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Preface

Evolutionary computation (EC) techniques are efficient, nature-inspired meth-
ods based on the principles of natural evolution and genetics. Due to their effi-
ciency and simple underlying principles, these methods can be used for a diverse
range of activities including problem solving, optimization, machine learning and
pattern recognition. A large and continuously increasing number of researchers
and professionals make use of EC techniques in various application domains.
This volume presents a careful selection of relevant EC examples combined with
a thorough examination of the techniques used in EC. The papers in the volume
illustrate the current state of the art in the application of EC and should help
and inspire researchers and professionals to develop efficient EC methods for
design and problem solving.

All papers in this book were presented during EvoApplications 2010, which
included a range of events on application-oriented aspects of EC. Since 1998,
EvoApplications — formerly known as EvoWorkshops — has provided a unique
opportunity for EC researchers to meet and discuss application aspects of EC
and has been an important link between EC research and its application in a
variety of domains. During these 12 years, new events have arisen, some have
disappeared, while others have matured to become conferences of their own, such
as EuroGP in 2000, EvoCOP in 2004, and EvoBIO in 2007. And from this year,
EvoApplications has become a conference as well.

EvoApplications is part of EVO*, Europe’s premier co-located events in the
field of evolutionary computing. EVO* was held from the 7th to the 9th of
April 2010 in the beautiful city of Istanbul, Turkey, which was European City
of Culture in 2010. Evo* 2010 included, in addition to EvoApplications, Eu-
roGP, the main European event dedicated to genetic programming; EvoCOP,
the main European conference on EC in combinatorial optimization; EvoBIO,
the main European conference on EC and related techniques in bioinformatics
and computational biology. The proceedings for all of these events, EuroGP 2010,
EvoCOP 2010 and EvoBIO 2010, are also available in the LNCS series (volumes
6021, 6022, and 6023).

Moreover, thanks to the large number of submissions received, the proceed-
ings for EvoApplications 2010 are divided across two volumes. The present vol-
ume, which contains contributions for: EvoCOMNET, EvoENVIRONMENT,
EvoFIN, EvoMUSART, and EvoTRANSLOG; and volume one (LNCS 6024),
which contains contributions for: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoIN-
TELLIGENCE, EvoNUM, and EvoSTOC.

The central aim of the EVO* events is to provide researchers, as well as
people from industry, students, and interested newcomers, with an opportunity
to present new results, discuss current developments and applications, or just
become acquainted with the world of EC. Moreover, it encourages and reinforces
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possible synergies and interactions between members of all scientific communities
that may benefit from EC techniques.

EvoApplications 2010 consisted of the following individual events:

– EvoCOMNET, the 7th European Event on the Application of Nature-Inspired
Techniques for Telecommunication Networks and other Parallel and Dis-
tributed Systems

– EvoCOMPLEX, the 1st European Event on Evolutionary Algorithms and
Complex Systems

– EvoENVIRONMENT, the 2nd European Event on Nature-Inspired Methods
for Environmental Issues

– EvoFIN, the 4th European Event on Evolutionary and Natural Computation
in Finance and Economics

– EvoGAMES, the 2nd European Event on Bio-inspired Algorithms in Games
– EvoIASP, the 12th European Event on Evolutionary Computation in Image

Analysis and Signal Processing
– EvoINTELLIGENCE, the 1st European Event on Nature-Inspired Methods

for Intelligent Systems
– EvoMUSART, the 8th European Event on Evolutionary and Biologically

Inspired Music, Sound, Art and Design
– EvoNUM, the 3rd European Event on Bio-inspired Algorithms for Continu-

ous Parameter Optimization
– EvoSTOC, the 7th European Event on Evolutionary Algorithms in Stochas-

tic and Dynamic Environments
– EvoTRANSLOG, the 4th European Event on Evolutionary Computation in

Transportation and Logistics

EvoCOMNET addresses the application of EC techniques to problems in dis-
tributed and connected systems such as telecommunication and computer net-
works, distribution and logistic networks, interpersonal and interorganizational
networks, etc. To address these challenges, this event promotes the study and
the application of strategies inspired by the observation of biological and evolu-
tionary processes, that usually show the highly desirable characteristics of being
distributed, adaptive, scalable, and robust.

EvoCOMPLEX covers all aspects of the interaction of evolutionary algo-
rithms (and metaheuristics in general) with complex systems. Complex sys-
tems are ubiquitous in physics, economics, sociology, biology, computer science,
and many other scientific areas. Typically, a complex system is composed of
smaller aggregated components, whose interaction and interconnectedness are
non-trivial. This leads to emergent properties of the system, not anticipated by
its isolated components. Furthermore, when the system behavior is studied from
a temporal perspective, self-organization patterns typically arise.

EvoENVIRONMENT is devoted to the use of nature-inspired methods for
environmental issues. It deals with many diverse topics such as waste manage-
ment, sewage treatment, control of greenhouse gas emissions, biodegradation of
materials, efficient energy use, or use of renewable energies, to name but a few.
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EvoFIN is the only European event specifically dedicated to the applications
of EC, and related natural computing methodologies, to finance and economics.
Financial environments are typically hard, being dynamic, high-dimensional,
noisy and co-evolutionary. These environments serve as an interesting test bed
for novel evolutionary methodologies.

EvoGAMES aims to focus the scientific developments onto computational
intelligence techniques that may be of practical value for utilization in existing
or future games. Recently, games, and especially video games, have become an
important commercial factor within the software industry, providing an excel-
lent test bed for the application of a wide range of computational intelligence
methods.

EvoIASP, the longest-running of all EvoApplications which celebrated its
12th edition this year, has been the first international event solely dedicated
to the applications of EC to image analysis and signal processing in complex
domains of high industrial and social relevance.

EvoINTELLIGENCE is devoted to the use of nature-inspired methods to cre-
ate all kinds of intelligent systems. The scope of the event includes evolutionary
robotics, artificial life and related areas. Intelligent systems do not necessarily
have to exhibit human or animal-like intelligence. Intelligent behavior can also
be found in everyday devices such as a digital video recorder or handheld devices
such as an MP3 player which learn from the human who is operating the device.

EvoMUSART addresses all practitioners interested in the use of EC tech-
niques for the development of creative systems. There is a growing interest in
the application of these techniques in fields such as art, music, architecture and
design. The goal of this event is to bring together researchers that use EC in
this context, providing an opportunity to promote, present and discuss the lat-
est work in the area, fostering its further developments and collaboration among
researchers.

EvoNUM aims at applications of bio-inspired algorithms, and cross-fertiliza-
tion between these and more classical numerical optimization algorithms, to
continuous optimization problems in engineering. It deals with theoretical as-
pects and engineering applications where continuous parameters or functions
have to be optimized, in fields such as control, chemistry, agriculture, electricity,
building and construction, energy, aerospace engineering, design optimization.

EvoSTOC addresses the application of EC in stochastic and dynamic en-
vironments. This includes optimization problems with changing, noisy, and/or
approximated fitness functions and optimization problems that require robust
solutions. These topics recently gained increasing attention in the EC commu-
nity and EvoSTOC was the first event that provided a platform to present and
discuss the latest research in this field.

EvoTRANSLOG deals with all aspects of the use of evolutionary computa-
tion, local search and other nature-inspired optimization and design techniques
for the transportation and logistics domain. The impact of these problems on
the modern economy and society has been growing steadily over the last few
decades, and the event aims at design and optimization techniques such as



X Preface

evolutionary computing approaches allowing the use of computer systems for
systematic design, optimization, and improvement of systems in the transporta-
tion and logistics domain.

Continuing in the tradition of adapting the list of the events to the needs
and demands of the researchers working in the field of evolutionary computing,
EvoINTERACTION, the European Event on Interactive Evolution and Human-
ized Computational Intelligence, and EvoHOT, the European Event on Bio-
inspired Heuristics for Design Automation, decided not to run in 2010 and will
run again in 2011. Two new events were also proposed this year: EvoCOMPLEX,
the First European Event on Evolutionary Algorithms and Complex Systems,
and EvoINTELLIGENCE, the First European Event on Nature-Inspired Meth-
ods for Intelligent Systems.

The number of submissions to EvoApplications 2010 was once again very
high, cumulating 188 entries (with respect to 133 in 2008 and 143 in 2009). The
following table shows relevant statistics for EvoApplications 2010 (both short
and long papers are considered in the acceptance statistics), compared with
those from the 2009 edition:

Event 2010 2009
Submissions Accept Ratio Submissions Accept Ratio

EvoCOMNET 17 12 71% 21 15 71%
EvoCOMPLEX 12 6 50% - - -
EvoENVIRONMENT 5 4 80% 5 4 80%
EvoFIN 17 10 59% 14 8 57%
EvoGAMES 25 15 60% 15 10 67%
EvoIASP 24 15 62% 14 7 50%
EvoINTELLIGENCE 8 5 62% - - -
EvoMUSART 36 16 44% 26 17 65%
EvoNUM 25 15 60% 16 9 56%
EvoSTOC 11 6 54% 11 7 64%
EvoTRANSLOG 11 5 45% 11 6 54%
Total 191 109 57% 143 91 64%

As for previous years, accepted papers were split into oral presentations and
posters. However, this year, each event made their own decision on paper length
for these two categories. Hence, for some events, papers in both categories are of
the same length. The acceptance rate of 57.1% for EvoApplications 2010, along
with the significant number of submissions, is an indicator of the high quality
of the articles presented at the events, showing the liveliness of the scientific
movement in the corresponding fields.

Many people have helped make EvoApplications a success. We would like to
thank the following institutions:

– Computer Engineering Department of Istanbul Technical University, Turkey,
for supporting the local organization

– Istanbul Technical University, Microsoft Turkey, and the Scientific and Tech-
nological Research Council of Turkey, for their patronage of the event



Preface XI

– Centre for Emergent Computing at Edinburgh Napier University, Scotland,
for administrative help and event coordination

We want to especially acknowledge our invited speakers: Kevin Warwick (Uni-
versity of Reading, UK), Luigi Luca Cavalli-Sforza (Stanford School of Medicine,
USA); and Günther Raidl (Vienna University of Technology, Austria) and Jens
Gottlieb (SAP, Walldorf, Germany) for their special EvoCOP 10th anniversary
talk.

We are also very grateful to all the people who provided local support, in
particular Sanem Sarıel-Talay, Şule Gündüz-Öğüdücü, Ayşegül Yayımlı, Gülşen
Cebiroğlu-Eryiğit, and H. Turgut Uyar.

Even with an excellent support and location, an event like EVO* would
not have been feasible without authors submitting their work, members of the
Program Committees dedicating their energy in reviewing those papers, and an
audience. All these people deserve our gratitude.

Finally, we are grateful to all those involved in the preparation of the event,
especially Jennifer Willies for her unfaltering dedication to the coordination of
the event over the years. Without her support, running such a type of confe-
rence with a large number of different organizers and different opinions would
be unmanageable. Further thanks to the local organizer A. Şima (Etaner) Uyar
for making the organization of such an event possible and successful. Last but
surely not least, we want to specially acknowledge Stephen Dignum for his hard
work as Publicity Chair of the event, and Marc Schoenauer for his continuous
help in setting up and maintaining the MyReview management software.

April 2010 Cecilia Di Chio
Anthony Brabazon

Gianni Di Caro
Marc Ebner

Muddassar Farooq
Andreas Fink

Jörn Grahl
Gary Greenfield

Penousal Machado
Michael O’Neill

Ernesto Tarantino
Neil Urquhart



Organization

EvoApplications 2010 was part of EVO* 2010, Europe’s premier co-located
events in the field of evolutionary computing, that also included the conferences
EuroGP 2010, EvoCOP 2010, and EvoBIO 2010.

Organizing Committee

EvoApplications Chair: Cecilia Di Chio, University of Strathclyde, UK
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Anca Gog Babes-Bolyai University, Romania
Márk Jelasity University of Szeged, Hungary
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Miguel Angel Vega-Rodŕıguez

TCP Modification Robust to Packet Reordering in Ant Routing
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Malgorzata Gadomska-Kudelska and Andrzej Pacut

Solving the Physical Impairment Aware Routing and Wavelength
Assignment Problem in Optical WDM Networks Using a Tabu Search
Based Hyper-Heuristic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Ali Keleş, A. Şima Uyar, and Ayşegül Yayımlı
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Abstract. A Distributed Denial of Service Attack is a coordinated attack on the 
availability of services of a victim system, launched indirectly through many 
compromised computers. Intrusion detection systems (IDS) are network secu-
rity tools that process local audit data or monitor network traffic to search for 
specific patterns or certain deviations from expected behavior. We use an Arti-
ficial Immune System (AIS) as a method of anomaly-based IDS because of the 
similarity between the IDS architecture and the Biological Immune Systems.  
We improved the jREMISA study; a Multiobjective Evolutionary Algorithm in-
spired AIS, in order to get better true and false positive rates while detecting 
DDoS attacks on the MIT DARPA LLDOS 1.0 dataset. We added the method 
of r-continuous evaluations, changed the Negative Selection and Clonal Selec-
tion structure, and redefined the objectives while keeping the general concepts 
the same. The 100% true positive rate and 0% false positive rate of our ap-
proach, under the given parameter settings and experimental conditions, shows 
that it is very successful as an anomaly-based IDS for DDoS attacks.  

Keywords: Intrusion Detection, Distributed Denial of Service Attack, DARPA 
LLDOS Dataset, Artificial Immune System, Multiobjective Evolutionary  
Algorithm. 

1   Introduction 

An intrusion detection system (IDS) is used to detect intrusions, which are actions 
that attempt to compromise the integrity, confidentiality or availability of a resource. 
Usually, an intruder first gains access to a single host by exploiting the software 
flaws, then tries to break-into other hosts in the network via the formerly compro-
mised host, like Denial of Service (DoS) attacks. The objective of a DoS attack is to 
cause the target system to fail the services it normally provides. In a Distributed De-
nial of Service (DDoS) attack, one target is attacked simultaneously from a large 
number of sources. DDoS attacks often use the computers that have been previously 
exploited, so that an outsider can use them to launch an attack [1, 2, 3]. These zombie 
computers play their roles in the intermediate phase of the attack. 
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We used the artificial immune system (AIS) as a method of anomaly-based intru-
sion detection because of the similarity between the IDS architecture and the biologi-
cal immune system (BIS), which is a parallel and distributed adaptive system for 
detecting antigens. An AIS-based IDS classifies network traffic as either self or non-
self by training a population of antigen detectors. jREMISA [4] is a multiobjective 
evolutionary algorithm (MOEA) inspired AIS has been developed previously. In this 
study, we enhanced jREMISA in order to get better true and false positive rates while 
detecting DDoS attacks on the MIT DARPA LLDOS 1.0 dataset.  

2   Background 

2.1   Intrusion Detection Systems (IDS)  

The main objective of IDS is detecting wrong, unauthorized and malicious usage of 
computer systems by inside and outside intruders. The key is to maximize accurate 
alerts (true-positive) while at the same time minimizing the occurrence of non-
justified alerts (false-positive). The metrics used in the evaluation of IDS are: 
 

• True positive (TP) which is a real attack correctly categorized as an attack, 
• False positive (FP) which is a false alert erroneously raised for normal data, 
• True negative (TN) which is normal data that correctly does not generate an 
alert, 
• False negative (FN) which is a missed attack erroneously categorized as normal. 

 

IDS are classified into two groups as misuse detection and anomaly detection. In the 
misuse detection approach, network and system resources are examined in order to 
find known wrong usages by pattern matching techniques [5]. In anomaly detection 
systems, decisions are based on the normal network and system behaviors by using 
statistical or machine learning techniques to find both known and unknown attacks. A 
small deviation from normal behavior is detected as an intrusion [6, 7].  

2.2   Distributed Denial of Service Attack (DDoS) 

A DDoS attacker uses a large number of hosts to launch DoS attacks of SYN flood-
ing, UDP flooding, and ICMP flooding against any target system. DDoS tools, like 
TFN, Trinoo, Stacheldraht, and Mstream install daemon programs on all of the com-
promised hosts which are controlled by a master program [2]. DDoS attacks can cause 
serious damages to Internet services. Tools to gain root access to other machines are 
freely available on the Internet [8]. 

2.3   Datasets 

Releasing intrusion detection evaluation data is a problem because of privacy con-
cerns. To overcome this problem, Lincoln Laboratory (LL), under sponsorship of 
Defense Advanced Research Projects Agency (DARPA), created the Intrusion Detec-
tion Evaluation Dataset (IDEVAL) that serves as a benchmark [9].  
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In 1998, 1999 and 2000, they built a network to simulate an Air Force base. They 
gathered tcpdump, Sun BSM, process and file system information after the back-
ground activities were produced with scripts, and attacks were injected at well defined 
points. More than 200 instances of 58 different attacks were embedded in the test data 
[10]. The first attack scenario example dataset to be created for DARPA in 2000 is 
LLDOS 1.0 which includes a DDoS attack. 

In the LLDOS 1.0 scenario, the attacker uses the Solaris sadmind exploit to gain 
root access to three Solaris hosts of the simulated network and the Mstream DDOS 
tool to launch the attack. An Mstream "server” is installed on each of the three abused 
intermediate hosts, while an Mstream "master", which controls the "servers" is in-
stalled on one of these hosts. The DDoS attack is started by these “servers” simulta-
neously [11]. 

The attack scenario has five phases:  
 

1. IPsweep of the network,  
2. Probe of active hosts to look for the sadmind tool running on Solaris hosts,  
3. Break-ins via the sadmind exploits,  
4. Installation of the trojan mstream DDoS software on three hosts,  
5. Launching the DDoS attack. 

3   JREMISA (Java REtrovirus-inspired Multiobjective Immune 
System Algorithm) 

In [4], an Artificial Immune System [12] is used together with Multiobjective Evolu-
tionary Algorithms [13] in order to get good detectors with the best classifying fitness 
degree and multiobjective hypervolume size. Network traffic is classified as self and 
non-self with the help of antigen detectors which are trained using a dataset. 

Multiobjective evolutionary algorithms (MOEA) are added to the AIS. A MOEA is 
preferred because it presents a set of trade-off solutions to the decision maker instead 
of one solution after evaluating the data for more than one objective. The objectives 
used in [4] are: 

 

1. Minimization of the classification error rate which is obtained by adding the 
number of contradicting bits in true positive evaluations and adding the number of 
non-contradicting bits in true negative evaluations, since efficiency of the detector 
increases while total score of this objective decreases.  
2. Minimization of the deviation from the negative selection affinity threshold. 
The scope of the detectors should not be too high to label the normal traffic as 
anomaly and too low to label the anomaly traffic as normal.  
 

As a result, it is aimed to maximize the hypervolume of detectors which is the rectan-
gular area covered by Pareto-front points and a reference point in the target space that 
shows the quality of the solutions.  

3.1   Representation of Antigens and Antibodies 

Antigen (Ag) and Antibody (Ab) chromosomes are binary arrays. Antigens are  
represented differently for three most common IP protocols of TCP, UDP and ICMP 
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traffic, where TCP Ag is coded using 240 bits, UDP Ag is coded using 170 bits and 
ICMP Ag is coded using 138 bits as representing all possible fields of IP, TCP, UDP 
and ICMP headers (IP=122, TCP= 118, UDP=48, ICMP=16). Decimal values of Ag 
packet header fields are transformed to equivalent binary values. 

Ab chromosomes are composed of three parts as DNA (binary), RNA (binary), and 
seven state properties (integer). DNA bits are created during negative selection and is 
the only part that is evaluated against Ag chromosomes. RNA is a copy of DNA and 
is used to escape local optima. If the fitness value of the after-mutation DNA is better 
than before-mutation DNA, the new DNA is copied to RNA; otherwise RNA is cop-
ied to DNA in order to return the old gene values. There are seven characters at the 
end of the chromosome: λ=name, α=number of false detections, ρ= (true positive + 
true negative) fitness score, φ= (false positive + false negative) fitness score, 
η=deviation from affinity threshold, β=whether broadcasted on the network (yes/no), 
ψ=number of Ab’s dominating to this Ab. Hamming distances are used as the affinity 
measure. 

3.2   Immune Algorithm 

Pseudocode of jREMISA is given Algorithm 1. Crossover is not applied since  
mutation is considered to be sufficient to make Ab’s move in the objective search 
space, and not corrupt the good solutions. Through the 3-7 lines of the algorithm, the 
negative selection phase is implemented in which Ab’s are created randomly and 
evaluated against all of the Ag’s in a self-only dataset according to a pre-determined 
affinity threshold. The creation of this dataset is explained in detail in Section 5.1- 
Test Designs. If an Ab shows similarity to a self Ag, it is discarded without a re-
placement. The primary population is separated into three groups according to the IP 
protocols, so that a non-TCP Ab is not compared with a TCP Ab. Every Ag in the 
evaluation window represents a new generation and operations explained below are 
applied to all of the Ab’s in the population: 
 

• Fitness function: Hamming distance (H) which is defined as the similarity of 
the Ab and Ag DNA genes is calculated. One of the below cases will occur when 
the affinity threshold and the truth set are evaluated together:   
 

o True negative (Ag=self, Ab evaluates it as self): obj1+= H, copy DNA to 
RNA, obj2 += %1; 
o True positive (Ag= non-self , Ab evaluates it  as non-self): obj1+= 
(Aglength – H), copy DNA to RNA, obj2+= %1; 
o False positive (Ag=self, Ab evaluates it as non-self): falseDetections++, 
copy RNA to DNA, obj2-= %1; 
o False negative (Ag= non-self , Ab evaluates it as self): falseDetections ++, 
copy RNA to DNA, obj2-= %1. 

First objective is penalized in true positives/negatives and second objective is pe-
nalized in false positives/negatives. H should be zero in an ideal true negative; 
otherwise the number of non-contradicting bits is added to the obj1 value.  H 
should be equal to the length of Ag in an ideal true positive; otherwise the number 
of contradicting bits is added to obj1 value. 
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• Cauchy Mutation is applied on the penalized Ab bits.  
• P*-Test: It is applied to each Ab in order to calculate how many of the  
other Ab’s dominate it. All of the Ab’s are sorted using the Quicksort algorithm 
according to these domination values. 

procedure jREMISA
begin
repeat
     Creation of Primary TCP, UDP and ICMP Population (Popp)
     Empty Initialization of Secondary Population (Pops)

     Negative_selection(Popp,data_setclean,threshold)        
until (end of data_setclean)
repeat

FitnessFunction (ag,threshold)
    MutationCauchy(Popp)

P_optimality()
    ClonalSelection(0.05)
    MutationUniform(Pops)
    Popp s //Copy the best Pops to the Popp of next generation

if (networking)

        broadcast(Pops) // Offer non-dominated Ab’s to other AIS 

        processReceived()
Endif

until (end of data_setattack)
End

 

Algorithm 1. The pseudocode of the jREMISA algorithm 

• Clonal Selection: %5 of the non-dominated Ab’s of the primary population are 
selected with an elitist selection and copied to the secondary population. Copied 
Ab’s are cloned six times in order to have a large population. Copied and cloned 
Ab’s are mutated for n-random bit position (n=objective number (2) + Pareto-
dominance value).  The Ab’s from the secondary population with the highest fit-
ness values are copied to the primary population instead of the discarded Ab’s be-
cause of the maximum false detection count; so that Popp reaches its original size. 
At last, all of the dominated Ab’s are discarded from Pops. 

4   Proposed Improvements on jREMISA 

In this study, we did the following improvements on jREMISA in order to get better 
false-positive rates: 
 
 

1. Hamming distance evaluations in the Negative Selection, Fitness Function and 
Clonal Selection steps are enhanced using r-continuous bit evaluations. Two com-
pared chromosomes need to have at least r-continuous bits the same to be consid-
ered alike. We used the r-continuous bits requirement with the previous Hamming 
distance calculations in order to get a stronger evaluation. 
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2. The random Ab’s of Negative Selection which recognize the self Ag’s are dis-
carded but they are replaced with new random Ab’s until the number of mature 
Ab’s reaches the predefined population sizes. Therefore, there will be a sufficient 
number of mature Ab’s under any condition. 
3. Minimization of false positive and negative fitness scores is used as the second 
objective instead of minimization of deviation from the affinity threshold.  
4. Not all of the dominated Ab’s in the secondary population are discarded at the 
end of the Clonal Selection, but the size of the secondary population is trimmed to 
the size of the primary population and the rest of the dominated Ab’s are sorted 
according to their dominance values. 
5. Cloned Ab’s are re-evaluated with a new Fitness Function and P-optimality test 
in Clonal Selection since their chromosomes have changed after Uniform Muta-
tion. Therefore, later selected Ab’s of the secondary population will have even pa-
rameter values with the Ab’s of the primary population. 
6. Uniform Mutation is not applied to the originals of the cloned Ab’s in Clonal 
Selection in order not to destroy their elitism.  

 

We made all of the above additions in order to get not only good training results as 
the original jREMISA but also good test results. R-continuous bits evaluation de-
creases the false detections since it puts another strict criterion for Ab similarities.  
Before the second improvement we couldn’t have enough number of non-self Ab 
populations after the Negative Selection process under high threshold values like 42 
and over. We decided not to aim the minimization of the deviation from the affinity 
threshold since the system had better values under larger deviations as stated in third 
improvement.  

5   Experiments 

5.1   Test Designs 

The tests are implemented on Pentium Core 2 Duo 2.4 GHz computers which have 
Windows XP SP3 operating systems. There are three different tests of the improved 
jREMISA with different settings of the parameters of affinity threshold values, r-
continuous values and primary population sizes in order to find the best parameter 
group to get better true and false positive results. Finally, the original and the im-
proved jREMISA’s are compared according to the changing threshold values in order 
to see the improvement. Each test has 20 runs to get the mean and standard deviation 
values of the evaluation metrics of true positive rate, which is the fraction of all at-
tacks that are actually detected and false positives rate, which is the fraction of all 
normal data that produces (false) alerts.  

DARPA LLDOS 1.0 dataset is used in all of the tests. However, the truth set of this 
dataset is not given on the Lincoln Laboratory website. So, we created the truth set 
ourselves since we knew the structure of the attack and the identity of the attacker. 
We obtained a self-only data set to train our Ab population by removing all of the 
incoming traffic related to the DDoS attack by using Ethereal [14]. Secondary popula-
tion Ab chromosomes are used in the tests with the original dataset which includes the 
attack traffic. 
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5.2   Results 

Affinity Threshold Tests. Affinity threshold values changing from 38% up to 54% 
are applied to the improved jREMISA to decide the best threshold value that yields 
the best true and false positives. These threshold values are selected with respect to 
the original jREMISA study [4] in which they are experimentally obtained. TCP, 
UDP and ICMP population sizes are 100 chromosomes each and 10 is used as the r-
continuous value. The system doesn’t work for the threshold values over 54%. As it is 
seen on the Figures 1 and 2, there is not a great difference in these results; most of the 
true positive rates are above 97%, some of them are 100% and most of the false posi-
tive rates are below 1,5 %. 

 

 

Fig. 1. True positives rates of changing affinity thresholds (%) 

 

Fig. 2. False positives rates of changing affinity thresholds (%) 
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R-continuous Tests. R-continuous values changing from 8 up to 15 are applied to the 
improved jREMISA to decide the best r-continuous value that yields the best true and 
false positives. TCP, UDP and ICMP population sizes are 100 chromosomes each and 
50%  is used as affinity threshold value. As it is seen in Fig. 3, there is not a great 
difference in the results of true positives; most of them are above 97%. False positive 
rates are below 1,5 % except the first two. R-continuous value of 15 has 0% false 
positive rate. 

 

Fig. 3. True and false positives rates of changing r-continuous values 

Popp size Tests. TCP Ab numbers changing from 100 up to 500 under the condition 
of constant UDP and ICMP Ab population sizes of 100 chromosomes each, are ap-
plied to the improved jREMISA to decide the best TCP Ab population size that yields 
the best true and false positives. 50% is used as affinity threshold value and 10 is used 
as the r-continuous value. 

 

Fig. 4. True and false positives rates of changing Popp TCP Ab numbers 

As it is seen in Fig. 4, there is not a great difference in the results of true positives; 
all of them except the first one are 100%. Figure 4 shows that false positive rates are 
below 0.1 % except the first one. 500 TCP Ab number has a 0% false positive rate. 
The computational overhead of increasing the population size can be ignored since 
this training part of the IDS will be executed offline. 
 
Comparison of the original and the improved jREMISA. When we compare the 
performance of the original and the improved jREMISA over the DARPA LLDOS 
1.0 dataset, we see that the improved version is better than the original one. All of the 
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true positive rates of the improved jREMISA with TCP, UDP and ICMP population 
sizes of 300,100 and 100 respectively and 10 as r-continuous value, are 100% as seen 
in Fig. 5. On the other hand, the true positive rates of the original jREMISA are above 
92% except the last two ones. The big difference in the false positive rates can be seen 
in the Fig. 5. All of the false positive rates of the improved jREMISA are 0% where 
all of the false positive rates of the original jREMISA are 99,98%. The orginal jRE-
MISA has these high false detection rates since it was left with only successful train-
ing results which was not enough to get good test results. 

 

Fig. 5. Comparison of true and false positives rates with changing thresholds (%) 

6   Conclusion 

We used the artificial immune system as a method of anomaly type intrusion detec-
tion because of the similarity between the IDS architecture and the biological immune 
system. We improved jREMISA [4]; a multiobjective evolutionary algorithm inspired 
artificial immune system, in order to get better true and false positive rates while 
detecting DDoS attacks on the MIT DARPA LLDOS 1.0 dataset. We added the r-
continuous evaluation method, changed the Negative Selection and Clonal Selection 
structure, redefined the second objective while keeping the general concept the same. 

We made three different tests of the improved jREMISA with different settings for 
the parameters of affinity threshold values, r-continuous values and primary popula-
tion sizes in order to find the best parameter group to get better true and false positive 
results. At last, the original and the improved jREMISA’s are compared using the 
determined good parameter groups. The tests are performed by changing the threshold 
values in order to see the improvement. The 100% true positive rate and 0% false 
positive rate of our improved algorithm is a very noteworthy success as an anomaly 
intrusion detection system. 

This study is an important part of our project in which our objective is distributed 
detection of DDoS attacks in the intermediate phase using mobile agents and nature-
inspired algorithms; and informing the security managers before the attack succeeds. 
We will combine our previous study [15] and this one in order to reach our objective. 
Other intrusion detection datasets will be tested with this algorithm in order to see its 
overall performance. Finally, this IDS can be used with real-time network traffic with 
an adaptive truth set. 
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Abstract. Efficient tracking systems are needed to constantly track multiple de-
sired signals simultaneously in different modern wireless applications such as 
mobile communication, radar, and localization. 

The adaptive antenna tracking system presented in this paper mainly consists 
of three units: data processing, Artificial Neural Network Processor (ANNP) 
and the optimum weights processing. The data processing unit is used to calcu-
late the correlation matrix of the received signals, which is eventually handled 
by the ANNP unit. The ANNP unit is based on the architecture of a family of 
Radial Basis Function Neural Network (RBFNN) to perform both detection and 
Direction of Arrival (DOA) estimation. The optimum weights processing unit 
utilizes the Linear Constraint Minimum Variance (LCMV) approach, using the 
estimated angles of the desired signals generated by the ANNP unit, to calculate 
the steering matrix of the AAA system.  

The performance evaluation of the system is conducted experimentally using 
simulation techniques in a variety of angular separations, number of sources 
and various Signal to Noise Ratios (SNRs).  

1   Introduction 

Adaptive antenna systems have been the subject of increasing interest in the recent 
years because of their capability of rejecting noise and interference. This is mainly 
due to the beam forming flexibility, which allows steering the main lobes to the desir-
able signals and steering nulls towards interference signals [3], [5], [8], [11].  

Multiple targets and signal tracking can be considered as an indirect method for 
enhancing the mobile communication bandwidth utilization efficiency. This en-
hancement is partly due to the utilization of adaptive arrays in the base stations, which 
makes the performance of tracking multiple users higher and more reliable. For this 
antenna system to be influential, it must be capable of operating robustly and fast. 

This paper is concerned with the development of an Adaptive Antenna Array 
(AAA) system based on Artificial Neural Networks (ANNs), a massively parallel 
processor that improves the tracking performance of multiple desired signals in an 
efficient manner. 

In order to accomplish multiple tracking of desired signals, direction finding algo-
rithms make up an essential part of the beam forming processor of the AAA system. 
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Superresolution algorithms for direction finding have been successfully applied to 
the problem of DOA estimation to locate radiating sources with additive noise, 
uncorrelated, and correlated signals. One of the main disadvantages of the super-
resolution algorithms is that they require extensive computation and as a result they 
are difficult to meet the real world applications requirements efficiently. 

 Recently, neural networks-based direction finding algorithms have been proposed 
for single and multiple source direction finding [1], [4], [9], [11]. It has been shown 
that the neural networks have the capability to track sources in real time. [1], [10] 
suggested that a RBFNN could be used to track the locations of mobile users. The 
performance of these ANNs suffered from the variability of the number of users and 
of a fixed angular separation since different ANNs had to be used when the number of 
users changed. A computation of the optimum weights of the AAA, based on the 
evaluation of the DOA using RBFNN was presented in [9], [10]. The training process 
used in [9]’s work created sensitive sets of optimum weights that caused a tremendous 
degradation in the performanc of the overall tracking process of the AAA.  

In this paper, an algorithm used for beamforming of the AAA system to robustly 
allow multiple source tracking with arbitrary angular separation and SNRs levels. Fig. 
1 shows the basic functional block diagram that makes up the platform upon which 
the simulation of this AAA system is based. 

RBFNN is used to estimate the location of the desired signals, while the LCMV 
approach is used to calculate the optimum weights of the AAA system, consequently, 
the production of the desired adaptive radiation pattern. 

The performance of the overall system is studied for various target angular separa-
tions and various practical SNRs. The Additive White Gaussian Noise (AWGN) is 
assumed.  

 

Fig. 1. Functional diagram of the Neural AAA system  
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2   Principle AAA System Configuration 

The adaptive array functional diagram of Fig. 2 shows the principle system elements 
that an adaptive array must possess, if it is to achieve successfully the twin objectives 
of enhancing desired signal reception and rejection undesired interference signals.  

The principle adaptive array system elements consist of the sensor array, the pat-
tern-forming network, and the adaptive pattern control unit or adaptive processor that 
adjusts the variable weights in the pattern-forming network.  

 

Fig. 2. Functional diagram of an N-element adaptive array 

Evaluating the weights in AAA system determine the speed and accuracy of 
switching the beams. In statistically optimum adaptive antennas, the weights are cho-
sen based on the data received at the array. Loosely speaking, the goal is to “opti-
mize” the adaptive antenna array response such that the output contains minimal  
contributions due to noise and signals arriving from directions other than the desired 
signal direction. Different optimization procedures usually lead to different perform-
ance indices that would eventually fulfill the AAA system beam forming require-
ments. Maximum SNR, Reference Signal, and LCMV techniques are the most  
“popular techniques used to evaluate statistically, the weights. In many applications, 
none of these approaches is satisfactory. The desired signal may be of unknown 
strength and may not always be present, thus, preventing estimation of signal to noise 
correlation matrices in the maximum SNR processor. Lack of knowledge about the 
desired signal may prevent utilization of the Reference Signal approach. These limita-
tions can be overcome through the application of linear constraints to the weight  
vector. Use of linear constraints is a general approach that permits tight control over 
the adapted response of the adaptive antenna [3].  

The basis of operation of the LCMV approach is to constrain the response of the 
adaptive antenna so that the signals from the direction of interest are passed with 
specified gain and phase. The weights are chosen to minimize the output variance, or 
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power, subject to the response constraint. This has the effect of preserving the desired 
signal, while minimizing contributions to the output due to interfering signals and 
noise arriving from directions other than the direction of interest [2]. 

The optimal weight vector, wopt such that the array output power is minimized 
while satisfying the constraint, please refer to [5], represented by equation 1,    

wopt= Φ-1C(CH Φ -1C)-1fr. 
(1)

Where the superscript “H” indicate the Hermitian (complex conjugate transpose), Φ 
represents the spatial correlation matrix, while fr, represents the vx1 response vector, v 
is the number of the desired signals and C is the constraint matrix, also called steering 
matrix, as will be discussed later. 

3   The Smart Neural AAA System Model 

In this section, Φ and g, the upper triangular part of Φ that are used for training the 
RBFNN are developed, as shown in Fig.1. 

The ANNP represents the second unit, which is mainly used for direction finding 
estimation. Finally, the computation of the optimum weights for the AAA is performed 
in the third unit using LCMV approach, which has been discussed in section 2.  

3.1   Data Processing Unit 

A linear array of N-elements is considered to derive a formal representation of the Φ 
and g. If M (M < N) is the number of narrow band plane waves, centered at frequency 
ωo impinging on the array from directions θ1, θ2, ... θM The received signal at the ith 
array element would be represented by equation 2. 
 

   ( ) ( ) ( ) N....2,1,i(t)netstx
M

1m
i

Ψ1ij
mi

m =+=∑
=

−−                         (2) 

 

Where, sm(t) is the desired mth signal, ni(t) is the noise signal received at the ith sen-
sor and                                           

Ψm= (ωo / l) d sin(θm). (3)

where, d represents the inter-element separation, l, is the speed of light in m/s and θm 

is the angle of the mth wave. In matrix form the received signals can be written as 
 

                                               X(t) = CS(t) + N(t).                                                   (4) 
 

X(t), N(t)  and S(t) are given by: 

 X(t) = [x1(t) x2(t) … xN(t)]T                                           (5) 

 N(t) = [n1(t) n2(t) … nN(t)]T                                     (6) 

  S(t) = [s1(t) s2(t) … sN(t)]T                        (7) 
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Where the superscripts “T” indicates the vector transpose, and C as defined in equa-
tion (8) is the NxM steering matrix of the array toward the direction of the incoming 
signals.  

 

                                        C= [ud1 ud2 . . . udm … udM]           (8) 
                                                                                

The steering vector udm is related to Ψm as given in equation (9).  
 

                                   Udm=[1 e-jΨm e-j2Ψm . . .  e-j(M-1)Ψm  ]                                       (9) 
 

Assuming that the noise signals (ni (t), i=1,2, …, N) received at the different sensors 
are statistically independent white noise signals of zero mean and variance σ2 and also 
independent of S(t), then the received spatial correlation matrix Φ of the received 
noisy signals can be expressed as in (10),  

 

      Φ = E [X(t)* X(t)T] .                                                  (10) 
 

Since X(t) and N(t) are independent, then 
                            

             Φ = C E [S(t) S H (t)] CH + E [ No(t) 
 No(t)

T]                                (11) 
 

Φ for two narrowband desired signals impinging on two element Array Antenna, can 
be written as follows                      

   Φ =ad1
2ud1

*ud1
T+ ad2

2ud2
*ud2

T+ ad2
2ud2

*ud2
T+ ad1ad2ud1

*ud2
T+ ad2ad1ud2

*ud1
T+σ2I    (12) 

Where,     

ad1,ad2 are the amplitudes of s1(t) and s2(t).  
ud1,ud2 are the steering vectors  
σ2 is the power of the noise. 
I is the Identity matrix. 

So the correlation matrix for two-desired signal will be, 
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Array-processing algorithms, generally, utilize the correlation matrix for direction of 
arrival estimation purposes instead of the actual received signals X(t). A spatial corre-
lation matrix that can be organized as a N2-dimensional vector denoted by g is the 
input of the ANNP. It then follows that the number of input units at the input layer of 
the neural network is given by 2N2. This is due to the fact that twice as many input 
nodes for the neural network is needed since the network does not deal directly with 
complex numbers. The dimension of the hidden layer is equal to the number of the 
Gaussian functions Q, which can be chosen to be equal to the number of total  
input/output pairs in the training set if perfect recall is desired. By exploiting the sym-
metry in the correlation matrix Φ one needs only to consider either the upper or lower 
triangular part of the matrix. In this work, the upper triangular half of Φ is used. An 
NxN spatial correlation matrix Φ can be organized in a (N2+N) dimensional vector of  
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real and imaginary parts denoted by g. For example, if N=3, then the correlation  
matrix as a vector will be 

 

                                      gr = [r11 r12 r13 r21 r22 r23 r31 r23 r33 ].                                  (14) 
                                        

But by taking the upper triangular half of Φ, gr will reduce to g: 
                                                 

                                                       g = [r11 r12 r13  r22 r23 r33] .                                (15) 

3.2   The ANNP Unit  

The second unit in the adaptive processor is the ANNP. It identifies and determines 
the sector into which the desired signal lies and the second stage, gives an estimate of 
the angle of arrival. Each stage consists of 18 neural networks and each neural net-
work consists of three layers of nodes: the input layer, the output layer, and the hidden 
layer. As is the case with most neural networks, the RBFNN is designed to perform an 
input/output mapping trained with examples. The purpose of the hidden layer in an 
RBFNN is to transform input data from an input space of source dimensionality to a 
new space of possibly higher dimensionality. 

3.2.1   Architecture of an ANNP Unit 
The weights from the hidden layer to the output layer are identified by following a super-
vised learning procedure, applied to a single layer network (the network from hidden to 
output layer). This supervised rule is referred to as the delta rule [6]. Once training of the 
ANNP is accomplished, the trained ANNP can operate in the performance mode (phase). 
In performance (testing) phase, the ANNP is expected to generalize, that is to respond to 
inputs it has never been seen before, but drawn from the same distribution as the inputs 
used in the training set. One way of explaining the generalization exhibited by the network 
during the performance phase is by remembering that after the training phase is complete 
the ANNP has established an approximation of the desired input/output mapping; hence, 
during the performance phase the ANNP produces outputs to previously unseen inputs by 
interpolation between the inputs used (seen) in the training phase.  

The optimum antenna weights units handles the estimated direction of arrivals and 
computes the AAA system optimum weights, wopt using the LCMV approach, conse-
quently a beam pattern is generated from the AAA. The optimum weights vector is evalu-
ated by the simulation of equation (1).  

The following is a brief description of the algorithms used in the detection and 
DOA estimation processes. 

3.2.2   Training of the Detection NN 
In this adaptive processor, in some cases an arbitrary number of desired signals 
(sources) can be tracked without a prior knowledge of the number of the sources. The 
first stage consists of 18 RBFNN’s, each of width θw. The entire angular spectrum, 
field of view of the antenna array, is divided into J sectors. The jth RBFNN is trained 
to determine if two or more signals exist within the [(j-1) θw, jθw] sector. If there is 
any signal present in the corresponding sector, the output of this ANN will have a 
maximum value in comparison with the remaining ANNs outputs. Consequently, this 
detection stage will output a value of (1). However, all the other ANNs detection 
stages will output a zero. This information is then passed to the second stage, the 
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DOA stage, which estimates the angles of these signals.  The following is the training 
procedure of the detection stage.  

1. Compute the correlation matrix of the received signals using equation (10), {Φq, 
q=1, 2, 3, …,Q} where Q represents the of input-output pair. 

2. Develop the vectors {gq, q=1, 2,..., Q}. 
3. Normalize the input vectors. 
4. Generate input output pairs {gq,100} for sources located in the sector, where q=1, 

2,...,Q. 
5. Employ an appropriate RBFNN in the detection to learn the training set generated 

in step 4. 

3.2.3   Training of the DOA Estimator 
The J networks of the DOA estimation stage are assigned the same spatial sectors as in the 
detection stage. When the output of one network from the first stage is 1, the correspond-
ing second stage network is activated. The input to each second stage network is the nor-
malized vector g as given in equation (15), while the output is the actual DOA angles of 
the sources. The number of the hidden nodes is the same as the number of the input nodes, 
i.e, it equals Nx(N+1). The optimum size of hidden nodes is not easy to determine. In this 
work, from extensive experimentation, it was found that acceptable results could be ob-
tained by choosing the number of hidden nodes equal to or larger than the number of input 
nodes. The following is the training procedure of the DOA Estimator.  

1. Compute the correlation matrix of the received signals {Φq, q=1, 2, …, Q} using 
equation (10). 

2. Develop the whole vectors in matrix with Q columns and N2+N rows. 
3. Normalize the matrix.  
4. Generate the output matrix with Q columns and M rows (where M represents the 

number of the desired signals). 
5. Employ an appropriate RBFNN training procedure to learn the training set generated in 

step (4). 

4   Discussion of Simulation Results 

Results pertaining to the performance of the AAA system obtained in this work can 
be divided into the following three parts, performance of the detection stage, DOA 
estimator, and beam forming system. All of these results are based on the basic 
configuration fig.1 and influenced by the training procedures discussed in the 
previous subsections. It should be remembered that a large number of research cases 
can be dealt with, however, for lack of space, we take some sample cases of 
performance of the developed beamforming system for that may be encountered in 
real world applications. 

The adaptation and beamforming processes, in response to the optimum weight 
calculation, by handling the angles obtained in the DOA NN, can be demonstrated 
using the sample Figs. 3 – 5. 

These figures demonstrate some of the main goals achieved in this research work, 
where different RBFNN architectures and parameters are explored. Hence, one can 
arbitrarily choose an angular resolution in any arbitrarily chosen sector. In addition, 
signals of arbitrary angles of arrival could be tracked with negligible errors.  
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Fig. 3. Simulated real time AAA system pattern. Traning enviroment:( -45° – 45) sector, 
∆θ=4°,8°,12°,16° and 4 dB SNR.Test signals: θ1 = -22°, θ2 = -8°, θ3 =8°,  θ4 = 22°,  ∆θ=15° and 
4 dB SNR. Blue and green represent the true and test response respectively. 

 

Fig. 4. Simulated real time AAA system pattern. Traning enviroment:( -90° – 0°) sector, 
∆θ=4°,8°,12°,16°, and 4dB SNR.Test signals: θ1= -30°, θ2 = -40°, θ3 = -55°, θ4 = -70°,   ∆θ=15°, 
and 4dB SNR. Blue and green represent the true and test response respectively. 

Fig. 3 shows a beam pattern when angular separation between test sources is 12° and 
their SNR is 4 dB, although the training was performed on sources of ∆θ = 10°.  

The pattern shown in fig.4. is due to the existence of four signals in the (0° – - 90°) 
sector with a separation of 15°, however, the training was performed on 12°. This 
reflects the capability of the system to track signals it has never seen and in a sector of 
different sizes.  
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Fig. 5. Simulated real time AAA system pattern. Traning enviroment:( -45° – 45°) sector, 
∆θ=2°,4°, 6°,8°,10°, and 5dB SNR. Test signals: θ1 = -29°, θ2 = -20°, θ3 = 12°, θ4 = 4°, θ5 = -4°, 
θ6 = -12°, θ7 = -21°, θ8 = -28°, ∆θ= 8°, and 4dB SNR. Blue and green represent the true and test 
responses. 

In Fig.5, eight test signals existed in the (-45° – 45°) sector with an angular 
separation of 9° tracked perfectly with lower SNR than that trained on. 

All this demonstrate the capability of the developed AAA system to form the main 
beam into multiple-beams, in these sample examples, to track up to eight desired 
signals. More results can be imparted to deal with more signals and more desired 
resolution in real-world applications.  

5   Conclusions 

A complete AAA system based on ANN has been set, simulated and tested for 
tracking of multiple desired signals simoultanously. The performance of each stage of 
the system was tested over a practical range of SNRs, arbitrary number of desired 
signals and over various angular separations between signals.  

Using the LCMV in co-opertion with the RBFNN in beam forming and the training 
procedures of the NN reduced the sensitiviy of the AAA tracking to variations in the 
optimal weights. Some modification on this AAA system would result in more 
flexible cost effective multibeam tracking systems over 360° angular fields of view. 
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Abstract. Communication protocol tuning can yield significant gains
in energy efficiency, resource requirements, and the overall network per-
formance, all of which is of particular importance in vehicular ad-hoc
networks (VANETs). In this kind of networks, the lack of a predefined
infrastructure as well as the high level of dynamism usually provoke prob-
lems such as the congestion of intermediate nodes, the appearance of
jitters, and the disconnection of links. Therefore, it is crucial to make an
optimal configuration of the routing protocols previously to the network
deployment. In this work, we address the optimal automatic parameter
tuning of a well-known routing protocol: Ad Hoc On Demand Distance
Vector (AODV). For this task, we have used and compared five opti-
mization techniques: PSO, DE, GA, ES, and SA. For our tests, a urban
VANET scenario has been defined by following realistic mobility and
data flow models. The experiments reveal that the produced configura-
tions of AODV significantly improve their performance over using default
parameters, as well as compared against other well-known routing pro-
tocols. Additionally, we found that PSO outperforms all the compared
algorithms in efficiency and accuracy.

Keywords: Vehicular Ad Hoc Networks, On Demand Distance Vector
Routing Protocol, Metaheuristics, ns-2 Simulator.

1 Introduction

Vehicular Ad Hoc Networks (VANETs) [1] are dynamic networks composed of a
set of communicating vehicles (nodes) equipped with devices which are able to
spontaneously interconnect each other without any pre-existing infrastructure.
This means that no service provider is present as it is usual in traditional cellular
telephony. The most popular wireless networking technology available nowadays
for establishing VANETs is the IEEE 802.11-b WLAN, also known as WiFi
(Wireless Fidelity). New standards such as the IEEE 802.11p and WiFi Direct
are promising but still not available to perform real tests with them. This implies
that vehicles communicate within a limited range while moving, thus exhibiting
a topology that may change quickly and in unpredictable ways.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 21–30, 2010.
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In such kind of networks, and given of limitations in coverage and energy
consumption, optimizing the routing load is a high priority in the protocol de-
sign (done offline, previous to its network deployment). As a matter of fact, an
optimal configuration can decisively improve QoS indicators such as the packet
delivery ratio, the end-to-end delay and, the routing load, with their implications
on enlarging bandwidth and lowering the energy consumption. However, the ef-
ficient protocol configuration for VANETs without using automatic intelligent
design tools is practically impossible because of the enormous number of possi-
bilities. This motivates the use of metaheuristic techniques [2] which appear as
well-suited tools to solve this kind of problems. Unfortunately, few related ap-
proaches can be found in the specialized literature. Vanhatupa et al. [3] proposed
a flexible Genetic Algorithm for optimizing channel assignment in Mesh wireless
networks. In Alba et al. [4], a specialized Cellular Multi-Objective Genetic Algo-
rithm was used for finding an optimal broadcasting strategy in urban Mobile Ah
Hoc Networks (MANETs). Due to its specific design, Ant Colony Optimization
(ACO) has been successfully adapted for implementing new routing protocols
for MANETs (Di Caro et al. [5]), as well as for resource management (Chiang
et al. [6]). More recently, Huang et al. [7] proposed a new routing protocol based
on a Particle Swarm Optimizer (PSO) to make scheduling decisions for reducing
the packet loss rate in a theoretical VANET scenario.

In the present work, instead of the use of an optimization technique itself as
a protocol agent, our main contribution consists in improving the performance
of an existing well-known routing protocol by optimally tuning its parameters.
This protocol lies in the Ad Hoc On Demand Distance Vector (AODV) [8],
whose performance is significantly influenced by the choice of its parameters as
stated from its very initial definition in the RFC 3561. For this task, we have
used and compared five optimization techniques: Particle Swarm Optimization
(PSO) [9], Differential Evolution (DE) [10], Genetic Algorithm (GA) [2], Evolu-
tionary Strategy (ES) [2], and Simulated Annealing (SA) [2]. The popular net-
work simulator ns-2 [11] is then used in the evaluation of the solutions (tentative
routing parameters) generated by the aforementioned techniques, and providing
them with the needed fitness values to guide the search.

We have chosen these algorithms because they constitute a representative
subset of metaheuristics, with suitable operators for real parameter optimiza-
tion, and having varied heterogeneous schemes of population and evolution. For
our tests, an instance of a VANET scenario has been defined by following re-
alistic mobility and data flow models from the urban area of Málaga in Spain.
The experiments reveal that the produced configurations of AODV significantly
improve the default performance of the protocol, as well as the performance of
other well-known routing protocols (DSR, DSDV, FSR, TORA, and GPSR) [12].

The remaining of this paper is organized as follows. In the next section, the
AODV routing protocol is introduced with its main parameters. Section 3 de-
scribes the optimization strategy, and Section 4 presents the VANET scenario
evaluated here. Experiments, comparisons, and the result analysis are shown in
Section 5. Finally, conclusions and further work are drawn in Section 6.
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2 AODV Parameter Tuning

Ad hoc On Demand Distance Vector (AODV) is a routing protocol for ad hoc
mobile networks presented in 1999 by C. Perkins and E. Royer [13]. It is one of the
most studied MANET and VANET routing algorithms, often used as a de facto
routing protocol. AODV was designed with the aim of reducing the high number
of broadcasting packets and the latency described for its precedent: Destination
Sequenced Distance Vector (DSDV) [14] routing protocol. AODV is a reactive on
demand algorithm, meaning that, as in Dynamic Source Routing (DSR) [15] pro-
tocol, it builds routes among nodes only as desired by source nodes. Nevertheless,
AODV uses routing tables in intermediate nodes, what makes the route discov-
ery more efficient than in DSR, specifically in extensive networks with a large
number of communicating nodes. In addition, AODV is loop-free, self-starting,
and capable of both unicast and multicast routing. All these advantages, along
with the fact of having lower complexity of storage than others proactive and
reactive protocols (TORA, FSR, GPSR, etc.) [12], led us to choose AODV as
the routing protocol to work with.

In spite of all these important advantages, one of the main drawbacks of
AODV lies in the variability of its performance, which is significantly influenced
by the choice of its control parameters [8]. Discovering the best values to assign
to these parameters and understanding their impact on the network behavior
tradeoff is still harder. In addition, tunable parameters are often defined without
clear default values and even may be defined over an infinite range. Table 1 shows
a set of the main AODV parameters with their default values as specified in RFC
3561. The range of values each parameter can take has been defined here by
following AODV restrictions, with the aim of avoiding pointless configurations.

This way, we can use this set of parameters as a real vector solution to be
automatically fine-tuned by an optimization technique, hopefully obtaining a
considerably better configuration than the one of default parameters for a given
VANET scenario. Additionally, analytic comparisons of both default and opti-
mized AODV configurations as the ones done in this article can help the spe-
cialists to identify the main source of problems and assist them in the design of
sophisticated routing protocols.

Table 1. Main AODV Parameters. Default values following the RFC 3561 specification.

Parameter Default Values Range
ACTIVE ROUTE TIMEOUT 3.0 s 1.0 · · · 10.0
ALLOWED HELLO LOSS 2 HELLO packets 1 · · · 10
MY ROUTE TIMEOUT 2.0×ACTIVE ROUTE TIMEOUT 1.0 · · · 10.0
NET DIAMETER 35 nodes 1 · · · 50
NODE TRAVERSAL TIME 0.04 s 0.01 · · · 1.0

NET TRAVERSAL TIME 2.0×NODE TRAVERSAL TIME 1.0 · · · 10.0×NET DIAMETER
RREQ RETRIES 2 tries 1 · · · 10
RREQ RATELIMIT 10.0 kbps 1.0 · · · 10.0
TTL START 1.0 s 1.0 · · · 10.0
TTL INCREMENT 2.0 s 1.0 · · · 10.0
TTL THRESHOLD 7.0 s 1.0 · · · 20.0
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In order to compare different AODV routing configurations (solutions), we
have measured the resulted network performance (quality of service) by means
of three commonly used metrics in this area [16]:

– Packet delivery ratio (PDR). Fraction of the data packets originated by an
application that a routing protocol delivers. A data packet is counted as
delivered when it is received complete and correct by the destination node.

– Normalized routing load (NRL). Ratio of administrative routing packet trans-
missions to data packets delivered. When counting transmissions, each hop
is counted separately.

– Average End-to-End delay of a data packet (AEED). Average difference be-
tween the time the first data packet is originated by an application and the
time this packet is received at its destination.

3 Optimization Strategy

Our optimization strategy is composed by basically two main parts: an opti-
mization algorithm and a simulation procedure. The optimization part is carried
out by (independently) one of the selected metaheuristic methods. All of them
are specially adapted to find optimal (or quasi-optimal) solutions in continuous
search spaces (which is the case in this work). The simulation procedure is the
way of assigning a quantitative quality value (fitness) to the factors regulat-
ing AODV, thus leading to optimal configurations of this protocol tailored to a
given VANET scenario instance. This procedure is carried out by means of the
ns-2 [11] network simulator, which has been modified in order to accept new
routing parameters automatically for this present and similar future research.
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Fig. 1. Optimization strategy for AODV configuration in VANETs. The algorithms
invoke the ns-2 simulator for each solution evaluation.
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In each optimization algorithm, the evaluation of a solution is carried out by
means of the simulation component. As Fig. 1 illustrates, when a given algorithm
generates a new solution it is immediately used for configuring the AODV. Then,
ns-2 is started and emulates the VANET scenario instance, taking its time in
evaluating the scenario with buildings, signal loss, obstacles, traffic lights, vehi-
cles, speed, covered area, etc., under the circumstances defined by the routing
parameters of AODV from the algorithm. After the simulation, ns-2 returns
the global information about the Packet Delivery Ratio (PDR), the Normalized
Routing Load (NRL), and the Average End-to-End Delay (AEED) of the whole
mobile WiFi scenario (simulating 50 independent application sessions for each
fitness computation). This information is used to compute the fitness function
as follows:

fitness = w1 · (−PDR) + w2 · NRL + w3 · AEED · C (1)

The objective here consists in maximizing PDR, and minimizing both, NRL and
AEED. As expressed in Equation 1, we used an aggregative minimizing function,
and for this reason PDR was formulated with a negative sign. In this equation,
factors w1, w2, and w3 (0.5, 0.3 and 0.2, respectively) were used for weighing
the influence of each metric on the resulted fitness value. This way, PDR takes
priority over NRL and AEED since we firstly look for the routing effectiveness
and secondly (but also important) for the communication efficiency. AEED is
also multiplied by a constant C = 0.01 in order to deal with similar range to
PDR and NRL.
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Fig. 2. Málaga real VANET scenario. Selected surface (2,000×2, 000 meters) in the
downtown city.
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4 VANET Scenario and Mobility Models

Since real vehicular traces are not available, and the generation of a real VANET
scenario requires a great number of resources and people, we can use a
traffic/network simulator to perform the movement of vehicles as well as the
communication activity between them. Furthermore, we can generate realistic
VANET environments by automatically selecting real city areas (taking into
account road directions, signal lights, and traffic rules) from digital maps,
and finally apply a realistic mobility and communication model to each
vehicle agent.

Following this idea, we have generated in this work a VANET instance by
mapping a metropolitan area of 2,000×2,000 m2 from the city of Málaga (Spain).
For this task, we first used the SUMO car traffic simulator [17] for describing
in XML format the step by step movement of each vehicle within a 300 second
time period. Fig. 2 shows the complete map of Málaga processed with SUMO
traffic simulator (selected area is expanded in this figure). To use that traffic
model we exported the XML input from SUMO into an ns-2 [11] simulator
movement pattern in Tcl format. A number of 50 vehicles are involved in the
simulation with 4050 recorded vehicles direction/speed changes. Through the
simulation time, we captured different levels of car density (between 15 and 45
vehicles/km2), car speed (between 10 and 50 km/h), and network activity (from
2 to 50 connections).

The data flow model performs 50 sessions of the CBR (Constant Bit Rate)
network application over UDP source agents in vehicles, thus interconnecting
to each other by following our mobility model. The CBR data packet size is
512 bytes and packet rate is 4 packets per second. The remaining of simulation
parameters are summarized in Table 2 for future reproduction purposes. We have
chosen a fixed data rate since we do not aim to study the maximum throughput,
but we want to investigate the ability of AODV to successfully find and maintain
routes in a given VANET.

Table 2. Simulation parameters in ns-2

Parameter Value
Simulation time 300 s
Simulation area 2,000×2,000 m2

Number of vehicles 50
Vehicle speed 10-50 km/h
Propagation model Two Ray Ground
Radio frequency 2.47 GHz
Channel bandwidth 5 Mbps
Mac protocol 802.11-b
Transmission range of vehicles 250 m
CBR data flow 50 sessions
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5 Experiments

We have conducted a series of experiments by using the implementation of the
five algorithms (PSO, DE, GA, ES, and SA) provided by MALLBA [18], a C++
based framework of metaheuristics for solving optimization problems. The sim-
ulation phase was carried out by running ns-2 simulator v-2.31. For the ex-
periments, we have made 30 independent runs of each optimization algorithm
on machines with a Pentium IV 2.4 GHz core, 1 GB of RAM, and O.S. Linux
Fedora core 6. Each one of these independent runs performs different vehicular
mobility and communication patters based on independent random seeds inside
each (ns-2 ) simulation, hence contributing to the generalization of the results.
Therefore, a total of 30 different communication/mobility scenarios are analyzed
for every optimization algorithm (we have 5 algorithms in our study).

5.1 Parameter Settings of the Optimization Algorithms

All studied algorithms were configured in order to perform 5,000 solution eval-
uations per run. Population based algorithms (PSO, DE, GA, and ES) were
configured with 20 individuals. Since these algorithms perform quite different
operations, we have set the parameters after preliminary executions where the
computational effort in terms of time and number of evaluations was balanced.
Table 3 summarizes the parameter setting specific to each algorithm.

Table 3. Summarized parameter settings of the optimization algorithms

Algorithm Operator Parameter Symbol Value
Local Coefficient ϕ1 2.0

PSO Velocity Update Social Coefficient ϕ2 2.0
Inertia Weigh w 0.5

DE Differential Crossover Crossover Probability Cr 0.9
Differential Mutation Mutation Factor μ 0.1

GA Uniform Crossover Crossover Probability Pcros 0.8
Uniform Mutation Mutation Probability Pmut 0.2

ES
Replacement Replacement Strategy (μ, λ) (20, 20)
Correlated Mutation Mutation Probability Pmut 0.1
Correlated Crossover Crossover Probability Pcros 0.9

SA Solution Update Temperature Decay T 0.8

5.2 Simulation Results and Comparisons

Table 4 contains the results obtained after the experimentation. The second col-
umn contains both, the mean and the standard deviation (std) of the resulted
best fitness values (out of 30 independent runs) for each one of the five opti-
mization algorithms. In order to provide statistical meaningful comparisons, we
have applied Friedman and Signed Ranked (Wilcoxon) statistical tests [19] to
the numerical distributions of results. We have used these non-parametric tests
since resulted distributions usually violate the condition of normality required to
apply parametric tests (Z Kolmogorov-Smirnov = 0.003). The confidence level
was set to 95% (p-value=0.05), which allows us to ensure that these results are
statistically different if they result in p-value<0.05.
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Table 4. Results obtained by the five optimization algorithms when optimizing AODV
on the Málaga VANET instance

Alg. Meanstd Best Fried. Wilcox.p
PSO -13.55 ± 1.24 -15.34 1.43 -
DE −12.93 ± 0.76 −14.35 1.73 2.18e-02
ES −10.53 ± 1.74 −12.67 3.13 1.73e-06
SA −6.12 ± 6.38 −12.76 4.10 2.87e-06
GA −5.88 ± 2.81 −10.38 4.60 1.92e-06 -16
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Several observations can be made from these results. First of all, the best mean
fitness (−13.55± 1.24) was reached by PSO, which also shows a reasonably low
value of standard deviation. In addition, this algorithm has obtained the solution
with the overall minimum fitness (−15.34), which corresponds with the AODV
configuration that shows the best tradeoff in quality indicators (PDR=60%,
NRL=43.06, and AEED=866.02) for the studied VANET. These results are
statistically tested in column 4 where we can check that PSO effectively shows
the lowest rank according to Friedman test (the lower, the better).

Second, DE obtained slightly higher mean fitness (−12.93± 0.76) than PSO,
but with the lowest value of standard deviation. In spite of its moderate perfor-
mance (ranked as second in Friedman test), DE shows the most robust behavior
for this instance. The worst rank was obtained by GA, although showing in this
case a lower standard deviation than SA. In this sense, we suspect that the tra-
jectory search mechanism of SA can deteriorate the robustness for this problem.
The graphic plotted below shows the trace of the Best performed runs of each
algorithm where we can easily observe the early convergence and better behavior
of PSO and DE with regard to SA, ES, and GA.

A last observation concerns the Signed Rank test (Wilcox.p in Table 4), for
which we have used PSO as control algorithm (the one with best rank) in order to
confirm whether differences in distribution of results can be found or not. As we
can observe in column 5, all algorithms obtained statistically worse results than
PSO since p-values of distributions refuse the null hypothesis (< 0.05). Then we
can state that, for the studied VANET instance, PSO shows the best performance
compared to the rest of algorithms in the configuration of the AODV protocol.

5.3 QoS Analysis

After the analysis of the algorithms themselves, in this section we compare the
results in terms of quality of service indicators. This comparison constitutes the
main contribution of this work. Therefore, Table 5 shows the results of applying a
set of well-known routing protocols to our VANET instance (Málaga), including
AODV with its default configuration (RFC 3561). These protocols are: Dynamic
Source Routing (DSR), Destination Sequence Distance Vector (DSDV), Fish-
eye State Routing (FSR), Temporally Ordered Routing (TORA), and Greedy
Perimeter Stateless (GPSR). The best AODV configurations obtained by all
studied algorithms are deployed in the bottom second half of Table 5.
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Table 5. Comparison with other routing protocols

Protocol fitness PDR NRL AEED

AODV −5.32 60.00% 75.33 kbps 1,038.79 ms
DSR −5.10 42.00% 45.95 kbps 1,055.68 ms
DSDV −4.17 28.00% 0.00 kbps 4,913.43 ms
FSR +0.53 20.00% 0.00 kbps 5,268.15 ms
TORA +6.57 66.66% 133.00 kbps 4.48 ms
GPSR +47.03 100.00% 332.00 kbps 143.27 ms
AODVPSO −15.34 60.00% 43.06 kbps 866.02 ms
AODVDE −14.35 62.00% 47.06 kbps 1,271.45 ms
AODVSA −12.76 60.00% 47.00 kbps 1,552.67 ms
AODVES −12.67 64.00% 53.43 kbps 1,644.97 ms
AODVGA −10.38 62.00% 59.32 kbps 1,409.79 ms

As we can clearly observe, all the AODV configurations computed by the
metaheuristics obtained better fitness when compared to competitor routing
protocols, including AODV with default parameters. This is a true improvement
since even GA, the algorithm with the worst performance here, can generate a
set of parameters that helps AODV to outperform all compared protocols. As to
the best configuration, AODVPSO, the protocol performance was improved by
decreasing both, the NRL by 42.83% (from 75.33 kbps to 43.06 kbps) and the
AEED by 16.63% (from 1,038.79 ms to 866.02 ms), whilst showing the same PDR
as default AODV. Concerning other protocols, GPSR and TORA show a high
packet delivery (100%) but provoking the overhead of the network (NRL=332.00
kbps). On the contrary, DSDV and FSR keep reduced the network overload but
at the cost of performing a low ratio of packet delivery (PDR≤28%). All this
contrasts with our AODVPSO, which always obtains percentages of PDR higher
than 60% plus optimizing both, the network load and end-to-end delay, a capital
need for an efficient performance in large VANETs scenarios. In summary, all
these observations give us a real insight on the advantage of using PSO (and
metaheuristics in general) for the tuning of routing protocols.

6 Conclusions

In this work we have addressed the optimal parameter tuning of the routing
protocol AODV. For this task, we have used and compared five optimization
techniques: PSO, DE, GA, ES, and SA. An instance of VANET for urban sce-
nario has been defined by following realistic mobility and data flow models. The
experiments reveal that the produced configurations of AODV significantly im-
prove its performance with respect to using default parameters, as well as the
performance of other well-known routing protocols. Specifically, for AODV, the
routing load and the end-to-end delay were decreased by 42.83% and 16.63%,
respectively. In addition, we found that PSO outperforms all the compared al-
gorithms. As a future work we are presently studying the use of Multiobjective
metaheuristics in the optimal configuration of routing protocols.
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18. Alba, E., Luque, G., Garćıa-Nieto, J., Ordonez, G., Leguizamón, G.: MALLBA: A
software library to design efficient optimisation algorithms. Int. Journal of Innova-
tive Computing and Applications (IJICA) 1(1), 74–85 (2007)

19. Wilcox, R.: New statistical procedures for the social sciences, Hillsdale (1987)

http://moment.cs.ucsb.edu/pub/rfc3561.txt
http://www.isi.edu/nsnam/ns/


WiMAX Network Planning Using
Adaptive-Population-Size Genetic Algorithm

Ting Hu, Yuanzhu Peter Chen, and Wolfgang Banzhaf

Department of Computer Science, Memorial University, St. John’s, Canada
{tingh,yzchen,banzhaf}@mun.ca

Abstract. IEEE 802.16, also known as WiMAX, is a new wireless ac-
cess technology for currently increasing demand of wireless high-speed
broadband service. Efficient and effective deployment of such a network
to service an area of users with certain traffic demands is an important
network planning problem. In this article, we resort to a Genetic Al-
gorithm in order to yield good approximation solutions. In our method,
individual representation and genetic variation operations are specifically
designed to incorporate the feature of this application problem. More-
over, an adaptive population size approach inspired by neutral theory
in molecular biology is applied in our algorithm to enhance its search
ability. Simulation results show that our algorithm is fairly effective and
robust to different scenarios of the network planning problem. By com-
paring to a conventional fixed population size scheme, our method is
further verified to be able to accelerate the search process.

1 Introduction

WiMAX (Worldwide Inter-operability for Microwave Access) is a telecommuni-
cation technology based on the IEEE 802.16 standard in order to provide broad-
band wireless networks at the metropolitan scale. It intends to replace the more
expensive wireline-based access technologies such as TV cable and ADSL [7]. As
the standard evolves, WiMAX supports a variety of data transmission methods.
It originated from the first 802.16 standard in 2002, also called WirelessMAN,
where a cellular-like point-to-multipoint (PMP) operation is adopted. In the PMP
mode, all communications are limited to be between a base station (BS) and a
subscriber station (SS). With a serial of amendments later on, currently, a new
working group, 802.16j, is focusing on multi-hop extensions so that the network
can operate in a mobile multi-hop relay (MMR) mode. With the relay stations
(RSs) to help, the coverage of the BSs can be increased significantly, which
alleviates the line-of-sight (LOS) problem further [3].

In this article, we focus on the PMP mode of WiMAX and leave the more
general model which incorporates the MMR mode as our next step work. In the
PMP mode of WiMAX, there can be two types of entities to form the wireless
component of the network, the BSs and SSs. The BSs form the infrastructure for
the SSs. An SS is allowed to communicate to a BS directly if the channel quality
is sufficient for the given data rate. A network planning problem in this case is

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 31–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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an optimization problem to cover the SSs in a geographical area using a small
number of BSs. The BSs can only be placed on a subset of pre-selected candidate
sites. Typically, the locations of the SSs and their bandwidth requirements are
given. In addition, the channel gains between the locations of the SSs and all BS
candidate sites can also be obtained. Thus, for a given candidate site, the set of
SSs that can be serviced by this site is known as well. Note that, in practice,
since every BS has a capacity upper limit, it may not necessarily service all these
SSs within range. We assume that there is no power control mechanism at either
end of the channel.

The network planning problem considered in our work can be formulated
as an unsplittable capacitated facility location problem. It is the most difficult
flavor among the various facility location problem variants (see Section 2.2). In
a broader context, the constraints enforced by this problem render the techniques
used to solve the bin-packing and p-median problems not suitable here.

Given these inherent challenges of the network planning problem, we resort to
an Genetic Algorithm (GA) to utilize the renowned advantages of evolutionary
computing. Compared to exact algorithms, evolutionary algorithms are fairly
robust to varying problem instances, and can provide a set of near-optimal
solutions with similar or identical utility for multiple options. A specifically
customized GA with variable population size is proposed here to embrace the
properties of the WiMAX network planning problem. The effectiveness of this
algorithm is further verified by simulation.

2 Background

2.1 Problem Formulation

The network planning problem can be modeled as a minimization problem on a
weighted graph G = (V, E). There are two types of vertices in the graph, i.e.,
V = B∪S, where B represents the candidate BS sites and S represents the SSs.
For each s ∈ S and b ∈ B, there is an edge between them if the channel gain
g(s, b) between s and b is greater than or equal to a given threshold δ for data
reception. Therefore, graph G in this case is a bi-partite graph, where there is
no edge within B or S themselves. Every s ∈ S is associated with a capacity
requirement of bandwidth cs. The candidate BS sites each have a capacity limit
of C, which caps the total amount of bandwidth of its connected SSs.

A feasible plan is a mapping M : S �→ B that satisfies the following con-
straints.

1. For each s ∈ S,
g(s, M(s)) ≥ δ. (1)

2. We define the load of a BS b ∈ B with an enforced capacity limit as

l(b) =
∑

M(s)=b,s∈S

cs, l(b) ≤ C. (2)

The total infrastructure cost of the network lies in the number of BSs in service.
Therefore, our goal is to minimize |M(S)| over all feasible plans.
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2.2 Related Works

WiMAX network planning as an optimization problem in different flavors, has
attracted research interests recently. When a BS has a capacity limit, the prob-
lem is called capacitated; otherwise, it is uncapacitated. Amaldi et al. [2] study the
problem in uncapacitated UMTS cellular networks by formulating the problem
as an Integer Program (IP), and resort to randomized greedy search and tabu
search. In Yu et al. [11], a two-tier assignment variant is considered to model
802.16j MMR with the assumptions that the RSs and BSs are uncapacitated. In
their solution, a fixed number of BSs is considered so that the top-level assign-
ment can be treated by a p-median clustering. Generally, when an SS is allowed
to be serviced only by one BS (or RS), we say the problem is unsplittable, as
in the work discussed above. Alternatively, with more sophisticated scheduling
and channel assignment, an SS may be serviced by multiple BSs (or RSs) equiv-
alently. This is called splittable. In Lin et al. [8], a flow-based heuristic is devised
to relax the capacitated IP formulation essentially to a splittable variant. This
is a generalization of the problem of capacitated facility location [6], where an SS
can be potentially serviced by all BSs with different transportation costs.

Evolutionary algorithms have also been applied to variants of the network
planning problem. For instance, in the context of 802.11 access point (AP) de-
ployment where a wired line is needed to connect every AP, the problem appears
to be a multi-objective optimization to minimize the costs of both placing APs
and laying down cables to join them. Moreover, the locations of APs are not con-
strained as in our problem formulation. Toward this AP deployment problem,
both GA [10] and GP [4] have been applied and shown to achieve successful so-
lutions. Although on different problem formulations, the literature suggests that
evolutionary algorithms can be effective and robust applied to such problems.

For the more general models of p-median and bin-packing problems, there
are also successful examples of using evolutionary algorithms [1]. However, the
problem variant that we consider in this work is the more difficult unsplittable
capacitated facility location problem, where a BS can only service the SSs within
range. When user demands are not allowed to be split, flow-based solutions are
not useful any more. It is also more difficult than the better studied bin-packing
and p-median problems. First, the geographical locations of the devices (BSs
and SSs) and their communication range dictate that each BS has a different
set of SSs in range. Therefore, they are not equivalent in terms of capability of
servicing the users. This is distinctive from bin-packing where all bins are equal
in pursuit of using a minimum number of them. Second, rather than assigning
the SSs to a fixed number of BSs as in p-median, our goal here is to use as few BSs
as possible to minimize the infrastructure costs. To the best of our knowledge,
this is the first attempt to use GA to solve such a variant.

3 Adaptive-Population-Size Genetic Algorithm

For constrained combinatorial optimization problems, genetic variation operations
in evolutionary algorithms are usually destructive to invalidate an individual
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as a candidate solution. Simply applying general and conventional genetic opera-
tions without specific heuristics could not be able to exploit the automatic search
power of evolutionary algorithms. There is an increasing need for customizing evo-
lutionary methods to closely incorporate the feature of a problem.

We propose a GA tailored to specifically solve the network planning problem.
The individual representation and genetic variations are specifically designed
suited to the characteristics of the problem. Furthermore, we incorporate a pop-
ulation adjustment method to enhance its search ability. The framework of our
APS-GA (Adaptive-Population-Size GA) is described with a view on four spe-
cific aspects. We start out with a description of how to represent a solution to the
network planning problem using a two-tier genetic structure in order to encode
the BS selection and SS assignment separately (Section 3.1). Next, we outline the
iterative operations applied to the population to approach the optimum (Sec-
tion 3.2). Then, Section 3.3 explains the incorporation of an adaptive population
size scheme proposed by us in previous work [5]. Note that the fitness of an in-
dividual is defined as the number of BSs in service. Thus, there can be many
tied solutions with the same fitness but not necessarily the same set of activated
BSs and associated SSs. Although this neutral diversity is not observable at the
fitness level, it plays an important role in expanding the genotypic search space.
The adaptive population size scheme allows a system to dynamically enhance
neutral search during different stages of the evolution by population size adjust-
ment. Last, Section 3.4 describes evolutionary operations, including crossover,
mutation and a repair heuristic, which are specifically tailored to the problem.

3.1 Individual Representation

Given a set of subscriber stations S and a set of base stations B with their
location information, we encode a mapping M from S to B as a two-tier chro-
mosome. At the higher level, i.e., the BS activation level, we use an array of
length m = |B| to represent the BSs. Each locus i of this chromosome stands
for a BS bi, referring to its service list containing all the SSs assigned to it. If
there is no SS connected to a BS (i.e., this BS is not needed), its service list is
∅. This is referred to as the SS assignment level. Such a two-tier representation
is depicted in Figure 1.

For a feasible solution, the total length of the service lists should add up to
|S|, and for each bi the total capacity demand in the list must not exceed the
BS capacity. The division of information into two tiers separates the semantics
embedded in an individual. That is, the activation of a BS and the assignment
of an SS to an activated BS are encoded in two separate domains. This allows
us to control the genetic variations at these two levels independently, which
turns out to be fairly powerful as indicated by our experiments. This two-tier
genotype is distinctive from the most common representations of GA solutions to
combinatorial optimization problems. In such works, the genotype usually takes
a fixed form to resemble a biological gene sequence. In particular, a genotype
would consist of |S| loci, each of which refers to the index of the BS servicing
this SS. Alternatively in the fixed-structure genotype camp, a genotype would
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b 1 b 3b 2 b m

1service list 3service list2service list mservice list

... ...

Fig. 1. Two-tier chromosome representation

represent a solution by an indicator matrix {0, 1}|M|×|S|, where each column i
(i = 1, 2, . . . , |S|) contains exactly one 1 and |B|−1 0’s. One noticeable exception
to this is the “multi-level encoding” in Meunier at al. [9]. In their model, the BS
site activation, antenna type selection, and antenna configuration are encoded as
three levels. However, the separation in our model is based on a more inherent
difference of the information embedded in a solution, i.e., site activation and
user assignment.

3.2 Evolution Framework

We evolve a population of individuals with adaptive size in the generational
mode to approach the optimum. The process starts with randomly generating
a population P0 of a given size. The value of |P0|, i.e., the initial population
size, and other configuration parameters will be detailed in Section 4. Next,
each individual’s fitness in this initial population is evaluated. Then, the process
enters a generational iteration outlined as follows.

1. Randomly pair up individuals of population Pt (t = 0 at the start);
2. Crossover each pair of individuals to generate |Pt| offspring;
3. Repair the offspring of previous step;
4. Mutate the offspring;
5. Repair the output of previous step;
6. Evaluate offspring;
7. Calculate the next population size |Pt+1|=f(|Pt|) (see Section 3.3);
8. Choose by truncation selection the next population Pt+1 from the competi-

tion pool consist of |Pt| parent and |Pt| offspring individuals;
9. Go to Step 1 if termination criterion is not met.

The iterative process stops when the best fitness in the population has remained
the same for s (stagnation threshold) individual evaluations. This termination
condition will signal if the evolution stagnates. We measure how fast the algo-
rithm leads the process to a possibly global/local optimum before stagnation by
recording the number of individual evaluations elapsed so far.

3.3 Adaptive Population Size Adjustment

Adjusting population size to enhance neutral rearch has been shown by us to be
able to accelerate GP evolution [5]. This idea is adopted here in the context of a
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GA framework. The central idea is to measure the “rate of accepting nonsynony-
mous to synonymous genetic changes ka/ks” and to use this indicator to adjust
the population size dynamically during evolution. Population size is thought to
be important for accepting new genetic variations in a system. That is, if the
rate of accepting nonsynonymous changes is greater than that of the synony-
mous changes, i.e., ka > ks, increasing the population size facilitates accepting
new variations, especially the neutral or nearly neutral ones that seem to have
little effect on fitness. On the other hand, if ka < ks, decreasing the population
size encourages to accept more genetic variations. If ka = ks, population size is
independent of such an effect. The ka/ks ratio is obtained for each generation for
population size adjustment. This adjustment is inspired by the neutral theory
from molecular biology.

Knowing the importance of neutral search, here for the network planning prob-
lem, we apply this adaptive population size approach to our GA. From one gener-
ation to the next, Na denotes the number of attempted nonsynonymous changes
and Ns for attempted synonymous changes. Specifically, for a crossover, if a valid
offspring alters its fitness from either parent, this crossover is regarded as a non-
synonymous change. A mutation is regarded nonsynonymous if it changes the
fitness of an individual. In evolutionary algorithms, not all genetic variations
can be favored and accepted by selection. We use Ma and Ms to denote the
number of accepted nonsynonymous and synonymous changes. Then according
the definition in [5], ka (ks resp.) is obtained by dividing the accepted nonsyn-
onymous (synonymous resp.) genetic changes by the attempted nonsynonymous
(synonymous resp.) genetic changes.

For truncation selection (Section 3.2), the population size of a new generation
is at most twice of its previous generation, and an absolute upper and lower
limits of the population size is enforced, as described in Section 4.

3.4 Evolutionary Operations

Crossover. Crossover applied to two parents we denote by
x = 〈x1, x2, . . . , xm〉 and y = 〈y1, y2, . . . , ym〉, to obtain two children, x′ =
〈x′

1, x
′
2, . . . , x

′
m〉 and y′ = 〈y′

1, y
′
2, . . . , y

′
m〉. It is non-trivial to design an efficient

crossover operation since this operator has substantial effects on the performance
of the algorithm. Here, we propose a Bi-polar Blend crossover that appropriately
incorporates the feature of the network planning problem.

The Bi-polar Blend crossover strives to move the SS assignment from less
loaded BSs to more loaded ones so that some will eventually no longer be needed
and can be de-activated. The crossover operator is therefore a force to drive the
activated BSs towards two extremes of being either very heavily or very lightly
loaded. Thus, more BSs are expected to be released. To do that, we define
that x′ inherits the greater load from its parents and y′ inherits the less load.

Specifically, for each locus i (1 ≤ i ≤ m), we define x′
i =

{
xi if l(xi) ≥ l(yi)
yi otherwise

and y′
i =

{
xi if l(xi) < l(yi)
yi otherwise.
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Repair heuristic. An individual can become infeasible after the application of
a genetic variation. Therefore, we conduct the following greedy repair procedure
on a modified individual x. For each s ∈ S, we consider all BSs in x that service
it, denoted by B̄. We first remove all overloaded elements in B̄, i.e., with load
greater than capacity C. If B̄ �= ∅, we keep the most loaded element in B̄ and
release the rest of B̄. Otherwise, i.e., s is not serviced by any BS, we search
through all BSs within range to find the best fit if any. Here, by best fit we
mean, when s is added, the BS that has the least residual capacity. If such a
best fit exists, s is added to its load. Otherwise, however, we claim that x cannot
be repaired, the current genetic variation is aborted and the evolutionary process
seeks to produce a new variant in the next iteration.

This repair procedure is applicable to the output of both crossover and muta-
tion operators. Note that it also works in such a trend that the loads of activated
BSs are driven towards two extremes.

Mutation. An individual is subject to a point mutation at the BS activation
level. Specifically, we select an activated BS uniformly at random and simply
clear its service list. We adopt such a mutation scheme for the following reasons.

First, a mutation at the BS activation level, as opposed to the SS assign-
ment level, yields sufficient genetic alteration for the exploration of solutions. A
mutation at the SS assignment level, in contrast, would yield a change which
is usually too mild. Second, selecting a BS as a unit of mutation confines the
changes to one locus of the network. It is, therefore, well modularized. Last, ran-
dom selection of an activated BS rather than deterministic selection, say of the
least loaded BS, has proved to be less directive and more effective in broadening
the exploration space as of our preliminary tests.

Because this mutation inevitably invalidates the solution, the previously men-
tioned repair procedure is also needed.

4 Simulation

We are interested in the effectiveness and efficiency of our APS-GA to the
WiMAX planning problem. In addition, we would like to verify the observa-
tion that neutral search is critical in our model by investigating the performance
improvement yielded by population size adjustment.

4.1 Network Layouts and Algorithm Configuration

Considering that the size and configuration of a network layout may affect the
performance of a network planning algorithm, we study two network sizes. The
bandwidth demands of an SS is assumed to be 1 unit and the capacity limit for a
BSs is 30 units, i.e., at most 30 SSs can be connected to any BS. The deployment
area is a 1.0 × 1.0 2-dimensional space. We consider two network sizes with 30
(300, resp.) and 60 (600, resp.) BS candidate sites (SSs, resp.). All sites and
nodes are distributed in the space uniformly at random. The coverage range of
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(d) Planning solution to layout 2.2

Fig. 2. Network layouts with example optimal solutions. Crosses represent SSs and
circles stand for candidate BS sites. Each solid circle means that its BS is activated
and its size indicates the load of this BS. Open circles represent inactivated candidate
sites. For instance, in (a), the loads of 16 BSs in service vary from 5 to 30 SSs.

each BS is set to 0.2 for the first and to 0.15 for the second network size, such
that a BS always has approximately the same number of SSs within range. Two
layout instances are generated for each network size denoted by layout 1.1 and
1.2 (of size 1) and layout 2.1 and 2.2 (of size 2).

In all cases, we set the initial population size |P0| to 200 and the termination
stagnation threshold s to 10,000 (evolution is terminated if the best fitness of
the population remains unchanged for 10,000 evaluations). Further, we limit the
population size to between 100 and 500 when it is varied.

4.2 Results

For each network layout, the results of 100 APS-GA runs are recorded. Figure 2
shows four network layouts with example best solutions. Observe that the loads
of the BSs tend to settle on the two extremes, as expected from our Bi-polar
Blend crossover and its corresponding mutation and repair operations. We also
notice that although some BSs are very lightly loaded, they are indispensable to
service the entire network.
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Table 1. Results of APS-GA (average data over 100 runs)

Layout 1.1 Layout 1.2 Layout 2.1 Layout 2.2
Mean of best fitness 16.0 15.9 30.3 29.1
Mean of evaluations 1862 3450 5082 5315

Median of evaluations 1810 3334 4947 4727
95% confidence interval [1799,1925] [3176,3723] [4805,5360] [4889,5740]
Mean of population size 310 346 234 250

Table 2. Results of FPS-GA (average data over 100 runs)

Layout 1.1 Layout 1.2 Layout 2.1 Layout 2.2
Mean of best fitness 16.0 16.1 30.2 29.1
Mean of evaluations 2179 3736 5995 5609

Median of evaluations 2170 3459 5732 5250
95% confidence interval [2157,2201] [3510,3971] [5571,6419] [5199,6019]

Over 100 runs for each layout, the best solutions found by APS-GA are 16
(layout 1.1), 15 (layout 1.2), 30 (layout 2.1), and 28 (layout 2.2). These show
that our method is fairly effective since about half of the candidate BSs can be
retired and the average load of active BSs can be as high as 70% of the capacity
limit. There also can be more than one best solution for each problem instance.

To verify that the adaptive population size scheme has indeed improved the
performance of our algorithm, we compare APS-GA to a conventional fixed-
population-size GA (FPS-GA) with the same operations and parameter config-
urations. Since population size fluctuates in APS-GA we average it during an
entire evolutionary process over 100 runs for each problem instance. This num-
ber is set as the fixed population size for a FPS-GA. Therefore, it is possible
and fair to compare these two algorithms.

Tables 1 and 2 show the results of these two algorithms. We collect the mean
best fitness achieved at the end of evolution. Recall that evolution terminates
when the best fitness of a population does not improve for 10,000 evaluations.
Evaluations before stagnation are recorded as the computational cost for a pop-
ulation to reach its best solution. The means, medians, and the 95% confidence
intervals of the number of individual evaluations are shown. It can be observed
that the two algorithms perform equally well at achieving best solutions. How-
ever, APS-GA is noticeable more efficient since it always incurs smaller compu-
tational cost.

5 Concluding Remarks and Future Research

A specifically designed adaptive-population-size GA is proposed in this article to
solve the WiMAX network planning problem. Computer simulation verifies its
effectiveness and efficiency. This work emphasizes that it is critical to thoroughly
consider the properties of a problem when applying evolutionary algorithms.
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A number of interesting extensions of this work present themselves. First,
other features of the solution should be considered, such as resilience. If many
BSs are fully loaded, the network might be fragile to changes of SSs. Resilience
to demand fluctuation (e.g., fluctuating numbers of SSs in different areas of the
2D map) can also be useful to address user mobility to a degree. Further we can
see how our algorithm can adapt in such a scenario, perhaps in real time. Second,
an extension of our method to solve the WiMAX network planning problem in
MMR mode should be possible. That is, another layer of relay stations are used
to extend network coverage. It will be interesting to see how these two levels of
mapping affect each other in the framework.
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Abstract. We analyze the convergence properties of our force based ge-
netic algorithm(fga) as a decentralized topology control mechanism dis-
tributed among software agents. fga guides autonomous mobile agents
over an unknown geographical area to obtain a uniform node distribu-
tion. The stochastic behavior of fga makes it difficult to analyze the
effects of various manet characteristics over its convergence rate. We
present ergodic homogeneous Markov chains to analyze the convergence
of our fga with respect to changing communication range of mobile
nodes. Simulation experiments indicate that the increased communica-
tion range for the mobile nodes does not result in a faster convergence.

Keywords: Bio-inspired Algorithms, Genetic Algorithms, MANET,
Markov Chains.

1 Introduction

Genetic algorithms (gas) have been demonstrated as useful tools in a variety
of search and optimization problems. gas look for the best genes, i.e., the best
solution or optimum result in an entire problem set. Markov chains offer an
appropriate model to analyze the convergence of gas [1] and [2]. In our previous
studies [3,4] we conducted experiments to show the convergence of our force-
based ga (called fga) for topology control of nodes in mobile ad hoc networks
(manets). In this paper, we present an ergodic homogeneous Markov chain to
model the convergence properties of fga. Since the population of our fga, like
all ga-based algorithms, only depends on the population of previous generation
in a probabilistic manner, Markov chain is an appropriate method to analyze
the convergence of our fga. We study the effects of communication range on the
convergence of the fga, which is used by each mobile node to select the best
location, speed and direction among exponentially large number of choices.

One can envision many applications for our ga-based topology control algo-
rithm ranging from transportation systems, mine field clearing, to urban search
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and rescue operations after natural disasters where mobile nodes can operate in
difficult to access areas. In all such applications, the problem of self-spreading
the mobile nodes over a given geographical terrain becomes more challenging
since: (a) geographical area may dramatically change in a short time period, (b)
the number of mobile nodes may rapidly and unpredictably increase or decrease
due to various reasons such as malfunctions or loss of mobile nodes, (c) mobile
nodes do not have access neither to navigation map nor to gps devices, but can
only have limited local information from neighbors, and (d) mobile nodes are
deployed into a terrain from a single entry point which is more realistic approach
than random or other types of initial distributions. Our ga-based approach is
a good candidate for solving this class of problems since it evolves towards a
better solution as the conditions of the environment changes dynamically.

Successful applications of gas on manets include graph optimization [5,6,7],
multi-objective optimization [8], routing applications [9], broadcasting strate-
gies [10], and traffic distribution [11]. Their main difference with our approach
is that fga controls the topology in manets without a central controller or
global network knowledge, but only using with local information from neigh-
boring nodes. Markov chains are widely used to provide a formal structure for
analyzing stochastic algorithms [12,13,14,15].

Our paper is organized as follows. Section 2 presents our distributed fga. The
finite Markov chain model of our fga and convergence analysis are in Section 3.
Simulation experiments are presented in Section 4.

2 Our Forced-Based GA

In our earlier work, we introduced a forced-based ga (fga) [3] [4] inspired by the
molecular forced-based distribution in physics [16]. In fga, each node is applied
a force by its near neighbors (i.e, the nodes located within its communication
range, Rcom), which should sum up to zero at the equilibrium. This force can be
used as a fitness value to assign the node’s speed and location. It is important to
highlight that, although inspired by it, fga is fundamentally different than the
deterministic approach of [16]. In our fga, the nodes are not pre-distributed (up
to 90%), the nodes can adjust their speed and direction using local information,
and there is no central controller. Our fga runs as a distributed software agent
in each node, making our approach a suitable candidate for manets.

