given. Since ε > 0 was arbitrary, this observation and (6.53) prove:

Lemma 6.13. If the bound Ω separating the high from the low frequencies is cho-
sen according to (6.59) and ϕ ∈X 0

I , the solution uH ∈H 1
I,H of the equation (6.68) is

contained in the space X 1
I,H and satisfies the estimates

|uH |I,0 ≤ |ϕ |I,0, |uH |I,1 ≤ Ω |ϕ |I,0. (6.74)

Since the low-frequency part uL of the solution u of the equation (6.11), (6.66) is
contained in X 0

I and even in X 1
I , we can apply the result just proved to the equation

(6.67), from which it follows that also the high-frequency part uH of u and with
that u itself are contained in X 1

I . The quantitative version of this result reads:

Theorem 6.7. The solutions u ∈ H 1
I of the modified eigenvalue problem (6.11) for

negative λ are contained in X 1
I . For frequency bounds (6.59), their seminorms

(6.15), (6.19) can be estimated as follows in terms of their low-frequency parts:

|u |I,0 ≤
√

2 |uL|I,0, |u |I,1 ≤
√

2Ω |uL|I,0. (6.75)
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Proof. By Lemma 6.13, the high frequency parts uH of these u satisfy the estimates

|uH |I,0 ≤ |uL|I,0, |uH |I,1 ≤ Ω |uL|I,0.

They can thus be controlled by the corresponding low-frequency parts uL inde-
pendent of the given λ < 0. The proposition follows from the orthogonality of the
decomposition into the two parts uL and uH and the inverse estimate in (6.54). �
The estimates (6.75) for the mixed derivatives of the solutions have a counterpart
for the solutions themselves that follows in the same way directly from Lemma 6.9.

Theorem 6.8. Under the same assumptions as in Theorem 6.7, the solutions of the
modified eigenvalue problem (6.11) satisfy the two estimates

‖u‖0 ≤
√

2‖uL‖0, |u |1 ≤
√

2Ω ‖uL‖0. (6.76)

A solution u ∈ H 1
I of the equation (6.11), (6.66) is trivially contained in H 1

I′ for all
nonempty subsets I′ of I. As s(u,v) is obviously invariant under the exchange of all
electrons i in the subset I′ of I, Theorem 6.2 ensures that u solves the equations

a(u,χ)+ γ s(u,χ) = λ (u,χ), χ ∈ H 1
I′ , (6.77)

on all of these spaces H 1
I′ and thus satisfies, by Theorem 6.7, the estimates

|u |I′,0 ≤
√

2 |uL|I′,0, |u |I′,1 ≤
√

2Ω |uL|I′,0 (6.78)

for all nonempty subsets I′ of the given index set I. Therefore the norms given by

|||u|||2I,1 =
∫

( N

∑
i=1

∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

∏
i∈I

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

|û(ω)|2 dω , (6.79)

|||u|||2I,0 =
∫

∏
i∈I

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

|û(ω)|2 dω . (6.80)

of these functions, that combine the H1-norm and H1-norms of the corresponding
mixed derivatives, remain finite. The frequency bound Ω fixes a length scale. Such
length scales naturally appear in every estimate that relates derivatives of distinct or-
der to each other. They have to be incorporated in the definition of the corresponding
norms to compensate the different scaling behavior of the derivatives and to obtain
physically meaningful estimates that are independent of the choice of units.

With these notations, we can now formulate and prove our final and conclusive
regularity theorem for the solutions of the modified eigenvalue problem (6.11):

Theorem 6.9. The solutions u ∈ H 1
I of the modified eigenvalue problem (6.11) for

negative values λ satisfy, for frequency bounds (6.59), the estimates

|||u|||I,0 ≤
√

2e ‖u‖0, |||u|||I,1 ≤
√

2e ‖u‖0. (6.81)
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Proof. By the estimates (6.76) for the L2-norm of the solution itself, respectively
the estimates (6.78) for the L2-norms of its corresponding mixed derivatives,

∫

∏
i∈I′

∣

∣

∣

ωi

Ω

∣

∣

∣

2 |û(ω)|2 dω ≤ 2
∫

|ω|≤Ω
∏
i∈I′

∣

∣

∣

ωi

Ω

∣

∣

∣

2 |û(ω)|2 dω (6.82)

for all subsets I′ of I, where the empty product is by definition 1. As

∑
I′⊆I

∏
i∈I′

∣

∣

∣

ωi

Ω

∣

∣

∣

2
= ∏

i∈I

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

, (6.83)

one obtains from (6.82) first the estimate

|||u|||2I,0 ≤ 2
∫

|ω|≤Ω
∏
i∈I

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

|û(ω)|2 dω . (6.84)

The product on the right hand side of (6.83) is, because of

∏
i∈I

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

≤ exp

(

∑
i∈I

∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

, (6.85)

bounded by the constant e for all ω in the ball of radius Ω around the origin. This
proves the first of the two estimates. The second is treated in the same way. �

Theorem 6.9 particularly states that the solutions u of the electronic Schrödinger
equation (4.30) itself possess high-order mixed derivatives. Only small portions of
the frequency domain substantially contribute to the wave functions. This remark
can be quantified with help of the notion of hyperbolic crosses, hyperboloid-like
regions in the frequency or momentum-space that consist of those ω for which

∏
i∈I−

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

+ ∏
i∈I+

(

1 +
∣

∣

∣

ωi

Ω

∣

∣

∣

2
)

≤ 1
ε2 , (6.86)

where ε > 0 is a control parameter that determines their size, and I− and I+ are
again the sets of the indices i of the electrons with spin σi = −1/2 and σi = +1/2
respectively. If uε denotes that part of the wave function whose Fourier transform
coincides with that of u on this domain and vanishes outside of it, the H1-error

‖u−uε‖1 = O(ε) (6.87)

tends to zero like O(ε) with increasing size of the crosses. This observation might
serve as a basis for the construction of approximation methods, for example utiliz-
ing the fact that functions like the projections uε with Fourier transforms vanishing
outside such hyperbolic crosses can be sampled on sparse grids [93]. The solutions
of the electronic Schrödinger equation in some sense behave like products
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u(x) =
N

∏
i=1

φi(xi) (6.88)

of orbitals, that is, exponentially decaying functions in H1, a fact that roughly justi-
fies the picture of atoms and molecules that we have in our minds.

It is remarkable that Theorem 6.9 not only ensures that the given high-order
mixed derivatives of the correspondingly exponentially weighted or unweighted
eigenfunctions exist and are square integrable, but also gives a rather explicit es-
timate for their norms in terms of the L2-norm of the weighted or unweighted
eigenfunctions themselves. The estimate (4.11) from Theorem 4.1 implies the lower
bound λ ≥−9θ 2/2 for the eigenvalues. As Σ(σ)≤ 0, this results in the upper bound

γ <
√

2(Σ(σ)−λ ) ≤ 3θ (N,Z) (6.89)

for the decay rates γ considered in Sect. 6.1. Theorem 6.9 tells us therefore that the
estimates (6.81) hold at least for the scaling parameters

Ω ≥ (4C + 36)
√

N max(N,Z), (6.90)

independent of the considered eigenvalue below the ionization threshold, and in par-
ticular for the Ω that is equal to the right hand side. There is conversely a minimum

Ω ≤ (4C + 36)
√

N max(N,Z) (6.91)

independent of the choice of the coefficients θi in the definition of the exponential
weight (provided that the choice of the θi maintains the given antisymmetry, of
course) such that these estimates hold for all eigenfunctions for these eigenvalues.
This minimum Ω can principally be much smaller than the given upper bound and
fixes an intrinsic length scale of the considered atomic or molecular system.

6.6 Atoms as Model Systems

The scaling parameter Ω limits the local variation of the wave functions quantita-
tively. It can be assumed that the right hand side of (6.91) considerably overestimates
the optimum Ω for spatially extended molecules that are composed of a big number
of light atoms. The question is how sharp this bound is for compact systems with
many electrons tightly bound to the nuclei, like heavier atoms. Atoms are, in the
given Born-Oppenheimer approximation, described by the Hamilton operator

H =
N

∑
i=1

{

− 1
2

Δi − Z
|xi|

}

+
1
2

N

∑
i, j=1
i�= j

1
|xi − x j| . (6.92)

The first term covers the attraction of the electrons by the nucleus and the second
their interaction with each other. The crucial property that we utilize here is that the
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potential in this operator is homogeneous of degree minus one, i.e., that

V (ϑx) = ϑ−1V (x) (6.93)

for all ϑ > 0. The H1-seminorm and the L2-norm of eigenfunctions of such oper-
ators are linked to each other by the famous virial theorem, a proof of which we
include for the sake of completeness. This proof is essentially a reformulation of
that in [86] in terms of weak solutions of the eigenvalue problem.

Theorem 6.10. The H1-seminorm and the L2-norm of an eigenfunction u ∈ H1 for
the eigenvalue λ of the atomic Hamilton operator (6.92) are linked via the relation

|u |21 = −2λ‖u‖2
0. (6.94)

Proof. Let uϑ (x) = u(ϑx) for ϑ > 0. A short calculation only utilizing the fact that
u is an eigenfunction for the eigenvalue λ then shows that

∫

∇uϑ ·∇v dx = 2ϑ 2λ
∫

uϑ v dx − 2ϑ 2
∫

V (ϑx)uϑ v dx

for arbitrary test functions v ∈ H1. Because of V (ϑx) = ϑ−1V (x), this reduces to

∫

∇uϑ ·∇v dx = 2ϑ 2λ
∫

uϑ v dx − 2ϑ
∫

Vuϑ v dx.

On the other hand, for all test functions v ∈ H1,
∫

∇u ·∇v dx = 2λ
∫

uv dx − 2
∫

Vuv dx.

Setting v = u in the first and v = uϑ in the second case, for ϑ �= 1 it follows that

(ϑ + 1)λ
∫

uuϑ dx =
∫

Vuuϑ dx.

For all square integrable functions u and v

lim
ϑ→1

∫

v(x)u(ϑx)dx =
∫

v(x)u(x)dx,

as can be shown approximating u by continuous functions with bounded support.
Since for u ∈ H1 the product Vu is square integrable, too, this yields

2λ
∫

u2 dx =
∫

Vuu dx.

Using once more that u is an eigenfunction, one finally gets the proposition. �
The virial theorem relates the expectation values of the kinetic energy, the potential
energy, and the total energy to each other, but also determines, through the different
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scaling behavior of both sides of the equation, the length scale on which the consid-
ered eigenfunction varies. Hence it is no surprise that a lower bound for the optimal
scaling parameter Ω can be derived in terms of the eigenvalues.

Theorem 6.11. If the estimates from Theorem 6.9 hold for the eigenfunction u in
H1(σ) for the eigenvalue λ of the atomic Hamilton operator (6.92), necessarily

Ω ≥
√

|λ |
e

. (6.95)

Proof. From the virial theorem, from the Fourier representation (6.48) of the
H1-seminorm and of the norm given by (6.79), and from Theorem 6.9 one gets

−2λ ‖u‖2
0 = |u |21 ≤ Ω 2 |||u|||2I,1 ≤ 2eΩ 2 ‖u‖2

0.

Because u �= 0, one can divide by the L2-norm of u and obtain the proposition. �
Since the ionization threshold Σ(σ) is less than or equal to zero by Theorem 5.16,

the upper estimate resulting from Theorem 6.9 and the lower estimate just derived
resulting from the virial theorem lead to the bounds

√

|Λ(σ)| � Ω �
√

N max(N,Z)+
√

|Λ(σ)| (6.96)

for the optimum Ω that is independent of the considered eigenvalues λ < Σ(σ).
The second term on the right hand side of (6.96) that comes from the additional
part (6.9) in the equation (6.8) for the exponentially weighted eigenfunctions will
therefore never dominate the asymptotic behavior of the optimum Ω in N and Z.

The problem thus reduces to the question of how well the bound (6.91) reflects
the growth of the optimum scaling parameter Ω in N and Z for unweighted eigen-
functions, in which case the second term on the right hand side of (6.91) can be
omitted. To answer this question at least partially, we consider the operator

H =
N

∑
i=1

{

− 1
2

Δi − Z
|xi|

}

(6.97)

in which the electron-electron interaction is completely neglected and to which The-
orem 6.11 can be literally transferred. Due to the absence of the electron-electron
interaction potential, the estimates (6.81) hold then regardless of any symmetry
property. The eigenfunctions of this operator are linear combinations of the products

u(x) =
N

∏
i=1

φi(xi) (6.98)

of hydrogen-like wave functions, solutions of the Schrödinger equation

− 1
2

Δφ − Z
|x| φ = λ φ (6.99)
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for a single electron in the field of a nucleus of charge Z. The hydrogen-like
wave functions are explicitly known and are calculated in almost every textbook
on quantum mechanics; see Chap. 9 for details. The corresponding eigenvalues

λ = − Z2

2n2 , n = 1,2, . . . , (6.100)

are highly degenerate. The associated eigenspaces are spanned by the eigenfunc-
tions with the given principal quantum number n, the angular momentum quantum
numbers l = 0, . . . ,n− 1, and the magnetic quantum numbers m = −l, . . . , l and
have dimension n2. The knowledge about these eigenfunctions forms the basis of
our understanding of the periodic table.

If we ignore the Pauli principle, every product (6.98) becomes an admissible
eigenfunction. The ground state energy of the corresponding system is then N times
the minimum eigenvalue (6.100), i.e., λ = −NZ2/2, from which the lower bound

Ω � N1/2Z (6.101)

follows, which behaves like the upper bound (6.91) in the number N of electrons
and the nuclear charge Z for the case of neutral atoms or positively charged ions.
Thus neither the upper bound (6.91) nor the lower bound (6.95) can be improved
without bringing the Pauli principle or the electron-electron interaction into play.

If the Pauli principle is taken into account, the orbitals φi in (6.98) have to be par-
titioned into two groups associated with the electrons with spin up and spin down.
The orbitals in each group have to be linearly independent of each other as the prod-
uct otherwise vanishes under the corresponding antisymmetrization. That increases
the ground state energy and correspondingly decreases the lower bound for the scal-
ing parameter. Unlike a real atom, the system attains its minimum energy λ in states
in which the numbers of electrons with spin up and spin down differs at most by
one, that is, with at most one unpaired electron. Consider, for example, the case that
the electrons can be distributed to M doubly occupied shells n = 1,2, . . . ,M with 2n2

electrons in the shell n, n2 with spin up and n2 with spin down. Then λ = −MZ2.
Because N ∼ 2M3/3, the minimum eigenvalue hence behaves in the described situ-
ation like λ ∼ N1/3Z2 and the scaling parameter needs therefore to grow at least like

Ω � N1/6Z. (6.102)

There remains some gap between this lower bound and the upper bound (6.91), but
the estimate shows at least that the actual growth of the optimal scaling parameter
in N and Z is not substantially overestimated by the right hand side of (6.91) for
systems like the ones considered here.

In fact, the observed behavior is not restricted to the model Hamiltonian (6.97).
Lieb and Simon [61] proved that the minimum eigenvalue of the full operator (6.92)
grows like � Z7/3 with the nuclear charge Z in the case Z = N, i.e., of neutral sys-
tems, which confirms the lower estimate (6.102). A more detailed study [94] of the
product eigenfunctions (6.98) moreover shows that the optimum Ω behaves in this
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case indeed like the square root of the ground state energy, which can be explained
from the behavior of the orbitals. One may conjecture that this generally holds.

6.7 The Exponential Decay of the Mixed Derivatives

In Sect. 6.5 we have proven that the eigenfunctions themselves as well as the
correspondingly exponentially weighted eigenfunctions possess square integrable
high-order mixed weak derivatives. In this short concluding section it is shown that
the exponentially weighted mixed derivatives of the eigenfunctions are square inte-
grable. This follows essentially from the fact that the corresponding partial deriva-
tives of the exponential weight factors can be estimated by these factors themselves:

Theorem 6.12. Let Dνu = Lα u, Lα as in (6.17), be one of the weak partial deriva-
tives of the eigenfunction u whose existence and square integrability follows from
the results of Sect. 6.5, and let eF be one of the associated weight factors for which
Dν(eFu) has been shown to be square integrable too. The weighted derivatives

eFDνu, eF ∂
∂xi,k

Dν u (6.103)

are then square integrable as well.

Proof. The proof is based on the representation

Dν(eFu) = ∑
μ≤ν

eF FμDν−μ u

of the corresponding weak derivatives of eFu, that is a generalization of the product
rule from Lemma 6.1 and can be derived from it taking into account the special
structure of the multi-indices ν considered. The coefficient functions are products

Fμ(x) = γ |μ| ∏
i

θi
xi,α(i)

|xi|

that run over the components upon which Dμ acts. This representation allows us
to express eF Dνu in terms of Dν (eFu) and the weighted lower order derivatives
eF Dν−μu of u. Since the Fμ are uniformly bounded, the square integrability of
eF Dνu follows by induction on the order of differentiation. The square integrability
of the second function is proven differentiating the representation above. To cover
the resulting derivatives of the Fμ one needs again the Hardy inequality. �
The exponential functions x → exp(F(x)) dominate every polynomial, regardless
the decay rate γ determined by the gap between the considered eigenvalue λ and the
ionization threshold. This results in the following corollary of Theorem 6.12:
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Theorem 6.13. Let Dνu = Lα u, Lα as in (6.17), be one of the weak partial deriva-
tives of the eigenfunction u whose existence and square integrability follows from
the results of Sect. 6.5, and let P be an arbitrary polynomial. Then

PDνu, P
∂

∂xi,k
Dν u ∈ L2. (6.104)

This statement can again be reversed. For every multi-index μ the function Dν(x μu)
and the weighted derivative ωνD μ û of its Fourier transform are square integrable.
The μ are not subject to restrictions, due to the exponential decay of the wave func-
tions and their mixed derivatives, but the ν are, because of the restricted regularity.