In our mobility model [17], each mobile agent can move into one of six hexago-
nal directions in the area boundaries. A mobile node uses the total force applied
to it by the neighboring nodes located in its communication range to decide the
next direction and speed. The force value on a node depends on the distance
between the node, the location and number of neighboring nodes within its com-
munication range. The force from a closer neighbor is greater than the farther
one. The force value can be used as a fitness value of the corresponding mobile
node. To calculate a node’s fitness value, the absolute normalized force value for
each mobile agent is added into its fitness value. A smaller fitness shows a better
position for a mobile node since it indicates that the total force applied to it by
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its neighbors cancels each other out (or the neighbors apply no force at all since
the node may be positioned in an isolated location by itself without any neigh-
bors). The mean node degree (N) is shown to be an effective measure indicating
the number of neighbors to construct a fitness function for a given total number
of nodes, communication range (we assume, for simplicity, communication range
is the same for all mobile nodes), and a geographical area as shown by [17]. N is
the expected number of node degree to maximize the coverage. Therefore, using
N , we can calculate the total force applied to a mobile node ρ as follows:

F (ρ) =
k∑

i=0

k∑
j=0

N · (Rcom− | ((x − xi) + (y − yj)) |) (1)

where k is the total number of neighbors, (x, y) is the current coordinate value
for the node, ρ is the node id, and (xi, yj) is the location of a neighbor node.

There are three main objectives for achieving the optimum mobile nodes sepa-
ration in an unknown terrain. The first is to have a fully connected network. This
objective is one of most important requirements for manets since it provides
a multi-hop communication capability between any two nodes in the network.
Furthermore, this communication capability between any two mobile agents is
maintained while nodes are mobile. The second is to maximize the area occupied
by mobile agents while minimizing the intersection between nodes’ communica-
tion coverage. The third objective is to provide an optimum number of neighbors
for each node depending on the network density. The second and third objectives
result in better utility usage and less communication overhead due to the use of
the minimum required number of mobile nodes.

In summary, a mobile agent gathers information about its neighboring nodes’
speed, direction, and location, and then, using the fitness function defined in
Eq. (1), proceeds to run its software agent, where the fga is located, to generate
several chromosomes representing candidate solutions for the next generations.
These candidates are ordered according to their fitness values from the lowest
to the highest. The lowest fitness corresponds to the solution representing the
least amount of force applied to a node, and, hence, the best one among the
candidate solutions for that generation.

3 Ergodic Homogeneous Finite Markov Chains

gas use different sets of chromosomes in every population and can be modeled
by Markov chains. A simplified behavior of a node running our fga can be
characterized by a finite Markov chain using the node’s direction (up, up-right,
down-right, down, down-left, or up-left based on the hexagonal lattice), fitness
(good or bad), and speed (mobile or immobile) as seen in Fig. 1. In this model,
for simplicity, we assumed that mobile agents are capable of changing their
directions arbitrarily without stopping. Different values of the node fitness are
merged into two distinct values as either good or bad (shown as 1 or 0 in Fig. 1,
respectively). d(i) is the number of neighbors for a mobile agent i and N̄ is the
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Fig. 1. Markov chain model for our fga (each state is connected to each of the states
in dotted lines, which are not shown for simplicity)

ideal number of neighbors [17] to maximize the area coverage. The state where
N̄ − 1 ≤ d(i) ≤ N̄ + 1 is marked as ideal in the Markov chain; otherwise, it is
marked as non-ideal (shown as Non in Fig. 1).

As can be seen in Fig. 1, the simplified Markov chain model of our ga-based
algorithm has 15 states (without this simplification, the model would have in
the order of 106 states using fitness resolution of 104, 10 different speeds, and
six directions). If a mobile agent is moving on one of the six directions, its state
must be one of the 12 states based on its number of neighbors: six directions
with the ideal number of neighbors, and six directions with non-ideal number of
neighbors. Speed and fitness are inherently covered by including direction into
the state information. The remaining three states are (stop, non, 0) state where
the node is immobile due to the non-ideal number of neighbors and zero fitness,
(stop, ideal, 0) state where the mobile node is immobile, the fitness is 0 in spite
of the ideal number of neighbors, and (stop, ideal, 1) state where the mobile node
does not move because of having ideal number of neighbors with a fitness of 1
(the desired final state in our problem). If a mobile node reaches the final state,
the mobile agent has the desired number of neighbors at the correct locations
using Eq. 1 and stops moving (perhaps until another node comes and disrupts
its equilibrium).

A transition (stochastic) matrix is a mathematical representation of a Markov
model, which specifies the probabilities that the mobile agents move from one
state to another in unit time. The sum of the entries in each row of the stochastic
matrix must be one because this is the sum of the probabilities of making a
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transition from a given state to each of the other states. The probability values of
the transition matrix for our simplified Markov chain model cannot be calculated
analytically because of the stochastic nature of gas, and, hence, they must be
estimated. We set up a set of experiments in our simulation testbed and collect
data concerning the observed state of the mobile nodes. When our fga decides
a mobile node’s next speed and direction using the neighborhood information,
the mobile node moves from one state to another in our simplified Markov chain
shown in Fig. 1. Performing more experiments increases the accuracy of the
probability values in the transition matrix since noise in the data is eliminated.
After running enough experiments, the transition matrix can be formed using
the data showing the observed state of each mobile node at each time unit. The
resulting transition matrix from the simulation experiments is a right transition
matrix with nonnegative elements and entries in each row adding to one.

A homogeneous Markov chain on a finite space X has some initial distribution
ν and has a transition matrix (i.e., Markov kernel) that is equivalent for every
transition step (i.e., Pi = P , where i = 1, 2, · · ·). The distribution of states xεX
at times n ≥ 0 is given by P (n)(x0, · · · , xn) = ν(x0)P1(x0, x1) · · ·Pn(xn−1, xn).
An important subset of Markov chains includes those that are ergodic, where
the Markov chain is irreducible and aperiodic as defined below. (The proofs for
these lemmas are skipped here for brevity, but can be found in [18])

Lemma 1. A Markov chain for our fga can be called irreducible if and only
if P (τy < ∞|x0 = x) > 0 for all x, yεX assuming P 0(x0 = x) and τy is the
shortest number of steps from x to y (i.e., the probability of moving from one
state to another is finite).

Definition 1. The period (dx) of a state x in a Markov chain is defined as the
number of steps it takes to return to the same state x.

Lemma 2. When dx = 1 in Def. 1 for all states (i.e., each state has a self-loop
transition), the Markov chain is aperiodic.

Lemma 3. The Markov chain representation of our fga is irreducible and ape-
riodic and therefore ergodic.

3.1 Convergence of Ergodic Homogeneous Finite Markov Chain

Some measures used in probability will be extremely useful in proving the con-
vergence of homogeneous Markov chain. For a finite set X with distributions μ
and ν on X , the total variation is given by ‖μ − ν‖ =

∑
n |μ(x)−ν(x)|. Building

on this concept is Dobrushin’s contraction coefficient [15] which provides a rough
measure of orthogonality between the distributions in a Markov kernel. This is
defined as c(P ) = 1

2 ·max︸︷︷︸
x,y

|P (x, ·) − P (y, ·)|, where c is the contraction coefficient

and P is a transition matrix. This measure can be understood as 1
2 the largest

total variation between any two rows in the transition matrix. c(P ) = 1 when
any two distributions of the Markov kernel are disjoint. c(P ) = 0 when all of
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the rows in the transition matrix P (x, ·) are equal. Using these concepts, we can
make the following statements (proofs are given by Winkler in [15]):

Lemma 4. Let μ and ν be the probability distributions and let P and Q be
Markov kernels: |μP − νP | ≤ c(P ) |μ − ν| , c(PQ) ≤ c(P )c(Q) ⇒ |μP − νP | ≤
|μ − ν| , |μP − νP | ≤ 2 · c(P ).

Lemma 5. For each Markov kernel P the sequence (c(Pn))n ≥ 0 decreases.

Lemma 6. If P is primitive then the sequence decreases to 0.

Theorem 1. For a primitive Markov kernel P on a finite space with an invari-
ant distribution μ, uniformly in all distributions ν, νPn → μ as n → ∞.

In Lemma 4, Winkler shows that the interaction of distributions with an ergodic
system (transition matrix) reduces the orthogonality between them (assuming
the distributions are not disjoint). Lemmas 5 and 6 state that as the ergodic
system iterates through generations, it converges to a stationary distribution.
Theorem 1 generalizes this result to any initial distribution. Using Theorem 1
we can state that our fga will converge to a stationary behavior:

Theorem 2. Since the Markov kernel for the simplified fga is ergodic, it will
converge to a stationary distribution.

Proof. (sketch) It is shown in [18] that the Markov kernel for our fga is irre-
ducible, aperiodic and ergodic. Therefore, using Theorem 1, it will converge to
a stationary distribution. �

To support the statement given by Theorem 2, experimentally we can find an
approximation for the final stationary distribution for our fga model. We can
then verify the rate of convergence for various Rcom values for the nodes as
shown in the next section.

4 Simulation Experiments of Convergence for Our
Forced-Based GA

We implemented simulation software in Java to study the effectiveness of our dis-
tributed fga for a uniform distribution of knowledge sharing mobile agents [3,17].
In our experimental setup the mobile nodes enter an unknown geographical area
without any prior information nor with a global control unit. Without loss of
generality, each mobile node has the same limited communication range (Rcom),
and, hence, can only be aware of its neighbors. Each mobile node runs its own
fga application to guide its movement based on its current status of neighbor-
ing nodes. To smooth out the noise, each experiment is repeated for 50 times
with the same initial values and the same initial node deployments. There are a
total of N = 100 mobile agents, initially placed at the north-east corner of the
geographical area (100x100 hexagonal grids) for more realistic experiments. For
Rcom = 10, 12, and 15, mean node degree [17] is 4, 6, and 9, respectively. The
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Fig. 2. Contraction Coefficient as n → ∞ for Rcom = 10, 12, and 15

transition matrix with the size of (15x15) is not shown here due to the space
limitations.

Fig. 2 shows the Dobrushin’s contraction coefficients, which provide a rough
measure of orthogonality between initial and final distributions in the Markov
kernel (based on Theorem 1), for Rcom = 10, 12, and 15 when n goes to infinity.
Markov kernel for our fga reaches the final state for Rcom = 10, 12, and 15 when
n ≈ 45, 50, and 70, respectively. Fig. 2 also shows that the mobile nodes in a
manet spend more time to reach their final states when their communication
range is larger. It is an expected result since a larger communication range
emulates a denser network. In a dense network, mobile nodes have more than
N̄ neighbors. We observe that the mobile nodes in the experiments with large
Rcom values have to move more than those with smaller Rcom values because they
have to travel a greater distance to acquire better fitness values. This excessive
movement results in late convergence for experiments with larger Rcom values.

Fig. 3. Output distribution of each state in Markov chain for Rcom = 10
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Fig. 4. Output distribution of each state in Markov chain for Rcom = 12

Figs. 3, 4, and 5 present the output distributions for Rcom = 10, 12, and 15,
respectively, displaying the convergence characteristics of Markov kernel’s states
for each experiment as the nodes perform our distributed fga and time ap-
proaches infinity. In Fig. 3, the mobile nodes in the final state have the highest
probability of 32% when time approaches infinity (the mobile nodes have the
desired number of neighbors at the correct locations with the summed force of
almost 0 in Eq. 1). The probability of reaching a stop state with poor fitness
and non-ideal number of neighbors is 20%. Mobile agent in this state may have
a poor fitness value due to having more neighbors than N̄ . In Fig 4, the proba-
bility for the nodes which are immobile and with an ideal number of neighbors
is 22%. However, the state where a node has non-perfect fitness, immobile and
with a non-ideal number of neighbors has the highest probability of 28%. When
the communication range is increased to 15 (Fig 5), the probability that being in
the state with non-perfect fitness, immobile, and non-ideal number of neighbors
is the highest (33%). For the larger Rcom values, a node will have more neighbors
within its range and, hence, a lower value of fitness.

Fig. 5. Output distribution of each state in Markov chain for Rcom = 15
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Another important perspective to evaluate the performance of different com-
munication ranges is the distance that the nodes travel. In manet applications,
energy conservation is vital. If the mobile agents have a larger than necessary
communication range, it results in a fast energy consumption due to increased
movement as seen in Figs. 2, 3, 4 , and 5.

5 Conclusion and Future Work

In this paper, we study the effects of communication range on the convergence of
our fga [3,4]. A simplified Markov chain is introduced to analyze the convergence
of fga using Dobrushin’s contraction coefficients. The simulation experiments
show that the nodes using shorter communication ranges require less movement
and converge faster. Larger communication ranges unnecessarily increase the
communication among the near neighbors of each node, making convergence
decisions harder, and consumes more energy. Future work will include a more
detailed convergence analysis of our fga, including the parameters such as num-
ber of mobile nodes and different initial node distributions.
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Abstract. Two key issues in mobile Wireless Sensors Network (WSN) are cov-
erage and energy conservation. A high coverage rate ensures a high quality of 
service of the WSN. Energy conservation prolongs the network lifetime. These 
two issues are correlated, as coverage improvement in mobile WSN requires the 
sensors to move, which is one of the main factors of energy consumption. 
Therefore coverage optimization should take into consideration the available 
energy. Considering the sensors limited energy, this paper proposes a PSO 
based algorithm for maximizing the coverage subject to a constraint on the 
maximum distance any sensor can move. The simulation results show that the 
proposed algorithm achieves good coverage and significantly reduces the en-
ergy consumption for sensors repositioning. 

Keywords: Constrained problem optimization, coverage, energy conservation, 
fuzzy, particle swarm optimization, Voronoi diagram, wireless sensor networks. 

1   Introduction 

A Wireless Sensor Network (WSN) is a group of low-cost, low-power, multifunc-
tional and small size wireless sensor nodes that work together to sense the environ-
ment, perform simple data processing and communicate wirelessly over a short dis-
tance [1]. By mounting the sensors on mobile platforms such as Robomote [2], they 
can move, self deploy and self repair adding more to their value [3]. 

The coverage problem is one of the major concerns in WSNs and it is usually used 
as a key to evaluate the WSN quality of service (QoS) [4]. Central to the coverage 
problem is the question on how to guarantee that each of the points in the region of 
interest (ROI) is covered. For sensors with an actuation capability, the initial coverage 
can be improved by moving them so that a better coverage is achieved [3, 5-8]. How-
ever, even though mobility is an advantage to WSNs, it is a high energy consumption 
task [2], hence movement planning is another important issue in WSNs. It is desired 
to achieve optimal coverage and at the same time not to relax the mobility due to the 
fact that sensors have limited energy supply. Therefore the sensors’ maximum dis-
tance moved is restricted to conserve energy for other tasks. 
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Several researchers have addressed this problem. Kwok et al.’s algorithm [5] at-
tempts to improve the coverage, taking into account minimizing the traveled distance. 
The ROI is divided into a grid. The sensors move to take positions on the grid points, 
and the movement is restricted by the fuel resources allocated. Howard and Poduri [3] 
proposed the virtual field concept to WSN. It assumes that the sensor nodes and ob-
stacles have potential fields which exert virtual forces. These forces will cause the 
nodes to repel each other and the obstacles, resulting in physical movement by the 
sensors. The movement will continue until either the sensing fields of the sensors no 
longer overlap or they cannot detect each other. Although this method ensures full 
coverage and full connectivity, it relies highly on the sensor mobility, which is expen-
sive energy consumption [2]. Zou and Chakrabarty proposed a similar concept, where 
the sensors move due to their exerted forces [6]. However, the sensors are restricted to 
make only one limited physical movement.  

Chellappan et al. [7] also considered limiting sensors’ movements in their sensors 
deployment strategy. Two objectives are considered. The first objective is to evenly 
deploy the sensors throughout the ROI, and the second objective is to minimize the 
total number of movements. Given an initial deployment of limited mobility sensors 
in a field clustered into multiple regions with assigned weights corresponding to the 
number of sensors needed, the deployment problem is to determine a movement plan 
for the sensors that minimizes the variance in the number of sensors among the re-
gions, and simultaneously minimizes the sensor movements. A similar concept is 
proposed in [8].  

In this paper, the coverage problem is considered using evolutionary algorithm. 
The question which this paper attempts to answer is “How to maximize the WSN 
coverage through intelligent repositioning of the sensors and at the same time keeping 
the energy consumed in moving the sensors below a threshold”. Clearly this question 
represents a typical optimization problem of maximizing coverage subject to a maxi-
mum distance moved by any sensor. Reducing the distance moved means reducing 
the energy consumed. The proposed algorithm, WSNPSOcon uses Particle Swarm 
Optimization (PSO) to find the best locations of the sensors according to a penalty 
based fitness function. The fitness function uses the Voronoi diagram to measure the 
quality of the coverage. A fuzzy penalty system finds the penalty parameters.  

In a related work, Wu et. al. [9] used PSO to optimize coverage in a mobile WSN 
and reduce the communication energy consumption in cluster based sensor networks 
by electing the best set of cluster heads. The coverage is evaluated using grid based 
fitness function. An algorithm known as virtual force directed co-evolutionary PSO 
(VFCPSO) is introduced in [10]. However, no consideration to minimize energy is 
taken. In [11], a multiobjective WSN problem is considered, where the objectives are 
to maximize coverage and minimize energy consumption due to sensor communica-
tions. Our algorithm considers the energy consumed in sensor movement. 

The rest of this paper is organized as follows. Section 2 introduces the basic  
concept of PSO. The proposed algorithm is presented in section 3, and followed by 
the simulation results and discussion in section 4. Finally, section 5 concludes the 
paper. 
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2   Particle Swarm Optimization 

Particle swarm optimization is a population-based optimization tool inspired by the 
natural social behavior of certain organisms like bird flocking and fish schooling as 
developed by Kennedy and Eberhart [12]. This behavior is imitated in PSO where 
particles (agents) fly over the search domain influenced by their experience and the 
experience of the surrounding neighbors. The algorithmic flow in PSO starts with a 
population of particles. Each particle i has a position, Xi that represents a potential 
solution for the studied problem and a velocity Vi that determines the next move. The 
velocity is influenced by two factors; The previous best found position by the particle 
Pi, and the best position found so far by the neighbor particles Pg. The search for op-
timal position (solution) is performed by updating particle velocities and positions 
according to the following two equations: 

)(())(() XPXPVV igiiii Randcrandcw −××+−××+×= 21  (1)

VXX iii +=  (2)

The inertia weight w, is used to control the effect of the previous velocity in the cur-
rent velocity and also to control the exploration and exploitation ability of particles. A 
time decreasing inertia weight encourages high exploration at the beginning and fine 
tuning at the end of the search [13]. c1 and c2 are the learning factors to control the 
effect of Pi and Pg. rand() and Rand() are two independent random numbers in the 
range of [0.0,1.0]. The Vi value is clamped to ±Vmax to prevent the particles from 
exploding and straying too far from the optimal search space.  

The quality of the solution is evaluated by a problem-dependent fitness function 
f(Xi). If the current solution is better than the fitness of Pi or Pg, the best value will be 
replaced by the current solution accordingly. This update process will continue until 
stopping criterion is met, usually when either the maximum iteration is achieved or 
the target solution is attained. When the stopping criterion is satisfied, the best particle 
found so far (Xi* and fitness f ) is taken as the optimal (or near optimal) solution. The 
PSO algorithm is shown in Fig. 1. 

 
 

 
 

Fig. 1. PSO algorithm 

For each particle initialize Xi and Vi 
Do{ 

For each particle {   
   Calculate fitness value; 
   Update Pi  if the current fitness value is better than Pi ; 
   Determine Pg: choose the particle position with the best fitness value of all the 
neighbors as the Pg;  
} 
Update Xi* 
For each particle { 

Update Vi  according to Eq.1; 
Update Xi according to Eq.2; 

} 
} While maximum iteration or ideal fitness is not attained;



54 N.A.Ab. Aziz, A.W. Mohemmed, and M. Zhang 

3   PSO for WSN Coverage Optimization 

A PSO based algorithm to solve the WSN coverage problem was proposed by the 
authors in [14]. The algorithm utilizes the Voronoi diagram to evaluate the fitness 
function to measure the coverage. Using the Voronoi diagram gave good coverage 
and better time efficiency than other measurement methods like using the grid. The 
Voronoi diagram is a partition of sites in such a way that points inside a polygon are 
closer to the site inside the polygon than any other sites, thus one of the vertices of the 
polygon is the farthest point of the polygon to the site inside it [15]. However, no 
consideration is imposed to reduce energy consumption due to the sensor reposition-
ing. Therefore, we are extending the work to consider the energy consumption. The 
ROI is assumed to be a two-dimensional square area and the WSN is homogeneous; 
all the sensors have similar sensing radius. In addition, it is assumed that the sensors 
know their positions and possess locomotion capability, thus they are able to move 
and change position. The optimization algorithm is executed at a base station after an 
initial random placement. Then, the final optimal position is transferred to the sensors 
to take their final positions. 

3.1   Particle Encoding 

The coding of the particle is straightforward. A particle encodes the positions of the 
sensors in the ROI which is assumed here to be a two dimensional square area. The 
position of a sensor j is described by the coordinate (yj, zj). Considering M number of 
sensor nodes, the particle encoding is depicted in Fig.2. Thus, the size of the particle 
is twice the number of sensors. The final best particle represents the optimum posi-
tions of the sensors that lead to the minimum coverage holes   
 

 
 

 

 
Fig. 2. Particle encoding 

3.2   Fitness Function 

Maximizing the coverage is done through minimizing the area of the coverage holes. 
A coverage hole is an area not covered by the sensing field of any sensor. The total 
area of the coverage holes are computed based on the Voronoi diagram. With the 
sensors acting as the sites, if all Voronoi polygons vertices are covered, then the ROI 
is fully covered; otherwise coverage holes exist [16]. Therefore, the fitness function is 
expressed as:  

minimize : )( pointolecoverage_h
ointsinterest_p   point

∑
∈

  (3)

 

 y1  z1 y2 z2 …. y M z M

Sensor 1 Sensor 2 Sensor M
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where coverage_hole is the area not covered by sensors around a defined set of points 
called interest_points. The set of interest_points includes two groups of points: (a) 
vertices of the Voronoi polygons, obtained from the computed Voronoi diagram, (b) a 
number of points distributed evenly on the boundary of the polygons. The Voronoi 
diagram is computed based on the sensors positions encoded by the particle. The 
boundary points, whose number is selected experimentally, act as pulling forces that 
prevent the sensors from congregating around a particular point in the ROI. The effect 
of the boundary points on the final positions of the sensors based on simulation ex-
periments is shown in Fig.3. Without including boundary points, the sensors will 
congregate around a point as shown in Fig.3(b), while too many points will pull the 
sensors strongly towards the boundary of the ROI (Fig.3(d)).  

 

Fig. 3. Effect of boundary points 

The area of coverage_hole around the interest points is approximated based on the 
position of the interest point whether it is a vertex or a boundary point as shown in 
Fig.4. The fitness is the summation of the area of the coverage holes in the ROI. Ide-
ally, the fitness value should equal zero, indicating that there is no coverage holes 
exist.  

 

Fig. 4. Hole area estimation 
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Eq.(3) does not consider limiting the distance moved by the sensors to their final 
positions. Sensor movement is an energy consumption task, hence Eq.(3) is extended 
to a constrained fitness function as follows: 

minimize: ∑
∈ points interest_point 

)oles(pointcoverage_h  

subject to Dd mov max≤  

(4)

where dmov is the maximum distance moved by any sensor and Dmax is the maximum 
distance any sensor is allowed to move. Eq.(4) can be rewritten with the constraint 
included in a penalty term:  

minimize )(
_

)(_ d movP
pointsinterestpoint

pointholescoverage γ+
∈

∑  (5)

where γ is a positive value penalty parameter and P(dmov) is the penalty function. The 
penalty function penalizes any solution outside the feasible solution. An absolute 
value penalty function P(dmov) is used here; 

))(,0max()( maxDdP movmovd −=  (6)

P(dmov) is equal to zero as long as the constraint is obeyed, but when the constraint is 
violated, P(dmov) is equal to some positive value. The accuracy of the approximation 
of the optimal solution found by the penalty method is controlled by γ. A large value 
of γ will result in a heavier penalty to any breach of the constraint, however a very 
severe penalty will make it hard to find an optimal solution [17]. On the contrary, a 
small penalty might be too lenient, thus causing infeasible solution.  

In [18] a fuzzy penalty approach is proposed to provide a suitable value of penalty 
to the objective function based on the condition of the solution. A similar concept is 
used in this paper. Fig. 5 represents the Fuzzy set used to determine the penalty pa-
rameter, γ, based on the value of dmov. 

 

Fig. 5. Fuzzy set for γ based on dmov 

DROI in Fig.5 is the maximum distance the sensors can move without crossing the 
boundary of the ROI. The γ value is determined based on dmov which is divided into 
three parts.  The solutions from part (a) are good feasible solutions while part (c) 
solutions are bad solutions that are too far from the feasible area. Part (b) represents 
interesting infeasible solutions; infeasible but close to the feasible region [19]. This 



 PSO for Coverage Maximization and Energy Conservation in WSNs 57 

section reduces the rigidity of the penalty method. An exponential function is chosen 
to reflect the values of γ. 
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The value of α in Eq. (7) is chosen based on which part does the current solution fell 
in. 

The operational flow diagram of WSNPSOcon is shown in Fig.6. The algorithm 
starts with the sensors randomly deployed. In every iteration, the maximum distance 
moved by any particle dmov is passed to the fuzzy system to compute a new value of 
the penalty parameter γ. This value is passed to PSO to be used in the fitness function. 
This process will continue until either one of the stopping conditions – maximum 
iteration or 100% coverage with Dd mov max≤  – is met.  

 

 
Fig. 6. WSNPSOcon operation diagram 

4   Results and Discussion 

The performance of WSNPSOcon is investigated through simulation experiments and 
compared with WSNPSO [14], which does not consider the distance moved. The 
objective of the experiments is to investigate the performance of the proposed algo-
rithm in increasing coverage and conserving energy, measured using the maximum 
distance moved. The number of particles is set to 20, the maximum velocity to 4, 
and linearly decreasing inertia weight is adopted in the [0.5, 2.0] range. The  
learning factors for c1 and c2 are both set to 2.0. The algorithm runs to a maximum 
number of 1000 iterations. Six tests of different number of sensors and areas are 
conducted. All the sensors used have sensing range rs = 7. The maximum moving 
distance allowed for each of the sensors (Dmax) is set to 20 for all tests. Table 1 
shows the parameters of these tests.  

 

 WSNPSOcon 

Initial sensors’ positions Final sensors’ positions PSO

Fuzzy system

dmov γ 
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Table 1. Tests parameters 

Description  Size of 
ROI 

Number 
of sensors 

Ideal 
coverage* 

No. of 
Boundary 

Points ROI Density 

Test I 50x50 10 ≈62% 20 Smaller  Sparse 
Test II 50x50 20 100% 40 Smaller Optimal 
Test III 50x50 30 100% 40 Smaller  Dense 
Test IV 100x100 60 ≈92% 20 Larger Sparse 
Test V 100x100 80 100% 40 Larger Optimal 
Test VI 100x100 100 100% 40 Larger  Dense 

* Ideally coverage is 100% if number of sensors: 
233

2

r

A

s××
=  where A is area of ROI.  

Table 2. Results of simulations 

Test I  
 Coverage % Execution Time (sec) Max. distance travel 
Initial 41.28   
WSNPSO 58.36 14.4187 26.59 
WSNPSOcon 57.96 15.9554 19.29 
Test II 
Initial 65.47   
WSNPSO 94.23 28.5554 28.38 
WSNPSOcon 93.34 30.0798 18.90 
Test III  
Initial 80.58   
WSNPSO 98.80 44.1984 24.84 
WSNPSOcon 98.64 46.4775 19.18 
Test IV  
Initial 56.90   
WSNPSO 77.62 112.8704 43.43 
WSNPSOcon 73.56 114.7657 19.65 
Test V 
Initial 68.09   
WSNPSO 88.13 174.9234 38.31 
WSNPSOcon 81.66 176.7735 19.79 
Test VI  
Initial 74.70   
WSNPSO 92.70 247.4455 42.51 
WSNPSOcon 84.90 250.4641 19.77 

 
 

The coverage, the maximum distance travelled among the sensors and the execution 
time averaged over 20 runs are recorded in Table 2. The table shows that both 
WSNPSO and WSNPSOcon significantly improve the initial coverage of the networks. 
The maximum distance travelled by any sensor when WSNPSOcon is used is always 
below the threshold value of 20. The coverage of the two algorithms is similar to each 
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other in small ROIs but the difference becomes clearer when the ROI size is larger. 
This is expected as the constraint in large ROI is restricting the WSNPSOcon to search 
more severely than what it does in small ROI, hence this reduces its coverage. As for 
density level, both algorithms show that the denser the network the better is the final 
coverage on the expense of longer execution time. For a better clarity, Fig.7 shows an 
example of sensors positions before and after using WSNPSOcon. 

 

Fig. 7. Initial and final sensors arrangement of WSNPSOcon 

5   Conclusion 

This paper presents WSNPSOcon as an algorithm based on PSO for optimizing the 
WSN coverage problem while conserving energy. WSNPSOcon sees the two problems 
as a constrained optimization problem where the coverage is maximized by moving 
the sensors subject to a maximum distance moved. Simulation results show that the 
proposed algorithm succeeds in maximizing the coverage and ensures the energy is 
saved and kept below the threshold value.  
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Abstract. Resilient Packet Ring (RPR), also known as IEEE 802.17, is a stan-
dard designed for optimising the transport of data traffic over optical fiber ring 
networks. The Weighted Ring Arc-Loading Problem (WRALP) is a NP-
complete problem that arises in engineering and planning of the RPR systems. 
Specifically, for a given set of non-split and uni-directional point-to-point de-
mands (weights), the objective is to find the routing for each demand (i.e., as-
signment of the demand to either clockwise or counter-clockwise ring) so that 
the maximum arc load will be minimised. This paper suggests an efficient traf-
fic loading algorithm- Artificial Bee Colony (ABC). We compare our results 
with the ones obtained by the standard Genetic Algorithm, Tabu Search Algo-
rithm and Particle Swarm Optimisation, used in literature. Simulation results 
verify the effectiveness of the ABC algorithm.  

Keywords: Optical Networks, Optimisation Algorithms, Artificial Bee Colony, 
Weighted Ring Arc-Loading Problem. 

1   Introduction 

The standard IEEE 802.17 for the Resilient Packet Ring (RPR) aims to combine the 
appealing functionalities from Synchronous Optical Network/Synchronous Digital 
Hierarchy (SONET/SDH) networks with the advantages of Ethernet networks. The 
key performance objectives of RPR are to achieve high bandwidth utilization, opti-
mum spatial reuse on the dual rings, and fairness [1]. In RPR systems an optimal load 
balancing is of paramount importance, as it increases the system capacity and im-
proves the overall ring performance. An important optimisation problem arising in 
this context is the Weighted Ring Loading Problem (WRLP). Given a network and a 
set of communications requests, a fundamental problem is to design a transmission 
routing (direct path) for each request such that the high load on the ring arcs is 
avoided, being an arc an edge endowed with a direction. The load of an arc is defined 
as the total weight of those requests that are routed through the Arc in its direction 
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(WRALP). In general each request is associated with a non-negative integer weight. 
Practically, the weight of a request can be interpreted as a traffic demand or as the 
size of the data to be transmitted.  

The load balancing problems can be classified into two formulations: with demand 
splitting (WRLP) or without demand splitting (non-split WRLP). Split loading allows 
the splitting of a demand into two portions to be carried out in both directions, while 
in a non-split loading each demand must be entirely carried out in either clockwise or 
counter-clockwise direction. In either split or non-split cases, WRALP ask for a rout-
ing scheme such that maximum load on arcs will be minimum. In this paper we study 
the WRALP without demand splitting. 

Research on the no-split WRLP performed by Cosares and Saniee [2] and 
Dell’Amico et al. [3] studied the problem on SONET rings. Cosares and Saniee [2] 
proved that the formulation without demand splitting is a NP-complete problem. For 
the split problem, various approaches are summarised by Schrijver et al. [4] and their 
algorithms compared in Myung and Kim [5] and Wang [6]. 

The non-split WRALP considered in the present paper is identical to the one 
described by Kubat and Smith [7] (non-split WRALP), Cho et al. [8] (non-split 
WRALP and WRALP) and Yuan and Zhou [9] (WRALP). They try to find feasible 
solutions in a reduced amount of time (finding  approximate solutions). Our pupose  is 
to compare the performance of our algorithm with others in achieving the best known 
solution. Bernardino et al. [10] had the same purpose, and present four hybrid Particle 
Swarm Optimisation (PSO) algorithms to solve this problem.  

Swarm intelligence (SI) is a research branch that models the population of interact-
ing agents or swarms that are able to self-organise [11]. Artificial Bee Colony (ABC) 
simulates the intelligent foraging behaviour of a bee colony [12]. In this paper we 
propose an ABC algorithm to solve the WRALP. We compare the performance of 
ABC with the standard Genetic Algorithm (GA), the Tabu Search (TS) algorithm and 
the Local Search–Probability Binary PSO (LS-PBPSO), used in the literature. 

The paper is structured as follows. In Section 2 we describe the WRALP; in Sec-
tion 3 we describe the proposed ABC algorithm; in Section 4 we present the studied 
examples and we discuss the computational results obtained and, finally, in Section 5 
we report about the conclusions. 

2   Problem Definition 

Let Rn be a n-node bidirectional ring with nodes {n1, n2, …, nn} labelled clock-
wise. Each edge {ek, ek+1} of Rn, 1≤ k ≤ n is taken as two arcs with opposite 
directions, in which the data streams can be transmitted in either direction: 

)e,(ea),e,(ea k1kk1kkk +
−

+
+ == . 

A communication request on Rn is an ordered pair (s,t) of distinct nodes, where 
s is the source and t is the destination. We assume that data can be transmitted 
clockwise or counter-clockwise on the ring, without splitting. We use P+(s,t) to 
denote the directed (s,t) path clockwise around Rn, and P-(s,t) the directed 
(s,t) path counter-clockwise around Rn.  

Often a request (s,t) is associated with an integer weight w>=0; we denote this 
weighted request by (s,t ; w). Let D= {(s1,t1; w1),(s2,t2; w2), ..., 
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(sm,tm; wm)} be a set of integrally weighted requests on Rn. For each request/pair 
(si,ti) we need to design a directed path Pi of Rn from si to ti. A set P={Pi: 
i=1, 2, ..., m} of such directed paths is called a routing for D. 

3   Proposed ABC 

ABC was proposed by Karaboga [12] for optimising numerical problems. The mini-
mal model of swarm-intelligent forage selection in a honey bee colony, that ABC 
algorithm adopts, consists of three kinds of bees: employed bees, onlooker bees, and 
scout bees [12-18]. In the ABC algorithm, while onlookers and employed bees carry 
out, in the search space, the exploitation process, the scout bees control the explora-
tion process [18]. Employed bees are responsible for exploiting the nectar sources and 
giving information to the other waiting bees (onlooker bees) in the hive about the 
quality of the food source site which they are exploiting. Onlooker bees wait in the 
hive and decide a food source to exploit depending on the information shared by the 
employed bees. Scouts randomly search the environment in order to find a new food 
source depending on an internal motivation or possible external clues or randomly.  

The main steps of the ABC algorithm applied to the WRALP are detailed below: 
 

Initialise Parameters 
Initialise Employed Bee Colony 
Evaluate Employed Bees 
WHILE number of iterations < Max number of iterations 
  Employed Bees Phase:    FOR each Employed Bee in Colony 
                            Apply Local Search Procedure 
                            Evaluate Employed Bee 
                          Compute Probabilities 
  Onlooker Bees Phase:    FOR each Employed Bee in Colony 
                            Compute number of Onlooker Bees 
                            FOR each Onlooker Bee in Colony 
                              Apply Neighbourhood Search 
                              Evaluate Onlooker Bee 
                              IF fitness(Onlooker)<fitness(Employed Bee) 
                                Replace Employed Bee 
  Scout Bees Phase:       Create Scout Bees 
                          Replace worst Employed Bees with Scout Bees 
  Memorise Best Solution (Bee) 

 

Initialise Parameters 
The following parameters must be defined by the user: Number of Employed Bees 
(NE); Number of Onlooker Bees (NO>NE); Maximum number of Iterations (MI) and 
Number of Attempts (NA). 
 

Initialise Employed Bee Colony 
In our implementation, the number of employed bees is exactly the number of solu-
tions in the population. In this work, the solutions are represented using binary vectors 
(Table 1).  We assume that weights cannot be split, that is, for some integer Vi =1, 
1≤ i ≤ m, the total amount of data is transmitted along P+(si,ti); Vi=0, the total 
amount of data is transmitted along P-(si,ti). The vector V=(V1, V2, …, Vm) 
determines a routing scheme for D.  
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Table 1. Solution representation 

Pair(s,t) Demand 
 1:  (1, 2)  15 
 2:  (1, 3)  3 
 3:  (1, 4)  6    
 4:  (2, 3)  15 
 5:  (2, 4)  6 
 6:  (3, 4)  14 

 C–clockwise  CC–counterclockwise 
 15  C 
 3   CC 
 6   CC 
 15  C 
 6   CC 
 14  C 

Pair1 Pair2 Pair3 Pair4 Pair5 Pair6  
 Representation (V) 1 0 0 1 0 1 

 
The initial solutions can be created randomly or in a deterministic form. Initially a 

deterministic strategy is followed and in second stage the ABC algorithm is used to 
optimise the solution. The deterministic form is based in a Shortest-Path Algorithm 
(SPA). SPA is a simple traffic demand assignment rule in which the demand will 
traverse the smallest number of segments. 

Evaluate Employed Bees 
For the evaluation of bees it was necessary to define the following fitness function: 
 

Wi,…,wm  demands of the pairs (si,ti),…,(sm,tm)                       (1a)       
Vi, …, Vm = 0  P-(si,ti); 1  P+(si,ti)                            (1b)   

Load on arcs:   L(V, +
ka )= ∑

++ ∈ )t,(sPa:i iik

wi       L(V,
−
ka )= ∑

−− ∈ )t,(sPa:i iik

wi              (2a)   

               ∀k=1,…,n;    ∀i=1,…,m                              (2b) 
Fitness function:   max{max L(V, +

ka ),max L(V, −
ka )}                    (3) 

 

The fitness function is based on the following constraints: (1) between each node 
pair (si,ti) there is a demand value >=0. Each positive demand value is routed 
in either clockwise (C) or counter-clockwise (CC) direction; (2) for an arc the load is 
the sum of wi for clockwise or counter-clockwise between nodes ek and ek+1.  

The objective is to minimise the maximum load on the arcs of a ring (3). 

Employed Bees Phase 
In ABC an employed bee produces a modification on the position (solution) in her 
memory depending on the local information (visual information) and tests the nectar 
amount (fitness value) of the new source (new solution). We use the Local Search 
(LS) procedure to perform this modification. We create two different LS methods that 
can be chosen by the user. In the LS “Exchange Direction” some pairs of the solution 
are selected and their directions are exchanged (partial search). This method can be 
summarised in the following pseudo-code steps: 
 
 

For t=0 to numberNodesRing/4 
  P1 = random (number of pairs)            P2 = random (number of pairs) 
 N = neighborhoods of ACTUAL-SOLUTION (one neighborhood results of  

interchange the direction of P1 and/or P2) 
SOLUTION = FindBest (N) 
If ACTUAL-SOLUTION is worst than SOLUTION 
  ACTUAL-SOLUTION = SOLUTION 
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In the LS “Exchange Max Arc”, first it is necessary to establish the arc with higher 
fitness. A set of neighbours is obtained by interchanging the direction of some pairs 
that flow by the arc with higher fitness (partial search). This method can be summa-
rised in the following pseudo-code steps: 

 

Define MaxArc               y1= random(m/2)              y2= random(m/2) 
FOR p=y1 TO y1+y2  
  IF p flows by MaxArc 
     N = neighborhoods of ACTUAL-SOLUTION (one neighborhood results of 
Interchange the direction of p) 
SOLUTION = FindBest (N) 
If ACTUAL-SOLUTION is worst than SOLUTION 
  ACTUAL-SOLUTION = SOLUTION 

 

If the nectar amount of the new solution is higher (with a smaller fitness value) 
than the nectar of the previous one, the bee memorises the new position and forgets 
the old one. Otherwise the employed bee keeps the position of the previous one in her 
memory. After all employed bees complete the search process, they share the infor-
mation related to the nectar of the food sources and their position with the onlooker 
bees. An artificial onlooker bee chooses a food source depending on the probability 
value associated with that food source, pri. The probabilities are calculated by: 

∑
=

=
NE

n
nfitsstotalFitne

1

  
sstotalFitne

fitsstotalFitne
pr i

i
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Onlooker Bees Phase 
In this phase each onlooker bee selects a source depending on the quality of her  
solution, produces a new food source in a selected food source site and exploits the 
better source. An onlooker bee evaluates the nectar information taken from all em-
ployed bees and chooses a food source with a probability related to its nectar amount. 
Our algorithm computes the number of onlooker bees, which will be sent to food 
sources of employed bees, according to the previously determined probabilities:  
NOi = number of onlooker bees sent to food source i.                     NOprNO ii *=  

A neighbour is obtained by performing multiple attempts to improve the solution, 
whose length is specified as NA (number of attempts). The algorithm performs NA 
attempts to find a new position for the Onlooker Bee. First the algorithm chooses a 
pair c randomly. In the 50% of the cases changes its direction to the shortest path; 
otherwise changes its direction to the direction of the best bee of the population. The 
algorithm repeats this process until at least one exchange with improvement is made 
or until the NA is reached. The general mechanism of the neighbourhood search is 
represented in the next pseudo-code:  

 

FOR i=1 TO NA DO 
  c=random (m); 
  if (random(2)=0) 
    if (sc- tc) = n/2  
      if (random(2)=1)    testSolution[c] = CC 
      else testSolution[c] = C 
    else if (sc- tc) > n/2 testSolution[c] = C 
         else testSolution[c] = CC 
  else testSolution[c]= bestSolution[c]; 
  if(fitnessTest < fitnessOld) break; 
if(fitnessTest < fitnessNew) newSolution=testSolution      
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If the nectar amount of the solution is higher than the nectar amount of the previ-
ous one, the bee memorises the new position and forgets the old one.  

Scout Bees Phase 
In this phase the food source of which the nectar is abandoned by the bees is replaced 
with a new food source by the scouts. In our implementation, this is simulated by 
producing new solutions and replacing the worst employed bees. This means that the 
food sources with lower nectar amounts are abandoned. In our implementation the 
artificial scout bees can be created randomly or using the SPA. 

The worst employed bees as many, as the number of scout bees in the population, 
are respectively compared with the scout solutions. If a scout bee is better than an 
employed bee, the employed bee is replaced with the scout bee. Otherwise, the em-
ployed bee is transferred to the next cycle without any change. In our implementation 
we consider the number of scout bees equal to 10 % of the number of employed 
Bees: NENS *1.0= . 

Memorise best solution 
In this step the algorithm memorises the best solution achieved so far. At the end of 
execution the best solutions are presented. 

Termination criterion 
The algorithm stops when a maximum number of iterations (MI) is reached. 

More Information about ABC can be found in ABC Website [19]. 

4   Results 

We evaluate the utility of the algorithms using the same examples produced by Ber-
nardino et al. [10]. They consider six different ring sizes - 5, 10, 15, 20, 25 and 30 - 
and four demand cases: (i) complete set of demands between 5 and 100 with uniform 
distribution; (ii) half of the demands in (i) set to zero; (iii) 75% of the demands in (i) 
set to zero; and (iv) complete set of demand between 1 and 500 with uniform  
distribution. The last case was only used for the 30 nodes ring. For convenience, the 
instances used are labelled Cij, where 1<i<6 represents the ring size and 1<j<4 
represents the demand case.  

We perform comparisons between all parameters of the ABC using the instance 
C41 with 50 iterations and creating the artificial scouts randomly.  

We studied the influence of the two different LS methods (used to create new em-
ployed bees) on the execution time, the average fitness and the number of best  
solutions found using a growing number of NA (Fig. 1). The “Exchange Direction” 
obtains a better average fitness, however the “Exchange Max Arc” is less time con-
suming. We verify that in the same time, independently of the iterations number, the 
two LS methods produce an identical number of best solutions. 

The best results obtained with ABC use NA between 10 and 15 (Fig. 1). A high 
NA has a significant impact on the execution time (Fig. 1).  
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Fig. 1. Number of attempts – number of best solutions/ average fitness/ average time 

In our experiments the number of employed bees and the number of onlooker bees 
were set to {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. We studied the impact on the 
execution time, the average fitness and the number of best solutions found. The num-
ber of bees has a significant impact on the execution time (Fig. 2 and Fig. 3). 

The results show that the best solutions obtained with ABC use NO>NE, being NE 
between 10 and 20 and NO between 25 and 35. With these values the algorithm can 
reach in a reasonable amount of time a reasonable number of best solutions. With a 
higher number of bees the algorithm can reach a better average fitness however it is 
more time consuming. 

 

Fig. 2. Number of Employed Bees – Average Fitness/ Execution Time 

 

Fig. 3. Number of Onlooker Bees – Average Fitness/ Execution Time 

In general, experiments have shown that the proposed parameter setting is very ro-
bust to small modifications. Large types of experiments and considerations have been 
made to define all parameters. 

To compare our results we consider the results produced with the standard GA, the 
TS Algorithm proposed by Bernardino et al. [20], and the LS-PBPSO proposed by 
Bernardino et al. [10]. The GA is widely used in literature to make comparisons with 
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other algorithms [21]. The GA adopted uses “one-point” method for recombination, 
“change direction” method for mutation and “tournament” method for selection. In 
“change direction”, one pair is randomly selected and its direction exchanged. The 
GA was applied to populations of 200 individuals. Based on preliminary studies we 
verify that the best solutions obtained by the GA use crossover probability in the 
intervals [0.6–0.9] and mutation probability in the interval [0.5-0.7]. Sugges-
tions from the literature helped to guide our choice of parameter values for the TS 
[20] algorithm and LS-PBPSO algorithm [10].  

The algorithms have been executed using a processor Intel Quad Core Q9450. The 
initial solutions of the four algorithms were created using random solutions.  For the 
problem C64 the SPA was used to create the initial populations. 

Table 2 presents the best obtained results [12]. The first column represents the in-
stance number (Instance), the second and the third columns demonstrate the number 
of nodes (Nodes) and the number of pairs (Pairs) and finally the fourth column dem-
onstrates the minimum fitness values obtained (best known solution).  

Table 2.  Best obtained results 

Instance Nodes Pairs Best Fitness  Instance Nodes Pairs Best Fitness  
C11 5 10 161 C41 20 190 2581 
C12 5 8 116 C42 20 93 1482 
C13 5 6 116 C43 20 40 612 
C21 10 45 525 C51 25 300 4265 
C22 10 23 243 C52 25 150 2323 
C23 10 12 141 C53 25 61 912 
C31 15 105 1574 C61 30 435 5762 
C32 15 50 941 C62 30 201 2696 
C33 15 25 563 C63 30 92 1453 

 

 

C64 30 435 27779 

Table 3.  Results – run times and number of iterations 

Prob Number GA Tabu Search LS-PBPSO ABC 
 Iterations Time IT Time IT Time IT Time IT 

C11 25 <0.001 2 <0.001 5 <0.001 2 <0.001 2 
C12 10 <0.001 2 <0.001 5 <0.001 2 <0.001 2 
C13 10 <0.001 1 <0.001 1 <0.001 1 <0.001 1 
C21 50 <0.001 25 <0.001 25 <0.001 15 <0.001 10 
C22 25 <0.001 5 <0.001 5 <0.001 3 <0.001 3 
C23 10 <0.001 3 <0.001 5 <0.001 3 <0.001 3 
C31 100 0. 1 40 0. 1 90 0. 1 20 0. 1 15 
C32 50 <0.001 15 <0.001 30 <0.001 8 <0.001 5 
C33 25 <0.001 5 <0.001 20 <0.001 5 <0.001 3 
C41 300 0.15 100 0.2 220 0.1 50 0.1 20 
C42 100 0.075 35 0.1 85 0.05 20 0.05 10 
C43 50 0.001 10 0.001 25 0.001 5 0.001 3 
C51 500 0.8 150 1 260 0.75 80 0.75 50 
C52 400 0.15 50 0.2 110 0.1 25 0.1 15 
C53 250 0.02 35 0.03 200 0.01 15 0.01 10 
C61 1500 2.3 300 3.5 400 2 130 1.75 80 
C62 1000 0.6 120 0.8 230 0.4 50 0.3 30 
C63 500 0.08 30 0.08 100 0.075 15 0.075 10 
C64 500 0.5 5 1.5 250 0.75 40 0.3 5 
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Table 3 presents the best results obtained with GA, TS, LS-PBPSO and ABC. The 
first column represents the problem number (Prob), the second column demonstrates the 
maximum number of iterations used to test each instance and the remaining columns 
show the results obtained (Time – Run Times, IT - Iterations) by the four algorithms. The 
results have been computed based on 100 different executions for each test instance 
using the best combination of parameters found and different seeds. All the algorithms 
reach the best solutions before the run times and number of iterations presented. 

Table 4 presents the average fitness and the average time obtained with GA, TS, 
LS-PBPSO and ABC using a limited number of iterations for the problems C41, C51 
and C61 (harder problems). The first column represents the number of the problem 
(Prob), the second column demonstrates the number of iterations used to test each 
instance and the remaining columns show the results obtained (AvgF – Average Fit-
ness, AvgT – Average Time) by the four algorithms. The results have been computed 
based on 100 different executions for each test instance using the best combination of 
parameters found and different seeds.  

Table 4.  Results – Average Time / Average Fitness 

Problem Number  of GA LS-PBPSO Tabu ABC 
 iterations AvgF AvgT AvgF AvgT AvgF AvgT AvgF AvgT 

C41 50 2597,67 0,10 2594,36 0,26 2635,28 0,16 2581,5 0,12 
C51 75 4298,23 0,43 4291,52 0,86 4392,70 0,86 4265,85 0,77 
C61 100 5848,54 1,34 5837,58 3,10 5963,14 3,71 5762,22 1,86 

 

ABC and LS-PBPSO obtain a better average fitness for larger instances. TS is the 
slowest algorithm and obtains a smaller number of best solutions. The ABC is the 
algorithm that presents the best average fitness since in almost executions it reaches 
the best solution. When using the SPA for creating the initial solutions, the times and 
number of iterations decreases – problem C64. This problem is computationally 
harder than the C61, however the best solution is obtained faster. To improve the 
solutions we consider more efficient to apply initially a SPA and then the meta-
heuristic to improve the solutions. 

5   Conclusions 

In this paper we present an ABC algorithm to solve the non-split WRALP. The per-
formance of' our algorithm is compared with three algorithms: a classical GA, a TS 
algorithm and a LS-PBPSO algorithm.  

Experimental results demonstrate that the proposed ABC algorithm is an effective 
and competitive approach in composing fairly satisfactory results with respect to 
solution quality and execution time for the WRALP. 

The ABC presents better results for larger problems. Our algorithm provides higher 
number of best solutions for larger problems. When using SPA for creating the initial 
solutions or for creating the scout bees the best solution is obtained faster. 

In literature the application of ABC for this problem is nonexistent, for that reason 
this article shows its enforceability in the resolution of this problem.  

The continuation of this work will be the search and implementation of new meth-
ods for speeding up the optimisation process.  
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Abstract. In this paper a modification of the TCP protocol is proposed
that improves its robustness to packet reordering in networks controlled
by ant routing algorithms. In our approach the TCP sender builds models
of packet end-to-end delay and every time a DUPACK is received it
utilizes these models to calculate the probability that the packet will
still arrive at the receiver. Based on this probability the decision is made
whether or not to retransmit the packet. The advantages of our approach
are proved in a set of simulations.

1 Introduction

The design of TCPs error and congestion control mechanisms assumes that a
packet loss is an indication of a network congestion. Therefore, when a loss
is detected, the TCP sender reduces the transmission rate by decreasing the
congestion window, which constraints the number of packets that can be sent.
The TCP uses two strategies for detecting the packet loss. The first one is based
on the senders retransmission time-out (RTO) expiration. The second mechanism
originates at the receiver, which monitors the sequence numbers of packets it
receives and generates the duplicate acknowledgment (DUPACK) for every out-
of-order packet. When the sender receives a few DUPACKs (usually 3), the
fast retransmit algorithm infers that a packet has been lost and the packet is
retransmitted without waiting for a time-out. The basic idea behind the fast
retransmit is to improve TCPs throughput by avoiding the senders time-out.
This can improve TCPs performance when occasional reordering occurs in the
network but it operates under the assumption that out-of-order packets indicate
packet loss and therefore a congestion.

However, some networks may experience packet reordering during their nor-
mal operation. Examples of such situations may include: multipath routing,
multi-hop mobile ad-hoc networks routing and QoS provisioning. In multipath
routing algorithms, the packets belonging to the same TCP session can be sent
along different routes. Under such conditions, the packets sent earlier can reach
their destination after the packets sent later, but along a faster path. Conse-
quently, while the packet reordering is not then a sign of abnormality, yet it is
interpreted as such by the TCP. Such an effect can be also observed for wireless
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c© Springer-Verlag Berlin Heidelberg 2010
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networks and multi-hop mobile ad-hoc networks in particular, where the mobil-
ity of nodes causes frequent changes in the network topology. Some mechanisms
that control quality-of-service (QoS) by differentiating the traffic are also likely
to introduce packet reordering in their normal operation. The above examples
show that there is a need to modify the TCP protocol to make it more robust
to frequent packet reordering.

In this paper, we propose a modification of the TCP protocol that improves
its robustness to packet reordering in networks controlled by ant routing algo-
rithms. Ant routing algorithms are an example of adaptive multipath algorithms
in which the path is selected according to a stochastic policy, where the prob-
ability of choosing a particular path is proportional to a quality of this path.
They do not require supervision, and their distributed form makes them well ap-
plicable to the routing problem. Ant routing algorithms are typically considered
with the UDP in the transport layer. However, to be useful in a real Internet
environment, such routing algorithms should perform well also with the TCP,
since most applications use the TCP as a transport layer protocol to ensure a
reliable transmission.

1.1 Swarm Intelligence and Ant Routing

Swarm Intelligence is an evolving, collective intelligence of groups of autonomous
agents. The agents follow some simple rules, interacting with one another and
with their environment. As a result, they are capable of solving complex and
distributed problems.

Basing on the Swarm Intelligence paradigm and its derivative, the Ant Colony
Optimization scheme [8], there were various ant routing algorithms proposed for
both fixed and wireless telecommunication networks.

The first ant routing algorithm for symmetric circuit-switched networks was
proposed in 1996 by Schoonderwoerd [13]. In 1998, Dorigo and Di Caro in-
troduced AntNet [6], the first ant routing algorithm designed for asymmetric
packet-switched networks. The algorithm implicitly achieves load balancing by
distribution of packets over multiple paths. The experiments reported in [6]
proved that AntNet outperforms other competitors, such as Q-routing [4] and
PQ-routing [5] based on the Reinforcement Learning paradigm, Shortest Path
First (SPF) and Open Shortest Path First (OSPF) [9].

Various modifications of AntNet have been developed that address modifi-
cations of the routing probabilities and the traffic model in order to achieve
a better performance, improvement of the algorithms convergence properties,
and exploration techniques [11]. In this work, we use a modification of the ASR
algorithm proposed in [15] and analyzed under various network conditions in
[10,12].

1.2 The TCP Protocol

When using the TCP in the transport layer, the network dynamics is mainly de-
termined by TCP’s error and congestion control mechanisms [14], which employ
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the slow start and congestion avoidance algorithms, or the duplicate acknowl-
edgment (DUPACK) mechanism and the fast retransmit algorithm.

Therefore, it is commonly believed that ant routing algorithms cannot be
applied with the TCP in the transport layer as these mechanisms slow down
the ant algorithms to such degree that they may become useless for the routing
problem. In [10] it is shown that, contrary to this belief, the use of TCP is not
prohibitive to multipath routing, including the ant algorithms. While the TCP
sets higher demands on the adaptation processes, it is still possible to extend
the load range of the network.

Recently, several mechanisms have been proposed to improve the performance
of TCP when using multipath routing algorithms. However, most of them help
only when the reordering occurs occasionally, since they are based on detecting
spurious retransmissions. On the basis of the DUPACKs analysis, statistics of
reordering frequencies are being computed [16]. Then the TCP receiver adap-
tively adjusts the threshold, which decides after how many DUPACKs the packet
should be retransmitted [2,16].

Another approach [3] proposes to neglect DUPACKs altogether and rely solely
on the timers to detect drops: if the ACK for a packet has not arrived and the
time elapsing since the packet was sent exceeds a threshold, then the packet is
assumed to be lost. The retransmission threshold should adapt to the changing
conditions in the network in such way that the packet is retransmitted only if it
has been really lost.

In our approach, every time the TCP sender receives a DUPACK, it calculates
the probability that the packet in question may still arrive at the receiver. On
the base of this probability, a decision is made whether to retransmit the packet.

2 The TCP Modification

In this section we present the Delay Model Based TCP (DelModAntTCP), which
is a modification of the TCP protocol robust to packet reordering. The modi-
fication applies to the TCP sender and it utilizes models of the data packets’
delay distributions. The method of the delay distribution modeling is described
first and then the modified TCP protocol is introduced.

2.1 Packet Delay Modeling

We propose to model the empirical distribution of packet end-to-end delay in a
network controlled by adaptive routing algorithms with a mixture of probability
distributions. To model the empirical delay distribution of one path, we intro-
duce the gamma-exponential-delta mixture model, denoted by ΓExδ , which is
a mixture of three probability distributions: namely, the gamma distribution,
the exponential distribution, and the single point distribution, all delayed by a
constant time. We use the notation

fΓ (x|θΓ) =

{
λ

νΓ
Γ

Γ (νΓ)
xνΓ−1e−λΓx x ≥ 0

0 x < 0
(1)
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for the gamma distribution density with the rate parameter λΓ > 0 and the
shape parameter νΓ > 0, where Γ (νΓ) =

∫∞
0 zνΓ−1e−zdz is the gamma function.

Further we use

fEx (x|θEx) =
{

λExe
−λExx x ≥ 0

0 x < 0
(2)

for the exponential distribution density with the rate parameter λEx > 0 and

fδ (x) = δ(x) (3)

for the formal description of the single point distribution. We sometimes group
the parameters of each distribution, denoting then θΓ = (λΓ, νΓ) and θEx =
(λEx).

The empirical distribution of the multi-path end-to-end packet delay from a
source to a destination node consists of several peaks, corresponding to different
paths the packet can take. Therefore we model the packet delay distribution as
a mixture of ΓExδ triplets, i = 1, . . . , M, t = 1, . . . , N , namely

f (xt|θ) =
M∑

i=1

(πΓ,i fΓ (xt − si|θΓ,i) + πEx,i fEx (xt − si|θEx,i) + πδ,i fδ (xt − si)) (4)

where M is the number of possible paths from the source to the destination,
N is the data sample size, θ = {(πΓ,i, πEx,i, πδ,i, θΓ,i, θEx,i, si) , i = 1, . . . , M} is
the parameter vector and si reflects the minimum delay for a given path, which
depends on the link delay and bandwidth. The mixing parameters satisfy the
following constraints πΓ,i ≥ 0, πEx,i ≥ 0, πδ,i ≥ 0,

∑M
i=1(πΓ,i +πEx,i +πδ,i) = 1.

To introduce the estimation method for the ΓExδ model, note that it is of
discrete-continuous type (the density has the delta term), and, moreover, it con-
tains an unknown delay. It is easy to notice that the resulting likelihood function
is not differentiable with respect to the delay, hence its basic properties are not
fulfilled, and the typical estimation procedures may behave erratically. To over-
come this problem, we propose a two-stage estimation procedure:

1. Elimination of the discrete-type distribution by the estimation of the delay.
2. Estimation of the elements of the mixture of continuous distributions.

In stage 1, we eliminate the discrete part of the distribution (the delta peaks)
together with the delays. In this order, we calculate the empirical cumulative
distribution function (ECDF) with a given bin width. We set a ΓExδ model
delay at the position of every ECDF jump. In the second stage, we use the
Expectation Maximization (EM) algorithm to estimate the parameters of the
mixture model. The EM algorithm provides an efficient iterative procedure to
compute the Maximum Likelihood (ML) estimates in the presence of missing
or unobservable data. It iterates two steps: in the expectation step (E-step) the
distribution of the unobservable variable is estimated and in the maximization
step (M-step) the parameters which maximize the expected log likelihood found
on the E-step are calculated.
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The parameters of the gamma components are estimated similarly to the way
proposed in [1]. The difference is that we use robust parameter estimation [7].
We weigh each data point in such way that the influence of this observation
on the value of the estimated distributions parameters decays with the distance
from the distributions mean. Consequently, the EM algorithm is more robust to
the noise and small insignificant peaks that we do not want to model, as they
may turn out to bias parameter estimates of nearby peaks (details in [7]).

For each possible path i = 1, 2, . . . , M , the conditional probability densities
for the gamma components estimated in E-step are calculated as

pΓ,i(xt, θ
k) =

πk
Γ,i fΓ(xt − si|θk

Γ,i)∑M
j=1

(
πk

Γ,j fΓ(xt − si|θk
Γ,j) + πk

Ex,j fEx(xt − si|θk
Ex,j)

) (5)

and for the exponential components as

pEx,i(xt, θ
k) =

πk
Ex,i fEx(xt − si|θk

Ex,i)∑M
j=1

(
πk

Γ,j fΓ(xt − si|θk
Γ,j) + πk

Ex,j fEx(xt − si|θk
Ex,j)

) (6)

The robust parameter estimates are calculated in the M-step as follows:

πk+1
Γ,i =

1
N

N∑
t=1

pΓ,i(xt, θ
k) (7)

πk+1
Ex,i =

1
N

N∑
t=1

pEx,i(xt, θ
k) (8)

λk+1
Γ,i =

νk
Γ,i

∑N
t=1 wΓ,it pΓ,i(xt, θ

k)∑N
t=1 wΓ,it (xt − sk

i )pΓ,i(xt, θk)
(9)

λk+1
Ex,i =

∑N
t=1 wEx,it pEx,i(xt, θ

k)∑N
t=1 wEx,it (xt − sk

i )pEx,i(xt, θk)
(10)

νk+1
Γ,i = νk

Γ,i + akGa
νΓ,i

(X, θk) (11)

The parameters wit weigh the data points using the Mahalanobis distance dit =
|xt − μi|/σi, for i = 1, . . . , M (see [7] for details).

2.2 Delay Model Based TCP

The models described in Sec. 2.1 are calculated on-line in every node during the
networks operation, on the base of information gathered by ants. At a given time
interval, a node starts to collect information about the estimated data packets’
delays, the number of hops traveled and the corresponding neighbor node. The
information is obtained from every backward ant traveling to a given destination.
After collecting a sample of N observations, the EM algorithm is performed as
described in Sec. 2.1.

As a result, every node s in the network maintains a delay model to every pos-
sible destination node d. Such the delay model consists of several ΓExδ triplets,
corresponding to paths from s to d. It is worth noticing that different paths with
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the same minimum delay are modeled by one ΓExδ triplet and, from the model
point of view, we refer to them as to a single path (Sec. 2.1). Here, we denote
such set of paths by i.

On the base of the data sample used to build the model, we assign a weight
to each ΓExδ triplet of the mixture. This weight expresses the probability that
a particular neighbor node is most likely responsible for generating this part of
the delay distribution. Thank to this, it is possible to calculate delay models
from every source s to every destination d through every neighbor n.

The weights are calculated as follows. For every neighbor node n and every
set of paths i described by a ΓExδ triplet, the average probability is calculated

Wi,n =
1

Nn

Nn∑
xt=1

πΓ,i fΓ (xt − si|θΓ,i) + πEx,i fEx (xt − si|θEx,i) + πδ,i fδ (xt − si)(12)

where Nn denotes the number of packets from the data sample that traveled
through the neighbor n. These probabilities are then used as weights so they are
normalized for each i to obtain P (n|i) = Wi,n/

∑K
n=1 Wi,n, which denotes the

probability that the packet traveled via neighbor n, provided that it traveled
along a path from set i. K is the number of neighbor nodes.

All paths from set i are modeled by one ΓExδ triplet, which means that we
have made an assumption that all paths with the same minimum delay have
the same delay distribution. As a result, the delay distribution of packets that
traveled along a path from set i is conditionally independent from the neighbor
n provided that we know i. Therefore, the joint probability that the delay on
that path is shorter than γ and the path leads through neighbor n provided that
the path comes from set i is P (xt < γ, n|i) = P (xt < γ|i) P (n|i).

Thus, the joint probability that the delay was shorter than γ and the packet
traveled through neighbor n can be calculated as

P (xt < γ, n) =
M∑

i=1

P (xt < γ, n|i) πi =
M∑
i=1

P (xt < γ|i) πi P (n|i) (13)

where P (xt < γ|i)πi = πΓ,i pΓ (xt − si < γ|θΓ,i) + πEx,i pEx (xt − si < γ|θEx,i) +
πδ,i pδ (xt − si < γ) and πi = πΓ,i + πEx,i + πδ,i is the share of the i-th ΓExδ
triplet in the mixture model.

Once the delay models from every source s to every destination d through
every neighbor n are known, they can be employed in retransmission decision
making in the following way. When a TCP sender receives 3 DUPACKs, it cal-
culates the probability that the missing packet may still arrive at its destination
node d provided that it traveled through a neighbor node n, namely

P (xt ≥ γ|n) = 1 − P (xt < γ|n) = 1 − P (xt < γ, n)
P (n)

(14)

where the delay xt is calculated as the difference between the time the DUPACK
was generated at the destination node and the time the missing packet was sent
from the source node. If the probability P (xt ≥ γ|n) is greater than a specified
threshold, the missing packet is not retransmitted and this probability will be
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recalculated when the next DUPACK arrives. Thank to this approach, it is
possible to judge whether the DUPACK was received due to packet reordering.

3 Experimental Results

We performed our experiments using the NS2 network simulator with additional
custom made modules. We present the results for the “Simple” network structure
(Fig. 1, left). The parameters of the ant routing algorithm ASR were set in
such way to obtain non-zero probabilities of choosing every neighbor of Node
0, as we wanted packet reordering to occur quite often. Figure 1 shows the
empirical distribution and the ΓExδ mixture model of the packet delay between
node 0 and Node 4. Each peak of the distribution density represents the delay
distribution along the given path group (Fig. 1, middle). For each path group,
we fit three component peaks: the delta peak that corresponds to the delay of
packets which did not wait in any queue, the gamma peak to approximate the
small and medium delays and the exponential peak to approximate the tail of
the delay distribution. It can be seen that the model fits the data very well.

The performance of the DelModAnt TCP was compared to TCP Tahoe per-
formance in two simulation scenarios: with and without packet loss introduced
in the network. The figures presented in the next sections show the averages over
20 simulations.
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Fig. 1. “Simple” network structure (left), end-to-end delay distribution from Node 1 to
Node 4 and the mixture model of this delay distribution (distribution density, middle
and cumulative density, right)

3.1 Network without Packet Loss

We tested the differences between the influence of the TCP Tahoe and the
DelModAnt TCP on the ant-routing performance. During the experiment, pack-
ets are not being lost, hence all duplicate acknowledgments are the result of
packet reordering.

When using the TCP Tahoe under high load levels, the ASR algorithm does not
manage to find efficient routing policies. It can bee seen that the number of data
bytes in the network increases during the simulation and does not settle (Fig. 2,
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Fig. 2. Influence of the TCP version on the ASR algorithm under high load level.
Whereas for TCP Tahoe the simulations diverge (the Number of Data Bytes in the
Network grows with Simulation Time), using the DelModAnt TCP makes the network
stable.

Table 1. Influence of the TCP version on the Number of Retransmissions. Using the
DelModAnt TCP enables reducing the number of retransmissions caused by DUPACKs
by about 40% and the overall number of retransmissions by about 30%.

DelModAnt TCP TCP Tahoe
Number of Retransmissions 95800 143000

Number of DUPACK Retransmissions 29700 50500

left), although the mean packet delay seems to converge (Fig. 2, right). We calcu-
late the packet delay from the moment the packet is first sent by the TCP agent,
so it does not include the time spent in the input buffer of the TCP agent. When
using the TCP Tahoe together with the ASR under high load level, many retrans-
missions occur, which cause the transmission window to decrease. As a result, the
queue containing data waiting to be sent increases during the simulation.

Under the same load, the DelModAnt TCP ensured the convergence of the
learning process (Fig. 2). When using DelModAnt TCP there are less retrans-
missions in the network. Consequently, the load level is reduced and the ASR
algorithm manages to find efficient routing policies. Our experiments show that
the DelModAnt TCP can reduce the number of retransmissions in the network
caused by DUPACKS by a significant factor (Tab. 1). Apart from retransmis-
sions caused by DUPACKs, there is also a second source of retransmissions,
based on the senders retransmission time-out (RTO) expiration. Therefore, the
overall reduction of retransmissions is slightly smaller, but still relevant.

3.2 Network with Packet Loss

In this Section, we test the influence of the TCP version on the ASR algo-
rithm’s performance in a network with packet loss. The TCP, unlike the UDP,
is a connection oriented protocol that guarantees reliable data transmission.



TCP Modification Robust to Packet Reordering in Ant Routing Networks 79

0 500 1000 1500 2000
0

2

4

6

8

10
x 10

6

Simulation Time [s]

N
um

be
r 

of
 D

at
a 

B
yt

es
 in

 th
e 

N
et

w
or

k

 

 

TCP Tahoe
DelModAnt TCP

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

Simulation Time [s]

N
um

be
r 

of
 D

at
a 

B
yt

es
 in

 th
e 

N
et

w
or

k

 

 

TCP Tahoe
DelModAnt TCP

Fig. 3. Influence of the TCP version on the ASR algorithm in a network with packet
loss, loss probability: 0.0055 (left) and 0.01 (right). Under lower packet loss ratio using
DelModAnt TCP enables faster convergence of the ASR algorithm (left). When the
loss ratio increases for TCP Tahoe the simulations diverge (right).

Therefore, if a packet gets lost during transmission it will be retransmitted by
the TCP sender. We assumed that each router, independently of other, may
loose a packet with a certain probability.

Since every lost packet must be retransmitted, the actual load level increases.
In such situation it is especially important to distinguish the reason of a DU-
PACK being sent in order to decide whether to retransmit a packet.

It can be seen that under the loss probability equal to 0.055 the both TCP ver-
sions ensure convergence of the ASR routing algorithm (Fig. 3, left). However,
using the DelModAnt TCP results in faster convergence. If the loss probabil-
ity increases to 0.01, which means that 1% of packets get lost, the simulations
for TCP Tahoe diverge (Fig. 3, right). On the base of the delay models, the
DelModAnt TCP is able to distinguish a DUPACK received because of packet
reordering from a DUPACK received as an effect of packet loss. As a result,
using the modified TCP sender decreases the number of needless retransmis-
sions caused by packet reordering. Consequently, the load level in the network
is reduced and the ASR algorithm is able to route the packets effectively.

4 Conclusions

In this paper we propose the DelModAnt TCP, which is a modification of the
TCP protocol that improves its robustness to packet reordering in networks
controlled by ant routing algorithms. The modification applies to the TCP sender
and utilizes models of the data packets’ delay distributions in order to decide
whether a packet has been lost and must be retransmitted or the DUPACK was
the result of packet reordering.

Our experiments show that the modified TCP can significantly reduce the
number of retransmissions in the network. Moreover, using the DelModAnt TCP
extends the range of load levels under which the ant algorithms are able to find
efficient routing policies.
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It is worth noticing that the use of delay models to improve the performance
of TCP is not limited to reducing the number of retransmissions caused by DU-
PACKS. These models could be also used to compute a modified retransmission
timeout, which would depend on the packets path.
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Abstract. In this paper, a tabu search based hyper heuristic is applied
to the routing and wavelength assignment problem, considering physical
impairments caused by Amplified Spontaneous Emission noise in erbium-
doped fiber amplifiers and crosstalk noise at optical cross-connects. The
objective is to minimize the total bit error rate of the routed lightpaths
over optical wavelength division multiplexing networks. The results of
the tabu search based hyper-heuristics are compared with single heuris-
tic approaches. The results show that different heuristics provide the
best result for different instances. The tabu search based hyper heuris-
tic, which combines all the heuristics, gives comparable results to the
single heuristics while using a modest amount of time. Furthermore, it
has the best results for some problem instances.

Keywords: Optical WDM Networks, Routing and Wavelength Assign-
ment, Physical Impairments, Hyper-Heuristics, Tabu Search.

1 Introduction

The aim of the routing and wavelength assignment (RWA) problem is to estab-
lish lightpaths between given source and destination nodes in an optical wave-
length division multiplexing (WDM) network with the aim of minimizing the
use of network resources. A lightpath is an end-to-end optical connection that is
established over the physical topology and used by the upper layers (IP, Ether-
net, etc.) to transmit data. A fiber link of the physical topology allows multiple
channels on different wavelengths to coexist, hence, multiple lightpaths, each
operating on a different wavelength can be routed on a single fiber link. A light-
path may span multiple fiber links passing through optical cross-connects at the
intermediate nodes to create a connection between two physically non-adjacent
end nodes. Finding proper routes and assigning proper wavelengths to each of
the lightpaths in a network is known as routing and wavelength assignment.

There are two types of RWA problems: In the dynamic RWA problem, the
source and destination pairs for lightpaths are not known a priori. Lightpaths
are established as the demands occur. These lightpaths exist permanently or
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stay connected for a duration of time. In the static RWA problem, all the source
and destination nodes of the lightpaths are known a priori. The problem is to
route all the lightpaths while minimizing resource usage in the network. Here,
the order of handling the lightpaths affects the resource usage. The static RWA
is an NP-hard optimization problem [1].

In literature, many studies for solving both the static and the dynamic RWA
problems can be found. In a real world RWA problem, none of the optical devices
are produced perfectly, therefore physical impairments (PI) should be considered.
Each optical device can add noise to the transmitted power for a lightpath.
The transmitted light will be exposed to the noises generated by the optical
network devices such as erbium-doped fiber amplifiers, optical cross-connects
and the fiber link itself. As the light propagates, its optical signal to noise ratio
is reduced. Amplifiers are used to increase this ratio, however, these devices add
noise to the signal known as Amplified Spontaneous Emission. Each lightpath
is switched at optical cross-connects to go from one input link of a node to an
output link of this node. The signal of a lightpath that goes through the optical
cross-connects affects the other signals of the lightpaths that have the same
wavelength. This causes another noise known as crosstalk noise. These noises
and signal degradations are known as PIs.

A Quality of transmission should be provided to the users. PIs affect the
optical signal to noise ratio of the connection. As the optical signal to noise
ratio of the transmitted power degrades, the quality of transmission provided
to the user decreases. A solution to the RWA problem must consider these PIs
to manage a acceptable quality of transmission. There are two types of PIs:
dynamic and static. In the static PI, the value of the impairment do not depend
on the current network status. The effect of PI on the established lightpaths is
not changed after a new lightpath is established. However, in the dynamic type,
the value of the PI depends on the network status and must be recalculated after
a change in the network, such as establishing a new lightpath.

There are different methods to determine whether the considered lightpath
is appropriate for quality of transmission or not. One of these is to check if the
optical signal to noise ratio of the received signal is above a threshold value or not.
Another method is to calculate the total bit error rate (BER) of the established
lightpaths. Analytical models and hybrid approaches exist for calculating the
BER value. Hybrid approaches require simulations or monitoring to be used
with analytical models [2]. In this study, the analytical models in [3] are used.

PI-aware RWA (PI-RWA) can be divided into two subproblems and these
subproblems can be solved separately. The routing subproblem can be solved
using various heuristic approaches [1]. As the problem parameters change, the
performance of these heuristic can vary. In this study, hyper-heuristics (HHs) are
applied to the routing part of PI-RWA. HHs are heuristics to choose heuristics
[4]. They operate on the search space of heuristics instead of the solution search
space of the problem. Through hybridizing different heuristic approaches, HHs
can provide acceptable results without problem specific information. No previous
studies exist in literature for solving the PI-RWA with HHs. In this study, a
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tabu search based HH (TSHH) is proposed for the PI-RWA and its results are
compared with single heuristic approaches.

2 Literature Survey and Problem Definition

2.1 Literature Survey

RWA is extensively studied in many papers. However, PI-RWA is a new topic
which has attracted a lot of attention in recent years. The studies for the static
PI-RWA in literature are very limited. A detailed survey for PI-RWA is given in
[2].

In [5], the static RWA problem is solved using Integer Linear Programming.
The authors use the impairments as a cost metric for determining k-shortest
paths and to select the first available path for a lightpath from this set. Binary
Integer Linear Programming is proposed in [6] and the authors compare their
results with previous studies. Besides the ILP approach, in [7], authors propose
new heuristics and regenerator placement methods to solve the static PI-RWA.
After obtaining k-shortest paths for the virtual topology, the static PIs are cal-
culated. If the calculated BER is above a given threshold, a new connection is
added to the virtual topology to make the routing feasible. A different wave-
length assignment heuristic is studied in [8]. The authors recommend using the
wavelengths placed at the center of the transmission window for longer light-
paths, since the four-wave mixing noise is more effective for wavelengths at the
the center of the transmission window. A Genetic algorithm approach is applied
to PI-RWA in [9].

2.2 Routing and Wavelength Assignment Problem

The objective of the problem is:

Minimize
n∑

l=0

BERl (1)

where BERl is the bit error rate of lightpath l and is calculated as in Eq. 2.

BER =
1
2
erfc(

Q√
2
) ≈ e

−Q2

2

Q
√

2π
(2)

In Eq. 2, erfc is a complementary error function as calculated in Eq. 3.

erfc(t) =
∫ ∞

t

e−x2

√
2π

(3)

The formulation for the Q Factor is [10]:

Q =
I1 − I0

σ1 + σ0
(4)
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where, Ii is the mean of received bits with value i: 0 or 1, and σi is the standard
deviation of this distribution [6].

σi = σsxi + σsspi + σshi + σth (5)

where σsxi is the noise variance between signal and crosstalk; σsspi is the noise
variance between the signal and amplified spontaneous emission; σshi is the noise
variance of the shot noise and σth is the noise variance of the thermal noise.

3 Solution Approaches

For the wavelength assignment part of RWA the First Fit assignment heuris-
tic approach is used. This heuristic finds the first unused wavelength over the
physical links that are used to route the considered lightpath and assigns this
wavelength to the lightpath. In this study, we focus on the heuristic approaches
for routing the lightpaths, while minimizing the BER.

The Shortest Path (SP) heuristic method assigns the shortest path between
the given source and destination nodes. Dijkstra’s algorithm is used for finding
the shortest paths at each step of the SP heuristic based on the physical distances
of the links. The K-Shortest Path (KSP) heuristic finds the k-shortest paths
between the source and the destination over the available physical topology.
Then, it randomly selects one of the k-shortest paths for assigning to a lightpath.
The Least Congested Path (LCP) [1] heuristic selects a path from the k-shortest
paths. The selection is done according to the congestion order of the paths. The
congestion order is the maximum number of unavailable wavelengths among
all the links of a path. In SP, KSP and LCP heuristics, the Q-factor which is
used to calculate the BER of a lightpath, is not used as a metric. The Lowest
BER Path (LBERP) [11] heuristic computes the BER for the k-shortest paths
and selects the path with the lowest BER for the considered lightpath. The
last heuristic is Minimizing Highest BER Path (MinHBERP) [11]. When the
dynamic PI is considered, establishing a lightpath is going to affect the BER
of the other lightpaths. This heuristic method selects the path among the k-
shortest paths, which has the minimum value for the maximum BER of all the
established lightpaths. All the heuristic methods are taken from previous studies
in literature, however, it should be noted that they are used with modifications
in this study. All the heuristics are constructive heuristics.

3.1 Hyper-Heuristics

Hyper-heuristics (HHs) aim to create a generic, reusable method for solving dif-
ferent problems and problem instances [12]. Unlike meta-heuristics, HHs have
no problem specific parameters. This makes HHs a general problem solver which
does not require expertise about the problem to obtain a feasible solution. HHs
operate on the search space of heuristics, whereas meta-heuristics operate on
the search space of solutions [13]. The heuristics used by HHs, are called low
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level heuristics. As different low level heuristics can have drawbacks for differ-
ent problem instances, using them together can help to overcome these draw-
backs [4]. Constructive heuristics generate a part of the solution at each step. In
literature, constructive heuristics, such as graph coloring heuristics [13], exist.
Constructive HHs try to determine an optimal application order of these heuris-
tics to construct a solution. In literature, constructive HHs have been studied
commonly for timetabling and scheduling problems [13,12,14]. Simulated An-
nealing [12], Tabu Search [13] and the Ant Colony approach [15] can be used
as a framework for applying constructive HHs. In this study, Tabu Search is
chosen.

3.2 Proposed Method

In this study, a tabu search based constructive hyper heuristic (TSHH) is pro-
posed to solve the PI-RWA problem. Tabu search is used to minimize the total
BER of all the established lightpaths, as a lower BER is preffered for quality
of transmission. The proposed method here is very similar to the one used by
Burke et. al. in [13], where a tabu search based HH is used to solve timetabling
problems with constructive heuristics. In ourstudy, as low level heuristics, SP,
KSP, LCP, LBERP and MinHBERP are used.

In our approach, a solution is represented by an array of heuristics that shows
the order in which the heuristics will be applied at each iteration of the solution
construction. The constructive heuristic located on the nth entry of the array
is used to route the nth lightpath. According to this, the size of the heuristics
array equals the number of source-destination (s-d) pairs, i.e., the total number
of lightpaths to be set up. All entries of the array are initialized with the SP
heuristic.

The Tabu search method randomly changes one of the low level heuristics on
the array with another randomly selected one to search on the heuristics space
at each iteration. The order of choosing the lightpaths to establish is kept con-
stant. At each iteration of the tabu search, a solution candidate for the PI-RWA
is generated and its solution quality is calculated. Starting from the beginning
of the heuristics array, each lightpath is routed using the corresponding heuris-
tic on the array. The wavelength assignment is always done using the first fit
assignment heuristic. The BER of the lightpath is calculated using analytical PI
models. If the routing or the wavelength assignment fails because of insufficient
wavelengths, the generated solution is considered infeasible. Infeasible solutions
are added to a failed list, so that the corresponding heuristic arrays will not be
visited again. The feasible solutions are added to a tabu list so that they will
not be revisited for a number of iterations, which is determined by the size of
the tabu list. Tabu search keeps the best solution and updates it at each it-
eration. Finally, after a constant number of iterations, tabu search ends. The
quality of a solution is represented with the total BER of all the established
lightpaths. Tabu search gives the solution of the PI-RWA that has the lowest
BER.
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4 Experimental Design

The results of the PI-RWA is obtained for both the NSF network and another
telco network with 24 nodes and 43 links [1]. 20 different randomly generated
virtual topologies (VT) are routed over these physical networks. The number
of lightpath requests is 56 lightpaths for the NSFNET and 72 for the 24-node
network. The number of wavelengths is chosen as 16 for both topologies. The
distances of all the links are taken to be 100 km [3], as we assume that there
are no amplifiers along the physical links. The parameters used for the PIs are
given in Table 1.

Table 1. Parameters for Physical Impairment Model [3]

Parameter Value

Loss of Multiplexer 4 dB
Loss of Demultiplexer 4 dB
Loss of Switch Element Insertion 1 dB
Loss of Waveguide/fiber coupling 1 dB
Loss of Switch 2log2(N*Ls) + 4Lw
Loss of Tap 1 dB
Loss of Fiber 0.2 dB/km
Gain of Input EDFA 22 dB
Gain of Output EDFA 16 dB (for less than 3 input), 18 dB
Switch Crosstalk Ratio 30 dB

The maximum allowed number of iterations for Tabu Search is 300. The sizes
of the tabu list and the failed list are 50 and 300 respectively. The value of
k is set to 5 for the k-shortest-path. The results are obtained over 10 runs
for each 20 randomly generated different VT. All parameter settings are de-
termined experimentally. In this study, the performance of the TSHH is com-
pared with the single heuristic approaches. While the order of the s-d pairs is
always the same for all runs and all tabu iterations, TSHH searches by chang-
ing the order of the heuristics. Since the SP, LCP, LBERP, and MinHBERP
heuristics are all deterministic using the same order of s-d pairs for routing,
always produces the same results, therefore, to provide similar variety to the
single heuristics, the routing order of the s-d pairs are changed for each run
of the heuristic. The number of permutations for creating different orders of
s-d pairs is decided by the number of runs for a VT and the iteration count
of tabu search. As the quality of the solution changes with the order of es-
tablishing the lightpaths, giving 3000 (300 x 10) different permutations to a
single heuristic, makes the comparison of obtained results fair with the TSHH
results.
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5 Results

The total BER of all the established lightpaths of a VT is given as the result
of a run of a program for a VT. In the tables, boldface shows the best result
obtained for the corresponding VT. The results for 20 VTs for NSFNET is given
in Table 2. We see that the heuristic giving the best result changes for different
VTs. The performance of LBERP and MinHBERP is generally better than the
other heuristics. KSP has the worst performance in all VTs. For VT11, the best
performance belongs to TSHH. On the other hand, the results of TSHH for each
VT is comparable with the results of others. Since the fitness function is designed
as minimizing the BER, the performance of LBERP and MinHBERP is better in
many instances. We should mention that if the structure of the fitness function
changes, the performance of LBERP and MinHBERP may decrease, but TSHH
is expected to find the combination of heuristics that gives acceptable results.

Table 2. Results for 20 VTs for NSFNET

Problem SP KSP LCP LBERP MinHBERP TSHH
Instances

VT1 2.55x10−18 4.78x10−10 4.56x10−12 2.68x10−18 3.47x10−15 1.11x10−12

VT2 3.16x10−14 3.96x10−10 4.62x10−12 2.03x10−14 8.09x10−13 2.31x10−12

VT3 2.84x10−14 5.04x10−10 8.43x10−12 1.81x10−14 2.11x10−14 5.86x10−11

VT4 3.68x10−14 3.81x10−10 1.01x10−11 2.34x10−14 9.07x10−13 4.37x10−12

VT5 4.18x10−14 5.93x10−10 6.77x10−12 2.41x10−14 2.40x10−12 2.27x10−12

VT6 2.06x10−12 8.37x10−11 9.03x10−12 2.41x10−14 1.13x10−12 4.72x10−12

VT7 2.75x10−14 6.99x10−10 6.33x10−11 2.38x10−14 1.72x10−14 5.59x10−12

VT8 4.11x10−14 9.49x10−11 6.77x10−11 1.15x10−12 3.41x10−14 8.08x10−13

VT9 2.14x10−14 6.61x10−10 9.81x10−12 1.01x10−14 1.85x10−14 2.32x10−14

VT10 2.35x10−12 5.75x10−10 1.38x10−10 4.42x10−14 1.12x10−12 3.26x10−12

VT11 2.90x10−14 3.55x10−10 3.62x10−12 2.81x10−14 3.00x10−14 2.61x10−14

VT12 1.17x10−12 3.71x10−10 3.51x10−12 8.64x10−13 8.64x10−13 4.49x10−12

VT13 6.89x10−15 1.70x10−10 7.67x10−12 5.42x10−15 1.15x10−14 8.87x10−13

VT14 3.23x10−14 4.05x10−10 3.57x10−12 3.47x10−12 1.17x10−12 1.11x10−11

VT15 3.46x10−14 3.22x10−10 7.57x10−12 3.98x10−14 2.07x10−14 2.34x10−12

VT16 4.13x10−15 6.66x10−10 2.05x10−12 1.20x10−14 1.52x10−14 4.20x10−12

VT17 9.27x10−15 9.93x10−10 4.07x10−12 7.15x10−15 1.71x10−14 1.11x10−12

VT18 2.11x10−14 1.94x10−10 6.04x10−12 1.42x10−14 3.42x10−14 1.15x10−12

VT19 1.76x10−14 2.42x10−10 6.04x10−12 1.50x10−14 1.04x10−14 3.25x10−12

VT20 1.17x10−12 1.82x10−10 6.29x10−11 2.42x10−14 2.18x10−14 1.18x10−12

In Table 3 the results for 20 VTs for the 24-node network are given. We see
that the SP heuristic is better than the minHBERP heuristic which is the second
successful heuristic for the NSFNET. TSHH gives the best result for VT11. The
results of TSHH for VT5, VT8, VT9, VT10, VT15, VT17 and VT18 are almost
the same with the best results.

The results for running time of the heuristics can be seen in Table 4. Min-
HBERP uses more CPU time than the others. SP is the fastest heuristic ap-
proach. The running time of TSHH is an average of other heuristics. As TSHH
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uses MinHBERP, its running time is worse than SP or LBERP, however, TSHH
executes faster than minHBERP as it also uses the other heuristics. The results
also show that, as the size of the network increases, the time requirement of
TSHH increases at a slower rate than the other single heuristics. To obtain these
results, a dual-core 2.13 GHz Pentium PC with 2 GB of RAM is used with Java
as a programming language.

The standard error (SE) of the mean values are given in Table 5 for all meth-
ods. It can be seen that TSHH has a smaller SE than most the others, showing
that it produces consistent results for all instances.

Table 3. Results for 20 VTs for 24-node 43-link Network

Problem SP KSP LCP LBERP MinHBERP TSHH
Instances

VT1 2.26x10−8 1.50x10−6 1.92x10−6 2.94x10−8 2.18x10−8 1.40x10−7

VT2 7.53x10−9 5.79x10−7 1.63x10−7 1.34x10−10 6.24x10−9 8.15x10−9

VT3 3.41x10−9 1.39x10−6 4.01x10−7 7.48x10−9 3.48x10−9 2.85x10−8

VT4 2.01x10−9 1.85x10−6 1.14x10−7 5.25x10−10 1.90x10−9 5.53x10−8

VT5 5.54x10−9 3.24x10−7 1.66x10−7 1.45x10−9 5.20x10−9 5.04x10−9

VT6 1.80x10−9 5.32x10−7 1.70x10−7 2.79x10−10 2.91x10−9 4.54x10−8

VT7 6.68x10−9 2.19x10−6 5.31x10−7 5.77x10−9 1.35x10−8 2.15x10−8

VT8 4.54x10−8 4.83x10−7 3.45x10−7 3.24x10−8 5.05x10−8 9.85x10−8

VT9 4.21x10−8 4.10x10−7 7.29x10−8 1.45x10−8 2.29x10−8 4.78x10−8

VT10 1.65x10−9 5.16x10−7 5.76x10−8 1.72x10−9 1.96x10−9 4.23x10−9

VT11 5.77x10−9 1.26x10−6 1.88x10−7 5.88x10−9 5.98x10−9 5.68x10−9

VT12 7.29x10−9 1.07x10−6 5.10x10−8 9.02x10−9 7.96x10−9 4.19x10−8

VT13 6.29x10−8 4.60x10−7 7.63x10−7 8.31x10−8 5.59x10−8 1.48x10−7

VT14 6.42x10−9 4.95x10−7 2.36x10−7 8.53x10−9 7.85x10−9 1.53x10−8

VT15 7.07x10−8 1.30x10−6 6.18x10−7 1.93x10−8 5.35x10−8 2.40x10−8

VT16 2.76x10−8 6.34x10−7 1.70x10−7 5.84x10−9 3.49x10−8 1.09x10−7

VT17 1.40x10−8 4.17x10−7 5.12x10−8 3.17x10−9 5.00x10−9 9.24x10−9

VT18 6.19x10−9 6.32x10−7 6.90x10−7 2.11x10−8 8.53x10−9 9.04x10−9

VT19 2.27x10−7 4.26x10−7 1.83x10−7 6.76x10−9 1.30x10−7 9.58x10−8

VT20 9.33x10−9 7.78x10−7 2.19x10−8 4.35x10−9 2.84x10−9 3.21x10−8

Table 4. Running Time of the programs in seconds

Problem Instances SP KSP LCP LBERP MinHBERP TSHH
NSFNET 0.42 0.94 0.76 3.15 30.68 32.54
24-node Network 4.24 13.8 12.74 58.47 285.14 72.78

Table 5. Standard Errors of Results for NSFNET and 24-node Network

Network SP KSP LCP LBERP MinHBERP TSHH
NSF 2.17x10−12 1.10x10−9 10x10−10 2.06x10−12 1.30x10−10 1.76x10−12

24-node 1.75x10−8 2.30x10−7 1.64x10−7 1.54x10−8 2.78x10−8 1.42x10−8
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6 Conclusion and Future Work

RWA problem is extensively studied in literature. However, the PI aware RWA
has started receiving more attention only in the recent years. In this study,
TSHH is applied to the PI-RWA for the first time and the results are compared
with single heuristic approaches. The heuristics considered for TSHH are for
the routing part of the RWA. The wavelength assignment is always done using
the first fit assignment heuristic. PIs due to amplified spontaneous emission
and cross-talk noise are calculated with analytical models. The objective is to
minimize the total BER of all the established lightpaths.

Constructive heuristics are used as low level heuristics of the TSHH. As it can
be seen from the results, TSHH gives comparable results with the other single
heuristic methods. Furthermore, TSHH gives the best results for some of the
VTs. The results also show that, as the size of the network increases, the time
requirement of TSHH increases at a slower rate than the other single heuristics.
We see that the performance of heuristics changes with the problem instances.
HHs can be a general solver without a priori knowledge of problem specific
data. This work is a preliminary study, which is part of a larger project. In the
project, the Virtual Topology Design problem, which includes the PI-RWA as a
subproblem, will be solved. Also, other HHs, such as Ant Colony based HH [15],
will be explored as future work.
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Abstract. We formalize and analyze a generalized model of connec-
tions in ad-hoc networks. The proposed model defines connections on
the locations level rather than on the nodes level. We show how the gen-
eralized model improves the stability of connections if the ant learning
mechanism is applied to solve the routing problem. Stable connections
reduce the overhead generated by ant routing mechanism and improve
its performance in terms of end-to-end delay and delivery ratio. More-
over, connections on the locations level reflect physical connections in
ad-hoc networks very well and agree with biological inspirations of ant
algorithms.

1 Introduction

It is commonly known that an ad-hoc network makes a very demanding envi-
ronment [8]. Ad-hoc networks are dynamic, fast changing systems of unknown
and changing structure and parameters. One of the basic issues is the problem
of routing. Finding the best routes from a source node to a destination node
under dynamically changing topology is a typical example of a complex task in
ad-hoc networks.

Adaptive learning structures seem to be a very adequate solution in ad-hoc
networks. There are many motivations for using learning approaches in such
systems. The need of high adaptation abilities is probably the strongest one. A
non-deterministic and complex behavior of ad-hoc networks makes it difficult or
impossible to use classical methods. Ant routing may be a prominent example of
a learning technique employed to solve a difficult problem in ad-hoc networks.

One significant challenge for a learning mechanism applied in an ad-hoc net-
work is the stability of the model used for learning. Considering an ant routing
mechanism, the model of connections between nodes in the network is required
to solve the problem. Commonly, the model is defined on the nodes level: each
routing path is defined as a sequence of nodes. Thus, a connection loss between
two individual nodes often implies a significant modification of the routing pol-
icy. The learning mechanism needs to adapt the policy to the new structure of
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connections. Consequently, the model of connections can be unstable and may
cause the operation of ant learning mechanism to deteriorate.

The aim of this paper is to show how a generalized model of connections
defined on the locations level may improve the stability of connections seen by
the ant learning mechanism in an ad-hoc network. We use Geographical Lo-
calization of Knowledge [7,9] to introduce and formalize the generalized model
of connections in ad-hoc networks. We show that the connections between geo-
graphical locations are much more robust to dynamic topology changes than the
connections between nodes. The more stable model of connections improves the
operation of ant routing mechanism and, as a result, the overall performance of
the network.

The paper is organized as follows. In Section 2, we describe the related works.
Section 3 introduces the generalized model of connections defined on the loca-
tions level. In Section 4, we briefly describe the AntHocGeo algorithm which
operates on the generalized model of connections. Experimental results are pre-
sented and discussed in Section 5. Section 6 summarizes the paper.

2 Related Work

In recent years, a large number of ad-hoc routing algorithms have been proposed
(see [1,4,14] for reviews). At the same time, different learning mechanisms were
invented to solve various problems in ad-hoc networks [8]. Amongst them, a
group of ant routing algorithms may be identified [6].

The idea of a generalized model of connections in ad-hoc networks has not
yet been widely studied in the literature. Some hierarchical routing algorithms
introduce multiple levels of connections, yet such models have not been used
together with learning mechanisms.

For instance, a multilevel logical clustering scheme is proposed in the Hierar-
chical State Routing (HSR) protocol [5]. A hierarchy of links is created, where
virtual links on higher levels are realized by lower level nodes. Thus, virtual links
provide a generalized model of connections.

Authors of [10] propose a scheme of defining routes on the locations level
which is similar to our model of connections. In their GRID mechanism, the
network is partitioned into logical grids and routing is then performed in a grid-
by-grid manner. However, there are two significant differences. First, and most
important, no learning is performed in the model (a purely reactive routing
scheme is used instead). Second, the implementation of the model is different: a
leader of each grid is elected instead of our idea of distributing the knowledge
between the nodes within a given location.

3 Generalized Model of Connections

We base our model on the concept of geographical cells [7]. We use geographical
cells together with location information to construct a higher level model of con-
nections in the space of geographical areas rather than in the space of individual
nodes.
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In general, a physical system may be described by diverse models [12]. They
may be created in different time scales, have different accuracy, model different
components of the system, etc. In other words, diverse models of the same system
may have different time and space resolution. The latter may be referred to as
a model granularity, reflecting the level of details recognized in the model. In
[12], author presents and analyzes neural models of different time scales and
granularity. Following the idea, we want to zoom out the classical model of
connections in ad-hoc networks from the level of nodes to the level of locations,
thus changing the granularity of the model and making it more general.

We illustrate the process of model generalization on Fig. 1.

Fig. 1. Illustration of a model generalization

Fig. 1(1) demonstrates a simple ad-hoc network and its connections on the
nodes level. For simplicity, we assume a static situation, i.e. nodes keep their
positions. There are two paths between a source node s and a destination node
d: {s, n1, n2, d} and

{
s, n

′
1, n2, d

}
. Fig. 1(2) introduces geographical cells. Nodes

n1 and n
′
1 are located in the same neighborhood (in a sense of the communication

range), thus they belong to the same cell. Fig. 1(3) defines paths on the locations
level, aggregating two separate node-level paths into a single higher level path
{i, c1, c2, j} consisting of geographical cells. The resulting connections model
does not recognize individual nodes in a geographical cell — it rather focuses on
the connectivity between cells. Thus, we may say that it is on a higher level of
granularity. We formalize the model using ad-hoc network graphs.

Ad-hoc network graph - nodes level. Considering the classical approach on
the nodes level, a mobile ad-hoc network may be defined as a dynamic multi-hop
graph G = (N, L), where N is a finite set of mobile nodes and L is a set of edges
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representing wireless links [2]. A link (i, j) ∈ L exists if and only if the distance
between two mobile nodes is less or equal than a fixed radius r:

(i, j) ∈ L ⇔ d(i, j) ≤ r i, j ∈ N , i �= j , (1)

where d is an euclidean distance function. The value of r represents the trans-
mission range of wireless communication devices.

The neighborhood of a node x is defined by the set of nodes in N that are
inside a circle with center at x and radius r, and is denoted by

Nr(x) =
{
nj |d(x, nj) ≤ r , x �= nj , ∀nj∈N

}
(2)

A path from a source node s to a destination node d is a sequence of nodes,
which we denote by:

Ps,d = [s, n1, n2, . . . , nk, d] , (3)

where
s, d, n1, . . . , nk ∈ N
(s, n1), (nk, d), (ny, ny+1) ∈ L for 1 ≤ y ≤ k − 1.

(4)

Due to mobility of the nodes, the set of paths between the nodes together with
the distances are changing over time. New links can be established and the
existing links can vanish.

Ad-hoc network graph - locations level. On the locations level, we may
model an ad-hoc network as a dynamic multihop graph G = (C, LC), where C
is a finite (and predefined) set of geographical cells and LC is a set of edges
representing connections between geographical cells.

In order to define links on the geographical cells level, we first define a mem-
bership function c(x) = c. The function indicates that the node x ∈ N is cur-
rently located in the cell c ∈ C. We also need to define a function determining a
connectivity between two cells, namely

l(i, j) =
{

1 ∃n1,n2∈N [(d(n1, n2) ≤ r) ∧ (c(n1) = i) ∧ (c(n2) = j)]
0 otherwise

A link (i, j) ∈ LC exists if and only if there is a direct communication between
a node from the cell i and a node from the cell j, namely:

(i, j) ∈ LC ⇔ l(i, j) = 1 i, j ∈ C , i �= j (5)

We define the neighborhood of a cell c as the set of cells in C that have a direct
communication with c, namely

Nr(c) =
{
cj |l(c, cj) = 1 , c �= cj , ∀cj∈C

}
(6)

The cell path from a cell i to a cell j is a sequence of locations (represented by
geographical cells), namely

Ci,j = [i, c1, c2, . . . , ck, j] , (7)
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where
i, j, c1, . . . , ck ∈ C
(i, c1), (ck, j), (cy, cy+1) ∈ LC for 1 ≤ y ≤ k − 1.

(8)

It is always possible to map higher level cell paths into lower level node paths,
assuming that the connectivity exists. A higher level path consisting of k geo-
graphical cells Cc1,ck

= [c1, c2, . . . , ck] may be translated into lower lever path
consisting of k′ nodes, namely:

Pn1,n′
k

= [n1, n2, . . . , nk′ ] , (9)

where
c(n1) = c1 , c(nk′ ) = ck (10)

and
∀y=1,...,k′−1 [ (c(ny) = cz) ∧ (c(ny+1) = cz′) ] ⇒ [(z′ = z) ∨ (z′ = z + 1)]

cz, cz′ ∈ Cc1,ck
, z, z′ ∈ {1, . . . , k} .

(11)

It is worth noticing that the proposed model does not cover direct connections
between the neighboring nodes, e.g. the nodes from the same cell. It is assumed
that such communication takes place independently of the model.

The model of connections in ad-hoc networks presented in this section is on
the higher granularity level than the classical approaches. It takes into account
the connectivity between locations in the network rather than low-level connec-
tions between individual nodes. One connection between neighboring locations
may represent numerous node-to-node connections. Therefore, we claim that the
higher level cell connections are more stable than the low-level connections on
the nodes level. Consequently, we may expect that the generalized model will be
more stable than the basic one, in a sense of its higher robustness to dynamic
topology changes. We verify this claim in the later experiments (Sec. 5).

Moreover, higher level connections on the locations level reflect physical con-
nections very well, as the latter are typically composed of successive hops made
through successive geographical locations. The model also agrees with the bi-
ological inspiration of ant algorithms: real ants communicate with each other
by leaving the pheromone on the ground, thus the information about paths is
indeed defined on the locations level and does not depend on the ants mobility.

4 AntHocGeo Algorithm

The generalized model of connections was applied in AntHocGeo: an ant routing
mechanism for ad-hoc networks.

AntHocGeo, proposed and discussed in detail in [7], is a modification of An-
tHocNet [3] which implements the concept of distributed geographical localiza-
tion of knowledge [9].

Previous experiments performed with AntHocGeo proved that the concept
of geographical localization of knowledge may improve the performance of the
underlying ant routing mechanism. In this paper, we show that one of the most
important sources of AntHocGeo’s success is the generalized model of connec-
tions in the network.
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5 Experimental Results

All experiments were performed using ns2 simulation environment [11]. Each
result discussed below was obtained by averaging 20 simulation runs.

5.1 Connections Stability

In this section we show that the generalized learning model based on geographical
cells is more ,,stable” than the model defined on the nodes level. Namely, the
connections between cells are much more robust to dynamic topology changes
than the connections between nodes.

In this order, we analyze the number of lost connections in a network during
the whole simulation (Fig. 2). The network consists of nodes moving according to
the Random Waypoint mobility model. Nodes speed is varied within the range of
5 m/s and 40 m/s. We compare AntHocNet and AntHocGeo routing algorithms.
The simulation area (1000m x 1000m) is divided into 25 square cells when using
AntHocGeo.

Fig. 2. Total number of lost connections during a simulation vs. node speed; 30 nodes
in the network (left) and 100 nodes in the network (right)

We present two types of lost connections. The first one is a node connection
which is a direct connection between two neighboring nodes which is used by
AntHocNet in one of the currently utilized routing paths (on the nodes level).
Such connection is considered lost when the nodes move outside of their direct
communication range. The second type is a cell connection being a higher level
connection between two geographical cells that is used by AntHocGeo in a rout-
ing path on the locations level. The connection between two cells is considered
lost when none of the nodes from one cell is able to communicate directly with
a node from the other cell. In both cases, we do not consider connections that
are not exploited by the current routing policy.

The number of routing connections lost on the nodes level is much bigger than
the number of connections lost between cells. This can be simply explained: a
single connection loss between two neighboring nodes from different cells does
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not imply the connection loss between those cells. There is always a chance that
there are other nodes in the neighborhood that provide a communication between
the cells. Consequently, there are much more connection losses on the nodes level
then on the higher level of geographical cells. Finally, the connections on the cells
level are much more stable, i.e. they are much more robust to dynamic changes
of the topology in ad-hoc networks.

The obtained results show that not only the connections on the locations
level are more stable than the connections on the nodes level, but the difference
increases with the increase of the networks dynamics. The higher is the rate of
topology changes, the higher is the frequency of lost connections on both levels.
However, the number of connection losses on the cells level grows notably slower.
This illustrates how the proposed approach may further improve the adaptation
abilities of the underlying ant routing mechanism.

The results obtained for 100 nodes in the network (Fig. 2, right) may indicate
that the number of lost direct node-to-node connections grows dramatically with
the increased number of nodes in the network. While we observe even tenfold
growth of the number of node-level connections in AntHocNet algorithm, the
number of connection losses on the geographical cells level remained stable —
the number of lost cell connections may grow by only 15% when the number of
nodes increased from 30 to 100.

Encouraged by this observation, we perform another experiment (Fig. 3) in
which we increase the number of nodes in the network and we observe the con-
nection losses. The nodes speed is fixed to 20 m/s.

Fig. 3. Total number of lost connections during a simulation vs. nodes number; nodes
speed: 20 m/s

The outcome of the simulation confirms our earlier expectations. The number
of lost connections on the nodes level grows rapidly with the increased connec-
tivity in the network, whereas the number of lost connections on the locations
level remains stable.

The results may explain why the proposed approach can be beneficial in high
connectivity scenarios: the generalized model used by AntHocGeo reduces the
complexity of the structure of connections in the network while providing more
robust connections on the locations level.
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5.2 The Overhead

The increased robustness of the underlying learning model has a positive im-
pact on the size and structure of the overhead generated by the ant routing
mechanism.

We present the outcome of two experiments (Fig. 4) in which we increased
either the nodes speed or the number of nodes in the network. We observe the
number of bytes transmitted by the routing mechanism and focus only on one
type of routing packets, namely the failure notification packets. These packets
are directly connected with lost connections in the network [7]. We compare the
results of AntHocNet and AntHocGeo algorithms.

Fig. 4. Volume of failure notifications vs. nodes speed; 100 nodes in the network (left).
Volume of failure notifications vs. nodes number; nodes speed: 20 m/s (right).

As the rate of topology changes grows (Fig. 4, left), the number of failure no-
tification messages generated by AntHocNet increases significantly . At the same
time, the number of failure messages generated by AntHocGeo grows moderately.
The similar effect may be observed when increasing the number of the nodes in
the network (Fig. 4, right). While AntHocNet generates more and more failure
messages, the number of failure notifications produced by AntHocGeo remains
stable for the number of nodes exceeding 50.

This results are a straightforward effect of increasing the stability of connec-
tions seen by the learning mechanism, observed and discussed in Sec. 5.1. The
decreased number of failure notifications implies the reduction of the total rout-
ing overhead and consequently, improve the overall performance of the routing
mechanism.

5.3 Overall Performance

Finally, we demonstrate the benefits of applying the generalized model of con-
nections together with the ant routing mechanism (Fig. 5). We perform two
experiments: in the first one we increase the rate of topology changes and in the
other we increase the number of nodes in the network.

We compare AntHocNet and AntHocGeo algorithms. In addition, we show the
results obtained by AODV [13] as a reference. We observe the average end-to-end
delay and the delivery ratio.
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Fig. 5. The average packet delay (upper left) and the delivery ratio (upper right) vs.
node speed. The average packet delay (lower left) and the delivery ratio (lower right)
vs. node density. Random Waypoint mobility.

The results show that AntHocGeo outperforms the competitors both in terms
of delays and delivery ratios. The benefits of employing the generalized model of
connections are particularly notable under increased connectivity in the network
and under high dynamics of network’s topology changes.

6 Conclusions

In this paper, we introduced and analyzed the generalized model of connections
in ad-hoc networks. We defined connections on a geographical locations level
and demonstrated higher robustness of this approach.

The robustness of connections is crucial as far as the effectiveness of ant
routing is concerned. A connection loss often implies a significant modification
of the routing policy and the learning mechanism needs to adapt its policy to the
new structure of connections. Furthermore, stable connections allow to reduce
the overhead generated by the ant routing mechanism.

Our experiments showed that the robust model of connections improves the
performance of ant routing in terms of delays and delivery ratio. The benefits of
applying our approach are particularly visible under the increased connectivity
in the network and under high dynamics of the network topology changes.
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Abstract. In this work, we investigate the ability of genetic program-
ming techniques to evolve valid network patterns, while avoiding de-
tectability by obfuscating the intent of the traffic. In order to validate
our system’s capabilities, we choose to evolve a port scan attack while
running the packets through an Intrusion Detection System (IDS). In
turn, the evolutionary process uses feedback such that it minimizes the
alarms raised while port scanning across a network range. Results build
off of previous work allow us to further analyze and understand what
the role of introns, code bloat, play in the systems ability to reduce the
detectability of it malicious behaviour.

1 Introduction

Vulnerability testing, a mechanism in which one attempts to discover weaknesses
in a security mechanism, is done both on the part of the attackers and the protec-
tors. Fuzzing, a form of vulnerability testing where one explores the boundaries
and variations of a systems designed input parameters, allows the “fuzzer” to
discover the weaknesses of the targeted system. In this case, the aim of the fuzzer
is to analyze the vulnerability and attempt to remedy the situation before it be-
comes exploited. Such an exploration is inherently limited by the breadth and
depth of the expert’s knowledge in the system. In this work, we apply paged
based Linear Genetic Programming (GP) [1, 2] techniques in order to discover
new variants of known vulnerabilities. By harnessing the natural exploratory na-
ture of GP techniques, our work aims to start with base domain knowledge, and
allow the GP to explore outside the realm of what an expert might conceive. In
the work described here, we examine how GP learns to take advantage of introns
(code bloat) to hide its desired network behaviour, reducing detectability. Also
of importance, we look at the competition during evolution between attacking
and remaining undetectable. By employing GP techniques, we are allowing for
the discovery of mechanisms in which one can obfuscate the real intent and avoid
detection.

Previous work has shown the validity of evolutionary techniques by explor-
ing mimicry attacks at the system call level against host based IDSs [3]. The
“mimicry’ aspect is that the actual attack consists of not only the core sequence,
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but also functionality surrounding it, which is used to obfuscate that actual at-
tack. In [4], authors implemented a preliminary work towards port scans.

In this work, we explore attacks at the network level that require the gener-
ation of network packets. As a validation of our technique, we have chosen to
mimic a port scan attack against a block of hosts and ports, which are protected
by the Snort IDS [5]. We focus on analyzing how GP achieves the attack, not
the framework of the attack itself, which was analyzed in [4] . To this end, the
proposed system evolves proper TCP/IP packets, including header values, such
that it not only succeeds in creating port scan attacks, but also remain stealthy
and evades a well know IDS, Snort [5].

The rest of this paper is organized as follows; Section 2 and 3 describe back-
ground information on both the networking and evolutionary methods, respec-
tively. Section 4 details the goals and the design of the experiments and presents
their results. Finally, conclusions are drawn and future work is discussed in
Section 5.

2 Background

This paper explores the use of code bloat for vulnerability testing. To achieve
this, we employe GP in order to evolve malicious network behaviour by evolving
TCP/IP network packets. The resulting network traffic is then used to perform
fuzzing at the transport level. This allows us to investigate the behaviour of the
individual solutions, comparing to known attack behaviours.

2.1 Port Scans

The prevalence of port scanning, a method many employ to ascertain their next
victims [6] continues to be on the rise [7]. Due to this increase, and the direct
correlation with network attacks [8], many detection mechanisms have been de-
veloped. The basic detection mechanism for port scanning logs the number of
packets X sent to Y host ports in time T . This establishes a threshold that has a
temporal dependency, counting the number of “events” in a specific time frame.
Snort, which is an open source IDS, implements such a mechanism.

One can classify port scans into 4 generic models, in all cases the attacker is
attempting to detect whether a port is open, closed, or managed. In our work
we allow the GP to evolve solutions that fit into any one of these models. A high
level summary of these models is given below:

1. Basic - The attacker scans a series of ports sequentially, attempting a full
TCP connection.

2. Random - The attacker behaves in the same manner as the basic attack,
except randomizing the port numbers scanned.

3. Stealth SYN- Instead of trying to establish a full TCP connection, the at-
tacker sends a TCP packet with the SYN flag set. This attack is more difficult
to detect due to not initiating a full TCP connection, it simply starts one.
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4. NULL, FIN, or “Xmas’ scans- Similar to the stealth SYN scan, this attack
does not initiate a TCP connection, sends packets with any combination of
flags set, looking for RST packet to be returned (or not).

2.2 TCP/IP Packets

The intent of a port scan is to determine whether a port is open, closed or filtered.
As such, we have selected the following TCP/IP features in order to control
source and destination addresses and ports, as well as what control bits are set
(also known as flags). All remaining values are calculated and implemented in
a manner such that the packet fits requirements of the corresponding RFCs,
791 and 793. We use; IP Addresses, Port # (both source and destination) and
Control Bits.

It is the above feature set, that GP evolves in creating packets. This provides
the appropriate tool set in order to create useful packets for port scanning, but
does not exclude the ability to create non-sensical packets as well. We recognize
that some combinations of these features would result in a packet that would
not make it to its destination, for this work we still consider this a valid packet.

2.3 Code Bloat

Code bloat, the rapid growth of Genetic Programs, without relationship to fit-
ness, is well documented in literature [9,10]. Much work has been done on solving
this growth issue [11]. Typically code bloat, in the form of introns or repeated
sequences of operations that do not contribute to the overall solution, are consid-
ered to be extraneous and trimmed out either during the evolutionary process, or
after the final generation, as they result in a solution that performs the desired
task, but in an inefficient manner. However, in the realm of malicious network
traffic, one could argue that the ability to run code that slows down the pro-
cessing of the solution individual, might in fact not be a negative, but a positive
quality. In our work, we focus on packets with temporal malicious behaviour, so
introns that lead to additional computational time could perhaps be a benefit
for avoiding detection by obfuscating the actual intent.

3 Evolutionary Model

Using the knowledge gained from past works [12, 3] , authors have developed a
system that allows the GP to create valid TCP/IP packets while responding to
feedback from Snort [4]. As such, a multi-objective evolutionary model is defined
to evolve individual solutions that create valid network packets, send said packets
such that a port scan is completed, and avoid detection. These objectives are
defined as follows:

– Solutions determine which ports are available on a range of hosts
– Solutions raise a minimal number of Snort Alarms
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These two competing objectives are then summed into a scalar value. Thus the
fitness evaluation not only assists us to rank the evolved attacks relative to the
core attack but also provides feedback in terms of Snort’s reaction.

3.1 Instruction Set

In selecting an instruction set, we must provide the mechanisms in which our
system will be successful in recreating the core attack, but also be able to do so
in a way that remains undetected. In our work, the attack consists of a series of
packets. As described in Section 2, we are concerned with specific fields within
a TCP/IP packet, as such we define an instruction set that allows our model to
create valid TCP/IP packets, table 1 lists this set.

Table 1. Instruction Set for GP

Function Parameter 1 Parameter 2
set flags Decimal 0-15 N/A
set ips Source IP Destination IP

set ports Source Port Destination Port
send packet N/A N/A

An example of creating a packet would be to call each function call once, in
any order, with the last function being “send packet”, lines 1-4 in Fig 3.1. Each
function call is considered a “tick”, thus we do not give the model an explicit
“NOP” (No OPeration) or “wait” function in which to use up time. However, it
is plausible that a series of functions not involving a “send packet” could exist
to use up “ticks” (obfuscation), effectively adding a temporal component. An
example of a “code bloat” scenario, Fig. 1, lines 5 and 6 show how the second
call overrides the first before sending the packet in line 7. If the intent of the
individual was to simply send the packet, then the first system call would be
trimmed from the individual. However, in our case, we wish to harness these
introns such that they allow the individual to either use up time (by using up
processor cycles without sending a packet) or send multiple packets to non target
hosts, shown in lines 7 - 13. This is a good example of how code bloat obfuscates
the intent of the attacker (for this example, assume 134.129.1.1 is the target, i.e
the victim).

3.2 Fitness Evaluation

In order to assign a fitness metric to our individuals’ performance, we need to
define what a successful port scan is, as well as incorporating feedback from the
detector in order to minimize alarms raised. For the purpose of this work, we
consider the scan to be successful if a specific destination “host:port” pair is
found to be open during the scanning process. The specific details of which port
and which host varies on the experiment, as described in Section 4.
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Figure 1. Example Sequence
1: set flags(0)
2: set ips(192.168.120, 134.29.1.1)
3: set ports(80,22)
4: send packet()
5: set ports(1024,20)
6: set ports(22,31)
7: send packet()
8: set ips(192.168.120, 134.29.1.8)
9: send packet()

10: set ips(192.168.120, 301.1.2.1)
11: send packet()
12: set ips(192.168.120, 134.28.1.2)
13: send packet()

In order to provide useful feedback to the fitness evaluation we have developed
a metric that defines how close IP addresses are to each other. Our assumption
when assigning this metric is that one considers the proximity of two IP addresses
based on what class network they are on, and how similar those networks are
to each other. A IPv4 address consists of 4 octets expressed in decimal with
period as the delimiter between them. This describes a 32 bit address space,
allowing for 4, 294, 967, 296(232) possible network address. For our testing we
evaluate the “closeness” by looking from the left most octet to the right and
measuring the difference between each octet, favouring closeness in the left most
octet (which represents the network address) versus the right most octet (which
represents host address). Eq. 1 describes this, where the distance is between
two IP addresses, A.B.C.D and a.b.c.d. The result of this distance metric is
that GP is encouraged to find IP addresses that have open ports and are on the
same network. We then use this metric in computing the fitness of an individual,
that is to say that an individual is rewarded for finding targets ‘close‘ to actual
targets. This encourages exploration of similar networks, allowing for eventual
discovery of targets.

DistanceIP = |((A − a) ∗ 4)| + |((B − b) ∗ 3)| + |((C − c) ∗ 2)| + |(D − d)| (1)

The second part of our fitness function, the feedback from the detector - Snort,
is provided in real time as the solutions are evolving. The feedback is offered
in the form of an alarm count, where the worst case scenario is the number of
alarms greater than or equal to the number of packets sent during the scan.
Similarly, the best case is zero alarms being triggered during the execution of an
individual solution.

Thus, fitness function is then described as the combination of two metrics
(Eq. 1 and 2), with each section being described as a percentage. In this case,
the first objective is maximizing the percentage of packets sent that correspond
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to a targeted open “host:port” pair, whereas the second objective is the inverse
of the percentage of alarms raised by all packets sent, as shown in Eq. 2.

Fit =
#TargetIP : PortHit

T otalTargetIP : Port
+
(

1 − #Alarms

TotalPacketsSent

)
(2)

Where “# Target IP: Port Hit” describes the number of target “host:port” pairs
detected and “Total Target IP: Port” is the total number of open “host:port”
pairs that were available for detection during the training process. “# Alarms” is
the number of alarms triggered by Snort during the execution of the individual,
and “Total Packets Sent” represents the total number of complete packets sent.
Note that the size of the individual is not the same as the number of packets
sent, as it requires at least four function calls to send one packet.

3.3 Evolutionary Model

In order to achieve our goals we have implemented a page based linear GP. The
basis for such a representation is a (virtual) register machine [1, 13, 2]. Such a
machine consists of a predefined set of general purpose registers, support for the
execution of an instruction set and the ability to supply input features describing
the state of the environment at any given time step. Thus, individuals in the
population of possible solutions are defined using a fixed length representation,
with each individual representing a linearly sequential set of instruction calls.
Selection of individuals between each generation is performed using a steady
state tournament over 4 individuals. Search operators are applied to all in the
tournament and the resulting two best performers replace the worst two. The
search operators employed in this work are:

– Crossover, single point: A single page at a location (chosen with uniform
probability) in one parent is interchanged with the page located at the same
position in other parent.

– Swap Selector: Two instructions are selected in an individual and swapped,
individual length remains fixed.

– Instruction-wise Mutation: For each instruction, test for application of mu-
tation operator. If mutation is to be applied, another instruction from the
complete instruction set is chosen with uniform probability and used as re-
placement.

Table 2. Parameters for Evolutionary Model

Parameter Value Parameter Value
Population 1000 Mutation 0.5 with linear decay
Page Count 100 Swap 0.5
Page Size 6 Crossover 0.9
Tournament Size 4 Stop Criteria 100 000 Tournaments
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In this work, we have employed instruction-wise mutation. With the linear an-
nealing schedule, the probability of mutation linearly decreases over the gener-
ation count, reducing it to zero for the last iteration. Table 2 lists the specific
evolutionary model parameters used during our experiments.

4 Experiments and Results

In these experiments, we explore the relationship between the available search
space and the size of the target list, where the search space consists of all possible
IP addresses while the target list varies in size, building off of the previous work’s
success. The experiments consist of three separate target lists, only used as a
validation to the fitness of an individual, versus the entire IPv4 range. The first
experiment consists of 10 targets, the second 100 and the final experiment being
1000 hosts. All three experiments are run 30 times using a different initial seed.
Thus, we run 90 experiments in total.

Experiments are performed such that there is a machine originating the at-
tacks (running the GP) and a machine acting as a monitor for traffic generated
by the attack machine. Snort is is deployed on the monitor, seeing all the traffic.
Snort was configured such that all packets received are monitored and inspected
for malicious behaviour. As such this testbed mimics the attacker and the tar-
geted machines in a controlled manner, allowing us to examine alarms triggered
solely by our work. It should be noted here that we use the default Snort con-
figuration, and set pre-processor specific variables for the most robust port scan
detection possible. Specifically, the flow-portscan pre-processor was enabled, and
the sfportscan preprocessor was set to the highest scan level available.

To assign a metric value to the performance of our system we rank our fitness
out of 100 (perfect). A ‘perfect’ solution would be a solution that sent a packet
to each target machine without triggering any alarms. Also of importance, in
order to realize the usage of code bloat towards obfuscating network traffic. This
is measured by comparing the number of function calls (total size) versus the
number of packets sent to the network, thus showing what percentage of an
individual results in a packet being sent. We list the best solution as well as the
average of each target list in Table 3.

Also of interest is the tradeoff between the two competing metrics we
use in our fitness evaluation, namely the metric of being able to find targets

Table 3. Results

10 Targets 100 Targets 1000 Targets
Best Solution’s Fitness 91.57 87.39 85.47
Best Solution’s Length 84 42 30
Best Solution’s Packets 65 38 29
Mean Population Solution Fitness 89.68 86.73 86.13
Mean Population Solution Length 110.00 51.20 36.16
Mean Population Packets Send 55.56 44.25 33.29
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(open ports on hosts) versus staying stealthy. Moreover, how this develops over
the evolutionary process is also important to understand the effect of code bloat
in our experiments. Fig 2 presents the two components (finding targets, re-
maining stealthy) of the fitness for all experiments. By examining the fitness
evaluation of each objective (component of the fitness function) separately, we
can see how they evolve over each generation. Thus, Fig. 2 shows that the ex-
ploratory target objective evolves slowly at a linear rate, meanwhile the stealthy
objective evolves exponentially. This difference in learning rates has led to two
further experiments where we modified the fitness function and re-ran the “100
Target” experiments again. In this case, the fitness function was altered such
that in one set of experiments once the IDS fitness component reached 90% we
started tracking the target fitness (results shown as as Alt #2) . ‘Alt #1’ shows
the other additional experiment in which the Target fitness was weighted more
(2 to 3) then the IDS fitness to encourage more improvement on the seemingly
more difficult objective. Average results of each experiment at a given generation
count are shown in Fig 2.

Fig. 2. Fitness over Generation Count

In both additional experiments we see an improvement in the rate in which
the target fitness is learnt, with the alternative version #1 showing an actual
non linear improvement after approximately 60000 generations. Further work in
this area needs to be performed, but some promise is shown.

4.1 Analysis

The system implemented in this work needed to concur two problems concur-
rently, scan a number of unknown targets to find a small subset that had available
services while also remaining stealthy in its activity. The system used feedback
from the IDS (Snort) as well as distance metrics to determine how close it was
to finding the available targets. In analyzing our results the system does indeed
learn to achieve this by achieving the best solution fitness values of 91.57%,
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87.39% and 85.47% in the three sets of experiments, Table 3. In looking at the
size of the solutions as well as the breakdown of the fitness metrics, we see that
the system is learning which problem is easier to solve: (i) finding all the tar-
gets, or (ii) avoiding detection. In all three sets of experiments, we can see that
the avoiding of detection is the simpler problem to solve, Fig 2. The apparent
difficulty of the problem can also be seen in the exponential increase in fitness
with regard to detection avoidance versus the slow linear growth of the fitness
associated with finding the targets. We explored this further by implementing
two additional sets of experiments where we modified the relationship between
the two objectives, first by artificially capping the IDS fitness at 90% until the
Target Fitness improves, then by weighting the Target Fitness more then the
IDS fitness. In both experiments, we show that we can further improve our re-
sults to best solution fitness values of 92.8% and 93.2% respectively, Fig 2. As
stated earlier, the underlying motivation of our work is to examine the GP’s
ability to obfuscate it’s core network intent using code bloat. To this end, we
observe that the GP focuses on sending many packets, to many sources, while
using a smaller amount of genes to change other packet header values. This is
also an appropriate method for avoiding detection, as the GP is sending many
packets, to many sources, raising no flags in Snort (as they are not being sent all
to a specific IP range or port addresses, Snort does not flag this as an attack).

5 Conclusion and Future Work

We have demonstrated the ability for GP to generate network traffic, while
adding complexity to the problem by increasing the search space to real-life
scenarios. To achieve this, we modified the fitness evaluation of [4] by adding
a distance metric between targeted IP addresses, as well as allowing the GP to
explore the complete IP address space. We performed 90 experiments with the
new fitness function, where the malicious user would locate a small, medium, and
large number of targets during the scanning process while remaining stealthy in
its activity. Then, the ability for GP is explored to learn how it obfuscates the
network traffic through the use of code bloat. The resulting solutions did not
use code bloat in methods we had expected. Instead, solutions were focusing on
maximizing packets sent by an individual to a large set of targets, probably due
to the larger search space required in these experiments. However, the solutions
remain stealthy in their activities. On one hand it is not surprising that finding
10 target hosts out of the full IPv4 range is difficult, but on the other hand we
did not expect the stealthy component to be relatively easier to solve. In future
work, we plan to further explore this apparent disparity in order to improve our
system while also applying it to further network activities.
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Abstract. In this paper, a handoff decision scheme is proposed with always best 
connected (ABC) supported. It comprehensively considers the status of the ac-
cess network, the application QoS requirement, the preference of the user over 
the coding system of the access network, the preference of the user over the ac-
cess network provider, the current speed of the terminal, and the residual electric 
quantity of the terminal. Based on the population migration algorithm (PMA) and 
gaming, it aims to find the Pareto-optimal solution under Nash equilibrium be-
tween the user utility and the network service provider utility. The simulation 
experiments demonstrate that the proposed scheme is effective. 

Keywords: access network, handoff decision, always best connected, population 
migration algorithm. 

1   Introduction 

Next generation Internet (NGI) is becoming an integrated network environment which 
consists of multiple heterogeneous sub-networks. It is possible that a user will face 
multiple heterogeneous and diversified access networks which are all available at the 
same time. The user can be always best connected (ABC) [1] with the NGI in both the 
session initialization and on-going period. In such environment, there are two types of 
handoff, i.e., vertical handoff and horizontal handoff [2]. For vertical handoff, its de-
cision is much more complicated than horizontal handoff since how to select an optimal 
access network from multiple heterogeneous ones is really tough. The concept of "best" 
itself is fuzzy because there are quite a few issues to be considered. Currently, under the 
commercialized operational environment of the networks, ABC cannot be achieved by 
the efforts at the user side only. Instead, it needs to consider the benefits at both the user 
side and the network service provider side. Another problem is that the application QoS 
requirements are very fuzzy and cannot be accurately quantized. The handoff decision 
needs to support the processing of fuzzy information. Similarly, to support ABC should 
not result in frequent handoff and should avoid the ping-pong effect. Therefore, the 
problem to make a handoff decision with ABC supported is very complicated and it can 
be summarized as follows. There are N mobile terminals waiting for handoff and they 
are covered by M access networks simultaneously. By considering the application QoS 
requirements, the cost the user is willing to pay, the user preference, the status of the 
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mobile terminal, and the status of the access networks, an optimal solution is expected 
which assigns N terminals to M access networks and aims to achieve the Pareto-optimal 
under Nash equilibrium between the utilities of both the user and the network service 
provider. This problem is not only a fuzzy multi-objective optimization decision 

problem but also NP-Complete, selecting the best solution from NM candidates. Thus, 
effective heuristics or optimization algorithms are necessary to solve it. 

Quite a few researches have been done on the decision schemes of selecting access 
networks under vertical handoff scenarios [2]. However, they do not consider com-
prehensively the handoff decision problem with the ABC supported. In this paper, the 
knowledge of fuzzy mathematics and microeconomics is exploited to describe the 
application types, QoS requirements, the access networks and mobile terminals. Then a 
handoff decision scheme is proposed with the ABC supported. By considering multiple 
factors, it tries to find an optimal handoff solution of assigning N terminals to M access 
networks based on population migration algorithm (PMA) [3]. With the help of gam-
ing, Pareto optimum [4] under Nash equilibrium [4] between the user utility and the 
network provider utility is achieved or approached for the found solution. 

2   Model Description 

2.1   Application Type, QoS Requirement and Its Fuzzy Degree 

Based on the DiffServ [5], assuming that there are K different application types in NGI, 
and the set of application types is { }KATATATS ,,1 L= . In this paper, six QoS pa-

rameters are considered, namely, bandwidth BW , delay DL , delay jitter JT , bit error 
rate BE , packet loss rate PL and security level SL . Since the users cannot accurately 
describe the desired QoS requirements for the applications and the network cannot 
maintain the rigid single QoS value, in this paper the intervals are used to describe the 
QoS parameters and the fuzzy degrees are used to describe how fuzzy are the values of 
the QoS parameters. The mapping between the application types and the values of the 
QoS parameters is shown in Formula (1). For the application type iAT , the fuzzy de-

grees of the six QoS parameters, i.e., iFB , iFD , iFJ , iFE , iFL and iFS , are defined, 

with iFB shown in Formula (2) and others similar to it, Ki ,,1L= . 
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2.2   Access Network Model and Terminal Model 

For an access network, the following parameters are used to describe it: j is the access 
network number, Mj ≤≤1 , where M is the total number of the access networks cov-

ering the terminals waiting for handoff; PISPI j ∈ is the identifier of the access net-

work provider, where },,,{ ||21 PISPIPIPIPIS L= is the set of the identifiers of all 

the access network providers; TISTI j ∈ is the identifier of the access network type, 
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where },,,{ ||21 TISTITITITIS L= is the set of the identifiers of all the access network 

types; jCA and jMV are the coverage area and the highest mobility speed of the access 

network type jTI , and jTI has one-to-one mapping with jCA and jMV ; CISCS j ⊆ is 

the set of coding systems supported by the access network j , 

where },,,{ ||21 CISCDCDCDCIS L= is the set of coding systems supported by all the 

access networks; ATSNAS j ⊆ is the set of application types supported by the access 

network j ; jFR is the frequency range supported by the access network j ; jTB is the 

total bandwidth provided by the access network j ; jAB and min
jAB are the current 

available bandwidth provided the access network j and its lower bound, when jAB is 

lower than min
jAB , the performance of the access network j decreases dramatically and 

in this case the terminal handoff request should not be accepted, this could help prevent 
the handoff from the ping-pong effect; jTP is the lowest signal strength emitted by the 

access network j , it is the lowest signal strength emitted within the coverage area of the 

access network; jct is the cost of one unit bandwidth per unit time of the access net-

work j ; ijpr is the sale price of one unit bandwidth per unit time of the access net-

work j for the application with type iAT , it is determined by the basic price jpb and 

tuning price ijpf , as shown in Formula (3). To encourage the rational use of the 

bandwidth, jpb is determined by the access network provider and is divided into the 

low-rate, the flat-rate and the high-rate pricing intervals [6]. Let jη denote the load rate 

of the access network j , and jη is calculated in Formula (4). 

ijjij pfpbpr +=         (3)                               
j

j
j TB

AB
−= 1η                        (4) 

When 0
jj ηη ≤ , the access network j is at the low load and falls into the low-rate pricing 

interval with jpb determined by Formula (5). When 1
jj ηη ≥ , it is at the high load and 

falls into the high-rate pricing interval with jpb  determined through the auction [7]. In 

other cases, it is at the middle load and falls into the flat-rate pricing interval 
with jpb determined by Formula (6). 
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Here, 0
jη and 1

jη are predetermined empirical values, 10 10 <<< jj ηη . 

min
jpb , 0

jpb and max
jpb are separately the starting price of the low-rate pricing interval, 

the starting price of the flat-rate pricing interval and the highest price of the flat-rate 
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pricing interval, min
jη , 0

jη and max
jη are their corresponding load 

rates, max0min
jjj pbpbpb ≤≤ . When 0min

jjj ηηη ≤≤ , jpb is similar as semi-Cauchy 

distribution [8]. When max0
jjj ηηη ≤≤ , jpb is similar as semi-Normal distribution [8]. 

Therefore, A ,α , B and δ can be derived out. 

ijpf is determined by iAT to reflect the effect on the sale price of the QoS require-

ment parameters except the bandwidth. 

iji pfAT →         (7) 

The following parameters are used to describe the terminal: t is the terminal  
number, Nt ≤≤1 , where N denotes the total number of terminals waiting for hand-
off; ATSTAS t ⊆ is the set of application types supported by the termi-

nal; CISMCSt ⊆ is the set of the coding systems supported by the terminal; tWF is the 

working frequency of the terminal; tRS is the lowest signal strength received by the 

terminal, representing the lower bound of the signal strength sensitive to the termi-
nal; tCV is the current moving speed of the terminal; tRC and tcC are the current residual 

electric quantity of the terminal and its threshold; tiHP is the unit time unit bandwidth 

price that the terminal user is willing to pay for the application with 
type iAT ; },,{ 1 tqtt PCPCPC L= and },,{ 1 tmtt PPPPPP L= are the preference se-

quences of the terminal user over the access network coding systems and access net-
work providers separately, CISPCtp ∈ , ||1 CISq ≤≤ , qp ≤≤1 , PISPPtn ∈ , 

||1 PISm ≤≤ , mn ≤≤1 ,and the sequence is from high to low according to the pref-

erence degree. 

2.3   Satisfaction Degree and Suitability Degree 

Denote the actual QoS provided by the access network j for the application with 
type iAT conducted by the user on terminal t  as >< jtjtjtjtjtjt iiiiii

slplbejtdlbw ,,,,, , 

the user evaluations on them are separately defined as jti
EB , jti

ED , jti
EJ , jti

EE , 

jti
EL and jti

ES , with jti
EB shown in Formula (8) and jti

ES similar to it, also 

with jti
ED in Formula (9) and jti

EJ , jti
EE and jti

EL  similar to it. Accordingly, the user 

satisfaction degrees over them and the overall QoS are separately defined 
as jti

SB , jti
SD , jti

SJ , jti
SE , jti

SL , jti
SS and jti

SQ , with jti
SQ shown in Formula (10), 

with jti
SB shown in Formula (11) and the other fives similar to it. If the sale price of one 

unit bandwidth per unit time of the access network j for the application with 
type iAT is ijpr , the price satisfaction degree of the user over the access network j is 

defined as Formula (12). The preference satisfaction degrees over the coding system 
and the provider of the access network of the terminal user are defined as Formula (13) 
and (14). 
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otherwise      0
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otherwise     0

  
1
2 ttj

tj
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Here, k is a constant, ε is a pure decimal far less than 1, 61−α and 61−β are for dimen-

sional adjusting; 61−ω are weights to reflect the relative importance of the six parame-

ters to the application QoS requirement, and their sum is 1. Clearly, the higher value of 
the user satisfaction degree to the QoS is expected. CISCItj ∈ is the identifier of the 

coding system used by the terminal t when it makes the handoff into the access network 
j, and x is the sequence number of tjCI in tPC , ||1 tPCx ≤≤ . PISPItj ∈ is the provider 

identifier of the access network j into which the terminal t makes a handoff, and y is the 
sequence number of tjPI in tPP , ||1 tPPy ≤≤ . 

If the current moving speed of the terminal is high, the access network with larger 
coverage area should be preferred since it will reduce the times of handoff operations. 
If the residual electric quantity of the terminal is low, the access network with smaller 
coverage area should be preferred since the terminal working in it consumes relatively 
low transmission and receiving power. The suitability degrees of the access network j 
to the current moving speed and the residual electric quantity of terminal t are defined 
as Formula (15) and (16) respectively. 
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otherwise        1
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2 tct
tj
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Here, z and d are the sequence number of jTI when all the access network types are 

sorted by the size of their coverage area in the order from big to small and from small to 
big respectively, ||,1 TISdz ≤≤ . 

2.4   Gaming Analysis and Utility Calculation 

The players are the access network and the terminal. The access network j has two 
strategies 1a and 2a . 1a represents that the access network agrees to admit the termi-
nal t while 2a represents the opposite. The terminal t has two strategies 1b and 2b . 1b  
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represents that the terminal is willing to be admitted by the access network j  while 2b  
represents the opposite. The gain matrices of the access network j and the terminal t are 
NP  and TP , defined as follows. 

⎥
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prHPprHP
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(18) 

In both NP and TP , the rows correspond to 1a and 2a , and the columns correspond 

to 1b and 2b . The reason that 21np and 22np are negative is that if the access network 

refuses the handoff request of the terminal, it will lose the gain which is supposed to be 
obtained. μ is a penalty factor [9] denoting that if the access network refuses the ter-

minal user who is willing to make a handoff into it, the negative effect will be brought 
to the user when it makes the decision about the future handoff. μ is greater than 1. The 

reason that 12tp and 22tp are negative is the same as in NP . If the in-equation in Formula 

(19) is satisfied, },{ ** dc
ba is the strategy pair to achieve Nash equilibrium among the 

gains of the respective parties [4], 2,1,,, ** =dcdc . The tuning factor Ω is defined in 
Formula (20) to reflect the effect of Nash equilibrium on utility. 
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]        [ 654321 λλλλλλ=Λ reflects the relative importance of the following aspects 

when selecting the access network: the application QoS requirement, the sale price of 
the access network for the unit bandwidth per unit time and the cost that the user is 
willing to pay, the preference over the coding system of the access network, the pref-
erence over the access network provider, the current moving speed of the terminal, and 
the current residual electric quantity of the terminal. 61−λ can be determined empirically 

or by analytic hierarchy process (AHP) [10] and their sum is 

1. T
tjtjtjtjjtjtjt SWSMSRSTSPSQG

iii
]            [= is introduced. The terminal utility and 

the access network utility is defined as follows. Clearly, the large utility is expected. 
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2.5   Mathematical Model 

If there are N terminals covered by M access networks simultaneously, the handoff 
solution of assigning N terminals to M access networks should satisfy the following 
objectives to make the user utility and the access network provider utility achieve or 
approach the Pareto optimum under Nash equilibrium. 

}{maximize jti
uu      (23)     }{maximize jti
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1 1
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3   Algorithm Description 

PMA is a global optimization algorithm by simulating the population migration pro-
cedure in human society [3]. It is mainly consisted of the followings: people migrate in 
local area; the preferential region attracts the immigrants; people immigrate into the 
preferential region until the population pressure reaches a certain upper limit; people 
move out of the preferential region and look for new opportunities. 

3.1   Solution Encoding and Its Attraction Force Function 

For each terminal t , its available access network set tAN is constructed by putting any 

access network j with jt NASTAS ⊆ and jt FRWF ⊆ and ϕ≠∩ tj MCSCS  

and jt MVCV ≤ and tj RSTP ≥ and  )( ijti prHP ≥ and min)( j
h

ij ABBWAB ≥− satisfied 

into tAN , Nt ,,1L= . Then, for each tAN , construct its corresponding available access 

network sequence tAS . Here, tAS has the same elements as in tAN with the only dif-

ference that its elements are ordered with the ordering number starting from 0. 
The position of a person represents one solution. Each solution is encoded in 

N-dimension vector. For an individual person q , his current position qP is recorded 

as ><
N

qq pp ,,
1
L , which represents one solution of assigning N terminals to M access 

networks. Here,
t

qp is the sequential number in tAS which corresponds to the number 

of the access network assigned to the terminal t , Nt ,,1L= . 

The attraction force function of qP is denoted as )( qPFT and defined as follows. 

∑
=

+=
N

t ptpt

q

tqitqi
nuuu

PFT
1

)
11

()(      (28) 

Here, 
t

qp represents the (
t

qp )th element in tAS , which is the number of the access 

network assigned to the terminal t . Clearly, the less the )( qPFT , the larger and the 

more balanced the user utility and the access network provider utility, and the utilities 
of the two parties approach or achieve Pareto optimum under Nash equilibrium more 
closely, thereby the corresponding handoff solution is better. 

3.2   Algorithm Procedure 

It is described as follows: (1) input N terminals waiting for handoff and M access 
networks covering them simultaneously; (2) construct the sequence of the available 
access networks tAS for each terminal t , Nt ,,1L= ; (3) set the iteration times IT and 
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the population size PS , denote the optimal solution set as ES and ϕ=ES , and denote 

the iteration times counter as it and 0=it ; (4) generate PS initial positions of the 
population; (5) regard qP as the centre of the qth region, set qqP δ± as the upper and 

lower boundaries of the qth region with >=<
Nqqq δδδ ,...,

1
defined as Formula (29); (6) 

calculate )( qPFT by Formula (28), PSq ,,2,1 L= , record the minimum attraction force 

function value as *FT and put the corresponding qP into ES , the qP corresponding 

to *FT is recorded as b
gP , and if there are multiple ones corresponding to the same *FT , 

one will be selected randomly; (7) set the migration times in the local region as MT ; (8) 
set the migration times counter 0=mt ; (9) the people move within their local regions, 
that is, everyone’s position qP is changed uniformly and randomly by Formula (30); 

(10) calculate )( qPFT by Formula (28), PSq ,,2,1 L= , record the minimum attraction 

force function value as *FT , if )(* b
gPFTFT < , replace all the elements in ES with 

the qP corresponding to *FT and the qP corresponding to *FT is recorded as b
gP (if there 

are multiple ones corresponding to the same *FT , select one randomly), 

if )(* b
gPFTFT = , all the qP corresponding to *FT are put into ES and select one ele-

ment from ES randomly as b
gP ; (11) 1+= mtmt ; (12) if MTmt < , go to (9); (13) 

population immigrate to the preferential region, that is, uniformly and randomly re-

generate positions for all the people within the preferential region centered at b
gP and 

with the upper and lower boundaries qqP δ± , use these new positions to replace the 

current positions; (14) same as (10); (15) reduce the preferential region, that 
is, qq δδ ⋅Δ= )-(1 , PSq ,,2,1 L= , Δ is the reduction coefficient, 10 <Δ< ; (16) if 

αδ >max
tq , go to (13),α is the population pressure threshold value, max

tqδ is the maxi-

mum value of
tqδ , Nt ,,1L= ; (17) move people out of the preferential region, that is, 

randomly regenerate the positions for all the people; (18) same as (10); (19) 1+= itit ; 

(20) if ITit < , go to (8), otherwise output the solution corresponding to b
gP as the op-

timal handoff decision, the end. 

PS

ASt
qt ⋅

=
2

||δ     (29)     ⎣ ⎦ ||mod|)(2| tqqqq ASprdp
tttt

δδ −+⋅⋅=    (30) 

Here, || tAS represents the number of elements in tAS , rd is a random number, 

PSq ,,2,1 L= , Nt ,,1L= . The procedure of local population migration is simulated 

by (8)-(12); the procedure of people immigrating to the preferential region, that is, 
population centre following economic centre, is simulated by (13)-(16); the procedure 
of people moving away from the preferential region is simulated by (17). 
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4   Simulation Implementation and Performance Evaluation 

The PMA based handoff decision scheme is implemented through simulation in net-
work simulator 2 (NS2). Fig. 1 illustrates a hexagon cellular topology where three 
different types of access networks overlap. Based on this topology, the proposed 
handoff decision scheme, a greedy strategy based handoff decision scheme [11], and a 
multiservice vertical handoff decision scheme [12] (Just for simplicity, these three 
schemes are marked as Scheme 1, Scheme 2 and Scheme 3 separately below) are run 
500 times. Under various number of terminals waiting for handoff, the mean values of 
the following evaluation metrics are compared: the user utility (UU), the access net-
work provider utility (NU), the comprehensive utility (CU, CU=UU+NU), the ratio of 
the Pareto-optimal solutions under Nash equilibrium (PN), the QoS satisfaction degree 
(SQ), the price satisfaction degree (SP), the preference satisfaction degree over the 
coding system of the access network (ST), the preference satisfaction degree over the 
access network provider (SR), the suitability degree to the moving speed of the terminal 
(SM) , and the suitability degree to the residual electric quantity of the terminal (SB). 
The results are shown in Table 1. 

 
 
 
 
 
 
 
 
 
 
 

 
 
Scheme 1 is always better than Scheme 2 and Scheme 3 for the above metrics except 

SQ. The reason is that Scheme 1 aims to satisfy these metrics when searching the op-
timal solution. However, in terms of the SQ, Scheme 1 is worse than Scheme 3 but 
better than Scheme 2. The reason is that Scheme 3 considers only SQ when it makes the 
handoff decision while Scheme 2 does not consider it and Scheme 1 comprehensively 
considers various factors including the QoS. 

5   Conclusion 

In this paper, an ABC supported handoff decision scheme is proposed based on PMA. It 
is evaluated through simulation implementation in NS2. Compared to the existing 
schemes, the proposed one is effective. At present we are designing and evaluating the 
ABC supported handoff decision schemes based on particle swarm optimization and 
others. These efforts will help evaluate the performance of our proposed model under 

Table 1. Performance Comparison 

number of terminals for handoff P:G:M
5 10 50 

UU 1.25:0.94:1.00 1.30:0.94:1.00 1.36:0.84:1.00 
NU 1.30:0.93:1.00 1.34:0.94:1.00 1.75:1.02:1.00 
CU 1.27:0.94:1.00 1.32:0.94:1.00 1.49:0.91:1.00 
PN 1.24:1.00:1.00 1.31:1.00:1.00 1.44:1.07:1.00 
SQ 0.59:0.40:1.00 0.58:0.38:1.00 0.44:0.31:1.00 
SP 2.11:1.71:1.00 2.18:1.66:1.00 2.15:1.59:1.00 
ST 1.44:1.07:1.00 1.43:0.96:1.00 1.62:0.95:1.00 
SR 1.64:1.26:1.00 1.54:1.09:1.00 1.67:1.05:1.00 
SM 1.87:1.27:1.00 1.91:1.21:1.00 2.26:1.36:1.00 
SB 1.82:1.10:1.00 1.94:1.14:1.00 2.12:1.03:1.00 

 

Fig. 1. Hexagon cellular topology 
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different algorithms for further optimization in the model. And also we are focusing on 
the further applications of the proposed models and algorithms to evaluate their prac-
ticalities and thus improve their runtime performances. 
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A Hyper-Heuristic Approach for the Unit  
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Abstract. This paper introduces a hyper-heuristic approach for the Unit Com-
mitment Problem (UCP). Tests are performed using benchmark data from lit-
erature and real-world data from the Turkish interconnected power network. 
The proposed hyper-heuristic and several methods applied previously to the 
UCP, are compared. Results show that the hyper-heuristic method achieves 
good results in all test sets. Furthermore, it is also a robust method for increased 
problem sizes without the need for parameter tuning. Based on the promising 
results, research will continue for further improvements.  

Keywords: Unit commitment problem, hyper-heuristics, evolutionary algo-
rithms, optimization. 

1   Introduction 

The Unit Commitment Problem (UCP) is a constrained optimization problem, whose 
aim is to determine start-up and shut-down schedules for a group of power generators 
over a given time period, so that the power generation costs are minimized while 
providing a forecasted amount of power for each hour. 

An optimal scheduling of the generators allows for great economic savings with 
regard to cost and energy use. Therefore, the UCP has become an important research 
area and many approaches have been used to solve the problem. Lagrangian relaxa-
tion [1], dynamic-programming [2] simulated annealing [3], tabu search [4], branch 
and bound [5], priority lists [6], greedy algorithms [7] and evolutionary algorithms [8, 
9,10,11,12,18] are among these approaches. 

This paper proposes a hyper-heuristic method to solve the UCP. Hyper-heuristics 
[13] operate on a set of heuristics to choose one of them at each step of the search. 
This selection depends on either problem independent measures, such as the quality 
change of the solution when the selected heuristic is used, or on some probability 
distribution. Since hyper-heuristics do not require any domain knowledge to operate, 
they are easy to use over a wide range of applications. Also they require much less 
parameter tuning efforts than most approaches, e.g. evolutionary algorithms. The 
recent success of hyper-heuristic approaches in the domain of scheduling and time-
tabling problems, e.g. as in [19] has been a motivation for this study.  
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2   The Unit Commitment Problem 

The objective of the UCP is to minimize the power generation costs over a given time 
period. Power generation costs consist of fuel costs and start-up costs. Penalty factors 
are also considered when assessing the quality of a solution. These penalty values are 
the demand penalty, which occurs when the predefined hourly demand is not fulfilled 
by the candidate solution, and the up/down penalty, which is added to the objective 
function, when an up/down constraint is violated for at least one generator. The fol-
lowing parameters are used in the UCP formulation. 

Table 1.  Parameters used in the definition of the UCP 

Parameter Explanation 
Pi(t) generated power by unit i at time t 
Fi(p) cost of producing  p MW power by unit i 
PD(t) power demand at time t 
PR(t) power reserve at time t 
CSi(t) start-up cost of unit i at time t 
xi(t) duration for which unit i has stayed online/offline since hour t 
vi(t) status of  unit i at time t (on-off) 

 
Fuel cost depends on the power produced by each online generator for a given time 

slot. A major concern in the solution of the UCP is to meet the predetermined power 
demand for each time slot while keeping the generated power of each unit within its 
minimum and maximum values. For N generating units at time t, the objective func-
tion is given below. 
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The second cost factor is the start-up cost which occurs when a generator changes its 
status from offline to online. This cost needs to be calculated according to the follow-
ing formulation. The start-up cost does not only depend on the generator type, but it is 
also affected by the amount of time a generator has stayed offline. 
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Another constraint in this problem defines the minimum up-time of a unit before it is 
turned off after becoming online and the minimum down-time before the unit is 
turned on after becoming offline. If this constraint is violated for any generator, a 
penalty cost, named as up/down penalty, is added to the power generation cost of the 
corresponding unit. The formulation in Eq.5 is used to calculate the up/down penalty. 

up
tt

i
xelse

down
tt

i
xt

i
vif

≥−

≥−=

)1(

)1(1)(
     (5)

Based on the fuel and start-up costs and demand and up/down penalty values, the 
UCP objective function for N units and T hours is defined as given below. 

[ ]∑ ∑
= =

+=
T

t

N

i

t
i

CSt
i

vtP ii
F

total
F

1 1

)()()).((min      (6)

Subject to constraints: 

∑
=

=
N

i
tPDtivtPi

1
)()().(      (7)

maxmin )()().( iiiii PtvtPPtv ≤≤  (8)

)(
1

)()().(max tPR
N

i
tPDt

i
vt

i
P +

=
≥∑  (9)

up
tt

i
xelse

down
tt

i
xt

i
vif

≥−

≥−=

)1(

)1(1)(
 (10)

The fuel cost of generating p MW power for the i-th unit is calculated using the fol-
lowing equation. Fuel cost for a power generation unit i depends on three parameters, 
a0i, a1i and a2i, which are predetermined for each generator. The lambda iteration tech-
nique [14] uses this formulation to find the minimum cost for dispatching the amount 
of power to be generated by online units. 

2
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3   Hyper-Heuristics 

Heuristics, such as evolutionary algorithms, tabu search, greedy search, simulated 
annealing are used to solve complex optimization problems, but one of the major 
obstacles during the process is to adapt a heuristic to the corresponding problem, 
since it requires great test effort and experience about the problem. Therefore, it is 
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nearly impossible to develop a heuristic which is capable of solving a wide range of 
optimization problems. To overcome this, hyper-heuristic methods are introduced. 

Hyper-heuristic methods perform their operations on heuristics rather than on can-
didate solutions [13]. They are used to select a heuristic from a set of heuristics at 
each step of the search without any prior knowledge of the problem instance, so that 
they can be successfully applied to a broad range of optimization problems. 

A hyper-heuristic consists of two mechanisms. These are heuristic selection and 
move acceptance mechanisms [13]. Heuristic selection is responsible for selecting a 
heuristic according to feedback from the previous runs or according to a probability 
distribution, and the acceptance mechanism decides whether the new candidate solu-
tion survives into the next generation [13]. Heuristics may be divided into two groups 
as mutational heuristics and hill-climbers. Hill-climbers are used as local search tech-
niques to increase the quality of the solution, whereas mutational heuristics are used 
to increase the diversity and to search in different areas of the solution space. 

In a traditional hyper-heuristic framework, one of the low level heuristics is se-
lected and applied to the candidate solution. After that, its fitness value is calculated 
and the acceptance mechanism decides whether to accept the solution or not.  

4   Related Work on the UCP 

In literature, there are many successful evolutionary algorithm applications to solve 
the UCP. These may be grouped into four different approaches.  

In the first approach, a binary chromosome is used as the candidate solution to rep-
resent the on/off schedule of the power generation units. Genetic operators work on 
this chromosome. An iterative technique, such as lambda iteration, is used to deter-
mine the power generation amounts of the online units for each time slot, e.g. as in [8, 
10, 12, 14, 18]. 

In the second approach, the chromosome consists of integers or floating point 
numbers. It represents the on/off schedule of the units. Integers can be either negative 
or positive to show the duration of the off or on states of the unit. Lambda iteration is 
used to determine the generated power by each online unit, e.g. as in [16, 17]. 

The third approach uses Lagrangian relaxation to solve the UCP, while evolution-
ary algorithms are used to update the Lagrangian multipliers, e.g. as in [1]. 

In the last approach, a floating point chromosome is used, where each gene shows 
the output power of the corresponding power unit. Evolutionary algorithms work only 
on online generators, which are not working at maximum capacity, and they improve 
the already dispatched power, e.g. as in [15]. 

5   Proposed Approach 

In this paper, a hyper-heuristic technique is used to solve the UCP. A binary represen-
tation is used with a length of N*T, where N is equal to the number of units and T is 
equal to the number of time slots. The decision variables take on values as either 0 or 
1 to indicate that the corresponding generator is off or on for this time slot. As the 
heuristic selection mechanism, the permutation descent method is used. In this 
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method, a random permutation of all heuristics is created. At each iteration, the next 
heuristic in the permutation is applied to the candidate solution. Improving heuristics 
are applied repeatedly, until no more improvement is seen. As move acceptance crite-
ria, only improving moves are accepted.  The heuristic selection and solution accep-
tance mechanisms used in this study are chosen from those tested in [13] based on the 
results of initial experimentation. 

Seven heuristics are used during the search. These are mutation with a probability 
of 1/L, where L is the solution length, mutation with a probability of 2/L, swap-
window [8], window-mutation [8], swap-mutation [8], swap window hill-climbing 
[8], and Davis bit hill-climbing [20] operators. The last three operators have hill-
climbing capabilities. In [8] a genetic algorithm is proposed to solve the UCP. The 
heuristics used in this study are used in [8] as genetic mutation operators during the 
iterations. In this approach, each mutation operator has an adaptive application prob-
ability which takes on values within predetermined intervals. After initialization, 
these probabilities are adapted based on the current convergence status of the search.  
 
create randomly an initial solution  
calculate fitness value of the initial solution 
create a random permutation of all 7 heuristics 
while not end of iterations do 
  Select the first heuristic in the permutation 
  repeat 
    repeat 
      Apply the selected heuristic to the solution 
      If (heuristic does not contain hill climbing) 
        Apply Davis bit hill climbing 
      Calculate fitness value 
      If (fitness value is better) 
        Accept the new solution 
    until (the fitness value is no more improved) 
    Select the next heuristic   
  until (last heuristic in the permutation is applied) 
end while 

Fig. 1. Pseudo-code for the Proposed Hyper-Heuristic Approach  

In the first step of the proposed hyper-heuristic approach, an initial solution is  
created randomly. After that, one of the seven heuristics is selected according to a 
predetermined permutation. If the selected heuristic does not contain hill-climbing 
capability, then Davis bit hill-climbing operator is applied to the solution after the 
selected heuristic completes its task [13]. In the next step, the fitness value of the 
resulting solution is calculated. If there is an improvement, the solution is accepted 
and the same operator is applied to this solution again; otherwise, the previous solu-
tion is not replaced with the new one and the next heuristic in the permutation is  
applied to the previous solution. 

6   Experiments 

The hyper-heuristic approach, explained in section 5, is tested on several benchmark 
problems taken from literature and also on a real-world data set obtained from the 
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Turkish interconnected power system. In the first part of the experiments, the per-
formance of the hyper-heuristic is compared with the performance of the genetic 
algorithm proposed in [8]. The aim of this part is to show the benefits of incorporating 
the genetic operators used in [8] within the framework of a hyper-heuristic. In the 
next part, three benchmark problems are used and the results obtained using the hy-
per-heuristic are compared with results reported in literature. These benchmarks are 
referred to as System 1, System 2 and System 3 in the rest of the paper. System 1, 
taken from [10], consists of 10 units. System 2 and System 3 data are generated by 
repeating the data of System 1 two and four times respectively, as also done in [8, 10]. 
As a result, System 2 has 20 generators and System 3 has 40 generators. For all test 
systems, the time horizon is 24 hours. The effect of problem size on the performance 
of the methods is investigated through using data sets of increasing sizes. In the last 
part, real-world data is used to determine the efficiency of the hyper-heuristic ap-
proach with respect to others.     

6.1   Parameter Settings 

In System 1, and in the Turkish Interconnected Power System, as used in [18], the 
best, the average and the worst case values are reported over 20 runs of the program. 
For System 2 and System 3, as used in [1, 16], these values are reported over 15 runs 
of the program. In the fitness calculation, the demand penalty and the up/down pen-
alty coefficients are set to a very high value as 100000, so that infeasible solutions can 
not have a better fitness than feasible ones. The number of allowed iterations for the 
hyper-heuristic per run is chosen as 1000, 5000, 10000, for System 1, System 2 and 
System 3 respectively. These values are determined empirically. 

6.2   Experimental Results 

In this section, several optimization methods are compared using System 1, System 2 
and System 3 and the Turkish interconnected power network data sets. All results in 
the following tables are taken from literature. For some methods, the average and 
worst data are not available in literature; therefore, they are not given in this paper. 
The listed methods are abbreviated as follows: 

        LR1 and LR2 are the Lagrangian Relaxation methods as used in [8, 10] 
   GA1 is a standard genetic algorithm as used in [10] 
   GA2 is a genetic algorithm with special operators as used in [8] 
   GRA1 and GRA2 are the Greedy Randomized Search methods as used in [7] 
   MA and SMA are memetic algorithms as used in [10] 
   BDE1 and BDE2 are binary differential evolution methods as used in [12,18] 
  ES is an Evolutionary Strategies algorithm as used in [18] 

SSGA is Steady-State Genetic Algorithm as used in [18] 
HH is the hyper-heuristic approach proposed in this study. 

In the first part of the experiments, the GA2 algorithm as used in [8], and the pro-
posed HH algorithm are compared on three data sets. In GA2, premature convergence 
is not desirable, since it makes the search inefficient. Therefore, the search process is  
 



 A Hyper-Heuristic Approach for the Unit Commitment Problem 127 

monitored, and premature convergence is prevented by adjusting crossover and muta-
tion probability rates. In the HH method, same genetic operators are used; however, 
the system does not need to be monitored. That is, HH does not require parameter 
tuning and adaptation. It simply selects a heuristic according to a permutation, which 
is created randomly in the beginning, and this heuristic is applied to the solution re-
peatedly, until it does not improve the solution candidate. 

For System 1, both methods obtain very similar results, but for System 2 and Sys-
tem 3 HH obtains better results than GA2. In larger data sets, the difference between 
the performances of GA2 and HH becomes more significant.  

Table 2. Results for System 1  

Algorithm Best Average Worst 
LR1 565825 n/a n/a 

GRA1 565825 - - 
GA2 565825 - 570032 

BDE2 565827 565965 566650 
HH 565827 566121 567028 
MA 565827 566453 566861 
ES 565827 569199 571312 

GA1 565866 567329 571366 
BDE1 566166 - - 
SMA 566686 566787 567822 
LR2 567663 n/a n/a 

 
In the second set of experiments, HH is run on three benchmark data sets and com-

parative results are reported in tables 2-4. If we look at these tables, we can see that 
most of the methods show inconsistency in their performances with different data 
sets. For instance, LR1 and GRA1 obtain the best result in System 1, but they achieve 
very poor results in the other two systems. Similarly, GRA2 obtains good results in 
System 1, but if the data set gets larger, its performance decreases significantly. How-
ever, the HH approach achieves consistent results over all data sets. In System 1, it 
obtains a very good result, which is slightly higher than the overall best result. The 
difference percentage between LR1 and HH is only 0.0003%. In System 2 and System 
3, HH finds the overall best results.  

Methods, including hybridization techniques, such as repair operators, specialized 
reproduction operators or hill-climbers perform significantly better on larger prob-
lems. From these results, it can be easily noticed, that SMA, MA, GA2 and HH obtain 
good results in larger data sets because of the usage of hybrid operators during the 
search. At each iteration, a hill-climbing operator is applied in HH; therefore, HH is 
scalable and can be adapted to different problem instances with varying data sizes as 
well. Additionally, HH does not contain sophisticated methods during heuristic selec-
tion and move acceptance steps. Applying such methods to HH can improve current 
results.  

 



128 A. Berberoğlu and A. Şima Uyar 

Table 3. Results for System 2 

Algorithm Best Average Worst 
HH 1126231 1127553 1128831 
GA2 1126243 - 1132059 

GRA2 1126805 - - 
MA 1127254 1128824 1130916 

GRA1 1128160 - - 
SMA 1128192 1128213 1128403 
GA1 1128876 1130160 1131565 
LR2 1129633 n/a n/a 
LR1 1130660 n/a n/a 

 

Table 4. Results for System 3 

Algorithm Best Average Worst 
HH 2249099 2251528 2253099 

SMA 2249589 2249589 2249589 
LR2 2250223 n/a n/a 
GA2 2251911 - 2259706 
GA1 2252909 2262585 2269282 
MA 2252937 2262477 2270361 

GRA2 2255416 - - 
LR1 2258503 n/a n/a 

GRA1 2259340 - - 

   
In the last experiment, real-world data is used to compare the performances of four 

methods with results reported in literature. In this system, there are only eight units 
and eight hours. The HH is allowed to execute 1000 iterations per run with the same 
parameter settings as explained in subsection 6.1. According to the results in Table 5, 
HH and BDE2 methods obtain the best result. Table 6 shows the 95% confidence 
intervals for the cost values calculated by HH for the test systems. First row gives the 
means for each test system and the second row shows the 95% confidence intervals of 
the means.  

Table 5.  Results for the Turkish Interconnected Power System 

Algorithm Best Average Worst 
HH 530346 530346 530346 

BDE2 530346 530346 530346 
ES 530392 530392 530392 

SSGA 530392 530392 530392 
BDE1 532142 - - 
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Table 6.  Mean and the 95% confidence interval of the cost calculated by HH 

 System 1 System 2 System 3 Turkish Power  System 
Mean 566121 1127553 2251528 530346 

Confidence 
interval 

[565958.15 , 
566283.85] 

[1127151.55 , 
1127954.45] 

[2251014.8 , 
2252041.2] 

[530346 , 530346] 

7   Conclusion 

In this study, a robust and scalable solution is proposed for the UCP through the ap-
plication of a hyper-heuristic approach. Four test sets are used to compare the per-
formance of HH with other optimization methods. Firstly, HH is applied to three test 
sets, which are taken from literature, and the change in the performance of the algo-
rithm is investigated with respect to other methods. In the last test, real-world data is 
used to compare the efficiency of the algorithms. 

As can be seen from the results, HH shows very good performances in these four 
test sets. For System 2, System 3 and the Turkish Interconnected Power Network 
System, it obtains the overall best result; in System 1 it finds the second best result, 
but the difference between the overall best result and the result of HH is very small. 
Unlike some methods, such as LR1, GA1, GRA1, GRA2, which obtain inconsistent 
results with varying data sizes, HH succeeds in getting good and consistent results in 
all four data sets. The use of hill-climbers has an important role on this performance. 

Additionally, the performance of HH and GA2 are compared. Despite using the 
same genetic operators, HH becomes more successful in larger data sets. Moreover, 
HH does not require parameter tuning or adaptation before and during the search. 
However, in GA2, the search needs to be monitored to prevent convergence and to 
find good results. Therefore, HH is a robust solution approach for large data sets. 

As the first application of HH to the UCP, the results are very impressive. The per-
formance of this approach can be further enhanced by applying more sophisticated 
heuristic operators and hill-climbers. Besides, as future work, the initial solution can 
be improved by using a heuristic such as the priority list method [6]. Advanced tech-
niques with learning mechanisms, which make decisions based on feedback from 
previous iterations, can also be used for heuristic selection and move acceptance. 
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Abstract. This paper compares Genetic Programming and the Classi-
fication and Regression Trees algorithm as data driven modelling tech-
niques on a case study in the ferrous metals and steel industry in South
Africa. These industries are responsible for vast amounts of greenhouse
gas production, and greenhouse gas emission reduction incentives exist
that can fund these abatement technologies. Genetic Programming is
used to derive pure classification rule sets, and to derive a regression
model used for classification, and both these results are compared to the
results obtained by decision trees, regarding accuracy and human inter-
pretability. Considering the overall simplicity of the rule set obtained by
Genetic Programming, and the fact that its accuracy was not surpassed
by any of the other methods, we consider it to be the best approach, and
highlight the advantages of using a rule based classification system. We
conclude that Genetic Programming can potentially be used as a process
model that reduces greenhouse gas production.

1 Introduction

According to Lotz et al [1] it is commonly accepted that anthropogenic green-
house gas (GHG) emissions are at least partially responsible for current climate
change problems. The Intergovernmental Panel on Climate Change is also a lead-
ing authority on the subject [2]. In 1997 the Kyoto Protocol was adopted at the
Third Session of the Conference of the Parties to the United Nations Framework
Convention on Climate Change [3]. The purpose of this protocol was to force
Annex-I countries, or industrialized countries, to accept legally binding com-
mitments to reduce GHG emissions. The targeted GHGs are CO2, CH4, N2O,
HFCs, PFCs, and SF6 [3]. For further information see aspects of Lotz and Brent
[4]. Developing countries, like South Africa, have no binding GHG emission pro-
duction cap in place, but GHG emission reduction projects in these countries
could obtain significant sources of revenue from polluting less. The United Na-
tions’ emission reduction scheme aimed at developing nations is known as the
Clean Development Mechanism (CDM) [3]. The trading of the Certified Emis-
sion Reduction (CER) units is facilitated by the Carbon Finance Unit of the
World Bank [5].
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According to Zhuwakinyu [9] South Africa is Africa’s largest steel producer,
accounting for 48% of total crude steel production in 2008. Globally, South Africa
is the 21st biggest producer. ArcelorMittal South Africa is a major production
company in South Africa and in 2008 the worldwide production of ArcelorMittal
was ranked as the top steel-producing company, accounting for about 103-million
tons of global steel production. The country also has one primary stainless steel
producer, Columbus Stainless. The primary steel industry is a significant con-
tributor to the South African economy and earns considerable amounts of foreign
exchange [9]. The ferrous metals and steel industry involves very energy inten-
sive production processing. This energy is sourced from fossil fuel, like coal and
gas, and from electricity. The national electricity grid in South Africa generates
± 0.96 - 1.2 tCO2e/MWh [10]. The use of energy in South African ferrous met-
als and steel industry thus leads to significant amounts of GHG production. As
example, in the calendar year 2008 ArcelorMittal (South Africa Ltd) reported
12,420,730 tCO2e [11], Scaw Metals 1,727,590 tCO2e [12] and Highveld Steel &
Vanadium declined to disclose their GHG emissions [11].

Genetic Programming (GP) is the automated learning of computer programs,
using Darwinian selection and Mendelian genetics as sources of inspiration [6].
Despite its obvious potential in process systems engineering, GP does not ap-
pear to have gained large-scale acceptance in process engineering applications,
at least when compared to Artificial Neural Networks and Support Vector Ma-
chines. One of the problems usually associated to GP is the so called bloat, an
excess of code growth without a corresponding improvement in fitness [7]. Bloat
is one of the reasons why the solutions derived by GP are usually complex and
hard to understand, and thus of difficult acceptance among practitioners. On the
other hand, Classification and Regression Trees (CARTs) are a non-parametric,
non-linear rule based classifier that generates classification rules through an in-
duction procedure described in [14]. They are based on a hierarchical decision
scheme where the feature space is subject to a binary recursive partitioning that
successively splits the data. Unlike GP, the CART algorithm is very popular and
successful.

The aim of this research is to compare GP and CART as a data driven mod-
elling technique on a case study in the ferrous metals and steel industry. As
discussed above, these industries are responsible for vast amounts of GHG pro-
duction, and GHG emission reduction incentives exist that can fund these abate-
ment technologies. GP is used to derive pure classification rule sets, and to derive
a regression model used for classification. These results are compared to each
other, and to the CART results, regarding accuracy and human interpretabil-
ity/readability. We do not intend to draw conclusions regarding the general
appropriateness of these or other techniques in similar problems, but instead
use this particular application to exemplify how GP can provide a competitive
solution. If GP can produce a model that outperforms a traditional approach
like CART, then it can potentially be used as a process model that reduces GHG
production.
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In Section 2 the data and modelling techniques are discussed, while Section 3
focuses on the experiments/case study and results obtained. Section 4 is a discus-
sion on the results and the paper ends with Section 5 summarizing the conclusions
drawn during this research.

2 Data and Methods

The data set of this case study originated from an industrial process. In this
process steel was hot-rolled into steel plates. This data consists of 20 inputs
represented by X1 to X20, regarding different measurements related to the pro-
duction. The output or target value is a binary variable. A value of 1 indicates
that an error occurred during the production and the result was a defective
steel plate, while a value of 0 indicates successful production. The aim is to pre-
dict whether the production was successful or not. The input variables X1–X20
are summarized in Table 1. The data set contains 3,015 samples, which were
randomized and split into a training set of 2615 entries and a test set of 400
entries, across which examples of both classes were spread equally. The classes
are not equally represented, as only 27.4% of the samples represent defective
steel plates.

Table 1. Input variables, measurement and units

Input variable Measurement Units

X1 Phosphorus content %
X2 Grinding loss %
X3 Reheating retention time h
X4 Width of steel plate mm
X5 Speed at which plate moves m/min
X6 Mould level difference m
X7 Stopper movement m
X8 Tundish steel mass ton
X9 Superheated steel temperature oC
X10 Silicon content %
X11 Rinse end temperature oC
X12 Contact time h
X13 Add to gas end h
X14 Rinse station stir parameter Nm3 / min / ◦C
X15 Ti3O5 content kg
X16 TiN content kg
X17 Product thickness mm
X18 Mould temperature measurement at specific point oC
X19 Mould temperature measurement at specific point oC
X20 Mould temperature measurement at specific point oC
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The modelling methods employed were:

Classification and Regression Trees (CART): This is the benchmark
method against which the two GP methods are compared. The chosen input
variables all act as binary splits as compared to a statistically determined
value and all terminal nodes are class associated integers. See [14] for more
information on CART systems;

GP evolved pure classification rules (Class-GP): These rules directly
predict a class associated integer, requiring no rounding of outputs to in-
tegers. The function set used contained the following functions: ’if-then-else’
(myif), ’greater than’ (gt), ’less or equal than’ (le), and ’or’. The terminal
set was limited to ’0’, ’1’, and X1–X20. GPLAB [13] was used to derive the
GP classification rules. (It is important to note that GPLAB could also have
been used to derive the GP evolved regression function);

GP evolved regression function (Reg-GP): This is a single complex func-
tion which produces a value that must be rounded to the nearest class associ-
ated integer. The GP application used was a commercially available package
called Discipulus [15]. This GP application directly executes mathematical
operators on the data set;

No data filtering was done to compensate with difference in order of magnitude
of input variables, investigate interdependencies of variables, statistical outliers
or any other phenomena. It is expected that CART and both GP approaches
are able to deal with such relationships without being assisted. The error of the
derived models is calculated as the number of prediction errors that are made
on the unseen test data set.

3 Experiments and Results

3.1 The CART Model

The model produced by CART consists of a decision tree containing 525 nodes
and 36 terminal nodes. This means the data set is classified using 36 rules. Too
large to be represented graphically, this tree was however pruned with success.
Pruning is the process of reducing a tree by turning some branch nodes into
terminal nodes and removing all other nodes of the original branch [16]. The
tree was pruned to 17 nodes including 9 terminal nodes, denoting 9 classification
rules. CART is not stochastic and, as such, always produces the same result. The
pruned tree is illustrated in Figure 1.

The CART model must be interpreted from the top down to get to the 9 ter-
minal nodes denoting the 9 distinct classification rules. Each non-terminal node
is evaluated as:

IF (condition is TRUE)
THEN (go to the left branch)
ELSE (go to the right branch)



Application of Genetic Programming Classification 135

Fig. 1. Pruned CART decision tree

As example, the two first rules (leftmost terminals) are:

IF X16 < 0.695
AND X19 < 3.935
AND X17 < 2.8155
THEN Class 1

IF X16 < 0.695
AND X19 < 3.935
AND X17 ≥ 2.8155
THEN Class 0

The original (unpruned) CART model misclassified 118 of the 400 unseen test
cases. The pruned tree performed slightly better by misclassifying 108 entries.
It is of interest to note that the pruned model only used 5 of the 20 available
input variables.

3.2 GP Evolved Pure Classification Rules (Class-GP)

When using GP to evolve classification rules, the resulting model is, in its essence,
similar to the CART model. It consists of “pure classification rules” since each
rule has a single class associated integer as an output. No rounding of model
outputs is necessary.

Since GP is stochastic, various runs (around 40) were executed on the same
training and test data sets. Different population sizes were used (100–500 indi-
viduals), allowed to evolve for a varying number of generations (30–300). The
populations were always initialized with the Full method [17] with an initial
maximum depth of 6, and no maximum limits for the allowed depth during the
run. Crossover and mutation were used with equal probabilities, the reproduc-
tion rate was 0.1, and no elitism was used. Apart from the usage of the Lexi-
cographic Parsimony Pressure [18] tournament, no other bloat control measures
were taken.

The absolute best model found misclassified 105 of the unseen test samples.
This model had a tree depth of 14 levels and consisted of 40 nodes, and was
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Fig. 2. Class-GP tree before simplification. Nodes are arbitrarily labelled.

obtained using 300 individuals evolved for 200 generations. Another Class-GP
model was evolved, using exactly the same settings as the previous, that has
similar accuracy and much less complexity. This model misclassified 109 test
samples and consists of 25 nodes in a tree of 5 levels. Figure 2 represents this
tree exactly as returned by GPLAB, before any simplification.

Generally the easiest way in which to interpret the GP trees is to start at
a terminal node and “work your way up”. As examples, nodes A, B and C in
Figure 2 are interpreted as:

Node A:
IF 1 ≤ X7
THEN 1
ELSE 0

Node B:
IF X18 ≤ X2
THEN 1
ELSE 0

Node C:
IF Node A > Node B
THEN 1
ELSE 0

This interpretation method is then repeated for all tree branches up to the top
node, L.

Given that the input variables are all positive, which in the boolean terms
of the functions ’gt’, ’le’ and ’or’ (function set in Section 2) always evaluates
to 1 (true), most of the nodes on this tree were identified as being introns. As



Application of Genetic Programming Classification 137

Fig. 3. Class-GP tree after simplification. Original tree shown in Figure 2.

example, evaluating all the nodes below node F on the training set indicated
that node F always returns the value 1. Nodes A–E can then be removed and
node F simply becomes ’1’. The removal of all intron nodes resulted in the tree
represented in Figure 3. This simplified model consists of 7 nodes, including 5
terminal nodes, that can be interpreted as the following set of rules:

Node J:
IF 1 > X16
THEN 1
ELSE 0

Node K:
IF 1 > Node J
THEN 1
ELSE 0

Node L:
IF 1 ≤ Node K
THEN 1
ELSE 0

Combining these nodes results in:

IF 1 ≤ (1 > (1 > X16))
THEN 1
ELSE 0

This can be simplified to the following simple rule:

IF X16 ≥ 1
THEN 1
ELSE 0

It is clear that the prediction is only dependent on variable X16. This means
that, remarkably, 291 out of 400 test samples are correctly classified by knowing
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only the TiN content (see Table 1). Also note that this model is far less complex
that the 9 rules generated by the pruned CART tree with basically the same
accuracy.

3.3 GP Evolved Regression Function (Reg-GP)

To evolve the GP regression function a number of runs (around 10) consisting
of 500 individuals evolved for 50,000 generations were executed. The outputs
of the Reg-GP function must be rounded to the nearest integer assigned to a
class, resulting in a binary classification model. The absolute best model found
used 8 of the 20 available input variables, and misclassified 136 of the unseen
test entries. The C/C++ model returned by this GP system does not lend itself
to a tree representation comparable to CART or Class-GP. Apparently using
no explicit bloat control, even the simplest model obtained with this system
consists of a mathematical expression several pages long, considered too long to
be included here.

4 Discussion

Table 2 is a summary of the results obtained by the three different approaches.
CART and Class-GP have provided comparable models, with the same accuracy
and interpretability of the classification rules. However, CART used more vari-
ables, produced a larger tree (even after pruned) and, as a consequence, requires
more rules to perform the classification. Class-GP produced a tree that could
be simplified to use only one variable, requiring only one very simple classifica-
tion rule. On the other hand, Reg-GP produced models that are very difficult in
terms of human interpretability. They consist on a complex mathematical func-
tion whose outputs must be rounded to produce a binary classification. Besides
using more variables, the Reg-GP model also revealed lower accuracy.

Table 2. Summary of model results by CART (pruned), Class-GP and Reg-GP

Method Variables used Accuracy Model format

CART (pruned) X15,X16,X17,X19,X20 73% 9 classification rules

Class-GP X16 73% 1 classification rule

Reg-GP X1,X4,X5,X10,X15-X17,X20 66% 1 regression function

The Class-GP approach has the additional advantage of being able to compare
inputs to one another (see Figure 2, node B) as opposed to always comparing
an input to a statistically derived value (see Figure 1, all nodes) like CART
does. The result is that the Class-GP approach provides more insight into the
fundamentals of the system as compared to the CART approach.
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Having a set of pure and meaningful classification rules is of great advantage
for plant design and plant operators. Presenting a “black box” model to an in-
dustry to adopt leads to resistance due to a lack of understanding of the model.
The largest fundamental drawback of using Reg-GP is the lack of insight gained
by the user, at least in this particular application. With CART and Class-GP,
the model is a set of rules that can be easily understood and interrogated indi-
vidually, and that clearly indicate which input variables are required to perform
the prediction.

It is interesting to note that the only variable used by Class-GP, X16, is also
the only variable that was always used by all models. Clearly the importance of
the TiN content (X16 in Table 1) in predicting production errors was identified
by all the models. Controlling the TiN concentrate will then have a beneficial
influence on the successful production of steel plates and the identification of
plates with surface defects. The implication is that less steel plates will have to be
scrapped and put through the energy intensive production process. Having more
steel plates produced, by scrapping less plates, results in having a lower energy
requirement per plate produced. This in turn results in less GHG production as
energy and GHG production are closely correlated in South Africa.

5 Conclusions

We have compared GP and CART as a data driven modelling technique on a
case study in the ferrous metals and steel industry in South Africa, with the goal
of predicting production errors. GP was used to derive pure classification rule
sets (Class-GP), and to derive a regression model used for classification (Reg-
GP). These results were compared to each other, and to results obtained by the
CART algorithm, regarding accuracy and human interpretability/readability.
Considering the overall simplicity of the rule set obtained by Class-GP, and the
fact that its accuracy was not surpassed by any other method, we consider it
to be the best approach, and highlight the advantages of using a rule based
classification system.

Successful production of steel plates results in lower energy requirements.
This in turn results in less GHG production, as energy and GHG production
are closely correlated in South Africa. The GHG emissions achieved are real
and measurable. The result is that the GHG emissions reductions could be a
major source of income if such a project is registered under the UN’s Clean
Development Mechanism (CDM) or other emission reduction incentive schemes.
Not only did GP produce a real world process model, it can actually be used in
curbing the production of GHGs.
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Abstract. This paper investigates the influence of gradient and payload
correction factors used within a CO2 emission model on the solutions to
shortest path and travelling salesman problems when applied to freight
delivery.

Problem instances based on real life examples using the road network
of Scotland are studied. Solutions are obtained using a range of metrics
and vehicles. The results are compared to determine if the inclusion of
gradient and payload as inputs to the emission model have any influence
on the final routes taken by vehicles or the order of visiting customers.
For the problem instances studied no significant influence was found.
However for vehicle routing problems with large differences in payload
and hilly road networks further investigation is needed.

1 Introduction

The routing and scheduling of vehicles is a well researched topic and one that
has many practical applications. The efficient routing of freight delivery, waste
collection, courier services and road gritting are examples.

Typically the objective function to be optimised is related to the number of
vehicles used, the distance travelled or to an overall cost. Optimising routing and
scheduling problems with respect to CO2 emissions has, until recently, received
little attention.

The Intergovernmental Panel on Climate Change (IPCC) concludes that the
main source of increased CO2 levels in the atmosphere are a result of the burning
of fossil fuels [2]. A number of international treaties to control greenhouse gases
have been agreed. These incude the United Nations Framework Convention on
Climate Change [3] and the Kyoto Protocol to the Framework Convention on
Climate Change [4]. The Climate Change Act 2008 legally committed the UK
government to reduce CO2 emissions by at least 26% from the 1990 levels by
2020 [5]. Road freight transport accounted for 6% of all UK CO2 emissions in
2004 [6].

In this paper we explore some of the factors that influence road vehicle optimi-
sation problems, particularly with respect to the minimisation of CO2 emissions
from the transport of goods. In particular the effect of road gradient and vehicle
payload are examined as these factors have been shown to have a considerable
impact on the level of fuel consumed and thus CO2 emitted.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 141–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Related Work

The traveling salesman problem and the Vehicle Routing Problem (VRP) have
been well studied. A survey of methods for solving the Traveling Salesman Prob-
lem can be found in Lawler et al. [10]. A review of the application of evolutionary
algorithms to the TSP can be found in [12].

However only a few studies have been done with regard to CO2 emissions.
Sbihi and Eglese [13] reviewed the link between vehicle routing problems and
green logistics. Palmer [14] integrated an emissions model with a genetic algo-
rithm to minimise CO2 emissions for supermarket home deliveries. This study
utilised a light goods vehicle for which the fuel consumption is not influenced by
payload and road gradient.

The effect of payload and gradient on optimum route choice has been studied
by [15] [16] on the mountainous Cape Verde isles in the context of a waste collec-
tion service. These effects are most noticeable for long distance transportation
when the vehicle is fully laden with waste. Fuel savings of 52% were achieved
when optimising the route for low fuel consumption rather than distance.

Ericsson, Larsson and Brundell-Freij [17] developed a routing tool for drivers
that minimised fuel consumption.

In [18] Jabali et al. optimised a time dependent vehicle routing problem for
both total travel time and total CO2 emissions. A simple average speed CO2
model was used and payload and gradient were ignored.