Chapter 7
Eigenfunction Expansions

The aim of this chapter is to derive discrete counterparts of the regularity theorems
from Chap. 6 similar to how smoothness can be characterized for periodic functions
in terms of the decay rate of their Fourier coefficients. The problem is that the so-
lutions of the electronic Schrödinger equation are defined on the infinitely extended
space so that not only their regularity properties but also their decay behavior comes
into play and has to be utilized. The foundations for that have been laid in Chap. 6.
The idea is to expand the high-dimensional solutions of the Schrödinger equation
into series of tensor products of eigenfunctions of three-dimensional operators

H = −Δ + V (7.1)

with locally square integrable, nonnegative potentials V for which

lim
|x|→∞

V (x) = +∞. (7.2)

An example of such an operator is the Hamilton operator of the three-dimensional
harmonic oscillator studied in detail in Sect. 3.4. As follows from the considera-
tions in Sect. 5.4, the essential spectrum of such operators is empty. They possess
an L2-complete, L2-orthonormal system of eigenfunctions φ1,φ2,φ3, . . . for strictly
positive eigenvalues 0 < λ1 ≤ λ2 ≤ . . . of finite multiplicity. Every square integrable
function u : R

3N → R can therefore be represented as L2-convergent series

u(x) = ∑
k∈NN

û(k)
N

∏
i=1

φki(xi), û(k) =
(

u,
N

∏
i=1

φki

)

, (7.3)

where the sum runs over the tensor products of the three-dimensional eigenfunc-
tions, that form an L2-complete orthonormal system in L2(R3N). In this chapter we
will examine the convergence properties of such series in H1 for the eigenfunctions
of the electronic Schrödinger operator that obey the Pauli principle. It will turn out
that only very few of the products substantially contribute to these eigenfunctions.

H. Yserentant, Regularity and Approximability of Electronic Wave Functions,
Lecture Notes in Mathematics 2000, DOI 10.1007/978-3-642-12248-4 7,
c© Springer-Verlag Berlin Heidelberg 2010
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7.1 Discrete Regularity

As in the previous chapters we fix the spin distribution of the electrons and denote
by I− and I+ the sets of the indices 1, . . . ,N of the electrons with spin σi =−1/2 and
σi = +1/2 respectively. The aim is to show that the norm given by the expression

|||u|||2 = ∑
k

( N

∑
i=1

λki

Ω 2

)(

∏
i∈I−

λki

Ω 2 + ∏
i∈I+

λki

Ω 2

)

|û(k)|2 (7.4)

of the solutions of the electronic Schrödinger equation for eigenvalues below the
ionization threshold remains bounded by a weighted L2-norm; the constant Ω is
here the same as in Chap. 6 and fixes the length scale on which the solutions vary.

We consider again the two parts of the norm separately and select one of the
index sets I− and I+ that we denote by I. The first step is to rewrite the given part of
the norm in terms of the differential operators

Hi = −Δi + Vi, Vi(x) = V (xi), (7.5)

that act upon the coordinates of the electron i. We first restrict ourselves hereby to
the functions in D , the infinitely differentiable functions with bounded support.

Lemma 7.1. For all infinitely differentiable functions u and v with bounded support,

∑
k

( N

∑
j=1

λk j

)(

∏
i∈I

λki

)

û(k) v̂(k) =
N

∑
j=1

B(u,Hjv), (7.6)

where the bilinear form on the right hand side is given by

B(u,v) =
((

∏
i∈I

Hi

)

u, v

)

. (7.7)

Proof. Expanding the functions Hjv ∈ L2, we first obtain the representation

N

∑
j=1

B(u,Hjv) = ∑
k

((

∏
i∈I

Hi

)

u,
N

∏
i=1

φki

)(( N

∑
j=1

Hj

)

v,
N

∏
i=1

φki

)

.

From the weak form of the three-dimensional eigenvalue problem one obtains

(

Hjw,
N

∏
i=1

φki

)

= λk j

(

w,
N

∏
i=1

φki

)

,

for square integrable functions w with compact support that are infinitely differen-
tiable with respect to the given x j, and from that, step by step, the proposition. �
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The next step is to split the terms on the right hand side of (7.6) into terms that can
be estimated separately with help of the results and estimates from Chap. 6.

Lemma 7.2. For all infinitely differentiable functions u with bounded support,

B(u,Hju) ≤ 2 ∑
I1, I2

(−1)|I2|
((

∏
i∈I1

Vi

)(

−Δ j ∏
i∈I2

Δi

)

u, u

)

(7.8)

+ 2 ∑
I1, I2

(−1)|I2|
((

Vj ∏
i∈I1

Vi

)(

∏
i∈I2

Δi

)

u, u

)

,

where the first sum on the right hand side of this estimate extends over all partitions
I = I1∪ I2 of the index set I into disjoint subsets I1 and I2 for which j /∈ I1, and the
second sum over all partitions I = I1∪ I2 of I for which j /∈ I2.

Proof. The idea is to split the product of the Hi into a sum of products of the Δi and
and of the Vi and to utilize that Δi and Vj commute for i �= j. For indices j ∈ I first

B(u,Hju) = ∑
I′1, I′2

(−1)|I
′
2|
((

∏
i∈I′1

Vi

)(

∏
i∈I′2

Δi

)

(−Δ j +Vj
)

u,
(−Δ j +Vj

)

u

)

,

where the sum runs over the disjoint partitions I′ = I′1 ∪ I′2 of I′ = I \ { j}. Since

〈

v, w
〉

:= (−1)|I
′
2|
((

∏
i∈I′1

Vi

)(

∏
i∈I′2

Δi

)

v, w

)

,

is a symmetric, positive semidefinite bilinear form for I′1 and I′2 given and thus

〈

v + w,v + w
〉 ≤ 2

〈

v,v
〉

+ 2
〈

w,w
〉

,

one obtains from this relation, setting v =−Δ ju and w =Vju, by integration by parts

B(u,Hju) ≤ 2 ∑
I′1, I′2

(−1)|I
′
2|+1

((

∏
i∈I′1

Vi

)(

−Δ j ∏
i∈I′2∪{ j}

Δi

)

u, u

)

+ 2 ∑
I′1, I

′
2

(−1)|I
′
2|
((

Vj ∏
i∈I′1∪{ j}

Vi

)(

∏
i∈I′2

Δi

)

u, u

)

.

This is obviously an estimate of the form (7.8). For the indices j /∈ I simply

B(u,Hju) = ∑
I1, I2

(−1)|I2|
((

∏
i∈I1

Vi

)(

−Δ j ∏
i∈I2

Δi

)

u, u

)

+ ∑
I1, I2

(−1)|I2|
((

Vj ∏
i∈I1

Vi

)(

∏
i∈I2

Δi

)

u, u

)

,
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where the sums run over the partitions of I into disjoint subsets I1 and I2. As the
terms of which the sums are composed are all nonnegative, (7.8) follows. �

To keep control of the right hand side of (7.8), one needs to bound the growth of
the potentials Vi in (7.5) respectively that of the original potential V . Let

V ∗
i (x) =

Λ0

R
exp

(∣

∣

∣

xi

R

∣

∣

∣

)

, (7.9)

with Λ0 a given constant and R a scaling parameter to be discussed later. We assume

Vi(x) ≤ V ∗
i (x)2. (7.10)

This condition holds automatically for polynomially growing potentials V , as for the
case of the harmonic oscillator, independent of the choice of the scaling parameter R
and be it at the price of a large constant Λ0. The assumption (7.10) allows us to
estimate the right hand sides in (7.8) and with that the left hand side of (7.6) in
terms of the norms (6.15) of the correspondingly exponentially weighted functions.

Lemma 7.3. For all infinitely differentiable functions u with bounded support

∑
k

( N

∑
j=1

λk j

Ω 2

)(

∏
i∈I

λki

Ω 2

)

|û(k)|2 ≤ 2 ∑
I1, I2

(

1
Ω 2

)|I2|+1 ∣

∣

∣

∣

(

∏
i∈I1

V ∗
i

Ω

)

u

∣

∣

∣

∣

2

I2,1
(7.11)

+ 2
N

∑
j=1

∑
I1, I2

(

1
Ω 2

)|I2| ∣
∣

∣

∣

(

V ∗
j

Ω ∏
i∈I1

V ∗
i

Ω

)

u

∣

∣

∣

∣

2

I2,0
,

where the sums run over the partitions I1∪ I2 of I and j /∈ I2 in the second case.

Proof. The products of the Laplacians in (7.8) can, as in (6.18), be written as sums
of squares of operators. These operators commute with the corresponding multi-
plication operators and can be distributed in equal parts to both sides of the inner
products. In the notion introduced in Sect. 6.2, integration by parts leads to

(−1)|I2|
((

∏
i∈I1

Vi

)(

−Δ j ∏
i∈I2

Δi

)

u, u

)

= ∑
α∈I∗2

((

∏
i∈I1

Vi

)

∇j Lα u,∇j Lα u

)

as I1 and I2 are disjoint and j /∈ I1. The other terms on the right hand side of (7.8)
are treated correspondingly utilizing j /∈ I2 and

(−1)|I2|
((

Vj ∏
i∈I1

Vi

)(

∏
i∈I2

Δi

)

u, u

)

= ∑
α∈I∗2

((

Vj ∏
i∈I1

Vi

)

Lα u, Lα u

)

.

The proposition thus follows from Lemmas 7.1 and 7.2, the non-negativity of the
potentials Vi, and the assumption (7.10) on their growth. �
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As we know from Chap. 6, the seminorms on the right hand side of (7.11) of an
eigenfunction u ∈ H1(σ) for an eigenvalue λ below the ionization threshold Σ(σ)
remain finite as long as the constant R is chosen sufficiently large in dependence on
the gap between the eigenvalue and the ionization threshold. Theorems 6.7 and 6.8
and the inverse estimate (6.52) for the low-frequency parts of functions yield then

(

1
Ω 2

)|I2| ∣
∣

∣

∣

(

V ∗
j

Ω ∏
i∈I1

V ∗
i

Ω

)

u

∣

∣

∣

∣

2

I2,0
≤ 2

∥

∥

∥

∥

(

V ∗
j

Ω ∏
i∈I1

V ∗
i

Ω

)

u

∥

∥

∥

∥

2

0
, (7.12)

(

1
Ω 2

)|I2|+1 ∣

∣

∣

∣

(

∏
i∈I1

V ∗
i

Ω

)

u

∣

∣

∣

∣

2

I2,1
≤ 2

∥

∥

∥

∥

(

∏
i∈I1

V ∗
i

Ω

)

u

∥

∥

∥

∥

2

0
. (7.13)

The final step is therefore essentially to transfer the estimate (7.11) to the classes of
functions to which the solutions of the electronic Schrödinger equation belong.

Lemma 7.4. A square integrable function u : R
3N → R that possesses square in-

tegrable weak derivatives of corresponding orders and for which the expressions
∣

∣

∣

∣

(

∏
i∈I1

V ∗
i

Ω

)

u

∣

∣

∣

∣

2

J,1
,

∣

∣

∣

∣

(

V ∗
j

Ω ∏
i∈I1

V ∗
i

Ω

)

u

∣

∣

∣

∣

2

J,0
, (7.14)

remain finite for all disjoint index sets I1,J ⊆ I and all indices j /∈ J can, in the sense
of the norm induced by the right hand side of (7.11), be approximated arbitrarily
well by functions in D and is thus contained in the completion of D under this norm.

Proof. Let χ be an infinitely differentiable cut-off function with values χ(x) = 1 for
|x| ≤ 1 and χ(x) = 0 for |x| ≥ 2 and set χϑ (x) = χ(x/ϑ). The functions uϑ = χϑ u
then possess weak derivatives of all considered orders. Moreover,

lim
ϑ→∞

‖u−uϑ‖ = 0

in the mentioned norm. This follows from the dominated convergence theorem,
because the functions χϑ are uniformly bounded and tend pointwise to one and
because their derivatives tend uniformly to zero for ϑ tending to infinity. Thus it
suffices to approximate the functions uϑ . But this is possible without difficulties
since the V ∗

i and their involved derivatives remain bounded on bounded sets. �
The finite parts of the left hand side of (7.11), and with that also the complete left
hand side, can therefore be estimated by the right hand side of this equation for the
eigenfunctions u of the electronic Schrödinger operator. This yields:

Theorem 7.1. Provided the potentials Vi satisfy the estimate (7.10) with R chosen
sufficiently large in dependence on the gap between the considered eigenvalue and
the ionization threshold, the given eigenfunctions u satisfy the estimate

∑
k

( N

∑
i=1

λki

Ω 2

)(

∏
i∈I−

λki

Ω 2 + ∏
i∈I+

λki

Ω 2

)

|û(k)|2 ≤ 4(u,Wu), (7.15)
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where the weight function W = W− +W+ is composed of the two parts

W± =
(

1 +
N

∑
i=1

∣

∣

∣

V ∗
i

Ω

∣

∣

∣

2
)

∏
i∈I±

(

1 +
∣

∣

∣

V ∗
i

Ω

∣

∣

∣

2
)

. (7.16)

Proof. It remains only to estimate the terms on the right hand side of (7.11) as in
(7.12) and (7.13) and to note that the single terms can, because of the identity

∑
I1⊆I±

(

∏
i∈I1

V ∗
i

Ω

)2

= ∏
i∈I±

(

1 +
∣

∣

∣

V ∗
i

Ω

∣

∣

∣

2
)

,

be combined into the right hand side of (7.15) to finish the proof of the theorem. �
Theorem 7.1 is the central result of this chapter and measures the regularity of the
considered solutions of the electronic Schrödinger equation in terms of the decay
rate of their expansion coefficients. It is interesting to note that the right hand side
of (7.15) no longer contains derivatives. The weights (7.16) are of the same structure
as the weights in the norms (6.79) and (6.80) that have been considered in Chap. 6,
but here in the position space and not in the Fourier space. The theorem shows that
the question whether the expressions (7.4) are bounded or not solely depends on the
decay behavior of the solutions. The size of their derivatives enters only indirectly
via the constant Ω that measures their variation. The decay rate again depends on
the gap between the considered eigenvalues of the Schrödinger operator and the
ionization threshold. This gap determines, via the relation (7.10), the admissible
operators (7.1) and with that their eigenfunctions φk and their eigenvalues λk, whose
growth finally determines the speed of convergence of the expansion.

Theorem 7.1 offers a lot of freedom in the choice of the potentials V in the three-
dimensional operator (7.1) on which the whole construction is based. The most
obvious possibility is to start from a three-dimensional reference potential

V0(x) ≤ {Λ0 exp(|x|)}2 (7.17)

that is independent of the considered solutions of the equation, and to set

V (x) =
1

R2 V0

( x
R

)

. (7.18)

The eigenfunctions and eigenvalues of the operator (7.1) are linked to the eigenfunc-

tions φ (0)
k and eigenvalues λ (0)

k of the reference operator −Δ +V0 by the relation

φk(x) =
1

R3/2
φ (0)

k

( x
R

)

, λk =
λ (0)

k

R2 , (7.19)

that is, by a rescaling. The product ΩR that then appears on both sides of the esti-
mate (7.15) relates the length scale R, that measures the extension of the system, to
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the length scale 1/Ω , on which the considered solutions vary. After renormalization
of u, both the norm (7.4) and (u,Wu) are then invariant under a change of units,

R → ϑR, Ω → ϑ−1Ω , (7.20)

or correspondingly x → ϑ−1x and ω → ϑ ω , in the position, respectively in the
momentum or Fourier space. The estimate (7.15) becomes invariant under such a
change of units and depends only on the dimensionless ratio ΩR of the length scales
R and 1/Ω measuring the oscillatory behavior of the considered solutions u of the
Schrödinger equation, but not on these quantities themselves.

7.2 Antisymmetry

The physically admissible solutions of the electronic Schrödinger equation are anti-
symmetric under the permutation of the electrons with the same spin. This property
is reflected in their expansion (7.3) into the product of the three-dimensional eigen-
functions. Let G denote the group of these permutations and let

(A v)(x) =
1
|G| ∑

P∈G

sign(P)v(Px) (7.21)

be the corresponding antisymmetrization operator. It reproduces functions in the
given solution space H1(σ) and in the associated space L2(σ) of square integrable
functions. The operator A is symmetric with respect to the L2-inner product and
bounded as linear operator from L2 to L2. Introducing the notation

ψ(k,x) =
N

∏
i=1

φki(xi). (7.22)

for the tensor products of the three-dimensional eigenfunctions, for u ∈ L2(σ) thus

u(x) = ∑
k∈NN

û(k)A ψ(k,x). (7.23)

Since ψ(Qk,x) = ψ(k,Q−1x) and because of the group properties of the considered
set of permutations, the antisymmetrized basis functions transform like

A ψ(Qk,x) = sign(Q)A ψ(k,x) (7.24)

under the given permutations of the multi-indices k. They vanish when two entries
of k associated with electrons of the same spin coincide. Since for u ∈ L2(σ),

û(k) = (u,ψ(k, ·)) = (A u,ψ(k, ·)) = (u,A ψ(k, ·)), (7.25)
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one can combine the remaining terms for which the multi-indices coincide up to
one of the given permutations of the indices. Introducing the antisymmetrized and
renormalized, pairwise orthogonal tensor product basis functions

ψ̃(k,x) =
√

|G|A ψ(k,x) (7.26)

that can be written as product of two determinants, or as single determinant when all
electrons have the same spin, the expansion of functions u ∈ L2(σ) into the tensor
products of the given eigenfunctions reduces to the orthogonal decomposition

u(x) = ∑
k

ũ(k)ψ̃(k,x), ũ(k) = (u, ψ̃(k, ·)), (7.27)

where k runs over a set of representatives and those k can be excluded for which
two entries ki associated with electrons of the same spin coincide. The estimate
(7.15) from Theorem 7.1 for the corresponding eigenfunctions u of the electronic
Schrödinger operator transfers in the given circumstances to the estimate

∑
k

( N

∑
i=1

λki

Ω 2

)(

∏
i∈I−

λki

Ω 2 + ∏
i∈I+

λki

Ω 2

)

|ũ(k)|2 ≤ 4(u,Wu), (7.28)

where the sum extends over the same small subset of the multi-indices k as in (7.27)
and the size of the single expansion coefficients increases correspondingly. The stan-
dard situation is that the indices i = 1, . . . ,N− label the N− electrons with spin −1/2
and the indices i = N− + 1, . . . ,N the N+ = N −N− electrons with spin +1/2. A
possible set of representatives consists then of the multi-indices k with components

k1 > .. . > kN− , kN−+1 > .. . > kN . (7.29)

The symmetry group G consists then of |G|= N−!N+! elements, the factor by which
the number of the basis functions diminishes through antisymmetrization.