3 CO2 Emission Modelling

This study employed the COPERT [9] model which is based on the average
speed of a vehicle and includes payload and correction factors for heavy goods
vehicles (HGVs). Payload and gradient do not have a significant impact on the
fuel consumption and emissions from light goods vehicles. Although mainly used
to calculate the annual emissions of a country’s vehicle fleet, the methodology
used within COPERT has been shown to be sufficiently accurate to calculate
emissions with a temporal resolution of 1 hour and a spatial resolution of 1
km. The use made of this model within this study falls outside these bounds.
Other models exist [8] that would permit a much smaller spatial and temporal
resolution. However these models require more data inputs and involve more
complex processing than the model selected. In addition these models were not
available to the authors at the time of writing.

The COPERT model models both cold start and hot engine emissions. In this
study only hot engine emissions were considered.

For this study several vehicle classifications were used. These are a light goods
vehicle (LGV) and 7.5 tonne, 18 tonne and 26 tonne rigid-bodied heavy goods
vehicles (HGVs). All were assumed to have engines conforming to the most
recent engine standards, that is Euro 6 for the LGV and EuroVI for HGVs.

The output from the COPERT model is a baseline emission factor giving
the grams of CO2 emitted per kilometre. The emission factor is a function of



Influence of Topology and Payload on CO2 Optimised Vehicle Routing 143

the vehicle classification, the European emission standard of the engine and
the mean speed of the vehicle. CO2 emissions are directly proportional to fuel
consumption.

For HGVs a gradient correction factor is then applied to this emission factor
to correct for uphill and downhill slopes. The gradient correction factor is a
function of the vehicle mass, the mean vehicle speed and the road gradient. The
baseline emission factor is corrected as follows:

ηi = Giei . (1)

where
ηi is the gradient corrected emission factor in g CO2/km of vehicle i, Gi is

the gradient correction factor of vehicle i and ei is the baseline emission factor
of vehicle i.

The above emission factors assume that the vehicle is 50% loaded. To compen-
sate for different vehicle loadings the emission factor for HGVs can be corrected
as follows:

βi = ηi[1 + 2λi(L − 50)/100] . (2)

where
βi is the load corrected emission factor in g CO2/km of vehicle i, ηi is the

gradient corrected emission factor of vehicle i, λi is the load correction factor of
vehicle i and L is the actual loading of vehicle as a percentage of the maximum
load.

The final emission factor is then used to calculate the cost of traversing a
given road link as follows:

costi,j = βi,j lj . (3)

where
costi,j is the cost in g CO2 of vehicle i traversing roadlink j, βi,j is the load

corrected emission factor of vehicle i on roadlink j and lj is the length of roadlink
j in km.

4 Experimental Approach

The study is based on two very different sets of problem data. The first concerns
the delivery of groceries to households within the City of Edinburgh from a
supermarket store. The second concerns the delivery of paper from a warehouse
in North Lanarkshire to commercial customers throughout Scotland. In the first
instance a diesel-fuelled light goods vehicle (LGV) was studied. In the second
instance a variety of rigid-bodied heavy goods vehicles (HGVs) and LGVs are
employed.

The mapping data employed for this study is from the UK Ordnance Survey’s
(OS) Integrated Transport Network (ITN) layer with the Ordnance Survey’s
Land-Form PROFILE providing height data. This mapping data was loaded
into a MySQL database. The map for Scotland includes approximately 500,000
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nodes and 600,000 edges. The study only included deliveries within mainland
Scotland and no use of ferries or railways was made.

There is no information on vehicle speeds in the OS ITN data. While the ITN
data does contain basic information about road categories, the assignment of an
appropriate vehicle speed is far from simple. For example a road category of ’A
Road’ can represent both a rural road with a legal speed limit of 60mph or a
city centre street with a legal limit of 30mph.

Land-Use and Transport Integration in Scotland (LATIS)[20] models road
transport on the strategic road network in Scotland. LATIS takes into account
land-use planning and travel demand and can be used to predict the congested
average speed of traffic on all roads in the model, as well as the free-flow speed.
Thus the LATIS model can supplement the OS data providing vehicle speed data
for a subset of the roads. For roads outside the LATIS model only estimates
based on the limited OS road categories can be used. The estimates for this
study are based on measurements made by the Department of Transport [19]
and are shown in table 1.

The vehicle speeds employed in this paper are an initial estimate only. They
do not consider the effect of congestion, the varying of congestion with time or
driver choice of speed. These will be studied in future work.

Table 1. Default average speeds for road categories not in the LATIS model

ITN Road category speed km/h
Single carriageway 45

A Road 45
B Road 45

Minor road 45
Local street 45

Pedestrianised street 30
Alley 30

Several traveling salesman problem (TSP) instances were randomly chosen
from the problem datasets. Each of these represented a typical route for that
vehicle type in an operational solution to the problem data. As the loadings of
the vehicles were often far less than the maximum, the delivery quantities to
the customers was increased so that the vehicle typically left the depot 80-100%
fully laden. This does not apply to LGVs where the payload has no effect on the
fuel emission factor. The number of deliveries ranged from 5 to 13. Details are
diplayed in table 2.

A bidirectional form of Dijkstra’s routing algorithm [7] was used to find the
shortest paths between all pairwise combinations of customers and the depot.
The following objectives were used;-

– Least Distance.
– Least CO2 emissions without the payload and gradient correction factors.
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Table 2. Problem instances studied

Problem Number of deliveries Vehicle %laden Average distance (km)
1 10 LGV Diesel n/a 9.6
2 5 7.5t rigid HGV 81 115.3
3 6 18t rigid HGV 80 132.8
4 13 26t rigid HGV 93 102.2

– Least CO2 emissions with gradient correction factor.
– Least CO2 emissions with the gradient and payload correction factors.

These objective functions are hereafter referred to with the following names;-

– Distance
– CO2(basic)
– CO2(gradient)
– CO2(gradient/payload)

The COPERT model has gradient correction factors for slopes between -6% and
6%. Where an edge was found that had a slope outside of this range the nearest
corresponding factor was employed.

The Distance and CO2(basic)shortest paths are symmetrical, whereas taking
the gradient into account makes the shortest paths asymmetrical. That is the
cost of travelling from A to B is not necessarily the same as travelling from B
to A. Likewise the optimal route may also be different. When calculating the
shortest paths for the CO2(gradient/payload) objective the process was repeated
for vehicle loadings of 0, 50 and 100% to find out if the loading of a vehicle
affected the optimal route between 2 points.

Although the shortest paths were constructed to minimise the above objec-
tive functions they were all costed and analysed using the full CO2 model that is
using both gradient and payload correction factors. For each of the 3 CO2 objec-
tive functions the shortest paths found were compared with the corresponding
paths found for the distance objective. The CO2 savings for each path and the
additional distances travelled to acheive that saving were then analysed.

The TSP instances were then solved for each of the objective functions using
the appropriate shortest paths as inputs. Since it is the input factors to the emis-
sion model that are being studied, the choice of TSP algorithm is not the focus
of this paper, therefore, the smaller instances were solved by iterating through
all solution possibilities. The larger instances were solved using an evolutionary
algorithm proposed by [11]. The best solution found in each case is reported.

When optimising using the CO2(gradient/payload) objective function three
paths between each pair of customers or customer/depot have been calculated.
These paths are the optimal path for a 0, 50 or 100% laden vehicle and may
or may not be different. The path chosen depends on the current loading of the
vehicle which, in turn, depends on the customer’s position in the overall TSP
route. Vehicle with loading of 25% or less were assigned to the 0% laden path,
those with loading of 75% or greater the 100% laden path and the rest the 50%
laden path.
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As before the calculated TSP solutions were also costed and analysed using
the full CO2 model with both gradient and correction factors. This calculation
also took into account the current loading of the vehicle that was updated as
the vehicle completed its tour of customers.

5 Evidence

The results of all the shortest path calculations are displayed in figures 1 and 2.

Fig. 1. Extra distance of CO2 optimised paths for all pairwise combinations of cus-
tomers and depot compared with distance optimised paths. The box represents the 2nd
and 3rd quartiles and the whiskers give the minimum and maximum values.

These show that, for the problem instances chosen, CO2 savings for any one path
of up to 23% are possible. However the CO2 savings are highly dependent on
the problem instance. For example problem instance 1 is based on grocery home
deliveries in Edinburgh and for many pairs of customers the distance and CO2
optimised paths are identical. The average saving is 0.5%. Problem instance 2 is
based on paper deliveries from Lanarkshire, Scotland to customers in Edinburgh,
Glasgow, Fort William, Angus and West Lothian. CO2 savings ranged from
3.21% to 23.77% with an average of 12.47%. This difference in CO2 savings is
to be expected as the distances involved are much longer and there is more
potential for alternative paths.

T-Tests were undertaken to compare the CO2 savings of the CO2(basic) ob-
jective function and the CO2(gradient) function against the distance objec-
tive. Similarly the CO2 savings of fully-laden and empty vehicles using the
CO2(gradient/payload) objective function against the distance objectie were
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Fig. 2. CO2 savings of CO2 optimised paths for all pairwise combinations of customers
and depot compared with distance optimised paths. The box represents the 2nd and
3rd quartiles and the whiskers give the minimum and maximum values.

compared. The t-test results are display in tables 3 and 4. These show that
taking the gradient of a road into account or not when searching for a short-
est path does not make a significant difference to the distance travelled or the
CO2 saved. Similarly shortest paths for empty and fully-laden vehicles are not
significantly different.

Table 3. T-Test to compare the differences between CO2 optimised paths and dis-
tance optimised paths with the differences between CO2(gradient) optimised paths
and distance optimised paths

Problem Extra distance CO2 saving
2 1.00 1.00
3 0.95 0.87
4 0.81 0.72

The results of the TSP solutions are compared in table 5. As for the shortest
paths the level of CO2 savings possible is dependent on the problem instance.
The additional distance necessary to achieve reductions in CO2 is not high. In
addition the solutions were examined to check the order that customers are
served. For problem instances 1, 2 and 3 there was no difference in the delivery
order for any of the metrics. Thus the CO2 savings come from different paths
between customers rather than a different TSP solution.

For problem 4, however, the ordering of customers does vary. The CO2(basic)
optimised TSP solution visits customers in the same order as that of the distance
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Table 4. T-Test to compare the differences between CO2 optimised paths with 0%
payload and distance optimised paths with the differences between CO2 optimised
paths with 100% payload and distance optimised paths

Problem Extra distance CO2 saving
2 0.99 1.00
3 0.98 0.99
4 1.00 1.00

Table 5. Extra distance travelled and CO2 savings achieved by CO2 optimised TSP
solutions when compared with distance optimised solutions

Vehicle Problem Metric Distance (km) CO2 (g) Extra distance CO2 saving
LGV Diesel 1 Distance 70495 12225
LGV Diesel 1 CO2 70748 12112 0.36% -0.92%

18t HGV 2 Distance 557130 284806
18t HGV 2 CO2 558259 246556 0.20% -13.43%
18t HGV 2 CO2/gradient 558156 246553 0.18% -13.43%
18t HGV 2 CO2/gradient/payload 558156 246553 0.18% -13.43%

7.5t HGV 3 Distance 769328 209889
7.5t HGV 3 CO2 787610 195818 2.38% -6.70%
7.5t HGV 3 CO2/gradient 787600 195816 2.38% -6.70%
7.5t HGV 3 CO2/gradient/payload 787621 195821 2.38% -6.70%

26t HGV 4 Distance 835894 434228
26t HGV 4 CO2 849199 426456 1.59% -1.79%
26t HGV 4 CO2/gradient 850045 424761 1.69% -2.18%
26t HGV 4 CO2/gradient/payload 852130 426099 1.94% -1.87%

optimised solution. The CO2(gradient) optimised solution shows a slight vari-
ation in order whilst the CO2(gradient/payload) has a further customer order.
However, although the solutions in terms of order of delivery are different, the
overall difference in the CO2 emission levels is very small.

6 Conclusions

The potential for CO2 savings and the influence of gradient and vehicle payload
on vehicle routing solutions are highly dependent on the problems studied. For
the problem instances considered in this paper a wide range of potential CO2
savings was found for both shortest path and traveling salesman problems. Even
in problems where there are alternative paths between two customers with a
large potential CO2 saving this does not always lead to a difference in the final
TSP solution in terms of a different order of visiting customers. In these cases the
CO2 savings arise from different paths between customers rather than a different
order. Gradient and payload were found to effect the TSP order solution in one
problem instance. However the difference in CO2 emissions between the solutions
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is less than the 2.1% coefficient of variation of the COPERT model for CO2 as
reported in [21].

In this study considerable computing effort and time was spent in calculating
the paths between customers, especially when taking the vehicle payload into
account. This was due to the size of the mapping data rather than the size of the
TSP problem. Further work is needed to examine the algorithm used to calculate
the inputs for a CO2 optimised TSP to reduce the pre-processing effort needed.

In this study the effect of time windows, congestion and the opportunity for a
driver to select an optimal vehicle speed were ignored. Future work will examine
the effect of these on potential CO2 emissions.
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Abstract. In this paper we present a study of the application of Evo-
lutionary Computation methods to the optimisation of the start-up of
a combined cycle power plant. We propose a multiobjective approach
considering different objectives for the optimisation in order to reduce
the pollution emissions and to maximise the efficiency of the plant. We
compare a multiobjective evolutionary algorithm (NSGA-II) with 2 and
5 objectives on a software simulator and then we use different metrics
to measure the performances. We show that NSGA-II algorithm is able
to provide a set of solutions, defined as Pareto Front, that represent the
best trade-off on the different objectives among those the decision maker
can choose.

1 Introduction

Air pollution emission reduction is nowadays a common requirement for the
operation of industrial plants, from the Kyoto Protocol the attention about this
issue is growing and therefore a more efficient utilisation of the plants is needed.

Moreover, with the liberalization of the energy market and the introduction
of distributed energy power plants in the territory, it is required also for the
gas-steam combined plants a greater flexibility in order to vary the provided
power according to the needs or to implement variable running strategies. Such
management makes more critical the problem of the identification of the best
parameters during the start-up in order to reduce the emissions and the thermal
stress by maintaining the production efficient.

The problem of finding the best trade-off between production and emissions
(of course we can consider more factors) can be arranged like an optimisation
problem. Usually such problems are solved by minimizing (or maximizing) a
function through the concurrent fulfilment of some constraints, often conflicting
each others (multiobjective optimisation, MOOP).

This kind of problems can be solved with a single-objective function approach,
which is a combination of various objective functions, but also with a multiob-
jective approach based on the Pareto Theory.
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Evolutionary Computation (EC) methods can be considered a good choice to
cope with multiobjective optimisation problems and several applications with
effective results in different fields can be found in literature [1]. The main ad-
vantage of such methods consists in performing a parallel search of the optimal
solution without a priori information about the problem.

In section 2 we introduce the multiobjective optimisation approach based on
the Pareto Theory and we present the implemented evolutionary algorithm. In
section 3 we describe the problem of the start-up optimisation of a combined
cycle, in section 4 and 5 we respectively show the experimentations we made for
this work and the results. Finally, in section 6 we comment the results and we
give an orientation of our future work.

2 Multiobjective Optimisation

Optimisation techniques for solving Single-Objective Problems (SOPs) are largely
developed and well known. However the modelisation of many real world problems
leads to more than one and often conflicting objective functions. A problemdealing
with two or more objectives is called Multiobjective Problem (MOP).

Since in MOPs objectives can be conflicting, such problems may lead to a set
of solution instead of a single solution. Solutions belonging to this set are the
result of a trade off between conflicting objectives and in order to define a set
of good trade off solution the concept of dominance is introduced. Formally a
solution dominates another solution if it is better at least in one objective and
it is not worse in all objectives than the other solution. A set composed of all
non-dominated solutions is called Pareto optimal set or Pareto front.

In MOPs, besides finding a set of solutions as close as possible to Pareto
front, we need to mantain the solutions as diverse as possible. This because a
well spaced set of solutions leaves the decision maker a wider choice of trade off
between objectives.

Point-by-point methods have several disadvantages with respect to population
based methods on complex problems with non-linear and non-convex spaces.
Thus, in multiobjective optimisation Evolutionary Algorithms are largely used.

2.1 Multiobjective Evolutionary Algorithms

Multiobjective Evolutionary Algorithms (MOEAs) allow to find a set of non-
dominated solution in each optimisation run. Because of their stochastic nature
they are robust enough to tackle non-linear problems. The first algorithm that
uses the non-dominated classification is the Multiobjective Genetic Algorithm
(MOGA) proposed by Fonseca and Fleming in 1993 [2]. They proposed to assign
a rank to each solution based on the number of solutions that dominates that one.
This rank allows in some cases to compare two solutions without any fix-up like
weights or other parameters. Subsequently many algorithms used non-dominated
classification as Non-Dominated Sorting Genetic Algorithm (NSGA) proposed
by Deb in 1994 [3] and then upgraded with elitism in 2000 with the name of Elitist
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Non-Dominated Sorting Genetic Algorithm (NSGA-II) [4,5]. Since NSGA-II is a
well known, efficent algorithm we use this MOEA for our work and we analyze
it in detail. A survey about MOEAs can be found in [6].

In order to compare the quality of two solutions NSGA-II uses the ranking
level approach. Given a population, this approach assignes rank level 1 to all
non-dominated solution of the entire population, then it assignes rank 2 to all
non-dominated solution of the population without solution of rank 1 and so on
until it is assigned a rank to all solutions.

In order to mantain a diverse set of solution, it is assigned a crowding distance
to each solution. This value is high for isolated solutions and low for solutions
with many neighbors of the same rank. Extreme solutions are always taken, with
an infinity crowding value, and other solutions are compared to their nearest
neighbors (see figure 1).

Fig. 1. Crowding Distance

3 Start-Up Optimisation of a Combined Cycle Power
Plant

Gas and steam turbines are an established technology available in sizes ranging
from several hundred kilowatts to over several hundred megawatts. Industrial
turbines produce high quality heat that can be used for industrial or district
heating steam requirements. Alternatively, this high temperature heat can be
recuperated to improve the efficiency of power generation or used to generate
steam and drive a steam turbine in a combined-cycle plant.

The gas-steam combined cycle produces electricity more efficiently than either
gas or steam turbine alone because it performs a very good ratio of transformed
electrical power per CO2 emission. CC power plants are characterized as the 21st

century power generation by their high efficiency and possibility to operate on
different load conditions by reason of the variation in consumer load.

CC plants are highly complex systems but with the availability of high pow-
erful processors and advanced numerical solutions there is a great opportunity
to develop high performance simulators for modeling energy systems in order to
consider various aspects of the system. This is a complex task including several
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limitations that have to be fulfilled simultaneously like the maximum allowed
thermal stress caused by temperature gradients. In literature one of the most
studied problems of CC operation is the start-up optimisation.

As example, in [7] through a parametric study, the start-up time is reduced
while keeping the life-time consumption of critically stressed components under
control. In [8] an optimum start up algorithm for CC, using a model predictive con-
trol algorithm, is proposed in order to cut down the start-up time keeping the ther-
mal stress under the imposed limits. In [9] a study aimed at reducing the start-up
time while keeping the life-time consumption of the more critically stressed com-
ponents under control is presented. In this work the optimisation of the start-up
procedure for a CC power plant has been studied by means of a system simulator.

In general, most studies on CC are based on simulators and the goal is to
minimise the start-up time alone in single-objective approach managing all other
important aspects of the problem, like thermal stress or pollutant emissions, as
constraints. In this way the global operations are not optimised because an
effective start-up optimisation would be multiobjective.

The start-up scheduling is as follows (see figure 2). From zero to time t0
(≈ 1200 sec) the rotor engine velocity of the gas turbine is set to 3000 rpm.
From time t0 to t1 the power load is set to 10 MW and then the machine keeps
this regime up to time t2. All this initial sequence is fixed. From time t2 to
t3(≈ 3600 sec) the machine must achieve a new power load set point which has
to be set optimal and then the machine has to keep this regime up to time t4.
The time lag t4 − t3 has to be optimised and during this interval the steam
turbine starts with the rotor reaching the desired velocity. Then the turbines
have to reach at time t5 the normal power load regime (270 MW for the gas
turbine) according to two load gradients which need optimising.

Fig. 2. Start-up sequence

Therefore, the process variables to be optimised with their operating ranges
are visible in Table 3
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Table 1. Process Variables

Name Description Range Measure Unit
X1 Intermediate power load set point [20, 120] MW
X2 Intermediate waiting time t4 − t3 [7500, 10000] sec
X3 Gas turbine load gradient [0.01, 0.2] MW/s
X4 Steam turbine load gradient [0.01, 0.2] %/s

In order to optimise the overall start-up operations, the following objectives
should be fulfilled:

1. minimise fuel consumption (Kg)
2. minimise time (s)
3. maximise energy production (KJ)
4. minimise pollutant emissions ( mg·s

Nm3 )
5. minimise thermal stress

It is therefore obvious that a multiobjective approach would improve the overall
performance of such a power plant with a remarkable positive effect on the
environment. Thus, we have approached the start-up problem in a multiobjective
way by optimising the mentioned criteria with multiobjective genetic algorithms.
Experimentations has been carried out on data obtained by means of a software
simulator provided by AnsaldoEnergia.

4 Experimentations

We applied our implementation of the NSGA-II algorithm on the multiobjective
optimisation of the problem described in Section 3 and we compared it to the
following algorithms:

1. RAND: A random search algorithm
2. WSGA: Weighted-Sum Genetic Algorithm
3. NSGA-II: Non-Dominated Sorting Genetic Algorithm

The RAND algorithm is a trivial random search in the input space, with the
same number of overall fitness evaluations of the other algorithms. At the end of
this sampling, all the non-dominated solutions are considered inside the Pareto
Front.

The WSGA applies a weighted sum of all objectives in order to reduce the
original MOP to a single objective one. At each run a Genetic Algorithm is
executed with a different random convex combination of the weights of the fitness
function.

All the algorithms were executed 10 times and the resulting non-dominated
set of the union of the Pareto fronts obtained at the end of each run was taken.
In order to fairly compare the algorithms, each one is run over the same number
of fitness evaluations.
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Each input variable (see Table 3) can assume 21 different values, we encoded
the decision variables with a Gray code binary string, whose minimal length can
be obtained by:

log2214 ≈ 18 (1)

The encoding is simple, we enumerated all the solutions (with numbers from 1
to 214) assigning each value of the 18-bit string to a solution.

Table 4 describes the algorithms’ parameters used during our tests.

Table 2. Algorithm Parameters

NSGA-II WSGA
Population Size 100 50

Generations 50 30
Selection Binary Tournament
Crossover Single Point

Crossover Probability 0.75
Mutation Bitwise

Mutation Probability 1/18

To evaluate the performance of the different methodologies we used the fol-
lowing metrics:

– Dominance Ratio
– Spacing
– Hypervolume

Dominance Ratio metric was suggested by Zitzler in 1999 [10]. It compares two
fronts and returns the percentual of solutions of the first one dominated by the
second one, with respect to all the solutions of the first front.

Therefore, the smaller the value the better the first front respect to the second
is and a value of one implies that the first front is completely dominated by the
second.

Spacing metric, proposed by Schott in 1995 [11], evaluates relative distance
between consecutive solutions belonging to non-dominated set. It is related to
the spread of each non-dominated set independently. The lower spacing value
is the more uniform the distribution of solutions is. Since in MOPs we need to
mantain the set of solutions as diverse as possible, as mentioned earlier in section
2, a uniform distribution of solutions is highly preferred.

Hypervolume metric was proposed by Zitzler and Thiele in 1999 [10]. It evalu-
ates both dominance and spreading of solutions. This metric calculates the area
covered by the hypervolume whose vertices are the solutions set and a refer-
ence point, a vector of worst values each objective function can assume. Since
no scaling is used, a good spread of high magnitude solutions in an objective
implies a better performance value with respect to a good spread of low magni-
tude solutions in another objective. In order to reduce the computational load of
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such metric we used a Monte Carlo estimation of the hypervolume, considering
the percentage of random points which are dominated by the Pareto front we
are measuring. As reference point we considered the worst values among all the
solutions of the Pareto fronts considered.

Even if in real-world problems the real optimal Pareto front usually is not
available, we computed, for a complete comparison of the selected algorithms,
the fitness values of all the points inside the solution space. Despite it was com-
putationally expensive (it took several days on a cluster with 1024 CPUs) we
have the real optimal Pareto front

In order to show graphically the behavior of the algorithms we tested the
problem firstly for only two of the five objectives described in section 3. We con-
sidered two clearly conflicting objectives: maximising energy production while
minimising pollutant emissions. Pareto fronts’ graph and relative metrics are
presented. Subsequently we considered the problem with all five objectives and
we present only the related performance metrics results since the plot of Pareto
Fronts is not possible.

5 Results

We show results of two and five objectives optimisation obtained with 10 run of
all algorithms but RAND (see Section 4).

We performed a multiobjective optimisation considering two objectives and
five objectives. In the first case we considered the maximisation of energy produc-
tion and minimisation of pollutant emissions and the overall number of fitness
evaluations is 15300. In the second case we have the same number of evaluations.
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Table 3. Dominance Ratio

Real NSGA-II RAND WSGA
Dimensions 2D 5D 2D 5D 2D 5D 2D 5D

Real - - 0 0 0 0 0 0
NSGA-II 0 0.659 - - 0 0.406 0 0.008
RAND 1 0.637 1 0.014 - - 0.5 0.001
WSGA 1 0.5 1 0.1 0 0.1 - -

Table 4. Spacing, hypervolume and size of the real optimal Pareto front and the ones
obtained by the considered algorithms

Real NSGA-II RAND WSGA
2D 5D 2D 5D 2D 5D 2D 5D

Spacing 0.015 0.007 0.002 0.07 0.013 0.023 0.004 0.376
Hypervolume 0.93 0.394 0.898 0.348 0.069 0.37 0.338 0.129

Size 20 15608 11 261 4 2435 4 10

Figure 3 shows that the NSGA-II Pareto front is overlapping with the real
one and therefore it dominates all the solutions of the other algorithms while, as
expected, the RAND front is dominated by both. The metrics values presented
in Tables 3 and 4 reflect this situation. The columns labeled “2D” are related
to the experimentations with 2 objectives and, similarly, for the problem with 5
objectives. The last line of Table 4 shows the number of solutions for different
Pareto fronts.

For the 5-objectives problem we can’t plot directly the Pareto Fronts and
so we have to establish the comparison between the algorithms on the metrics’
values. We can observe that the size of fronts of the algorithms shows an evident
variability: from 10 (WSGA) to 2435 (RAND) and the same we can assert the
same for spacing, WSGA shows that the solutions in its front cover a larger
space than other two algorithms.

5.1 Discussion

In two dimensions the results we obtain aren’t much different from the ones we ex-
pected: the ability of Evolutionary Computation based algorithms like NSGA-II
permits to explore effectively the solution space and find the best solutions, achiev-
ing a Pareto front far better than those obtained with WSGA or random search.

With 5 dimensions the situation changes drastically. The RAND algorithm
becomes the best algorithm, achieving a Pareto front which dominates about
the 40% of solutions of the NSGA-II’s front and the nearest hypervolume to the
optimal one. A probable explanation of this situation should be found in the last
line of Table 4, where we can observe that the size of the real optimal Pareto
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front is about 800 times larger than the optimal one with two objectives. This
means that random search is more effective because it’s simpler to find randomly
good solutions than in the 2D space.

It’s an interesting observation the fact that the solution proposed from the
plant manager results dominated in both the problem spaces, in 2 and 5 dimen-
sions, by all the algorithms we tested. Therefore, all the solutions provided by
the algorithms should be considered “better” (from a multiobjective point of
view) than the real used ones.

6 Conclusion and Future Work

We underlined the capability of multiobjective optimisation techniques of pro-
viding a set of feasible solutions among which a decision can be taken. We made
our experimentations on a precise software simulator of a combined cycle plant
considering two and five objectives functions.

Considering only a subset of the objectives (maximisation of energy output
and minimisation of pollutant emissions) we observe that NSGA-II algorithm
works far better than a random search and a combined single-objective algo-
rithm, finding solutions on the real optimal Pareto front. With all the objectives
the situation changes and the results of a random search outperform the Evolu-
tionary Computation based approach.

Despite these results seem inconsistent, we think that it is not simple to es-
timate the performances of a set of algorithms when increasing the number of
considered objectives, because in real problems the objectives function to min-
imise (or maximise) are heterogeneous, i.e. the relation between results in low
and high dimensional space is not straightforward. In the real case we consid-
ered, a deeper study of objective functions is needed, in order to explore mutual
relations between them.

Although the primary goal of this paper is to highlight the application of mul-
tiobjective optimisation to a real world problem, comparisons can be extended
also to other MOEA for a more complete overview.

Moreover this work raises the issue of reducing the computational load of
stochastic algorithms such the ones we used of real problems, where the eval-
uation of a solution is based on the execution of a software simulator, which
reflects the complexity of the problem it simulates. We think that such problem
can be coped with by considering an algorithm which uses both the real fitness
function and an approximated one, in order to lower the number of executions
of the computationally expensive software simulator.
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Abstract. This paper presents an application of two nature-inspired
algorithms to the financial problem concerning the detection of turning
points. Nature-Inspired methods are receiving a growing interest due to
their ability to cope with complex tasks like classification, forecasting
and anomaly detection problems. A swarm intelligence algorithm, Parti-
cle Swarm Optimization (PSO), and an artificial immune system one, the
Negative Selection (NS), are applied to the problem of detection of turn-
ing points, modeled as an Anomaly Detection (AD) problem, and their
performances are compared. Both methods are found to give interesting
results with respect to an unpredictable behavior.

1 Introduction

A typical financial market action consists of alternating up- and down-trends,
separated by turning points, which correspond to local maxima or minima values
of the prices of a financial instrument. One of the most important objectives of
financial market forecasting techniques is to detect turning points consistently
and correctly. Such price movements are not regular and the application of com-
mon forecasting tools does not provide satisfactory results. In this sense, the
task of predicting the overall price movements of a security in the next period
can be modeled as an anomaly detection problem.

In behavior-based approaches to anomaly detection, the model of normal be-
havior is constructed from an observed sample of normally occurring patterns.
In financial problems, a normal pattern of behavior for the price of a security
may be defined as a continuing trend, whereas an anomaly in this setting would
consist of a trend reversal. The problem of anomaly detection can be naturally
recast into a classification problem, and machine learning and nature-inspired
algorithms seem to be promising in such classification tasks, being able to dis-
cover satisfactory solutions with unbalanced datasets (the number of instances of
normal behavior is, by definition, greater than the number of anomalies). In par-
ticular, in this paper we employ two types of nature-inspired algorithms, namely
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Particle Swarm Optimization and Negative Selection applied to the creation of
an optimal hyperspherical detector set. The former algorithm leads to a positive
selection mechanism whereas the latter uses a negative selection process, defining
the anomalous space as the complementary of the normal one. The performance
of the two approaches are compared with the aim of assessing which one is more
suited for trend reversal detection.

This paper is organized as follows. Section 2 presents the financial problem,
while the detectors models and the evolutionary algorithms are stated in Sec-
tion 3. Section 4 presents the experiments carried out and discusses the results
obtained. Section 5 provides some concluding remarks.

2 Problem Description

As a general principle, wherever there is an oscillation or a vibration, whether in
the tides of an ocean or in the heat of a system or in a pendulum, it should
be possible to extract some energy by means of an implement that acts so
as to damp the oscillation. If the mass or energy of the oscillating system
were very large with respect to the energy-extracting implement, the damping
caused by energy extraction would be negligible and the process could continue
indefinitely.

Even the most casual observer of a financial time series will notice that prices
of financial instruments move up and down [10]; furthermore, this behavior hap-
pens and can be observed at all scales [11]. Therefore, a trader on the financial
markets should be able to extract a profit from the oscillations in the price of a
security, much like one should be able to extract energy from an oscillating phys-
ical system, the liquidity of a security being the financial notion corresponding
to the mass of the system under exploitation.

An obstacle to putting this idea in practice is that the price movements of
real securities traded on financial markets are not regular and look, at least to
some extent, unpredictable.

However, if an algorithm were available that is able to predict with a less
than 50% error the overall direction of price movement in the next period, an
arbitrary profit could be extracted from trading a very liquid security, provided
that a sound money management strategy is enforced [14].

We equate the task of predicting the overall price movement of a security in
the next period to the task of detecting an anomaly in a system. More specifi-
cally, a normal pattern of behavior for the price of a security may be defined as
continuing a trend, whereas an anomaly, in this setting, would consist of a trend
reversal.

To demonstrate the viability of such an idea, we approach here a very simple
instance of the above general problem, where daily series of an index are con-
sidered and a reversal is defined as a change in the sign of the log return of the
next period with respect to the previous period.



A Study of Nature-Inspired Methods for Financial Trend Reversal Detection 163

3 Detector Set Definition and Nature-Inspired
Methodologies

Our main goal is to obtain a set of detectors covering the feature space in the
best way for this particular anomaly detection problem. Generally different kinds
of models are used to define detectors, depending on the approach. Some use
neural networks (NNs), while some others are based on geometrical solutions.
Hyperspherical Detectors consist of a set of coordinates, representing a point in
the n-dimensional feature space, and a radius value (hyperradius). This work
considers sets of hypershperical detectors as defined in [1], working in an eight-
dimension space. In particular we use a vector-based representation where each
detector d is described by its coordinates x1, . . . , xn in the n-dimensional space
and its radius r, with d = (x1, . . . , xn, r).

An observation (i.e., a point in the feature space) is considered non-anomalous
if the distance (or similarity) between the point and the detector’s coordinates
is less than or equal to the radius. As a measure of distance (or similarity),
Euclidean distance will be used. The main advantage of this detector type is the
ease of representation and implementation.

Models of normal behavior can represent either the set of allowed patterns
(positive detection) or the set of anomalous patterns (negative detection). This
allows us to study the financial price movements either with a positive selection
algorithm, as the Particle Swarm Optimization (PSO), or a negative one with the
negative selection algorithm of the Artificial Immune Systems. Their basic steps
are briefly reported in the following section. This work considers the financial
instrument S&P 500. The overall behavior of this index is represented by putting
all the points of the considered dataset in the eight-dimension space.

The two implemented approaches follow the commonly accepted practice of
machine learning by defining a training and a test set, used, respectively, to create
the detector sets and to test their generalization capabilities. In particular the
training set contains only normal cases, while the test set also contains anomalies.
The hyperspherical detectors found by each of the two methods through the
training set will then cover, respectively, the normal or the anomalous behaviors
in that space during the test phase.

3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm intelligence optimization tech-
nique [3,12] where each individual (or particle) moves in the solution space fol-
lowing two main attraction points: the best solution it has encountered so-far
and the best solution found by any other individual in the swarm. The algorithm
implemented follows the common steps of a PSO algorithm, with the parameters
defined in Table 2.

We used the algorithm in order to create a set of detectors that are able
to maximize the coverage of the normal behaviors in the training phase and
to minimize the radius of each detector. We implemented an algorithm that,
for each iteration, removes from the dataset all the points covered by the best
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detector found in that iteration. In this way at the end of the algorithm we
obtain a set of detectors, each of which covers in an optimal way a subset of
points. Maximum and minimum values are also defined for the radius of each
particle, in order to avoid disruptive effects on the detection of unseen points
in the space. The fitness function of particles in the PSO algorithm is given by
Equation 1:

f(x, r) =
nd

rd
, (1)

where x is the vector with the coordinates in the solution space of the detector,
r is the radius, n is the number of points covered by the detector, and d is the
number of dimensions of the solution space.

The entire process of the particle swarm optimization algorithm is also re-
ported in Algorithm 1.

Algorithm 1. Particle Swarm Optimization Algorithm for Detectors Optimiza-
tion
1: dataset ← load dataset()
2: not covered points ← size(dataset)
3: detectors set ← ∅
4: while not covered points > 0 do
5: BEST DETECTOR ← PSO ALGORITHM(dataset, particles number,

max iterations, max radius)
6: dataset ← dataset \ data covered by(BEST DETECTOR)
7: not covered points ← size(dataset)
8: detectors set ← detectors set ∪ BEST DETECTOR

9: end while

3.2 Negative Selection

Negative Selection (NS) is one of the major algorithms developed in the field of
AIS [8]. Its aim is to define a set of detectors that cover the complementary space
to the normal one, in order to classify new, unseen data as normal or anomalous.

When the hyperspherical detector model is considered, each normal sample is
defined as a hypersphere centered in ci with constant radius rs, i.e. si = (ci, ri),
i = 1, . . . , l, where l is the number of input samples. Also the detectors d are
represented as hyperspheres: dj = (cj , rj), with j = 1, . . . , p, where p is the
number of detectors generated, with center cj and radius rj . In the first step, the
radius of detectors is randomly generated within a given range, and the detector
set is generated by checking whether each hypersphere generated contains at
least one normal sample: only the detectors that do not include them are kept;
the others are discarded. In this algorithm the radius of a new detector is set
to the Euclidean distance of the nearest normal case from its center cj in the
range [0, MAX RADIUS]. The general steps of the negative selection algorithm are
reported in Algorithm 2 and its parameters are shown in Table 2.
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Algorithm 2. Negative Selection algorithm for anomalous space covering
1: dataset, NDETS, dets options ← load dataset(dataset, NDETS, options)
2: detectors set ← ∅
3: while number of detectors < NDETS do
4: det(c,r) ← create detector(dets options)
5: if Euclidean distance(det, dataset) < det radius then
6: discard detector()
7: else
8: detector set ← add(det)
9: end if

10: end while
11: anomalous check detection(detector set,dataset)

4 Experiments and Results

In our experiments we have considered a time series of daily prices of the S&P 500
index from April the 14th, 1992 until September the 30th, 2009. As previously
stated, the considered time series has been divided into two parts in order to
define the training and the test sets. In particular a selection of 2000 normal
cases (i.e. continuing a trend) will be chosen from the first part in order to create
the training set, while the most recent 400 cases (containing both normal and
anomalous behaviors in the same quantity) will be used in the test set to evaluate
the generalization capabilities on unknown data. A graphical representation of
the time series is depicted in Figure 1.

For each day of the time series, eight input values are defined by considering
the log return of the daily historical prices and 7 different technical indicators
for the same financial instrument. Such technical indicators correspond to some
of the most popular indicators used in technical analysis and summarize impor-
tant features of the time series of the considered financial instrument [5]. They
also represent useful statistics and technical information, that otherwise should
be calculated both by PSO and NS, increasing the computational cost of each
algorithm. A brief description of the inputs is reported in Table 1.

Each input value represents a coordinate in the multi-dimension space con-
sidered. Therefore, each pattern of the dataset identifies a point in the eight-
dimension space. All values in the dataset are preprocessed by considering a
normal distribution with mean 0 and standard deviation set to 1.

The target of our detection problem is defined for each day i of the time series
with a value equal to 0 or 1, corresponding respectively to a normal behavior
defined as continuing a trend, or an anomaly, when a trend reversal occurs. The
target setting is defined by Equation 2:

target(t) =

{
0 if sgn

(
log

( C(t)
C(t−1)

))
= sgn

(
log

(C(t+1)
C(t)

))
,

1 otherwise,
(2)

where C(t) represents the closing price of the financial instrument at time t.
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Fig. 1. S&P 500 time series. A selection of 2000 normal cases in the fine part of the
shape will define the training set. The thick black part of the shape (the last 400 cases)
corresponds to the test set.

In this work a first group of experiments is carried out in order to find the
optimal settings of the parameters for both algorithms, listed in Table 2. We
have performed 10 runs for each setting defined in the two approaches. Generally,
for each of the two algorithms, we noticed that, hyperspheres with too small a
radius will not be able to well cover the anomalies in the space, but, on the other
hand, a large radius could have disruptive effects, since the hyperspheres will also
cover normal cases, reducing the overall accuracy. The latter represents a critical
aspect for the maximum radius. For example, in NS, a maximum radius set to
the value 3 was too small, while maximum radius equal to 10 was not enough to
improve the performances obtained with values set to 5, with high computational
effort. Similar considerations have been carried out about the space in which the

Table 1. Input Technical Indicators

Index Input Technical Indicator Description
1 ri Log Return
2 MA50(i) 50-day Moving Average
3 EMA50(i) 50-day Exponential Moving Average
4 RSI(i) Relative Strength Index
5 MACD(i) Moving Average Convergence/Divergence
6 SIGNAL(i) Exponential Moving Average on MACD
7 Momentum(i) Rate of price change
8 ROC(i) Rate Of Change
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Table 2. Algorithms parameters

Approach Parameter Description Value

PSO

Feature’s Space −5, 5
Maximum Velocity of the point 2
Hypersphere Minimum Radius 10−4

Hypersphere Maximum Radius 1

NS
Feature’s Space −5, 5

Hypersphere Minimum Radius 10−4

Hypersphere Maximum Radius 5

features are defined. The experiments show that both algorithms perform well on
a solution space defined in the range [−5, 5]. Then, a second group of experiments
was carried out by using the best parameter settings reported in Table 2.

At the end of each simulation, two different metrics, accuracy and AUC (Area
Under Curve), are computed on the output vector in order to compare the per-
formances for both methods. Accuracy is a relatively straight metric, as reported
in Equation 3,

accuracy(S) =
TP + TN

P + N
, (3)

where TP and TN are, respectively, the number of anomalous points detected as
anomalous and the number of normal points correctly detected. P and N refer
to the total number of anomalous (positive) and normal (negative) points. Since
S values of the accuracy, also reported in Table 3, are obtained from a balanced
dataset of normal and anomalous behaviors, no further normalization is needed
for TP and TN values. The second parameter, AUC, corresponds to the area
of the surface under the ROC (Receiver Operating Characteristic) curve. This
curve is the graphical representation of true positives (TPR, the true positive
rate) and false positives (FPR, the false positive rate) as the discrimination
threshold is varied. The threshold defines the minimum number of detectors
that should cover a point in the space in order to identify it as an anomalous
behavior in such space. The performances of the two approaches also depend on
the computational effort, represented in this work by calculating the number of
evaluations of the distance function in the algorithms. Such function has been
chosen since it represents a fundamental aspect for the fitness evaluation of the
PSO algorithm and for the detector generation in the NS algorithm.

4.1 Discussion

A first group of considerations is suggested by Figure 2, showing the ROC
curve and the AUC area of two of the best solutions found for both algorithms.
This graphical representation underlines in a straightforward manner the per-
formances of PSO and NS. In particular we can see how PSO and NS always
work better than a random choice algorithm (the gray line reported in Figure 2,
and generally how NS outperforms the PSO.
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Fig. 2. ROC curve of two of the best solutions of both algorithms calculated over the
test set. The thick black line is the NS algorithm with 10 millions of detectors, the black
dashed line is the best solution of a PSO with 1000 individuals and 300 iterations.

As we expected, performances of two algorithms are quite different. Indeed,
despite the shown results present similar accuracy (or AUC) values, particular
attention has to be given to the performances with respect to number of distance
function evaluations. In Figure 2, for example, the best NS solution is obtained
with a number of distance function evaluations equal to 4.80 · 1010, while the
best PSO one is obtained with 7.78 · 1010 evaluations.

The simplicity of NS is an important feature. Indeed, it could be considered
as a “brute force” approach: it creates a large number of simple detectors only
by selecting those that do not include the points of the training dataset. Instead,
PSO, like other bio-inspired search heuristics, tries to optimize a set of initial
points with respect to a particular fitness function.

One of the most critical aspects about the PSO regards the tuning of all
the parameters defined in the algorithms, in particular due to the fact that
often there are no empirical rules helping in this choice but only trial-and-error
approaches. On the other hand, NS could require a huge amount of detectors
in order to cover the space, increasing the computational effort of the approach,
as reported in the first column of Table 3. However the small and quite similar
values obtained for the standard deviations of accuracy and AUC rates for all
the experiments carried out allow us to define these as two stable methodologies.

We can see that, by doubling the number of distance function evaluations, the
performances increase about 7 − 8% in the PSO algorithm, while with negative
selection we observe smaller increments. In particular, the accuracy increases of
about 3% from 500,000 to 1 million and from 5 to 10 millions of detectors; while
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Table 3. Average results obtained by the two algorithms

Description Accuracy AUC TP TN FP FN Dist. f. evals.
PSO

100 ind., 200 iter. 0.60 ± 0.01 0.56 ± 0.02 0.52 0.09 0.35 0.05 1.23 · 1010

100 ind., 500 iter. 0.64 ± 0.02 0.60 ± 0.02 0.52 0.12 0.32 0.04 2.49 · 1010

500 ind., 100 iter. 0.64 ± 0.01 0.60 ± 0.01 0.51 0.13 0.31 0.05 2.30 · 1010

1000 ind., 300 iter. 0.67 ± 0.02 0.65 ± 0.01 0.50 0.17 0.27 0.07 7.78 · 1010

NS

500,000 ind. 0.63 ± 0.01 0.64 ± 0.01 0.34 0.29 0.14 0.22 1.20 · 109

750,000 ind 0.64 ± 0.01 0.64 ± 0.01 0.36 0.28 0.15 0.20 1.80 · 109

1,000,000 ind. 0.65 ± 0.02 0.65 ± 0.01 0.37 0.28 0.16 0.19 2.40 · 109

5,000,000 ind. 0.68 ± 0.01 0.68 ± 0.01 0.43 0.26 0.18 0.13 1.20 · 1010

10,000,000 ind. 0.70 ± 0.01 0.68 ± 0.01 0.46 0.24 0.19 0.11 2.40 · 1010

20,000,000 ind. 0.71 ± 0.01 0.69 ± 0.01 0.47 0.23 0.20 0.08 4.80 · 1010

only a rise of 1.5% is shown when the detectors increase from 10 to 20 millions.
Such an aspect can be due to the fact that, in all the experiments carried out by
considering different parameter settings, NS starts with higher values both for
accuracy and AUC. Therefore, their increment is slow with respect to the PSO
algorithm.

Furthermore, by comparing the false positive and the false negative errors
of NS and PSO, we notice that they occur in different areas of the space. This
aspect could suggest that a possible combination of both algorithms could exploit
this difference to provide a better space coverage, by reducing the values of such
errors.

5 Conclusion and Future Work

This work presents a comparison of two well known Soft Computing algorithms,
the Negative Selection and the Particle Swarm Optimisation, applied to the
complex task of detecting the “turning points” of the financial time series of
the S&P 500 index. Particular attention has been paid to the comparison of
the computational effort of both algorithms, in order to provide a fair basis of
comparison.

NS results clearly outperform the PSO algorithm, by considering performances
obtained with the same number of distance function evaluations. As we discussed
in Section 4.1, an in-depth study of the PSO parameters tuning and a joint PSO-
NS solution could become helpful in the improvement of the overall performance.

Further steps in the investigation of this problem will also consider an “online”
anomaly detection approach, for example by considering the data of the S&P 500
market index updated every 15 seconds during trading sessions. We think that
in that case the features of swarm intelligence algorithms would prove useful.
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Abstract.  Genetic programming (GP) is increasingly popular as a research tool 
for applications in finance and economics. One thread in this area is the use of 
GP to discover effective technical trading rules. In a seminal article, Allen & 
Karjalainen (1999) used GP to find rules that were profitable, but were never-
theless outperformed by the simple “buy and hold” trading strategy. Many  
succeeding attempts have reported similar findings. There are a small handful 
of cases in which such work has managed to find rules that outperform buy-
and-hold, but these have tended to be difficult to replicate. Recently, however, 
Lohpetch & Corne (2009) investigated work by Becker & Seshadri (2003), 
which showed outperformance of buy-and-hold. In turn, Becker & Seshadri’s 
work had made several modifications to Allen & Karjalainen’s work, including 
the adoption of monthly rather than daily trading. Lohpetch et al (2009) pro-
vided a replicable account of this, and also showed how further modifications 
enabled fairly reliable outperformance of buy-and-hold. It remained unclear, 
however, whether adoption of monthly trading is necessary to achieve robust 
outperformance of buy-and-hold. Here we investigate and compare each of 
daily, weekly and monthly trading; we find that outperformance of buy-and-
hold can be achieved even for daily trading, but as we move from monthly to 
daily trading the performance of evolved rules becomes increasingly dependent 
on prevailing market conditions.     

Keywords: genetic programming, technical trading rules, data mining. 

1   Introduction 

There are several opportunities in the area of financial markets for advanced  
machine learning and optimization methods, and applications of evolutionary compu-
tation are now common in this area [1]. Genetic Programming (GP) [2,3,4] is a rela-
tively popular technique in this field, with many studies reporting GP applications in 
finance (e.g. [5—12]). The focus in this paper is the area known as technical analysis 
[13—16]. Technical analysis is the name given to the general enterprise of forecasting 
the future direction of equity prices via the study of historical market price data. 
Technical analysis relies on the principle that patterns and trends exist in markets, and 
that these can be identified (for example by discovering rules) and exploited to predict 
price movements in the near future. 
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Successful technical analysis uses tools such as moving averages (the mean price 
for a given stock or index over a given recent period), relative strength indicators (a 
function of the ratio of recent upward movements to recent downward movements), 
and others. A typical GP approach in this area is for rules to combine technical indica-
tor ‘primitives’ with other mathematical operations. Such a rule constitutes a ‘signal’, 
which may be interpreted, for example, as a recommendation to buy if the signal is 
above a threshold. The first attempts to use GP in this way were by Chen and Yeh [5] 
and Allen and Karjalainen [7], and these and succeeding works regularly report that 
GP is able to find rules that are profitable on unseen future data. However, the ‘ele-
phant in the room’ in such work has been a common and persistent failure for such 
rules to show greater returns than a standard “buy-and-hold” trading approach. The 
‘buy-and-hold’ strategy is, for a given trading period, to buy the stock at the begin-
ning of the period, and sell at the end – hence, always a good strategy in an upwardly 
moving market, and far simpler than using technical indicators. 

Nevertheless, a small amount of research in this area seems able to find rules that 
outperform buy-and-hold [8,17,18]. In particular, GP-evolved technical trading rules 
with such success have been reported in Becker and Seshadri [19—21], who adopted 
the overall approach of Allen and Karjalainen [7] (who did not outperform buy-and-
hold), and made several alterations. One of Becker & Seshadri’s alterations was to 
adopt monthly trading rather than (as in Allen & Karjalainen) daily trading. That is, in 
[19], rules assume that trades will only be made (if at all) on the first day of the 
month, and hence deal with a less volatile view of the market. It is intuitively reason-
able to suggest that this was an important feature of Becker & Seshadri’s work, in the 
sense that outperformance of buy-and-hold may not have been achieved without this 
modification, however that hypothesis has not yet been tested. In this paper we test a 
modified version of Becker & Seshadri’s approach and explore each of monthly, 
weekly and daily trading. We build on [24], which provided full details to enable 
replication of [19] as well as showing that a modified experimental setup led to more 
robust outcomes. In [24], outperformance of buy-and-hold was found to be robustly 
delivered by using Becker & Seshadri’s approach [19] in the context of a monthly 
trading strategy, as long as the rules chosen for evaluation were selected according to 
performance over a validation period, and with the additional proviso that there was 
certainly some dependence on the specific data splits (training/validation/test) em-
ployed ([7] and [19] explored only one such data split). In the current work, we con-
tinue to evaluate this approach for several data splits, but in the context of weekly and 
daily trading too.  

We end this section with a brief account of other related work which has attempted 
to outperform buy-and-hold. Potvin et al [12], for example, showed that GP trading 
rules can be generally beneficial in falling or stable markets – this is not particularly 
impressive, since buy-and-hold is naturally poor in such markets. In another line of 
work, risk metrics such as the Sharpe ratio [22] have been included in rules (or in 
their evaluation).  Such metrics typically reduce the fitness of rules that promote trad-
ing in volatile conditions, and therefore lead to rules more likely to be applied by 
investors. For instance, building on Fyfe et al. [6] (not superior to buy-and-hold), 
Marney et al. [8,17] included risk metrics, while Cheng and Khai [10] using a modi-
fied Sterling return measure, but none of these attempts produced usable rules that 
compared well in comparison to buy-and-hold. 
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The incorporation of risk measures nevertheless seems a promising thread of work, 
but in this paper we concentrate on further exploring the performance of GP for 
evolving robust technical trading rules. In the remainder, we detail the overall ap-
proach (section 2), and summarize the findings of several experiments in section 3; 
we then have a concluding discussion in section 4, and point to where the reader may 
obtain our code for further experimentation.  

2   Evolving Robust Trading Rules: The Modified AK/BS 
Approach 

2.1   Overview 

The approach we use is based on Becker & Seshadri’s work [19,21] (BS) which in turn 
was a modification of Allen & Karjalainen’s work [7] (AK). This approach uses stan-
dard genetic programming (GP), with a function set comprising arithmetic, Boolean 
and relational operators, while the terminal set comprises basic technical indicators, 
along with real and Boolean constants, and real-valued variables (such as stock price). 
An example of a specific rule found by [19] is in Fig. 1. 

 

Fig. 1. Example of a trading rule 

The rule in Figure 1 is to be interpreted as follows. “the 3-month moving average 
(MA-3) is less than the lower trend line (t) and the 2-month moving average (MA-2) 
is less than the 10-month moving average (MA-10) and the lower trend line (t) is 
greater than the second previous 3-month moving average maxima (MX-2)”. The rule 
therefore evaluates to either true or false. This translates into trading behaviour as 
follows: “If currently out of the market and the rule yields true, then buy; if currently 
in the market and the rule becomes false, then sell.”. This procedure assumes a fixed 
amount to invest (e.g. $1,000) whenever there is a buy signal.  

The remaining subsections explain the approach in further detail. Essentially we 
are explaining the approach in [19], making notes now and then to indicate where this 
departed from [7].  The data we use (as in [7,19—21] is the Standard and Poors 500 
(S & P 500) index – a fixed set of 500 stocks which aggregate to daily price indicators 
(opening, closing, high, low).  When considering weekly and monthly trading, the 
opening price (for example) for a week or a month is the opening price on the first 
day of that week or month.      
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2.2   Function and Terminal Sets 

The function set is: and, or and not, together with the relational operators > and <. 
We use strongly typed GP, automatically ensuring, for example, that relational opera-
tors receive Boolean inputs. The terminal set is as follows, where ‘unit’ is either day, 
week or month, depending on whether we are evolving rules for daily, weekly or 
monthly trading: 
 

• opening, closing, high and low prices for the current unit; 
• 2,3,5 and 10-unit moving averages; 
• Rate of change indicator: 3-unit and 12-unit; 
• Price Resistance indicators: the two previous 3-unit moving average minima, 

and the two previous 3-unit moving average maxima; 
• Trend Line Indicators: a lower resistance line based on the slope of the two 

previous minima; an upper resistance line based on the slope of the two pre-
vious maxima. 

 

The l-unit moving average at time m is the mean of the closing prices of the l units 
from m back to m−(l−1). The l-unit rate of change indicator measured at time m is: 
(p(m)−p(m−(l−1))×100)/p(m−(l−1)), where p(x) indicates the closing price for time x. 
Previous maxima MX1 and MX2 are obtained by considering the 3-unit moving aver-
ages at each point in the previous 12 units. Of the two highest values, the one closest in 
time to the current is MX1, and the other is MX2. The two previous minima are simi-
larly defined. Finally, to identify trend line indicators, the two previous maxima are 
used to define a line in the obvious way, and the extrapolated value of that line from 
the current time becomes the upper trend line indicator; the lower trend line indicator is 
defined similarly by using the two previous minima. 

2.3   The Fitness Function 

The fitness function has three aspects. First is ‘excess return’, which is how much 
would have been earned by using the trading rule, in excess of the return from a buy-

and-hold strategy. The excess return is bhrrE −= , where r is the return on an in-

vestment of $1,000, and rbh is the corresponding return that would have been achieved 
using a buy and hold strategy. To calculate r we use [7,19,21]: 
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where: 1loglog −−= ttt PPr  – indicating the continuously compounded return, 

where Pt  is the price at time t. Meanwhile, Ib(t) indicates the buy signal, and is 1 if  
the rule indicates buy at time t, 0 otherwise. Similarly defined is the sell signal, Is(t). 
The first component of r therefore calculates the return on investment over the times 
when the investor is (as guided by the rule) in the market. In the second component, 
rf(t) indicates the risk-free return, which is taken for any particular day t from US 
Treasury bill data (these data are available from http://research.stlouisfed.org/ 
fred/data/irates/tb3ms). Hence, the second component represents time out of the  
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market, assuming that the investor’s funds are earning a standard risk-free interest. 
Finally, the third component corrects for transaction costs. The cost of a single buy or 
sell transaction is assumed to be 0.05% (i.e. 0.005) – e.g. $5 for a transaction of vol-
ume $1,000. The number of transactions actioned during the period by the rule is n. 
This component estimates the compounded loss from the expenditure on transactions. 

The other two aspects of the fitness function, introduced in [19], are a modifica-
tion that penalizes rule complexity, and a further modification that considered ‘per-
formance consistency’ (PC). The second main part of the fitness function, rbh, is 
calculated as: 
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where rt is as indicated above. Hence it calculates the return of buying at the first day and 
selling at the last day of the period, involving a single buy and a single sell transaction. 

The excess return E, calculated as described, was originally the objective function 
in [7], but improvements in [19,21] arose from two adjustments. One of these is an 
adjustment to fitness according to the size of the tree. Given a fitness value f,  
the adjusted fitness becomes 5f/max(5,depth), where depth is the depth of the tree 
being evaluated, and the constant 5 is a ‘desired’ depth. Clearly there are many poten-
tial alternatives, but we simply adopt the stated method used in [19,21]. The other 
aspect of the fitness function which led to more consistent results was as follows, 
which we call Performance Consistency (PC).  E is calculated for each successive 
period of K units covering the entire test period. The value returned is simply the 
number of these periods for which E was greater than both the corresponding buy and 
hold return (from investing in the index over that period) and the risk-free return  
during that period.   

Finally we can state the objective function f used in this work: the fitness of a GP 
tree was the PC-based fitness (i.e. a number from 0 to X, where there were X periods 
covering the test data), adjusted for tree complexity by 5f/max(5,depth). 

2.4   Operators and Initialization 

We used the four mutation operators described by Angeline [3], as follows: 

• Grow: randomly select a leaf and replace with a randomly generated new subtree. 
• Shrink: randomly select an internal node and replace the subtree below it with a 

randomly generated terminal node. 
• Switch: randomly select an internal node and reorder its argument subtrees. 
• Cycle: select a random node and replace it with a new node of the same type. If a 

terminal node is selected, it is replaced by a terminal node. If an internal node is 
selected, it is replaced by a function that takes an equivalent number of arguments. 

 

We used standard subtree-swap crossover [2]. The population was initialized by grow-
ing trees to a maximum depth of 5, but no further constraint was placed on tree size 
during evolution, other than the pressure offered by the objective function. 
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3   Experiments 

3.1   GP Parameters, Data Periods and Consistency-of Performance Periods 

In all experiments, the GP approach was as described in section 2, with population size 
500. In each generation, the current best was copied into the next generation, and the 
rest were the produced by crossover of two parents (probability 0.7) or mutation of a 
single parent. Parents were always selected via rank-based selection. Each run contin-
ued for 100 generations.   

In common with [7] and [19], the period 1960—1991 was generally used for train-
ing in the monthly-trading case. In common with [24] we continued to explore two 
different regimes for choosing and evaluating a rule from the training run. In regime 1, 
the fittest rule found during training (as measured on the training set) was applied to 
test data in an immediately succeeding period of N years. In regime two, each rule 
found during training was validated against the ensuing N year period, and the rule that 
was best during this validation period was chosen, and tested over a further K years 
period beyond.  These two regimes were each explored for four data period splits:  

Table 1. Monthly splits 

Name Training Length Validation Length (N) Test Length (K) 
MonthlySplit1 31 years 12 years 5 years 
MonthlySplit2 31 years 8 years 8 years 
MonthlySplit3 31 years 9 years 9 years 
MonthlySplit4 25 years 12 years 12 years 

  
For example, when regime 1 was used for data MonthlySplit1, the rule chosen is the 

best on the 31-year training period, and this rule is evaluated on the subsequent 12 year 
period. When regime 2 is used for this split, the rule found, while training on the 31-
year period, which happened to be best on the subsequent 12 year period, was then 
evaluated on the further subsequent 5 year period. The results for Monthly splits 1, 2 
and 3 were reported in [24], but are also summarized here to aid contrast and compari-
son with the daily and weekly trading results. Data periods for weekly and for daily 
trading were chosen to be reasonably consistent with the monthly splits, so that the 
numbers of days (weeks) involved corresponded with the number of months involved 
in the monthly splits. The details are as follows: 

Table 2. Weekly splits 

Name Training Length Validation Length (N) Test Length (K) 
WeeklySplit1 366 weeks from 

1st Jan 1960 
next 158 weeks next 157 weeks 

WeeklySplit2 366 weeks from 
1st Jan 1972 

next 158 weeks next 158 weeks 

WeeklySplit3 367 weeks from 
1st Jan 1984 

next  157 weeks next 158 weeks 

WeeklySplit4 366 weeks from 
1st Jan 1996 

next 157 weeks next 158 weeks 
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Table 3. Daily splits 

Name Training Length Validation Length (N) Test Length (K) 
DailySplit1 378 days from 1st 

Jan 1960 
next 126 days next 127 days 

DailySplit2 380 days from 1st 
Jan 1975 

next 127 days next 127 days 

DailySplit3 379 days from 1st 
Jan 1990 

next 128 days next 127 days 

DailySplit4 376 days from 1st 
Jan 2006 

next 128 days next 126 days 

 
In [7,19,21], only regime 1 was used, and MonthlySplit1. In [24] we confirmed 

that regime 2 gave more robust performance, but we continue to experiment with 
both regimes here, to see if that conclusion extends to weekly and daily trading.  
Figure 2 shows the four Monthly data splits aligned against the S&P 500 index for 
the period 1960—2008. We also show, in Figure 3, a representation of the returns 
from buy-and-hold for each data split. The market movements were net positive in 
each part of each split, indicating that outperforming buy-and-hold was in all cases a 
challenge.    

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The S&P500 index over the period 1960—2008, illustrating the four data splits for the 
case of monthly trading 

 
 
 
 
 

 
 
 

Fig. 3. Characterising the buy-and-hold performance for each data split. Daily splits are on the 
left, weekly splits in the middle, and monthly splits on the right. Each bar shows relative 
proportions of the buy-and-hold performance in the training (lower), validation (middle) and 
test (upper) periods of the data split. 

          1965        1970         1975        1980        1985       1990         1995         2000        2005 
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We experimented also with the evaluation periods of the Performance Consis-
tency (PC) term of the fitness function. In Becker and Seshadri’s work, PC clearly 
improves performance (also true in our replication; we omit details for reasons of 
space). But they only report on 12-month periods. We experiment with different 
lengths for the “PC period”, namely: 6, 12, 18 and 24 months periods for monthly 
trading; 12 and 24 weeks for weekly trading, and 12 and 24 days for daily trading.   

3.2   Results 

For each trading period (monthly, weekly, daily), we performed 10 runs each for each 
combination of data split and consistency of performance period, and we report results 
for each of regime 1 and regime 2. To save space, we summarize each set of 10 runs in 
terms of the number of times that the result outperformed buy-and-hold. All results are 
summarized in Tables 4—6.    

Table 4. Summary of results for  monthly trading 

Data split PC 
Period 

Eval. 
regime 

Trials 
outperforming  
buy-and-hold. 

PC 
Period 

Eval. 
regime 

Trials  
outperforming  
buy-and-hold. 

1 10 out of 10  1 10 out of 10  Monthly 
Split1 6 

2 10 out of 10 
18 

2 10 out of 10 
1 5 out of 10 1 4 out of 10 Monthly 

Split2 6 
2 9 out of 10 

18 
2 10 out of 10 

1 9 out of 10 1 7 out of 10 Monthly 
Split3 6 

2 10 out of 10 
18 

2 9 out of 10 
1 9 out of 10 1 6 out of 10 Monthly 

Split4 6 
2 10 out of 10 

18 
2 10 out of 10 

1 10 out of 10 1 10 out of 10 Monthly 
Split1 12 2 10 out of 10 24 

2 10 out of 10  
1 4 out of 10 1 4 out of 10 Monthly 

Split2 12 
2 8 out of 10 

24 
2 10 out of 10 

1 10 out of 10 1 5 out of 10 Monthly 
Split3 12 

2 8 out of 10 
24 

2 7 out of 10 
1 9 out of 10 1 5 out of 10 Monthly 

Split4 12 
2 10 out of 10 

24 
2 10 out of 10 

 
As Table 4 shows, Monthly split 1 was clearly well-disposed to good performance. 

This split, evaluated with regime 1, was that used in [7] and [19], and perhaps gave an 
over-optimistic view of the general promise of the method. But it is clear from these 
results (and from [24]) that performance depends on details of the data split, and also 
that regime 2 is a better choice. If we now consider Figure 3, in attempt to understand 
relative performance in terms of the overall market movements in the data splits, we 
find that this is quite hard to do. Outperforming buy and hold would seem to be more 
likely when the performance of buy-and-hold in the test period is relatively weak, but 
this is not the case for Monthly splits 1 and 4.  Referring to Figure 2, we see that the 
market conditions were fairly similar for the training and validation parts of each 
monthly split, and were `up and down’ for each of the four test periods.  
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Table 5. Summary results for weekly trading 

Data split PC 
Period 

Eval. 
Regime 

Trials 
outperforming  
buy-and-hold. 

PC 
Period 

Eval. 
regime 

Trials  
outperforming  
buy-and-hold. 

1 6 out of 10  1 2 out of 10  Weekly 
Split1 12 

2 2 out of 10 
24 

2 7 out of 10 
1 10 out of 10 1 9 out of 10 Weekly 

Split2 12 
2 10 out of 10 

24 
2 5 out of 10 

1 4 out of 10 1 3 out of 10 Weekly 
Split3 12 

2 4 out of 10 
24 

2 4 out of 10 
1 10 out of 10 1 10 out of 10 Weekly 

Split4 12 
2 10 out of 10 

24 
2 10 out of 10 

 
Tables 5 and 6 shows the corresponding results for weekly and daily trading respec-

tively. These clearly show increasingly less robust results. It certainly seems that the 
method can find robust rules for weekly trading that outperform buy-and-hold in some 
circumstances (splits 2 and 4), with less reliable performance in other cases.  However, 
again, it seems there is no easily spotted pattern that underpins this from the basic 
summary of the data splits’ buy-and-hold performance in Figure 3. For daily trading, 
outperforming buy-and-hold is less likely, with strong performance in only one of the 
four data splits, and very poor performance in two of the data splits.   

Table 6. Summary of results for daily trading 

Data split PC 
Period 

Eval. 
regime 

Trials 
outperforming  
buy-and-hold. 

PC 
Period 

Eval. 
regime 

Trials  
outperforming  
buy-and-hold. 

1 0 out of 10  1 0 out of 10  Daily 
Split1 12 

2 0 out of 10 
24 

2 0 out of 10 
1 0 out of 10 1 0 out of 10 Daily 

Split2 12 
2 0 out of 10 

24 
2 0 out of 10 

1 10 out of 10 1 10 out of 10 Daily 
Split3 12 

2 10 out of 10 
24 

2 9 out of 10 
1 2 out of 10 1 3 out of 10 Daily 

Split4 12 
2 2 out of 10 

24 
2 4 out of 10 

4   Concluding Summary and Discussion 

In most research that uses genetic programming (GP) to induce technical trading 
rules, the most common outcome tends to be that, despite finding rules that seem 
successful on their own terms, they are usually not competitive with “buy and hold” 
(in upwardly moving markets) or the exploitation of risk-free investments (in down-
ward markets). Building on [7], however, [19] was one of few that have shown more 
promise. This was replicated in [24], with further advice on how reliably to generate 
effective rules, and also showing that the approaches in [19,21] were rather sensitive 
to the data splits, and that it is clearly better to use a validation set to choose the trad-
ing rule.   

However, the above was in the context of monthly trading, one of Becker & Sesha-
dri’s changes to the approach in [7], which used daily trading. It is reasonable to  
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suppose that this might be salient in the ability to beat buy-and-hold. We examined this 
by testing the approach on each of monthly, weekly and daily trading. We again found 
fairly robust generation of rules which outperform buy-and-hold for monthly trading, 
but with such being relatively rare for daily trading, and the situation for weekly trading 
was inbetween. The approach seems capable of finding rules that outperform buy-and-
hold, even when tested in upwardly-moving markets, but performance depends on the 
data split, and as we move from monthly to daily trading, this dependence on the data 
split seems to increase sharply. It turns out to be very difficult to pin down the likeli-
hood of success in advance based on simple summary analyses of the data splits. Visual 
analysis of the charts during the split periods (not shown here for space limitations), and 
summary measures such as Figure 3, so far fail to yield obvious indicators that might 
correlate with the possibility of evolving successful rules. This is a topic of continuing 
research. Finally, we note that interested researchers may pick up our source code at 
http://www.macs.hw.ac.uk/~dwcorne/gptrcode. 
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Abstract. Multi-stage financial decision optimization under uncertainty
depends on a careful numerical approximation of the underlying stochas-
tic process, which describes the future returns of the selected assets or asset
categories. Various approaches towards an optimal generation of discrete-
time, discrete-state approximations (represented as scenario trees) have
been suggested in the literature. In this paper, a new evolutionary algo-
rithm to create scenario trees for multi-stage financial optimization models
will be presented. Numerical results and implementation details conclude
the paper.

Keywords: Optimization under uncertainty, scenario generation, sce-
nario optimization, financial decision theory, risk management.

1 Introduction

Stochastic programming is a versatile method to model and solve decision prob-
lems under uncertainty. See [1] for an overview of the area of stochastic pro-
gramming, and [2] for stochastic programming languages, environments, and
applications.

We consider the following generalized formulation of a multi-stage stochastic
financial optimization model. The decision taker faces a discrete-time decision
horizon t = 1, . . . , T , and a set of investment assets (or asset categories) A
with uncertain future returns Va. These uncertain returns are represented by
a stochastic process discretized into a multi-variate, multi-stage scenario tree.
This scenario tree is used to build either a deterministic equivalent model for-
mulation, which can be solved using off-the-shelf solvers, or to use a stochastic
decomposition algorithm to obtain numerical solutions of the problem. The ob-
jective function consists of a risk-return bi-criteria functional, whereby the aim
is to maximize the expected wealth and to minimize some risk functional � of
the wealth at the terminal stage T . This resembles the classical Markowitz-style
asset allocation [3], see also the multi-stage generalization presented by [4]. The
chosen risk factor does not necessarily have to be the variance, e.g. other coher-
ent risk measures as shown by [5] or similar probability-based measures might
be better suited for different risk management purposes, and can be integrated
into the model. Both dimensions - expectation and risk - are weighted using a
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risk-aversion parameter κ, which can be adapted to the needs of the investor
and to the current market situation. The main decision is concerned with the
amount of budget ba to be invested into each asset (or asset category) a, as the
portfolio is rebalanced at each stage t = 2, . . . , T − 1. There is no rebalancing at
terminal stage T . Furthermore, additional investment budget B is available at
each stage up to T − 1, which is deterministically determined in advance in this
basic model. An important constraint is that the amount of purchases p in each
stage cannot exceed the sum of the amount of sales s plus the additional budget
available at the respective stage.

Given the above problem specification, we may formulate our multi-stage
stochastic programming model as shown in Eq. 1. The numbers in square brack-
ets represent the stage(s) at which the respective constraint is active.

maximize �(
∑

a∈A ba, T ) + κ�(
∑

a∈A ba, T )
subject to

∑
a∈A ba = B [1]

ba ≤ Vab
(−1)
a + pa − sa ∀a ∈ A [2, . . . , T − 1]∑

a∈A pa ≤ ∑
a sa + B [2, . . . , T − 1]

ba ≤ Vab
(−1)
a ∀A [T ]

ba, pa, sa ≥ 0 ∀A [1, . . . , T ]

(1)

The multi-stage recourse decision can be observed in the second and the fourth
constraint: Va represents the future asset return of asset (or asset category) a
in the respective stage (on the scenario tree) and is multiplied by the invested
budget b

(−1)
a of the previous stage.

The parameters which have to be specified by the decision taker are the asset
returns Va, which are stochastic and need to be tree-approximated, as well as
the deterministic budget B. The stochastic decision variables, which will be
calculated via numerical optimization solver include the current (investment)
budget ba, purchases pa, as well as sales sa of each asset a out of the given
investment universe A at each stage t. This model represents the basic building
block and can be arbitrarily extended to the needs of the decision taker, e.g. by
integrating dynamic risk measures, see e.g. [6].

However, the crucial part of the whole stochastic programming workflow is
to generate a multi-stage scenario tree, i.e. the Va, which represents a careful
approximation of the uncertainty of the asset (or asset category) returns, such
that a sensible risk management can be based on it.

This paper is organized as follows. Multi-stage scenario tree generation will be
briefly sketched in Section 2. A new evolutionary algorithm to create multi-stage
scenario trees is presented in Section 3. Section 4 summarizes selected numerical
results and the implementation, while Section 5 concludes the paper.

2 Multi-stage Scenario Tree Generation

That scenario tree should represent the uncertain structure of the reality as close
as possible, because the quality of the tree severely affects the quality of the so-
lution of the multi-stage stochastic decision model, such that any approximation
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scheme should be done in consideration of some optimality criteria, i.e. before a
stochastic optimization model is solved, a scenario optimization problem has to
be solved independently of the optimization model.

In the context of scenario optimization, optimality can be defined as the min-
imization of the distance between the original (continuous or highly discrete)
stochastic process and the approximated scenario tree. Choosing an appropriate
distance may be based on subjective taste, e.g. moment matching as proposed
by [7], selected due to theoretical stability considerations (see [8] and [9]), which
leads to probability metric minimization problems as shown by [10] and [11], or
it may be predetermined by chosen approximation method, e.g. by using dif-
ferent sampling schemes like QMC in [12] or RQMC in [13], see also [14]. It
is important to remark that once the appropriate distance has been selected,
an appropriate heuristic to approximate the chosen distance has to be applied,
which affects the result significantly.

Single-stage scenario generation, i.e. an optimal approximation of a multi-
variate probability distribution without any tree structure can be done via var-
ious sampling as well as clustering techniques. The real algorithmic challenge of
multi-stage scenario generation is maintaining a tree structure while still min-
imizing the overall distance. Only in rare cases, this problem can be solved
without the application of heuristics. See [15] for a general overview of algorith-
mic aspects of multi-stage scenario generation, and [16] for details on financial
multi-stage scenario generation.

3 Evolutionary Multi-stage Scenario Tree Generation

The list of successful applications of evolutionary algorithms for solving financial
problems is quickly growing, see especially [17], [18], [19], [20], and the references
therein. This motivates for creating an evolutionary algorithm for the process of
optimal multi-stage stochastic financial scenario generation.

We assume that there is a finite set S of multi-stage, multi-variate scenario
paths, which are sampled using the preferred scenario sampling engine selected
by the decision taker. Stages will be denoted by t = 1, . . . , T where t = 1
represents the (deterministic) root stage (root node), and T denotes the terminal
stage. Therefore, the input consists of a scenario path matrix of size |S|×(T −1).
Furthermore, the desired number of nodes of the tree in each stage is required,
i.e. a vector n of size (T − 1).

For the rest of the paper we will focus on the uni-variate case. However,
the extension to the multi-variate case does not pose any structural difficulties
besides that a dimension-weighting function for calculating the total distance on
which the optimality of the scenario tree approximation is based on has to be
defined.

A crucial part in designing a multi-stage scenario tree generator based on
evolutionary techniques is finding a scalable genotype representation of a tree -
both in terms of the numbers of stages as well as the number of input scenarios.
The approach taken in this paper is using a real-valued vector in the range [0, 1]
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and mapping it to a scenario tree given the respective node format n. The length
of the vector is equal to the number of input scenarios s = |S| plus the number
of terminal nodes nT . Thus, the presented algorithm is somewhat limited by
the number of input scenarios. This means that input scenarios should not be
a standard set of mindlessly sampled scenario paths, but rather a thoughtfully
simulated view on the future uncertainty. This should not be seen as a drawback,
as it draws attention to this often neglected part of the decision optimization
process.

To map the real-valued vector to a scenario tree, which can be used for a
subsequent stochastic optimization, two steps have to be fulfilled. First, the
real-valued numbers are mapped to their respective node-set given the structure
n of the tree, and secondly, values have to be assigned to the nodes. There are
different approaches to determine the center of the node-sets, which also affects
the distance calculation, see below for more details.

It should be noted, that a random chromosome does not necessarily lead to a
valid tree. This is the case if the number of mapped nodes is lower than the num-
ber of nodes necessary given by nt of the respective stage t. If an uniform random
variable generator and a thoughtful node structure is used, which depends on
the number of input scenarios, invalid trees should not appear frequently, and
can be easily discarded if they do appear.

Consider the following example of the mapping procedure. For demonstration
purposes, we only take one stage into account. We do have 10 input scenarios
(asset returns), each equipped with the same probability p = 0.1, which might
be the output of some sophisticated asset price sampling procedure, e.g.

(0.017,−0.023,−0.008,−0.022,−0.019, 0.024, 0.016,−0.006, 0.032,−0.023).

We want to separate those values optimally into 2 clusters, which then repre-
sent our output scenarios and take a random chromosome, which might look as
follows:

(0.4387, 0.3816, 0.7655, 0.7952, 0.1869, 0.4898, 0.4456, 0.6463, 0.7094, 0.7547)

If we map this vector to represent 2 centers we obtain: (1, 1, 2, 2, 1, 1, 1, 2, 2, 2).
Now we need to calculate a center value, e.g. the mean, and have to calcu-
late the distance for each value of each cluster to its center, e.g. we obtain
center means (0.0032,−0.0055), which represent the resulting scenarios, each
with a probability of 0.5. The l1 distance for each cluster is (0.0975, 0.0750),
so the objective function value is 0.1725. Now flip-mutate chromosome 9, i.e.
(1 − 0.7094) = 0.2906, such that input scenario 9 (return = 0.032) will now be
part of cluster 1 instead of cluster 2. We obtain new scenarios (0.0080,−0.0149)
with probabilities (0.6, 0.4). The objective function value is 0.1475 (or 0.1646 if
you weight the distances with the corresponding output scenario probability),
i.e. this mutation led to a better objective value.

It should be noted that this mapping is rather trivial in the single-stage case,
but this simple approach leads to a powerful method for the tedious task of
constructing multi-stage scenario trees for stochastic programming problems,
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because the nested probability structure of the stochastic process is implicitly
generated.

For multi-stage trees, a crucial point is finding a representative value for the
node-sets determined in the first step of the mapping. There exists a range of
methods, which can be used for the determination of centers, i.e. mapping all
values of a node-sets to one node. The distance of the approximation, which is
used for the calculation of the objective function, will also be affected by this
method. Some selected methods are summarized below:

– Median. A straight-forward solution is to use the median of the values.
– Extreme. If the mean of the values is below the stage mean, the lowest value

of the set will be selected, if it is above the stage mean, the highest value
is selected. This can prove useful if one aims at capturing extremes, which
already might have been flattened out by the scenario path simulation.

– Mixture. Using the median approach might be smoothing the tail values
too much, while the extreme approach neglects normal market phases. To
overcome this, a mixture model can be defined, i.e. by splitting the range of
stage values into three sections and using the minimum or maximum value
of the node-set if the mean of it is in the lowest or highest section, or using
the median if the node-set mean lies in the intermediate section.

– Random. A randomly selected value will used. While this method gener-
ally leads to balanced results, decision takers might not favor this non-
reproducible approach.

To visualize the differences of these approaches, see Fig. 1. The same scenario
generation procedure was used both for the left and the right part of the Figure,
i.e. the same set of input scenarios, the same evolutionary algorithm parameters,
and the same tree structure n = [10, 40]. The only difference was choosing either
the extreme node-to-value mapping (left) and the median mapping (right). It
is clear that these two trees will lead to different decisions. The set of input
scenarios will be specified in detail in the next section, see the visualization of
the scenario paths in Fig. 2 below.

The evolutionary algorithm chosen is based on the commonly agreed standard
as surveyed by [21]. Thereby, the following evolutionary operators have been
implemented and used:

– Elitist selection (o1).
– N -point crossover, with N = 1 (o2) and N = 2 (o3).
– Intermediate crossover with a random intermediate probability, which is dif-

ferent for each chromosome (o4).
– Mutation/Flip: Invert an initially specified number of m chromosomes by

1 − c, where c is the current value (o5).
– Mutation/Random: An initially specified number of m chromosomes will be

randomly mutated (o6).
– Random addition: Randomly sampled chromosomes, also used for creating

the initial population (o7).
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Fig. 1. Difference between Extreme (left) and Median (right) node-value mapping

For each of crossover operator, one parent is taken from the o8% best of the
previous population, and one entirely randomly. For each mutation operation
one of the best o9% will be randomly used. These nine values o1, . . . , o9 will
be used for the description of numerical results and specify the percentage of
the given population size, e.g. (20, 10, 10, 10, 15, 15, 20, 10, 30) means that 20%
of each new population are created by applying elitist selection and random
addition, while 10% of each new population are created by crossovers (1-point
crossover, 2-point crossover, intermediate crossover) and 10% by mutations (flip
as well as random), where the crossovers are conducted with one parent randomly
selected from the top 10% and the other parent randomly selected from the
whole previous population and the mutation is executed on one the top 30%
chromosomes from the previous population.

4 Numerical Results

The code was implemented using MatLab 2008b without using further toolboxes.
Input scenarios have been estimated and simulated using a GARCH(1,1) time
series model using historical data from the NASDAQ composite index. The input
scenarios are shown in Fig. 2.

The results presented below have been calculated with the following param-
eters: The initial population consists of 1000 randomly selected chromosomes.
The population size during the evolutionary process has been set to 300, and
a maximum of 300 iterations is calculated, using the above set of 200 scenarios in
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Fig. 2. The set of input scenarios used for numerical results (s = 200)
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Fig. 3. Convergence of operator structure (20, 10, 10, 20, 10, 10, 20, 10, 30) (left) and
(50, 0, 0, 0, 0, 0, 50, 10, 30) (right)

two stages. The mutation parameter m was set to 2. The tree structure has been
[10, 40] for all runs and each run takes around 4 − 5 minutes to solve on an up-
to-date desktop computer, which is excellent, when compared to other heuristic
global optimization techniques, which often report a scenario generation time of
many hours of computation.

The first results show the convergence of different evolutionary operators. We
compare four different operator structures:

– Using all operators = (20, 10, 10, 20, 10, 10, 20, 10, 30), see Fig. 3,
– no crossover nor mutation = (50, 0, 0, 0, 0, 0, 50, 10, 30), see Fig. 3,
– no mutation operators = (20, 20, 20, 30, 0, 0, 10, 10, 30) see Fig. 4, and
– no crossover operators = (30, 0, 0, 0, 30, 30, 10, 10, 30) see Fig. 4.
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Fig. 4. Convergence of operator structure (20, 20, 20, 30, 0, 0, 10, 10, 30) (left) and
(30, 0, 0, 0, 30, 30, 10, 10, 30) (right)
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Fig. 5. Scenario trees with n = [5, 20], [10, 40], [20, 80], and [40, 120]

The convergence graphs contain the minimum objective function value as well
as the population mean. Each test has been repeated 10 times, and the graphs
show the mean of the two values, as well as the minimum and maximum per
iteration.

In all calculations above, the same tree structure has been used, i.e. n =
[10, 40]. Of course, the method works for arbitrary scenario trees structures as
shown in Fig. 5 for trees with a structure of n = [5, 20], n = [10, 40], n = [20, 80],
and n = [40, 120] respectively. It should be noted that for any realistic application
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the evolutionary parameters have to be adapted to the specific instance of the
scenario tree needed for the given stochastic optimization model.

5 Conclusion

In this paper an evolutionary multi-stage scenario tree generation method has
been presented. It could be shown that multi-stage financial scenario generation
can be successfully done by applying pure evolutionary optimization techniques.
The results motivate for an extension of the implemented code for multi-variate
scenario input paths and other features.
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Abstract. Although there is a plentiful literature on the use of evolu-
tionary methodologies for the trading of financial assets, little attention
has been paid to potential use of these methods for efficient trade exe-
cution. Trade execution is concerned with the actual mechanics of buy-
ing or selling the desired amount of a financial instrument of interest.
Grammatical Evolution (GE) is an evolutionary automatic programming
methodology which can be used to evolve rule sets. In this paper we use
a GE algorithm to discover dynamic, efficient, trade execution strategies
which adapt to changing market conditions. The strategies are tested
in an artificial limit order market. GE was found to be able to evolve
quality trade execution strategies which are highly competitive with two
benchmark trade execution strategies.

1 Introduction

Grammatical Evolution is an Evolutionary Automatic Programming (EAP)
technique which allows the generation of computer programs in an arbitrary lan-
guage. GE can conduct an efficient exploration of a search space, and notably
permits the incorporation of existing domain knowledge in order to generate ‘so-
lutions’ with a desired structure. In finance (for example), this allows the users
to seed the evolutionary process with their current trading strategies in order
to see what improvements the evolutionary process can uncover. Recently GE
has been successfully applied to a number of financial problems. These include
financial time series modelling, intraday financial asset trading, corporate credit
rating, and the uncovering of technical trading rules [2,16].

Trade execution is the process of trading a particular instrument of interest.
A practical issue in trade execution is how to trade a large order as efficiently as
possible. For example, trading of a large order in one lot may produce significant
market impact costs. Conversely, by dividing an order into smaller lots and
spreading these over time, a trader can reduce market impact cost but increases
the risk of suffering opportunity cost. An efficient trade execution strategy seeks
to balance out these costs in order to minimise the total trade cost. In this paper,
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GE is used to discover a dynamic trade execution strategy adapting to changing
market conditions, while balancing off market impact cost and opportunity cost.

Instead of optimizing strategies by back-testing them over and over on the
same historical data, we novelly test them in an artificial limit order market.
One advantage of doing this is that the strategies can interact with the changing
market. An agent-based modelling approach is adopted to simulate the artificial
limit order market.

This paper is organized as follows. The next section provides a brief synopsis
of the typical operation of an electronic double auction marketplace; Section
3 discusses trade execution strategies using GE and describes our performance
evaluation approach; Section 4 explains agent-based modeling and describes how
we implement the artificial stock market used in this study; Section 5 provides
our results, with conclusion and some future work being presented in the final
section of this paper.

2 Background

Today most market places operate an electronic double auction limit order book.
Traders can either submit a limit order or a market order. A market order is
an order to buy or to sell a specified number of shares. It guarantees immediate
execution but provides no control on its execution price. In contrast, a limit order
is an order to buy or to sell a specified number of shares at a specified price. It
provides control over its execution price but does not guarantee its execution.

Table 1. Order Book 1

Bid Ask
Shares Prices Prices Shares
300 50.19 50.22 200
200 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

Table 2. Order Book 2

Bid Ask
Shares Prices Prices Shares
300 50.19 50.22 200
500 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

Table 3. Order Book 3

Bid Ask
Shares Prices Prices Shares
300 50.19 50.22 100
500 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

Table 1 shows a sample order book, where all the buy and sell orders are visible
to traders in the market. It consists of two queues which store buy and sell limit
orders, respectively. Buy limit orders are called bids, and sell limit orders are
called offers or asks. The highest bid price on the order book is called best bid,
and the lowest ask price on the order book is called best ask. The difference
between best bid and best ask is called bid-ask spread. Prices on the order book
are not continuous, but rather change in discrete quanta called ticks.

Limit orders on the order book are typically (depending on market rules)
executed strictly according to (1) price priority and (2) time priority. Bid (ask)
orders with higher (lower) prices get executed first with time of placement being
used to break ties. A buy (sell) market order is executed at the best ask (bid)
price. The limit order book is highly dynamic, because new limit orders will be
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added into the order book, and current limit orders will get executed or cancelled
from the order book throughout the trading day. Table 2 shows the order book
after a trader submits a buy limit order with 300 shares placed at price 50.18.
Table 3 shows the order book after a trader submits a buy market order with
100 shares.

3 Evolving Dynamic Trade Execution Strategies

A trade execution strategy is a set of rules determining a number of trade ex-
ecution components designed to minimize transaction cost. These components
include number of orders to be submitted, size of each order, what type each
order should be and when each order should be submitted to the market.

The total trading volume of the order to be traded is often expressed as a
percentage of the average daily volume (ADV) of the stock [11]. An order of
less than 5% of ADV can generally be traded over a day without using complex
strategies. On the contrary, if the target volume is larger than 15% of ADV, it
may require execution over several days in order to minimize market impact.
Normally, 5-15% of ADV is a reasonable order size which could expect to be
tradable over a day using appropriate trade execution tactics. In this paper, the
trading horizon of all strategies is one trading day and hence we assume that
the order size is of this magnitude.

We assume that the order to be traded consists of V shares. The order is
sliced into N smaller child orders (each of which will be submitted to the market
according to our trading strategy), with order size s1, s2, . . ., sN , where

V =
N∑

i=1

si

A time window of half an hour is adopted in evolving our trading strategies. We
benchmarked the results from our evolved trading strategies against two simple
execution strategies. One simple trade execution strategy is a pure market order
strategy in which each child order is submitted as a market order every half
hour. This strategy takes market liquidity immediately by crossing the bid-ask
spread. The other benchmark trade execution strategy is a pure limit order
strategy. Traders submit each child order as a limit order placed at the best
price, and amend its price to best price at a fixed frequency until this order is
fully executed or until the trading period expires. At the end of trading day, any
unexecuted orders are traded by crossing the bid-ask spread in order to ensure
order completion. For instance, a buy order sn may be submitted to the market
as a limit order placed at the best bid price with an amendment frequency of Δt
minutes. If Δt minutes after submission, this limit order is not fully executed, it
will be amended to the best bid price. This amendment process continues in Δt
intervals up to the end of trading day, at which time the uncompleted order(s)
are traded as market orders by crossing the bid-ask spread.

In the simple market order strategy, order aggression (crossing the bid-ask
spread) happens immediately after order submission which guarantees order
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execution, at the cost of market impact. In the simple limit order strategy, order
aggression happens at the end of trading period aiming to reduce market im-
pact, at the risk of opportunity cost. A more sophisticated limit order strategy
would allow for order aggression between these two extreme cases. A general
limit order strategy is to cross the uncompleted limit order over the spread after
submission but before the end of trading day. In our GE evolved strategies, the
timing of order aggression is determined by an execution rule evolved using GE.
At each amendment time (an integral multiple of Δt minutes after submission),
if the market condition satisfies the condition of the execution rule, order aggres-
sion happens, otherwise, the uncompleted order is amended to the best price. In
this paper, an amendment frequency of 10 minutes is adopted in all limit order
strategies. The market variables representing the market condition are examined
in the next section.

3.1 Information Indicators

There are a large number of studies in the literature analyzing the relationship
between order placement and the information content of limit order books.

Table 4. Definitions of Market Variables

Variables Definitions
BidDepth Number of shares at the best bid
AskDepth Number of shares at the best ask

RelativeDepth Total number of shares at the best five ask prices divided by total
number of shares at the best five bid and ask prices

Spread Difference between the best bid price and best ask price
Volatility Standard deviation of the most recent 20 mid-quotes

PriceChange Number of positive price changes within the past ten minutes divided
by the total number of quotes submitted within the past ten minutes

Traders are more willing to place market orders when the market depth on
the same side of the order book is large. If the market depth on the opposite
side is larger, traders prefer to submit limit orders [3,6,18,23]. The incoming
limit orders will have lower execution probability, suffering higher non-execution
risk. When the bid-ask spread widens, traders prefer to submit limit orders in
order to avoid large bid-ask spread cost [3,6,17,18,22,23]. Prior research is in-
conclusive on the effect of market volatility. Pascual and Verdas [17] show that
higher historic volatility suggests limit order submission in mid cap stocks, but
the opposite phenomenon is observed in large cap stocks. Hall and Hautsch
[10] observe an increase of all kinds of order submission during periods of high
volatility. Ranaldo [18] supports an inverse relation between order aggression and
volatility, while Lo and Sapp [14] report a positive relationship between order
aggression and volatility. Cao et al. [3] find that volatility has a minimal effect
on order aggression. Verhoeven [22] argues that greater price volatility implies
that a trader has a greater chance of executing his order at a better price. Hence,
prior literature suggests a range of possible explanatory variables, but indicates
that we have an incomplete theoretical understanding of how these factors in-
teract. This suggests that there will be particular utility for the application of
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evolutionary methods to uncover a suitable model structure (trade execution
strategy). Based on the explanatory factors considered in the literature, we se-
lected six information indicators to construct a dynamic trade execution strategy
(Table 4).

3.2 Grammar of Grammatical Evolution Algorithm

The grammar adopted in our experiments is defined as follows:

<lc> ::= if (<stamt>)

class = "CrossingSpread"

else

class = "NotCrossingSpread"

<stamt> ::= <cond1><op><cond2><op><cond3><op><cond4>

<op><cond5><op><cond6>

<op> ::= and | or

<cond1> ::= (BidDepth>AvgBidDepth) is <boolean>

<cond2> ::= (AskDepth>AvgAskDepth) is <boolean>

<cond3> ::= (RelativeDepth>AvgRelativeDepth) is <boolean>

<cond4> ::= (Spread>AvgSpread) is <boolean>

<cond5> ::= (Volatility>AvgVolatility) is <boolean>

<cond6> ::= (PriceChange>AvgPriceChange) is <boolean>

<boolean> ::= True | False

In the grammar, AvgBidDepth represents the average bid depth of the market,
AvgAskDepth represents the average ask depth of the market,AvgRelativeDepth
represents the average relative depth of the market, AvgSpread represents the av-
erage spread of the market, AvgV olatility represents the average volatility of the
market and AvgPriceChange represents the average price change of the market.
The six financial variables are observed at the time of order amendment. An ex-
ample of an evolved dynamic strategy using three financial variables is as follows.

if ( (BidDepth>AvgBidDepth) is True or (AskDepth>AvgAskDepth) is False

and (Spread>AvgSpread) is True ) class = "CrossingSpread"

else class = "NotCrossingSpread"

In this strategy, if the market condition satisfies

(BidDepth>AvgBidDepth) is True and (Spread>AvgSpread) is True

or satisfies

(AskDepth>AvgAskDepth) is False and (Spread>AvgSpread) is True

the uncompleted limit order will be crossed over the bid-ask spread. Otherwise,
its limit price will be amended to the best price.

3.3 Performance Evaluation

The standard industry metric for measuring trade execution performance is the
VWAP measure, short for Volume Weighted Average Price. It is calculated as the
ratio of the value traded and the volume traded within a specified time horizon
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V WAP =
∑

(V olume ∗ Price)∑
(V olume)

where V olume represents each traded volume and Price represents its corre-
sponding traded price. An example is shown in Figure 1.

Submission
Shares

Traded
Value

Time Price
Child Order 1: t0 400 ∗ 50.15 = 20,060

600 ∗ 50.16 = 30,096
Child Order 2: t1(t0 + Δt) 1,000 ∗ 50.40 = 50,400
Child Order 3: t2(t0 + 2Δt) 200 ∗ 50.34 = 10,068

800 ∗ 50.36 = 40,288
Child Order 4: t3(t0 + 3Δt) 1,000 ∗ 50.39 = 50,390
Child Order 5: t4(t0 + 4Δt) 1,000 ∗ 50.68 = 50,680
Child Order 6: t5(t0 + 5Δt) 1,000 ∗ 51.10 = 51,100
Child Order 7: t6(t0 + 6Δt) 1,000 ∗ 50.87 = 50,870
Child Order 8: t7(t0 + 7Δt) 700 ∗ 50.98 = 35,686

300 ∗ 51.00 = 15,300
Child Order 9: t8(t0 + 8Δt) 1,000 ∗ 50.39 = 50,390
Child Order 10: t9(t0 + 9Δt) 1,000 ∗ 50.26 = 50,260

Total: 10,000 505,588
VWAP = 505, 588/10, 000 = 50.5588

Fig. 1. VWAP Calculation of A Sample Buy Strategy

In order to evaluate the performance of a trade execution strategy, its VWAP is
compared against the VWAP of the overall market. The rationale here is that
performance of a trade execution strategy is considered good if the VWAP of
the strategy is more favorable than the VWAP of the market within the trading
period and bad if the VWAP of the strategy is less favorable than the VWAP
of the market within the trading period. For example, if the VWAP of a buy
strategy (V WAP strategy) is lower than the market VWAP (V WAP market), it is
considered as a good trade execution strategy. Conversely, if the V WAP strategy

is higher than the V WAP market, it is considered as a bad trade execution strat-
egy. Although this is a simple metric, it largely filters out the effects of volatility,
which composes market impact and price momentum during the trading period
[1]. The performance evaluation functions for each trading day are as follows:

V WAP Ratio =

{
10,000∗(V WAP strategy−V WAP market)

V WAP market
Buy Strategy

10,000∗(V WAP market−V WAP strategy)
V WAP market

Sell Strategy

where V WAP market is the average execution price which takes into account all
the trades over the day excluding the strategy’s trades. This corrects for bias,
especially if the order is a large fraction of the daily volume [13]. For both buy
and sell strategies, the smaller the VWAP Ratio, the better the strategy is.



198 W. Cui, A. Brabazon, and M. O’Neill

4 Simulating an Artificial Market

In our experiments, the training and evaluation of all trade execution strategies
are implemented in an artificial limit order market, which is simulated using an
agent-based model.

Agent-based modelling is a computerized simulation consisting of a number
of agents. The emergent properties of an agent-based model are the results of
“bottom-up” processes, where the decisions of individual and interacting agent
at a microscopic level determines the macroscopic behavior of the system. For
a more detailed description of agent-based modelling in finance, please refer to
[12,19,20]. In this paper, our agent-based artificial limit order market is built
based on the Zero-Intelligence (ZI) model [5] with a continuous double auction
price formation mechanism. The notion of ZI agents was first mentioned in Gode
and Sunder [9]. These agents randomly generate buy and sell orders. The orders
are then submitted to a market agent, who manages all incoming orders accord-
ing to the order matching mechanism in a real limit order market. The trading
process is continuous, where unmatched orders are stored in an order book.

At each time step, an agent is equally likely to generate a buy order or a sell
order. This order can be a market order, or a limit order, or a cancellation of a
previous order, with probabilities λm, λl, and λc respectively. The sum of these
probabilities is one (λm + λl + λc = 1). For a limit buy (sell) order, it has a
probability of λinSpread falling inside the bid-ask spread, a probability of λatBest

falling at the best bid (ask) price, and a probability of λinBook falling off the
best bid (ask) price in the book, (λinSpread + λatBest + λinBook = 1). The limit
price inside the spread follows a uniform distribution. The limit price off the best
bid (ask) price follows a power law distribution with the exponent of (1 + μ1).
The log order size of a market order follows a power law distribution with the
exponent of (1 + μ2), while the log order size of a limit order follows a power
law distribution with the exponent of (1 + μ3).

As each incoming buy (sell) market order arrives, the market agent will match
it with the best ask (bid) limit order stored in the order book. If this market
order is fully filled by the first limit order, the unfilled part will be matched to
the next best ask (bid) limit order until it is fully filled. As each incoming limit
order arrives, the market agent will store it in the order book according to price

Table 5. Initial Parameters for Artificial Limit Order Market

Explanation Value
Initial Price price0 = 50
Tick Price δ = 0.01

Probability of Order Cancellation λc = 0.34
Probability of Market Order λm = 0.16
Probability of Limit Order λl = 0.50

Probability of Limit Order in Spread λinSpread = 0.32
Probability of Limit Order at Best Quote λatBest = 0.33

Probability of Limit Order off the Best Quote λinBook = 0.35
Limit Price Power Law Exponent 1 + μ1 = 2.5

Market Order Size Power Law Exponent 1 + μ2 = 2.7
Limit Order Size Power Law Exponent 1 + μ3 = 2.1
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and time priority. As each incoming cancelation order arrives, the market agent
will delete the relevant limit order in the order book.

In order to ensure that the order flows generated by the artificial market are
economically plausible, all the parameters in our model are derived from empir-
ical evidence [4,7,8,15,21]. The parameters used in our simulation are presented
in Table 5.

5 Results

In this study we consider a large order of 10% of ADV of the artificial market,
which is to be traded over one day (5 hours in the artificial market). This order
is equally divided into ten child orders. In all trade execution strategies, any
uncompleted orders are crossed over the spread at the end of trading day in
order to ensure order completion.

Our experiments comprise of two periods (training and test periods). In the
training period, GE is used to evolve dynamic trade execution strategies. Each
individual is exposed to 20 continuous trading days in the artificial market and
their fitness is calculated as their average VWAP ratio over the 20 trading days.
The GE experiment is run for 20 generations, with variable-length, one-point
crossover at a probability of 0.9, one point bit mutation at a probability of
0.01, roulette selection, steady-state replacement and a population size of 100.
In the test period, the best evolved strategy in the training period is tested out of
sample over 240 days in the artificial market. The performances of simple market
order strategies (SM) and simple limit order strategies (SL) are also evaluated
in order to benchmark the GE strategies.

Table 6. Results of best evolved GE strategies and two benchmark strategies

SM SL GE

Mean (S.D.) Mean (S.D.) Mean (S.D.) H1 H2

Buy Order 69.64 (0.42%) 42.54 (1.45%) -1.42 (0.49%) 0.00 0.01
Sell Order 68.73 (0.36%) 13.81 (1.59%) -23.21 (0.48%) 0.00 0.01

The results (all out of sample) of buy strategies and sell strategies are provided
in Table 6. The “Mean” is the average VWAP ratio of each strategy over the
240 days, and “S.D.” represents the standard deviation of the average (daily)
VWAP ratio. P-values for the null hypothesis H1 : meanSM ≤ meanGE and
H2 : meanSL ≤ meanGE are also shown in the table, to indicate the degree of
statistical significance of the performance improvement of GE strategies over the
two simple strategies. The figures show that the null hypotheses are rejected at
the ≤ 0.01 level.

Based on the results, GE evolved strategies notably outperform the two bench-
mark strategies, simple market order strategy (SM) and simple limit order strat-
egy (SL). The negative VWAP ratios of -1.42 and -23.21 show that the GE
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evolved strategies achieve better execution price than the average execution price
of the market. The small standard deviations of 0.49 and 0.48 suggest that the
applicability of GE for evolving quality dynamic trade execution strategies. Com-
paring the performance of the strategies for buy and sell orders, we observe that
the performances of sell strategies are better than those of buy strategies.

6 Conclusions and Future Work

Trade execution is concerned with the actual mechanics of trading an order.
Traders wishing to trade large orders face tradeoffs in balancing market impact
and opportunity costs. Trade execution strategies are designed to balance out
these costs, thereby minimizing transaction cost relative to some benchmark like
VWAP. Despite the importance of optimising trade execution, there has been
relatively little attention paid in the literature to the application of evolutionary
methods for this task. In this paper, GE was novelly applied for the purposes of
evolving dynamic trade execution strategies, and an artificial limit order market
was simulated for testing the evolved trade execution strategies. GE was found
to be able to evolve quality trade execution strategies which proved highly com-
petitive against two benchmark trade execution strategies.

There is notable scope for further research utilising GE in this problem do-
main. One obvious route is to widen the number of market variables which can
be included in the evolved execution strategies. Another route is to evolve the
full structure of the trade execution strategy. In our approach, we focused on
one aspect of trade execution strategy (when to cross the spread), and other
components like the number of orders are determined in advance. Future work
will embrace the evolution of the full structure of trade execution strategy.
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Abstract. This paper presents a new approach to financial forecasting,
inspired by strategies used by market traders. We demonstrate that a
trading system with the relatively modest task of spotting trends in
progress rather than the usual goal of spotting peaks and troughs can
produce highly accurate forecasts. This is achieved by using a Genetic
Algorithm to select appropriate training cases which are then fed to a
trading system composed of multiple GP derived trees.

1 Introduction

Market movements are notoriously difficult to forecast with any accuracy. If we
accept the widely held view that markets are by and large efficient [6], with
scattered pockets of predictable inefficiency, then we must concede that many of
the movements (as observed through price alone) appear to happen for arbitrary
reasons and bear no relation to the prior price action. Under these circumstances,
attempting to forecast every movement found in a market time series is not
only impossible but also detrimental to the chances of predicting the subset of
movements that really are foreseeable.

Insight can be extracted from the trader’s adage that most successful positions
capture only the middle 50% of a market trend [12], see figure 1 for an example
of such a situation, this indicates that the professionals themselves consider abso-
lute turning points in the market to be difficult if not impossible to foresee. Despite
this, traders still make consistent profits by taking advantage of the market’s ten-
dency to perpetuate a trend once it has begun. Any system that is designed to
forecast absolute peaks and troughs may result in poor performance, not because
of its competence as a methodology, but because its stated objective (forecasting
absolute turning points) is inherently impossible. As the trader’s adage points out:
a system with the less ambitious objective of spotting a trend once it has already
begun will be more profitable in practice than the more ambitious system. This
paper experimentally demonstrates an approach that embodies the wisdom of the
trader’s adage. It is shown that the best opportunity of success is given to the un-
derlying forecast methodology by selectively weeding out the unpredictable train-
ing data through automatic evolution. A Hybrid Forecasting System (HFS) is
used to implement this notion of selective case training.
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Fig. 1. Two hypothetical entry trades (A,B) and two exits (C,D). It is common to at-
tempt to forecast the absolute peak and trough A to D, and, although this appears to
make financial sense, there may be no indication of change prior to these points, mak-
ing them inherently unpredictable. It is likely that B and C may be foreseen with much
greater accuracy.

The HFS is a novel combination of GA and GP. A first phase uses a GA
to identify a subset of price moves. These moves are then used as the training
examples for a series of GP runs in a classification context. Thus, the master
system (the GA) is responsible for finding the best way to teach the slave (GP)
system, where best way to teach means finding the optimal subsets of training
cases from a financial time series. The optimal subset will give the slave algorithm
the best opportunity to learn how to forecast, free from much of the arbitrary
noise so prevalently seen in the markets.

The paper is organized as follows. Section 2 gives discusses related work, while
section 3 elaborates on the HFS. Next, section 4 discusses the experimental
procedure used to test the HFS before section 5 gives the experimental results.
Finally, section 6 gives some concluding remarks.

2 Background

In the Evolutionary Computation literature, market forecasting is traditionally
broken down into several categories. Portfolio Optimization [1],[7] seeks to
find the optimal basket of stocks at any given time whereby a number of con-
straints (investment diversification for example) are satisfied. Symbolic Re-
gression [10], [9] is the search for polynomial equations that most optimally
fits a given piece of financial data. The hope is that some underlying process in
the market can be distilled out and used to forecast beyond the known horizon.
Strategy Creation [14],[8] involves finding successful combinations of techni-
cal analysis trading rules, while Trade Execution algorithms [3],[13] seek the
optimal implementation of a market order given the dynamic reaction of other
market participants (which usually erode a trade’s potential for profits). Trade
Execution Algorithms, along with the recent trend of ultra low latency links to
the exchanges, are the key weapons being wielded in a technological arms race
that has emerged between the large financial institutes in recent years.
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Regularly, there is only one data source used in any market forecasting en-
deavor, price action, these are time series of the fluctuating value of a financial
instrument as determined by the market participants. Notable exceptions in GP
include expanding the input set to include analyst ratings [2] and news senti-
ment [11]. These additional inputs give the aforementioned systems a sense of
the prevalent subjective opinions regarding the target instrument.

To our knowledge, no EC system explicitly attempts to shield the underlying
forecasting methodology from inherently unpredictable market moves during the
training process.

3 The Hybrid Forecasting System

The HFS is essentially a GA with a meta-GP. There is one master GA run but
every time a GA genome has to be evaluated, it requires seperate GP runs to
do so. Each GA genome contains a bit string which has a single binary value
corresponding to every time point along the training segment of data. The bit
string is used to identify which training cases will be used to train this genome’s
classifiers.

Next, GP runs are used to evolve classifiers that correctly distinguish these
cases from all others in the training data. The performance scores of these clas-
sifiers serve as an approximation for how good the set of training cases was for
learning.

Fig. 2. The contents of each genome in the GA population

There are two classifiers associated with each GA genome; one for position
entries (forecasting future rises in the data) and one for exits (forecasting future
falls). Both classifiers take the form of a Signal Generation Tree and both
are found with a separate GP run. Together, the Entry tree and Exit tree,
pair to make a coherent trading strategy.

Once a strategy has been found its performance must be evaluated. Trad-
ing strategies have dual-objectives: Predictability and Profitability. A strat-
egy’s Predictability is a metric quantifying its classification accuracy on the
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training data, as selected by the GA bit string. The Profitability is a metric
quantifying its cumulative profit when applied to the testing data, completely
independent of the GA bit string. Finally, the Pareto Dominance Count for
the GA genome can be calculated by comparing these dual objectives against
every other solution in the population. Figure 2 shows the hierarchical layout of
the algorithm.

Representation. The classification goal is to get the correct answer for the
following two questions at every time point t along the data:

– Given the data prior to t, will the market subsequently rise in value?
– Given the data prior to t, will the market subsequently fall in value?

Every time point t is considered a separate case that has a set of data inputs
and two target answers. The HFS attempts to find the optimal pair of signal
trees (the Entry Tree and Exit Tree) to address these questions.

3.1 Fitness Evaluation

As mentioned above, to assess the abilities of each GA genome, three metrics
must be calculated; these are Predictability, Profitability and the Dominance
Count. The steps required to calculate each metric are detailed below.

Calculating the Predictability for each Genome. Ideally, after being
trained, the two signal generation trees should be able to reproduce the ex-
act bit string they were trained on when presented with the raw training data.
That is, the Entry Tree would indicate that the system should enter the mar-
ket at each entry point marked by the GA genome, while the Exit Tree would
indicate the system should exit the market at its corresponding points.

The interpretation of the On bits found in a genome cycle alternately between
Extry Trade and Exit Trade. All the Entry Trades serve as Positive examples for
training the entry tree and similarly the Positive examples are gathered to train
the exit tree. It is then necessary to harvest a corresponding number of Negative
cases for both trees. Once all example cases have been found a seperate GP run is
used to evolve each tree. The standard classification measures of Sensitivity and
Specificity are used to gauge how well the trees can distinguish their respective
cases, and the average combined Sensitivity and Specificity for the pair of trees
is used as the Predictability score.

Calculating Profitability for each Genome. To calculate Profitability we
use the second block of data which remains unseen, this is known as the testing
segment. Using separate segments in this manner promotes generalization of
the models and avoids over-fitting to the training data. Both signal generation
trees are applied against every case found in the testing segment. There are no
prescribed right or wrong answers this time. Instead a financial tally is kept as
the two trees dictate trading.
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If the entry tree flags a positive signal at time t we enter a long position at
the current market price P (t). Once engaged in a position, further signals from
the entry tree are ignored and attention is switched to the exit tree. A positive
signal from the exit tree x time steps later causes the close of that position at
price P (t+x) for a gain of P (t+x)−P (t). The exit tree is now ignored and the
cycle repeats until every case in the data has been applied and the cumulative
returns calculated. The final balance at the end of the testing period becomes
the Profitability score.

Calculating the Dominance Count for each Genome. With Predictability
and Profitability calculated for every solution it is now possible to compare all
solutions and find the few that are undominated in terms of Pareto optimality,
that is those solutions who are as good as, if not better than all other solution
in at least one of their fitness traits. In keeping with the NSGA-II [5] multi-
objective approach, we take the overall fitness of a genome to be that of its
Dominance Count. A lower dominance count is better, with zero meaning that
no other solution is better than this one in both predictability and profitability.
Our GA algorithm can now be thought of as a regular single objective GA that
is simply trying to minimize the dominance count of all solutions.

3.2 Sexual Operations

The GA uses a standard two-point crossover operator. The mutation operator
however, is specialized to suit the context of a linear trading sequence. Rather
than flipping bits with a random probability, mutation for the HFS randomly
selects a proportion (pMutation) of the trades (individual bits found in the bit
string) and shifts each one to a random position left or right within the bounds
of the two adjacent trades. This is intended to fine tune the range of existing
trades rather than create new ones.

Only the GA bit string is genetically passed from parent to offspring; the
reasoning behind this design decision is that the entry and exit trees of a strategy
must be perfectly attuned to one another which is unlikely to result from slicing
two different strategies. Future work may examine the sexual exchange of the
GP trees themselves.

3.3 Additional Considerations

It is useful to place a number of extra restrictions on the behaviour of the system.
For example, a minimum of 30 trades must be specified by a GA bit string for it to
be considered valid; otherwise the solution is given the worst possible dominance
count. This restriction avoids GA being able to create seemingly very predictable
strategies who’s task requires only spotting a handful of trades. A minimum of
30 trades ensures that there can be some degree of statistical confidence in the
predictability metric. A second restriction disallows solutions onto the Pareto
front who have a negative cumulative return over the testing period. Unlike
the trade restriction we do not kill off unprofitable solutions as they may have



Modesty Is the Best Policy 207

superior predictability performance. This genetic material could appear in future
offspring who may find a more profitable use for their prediction abilities.

The system is not allowed to hold multiple positions or engage in short trades
where a financial instrument is sold before being bought. A pair of trees with a
higher cumulative return are always assumed to be the better forecasters.

After the GA population has evolved for a number of generations an interest-
ing collection of models that cannot be beaten usually emerges along the Pareto
front. At one extreme of this set there are solutions that have a very high pre-
dictability but low profitability and at the other extreme we find the opposite. It
is typical practice in multi-object Pareto optimization to select a single solution
from the middle of this set (the “knee”) that has a reasonable trade off between
all fitness traits. We choose instead to hold onto all solutions that are found on
the Pareto front as a means of analysing the out of sample consistency between
the models. If it were found that the out of sample validating performance var-
ied greatly between all of the Pareto optimal solutions that claim profitability
during testing then it may be an indication that the HFS approach does not
work well for the particular financial instrument or time frame being used.

4 Experimental Setup

To test the HFS, ten well known equity stocks are selected from the NYSE and
NASDAQ trading exchanges. Each data set was run through the system with
the same functions as listed in Table 1 and parameters as listed in Table 2.

Table 1. GP function set. Both entry and exit trees use the same set of functions. For
safety the range and t parameter inputs are always rounded off and made positive.
The Division operator is also protected.

Standard GP Functions

+,−, ∗, / Arithmetic
>=,< Logic
1000, 112, 56, 28, 1, 0.5 Constants

Technical Analysis Functions

Diff(t) Price diff at t
Avg(x, y), MA(range) Averages
Max(range), Min(range) Extremes
Band(threshold, range) Threshold test

4.1 Data preparation

The system is fed on the raw price differences between 10,000 consecutive minutes
that occurred during open US market hours. This quantity equates to about ten
months of daily market action, though the exact calendar time varies from stock
to stock due to data provider inconsistencies. In the tests presented in this paper
a different start date is used for each stock; this is intentionally done to exposes
the system to a large array of market conditions and not simply the ones observed
most recently. The start date for each data set is picked at random within the
confines of the available data (January 2004 to December 2007). Each block of
10,000 price values for each stock is divided into training, testing and validating
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Table 2. List of the GA and GP parameters used for all experiments

GA Parameters GP Parameters

population 100
generations 20
pCrossover 0.9
pMutation 0.1
GA type Steady State
selection Roulette Wheel
type of crossover standard two-point
type of mutation custom (trade shift)

population 100
generations 20
pCrossover 0.5
pMutation 0.5
selection tournament, size 2
initialization ramped half & half
maximum tree depth 5
minimum tree depth 3

segments in the ratios of 40%, 40% and 20% respectively. The first 2000 points in
each segment is reserved as a look back period to ensure that even the first case
presented to the signal generators is guaranteed to have the full complement of
prior data points for use as input.

The costs that one would expect to find trading in real markets such as
spreads, commissions, margin calls or price slippage are not taken into account
in this paper. Our concern here is solely focused on forecasting; the use of re-
turns merely serves as a more intuitive tool for gauging forecasting success rather
than as a guide to real market performance. This issue is addressed further in
section 5.

4.2 Comparison Approaches

To ascertain the abilities of the HFS, its performance is compared against the
returns of three comparison methods.

The first hurdle of comparative performance (and probably the most impor-
tant) is Buy & Hold. It is the return received from a single position that lasts
the entire duration of the validating period. The logic behind such Buffet [4]
style investing is that the share prices moves around but ultimately increase in
value over time.

The second comparison solution is called the Maximum Random Strategy
and it is designed to assess the likelihood of arriving at a given level of forecasting
performance simply by making a random sequence of trades. The average number
of trades engaged in by the optimal solutions of the HFS is calculated for each
stock. This average is then used as the number of trades randomly placed over
the validating period to create a random strategy. Unique random seeds are used
to create 30 of these random runs and the cumulative returns are recorded for
each. The random run with the highest return is used as the comparison value.
Of course, selecting the best performing random strategy in hindsight is not
something that can be used as a real time strategy, it does however serve as an
extremely difficult benchmark to compare the HFS strategies against. It is very
probable that there will be at least one highly profitable sequence amongst the
30 random runs.
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The final comparison solution is the Greedy Predictor. It is similar to the
HFS but the GA part has the simple task of finding the sequence of trades
that would of made the most money over the training and testing period (in
hindsight). Then, just like the HFS, two GP signal trees are evolved to attempt
to learn from this greedy sequence and the winning pair of signal trees are applied
to the out of sample validating data. The Greedy Predictor approach is akin to
a novice trader studying historic market peaks and troughs in the hopes of being
able to forecast them in the future (see trades A and D in Figure 1 for an
example).

5 Results

Table 3 shows the experimental results. The first thing to consider is the variation
of the out of sample conditions. The Buy & Hold returns range from −9.26%
to +7.35%, this alleviates any concerns we might have had about the period
(2004 - 2007) only containing bullish (positive) conditions.

The Greedy Forecaster resulted in a large degree of variation from one
run to the next, indicating poor predictive ability. Nevertheless the results were
compared by averaging over 30 greedy runs instead of just one.

The Maximum Random strategy results are very high as expected, always
resulting in positive returns (irrespective of the underlying stock’s situation).

The percentage returns for the HFS models are very promising; they are
always positive and always beat Buy & Hold (Table 3). In all experiments except
Boe and Cat the HFS also beats the highest of the 30 random runs.

It is worth noting that the winning solutions created by the HFS all employ
a scalping trading style, frequently engaging in positions that last only a few
minutes. The strategy evolved for Microsoft (Msft), as an example, achieves
a return of 35% over the validating period by making 6082 trades lasting on
average 1.8 minutes each (Figure 3).

Table 3. Experimental results. Standard Deviations and number of models on the
front are shown for HFS. All figures are for out of sample validating performance only,
training and testing scores are not shown for brevity.

Stock Period B&H Greedy MaxR HFS std HFS #HFS
Boe 2005-08-01→2005-10-04 3.53% 2.21% 9.72% 5.16% 0.39% 2
Cat 2007-08-07→2007-10-10 -0.11% 2.18% 5.27% 4.67% 6.77% 5
Coke 2006-03-31→2006-06-06 3.53% 0.85% 5.43% 8.95% 12.97% 3
GE 2007-08-27→2007-10-26 5.66% 1.61% 10.96% 14.91% 7.18% 6
Intel 2004-08-18→2004-10-08 -4.00% -3.36% 16.49% 58.74% 1.82% 2
J&J 2004-01-11→2005-01-05 7.35% 4.86% 6.22% 12.89% 6.93% 7
Msft 2005-08-11→2005-10-06 -8.77% -4.06% 4.68% 35.85% 19.28% 3
Nc 2006-05-11→2006-07-19 -9.26% -3.74% 3.52% 29.76% 14.21% 3
Pfi 2006-10-30→2007-01-03 -4.14% -4.07% 8.24% 12.99% 15.40% 10
Wmt 2007-04-03→2007-06-07 3.78% 1.49% 6.43% 9.32% 6.70% 2
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Entry Tree: (GTET (Diff (Avg 1 (MA 28 ) ) ) (MA 1 ) ) >= 1

Exit Tree: (GTET (MA (Avg 0.5 1 ) ) (MA (- 0.5 28 ) ) ) >= 1

Fig. 3. A trading strategy evolved for Microsoft. The entry tree generates a buy signal
under two circumstances: if the general price trend is rising and the immediate price
difference is lower than the previous one, or, if the general trend is falling with an
immediate price difference decline larger than the previous one. The exit tree gives a
sell signal when the recent price differences are greater than the general trend. These
trees are deceptively parsimonious due to their innovative use of the input protection
mechanisms within the Moving Average (MA) function.

The highest average performance (Intel) achieved by the HFS is an aston-
ishing 58.74% return over about a two month period. Even in the worst case
(Boe) the HFS model’s average is 1.63% higher than buy & hold. Such results
clearly demonstrate high predictive ability although it must be reiterated that
having no cost penalty within the fitness function ultimately means the figures
reported here cannot be viewed as real market returns. The strategies have been
trained to trade as frequently as possible to maximize every last bit of profit.
The magnitude of variation in a stock’s price that is generally observed over
a one minute period is not large enough to justify the cost spread that would
be incurred during such trades. Of course, the alternative approaches (B&H,
MaxR, Greedy) also benefit from the lack of costs, meaning the comparisons are
fair ones. The primary concern for this work is to assess whether using selective
training cases improves the predictive efforts of a trading system. The challenge
of implementing the HFS approach under realistic market conditions is left to
future work.

6 Conclusions

This paper demonstrates the idea of improving the performance of a financial
forecasting system by finding a subset of market moves that correspond to pre-
dictable or inefficient times in that market. To implement this idea, the HFS
attempts to first address the question “what are realistic objectives for this data”
before it attempts to tackle those objective. Such an approach is counter to that
of existing forecasting methods, where a system is given all of the training data
and expected to solve the ideal objectives without regard to the feasibility of
those objectives.

The performance of any forecasting methodology could potentially be im-
proved by training case selection. It would be relatively easy to retrofit another
forecasting methodology with an outer GA layer similar to the one described
here, so long as the underlying algorithm uses discretized input cases and can
produce a metric for its performance.

The results from HFS experiments seem to run contrary to two common
notions about market prediction. First, it is generally accepted that the more
training examples the better. The optimal solutions found by the HFS were all
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trained on only a very small fraction of the total training cases available. The
second counter intuitive result is that strategies trained on more ambitious train-
ing sequences did not result in higher out of sample profits. In fact, the opposite
was the case. The Greedy Predictor, which is trained on the perfect sequence
of trades (as calculated in hindsight) produced very inconsistent results, while
the strategies found by the HFS were trained on a much more modest sequence
of trades. For the purposes of financial forecasting it would seem that modesty
is the best policy.
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Abstract. This paper presents the threshold recurrent reinforcement
learning (TRRL) model and describes its application in a simple
automated trading system. The TRRL is a regime-switching extension
of the recurrent reinforcement learning (RRL) algorithm. The basic
RRL model was proposed by Moody and Wu (1997) and used for
uncovering trading strategies. We argue that the RRL is not sufficiently
equipped to capture the non-linearities and structural breaks present
in financial data, and propose the TRRL model as a more suitable
algorithm for such environments. This paper gives a detailed description
of the TRRL and compares its performance with that of the basic RRL
model in a simple automated trading framework using daily data from
four well-known European indices. We assume a frictionless setting and
use volatility as an indicator variable for switching between regimes. We
find that the TRRL produces better trading strategies in all the cases
studied, and demonstrate that it is more apt at finding structure in
non-linear financial time series than the standard RRL.

Keywords: regime-switching, automated trading, reinforcement
learning, differential Sharpe ratio.

1 Introduction

Advances in artificial intelligence techniques and computational power have
opened up exciting avenues of research in the world of finance and economics,
especially in the field of algorithmic trading. One such technique, known as
recurrent reinforcement learning (RRL) was proposed by [1]. It has an autore-
gressive outlook and can be likened to a single-layer recurrent neural network.
Previous work has already shown that the RRL offers good promise in finding
profitable strategies in financial markets. [1] and [2] used the RRL methodology
for training trading systems and portfolios by optimizing risk-adjusted objective
functions such as the differential Sharpe ratio (DSR) and the differential double
deviation ratio (see [3]). The authors used both artificial data and real-world FX
data for their experiments and found out that the RRL-traders led to mostly
profitable situations and outperformed traders trained to maximise profits or
minimise error functions. [4] extended the model to a two-layer neural network
and subsequently drew comparisons between the effectiveness of this variant with
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the original single-layer network: FX data was used for this purpose and it was
found that the two-layer version underperformed the original RRL. Moreover, for
some markets, neither set of mechanical traders could come up with profitable
strategies. [5] used the RRL as part of a system with a layered structure for
trading in FX markets, and talked about the ability of the system to efficiently
exploit structure in past returns time series. More recently, [6] used an objective
function that corresponds to the ratio of the cumulative positive trading returns
to the cumulative negative trading returns for their RRL-trading system. They
used daily data and reported profitable outcomes in all but one case.

Despite the relative success of the single-layer RRL model, it can be argued
that its linear outlook makes it ill-suited to capture all the intricate aspects of fi-
nancial data. An approach with a higher degree of non-linearity could very much
aid in increasing its predictive capabilities. One straightforward way of account-
ing for the non-linearities is to incorporate hidden layers in the network. But, [4]
noted a decline in performance when he introduced a hidden layer in the RRL
topology. Indeed, multi-layer models are prone to overfitting, especially with
noisy financial data, and are quite often unable to generalise properly. Moreover,
such black-box approaches render inference about the input-output relationship
difficult, if not impossible. A certain degree of transparency ensures that auto-
mated trading systems are more tractable, thereby allowing the human expert to
adopt remedial measures or perform fine-tuning more efficiently whenever per-
formance starts to degenerate. Thus there is a need for non-linear models that
can perform well out-of-sample and that can shed some light on how economic
variables affect financial markets. Regime-switching models provide an elegant
solution to this kind of problem. These models define different states of the
world (regimes), and assume that the dynamic behaviour of economic variables
depends on the regime that occurs at any given point in time. This implies that
certain properties of the time series, such as its mean, variance, autocorrelation,
etc., are different in different regimes. Such models offer a great deal of trans-
parency and the concept of regimes helps to capture non-linearities. Moreover,
the regime-switching framework is more adapted for modelling dramatic changes
in behaviour in economic time series, as a consequence of events such as financial
crises or major changes in government policy [7].

We propose a new model, called Threshold Recurrent Reinforcement Learning
(TRRL), that augments the existing RRL with regime-switching properties. We
argue that the TRRL is more suited at dealing with the non-linear properties of
financial data and therefore can lead to more profitable trading strategies. The
principal goal of this paper is to describe the main building blocks of this model,
and compare its performance with the basic RRL in an automated trading setting
using daily financial data from four well-known European stock indices.

The outline of the paper is as follows: in Section 2, we briefly review the basic
RRL model and focus on how it can be repackaged to formulate the regime-
switching RRL model, as well as present the main equations related to the
online learning procedure via maximisation of the differential Sharpe ratio. This
is followed by a section on the experiments carried out to compare the two
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methodologies. Section 4 provides concluding remarks and discusses possibilities
for future work.

2 Model Description

2.1 Threshold Recurrent Reinforcement Learning

Recurrent reinforcement learning, proposed by [1], is an adaptive policy search
algorithm which tries to maximise a certain performance criterion in order to
learn profitable investment strategies. As its name suggests, the system is recur-
rent, meaning that the current investment decision has a say in shaping future
decisions. In the presence of transaction costs, investment performance depends
on sequences of interdependent decisions; the recurrent nature of the algorithm
takes this path-dependency into account [2]. For a single-asset, two-position
trader who can take only long or short positions of constant magnitude, the
trading function is

Ft = tanh

(
m∑

i=0

wirt−i + wm+1Ft−1 + wm+2v

)
. (1)

Ft is the output of the network at time t. A long position is adopted when
Ft > 0; the trader buys an asset at time t and makes a profit if the price goes
up in the next time step. If Ft < 0, the trader short sells an asset at time t
and makes a profit if the price goes down at time t + 1. The price return rt

corresponds to the difference in value of the asset between the previous period
and the current period, i.e. rt = pt − pt−1. The term v is the familiar bias
present in neural network models, typically having a value of 1. The wi’s denote
the system parameters or network weights that need to be optimised. Note that
the time indexation of the weights has been dropped for clarity. The term Ft−1,
i.e. the trade position at the previous time step, induces recurrence and hence
some kind of internal memory. The RRL model is not restricted to taking only
lagged price returns as input. It can easily accommodate technical indicators or
other economic variables that might have an impact on the security.

It was argued earlier that such a system might fail in capturing all the in-
tricacies of financial markets, and a regime-switching version could potentially
be more adapted to such highly non-linear environments. There exists some
well-established regime-switching methods that have gained prominence in econo-
metrics. These include the threshold model, initially proposed by [8], the Markov-
Switching model of [9], the artificial neural network model of [10], and the smooth
transition model (see [11]), the latter being a more general version of the thresh-
old model. While all of these could potentially be used to extend the basic RRL,
the threshold model is more appealing for this particular problem because of its
simplicity and the degree of transparency that it offers. It assumes that a regime
is determined by the value of an indicator variable qt relative to a threshold value
c. Suppose that we have a 2-regime model for some dependent variable yt, and
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each regime is characterised by an autoregressive process of order 1, i.e. AR(1)
process. The threshold model can be expressed as

yt = (φ0,1 + φ1,1yt−1) (1 − I [qt > c])
+ (φ0,2 + φ1,2yt−1) (I [qt > c]) + zt (2)

where zt denotes an i.i.d white noise process, and I[X ] is an indicator function
with I[X ] = 1 if event X occurs and I[X ] = 0 otherwise. This model offers great
flexibility and can easily be modified to account for higher-order ARMA models
in the different regimes.

The threshold version of the recurrent reinforcement algorithm can be formu-
lated by considering (1) and (2). A two-regime system having indicator variable
and threshold denoted by qt and c respectively, can be described as

Ft = yt,1 (I [qt > c]) + yt,2 (1 − I [qt > c]) (3a)

yt,j = tanh

(
m∑

i=0

wi,jrt−i + wm+1,jFt−1 + wm+2,jv

)
for j = {1, 2} (3b)

The TRRL system can be thought of having two RRL networks, each one corre-
sponding to a particular regime and having a distinct set of weights. The overall
output Ft of the system is the weighted sum of the the outputs y1 and y2 of the
individual networks. The weighting factor is actually the value of the indicator
variable, and is determined by the prevailing regime. Initially, both networks
have the same set of weights. During training, the model promotes selective
learning and this leads to each network developing a unique set of weights. If
the system is in a particular regime, the network associated with that regime
is exposed to higher weight updates than the other. Each network learns a dis-
tinct mapping that corresponds to a specific region in the space spanned by the
indicator variable. The latter effectively acts as a switch or gating device that
selects the appropriate network at each time step.

The threshold model can be easily modified to represent a more gradual
(smooth) transition between regimes or extended to account for multiple regimes
and/or multiple indicator variables (see [12] for more details). These regime-
switching models can be thought of as a teacher-directed learning variant of
the mixtures of experts (MoE) neural network model developed by [13]. In the
MoE models, a gating network learns to adaptively partition the input space and
assign one expert for each partition. In the regime-switching RRL models, the
partitioning is not part of the actual learning process. The input space is broken
down in an arbitrary manner, based on the knowledge and beliefs of the designer,
and this teacher information is then used to update the expert networks.

2.2 Differential Sharpe Ratio for Online Learning

The learning process of the TRRL is in essence similar to that of the RRL de-
scribed in [1]. It involves maximising a certain performance criterion to obtain
a set of network weights that can lead to profitable strategies. However, in the
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case of the TRRL, the indicator variable has a great say in directing the outcome
of the learning phase. The selection of the appropriate indicator variable is of
critical importance. The very nature of the algorithm calls for an indicator vari-
able that has certain desirable characteristics. First and foremost it must have
an impact on the serial correlation of the price returns process. Next, for proper
learning, frequency of switching between regimes should be reasonable. Exces-
sive switching tends to destabilise the learning process, while unreasonably low
switching frequencies lead to situations where the system is reliant on very old
information; this is not desirable since financial markets are dynamic, meaning
that patterns that were present a long time ago might not be present now. In
addition, as is always the case for regime-switching models, it is required that
each regime contains a minimum percentage of the observations. Finally, for re-
liability purposes, it should preferably be an observable variable; otherwise, if
a latent variable is to be chosen, the estimation techniques should be fast and
relatively simple.

Another important aspect concerns the choice of objective function for op-
timisation. [2] showed that RRL systems trained by maximising risk-adjusted
performance criteria perform better than those trained by minimizing error func-
tions. They used stochastic gradient ascent to maximise the differential Sharpe
ratio (DSR), a variant of the well-known Sharpe ratio introduced by [14]. The
DSR is derived by making use of exponential moving average estimates of the
first and second moments (At and Bt respectively in (5), as described in [2]) of
the trading returns distributions. The same approach has been adopted in this
paper. The trading return Rt, as defined by [2], is expressed as

Rt = rf
t + sign (Ft−1)

(
rt − rf

t

)
− δ

⏐⏐sign (Ft) − sign (Ft−1)
⏐⏐ (4)

where rf
t is the risk-free rate of interest and δ is the transaction cost rate per

share traded . Note that both of these terms have been assumed to be zero in
this study. The exponential moving average Sharpe ratio can be expressed in
terms of the trading return Rt. It is given by

St =
At√

Bt − A2
t

(5)

where

At = At−1 + η (Rt − At−1)

Bt = Bt−1 + η
(
R2

t − Bt−1
)

The DSR is obtained by expanding the exponential moving average version to
first order in the adaptation rate η [2]. It is defined as

Dt =
Bt−1 (Rt − At−1) − 1

2At−1
(
R2

t − Bt−1
)(

Bt−1 − A2
t−1

) 3
2

(6)
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It can be optimised incrementally using gradient ascent. If ρ corresponds to the
learning rate, the weight update equation is given by

wt,j = wt−1,j + ρΔwt,j for j = {1, 2} (7)

where

Δwt,j =
dDt

dRt

(
dRt

dFt

dFt

dwt,j
+

dRt

dFt−1

dFt−1

dwt−1, j

)
.

The derivative dFt

dwt
for online training can be computed using an approach similar

to backpropagation through time (BPTT) introduced by [15] and discussed in
[2],

dFt

dwt,j
≈ ∂Ft

∂wt,j
+

∂Ft

∂Ft−1

dFt−1

dwt−1,j
for j = {1, 2} (8)

where

∂Ft

∂wt,j
=

∂Ft

∂yt,j
× ∂yt,j

∂wt,j

∂Ft

∂Ft−1
=

2∑
j=1

(
∂Ft

∂yt,j
× ∂yt,j

∂Ft−1

)
.

All the required derivatives can be computed using basic differentiation rules,
and thus the weight update process turns out to be rather straightforward and
relatively fast.

3 Experiments

3.1 Setup

This section describes the experiments carried out to gauge the efficiency of the
TRRL relative to the basic RRL model. The simulation results are presented and
an assessment of the main findings is given. The experiments aimed at comparing
the abilities of both sets of traders to discover structure in real financial price
series. The traders studied were of the {long, short} type who could buy/short
sell only 1 share at a time. Transaction costs were assumed to be zero. The
training phase consisted of subjecting the traders to training data of length Ltr

for a number of epochs ne. The trades made during the training period allow
the systems to update their weights in a bid to generalise properly when faced
with novel data. The performance of the traders was assessed by considering the
trades made during an ensuing period Lte. The static Sharpe ratio was used
as the performance measure. Both types of traders were subjected to identical
initial conditions and model parameters, and adapted using either RRL or TRRL
to optimize the DSR. Initial conditions here refer to the initial set of weights
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assigned to the networks. The weights were sampled from a uniform distribution
such that −0.1 ≤ wi ≤ 0.1. The model parameters include the learning rate ρ,
the adaptation rate η, the number of lagged price return inputs m, the size of
the training window Ltr,the number of training epochs ne, and the size of the
test window Lte. The values used were Ltr = 2000, Lte = 250, m = 5, ne = 5 ,
ρ = 0.01, and η = 0.01, inspired from previous work by [3] and [4].

The indicator variable used in this paper is volatility. Empirical studies car-
ried out by [16], [17], and [18] by and large indicated that an upsurge in volatility
increases the likelihood of negative autocorrelation in returns (see [12] for more
details). Morever, since volatility is known to have a persistent nature, there is
little risk of the trading system suffering from excessive regime switching. Al-
though volatility is a latent indicator variable, various standard techniques that
ally speed and reliability exist for its estimation. For our experiments, a sim-
ple GARCH(1,1) framework was chosen to represent the volatility process. The
choice was motivated by the parsimony and the widely-acknowledged reliability
of this type of model. For each dataset, the respective GARCH parameters were
estimated over the training data, and subsequently used to make one-day-ahead
forecasts during the test period. The median of the volatility distribution span-
ning the training period was taken as the threshold for the regime-switching
framework.

3.2 Data

The data consisted of daily closing prices of 4 well-known European stock in-
dices, namely the French market index (CAC 40), the FTSE 100 index from the
London Stock Exchange, the DAX from the Frankfurt Stock Exchange, and the
Swiss market index (SMI). A nine-year period from December 1999 upto Oc-
tober 2008 was considered. It was divided into a training portion consisting of
2000 datapoints (roughly 8 years of data), and a test portion of 250 datapoints
corresponding to the period between Oct. 2007 and Oct. 2008. The price return
at time t is defined by rt = 100× [ln(pt)− ln(pt−1)] where pt is the price index at
time t. The resulting return series was multiplied by a factor c (c = 0.5 for our
experiments) before being input to the network to ensure that the lagged returns
are on a scale comparable to the Ft−1 values. Figure 1 illustrates the relevant
financial time series for the SMI. The other indices have very similar profiles.
The price series reflect chronologically the bursting of the dot-com bubble, the
transition to the US housing bubble and the subsequent deflation of the latter
which eventually led to the current crisis. The corresponding volatility profiles,
and to some extent the return series, show how markets went from turbulent
to tranquil and back to turbulent again. More specifically, the test period is
predominantly in a high-volatility regime for all the datasets.

3.3 Results and Discussion

Figure 2 summarises the test results for an ensemble of 1000 cases for each index.
It can be seen that both types of traders yield mostly positive out-of-sample
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Fig. 1. The price series, return series and volatility estimates for the SMI dataset for
the period December 1999 to October 2008. The vertical line separates in and out of
sample periods, the horizontal dotted lines in the rightmost graph correspond to the
median of the volatility distribution for the training period.
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Fig. 2. Box plots comparing the out-of-sample performance of an ensemble of 1000
RRL-traders against the TRRL-traders

Sharpe ratios, with the TRRL-traders outperforming the RRL-traders in each
case. The disparity in performance can be explained by looking at the volatility
profile. There is a definite switch from a low-volatility to a high-volatility regime
just before the test period begins. The RRL is unable to adjust to its new
environment quickly enough, and therefore performs poorly. The TRRL however
develops two sets of weights, one for each regime. The first set undergoes rigorous
weight updates in the first half of the training period and very little change in the
second half, and vice versa for the second set. The first set of weights is thus well-
suited for highly volatile periods. The high volatility in the test period implies
that the TRRL bases its trade decisions on the first set of weights rather than
the second. Thus, the significant regime change just before the test period does
not have a detrimental effect on the out-of-sample performance of the TRRL.

The superiority of the TRRL is also quite telling about the choice of volatility
as an indicator variable, at least for the datasets considered. It is able to broadly
describe the shifts from one economic regime to another experienced by financial
markets over the last decade or so. And interestingly enough, analysis of the
weights developed by the TRRL tend to support the empirical findings about
the relationship of serial correlation with volatility. For the datasets studied, the
set of weights developed for the high-volatility regime is typically more negative
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than that developed for the low-volatility regime. Although the weights cannot
be directly related to the coefficients of serial correlation, they do act as a good
proxy, by virtue of the autoregressive construction of the algorithm.

Because of the frictionless settings assumed in this study, some degree of
caution has to be preached while considering the relatively high out-of-sample
Sharpe ratios achieved by the majority of the traders. With the inclusion of
transaction costs, the out-of-sample performance of both types of traders would
undoubtedly degrade, but it is realistic to assume that, for the datasets consid-
ered, the TRRL-traders would still outperform their RRL counterparts.

In [12], controlled experiments using artificial data showed that in general, the
TRRL perform as well as the standard RRL if there is one prevailing regime, or if
regimes are closely related to one another. However, in the presence of distinctly
different regimes, as in the case with autocorrelation of different sign in each
regime, the TRRL is more efficient. Thus, the TRRL does not undermine the
basic working principles of the RRL, meaning that it can still capture temporal
dependencies, just like the RRL, and on top of that, the added threshold non-
linearity increases its predictive capabilities.

4 Conclusion

In this paper, we proposed the TRRL model, which is a regime-switching version
of the RRL algorithm put forward by [1]. We compared the performance of both of
these algorithms in an automated trading setting using daily return series of four
well-known European indices. We also emphasized on the importance of correct
identification of the regimes, and advocated the use of volatility as an indicator
variable for the construction of the TRRL while dealing with real-world financial
time series data. Results showed that the TRRL is better than the RRL in find-
ing profitable strategies, especially in the aftermath of a drastic regime change.
The majority of TRRL-traders yielded positive Sharpe Ratios out-of-sample for
all 4 datasets, and significantly outperform the RRL-traders. The results thus back
the notion of integrating regime-switching with the RRL methodology, and also
demonstrate the viability of using volatility as an indicator variable. However, for
more conclusive inferences, a more realistic setting must be used as well as addi-
tional datasets.

The flexibility of the model presented implies that it can be easily modified
to suit the financial problem being investigated. For example, it could be easily
extended to trade a portfolio of securities or for a simple asset allocation problem.
It could be used for trading commodities or Forex instruments instead of stocks,
or applied to other problems where investment decisions need to be taken. If the
situation requires more than two regimes and/or more indicator variables, the
model can easily be extended to account for that. Thus, the model presented can
be customised and tailor-made to the needs of the problem, and the indicator
variables hand-picked to best match the features of the application environment
and the beliefs of the designer.
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Abstract. We consider the problem of structuring a portfolio that out-
performs a benchmark index, assuming restrictions on the total number of
tradable assets. We experiment with non-standard formulations of active
portfolio management, outside the mean-variance framework, incorporat-
ing approximate (fuzzy) investment targets and portfolio constraints. To
dealwith the inherent computational difficulties of cardinality-constrained
active allocation problems, we apply three nature-inspired optimisation
procedures: simulated annealing, genetic algorithms and particle swarm
optimisation. Optimal portfolios derived from these methods are bench-
marked against the Dow Jones Industrial Average index and two simpler
heuristics for detecting good asset combinations, based on Monte-Carlo
simulation and fundamental analysis.

Keywords: Active portfolio management, Fuzzy multi-objective
programming, Cardinality constraints, Evolutionary computation, Sim-
ulated annealing, Genetic algorithms, Particle swarm optimisation.

1 Introduction

Active portfolio management, or enhanced indexation, is a collective investment
scheme where the performance of the portfolio strategy is measured relatively
to a benchmark market index. It is well known that many institutional investors
follow this benchmarking procedure, by focusing e.g. on the course of a broad
market index such as the S&P 500. In the recent years, active index trackers have
become popular and in many cases have outperformed more passively placed
funds that aspire to closely reproduce benchmark’s returns.

In practice, a number of implementation issues hinder the task of setting-up an
active strategy and generally reduce its investment performance. Active manage-
ment typically involves frequent rebalancing of the portfolio, through careful stock-
picking, which incurs high management and transaction costs. In the light of these
issues, a natural decision problem is how to actively reproduce index performance
whilst limiting the overall effect of market “frictions”. This is achieved, in practice,
by keeping the rebalancing rate low, or most importantly, imposing a limit on the
maximum number of tradable assets, the so-called cardinality constraint.
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Nowadays, there exist a plethora of methodologies for structuring index track-
ing portfolios with cardinality constraints (some references are given in following
sections; see also [1] for a comprehensive survey). Despite the numerous applica-
tions of passive portfolio selection, active tracking formulations - especially those
incorporating cardinality constraints - have not yet attracted full attention. In
[8] we consider three alternative formulations of active portfolio management,
based on the traditional mean-variance view of portfolio selection. In this paper,
we expand upon this issue by making an attempt to incorporate non-standard
objectives related to portfolio performance. These focus, for example, on the
probability that the index portfolio delivers positive return relatively to the
benchmark or on restricting the total risk of the investment strategy. Such tar-
gets/constraints on portfolio performance can be effectively formulated within
the framework of fuzzy mathematical multi-objective programming.

The rest of the article is structured as follows: enhanced index tracking with
cardinality constraints is studied in section 2, while section 3 discusses the
nature-inspired optimisation heuristics employed in our study to solve active
portfolio formulations. Section 4 details an alternative, “fuzzy”, conceptualisa-
tion of active portfolio management structured around approximate investment
targets and portfolio constraints. In section 5 we evaluate the performance of
fuzzy portfolios in terms of actively reproducing the American DJIA index. Sec-
tion 6 summarises the main findings and proposes future research directions.

2 Index Tracking with Cardinality Constraints

Consider the following investment problem whereby a fund manager has to de-
cide the best subset of K stocks (K < N) that can actively reproduce returns
on a benchmark index I as well as the appropriate percentage of capital wi that
should be invested in each stock i. The active portfolio optimisation problem can
be stated in its general form as maximise

w∈RN , s∈{0,1}N
f(w, s) subject to

∑N
i=1 wi = 1,

wl ≤ wi ≤ wu, i = 1, ..., N and
∑N

i=1 si ≤ K ≤ N , where f(w, s) is the port-
folio’s active objective, which is a function of weights w = (w1, w2, ..., wN )′, a
vector of binary variables s = (s1, s2, ..., sN )′ and sample data. Several choices
for f(., .) are later discussed in section 4. Each si is an indicator function that
takes the value 1 if asset i is included in the portfolio and 0 otherwise. All asset
weights sum to one, implying that the initial capital is fully invested, and the
maximum number of assets allowed in the portfolio should not exceed K ≤ N ,
which is the cardinality constraint. Depending on the cardinality of the portfolio
P , some of the wi’s may be zero and if an asset i is included then the fund man-
ager may impose a lower or upper limit on its weight, wl and wu, respectively,
the so-called floor and ceiling constraint.

The introduction of cardinality constraints significantly increases the com-
putational effort associated with deriving optimal portfolio allocations. In fact,
one ends up with a mixed nonlinear-integer programming problem, which even
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for small values of N becomes a challenge for gradient-based optimisation tech-
niques. In this paper, we adopt a solution strategy that overcomes the difficulties
of handling integer constraints by introducing a transformation of the decision
variables (see [8,6] for details). The underlying idea is to solve an unconstrained
optimisation programme with decision variables (x1, ...., xN ) ∈ R

N and use a
deterministic function to map the values of (x1, ...., xN ) onto a feasible portfolio
allocation (w1, w2, ..., wN ), where K out of N weights are zero.

3 Nature-Inspired Optimisation Algorithms

Many real-life optimisation problems in finance are considered “hard” due to
combinatorial explosion or the ruggedness of the optimisation landscape. Tradi-
tionally, practitioners approach these problems adopting techniques that make
use of relaxation and decomposition principles, such as branch & bound, dy-
namic programming and quadratic line-search. In the last decades, a number of
intelligent computational algorithms, such as simulated annealing, tabu search,
genetic algorithms, ant colonies and particle swarms, have been developed to
solve a wide range of practical optimisation problems.

In this study, we experiment with three popular nature-inspired computa-
tional schemes in the task of solving active portfolio optimisation problems. We
first present a trajectory-based strategy, namely simulated annealing, and then
introduce two evolutionary computational heuristics, genetic algorithms and par-
ticle swarm optimisation.

Simulated annealing (SA) took its name and inspiration from the annealing,
a technique used in metallurgy involving heating and controlled cooling of a
solid ([5]). The central idea is to start with some arbitrary solution and have
it modified by randomly generating a number (or else population) of new so-
lutions in its vicinity. To overcome the possibility of premature convergence to
local optima, the algorithm also accepts solutions that come with impairment,
yet with decreasing probability. Genetic algorithms (GAs) employ an alterna-
tive solution-search strategy by forcing a parallel exploration of the solution
space by means of several agents that interact with each other. Inspired by the
process of natural selection that drives biological evolution, a genetic algorithm
repeatedly modifies a population of solutions until it“evolves” towards a “fit”
generation ([7]). Among the numerous forms in which genetic algorithms ap-
pear in the literature, in this paper we adopt a simple version of the algorithm
that encodes solutions into vectors of real numbers and uses three genetic opera-
tors to move towards fitter populations: elitist selection, crossover and mutation.
Particle swarm optimisation (PSO) is another computational heuristic inspired
by the behaviour of biological flocks or swarms [3,4]. Instead of applying ge-
netic operators, PSO flows “particles” in the search space with a velocity and
direction that are dynamically adjusted according to each particle’s learning ex-
perience (the best solution detected by the particle in its own exploration) and
the swarm’s collective memory (the global best solution found by any particle
in the swarm).
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4 Traditional vs. Fuzzy Enhanced Indexation

Much of portfolio selection is about setting aspiration levels for performance in-
dicators as well as constraints on the total risk of the investment strategy. This
is often done, in practice, using mathematical programming formulations that
require precise definition of objectives and an accurate expression of preference
towards return and aversion towards risk. In the real-world, however, investment
strategies are often structured around imprecise statements of investors about
the required return or the risk profile of trading positions: “Given current market
conditions, I would appreciate an annual return of not much more than 5%
in excess of the benchmark” or “The probability of shortfall should not signifi-
cantly exceed 20%”. Fuzzy optimisation theory offers a very convenient frame-
work for accommodating such approximate linguistic-type information, through
the introduction of fuzzy goals and constraints [2].

To illustrate the idea, let us assume that the investor sets the objective for a
performance indicator x to significantly exceed a certain level s0. This imprecise
goal can be modelled by means of the sigma-shaped function depicted in the
upper plot of Fig. 1. The x-axis represents all possible values for x while the
y-axis measures the overall degree of goal attainment. Note that the investor
effectively rejects solutions for which the value of x falls below s0, by assigning a
degree of satisfaction equal to 0. As x increases, so does the goal fulfilment and
the investor is practically indifferent between any solution for which the value of
x exceeds s1 (the upper aspiration level). In a similar fashion, one can formulate
goals or constraints of the type “x should be much less than z1” or “x should
be approximately equal to p2” using zeta- or pi-shaped functions depicted in
Fig. 1.
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The fuzzy linguistic framework presented above can be applied in enhanced in-
dexation, by choosing a suitably defined objective function f(.) for the portfolio-
selection problem discussed in section 2. In our study, we experimented with
portfolio objectives of the form: restrict the probability of under-performing the
benchmark, while keeping the tracking error standard deviation small. This com-
posite investment requirement is formulated by properly combining zeta-shaped
functions, resulting in the following maximising function f ≡ z(sTE, 1%, 10%) ·
z(P−, 10%, 50%). In this equation, z() denotes the zeta-shaped function, sTE

is the standard deviation of sample tracking error and P− is the probability
of under-performing the benchmark. As seen from the particular choice for the
cutting points of f , the fund manager is unsatisfied with portfolio configurations
whose (annualised) sTE is above 10% and whose probability of going below the
benchmark exceeds 50%. On the contrary, he is perfectly happy, and in fact indif-
ferent between any active formulation that manages to jointly keep the tracking
error standard deviation below 1% (on an annual basis) and the probability of
under-performance below 10%.

5 Empirical Study: Actively Reproducing the Dow Jones
Industrial Average Index

5.1 Sample Data and Experimental Design

We evaluate the performance of the methodology presented above in terms of ac-
tively reproducing the Dow Jones Industrial Average (DJIA) index. Our sample
data includes daily closing prices of the DJIA index as well as its 30 constituent
stocks covering the period from 21/01/2004 to 12/01/2006. This amounts to a
total of 500 trading days, half of which were used for deriving optimal portfolio
configurations and the remaining half for out-of-sample evaluation of trading
performance.

To fill in the input list of the portfolio optimisation problems, we set the range
of acceptable weight values to [0.05, 0.8], excluding the possibility of short-selling
a member stock. We also estimated the probability P− by which a portfolio is
likely to under-perform the benchmark using the frequency rate T−/T , where
T− is the number of trading days for which the portfolio’s return is below bench-
mark’s and T is the total number of observations in the estimation sample.

Optimal portfolio allocations were computed in the estimation sample, by
solving the active optimisation problem described in section 2 for both active
objectives and a range of portfolio cardinalities K = {2, 5, 10, 15, 20, 25, 30}.
All optimisation algorithms were run assuming a comparable level of computa-
tional resources, using default parameter values suggested in the literature. The
population size was set equal to 100 and the maximum number of generations
(iterations) was 200. We also made 500 independent runs of each algorithms
from random initial populations. Due to space limitations, the parameter set-
ting for each technique is not presented here but is available from the author
upon request.
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The performance of nature-inspired techniques was compared against simpler
heuristics for detecting good asset combinations. The first one was a Monte-
Carlo portfolio selection technique, in which the optimal portfolio was selected
by generating 2000 random asset combinations of fixed cardinality K, computing
optimal weights for each combination by means of a gradient-search technique
and picking the asset combination that maximises the portfolio’s objective. An
alternative stock picking method was adopted which makes use of fundamental
stock analysis, looking, in particular, at the market capitalisation and the beta
of each member stock.

Fig. 2 shows the maximum (in-sample) degree of objective fulfillment achieved
by each portfolio-selection technique versus the total number of assets allowed
in the portfolio. The line segments under the label MC99%

worst, (MC99%
best ) represent

the worst (best)-performing asset allocation detected by the Monte-Carlo simu-
lation with 99% confidence1. The upper curve, which signifies the frontier of the
shaded region, corresponds to the global optimum portfolio configurations, which
were all indicated by nature-inspired optimisation heuristics2. As observed, evo-
lutionary algorithms were by far superior as they managed to deliver much more
acceptable portfolios at all cardinalities. On the other hand, optimal allocations
based on size and beta were generally unsuccessful in meeting the objectives set
by the fund manager. Fig. 2 signifies the importance of carefully exploring the
space of feasible solutions when actively reproducing a benchmark. A relatively
small, yet carefully chosen, portfolio can closer meet active objectives than larger
portfolios of arbitrary elements. Note that in the estimation sample period under
consideration, an optimal portfolio of K = 5 DJIA stocks can increase the overall
degree of fulfilment up to 0.16, which is higher than that achieved by any cap-
ital allocation indicated by the Monte-Carlo or the fundamental stock-picking
technique.

Table 1 gives further insight into the relative performance of nature-inspired
optimisation schemes. It reports the percentage of runs for which each algorithm
detected a portfolio allocation that is at worse (20%, 40%, 60%) far from the
global optimum (the best-ever solution reported for each cardinality). A general
remark about the results of Table 1 is that the probability of closely reaching
the optimal region in a single run diminishes with the cardinality of the portfo-
lio, which is indicative of the increasing complexity of the optimisation problem.
Hence, as cardinality increases more restarts are needed to detect a good so-
lution with high confidence, due to the fact that algorithms find it harder to
convergence to a near-optimum region. The success rate quickly builds up at
all cardinalities with an increasing range; note that GA and PSO can detect
with more than 95% confidence a solution which at worse deviates 60% from

1 We also present the median curve, which in Fig. 2 is identified with the MC99%
worst.

2 In almost all cases, except for very low cardinalities, these are the portfolios selected
by PSO. GA and SA identified portfolios with lower value for the objective function,
however these portfolios were superior to either MC or fundamental stock-picking at
all cardinalities. A summary about the relative performance of each method is given
in Table 1; further details are available upon request.
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Table 1. Empirical (%) probability of detecting a portfolio allocation within a range
of (20%, 40%, 60%) of the global optimum

Cardinality 5 10 15 25 30

Simulated
annealing (6.4, 27.6, 78.4) (0.6, 8.4, 46.8) (0.0, 5.0, 38.0) (0.0, 3.4, 39.2) (0.0, 3.2, 37.2)
Genetic
algorithm (13.0, 67.8, 98.8) (1.6, 50.6, 98.6) (0.0, 20.4, 96.6) (1.0, 23.4, 98.0) (0.2, 24.0, 99.0)
Particle swarm
optimisation (30.4, 70.4, 98.8) (12.2, 66.4, 98.8) (3.0, 47.6, 97.8) (3.0, 44.2, 98.0) (3.2, 53.8, 98.8)

the global optimum. Among all heuristics considered in this study, PSO seems
to be the most robust technique, as it manages to detect with higher frequency
close-to-optimum allocations, independently of the initial state of the algorithm.
SA has the lowest empirical success rate, which gets particulary worse with an
increasing number of trading positions. This signifies the benefits from parallel
exploration as opposed to trajectory-search techniques.

The financial performance of optimal active portfolios is analysed in Table 2.
Each entry of the table is an average of the corresponding performance indica-
tor over the whole range of cardinalities. The first (second) row associated with
each method shows in-sample (out-of-sample) performance. All active strategies
are evaluated in terms of the tracking error standarddeviation (sTE), the probabil-
ity of under-performing the benchmark (P−), the average portfolio return (mP ),
the standard deviation of returns (sP ), the Sharpe ratio (SR), the Sortino ratio
(SoR), the average excess return over the downside standard deviation (measured
as the average of squared negative portfolio returns), and the cumulative return
generated at the end of the investment period (CR). In the first three columns
of the table, we report in addition the degree of fulfilment for the composite as
well as for the two individual portfolio objectives (Obj1 refers to the constraint
on sTE and Obj2 to the restriction on the probability of shortfall). For compari-
son purposes, we also report in the last row of Table 2 performance measures for a
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Table 2. Average (%) performance indicators of optimal portfolios

Portfolio
selection method

Degree of fulfilment sTE P− mP sP SR SoR CR
Total Obj1 Obj2

Evolutionary
computation

39.75 71.66 48.07 4.20 30.82 13.60 11.11 94.33 150.07 14.63
1.28 65.44 1.59 4.61 46.98 8.58 11.09 49.96 86.11 8.99

Fundamental
stock picking

2.37 46.41 3.90 6.17 44.99 11.07 9.92 79.82 11.76
0.01 55.11 0.43 5.33 49.37 2.54 9.96 -4.73 2.66

Monte-Carlo
11.00 14.74 70.64 4.22 39.41 9.02 11.17 52.68 9.56
0.27 67.37 0.35 4.42 49.03 4.52 11.2 14.65 4.67

Buy-and-hold - - - - - 2.48 10.76 -4.82 -7.58 2.51
- - - - - 4.28 10.05 12.70 20.89 4.37

buy-and-hold strategy placing equal amounts to all member stocks. To facilitate
interpretation of results, we express figures as a percentage and on an annual basis
(except for P− which refers to the probability of shortfall between two consecutive
trading days). All calculations of Sharpe ratio assume a constant risk-free rate of
return equal to 3% per annum.

The overall picture of Table 2 indicates both in- and out-of-sample supe-
riority of optimal portfolios suggested by evolutionary techniques. Such asset
allocations manage to keep the tracking error std below 10%, the least desir-
able threshold, and also have a better control on the probability of shortfall,
which in no case exceeds 50% as required by the fund manager. For these rea-
sons, evolutionary algorithms attain the highest average degree of fulfilment for
the investment objectives among all portfolio-selection techniques. Despite the
fact that evolutionary portfolios are characterised by low tracking error, they
manage to deliver above-market average and total return with similar-to-market
risk, hence the major improvement in Sharpe and Sortino ratios. Note that al-
though intelligent trading strategies managed to control the tracking error in
both sample data sets (as seen by the sTE column), they generally find it hard
to outperform the market with high frequency in the last period (the proba-
bility of going below the market has on average increased from 30.82% in the
estimation to 46.98% in the out-of-sample period). This is also evident from
the shrinkage of the average spread between portfolio and market mean return,
which ranged from 13.6-2.48=11.12% in the estimation to 8.58-4.28=4.30% in
the out-of-sample period. The gradual deterioration in the investment perfor-
mance - a common characteristic of all active strategies - could be attributed
to the fact that portfolios are rebalanced only once per year, which makes it
difficult to closely meet trading objectives.

6 Discussion - Further Research

In this paper, we analyse the construction of optimal portfolios for an investor
who benchmarks his trading strategy against a market index. We deviate from
the main trend in active asset management by considering non-standard ob-
jective functions, focusing on the risk faced by the investor when his portfolio
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under-performs the market. These objectives can be effectively handled by com-
bining properly defined fuzzy goals and constraints. We also examine the situa-
tion of index tracking using a subset of the assets available in the market. These
special active formulations lead to optimisation problems of particular compu-
tational complexities, which can be effectively handled by means of intelligent
heuristics, such as simulated annealing, particle swarm optimisation and genetic
algorithms.

The results of our empirical study have important implications both for the
computational properties of optimisation algorithms as well as the trading per-
formance of the derived asset allocations. We show that in the sample period un-
der consideration, passively holding DJIA stocks is an inefficient trading strategy
and that an investor can benefit from straying away from the market. However,
the ultimate success of the active investment scheme depends both on careful
asset selection and optimal capital allocation. Evolutionary heuristics that drive
the exploration of the solution space in both directions are more likely to detect
optimal portfolio allocations with improved in- and out-of-sample performance.
These tend to outperform both Monte-Carlo and simple expert rules of thumb
based on fundamental stock analysis. Computation methods, such as genetic al-
gorithms and particle swarm optimisation, are shown to be an effective tool for
handling the inherent complexities of cardinality-constrained portfolio optimisa-
tion problems. The success of these methods can be attributed to their parallel
exploration procedures and the stochastic elements embedded into the solution-
search process. However, an undesired feature of the introduction of randomness
is the large diversity in reported solutions (especially in complex landscapes),
which calls for repeated runs before a near-optimum solution is reached with high
confidence. An objective of this study was to bring out the inherent complexi-
ties of cardinality-constrained active formulations and also provide an empirical
analysis of the stochastic properties of optimisation heuristics.

There are many directions in which the presented methodology could be de-
veloped in the future. First of all, it would be interesting to experiment with
alternative active formulations, utilising different definitions of reward and risk.
Searching for an optimal parameter setting that would boost algorithmic perfor-
mance would also be a major step towards understanding how best to operate
each heuristic and what to expect from it. Extensive comparisons with other
optimisation techniques or simple rules of thumb for detecting good asset com-
binations, would shed further light on the complexities of the active optimisation
programmes. In our future research plans is to benchmark active portfolios de-
rived from intelligent heuristics against indexes with a much broader market
coverage, such as the S&P 500 or Russell 3000.
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Abstract. Evolutionary computation techniques are closely connected
with Monte Carlo simulations via statistical mechanics. Most practi-
cal realizations of such a connection are based on Markov chain Monte
Carlo procedures and Markov chain approximation methodologies. How-
ever, such realizations face challenges when we have to deal with multi-
variate situations. In this contribution, we consider the development of
evolutionary type Monte Carlo based algorithms for dealing with jump-
diffusion stochastic processes. In particular, we focus on the first passage
time problems for multivariate correlated jump-diffusion processes in the
context of credit risk and the analysis of default correlations. The devel-
oped technique can be useful in option pricing as well as in other areas
of complex systems analysis.

Keywords: Evolutionary Monte Carlo based techniques; Credit risk;
Default correlations; Brownian bridge simulations; Complex systems;
Multivariate jump-diffusion processes.

1 Introduction

Evolutionary computation techniques are common in dealing with various opti-
mization, integration, and sampling problems in science and engineering where
we attempt to explore the search space with a population that is with a multi-
subset of such a subset. The connection between evolutionary algorithms and
Monte Carlo methods has been analyzed by a number of authors (e.g., [3,4,8]).
It is quite natural to utilize this connection in the multivariate stochastic models
where we deal the analysis of more than one statistical variable.

Evolutionary computation techniques usually include both selection and vari-
ation where during the selection we replicate an individual in the population
based on selection probabilities, while their stochastic perturbations during this
process are viewed as variation. The selection mechanism can be based on dif-
ferent distributions and corresponding algorithms including Boltzmann-Gibbs,
Tsallis-Stariolo, Metropolis-Hasting and others [6,8]. One of the ways of integrat-
ing evolutionary techniques and Monte Carlo is to apply Evolutionary Markov
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Chain Monte Carlo (EMCMC) methodologies [4], deeply rooted in the Markov
chain approximations [15].

Several application areas in data mining for EMCMC methods have been
recently explored [8,5] and several evolutionary strategy algorithms based on
sequential Monte Carlo simulations have been proposed [10]. The interest in this
new development has been largely stimulated by the fact that standard MCMC
methods can be trapped in a local mode indefinitely [9]. Attempts were made
in the past to remedy this difficulty by developing multiple MCMC that can be
run in parallel, each of which can, in principle, be characterized by different (yet
related) distributions [7]. This followed by more recent interest to interacting
MCMC algorithms [2] and by a number of interesting works directed to solving
problems with complex multi-modal probability density landscapes, to the anal-
ysis of average properties of complex systems, as well as to the development of
generic learning strategies [13,8,15,14,18].

This latter set of works inspired us to develop these ideas in the context of
credit risk problems. There are two aspects that are intrinsic to the problems we
are dealing with in this paper: (a) we deal with the first passage times (FPT)
of stochastic processes with jumps, and (b) we are interested in the multivariate
(and correlated) case.

2 First Passage Time in Credit Risk Models

Many problems in finance require the information on the FPT of a stochastic
process. Mathematically, such problems are often reduced to the evaluation of
the probability density of the time for such a process to cross a certain level,
a boundary, or to enter a certain region. While in other areas of applications
the FPT problem can often be solved analytically, in finance we usually have
to resort to the application of numerical procedures, in particular when we deal
with jump-diffusion stochastic processes (JDP).

Credit risk can be defined as the possibility of a loss occurring due to the
financial failure to meet contractual debt obligations. This is one of the measures
of the likelihood that a party will default on a financial agreement.

In structural credit-risk models, a default occurs when a company cannot meet
its financial obligations, or in other words, when the firm’s value falls below a
certain threshold. One of the major problems in credit risk analysis is when a
default occurs within a given time period and what is the default rate during
such a time period. This problem can be reduced to a FPT problem, that can be
formulated mathematically as a certain stochastic differential equation (SDE).
It concerns the estimation of the probability density of the time for a random
process to cross a specified threshold level. Therefore, it is natural that the FPT
problem occurs also frequently in other areas of applications, including many
branches of science and engineering [17,19].

An important phenomenon that we account for in our discussion here lies
with the fact that, in the market economy, individual companies are inevitably
linked together via dynamically changing economic conditions. Therefore, the
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default events of companies are often correlated, especially in the same industry.
Authors of [21] and [11] were the first to incorporate default correlation into
the Black-Cox first passage structural model, but they have not included the
jumps. As pointed out in [22] and [12], the standard Brownian motion model
for market behavior falls short of explaining empirical observations of market
returns and their underlying derivative prices. In the meantime, jump-diffusion
processes have established themselves as a sound alternative to the standard
Brownian motion model [1]. Multivariate jump-diffusion models provide a con-
venient framework for investigating default correlations with jumps and become
more readily accepted in the financial world as an efficient modeling tool.

However, as soon as jumps are incorporated in the model, except for very basic
applications where analytical solutions are available, for most practical cases we
have to resort to numerical procedures. Examples of known analytical solutions
include problems where the jump sizes are doubly exponential or exponentially
distributed [12] as well as the jumps can have only nonnegative values (assum-
ing that the crossing boundary is below the process starting value). For other
situations, Monte Carlo methods remain a primary candidate for applications.

In a structural model, a firm i defaults when it can not meet its financial
obligations, or in other words, when the firm assets value Vi(t) falls below a
threshold level DVi(t). Generally speaking, finding the threshold level DVi(t) is
one of the challenges in using the structural methodology in credit risk mod-
eling, since in reality firms often rearrange their liability structure when they
have credit problems. In this contribution, we use an exponential form defining
the threshold level DVi(t) = κi exp(γit) as proposed by [21], where γi can be
interpreted as the growth rate of the firm’s liabilities. Coefficient κi captures
the liability structure of the firm and is usually defined as the firm’s short-term
liability plus 50% of the firm’s long-term liability. If we set Xi(t) = ln[Vi(t)],
then the threshold of Xi(t) is Di(t) = γit + ln(κi). Our main interest is in the
process Xi(t).

Prior to moving further, we define a default correlation that measures the
strength of the default relationship between different firms. Take two firms i and
j as an example, whose probabilities of default are Pi and Pj , respectively. Then
the default correlation can be defined as

ρij =
Pij − PiPj√

Pi(1 − Pi)Pj(1 − Pj)
, (1)

where Pij is the probability of joint default. From Eq. (1) we have Pij = PiPj +
ρij

√
Pi(1 − Pi)Pj(1 − Pj). Let us assume that Pi = Pj = 5%. If these two firms

are independent, i.e., the default correlation equals zero, then the probability
of joint default is Pij = 0.25%. If the two firms are positively correlated, for
example, ρij = 0.4, then the probability that both firms default becomes Pij =
2.15% which is almost 10 times higher than in the former case. Thus, the default
correlation ρij plays a key role in the joint default with important implications
in the field of credit analysis.
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3 Multivariate Jump-Diffusion Processes and Monte
Carlo Simulations

Although for jump-diffusion processes, the closed form solutions are usually un-
available, yet between each two jumps the process is, generally speaking, a Brow-
nian bridge for a univariate jump-diffusion process. Authors of [1] have deduced
the one-dimensional first passage time distribution for time period [0, T ]. In or-
der to evaluate multiple processes, we obtain multi-dimensional formulas and
reduce them to computable forms.

Let us consider Nfirm firms Xt = [X1, X2, ..., XNfirm ]T , each Xi describes the
process of individual firm i. We expect that each process Xi satisfies the following
SDE:

dXi = μidt +
∑

j

σijdWj + dZi

= μidt + σidW̃i + dZi, (2)

where W̃i is a standard Brownian motion and σi is:

σi =
√∑

j

σ2
ij .

We assume that in the interval [0, T ], the total number of jumps for firm i is
Mi. Let the jump instants be T1, T2, · · · , TMi . Let T0 = 0 and TMi+1 = T .
The quantities τj equal interjump times, which are Tj − Tj−1. Following the
notation of [1], let Xi(T−

j ) be the process value immediately before the jth
jump, and Xi(T +

j ) be the process value immediately after the jth jump. The
jump-size is Xi(T +

j ) − Xi(T−
j ), and we can use such jump-sizes to generate

Xi(T +
j ) sequentially.

Let Ai(t) be the event consisting of process Xi crossing the threshold level
Di(t) for the first time in the interval [t, t + dt], then the conditional interjump
first passage density is defined as [1]:

gij(t) = P (Ai(t) ∈ dt|Xi(T +
j−1), Xi(T−

j )). (3)

If we only consider one interval [Tj−1, Tj], we can obtain

gij(t) =
Xi(T +

j−1) − Di(t)
2yiπσ2

i

(t − Tj−1)−
3
2 (Tj − t)−

1
2

∗ exp

(
− [Xi(T−

j ) − Di(t) − μi(Tj − t)]2

2(Tj − t)σ2
i

)

∗ exp

(
− [Xi(T +

j−1) − Di(t) + μi(t − Tj−1)]2

2(t − Tj−1)σ2
i

)
, (4)
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where

yi =
1

σi

√
2πτj

exp

(
− [Xi(T +

j−1) − Xi(T−
j ) + μiτj ]2

2τjσ2
i

)
.

After getting a result in one interval, we combine the results to obtain the density
for the whole interval [0, T ]. In a slight generalization, the process Xi may be
viewed as a Brownian bridge B(s) with B(T +

j−1) = Xi(T +
j−1) and B(T−

j ) =
Xi(T−

j ) in the interval [Tj−1, Tj ], i.e. between each of the two successive jumps.
If Xi(T−

j ) > Di(t), then the probability that the minimum of B(si) is always
above the boundary level is

Pij = 1 − exp

(
−2[Xi(T +

j−1) − Di(t)][Xi(T−
j ) − Di(t)]

τjσ2
i

)
, (5)

and zero otherwise. The event ”B(si) is below the threshold level” means that
the default happens or already happened, and its probability is 1 − Pij . Let
L(si) ≡ Li denote the index of the interjump period in which the time si (first
passage time) falls in [TLi−1, TLi]. Also, let Ii represent the index of the first
jump, which happened in the simulated jump instant,

Ii = min(j : Xi(T−
k ) > Di(t); k = 1, . . . , j, and

Xi(T +
k ) > Di(t); k = 1, . . . , j − 1, and

Xi(T +
j ) ≤ Di(t)). (6)

If no such Ii exists, then we set Ii = 0. By combining Eq. (4), (5) and (6), we
get the probability of Xi crossing the boundary level in the whole interval [0, T ]
as

P (Ai(si) ∈ ds|Xi(T +
j−1), Xi(T−

j ), j = 1, . . . , Mi + 1)

=

⎧⎨⎩
giLi(si)

∏Li−1
k=1 Pik if Li < Ii or Ii = 0,

giLi(si)
∏Li−1

k=1 Pik +
∏Li

k=1 Pikδ(si − TIi) if Li = Ii,
0 if Li > Ii,

(7)

where δ is the Dirac’s delta function.
For firm i, after generating a series of first passage times si, we use a kernel

density estimator with Gaussian kernel to estimate the first passage time density
(FPTD) f . The kernel density estimator is based on centering a kernel function
of a bandwidth (similar to [16,1]).

Next, we develop a procedure for generating beforejump and postjump values
Xi(T−

j ) and Xi(T +
j ), respectively. Here j = 1, · · · , M where M is the total

number of jumps for all the firms. We compute Pij according to Eq. (5). To
recur the first passage time density fi(t), we have to consider three possible
cases that may occur for each non-default firm i:

1. First passage happens inside the interval. We know that if Xi(T +
j−1) >

Di(Tj−1) and Xi(T−
j ) < Di(Tj), then the first passage happened in the time
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interval [Tj−1, Tj]. To evaluate when the first passage happened, we introduce
a new variable bij as bij = Tj−Tj−1

1−Pij
. We generate several correlated uniform

numbers Yi by using the Sum-Of-Uniforms (SOU) method, then compute
si = bijYi + Tj−1. If si belongs to interval [Tj−1, Tj], then the first passage
time occurred in this interval. We set IsDefault(i) = 1 to indicate that
firm i has defaulted and compute the conditional boundary crossing density
gij(si) according to Eq. (4). To get the density for the entire interval [0, T ],

we use f̂i,n(t) =
(

Tj−Tj−1
1−Pij

)
gij(si) ∗ K(hopt, t − si), where n is the iteration

number of the Monte Carlo cycle.
2. First passage does not happen in this interval. If si does not belong

to interval [Tj−1, Tj ], then the first passage time has not yet occurred in this
interval.

3. First passage happens at the right boundary of the interval. If
Xi(T +

j ) < Di(Tj) and Xi(T−
j ) > Di(Tj) (see Eq. (6)), then TIi is the first

passage time and Ii = j, we evaluate the density function using kernel func-
tion f̂i,n(t) = K(hopt, t − TIi), and set IsDefault(i) = 1.

Next, we increase j and examine the next interval and analyze the above three
cases for each non-default firm again. After running N times the Monte Carlo
cycle, we get the FPTD of firm i as f̂i(t) = 1

N

∑N
n=1 f̂i,n(t).

In order to provide a reasonable credit analysis, we need to calibrate the devel-
oped model or, in other words, to numerically choose or optimize the parameters,
such as drift, volatility and jumps to fit the most liquid market data. We have
used the historical default data to optimize the parameters in the model based
on the least-square methodology.

After Monte Carlo simulation we obtain the estimated density f̂i(t) by using
the kernel estimator method (with Gaussian kernel). The cumulative default
rates for firm i in our model is defined as:

Pi(t) =
∫ t

0
f̂i(τ)dτ, (8)

where the kernel density estimator here is chosen from centering a kernel function
of a bandwidth [16,20]. Recall that EMCMC combine Evolutionary Computation
techniques and (often parallel) MCMC algorithms in order to design new algo-
rithms for sampling or optimizing complex distribution functions. In a sense, we
pursue here the same goal as we minimize the difference between our model and
historical default data Ãi(t) to obtain the optimized parameters in the model
(such as σij , arrival intensity λ in Eq. (2)):

argmin

⎛⎝∑
i

√√√√∑
tj

(
Pi(tj) − Ãi(tj)

tj

)2
⎞⎠ . (9)

For example, theoretical (taken as in [21]) and simulated default correlations
of two A-rated firms (A,A) for one-, two-, five, and ten-year periods would be
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(0.00, 0.00), (0.02, 2.47), (1.65, 6.58), (7.75, 9.28), respectively. Note that sim-
ulated results here are obtained by the UNIForm sampling (UNIF) method as
explained in the next section.

4 Density Functions, Default Rates, and Correlated
Default

First, we considered a set of historical default data on differently rated firms (in-
cluding the one presented in [21]) and described the FPTD functions and default
rates of these firms. The optimized parameters (including optimal bandwidths)
were obtained according to the procedure described in Section 3. Historical,
theoretical (obtained with closed form solutions as in [21]), and simulated cu-
mulative default rates for differently rated firms were compared. These results
will be published elsewhere and one example of such a comparison can be found
in [20].

However, here we focus on an example concerning the default correlation
of two firms. If we do not include jumps in the model, the default correla-
tion can easily be calculated. In Tables 1 and 2 we present comparisons of
our results with those based on closed form solutions provided by [21] with
ρ = 0.4. Next, let us consider the default correlations under the multivariate
jump-diffusion processes. We use the following conditions in our multivariate
UNIF method:

1. Setting Xi(0) = 2 and ln(κi) = 0 for all firms.
2. Setting the growth rate of debt value equivalent to the growth rate of the

firm’s value: γi = μi and μi = −0.001 for all firms.
3. Since we are considering two correlated firms, we choose σ as,

σ =
[
σ11 σ12
σ21 σ22

]
, (10)

where σσ� = H0 such that,

σσ� = H0 =
[

σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

]
,

and ⎧⎪⎨⎪⎩
σ2

1 = σ2
11 + σ2

12,
σ2

2 = σ2
21 + σ2

22,

ρ12 =
σ11σ21 + σ12σ22

σ1σ2
.

(11)

In Eq. (11), ρ12 reflects the correlation of the diffusion parts of the processes
of the two firms. In order to compare with the standard Brownian motion
and to evaluate the default correlations between different firms, we set all
the ρ12 = 0.4 as in [21]. Furthermore, we use the optimized σ1 and σ2 for
firm 1 and 2, respectively. Assuming σ12 = 0, we get,
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σ11 = σ1,
σ12 = 0,
σ21 = ρ12σ2,
σ22 =

√
1 − ρ2

12σ2.

4. The arrival rate for jumps satisfies the Poisson distribution with intensity
parameter λ = 0.1 for all firms. The jump size is a normal distribution
Zi ∼ N(μZi , σZi), where μZi and σZi can be different for different firms to
reflect specifics of the jump process for each firm. We adopt the optimized
parameters.

5. As before, we generate the same interjump times (Tj − Tj−1) that satisfy
an exponential distribution with mean value equal to 1 for each of the two
firms.

We carry out the UNIF method to evaluate the default correlations via the
following formula:

ρ12(t) =
1
N

N∑
n=1

P12,n(t) − P1,n(t)P2,n(t)√
P1,n(t)(1 − P1,n(t))P2,n(t)(1 − P2,n(t))

, (12)

where P12,n(t) is the probability of joint default for firms 1 and 2 in each Monte
Carlo cycle, P1,n(t) and P2,n(t) are the cumulative default rates of firm 1 and 2,
respectively, in each Monte Carlo cycle.

The simulated default correlations for one and ten year periods are given in
Tables 1 and 2, respectively. All the simulations were performed with the Monte
Carlo runs N = 500, 000. Comparing simulated default correlations with the
theoretical data for standard Brownian motions, we can conclude that

Table 1. One year default correlations (%). All the simulations are performed with
Monte Carlo runs N = 500, 000.

UNIF [21]
A Baa Ba B A Baa Ba B

A -0.01 0.00
Baa -0.02 3.69 0.00 0.00
Ba 2.37 4.95 19.75 0.00 0.01 1.32
B 2.80 6.63 22.57 26.40 0.00 0.00 2.47 12.46

Table 2. Ten year default correlations (%). All the simulations are performed with the
Monte Carlo runs N = 500, 000.

UNIF [21]
A Baa Ba B A Baa Ba B

A 8.79 7.75
Baa 10.51 13.80 9.63 13.12
Ba 9.87 14.23 22.50 9.48 14.98 22.51
B 8.50 12.54 20.49 24.98 7.21 12.28 21.80 24.37
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1. Similarly to conclusions of [21], the default correlations of same rated firms
are usually large compared to differently rated firms. Furthermore, the de-
fault correlations tend to increase over long time and may converge to a
stable value.

2. In our simulations, the one year default correlations of (A,A) and (A,Baa)
are negative. This is because they seldom default jointly during one year.
Note, however, that the default correlations of other firms are positive and
usually larger than in the results presented by [21].

3. For two and five years, the default correlations of different firms increase.
This can be explained by the fact that their individual first passage time
density functions increase during these time periods, hence the probability
of joint default increases.

4. As for ten year default correlations, our simulated results are almost identical
to the theoretical data for standard Brownian motions. The differences are
that the default correlations of (Ba,Ba), (Ba,B) and (B,B) decrease from
the fifth year to tenth year in our simulations. The reason is that the first
passage time density functions of Ba- and B-rated firms begin to decrease
from the fifth year, hence the probability of joint default may increase slowly.

5 Conclusion

In this contribution, we have analyzed the credit risk problems of multiple cor-
related firms in a structural model framework, where we incorporated jumps
to reflect the external shocks or other unpredicted events. By combining the
fast Monte-Carlo method for one-dimensional jump-diffusion processes and the
generation of correlated multidimensional variates, we have developed a fast evo-
lutionary type Monte-Carlo type procedure for the analysis of multivariate and
correlated jump-diffusion processes. The developed approach generalizes previ-
ously discussed non-correlated jump-diffusion cases for multivariate and corre-
lated jump-diffusion processes. Finally, we have applied the developed technique
to analyze the default events of multiple correlated firms via a set of historical
default data. The developed methodology provides an efficient computational
technique that is applicable in other areas of credit risk and for the pricing of
options.
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Abstract. Calibrating option pricing models to market prices often
leads to optimisation problems to which standard methods (like such
based on gradients) cannot be applied. We investigate one particular
example, Heston’s stochastic volatility model. We discuss how to price
options under this model, and how to calibrate the parameters of the
model with a heuristic technique, Differential Evolution.

1 Introduction

Implied volatilities obtained by inverting the Black–Scholes–Merton (bsm) model
vary systematically with strike and maturity; this relationship is called the
volatility surface. Different strategies are possible for incorporating this sur-
face into a model. We can accept that volatility is not constant across strikes
and maturities, and directly model the volatility surface and its evolution. This
approach is not consistent since we assume that a single underlier has different
volatilities, but still, it is the approach that is mostly used in practice. An al-
ternative is to model the option prices such that the bsm-volatility surface is
obtained, for instance by including jumps, locally varying volatility, or by mak-
ing volatility stochastic; a well-known example for the latter approach is the
Heston model [1]. It is the model that we look at in this paper.

As so often in finance, the success of the bsm-model stems not so much
from its empirical quality, but from its computational convenience. This con-
venience comes in two flavours. Firstly, there are closed-form pricing equations
(the Gaussian distribution function is not available analytically, but fast and
precise approximations exist). Secondly, calibrating the model requires only one
parameter to be determined, the volatility, which can be computed from market
prices readily with Newton’s method or another zero-finding technique. For the
Heston-model, both tasks become more difficult: pricing requires numerical inte-
gration, and calibration requires to find (in a riskneutral world) five parameters
instead of only one for bsm.
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In this short paper, we will look into the calibration of the Heston model. Find-
ing parameters that make the model consistent with market prices means solving
a non-convex optimisation problem. We suggest to use optimisation heuristics,
more specifically we show that Differential Evolution is able to give good solu-
tions to the calibration problem. The paper is structured as follows: In Section 2
we discuss how to price options under the Heston model. Fast pricing routines
are important since the suggested heuristic is computationally intensive; hence
to obtain calibration results in a reasonable period of time, we need to be able
to evaluate the objective function (which requires pricing) speedily. Section 3
details how to implement the heuristic for a calibration problem. Section 4 con-
cludes.

2 Pricing with the Characteristic Function

There are several generic approaches to price options. The essence of bsm is a
no-arbitrage argument which leads to a partial differential equation that can be
solved numerically (in the particular case of bsm, even analytically). A more
recent approach builds on the characteristic function of the (log) stock price.
European options can be priced by the following equation ([3, 4]):

C0 = e−qτS0Π1 − e−rτXΠ2 (1)

where C0 is the call price today (time 0), S0 is the spot price of the underlier,
and X is the strike price; r and q are the riskfree rate and dividend yield; time
to expiration is denoted τ . The Πj are calculated as

Π1 =
1
2

+
1
π

∫ ∞

0
Re

(
e−iω log(X)φ(ω − i)

iωφ(−i)

)
dω , (2a)

Π2 =
1
2

+
1
π

∫ ∞

0
Re

(
e−iω log(X)φ(ω)

iω

)
dω . (2b)

The symbol φ stands for the characteristic function of the log stock price; the
function Re(·) returns the real part of a complex number. For a given φ we can
compute Π1 and Π2 by numerical integration, and hence obtain option prices
from Equation (1).