7.3 Hyperbolic Cross Spaces

Theorem 7.1 states that only a very small part of the terms in the expansion (7.3)
of a solution of the electronic Schrödinger equation makes a substantial contribu-
tion. Consider the finite dimensional space that is spanned by the tensor products
(7.22), respectively by their antisymmetrized counterparts considered in the previ-
ous section, for which the associated eigenvalues λki satisfy an estimate of the form

∏
i∈I−

λki

Ω 2 + ∏
i∈I+

λki

Ω 2 <
1
ε2 , (7.30)
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or, which is because 2ab ≤ a2 + b2 slightly less restrictive, an estimate of the form

{ N

∏
i=1

λki

Ω 2

}1/2

<
1

2ε2 . (7.31)

Due to the obvious geometrical meaning of the products such spaces of ansatz func-
tions are denoted as hyperbolic cross spaces. Their dimensions are much smaller
than those of the common spaces that can be associated with balls of the form

N

∑
i=1

λki

Ω 2 <
1
ε2 (7.32)

and have comparable approximation properties. Their use goes back to the Russian
school of numerical analysis [7, 53, 54, 76]. The sparse grid spaces [15] that origi-
nated from the work of Zenger [97] are based on the same kind of ideas. They are
meanwhile very popular in the treatment of higher-dimensional problems.

Let uε be the L2-orthogonal projection of one of the solutions u of the electronic
Schrödinger equation to which Theorem 7.1 applies onto such a hyperbolic cross
space that is determined by the conditions (7.30) or (7.31). Moreover, let

‖u‖2 = ∑
k

( N

∑
i=1

λki

Ω 2

)

|û(k)|2. (7.33)

Since uε is the part of the expansion (7.3) of u associated with the selected product
functions (7.22), respectively the eigenvalues λki for which (7.30) or (7.31) hold,

‖u−uε‖ ≤ ε |||u−uε||| ≤ ε |||u|||. (7.34)

As the norm given by (7.4) dominates the H1-norm up to a rather harmless constant,
uε approximates the solution with an H1-error of order ε if one lets the parameter
ε determining the size of the hyperbolic crosses tend to zero. The speed of conver-
gence is determined by the speed with which the eigenvalues λk of the underlying
three-dimensional operator tend to infinity. For sufficiently fast increasing potentials
they grow rapidly as will be shown in the next chapter. Hence a surprisingly high
convergence rate, related to the space dimension 3N, can be achieved, at least if one
takes the antisymmetry of the wave functions into account as described in Sect. 7.2.



Chapter 8
Convergence Rates and Complexity Bounds

We have seen in the previous chapter that the expansion of a solution of the
3N-dimensional electronic Schrödinger equation for eigenvalues below the ioniza-
tion threshold into correspondingly antisymmetrized products of eigenfunctions of
three-dimensional Schrödinger-like operators (7.1) with sufficiently fast increasing
potentials converges very rapidly, provided that the three-dimensional eigenvalues
tend sufficiently fast to infinity. This chapter is devoted to the quantitative study of
this convergence behavior. We begin in Sect. 8.1 with the examination of the growth
of the three-dimensional eigenvalues λk and show that they increase like

λk � kα/3, (8.1)

under conditions that are easy to fulfill. The three comes from the fact that we start
from an expansion into products of three-dimensional eigenfunctions. The constant
α is related to the growth of the underlying potential. For the Hamiltonian of the
three-dimensional harmonic oscillator, that falls into the considered class, this con-
stant takes the value α = 1. Every value α < 2 can be reached with sufficiently
rapidly increasing potentials, but not the value α = 2 itself. That is, the products
in the estimates (7.15) respectively (7.28) and the definition of the hyperbolic cross
spaces from Sect. 7.3 increase like powers of factorials. Hence it remains to estimate
the number of sequences of positive integers k1 > .. . > kN satisfying an estimate

N

∏
i=1

ki ≤ 2L, (8.2)

where N is here the number of electrons with spin −1/2 and +1/2 respectively
and 2L is a bound determining the accuracy. This is a number theoretic problem.
We will give estimates for the number of these sequences. In particular we will
show that their number remains bounded independent of the number of the electrons
and essentially grows like ∼2L as L tends to infinity. This means that the rate of
convergence, measured in the number of the involved antisymmetrized products or
determinants, does not deteriorate with the number of electrons.
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Lecture Notes in Mathematics 2000, DOI 10.1007/978-3-642-12248-4 8,
c© Springer-Verlag Berlin Heidelberg 2010
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8.1 The Growth of the Eigenvalues in the 3d-Case

The study of the growth of the eigenvalues of second-order elliptic differential
operators is a classical topic. It has a long history that began with the work of Weyl
[89] and Courant and Hilbert [21] in the first third of the last century. The growth
of the eigenvalues of three-dimensional Schrödinger operators (7.1) is examined in
[81] and, for the case of rotationally symmetric potentials, in great detail in [82,83],
and [84]. In this section, we derive some simple, but for our purposes sufficient es-
timates for the growth of the eigenvalues of operators of the form (7.1), (7.2). We
begin with the example of the three-dimensional harmonic oscillator

Hφ = − Δφ + ω2|x|2φ . (8.3)

The eigenfunctions and eigenvalues of this operator have been calculated in
Sect. 3.4. The eigenfunctions are products of rescaled Hermite polynomials (or lin-
ear combinations of such products) with a fixed Gaussian and the eigenvalues read

λk = (2n + 3)ω , n = 0,1,2, . . . . (8.4)

The eigenspaces for these eigenvalues are highly degenerate and have the dimension

(n + 1)(n + 2)
2

, (8.5)

which is the number of the possible representations of n as a sum n = n1 +n2 +n3 of
three nonnegative integers n1, n2, and n3 in given order. From this we obtain:

Lemma 8.1. The ascendingly ordered eigenvalues (8.4) of the three-dimensional
harmonic oscillator, counted with multiplicities, satisfy the lower estimate

λk ≥ 3ω k1/3 (8.6)

and behave asymptotically like λk ∼ (48k)1/3ω for k tending to infinity.

Proof. By (8.4) and (8.5), λk = (2n + 3)ω for n ≥ 1 if and only if

n−1

∑
�=0

(�+ 1)(�+ 2)
2

< k ≤
n

∑
�=0

(�+ 1)(�+ 2)
2

.

The estimate (8.6) therefore holds for all k ≥ 2 because, for all n ≥ 1,

n

∑
�=0

(�+ 1)(�+ 2)
2

≤
(2n + 3

3

)3
,

and remains true for k=1. The asymptotic representation of the eigenvalues follows
from the fact that both sums behave like ∼ n3/6 for n tending to infinity. �
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That this growth is not the best possible is suggested by the example of the eigen-
values of the Laplace operator on a cube, that is, by the eigenvalue problem

−Δφ = λ φ , φ |∂Q = 0, (8.7)

on the region Q = (0,πR)3. Solutions of this eigenvalue problem are

φk(x) =
( 2

πR

)3/2 3

∏
i=1

sin
(

ni
xi

R

)

, λk =
n2

2 + n2
2 + n2

3

R2 , (8.8)

where n1, n2, and n3 are now natural numbers. As one can again associate exactly
one eigenfunction to every such ordered triple of natural numbers, one gets:

Lemma 8.2. The ascendingly ordered eigenvalues of the Laplace operator from
(8.8), again counted with multiplicities, can be estimated from above as

λk ≤ 12R−2k2/3. (8.9)

Proof. We assign to the triples (n1,n2,n3) the axiparallel cubes of side length 1 with
these triples as upper right corners. The number of the triples for which

n2
1 + n2

2 + n2
3 ≤ 3L2

is then equal to the total volume of the assigned cubes. Since these cubes cover a
cube of side length �L�, their total volume and with that the number of these triples
is at least (L−1)3. The proposition follows choosing (L−1)3 = k. �
A more detailed analysis shows that the above system of eigenfunctions is complete
and that the eigenvalues of the negative Laplace operator indeed grow like ∼k2/3.
Not much surprisingly, the eigenvalues of operators of the form (7.1), (7.2) cannot
grow faster than those. Even worse:

Theorem 8.1. The eigenvalues λ1 ≤ λ2 ≤ . . . of an operator of the given form with
a continuous potential V tend toward infinity slower than ∼ k2/3 in the sense that

lim
k→∞

λk

k2/3
= 0. (8.10)

Proof. We begin with the observation that the eigenfunctions φk of the negative
Laplace operator from (8.8) can be extended by the value zero to functions in
H1(R3), a fact that can be easily checked by direct calculation going back to the
definition of weak derivatives. Let Vk be the k-dimensional subspace of H1(R3) that
is spanned by the eigenfunctions φ1, . . . ,φk and assume that the assigned eigenvalues
λ ′

1, . . . ,λ ′
k are ascendingly ordered. As (φi,φ j) = δi j and (∇φi,∇φ j) = λ ′

i δi j then

(∇φ ,∇φ)+ (V φ ,φ) ≤ (∇φ ,∇φ)+ M(R)(φ ,φ) ≤ λ ′
k + M(R)
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for all functions φ ∈ Vk with L2-norm one, where M(R) denotes the maximum of the
function V on the given cube Q of side length πR. By the min-max characterization
of the eigenvalues of H from Theorem 5.9 therefore

λk ≤ λ ′
k + M(R),

or, if we insert the upper estimate from Lemma 8.2,

λk ≤ 12R−2k2/3 + M(R)

for R > 0 arbitrary. Since R→R2M(R) is a continuous function that increases mono-
tonely from zero to infinity, there is a minimum R = R(k) for which it attains the
value R2M(R) = k2/3. If we insert this particular R into our estimate, we obtain

λk ≤ 13R(k)−2k2/3.

Every computable lower bound for the quantities R(k), and particularly every strictly
monotone increasing function M∗ ≥ M for which the solution of the equation
R2M∗(R) = k2/3 can be explicitly given, thus leads to an upper bound for the eigen-
values. Since R(k) tends in any case to infinity for k tending to infinity, the estimate
proves the proposition. �
The result transfers to all potentials that are bounded from above by a continuous
potential tending to infinity. This fact limits the order of convergence that one can
reach with such expansions into tensor products of three-dimensional eigenfunc-
tions. It is, however, possible to approach the growth ∼k2/3 arbitrarily.

Theorem 8.2. If the potential V can be estimated from below as

V (x) ≥ κ |x|β (8.11)

with κ > 0 and β ≥ 2, the eigenvalues grow at least like

λk ≥ ckα/3, α =
2β

β + 2
, (8.12)

where c is a positive constant that depends only on κ and β .

Proof. We first assume β > 2. An simple calculation shows then that there is a
constant a > 0 that depends on κ and β , but is independent of ω , such that

κ rβ ≥ ω2r2 − aω p, p =
2β

β −2
,

holds for all r ≥ 0. If we denote by λ ′
1 ≤ λ ′

2 ≤ . . . the eigenvalues of the harmonic
oscillator (8.3), the min-max characterization of the eigenvalues yields
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λk ≥ λ ′
k − aω p

or, with the lower estimate from Lemma 8.1 for these eigenvalues,

λk ≥ 3ω k1/3 − aω p.

If one maximizes the right hand side with respect to ω , one obtains (8.12). The
case β = 2 can, with help of the min-max characterization of the eigenvalues and
Lemma 8.1, be directly reduced to the case of the harmonic oscillator. �

We remark that one can, with the technique from the proof of Theorem 8.1, easily
show that from the reverse estimate

V (x) ≤ κ ′|x|β (8.13)

for the potential in (7.1) conversely a lower bound

λk ≤ c ′kα/3 (8.14)

with the same α as in (8.12) follows. Theorem 8.2 therefore yields the correct ex-
ponent for the case that the potential can be enclosed between two such bounds.

One can even go further and consider exponentially growing potentials. Such
potentials fully exhaust the possible growth, as follows directly from Theorem 8.2:

Theorem 8.3. If the potential V grows faster than any polynomial in the sense that
there exists, for every β ≥ 2, a constant κ = κ(β ) > 0 such that (8.11) holds,

lim
k→∞

kα/3

λk
= 0 (8.15)

for all exponents α in the interval 0 < α < 2.

8.2 A Dimension Estimate for Hyperbolic Cross Spaces

We have shown in the previous section that, for a proper choice of the underlying
three-dimensional operator, its eigenvalues λk increase like �kα/3, where α can
approach the value 2 arbitrarily but cannot reach it. Hence it remains to estimate the
number of sequences k1 > .. . > kN of natural numbers, where N here denotes the
number of electrons with spin −1/2 and spin +1/2 respectively, for which

N

∏
i=1

ki ≤ 2L. (8.16)

The minimum value that this product can attain is N!, so that its size at least
partly counterbalances the size of the other quantities for bigger N. The problem
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to estimate this number has obviously to do with the prime factorization of integers
and is correspondingly difficult. To simplify it, we group the ki into levels. Let

�(ki) = max
{

� ∈ Z
∣

∣ 2� ≤ ki
}

. (8.17)

An upper bound for the number of these sequences is then the number of the strictly
decreasing finite sequences k1 > k2 > .. . > kN of natural numbers for which

N

∏
i=1

2�(ki) ≤ 2L. (8.18)

Since there are at most 2� numbers ki for which �(ki) = �, their number is

a(N,L) = ∑
ν

∞

∏
�=0

(

2�

ν(�)

)

, (8.19)

where the sum runs over all sequences ν of integers 0 ≤ ν(�) ≤ 2� for which

∞

∑
�=0

ν(�) = N,
∞

∑
�=0

ν(�)� ≤ L. (8.20)

The binomial coefficient in (8.19) represents the number of possibilities to choose
ν(�) distinct numbers ki from the set of the 2� integers 2�, . . . ,2�+1−1 of level �. To
calculate the a(N,L), we introduce the quantities a(K;N,L) that are defined in the
same way as the a(N,L) with the exception that the additional condition

ν(�) = 0 for � > K (8.21)

is imposed on the sequences ν . Since necessarily ν(�) = 0 for � > L,

a(N,L) = a(K;N,L) for K ≥ L. (8.22)

The a(K;N,L) can be calculated recursively starting from a(0;N,L) = 1 for N = 0
and N = 1 and a(0;N,L) = 0 for all other values of N. For K ≥ 1,

a(K;N,L) = ∑
ν ′

(2K

ν ′
)

a(K−1;N−ν ′,L−Kν ′), (8.23)

where ν ′ = ν(K) runs from 0 to the maximum integer less than or equal 2K , L/K,
and N, the reason being that, assuming (8.21), the conditions (8.20) transfer to

K−1

∑
�=0

ν(�) = N−ν(K),
K−1

∑
�=0

ν(�)� ≤ L−Kν(K). (8.24)
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Fig. 8.1 The growth of the numbers a(N,L) for N = 10,15,20, . . . ,175

If one steps down from the considered maximum values for L and N to zero, the
known quantities a(K−1;N,L) can be directly overwritten with the new values
a(K;N,L). The algorithm can thus be easily realized without recursive function calls
within every software system allowing for integers of arbitrary length. For

N =
m

∑
�=0

2� + j, 0 ≤ j < 2m+1, (8.25)

the minimum L for which there is a sequence ν satisfying the conditions (8.20) and
with that a(N,L) > 0 is that for which the single levels � are maximally filled, that is,

L =
m

∑
�=0

2� �+ j (m+ 1). (8.26)

Let L(N) denote this minimum L assigned to the number N given by (8.25). The
L(N) increase very rapidly; for N = 179 already L(N) > 1000. A crude estimate
yields N ≤ L+ 1 if a(N,L) > 0, or conversely a(N,L) = 0 if L < N−1. Thus

a∗(L) := max
N≥1

a(N,L) = max
N≤L+1

a(N,L). (8.27)

Figure 8.1 shows, in logarithmic scale, how the a(N,L), extended to piecewise linear
functions, behave compared to their joint least upper bound a∗(L). It becomes obvi-
ous from this picture that this common upper bound exceeds the actual dimensions
for larger N by many orders of magnitude, the more the more N increases.
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8.3 An Asymptotic Bound

The best possible upper bound that is independent of N for number of the sequences
k1 > .. . > kN of natural numbers ki for which (8.16) holds grows at least like ∼2L.
The reason for that is that already in the case N = 1, there are 2L such “sequences”,
those with values k1 = 1, . . . ,2L. Figure 8.1 suggests conversely that the upper bound
(8.27) for the quantities (8.19), and with that for the given number of the sequences
k1 > .. . > kN , does not grow much faster than ∼2L. This is in fact the case as already
demonstrated by a rather crude estimate that can be deduced from the following
lemma and a well-known result from combinatorics that has its roots in considera-
tions of Euler [26] and was first proved by Hardy and Ramanujan [41].

Lemma 8.3. The number of the infinite, monotonely decreasing sequences

k1 ≥ k2 ≥ k3 ≥ . . . (8.28)

of natural numbers for which

∞

∏
i=1

2�(ki) ≤ 2L, (8.29)

with L a given nonnegative integer, is bounded by the quantity

L

∑
�=0

p(�)2�, (8.30)

where p(�) denotes the partition number of �, the number of possibilities of repre-
senting � as sum of nonnegative integers without regard to the order.

Proof. The number of these sequences is bounded from above by the number of se-
quences k1,k2,k3, . . . of natural numbers for which at least their levels �(ki) decrease
monotonely and that satisfy (8.29). We show that the expression (8.30) counts the
number of these sequences. Let the integers �i = �(ki) first be given. As there are 2�i

natural numbers ki for which �(ki) = �i, namely ki = 2�i , . . . ,2�i+1 −1, there are

∞

∏
i=1

2�i = 2�, � =
∞

∑
i=1

�i,

sequences k1,k2,k3, . . . for which the �(ki) attain the prescribed values �i. The prob-
lem therefore reduces to the question how many monotonely decreasing sequences
of nonnegative integers �i exist that sum up to values � ≤ L, that is, for which

∞

∑
�=1

�i = �

for an � ≤ L. This number is the partition number p(�) of �. �
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The partition number plays a big role in combinatorics and has first been studied by
Euler [26]. Hardy and Ramanujan [41] determined the asymptotic behavior of p(n)
as n goes to infinity. One of the simpler estimates they proved reads as follows:

Theorem 8.4. There is a constant K independent of n such that

p(n) ≤ K
n

e2
√

2n (8.31)

holds for all natural numbers n.