2.1 Black–Scholes–Merton

In a bsm-world, the stock price St under the risk-neutral measure follows

dSt = rStdt +
√

vStdz

where r is the riskfree rate, and z is a Wiener process. The volatility
√

v is
constant. The well-known pricing formula for the bsm-call is given by

C0 = e−qτS0 N(d1) − Xe−rτ N(d2) (3)
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with

d1 =
1√
vτ

(
log

(
S0

X

)
+
(

r − q +
v

2

)
τ

)
(4a)

d2 =
1√
vτ

(
log

(
S0

X

)
+
(

r − q − v

2

)
τ

)
= d1 −

√
vτ (4b)

and N(·) the Gaussian distribution function.
Given the dynamics of S, the log-price sτ = log(Sτ ) follows a Gaussian dis-

tribution with sτ ∼ N (
s0 + τ(r − 1

2v), τv
)
, where s0 is the natural logarithm of

the current spot price. The characteristic function of sτ is given by

φbsm(ω) = E(eiωsτ )

= eiω
(
s0+τ(r− 1

2v)
)
+ 1

2 i2ω2v

= eiωs0+iωτr−1
2 (iω+ω2)τv . (5)

With a continuous dividend yield q, we replace r by r − q . With (5) inserted
into (2), Equation (1) should, up to numerical precision, give the same result as
Equation (3).

2.2 The Heston Model

Under the Heston model the stock price S and its variance v are described by

dSt = rStdt +
√

vtStdz(1)

dvt = κ(θ − vt)dt + σ
√

vtdz(2) .

The long-run variance is denoted θ, mean reversion speed is κ and σ is the
volatility of volatility. The Wiener processes have correlation ρ. For σ → 0,
the Heston dynamics approach those of bsm. The characteristic function of the
log-price in the Heston model is as follows, see [5].

φHeston = eA × eB × eC (6)

A = iω(log S0 + (r − q)τ)

B =
θκ

σ2

(
(κ − ρσiω − d)τ − 2 log

(
1 − g2e−dτ

1 − g2

))

C =

v0

σ2

(
κ − ρσiω − d

)(
1 − e−dτ

)
1 − g2e−dτ

d =
√

(ρσiω − κ)2 + σ2(iω + ω2)

g2 =
κ − ρσiω − d

κ − ρσiω + d
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2.3 Integration Schemes

We use a Gauss–Legendre rule, see [6], [7]; we experimented with alternatives
like Gauss–Lobatto as well, but no integration scheme was clearly dominant
over another. We do not use adaptive algorithms, but compute a fixed number
of nodes and weights, and evaluate the integrals in Equations (2). To test our
pricing algorithms, we first investigate the bsm-case. Here we compare results
from Equation (3) with results from Equation (1). The cutoff point for the
integrals in Equations (2) is set to 200. Figure 1 shows the relative pricing errors
as compared with blsprice (from Matlab’s Financial Toolbox), with 20 nodes
(left) and 100 nodes (right). Note that here we are already pricing a whole matrix
of options (different strikes, different maturities). This matrix is taken from the
experiments described in the next section. Already with 100 nodes the pricing
errors are in the range of 10-13, ie, practically zero. Several Matlab programs can
be downloaded from http://comisef.eu .
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Fig. 1. Relative pricing errors compared with analytical bsm: a Gauss-rule with 20
nodes (left) and 100 nodes (right)

3 Calibrating the Model Parameters

Calibrating an option pricing model means to find parameters such that the
model’s prices are consistent with market prices, leading to an optimisation
problem of the form

min
M∑
i=1

∣∣Cmodel
i − Cmarket

i

∣∣
Cmarket

i

(7)

where M is the number of market prices. Alternatively, we could specify rela-
tive deviations, use squares instead of absolute values, or introduce weighting
schemes. The choice of the objective function depends on the application at hand;
ultimately, it is an empirical question to determine a good objective function.

http://comisef.eu
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Fig. 2. A search space for the Heston model

Since here we are interested in numerical aspects, we will use specification (7).
The problem is not convex, and hence standard methods (eg, based on deriva-
tives of the objective function) may fail. Figure 2 shows the objective function
when varying two parameters (mean reversion κ and volatility-of-volatility σ)
while holding the others fixed. Hence, we deploy a heuristic method, Differential
Evolution, to solve problem (7).

When we evaluate (7), we price not just one option, but a whole array (differ-
ent strikes, different maturities). But for a given set of parameters that describe
the underlying process of the model, the characteristic function φ only depends
on the time to maturity, not on the strike price. This suggests that speed im-
provements can be achieved by preprocessing those terms of φ that are constant
for a given maturity, and then compute the prices for all strikes for this maturity,
see [8] for a discussion, see Algorithm 1 for a summary.

Algorithm 1. Computing the prices for a given surface.
1: set parameters, set T = maturities, set X = strikes
2: for τ ∈ T do
3: compute characteristic function φ
4: for X ∈ X do
5: compute price for strike X, maturity τ
6: end for
7: end for
8: compute objective function
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3.1 Differential Evolution

Differential Evolution (de) is described in detail in [9]; Algorithm 2 summarises
the technique. de evolves a population P of nP solutions, stored in real-valued
vectors of length p (where p = 5 for the Heston model). In every iteration (or
‘generation’), the algorithm creates a new candidate solution (a rival) for each
existing solution. This candidate solution is constructed by taking the difference
between two other solutions, weighting this difference by a factor F, and adding
the weighted difference to a third solution (Statement 7 in Algorithm 2). Then an
element-wise crossover (with probability CR) takes place between this auxiliary
solution and the original solution, see Statements 8–10 (ζ is a random number
that is uniformly distributed between 0 and 1). This final candidate solution
is then evaluated (the objective function is denoted Φ). If it is better than the
original solution, it replaces it; if not, the old solution is kept. The search stops
after nG generations (other stopping criteria are possible).

Algorithm 2. Differential Evolution.
1: initialise parameters nP, nG, F and CR

2: initialise population P
(1)
j,i , j = 1, . . . , p, i = 1, . . . , nP

3: for k = 1 to nG do
4: P (0) = P (1)

5: for i = 1 to nP do
6: generate 
1, 
2, 
3 ∈ {1, . . . , nP}, 
1 
= 
2 
= 
3 
= i

7: compute P
(v)
·,i = P

(0)
·,�1 + F× (P (0)

·,�2 − P
(0)
·,�3)

8: for j = 1 to p do
9: if ζj < CR then P

(u)
j,i = P

(v)
j,i else P

(u)
j,i = P

(0)
j,i

10: end for
11: if Φ(P (u)

·,i ) < Φ(P (0)
·,i ) then P

(1)
·,i = P

(u)
·,i else P

(1)
·,i = P

(0)
·,i

12: end for
13: end for

3.2 Calibrating the Heston Model

We create artificial data sets to test de. The spot price S0 is 100, the riskfree
rate r is 2%, there are no dividends. We compute prices for strikes X from 70 to
130 (in steps of size 2), and maturities τ of 1/12, 3/12, 6/12, 9/12, 1, 2 and 3 years.
Hence our surface comprises 31 × 7 = 217 prices. The parameters for the Heston
model come from the following table:

√
v0 0.3 0.3 0.3 0.3 0.4 0.2 0.5 0.6 0.7 0.8√
θ 0.3 0.3 0.2 0.2 0.2 0.4 0.5 0.3 0.3 0.3

ρ -0.3 -0.7 -0.9 0.0 -0.5 -0.5 0.0 -0.5 -0.5 -0.5
κ 2.0 0.2 3.0 3.0 0.2 0.2 0.5 3.0 2.0 1.0
σ 1.5 1.0 0.5 0.5 0.8 0.8 3.0 1.0 1.0 1.0
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Given a set of parameters, we compute option prices and store them as the true
prices. Then we run de 10 times to solve problem (7) and see if we can recover
the parameters; the setup implies that a perfect fit is possible.

de is coded in Matlab following Algorithm 2. We ran a number of preliminary
experiments to find reasonable parameter values for these algorithms. The F-
parameter should be set to around 0.3–0.5 (we use 0.5); very low or high values
typically impaired performance. The CR-parameter had less influence, but levels
close to unity worked best (ie, each new candidate solution is likely changed in
many dimensions). The stopping criterion is a fixed number of function evalua-
tions (population size × generations); we run three settings,

5 000 (50×100) ,
20 000 (100×200) ,
45 000 (150×300) .

On an Intel p8700 single core at 2.53GHz with 2 GB of ram, a single run takes
about 20, 80, and 180 seconds, respectively. (Each evaluation of the objective
function involves the pricing of 217 options, hence for the last setting, in one run
we compute 217 × 150 × 300 = 9 765 000 prices.)

We also run a gradient search (steepest descent) and a direct search (Nelder–
Mead), using the Matlab implementations fminunc and fminsearch. Starting
values were chosen randomly from the ranges:

min max√
v0 0.05 1.0√
θ 0.05 1.0

ρ -1.00 1.00
κ 0.01 5.00
σ 0.01 5.00

(in the same way the initial population for de was set up). Like for de, we
conduct 10 restarts for each set of parameters.

This is not an entirely fair comparison: steepest descent and direct search
are not appropriate for non-convex problems . Neither did we spend much time
tuning the algorithms; or finding out why they failed when they did. Accord-
ingly, one reviewer of this paper argued that in particular fminunc would be ‘a
relatively weak benchmark’. Yes, but then the results still reflect what is done
in both professional and academic practice.

For each run we store the value for the objective function (the mean percent-
age error; Equation (7)), and corresponding parameter estimates for which we
compute absolute errors, ie,

error = | estimated parameter − true parameter | .
Results for unconstrained optimisation runs are given below in Figure 3. For
each level of function evaluations, we have 100 results (10 parameters sets times
10 restarts). The panels show the distributions of the parameter errors and the
objective function (pooled over all parameter sets); optimal values would be zero.
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The increasing number of function evaluations is marked by an increasingly dark
grey (ie, 5 000, 20 000, 45 000). de works well, with error distributions converging
to zero, even though there are cases where it fails to recover the true parameters.
Both steepest descent and direct search fare worse; steepest descent in particular
returned NaN in between 10 to 20% of cases. All results come from unconstrained
optimisation runs: in some cases, steepest descent and direct search converged
to economically meaningless or impossible values (eg, correlations outside the
range from -1 to 1, or negative variances).

4 Conclusion

In this paper we have investigated option pricing under Heston’s stochastic
volatility model. We have shown how to calibrate the parameters of the model
with a heuristic technique, Differential Evolution, and presented evidence that
such techniques can provide very good solutions to the calibration problem.
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Abstract. Trading-rule representation is an important factor to con-
sider when designing a quantitative trading system. This study imple-
ments a trading strategy as a rule-based policy. The result is an intuitive
human-readable format which allows for seamless integration of domain
knowledge. The components of a policy are specified and represented
as a set of rewrite rules in a context-free grammar. These rewrite rules
define how the components can be legally assembled. Thus, strategies
derived from the grammar are well-formed, domain-specific, solutions. A
grammar-based Evolutionary Algorithm, Grammatical Evolution (GE),
is then employed to automatically evolve intra-day trading strategies for
the U.S. Stock Market. The GE methodology managed to discover prof-
itable rules with realistic transaction costs included. The paper concludes
with a number of suggestions for future work.

1 Introduction

A rule-based trading system typically relies on a series of conditional rules to
make trading decisions. This is in contrast to a discretionary system which pri-
marily relies on human judgement. Discretionary traders function without ex-
plicitly quantified rules and instead act on mental rules which are developed
through experience. An obvious problem with this approach is that the decision-
making process can be skewed by human emotions such as fear and greed [7].
Although there are successful traders who function exclusively using these tech-
niques, there are many advantages to quantifying one’s rules. Quantifying a
strategy and representing the logic in computer code allows for system automa-
tion, speeding up the decision-making process, and for the statistical analysis of
the trading strategy via backtesting. In addition, it facilitates the application of
advanced machine learning techniques in order to optimise system parameters.
In this study we employ an evolutionary algorithm called Grammatical Evolution
(GE) [8] to automatically evolve profitable trading models. GE has previously
been applied to for-ex trading [1] and to stock market trading [2] . These studies
evolve expressions which evaluate to real-numbers, and rules are formulated by
comparing these values to threshold values in order to generate a trading en-
try signal. The exit strategies employed are static which is a simplification of

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 251–260, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the process of real-world trading. In contrast, this study structures a grammar
such that a trading strategy is comprised of entry and exit rules which sensi-
bly combine technical indictors resulting in a more intuitive and comprehensive
representation of a trading strategy.

1.1 Structure of Paper

The remainder of this paper is structured as follows. Section 2 outlines the con-
struction of a rule-based policy as applied to the problem of trading-rule design.
Section 3 illustrates how a set of rewrite rules can govern the steps in creating
a well-formed, domain-specific policy. In section 4, Grammatical Evolution is
employed to heuristically navigate the search space of possible trading rules in
order to find ones which are high-quality. The results of our experiments are
presented in section 5. The last section outlines the conclusions of the study and
suggests a number of avenues of future work.

2 Rule-Based Policies

Representation is a key factor when designing a trading strategy. One intuitive
approach is to represent a strategy as a rule-based policy. This approach has
previously been used to develop automated agents for a well known arcade game
[6], and more generally provides a framework which encapsulates many real-
world decision scenarios. A rule-based policy is a set of rules with the following
structure

IF [Condition] holds, THEN do [Action]

The policy also includes logic to decide which rule in the set should be executed
given a particular state of the environment. Rule-based policies are a particularly
useful representation for financial trading rules as they are human readable and it
is a straightforward task to embed domain knowledge. In applying these policies
we need to specify four things:

1. What are the possible actions?
2. What are the possible conditions and how are they constructed from obser-

vations?
3. How to make rules from conditions and actions
4. How to combine the rules into policies

We will address each of these in turn.
For the purpose of our study we are limiting the system to five basic actions

as outlined in Table 1 below: EnterLong, ExitLong, EnterShort, ExitShort and
DoNothing. On the close of each time interval (one minute intervals in the case
of our experiments), a trading agent is confronted with the problem of deciding
which of these actions to take.
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Table 1. The above table shows the list of actions which are used in the construction
of trading rules

Action Description

EnterLong Open a long position
ExitLong Close long position
EnterShort Open a short position
ExitShort Close short position
DoNothing Take no action

An action is taken if the condition associated with the executed rule holds
true. The market position is updated accordingly, as per Table 2. In the case
where conditions belonging to multiple rules are satisfied simultaneously, the
policy must include logic to prioritize one action over another.

Table 2. This table shows the market position state changes resulting from a sequence
of actions

Action DoNothing EnterLong ExitLong EnterShort ExitShort
Position Flat Long Flat Short Flat

A trading rule condition is a Boolean expression of observations and compar-
ison operators. The system designer decides on the set of observations, where
members of the set could range from a simple closing price to a sophisticated
statistical metric. In this study we have limited our observation set to four tech-
nical indicators (see Table 3). The length of this list is arbitrary, and can be
extended with any number of variables, indicators, and analytics.

Table 3. This list of technical indicators serve as the building blocks in the construction
of trading rule conditions

Analytic Description

SMA simple moving average which gauges momentum
WMA weighted moving average which gauges momentum
STOC Stochastic indicator which gauges overbought/oversold levels
ADX ADX indicator gauges strength of trend

A trading strategy is then constructed by logically combining one or more
rules of the form IF [Condition] holds, THEN do [Action]. Each of the actions
listed in Table 1 have a rule which decides whether or not the action should
be taken based on a boolean condition. The policy includes logic which decides
which rule should be executed given the current market position [9]. For example,
if we are already long then it makes no sense to execute the ExitShort rule. This
feedback loop from the environment to the policy produces more logical trading
decisions.
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3 Grammatical Representation

A context-free grammar is a set of one or more rewrite rules of the form NT− >
T , where NT is a nonterminal which maps to one or more terminals and/or
nonterminals. This study employs a metasyntax called Backus Naur Form (BNF)
to express the rewrite rules. We define a root nonterminal < policy >, see Fig.
1, which is mapped to the policy framework discussed in Section 2.

<Policy> ::= if(Long){
if(<LongExitCondition>){

ExitLong;
}

}
else if(Short){

if(ShortExitCondition){
ExitShort;

}
}
else if(Flat){

if(<LongEntryCondition>){
EnterLong;

}
else if(<ShortEntryCondition>){

EnterShort;
}

}

Fig. 1. The root nonterminal maps to the policy framework which includes terminals
and non terminals

Rewrite rules are also added to define how conditions may be constructed from
observations and operators. This allows us to incorporate our domain knowledge
into the grammar, resulting in a set of rules that governs how a well-formed policy
can be assembled.

<condition> ::= <ma><greatless><ma>
| <stochastic> <greatless> <threshold>
| (<condition>\&\&<condition>)

<maindicator> ::= SMA(<number>)
| WMA(<number>)

<oscillator> ::= STOC(<number>)
| ADX(<number>)

Fig. 2. A partial BNF grammar showing three production rules used to create well-
formed conditions

We embed our domain knowledge in the grammar by defining rewrite rules
which ensure that sensible conditions are created. For example, it would not be
sensible to directly compare a moving average and a stochastic indicator, which
oscillates between 0 and 100. Thus, we create separate nonterminals for each type
of indicator. This inhibits ill-formed conditions such as (SMA(10) > STOC(65))
being created. Fig. 2 shows the production rules used to build conditions. A more
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comprehensive set of observations might require additional domain knowledge
to be included in the grammar.

Digit concatenation [3] can also be applied to the creation of constants within
a strategy. Uses of constants in trading rules include for example, the param-
eterisation of technical indicators, and the creation of appropriate thresholds
for (as an example) oscillator indicators. We define rewrite rules to control the
range of values which a constant can take. The integer parameter passed to tech-
nical indicators specifies the number of intervals over which the indicator will
be calculated. Domain knowledge is embedded in our rewrite rules so that this
parameter is limited to an appropriate range of values. For example, in deter-
mining the number of periods over which a technical indication can ‘look back’
we need to consider the likely trading frequency. In this paper, we focus on high-
frequency trading and we limit the range of this parameter to 2000, which is
about 5 days of trading given a 1 minute frequency. Therefore, the production
rules in Fig. 3 below allow for the generation of integers in the range [1,1999].

<number> ::= <1-9>
| <1-9><0-9>
| <1-9><0-9><0-9>

<1-9> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<0-9> ::= 0 | <1-9>

Fig. 3. The production rules which define how digits can be concatenated to create an
indicator look-back parameter constant

Similarly, a set of rewrite rules are defined to govern how digits may be con-
catenated to create the threshold constant. This threshold is compared to the
oscillator indicators, for example (STOC(55) > 80). Domain knowledge is em-
bedded in these production rules to limit this constant to be in the range [0,95]
in increments of 5. A more complex grammar might define rewrite rules for
a number of other constants which are used in a policy, with domain-specific
knowledge applied to each constant if necessary.

4 Evolution of Trading Policies

Rule-based trading policies derived from our context-free grammar are guaran-
teed to be well-formed solutions. However, we are still faced with the challenge
of deriving a successful trading strategy. A huge number of different strategies
can be derived depending on the derivation sequence executed, and hence we
need to traverse this search space in an efficient manner. To do this we adopt an
evolutionary approach.

The GE algorithm was inspired by the genotype to phenotype mapping pro-
cess in biology. This process involves the mapping of DNA to proteins. In the
case of GE, integer strings drive the selection of rewrite rules from our grammar
which results in a mapped policy.
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4.1 Data Review

The dataset, see Fig. 4, used in this study is comprised of 200 trading days of
1 minute bars for the CAT stock which is listed on the NYSE. Normal trading
hours on the NYSE are 9.30 to 16:00 EST, resulting in 390 minutes of trading per
session, producing a dataset of 78,000 samples. Each bar contains a price for the
open, high, low, and closing trades for that minute. The dataset is partitioned
to produce an in-sample section from Monday 2007-01-22 to Friday 2007-04-20,
and an out-of-sample section which ranges from Monday 2007-04-23 to Friday
2007-07-20. The first partition is used to train a population of policies, and the
second to test the best individuals out-of-sample.
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Fig. 4. Dataset of CAT high frequency data

4.2 Methodology

The results for the data-mining of trading policies using GE were averaged over
30 separately-seeded runs in order to allow us to assess the statistical significance
of the performance metrics. A single run involves an in-sample training phase
and an out-of-sample testing phase. Phase one trains a GE population of 300
individuals for 50 generations. On each generation of the algorithm, each integer
string in the population is mapped to a trading policy. The in-sample dataset
is then iterated from start to end. The trading policy is executed at the close
of each interval and a trading action from the set listed in Table 1 is signaled.
This action is then applied to the open of the next interval. For example if an
EnterLong signal is generated on the close of interval 2007-01-22 09:56 a new
trade is initiated on the open of the next interval 2007-01-22 09:57. Signals are
only accepted up to and including the second last interval of the day. On the last
interval of each day any open position (long or short) is closed and the market



Evolving Trading Rule-Based Policies 257

position is set to flat. This ensures no positions are held overnight. The running
return of the strategy is stored at each interval.

On reaching the end of the training set the vector of returns is analyzed to
determine the performance of the individual. The performance metric used in this
paper is an information ratio where the average daily return minus transaction
costs is divided by the standard deviation. This metric is a risk-adjusted measure
which favors strategies with stable daily returns. The calculated ratio is the
fitness of the strategy being evaluated. On completion of a generation, each
strategy in the population has a fitness score as calculated above. Roulette wheel
selection is employed with a steady-state replacement strategy, see Goldberg [5].
The population is evolved for 50 generations and the best trading policy is then
tested on the out-of-sample dataset to assess the robustness of the strategy
on unseen data. The experimental parameters used for this study are listed in
Table 4.

Table 4. Experimental Parameters

Parameter Value

Pop size 300
Mutation .001
Crossover .9
Generations 50
Runs 30
Selection Roulette wheel
Replacement Steady-state

5 Results

The results of our experiments are now presented. A population of 300 individ-
uals was trained on partition one of the dataset discussed in Section 4.1 for 50
generations. The best individual from the population was then tested out-of-
sample on partition two. Thirty separately seeded runs were carried out.

Table 5 shows the performance of the best individual against a number of
benchmarks, averaged over 30 runs. The average best policy, not including trans-
action costs, returned 57.83% annualized in-sample. The standard deviation of

Table 5. Statistics derived from the annualized percentage return of the best policy
against a number of benchmarks, averaged over 30 runs

In-sample Out-of-sample

Mean Std Dev Info-ratio Mean Std Dev Info-ratio
Best policy 57.83 32.85 1.76 13.85 30.96 0.45
Best policy - costs 51.56 29.55 1.75 9.41 30.96 0.30
Random agent -6.07 35.32 -0.17 2.27 30.23 0.08
Random agent - costs -354.21 35.13 -10.08 -287.05 29.37 -9.77
Buy only 0.19 NA NA 19.94 NA NA
Buy only - costs -0.28 NA NA 19.13 NA NA
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this level over the runs was 32.85%. The mean return dropped to 13.85% out-
of-sample. When transaction costs were included the in-sample mean return
dropped to 51.56%, while the out-of-sample performance fell to 9.41%.

Two benchmarks were employed. The first, a zero-intelligence agent, executes
an action from the set{Buy, Sell, Do Nothing} with equal probability on the close
of each interval. Due to the uniformity of the sampling distribution this random
strategy will complete a trade every 4 intervals on average. This results in a
large volume of trades making transaction costs a significant factor. The average
best policy fails to significantly out-perform the random agent when costs are
not included, however with transactions costs of 1 cent per share included the
performance of the zero-intelligence strategy is drastically reduced. We note that
a zero-intelligence agent with a high trading frequency (about 100 trades a day)
might not be a realistic benchmark when compared to an evolved policy trading
at a potentially much lower frequency.

The second benchmark in our experiment is an intra-day buy-and-hold strat-
egy. Each day this agent initiates a long position at the market open and goes
flat at the market close. The best evolved individual significantly outperforms
this benchmark in-sample. The opposite is true out-of-sample. The benchmark’s
superior performance over the second partition is due to the aggressively bullish
trend in the second half of our dataset, see Fig. 4. Although the benchmark
has superior performance the risk profile is very different to that of the evolved
strategies. The buy and hold strategy is exposed to the systematic risk of the
market 390 minutes a day. A typical evolved policy is in the market a lot less
than this. One such policy is described below.

5.1 Example Evolved Policy

This section takes a closer look at a profitable policy evolved using Grammatical
Evolution. Fig. 1 shows the root nonterminal in our BNF grammar which maps
to a basic template. The policy template is comprised of a number of rules, and
the rules’ conditions are represented by nonterminals in our grammar. GE is used
to evolve these conditions using the rewrite rules defined in Fig. 2. An example
evolved trading policy is shown in Fig. 5. The result is human-readable, and can
be easily visualized in any standard technical indicator charting software.

The logic of the policy framework favors long positions over short as the
EnterLong condition is checked before the EnterShort condition. The complete
dataset used in this study is relatively bullish and the rule in Fig. 5 has essentially
switched off short trades by evolving a condition for the EnterShort rule which
will always evaluate to false as the ADX indicator is not likely to breach the 65
level. With the EnterShort rule out of the picture the EnterLong condition is
checked at each interval to find a good entry point. This policy made 67 trades
in-sample, and 44 out-of-sample, see Table 6. The average trade duration was
approximately 60 minutes across the two partitions with a standard deviation
of 65 minutes. The table also shows the mean return and the standard deviation
of the return on these trades in basis points.
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if(Long){
if(((STOCHFD_TA(3,46)>40)&&((STOCHFD_TA(5,92)>55)&&(ADX_TA(92)<40)))){

ExitLong;
}

else if(Short){
if(((ADX_TA(48)>85)&&(ADX_TA(719)>85))){

ExitShort
}

else if(Flat){
if((((((STOCHFD_TA(63,69)<60)&&((STOCHFD_TA(1,321)>5)&&(ADX_TA(21)<80)))&&
(((STOCHFD_TA(5,50)>5)&&(ADX_TA(95)<65))&&(STOCHFD_TA(759,8)<30)))&&
((WMA_TA(74)<SMA_TA(28))&&(SMA_TA(581)>SMA_TA(1))))&&(STOCHFD_TA(2,2)<30))){

EnterLong;
}
else if((ADX_TA(578)>65)) {

EnterShort;
}

}

Fig. 5. Example policy evolved by Grammatical Evolution

Table 6. Trade duration (in minutes) and return (in basis points) statistics for the
example evolved policy

In-sample Out-of-sample

Mean Std Dev Mean Std DEv
Trade duration (mins) 45 52 75 80
Return (bps) 10.32 23.47 19.82 36.78
Return with costs (bps) 8.78 23.47 18.50 36.78

6 Conclusion and Future Work

In this study Grammatical Evolution was used to evolve well-formed trading rule-
based policies for a large-cap U.S. stock. A policy is derived from a grammatical
representation of the components which make up a policy. Despite the fact that
we limited the system to a very simple set of building blocks, GE managed to
uncover some profitable rules when realistic transaction costs were included.

In spite of the promise of these results, no absolutely definitive conclusions
can be drawn from a set of experiments based on a single stock over a single
time period. We intend to pursue a number of avenues to extend this work.
For example, in this study the best policy from the population trained over
a 3 month period is traded out-of-sample for the next 3 months. This is a
conservative approach as it is ambitious to expect a simple technical trading
rule to yield robust results over such a large window. A moving window ap-
proach, where the training set is incremented periodically and the population
is trained for a number of generations at each increment, has been shown to
yield superior returns [4] over a static approach, like the one adopted in this
study. We intend to investigate this approach in more detail. We also intend
to analyze the phenotypic characteristics of the system during evolution to
give greater transparency into the distribution of intelligence inherent in the
population.
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Abstract. We describe an interactive art that can facilitate visual di-
alogues with a user and reveal the user’s compositional proclivity. The
system invites the user for a visual dialogue, initially presenting two com-
positions in distinct styles. Then, the user “converses” with the system
by responding. As the interactions continue, the user starts to experi-
ence a tendency evolving in the compositions–much the same way as in
a dialogue between two people. Throughout the interactions, the evolu-
tionary process brings out a certain sense of self-reflection to the user.
The product of the dialogue is an experience in self-reflection in visual
proclivity. I3 was exhibited to the public in two international art forums.

1 Introduction

We hypothesize that each of us possesses an innate sense of how we prefer to
organize things in the world, although we may not be fully aware of it. We
describe a program that can guide the user through a search space of possible
visual composition styles; in the end the user can be led to a set of compositional
styles that represents the user’s stylistic tendency. As Collomosse [4] considers
painting a search process, we consider finding compositional styles to be search.

Our program is based on genetic algorithms (GAs) [8] and a novel composi-
tion analyzer based on gestalt theory [15] and perceptual grouping [12]. Each
‘chromosome’ in our system represents a visual composition style that can gen-
erate compositions in a certain artistic style. This system, called I3, can evolve
chromosomes that capture the essence of a user’s composition style through
interactions with the user.

An interesting aspect of I3 is that the user is a part of the fitness evaluation
function. The user gives feedback to the system by choosing the favorite among
a set of compositions at each iteration. This is somewhat related to the idea
of interactive fitness [3]. However, in I3, the system also evaluates compositions
using a novel algorithm that computes an aesthetic measure. Therefore, the
fitness function, F (c), of chromosome, c, is defined as F (c) = α × fsystem +
(1 − α) × fuser , where fsystem and fuser are feedbacks from the system and
the user, respectively, and α is a weighting factor. Given the user is coherent in
choosing compositions, in the end, the composition styles will converge to similar
styles. Note that, however, the consistency is not forced because any dialogue
can diverge to multiple topics and such a dialogue can be meaningful as well.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 261–270, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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A dialogue with I3 will bring the user an experience–a sense of self-reflection.
Therefore, our intent is not to automatically generate art, or to validate an
aesthetic theory on the basis of visual image processing [9], but to design a
system of visual dialogues, which would provide users an aesthetic experience
through self-reflection. It is important to note that the compositions are means
to bring out such an experience of self-reflection and our primary goal is less in
generating artwork but more in facilitating a unique user’s experience.

GAs are often known to evolve unpredictable creative solutions. We see com-
positions generated by I3 often being quite artistically creative and unique while
still exhibiting a coherent style. In many cases, the styles evolved seem different
but a close observation reveals qualitative similarities.

I3 was shown at International Centre of Graphic Arts in Ljubljana and at the
14th International Festival of Computer Arts (MFRU) in Maribor, Slovenia. We
have collected the sessions data of the gallery visitors for offline studies.

This paper is organized as follows: Section 2 presents a background and the
motivation for I3. Section 3 describes I3. Section 3.2 presents the algorithms used
in I3 and example interactions. In Section 3.3, we discuss an analyzer that dis-
covers gestalt qualities from a composition. These qualities are used to compute
the aesthetic measure for the composition. Section 4 discusses the experience ob-
tained through I3 interactions and the data collected from the Ljubljana exhibit.
Finally, Section 5 presents a summary and future work.

2 Background and Motivation

Can computers facilitate self-reflection? If so, how can we design a software
system that can promote self-reflection? What are the roles of Fine Arts in
promoting self-reflection? This project is an effort to answer these questions.

McCormack [10] classifies research in evolutionary music and art in two cate-
gories. One of them is research that explores creativity. Many researchers agree
that creativity is one of the products of an increased self-awareness. Hofstadter
argues that self-awareness is a prerequisite for creativity [7].

We attempt to bring self-awareness to the users by facilitating interactions
with an evolutionary visual composition system. There are several efforts on
generating aesthetic artworks; for example, in [11] and [13], the primary goals
are mostly to generate artwork. Boden et. al. [2] discusses interactive generative
art. We believe that an evolutionary process of compositional styles, combined
with a proper user feedback mechanism, can foster self-awareness to the user
through the creative exchanges between the user and the system. In this regard,
our work is unique. Note that I3 still attempts to generate artistically pleasing
compositions while keeping a sense of dialogical flow with the user.

I3 has two major components: the generator and the analyzer components.
The generator component uses GAs, probabilistic methods, and interactions with
the user to generate compositions. The analyzer component evaluates the com-
positions by using gestalt perceptual grouping and an aesthetic measure based
on Birkhoff [1]. The interactions among the generator, the analyzer, and the
user bring out an emergence of a sense of coherent experience to the user, and
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(a) Initial I3 Screen (b) An example of initial compositions

Fig. 1. I3 intro screen and initiating a visual dialogue

Require: A set of compositional genes, Cj at generation j, 0 ≤ j ∈ Integer; A
user response, cselected

Ensure: A composition with the style specified by ci.
repeat

Generate two chromosomes, c0 and c1 both in C0;
Produce Compositions (c0, c1);

until cSelected = {c0 ∨ c1|ci ∈ C0 ∧ i ∈ Integer }
repeat

Apply GA(cSelected); Generate nine chromosomes, c0 . . . c9;
Produce Compositions (c0, . . . , c9);
cSelected = {c0 ∨ c2 ∨ . . . ∨ c9|ci ∈ Cj ∧ i ∈ Integer}
Evaluate each chromosome

until User Quits

Algorithm 1. The top-level algorithm of I3

in some way to the system as well. A detailed discussion of various aesthetic
measures is beyond the scope of the paper. Readers should consult Greenfield
[5] and Hoenig [6] for good historical overviews on aesthetic measures.

3 A Description of I3

3.1 The Top-Level Behavior

Figure 1(a) shows the initial screen of I3. The design is inspired by the Socratic
dialogue in Plato’s Meno [14] between Socrates and a slave about finding the
square that is exactly twice as large in its area of the small one. The screen shows
that how a conversation between two people can be accomplished visually.

The user can click on any part of the intro screen to proceed to an instruction
screen. After the instruction screen, the program runs Algorithm 1, the main-
loop. The algorithm creates two initial chromosomes, c0 and c1, which represent
distinct composition styles, using some gestalt rules (See Section 3.3). Then it
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Fig. 2. Nine compositions are produced after the user selected the second composition
in the first screen. The bottom of the screen is a history panel. The pop-up window gives
information about each composition and it does not appear from the third iteration.

calls Produce Compositions(c0, c1) to generate two compositions as in Figure
1(b). This function in turn calls Algorithm 2.

These two compositions are possible “topics” of the dialogue to ensue and
the user is asked to choose one of them. Based on the choice, in the second
repeat loop, the algorithm invokes an evolutionary algorithm to generate a set
of nine chromosomes–representing nine compositional styles. Figure 2 shows the
nine compositions generated after the user choosing the composition on the
right. The user then is again to select one among the nine by focusing on the
personal preference. This main-loop continues until the user stops. Given the user
is reasonably coherent, nine chromosomes converge to the user’s visual proclivity.

I3 generates compositions consisting three fundamental shapes–the triangle,
the square, and the circle. All unnecessary details–shading, texture, and color–
are stripped away, so that the overall structure, once discovered, can be more
clearly apprehended. Each shape has properties such as position, size, structure,
and orientation. The dialogue develops by having the users to rate a set of nine
compositions for each interaction. The challenge for the users is to gain an ever
deeper awareness of the interrelation, linking the type of compositions emerging
in front of their eyes with the self-reflective dialogical process.

This is much like interviewing an unknown person. As the interview pro-
gresses, various subjects may be discussed, yet a coherent theme may arise.
Throughout the interview, both the interviewer and the interviewee will gain an
experience about their conversations. We attempt to capture such an experience
with I3. The user will be more aware of their visual composition proclivities as
the program reflects its own. As in any dialogues, digression can happen any-
time. Focused conversationalist may be able to digress less from the main topic
yet unfocused and casual attitudes may introduce more digressions. The pro-
gram may digress and become less focused if the user is. On the other hand, if
the user is focused, a clear theme of the dialogue emerges in front of the user’s
eyes. A certain amount of digression is allowed but if the conversation becomes
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Require: A chromosome c, (i.e., style of composition) described above.
Ensure: A composition with the style specified by c.

totalShapes = N (nr, σ2)
for (i = 0; i < totalShapes; i++) do

shape = decideWhichShape(c);
position = decidePosition(shape, c)
shape = geometricTransformation (shape,c)
addShapeToCanvas (shape, position)

end for

Algorithm 2. The Composition Algorithm; it is called by
Produce Compositions(C), where C is a set of chromosomes (See Algo-
rithm 1); N (nr, σ2) is a normal distribution with μ = nr and σ is a standard
deviation.

too unfocused, it may come out of some kind confusing interactions–as it can
happen in a conversation between two people.

3.2 The Generator Component

The knowledge in I3 is represented in chromosomes. Each chromosome represents
a compositional style with a unique tendency of generating the three fundamental
shapes discussed above. A chromosome consists of: the nr gene for how many
shapes to be drawn; the position gene for where on the canvas the ith shape
to be drawn; and the trans gene for what geometric transformations will be
applied to the shape. The position and transformation genes are associated with
their own repetition probabilities, which decide the probabilities of repeating the
tendencies of the ith shape for drawing the (i + 1)th shape.

Produce Compositions(C) calls Algorithm 2, iteratively for each element ci

in C, to generate a composition for ci, where C is a set of chromosomes. Given
a chromosome, after deciding how many shapes to draw using the nr gene, the
algorithm draws the first shape on the canvas based on the position gene. Then
the ith shape is generated based on the (i−1)th shape using the repetition prob-
abilities of the chromosome in position, shape, and geometric transformations.

Figure 3(a) shows a rather contrived example but explains the concept clearly.
This chromosome always draws three shapes at the same location with all three
basic shapes. On the other hand, Figure 3(b) shows a typical composition gen-
erated by the algorithm.

We have designed the fitness function to consider both the user’s feedback as
well as the aesthetic measure computed by the system. The following function
evaluates each chromosome c’s fitness value:

f c = α × f c
system + (1 − α) × f c

user (1)

where f c
system and f c

user are feedbacks from the system and the user, respectively,
and α is a weighting factor ranging between 0 and 1.

f c
user = 0, if the composition created by c was not selected by the user in

the current generation and f c
user = r, where r > 0, if c’s composition was
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(a) A contrived I3 composition (b) A typical composition

Fig. 3. Example compositions generated

selected by the user. f c
system is the fitness value computed by the system. The

criteria for the system fitness is the aesthetics of the composition generated by c.
f c
system evaluates each composition based on the principle of unity in variety as

in Birkhoff [1] and a perceptual grouping algorithm that finds gestalt tendencies
[12]. Section 3.3 discusses fsystem in more detail.

With the fitness for each chromosome, the evolutionary algorithms will gen-
erate the next generation of chromosomes. The new generation will be used for
the next iteration of the repeat-loop. This process continues until the user quits.

3.3 The Analyzer Component

We designed an analyzer based on gestalt theory [15] and perceptual grouping
[12] to evaluate the aesthetic quality of compositions generated.

The most basic law of gestalt is the law of proximity. It explains that, all things
being equal, two objects that are close together will be grouped together. This
law will interact with the law of similarity, that states that two objects that are
similar will be grouped together. Of course two objects can be similar according
to many dimensions including size, shape, color, and orientation. Proximity could
also be argued to be the similarity of position, depending upon if we consider
position to be an innate property like size and shape.

A more advanced law is the law of good-continuation, which states that objects
that are arranged in linear or curve-linear formations are grouped together. The
law of good continuation also says that our minds fill in gaps when objects are
in lines or they can be connected by line-dashes to form an entire line.

Thorisson [12] developed an algorithm to group visual objects along the laws
of proximity and similarity. We improved the Thorisson’s algorithm to build a
parse tree for a given composition after finding gestalt properties embedded in
the composition. The parse tree is annotated with gestalt properties discovered
from the composition.

Now we explain how fsystem is computed. Birkhoff [1] defines aesthetic mea-
sure as a function of Order(O)

Complexity(C) . We define order O be the measure computed
by the perceptual grouping. That is, order O is a function of proximity, simi-
larity, and in turn, of good-continuation. Our algorithm, given a composition,
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(a) aesthetic measure = 0 (b) aesthetic measure = 0.88

Fig. 4. Two example compositions with their aesthetic measures

I3

Dialogue

Geno-type
Pheno-
type

Emergence

Fig. 5. Emergence of Styles via I3 interactions

finds the number of good-continuation properties in the composition and evalu-
ates each good-continuation property based on proximity and similarity; then it
returns a value between 0 and 1.

Complexity C is a function of the number of shapes, the number of different
shape sizes, and the variety of different shapes in a composition. A composition
with more different sizes and shapes has a higher C. C is also between 0 and 1.

Figures 4-(a) and (b) show two example compositions with their aesthetic
measures 0 and 0.88, respectively. A higher aesthetic value indicates a good bal-
ance of order O and complexity C. The measure works acceptably in most cases
but it can be improved by considering more gestalt properties in the analyzer
and combining ideas from different aesthetic measures. We are studying a way
to incorporate other gestalt properties to the aesthetic measure.

4 I3 Experience

In this section, we discuss I3’s emergent behavior and the behavioral data col-
lected from the I3 exhibit in Ljubljana.

Figure 5 shows the concept of emergence of compositional styles in I3. A
genotype in I3 represents a compositional style and the corresponding phenotype
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(a) An example at i = 53 (b) Another example at i = 14

Fig. 6. Two separate I3 sessions converging to unique styles

is a visual composition, a manifestations of the genotype. It is important to
remember that a genotype represents a style of composition not a composition
itself. I3, using the same genotype, will generate various different compositions,
yet they will be similar in styles. The user can start self-reflecting about his or
her own compositional styles as a coherent artistic style emerges.

As shown in Figure 6, after enough interactions (i.e., generations), the nine
compositions can converge to similar compositions that share common charac-
teristics. The number of interactions required for a convergence depends on the
user’s coherence to a specific style of composition in selecting, as well as on the
system’s evolutionary process. If the user selects an arbitrary composition style
at each interaction, the compositional style will most likely diverge. Figure 6(a)
shows that all nine compositions share similar tendencies in orientations and in
having a good mixture of medium- and small-sized shapes. Figure 6(b) shows a
tendency of having many small shapes.

Figure 7 shows the behaviors of two anonymous users who visited the gallery
in Ljubljana. There were 901 people interacted with I3 between November 15,
2007 to January 13, 2008. User J.Doe 1 had 68 iterative interactions with I3.
Figures 7-(a),(b), and (c) are J.Doe 1’s selections of compositions at iterations
(i.e., generations) 46, 59, and 68, respectively. This user tends to like a number
of smaller shapes enclosed within a larger shape. The user consistently selected
such compositions from iteration 59. Note an interesting phenomenon: Figures
7-(b) and (c) look different at a glance. However, both compositions share a
quite similar style–the same smaller shapes, triangles for (b) and rectangles for
(c), are enclosed in a bigger shape–a big square. More interestingly, in (b), one
large circle slightly overlaps with the big square. On the other hand, in (c), two
small shapes, one circle and one square, seem to match the one large circle in
(b), somehow giving a feeling of a “balanced weight.” J.Doe 2 seems to like over-
lapping triangles and rectangles but no circles. We observed similar behaviors
over the most of this user’s interactions with I3.

The above observations come from our manual “after-the-interactions” anal-
ysis. The analyzer currently is not advanced enough to capture higher-level se-
mantic characteristics such as “balanced weight.” We are currently developing a
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(a) User J.Doe 1,
at i = 46

(b) User J.Doe 1,
at i = 59

(c) User J.Doe 1,
at i = 68

(d) User J.Doe 2,
at i = 1

(e) User J.Doe 2,
at i = 29

(f) User J.Doe 2,
at i = 33

Fig. 7. User samples from the Ljubljana Exhibit

more sophisticated analyzer that is capable of detecting such higher-level seman-
tics. This new analyzer can give explicit feedbacks to the user, perhaps visually,
aiding the process of self-reflection.

Many users among the 901 people have characteristic interactions with I3.
However, we have noticed a significant percent of the people prematurely termi-
nated sessions–many of them (about 75%) terminating within 15 iterations. This
may be common to many art exhibits in general; however we believe that we can
engage more users to I3 by addressing the following limitations of the current
system. First, the system doesn’t provide an explicit sense of progress to the user
during the session. Focused users will not have problems in producing satisfying
composition styles. However, casual users may loose interest prematurely due to
the lack of goal-oriented guidance from the system. Without an explicit goal,
users may terminate sessions too early. We plan to resolve this issue by making
I3 interactions similar to a game play with a scoring system.

5 Summary and Future Work

We have presented and discussed an interactive visual composition system that
can facilitate visual dialogues with a human user. The system invites the user
for a dialogue based on compositions consisting of fundamental shapes and their
geometric transformations. Evolutionary algorithms evolve compositional styles
through interactions with the user. As the interactions continue, patterns emerge
in the dialogue–much the same way as in a dialogue between two people. The
result is an experience to the user, perhaps self-reflecting realization of the user,
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about his or her own proclivities in visual arrangements of various objects. We
have also developed an analyzer that can find gestalt tendencies (i.e., styles) in a
visual composition and enumerate them in symbolic forms (i.e., a parse tree) that
can be easily understood by humans. There are immediately important future
works. First, we are working on improving the aesthetic measure by incorporating
additional gestalt properties in the analyzer. Second, one of the main concerns
that we heard from the users of I3 was a lack of sense of closure and progress
over the interactions; often users are not sure about when is the time to finish a
session. We are currently working on these issues.
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Abstract. We present a novel evolutionary engine for the evolution of
context free grammars. The system relies on specially designed graph-
based crossover and mutation operators. While in most evolutionary art
systems each individual corresponds to a single artwork, in our approach
each individual is a context free grammar that specifies a family of shapes
following the same production rules. To assess the adequacy and com-
pleteness of the system we perform experiments using automated fitness
assignment and user-guided evolution. The experimental results show
that the system is able to create diverse and interesting families of shapes
even when the initial population is composed of minimal grammars.

1 Introduction

The main inspiration of this research is the seminal work of Stiny and Gips [11]
who introduced the concept of Shape Grammars and built, among others, shape
grammars that capture the architectural “language” of Frank Lloyd Wright’s
prairie houses. Although the grammars were hand-built, their results show that:
(i) it is possible to capture specific visual languages using a set of production
rules; (ii) it is then possible to use this set of rules to automatically generate
new objects that belong to the same visual language.

With the goal of developing a system that generates novel visual languages,
we created an evolutionary engine where each individual is a Context Free De-
sign Grammar (CFDG) [3] and built appropriate genetic operators for their
manipulation. The use of CFDGs allows the specification of complex families
of shapes through a compact set of rules, and has several potential advantages
over several other Evolutionary Art (EA) representations. The development of a
graph-based crossover operator was motivated by the need to take into account
the underlying structure of the individuals while exchanging genetic code.

A thorough survey of EA systems is beyond the scope of this paper and can
be found in [5]. To the best of our knowledge, there are two examples of the use
of CFDG for EA. Unfortunately, neither of them allows the evolution of visual
languages. CFDG Mutate [1] only allows the application of mutation operators
and does not handle non-deterministic grammars, which means each individual
represents a single shape (see Section 2). Saunders and Grace [10] present a para-
metric system that evolves parameters of specific CFDG hand-built grammars.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 271–280, 2010.
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Although it allows some degree of exploration, it has the same shortcomings as
other parametric evolution approaches: there are strong constraints that limit
the search space and define the type of imagery produced by the system.

A previous work [8] showed that our engine allows the evolution of interesting,
complex and diverse visual languages when the initial population is composed of
hand-built CFDGs. In this paper we focus on the description of the evolutionary
engine, namely crossover and mutation operators, and on testing its generation
abilities in the absence of hand-built grammars.

2 Context Free

Context Free [4] is a popular open-source application that renders images speci-
fied using a simple language entitled CFDG (for a full description of CFDG see
[3]). In essence, and although the notation is different from the one used in for-
mal language theory, a CFDG program is an augmented context free grammar,
i.e., a 4-tuple: (V, Σ, R, S) where:

1. V is a set of nonterminal symbols
2. Σ is a set of terminal symbols
3. R is a set of production rules that map from V to (V ∪ Σ)∗

4. S is the initial symbol

Fig. 1 presents a grammar and the image it generates. Programs are interpreted
by starting with S (in this case S = TREE) and proceeding by the expansion of
the production rules in breath-first fashion. Predefined Σ symbols call drawing
primitives (e.g., CIRCLE). CFDG is an augmented context free grammar: it
takes parameters that produce semantic operations (e.g., size produces a scale
change). Program interpretation is terminated when there are no V symbols left
to expand or the further expansion does not change the image [8].

The grammar of Fig. 1 is deterministic, there is exactly one rule for each
V symbol, therefore its interpretation will always result in the same image.
To specify languages of shapes we have to resort to non-determinism. In Fig.
2 we present a non-deterministic version of this grammar with two different
production rules for the ‘TREE’ symbol. When several production rules are
applicable one of them is selected randomly and the expansion proceeds. One
can control the probability of selection by specifying a weight after the V symbol
(0.8 and 0.2 in Fig. 2).

3 Evolutionary Context Free Art

In this section we describe our evolutionary engine. For the sake of parsimony
we focus on the key components of the system.

Each genotype is a well-constructed CFDG grammar. Phenotypes are ren-
dered using Context Free. To deal with nonterminating programs a maximum
rendering time is set. The genotype is represented by a directed graph created
as follows:
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startshape TREE
rule TREE { CIRCLE {}

TREEA {size 0.95 y 1.6}}
rule TREEA { CIRCLE {}

TREEB {size 0.95 y 1.6}}
rule TREEB { CIRCLE {}

TREEC {size 0.95 y 1.6}}
rule TREEC { CIRCLE {}

TREED {size 0.95 y 1.6}}
rule TREED { CIRCLE {}

TREE {size 0.95 y 1.6 rotate 45}
TREE {size 0.95 y 1.6 rotate -45}}

TREE

TREE
A

TREE
B

TREE
C

TREE
D

Fig. 1. A deterministic grammar, the tree-like shape it generates, and its graph repre-
sentation. The labels of the edges have been omitted.

startshape TREE
rule TREE 0.80 {

CIRCLE {}
TREE {size 0.95 y 1.6}

}
rule TREE 0.20 {

CIRCLE {}
TREE {size 0.95 y 1.6

rotate 45}
TREE {size 0.95 y 1.6

rotate -45}}

TREE

TREE

TREE

Fig. 2. A non-deterministic version of the grammar presented in Fig. 1, two instances
of the family of tree-like shapes it defines and its graph representation. The labels of
the edges have been omitted.

1. Create a node for each nonterminal symbol. In deterministic grammars each
node represents a single production rule (see Fig. 1). In non-deterministic
grammars each node encapsulates the set of all production rules associated
with the nonterminal symbol, e.g., the grammar presented on Fig. 2 results
in a directed graph composed of a single node that encapsulates the two
rules associated with the nonterminal ‘TREE’.

2. Create edges between each node and the nodes corresponding to the nonter-
minals appearing in its production rules (see Figs. 1 and 2).

3. Annotate each edge with the corresponding parameters (e.g. In Fig. 1 the
edge connecting TREE with TREEA possesses the label ‘size 0.95 y 1.6’)

3.1 Crossover Operator

The design of genetic operators that are well-suited to the representation is vital
for the success of an evolutionary algorithm. In our case the biggest challenge
was to design a crossover operator that allows the meaningful exchange of genetic
material between individuals. Given the nature of the representation, we devel-
oped a graph-based crossover operator based on the one presented by Pereira et
al. [9]. In simple terms, this operator allows the exchange of subgraphs between
individuals.
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The crossover of the genetic code of two individuals, a and b, implies: (i) Select-
ing one subgraph from each parent; (ii) Swapping the nodes and internal edges
of the subgraphs, i.e., edges that connect two subgraph nodes; (iii) Establishing a
correspondence between nodes; (iv) Restoring the outgoing and incoming edges,
i.e., respectively, edges from nodes of the subgraph to non-subgraph nodes and
edges from non-subgraph nodes to nodes of the subgraph.

Subgraph selection. Randomly selects for each parent, a and b, one crossover
node, va and vb, and a subgraph radius, ra and rb. Subgraph sra is composed
of all the nodes, and edges among them, that can be reached in a maximum of
ra steps starting from node va. Subgraph srb is defined analogously.

Swapping the subgraphs. Swapping sra and srb consists in replacing sra by srb

(and vice-versa). After this operation the outgoing and the incoming edges are
destroyed. Establishing a correspondence between nodes repairs these connec-
tions.

Correspondence of Nodes. Let sra+1 and srb+1 be the subgraphs that would be
obtained by considering a subgraph radius of ra + 1 and rb + 1 while perform-
ing the subgraph selection. Let msta and mstb be the minimum spanning trees
(MSTs) with root nodes va and vb connecting all sra+1 and srb+1 nodes, respec-
tively. For determining the MSTs all edges are considered to have unitary cost.
When several MSTs exist, the first one found is the one considered. The corre-
spondence between the nodes of sra+1 and sra+1 is established by transversing
msta and mstb, starting from their roots, as described in Algorithm 1.

Restoring outgoing and incoming edges. The edges from a /∈ sra to sra are
replaced by edges from a /∈ sra to srb using the correspondence between the nodes
established in the previous step (e.g. the incoming edges to va are redirected to
vb, and so on). Considering a radius of ra + 1 and rb + 1 instead of ra and rb in
the previous step allows the restoration of the outgoing edges. By definition, all
outgoing edges from sa and sb link to nodes that are at a minimum distance of
ra + 1 and rb + 1, respectively. This allows us to redirect the edges from sb to
b /∈ sb to a /∈ sa using the correspondence list.

Figs. 3 and 4 present examples of the crossover operator at the genotype and
phenotype level.

3.2 Mutation Operators

The development of the mutation operators was guided by the need to introduce
new genetic code and to ensure that the search space is fully connected, i.e.,
that all of its points are reachable from any starting point by the successive
application of genetic operators. This resulted in the use of ten operators, for
which, due to space limitations, we only present a cursory description:

Startshape mutate – randomly selects a nonterminal as starting symbol;
Replace, Remove or Add symbol – when applied to a given production rule

these operators: replace one of the present symbols by a randomly selected
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Algorithm 1. transverse(a, b)
set correspondence(a, b)
mark(a)
mark(b)
repeat

if unmarked(a.descendants) 
= NULL then
nexta ← RandomlySelect(unmarked(a.descendants))

else if a.descendants 
= NULL then
nexta ← RandomlySelect((a.descendants))

else
nexta ← a

end if
{**** do the same for nextb ****}
transverse(nexta, nextb)

until unmarked(a.descendants) = unmarked(b.descendants) = NULL
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Fig. 3. On the left, the graphs of two parents. Considering va = B, vb = 1 and
ra = rb = 2, yields the subgraphs sra and srb whose nodes are depicted in grey.
To establish the correspondence between nodes, the MSTs (here represented by dotted
edges) are determined and Algorithm 1 applied. Considering that the algorithm returns
the correspondence list {B-1, C-2, E-2, D-3, F-5, G-6, G-7, D-4}, the crossover operation
results in the two descendants presented on the right. To help the reader, we added
labels to the outgoing and incoming edges.

one; remove a symbol and associated parameters from the production rule;
add a randomly selected symbol in a valid random position. Notice that
these operators are applied to terminal and nonterminal symbols.

Duplicate, Remove or Copy&Rename – these operators: duplicate a pro-
duction rule; remove a production rule, updating the remaining rules when
necessary; copy a production rule, assigning a new randomly created name
to the rule and thus introducing a new nonterminal; the copy&rename muta-
tion will only affect the phenotype once the Add symbol mutation introduces
a call to the new nonterminal in a production rule.

Change, Remove or Add parameter – as the name indicates these opera-
tors add, remove or change parameters and parameter values;



276 P. Machado, H. Nunes, and J. Romero

Fig. 4. The two leftmost images are the parents, the others are results of their crossover

4 Experimentation

In a previous study [8] we showed the adequacy of the engine to evolve families
of shapes when the initial population included hand-built grammars. In the
current work we are interested in determining if the system is self-sufficient
and if it can generate interesting and novel images and shape families without
resorting to hand-built grammars. For this purpose we conducted experiments
using automated-fitness assignment and user-guided evolution. Using an initial
population of randomly created grammars could hide possible shortcoming of
the genetic operators. As such, we chose to use as starting population a single
individual whose genotype consists of a minimal grammar: a startshape directive
and a single production rule composed of a call to the SQUARE terminal (the
list of CFDG predefined terminals can be found in [3]).

We use a generational non-elitist approach and roulette wheel selection. In
all experiments presented here: population size = 50, crossover probability =
0.7, maximum crossover radius = 3, mutation probability = 0.01 per individual
(for each of the ten mutation operators). In the automated fitness runs the max
number of generations = 100, while in the user-guided ones the stopping criteria
were determined by the users.

4.1 Fitness Functions

In user-guided runs the fitness is supplied by the user who may assign to each in-
dividual a value in the [0, 9] interval. For automated fitness runs we experimented
three different fitness formulas:

RMSE – The fitness of an individual, a, is calculated by determining the root
mean square error between its phenotype, i(a), and a target image, t, as
follows: fitness(a) = 1/(1 + rmse(i(a), t))

Fractal Dimension – Following Taylor et al. [12], among others, fitness is
assigned by estimating the fractal dimension (FD) of i(a) and comparing
it with a target value, v, as follows: fitness(a) = 1/(1 + (FD(i(a)) −
v)2). FD is estimated by the box counting method using the chaos library
(http://www.math.uic.edu/~culler/chaos/). In the experiments presented
here two arbitrarily chosen target v values, 1.3 and 0.8, are considered.

JPEG – We use JPEG compression to estimate image complexity [7]. Fitness
is proportional to the file size of the JPEG encoding of i(a): fitness(a) =
max(0, (size(jpeg(i(a)) − const)/1500). To increase the evolutionary pres-
sure, a subtraction by a constant is performed (const = 1000 in all runs, a

http://www.math.uic.edu/~culler/chaos/
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Fig. 5. Evolution of the best (left) and average (right) fitness throughout the auto-
mated fitness assignment runs. Results are averages of 10 runs.

value that was set taking into account the file size, 1100, of the image of the
first population).

When the genotype encodes a non-deterministic grammar the phenotype may,
and does, change from one interpretation to the other. As such, the fitness of
an individual may vary from generation to generation. In other words, although
an individual is a visual grammar, we assign fitness based on a single sample
of this grammar. This design option poses an additional difficulty for the EC
algorithm. Nevertheless, in theory, it should eventually converge to grammars
predominantly composed of highly fit images.

4.2 Experimental Results

The analysis of the experimental results attained by EA systems typically im-
plies a high degree of subjectivity. The main goals of the automated fitness runs
were: (i) determine if the evolution of fitness values corresponds to the expectable
behaviour of an EC engine; (ii) determine if the system is able to evolve complex
grammars starting from a minimal one. In other words, the goals are validating
the engine, the adequacy of the genetic operators, and test their ability to intro-
duce novelty and promote complexification. The possible discovery of interesting
shapes is not a goal.

The charts of Fig. 5 show the evolution of fitness throughout the automated
runs. As can be observed, these charts display the typical behaviour of EC ap-
proaches. Fig. 6 presents some of the individuals evolved in these runs. Generally
speaking, and although it is subjective to say it, the runs using RMSE fitness
produced the least interesting results. This was expected and consistent with the
results attained by researchers using RMSE fitness in expression-based EA (see,
e.g., [2]). The individuals evolved using JPEG fitness created the most complex
shapes, a result that was also expected. Interestingly, in several of these runs
the system tended to evolve star-like shapes. This can be explained by two fac-
tors: (i) it is relatively easy to find a compact grammar that generates star-like
shapes; (ii) the resulting images often result in a relatively large JPEG files.

The goal of the user-guided runs was to show that it was possible to generate
diverse, interesting and novel shapes starting from “scratch”. Typically the user
guided runs had 20 to 40 generations, and the first half of the run was spent on
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RMSE FD v = 0.8 FD v = 1.3 JPEG

Fig. 6. Examples of images created in automated fitness runs

Fig. 7. Examples of images created in user-guided evolution runs

finding a grammar that draws more than a single shape. Thus, the use of a single
and minimal grammar as first population makes the first generations of these runs
quite boring for the user and, in normal circumstances, we would not recommend
this initialization approach. Nevertheless, for the purposes of testing the system,
we found it adequate. Fig. 7 presents examples of the images evolved in different
user guided runs, showing what can typically be expected in these circumstances.

Although it would probably be advisable to increase the mutation probability
during the first generations of these runs, the mutation operators proved valid,
producing outcomes that are conceptually similar to the effects of mutation in
expression-based EA. That is, the effects of mutation range from minor visual
alterations to dramatic changes in appearance induced by small changes of the
genetic code, with the later occurring less often [6].

In subsequent experiments, we used some of the individuals evolved in these
runs as initial populations of other user-guided runs. Fig. 8 presents examples of
images evolved in this fashion. The higher population diversity allowed us to get
a better grasp of the behaviour of the crossover operator. In general terms, the
outcome of the crossover operator appears to depend on the structural similarity
of the genotypes and on their size. Additionally, when the parents are unrelated
the visual appearance of each descendent tends to be mostly determined by one
of the parents (see Fig. 4). An effect that is more visible with small genotypes.

As stated previously, non-deterministic grammars allow the definition of a
family of shapes. The potential for evolving families of shapes instead of single
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Fig. 8. Examples of images created in user-guided runs initiated with images from
previous runs

Fig. 9. Instances of the language of shapes defined by two individuals

images is one of the main motivations for the use of CFDGs. However, in the
runs presented here, while assessing the individuals the user only has access
to one instance of the images an individual may generate. This means that
the quality, diversity and consistency of the language of shapes encoded by the
individual is not directly assessed. Nevertheless, and somewhat surprisingly, non-
trivial and interesting families of shapes were still evolved. This is arguably
explained by the following factors: (i) The experimental settings, namely starting
conditions and genetic operators, naturally lead to non-deterministic grammars,
which is confirmed by the analysis of the individuals generated in automated
fitness runs; (ii) User Fatigue – the user eventually grows tired of individuals
that systematically generate the same image, therefore the evolutionary process
indirectly favors non-deterministic grammars; (iii) individuals that fail to reliably
generate images valued by the user will eventually be discarded by evolution, in
other words consistency is also favored. Fig. 9 presents instances of the visual
languages defined by two of the evolved individuals.

5 Conclusions and Future Work

We presented a novel evolutionary engine that allows the evolution of CFDGs, is
able to cope with non-deterministic grammars, and allows their recombination
through a graph-based crossover operator. Due to these abilities, it successfully
overcomes the limitations of previous EC approaches where CFDGs are used.
When compared with typical expression-based and parametric evolution models,
our approach presents several advantages, including the abilities: to evolve visual
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languages instead of individual images; to use hand-coded grammars; and to
allow the direct editing of the genotypes by the user.

Although the interpretation of the results is subjective, they provide evidence
of the adequacy of the developed crossover and mutation operators. They also
indicate that further experimentation is required to fully explore the potential
of the approach for the creation of visual languages. Nevertheless, we consider
this to be an important step in that direction.

In terms of future work, redesigning the user interface, exploring automatic
image fitness assignment schemes, and developing approaches to automatically
assess a language of shapes in terms of consistency, diversity and aesthetic qual-
ities of the generated images are our top priorities.
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Abstract. An animated evolutionary photomosaic is produced from a
sequence of still or static photomosaics to evolve a near match to a given
target image. A static photomosaic is composed of small digital images or
tiles, each having their own aesthetic value. If the tiles are prepared man-
ually, the tile collections are typically small. This potentially limits the
visual quality of a photomosaic as there may not be sufficient options for
matching tiles. We investigate the use of colour adjustment and tile size
variation techniques via genetic programming to improve the animated
photomosaics. The results show that colour adjustment improved both
visual quality and fitness. However, it can produce strange looking tiles.
Tile size variation was able to focus on details in the target image but
produced slightly worse fitness values than an equal-sized tiles approach.
Combining these techniques revealed that, regardless of the size of tiles,
colour adjustment was the dominant refinement. In conclusion, each of
these techniques is able to produce an aesthetically different animation
effect and presents a better mechanism for generating photomosaics when
only a limited number of tiles is available.

Keywords: Non-photorealistic rendering, animated evolved photomo-
saic, evolved art, genetic art, genetic programming, digital art.

1 Introduction

An animated evolutionary photomosaic is a movie comprising a sequence of
photomosaics, each generated by an evolutionary algorithm, which evolves into
a close match to a selected target image. A photomosaic is a composite digital
image made of smaller images or digital tiles. When viewed close up the content of
each tile is visible and is potentially a significant digital image. When viewed from
a distance the subject of the entire photomosaic becomes the central feature.

Due to the differences in resolution between paper rendering and screen dis-
play, and tiling strategy considerations, aesthetic criteria for the two photomosaic
output options need to be different. A tile needs to be large enough to be able
to show its content on the screen and yet small enough to closely match the
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c© Springer-Verlag Berlin Heidelberg 2010



282 S.B. Mat Sah, V. Ciesielski, and D. D’Souza

target image. A common way to generate a photomosaic is through placement
of the tiles onto a two-dimensional grid in an arrangement that best matches the
target image. The grid consists of N cells, where a cell is a space on the grid.
Any selected tile must fit into a cell on the grid. Consequently, the size of the
cells will also determine the size of tiles. A large number of tiles, in the order of
hundreds of tiles or more, provides a high probability of closely matching tiles,
and hence, potentially generating an accurate photomosaic. However, when tile
collections are limited by size (in our experiments collection size is no more than
50 tiles) or do not serve desired thematic requirements (tiles are thematically
incompatible with the target image) visual quality may be compromised. For
photomosaics involving limited collections of tiles the best static photomosaic
may be effectively constructed through exhaustive enumeration. However, our
interest is in animations in which the target image emerges gradually from an ini-
tial random allocation of tiles on a canvas. Such animations cannot be generated
via exhaustive search.

This paper reports our efforts to generate better animated photomosaics in
relation to these limitations. We propose two techniques to improve animated
colour photomosaics: colour adjustment and tile size variation. These, respec-
tively, refer to amendments to the tile colour and tile size during photomosaic
generation. Specifically, the following research question is addressed:

Do (a)colour adjustment, (b)tile size variation, separately, and in combina-
tion improve the animated photomosaics when only a limited number of tiles is
available?

Our criteria for improved animated photomosaics involve two metrics. One is
visual quality, is a combination of target image accuracy in the form of subject
resemblances, rate of target visibility and tile clarity. The other is fitness based
on pixel difference measurements.

The remainder of this paper is structured as follows. Section 2 presents work
by others in improving photomosaics. Section 3 describes our colour adjustment
and tile size variation refinements. Section 4 presents our experiments and re-
ports results thereof, and finally, Section 5 reports on findings and discusses
future work.

2 Related Work

Computer generated photomosaics were introduced by Robert Silvers in 1997 [2].
Silvers adopted what we denote the straightforward approach, which uses equal-
sized tiles and exhaustive search, with large tile collections in the generation
process and without modification to the tiles. Since then, much research has
been carried out into photomosaics, ranging from improvements to the genera-
tion process itself [1,8,10] to producing refined or new aesthetic styles of photo-
mosaic [5,6,7,9,11]. This work is primarily concerned with generation of static
photomosaics, potentially for printing.

We review related work involving refinements to photomosaics with limited
tile collections. One such technique is to use arbitrary shaped tiles instead of rect-
angular tiles, and also allow some degree of deformation. Jigsaw Image Mosaic
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(JIM) [5] allows for tile deformation to reduce the gaps between tiles. Another
system, Cut-out Mosaic [6], uses portions from images as tiles to generate a pho-
tomosaic. Although these approaches are able to more closely match the target
image, source tile originality is compromised. Without seeing the source image
of the cutout tile, it is no longer easy to identify the actual subject of the tile. Di
Blasi et al. [7] explore multi-resolution tiles by using a quadtree image represen-
tation. In this work small-sized tiles are used to represent areas that consist of
many colour variations, while areas of uniform colour are represented by single,
large image tiles. This approach preserves the tile content and also potentially
produces a close match to the target image.

Another approach for improving the visual quality of a mosaic is through
colour adjustment. In the generation of static photomosaics, Finkelstein and
Range [8] apply colour adjustment as an optional operation, after a photomo-
saic has been generated. Orchard and Kaplan [6] allow colour or luminance
adjustment to the cut-out mosaic. Although these techniques work well with
static photomosaics generation, they have yet to be tested in the generation of
animated photomosaics, as the generation involves many intermediate frames of
static photomosaics.

Prompted by these contributions, we incorporate colour adjustment and tile
size variation into our animated evolutionary photomosaic generation system.
Previous research in animated photomosaic generation has focused on equal-
sized digital tiles, both for gray level [3] and in colour [15] animations. Our work
continues the research from the perspective of animated colour photomosaics
generation. The motivation for our work is to generate evolved animated photo-
mosaics which have close resemblance to the target, through colour adjustment
and tile size variation.

3 Refinement Strategies in Photomosaic Generation

The straightforward approach to photomosaic generation uses equal-sized tiles
and large tile collections. When generating photomosaics with limited tile col-
lections, such a tiling strategy is limited by the choice and number of matching
tiles. As a result, some photomosaics retain abstract forms derived earlier in
the evolution, and do not resemble the target image. This calls for refinements
and we propose two possible approaches to address this problem: colour adjust-
ment and tile size variation. We introduce both refinements in the context of
Genetic Programming (GP) evolution, and describe the refinements in the next
two sub-sections.

3.1 Colour Adjustment

We define colour adjustment as changing the average colour of a tile to the av-
erage colour of a region in the target image, which changes the overall colour of
the tile while retaining its geometrical information. For colour adjustment, we
construct the photomosaic using equal-sized tiles. As photomosaic generation
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Table 1. GP configuration for Colour Adjustment and tile size variation Techniques

Parameter Colour Adjustment tile size variation
Population Size 10 10
Max Generations 50,000 40,000
Crossover Rate 0.70 0.70
Mutation Rate 0.20 0.20
Elitism Rate 0.10 0.10
Max depth 10 10
Min depth 2 2
Terminal TileIndex TileIndex
Function DrawTile, TileJoint DrawTile,TileJoint
Target Size 800 x 600 pixels 600 x 600 pixels
Tile Size 20 x 20 pixels 100 x 60 pixels
Selection Proportional to fitness Proportional to fitness
Replacement Generational replacement Generational replacement
Termination Number of generations Number of generations

Fig. 1. Example of an individual in a population

divides a target image into a finite number of regions and uses a set of tiles to
choose the best possible matches, the problem may be viewed as an arrange-
ment problem, having some of the characteristic of the traveling salesperson
problem [12] and the stock cutting problem [13]. In our GP implementation, an
individual (photomosaic) in a population represents a non-overlap arrangement
of equal-sized, juxtaposed tiles which completely cover the grid. The process
of generating a photomosaic begins by dividing the target image into a grid of
N cells for tile placement. Tiles to be placed on the grid are initially selected
randomly by the evolutionary program.

The evolution parameters, terminal and functions sets are presented in Ta-
ble 1. Figure 1 shows an example of an evolved individual in a population. The
ith terminal corresponds to the ith cell in the grid. Thus tile number 28 (Fig-
ure 1) will occupy cell number 2. As individuals in GP programs are represented
by parse trees of varying height, only the first N terminals traversed from a
parse tree will be used to generate a photomosaic. Parse trees with fewer than
N terminals are penalised and discarded from the evolutionary process. The GP
representation was selected based on the results of previous work that compared
GP and GA representations for photomosaic generation [14]. Our colour adjust-
ment occurs during the process of arranging tiles onto the canvas. We explain
the colour adjustment approach with reference to the placement of a single tile
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in a grid cell, using Equation 1. The calculation is done separately on each R, G
and B channel.

C(x) = x + w(ar − at) (1)
w = CurrentGeneration/MaximumGenerations (2)

Parameter x is a value of a colour channel of a pixel (e.g. Blue channel value),
ar is the average colour of a target image region, at is the average colour of a
selected tile and (ar − at) ∈ R. The calculated amount is then thresholded as
follows:

C(x) =

⎧⎨⎩
255 if C(x) > 255
0 if C(x) < 0
x + w(ar − at) otherwise

The thresholding process is to ensure that the calculated value is within the valid
range of 0 to 255, since each channel is represented using eight bits. The weight
(w) is applied in order to create a gradual effect of colour adjustment for the
evolved photomosaic, as w will be 1 at the final generation. This gradual change
in colour, rather than an abrupt colour change, produces a more aesthetically
pleasing animation effect.

3.2 Tile Size Variation

In the straightforward approach the size of the tiles influences the fidelity of the
generated photomosaic to the target image. It is difficult to arrive at a balance
between target image accuracy and tile clarity. In our second refinement, we vary
tile sizes via quadtree area division to overcome this problem. Quadtree area
division is carried out by partitioning the target image into regions of varying
size based on colour [16].

The process of division begins with dividing the target image into four regions.
For each quadrant, the largest pixel difference between each pixel and the average
colour of the region is calculated. The value is than compared to a threshold value
to determine further division. The threshold value is important as it allows the
quadtree division to capture details of the image. Large threshold values will
create uniform distribution of regions while small threshold values will detect
the occurrences of edges. A threshold value of 0.2, based on pilot experiments,
was used in the implementation. The division process is stopped when it reaches
either of two conditions: the calculated pixel difference value is smaller than the
threshold value or the size of a region reaches a minimum area size, specified as
10 × 10 pixels.

To retain the relationship between the entire image and the divided regions,
the results of the quadtree division are organised in a tree-based structure with
the entire image as the root. The regions with small pixel value differences or
with minimum size are consider as the leaf nodes, which is the number of cells, N ,
for tile placement. Each cell contains information about its size, the coordinates
of the top-left corner in the actual target image, and the average colour value.
The GP implementation uses this cell information to evolve the photomosaics.
The same parameter settings were employed as for colour adjustment (Table 1).
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3.3 Fitness Evaluation

Our aim is to minimise the sum-of-pixel-differences between the candidate photo-
mosaic and the target image, as the fitness calculation, and is formally expressed
by the Equation 3.∑K

i=1
∑L

j=1 |target(i, j) − individual(i, j)|
K × L

(3)

Here, i and j correspond to a pixel’s position, so |target(i, j) − individual(i, j)|
is the actual difference between corresponding pixel positions in the target and
individual (generated photomosaic). The sum computes the total value of differ-
ences from R, G and B channel for each pixel pair. The sum of these differences
is normalised to a value in the range of [0,1].

4 Results and Discussion

For colour adjustment, a target image of 800x600 pixels (Figure 2) was selected,
with a tile collection of 50 images of 20x20 pixels. For tile size variation, we
used a target image with a resolution of 600x600 pixels (Figure 3) with 29 tiles
of 100 × 60 pixels. The images were chosen based on colour complexity and
level of detail in the images. The tile collection was curated on the basis of the
desired thematic scheme of the target images1. We present the results for colour
adjustment and tile size variation in the following subsections.

4.1 Colour Adjustment

Quantitative and qualitative assessments were used to measure the performance
of this technique. Pixel differences between the final photomosaic and the target
were used as the quantitative measures. Qualitative assessments were carried
out with the help of two artists, via focus group interviews. Figure 2 shows
the generated photomosaic of a lotus flower image with and without colour
adjustments. A close-up of the butterfly tiles is shown in Figure 4.

Figure 2 shows that fitness values for colour adjustment are smaller than those
for the equal-sized tiles approach. These values indicate that at the same number
of generations (in our experiment it was 50,000 generations), colour adjustment
was able to generate more acurate photomosaics.

This finding is also supported by the visual qualities of the generated photo-
mosaics, which can be clearly seen in Figure 2. Without colour adjustment, the
tile collection was unable to produce a likeness to the target image. This was due
to the limited colour variation in the tile collection. For the qualitative assess-
ment, the colour adjustment technique allows the subject of the target image to
be visible at the early stage of the animation, when compared to the animation

1 The evolved photomosaic and the animations can be found at http://evol-
art.cs.rmit.edu.au/research/evomusart10/
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(a)First generation, (b)Generation 311, (c)Generation 2645, (d)Final generation,
Fitness = 0.461 Fitness = 0.437 Fitness = 0.413 Fitness = 0.389

(a)First generation, (b)Generation 332, (c)Generation 3005, (d)Final generation,
Fitness = 0.406 Fitness = 0.350 Fitness = 0.294 Fitness = 0.238

Fig. 2. This figure presents the photomosaics for Lotus target image. The first row
shows selected photomosaics without colour adjustment while the second row displays
selected outputs of colour corrected photomosaic.

produced by the straightforward photomosaic. This creates the illusion of the
subject emerging from the tile arrangement, which is different from the card
shuffling animation effect produced by the non-colour corrected photomosaic.
The subject also remains for a longer period in the animation. As the colour ad-
justments were applied gradually for this tile collection of butterflies, the earlier
part of the animation showed a butterflies fluttering effect which then revealed
the flower, as it was fully played.

We also observed that our colour adjustment technique can produce negative
outcomes, where it might produces strange coloured tiles. However, for this set
of tiles and target image, this has not been a problem. The artists agreed that
each animation effect has different aesthetic qualities, and is suitable for different
sets of tiles and target images.

4.2 Tile Size Variation

For tile size variation we used a target image of a stop sign (Figure 3) and a
tile collection of car images (Figure 4). The generated photomosaics were able
to capture the details of the target image, which are shown in row 2 of Figure 3.
The shape of the road sign and the word STOP are more visible in the final static
photomosaic as compared to the final static photomosaic of the straightforward
approach (row 1 of Figure 3). This is because the quadtree division was able to
represent the edges in the images using smaller sized tiles (about 10x10 pixels),
as compared to 20x20 pixels for the straightforward approach. Not surprisingly
the technique produced slightly worse fitness values than the straightforward
approach due to the simplicity of the fitness measurement.
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(a)First generation, (b)Generation 110, (c)Generation 312, (d)Final generation,
Fitness = 0.303 Fitness = 0.281 Fitness = 0.258 Fitness = 0.236

(a)First generation, (b)Generattion 640, (c)Generation 3765, (d)Final generation,
Fitness = 0.310 Fitness = 0.288 Fitness = 0.265 Fitness = 0.243

(a)First generation, (b)Generation 5028, (c)Generation 11220, (d)Final generation,
Fitness = 0.212 Fitness = 0.201 Fitness = 0.190 Fitness = 0.180

Fig. 3. This figure presents the photomosaics for the stop sign target image. The first
row shows selected individuals from equal-sized tiles, the second row shows individu-
als from the tile size variation technique and the third row shows individuals from a
combination of the techniques.

Further investigation of both the colour adjustment and the tile size varia-
tion techniques were carried out by combining the techniques in the photomosaic
generation. Visually, the generated photomosaics showed a further improvement,
over each of the single technique approaches. This is evident in row 3 of Fig-
ure 3. However, the best fitness values of the combined technique did not differ
from the fitness of the colour adjustment technique. Figure 5 presents the best
fitness graphs for each technique. The tile size variation technique has the worst
performance in comparison to other techniques. The colour adjustment and com-
bination techniques showed the most improvement in the fitness value.

(a) (b)

Fig. 4. This figure shows close-ups of the tiles from the colour corrected photomosaics:
(a) Lotus image and (b) Stop sign image
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Fig. 5. Best fitness values over 40,000 generations. The curve for equal-sized tile with
colour adjustment coincides with the curve for tile size variation with colour adjust-
ment.

5 Conclusions

Based on the two test target images, we observed that colour adjustment generates
better photomosaics, in terms of visual quality and fitness, than the equal-sized tile
approach. The animation also produces engaging results in which the target sub-
ject gradually emerges with a smooth change of colour. This technique could help
artist users by easing the burden of having to carefully and tediously select suit-
able tiles to match a target image. However, strange coloured tiles can be created,
as the technique is applied without considering the original colour of the tile.

The tile size variation technique produces different aesthetic values to a photo-
mosaic, as it is able to produce a balance between tile discernibility and subject
clarity. Larger tiles easily reveal the subject of tiles in the collection while small
tiles are able to accentuate the detail in the target image. The low fitness perfor-
mance of this technique is not surprising as the fitness function only emphasizes
the colour differences with no regard to visual fidelity of a photomosaic to the
target image. Use of a combination of our refinement techniques suggests that
regardless of tile size, the colour adjustment is the more dominant refinement.

In conclusion, each of these techniques is able to produce an aesthetically dif-
ferent animation effect and represents a better mechanism for generating pho-
tomosaics when only a small number of tiles is available. However further inves-
tigation is needed to develop the ideas. In future work we hope to improve the
fitness function and to generate the quadtree area division dynamically during
the evolutionary process. The latter improvement is likely to be able to produce
different animation effects.
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Abstract. In considering a case study, we examine the process of pro-
moting emergence and creativity within an evolutionary art system using
the technique of evolutionary refinement. That is, for the complex, diffi-
cult to predict generative scheme based on a model for simulating cellular
morphogenesis that forms the generative component of an evolutionary
art system, we discuss how we proceed in stages to develop, analyze,
focus, and re-target evolved genetic material for aesthetic purposes — in
this instance aesthetic pattern formation.

1 Introduction

We consider the process of using a generative art system to evolve images with
certain aesthetic characteristics. We emphasize the word process because of the
ongoing debate about what the term emergence should really mean for a gen-
erative art system. Starting with Galanter’s definition [8] of generative art as
“art practices where the artist creates a process that acts with some degree
of autonomy to create all or part of an artwork,” Monro [15] summarizes the
controversy about the meaning of the word emergence by considering: (1) cate-
gorical emergence, (2) simple-to-complex emergence (3) many-agent emergence,
(4) difficulty-of-prediction emergence, (5) emergence relative to a model, (6) sur-
prising emergence, and (7) Frankenstinean emergence before providing his own
definition of emergence as it pertains to generative art to be a combination of
the “difficult-to-predict” notion together with the notion of evoking “surprise-
wonder-mystery-autonomy”. By allowing the word “autonomy” to reappear, and
by coupling it with “surprise”, Monro not only comes full circle, but further con-
founds matters by encroaching on the discipline of [artificial] creativity (compare
Burns [1], Dorin and Korb [5], Jacobsen [12], Ross et al. [16], Saunders and Gero
[17], and Schmidhuber [18]).

If automated fitness is used as an integral part of a generative art system,
we concur that emergence and creativity are goals, but we feel that formulating
a universal criterion for either of these concepts is probably a hopeless cause.
Therefore, in this paper, we consider a more pragmatic approach to automated
fitness — evolutionary refinement, by which we mean breeding strains of genetic
material that can be analyzed from different points of view, so that we might
better gauge what evolutionary paths to pursue. More generally, given a com-
plex, difficult-to-predict generative component of an evolutionary art system, we
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consider what strategies one might adopt to coax aesthetic output from the sys-
tem. In adopting an evolutionary refinement approach, we therefore champion
“emergence in context” after McCormack and Dorin [14] rather than emergence
by “surprise” as expounded by Edmond et al. [6]. By necessity, our discussion is
tied to a specific example.

Because our generative component is both intricate and complex, we shall
only give a cursory overview of it. It was chosen because we have reason to
believe that only by carefully selecting values for a large number of nonintuitive
parameters will it yield interesting imagery. Moreover, for our generative method
it appears to be difficult to extract meaningful measurement variables to help
identify aesthetic content. Figure 1 gives three examples that are typical of the
imagery we find uninteresting that our system tends to evolve.

Fig. 1. Three lackluster images evolved from our generative art system based on cellular
morphogenesis simulation

2 Our Cellular Morphogenesis Evolutionary Art System

Our generative scheme is based on simulating cellular morphogenesis. The model
is due to Eggenberger [7]. Its adaptation to evolutionary art is due to Greenfield
[9][10][11]. An image obtained from the scheme is a visualization of a matrix of
simulated cells. The cells are initialized with concentrations of four simulated
substances that represent transcription factors or TF’s. The visualization is re-
alized by designating three TF’s to serve as components for RGB colors. The
remaining colorless TF plays an important but indirect role. The scheme is com-
plicated. The basic idea is that the concentrations of the TF’s determine how
the genes are expressed which in turn determines how the concentrations of the
TF’s change. Simulating cell development requires an update cycle consisting of
a gene expression calculation followed by a TF concentration calculation. This
update cycle is performed for all cells for a fixed number of iterations.

A cell genome (see Figure 2) consists of four gene units. A gene unit consists
of two regulatory genes and a structural gene. Formally, we define a gene to
be a string of eight digits g0g1 . . . g7. The last digit g7 is designated as the
marker for the gene. Marker digits may assume any of the values zero through
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six while the values for the remaining digits are constrained to lie in the range
zero through four. When examining the digits of a gene, either we extract an
offset, o = g0 + g1 mod 3, a diffusion coefficient, d = (g2 + g3)/9, and a type,
t = g4 + g5 + g6 mod 5, or we extract the following three base five constants
k0 = (g0g1g2g3g4)5, k1 = (g1g2g3g4g5)5, and k2 = (g2g3g4g5g6)5.

Regulatory Gene (R) Structural Gene (S)

R R S

U U U U

Gene Unit (U)

Cell Genome

Offset Diffusion Type MarkerMarkerConstant

Constant

Constant

{{{ {{{ { {

Fig. 2. The genome structure

In order to determine whether a structural gene S within a gene unit is cur-
rently expressed, or active, we begin by considering the role played by one of its
regulatory genes Rj located in the regulatory segment of the gene unit together
with the cell’s i-th TF. Using the offset o of S, we extract the five digit string
from Rj beginning at position o, perform a base five conversion to obtain the
constant ko, and then subtract the result from the weight wi associated with
the i-th TF. This gives the affinity fi of Rj for the i-th TF. The weight wi is
an environmental attribute that is held constant for all cells. Note that by an
appropriate choice for the weight wi, fi will be a signed quantity. We multiply
the affinity fi by the concentration ci of the i-th TF. Keeping Rj fixed, we sum
over all TF’s to obtain the activity level rj for Rj . Thus

rj = Σifici. (1)

Next, by letting j vary, we sum rj over all regulatory genes to associate to the
structural gene S the activation measurement,

a =
1

1 + exp(Σjrj)
. (2)

Finally, we threshold this result to obtain an activity level γ for S, by letting

γ =

⎧⎨⎩
−1.0, if a < 0.2
+1.0, if a > 0.8

0.0, otherwise.
(3)

For convenience, we say the structural gene S is activated in an excitory state if
γ = +1, activated in an inhibitory state if γ = −1, and not activated otherwise.
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When activated, the concentration of the TF specified by the structural gene’s
type is increased (respectively decreased) by a fixed amount Δ. Moreover, if the
concentration of the colorless TF is sufficiently high then the diffusion coefficient
will be used to distribute that change over neighboring cells. Note that by as-
signing meta-functionality to gene expression, researchers have used variations
of this formulation to model 2-D and 3-D cellular growth and differentiation (see
Eggenberger [7] and Chavoya and Duthen [2]).

3 Evolutionary Exploration Using Fitness Functions

We say a cell is dormant if its TF0, TF1, and TF2) concentrations (i.e. its RGB
color components) are all at, or below, trace levels whence the cell will appear
black in the final cell pattern visualization. Let μi and σi denote the mean and
standard deviation calculated over all non-dormant cells in the matrix of the
concentration of transcription factor TFi. Let Na denote the number of cells
for which at least one structural gene underwent a change in activation status
during the final development cycle.

For initial exploration purposes we experimented with the fitness functions
listed in Table 1. For all of these functions we maximize fitness. The matrix
template we used placed a substrate of cells in a 61× 61 matrix together with a
mix of 22 small blocks of two other strains of cells. The genomes for all three cells
were initialized by being pseudorandomly generated, and the template also fixed
the 22 pseudorandom location for the blocks. By randomizing the underlying
template pattern for each evolutionary run, we were able to promote explorations
of various kinds of cell interactions. The development period lasted for 400 cell
update cycles. The 22 blocks of cells and the perimeter cells of the substrate were
all given trace concentrations of all of the TF’s to initiate the development. A
population of size eight was allowed to evolve for five generations with crossover
and mutation operators for the three cell genomes specifying each individual
implemented by treating each of the four gene units defining the cell strain as
linear arrays. None of these simulation paymasters were tuned or optimized. For
the most part they were carried over from [10].

The first four fitness functions in Table 1 produced undistinguished imagery
similar to that shown in Figure 1. The use of σi in the first three caused many

Table 1. Table of fitness functions used during the exploratory phase

Function Formula
f1 μ1σ1 + μ2σ2

f2 μ1 + μ0σ0

f3 μ1σ3

f4 |μ2 − μ1|
f5 Na|μ2 − μ0|
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Fig. 3. Three evolved examples using fitness function f5 from Table 1 that provide
source genetic material for further study

cells to remain inactive so that the gradient of the i-th TF would be maintained.
In the case of f4, the black from never activated cells predisposed one of the μi to
remain close to zero. However the last fitness function, Na|μ2 − μ0|, which tries
to maximize the difference between the averages of the red and blue components
over all active cells while simultaneously maximizing the number of active cells,
evolved the three examples shown in Figure 3. These three examples furnished
the promising source genetic material we chose to analyze further.

4 Analysis of the Source Material

Figure 4 shows visualizations corresponding to each of the examples of Figure 3
where the substrate cells alone were used in the matrix, and the development
period was extended to 800 update cycles. We observe that the substrate of the
second example develops slowly, and the substrate of the third example exhibits
unusual activation and inhibition feedback.

Corresponding to the first two examples of Figure 3, Figure 5 shows the devel-
opment that results when only one of the two available overlay cell strains is used
as a large cental block and the development period is extended to 1000 update
cycles. In fact, the other available cell strain also exhibits a similar interference

Fig. 4. Visualizations of the cell substrates for each of the three source material exam-
ples
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Fig. 5. The interference pattern interaction between the substrate and one of the two
available cell strains is highlighted

pattern. On the other hand, as Figure 6 shows, for the third example only one
of the two available cell strains interacts with the substrate. We also tried in-
terchanging the roles played by the substrate cells and overlay cells and mixing
cell strains from different examples, but no useful visualizations or information
was obtained.

For completeness, we remark that our evolved phenomena are heritable. Using
our source genetic material to seed the entire population and using high muta-
tion rates but almost no crossover, Figure 7 shows examples corresponding to
Figure 3 that were evolved during three separate evolutionary runs. Although
the substrates did not exhibit any visually significant differences, new cell strains
for the interior were successfully evolved.

5 Evolutionary Refinement of the Source Material

Researchers have always been keenly interested in models for formulating tex-
tures as well as skin patterns found in nature. Because the middle example from
Figure 3 reminded us of the examples in Young’s seminal paper [19] for simu-
lating skin patterns based on a theory of Turing, in view of the nature of the
interference boundary found in Figure 5, we elected to re-target evolution to
exploit this interference phenomenon for aesthetic purposes.

To accomplish this, besides activating the perimeter of the substrate, in order
to anchor the pattern we also activated four small blocks of the substrate at the
vertices of a centered square one-fourth the area of the template. Our task now
was to find good locations for ten activated blocks of the overlay cell strain that
would yield complex interference patterns. Because of the color gradients in-
volved, it is difficult to identify the interference boundary, and because we chose
not to introduce target matching (see below), we evolved interesting interfer-
ence patterns my maximizing (respectively minimizing) the total concentration
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Fig. 6. For the third source example, visualizations showing that only one of the two
available cell strains interacts with the substrate

Fig. 7. Evolutionary runs showing that the genetic source material evolved is heritable

of the red transcription factor TF0 in a centered square one-half the area of the
template. Figure 8 show the results from two small test runs lasting only five
generations using a population of size eight. The maximization example reveals
an artifact exploited by simulated evolution that occurred by embedding acti-
vated overlay cells inside activated substrate cells. The minimization example
gives rise to better definition of the interference boundary. Thus we increased
the population size to twenty and ran the evolution for fifteen generations to
obtain the evolved, refined, red-minimized image shown in Figure 9.

A natural question that arises is: At the refinement stage, why didn’t we opt
to target evolution by comparing our evolved patterns to existing patterns in,
say, an image database? Certainly such image targeting has become popular.
The reason we chose not to do this is because this approach is not very enlight-
ening. Consider, for example, the work of Machado, Romero and Manaris [13]
where sophisticated tools such as neural nets and classifier systems are used to
anti-target images and the result that is reported is evolution of styles; or the
work of Colton and Torres [4], where clever data management allows image tar-
geting to be used to evolve image filters. Although they have slightly different
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Fig. 8. Creating an interference pattern by maximizing (left) and minimizing (right)
the concentration of red in a centered square of half the total area

Fig. 9. Our final evolved, refined, red-minimized cellular morphogenesis interference
pattern

goals — sustaining novelty in the case of [13] and reproducing existing filters
in the case of [4] — we would ask what new insights or understanding about
evolutionary computation are being achieved? While it may be that other re-
searchers use refinement approaches similar in spirit to the one described above
but do not report about it, we believe out case study provides a valuable insight
into how one might approach the exploration problem in certain evolutionary



Generative Art and Evolutionary Refinement 299

computation contexts. Namely, that for complex generative systems used in evo-
lutionary art, as the genetic material evolves, the nature of the environment
(e.g. here, substrate activation conditions and reduction of the number of other
strain blocks) together with the fitness objectives (e.g. here, red minimization
over a subset of the cells) may need to change in order to realize emergence or
creativity. More broadly, we feel the lesson to be learned from our case study
is that for sufficiently complex genome representations, evolution in stages with
radical changes in fitness criteria may be a profitable evolutionary exploration
strategy.