As the partition numbers p(n) increase monotonely in n and therefore p(�) ≤ p(L)
for all natural numbers � ≤ L, we can conclude from the estimate (8.31) that

lim
L→∞

2−(1+ϑ )L
L

∑
�=0

p(�)2� = 0 (8.32)

for all ϑ > 0. Every sequence k1 > k2 > .. . > kN of natural numbers for which

N

∏
i=1

ki ≤ 2L, (8.33)

holds can obviously be expanded to an infinite, monotonely decreasing sequence
(8.28) that satisfies the condition (8.29) by setting all ki = 1 for i > N. The sum
(8.30) represents therefore also an upper bound for the number of these sequences.
Hence the number of these sequences does indeed not grow faster than

� (2L)1+ϑ , ϑ > 0 arbitrarily small, (8.34)

independent of N, a value that cannot be substantially improved. The upper bound
for the number of these sequences from Sect. 8.2 behaves, because of (8.31), like

a∗(L) = (2L)1+ε(L), ε(L) ≤ cL−1/2. (8.35)

The exponent 1+ε(L) can be computed as described there and decays for L ranging
from 10 to 1000 monotonely from 1.406 to 1.079. For L = 100, 1 + ε(L) = 1.204.

8.4 A Proof of the Estimate for the Partition Numbers

The estimate from Theorem 8.4 is by far not the best possible. In fact, Hardy and
Ramanujan proved in [41] that the partition number behaves asymptotically like

p(n) =
(

1

4
√

3
+ o(1)

)

exp
(

π
√

2n/3
)

n
(8.36)
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as n goes to infinity. This result has later been improved by Rademacher [67], who
has shown that (8.36) is the first term in an infinite series that represents p(n) exactly.
We restrict ourselves here to the much simpler proof of the estimate (8.31) that
suffices for our purposes and follow hereby the lines given in [41].

Hardy and Ramanujan start from three identities that go back to Euler. Euler first
observed that the p(n) are the expansion coefficients of the infinite product

∞

∑
n=0

p(n)zn =
∞

∏
i=1

1
1− zi , (8.37)

or that this infinite product is in today’s terminology their generating function. The
partial products of this infinite product converge uniformly on the discs |z| ≤ R of
all radii R < 1. The limit function is thus an analytic function that possesses a power
series expansion converging for |z| < 1. Expanding the single factors as

∞

∏
i=1

1
1− zi =

∞

∏
i=1

( ∞

∑
k=0

zki
)

, (8.38)

one further recognizes that the coefficient in front of zn is the number of possibili-
ties to represent the number n as a sum n = k1·1+ . . .+ kn·n of nonnegative integer
multiples of i = 1, . . . ,n, which is the partition number p(n) of n. This proves (8.37).
The difficulties in describing the asymptotic behavior of p(n) for n tending to in-
finity have a lot to do with the complicated behavior of the infinite product (8.37)
when approaching the boundary of the unit circle.

Let p(n;r) denote the number of possibilities to write the nonnegative integer n
as an infinite sum n = n1 +n2 + . . . of nonnegative integers n1 ≥ n2 ≥ . . . with ni = 0
for all indices i greater than r. In the same way one sees then that

∞

∑
n=0

p(n;r)zn =
r

∏
i=1

1
1− zi (8.39)

is the generating function of these restricted partition numbers p(n;r) that play an
important role in our argumentation too.

The third identity is a little bit more tricky. Its proof is based on an elementary
but ingenious argument from combinatorics. We refer to [5] for such techniques.

Lemma 8.4. For all complex numbers |z| < 1,

∞

∏
i=1

1
1− zi = 1 +

∞

∑
r=1

zr 2
r

∏
i=1

( 1
1− zi

)2
. (8.40)

Proof. The proof is based on a classification of the partitions of natural numbers.
The idea is to assign to each finite partition n = n1 + n2 + . . . , n1 ≥ n2 ≥ . . . ≥ 1,
a so-called Ferrers diagram that consists of n dots which are arranged in rows and
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� � � � � � �

� � � � � �

� � � �

� � �

Fig. 8.2 The Ferrers diagram of a partition of the number 20 and the associated Durfee square

columns. The first row consists of n1 dots, the second of n2 dots, and so on. The
Durfee square of a partition is the largest r× r square that can be drawn into the up-
per left corner of its Ferrers diagram. Figure 8.2 shows the Ferrers diagram and the
Durfee square assigned to the partition 7+6+4+3 of the number 20. The partitions
of n are classified by the size r×r of their Durfee squares. Assume that, additionally
to the r2 dots in the Durfee square of a given partition of the number n, there are
k + � = n− r2 dots in the upper right and the lower left corner of the corresponding
Ferrers diagram, k in the upper right and � in the lower left. The upper right corner
has at most r rows and corresponds therefore, for k ≥ 1, to a partition of k into a sum
of at most r natural numbers. The number of such partitions is p(k;r). The lower
left corner corresponds, for � ≥ 1, to a partition of � whose Ferrers diagram has at
most r columns. The number of these partitions is p(�;r). The reason for that is that
one can assign to every partition of � a conjugate partition interchanging the rows
and columns of the associated Ferrers diagram. Since p(0;r) = 1, the total number
of partitions of a natural number n is thus

p(n) = ∑
1≤ r2≤n

∑
k+�=n−r2

p(k;r) p(�;r), (8.41)

including those with no dot to the right or below the assigned Durfee square. The
outer sum classifies the partitions of n by the size of their Durfee squares, and the
inner sum is the number of partitions of n with an r× r Durfee square.

The proof of (8.40) is based on this identity. If one inserts it into the left hand side,
splits zn according to the partition n = r2 + k + �, and rearranges the sums, one gets

∞

∑
n=1

p(n)zn =
∞

∑
r=1

zr2
( ∞

∑
k=0

p(k;r)zk
)( ∞

∑
�=0

p(�;r)z�

)

.

If one inserts the generating function (8.39) for the inner sums on the right hand side
and adds the value 1 to both sides, the proposition follows from (8.37). �

Equation (8.40) can be translated into a set of formulas that can be used to cal-
culate the partition numbers, but also form the basis for our subsequent estimates.

Lemma 8.5. Let q1(n) = n + 1 and define qr(n) for n ≥ 0 and r > 1 recursively by

qr+1(n) = ∑
(r+1)�≤n

(�+ 1)qr
(

n− (r + 1)�
)

. (8.42)
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Then the partition numbers p(n) for all natural numbers n are given by

p(n) = ∑
1≤ r2≤n

qr
(

n− r2). (8.43)

Proof. The qr(n) are the expansion coefficients of the product

r

∏
i=1

( 1
1− zi

)2
=

∞

∑
n=0

qr(n)zn,

as can be shown by induction on r. If one inserts this relation and (8.37) into (8.40),
the relation (8.43) follows by equating the expansion coefficients. �

The following estimate, from which Hardy and Ramanujan derived their bound
for the partition numbers, is based on the representation from Lemma 8.5.

Lemma 8.6. For all natural numbers n,

p(n) ≤
∞

∑
r=1

n2r−1

(2r−1)!(r!)2 . (8.44)

Proof. Following Hardy and Ramanujan, we show first that

qr(n) ≤ (n + r2)2r−1

(2r−1)!(r!)2 . (8.45)

As q1(n) = n + 1, this is true for r = 1. If (8.45) holds for r given, (8.42) yields

qr+1(n) ≤ ∑
(r+1)�≤n

(�+ 1)
(n− (r + 1)�+ r2)2r−1

(2r−1)!(r!)2 . (8.46)

For a,b ≥ 0 and all integers m ≥ 2,

m(m−1)am−2 b2 ≤ (a + b)m−2am +(a−b)m.

Inserting the values m = 2r + 1, a = n− (r + 1)�+ r2, and b = r + 1 and utilizing
the abbreviation α(�) = (n− (r + 1)�+ r2)2r+1, one obtains from this inequality

(2r + 1)2r (r + 1)2 (n− (r + 1)�+ r2)2r−1 ≤ α(�−1)−2α(�)+ α(�+ 1).

If we denote by L the maximum integer � for which (r + 1)� ≤ n, (8.46) yields

(2r + 1)!((r + 1)!)2 qr+1(n) ≤
L

∑
�=0

(�+ 1)
(

α(�−1)−2α(�)+ α(�+ 1)
)
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and, evaluating the sum on the right hand side,

(2r + 1)!((r + 1)!)2 qr+1(n) ≤ α(−1)+ (L+ 1)α(L+ 1)− (L+ 2)α(L).

If n−(r+1)(L+1)+r2 ≥ 0, one has 0≤α(L+1)≤α(L). Otherwise α(L+1)< 0.
Since α(L) ≥ 0 by the definition of L, one obtains in each of the two cases

(2r + 1)!((r + 1)!)2 qr+1(n) ≤ α(−1) ≤ (n +(r + 1)2)2r+1,

which finishes the proof of (8.45). From (8.43) and (8.45) we get

p(n) ≤ ∑
1≤ r2≤n

n2r−1

(2r−1)!(r!)2 ,

which proves the asserted estimate (8.44) for the partition numbers. �
The rest follows from Stirling’s formula that relates factorials to powers and is

proven in many introductory analysis textbooks; see for instance [52]. It reads

lim
n→∞

nn+1/2

n!en =
1√
2π

. (8.47)

Stirling’s formula yields in the limit of r tending to infinity

lim
r→∞

1
(2r−1)!(r!)2

(4r)!
26r =

√
2

π
. (8.48)

Hence there exists, by Lemma 8.6, a constant K such that

p(n) ≤ K
∞

∑
r=1

26rn2r−1

(4r)!
=

K
n

∞

∑
r=1

(

2
√

2n
)4r

(4r)!
. (8.49)

The proposition, that is, the estimate (8.31) from Theorem 8.4 follows from the
power series expansion of the exponential function.

8.5 The Complexity of the Quantum N-Body Problem

Our estimates demonstrate that, for the case that all electrons have the same spin,
the number of antisymmetrized tensor products or Slater determinants built from the
three-dimensional eigenfunctions that are needed to reach an H1-error of order O(ε)
does not increase much faster than O(ε−6/α) for ε tending to zero, where, of course,
nothing is said about the constant and its dependence on the different problem pa-
rameters. That is, the rate of convergence expressed in terms of the number of basis
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functions astonishingly does not deteriorate with the space dimension 3N or the
number N of electrons. It behaves almost as with the expansion of a one-electron
wave function into eigenfunctions of the given type. In the case of the expansion
into Gaussians, the eigenfunctions of the harmonic oscillator (8.3), the constant α
attains the value α = 1, a value that we will still improve to α = 3/2. The results
from Sect. 8.1 and particularly Theorem 8.3 show that one can come arbitrarily
close to α = 2, but cannot completely reach this value. The rate with which the di-
mension of the corresponding spaces grows with increasing accuracy then behaves
asymptotically almost like that of a first-order method in three space dimensions. In
the general case of electrons of distinct spin, the order of convergence halves due to
the singularities of the wave functions at the places where electrons with opposite
spin meet, which is reflected in the presence of two products instead of only one
in (7.28) and (7.30) or the square root in (7.31). The rate of convergence remains,
however, independent of the number of electrons and comes arbitrarily close to that
for the two-electron case. Our considerations thus show that the complexity of the
quantum-mechanical N-body problem is much lower than generally believed.



Chapter 9
The Radial-Angular Decomposition

Symmetry plays an important role in quantum mechanics. Closed solutions of
quantum mechanical problems are mostly determined with help of symmetry prop-
erties of the underlying Schrödinger equation. This holds particularly for one-
electron problems with rotationally symmetric potentials. In this case the solutions
split into products of problem-dependent radial parts and angular parts that are built
up from three-dimensional spherical harmonics. The most prominent example is the
Schrödinger equation for hydrogen-like atoms. The knowledge about its solutions is
basic for our understanding of chemistry. The solutions of the Schrödinger equation
for a general system of N electrons moving in the field of a given number of clamped
nuclei unfortunately do not attain such a simple form. The norms that we introduced
to measure their mixed derivatives are however invariant to rotations of the coordi-
nates of the single electrons. We therefore decompose the solutions of the N-particle
equation in this chapter into tensor products of three-dimensional angular momen-
tum eigenfunctions, the decomposition that reflects this rotational invariance. The
contributions of these tensor products to the total energy decrease like

{

∏
i∈I−

(

1 + �i (�i + 1)
)

+ ∏
i∈I+

(

1 + �i (�i + 1)
)

}−1

(9.1)

with the angular momentum quantum numbers �i of the electrons; I− and I+ are
again the sets of the indices of the electrons with spin ±1/2. We will use this decom-
position to study the convergence behavior of the eigenfunction expansions from
the last chapters further and in particular will obtain an improved estimate for the
convergence rate of the expansion into Gauss functions, the eigenfunctions of the
harmonic oscillator. The central sections of this chapter, in which N-particle wave
functions are studied, are Sect. 9.2, Sect. 9.6, and Sect. 9.7. The considerations there
are based on the examination of the three-dimensional case, to which most of this
chapter is devoted. In the first section the decomposition into the eigenfunctions of
the three-dimensional angular momentum operator, the spherical harmonics is stud-
ied. The third section treats the three-dimensional radial Schrödinger equation in
general, and the following two the Coulomb problem and the harmonic oscillator.

H. Yserentant, Regularity and Approximability of Electronic Wave Functions,
Lecture Notes in Mathematics 2000, DOI 10.1007/978-3-642-12248-4 9,
c© Springer-Verlag Berlin Heidelberg 2010
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9.1 Three-Dimensional Spherical Harmonics

Quantum mechanical operators result from their classical counterpart via the corre-
spondence principle. The classical angular momentum L = x× p, p the momentum,
is a vector-valued quantity, or in three space dimensions can at least be interpreted as
such a quantity. Since the quantum mechanical momentum operator is p = − i h̄∇,
the quantum mechanical angular momentum operator is therefore the vector valued
operator L = − i h̄x×∇. Its square reads in atomic units, in which h̄ = 1,

L2 = − 1
2

3

∑
i, j=1
i�= j

(

xi
∂

∂x j
− x j

∂
∂xi

)2

, (9.2)

where x1, x2, and x3 denote in this section the components of x ∈R
3. The aim of this

section is to decompose functions from R
3 to R into eigenfunctions of this operator

and to study the convergence of the corresponding expansions in Sobolev spaces of
arbitrary order. These eigenfunctions split into products of rotationally symmetric
functions and spherical harmonics, functions that cover their angular dependence.

Lemma 9.1. The operator L2 is formally self-adjoint, in the sense that for all in-
finitely differentiable functions u,v : R

3 → R with compact support

(L2u,v) = (u,L2v). (9.3)

Proof. Integration by parts yields for all indices i �= j

∫

(xiD ju− x jDiu)vdx = −
∫

u(xiD jv− x jDiv)dx

so that already the single terms of which the sum in the definition (9.2) of the oper-
ator is composed have the asserted property. �
The operator L2 does not act on the radial part of a function and leaves it untouched:

Lemma 9.2. If f : R>0 → R and φ : R
3 → R are infinitely differentiable and

u(x) = f (r)φ(x), r = |x |, (9.4)

the function L2u is given by
L2u = f L2φ . (9.5)

Proof. Since the two terms involving the derivative of f cancel,

(

xi
∂

∂x j
− x j

∂
∂xi

)

{

f (r)φ(x)
}

= f (r)
(

xi
∂

∂x j
− x j

∂
∂xi

)

φ(x),

from which the proposition follows. �
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Lemma 9.3. If f : R>0 → R is an infinitely differentiable function and H� a
harmonic polynomial that is homogeneous of degree �, the function given by

u(x) = f (r)H�(x), r = |x |, (9.6)

is an eigenfunction of the operator L2 for the eigenvalue �(�+ 1) in the sense that

L2u = �(�+ 1)u (9.7)

holds on the domain of definition of u.

Proof. The proof is based on the representation

L2 = − r2Δ +
3

∑
i, j=1

xix j DiD j + 2
3

∑
i=1

xi Di

that can be verified with help of the elementary differentiation rules. Moreover,

d
dλ

H�(λ x) =
3

∑
i=1

xi (DiH�)(λ x),
d2

dλ 2 H�(λ x) =
3

∑
i, j=1

xix j (DiD jH�)(λ x).

Since H� is homogeneous of degree �, that is, H�(λ x) = λ �H�(x), on the other hand

d
dλ

H�(λ x) = �λ �−1H�(x),
d2

dλ 2 H�(λ x) = (�−1)�λ �−2H�(x).

Setting λ = 1 we obtain the relations

3

∑
i=1

xi DiH� = �H�,
3

∑
i, j=1

xix j DiD jH� = (�−1)�H�

that express the homogeneity of the polynomial H�. As by assumption ΔH� = 0,

L2H� = �(�+ 1)H�

follows. With that the proposition results from Lemma 9.2. �
The function given by (9.6) can be written in the form

u(x) = r � f (r)K�(x), r = |x |, (9.8)

i.e., splitting into the rotationally symmetric radial part x → r � f (r) and the function

K�(x) = H�

(x
r

)

(9.9)



144 9 The Radial-Angular Decomposition

that covers its angular dependence. The functions of the form (9.9) are the spherical
harmonics of degree �. They are homogeneous of degree 0 and satisfy the equation

L2K� = �(�+ 1)K�, (9.10)

that is, are in this sense themselves eigenfunctions of the operator (9.2). The sym-
metry of this operator implies the following first orthogonality property:

Lemma 9.4. If f ,g : R
3 → R are rotationally symmetric, infinitely differentiable

functions with compact support and H� and H�′ harmonic polynomials of degrees �
and �′ �= �, the functions

u(x) = f (x)H�(x), v(x) = g(x)H�′(x) (9.11)

are orthogonal to each other with respect to the L2-inner product.

Proof. By the just proven Lemma 9.3

L2u = �(�+ 1)u, L2v = �′(�′ + 1)v

and therefore, by Lemma 9.1,

�(�+ 1)(u,v) = (L2u,v) = (u,L2v) = �′(�′ + 1)(u,v).

As �′(�′ + 1) �= �(�+ 1) for �′ �= �, the proposition (u,v) = 0 follows. �
To proceed, we need to integrate corresponding functions x → f (x1,x2,x3) over the
unit sphere S consisting of the vectors x ∈ R

3 of length |x|= 1. Such integrals are of
course invariant to rotations. Their parameter representation in polar coordinates is

∫

S
f dx =

∫ 2π

0

∫ π/2

−π/2
f (cosϕ cosϑ ,sin ϕ cosϑ ,sinϑ) cosϑ dϑ dϕ . (9.12)

The polar coordinate representation of integrals over the R
3 reads in this notation

∫

R3
u(x)dx =

∫ ∞

0

{

r2
∫

S
u(rη)dη

}

dr, (9.13)

where the inner integral is the integral of the function η → u(rη) depending on the
parameter r over the unit sphere S and can be further resolved into a double integral.