Given what we are proposing, a devil’s advocate question worth considering
is: Should our end-product image in Figure 9 now be further refined or perhaps
even [human] genetically engineered in order to remove the lone gray block at
the bottom that falls outside the central square where minimization took place?
Unfortunately, we have no satisfactory answer to this question.

6 Conclusion

It is difficult to imagine how automated fitness functions could provide an evo-
lutionary trajectory from images such as those found in Figure 1 to our final
evolved image in Figure 9. Perhaps the approach that is most similar to ours is
by Colton [3] who uses an inference engine, as opposed to what we have called
refinement, to produce new rules for fitness functions. In the domain of evolu-
tionary art, neither his scene generation application nor our pattern evolving
application generalize well, but what we have shown in our case study is that by
progressing in stages, analyzing the results, and using deductive reasoning we
can achieve some measure of emergence and creativity through the process of
evolutionary refinement. We expect that further advances towards automating
evolutionary art will require just such an approach.
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Abstract. Learning aesthetic judgements is essential for reducing the
users’ fatigue in evolutionary art system. Although judging beauty is a
highly subjective task, we consider that certain features are important
to please users. In this paper, the aesthetic preferences are explored by
learning the features, which we extracted from the images in the interac-
tive generations. In addition to color ingredients, image complexity and
image order are considered highly relevant to aesthetic measurement.
We interpret these two features from the information theory and frac-
tal compression perspective. Our experimental results suggest that these
features play important roles in aesthetic judgements. Our findings also
show that our evolutionary art system is efficient at predicting user’s
preference.

Keywords: Evolutionary art, interactive evolutionary computation, im-
age complexity, fractal compression.

1 Introduction

The concept of Evolutionary Art originated with Dawkins’ Biomorphs [1]. Sub-
sequently, the efforts of Sims [2] became the significant work for generating
computer graphics. Genetic Programming (GP) was used in his work to evolve
aesthetic images. Following the idea of Sims, symbolic expressions were used
widely in research (see, for example, [3] [4]). Due to its unique characteristics as
an intelligent and creative activity, most systems rely on Interactive Evolution-
ary Computation (IEC), which the user has the tedious task of making decisions
for every generation. Therefore, one of the significant challenges is to reduce
user’s fatigue [5] [6].

The specific aspect of the problem we are interested in is to explore user’s
criteria for beauty in their aesthetic judgements. However, it is a highly sub-
jective task. Firstly, there is no unanimous measurement for the standard of
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aesthetic value. Different people have different principles and appreciation of
beauty. Secondly, sometimes it is hard to tell exactly what features are attrac-
tive to people. Therefore, we consider learning and simulating user’s behavior in
aesthetic judgments very important in the evolutionary process.

We show in this paper that there exist certain properties and features, which
underlie the individual’s judgement of beauty. Instead of making an ambiguous
definition of aesthetics, we applied a statistical learning approach to analyze
the features in these evaluated images generated by evolutionary process. The
main research goals are to: (a) find features which are relevant to aesthetic mea-
surement; (b) explore the relations in these features which finally quantitatively
influence the aesthetic score.

To achieve these goals, we try to understand the aspects that appeal to people
by using a computational approach. Based on Birkhoff’s work [7], we consider
order and complexity of the image both significant features for the aesthetic
measures. In this paper, we aim to estimate (a) image complexity by using
information theory and (b) the order of the image by using fractal compression.
In addition, we build (c) a classifier to learn user’s behavior in judging beauty.

The proposed measurement has been tested with sets of images generated
from several independent experiments by our evolutionary art system. In our
system, four mutation parameters are applied for users to manipulate. Fitness
values are assigned in every step in evolutionary process, which are then applied
for the training sets. Then we use the classifier to explore these features that
we extract from the sets. Our experimental results show that our system is able
to properly classify high valued and low valued images by learning from the
interactive run.

The paper is organized as follows: In Section 2 we describe our method to esti-
mate the image complexity and image order. Next, the experimental results and
their analysis are included in Section 3. Finally, in Section 4 we draw conclusions
and point directions for future research.

2 Features for Measuring Aesthetics

As we mentioned before, two important factors are addressed in measuring aes-
thetics. First, we estimate the image complexity from an information theory
perspective. The reason why we consider informational aesthetics measurement
is described by Rigau et al. [8]. In our work, we use different channels to calcu-
late the information content. Second, we estimate the order of the image based
on the low-complexity art theory by using fractal compression [9]. This theory is
based on the minimum description length (MDL), which is related to ”capturing
the essence of the image”.

2.1 Image Complexity Estimation

Our measurements of image complexity are based on the concepts of information
theory. The entropy of each channel in HSL is calculated, which is considered
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an estimate of the image complexity in the color space. To better characterize
the complexity from different aspects, the same metrics are also applied to RGB
and Y709.

Assuming the image’s information content represents the complexity, it is
calculated by multiplying each pixel’s Shannon entropy and the number of pixels.
Shannon entropy of each pixel is computed from the intensity histogram for
every channel. An intensity histogram for every channel is defined in discrete
information bins where the input χ represents the bins of the histogram, with
probability distribution pi = ni

N (0 ≤ i ≤ χ), in which ni is the number of pixels
in bin i. The value of χ is different according to the channel. In our case, χ for
hue, saturation and lightness channel are 360, 100 and 100 respectively. Then
the information content for hue channel is computed as follows:

Complexityhue = N × (−
∑
x∈X

phue(x)logphue(x)), (1)

The image complexity for saturation and lightness are also calculated in the
same way.

Additionally, we also calculate the information channel based on RGB repre-
sentation, and Y709 which is the luminance from linear red, green and blue. We
consider the information of colorfulness in RGB channel and the luminance of
Y709 very important factors. One problem is the range in RGB is 2563, which is
time consuming for our on-line system. Therefore, we defined a fast and robust
method to compute the RGB color distribution. We divide the RGB color space
into 512 cubes with eight equal partitions along each dimension in RGB. The
intensity histogram is then reduced to 512 XRGB bins. The χ for the channel
Y709 is 256. Probability distributions of the variables XRGB and XY709 are used
to calculate the entropy of RGB and Y709 channel.

2.2 Image Order Estimation

Order is a measure for the number of regularities found in the image [10]. We
assume beauty is defined by a human because they can transform the visual
scenes to their familiar knowledge. The human visual system can be described
as a coding algorithm. This system could transform the data from art to their
internal representation. In other words, an image which can be computed by an
algorithm in the shortest description is considered the most beautiful in a set of
images.

Schmidhuber derives a formula for measuring beauty: [9]

− logP (i | C) = −logP (C | i) + logP (C) − logP (i). (2)

where C is the coding algorithm simulating human’s perception system. i is
the image selected from a set of images. P (C) is a constant when C is given.
P (i) is the priori distribution of the images. −logP (C | i) is the information
required to compute C from i. Then, P (i | C) is the conditional probability
of selecting i from a set of images given the coding algorithm C. We aim to
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maximize P (i | C), which can be interpreted as finding the most beautiful image.
Therefore, it corresponds to minimizing the information to describe i given the
coding algorithm C.

Two important problems are addressed in this definition. The first problem
is to devise a good coding algorithm. Fractal compression method is applied
in our system, which has been found close to human visual system [11]. The
second problem is estimating the information to describe the image using this
algorithm.

We assume that the minimum information to calculate C from i is to estimate
how fast the coding algorithm could process the image. Here, we could develop
a formula to evaluate the information to compute C from i,

− logP (C | i) =
CompressionRatio

te − ts
. (3)

in which, te and ts are the end-time and start-time of fractal encoding. In order
to calculate this evaluation, we first average the RGB pixels into grey ones,
then the image is divided into four equal regions. The fractal algorithm encodes
each region based on its self-similarity. All the images are rendered at 64 by 64
resolution. Therefore the fractal encoding is not very time-consuming.

In our method, training images are assigned by one of two fitness value: high
or low. The priori distribution of the images, −logP (i), is assigned to 1 or 0
which represents high or low value. logP (C) is disregarded. According to our
definition, the order of the image is calculated as follows:

− logP (i | C) =
CompressionRatio

te − ts
− logP (i). (4)

3 Experimental Results

3.1 Experimental Setup

In this section we setup a system to learn user’s behavior in IEC. Two kinds
of experiments are designed for this purpose. Firstly, we focus on one single
experiment from the first till the last iteration, paying particular attention to
how these features influence the aesthetic judgement. Secondly, five indepen-
dent experiments based on five different people also show that our model could
predict properly the aesthetic and non-aesthetic images according to users’ pref-
erences. We performed 21 iterations in the first single experiment. The settings
for other independent experiments are the same except number of generation
and mutation rates, which are set manually according to different users.

Genetic Programming. Like most of the evolutionary art system, we use GP
as our representation. The settings for GP are presented in Table 1. 87 images
are shown in every generation, all of which are rendered at 64 by 64 resolution.
The functions that we use in GP fall into three categories: unary, binary and
ternary functions. The terminals are variable x, y or constants. The maximum
initial tree depth is 6.
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Table 1. Parameters of GP for representation

Parameter Setting
Population size per generation 87
Number of generation 21
Mutation operator coarse, color, pattern and fine mutation
Mutation Rate manually set every generation, in the range 0-100
Unary function set sin, cos, tan, abs, floor, ceil, sqr,

square, cube, log, exp, negative, spiral, circle
Binary function set +,-,*,/, max, min, pow, average
Ternary function set if, lerp
Terminal set X,Y, scalar and random constants
Initial maximum tree depth 6

Fig. 1. Some examples of the first generation according to different mutation operators

Mutation Operators. In our system, only one parent will be selected in every
iteration. Thus mutation operators are applied, which are the most important
genetic operators for the diversity of images. Mutation is performed by changing
values in a leaf node or functions in an internal node, deleting the subtree at
any point or replacing the pruning part with a new random subtree. We resort
to four kinds of mutation rate according to our genotype, which are coarse mu-
tation rate, color mutation rate, pattern mutation rate and fine mutation rate.
They represent the probability of changing the subtree, the node and the value.
In Figure 1, the parent is the image on the top of the figure, examples of muta-
tion populations generated by different mutation operators with corresponding
mutation rates are shown below. These four specific operators are applied for
better exploring the solutions in the design space.

Evolutionary and Learning Process. Here, we briefly describe how our
system works:
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1. A set of initial images are rendered by our system.
2. Current images are assigned by two levels of fitness values according to

his/her preference. One of them is selected as the parent of the next gener-
ation. Mutation parameters are also set manually. Four mutation rates are
set to manage the degree of the stylistic changing.

3. Features are extracted from the current populations and stored in a feature
list.

4. The evolutionary process stops when a termination criteria is met. In our
case, the number of generations is fixed in order to collect enough training
samples.

5. The classifier is used to train the dataset collected from the previous gen-
eration. It is trained to distinguish between the higher valued and the low
valued images.

Features are extracted from images of every iteration. The features that we used
for our experiments are based on color ingredients, image complexity and image
order. These characteristics are considered to be aesthetically relevant. The three
categories are shown in Table 2. This process yields a total of 12 metrics for the
whole image.

Table 2. Aesthetic Features Summary

Category Description
Color Ingredients Average value and standard deviation of Hue, Saturation and Lightness
Image Complexity Information entropy of HSL, RGB and Y709

Image Order Low complexity based on fractal compressor

Finally, decision tree is used to train the samples collected from previous
iterations, which is implemented by Weka J48 [12] . Default settings are used in
this classifier. Decision tree is used because we could have a better understanding
of the user’s aesthetic judgement by analyzing it.

3.2 Aesthetic Learning

Accuracy of Prediction. Figure 2 shows the correctly classified accuracy
of all the images, high valued and low valued images respectively. The results
prove that our system could successfully classify aesthetic and non-aesthetic
images since the eighth generation. It also shows that the low valued images
have higher accuracy than the high valued ones, because it is easier to distinguish
less aesthetic ones from a set of images as there are fewer satisfactory ones. In
the first few generations, it is difficult to satisfy user because initial populations
are random and abstract. The user’s preference becomes clearer after several
generations. Therefore, the accuracy of predicting aesthetic ones highly increases
in the later generations.

Table 3 shows the numbers of images in training set and test set, the rate of
correctly classified images, mean absolute error (MAE) and root mean squared
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Fig. 2. Correctly classified accuracy of all the images, high valued and low valued
images

error (RMSE) according to different generations. The last one shows the accuracy
of the correctly classified images which we used a 10-fold cross validation. All
the results show that our system is capable of learning user’s behavior in the
evolutionary process.

Decision Tree. The decision tree provides us with more important information
on how aesthetics can be related to these features. As noted above, the result of
using 10-fold cross validation in Table 3 was obtained from 1893 datasets with
1249 high valued images and 644 low valued ones. The rules for final aesthetic
judgement can be demonstrated by the decision tree created by C4.5(J48). Par-
tial view of the decision tree is introduced in Figure 3. The decision nodes
are denoted by circles which split the trees during the process, while the leaf
nodes are denoted by squares. The number followed by value 10 or value 0 is the
number of correctly classified high valued and low valued images, sometimes the
second number represents the number of instances incorrectly classified by the
node.

The size of the tree is 25 with 13 leaf nodes. The tree provides us with impor-
tant information on how these features are reflected to the aesthetic judgement.
Let’s discuss some interesting decision paths in this tree. The features denoted
by image complexity from saturation (5−HpSaturation in Figure 3) and image
order (Low Complexity) appear to be quite crucial roles in this decision process.
This indicates that the user’s judgement is mainly focused on the information
gained from saturation channel and the order of the image.

Generation Results. In this single experiment, the subject manipulated 21
generations. 20 individuals that are chosen as the parents are shown in Figure 4.
It shows that the user focused on exploring the color in the first few interactions,
and then the pattern of the image is changed from the shape of an insect to the
shape of an old man. It also explains why the accuracy increases remarkably
after the 7th generation.
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Table 3. Correctly classified images according to different generations

Iteration Train Set Test Set Correctly Classified Rate MAE RMSE
0 86 1807 64.4162% 0.3592 0.5897
1 172 1721 62.8704% 0.3788 0.5921
2 258 1635 60.7951% 0.3946 0.6185
3 344 1549 58.7476% 0.4141 0.6301
4 430 1463 57.4153% 0.4218 0.635
5 516 1377 55.4103% 0.4454 0.6654
6 602 1291 53.6019% 0.4644 0.6712
7 688 1205 52.1992% 0.4769 0.6821
8 774 1119 80.0715% 0.2143 0.4295
9 860 1033 80.2517% 0.2086 0.4397
10 946 947 88.8068% 0.1347 0.3253
11 1032 861 81.8815% 0.1948 0.4103
12 1118 775 85.5484% 0.1681 0.3691
13 1204 689 84.3251% 0.1819 0.3915
14 1290 603 85.5721% 0.1623 0.3764
15 1376 517 84.5261% 0.1622 0.3829
16 1462 431 87.471% 0.1318 0.3543
17 1548 345 85.7971% 0.159 0.359
18 1634 259 84.1699% 0.1815 0.3769
19 1720 173 83.237% 0.1832 0.402
20 1806 87 86.2069% 0.1627 0.3665
Total 10-fold cross validation 87.3217% 0.1408 0.3426

Fig. 3. Decision tree

Fig. 4. 20 images which are selected by the subject as the parents

Individuals from the last generation are shown Figure 5. We find that only few
images are quite different from the others, because a small proportion of coarse
mutation is still allowed to prevent the stagnation in the evolutionary process.
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Fig. 5. 87 individuals in the 21st generation

3.3 Validation Study

We have conducted five experiments using our system to explore users’ behavior.
This test is applied to five different individuals. Our goal is to validate our system
by showing the accuracy of correctly classified images along with generations.
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Fig. 6. Five experiments conducted by five different individuals

Figure 6 shows the results achieved by our system. Most of the experiments
are able to classify properly between high valued and low valued images, attain-
ing average success rate above 70%.

4 Conclusions and Future Work

This paper explores user’s behavior of judging beauty in evolutionary art system.
The two important features that we extracted from the generated images are
image complexity and image order. We estimate them from the perspective of
information theory and fractal compression. With several features, the classifier
can distinguish low valued images from high valued ones. This helps us not only
understand more about the factors that underlie the individual’s judgement of
beauty, but also explore more aesthetic criterias in computational aesthetic.
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We have carried out a number of statistical and empirical studies to evaluate
our computational aesthetic estimation. The results show that it is possible to
study the trends of people’s preferences that lead to higher or lower scores with
these significant features. The future work of this research includes several tasks.
First, more features that are relevant to aesthetics could be included to make
a significant improvement. Second, exploring the relations among the mutation
operators, the features and the fitness values may also help to analyze a specific
style in generated images. Third, how to automate the aesthetic decision should
be explored.
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Abstract. In this paper we investigate and compare four aesthetic mea-
sures within the context of evolutionary art. We evolve visual art with
an unsupervised evolutionary art system using genetic programming and
an aesthetic measure as the fitness function. We perform multiple exper-
iments with different aesthetic measures and examine their influence on
the evolved images. To this end we store the 5 fittest individuals of each
run and hand-pick the best 9 images after finishing the whole series. This
way we create a portfolio of evolved art for each aesthetic measure for
visual inspection. Additionally, we perform a cross-evaluation by calcu-
lating the aesthetic value of images evolved by measure i according to
measure j. This way we investigate the flexiblity of each aesthetic mea-
sure (i.e., whether the aesthetic measure appreciates different types of
images). The results show that aesthetic measures have a rather clear
”style” and that these styles can be very different. Furthermore we find
that some aesthetic measures show very little flexibility and appreciate
only a limited set of images.

1 Introduction

The goal of the research field of Computational Aesthetics is to investigate “com-
putational methods that can make applicable aesthetic decisions in a similar
fashion as humans can” [5]. Aesthetic measures are functions that compute the
aesthetic value of an object. [2] was the first to publish on the subject of aes-
thetic measures, and his work has been influential in the field. Birkhoffs notion of
aesthetics was based on the relation between Order and Complexity, expressed
as M = O

C , where O stands for order and C for Complexity. Birkhoffs measure
is now widely regarded a being mostly a measure of orderliness. Since Birkhoff,
several researchers have investigated aesthetic measures from several points of
view. [4] and [5] give good overviews of the field.

1.1 Research Question

In this paper we investigate and compare four aesthetic measures. Each aesthetic
measure is used in an evolutionary art system as a fitness function (all evolu-
tionary parameters are kept equal for all aesthetic measures). We evolve small
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Lisp like expressions that generate images, and compare the difference between
the images created by the four aesthetic measures. Next, we investigate how the
produced images using aesthetic measure MN are judged by the other aesthetic
measures. Hereby we obtain an indication of the neutrality of the measure.

The rest of the paper is structured as follows. First we discuss evolutionary art
and the use of aesthetic measures within the context of evolutionary art (section
2). Section 3 discusses our software environment Arabitat. Next, we describe the
experiments and their results in section 4.1. In section 4.2 we calculate the cross
evaluation of the four aesthetic measures. Sections 5 and 6 contain conclusions
and directions for future work.

2 Evolutionary Art

Evolutionary art is a research field where methods from Evolutionary Compu-
tation are used to create works of art (good overviews of the field are [12] and
[1]). Some evolutionary art systems use supervised fitness assignment (e.g. [15],
[13]), and in recent years there has been increased activity in investigating un-
supervised fitness assignment (e.g. [14]). The field of Computational Aesthetics
investigates how computational methods can be used to assign aesthetic judge-
ment to objects (see [5] and [4]). Functions that assign an aesthetic value to an
object are typically called aesthetic measures. In this paper we investigate four
aesthetic measures, and compare their output.

2.1 Four Aesthetic Measures

The four aestetic measures that we investigate in this paper have different mech-
anisms and backgrounds, and we will describe them briefly. For a more detailed
description we refer to the original papers. We will briefly describe the aesthetic
measures by Machado & Cardoso, Ross & Ralph, the Fractal Dimension mea-
sure, and the Combined Weighted sum measure.

Machado & Cardoso. The aesthetic measure described in [8] builds on the
relation between Image Complexity (IC) and Processing Complexity (PC). Im-
ages that are visually complex, but are processed easily have the highest aesthetic
value. As an example, the authors refer to fractal images; they are visually com-
plex, but can be described by a simple formula. The aesthetic measure M of an
image I is defined as

M(I) =
IC(I)
PC(I)

(1)

The Image Complexity can be regarded as the effort needed to compress an
image, and is defined as

IC(I) =
RMS(I)

Compressionratio(I)
(2)
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where RMS refers to the difference between the original image and the com-
pressed image, expressed as the root mean square. The compression ratio is
the ratio between the original image size and the compressed image size. The
authors suggest the use JPEG compression for image compression. We used a
JPEG quality setting of 0.75 (medium quality). The Processing Complexity is
calculated using fractal image compression; in our experiments we used images
with a resolution of 300x300. The box-counting algorithm used a number of
boxes between 6 and 75 and the threshold was set to 50.

Ross & Ralph (bell curve). A second aesthetic measure that we implemented
is Ross and Ralph (Ralph’s Bell Curve, [14]). This measure is based on the
observation that many fine art painting exhibit functions over colour gradients
that conform to a normal or bell curve distribution. The authors suggest that
works of art should have a reasonable amount of changes in colour, but that
the changes in colour should reflect a normal distribution (hence the name ’Bell
Curve’). The computation takes several steps and we refer to [14] for details.

Fractal dimension. In [16] the authors investigate the aesthetic preference
of people for several types of fractals (natural, artifical and man-made). The
authors found a peak in the preference for fractal images with a fractal dimension
around 1.35. Images with a higher fractal dimension were considered complex,
and images with a lower dimension were considered uninteresting. We use this
finding to construct an aesthetic measure. For a given image I with a fractal
dimension d, we define our fractal dimension aesthetic measure M as

M(I) = max(0, 1 − |1.35 − d(I)|) (3)

which means that only images with a fractal dimension between 1.1 and 1.6 have
a positive aesthetic measure (where images with a fractal dimension of 1.35 have
an aesthetic value of 1). We calculate the fractal dimension using a technique
called “box-counting” (see [16]).

Combined Weighted Sum. We also wanted to investigate the usefullness
of a combination of the aesthetic value by the aforementioned three aesthetic
measures. We used a simple straightforward weighted sum measure were all
weights were set to 1:

M(I) =
∑n

i=1 Mi(I)
n

(4)

3 Arabitat: The Art Habitat

Arabitat (Art Habitat) is our software environment in which we investigate evo-
lutionary art. It uses genetic programming with Lisp expressions and supports
both supervised and unsupervised evaluation. In this paper we only discuss un-
supervised fitness evaluation using aesthetic measures. Currently we have im-
plemented three aforementioned aesthetic fitness functions and a weighted sum
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combination measure, and intend to implement more in the near future. In our
system, a genotype consists of 1) a Lisp-style expression that returns a value
of type double, and 2) a color lookup table. Lisp-like expressions are common
within genetic programming (see [7]). Our genetic programming is type-safe and
returns only results of type doubles.

The computation of a phenotype from the genotype is done as follows; for a
target phenotype image with a resolution (width, height) we calculate the func-
tion value from the lisp expression (the genotype) for each (x,y) coordinate of
the image. The resulting matrix of floating points is mapped onto an indexed
colour table, and this results in a matrix of integers, where each integer refers
to a colour index of the corresponding colour scheme. This way the colouring
is independent of the double values (other approaches like [15] have functions
that directly address colouring). The colour scheme is thus part of the genotype,
and is also subject to mutation and crossover. A mutation in the colour scheme
could result in an entirely different coloured image, even if the expression re-
main unaltered. The resulting image is passed to the fitness function (one of the
aesthetic measures) for evaluation. See Figure 1 for a schematic overview (see
http://www.few.vu.nl/˜eelco/ for more examples in colour).

Fig. 1. A schematic overview of the expression of the genotype into the phenotype
(image) for LISP expression ((and (mod x y) (plus x y))); the three images on the
right are three renderings of the same expression, using three different colour schemes

Function set. Many functions used are similar to the ones used in [15], [13]
and [14]. Table 1 summarizes the used functions (including their required num-
ber of arguments); The terminals x and y are variables that refer to the (x, y)
coordinate of a pixel. ’Width’ and ’height’ are variables that refer to the width
and height of the image. The use of width and height is useful because we
usually perform evolutionary computation using images with low resolution
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Table 1. Function and terminal set of our evolutionary art system

Terminals x,y, ephem double, ephem int, width, height,
golden ratio, pi

Basic math plus/2, minus/2, multiply/2, mod/2, div/2, average/2
Other math sin/1 ,cos/1, tan/1, sinh/1, cosh/1, tanh/1, atan2/2,

cuberoot/1, squareroot/1, hypot/2
Relational minimum/1, maximum/1, if-then-else/3
Bitwise and/2, or/2, not/1, xor/2
Noise perlinnoise/2, smoothnoise/2, marble/2, turbulence/2, plasma/2
Fractal mandelbrot/2, julia/2
Boolean equals/2, lessthan/2, greaterthan/2

(say 300x300) and want to display the end result on a higher resolution. [15],
[13] and [14] contain details on the functions used in our function set.

4 Experiments

In order to investigate and compare the four different aesthetic measure we
conducted a number of experiments. We performed 10 runs for each aesthetic
measure and collected the images of the 5 fittest individuals of each run. Next,
we calculated the aesthetic measure of those 5 individuals by the other aesthetic
measures. From the 50 images of each experiment (10 runs, 5 fittest individu-
als) we handpicked 9 images that were typical for that image set. Besides the
aesthetic measure, all evolutionary parameters were the same for each run. We
did many preliminary experiments and found that populations of around 200
usually tended to converge to one or two dominant individuals and their similar
offspring. Since the goal of this paper is to compare the output of evolutionary
art using different aesthetic measures, we decided to perform evolutionary search
for 10 generations with a population of 200. For the genetic operators we used
subtree mutation (rate 0.05), subtree crossover (rate 0.85), we initialized the
population using the well-known ramped half-and-half initalization method (see
[7]), and used tournament selection (tournament size 3) for both parent selection
and survivor selection. For survivor selection we use elitist selection (best 1).

4.1 Results

We did 10 runs with our evolutionary art system using each aesthetic measure
and collected the images of the 5 fittest individuals of each run. The average
fitness of the population of 200 over 10 generations is given in Figures 3 and 5.
Of the collected 50 images, we hand-picked 9 images. The reason for hand-picking
from the image collection instead of selecting the images with the highest fitness
is that some runs ran into premature convergence and had 5 very similar images
at the end. Therefore we picked the images by hand, to give an impression of the
variety of the images. Since we were mostly interested in comparing aesthetic
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measures using the same EA parameters, we did not focus on optimizing the EA
to reach an average fitness of 1.0. Our goal was exploration, not optimization.
Therefore, many runs do not end in an average fitness of 1.0. In the next sections
we shortly describe the characteristics of these selections.

Machado & Cardoso. The images produced using the Machado & Cardoso
measure are presented in Figure 2. The images tend to be simple in structure,
and they have a slight preference for primary colours (although not in all images).
We suspect that the use of JPEG compression could possibly favour images with
primary colours. Also apparant is that the images are diverse in structure, even
if they are relatively simple. Most images produced using this aesthetic measure
have a ’sixties’/ pop art look and feel. The images in [9] are slightly differ-
ent; we suspect that is caused by using a different function set and a different
colouring.

Ross & Ralph (bell curve). The images produced using the aesthetic measure
of Ross & Ralph are presented in Figure 2. It is immediately apparant that these
images are very different from the ones produced using the Machado & Cardoso
aesthetic measure. Most images are very abstract and have a very distinct colour
progression within the images. Many images resemble textures that are used in
computer graphics, and that is similar to what the original authors found in
their evolutionary art system (see [14]).

Fig. 2. Summary of images evolved using the aesthetic measure of Machado & Cardoso
(left) and Ralph & Ross (right)

Fractal dimension. The image produced using our fractal dimension aesthetic
measure are presented in Figure 4.

What is apparant from these images is that the style is again different from
the previous two aesthetic measures. Next, we see that there is a tendency to use
the fractal functions mandelbrot and julia (which generates Julia set figures)
and the binary function xor and and. As far as we know we are the first to use
the fractal dimension in an evolutionary art context, so we can not compare our
images with other generated images.
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Fig. 3. Fitness progression of 10 different runs using the aesthetic measure by Machado
& Cardoso (left) and Ralph & Ross (right); both ran 10 generations

CombinedWeightedSum. The images produced using the combined weighted
sum aesthetic measure is given in Figure 4.

Ideally these images would be a combination of features of the previous images
of the other aesthetic measures. We see that features of the aesthetic measure of
Ralph & Ross seems to be dominant in the images, and that can be explained by
the fact that the the average fitness of the runs using the Ross & Ralph measure

Fig. 4. Summary of images evolved using the Fractal Dimension aesthetic measure
(left) and Combined weighted sum (right)

Fig. 5. Fitness progression of 10 different runs using the fractal dimension aesthetic
measure (left) and the combined weighted sum measure (right); both ran 10 generations
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is around 0.5, and the other two measures have an average fitness of around 0.2.
Using weighted sum combination, the Ralph & Ross aesthetic measure thus has
more ’weight’ than the other two. In future implementations of combinations of
aesthetic measures, we will use techniques from [3] to combine aesthetic measures
in a more neutral fashion.

4.2 Cross Evaluation

After we had done the experiments with the four aesthetic measures, we wanted
to know how the aesthetic measures would evaluate ‘each others’ work. The
evaluation of the work of measure Mn of images produced using aesthetic mea-
sure Mm might give us an indication of the scope of the aesthetic measure.
If an aesthetic measure only appreciates images that were generated using its
own measure, then we could assume that its scope were fairly limited. On the
other hand, if a measure also appreciates images that were created using an-
other aesthetic measure, we could conclude that it is applicable to a broader
scope of images. In the following table we have gathered the average fitness
(and standard deviation) of the fifty fittest individuals that were collected for
each experiment. The producing aesthetic measure is presented horizontally and
the evaluation by all aesthetic measures is presented in the columns. From this
table we can conclude a number of findings. First, all aesthetic measures like
their own work best (except for the combined weighted sum measure). Next,
we can clearly see that the fractal dimension aesthetic measure does not ap-
preciate of images produced by other aesthetic measures; the average score
is 0.0, which means that all images not produced using the fractal dimension
aesthetic measure have a fractal dimension outside the range [1.1,..,1.6]. This
basically means that the fractal dimension aesthetic measure is not widely ap-
plicable as a aesthetic measure; many people like fractal properties in images,
but in reality, not many images actually have fractal properties (i.e. a fractal
dimension within the range [1.1,..,1.6]). Next, we see that the Ralph & Ross
aesthetic measure appreciates of its own work (which is not surprising) but
also appreciates of the works produced using the Machado & Cardoso aesthetic
measure.

Table 2. The cross evaluation of the aesthetic value of each others images. We present
the average asethetic value and the standard deviation in parentheses.

Evaluated by
Machado& Ross & Fractal Combined
Cardoso Ralph Dim. Weighted Sum

Mach.& Card. 0.096 (0.054) 0.246 (0.363) 0 (0) 0.114 (0.124)
Produced Ross & Ralph 0.035 (0.023) 0.562 (0.476) 0 (0) 0.199 (0.161)
By Fract. Dim. 0.03 (0.009) 0.061 (0.194) 0.136 (0.305) 0.076 (0.115)

Comb. Wei. Sum. 0.049 (0.031) 0.194 (0.337) 0 (0) 0.081 (0.115)
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5 Conclusions

In this paper we have investigated and compared four aesthetic measures in an
evolutionary art system. After our experiments we can conclude that the use
of different aesthetic measures clearly results in different ’styles’ of evolutionary
art. Since all evolutionary parameters were kept equal in all experiments, we can
conclude that all differences in artistic style are directly related to the aesthetic
measures. Next, we can conclude that there are also differences in variety of the
output of the four aesthetic measures. The measures of Machado & Cardoso
and of Ross & Ralph have varied output. The fractal dimension aesthetic mea-
sure produces less varied output and seems less suitable as a universal aesthetic
measure. Next we investigated how well the aesthetic measures like each others
work. We found that the aesthetic measures by Machado & Cardoso and by Ross
& Ralph appreciated work by others. The fractal dimension aesthetic measure
however, did not appreciate the output by the other measures, and seems less
suitable as a universal aesthetic measure. We think that the fractal dimension
aesthetic measure can be useful in cooperation with other aesthetic measures in
a multi-objective optimization setup. The output of the combination weighted
sum measure resembles the output of the measure by Ralph & Ross, mainly
because the average fitness of the Ralph & Ross measure was higher than the
average fitness of the other two. In future implementations we could normalize
the fitness values per aesthetic measure, in order to avoid unnecessary bias due
to differences in maximum fitness. Finally, it is interesting to note that aesthetic
measures used to have a passive role in computing the aesthetic value of an ob-
ject, but seem to have a far more active role in creating art when applied in an
evolutionary art system.

6 Future Work

In this paper we chose three aesthetic measures as input for experiments with
evolutionary art. Machado & Cardoso continued to develop their aesthetic mea-
sure in later research; we intend to include these changes and improvements in
our implementation. Furthermore, there exist more aesthetic measures in liter-
ature. We will implement the Pattern Measure of [6], and an aesthetic measure
based on information theory described in [11]. Furthermore, we would like to
further explore the combination of multiple aesthetic measures into a combined
aesthetic measure using techniques from multi-objective optimization (see [3]).
In our experiments we have hand-picked the output from the fittest individu-
als; in future research we would like to investigate the use of techniques from
digital image processing to extract features from images. This way, it might be
possible to investigate the output per aesthetic measure in a more systematic
way.
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The Problem with Evolutionary Art Is … 
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Abstract. Computational evolutionary art has been an active practice for at 
least 20 years. Given the remarkable advances in that time in other realms of 
computing, including other forms of evolutionary computing, for many a vague 
feeling of disappointment surrounds evolutionary art. Aesthetic improvement in 
evolutionary art has been slow, and typically achieved in ways that are not 
widely generalizable or extensible. So what is the problem with evolutionary 
art? And, frankly, why isn’t it better? In this paper I respond to these questions 
from my point of view as a practicing artist applying both a technical and art 
theoretical understanding of evolutionary art. First the lack of robust fitness 
functions is considered with particular attention to the problem of computa-
tional aesthetic evaluation. Next the issue of genetic representation is discussed 
in the context of complexity and emergence. And finally, and perhaps most im-
portantly, the need for art theory around evolutionary and generative art is dis-
cussed, and a theory that stands typical evolutionary art on its head is proposed.  

1   Introduction 

In this paper I will discuss several problems around evolutionary art (EA). Since EA 
has been an active practice for at least 20 years [1], some of this will be review.   It is 
my hope that I can offer some new light on these matters as a practicing artist devel-
oping an art-theoretical understanding of evolutionary art. 

First the lack of robust automatic aesthetic fitness functions for EA is reviewed, 
and possible new venues for research are presented.  Next genetic representation in 
EA systems is reviewed. The focus is not so much how genes are used as a medium 
for evolution, but instead how current gene representation and expression limits 
emergence and innovation. And finally art theory for EA is considered, and a specific 
theory rooted in what I’ve called “truth to process” is offered.  

2   The Problem of Fitness Functions for Evolutionary Art 

Genetic algorithms and other evolutionary computing techniques are methods to 
search large multidimensional solution spaces for optimal results. Applications in-
clude automotive and aeronautic design, electronic circuit design, routing optimiza-
tion, modeling markets for investment, and more.  

What each of these applications has in common is that an a priori fitness function 
can be defined, and individuals can be automatically scored as to fitness. [2] In the 
case of an investment model the score might simply be an amount representing  
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estimated profit.  For circuit design a weighted formula might be used to combine 
scores for functionality, cost and number of components, power efficiency, and so on. 
Fully automated evolutionary systems can run with very large populations for hun-
dreds or thousands of generations. Evolutionary art systems are at a significant disad-
vantage because it is not at all clear how aesthetic judgment can be automated for use 
as a fitness function.  The alternatives for dealing with this problem follow.  

2.1   Interactive Evolutionary Computing 

One alternative to an automated fitness function for EA is to use aesthetic judgments 
made by people.  From the first historical examples [1] to present interactive evolu-
tionary computing (IEC) dominates the evolutionary art field. In a recent wide-
ranging overview of evolutionary visual art Lewis has cataloged a large number of 
projects with nearly 200 citations. [3] The vast majority of the systems noted are in-
teractive using some form of case-by-case human judgment.  

The most obvious problem with having an artist or other judge “in the loop” is that 
it becomes the rate-limiting step of the iterative process. This is sometimes called “the 
fitness bottleneck.” [4] EA systems can produce new populations orders of magnitude 
faster than a human can score them. The practical result is that IEC systems typically 
suffer from relatively small populations and few generations.  

Human judgment is also limited by fatigue. Over time user choices will become 
less consistent, and skew towards novelty for its own sake rather than quality.  [5, 6] 

One strategy to finesse the fitness bottleneck and fatigue problems is to “crowd-
source” the evaluation task. In Sims’s Galapagos piece the length of time a visitor 
spends looking at a particular display is used as a fitness function. In Drave’s Electric 
Sheep system the generated art is displayed on thousands of personal computers as a 
screen saver and the users of those systems can provide feedback as to their prefer-
ences. [7] But as satirically demonstrated by artists Komar and Melamid, making 
aesthetic choices by polling the public does not produce the unique kind of vision 
expected from artists.  The resulting art trends towards a mediocre mean. [8] 

2.2   Computational Aesthetic Evaluation 

The Mechanical Turk was a device created in the 18th century that appeared to be a 
machine that could play chess. [9] The Mechanical Turk was, of course, more a feat 
of stage magic than computation. Despite the fact that it appeared otherwise, a human 
operator was hidden inside the cabinet. And it was this operator who made all the 
playing decisions and won or lost the game. 

From a certain point of view using IEC to create art is a similar trick. Perhaps the 
most important and difficult component in traditional art creation is the exercise of 
aesthetic judgment while the artifact is being made.1  And hidden in the IEC system is 
a human operator playing the game and making those critical decisions.   

Autonomous EC systems capable of producing art would be much more satisfying.  
And using computational aesthetic evaluation (CAE) to provide automated fitness 

                                                           
1 Art in the 20th century took a decidedly conceptual turn. Since then aesthetics as the pursuit 

of physical beauty is often not the first priority in art making. 
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scores would allow populations and generations akin to other applications, presuma-
bly resulting in better evolutionary art. 

However, CAE is a distinctly non-trivial unsolved problem. Not that there haven’t 
been partial attempts. For example, Sanders and Gero [10] and Greenfield [11] have 
researched agent-based evaluation systems. Jaskowski et al [12], Fornari et al [13], 
and Ciesielski et al [14] have reported on systems with automated scoring based on 
some form of error measurement with reference to an exemplar.  

McDermott et al [15] used a combination of perceptual measures, spectral analysis, 
and low-level sample-by-sample comparison to develop synthesizer voices relative to 
exemplar sound targets. Khalifa and Foster [16] devised a two stage music composi-
tion system that analyzes note intervals and ratios for use in a fitness function.  

Various numeric measures as aesthetic indicators have been explored such as 
Zipf’s law (Manaris et al [17]), fractal dimension (Mori et al [18] and Taylor [19]), 
and various complexity measures (Birkhoff [20], Machado and Cardoso [21]). 

Attempts to use connectionist models such as neural networks in computational 
aesthetic evaluation include Machado et al [22], Phon-Amnuaisuk et al [23], and 
Gedeon [24]. 

2.3   Hybrid Aesthetic Evaluation 

Some researchers trying to deal with the fatigue problems associated with IEC have 
attempted to create hybrid aesthetic evaluation methods. In such systems a subset of 
the population is scored by human evaluation, and then those scores are somehow 
leveraged across the entire population. Takagi offers a broad overview of over 250 
cited attempts to fuse EC and IEC systems in creating art systems as well as other 
application areas. [5] More recent reports on hybrid aesthetic evaluation include Yuan 
and Gong [6] , Machado et al [25], and Machwe and Parmee [26]. 

2.4   The Future of Aesthetic Evaluation for Evolutionary Art 

The bad news is that one needn’t get very far into the above literature to see that the 
fitness bottleneck restricting evolutionary art has not yet been conquered. IEC still 
well outperforms EC in terms of artistic results. And those EC and hybrid systems 
that have had limited success use methods that are generally idiosyncratic and quite 
specific to a given medium, style, and artistic goal.  

This shouldn’t be terribly surprising because we don’t know much about how hu-
man aesthetic evaluation works either. And worse, CAE tends to ignore the culturally 
determined aspects that fluctuate in time both over the short and long term. 

But there is some hope on the horizon. Journals such as Psychology of Aesthetics, 
Creativity, and the Arts, Empirical Studies of the Arts, and the Journal of Conscious-
ness Studies should be of interest to those researching computational aesthetic evalua-
tion. Experimental psychology is assembling, one detailed study at a time, a scientific 
picture of how human aesthetics works. 

Joining these recent but more traditional efforts is the nascent field of neuroaesthet-
ics. Neuroaesthetics involves the scientific study of the neurological bases for the 
creation, experience, and contemplation of works of art. A good place to start might 
be the chapter by Martindale where he has outlined a basic neural network model, and 
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then cites 25 empirical studies of specific and varied types of aesthetic experience 
compatible with, and suggestive of, this model. [27] It’s important to note that Mar-
tindale has not implemented a computational neural network to exploit his model, but 
this kind of research may well give others an incentive for doing so.  

And indeed this new science, and especially analysis at the level of neurology, is 
beginning to impact the way those in computer science think about connectionist 
computing. For example Hawkins has introduced a new design he calls “hierarchical 
temporal memory” (HTM) which is based on a theory of the neocortex. [28] 

Finally, some in evolutionary psychology have speculated that our general aes-
thetic capabilities have been mostly driven by adaptations for mate selection. And 
animals with far simpler neurological systems than ours also seem to select mates 
based on a form of aesthetics. In some animals this capability is generalized. [29] 
With further advances in psychology, neuroaesthetics, and connectionist computing, 
CAE may not be as far away as it sometimes seems. 

3   The Problem of Genetic Representation and Innovation 

Many observers have noted that EA systems tend to produce works that have a certain 
cast or sameness about them. Some pieces will be better than others, and of course the 
evolutionary process can capture and reapply incremental improvements. But there 
seems to be an inevitable plateau beyond which the work does not improve, and most 
importantly, does not exhibit innovation. 

In modern western culture the most highly valued artists are those who exhibit in-
novation. This rarely happens in a single giant leap of course. For example, if you 
study the paintings of Jackson Pollock in historical sequence you will first note mid-
dling cubist-inspired figurative work. Over time the figuration becomes more and 
more abstract. And finally the figures disappear entirely in the explosion of lines, 
drips, and splashes Pollock is so well known for. [30] 

While one can somewhat imagine an EA system designed for figurative work 
“loosened up” to create abstract work, consider the counter example of Philip Guston. 
He famously, and very quickly, went from well-known abstract expressionist work to 
(deceptively) simple cartoon-like figurative work. [31] It’s hard to imagine a current 
evolutionary system designed for abstraction suddenly producing the human form. 
The problems of sameness and lack of innovation are real and worth close study.  

3.1   Complexification in Nature and Genetic Representation 

Evolutionary computation may be inspired by natural evolution, but it is far less com-
plex than then real thing.  Perhaps artificial evolutionary systems lack the kind of 
innovation found in natural evolution due to this lack of complexity.  The notion of 
complexity here is different than both complexity in information theory [32] and the 
notion of algorithmic complexity. [33-35] Those in complexity science tend to em-
brace notions similar to what Murray Gell-Mann has called “effective complexity.” 
[37] In this view simple systems are either highly ordered or highly disordered, and 
complex systems exhibit a dynamic tension between order and disorder. This tension 
allows complex systems to exhibit emergence across multiple scales. (See figure 1).  
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To measure effective complexity, at least in principle, Gell-Mann proposes to split 
a given system into two algorithmic terms.  The first algorithm captures structure and 
the second algorithm captures random deviation or noise. Effective complexity is 
proportional to the size of the optimally compressed program for the first algorithm 
that captures structure.  Gell-Mann points out that this process is exactly what a com-
plex adaptive system, such as an animal, does as it learns (models) its environment.  
Aspects that are random, or noise, are forgotten and aspects that exhibit structure are 
compressed (abstracted and generalized).  Structural aspects that resist compression 
are experienced as being complex. 

When a system moves from simplicity to complexity this is sometimes called com-
plexification. [36] In nature gene related complexification happens in at least two 
ways.   Complexification over a long time scale begins with simple single celled or-
ganisms, and evolves complex creatures such as humans. But complexification can 
also refer to developmental biology; the cascade of construction as DNA assembles 
proteins, proteins form organelles and then cells, cells organize into tissues and or-
gans, and so on.  Genes thus have two roles, both as machines that allow long-term 
evolution and as machines that initiate short-term construction exhibiting multiple 
levels of emergence and increasing scale. 

The suggestion offered here is that EC with a single level of emergence from geno-
type to phenotype is not capable of the complexification that art requires.2  Most evo-
lutionary artists concentrate on the first function of genes (evolution) and do very 
little with the second (construction through multiple levels of emergence). Without 
sufficient complexification capacity EA systems cannot exhibit innovation in the 
sense seen in Pollock and Guston. They remain trapped in a phase space of overly 
similar aesthetics.   

In the design of any evolutionary system the genetic representation has meta-
significance in that it may constrain the space of not only all possible evolutionary 
paths, but also all possible developmental paths.   Four types of genetic representation 
follow in complexification capacity order. 

The simplest genetic representation is fixed parametric representation. Imagine a 
system for creating drawings of insects. There might be a gene for head size, another 
for body color, another for leg length, and so on. While such a system may draw a 
wide variety of insects it will never draw a spider because unless there is a “number 
of legs” gene all results will have six legs. The complexification capacity of this sys-
tem is highly constrained. 

Slightly more complicated is an extensible parametric representation. Such a sys-
tem might have one gene per leg, and thus the ability to draw insects, spiders, and 
even centipedes and millipedes. But it will not be capable of drawing fish or birds 
because it lacks fin and wing genes. The complexification capacity of this system is 
still fairly constrained. 

More complicated yet is a direct mechanical representation. In our example this 
genetic system doesn’t describe the end result, but rather describes machines that can 
draw. Such a representation will, in theory, allow most anything to be drawn. In addi-
tion, during reproduction the genes themselves may mutate making the child different 

                                                           
2 The developmental aspect of gene expression has been an object of previous discussion. See 

for example Bentley and Corne’s discussion of embryogeny [37]. 
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than the parent. For example, a machine that creates thin pencil lines may mutate into 
a machine that makes brushed ink marks. Such a system may seem to be of unlimited 
potential, i.e. unlimited complexification capacity. But such a system is only capable 
of a single layer of emergence. The machines immediately and directly draw the pic-
ture, and that is that.   

The final genetic representation is a reproductive mechanical representation. Such 
a system is similar to the previous one, with the addition that within a single individ-
ual a machine may also create another machine, reproduce itself, or contribute to an 
emergent machine at a higher level of complexity and scale. This is, in fact, the kind 
of genetic representation found in nature. There is an upwardly layered increase of 
complexity as DNA creates proteins, proteins organize to create organelles, organelles 
organize to create cells, cells organize to create organs, and so on. 

Reproductive mechanical genetic representation maximizes complexification ca-
pacity because it can initiate multiple layers of emergence across multiple scales. EA 
has focused on evolution while mostly ignoring this second aspect of genes.  Repro-
ductive mechanical genes may help solve the sameness and innovation problem. 

 

Fig. 1. On the left, effective Complexity in Natural Systems. On the right, effective Complexity 
in Generative Art Systems. 

4   The Problem of Art Theory for Evolutionary Art 

Art is more than a series of sensory experiences3. It is also a stream of ideas that bind 
art production, art criticism, and art meaning to the larger culture. A natural place to 
start is with the question “what is art?” Most agree that to define art is to propose a 
theory of art. [38] And as a corollary, art without theory loses its definition, its iden-
tity, and its meaning. As a practical matter evolutionary art theory will be required 
before EA will be able to gain entry to the wider art world and inclusion in the general 
cannon of art. 

As part of a broad future-oriented overview McCormack recently offered a number 
of grand challenges with regard to evolutionary art. [39] The last and least discussed 
of his grand challenges is the development of art theory for evolutionary and  
generative art. McCormack does refer to a new sense of aesthetics related to artificial 
life and evolutionary art as reflected in theorist Mitchell Whitelaw’s notion of 
                                                           
3 Please note that at this point that we are shifting gears from primarily scientific or technical 

considerations to a discussion of art theory. And art theory has its own traditions, rules of evi-
dence, and notions of acceptable rhetoric. 
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metacreation. [40] Metacreation refers to the role of the artist shifting from the crea-
tion of artifacts to the creation of processes that in turn create artifacts.  But, in fact, 
what Whitelaw has called metacreation is not new, nor is it intrinsically digital.  

In previous writings I’ve noted that the common element of all generative art is the 
ceding of control by the artist to an autonomous system. [41] With the inclusion of 
systems such as symmetry, pattern, and tiling one can view generative art (or White-
law’s metacreation) as being as old as art itself. This view of generative art also in-
cludes 20th century chance procedures as used by Cage, Burroughs, Ellsworth, 
Duchamp, and others. What is new today isn’t generative art per se, but rather the use 
of complex systems such as artificial life or evolution rather than the previously used 
simple systems.  

Given that this generative art theory turns on the use of systems by the artist it 
should not be surprising that Gell-Mann’s notion of effective complexity in systems 
can be used to classify various kinds of generative art.  When generative art systems 
are viewed in this way it suggests a robust theory of generative art. (See figure 1).  

This view of generative art casts a very wide net that is independent of any particu-
lar past or future technology. It correctly identifies the use of systems, rather than 
computers, as being the defining aspect of generative art. And by including artists and 
generative work already well accepted in the art world other forms of generative art 
are pulled into to the standard art canon. Generative subgenres such as evolutionary 
art should no longer be left isolated as awkward art world orphans. 

While further discussion is beyond the scope of this paper, it’s worth noting that in 
other writing I’ve used this framework to provide a bridge to a more general critique 
of the modern/postmodern dialectic I’ve called “complexism.” [42, 43] From that 
view evolutionary art not only rehabilitates formalism as being significant and mean-
ingful, it also reintroduces dynamism and the aesthetics of process and motion.  

4.1   Evolutionary Art Theory and Truth to Process  

At various points in art history the notion of “truth to materials” has ascended. In 
modern architecture this meant that concrete was presented as concrete, and steel 
beams were presented as steel beams. Clement Greenberg took a similar tack in his 
critique of abstract expressionism. [44] This involved the rejection of illusory space 
and representation where the canvas acts as a simulated window. Instead the canvas 
was simply considered as a flat surface supporting non-representational paint. The 
underlying idea is that aesthetic power comes from the honest presentation of the 
essential nature of the medium being used in its purest form. 

Given the relative lack of art theory for evolutionary art this essentialist approach 
may be a good first approximation. So what is the one thing that all evolutionary art 
shares, and without which it would cease to be evolutionary art? In this case what is 
essential is not a material property at all, but rather the evolutionary process itself.   
And so by extension evolutionary art aesthetics should focus on the process rather 
than the material results.  And so what can be said about this process? 

It’s already been noted that evolution in nature depends on multiple layers of 
emergence at ever increasing scales. Evolution is by nature a bottom up process.  

And although the factual details are sketchy, the levels of emergence that created 
DNA, then proteins, then organelles and cells, happened long before a trace of more 
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complex multicellular organisms appeared. DNA did not form so that someday man 
could appear. Rather DNA likely emerged from existing autocatalytic complexes and 
then sustained itself through reproduction.  Evolution is not teleological.  [45] 

In addition evolution does not produce complex creatures by a direct mapping of 
genotype to phenotype. Evolution depends on multiple levels of complex emergence. 

Compare this to how most evolutionary art is created. Most EA systems can’t in-
novate via multiple levels of emergence.  They generate results with a troubling 
sameness.  To compensate EA systems end up being designed from the top down. The 
gene pool may start in a random state, but the dice are already loaded because the 
genetic representation has been designed to lead to the general kind of result desired. 

In typical evolutionary art a single level of emergence limits complexity. The bot-
tom up nature of evolution is turned top down. And the teleology that doesn’t exist in 
natural evolution is introduced in the art that it supposedly inspired.  

From an essentialist art theory point of view typical fitness function driven evolu-
tionary art is incoherent due to self-contradiction. 

Evolutionary art in the context of fine art and rigorous art theory cannot assert it-
self while it contradicts itself. The process is what makes evolutionary art unique, 
powerful, and meaningful.  And truth to process in evolutionary art is what will turn 
the field away from self-contradiction and incoherence4. 

Truth to process in evolutionary art demands a bottom up approach. Gene expres-
sion should not directly produce a final work but merely trigger the first of many 
levels of emergence. The artist’s primary aesthetic concern should be about putting on 
display the process, not the product, of complexification.  

Generative art theory in general, including that of evolutionary art in particular, 
moves from noun-dominated art to new practices where verbs become the content. 
The artifact may be less important than the process.  The artifact may even be entirely 
irrelevant. Truth to process is where the beauty will be found. 
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Abstract. A relatively rare application of artificial intelligence at the
nexus of art and music is dance. The impulse shared by all humans to
express ourselves through dance represents a unique opportunity to arti-
ficially capture human creative expression. In particular, the spontaneity
and relative ease of moving to the music without any overall plan sug-
gests a natural connection between temporal patterns and motor control.
To explore this potential, this paper presents a model called Dance Evo-
lution, which allows the user to train virtual humans to dance to MIDI
songs or raw audio, that is, the dancers can dance to any song heard
on the radio, including the latest pop music. The dancers are controlled
by artificial neural networks (ANNs) that “hear” MIDI sequences or raw
audio processed through a discrete Fourier transform-based technique.
ANNs learn to dance in new ways through an interactive evolutionary
process driven by the user. The main result is that when motion is ex-
pressed as a function of sound the effect is a plausible approximation of
the natural human tendency to move to music.

1 Introduction

The ubiquity of dance throughout the cultures of the world [1] hints at its deep
connection to human creativity and self-expression. The power of music and
dance as a tool for self expression is further demonstrated by the popularity
of such music and rhythm-oriented games as Guitar Hero1, Rock Band2, and
Dance Dance Revolution3. Yet although in recent years researchers in artificial
intelligence (AI) have begun to focus on creativity in music and art [2,3,4,5], with
few exceptions [6], dance is less explored. Nevertheless, dance can potentially
provide insight into how the auditory and motor modalities are connected in
creative self-expression. Thus its study is relevant to the enterprise of AI.

Unlike Yu [6], who focused on choreographed dance sequences, the model in
this paper investigates the more spontaneous self-expression that results from

1 Guitar Hero (R) is a trademark of Activision Publishing, Inc.
2 Rock Band, Rock Band 2 and all related titles are trademarks of Harmonix Music

Systems, Inc., an MTV Networks company.
3 (C) 2008 Konami Digital Entertainment, Inc. “Dance Dance Revolution” is a regis-

tered trademark of Konami Digital Entertainment Co., Ltd. KONAMI is a registered
trademark of KONAMI CORPORATION.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 331–340, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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simply listening to entertaining music, such as in a club setting. In a step toward
generating spontaneous dance to arbitrary music, this paper presents a model
called Dance Evolution in which virtual dancers learn to dance to music encoded
as either MIDI or raw audio. In effect, dancers can learn to dance to any song that
you might hear in a dance club or on the radio. The model in Dance Evolution
can take MIDI sequence data or process raw audio through discrete Fourier
transforms to extract an approximation of such data. The resulting temporal
progression is input into an artificial neural network (ANN), which outputs a
sequence of motor commands that control the body of the virtual dancer. Thus
the motion of the dancer becomes a function of the beats of the song.

Of course, an important question is how the ANN can learn to make the right
moves. However, it turns out that it is possible to quickly discover mappings
between audio and motor output that produce movements that appear natural,
suggesting that one reason dance is so appealing is that its search space is for-
giving. Thus the aim in Dance Evolution is not to learn an optimal dance but
rather to enable the user to effectively explore the space of possible dances. For
this purpose, the user drives an interactive evolutionary algorithm built on the
NeuroEvolution of Augmenting Topologies (NEAT) approach to evolving ANNs.
In effect, the user breeds new dancers from ones that were appealing in the past.
In fact, because each evolved ANN embodies the personality of a dancer, the
same dancer can be transferred from one song to another.

The main insight, that dance can be considerd a function of changing audio
over time, suggests a direct coupling between motor control and audio processing.
By implementing a model based on this principle, the practical result is an
interactive application in which an unbounded space of dance behaviors can be
explored and assigned to any song.

2 Background

This section reviews foundational technologies to the Dance Evolution approach.

Interactive Evolutionary Computation. IEC is a growing field within ma-
chine learning that takes advantage of humans’ ability to make sophisticated sub-
jective judgments [7]. Early IEC implementations include Richard Dawkins’s [8]
Biomorphs, which evolved visual patterns, and the pioneering work of Sims [5,9],
who evolved both art and virtual creatures. In IEC the user is presented with a
set of (usually visual) alternatives and evaluates their fitness. The evolutionary
algorithm generates a new generation of candidates based on this feedback. The
process repeats until the user is satisfied. While the risk is that the user may
become fatigued before finding a satisfactory candidate [7], the hope in Dance
Evolution is that watching dancers is sufficiently motivating in part to mitigate
the effect of fatigue.

NeuroEvolutionofAugmentingTopologies. DanceEvolution encodesdance
policies as ANNs that “hear” input from a music file and output requests for limb
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movement. The ANNs in Dance Evolution are trained through the NeuroEvolu-
tion of Augmenting Topologies (NEAT) method, which has proven successful in a
variety of control and decision making tasks [10,11,12]. Thus NEAT makes a good
platform for evolving controllers for dancers.

NEAT begins evolution with a population of small, simple networks and grows
the network topology over generations, leading to increasingly sophisticated be-
havior. For evolving dance, this process means that dances can become more
elaborate and intricate over generations. Stanley and Miikkulainen [12] provide
complete introductions to NEAT.

Music Processing. If dancers can only dance to processed MIDI files, the user
can only enjoy a limited library of songs. To broaden the possibilities, this paper
takes the significant step of extending the functionality to the popular MPEG-1
Audio Layer 3 (MP3) music format. This capability allows the user to enjoy
a normal library of songs. Thus the problem is to parse raw sound in such a
way that the ANN can interpret it. The approach in this paper is inspired by
an algorithm described by Scheirer [13] that can determine the beat from raw
musical input.

3 Approach

Dance Evolution was implemented in the Panda3D4 simulator, which was chosen
for its rapid prototyping capabilities and ability to simulate articulated bodies.
This section details the main approach, starting with inputs.

3.1 ANN Inputs

To allow the ANN to “hear” the music, data from the song is input over time as a
vector representing the current pulses as the song unfolds. For MIDI (i.e. musical
instrument digital interface) files, this vector contains four parameters. The first
three are periodic functions of the beat, measure, and length of the song. The last
signal in the vector represents the volume of the low drum track, which adds
song-specific variation. In this way, the ANN is aware of the major temporal
building blocks of music and generates dance as a function of that information.
Because MIDI files represent this data explicitly, it is easily extracted and input
into the ANN. However, the MIDI format only allows a proof of concept of the
technique because most popular songs are available only in raw audio. Thus a
key focus of this research is to extend the capability to dancing to raw audio.

3.2 Audio Processing

As Scheirer [13] explains, a beat is a repeating pulse with a regular period
throughout a piece of music. To discover the beat, these pulses must be identified;
4 Panda 3D Software Copyright (c) 2000-2005, Disney Enterprises, Inc. All rights

reserved.
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however they can appear distinctly within different subbands of the song. There-
fore, to recognize pulses, the song must first be decomposed into its subbands.
This task is accomplished efficiently with a Fast Fourier Transform (FFT).

The FFT in Dance Evolution decomposes the amplitude vector formed from
1,024 samples of the song, which combined represent approximately 1

40 of a
second, into multiple subbands that represent the average energy of the song in
several frequency-ranges. In particular, Dance Evolution decomposes the song
into 15 subbands whose ranges are

[
( N
15∗i+4)∗fe

N ,
( N
15∗(i+1)+4)∗fe

N

]
Hz with i ∈

[0, 14] , N = 1, 024, and fe set to the sampling rate of the song, which is usually
about 44, 100 Hz (the constant 4 is the remainder of dividing 1,024 by 15). As
noted by Scheirer [13], differing range divisions do not have a significant effect
on results. The FFT also calculates the direct current (DC) term, i.e. the non-
periodic component of the vector that represents the average energy of the song.

A beat occurs when the energy in a subband increases dramatically with
respect to the average energy of the subband. The FFT of the 1,024 samples
represents the near-instantaneous energy of each channel. To search for a beat,
this energy is averaged with the previous 43 samples, which represents about
one second of time for the common sampling rate of 44,100 Hz. This interval
was selected to allow real time processing while maintaining sufficient fidelity.

The ratio of the instantaneous energy to the average energy amplifies differ-
ences between them such that a high ratio means that the pulse may be a beat.
This pulse information can be input directly into an ANN, causing a spike in the
input to correspond to a pulse in the music. This procedure both reduces time
spent processing the music and preserves non-beat pulses, which may still be
important to the dance. The non-beat pulses have a similar affect to the drum
track information from the MIDI files. 16 values representing the pulses from
each of the 15 subbands as well as the DC component are input into the ANN.
The input vector is calculated and fed into the ANN in real time in each frame.5

To make pulse data suitable for ANN input, it must be (1) normalized and
(2) lengthened. Because the magnitude of a raw audio pulse is unbounded, the
sigmoid function f(x) = 1

1+e−α(x−β) is applied to each input to both limit the
pulse values to [0, 1] and further separate the strong pulses from the weak ones,
in effect filtering out the weak signals. Based on an analysis of several songs, α
and β are set to 1 and 6 respectively to keep the point of inflection above the
bulk of the weaker pulses.

The second problem is that the pulses occur over short periods of time, which
does not give the ANN enough time to properly react before the input pulse
terminates. Dances produced with such short pulses thus appear jerky. To ad-
dress this problem, the ANN is provided with a “memory” of the last few in-
puts by adding a fraction of the previous input into the current one such that
It = f(x)+ γ · It−1. This final step provides the ANN with smooth decay curves
following each pulse. The result is smooth, natural-appearing motion.

5 The engine updates the visual display each such frame.
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Fig. 1. Dance Evolution User Interface. The user can click on dancers to breed
them and control the degree to which they change with the mutation slider in the
lower-left.

3.3 ANN Outputs

The ANN controls three-dimensional models within an interactive environment.
The output nodes of the ANN request the actuation of the joints of the model.
The models’ joints are chosen from the head, spine, arms, hips, and legs such
that each joint has enough mobility to noticeably affect the dances. Each output
affects the angle of an axis (heading, pitch, or roll) of one joint, for a total of 34
outputs. Every frame, the outputs of each ANN are queried and the angles of
the models are updated accordingly. Activation travels through the the ANN at
a rate of one link per frame. It is important to note that because ANNs evolved
by NEAT can contain recurrent connections, in principle it is possible to react
to more than just the current beat.

To display the dance, the outputs of the ANN must be converted into ac-
tuation commands to move the models. Each frame, the next input vector is
calculated from the most recently heard music and loaded into the ANN. Each
output of the ANN is in the range [0, 1] and scaled linearly into [−.2, .2]. This
activation is scaled according to the frame rate so that dancers are consistant re-
gardless of frame rate. Finally, the joint is moved along a sine curve between the
physiological limits at a rate determined by the activation, creating a rhythmic
motion that avoids being stuck at the limits. That is, the limbs continually os-
cillate between their limits with a frequency determined by the activation, such
that higher activation causes faster movement.

In this way, because each input represents the most recent pulses in the song
as heard by the user, the ANN is able to react in real time to the music.

3.4 ANN Training

ANNs in Dance Evolution are trained through IEC, which allows the user to
direct their evolution intuitively. Left-clicking on one of the five model dancers
produces a new generation of mutants of that model’s ANN. The model that
is clicked keeps its ANN, which ensures the favorite dancer is not lost. Right-
clicking creates a set of hybrids by crossing over the clicked model’s ANN with
each of the other models’ ANNs following the NEAT method, and replacing
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the old ANNs of each unclicked model with the new offspring. The user can
control the mutation power through a slider provided at the bottom of the
screen, which gives the user significant control over evolution. The interface is
shown in figure 1. The population can be initialized randomly or from ANNs
saved from previous sessions. In addition to saving trained dancer ANNs, the
user can load any previously saved ANN.

Users can choose to play any song in their library. Interestingly, ANNs can
react to any such song, including those for which they were not trained. In
this way, the same dance personality, which is embodied in an ANN, can be
transferred from one song to another.

4 Experiments and Results

This section is divided into two parts: a brief analysis of learning to dance to
MIDI and the more ambitious goal of dancing to raw audio. Please note that
the text in this section is accompanied with video demonstrations at:
http://eplex.cs.ucf.edu/dance-evolution-videos.html.

4.1 Dancing to MIDI

Learning to dance to MIDI is significantly easier than learning with raw audio
because the beat and measure are provided explicitly by the MIDI format. Show-
ing what is possible under such conditions provides a context for the results of
the greater challenge of learning to dance to raw audio.

MIDI dancers were evolved to MIDI dance songs composed by Bjorn Lynne
(Shockwave-Sound.com). The main result is that a wide variety of dances evolved
that tightly follow the rhythm of the song, demonstrating that the idea that
dance can be generated as a function of temporal information in music can work
in principle (see “MIDI Sequence” video). While some of the specific bodily mo-
tions sometimes appear unrealistic, it is possible to evolve toward more realistic
motions. The quality of results with MIDI was sufficient to win the Best Stu-
dent Video Award at the AAAI video competition [14]. The dancers perform
the most dramatic movements and changes to the beat of the song. The next
section investigates the performance of the approach when confronted with the
greater challenge of raw audio.

4.2 Dancing to Raw Audio

This section analyzes raw audio performance in detail through a variety of spe-
cific experiments. The primary aim is to provide significant insight into how the
results follow from the raw audio processing procedure, from which it will be
possible to expand and improve further in the future.

A brief sequence from the song Tubthumping6 by Chumbawamba is chosen
to illustrate in detail the responsiveness of the algorithm to pertinent compo-
nents of raw music. Specifically, the inputs resulting from processing and the
6 Tubthumping is from the album “Tubthumper,” released by EMI Group Ltd.

http://eplex.cs.ucf.edu/dance-evolution-videos.html
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corresponding ANN outputs are graphically analyzed to test whether processing
captures important signals from the music and whether the ANN reacts accord-
ingly. Tubthumping has a very distinct chorus in which the lyrics state “I get
knocked down, but I get up again.” These lyrics provide a reference point in the
analysis of the network outputs.

Figure 2 depicts the initial three steps of the raw audio processing of the
segment with the lyrics, “I get knocked down, but I get up again,” which is
completed before inputting data into the ANNs (see “Tubthumper Clip” video
for actual footage). Figure 3 demonstrates the movement during this segment as
well as the inputs and outputs of the ANN that generated this dance.
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(c) Third Step: Sigmoid Transformation

Fig. 2. Processing Raw Audio. The first three steps of processing the song
Tubthumping are shown. The FFT results are shown for each channel (a). The ratio
of the instantaneous to the average FFT isolates pulses in the music (b). The sigmoid
function then filters out weak pulses and normalizes the input (c).

The ANN that controls the dancer in figure 3 evolved the humorous behavior
of bobbing down when the chorus sings “I get knocked down.” Spikes in the
processed input can be observed at each of these lyrics. Note that these spikes
represent instrumental beats in various frequencies that happen to correspond to
the timing of the lyrics, which is how Dance Evolution learns to respond. Other
spikes representing a variety of instrumental sounds are also apparent, indicating
that the inputs of the ANN indeed receive spikes in the music to which a human
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(a) Time = 32727 ms (b) Time = 33726 ms (c) Time = 34764 ms (d) Time = 35726 ms

(e) Input Strength for each Channel Over Time
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(f) Upper and Lower Leg Outputs Over Time

Fig. 3. Dancing to Music. An ANN trained with Chumbawamba’s Tubthumping
dances to the chorus of “I get knocked down, but I get up again”. The sequence (a–d)
are screen shots taken at regular intervals during the dance. Over this time, the ANN
sees the inputs processed from this part of the song (e). The outputs for the left and
right legs (f) cause the dancer’s legs to change direction quickly at the words “I” and
“down,” corresponding to pulses in the input (e).

would react. Correlated with this input, the output in figure 3f shows that the
ANN requests the right and left knees to change direction (i.e. the sign switches)
when the lyrics, “I get knocked down” are sung (approximately 33,300 ms into
the song). The act of both legs changing direction simultaneously causes the
dancer to dip. Thus figure 3 confirms that, with user input, NEAT could find a
policy to express the desired behavior as a function of change in subbands.

A single ANN can transfer some of its characteristic behavior between songs,
but also exhibits new behavior resulting from different active frequency subbands
in different songs. Demonstrating this capability to transfer, a single ANN was
trained on George Clinton and the Parliament’s Give Up the Funk (Tear the Roof
off the Sucker)7 and transferred to to Billy Joel’s Piano Man8. Characteristic

7 Give Up the Funk (Tear the Roof off the Sucker) is from the album “Mothership,”
released by Casablanca Records.

8 Piano Man is from the album “Piano Man,” released by Columbia Records.
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behaviors such as spreading the arms remain throughout, although the dance
slows to match the tempo of Piano Man (see “transition clip”).

There are generally several interesting dances each generation; therefore, fur-
ther evolution is most naturally directed toward curiosity-driven exploration
rather than a defined goal. Thus an entertaining strategy for Dance Evolution
is undirected search, i.e. selecting the most interesting or fun behavior.

Accordingly, five runs, evolved over two songs each, were executed with such
a strategy. Every initial ANN, with no prior training, contains 51 nodes and
578 connections. The chance of adding a node is 15% and the chance of adding
a connection is 25%. After 10, 20, 30, and 40 generations, the average number
of nodes and connections was 54.48 nodes and 579.76 connections, 54.68 nodes
and 583.56 connections, 55.28 nodes and 585.88 connections, and 56.08 nodes
and 588.36 connections, respectively. Because the songs were on average 4.1
minutes, the average number of generations per minute was 6.1, which means
approximately one generation every 9.8 seconds. This short duration suggests
that subjective impressions of dance can form quickly. The dances generated
(see “variety clip” featuring Walk Like an Egyptian9) included splits, intricate
arm and leg movements, head bobbing, toe tapping, and more, usually in concert.

In general, as evolution progresses, behaviors appear more correlated and
smooth; which is both a function of selection and the added network structure.

5 Discussion

Music is composed of a series of periodic spikes in sound energy of different
frequencies. Humans dance by reacting to these events by creatively mapping
them to motor outputs. Similarly, Dance Evolution evolves ANNs that react to
audible spikes of different frequencies through motor outputs.

Dance Evolution applies AI to a unique domain. Both the domain and the
interactive interface minimize the risk of user fatigue, allowing Dance Evolution
to exploit human intuition to solve an otherwise poorly defined problem.

A promising future extension to Dance Evolution is to embed knowledge of
the inherent symmetry of the body into the genetic encoding. Such indirect
encoding [15,16] would bias the networks toward producing dance sequences
that are partially symmetric, which may increase their natural appeal.

One significant practical application of this achievement is within the video
game industry. Games based on music such as Guitar Hero and Rock Band are
becoming increasingly popular. For game designers, the capability to produce a
large variety of dancers to raw audio recordings can potentially enhance such
games significantly and speed up their development.

Perhaps most interesting is that the functional perspective has also been
shown plausible in music (as a function of time [2]), and art (as a function
of space [4]). By demonstrating that this model can work, Dance Evolution sug-
gests that human creative expression is indeed possible to model in AI.
9 Walk Like and Egyptian is from the album “Different Light,” released by Columbia

Records.
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6 Conclusion

This paper presented Dance Evolution, a program that takes advantage of IEC
and ANNs to approach the subjective problem of learning to dance. Additionally,
the paper described the algorithm implemented in Dance Evolution to process
raw audio files into a form suitable for ANN controllers. Dance Evolution proved
capable of training both specific and varied dances on a range of songs. Because
these ANNs simply express functions of the music, the dances that they produce
are naturally coupled to the music.
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Abstract. A novel paradigm and system for interactive generative mu-
sic are described. Families of musical pieces are represented as functions
of a time variable and several variables under user control. Composi-
tion/performance proceeds in the following two stages. Interactive gram-
matical evolution is used to represent, explore, and optimise the possible
functions. The computer mouse or a Wii-controller can be used for real-
time interaction with the generative process. We present rationale for
design decisions and several pieces of example music.

Keywords: Generative music, evolutionary computation, grammatical
evolution, interaction.

1 Introduction

Generative music is music which is not specified by a score, but by an algorithm,
a set of rules, a set of processes, a mapping from randomness, or some other
such method. Collins [4] provides a good introduction, quoting a definition of
generative art as art that is “generated, at least in part, by some process that
is not under the artist’s direct control” [3]. Of course this requires a definition
of “direct”. Collins also quotes Sol LeWitt: “the idea becomes a machine that
makes the art”. This brings to mind a famous remark made in the context of
meta-programming: “I’d rather write programs that write programs than write
programs.” (Richard Sites). Generative art is “meta”, in the same sense: the
artist creates not a single instance of the work, but instructions with the potential
to create a family of instances. Meta-programming is also an example of the
observation that constructive laziness is a characteristic of good programmers.
In this spirit, we like the implicit description given by Brian Eno, who has been
responsible for popularising both the term “generative art” and the musical
genre: “[. . .] I’ve always been lazy, I guess. So I’ve always wanted to set things
in motion that would produce far more than I had predicted.” [6].

Collins [4] also mentions an important distinction, that between interactive
and non-interactive generative art. In the latter, the artist cannot intervene
after the generative process has begun. Interactive generative music allows in-
tervention and “performance”: at one extreme, a musical piece such as Queen’s

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 341–350, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Brighton Rock might be seen as interactive generative music, where the interac-
tion has been increased to a full instrumental performance and the generative
aspect reduced to an extreme echo effect.

Our focus in this paper is a form of interactive generative music where ma-
terial is created through more typical generative processes—musical processes
embodied as algorithms and equations—but interaction by direct manipulation
of some of the equations’ parameters is possible, via either the mouse or the pop-
ular, intuitive Nintendo Wii Remote. Since our system is intended to be usable
by anyone with no computer/mathematical background or training, we adopt a
point of view characterised by the term “hidden variables”. Parameters are not
intended to be explicitly understood by the performer. Rather, the performer
gradually and implicitly learns their effects in different contexts.

The search for algorithms and equations leading to interesting generative mu-
sic with viable interaction possibilities is a difficult task even for users with com-
puter experience. The space of possible equations and algorithms is large. We
therefore require a tool for navigating it, and we choose interactive grammatical
evolution (GE), a form of interactive evolutionary computation (IEC) which has
been successful in previous applications [12,2,5,10,7]. Our system, called “Jive”
(for “generative, interactive, virtual, evolutionary”) thus allows two levels of
composition/performance. First, the creation of the generative piece itself is a
compositional process done through IEC. It fixes many aspects of the “family of
instances”. Secondly, performance of a particular instance is done by live control
of hidden variables. During the IEC process, many short experimental instantia-
tions will be created as the user comes to grips with the possibilities presented by
the evolving population. This two-phase process, using IEC to create interactive
generative music, is the central novel contribution of this paper.

The remainder of this paper is laid out as follows. Previous work is reviewed
in Sect. 2. The Jive system is described, with motivation and examples for its
design decisions, in Sect. 3. Results obtained using this system, and refinements
based on their success and failure, are given in Sect. 4. The final sections contain
discussion, conclusions and future work.

2 Previous Work

Evolutionary approaches to music generation are well-known [12,2]. Generative
processes such as L-systems have been explored both within and without the
evolutionary context [11]. Magnus’ “Evolutionary Musique Concrète” [9] and
many others have used evolutionary dynamics as the primary means of driving
the development of music over time. Others have used non-interactive EC with
computational fitness functions [5]. These differ from the approach adopted here,
where we see interactive EC as a tool, and the generative aspect of the music
could exist independently of EC.

The Genophone system [10] has some of the same aims as that explored in
the present work, in that both performance mappings and material are cre-
ated. There are two major differences. Genophone operates at the level of sound
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synthesis parameters, whereas our focus is on score-level generation. Also, our
representation, using context-free grammars, is entirely different.

However the most direct source of inspiration for this work is the NEAT-based
“compositional pattern-producing network” approach [15,7]. Complex networks
of functional relationships map input variables to plausible, realistic output mu-
sic (or graphical art, etc.). The functional networks are created using IEC. Al-
though the input variables are derived from pre-written input music (the aim
is to automatically produce rhythm tracks to accompany existing music), the
approach has more general potential to map any input parameters to output
music. This is the point we take up.

The commercial system Noatikl, which is descended from Koan, used to create
Eno’s seminal Generative Music 1, allows user interaction with generative pieces
according to a non-evolutionary paradigm.

Generative grammars, like the context-free grammar used in our grammatical
evolution approach, have been extensively used for both the analysis and gener-
ation of music, for example by Lerdahl and Jackendoff [8]. However, we wish to
draw an important distinction here. In our work, we believe for the first time, the
generative grammar is used to create code—specifically a set of arithmetic and
boolean functions, which drive the generative process. It is not used to create
musical material directly, and so our work has no direct bearing on grammatical
theories of music.

3 The Basic Jive System

The Jive system consists of four components: generative, interactive, virtual, and
evolutionary. They are described in the following four sections.

3.1 Generative

Fundamentally, Jive is a generative music system in which music is a function
of time, and time is seen as a discrete variable. In the simplest possible case, a
function such as f(t) = 40 + 7 sin(2πt) or g(t) = t mod 60 will create a piece
of music, albeit a very boring one. Here, the output of functions f and g is a
number, which we round (if necessary) to an integer and interpret as a MIDI
note number. We make one immediate improvement, however: since we wish to
minimise the random feel associated with much generated music, we will map
the integer to a diatonic scale.

There are several routes towards creating more interesting music. First, we
require the ability to play any succession of notes. It is well-known that a com-
bination of sinusoidal functions is sufficient to represent any periodic function
of one variable (and since a piece of music will be finite in length, the period-
icity requirement is unnecessary). This universality is the property we require.
Another possibility, which leads more immediately to musical results, is to use
combinations and variations of a linear function like h(t) = a + q(t mod p). By
varying the values of a (a pitch offset), q (a scaling factor), and p (a periodicity
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parameter), we can produce a function of one variable, time, which produces
ascending and descending scales, and in general piecewise-linear sequences, as
depicted in Fig. 1(a)1.

(a) Simple piecewise-linear re-
sults obtainable using a single h
function

(b) A single voice can become arbitrar-
ily complex by summing multiple h func-
tions.

Fig. 1. Examples demonstrating output of a single voice

The important role played by the mod operator is to provide periodicity. A
similar role might have been played by a sin function as noted above. A single
instance of the h function chunks time into periods, giving our generative piece
repetitive pattern. We can also sum multiple instances of the function, with
varying values for a, q, and p, to obtain a function h(t) =

∑
i hi, again of one

variable, time, which can produce any desired sequence of single notes2. In order
to keep things rhythmically coherent, we will constrain p to take on values of the
form p = p1 or p = p1p2, where p1 and p2 are small integers (2, 3, 4, or 6), and
their values are fixed for a given piece of music. They function as the primary
and secondary rhythmic characteristics of the piece. The summed h function will
have periodicity equal to the lowest common multiple (LCM) of its component
periodicities: the LCM is constrained by this scheme to be a relatively low value.
The types of results obtainable using this scheme are depicted in Fig. 1(b).

The next step is to add a secondary pattern at a longer time scale. We achieve
this using the quotient function. We alter our summed function to allow expres-
sions of the form hi(t) = (t quot a) + q(t mod p). The quot function performs
integer division. During the time-steps 4-7, the expression t quot 4 has a con-
stant value, 1, which is used as an offset. This causes any simple pattern created
by q, t and mod to be repeated at different offsets, giving a harmonic feel, as in
Fig. 2(a).

Multiple voices are not difficult to achieve: we can simply create new func-
tions h′ =

∑
h′

i, h
′′ =

∑
h′′

i , and so on. For now we stick to three such functions.
Each calculates pitches using independent parameter values, so a higher degree

1 These clips demonstrating successive levels of development, together with software,
example grammars, and four demo pieces, are available at
http://sites.google.com/site/odcsssjian2009/.

2 This is like genetic programming-style symbolic regression, for music.

http://sites.google.com/site/odcsssjian2009/
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(a) The quotient function
gives a feeling of harmonic
movement.

(b) Multiple indepen-
dent voices.

(c) Omitting some notes
gives a first approximation of
phrases.

Fig. 2. Simple examples of harmony and phrasing

of complexity in pitch-movement can now arise. There is one exception: period-
icity is still constrained by the primary and secondary rhythmic characteristic
parameters. Some examples are given in Fig. 2(b).

We add the possibility of rests, rather than a constant succession of notes.
We add an independent boolean function to each voice, which calculates a true
or false value at each note indicating whether to play the pitch calculated for
that voice by its numerical function, or to remain silent. The boolean function
is created, for now, using <, <=, ==, and other comparisons of t against arith-
metic expressions similar to those used for pitch calculation. This allows much
more interesting phrase-structures to emerge. The music being generated is still
very simple but is suddenly beginning to sound like music. Some examples are
depicted in Fig. 2(c).

Finally, for now, we can make the form of our equations entirely open-ended.
Instead of using the fixed function h with varying numerical parameters, as de-
scribed earlier, we can write a context-free grammar which creates arbitrary
functional expressions in our input variables, using other periodic functions such
as sin() and cos() combined with multiplication, addition, subtraction and (pro-
tected) division. It quickly becomes impossible to predict the style of an indi-
vidual from inspection of its code, but this approach has the advantage of being
more open-ended. A good generative system will sometimes surprise its creator,
and this is more likely to occur using an open-ended representation. It is cer-
tainly capable of producing compositions which the authors of this paper could
not have written by hand.

3.2 Interactive

Since the system as described in the previous section creates material as a func-
tion of time rather than from an explicit score, it may be regarded as generative.
However it is capable only of producing simple periodic pieces. A key aim in this
research is to allow the user/performer to interact with the generative music as
it plays. This will allow the material to change and develop over time. Hence,
we add to our system some continuous-valued variables representing user input.
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These are then available to be incorporated into the numerical expressions for
pitch and boolean expression for note presence/absence.

We provide multiple variables, which will be controlled by the user as de-
scribed in the next section, and we allow some flexibility in the way they are
used. In general, they can be used as offsets or scaling parameters to existing
parameters in our equations. Each input variable may be used more than once
in our various equations, but there is no requirement that every variable be used
at all. This indirect, optional, and multiple usage of input variables we refer to
as “hidden variables”, as discussed in more detail in Sect. 5.

3.3 Virtual

The continuous user-input variables referred to in the previous section are the
user/performer’s main means of interaction with a playing piece (it is also pos-
sible to change tempo manually, but this is not of interest here). Although the
boundary between sequencer, performance system, and instrument is blurred by
the system we have described, we refer to Jive as a virtual instrument. This term
is typically used to mean playable musical instruments which are “disembodied”
or implemented purely in software or electronics.

The user/performer can perform with the Jive system in two ways. The mouse
is a simple method: it provides X and Y values. Although the system has been pro-
grammed to read multiple mouse buttons also, these are not used in any current
configurations. The Nintendo Wii remote control, also known as the “wiimote”, is
a more sophisticated option. It can provide either absolute position or accelerom-
eter data in three dimensions, as well as multiple buttons. Again, we currently use
only a subset: the absolute X , Y and Z values. The wiimote, shown in Fig. 3(a),
does not require a GUI. It is interfaced to our software using the WiiRemoteJ li-
brary (http://www.world-of-cha0s.hostrocket.com/WiiRemoteJ/).

(a) The Nintendo Wii Remote (b) GUI used for auditioning and fitness
evaluation

Fig. 3.

http://www.world-of-cha0s.hostrocket.com/WiiRemoteJ/
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Both controllers are sufficient for their intended purpose here. Small move-
ments tend to lead to small changes in output; larger movements can lead to
entirely different behaviours. Well-timed movements are required, but great dex-
terity is not. More interesting interaction possibilities can be created by sending
not only current 2D or 3D position data, but also a buffer of recent positions,
as input variables to the equations. In the case of the wiimote, for example, a
buffer of size 3 now gives us 9 continuous input variables in addition to time,
and the pitch equations and boolean note presence/absence functions can use
any or all of them. One advantage is that smoother changes occur—however
there is a trade-off with a loss of fine control, since the sound being played at
each instant is now dependent on previous controller movements. Sometimes the
periodic patterns that occur, using the buffer, seem less rigid and more natural.
It allows for potential “emergent gesture recognition”, since in principle relative
movement as well as absolute position are now available to the system.

3.4 Evolutionary

The system as described so far is complete, in that it can be used to create
and to perform pieces of music. It is not user-friendly: most musicians, if they
are human, are not capable of performing symbolic regression in their heads
while composing. Instead, we now introduce the last component of the system,
interactive evolutionary computation (IEC). This algorithm works in the same
way as typical EC, but allows the user to specify individuals’ fitness values,
or to perform selection directly. Because it generates multiple individuals in an
iterative process, with the user required only to assess their quality, it avoids the
need for the user to write equations directly when creating a piece.

The IEC GUI used for generation, auditioning and selection of pieces, and
iteration of the algorithm, is shown in Fig. 3(b). It remains to describe the
representation we have chosen for our individuals.

Grammatical evolution (GE) is a proven technique for representing code in di-
verse languages with arbitrary constraints on its form [14]. The language syntax
and the allowable or desirable syntactic forms (such as our equations) are speci-
fied in a context-free grammar in Backus-Naur Form. An individual’s genome is
an integer array, which specifies the grammar productions to be chosen during
the derivation process.

In our work, GE is implemented using the freely-available GEVA software
[13], written in Java. GEVA was configured to use a population size of 10, an
unlimited number of generations, a one-point crossover rate of 0.7, an int-flip
mutation rate of 0.02, and generational replacement. Our equations and boolean
functions, together with some boilerplate code for dealing with input variables
and time, were specified as BNF grammars producing programs in the JScheme
language [1]. The grammars we have used are available for download: see Sect. 6.
The jMusic API is used to take the values returned by execution of JScheme
individuals and translate them into MIDI.

Although any given version of our equations might be represented as a lin-
ear, real-valued genome—one gene per parameter—we have found that the GE



348 J. Shao et al.

approach, using a BNF grammar, gives much greater flexibility. The process of
altering the form of an equation is much easier with a grammar, compared to
re-writing code. Grammars can also be entirely open-ended, allowing (for ex-
ample) a sum of multiple expressions h′

i, or an XOR-combination of boolean
note presence/absence—and the number of such expressions may be unknown
in advance and left for evolution to determine. This is much more difficult or
impossible using a GA-style representation.

4 Results and Refinements

The basic system as described so far is already capable of producing some music
sufficiently interesting to be worth describing.

The system is clearly lacking in the area of rhythm. Phrases are essentially
created by knocking notes out, i.e. switching on a “rest” flag for one or more
notes, leaving gaps between sub-sequences which the ear then interprets as iso-
lated phrases. In the demo pieces RD0 and RD2, we attempt to work against
this shortcoming. An open-ended grammar makes a good deal of complexity
available during the performance phase. Multiple basic behaviours were avail-
able in the mouse’s (x, y) plane, for example an “ascending” behaviour, partly
controlled by relative position; a “stop” or steady-state behaviour; and a dense
periodic pattern. Composition in this case consisted not only of choosing which
behaviour to switch to, but when. It was possible to take advantage of this to
create higher-level structure in the pieces. It was also possible to use a voice cre-
ating sparse material, whose pitch was under direct control, to act as a melody.
This put the continuous material in the background, to some extent overcoming
the “continuous stream” feel.

The demo piece ML0 uses the “memory” facility and is very complex, chaotic
at times. The piece was evolved through approximately 22 generations.

In the final demo piece, MD0, we have added two new features. A voice can
now choose to play a chord, chosen from a small selection of major and minor
triads and sevenths. A drum grammar was also created and used in Jive to
produce a looped rhythm track. Note that all demo pieces have been rendered
in an external program using manually-chosen synthesizers and effects.

5 Discussion

Generative music at its best brings out the abstract patterns which underlie
(but do not solely constitute) many (but not all) types of music. The “hidden
variables” approach adopted here has some satisfying results in this context. A
change in a single hidden variable may have multiple effects. This imposes a
type of large-scale coherence on the output—multiple voices may react simul-
taneously to a change in a user parameter, for example. This can lead to a
re-interpretation of non-generative music. When several instruments in an or-
chestral piece crescendo and then switch to a new section, one could interpret
the multiple voices as manifesting the effects of shared, hidden variables.
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An interesting aspect of generative music is the blurry boundaries it creates
between composer, performer, and listener. This is augmented in our work by the
explicitly interactive element. The user of the Jive system plays roles including
programmer (editing the grammar to fix a different rhythm), critic and composer
(auditioning and selecting generated pieces during interactive evolution), and
finally composer, conductor and performer (interacting with a fixed piece). We
have occasionally used terms like “user/conductor” and “user/performer” to
emphasise this blurriness.

Sometimes the control available to the user/performer seems very crude. While
performing, it is not (in general) possible to insert or delete arbitrary notes. This
apparent drawback has two, perhaps unexpected advantages. Firstly, since the
system generates material continuously, with precise timing and no “wrong”
notes, the user/conductor is freed from low-level details. The mouse and to a
lesser extent the wiimote are, after all, inadequate controllers for the type of
dextrous performance required by typical musical performance.

Secondly, the user/conductor gains a higher-level type of control despite the
lack of low-level detail. As discussed in Sect. 4, the user/composer has control
not only of which behaviour to switch to, but also when. He or she is not only
performing the gestures which correspond to desired sonic results, but is reacting
to the current musical context created by the ongoing algorithm and by his/her
previous actions. This ability allows the censoring of undesired sections and the
creation of complex musical syntax, such as call-and-response patterns among
the several behaviours. The user’s control of timing is sufficiently fine to allow
the behaviours to work together in interesting ways.

6 Conclusions and Future Work

In this paper, we have presented the Jive system, a novel system and paradigm
for interactive generative music. It uses IEC with aesthetic selection to create
a generative process, and is a virtual instrument for real-time expression and
performance. We have explained the design decisions and shown examples of the
possible outputs. We consider that the styles of music possible with Jive, though
limited, are interesting and characteristic.

Any virtues the system has arise from two sources. Firstly, our representa-
tion includes set of primitives which are not in themselves musical but func-
tion well as building-blocks for music. Secondly, we use a two-phase compo-
sition/performance process. The user/performer has some ability to overcome
failings present in the composed piece, as discussed in the context of the demo
pieces. The choosing of constraints and the exploration of what can be done
despite them is characteristic of many art-forms. There is also the possibility of
a third phase, in which the user edits the grammar in order to constrain the
possible outputs. Of course this is only available to technically-oriented users.

The Jive system is not finished, and there are several possibilities for improve-
ment. In our future work, our first priority is to address the system’s shortcom-
ings in the area of rhythm. We intend to add the possibility of more complex
rhythms with the addition of triplets, quintuplets, etc. More complexity in the
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phrasing and grouping of notes is also required. The interactive evaluation of
multiple individuals per generation is a time-consuming task. There is some
scope for automatic evaluation, for example by filtering individuals which give
over-dense or inadequately varied material.

We believe that the generative, hidden-variable approach used here is a good
way of making musical games, similar in spirit to popular “guitar karaoke” games
but far more open-ended and expressive.
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Abstract. This paper presents the design, implementation and testing
of a neural network for the functional harmonization of a bass line. The
overall network consists of three base networks that are used in parallel
under the control of an additional network that, at each step, chooses
the best output from the three base networks.

All the neural networks have been trained using J.S. Bach’s chorales.
In order to evaluate the networks, a metric measuring the distance of the
output from the original J.S. Bach’s harmonization is defined.

1 Introduction

Writing computer programs that solve musical problems has been object of study
since the invention of the computer. The literature has plenty of work that use
various computer science techniques (like formal grammars, genetic algorithms,
pattern matching, cellular automata, neural networks) to tackle musical related
problems. In particular we cite the work of D. Cope (e.g. [2]) and E.R. Miranda
(e.g., [9]) as examples of research work in computer music.