Lemma 9.5. Let K� and K�′ be spherical harmonics of degrees � and �′ �= �. Then

∫

S
K�(η)K�′(η)dη = 0. (9.14)
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Proof. Let f : R
3 → R be an infinitely differentiable, rotationally symmetric func-

tion with compact support and let H� and H�′ be the harmonic polynomials that are
assigned to the spherical harmonics. Let n be arbitrarily given fixed unit vector. Then

∫

f (x)H�(x) f (x)H�′(x)dx =
(

∫ ∞

0
r2+�+�′ f (rn)2 dr

)(
∫

S
H�(η)H�′(η)dη

)

,

as follows from (9.13) and the properties of the functions f , H�, and H�′ . Since the
integral on the left hand side vanishes by Lemma 9.4 and the first integral on the
right hand side takes a value greater than zero as long as f is different from zero,
the second integral on the right hand side must vanish. �
Lemma 9.6. The space of the homogeneous harmonic polynomials of degree �, and
with that also the assigned space of spherical harmonics, has the dimension 2�+ 1.

Proof. For � = 0 and � = 1, every homogeneous polynomial is harmonic and the
corresponding spaces have the asserted dimensions 2�+ 1 = 1 and 2�+ 1 = 3. For
� ≥ 2, we utilize that every such polynomial can be written in the form

H�(x) =
�

∑
j=0

x j
3 P�− j(x1,x2),

with the P�− j polynomials in x1 and x2 that are homogeneous of degree �− j. Thus

ΔH� =
�−2

∑
j=0

x j
3

(

Δ2P�− j +( j + 1)( j + 2)P�− j−2
)

,

where Δ2 denotes the two-dimensional Laplace operator acting upon the compo-
nents x1 and x2. The requirement ΔH� = 0 is therefore equivalent to the condition

P�− j−2 =
1

( j + 1)( j + 2)
ΔP�− j

for j = 0, . . . , �−2. That is, P� and P�−1 can be arbitrarily given and determine then
the other polynomials P�− j and with that also H�. The proposition thus follows from
the observation that the space of the polynomials in the variables x1 and x2 that are
homogeneous of degree n has the dimension n + 1. �

In the sequel we will use an L2(S)-orthonormal basis

Km
� (x), m = −�, . . . , �, (9.15)

of the space of the spherical harmonics of degree � which we do not specify further.
Not surprisingly such bases can best be represented in terms of polar coordinates;
see the appendix of this chapter. The Km

� are by definition homogeneous of degree 0
and represent the angular parts of the homogeneous harmonic polynomials

Hm
� (x) = r �Km

� (x), r = |x |, (9.16)
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of degree �. The spherical harmonics Km
� , � = 0,1,2, . . . , m = −�, . . . , �, form an

L2(S)-orthonormal basis of the space of all spherical harmonics, as follows from
Lemma 9.5, and the assigned polynomials (9.16) correspondingly a basis of the
space of all harmonic polynomials in three variables.

Lemma 9.7. Every polynomial P� that is homogeneous of degree � can be written as

P�(x) = ∑
0≤ j≤�/2

|x |2 j H�−2 j(x), (9.17)

where the Hl−2 j are harmonic polynomials of degree �−2 j.

Proof. As follows from Lemma 9.5, a polynomial of the form (9.17) vanishes if and
only if the single terms of which the sum is composed vanish individually. Therefore
the space of the polynomials (9.17) has, by Lemma 9.6, the dimension

∑
0≤ j≤�/2

(

2(�−2 j)+ 1
)

=
(�+ 1)(�+ 2)

2
,

which coincides with the dimension of the space of all polynomials in three variables
that are homogeneous of degree �, a fact from which the proposition follows. �
We can finally state that the linearly independent polynomials

|x |2n Hm
� (x) = |x |2n+� Km

� (x), n, � = 0,1,2, . . . , m = −�, . . . , �, (9.18)

span the space of all polynomials in three variables and that every polynomial coin-
cides on the unit sphere with a harmonic polynomial of at most the same degree.

Let V m
� be the infinite-dimensional space that consists of the functions

x → f (r)Hm
� (x), r = |x |, (9.19)

with f : R → R an arbitrary infinitely differentiable function with compact support.
The spaces V m

� are L2-orthogonal to each other. The L2-inner product of functions

u(x) = f (r)Hm
� (x), v(x) = g(r)Hm

� (x) (9.20)

in V m
� can be reduced to the one-dimensional integral

∫

R3
u(x)v(x)dx =

∫ ∞

0
r2+2� f (r)g(r)dr. (9.21)

An immediate consequence of this observation is:

Lemma 9.8. The closure of V m
� in L2 consists of the functions

x → 1
r

f (r)Km
� (x), (9.22)

with functions f : R>0 → R that are square integrable over the positive real axis.
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To decompose functions into radial and angular parts, we assign to every infinitely
differentiable function u : R

3 → R with compact support the functions given by

(Qm
� u)(x) =

{
∫

S
u(rη)Km

� (η)dη
}

Km
� (x), (9.23)

where again the abbreviation r = |x| has been used.

Lemma 9.9. The functions Qm
� u belong themselves to the spaces V m

� and are the
L2-orthogonal projections of the given functions u onto these.

Proof. We fix the function u and the indices � and m and study first the radial part

f (r) =
∫

S
u(rη)Km

� (η)dη

of Qm
� u. We claim that, for � ≥ 1, it can be written in the form

f (r) = r �g(r)

with the infinitely differentiable function

g(r) =
1

(�−1)!

∫ 1

0
(1−ϑ)�−1 f (�)(ϑr)dϑ .

This follows from the fact that

( d
dr

) j
u(rη)

∣

∣

∣

r=0
= ∑

|α |= j

(Dα u)(0)ηα

and therefore f ( j)(0) = 0 for j = 0, . . . , �−1 due to the L2(S)-orthogonality of Km
�

to every polynomial of degree less than �. The integral form of Taylor’s theorem
yields the above representation of f , that is, the desired representation

(Qm
� u)(x) = g(r)Hm

� (x)

of the function Qm
� u. The difference u−Qm

� u is L2-orthogonal to the functions in
V m

� , as can be seen representing the L2-inner product in term of polar coordinates.
That is, Qm

� u is indeed the L2-orthogonal projection of u onto V m
� . �

As a consequence the operators Qm
� can be extended to L2-orthogonal projections

from L2 to the closure of V m
� in L2. The key result, into the proof of which our

knowledge on the eigenfunctions of the harmonic oscillator enters, is:

Theorem 9.1. The functions u ∈ L2(R3) possess the L2-orthogonal decomposition

u =
∞

∑
�=0

�

∑
m=−�

Qm
� u. (9.24)
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Proof. In view of Lemma 9.9 it suffices to prove that every square integrable
function can be approximated arbitrarily well in the L2-sense by a finite linear
combination of functions in the spaces V m

� . We already know from the discussion
in Sect. 3.4 that the finite linear combinations of the eigenfunctions of the three-
dimensional harmonic oscillator form a dense subset of L2. These eigenfunctions
span the linear space of the products (3.85) of polynomials with a fixed Gaussian
and can therefore be represented as finite linear combinations of the functions

x → |x |2n e−|x |2/2 Hm
� (x).

Thus it suffices to show that these can be approximated arbitrarily well by functions
in the spaces V m

� . But this is readily seen, simply by multiplying them with a series
of infinitely differentiable, rotationally symmetric cut-off functions. �
The series (9.24) is, for sufficiently smooth functions u, not only an orthogonal
decomposition in L2 but in every Sobolev space of corresponding order. This is
based on the fact that the projections Qm

� and the Laplace operator commute:

Theorem 9.2. If u is an infinitely differentiable function with compact support, so
are its projections Qm

� u onto the spaces V m
� . For all such functions u,

ΔQm
� u = Qm

� Δu. (9.25)

Proof. Let ϕ be an infinitely differentiable test function with compact support that
vanishes on a neighborhood of the origin to avoid problems with the potential sin-
gularities there. The projection Qm

� ϕ of ϕ onto V m
� can then be written in the form

(Qm
� ϕ)(x) = f (r)Hm

� (x),

with f : R → R an infinitely differentiable function with compact support that van-
ishes on a neighborhood of the point r = 0. Since x ·∇Hm

� = �Hm
� and ΔHm

� = 0,

(ΔQm
� ϕ)(x) =

(

f ′′(r)+
2�+ 2

r
f ′(r)

)

Hm
� (x).

That is, ΔQm
� ϕ is contained in V m

� , too. We conclude that

(Qm
� Δu,ϕ) = (u,ΔQm

� ϕ) = (Qm
� u,ΔQm

� ϕ) = (ΔQm
� u,Qm

� ϕ).

By the same calculation as above the function ΔQm
� u coincides outside every given

neighborhood of the origin with a function in V m
� . Let ΔQm

� u = v, v ∈ V m
� , every-

where where the given function ϕ or its projection Qm
� ϕ take a value �= 0. Then

(ΔQm
� u,Qm

� ϕ) = (v,Qm
� ϕ) = (v,ϕ) = (ΔQm

� u,ϕ).
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Hence, for all test functions ϕ vanishing on a neighborhood of the origin,

(Qm
� Δu,ϕ) = (Qm

� u,Δϕ).

The next step is to show that this relation still holds even if ϕ does not vanish on
a neighborhood of the origin. For that purpose let χ be an infinitely differentiable
function that takes the values χ(x) = 0 for |x| ≤ 1 and χ(x) = 1 for |x| ≥ 2. Set
χε(x) = χ(x/ε) for ε > 0. For all infinitely differentiable functions ϕ then

(Qm
� Δu,χε ϕ) = (Qm

� u,Δ(χε ϕ)) = (Qm
� u,χε Δϕ + 2∇χε ·∇ϕ + ϕΔ χε).

As |∇χε(x)| ≤ c/r and |Δ χε (x)| ≤ c/r2 with a constant c independent of ε , as the
derivatives of χε vanish outside the ball of radius 2ε around the origin, and as Qm

� Δu
and Qm

� u are bounded functions with bounded support, one obtains the desired result
from the dominated convergence theorem letting ε tend to zero.

The relation above can obviously be iterated. For all rapidly decreasing ϕ

(Qm
� Δ su,ϕ) = (Qm

� u,Δ sϕ), s = 1,2,3, . . . .

To prove that Qm
� u is infinitely differentiable we switch to the Fourier representation

of this relation. Plancherel’s theorem yields, because of FΔ sϕ = (−1)s|ω |2sFϕ ,
∫

FQm
� Δ su Fϕ dω =

∫

(−1)s|ω |2sFQm
� u Fϕ dω

for all rapidly decreasing ϕ . As every infinitely differentiable function with com-
pact support is Fourier transform of a rapidly decreasing function this means, by
Lemma 2.4, that the function FQm

� Δ su ∈ L2 and the locally integrable function

ω → (−1)s|ω |2s(FQm
� u)(ω)

coincide. The latter is therefore square integrable and Qm
� u thus contained in the

Sobolev spaces H2s for all s ∈ N. From Theorem 2.12 we can therefore conclude
that Qm

� u is infinitely differentiable. Integration by parts yields

(Qm
� Δu,ϕ) = (ΔQm

� u,ϕ)

for all test functions ϕ and therefore finally (9.25). �

Theorem 9.2 is the main tool to prove the convergence of the derivatives of arbitrary
order of the projections to the corresponding derivatives of the function itself:

Theorem 9.3. The L2-orthogonal decomposition (9.24) of an infinitely differen-
tiable function u with compact support is also orthogonal with respect to each of
the positive semidefinite inner products

(u,v)s = (−1)s(Δ su,v), s = 0,1,2, . . . , (9.26)
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that induce the seminorms | · |s. That is, for all such functions u and all such s

|u |2s =
∞

∑
�=0

�

∑
m=−�

|Qm
� u|2s . (9.27)

Proof. Expanding the second argument one obtains for the given functions u

(Δ su,u) =
∞

∑
�=0

�

∑
m=−�

(Δ su,Qm
� u).

From (9.25), that is, the fact that Δ s and Qm
� commute, the relation

(Δ su,Qm
� u) = (Qm

� Δ su,Qm
� u) = (Δ sQm

� u,Qm
� u)

follows. Inserting this relation into the double sum above the proof is finished. �
The norms on the Sobolev spaces Hs, s = 0,1,2, . . . , can be composed of the semi-
norms above. As the infinitely differentiable functions with compact support are
dense in these spaces Hs, the theorem shows that (9.24) is not only an orthogonal
decomposition of L2 but of all these Sobolev spaces.

To end this section, we again bring the operator (9.2) into play and begin with
the observation is that, for all indices i �= j,

(xiD j − x jDi)Δ = Δ (xiD j − x jDi), (9.28)

from which the commutation relation

L2Δ = Δ L2 (9.29)

follows. Together with Theorem 9.2 it yields our third decomposition theorem:

Theorem 9.4. For all infinitely differentiable functions u with compact support and
all nonnegative integers s

(L2u,u)s =
∞

∑
�=0

�

∑
m=−�

�(�+ 1) |Qm
� u|2s . (9.30)

Proof. Expanding the second argument one obtains for the given functions u

(Δ s L2u,u) =
∞

∑
�=0

�

∑
m=−�

(Δ s L2u,Qm
� u).

From the commutation relation (9.29), Lemma 9.1, and Lemma 9.3

(Δ s L2u,Qm
� u) = (L2Δ su,Qm

� u) = (Δ su,L2Qm
� u) = �(�+ 1)(Δ su,Qm

� u)
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follows. Since by (9.25), that is, the fact that Δ s and Qm
� commute, again

(Δ su,Qm
� u) = (Qm

� Δ su,Qm
� u) = (Δ sQm

� u,Qm
� u),

which proves the proposition. �
Finally we observe that, for infinitely differentiable u with bounded support,

(L2u,u)s =
1
2

3

∑
i, j=1
i�= j

|(xiD j − x jDi)u|2s , (9.31)

which follows from (9.28), the definition of the operator L2, and the skew-symmetry
of the operators xiD j − x jDi that already entered into the proof of Lemma 9.1.

9.2 The Decomposition of N-Particle Wave Functions

The goal of this section is to expand N-particle wave functions, that is, functions

u : (R3)N → R : (x1, . . . ,xN) → u(x1, . . . ,xN) (9.32)

depending on the positions xi ∈ R
3 of the single electrons, into series of functions

x → f (r1, . . . ,rN)Km1
�1

(xi) . . . KmN
�N

(xi), ri = |xi|, (9.33)

and to study the convergence properties of these series. The expansion coefficients
f : R

N → R can in this case be obtained in the same way as in the previous section
applying the operators (9.23) particle-wise. Let Q(�,m) be, for multi-indices � and
m in Z

N with components �i ≥ 0 and |mi| ≤ �i, the corresponding projection opera-
tor that maps the infinitely differentiable functions (9.32) into the space V (�,m) of
the functions (9.33) with infinitely differentiable radial parts f : R

N → R. The re-
sults from the previous section transfer then more or less immediately to the present
situation. The operators Q(�,m) can be extended to L2-orthogonal projections onto
the L2-closure of V (�,m). Since the spaces V (�,m) are orthogonal to each other
and every square integrable function can be approximated arbitrarily well in the L2-
sense by a finite linear combination of the functions in these spaces, one obtains:

Theorem 9.5. The functions u∈ L2(R3N) possess the L2-orthogonal decomposition

u = ∑
�

∑
m

Q(�,m)u, (9.34)

where the outer sum runs over the multi-indices � ∈ Z
N with components �i ≥ 0 and

the inner sum over the multi-indices m ∈ Z
N with components |mi| ≤ �i.
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The second important result generalizes Theorem 9.2 and will us allow to estimate
higher-order norms of the projections Q(�,m)u of sufficiently smooth functions u:

Theorem 9.6. The operators Q(�,m) map the space D of the infinitely differentiable
functions with compact support into itself. They commute on this space with every
differential operator Δ α1

1 . . . Δ αN
N with arbitrary nonnegative integer exponents αi.

Proof. The key to the proof is the observation that

(Q(�,m)u,Δiϕ) = (Q(�,m)Δiu,ϕ)

holds for all u ∈D and all rapidly decreasing functions ϕ . This results from the cor-
responding relation in three space dimensions, on which the proof of Theorem 9.2
is based, with help of Fubini’s theorem. Adding these equations up one gets

(Q(�,m)u,Δϕ) = (Q(�,m)Δu,ϕ).

From here one can proceed as in the proof of Theorem 9.2 and show with help of
Theorem 2.12 that the projections Q(�,m)u are infinitely differentiable. Hence

ΔiQ(�,m)u = Q(�,m)Δiu

for all electron indices i, from which the rest follows by induction. �
The counterpart of Theorem 9.3, whose proof is analogously to the proof of this
theorem directly based on these properties of the projection operators, is:

Theorem 9.7. The L2-orthogonal decomposition (9.34) of a function u ∈ D is also
orthogonal with respect to every positive semidefinite inner product of the form

〈u,v〉 = (−1)α1+ ...+αN (Δ α1 . . . Δ αN u,v), (9.35)

with integer exponents αi ≥ 0. The induced seminorm of u splits into the sum

|u |2 = ∑
�

∑
m
|Q(�,m)u|2. (9.36)

This property is inherited by every seminorm or norm that is composed of such semi-
norms, and by the functions in the completions of D under such norms. Examples
are the H1-norm, and the norms (6.79) and (6.80) that we introduced in Sect. 6.5
to measure the regularity of the solutions of the electronic Schrödinger equation.
The regularity of these solutions thus transfers to their projections. Moreover, since
the exponential weight functions from Sect. 6.1 that we introduced to measure the
decay of the mixed derivatives split into a product of factors that are invariant under
rotations of the electron positions xi, the projections of the exponentially weighted
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solutions are weighted projections for the same weight function. The mixed deriva-
tives of their projections show therefore the same kind of decay behavior as the
corresponding derivatives of the solutions themselves.

The projections Q(�,m)u are eigenfunctions of the operators L2
i that are the coun-

terparts of the operator (9.2) acting upon the components of the position vector
xi ∈ R

3 of the electron i. We assign the differential operator

L = ∏
i∈I−

(

1 + L2
i

)

+ ∏
i∈I+

(

1 + L2
i

)

(9.37)

to the given sets I− of the indices of the electrons with spin −1/2 and I+ of the
indices of the electrons with spin +1/2. The operators Δi commute, by (9.29), with
the operators L2

i and thus also with L . The formal self-adjointness of the single
parts L2

i and with that also of L leads therefore, as in the proof of Theorem 9.4, to:

Theorem 9.8. For all infinitely differentiable functions u with compact support

〈L u,u〉 = ∑
�

∑
m

{

∏
i∈I−

(

1+�i (�i +1)
)

+ ∏
i∈I+

(

1+�i (�i +1)
)

}

|Q(�,m)u|2, (9.38)

where the brackets on the left hand side denote any of the inner products (9.35) and
the seminorm or norm on the right hand side is induced by this inner product.

This result transfers again to every inner product that is composed of parts of the
given kind and in particular to the L2- and the H1-inner product to which we restrict
ourselves in the sequel. The first order differential operators of which the operators
L2

i and with that also the operator (9.37) are composed can, as in the proof of (9.31),
be distributed to both sides of the inner product. The inner product on the left hand
side can thus be estimated in the given case by the L2-norms of polynomial mul-
tiples of the mixed derivatives considered in Theorem 6.13. This, and the fact that
the infinitely differentiable functions of corresponding symmetry having a compact
support are dense in the spaces in which the solutions are contained, prove:

Theorem 9.9. Let u be a solution of the electronic Schrödinger equation in the
Hilbert space H1(σ) assigned to the given spin distribution for an eigenvalue below
the ionization threshold. Then its norm given by the expression

|||u|||2 = ∑
�

∑
m

{

∏
i∈I−

(

1 + �i (�i + 1)
)

+ ∏
i∈I+

(

1 + �i (�i + 1)
)

}

‖Q(�,m)u‖2
1 (9.39)

remains finite, where the size of this norm depends on the degree of excitation.

This is one of our central results and another important consequence from the reg-
ularity theory from Chap. 6. It states that only few of the projections contribute
significantly to a solution of the electronic Schrödinger equation and estimates the
speed of convergence of the expansion (9.34) in terms of the angular momentum
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quantum numbers �i. In analogy to Sect. 7.3 let uε denote that part of the expansion
that is built up from the contributions assigned to the multi-indices � for which

∏
i∈I−

(

1 + �i (�i + 1)
)

+ ∏
i∈I+

(

1 + �i (�i + 1)
)

<
1
ε2 . (9.40)

Since the decomposition (9.34) is orthogonal with respect to the H1-norm then

‖u−uε‖1 ≤ ε |||u−uε||| ≤ ε |||u|||. (9.41)

9.3 The Radial Schrödinger Equation

Theorem 9.9 expresses a new kind of regularity that is not reflected in the results for
the eigenfunctions expansions from Chap. 7. It can serve to further reduce the set
of the eigenfunctions to be taken into account in such expansions and in most cases
to improve the convergence rate. Before we can study this, we have to return to the
eigenvalue problem for the three-dimensional Schrödinger-like operators

H = −Δ + V (9.42)

considered there with locally square integrable, nonnegative potentials V tending to
infinity, but now under the restriction that these potentials are rotationally symmetric
and infinitely differentiable outside the origin. The solution space H of such an
eigenvalue problems is the completion of the space of the infinitely differentiable
functions with compact support under the norm induced by the inner product

a(u,v) =
∫

{

∇u ·∇v +Vuv
}

dx, (9.43)

a norm that dominates the L2-norm and the H1-norm as follows from the posi-
tivity of the eigenvalues. The eigenvalue problem for such operators splits into
one-dimensional eigenvalue problems for the radial parts of the eigenfunctions, the
reason being the following observation, which is a simple consequence of the rota-
tional symmetry of the problem and the properties of the spherical harmonics:

Lemma 9.10. For all infinitely differentiable functions u and v with compact support

a(u,v) =
∞

∑
�=0

�

∑
m=−�

a(Qm
� u,Qm

� v). (9.44)

The projections Qm
� are moreover symmetric in the sense that for these u and v

a(Qm
� u,v) = a(u,Qm

� v). (9.45)
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Proof. The relation (9.44) can be proved considering the two parts of which the
inner product is composed separately. The first part involving the derivatives has
been treated in Theorem 9.3. As V is rotationally symmetric, Qm

� Vu = VQm
� u. The

rest follows by decomposing the square integrable functions Vu and v,

(Vu,v) =
∞

∑
�=0

�

∑
m=−�

(Qm
� Vu,Qm

� v) =
∞

∑
�=0

�

∑
m=−�

(V Qm
� u,Qm

� v),

which is permissible because of the local square-integrability of the potential. The
symmetry is proved by the same type of arguments. �
The first equation shows that the operators Qm

� can be extended to projectors that are
defined on the whole solution space H of the eigenvalue problem and are not only
orthogonal with respect of the L2-norm and the H1-norm but also with respect to
the norm that is induced by the inner product (9.43). The relations (9.44) and (9.45)
thus transfer to all functions u and v in H , a fact that allows us to decompose the
eigenfunctions into radial and angular parts:

Theorem 9.10. Let u �= 0 be an eigenfunction for the isolated eigenvalue λ of finite
multiplicity, that is, a function in the Hilbert space H satisfying the relation

a(u,v) = λ (u,v), v ∈ H . (9.46)

Then only finitely many of its projections Qm
� u are different from zero, and each of

them is an eigenfunction for the eigenvalue λ too, that is, for all functions v ∈ H

a(Qm
� u,v) = λ (Qm

� u,v). (9.47)

The proof is a simple consequence of the fact that (u,Qm
� v) = (Qm

� u,v) for all func-
tions u and v in L2, the lemma, and the finite dimension of the eigenspace. The
remaining projections Qm

� u �= 0 hence span the eigenspace for the given eigenvalue.
The original problem thus splits into the essentially one-dimensional eigenvalue
problems to find functions u in the ranges of the projectors Qm

� satisfying the rela-
tion (9.46) for all test functions v in these subspaces. The resulting equation is the
weak form of the radial Schrödinger equation.

Lemma 9.11. The range of the projectors Qm
� on H consists of the functions

u(x) =
1
r

f (r)Km
� (x), r = |x |, (9.48)

whose radial parts are located in the completion of the space of the infinitely differ-
entiable functions f : R≥0 →R with bounded support that vanish on a neighborhood
of the point r = 0 under the norm given by the expression

‖ f‖2 =
∫ ∞

0

(

f ′(r)2 +
�(�+ 1)

r2 f (r)2 + V (r) f (r)2
)

dr. (9.49)
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Proof. We observe first that the infinitely differentiable functions u : R
3 → R with

compact support that vanish on a neighborhood of the origin form a dense subset of
the solution space H . That is again proved multiplying the infinitely differentiable
functions with compact support with a series of cut-off functions χε as in the proof
of Theorem 9.2, using that the function r → 1/r2 is locally integrable in three space
dimensions. The image of these functions under Qm

� are the functions (9.48) with f
an infinitely differentiable function with bounded support vanishing on a neighbor-
hood of the point r = 0. For such functions u and v

a(u,v) =
∫

{−Δu +Vu
}

vdx.

Let f and g be the radial parts of u and v. Since x ·∇Hm
� = �Hm

� and ΔHm
� = 0 holds

for the polynomials Hm
� associated to the spherical harmonics Km

� ,

(Δu)(x) =
1
r

(

f ′′(r) − �(�+ 1)
r2 f (r)

)

Km
� (x).

Inserting this relation above and integrating by parts one obtains the representation

a(u,v) =
∫ ∞

0

(

f ′(r)g ′(r) +
�(�+ 1)

r2 f (r)g(r) + V (r) f (r)g(r)
)

dr

of the inner product of such functions u and v, which proves the proposition. �
We can conclude from the representation of the bilinear form (9.43) on the range
of the operators Qm

� which we found in the proof above that the radial parts of the
eigenfunctions in this range are weak solutions of the ordinary differential equation

− f ′′(r) +
�(�+ 1)

r2 f (r) + V (r) f (r) = λ f (r), r > 0. (9.50)

These differential equations do not depend on m, which means that the eigenvalues
have at least the multiplicity 2�+ 1 and are degenerate except for the case � = 0.

Lemma 9.12. The functions f that can be approximated arbitrarily well in the H1-
sense by infinitely differentiable functions fn with compact support in the interval
r > 0 are continuous and vanish at r = 0.

Proof. The proposition follows from the estimate

| fn(r)− fm(r)|2 ≤ R
∫ R

0
| f ′n(s)− f ′m(s)|2 ds,

that is proven with help of the fundamental theorem of calculus and the Cauchy-
Schwarz inequality. Convergence in the H1-norm implies thus uniform convergence
on every interval 0 ≤ r ≤ R and with that continuity of the limit function. �
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To characterize the ranges of the projection operators Qm
� and the solutions of the

radial Schrödinger equation further, we need the following Hardy-type inequality:

Lemma 9.13. Let f : R≥0 → R be a continuous, square integrable function that is
continuously differentiable on the interval r > 0, let its derivative be square inte-
grable, and let f (0) = 0. The function r → f (r)/r is then square integrable and

∫ ∞

0

1
r2 f (r)2 dr ≤ 4

∫ ∞

0
f ′(r)2 dr. (9.51)

Proof. We can assume that f vanishes outside some bounded interval; otherwise one
multiplies f again with a series of cut-off functions. Let δ > 0 be arbitrary. Then

∫ ∞

δ

1
r2 f (r)2 dr =

1
δ

f (δ )2 + 2
∫ ∞

δ

1
r

f (r) f ′(r)dr,

as is shown integrating by parts. Because of 2ab ≤ a2/2 + 2b2,

2
∫ ∞

δ

1
r

f (r) f ′(r)dr ≤ 1
2

∫ ∞

δ

1
r2 f (r)2 dr + 2

∫ ∞

δ
f ′(r)2 dr.

Inserting this above one obtains from that the estimate

∫ ∞

δ

1
r2 f (r)2 dr ≤ 2

δ
f (δ )2 + 4

∫ ∞

δ
f ′(r)2 dr.

To estimate the first term on the right hand side, let 0 < ε < δ . The fundamental
theorem of calculus and the Cauchy-Schwarz inequality yield

| f (δ )| =
∣

∣

∣

∣

f (ε) +
∫ δ

ε
f ′(r)dr

∣

∣

∣

∣

≤ | f (ε)| +
√

δ
(

∫ δ

0
f ′(r)2 dr

)1/2

or, because of f (0) = 0 and the continuity of f at r = 0, in the limit as ε → 0+

1
δ

f (δ )2 ≤
∫ δ

0
f ′(r)2 dr.

Inserting this estimate above and letting δ tend to zero the proposition follows. �

Lemma 9.13 shows that the norms given by the expression (9.49) are all equivalent
and that that for the index � = 0 does not play a special role. Moreover:

Lemma 9.14. A function f : R≥0 →R that is continuous, infinitely differentiable on
the interval r > 0, that vanishes at r = 0, and for which the expression (9.49) remains
finite, can be approximated arbitrarily well by infinitely differentiable functions with
compact support in the interval r > 0 in the sense of the norm given by (9.49).
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Proof. The idea is to multiply f by sequences of cut-off functions. We begin with
the origin. Let χ : R → [0,1] be an infinitely differentiable function that takes the
values χ(r) = 0 for r ≤ 1 and χ(r) = 1 for r ≥ 2. Set χε(r) = χ(r/ε) for ε > 0. As

|(χε f )(r)|2 ≤ | f (r)|2, |(χε f )′(r)|2 � | f ′(r)|2 +
1
r2 | f (r)|2,

with some constant independent of ε in the second inequality, and

lim
ε→0+

(χε f )(r) = f (r), lim
ε→0+

(χε f )′(r) = f ′(r)

for all r > 0, the functions χε f tend to f in the sense of the norm given by (9.49), as
one shows in the usual way with help of the dominated convergence theorem. The
square-integrability of the function f (r)/r on the right hand side of the estimate
above needed for that follows from the previous lemma. Let f now already vanish
in a neighborhood of the point r = 0. The functions

r →
(

1− χ
( r

R

))

f (r)

vanish then for r ≥ 2R and tend to f as R goes to infinity. �
After these preparations we can now prove the second central result of this section:

Theorem 9.11. The solutions of the radial Schrödinger equation (9.47) are func-
tions of the form (9.48) with radial parts f : R≥0 → R that are continuous, that are
infinitely differentiable on the interval r > 0 and solve there the differential equa-
tion (9.50) in the classical sense, that vanish at r = 0, and for which the expression
(9.49) remains finite. They are completely characterized by these properties.

Proof. Let f : R≥0→R be the radial part of a weak solution of the radial Schrödinger
equation (9.47). By Lemma 9.11 and Lemma 9.12, f is continuous on its interval of
definition and vanishes at r = 0. We assign the function

φ(r) = λ f (r) − �(�+ 1)
r2 f (r) − V (r) f (r)

to f that is then, under the given conditions on V , continuous on the interval r > 0.
The function f itself solves the equation − f ′′= φ in the weak sense, that is,

∫

f ′(r)χ ′(r)dr =
∫

φ(r)χ(r)dr

holds for all infinitely differentiable χ with compact support in the interval r > 0.
Another weak solution of this equation is the solution g of the differential equation

−g ′′(r) = φ(r), r > 0,
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that is fixed, say, by the values g(1) = 0 and g ′(1) = 0. The difference h = f −g is
then a weak solution of the equation −h′′= 0 on the interval r > 0 and therefore a
linear function. This can be shown with help of smoothed variants

(δk ∗ h)(r) =
∫

δk(r− s)h(s)ds, r > 1/k,

of h as they were considered in Sect. 2.3. Their second order derivatives

(δk ∗ h)′′(r) =
∫

δ ′
k(r− s)h′(s)ds

vanish. They are therefore linear functions. Since they converge on every com-
pact subinterval of the interval r > 0 to h in the L1-sense as k goes to infinity,
the limit function h is itself linear and f = g + h therefore a twice continuously
differentiable solution of the differential equation (9.50). Since V is not only contin-
uous, as needed until now, but even infinitely differentiable, the solution is infinitely
differentiable.

Conversely, that a solution f with the given properties can be approximated arbi-
trarily well by infinitely differentiable functions with compact support in the interval
r > 0 in the sense of the norm given by (9.49) follows from Lemma 9.14. �
The argument simplifies a little bit if � �= 0, as the square integrability of the func-
tions f (r)/r follows then directly from the presence of the centrifugal barrier and
does not need to be shown by arguments as in the proof of Lemma 9.13.

9.4 An Excursus to the Coulomb Problem

Before we continue with the study of the multi-particle case and of the approxi-
mation of high-dimensional wave functions we use the opportunity to calculate the
hydrogen-like wave functions, the weak solutions of the Schrödinger equation

− 1
2

Δu − Z
|x| u = λ u (9.52)

for a single electron in the field of a nucleus of charge Z. The knowledge about these
eigenfunctions is basic for the qualitative understanding of chemistry and explains
the structure of the periodic table to a large extent. These eigenfunctions have first
been calculated by Schrödinger (with some help of Hermann Weyl) in his seminal
article [73] that marks together with the work of Heisenberg the begin of modern
quantum theory. The framework that has been developed in the previous section can
be easily adapted to the given problem. We know from Chap. 4 that its solution
space is the Sobolev space H1. The eigenfunctions for a given eigenvalue λ are the
linear combinations of functions of the form

u(x) =
1
r

f (r)Km
� (x), r = |x |, (9.53)
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with infinitely differentiable radial parts f : R>0 → R for which the expressions

∫ ∞

0
f (r)2 dr,

∫ ∞

0

(

f ′(r)2 +
�(�+ 1)

r2 f (r)2
)

dr (9.54)

representing the L2-norm and the H1-seminorm of u remain finite, which can be
continuously extended by the value f (0) = 0 to r = 0, and which solve the equation

1
2

(

− f ′′ +
�(�+ 1)

r2 f

)

− Z
r

f = λ f . (9.55)

Theorem 6.10, the virial theorem, shows that there are no nonnegative eigenval-
ues. We first show that there exist, for every given value λ < 0, exactly one solution
of the equation (9.55) that tends to zero as r goes to zero, of course up to a multi-
plicative constant, and that this solution is even an entire function. The idea behind
this ansatz is that the solutions of the equation (9.55) should for large r essentially
behave like the square integrable solutions of the simplified equation in which the
Coulomb term and the centrifugal term with 1/r and 1/r2 in front are neglected.

Lemma 9.15. The only solutions of the differential equation (9.55) that can be con-
tinuously extended by the value f (0) = 0 to r = 0 are the multiples of the function

f (r) = φ(2γ r)exp(−γ r), γ =
√

−2λ , (9.56)

where the leading factor is, up to the rescaling of the variable, the entire function

φ(z) = z�+1
∞

∑
k=0

akzk (9.57)

whose coefficients are normalized by the condition a0 = 1 and satisfy the recursion

ak+1 =
(k + �+ 1) − ν

(k + �+ 1)(k + �+ 2)− �(�+ 1)
ak, ν =

Z
γ

. (9.58)

Proof. The function (9.56) is a solution of the differential equation (9.55) if and
only if the function (9.57) solves the differential equation

φ ′′ −φ ′ − �(�+ 1)
z2 φ +

ν
z

φ = 0,

which is achieved by the choice of the coefficients. As the series defining this func-
tion converges for all complex numbers z, we have found a solution of the original
equation. It remains to show that, up to the multiplication with a constant, there is
no other solution that can be continuously extended by the value 0 to r = 0. The
given function (9.56) can be extended to a power series solution
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f (z) = z�+1
∞

∑
k=0

bkzk, b0 �= 0,

of the complex counterpart of the differential equation (9.55). That means that there
exists a δ > 0 such that z → 1/ f (z)2 possesses, for 0 < |z|< δ , a Laurent expansion

1
f (z)2 =

1
z2�+2

∞

∑
k=0

ckzk,

with a coefficient c0 �= 0. Let r0 = δ/2. The real-valued function

g(r) = c(r) f (r), c(r) =
∫ r

r0

1
f (s)2 ds,

is then well-defined for 0 < r < δ and solves the differential equation (9.55) on
this interval. As such it can be uniquely extended to a solution of this equation on
the whole interval r > 0. Term-wise integration, permissible because of the uniform
convergence of the series on compact subintervals of the interval 0 < r < δ , yields

c(r) = ∑
k

ck

k−2�−1
rk−2�−1 + c2�+1 lnr + α,

where the sum extends over all nonnegative integers k except for k = 2�+ 1 and α
is an integration constant. The solution g thus behaves near the point r = 0 up to
a non-vanishing, otherwise uninteresting constant factor like ∼ 1/r �. For � = 0 it
tends to a value �= 0 and for � ≥ 1 it even becomes singular as r goes to zero. It is
therefore linearly independent of f and spans together with f the solution space of
the differential equation (9.55), which completes the proof. �

The solutions (9.56) are the only candidates for the radial parts of the eigenfunc-
tions. They lead to solutions (9.53) of the Schrödinger equation (9.52) if and only if
the integrals (9.54) remain finite, or equivalently f and its first order derivative are
square integrable. This is only the case for particular values of λ .

Lemma 9.16. If the series (9.57) does not terminate the regular solution (9.56) of
the differential equation (9.55) tends exponentially to infinity as r goes to infinity.

Proof. If the series does not terminate there exists for each ε < 1 an n such that

ak+1

ak
≥ 1− ε

k

holds for all indices for all k ≥ n. From that one can derive a lower bound

|φ(2γ r)| � r �+1 exp((1− ε)2γ r) + p(r),
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with p a polynomial, for the absolute value of the function φ . The absolute value of
the solution (9.56) tends in this case exponentially to infinity. �
Conversely, if the series terminates, the function (9.57) reduces to a polynomial. The
exponential term on the right hand side of (9.56) then dominates and the function
(9.56) and its derivative tend exponentially to zero. With that we have completely
solved the Schrödinger equation (9.52). The eigenfunctions are linear combinations
of the eigenfunctions (9.53) with radial parts (9.56). The eigenvalues are

λ = − Z2

2(nr + �+ 1)2 , nr = 0,1,2, . . . . (9.59)

They depend only on the principal quantum number n = nr +�+1. For given princi-
pal quantum number n = 1,2, . . ., the possible angular momentum quantum numbers
are � = 0, . . . ,n−1, and for given n and �, the possible magnetic quantum numbers
m = −�, . . . , �. The dimension of the eigenspace for the eigenvalue

λ = − Z2

2n2 (9.60)

is therefore n2, so that the higher eigenvalues are highly degenerate. The eigenval-
ues cluster at the ionization threshold, the minimum of the essential spectrum. The
eigenfunctions, in particular that for the minimum eigenvalue, exhibit singularities
at the position of the nucleus typical for electronic wave functions.

9.5 The Harmonic Oscillator

For us the most important example of a three-dimensional Schrödinger opera-
tor (9.42) to which the considerations of Sect. 9.3 directly apply is the three-
dimensional harmonic oscillator. Its eigenfunctions have already been determined
in Sect. 3.4. Their completeness was the key to Theorem 9.1 so that a study based
on the results of Sect. 9.3 cannot directly replace our former considerations but can
give a much more detailed information about the structure of the eigenfunctions. We
know from Sect. 9.3 that the solutions of the Schrödinger equation

− 1
2

Δu +
1
2
|x |2 u = λ u (9.61)

can be composed of solutions of the form

u(x) =
1
r

f (r)Km
� (x), (9.62)
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with radial parts that solve the differential equation

1
2

(

− f ′′ +
�(�+ 1)

r2 f

)

+
1
2

r2 f = λ f . (9.63)

This equation possesses again a power series solution that vanishes at the origin:

Lemma 9.17. The only solutions of the differential equation (9.63) that can be con-
tinuously extended by the value f (0) = 0 to r = 0 are the multiples of the function

f (r) = φ(r)e−r 2/2, (9.64)

where the leading factor, in front of the exponential term, is the entire function

φ(z) = z�+1
∞

∑
k=0

akz2k (9.65)

whose coefficients are normalized by the condition a0 = 1 and satisfy the recursion

ak+1 =
(4k + 2�+ 3)−2λ

(2k + �+ 2)(2k + �+3)− �(�+ 1)
ak. (9.66)

Proof. The function (9.64) is a solution of the differential equation (9.63) if and
only if the function (9.65) solves the differential equation

φ ′′ − 2zφ ′ − �(�+ 1)
z2 φ + (2λ −1)φ = 0.

The coefficients ak are chosen accordingly. To exclude further solutions of the equa-
tion (9.63), up to constant multiples of the function (9.64), one can literally transfer
the arguments from the proof of Lemma 9.15. Since z → 1/ f (z)2 is an even func-
tion the logarithmic term there does not appear in the present case and the second
solution can be expanded into a Laurent series in a neighborhood of the origin. �
The power series in (9.65) collapses to an even polynomial p2n of order 2n if

λ = 2n + �+
3
2
, n = 0,1,2, . . . . (9.67)

The functions (9.62) become then the polynomial multiples

u(x) = r �p2n(r)Km
� (x)e−r2/2 (9.68)

of the Gauss function r → e−r2/2 and are admissible solutions of the Schrödinger
equation (9.61) for the eigenvalues (9.67). Since we know from Lemma 9.7 re-
spectively from (9.18) that these solutions span all polynomial multiples of that
Gaussian, and from Sect. 3.4 that all eigenfunctions are of this type, we can stop our
considerations here and have separated the radial from the angular dependence.
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9.6 Eigenfunction Expansions Revisited

In Chaps. 7 and 8 expansions of N-particle wave functions into tensor products
of one-particle eigenfunctions have been studied and estimates for their conver-
gence rates have been given. These estimates are based on the regularity theory from
Chap. 6, that is, on the existence and the decay properties of the mixed derivatives of
the solutions of the electronic Schrödinger equation. However, they do not fully ex-
ploit these regularity properties of the solutions and will be refined in the present
section. As in Chap. 7 we start from the eigenfunctions of a three-dimensional
Schrödinger operator (7.1), but assume now as in Sect. 9.3 that the underlying po-
tential V ≥ 0 is not only locally square integrable and tends to infinity, but is also
rotationally symmetric and infinitely differentiable outside the origin. Let

φn�m(x) =
1
r

fn�(r)Km
� (x), n, � = 0,1,2, . . . , m = −�, . . . , �, (9.69)

be solutions of the three-dimensional Schrödinger equation

−Δφn�m + Vφn�m = λn� φn�m (9.70)

as studied in Sect. 9.3, which are pairwise orthogonal, have L2-norm 1, and span a
dense subspace of L2. We consider in this section the orthogonal expansions

u(x) = ∑
n,�,m

û(n, �,m)
N

∏
i=1

φni�imi(xi) (9.71)

of square integrable functions u defined on the (R3)N into tensor products of these
eigenfunctions. The sum here runs over the complete set of these products, i.e., over
the multi-indices n, �, and m with integer components ni, �i ≥ 0 and |mi| ≤ �i.

Up to here nothing has changed from Chap. 7, except for the labeling of the
eigenvalues and eigenfunctions of the three-dimensional operator. The point is that
the eigenfunctions (9.69) are also eigenfunctions of the angular momentum opera-
tor L2 and that the projections Q(�,m)u considered in Sect. 9.2 can in the present
case be easily expressed in terms of the given expansion. It is

(

Q(�,m)u
)

(x) = ∑
n

û(n, �,m)
N

∏
i=1

φni�imi(xi). (9.72)

The angular parts are kept fixed and the sum extends only over the correspond-
ing radial parts. At this place the results from Sect. 9.2 come into play, in particular
Theorem 9.9. Together with Theorem 7.1 and the considerations in Sect. 7.3 they im-
ply that one can restrict oneself to contributions assigned to multi-indicesfor which
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∏
i∈I−

(

1 + �i (�i + 1)
)

+ ∏
i∈I+

(

1 + �i (�i + 1)
)

<
1
ε2 , (9.73)

∏
i∈I−

λni�i

Ω 2 + ∏
i∈I+

λni�i

Ω 2 <
1
ε2 (9.74)

to reach an H1-approximation error of order O(ε) for the solutions of the electronic
Schrödinger equation, provided the potential V is adapted to the considered eigen-
function as described in Sect. 7.1. The products run as always over the sets of the
indices of the electrons with spin −1/2 and spin +1/2. The extension to the anti-
symmetric case considered in Sect. 7.2, in which the product of the eigenfunctions
is replaced by a Slater determinant, respectively by the product of two Slater de-
terminants, is obvious. The additional condition (9.73) can reduce the number of
contributions to be taken into account substantially. Many of the regularity proper-
ties of the solutions that have not been utilized in Theorem 7.1 enter at this place.

One can often even go a step further and make use of the fact that the functions
(9.69) are not only eigenfunctions of the operator (9.42) but also of the operators

H + ωL2 = −Δ + V + ωL2, (9.75)

whose eigenvalues are shifted from λn� to λn� + �(� + 1)ω . We will demonstrate
this in the next section by means of the eigenfunctions of the harmonic oscillator.

9.7 Approximation by Gauss Functions

The expansion of the solutions of the electronic Schrödinger equation into tensor
products of eigenfunctions of the harmonic oscillator, that is, into the easily man-
ageable Gauss functions, has already been discussed in Chap. 8. We found that the
H1-error decreases in the one-particle case at least like ∼ n−1/6 in the number n of
the involved basis functions. Almost the same holds for the N-particle case if all par-
ticles have the same spin. We will improve this estimate for the convergence rate in
this section to ∼ n−1/4, which comes much closer to the upper bound ∼ n−1/3. Let

H ′ = − 1
2

Δ +
1
2
|x |2 + L2 = H + L2 (9.76)

be the Hamilton operator of the three-dimensional harmonic oscillator to which the
square (9.2) of the angular momentum operator is added. Its eigenfunctions

φn�m(x) =
1
r

fn�(r)Km
� (x), n, � = 0,1,2, . . . , m = −�, . . . , �, (9.77)

are those of the harmonic oscillator. The eigenvalues assigned to them are

λ ′
n� = 2n + �+

3
2

+ �(�+ 1) = λn� + �(�+ 1). (9.78)
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Next we introduce a new norm on the space D of the infinitely differentiable func-
tions from R

3N to R with compact support. It is given by the expression

|||u|||2 =
(( N

∑
i=1

Hi

)(

∏
i∈I−

H ′
i + ∏

i∈I+

H ′
i

)

u, u

)

, (9.79)

where the Hi, respectively H ′
i , are as in Sect. 7.1 the counterparts of the three-

dimensional operators (9.76) that act on the coordinates of the electron i. Distribut-
ing the derivatives in equal parts to both sides of the inner product, one can estimate
this norm by the L2-norms of polynomially weighted derivatives of u as they have
been considered in Theorem 6.13. The solutions of the electronic Schrödinger equa-
tion for eigenvalues below the essential spectrum are therefore contained in the
completion of D under the norm given by (9.79). On the other hand,

|||u|||2 = ∑
n,�,m

( N

∑
i=1

λni�i

)(

∏
i∈I−

λ ′
ni�i

+ ∏
i∈I+

λ ′
ni�i

)

|û(n, �,m)|2, (9.80)

first for infinitely differentiable functions u with compact support. That means that
a square integrable function u belongs to the completion of D under the norm given
by (9.79) if and only if the expression (9.80) remains finite. In particular this holds
for the solutions of the electronic Schrödinger equation.

To approximate the solutions of the electronic Schrödinger equation up to an
H1-error of order O(ε) it suffices therefore again to restrict to the contribution of
the tensor products of the eigenfunctions (9.77) for which the estimate

∏
i∈I−

λ ′
ni�i

+ ∏
i∈I+

λ ′
ni�i

<
1
ε2 (9.81)

holds for the assigned eigenvalues. We need therefore to know how fast the eigen-
values (9.78) increase to determine the convergence rate in terms of the number of
the remaining, correspondingly antisymmetrized tensor products.

Lemma 9.18. The number N (λ ) of the eigenvalues λ ′
n� < λ , counted with their

multiplicity, behaves asymptotically like ∼ λ 2/4 and is bounded by the expression

N (λ ) ≤ 5
2

λ 2. (9.82)

Proof. Let L = max{� |(�+1)2 +1/2 < λ }. Since λ ′
n� < λ if and only if �≤ L and

n <
λ
2
− (�+ 1)2

2
− 1

4
≤ (L+ 2)2

2
− (�+ 1)2

2
,

the number N (λ ) of the eigenvalues λ ′
n� < λ is bounded by the sum
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N (λ ) ≤
L

∑
�=0

(

(L+ 2)2

2
− (�+ 1)2

2
+ 1

)

(2�+ 1).

This sum behaves asymptotically like ∼ L4/4, i.e., like ∼ λ 2/4, and is bounded by

N (λ ) ≤ 5
2

(L+ 1)4.

Since (L+ 1)2 ≤ λ this proves the estimate (9.82). Conversely the lower estimate

N (λ ) ≥
L

∑
�=0

(

(L+ 1)2

2
− (�+ 1)2

2

)

(2�+ 1),

holds. This bound behaves asymptotically like ∼ L4/4 i.e., like ∼ λ 2/4 as well. �
We label the eigenvalues λ ′

n� now as in the previous chapters by a single index k
and order them ascendingly, where they are counted several times according to their
multiplicity. We can then conclude from (9.82) that they increase at least like

λ ′
k ≥

√

2
5

k. (9.83)

That is considerably more rapid than the growth λk ∼ k1/3 of the eigenvalues of the
harmonic oscillator itself that has been studied in Lemma 8.1.

From here we can proceed as in Chap. 8. For the case that all electrons have the
same spin, the number of antisymmetrized tensor products or Slater determinants
built from the eigenfunctions (9.77) that are needed to reach an H1-error of order
O(ε) increases essentially like O(ε−4) for ε tending to zero, independent of the
number of the electrons. The convergence rate improves by that by two orders com-
pared to the estimate from Chap. 8. This reflects the fact that the Gauss functions
behave in angular direction like the eigenfunctions of any other operator (9.42),
including those with much more rapidly increasing potentials and therefore more
rapidly increasing eigenvalues. The reduction of the convergence order observed in
Chap. 8 is exclusively due to the radial behavior of the Gauss functions. In the gen-
eral case of electrons of distinct spin, the order of convergence of the hyperbolic
cross approximation halves, again due to the singularities of the wave functions at
the places where electrons with opposite spin meet.

9.8 The Effect of Scaling

Gauss functions have a lot of attractive features far beyond the convergence prop-
erties just discussed that are remarkable but do not fully explain their success. The
first reason for the popularity and the almost exclusive use of Gauss functions in
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quantum chemistry is the observation due to Boys [12] that the integrals arising in
every variational procedure to solve the Schrödinger equation attain a comparatively
simple form and can be evaluated more easily than with other basis sets. A second
reason is their scaling and invariance properties. Gauss functions

x → P(x)e−|x|2/2 (9.84)

are products of a fixed exponential part with polynomials. Polynomials remain poly-
nomials of same degree under any kind of linear transformation, under a rescaling
of the variables in the same way as under rotations, shears, or shifts. Ansatz spaces
like the given hyperbolic cross spaces become scaling invariant approximation man-
ifolds if one allows for a scaling of the exponential part, either individually for each
single electron or jointly for all. Such measures can improve the approximation
properties dramatically and enhance the speed of convergence substantially.

As an example we consider the hydrogen orbitals that have been calculated in
Sect. 9.4. The first observation is that the angular parts of the Gauss functions coin-
cide with the angular parts of the hydrogen orbitals since the Hamiltonians of both
problems are rotationally invariant. The angular parts can therefore be kept fixed
and only the radial parts need to be approximated by a linear combination of the
radial parts of the corresponding Gauss functions. Our estimates guarantee that the
H1-error tends to zero in this case at least like ∼ n−1/2, and the error of the eigenval-
ues at least like ∼ n−1, in the number n of the included Gaussians. Such convergence
orders might be acceptable for a basically three-dimensional problem but are surely
not overwhelming in view of the fact that the symmetry properties of the problem
are here taken into account explicitly.

The situation changes immediately if one allows for a rescaling of the exponential
parts of the Gaussians and combines several such rescaled Gauss functions. This can
be recognized as follows. The construction starts from the representation

e−
√

s =
∫ ∞

0
F(t)e−st dt, F(t) =

1

2
√

πt3
exp

(

− 1
4t

)

, (9.85)

of the function s → e−
√

s on the interval s ≥ 0 as Laplace transform, that one can
take from mathematical tables like [1] or easily calculate with help of computer
algebra programs. From (9.85) one obtains the integral representations

e−r =
∫ 1

0
g(ξ ,r2)dξ , g(ξ ,s) = F(t(ξ ))exp(−st(ξ ))t ′(ξ ), (9.86)

of the exponential function e−r, where the functions t(ξ ) map the interval 0 < ξ < 1
onto the positive real axis t > 0. We consider in the following the substitutions

t(ξ ) =
ξ 2

(1− ξ )2m , (9.87)

where the exponent m ≥ 2 can be used to influence the properties of the integrand.
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Fig. 9.1 The integrand in (9.86) for m = 3 and r = 0.0, r = 0.01, r = 0.05, r = 0.1,0.2, . . .,5.0

Lemma 9.19. The j-th derivative of the integrand g(ξ ,s) with respect to ξ remains
uniformly bounded in s ≥ 0 if j ≤ m−1, and uniformly in s ≥ s0 > 0 for arbitrary j.
The integrand tends to zero at the boundary points ξ = 0 and ξ = 1. If s > 0 the
same holds for all its derivatives at both boundary points.

Proof. We start from the function α : [0,1]→ R that is for 0 < ξ ≤ 1 defined by

α(ξ ) =
2 +(2m−2)ξ

2
√

π ξ 2
exp

(

− (1− ξ )2m

4ξ 2

)

and for ξ = 0 by α(0) = 0. It is infinitely differentiable on the whole interval [0,1].
All its derivatives take the value α( j)(0) = 0 at the left boundary point. One has

g(ξ ,s) = (1− ξ )m−1α(ξ )exp(−st(ξ )).

The derivatives of g(ξ ,s) with respect to ξ can therefore be written in the form

g( j)(ξ ,s) = (1− ξ )m−1− j
j

∑
k=0

α jk(ξ )(st(ξ ))k exp(−st(ξ )).

The coefficient functions α jk are infinitely differentiable on the interval 0 ≤ ξ ≤ 1.
Their derivatives vanish at ξ = 0 as those of α . The proof uses the representation

t ′(ξ ) =
2 +(2m−2)ξ

ξ (1− ξ )
t(ξ )

of the derivative of the function (9.87) and the fact that the functions α jk(ξ ) absorb
every negative power ξ−ν of ξ . Since the functions x → xke−x are bounded on
the interval x ≥ 0 the representation above proves that the functions ξ → g( j)(ξ ,s)
remain uniformly bounded in s ≥ 0 as long as j ≤ m−1. Since
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(1− ξ )m− j−1 = s−ν ξ−2ν(st(ξ ))ν , ν =
j−m+ 1

2m
,

they remain uniformly bounded in s ≥ s0 > 0 for all j ≥ m. If s > 0 the functions
ξ → g(ξ ,s) and all their derivatives tend to zero as ξ goes to 1. �

These properties enable us to approximate the integrals (9.86) by the trapezoidal
rule, that is, to approximate the exponential function r → e−r by the functions

fn(r) =
1

n + 1

n

∑
k=1

g
( k

n + 1
,r2

)

. (9.88)

These functions converge uniformly to e−r, at least like ∼ 1/nm−1 on the whole
interval r ≥ 0 and faster than any power of 1/n on all subintervals r ≥ r0 of the
interval r > 0. This follows from the exactness of the trapezoidal rule for trigono-
metric polynomials of period 1 and degree n and the Fourier series representation of
the L2-norms of the derivatives of infinitely differentiable 1-periodic functions. The
functions (9.88) are linear combinations of the Gauss functions

r → exp
(

− t
( k

n + 1

)

r2
)

, k = 1, . . . ,n, (9.89)

that depend only indirectly on the function to be approximated. If m = 3 is set the
Rayleigh quotient takes in the functions un(x) = fn(r) approximating the ground
state eigenfunction u(x) = e−r of the hydrogen atom for the given n the values

n = 16 : −0.49996499582807
n = 32 : −0.49999999906702
n = 64 : −0.49999999999999

that approach the exact ground state energy −1/2 very rapidly. These observations
indicate that an astonishingly small number of Gauss functions already suffices to
reach a high accuracy. In fact, Braess [13] and Kutzelnigg [55] have shown that one
can reach even a kind of exponential convergence with linear combinations of such
rescaled Gauss functions in the approximation of the hydrogen ground state. With
good cause quantum chemistry today is largely based on the use of Gauss functions.

Appendix: The Standard Basis of the Spherical Harmonics

The aim of this appendix is to construct a basis of the space of the complex-valued
spherical harmonics of degree � and to continue the study of the radial-angular de-
composition from Sect. 9.1. The first observation is that the complex vector space of
the homogeneous harmonic polynomials of degree �, and with that the space of these



The Standard Basis of the Spherical Harmonics 171

spherical harmonics, have the same dimension 2�+1 as their real counterparts. The
proof is identical to that of Lemma 9.6. We start introducing the components

L1 = − i (x2D3 − x3D2), L2 = − i (x3D1 − x1D3),
L3 = − i (x1D2 − x2D1)

of the angular momentum operator L = − i x×∇. Its square (9.2) can be expressed as

L2 = L2
1 + L2

2 + L2
3

in terms of these operators. Their commutators [Lν ,Lμ ] = LνLμ −LνLμ are

[L1,L2] = i L3, [L2,L3] = i L1, [L3,L1] = i L2.

The operators L1, L2, and L3 are formally self-adjoint with respect to the L2-inner
product on the space of the infinitely differentiable functions with compact support.

Lemma. If H is a homogeneous harmonic polynomial, the functions L1H, L2H,
and L3H are homogeneous harmonic polynomials of the same degree.

Proof. They are obviously homogeneous polynomials of the same degree. Since

Δ (xiD j − x jDi) = (xiD j − x jDi)Δ

they solve, like H, the Laplace equation and are harmonic. �

Lemma. Let H be a homogeneous harmonic polynomial of degree � whose L2-norm
over the unit sphere is 1 and let L3H = mH. The harmonic polynomial

H− = L−H, L− = L1 − i L2,

satisfies then the equation L3 H− = (m−1)H−. Its L2-norm over the unit sphere S is

∫

S
|H−(η)|2 dη = �(�+ 1)−m(m−1).

Proof. As follows from the commutation relations, L3 L− = L− (L3 −1). Thus

L3H− = L3L− H = (m−1)L−H = (m−1)H−.

To calculate the L2-norm of H− over the unit sphere S let f �= 0 be a rotationally
symmetric, infinitely differentiable function with compact support and set

ψ(x) = f (x)H(x), ψ−(x) = f (x)H−(x).
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As shown in the proof of Lemma 9.2 then ψ− = L−ψ and

L2ψ = f L2H = �(�+ 1) f H = �(�+ 1)ψ ,

L3ψ = f L3H = m f H = mψ .

The formal self-adjointness of L1 and L2 and the commutation relations above yield

‖L−ψ‖2
0 =

(

ψ , (L2 −L2
3 + L3)ψ

)

=
(

�(�+ 1)−m(m−1)
)‖ψ‖2

0.

The L2-norm of H− = L−H over the unit sphere can be calculated from that using
the homogeneity of H− and H, in the same way as in the proof of Lemma 9.5. �
Particularly, H− �= 0 as long m is different from �+ 1 and −�. Based on these ob-
servations it is now easy to construct the desired basis recursively, starting from the
polynomial z� = (x1 + i x2)� in the complex variable z = x1 + i x2.

Theorem. Let H �
� be the homogeneous harmonic polynomial

H �
� (x) = N�� (x1 + i x2)�, N−2

�� = 2π
∫ π/2

−π/2
(cosϑ)2�+1 dϑ ,

and let N−2
�m = �(�+ 1)−m(m−1). The polynomials H �

� and

Hm−1
� (x) = N�m(L− Hm

� )(x), m = �, . . . ,−�+ 1,

together form an orthonormal basis of the space of the homogeneous harmonic
polynomials of degree � in the sense of the L2-inner product on the unit sphere. They
are eigenfunctions of both L2 and L3:

L2Hm
� = �(�+ 1)Hm

� , L3 Hm
� = mHm

� .

Proof. That H �
� is a normed homogeneous harmonic polynomial of degree � and

L3 H �
� = �H �

� is easily checked. That the Hm
� are normed and L3 Hm

� = mHm
� fol-

lows from the previous lemma. That they are orthogonal to each other is shown as
in the proof of Lemma 9.4 and 9.5. As the space of the homogeneous harmonic
polynomials of degree � has the dimension 2�+ 1, the Hm

� thus span this space. �
Due to their inherent symmetries as joint eigenfunctions of the operators L2 and

L3 the polynomials Hm
� can best be represented in polar coordinates:

Hm
� (r cosϕ cosϑ , r sinϕ cosϑ , r sin ϑ) = r �Y m

� (ϕ ,ϑ),

where the angles range in the intervals 0 ≤ ϕ ≤ 2π and |ϑ | ≤ π/2. The functions

Y m
� (ϕ ,ϑ) = Hm

� (cosϕ cosϑ , sinϕ cosϑ , sinϑ)
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represent the restrictions of the Hm
� to the surface of the unit sphere. They form the

standard basis of the three-dimensional spherical harmonics.
It is not especially difficult to calculate the functions Y m

� (ϕ ,ϑ) explicitly. The
first and most important observation is that they factor into products of univariate
trigonometric polynomials in the variables ϕ and ϑ .

Theorem. The three-dimensional spherical harmonics can be written as

Y m
� (ϕ ,ϑ) = eimϕPm

� (ϑ), Pm
� (ϑ) = Hm

� (cosϑ ,0,sinϑ).

Proof. Differentiation with respect to the variable ϕ leads to

∂
∂ϕ

Y m
� (ϕ ,ϑ) = i (L3 Hm

� )(cosϕ cosϑ , sinϕ cosϑ , sinϑ),

that is, because of L3 Hm
� = mHm

� , to the differential equation

∂
∂ϕ

Y m
� (ϕ ,ϑ) = im Y m

� (ϕ ,ϑ)

in the variable ϕ for ϑ kept fixed and therefore to the desired representation

Y m
� (ϕ ,ϑ) = eimϕ Y m

� (0,ϑ)

of Y m
� (ϕ ,ϑ) as product of two univariate trigonometric polynomials. �

The recursion for the polynomials Hm
� can be translated into a recursion for the

ϑ -parts of the spherical harmonics Y m
� (ϕ ,ϑ). Direct calculation shows

e−iϕ
(

i tanϑ
∂

∂ϕ
+

∂
∂ϑ

)

Y m
� (ϕ ,ϑ) = (L−Hm

� )(cosϕ cosϑ , sinϕ cosϑ , sinϑ).

Starting from P�
� (ϑ) = N��(cosϑ)� one obtains Pm

� , m = �−1, . . . ,−�, therefore via

Pm−1
� (ϑ) = N�m

(

−m tanϑ Pm
� (ϑ) +

d
dϑ

Pm
� (ϑ)

)

.

This relation also shows that the functions Pm
� are real-valued.

The function given by the expression H(x) = Hm
� (x1,−x2, x3) is like Hm

� itself a
normed homogeneous harmonic polynomial of degree �. Since

(L3H)(x) = − (L3Hm
� )(x1,−x2, x3) = −mH(x),

it is at the same time an eigenfunction of the operator L3 for the eigenvalue −m
and therefore a complex multiple H = εH−m

� , |ε| = 1, of the polynomial H−m
� . This
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implies Pm
� = εP−m

� , or, since the Pm
� are real-valued,

P−m
� (ϑ) = ±Pm

� (ϑ).

The ϕ-independent function Y 0
� (ϕ ,ϑ) = P0

� (ϑ) and the trigonometric polynomials

√
2 sin(mϕ)Pm

� (ϑ),
√

2 cos(mϕ)Pm
� (ϑ), m = 1, . . . , �,

thus form a real-valued, orthonormal basis of the spherical harmonics of degree �.
Similarly as in the real case considered in Sect. 9.1, we assign to every infinitely

differentiable function u : R
3 → C the functions given by

(Qm
� u)(x) =

{
∫

S
u(rη)Km

� (η)dη
}

Km
� (x),

where again r = |x| and the functions Km
� are the spherical harmonics assigned to

the harmonic polynomials Hm
� , now in cartesian coordinates. They are given by

Km
� (x) = Hm

�

(x
r

)

, r = |x |.

The functions Qm
� u are as in the real case themselves infinitely differentiable. The

operators Qm
� can be extended from the space of the infinitely differentiable func-

tions with compact support to L2 and represent then L2-orthogonal projections onto
subspaces of L2 of the same structure as in the real case.

Lemma. If u : R
3 → C is an infinitely differentiable function,

u = Qm
� u ⇔ L2u = �(�+ 1)u, L3u = mu.

Proof. For all such functions u and all admissible indices � and m,

L2Qm
� u = �(�+ 1)Qm

� u, L3Qm
� u = mQm

� u,

which can be shown as in the proof of Lemma 9.2 and uses that Hm
� is a joint

eigenfunction of the operators L2 and L3. If therefore u = Qm
� u, then

L2u = �(�+ 1)u, L3u = mu.

Conversely let u be an infinitely differentiable function that satisfies these equations.
For all infinitely differentiable functions v with compact support,

�′(�′ + 1)(u,Qm′
�′ v) = (u,L2Qm′

�′ v)= (L2u,Qm′
�′ v) = �(�+ 1)(u,Qm′

�′ v),

m′ (u,Qm′
�′ v) = (u,L3Qm′

�′ v)= (L3u,Qm′
�′ v) = m(u,Qm′

�′ v).
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That is, (u,Qm′
�′ v) = 0 if �′ �= � or m′ �= m. By the complex version of Theorem 9.1

(u,v) =
∞

∑
�′=0

�′

∑
m′=−�′

(u,Qm′
�′ v) = (u,Qm

� v)

follows. This implies (u,v) = (Qm
� u,v) and, as v was arbitrary, u = Qm

� u. �
The Fourier transform commutes with the operators L2 and L3:

Lemma. For all infinitely differentiable functions u with compact support,

(Lν û)(ω) =
( 1√

2π

)3 ∫

(Lνu)(x)e−iω ·x dx, ν = 1,2,3,

or, in abbreviated form, LνFu = F Lνu. Moreover L2Fu = F L2u.

Proof. The proof is based on integration by parts. For example,

− i
(

ω2
∂

∂ω3
−ω3

∂
∂ω2

)

û(ω)

= − i
( 1√

2π

)3∫

u(x)
(− ix3 ω2 + iω3 x2

)

e−iω ·x dx

= − i
( 1√

2π

)3∫

u(x)
(

x3
∂

∂x2
− x2

∂
∂x3

)

{

e−iω ·x}dx

= − i
( 1√

2π

)3 ∫
(

x2
∂

∂x3
− x3

∂
∂x2

)

{

u(x)
}

e−iω ·x dx

and therefore L1Fu = F L1u. The other components are treated analogously. �
The Fourier transform commutes therefore, for the given basis of the spherical har-
monics, also with the radial-angular decomposition from Theorem 9.1:

Theorem. For all square integrable functions u : R
3 → C,

Qm
� Fu = FQm

� u.

Proof. Let u be first an infinitely differentiable function with compact support. Its
projections Qm′

�′ u are then of the same type and the following identities hold:

L2FQm′
�′ u = F L2Qm′

�′ u = �′ (�′ + 1)FQm′
�′ u,

L3FQm′
�′ u = F L3Qm′

�′ u = m′ FQm′
�′ u.

By the Lemma above therefore FQm′
�′ u = Qm′

�′ FQm′
�′ u. This implies Qm

� FQm′
�′ u = 0 if

�′ �= � or m′ �= m and thus, by the continuity of the operator Qm
� F and Theorem 9.1,
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Qm
� Fu =

∞

∑
�′=0

�′

∑
m′=−�′

Qm
� FQm′

�′ u = FQm
� u.

Since the infinitely differentiable functions with compact support are dense in L2

and the operators F and Qm
� from L2 to L2 are bounded, the proposition follows. �

This means particularly that the Fourier transform Fu of a square integrable function
coincides with its projection Qm

� Fu if and only if u = Qm
� u. The Fourier transform

and the Fourier back transform of a square integrable function

x → 1
r

f (r)Km
� (x), r = |x |,

are therefore of the same form as the function itself.
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tielles. Masson, Paris (1983)
69. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Aca-

demic Press, San Diego (1980)
70. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self

Adjointness. Academic Press, San Diego (1975)
71. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators.

Academic Press, San Diego (1978)
72. Schneider, R.: Analysis of the projected coupled cluster method in electronic structure calcu-

lation. Numer. Math. 113, 433–471 (2009)
73. Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. der Physik 79, 361–376 (1926)
74. Simon, B.: Pointwise bounds on eigenfunctions and wave packets in N-body quantum system I.

Proc. Am. Math. Soc. 208, 317–329 (1975)
75. Simon, B.: Schrödinger operators in the twentieth century. J. Math. Phys. 41, 3523–3555

(2000)
76. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of

functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)
77. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton

University Press, Princeton (1971)



180 References

78. Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathemat-
ics 1821. Springer, Berlin Heidelberg New York (2003)

79. Thaller, B.: Visual Quantum Mechanics. Springer, New York (2000)
80. Thaller, B.: Advanced Visual Quantum Mechanics. Springer, New York (2004)
81. Titchmarsh, E.: Eigenfunction Expansions, vols. I and II. Oxford University Press, Oxford

(1953, 1958)
82. Titchmarsh, E.: On the eigenvalues in problems with spherical symmetry. Proc. R. Soc. Lond.,

Ser. A, Math. Phys. Eng. Sci. 245, 147–155 (1958)
83. Titchmarsh, E.: On the eigenvalues in problems with spherical symmetry II. Proc. R. Soc.

Lond., Ser. A, Math. Phys. Eng. Sci. 251, 46–54 (1959)
84. Titchmarsh, E.: On the eigenvalues in problems with spherical symmetry III. Proc. R. Soc.

Lond., Ser. A, Math. Phys. Eng. Sci. 252, 436–444 (1959)
85. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)
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of rapidly decreasing functions, 14
of square integrable functions, 18

Friedrichs extension theorem, 44

Gauss functions, 13, 39, 43, 165, 168
Gaussian, see Gauss functions

Hamilton operator
abstract, 35
atomic, 111
electronic, 1, 51
of the free particle, 31
of the harmonic oscillator, 38

Hardy inequality, 53
modified, 97

harmonic oscillator, 37
eigenfunctions, eigenvalues, 39, 43, 162

harmonic polynomials, 143, 171
Hunziker-van Winter-Zhislin theorem, 1, 82
hyperbolic cross spaces, 3, 7, 125

dimension estimate, 131
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indistinguishable particles, 46
wave functions, 48

ionization threshold, 60, 81
isolated eigenvalue, 65

Laplace transform, 25, 168

magnetic quantum number, 114, 162
min-max principle, 70, 72
minimum, ground state energy, 60, 81
mixed derivatives, 4, 6, 91

existence, 109
exponential decay, 8, 115

partition number, 134, 135
Pauli principle, 4, 49, 55
Plancherel theorem, 16
plane wave, 28
principal quantum number, 114, 162
propagators, group of, 32

generator, 32

rapidly decreasing functions, 13
Rayleigh quotient, 67
Rayleigh-Ritz method, 71
Riemann-Lebesgue theorem, 18

Schrödinger equation, 1
electronic, 1, 51
of free particles, 30
radial, 155
stationary, 37
time-dependent, 33
weak form, 45

self-adjoint operator, 34
Slater determinant, 50, 124
sparse grid spaces, 3, 125
spectrum, 62

discrete, 65, 81, 85
essential, 65, 81, 85

spherical harmonics, 144, 171
spin, 48, 55
Stone’s theorem, 34

uncertainty principle, 35, 36

virial theorem, 112

wave equations, 29
wave packets, 28
weak derivatives, 22
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175 rue du Chevaleret,
75013 Paris, France
E-mail: teissier@math.jussieu.fr

For the “Mathematical Biosciences Subseries” of LNM:

Professor P.K. Maini, Center for Mathematical Biology,
Mathematical Institute, 24-29 St Giles,
Oxford OX1 3LP, UK
E-mail: maini@maths.ox.ac.uk

Springer, Mathematics Editorial, Tiergartenstr. 17,
69121 Heidelberg, Germany,
Tel.: +49 (6221) 487-259
Fax: +49 (6221) 4876-8259
E-mail: lnm@springer.com


	Regularityand Approximabilityof ElectronicWave Functions
	Preface
	Contents
	1 Introduction and Outline
	2 Fourier Analysis
	3 The Basics of Quantum Mechanics
	4 The Electronic Schrödinger Equation
	5 Spectrum and Exponential Decay
	6 Existence and Decay of Mixed Derivatives
	7 Eigenfunction Expansions
	8 Convergence Rates and Complexity Bounds
	9 The Radial-Angular Decomposition
	References
	Index
	Series


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