The musical problem considered in this paper deals with music compositions
made up of 4 voices (soprano, alto, tenor and bass). Famous examples of this
type of compositions are J.S. Bach’s chorales1.

Related work. Automatic composers for 4-voice music have been provided, for
example, by Ebcioglu [4] and Schottstedt [12] using rules and expert-systems.
Another system capable of composing 4-voice chorales (and not only) is the
EMI system by Cope [2]; the EMI system uses a combination of various tech-
niques (formal grammars, rules, music analysis, pattern matching). McIntyre [8],
Wiggings, Papadopoulos, Phon-Amnuaisuk and Tuson [13] and De Prisco and
Zaccagnino [3] use genetic algorithms. Phon-Amnuaisuk [10] investigated the use
of heterogeneous cellular automata.

The works cited above do not use neural networks. The papers by Lehmann [6]
and [7] use neural networks to find an harmonization of a given melody line. The
1 We remark that Bach would start composing from a soprano line and the problem

considered in this paper starts with the bass line as input.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 351–360, 2010.
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neural network used by Lehmann is “sequential” in the sense that the informa-
tion used for harmonizing at time t is whatever happened up to time t and thus
uses no information about the continuation of the melody line.

Hild, Feulner and Menzel [5] describe a neural network called Harmonet for
harmonizing melodic lines in the style of J.S.Bach. For harmonizing at time t
Harmonet uses information about the next melody note and only the harmonic
information up to time t. Harmonet does not use specific harmonic information
about the next (possible) chord(s) and the current tonality and degree.

This paper. The specific problem considered in this paper is the following: take
as input a bass line and find, for each note of the bass, an appropriate chord
(only the name, that is the function, of the chord and not the notes’ positions).
For simplicity, and without loss of generality, we consider rhythms based on
quarter notes. Notes with a smaller length are considered only if they start on a
quarter beat (otherwise they are just passing notes and they are ignored for the
harmonization). The problem can formally be defined as follows: given a sequence
of quarter notes b1, b2, . . . , bn for the bass line find an appropriate chord Ci for
each bass note bi, for i = 1, 2, . . . , n. Figure 1 shows an input (left side) and the
same input with the corresponding output (right side).

Fig. 1. An input bass line (left) and a functional harmonization of the input (right)

The chords we consider are all the possible chords with 3 notes (triads) or 4
notes (quadriads). We provide a neural network that solves the above problem.

Among related papers, the closest work are Harmonet [5] and [6,7]; note that
the exact problem considered in this paper is slightly different because the input
is a bass line and not a melody line. A more important difference is that our
network does use information about the next bass note or even the next (possible)
chords and their context (tonality and degree). As a matter of fact, the tests
presented in this paper have shown that using information only on the next bass
note is not good enough and we obtain much better results by looking at the
next (possible) chords. This technical aspect is newer with respect to the above
cited previous works.

The proposed network has been evaluated defining and using a metric that
measures (or at least, attempts to measure) the distance between the output of
the network and the harmonization made by J.S. Bach. A formal comparison
with the output of previous work has not been possible because the cited previous
works do not contain neither complete examples of output nor any other formal
evaluation of the proposed neural networks.

Background. Due to space constraints, we assume that the reader is familiar
with both basic music notions and with neural networks.
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In particular, the reader should be familiar with the tempered music system,
the notes (A, A#, B, C, C#, D, D#,E, F, F#, G, G#), the concepts of scale and
tonality, the degrees of a scale (I, II, III, IV, V, VI, VII), the notion of chords,
chord inversions (e.g. II6, V46, I357) and with harmony rules. We refer the reader
to any good book on harmony, like [11], for a discussion about all these notions.

On the neural networks side the reader should be familiar with the function-
ing of an artificial neural network. The network presented in this paper is a
fully connected three-layer feed-forward neural network, using a sigmoid activa-
tion function The learning process has been obtained with the back-propagation
algorithm.

We have implemented in Java a general training environment for neural net-
works. This allowed us to explore several models and even use them in parallel
as we will explain in the next section.

2 The Neural Networks

Recall that our objective is that of constructing a neural network capable of
assigning an appropriate chord to each bass note in a given input bass line.
There are particular sequences of chords that are used more often; for example
the sequence II-V-I, is very common. The length of such very common sequences
usually ranges from 2 to 4 chords. So, to analyze a piece harmonically, one
can focus the attention on the harmonic relationship between pairs, triples and
quadruples of consecutive chords.

This paper uses 3 models, called base models. These base models differ in the
number of previous chords used for the prediction. Model 1 uses only one chord,
model 2 uses two chords and model 3 uses three chords:

Base Model 1: Ci=f(Ci−1,bi)
Base Model 2: Ci=f(Ci−2,Ci−1,bi)
Base Model 3: Ci=f(Ci−3,Ci−2,Ci−1,bi)

where bi and Ci are, respectively, the bass note and the chord on beat i.
Obviously, each base model learns different harmonic information, because

each one of them uses different input knowledge. The base models were applied
individually to obtain different functional harmonization of the same bass line.
In order to use all three base models in parallel, an additional neural network,
that will be described later, has been implemented.

A crucial step in the design of a neural network is the choice of the represen-
tation of the data. The relevant data unit is the chord that is assigned to a bass
note together with information about the tonality; such information is stored in
a Chord data structure as follows:

– Bass: the bass of the chord, is coded as a binary number between 0 and 11,
corresponding to the binary encoding of the MIDI value of the note, modulo
12: C ≡ 0000, C# ≡ 0001, D ≡ 0010, . . . . . . , A# ≡ 1010, B ≡ 1011;
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– Tonality: the current tonality, encoded the same way as the bass note;
– Quality of tonality: major or minor, specified with a bit (1=major, 0=minor).
– Degree: the chord’s degree encoded as a binary number between 1 and 7:

I ≡ 001, II ≡ 010, III ≡ 011, . . . . . . , V II ≡ 111.

Figure 2 provides an example.

Fig. 2. Binary representation of the Chord data structure

Base model 1 bases its prediction for the current bass note on the previous
chord. In order to start-up the network a first chord is needed. Model 1 uses
chord I in the starting tonality (this is what happens in many compositions). In
order to start-up the network using base model 2, the first and the second chord
are needed. Model 2, uses chord I as the the first chord and obtains the second
chord using the base model 1. Similarly, base model 3, uses chord I as first chord
and obtains the second and the third chord exploiting base models 1 and 2.

The three base models have been used to obtain functional harmonizations
of input bass lines. One would expect base model 3 to be the best one since it
uses more information to predict the next chords. However the results of the
tests have shown that this is not the case. Indeed there were portions of the
output that were better in the other models. Since no one of the three models
fared better than the other, we used them in parallel in the following way. In
order to predict the next chord Ci, each base model is used to get one of three
possibilities, C1

i , C2
i , C3

i , for the chord at position i. To choose one of these chords
a new neural network, called control network, is used. We designed two control
networks, the first one that exploits only the subsequent bass note bi+1 and the
second one that exploits information about chords Ci and Ci+1. Next we will
describe both networks.

Bass Control Network (BCN). In order to choose the chord Ci for the
bass note bi, the BCN uses the models 1,2 and 3 to get three possible chords
C1

i , C2
i , C3

i for bi.
In order to choose one of these three chords the BCN has been trained to

solve the following problem: given a pair of consecutive chords Ci−1, Ci provide
a guess for the next bass note b′i+1. We write b′i+1 because this note can be
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different from bi+1. Then we compute such a guess for the following pairs: b1
i+1

= BCN (Ci−1, C
1
i ), b2

i+1 = BCN (Ci−1, C
2
i ), b3

i+1 = BCN (Ci−1, C
3
i ).

The BCN chooses the j̄, j̄ = 1, 2 or 3, that minimizes the Hamming distance
between bj̄

i+1 and bi+1; recall that the bass notes are represented with a binary
number. Finally the chord selected for bi is C j̄

i .
The results obtained with the Bass Control Network were not satisfactory. We

believe that this is due to the fact that the next bass note is too little information
to make an educated guess about the chord to select. Thus we designed a more
complicated control network which exploits information about the subsequents
chords.

Fig. 3. Control net based on the previous and on the next chord. Md is the musical
distance.

Chord Control Network (CCN). This control network uses as control in-
formation not only the bass note at position i but the entire (possible) chord at
position i and also the (possible) chord at position i+ 1. Figure 3 illustrates the
behavior of the Chord Control Network. In the figure, we are in the process of
selecting a chord for bass note bi, that is the CCN has already chosen chords for
b1, b2, . . . up to bi−1. Using the three base models to predict the chord for bi we
get the three possibilities C1

i , C2
i , C3

i . Now we use again the three base models
to obtain predictions for the chord at position i + 1. This results into 9 possible
chord sequences for bi and bi+1, namely:

1. C1
i C11

i+1 (model 1, model 1) 6. C2
i C23

i+1 (model 2, model 3)
2. C1

i C12
i+1 (model 1, model 2) 7. C3

i C31
i+1 (model 3, model 1)

3. C1
i C13

i+1 (model 1, model 3) 8. C3
i C32

i+1 (model 3, model 2)
4. C2

i C21
i+1 (model 2, model 1) 9. C3

i C33
i+1 (model 3, model 3)

5. C2
i C22

i+1 (model 2, model 2)
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In order to choose one of these 9 possibilities (which will provide the choice for
the chord at position i) the Chord Control Network has been trained to solve
the following problem: given a triple Ci−1, bi, Ci+1 provide a guess for C′

i, the
chord to give to bi. Again we use C′

i and not Ci because this is only a guess. We
compute such a guess from the following triples:

1. C11′
i = CCN(Ci−1, bi, C

11
i+1) 6. C23′

i = CCN(Ci−1, bi, C
23
i+1)

2. C12′
i = CCN(Ci−1, bi, C

12
i+1) 7. C31′

i = CCN(Ci−1, bi, C
31
i+1)

3. C13′
i = CCN(Ci−1, bi, C

13
i+1) 8. C32′

i = CCN(Ci−1, bi, C
32
i+1)

4. C21′
i = CCN(Ci−1, bi, C

21
i+1) 9. C33′

i = CCN(Ci−1, bi, C
33
i+1)

5. C22′
i = CCN(Ci−1, bi, C

22
i+1)

Define the musical distance from two chords Ck
j , Cz

j with the same bass bj as
the sum of the distance between the tonality T k

j of Ck
j and the tonality T z

j of
Cz

j , and the distance between the degree Gk
j of Ck

j and the degree Gz
j of Cz

j .
The distance between two tonalities T k

j and T z
j is the distance in the circle of

fifths of the tonalities, which is the difference in alterations in their scales. For
example, the tonality C major (no sharps and flats) and the tonality G major
(1 sharp) have distance 1, while the tonality G major and the tonality Bb major
(2 flats) have distance 3.

The distance between two degrees Gk
j and Gz

j is calculated as the difference,
in absolute value, between the inversion number of bj in Gk

j and the inversion
number of bj in Gz

j . We define the inversion number of a bass b in a degree G
as 0 if G is in root position, as 1 if G is in first inversion, as 2 if G is in second
inversion, and as 3 if G is in third inversion.

For example consider the bass E, the chord I in C major and the chord III in
C major, then the inversion number of E is 1 respect to I and 0 respect III.

So, let Invk
j the inversion number of bj in Gk

j and Invz
j the inversion number

of bj in Gz
j , then the distance between the degrees Gk

j and Gz
j is |Invk

j - Invz
j |.

Since, because of approximation errors, it is possible that the neural network
occasionally outputs invalid chords, we also define the distance between two
chords Ck

j , Cz
j when one of them is not a valid musical chord; such a distance is

defined to be 10. Table 1 summarizes the distance weights used by the CCN.
Finally, the CCN selects j̄ and k̄ in such way that the musical distance of

Cjk′
i and Cj

i is minimized. That is (j̄, k̄) = argmin{musical-distance(Cjk′
i , Cj

i )}.
Chord C j̄

i is chosen as the chord for bi.

Table 1. Chord distances summary; dT is the tonalities distance dG the degrees dis-
tance

Comparison between 2 chords Distance
Same chord 0

Same tonality, different degree dG

Modulation dT

Invalid chord 10
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3 Training, Validation and Test Results

The data-set used to train the networks has been taken from J.S. Bach chorales.
Hence we expect our network to imitate J.S. Bach’s harmonization. The training
patterns (single chords, pair of consecutive chords and triples of consecutive
chords) were taken at random from several Bach’s chorales.

Table 2. Training, validation and test data summary. Note that the error rate in the
BCN and CCN lines of the table is only for the control part of the overall networks.

training patterns validation patterns test patterns test error rate
Base model 1 1070 350 205 21.9%
Base model 2 1043 313 201 12.4%
Base model 3 1000 295 197 10.1%

BCN 1000 340 203 70%
CCN 1050 330 204 9.5%

Table 2 summarizes the sizes of the training, validation and test data sets
that we have used and the resulting testing error rate that is the percentage of
test patterns that the individual models have not learned.

As we can see from Table 2, the error rate of the BCN is vey high. This makes
the network unusable.

Figure 4 shows the evolution of the MSE (Mean Square Error) function during
the training and validation for the base model 1 and for the base model 2,
while Figure 5 shows the evolution of the MSE function during the training and
validation for the base model 3 and for the CCN. All networks were trained in
about 200 epochs because, as we can see from the graphs, the MSE functions
stabilize (converge) after about 150-200 epochs.

We evaluate the application of the models obtained in the training phase by
using them to harmonize the bass line of the following chorales2: BWV 2.6,
BWV 6.6, BWV 16.6, BWV 20.11, BWV 32.6, BWV 36.4, BWV 20.7, BWV
43.11, BWV 39.7, BWV 153.9.

For each one of the bass line, we have run the base networks and the combined
network obtained using the three base networks in parallel with the CCN.

In every experiment we have computed the musical distance of the output from
the original harmonization by Bach as follows. Let b1 . . . . . . bn the input bass line.
Let B1 . . . . . . Bn be the functional harmonization made by Bach. Let C1 . . . . . . Cn

be the functional harmonization made from one our neural networks. For each
i = 1, . . . . . . , n we calculate the musical distance (as defined in the previous
section) between Ci e Bi. The sum of the musical distances between Ci and Bi

for each i = 1, . . . . . . , n is the total distance.
Figure 6 shows the comparison between J.S. Bach’s original harmonization

and the CCN functional harmonization for Chorale 32.6. For each note in the
bass line the chord by Bach is equal to the chord by CNN, except for the chords
2 The BWV numeration has been taken from [1].
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Fig. 4. Training (lighter line) and validation (darker line) errors for base model 1 (left)
and base model 2 (right)

Fig. 5. Training (lighter line) and validation (darker line) errors for base model 3 (left)
and the Chord Control Network (right)

that are circled in the figure. The first difference is for the bass note D on beat
4 (in measure 1) where the chord by Bach is I in G major, while the chord by
the CCN is V in G major. The tonality distance is 0. The inversion number of
D respect to I in G major is 2, the inversion number of D respect to V in G
major is 0, so, the grade distance for this pair of chords is |2− 0| that is 2. Then
the musical distance between this pair of chords is 0 + 2 that is 2. Computing
in a similar way the other musical distances we have that the total musical
distance between J.S. Bach’s original harmonization and the CCN functional
harmonization for chorale BWV 32.6 is 2 + 2 + 1 + 1 + 4, that is 10.

Table 3 provides a summary of the results of the tests. No one of the base
models is always better the others. However the combined network obtained
using the CCN always produces a much better output.

We observe that for each chorale, 85% − 90% of the chords provided by the
CNN coincide with those of original J.S. Bach’s harmonization. As for the chords
that are different from those chosen by Bach, the musical distance is always very
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Fig. 6. Differences between functional harmonizations by Bach and by the BCN

Table 3. Distance from J.S. Bach’s original harmonization

BWV BWV BWV BWV BWV BWV BWV BWV BWV BWV
2.6 6.6 16.6 20.11 32.6 36.4 20.7 43.11 39.7 153.9

Base model 1 310 85 85 90 74 37 88 71 143 55
Base model 2 225 65 120 75 36 18 112 78 147 159
Base model 3 290 140 175 72 62 145 102 112 66 146

CCN 75 15 75 30 10 13 23 21 13 14

small. This means that the functional harmonizations obtained by the CNN are
always very similar to the original J.S. Bach’s harmonization.

Instead, each single base model deviates a lot from Bach’s harmonization.

4 Conclusions

We conclude with a couple of observations and directions for future work. The
first observation is the following: we used a binary representation because such a
representation is compact and results in a very fast the training phase. It would
be interesting to investigate the use of other representations basing them on
similarities and differences between notes and chords and the resulting effect on
the networks. It would be also interesting to investigate other configurations for
the neural network, like for example the use of a tangential activation function.
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We have used the network the learn the style of Bach. It would be interesting
to use it to learn the style of other composers.
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Abstract. This paper explores a fundamental dilemma regularly faced by any 
composer engaged in computer-aided composition: the generation of musically 
‘meaningful’ or ‘sensible’ musical structures beyond those of a very localized 
nature. Initially an outline of the uses of Markov processes in music is given, 
highlighting their strengths and weaknesses. There then follows a brief discus-
sion describing some of the many constraints (cultural and otherwise) that have 
been and continue to be placed upon us all as we engage with music that ema-
nates from relatively localized regions of the sonic continuum. Finally, through 
the combination of additional musical constraints with Markov transition prob-
abilities within a stochastic optimization process, specific improvements in cre-
ating sensible musical structures are described.  

1   Markov Chains and Music 

“…the strength of evolutionary algorithms in art is their use as explorational and naviga-
tional tools in vast spaces of possible artistic material.” (P. Dahlstedt [1]) 
 

The use of Markovian processes in music dates from the pioneering work of a few 
seminal figures during the 1950s.  Much is owed by subsequent developments to the 
work of Lejaren Hiller, Leonard Isaacson - the fourth movement of their jointly com-
posed Illiac Suite (1957) stands as the first composition in the repertoire to employ 
Markovian processes - their 1959 book “Experimental Music: Composition with an 
Electronic Computer” remains a classic in the field.  While its pages in many ways 
discusses the Markovian relationships that exist between notes within what would 
normally be described as a tonal network, Iannis Xenakis’ 1963 book Formalised 
Music [2] considerably augmented the creative potential for their use in post-tonal 
music.  Since this time Markov Chains have become something of a mainstay tech-
nique in computer music; both for compositional creative work as well as for the 
extensive body of work that has employed Markovian principles in re-creative musi-
cological research; where compositional models from the past have been ‘re-made’ 
through their application to musical data. Charles Ames [3] and David Cope [4] are 
amongst those that have made significant contributions to the literature on this subject 
in recent decades.  
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In summary the benefits of Markov Chains in Music are:   

• They are very good at securing long-term structural coherence for the composer, by 
way of their ability to provide something akin to a generative grammar, this be-
comes especially the case when Markovian processes are used hierarchically: the 
‘local’ motivic level informed by the textural level and vice-versa. 

• They can aid the composer to secure long-term harmonic and textural coherence 
even if a highly complex language is adopted.   

• Their utilization often allows for much more ‘organic’ resultant structures than 
those attained by other quasi-serial; textural/sonorist or open score approaches. 

• They have also proven to be a powerful aid to musicologists in the reconstruction 
of historical compositional models.  

However, quite apart from these strong deep-level structural benefits, there is the 
further positive outcome in the way that they regularly surprise the composer/listener 
by their output, thereby creating a developmental feedback loop; musically testing if 
you like the ears of the individuals that are listening to the results. This ‘by-product’ 
of their use should not be too readily overlooked; they are very powerful at allowing 
one to uncover unusual though related musical territories - the health of any art has 
always been dependent upon the discovery of new modes of expression. 

However, it is very difficult to generate convincing original creative long-term mu-
sical structures with Markov Processes beyond that of a motive [5] - and it is often 
very difficult even to do this.  And higher order Markov Processes become too spe-
cific and lose their creative potential. Furthermore they can significantly increase the 
amount of compositional re-working of the algorithm’s output. From the composer’s 
viewpoint it is impossible to generate structures that might be as developed as a musi-
cal phrase [6], let alone that of a theme group and/or its variants. 

Of course, put rather simplistically, the root of these problems largely stems from 
the fact that the computer is not a musician and does not have cultural/aesthetic 
knowledge or memory.  It is unaware as to how musically (un)fit or otherwise the 
output is from any given Markov matrix. Furthermore it is felt that this problem needs 
to be addressed as a necessary next step before a truly rich, meaningful, interac-
tive/generative music is able to unfold in real-time.  What is proposed is to constrain 
the unfolding of the Markov matrix in line with specific music meta-data. Even with 
these constraints we will still have an enormously rich and diverse search space avail-
able to the composer, but one that will guarantee improved levels of musical sense 
and will go to some lengths in addressing the ‘fitness bottleneck’ problem so often 
spoken of in the Evolutionary Music Literature… 
 
“The past decade and more has shown that an EA has no difficulty in replicating a composer 
in ‘hard-work’… But without the most stringently defined search space an unmanageably large  
amount of potential material, mostly unusable, is apt to be produced.  Biles (1994) has  
described this situation as the fitness bottleneck.” [7] 
 

The need for the use of practice-based music constraints in computer-aided composi-
tion has also previously been discussed elsewhere by Davismoon in some detail [8]. 



 Combining Musical Constraints with Markov Transition Probabilities 363 

 

2   Musical Constraints 

“the perceptible variety of outputs from a given system is usually quite constrained 
compared with the mathematical space” (N. Collins [9]) 

 
Karlheinz Stockhausen in his seminal paper How Time Passes (1957) [10] draws 
attention to the many aspects of our natural human constraints with respect to how we 
discern differences in pitch, duration and tempo.  These findings resulted from several 
years of intense sound research at the NWDR studios part-sponsored by the physicist 
Homer Dudley of Bell Telecommunications and would also certainly have been influ-
enced by Stockhausen’s exposure to the earliest researches of Information Theory as 
applied to sound by Werner Meyer-Eppler (whose ideas, arguably, also had a pro-
found effect upon the development of Integral Serialism).  This was followed by fur-
ther in-depth research on a number of fronts relating to the fields of acoustics and 
psychoacoustics and as a result we now know much more about the natural con-
straints that act upon our hearing apparatus when we are exposed to sound. For exam-
ple, Albert Bregman in his exhaustive work Auditory Scene Analysis [11] points out – 
amongst many things - the complex and discerning ability of human hearing to put 
together parts of a sound in order to make a intelligible composite whole - the com-
prehension of a conversation while in a crowded and noisy environment for example.  

We also of course place physical constraints upon ourselves with respect to the 
language that we speak in order for it to be understood.  The frequency constants in 
vowel production for example have been broadly researched.  These constraints are 
also related to those found with respect to pitch in vocal music.  In Western Classical 
music this tradition is fundamentally linked to the development of its system of clefs.  
In many respects the origins of orchestration grow from facets of choral tradition.  It 
is only comparatively recently that pitches extensively beyond the human vocal range 
have been used in orchestral writing.  As the Baroque era progresses, we witness an 
ever greater increase of ‘instrumentally’ idiosyncratic composition; exploring the 
innate qualities of the various instruments of the orchestra, in many respects this is 
evidenced by the development of the concerto form, thereby discovering a whole new 
set of creative constraints.  The developments of compositional constraints in the 
context of the Western Classical tradition, in the sense of the laws governing harmony 
and counterpoint, developed at least as far back as Medieval times and have experi-
enced several important epochs of experimentation, exploration and consolidation 
during the centuries that followed, often, though not always, emanating from the con-
straints found in the models of vocal music (i.e. voice leading, preparation and resolu-
tion of dissonances etc). 

Irrespective of physical and instrumental constraints we also apply a whole set of 
what might be called Cultural Constraints when we engage with music.  In many 
ways this is core to the philosophical question of what music is expressive of and by 
what means this is communicated.  While this has been something of a central ques-
tion to music aesthetics at least since Medieval times, a somewhat different analytic 
perspective was thrown on the subject with work that commenced during the 1980s, 
through the new disciplines of Music Semiotics and Topic Theory Analysis with the 
work of Jean-Jacques Nattiez [12], Francois-Bernard Mache [13], Kofi Agawu [14] 
and Raymond Monelle [15] allowing a glimpse into how music of various genres and 



364 S. Davismoon and J. Eccles 

 

cultures can be explained by comparative cultural and/or structurally understood con-
straints.   Analytic examples in the literature abound from works of musical High 
Modernism through to TV theme tunes, folk tunes from around the world, even to the 
songs of the animal kingdom, that would seem to operate their own palette of musical 
constraints.  As a body of work it invites us to look beyond the purely musical aspect 
of the construction of a musical work in order to be able to see how it cuts across the 
cultural matrix. 

Given the widespread evidence of multi-layered constraints acting upon our en-
gagement with music, it would seem sensible to apply certain constraints that will 
emphasize musical sense in the output of a Markov algorithm. 

3   Combining Musical Constraints and Transition Probabilities 

Although Markov transition matrices encapsulate useful stylistic information, when 
used to generate musical lines directly, they often give musically unsatisfactory  
results. For example, Fig. 1. shows a typical musical phrase generated by Markov 
processes and illustrates a number of musical problems arising from their direct  
application.  

 

Fig. 1. A line of music generated by two Markov processes, one controlling the succession of 
melodic intervals the other note durations. The original line from which the transition probabili-
ties were derived is shown in the top line (soprano line from Ballo Quinto in Libro primo de 
balli, gagliarde, et correnti a quattro voci, Kapsberger, 1615). 

1. Pitch Drift: the range of notes not only drifts down but also goes out of range if the 
intended singer is a soprano (as in the original). Pitch drift can be either up or 
down and can often be more extreme than that illustrated. Even if the final notes 
end up in the desired range, mid-line excursions can still stray from required 
boundaries. 

2. Time Drift: this manifests musically as excessive syncopation. This may or may 
not be a desirable result for the composer but it is clearly out of style with the 
original. 

3. Tonal Drift: the tonal centre of the line has moved away from the opening A.  
4. Final Pitch: the final note is effectively a random event and does not necessarily 

make musical sense. 
5. Final Note Duration: as for the final pitch, the final note duration is again random 

and can often be at odds with the composer’s intentions. 
6. End Time: although the number of musical events is the same as in the original line 

(31) a random end time results. The phrase can often be considerably longer or 
shorter than the original and is particularly problematic for multi-part writing. 
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For convenience the first three problems are referred to collectively as drift and the 
last three as end point problems. 

The overall problem is that the statistics do not encapsulate other musical informa-
tion that is “obvious” to the composer. For example, the frequency of occurrence of 
crotchets and quavers tells us nothing about their location with respect to the beat; the 
likelihood of one interval following another does not directly give information about 
preferred tonal centres. It is possible to use other statistics (for example, the frequency 
of occurrence of quavers on the beat or absolute pitch distributions) but this leads to a 
more complex generation procedure.  

It is the view of the authors that, in practice, the composer needs to control musical 
constraints such as phrase length, pitch range and degree of syncopation of individual 
lines in order to mesh with higher level musical goals of direction, style and form and 
meet necessary technical constraints as dictated by the given instrument and per-
former. The stylistic information encapsulated in the transition matrices is valuable 
only if it can be integrated with that relating to the musical meta-structure. Control of 
these parameters is thus as important as the desired statistics and various trade-offs 
are necessary if a greater musical sense is to be obtained.  

3.1   Tackling Drift and the End Point Problems with Stochastic Optimization 

One possible method to tackle the drift is to modify the transition matrices as the line 
is generated, taking into account notes already in the line. Measures of syncopation 
and pitch can be used to bias the generating matrices to return the line to the desired 
ranges. Musically, this can be pictured as an elastic tension that pulls out of range 
notes into bounds. The greater the tension (for example, the greater the degree of 
syncopation), the greater the likelihood of the next note being returned to the beat or 
desired pitch range. Mathematically, the probability vectors that make up the transi-
tion matrix can be viewed as points on the faces of a simplex which are moved to-
wards more favourable edges or vertices by a simple linear transformation. Thus, if k 
(0<k<1) is some normalized measure of strain, pi is a probability vector representing 
the ith row of a transition matrix and v is a probability vector containing only favour-
able transitions (i.e., the non-zero components all correspond to outcomes which will 
bring the next note back into – or at least toward – the desired range), then on each 
step of the chain the actual {pi} used are given by 

     pi
* = pi + k(v − pi )           (1) 

This method has the advantage of being simple to compute and, because it modifies 
the underlying matrix, tends to preserve the desired stylistic musical properties. Al-
though addressing the problems of drift, it is not so suited to tackling the end point 
problems.   

To tackle the end point problem, the generating algorithm needs to be able to work 
with fixed (or at least probabilistically defined) final notes as well as fixed starting 
notes. Musically, it is also much more convenient to specify the duration of a phrase 
in beats and bars rather than the number of transitions in the Markov chain. The re-
quirements to satisfy multiple, possibly conflicting, constraints led the authors to 
consider stochastic optimization methods rather than a Markov process to generate 
musical lines. The transitions matrices are then used as optimization objectives in 
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order to preserve the stylistic information but can be combined with additional func-
tions representing other musical constraints. 

3.2   Simulated Thermal Annealing 

In order to evaluate the idea, a simple thermal annealing method based on the original 
work of Kirkpatrick[16], [17] was used. This was selected because of its relative sim-
plicity and straightforward mapping of the musical problem into the basic annealing 
framework. The problem also seems well suited to more advanced methods of multi-
objective optimization [18], however, for initial work, many useful insights have been 
gained from the simpler annealing implementation with a scalar objective function. In 
summary: 

• The state of the system, S, is represented fully by a line of music. This com-
prises a set of notes each defined by a pitch and duration. The line is assumed to 
be monophonic (only one note sounds at a time) and continuous (no rests). The 
start time of each note is implicitly given by the succession of note durations. 

• A scalar function, E(S), can be defined which quantifies the optimization goals 
and the trade-offs between different objectives. This is described below. 

• Reconfiguration rules can be defined which change the state of the system and 
repeated application of the rules allow all possible states of the system to be 
reached. In the case of a musical line, segments of the line are chosen at random 
and transposed or time shifted. Note durations are modified by splitting or merg-
ing randomly selected notes.  

• An annealing schedule to control the successive application of the reconfigura-
tion rules and selection of newly selected states can be defined. For the purposes 
of this work a simple exponential temperature decay was used. 

3.2.1   Objective Function 
For a standard annealing process, the objective function, E(S), must give a single 
scalar value of how well a musical line matches the desired properties. The value of E 
must always be zero or positive with smaller values indicating a better match. Since 
multiple musical properties of a line are to be considered, a weighted sum, ΣwiEi, of 
the various properties is used. In the work described here, four components are con-
sidered; note interval transition probabilities, note duration transition probabilities, 
syncopation and pitch range. 

For comparison of the transition matrices, a simple Euclidian distance of the com-
posite probability vectors is used 

  EP = E(P, ˜ P ) = 1
N

(pij
j=1

N

∑
i=1

N

∑ − ˜ p ij )
2            (2) 

where P is the NxN transition matrix of a given property for a line and ˜ P  is the desired 
matrix (i.e., the matrix chosen to generate a line in a simple generative system). A 
single normalizing factor of 1/N is used because the matrix rows are probability vec-
tors and thus already normalized so that the components sum to one. Significantly 
different matrices are thus expected to give values of EP around unity with close 
matches approaching zero.  
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The syncopation measure is derived by considering whether or not the start of each 
note is aligned with an appropriate subdivision of the bar.  For example, crotchets are 
expected to start in the beat and quavers either on the beat or one quaver off the beat. 
Notes which start at the expected time make no contribution to the objective function, 
a single syncopated note contributes 1/M (where M is the number of notes in the line) 
and longer sequences of m syncopated notes contribute (2m-1)/M. The intention of this 
function is to allow occasional syncopated notes or short sequences but longer sec-
tions of syncopation rapidly become very costly.   

The pitch range is handled as penalty function since out of range notes are not ac-
ceptable in the final output. Any note outwith the specified range (for the Ballo 
Quinto C4-C6) is assigned a value of one, all other notes zero.  The contribution for a 
line is not normalized by line length. This is to ensure that even a single note out of 
range will not in general be accepted. 

The relative weights of the four components of the objective function are set by the 
composer. The components have been defined such that a weight of unity is generally 
a good starting point for experiment but will of course vary according to the material 
and composer’s intentions. In the work described here weight values of {1, 0.2, 1, 10} 
for the interval, duration, syncopation and range respectively were used.  

3.2.2   Reconfigurations Rules 
Four reconfiguration rules are defined, two modify pitch and two modify duration. On 
each iteration, one rule is selected at random with equal likelihood and applied to the 
current line.  

The pith rules select a random segment of the line and either transpose all of the 
notes in the segment by a randomly selected interval or move the segment to another 
randomly selected position in the line. Line length and note durations are preserved. 
Segment lengths are chosen with equal likelihood from the range [1, N/2] where N is 
the number of notes in the line. The transposition interval (in semitones) is selected 
uniformly from [-12, 12], line segments may thus be transposed up or down by up to 
an octave.  

The duration reconfiguration rules select a note at random and either split it into 
two notes of smaller duration with the same pitch or merge it with the following note 
to create a single longer note with the same pitch. Simple note values (crotchet, 
minim, semibreve) are halved; dotted note values are split in a 2:1 ratio. 

In all cases, the first and last notes in the line are excluded from the process in or-
der to honour the end point constraints. The duration merge rule excludes the last two 
notes from its selection process so as not to affect the final note. 

3.2.3   Annealing Schedule 
The basic annealing method of Kirkpatrick is used. After each application of the re-
configuration rule the newly created line is accepted with probability 

P =
1 ΔEi < 0

exp(−ΔEi /kT ) ΔEi ≥ 0

⎧ 
⎨ 
⎩ 

                                        (3) 

where ΔEi = Ei – Ei-1 is the change of energy on the ith iteration. Thus if the newly 
configured line has a lower energy than the previous one it is always accepted; if it 
has a higher energy it is accepted with decreasing likelihood as ΔEi increases.  



368 S. Davismoon and J. Eccles 

 

As the annealing proceeds, the system is slowly “cooled” by reducing the effective 
temperature kT and lines with positive ΔE are accepted less and less frequently. A 
simple exponential decay is used for kT. After each annealing epoch kT is reduced by 
a constant ratio, kT := αkT. All work described here used an epoch of 10,000 itera-
tions and values of α = 0.98. Because of the normalization of the energy function 
values, it was possible to use an initial value of kT (kT0) of around unity. 

The initial line is generated by filling the line between the fixed (composer speci-
fied) end points with crotchets of random pitch. Pitches are selected uniformly from 
the range used in the objective function.  

3.3   Annealing Results 

The annealing process was implemented within an existing experimental software 
framework that supported the import and export of MIDI files and the generation of 
Markov transition matrices and instances of corresponding chains. For the initial 
investigation, only pitch and rhythm drift were considered, not tonal drift. All three 
end point problems are addressed by enforcing the fixed duration of the line within 
the reconfiguration rules and by not allowing the first and last notes to be changed 
within the relaxation process. Fig. 2. illustrates a typical output of the process using 
the same transition probabilities for note interval and duration within the objective 
function as used in the original example of Fig. 1. 

 

Fig. 2. A typical output from the annealing process. The initial random line, 3 intermediate 
lines and the final result after 500,000 iterations are shown. The energy, E, and number of 
iterations are given at the start of each line. An initial value of kT0=1.0 was used and γ=0.98. 
The first and last notes and interval and duration statistics are from the original Ballo Quinto 
shown in Fig. 1. The pitch range was set to C4 – C6. 

Musically, the results are considered to be much more satisfactory than the simple 
Markov process illustrated earlier, primarily because the duration and final note can be 
fixed by the composer. The musical material within the line is, as expected, of a similar 
style to the unmodified Markov process. Some tonal drift can be seen within the line 
(for example, the Bb-C-D-Eb in bar 2) but this should not be surprising given that no 
explicit pitch information (other than extreme range) was incorporated in the objective 
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function. It is possible that the fixed first and last notes exert a degree of tonal influ-
ence in the vicinity of the end points but this is an area for further investigation. 

4   Conclusions 

Assessing the musical fitness of a line by how well it meets multiple, simple objec-
tives and constraints is considered to be the key to the process. It neatly sidesteps the 
fitness bottleneck problem by removing the need to directly quantify the overall mu-
sicality of the line and the evaluation of the lower level objectives and constraints (for 
example, the interval distributions and measures of syncopation) is a task well suited 
to computer. Because the drift and end-point problems are also addressed, the outputs 
of the annealing process are much more useable than those generated directly by 
Markov chains. Furthermore, the stochastic nature of the optimization allows for 
occasional notes and intervals to be used which would never have been generated 
directly by a Markov chain because of zero probabilities in the transition matrix. This 
is seen very much as a creative, rather than regenerative, process. 

For any given set of objectives and constraints, there are clearly many near-optimal 
solutions. In the simple annealing process described here, the composer is required to 
navigate the “weight space” of the single objective function by running the process a 
number of times. When the quality of the optimization outputs is high, this can be a 
creative task, the composer exploring the near-optimal solution space by experiment-
ing with the different weights. With this perspective, however, the problem appears 
well suited to the application of multiple-objective optimization techniques and, with 
suitable formulated constraints, the most musical solutions are anticipated to lie on the 
Pareto-optimal front. Future work will consider both an evaluation of multiple-
objective optimization methods and extending the types of musical objectives used, 
including those encountered through instrumental and vocal performance technique; 
to original complex polyphonic textures, none of which are currently suited through 
direct generation by Markov chains.  

The results of this methodology in some senses add an interesting echo to the serial 
vision of Schoenberg.  The composer can now pinpoint pitch and rhythmic composi-
tional End Points (alla Deterministic Serialism), however the space in-between each 
step is open to probabilistic relativistic determination. Thus allowing a whole new 
universe of expressivity to remain open for exploration. 
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Abstract. In this paper a computational approach of musical orches-
tration is presented. We consider orchestration as the search of rele-
vant sound combinations within large instruments sample databases.
The working environment is Orchidée an evolutionary orchestration al-
gorithm that allows a constrained multiobjective search towards a target
timbre, in which several perceptual dimensions are jointly optimized. Up
until now, Orchidée was bounded to “time-blind” features, by the use
of averaged descriptors over the whole spectrum. We introduce a new
instrumental model based on Gaussian Mixture Models (GMM) which
allows to represent the complete spectro-temporal structure. We then
present the results of the integration of our model and improvement
that it brings to the existing system.

Keywords: Orchestration, Genetic Algorithms, Gaussian Mixture
Models, Instruments Temporal Evolution, Instrumental Models.

1 Introduction

Automatic orchestration is a relatively new topic in computer-aided composi-
tion, for which only a few number of systems exist today (for a complete review
see [3]). An orchestration problem consists in finding a mixture of instrument
samples that jointly minimizes different perceptual distances to a given target.
Orchidée – the most recent of them, developed at IRCAM1 – offers significant
innovative features. First, the system architecture has been designed to fully sep-
arate instrumental knowledge from the search algorithms, allowing Orchidée to
work with virtually any kind of timbre modeling. Secondly, a client/server archi-
tecture is put forward, providing the users with the opportunity of implementing
their own control interfaces while keeping the computational issues in the core
program. Last, Orchidée explicitly addresses the timbre multidimensionality and
the combinatorial complexity of instrument mixtures by the joint use of a mul-
ticriterion optimization and evolutionary algorithms [2]. Orchidée has already

1 Institut de recherche et coordination acoustique/musique – http://www.ircam.fr

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 371–380, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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been used by many notable composers, among them Jonathan Harvey for his
latest piece Speakings [8].

However, like all previous systems, using “time-blind” features only, Orchidée
was therefore unable to cope with time-evolving sounds and could only address
static timbres. In this paper, we extend this approach with an instrumental model
based on Gaussian mixtures to represent both temporal and spectral properties.
This model allows to capture the relevant properties of instrumental timbres with
great data reduction while allowing for efficient resynthesis of them. Moreover,
the strength of this model is to infer almost automatically the temporal structure
of a sound with modified duration while keeping the attack and release.

The reminder of this paper is organized as follows. In Section 2 we present the
system architecture and the genetic exploration algorithm. In Section 3 we intro-
duce the instrumental model that accounts for the temporal structure, we then
present the results of our model in terms of accuracy. We subsequently present
the experimental results from the integration of our work in the orchestration
system Orchidée, noting the improvement over the “static” orchestration results.

2 System Architecture

The core element of Orchidée is a background-running server that communi-
cates with client interfaces. The server consists of a “long-term” part which is a
database-like organized description of a collection of instrument sound samples,
and a “short-term” part whose elements relate to the current orchestration task.
The problem is therefore fully defined by three components: An orchestra (i.e.
a set of instruments), a set of musical-related constraints and a description of
the target timbre (usually provided as either a concrete or synthesized sound).
All the above elements may be easily defined by the user through the client
interface. Afterwards, the server instantiate a problem-specific object, in which
data structures are optimized for efficient numerical computation. The problem
is then properly stated to be solved by a multiobjective genetic algorithm, whose
core elements are implemented in a dedicated toolbox. Until recently, the op-
timization process could be run on up to six different timbre objectives : the
spectral centroid, the spectral spread, the log-attack time, the main resolved
partials, the mel spectrum and the amplitude modulation. All these features
are time-averaged values preliminary extracted from a collection of instrument
sound samples.

Once the orchestration problem is fully stated, the optimization process runs as
depicted in Fig. 1. First, the orchestra is mapped onto a discrete, m-dimensional
space E (where m is the size of the orchestra), in such a way that all genetic
operators can be expressed as closed operations on E. From there, an initial
population is randomly drawn in E. Additionally, the target and constraints are
converted into objective and penalty functions respectively, which are both used
for fitness computation. Then, the mating pool is filled with a binary tournament
procedure and classical uniform crossover and 1-point random mutation apply.
Offspring systematically enter the current population from which individuals in



Dynamic Musical Orchestration Using Genetic Algorithms 373

denser regions are removed during a diversity preservation procedure. The algo-
rithm iterates until a maximum number of iterations is reached, and the Pareto
archive is returned to the user as the set of solutions. From there, the algorithm
may be redrawn from a specific Pareto solution for search intensification in the
neighborhood. Now, half of the initial population are clones of the selected solu-
tion and the objective functions are modified to focus the search in the desired
region of the criteria space.

Initial
Population

Objective 
Functions

Current
Population

Pareto 
Archive

Binary 
Tournament 

Selection

Constraint 
Violation 
Measure

Uniform 
Xover + 1-pt 

Mutation

Current
Population + 

Offspring

Diversity 
Preservation 

Scheme

Orchestra Target ConstraintsSolutions

ORCHESTRATION PROBLEM

CONSTRAINED MULTIOBJECTIVE OPTIMIZATION SCHEME

Fig. 1. Genetic Orchestration algorithm flowchart

We introduce in this paper, a new feature to describe temporal aspects of
sounds. We derive an objective function that reflects the distance (on a temporal
basis) between a target and an orchestration proposal. This function is inserted
as a new objective function for the evolutionary algorithm (black box in Fig. 1).

3 Temporal Descriptor

All previous works on this subject have focused on vertical orchestration, ana-
lyzing only the sustained part of instruments and thus completely disca-rding
the temporal evolution of sounds. However, the territory of timbre is not con-
fined to a static structure of proportions. It rather comprises “variation laws”
that regulate the interaction between frequency and amplitude functions in an
evolving context over time. It is therefore essential to move to a higher level of
modeling, by understanding the micro-temporal qualities of timbre in order to
capture the sound as a spectro-temporal structure. Advantages of this approach
are twofold. First, the generated orchestration may be considered more realistic
as it accounts for the whole spectro-temporal structure. Second, it allows the
use of evolving playing modes like crescendo, glissando, multiphonics and so on.

3.1 Existing Models

When looking at existing instrumental models, we can quickly realize the almost
complete absence of time modeling. Instrumental models are usually designed for
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discrimination or classification systems [9]. For such purposes, instruments are
usually represented in a simplistic manner with a set of spectral descriptors. The
instrumental model of Tardieu [11] developed for orchestration, completely omits
the temporal information. Sounds are thus considered purely stationary. In order
to model this information, we can imagine the simplistic ADSR model applied to
each partial. However, despite an advanced parameterization [5], performances
in terms of accuracy are very limited. An improvement of this technique is to use
Legendre polynomials which can increase the overall accuracy. This technique
will serve as a benchmark for our model. Another method for time modeling is
to compute the modulation spectrum [10]. Unfortunately it causes a significant
increase of data amount which is inconsistent with the purpose of our model.
Other approaches may be envisaged, such as a source-filter model [13] which
would preserve the temporal information, while reducing the dimensionality of
the data. However, this limits the modeling ability to a few production types. It
would thus be beneficial to use representation techniques such as the Harmonic
Temporal Clustering model [6], which can represent the instrumental information
both harmonically and temporally using a mixture of gaussians. We use this
representation as a baseline for our model.

3.2 Our Model

When establishing a model, there is always a tradeoff between accuracy and
data reduction. Yet, facing this uncertainty problem, we can use perceptual
studies to guide our discrimination of unnecessary features. A particularly rele-
vant study in the context of instrumental models was conducted by McAdams
and Beauchamp [7] which deals with the discrimination of instrumental sounds
with simplified spectro-temporal parameters. This study gives insight on the per-
ceptual importance of various spectro-temporal characteristics, and which can
thus be simplified. Firstly, two simplifications seem extremely discriminating.
The amplitude envelope coherence and the smoothing of spectral envelope indi-
cate that the independent evolution of the partials amplitude is a fundamental
feature. These results show that computing average magnitudes for each partial
is largely insufficient. It is therefore crucial to represent the envelope indepen-
dently for each partial. In contrast, the microvariations simplification in both
amplitude and frequency appear to be much less discriminating perceptually. It
is therefore possible to smooth (up to a certain level) the various envelopes while
retaining the appropriate information.

In order to smooth the frequency microvariations, we use a constant-Q trans-
form [1], which has a logarithmic frequency scale. This transform can be seen as
a series of logarithmically spaced filters. By choosing wisely the center frequen-
cies of the filters, the constant-Q transform shows the advantage of frequency
bins directly corresponding to musical notes. Moreover, the dimensionality of
constant-Q transformed data is much lower, which will allow faster computation
of the next steps. We apply this transform with a resolution of 96 frequency bins
per octave which yields bins corresponding to one-sixteenth of tone.
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To represent each frequency bin, we use Gaussian Mixtures Model (GMM)
[12]. A frequency bin is therefore defined as a weighted sum of Gaussian distri-
butions

Bx;θ =
C∑

c=1

αcN (x; μc, σc) (1)

with C the number of components, μc the mean, σc the variance and αc the
weight of component c, 0 < αc < 1 for all components and

∑C
c=1 αc = 1. The

parameters list
θ = {α1, μ1, σ1, . . . , αC , μC , σC} (2)

defines a particular Gaussian mixture model. The problem is thus to find the set
of parameters θ̂ which maximizes the likelihood L (X ; θ) to observe the data

θ̂ = argmax
θ

(ln L (X ; θ)) (3)

In order to estimate the model parameters, we use the Expectation Maximization
algorithm (EM). The application of this algorithm for Gaussian mixtures [4] runs
as follows. The known data X are interpreted as incomplete data. The missing
part Y is to know which component produce each sample xn. For each xn exists
a binary vector yn = {yn,1, . . . , yn,C}, with yn,c = 1 if the sample is produced
by component c, or zero otherwise. The expectation step is to calculate the
conditional expectation of the log-likelihood of all data. The probability can be
calculated using Bayes’ law

wn,c =
αi

cp
(
xn | c; θi

)∑C
j=1 αi

jp (xn | j; θi)
(4)

where αi
c is the prior probability (of the estimate θi) and wn,c is the posterior

probability that xn is produced by the component c. The particularity of our
model is that the means of Gaussian functions are spaced by a distance propor-
tional to the diffusion parameter σk which is also the common standard deviation
of all distributions. We obtain the following mixture

Bx;θ =
C∑

c=1

αcN (x; μk + c.σk, σk) (5)

It is necessary to maintain only the mean of the first Gaussian μk and the com-
mon standard deviation σk. By applying the maximization step for estimating
the parameters distribution for a mixture of C components, we obtain the update
formulas

αi
c =

1
N

N∑
n=1

wn,c (6)

μi
k =

∑C
c=1

∑N
n=1

(
xn − c.σi−1

k

)
wn,c∑C

c=1
∑N

n=1 wn,c

(7)
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σi
k =

1
2

(((
ai

k

)2
+ 4bi

k

)1/2
− ai

k

)
(8)

{
ai

k =
∑C

c=1
∑N

n=1 c
(
xn − μi

k

)
wn,c

bi
k =

∑C
c=1

∑N
n=1

(
xn − μi

k

)2
wn,c

(9)

The new estimates are compiled in θi. Equations are evaluated again with the
new estimates until the convergence criterion is satisfied.

3.3 Length Modification

Most of the orchestral instruments producing sustained sounds, it seems manda-
tory that the comparison between the target and the instrumental mixture is
made on an identical period. Otherwise, the similarity index would inevitably be
distorted by such differences in duration. Using the parameters obtained from
the model computation, it becomes effortless to infer the structure of an iden-
tical instrumental sound but of different duration. We consider modification by
expansion or compression of the temporal envelope on the sustained part of the
sounds only. Thus attack and release segments are kept unmodified by calcu-
lating their respective locations and then applying changes only to parameters
belonging to the sustained segment. This choice stems from the fact that exci-
tation over the attack and release segments are generally the same regardless of
the note duration. The modified Gaussian are then those whose mean satisfies

posatt + ε < μk < posrel − ε (10)

with posatt the end of the attack segment, posrel the beginning of the release
segment and ε a time tolerance factor. We thus obtain the set of Gaussians to
be modified

k ∈ K = {N (μk, σ) /posatt + ε < μk < posrel − ε} (11)

Two different methods may then be applied in order to modify accurately the
duration of the structure.

Modification by dilation. In our model, all Gaussians are linked together by a
common diffusion parameter σk. This parameter can be used in a straightforward
manner to perform expansion or compression on the gaussian mixture. If we want
to change the length of the sound by a factor γ, we just have to multiply the
variance of each gaussian by this factor thus σ

′
k = γσk. We must then update

the weights of the modified Gaussians accordingly in order to compensate for
the modification of variance α

′
k = 2.γ.αk and then normalize all weights. The

means of the gaussians being linked by a common diffusion factor, it is sufficient
to calculate the new means for n ≥ min(k)

μn = μn−1 +
(
σ

′
n−1 + σ

′
n

)
(12)
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Modification by repetition. It is possible for special cases such as vibrato and
tremolo to perform a more pertinent modification by repetition. This is done by
keeping the original parameters but changing the number of gaussians and then
updating the weights of the corresponding components. We must first calculate
the new number of components

Nnew = �γ.Nk∈K� + Ng/∈K (13)

The parameters of pre-existing components remain unchanged and we consider
that the weights of the newly added components follow a cyclical behavior

αn = αn−card(K) (14)

It is necessary to note that both approaches are applicable to specific cases.
Indeed, if dealing with a linearly decreasing envelope, modification by repetition
appears irrelevant. Conversely, for tremolo or vibrato modes, even if modification
by dilation seems to infer a valid structure, it is obvious that the repetition
approach is much more relevant. Thus, it would be optimal to choose the method
of duration modification by following a taxonomy of the samples being analyzed.

3.4 Results

We discuss here the results of our model. For this we compare it with Leg-
endre polynomials which have already been applied to harmonics modeling [5]
and GMM with free variance. It is possible to observe their performance from
different angles. Computation time is not a primary criterion as the analysis is
done once and then stored in a database. However, we emphasize the importance
of model accuracy by calculating the divergence between the original spectrum
and a spectrum resynthesized from reduced data. This precision is confronted
with the data reduction induced by the model. This allows to evaluate the per-
formance of the model to capture the essential characteristics of a sound. The
accuracy measurement is performed using two different error measures, the stan-
dard L2 and the generalized Kullback-Leibler divergence. We compute these two
distance measures between the original spectrum and the resynthesized spec-
trum. However, as duration and content of the samples may be very different,

Table 1. Mean value and variance for synthesis time, reduction factor and accuracy
of the different models

Legendre Gaussian Mixture Models
polynomials Free variance Fixed variance

Synthesis time (s) 0.0031 (+/− 0.0037) 0.0212 (+/− 0.0032) 0.0250 (+/− 0.0138)
L2 39.749 (+/− 836.91) 19.429 (+/− 218.31) 8.3071 (+/− 37.341)

L2/Silence 0.5690 (+/− 0.1529) 0.2143 (+/− 0.0267) 0.0897 (+/− 0.0223)
KL 335.79 (+/− 6987.8) 272.82 (+/− 458.97) 201.72 (+/− 362.76)

KL/Silence 0.9650 (+/− 0.5047) 0.6176 (+/− 0.0043) 0.3811 (+/− 0.0154)
Reduction factor 77.236 (+/− 498.75) 52.202 (+/− 339.28) 48.687 (+/− 246.69)
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Fig. 2. Comparison of the results from static and dynamic orchestrations on a time-
evolving target (extract from Poetry - Marco Suarez). When using only static de-
scriptors (left score and top spectrums), although the average harmonic structure is
preserved, the temporal information is completely omitted. After integration of the
temporal descriptor however, we see very clearly on the results that the overall tem-
poral structure of the target is met.
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we normalize these measures with the divergence between each sample and an
equivalent period of silence. In this way we can compare results with sounds of
various nature. Table 1 summarizes the results of analysis on all 21,381 samples
of the database.

As hoped, we obtain the best results with the fixed-variance model which
allows to obtain greater accuracy with an almost equivalent data reduction. The
accuracy of the free variance model could be increased by allowing a higher
number of components but that would proportionally increase the chances of
obtaining singular estimates.

4 Experiments

By introducing the temporal model, we allow the orchestration research to use
not purely stationnary sounds. However, the system being programmed around
this central hypothesis, several structural modifications have been performed.
First, all descriptors were expected to have the same size, which is irrelevant for
efficient temporal modeling. Moreover, the descriptor system has been extended
to use matrix representations. Finally, the computation of descriptors is now
done with respect to the target in order to use duration modification as stated
above. We describe here the results of the experiment with system Orchidée
after integration of our temporal model. The target sound is a voice extract from
Poetry of Marco Suarez. That voice produce a note consisting of 3 distinct parts.
First, a noisy component and then an amplification of the harmonic intensity
that ends with a tremolo. As shown in Fig.2, when using only static descriptors,
although the average harmonic structure is preserved, the temporal information
is completely omitted. After integration of the temporal descriptor however, we
see very clearly on the results the different parts of the original sound. The
overall temporal structure of the target is met, we thus confirm the validity of
our model and the improvement that it brings to the existing system.

5 Conclusion and Future Work

In this paper, we have extended the orchestration system Orchidée in order to
cope with evolving sounds and use the temporal structure of timbre. We have
presented an instrumental model based on GMM that allows to account for the
temporal evolution of sounds in the orchestration process.

Several directions of future work can be seen on the temporal model. The type
of distributions can be modified in order to increase the overall accuracy of the
model and of the duration modification. The mixture approximation should also
be done according to a peak tracking rather than being applied to frequency bins
in order to improve data reduction. The similarity measure between an instru-
mental mixture and the target should also be enhanced in order to cope with
the complexity of the spectro-temporal structure. Finally, the genetic algorithm
should be extended to account for temporal combinatorics. It is up to now im-
possible to induce a temporal shift between the instruments which are supposed
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to start at the same time. But this suppose not only choosing a starting point
for each sound but also how do we scale sounds. This means the insertion of two
additionnal heuristic parameters in the genome of solutions.
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Abstract. In this paper we report on the synthesis of sounds using cellular 
automata, specifically the multitype voter model. The mapping process adopted 
is based on digital signal processing analysis of automata evolutions and con-
sists in mapping histograms onto spectrograms. The main problem of cellular 
automata is the difficulty of control and, consequently, sound synthesis methods 
based on these computational models normally present a high factor of random-
ness in the output. We have achieved a significant degree of control as to pre-
dict the type of sounds that we can obtain. We are able to develop a flexible 
sound design process with emphasis on the possibility of controlling over time 
the spectrum complexity. 

Keywords: Sound Synthesis, Cellular Automata, Histogram Mapping Synthe-
sis, Additive Synthesis, Multitype Voter Model. 

1   Introduction 

A number of musicians, in particular composers, have started to turn to evolutionary 
computing for inspiration and working methodology. This paper focuses on cellular 
automata (CA), a class of evolutionary algorithms widely used to model systems that 
change some feature with time. They are suitable for modelling dynamic systems in 
which space and time are discrete, and quantities take on a finite set of discrete values. 
CA are highly suitable for modelling sound and music, which both are fundamentally 
time-based and can be thought of as systems in which a finite set of discrete values (e.g., 
amplitudes, frequencies, musical notes, rhythms, etc.) evolve in time [10]. 

In the 1950s several different kinds of systems equivalent to CA were independ-
ently introduced. The best-known way in which CA were introduced (and which 
eventually led to their name) was through work by John von Neumann in trying to 
develop an abstract model of self-reproduction in biology –a topic which had emerged 
from investigations into Cybernetics [13].  

Cellular automata are normally implemented as a regular grid of cells in one or 
more dimensions. Each cell may assume any state from a finite set of n values. CA 
evolve in successive generations at every time unit. For each generation, the values of 
all cells change simultaneously according to a set of transition rules that takes into 
account the states of the neighbouring cells. The transition rules can be deterministic 
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or non-deterministic. With a deterministic rule, for a given configuration of cell 
states, the updated cell state is always the same. With non-deterministic rules the next 
state is not only dependent on the neighbourhood but also on some random inputs 
and/or probabilistic components. A probabilistic rule gives the probabilities that each 
cell will transition to the next possible state. The states of the cells may represent 
different colours and therefore, the functioning of a two-dimensional cellular automa-
ton may be displayed on the computer screen as a sequence of images, like an ani-
mated film.  

Cellular automata have been of interest to computer musicians because of their 
emergent structures –patterns not created by a single rule but through the interaction 
of multiple units with relatively simple rules. This dynamic process leading to some 
order allows the musician to explore new forms of organization. In sound synthesis, 
CA are normally used for controlling over time the parameters of a synthesis instru-
ment. Many of the synthesis techniques demand enormous amounts of control data 
for obtaining interesting results, making it difficult to be controlled manually. CA 
represent a solution to this problem because with few parameter specifications it is 
obtained massive amounts of structured data. The goal is to transfer the structured 
evolution of CA onto the sound synthesis domain. This is always done through a 
mapping, a set of correspondences between different domains.  

There have been different mapping attempts [1] ranging from direct assignments 
of CA values, like in Lasy [2], to higher-level approaches intending to map the over-
all CA behaviour, like in Chaosynth [9]. We are interested in the second type of ap-
proach. Our research strategy is based on the analysis of CA evolutions by means of 
digital signal processing techniques in order to discover structural information of 
their organization. Then we proceed with the mapping of the analysis results onto 
appropriate synthesis parameters.  

This paper is organized as follows. In Section 2 we present the automaton chosen 
for this study, which is based on the multitype voter model. In section 3 we explain 
the mapping process adopted, which is based on CA analysis with the histogram tech-
nique and, aims at the design of sound spectrograms. In section 4 and 5 we describe 
the musical features revealed from the histogram analysis of the multitype voter 
model and, we suggest solutions for the drawbacks found. As the control is the main 
problem of CA, in section 6 we comment controllability aspects of the sound design 
process. Sounds are rendered using additive synthesis. Finally, Section 7 concludes 
this paper. 

2   The Multitype Voter Model 

The automaton chosen for this research is based on the voter model. In 1953, geneti-
cist Kimura introduced the stepping stone model [7]. This process was studied  
extensively by other geneticists over twenty years before being rediscovered by prob-
ability theorists Clifford and Sudbury in 1973 [3] where it was called the invasion 
process and by Holley and Liggett in 1975 [6] under the name the voter model [4]. 
Nowadays, the voter model is considered one of the standard models of interacting 
particle systems [8]. 
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The voter model is interpreted as a model of opinion formation. A collection of in-
dividuals is defined, each of which has one of two possible opinions on a political 
issue. These possible opinions are denoted by 0 and 1. An individual reassesses his 
view in a rather simple way: he chooses a “friend” at random with certain probabili-
ties and then adopts his opinion [8]. When the voter model is generalized to more than 
two opinions it is known as multitype voter model. 

It can be also seen as a model of competition. The interpretation is clear from the 
point of view of the invasion process; different species compete for the territory and the 
result of conflict is the invasion by one of the species of territory held by the other. 

These models can be simulated by means of a probabilistic cellular automaton in 
two dimensions. The multitype voter model can be implemented with the following 
transition rule: a number between 0 and 1 is chosen as to be the update probability for 
all cells. Then, for each cell in the grid, a random number between 0 and 1 is gener-
ated at every time step. If the random number generated for the given cell is higher 
than the update probability, then the state of the cell changes to that of one of its 
neighbours selected uniformly at random. (Neighbour is defined as the four or-
thogonally adjacent cells: north, east, south, west) [5].  

From a uniform random distribution of cell values, or colours, as the initial con-
figuration, the automaton self-organizes in areas of single colours (Figure 1). As the 
rule is iterated, some areas will increase their space while others will decrease –to the 
extent that they can disappear. In the end, one colour will prevail over the others 
when, according to the voter interpretation, consensus occurs.  

The random inputs and probabilities in the rule make that different runs with the 
same settings result in different evolutions. 

     

Fig. 1. Two configurations of a multitype voter model evolution. From a random input (left) it 
self-organizes in coloured areas (right). 

3   Mapping Process: From Histograms to Spectrograms 

The mapping process adopted in this study is based on a statistical analysis of the CA 
evolution. The functioning of a two-dimensional automaton is considered as a se-
quence of digital images and it is analysed by histogram measurements of every CA 
image. Such a CA analysis gives a histogram sequence. 

The histogram of a grey-level digital image is a graphical representation of the 
number of occurrences of each grey level1 in the image. By dividing the number of 
occurrences by the total number of pixels of the image, the histogram is expressed in 

                                                           
1  Apart from this definition, in this paper we refer to colours instead of grey levels because we 

usually display the CA in the computer screen using a palette of different colours. 
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probabilistic terms giving an estimate of the probability of occurrence of each grey-
level in the image –the sum of all the histogram bins is equal to one. 

The mapping process is very simple; the bins of the histogram sequence are con-
sidered to be bins of a spectrogram. With an appropriate automaton, in the histogram 
sequence it is possible to find structural elements resembling spectral components of a 
sound. For example, from a histogram analysis of the hodge podge automaton there 
were discovered structural elements similar to sinusoidal components and others simi-
lar to noise components such as noise bands and transients [12]. This makes such 
mapping process distinctive; in most other cases there is not an intuitive correspon-
dence between the components of the automaton and the components of a sound. 

With these structural elements we can design the time varying frequency content of 
a sound; we can build a spectrogram. This spectrogram can be rendered into sound 
using different synthesis techniques –the structural elements of the histogram se-
quences become control data for the synthesis program. 

4   Features of the Multitype Voter Model Histogram Sequences 

We have found several music-like features that make the histogram sequences of the 
multitype voter model interesting. Figure 2 shows the histogram sequence of an 
automaton with 100x100 size and 20 colours through 12000 iterations.  

 

Fig. 2. A histogram sequence of the multitype voter model 

The first important characteristic is that the bins of the histogram sequence may rep-
resent the time varying amplitudes of sound partials2. In addition, note that the multitype 
voter model allows us to work with as many colours (i.e., partials) as we want. 

Secondly, the disappearance of colours during the run attracts our attention. The 
sounds of acoustic instruments present a similar behaviour; they usually produce more 
partials in the attack than in the rest of the sound. In the previous example the automa-
ton goes from having 20 colours to 4 in 12000 time steps. We can favour this phe-
nomenon if we work with more colours in a smaller automaton. According to the 
invasion interpretation, there would be more species competing for less territory, a 
fact that will provoke a sooner extinction of many species just at the beginning of the 
run. Figure 3 shows how, in a 30x30 automaton with 50 colours, there is a disappear-
ance of many colours in only 200 time steps.  

                                                           
2  Assuming this premise, for the rest of the paper we may use the term ‘partials’ for referring to 

histogram bins. 



 Evolutionary Sound Synthesis: Rendering Spectrograms from CA Histograms 385 

 

 

Fig. 3. Inducing disappearance of partials at the beginning of the CA run 

The problem now is that the automaton can achieve consensus very soon after a 
quick disappearance of most of the partials. With this, there will not be an interesting 
structure for the sustain of the sound. We have devised a solution to this problem. 
When there remain a determined number of partials (determined in advance) to con-
stitute the sustain structure, the automaton is automatically replicated several times in 
order to build a bigger one (which will have the same histogram). With more exem-
plars per species and, what is more important, having provided more space, the re-
mained species can coexist for longer (Figure 4).  

 

Fig. 4. Controlling spectrum complexity by controlling extinction and coexistence. Histogram 
sequence of a 10x10 automaton (left). Same evolution with replication in the 30th generation to 
build a 40x40 automaton (right). 

Finally, note that since the automaton has a finite size and all the cells are occu-
pied, when the total area covered by one colour increases then it means that the areas 
of other colours have decreased. In the histogram sequence it means that when some 
partials grow, other partials decrease (Figure 5). This is of interest because it reminds 
us of opposite movements typically fond in polyphonic music. When some voices in 
the background become important they go to the foreground increasing their intensity, 
while at the same time, previous foreground voices become less important and go to 
the background decreasing their intensity. 
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Fig. 5. Opposite movements. The circles show decreasing partials and the square shows in-
creasing partials at the same moment. 

Because of the characteristics described above, we find the multitype voter model 
suitable for rendering single sounds and also polyphonic sound textures. 

We still identify two drawbacks. Firstly, before the automaton reaches consensus 
there will be an increasing prominence of one colour over the others, which may be 
not desirable. Normally, before this happens we will have enough structure for ren-
dering a sound. Otherwise, as we will see later, it will be possible to exclude a promi-
nent partial or modify its amplitude before rendering the sound.  

The second drawback lies in the fact that the histogram sequences do not provide 
patterns of sound attacks and releases. We treat this matter in the following section. 

5   Attacks and Releases 

In Figure 6 we can see that the histogram sequence does not start from zero and there-
fore the synthesized sound does not have an attack pattern. It is also clear that the 
automaton does not provide either release patterns for all the partials. 

   

Fig. 6. No attack/release patterns in the histogram sequence (left), neither in the sound (right) 

We can always apply external envelopes for creating attacks and releases. But we 
are interested in giving the automaton complete control over the time varying ampli-
tudes and we have developed a solution by extending the model.  

We start the automaton with just one instance of each colour, placed at random lo-
cations. With this we guarantee a beginning of the histogram sequence that can be 
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approximated to zero. We define empty cells for the rest of the automaton. The func-
tioning is the same (the same rule), but in order to ensure a growth (it could be a 
growth model) we impose that occupied cells can not become empty. With this, the 
occupied cells will expand covering the whole automaton (Figure 7). At that point the 
attack is finished. 

         

Fig. 7. CA evolution for creating attack envelopes 

In Figure 8 we can see, in the histogram sequence, the beginning from zero and the 
attack patterns. The synthesized sound has as a result a sigmoidal-like attack. 

 

Fig. 8. Attack pattern in the histogram sequence (left), and in the sound (right) 

An interesting characteristic of these attacks is that each partial reaches a different 
amplitude value. This is because the initial colours are located at random locations, 
and therefore they start to compete for the space at different times (the competition 
for the space occurs when different colours collide and has as a result a decrease of 
their growth).  

Also, working with relatively big CA we observed that with this solution, partials 
present more stable amplitudes. This is probably so because the CA start with already 
established areas of colours, and then during the run, it is more difficult for estab-
lished areas to experience changes in their sizes. We find this behaviour very interest-
ing for sound synthesis, hence the reason we attempted to capture it in our system. 

We have devised an alternative solution that, starting from single dots, and regardless 
of the amount of them, creates increasing areas but not with specific colours, but with 
random colours. With this, we fill the automaton with a random distribution of colours. 

In order to create releases we have devised a method based on the opposite idea. We 
introduce sources of “epidemics” at random locations, which will expand “killing” all 
the cells. The curves obtained look like sigmoidals, with different release times for each 
partial (due mostly to the random locations of the epidemics), having as a result that the 
strongest partial is not necessarily the last one that disappears (Figure 9).  
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Fig. 9. Histogram sequence of a 100x100 automaton, with attacks and releases. Note that there 
is not disappearance of colours in the attack due to the relatively big size of the automaton. 

In terms of implementation, the empty cells of the attacks and the dead cells of the 
releases may correspond to negative cell values not considered in the computation of 
the histograms. 

6   Control 

The multitype voter model is controlled with four input parameters: the size, the 
number of colours, the initial configuration, and the update probability. However, the 
predictability of the outcome of CA is an open problem; it is not possible to predict 
the value that a specific cell would hold after a number of generations [14]. This is 
even more obvious if we have random inputs and probabilities in the rules. Therefore, 
although a level of unpredictability is accepted and often desired in systems for gen-
erating music and sound, being under unpredictability conditions implies limited 
controllability. A lack of a reasonable level of control restricts the music or sound 
design process [11]. Our work alleviates this limitation in many respects.  

Firstly, it is possible to find direct and intuitive relations between the multitype 
voter model input parameters values and their effects in the histogram sequence. For 
example, in section 4 we have seen how to cause the disappearance of partials and 
enable coexistence by controlling the relationship between the size and the number of 
colours. It is also clear that the update probability controls the amount of cell-colour 
updates that occur at each generation. Therefore, it controls the rate at which the 
automaton and thus, the histogram sequences, evolve towards consensus. The initial 
configurations provide control over the attacks. For example, starting with more than 
one instance per colour we can make the attack structure shorter –the same idea can 
be applied to the releases. With different number of instances of each colour we can 
control, to a certain extent due to the random evolutions, the relative amplitude of the 
partials (Figure 10).  
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Fig. 10. Controlling relative amplitudes. The number of initial instances of each colour was 
inversely proportional to the colour value. 

We can also model attack delays of the partials by introducing the different colours 
at different generations (Figure 11). 

 

Fig. 11. Controlling spectrum complexity in the attack. Successive colours appear with a delay 
of 5 CA generations. 

Finally, another important aspect of controllability is the possibility of developing 
a sound design process from the structural elements of the histogram sequences. Con-
ceptually, the first steps to be performed are the assignment of frequencies to the 
partials and, the specification of the sound duration. From here, other spectral trans-
formations are possible. Time stretching, pitch shifting and amplitude modifications 
of each partial are straightforward to implement. With all this we are able to design 
different spectrograms. 

For this research we have chosen additive synthesis of sinusoidal components, but 
other synthesis techniques can be considered to be controlled with these histogram 
sequences. This is a venue we might explore in the future. 
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7   Conclusion and Further Work 

In this paper we have reported on the synthesis of sounds by the computer simulation 
of natural systems with CA. The multitype voter model exhibits rich dynamics from a 
very simple rule and few input parameter specifications. From a histogram analysis 
we have obtained complex structures endowed with musical features, suitable for the 
design of spectrograms. A sound design process is possible thanks to the controllabil-
ity achieved. 

We have synthesized single sounds (with durations in the order of seconds) with 
dynamic spectra and controlled complexity, and also polyphonic sound textures (with 
durations in the order of tens of seconds) with interesting internal evolutions.  

We are currently investigating the inclusion of a mutation process –mutations are 
often considered in genetic models. The possibility that new species can enter the 
system through genetic mutation suggests potential applications in the synthesis of 
polyphonic sound textures. 

Examples of sounds synthesised by our new method will be (or were) played at the 
conference and they are available by request. 
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Abstract. Sound Agents is a media intallation relating real space and virtual 
sound space. Each agent is a virtual entity producing sound, which has its own 
autonomous behavior. This sound is spatialized in the real installation space 
through many loudspeakers (24 loudspeakers + 1 subwoofer), creating thus an 
ever-changing ambient music which is dynamically spatialized and modified by 
the movement of the virtual agents. We implemented a first propotype of this 
general scheme by using swarm intelligence and the classical ant foraging 
simulation to generate ambient soundscape, associating sounds to ants 
movements and pheromone levels. We further designed a declarative high-level 
language for describing autonomous behaviors of the virtual sound agents.This 
language is based on the notion of goal constraints and simple constraint-based 
local search techniques are defined as a behavior engine. 

1   Introduction 

The basic idea of the Sound Agents system is to create an immersive sound-space by 
relating real space and virtual sound space. In can be seen in the tradition of immer-
sive Virtual Reality systems where video projections and computer graphics will 
recreate in a real space a 3D virtual world, cf. for instance the well-known CAVE 
system develop by University of Illinois in the early 90’s. In the last two decades, 
advances in computer graphic rendering techniques and efficiency of specialized 
hardware, improved visual immersion, but to further reinforce the immersive aspects 
of such virtual environments, the idea of populating virtual spaces with virtual crea-
tures or agents has been growing in the recent years a major focus of research. The 
motivation of the Sound Agents system is rooted in the development of virtual 
autonomous entities for immersive environments. However in Sound Agents, each 
virtual entity will not be a visual character but an invisible sound agent producing 
sound, which will have its own autonomous behavior. This sound will actually be 
localized in the actual 3D space of the installation, much as a CAVE-like VR system. 
Sound agents will be like bees or butterflies flying around spectators, but you cannot 
see them, just hear them. Therefore the ambient sounds will be dynamically spatial-
ized in the actual installation space and will be modified by the movement of the 
virtual agents, providing thus an ever-changing musical soundscape.   

The media installation Sound Agents aims at creating in real-time ambient 
electronic music from a multi-agent simulation, associating agents with sounds and 
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associating various sound parameters with the internal variables of an agent at a given 
time (position, orientation, internal state, etc). We consider sound entities to be reac-
tive agents. That is, simple entities that receive percepts from their environment and 
can act on the environment by performing actions, e.g. to navigate in a 3D world and 
produce sounds. Reactive agents have no symbolic model of the world they live in, 
but rather use sensory-action control loops in order to perform tasks in a robust man-
ner. In its current version, the Sound Agent system uses Nature-inspired multi-agent 
simulations to drive the musical processes, and in particular the swarm intelligence 
metaphor [3]. The key interest of swarm intelligence lies in the fact that only simple 
and easy to understand local behavior rules have to be programmed for each agent, 
while a global complex behavior will be exhibited by the overall population of agents, 
the so-called emergent behavior. Therefore this seems to us quite intuitive and easily 
understandable by non-specialists, e.g. music composers, who could use this 
metaphor in order to construct musical works with some part of randomess (the actual 
movement of each agent) but nevertheless subject to a predictable emergent behavior. 
However for more versatile or precise simulations, we need a high-level language for 
describing more complex, goal-oriented behaviors. We have thus defined a simple but 
effective high-level language to describe the autonomous behaviors of the sound 
agents. We propose to use the formalism of CSP (Constraint Satisfaction Problems) as 
a general behavior description language. Constraints are used to state goals, or more 
exactly partial goals, that the agent has to achieve. Each agent thus manages a set of 
current goals that represent its possibly competing or even conflicting goals. Con-
straint solving occurs at each time step in order to reduce the conflict between the 
current situation and ideal goal satisfaction (where all constraints are solved) and thus 
optimize the (partial) realization of the goals. We hope that the abstraction level of 
goal constraint is high enough to be easily understandable and managed by users with 
a minimal programming background. 

The paper is organized as follows. Section 2 details the general architecture of the 
Sound Agents system and the basic hardware. Section 3 presents the swarm 
intelligence simulation and the current prototype, which is based on ant foraging. To 
further develop high-level multi-agent simulations, Section 4 proposes a declarative 
language for describing agent behaviors, based on the notion of goal constraints. A 
short conclusion end the paper. 

2   Hardware Implementation of the Sound Agents System 

The current prototype of Sound Agents consists of integrating a Java-based multi-
agent simulation engine, the Mason system [15], in the Max/MSP real-time sound 
generation software. Max/MSP is controlling the system parameters and is giving the 
timing, in order to have the simulation system iterations synchronized with the rest of 
the audio engine. It is thus possible to use a time grid for giving the agents a pulse to 
develop their step-time behaviors and progress to the next time-step. Concerning the 
actual rendering in real-time of the spatialized, moving sounds, the best would be to 
use Wave Field Synthesis (WFS) technology [24]. Such systems are commercially 
available but very costly. We have thus rather designed a low-cost approximation by 
using many small loudspeakers located in the installation space (using three 8-channel 
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sound cards and thus 24 speakers), organized as a 6 x 4 matrix, plus one global sub-
woofer. The system configuration is composed of one Apple MacBook Pro, two M-
Audio Profire 2626 soundcards (2 x 8 outputs), one Behringer ADA8000 ADAT 
soundcard (8 outputs), 24 loudspeakers (M-Audio Studiophile AV30), and one sub-
woofer (Tapco SW-10).  

 

Fig. 1. The installation space with 24 loodspeakers for sound spatialization 

3   Swarm Intelligence 

In the recent years, multi-agent systems have however attracted the attention of 
computer-music researchers. The framework of [2] proposed a general context for 
self-organized music and a particular application of swarm music for improvisation 
performances. [9] briefly presents without much details a composition system based 
on agents who can alter a “musical space” by adding, removing or moving sound 
sources (not performing sound synthesis themselves), but the authors say themselves 
that the agent behaviors and the overall system seems quite difficult to program. Also 
[10] presents an interactive system which is based on the simulation of particle 
swarms (e.g. like fish schooling or bird flocking), which is interactive: the general 
movement of the swarm can be controlled in real-time by a musician. It is thus more 
an electronic musical instrument for live performances rather than a generative music 
system. We use a simple swarm intelligence simulation, namely ant foraging, for our 
Sound Agent prototype. This generative music system is fully detailed in [7] and will 
be summarized in the rest of this section.  

Ant foraging is a classical example of swarm intelligence that has been studied by 
entomologists and then simulated in the computer since the early 90’s [1].  The basic 
idea is that the ants deposit pheromones on the paths that they cover and as ants going 
on the shortest path are getting back to the nest quicker and will then go again for 
more food searching, this builds an optimal path that will contain more pheromone 
than others. The behavior of each agent is simple and can be described as follows: 
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while walking and searching for food, ants may (1) deposit a pheromone on the 
ground, (2) follow with high probability pheromone trails that they sense on the 
ground. The emergent behavior is that optimal or near-optimal paths will be created 
because ants using those paths are going back faster to the nest and therefore will go 
again and deposit more pheromones. Recent research in insect communication show 
that maybe several types of pheromone are indeed used, e.g. a ‘no-entry’ pheromone 
might be deposited to block “dead-end” paths [20]. This is not however implemented 
in our simulation, which is the one implemented in the Mason system.  

Ant foraging simulation is thus used to produce generative ambient music in real 
time. About one thousand agents are used in the simulation but it would be too costly 
in computation  time to associate one sound source to each agent, as the sound has to 
be generated in real-time for each agent. With our current computing power (single 
computer) we have to limit to about 25 to 30 the number of sound sources, which will 
be randomly chosen among all the agents. Observe however that, in a simulation with 
1000 agents, the 975 « non-audible » agents are nevertheless useful because they 
interact and will influence the behaviors of the 25 audible agents through stymergy 
(pheromone deposit). Sound sources associated to audible agents are synthetized 
sounds created by simple oscillators whose parameters depend on the position and 
orientation of the agents. We used simple oscillators for performance reasons, but 
more complex treatments are of course possible with Max/MSP and will be 
experimented if we can have extra computing power. It is interesting to note that in 
order to have better performances, we also had to go down to the parallel processing 
aspects of the dual core processor of the Powerbook Pro and explicitely program 
Mason and Max/MSP to run on different cores and communicate via the main 
memory. This has greatly improved the performances of the system. Concerning the 
sound spatialization, we could have done  a naive mapping of the 2D simulation space 
to 2D matrix of loudspeakers, but we prefered to have a different one, linked to the 
distance of each agent to the optimal path. Therefore the overal movement of the 
simulation, which is that all ants first walk randomly in the 2D space and eventually 
converge to a path close to the optimal (i.e. the line linking the nest to the food, as we 
have no obstacle in this simulation), will be musically reflected by the fact that all 
audible agents will eventually converge to a common rhythm, with minor variations. 
We also decided to associate a musical meaning and a specific sound generation to 
the pheromone deposit itself and add an extra sound source which produce some  
continuous bass chords. The volume of this drone depends on the level of pheromone, 
and this sound is further modified by a distortion effect whose parameters depends on 
the location of the pheromone deposit. 

The whole idea of using multi-agent simulation and swarm intelligence for 
generating music is to be able to associate to each agent some sound parameters that 
will be sumitted to variations depending on the position of the agent. Then the 
emergent property will ensure that agents will eventually converge towards some 
optimal path and therefore that some musical movement can be achieved, even if the 
actual timing or exact value the position of each agent of the swarm cannot be 
precisely defined in advance. However it is up to the musician to define how to use 
the emergent property in his musical movement. Therefore the mapping between the 
swarm agents and the sound parameters is of key importance. Although best 
appreciated in an exhibition space with 24+1 loudspeakers, the resulting ambient 
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music can be appreciated by looking at the following website, which include mp3 
recordings and videos :  http://webia.lip6.fr/~codognet/SA/ 

4   A Declarative Language for Describing Agent Behaviors 

In the current version of Sound Agents, we use the Mason multi-agent system [15] in 
order to drive the simulation. Although a powerful and efficient system, Mason never-
theless requires serious programming skills for describing agent behaviors and it is 
thus difficult for a composer to directly modify the simulation code, or to experiment 
a new type of multi-agent simulation by himself. Therefore our goal is to develop a 
high-level language to describe agent behaviors that could be easily understood by 
someone with limited programming skills. Simple but interesting life-like behaviors 
with emergent properties should be easily implemented, such as those described in 
[4]. In computer graphics and animation systems, the most common formalism for 
representing behaviors of high-level agents, such as virtual humans is some extension 
of finite state automaton (FSA) [17,26] or more complex hierarchical models [23,14]. 
For low-level agents, such as the swarm agents in flocks or herds and reactive agents, 
two basic approaches are classically used:  

1. Steering behaviors, where the different low-level goals (such as grouping or 
escaping) are stated as forces that are then added to produce the actual  be-
havior of the agent in a time-step manner. This approach has been pioneered 
by Reynolds since the late 80’s [19,20], but it still active now and various ex-
tensions have been proposed [18,23,8]. 

2. Particle systems [25] or potential fields [12] treating the swarm as a complex 
physical system.  

We are obviously closer to the first approach, but we propose to use the formalism of 
CSP (Constraint Satisfaction Problems) as a general behavior description language. 
Constraints are used to state goals, or more exactly partial goals, that the agent has to 
achieve. This can be seen as an extension of the steering behavior approach where con-
straints are solved logically instead of forces added numerically.  One interesting point 
however is that the constraint formalism is naturally nondeterministic, as opposed to any 
force-based formalism such as steering behaviors, which is intrinsically deterministic. 
Indeed we find here again the classical dichotomy between declarative and procedural 
languages. We believe that a declarative, nondeterministic formalism such as that of 
goal constraint is more powerful and easier to use than a procedural one. 

4.1   Goal Constraints and Local Search Constraint Solving 

Constraints, i.e. logical relations, are an interesting tool at a declarative level to repre-
sent goals, but we also need to solve these constraints for achieving the goals. We 
have developed in previous work an efficient constraint-based combinatorial optimi-
zation algorithm named “adaptive search” [6], core ideas of which are:  

1. to consider for each constraint a heuristic function that is able to compute an 
approximated degree of satisfaction of the goals (the current “error” on the 
constraint); 
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2. to aggregate constraints on each variable and project error on variables thus 
trying to repair first the variable with worst “error”; and 

3. to update and refine these heuristic functions as the agent explores the environ-
ment and discovers new information, such as the position of some obstacles. 

4. to use some sort of “Tabu list” in order to give the search engine a short-term 
memory and avoid having it trapped in loops and local minima. 

 

Consider an n-ary constraint c(X1, … ,Xn) and associated variable domains  D1 ,…, Dn. 
An error function fc associated to the constraint c is a real-valued function from D1 × 
… × Dn such that fc(X1, …, Xn) has value zero if c(X1, … , Xn) is satisfied. The error 
function will in fact be used as a heuristic value to represent the degree of satisfac-
tion of a constraint and will thus give an indication on how much the constraint is 
violated. For instance in path-planning applications and spatial goal constraints, the 
error function can be seen as (an approximation of) the distance of the current con-
figuration to the closest satisfiable region of the constraint domain.  Since the error is 
only used to heuristically guide the search, we can use any simple approximation 
when the exact distance is difficult (or even impossible) to compute. It is worth notic-
ing that the idea of using simple heuristics to guide the behavior of humans or animals 
has been recently proposed in many cases by both psychologists and biologists [11]. 

Adaptive Search is a simple algorithm but it turns out to be quite efficient in prac-
tice. Considering the complexity/efficiency ratio, it can be a very effective way to 
implement constraint solving techniques in larger software tools, especially for any-
time algorithms where (approximate) solutions have to be computed within a limited 
amount of time. The efficiency of the Adaptive Search algorithm for large combinato-
rial problems is detailed in [6]. As we do not expect that the use of Adaptive Search 
for solving goal constraints will give rise to hard combinatorial problems, we will 
present in the following a simplified version of the algorithm, that will just compute 
an iterative improvement for the next time-step. As this procedure will be called at 
each time-step by the agent simulation loop, this will converge towards a solution that 
is the realization of the goals. We also consider that this algorithm will be used in the 
context of generating a continuous behavior and thus the modification of the variables 
is subject to some limitation (e.g. the agent has a maximal speed for its movements). 
This can be modeled by considering a modification limit for each of the agent vari-
ables. If the limit is reached, then the algorithm will stop and output the current best 
partial solution. 
 

Input: current configuration with 
-   a set of variables V={V1, V2, ... , Vn} with associated domains 
-   a set of constraints C={C1, C2, ... , Ck} with error functions 
-   functions to combine constraint errors on variables (e.g. simply the sum) 
-   a (positive) cost function to minimize (usually a linear combination  of errors) 
-   a parameter T : the Tabu tenure (number of iterations a variable is frozen) 
 
Output: next  configuration with minimal cost  
 
Algorithm: 
repeat 
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1. Compute errors of all constraints in C and combine errors on each  
variable (by considering only the constraints in which a variable appears) 

2. select  the variable X (not marked Tabu) with highest error 
3. evaluate costs of possible moves from X 
4. if  no improvement move exists 

then mark X as Tabu for T iterations 
     else select the best move and change the value of X accordingly 

until  solution  is found or modification limit from  initial configuration is reached 

4.2   Goal Constraints for Navigation 

In the Sound Agent project, we are mainly concerned with the motion of agents in a 
2D or 3D space; therefore we should focus on the specific goal constraints related to 
navigation. Indeed we want to generate the trajectory of an agent as the (iterative 
improvement) solving of the goal constraints at each time-step, which will generate 
the actual movement of the agent. Therefore we can simply consider a single variable 
for each agent, which is its position in the virtual space. As we are in a combinatorial 
search setting, we will consider that the domains of the variables are representing 
some discrete approximation of the real space. The key idea is that the agent will look 
at the possible positions in his neighborhood, check the combination of errors of his 
own goal constraints and choose the position minimizing the error. Moreover the use 
of a Tabu mechanism makes it possible to forbid some areas for a given period of 
time (Tabu tenure) and thus helps to prevent being trapped in a local minimum (e.g. a 
spatial dead-end) or short-term oscillating behaviors. Indeed comparing to the steering 
behavior paradigm, we have here non-deterministic behaviors as we do not try to 
define a combination of forces that will bring the agent to the desired position but just 
check possible locations and choose the best one, which can be done efficiently in the 
local search approach. Also observe that we can cope with dynamically changing 
priorities between behaviors, as the error function are reevaluated at each time steps. 

To be more precise about declarative navigation goals, we can consider the con-
straints defined in [5] for path-planning:  

Table 1. Examples of Goal Constraints 

Constraint Declarative meaning 
In(Region) Stay within the zone define by Region 
out(Region) Stay outside the zone define by Region 
Go(Object) move towards the location of Object 
away(Object) move away from the location of Object 
Attraction(Stimulus) Move towards source of stimulus 
Repulsion(Stimulus) Move away from tsource of stimulus 

 
These declarative constraints will reduce to (or, for efficiency, be approximated 

by) some simple arithmetic constraints.  
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For instance the constraint In(Region) states that an agent should stay within a cir-
cular Region will reduce to :   Agent.position - Region.Center < Region.Radius and 
the constraint go(Object) will reduce to:  Agent.position - Object.position < 0.01  

It is clear that a combination of such goal constraints could produce quite complex 
behaviors, e.g. that the agent should go towards some object, avoid all objects it per-
ceives and stay away from some predefined regions. For instance a “follow” behavior 
can be simply obtained as a combination of a go constraint (to move toward the fol-
lowed agent) and an out constraint (to stay at a certain distance). Observe however 
that for the last two constraint goals, the agent does not know the location of the 
source of the stimulus, but it can only sense the amount of stimulus received at some 
location by one or more sensors, using either a temporal difference or a spatial differ-
ence method [22]. The temporal difference method consists in considering a 
neighborhood reduced to a single location (just ahead of the agent), while the spatial 
difference method will consider two or more neighbors, although it seems that con-
sidering more than two sensors does not improve much the performances. If none of 
the neighbors improve the current amount of stimulus (objective function), then a 
random move will be performed. 

5   Conclusion 

The architecture of Sound Agents has been designed and preliminary experiments 
conducted. They consist in (1) transferring a multi-agent architecture that has been 
developed for 3D virtual agents to sound-based agents and (2) developing a sound 
rendering hardware to realize the spatialization of the sound agents in the actual in-
stallation space. Sound Agents is a sound-based installation relating a virtual space 
and the actual 3D space of the exhibition. Agents are associated to sound sources 
whose parameters are modified in real-time depending on the values of the agent’s 
state (position, internal variables, etc). Therefore the ambient music generated by the 
multi-agent simulation produces an ever-changing music soundscape. The first ex-
perimental instance consists in an ant foraging simulation and 24 loudspeakers (+ 1 
subwoofer) organized as a 4x6 matrix on the floor. An interesting extension would be 
to realize this installation in a bigger space (e.g. 10m  x 10m  room)  and to put the 
loudspeakers on small columns, in order to have a better spatialization and audio 
perception throughout the installation.  

Concerning the modeling aspects, we have designed a general framework for de-
scribing autonomous agent behaviors based on the goal constraint formalism and a 
local-search optimization algorithm. We hope that this could be a basis for a more 
general use of multi-agents systems for generative music and interactive  installations. 
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Abstract. A new approach is presented which integrates evolutionary computa-
tion and real world devices such as mobile robots and an omnidirectional vision 
system. Starting with an evolutionary composition system named JaVOX, a hy-
brid environment named AURAL evolved. In the AURAL, the behavior of mo-
bile robots in an arena is applied as a compositional strategy. It uses trajectories 
produced by mobile robots to modify the fitness function of a real time sonic 
composition. The model is described, its evolutionary design and how the interac-
tion between the real world devices was implemented. This research is oriented 
towards the study of automatic and semi-automatic processes of artistic produc-
tion in the sound domain. 

Keywords: Algorithmic composition, evolutionary computation, robotics,  
sonification. 

1   Introduction 

Evolutionary Computation applied to real time sonification is a paradigm for creative 
evolution in music systems, particularly in algorithmic composition. Interaction between 
music and the evolutionary algorithm has been studied following human improvisation 
systems such as Todd & Werner [1], Biles [2] and Yee-King [3]. Manzolli & Verschure 
[4] created the Roboser System, a combination of the behavior of the Khepera robot 
with a large neuronal interaction system IQR. Subsequently, the Roboser system was 
used in the interactive installation "Ada: intelligent space." In Ada, human collective 
behavior and a set of real world devices were used to express synthetic emotions [5]. 
Besides providing paths or behavior to be mapped into sound, the robotic systems may 
be guided by sound signals. In this case, the goal is to study the control of the robot 
positioning through a sound stimuli, as presented by Murray [6].  

AURAL environment, which uses real world devices for evolving music material us-
ing Evolutionary Computation is presented in this paper. Like the foregoing works, 
AURAL attempts to autonomously generate complex sonic structures by exploring the 
dynamics of the real world interaction between artefacts and their environments, includ-
ing human beings. Similar to the systems developed by Manzolli & Verschure [4] and 
Murray [6], the AURAL system organizes a sequence of sound events based on the 
interaction of mobile robots in an arena. Unlike these two systems, the sonification is 
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controlled by robotic trajectories associated with the fitness function of the evolutionary 
sound environment, JaVOX [7]. Conceptually, AURAL is related to arTbitrariness, 
defined as a theoretical perspective for studying automatic and semi-automatic proc-
esses of artistic production [8].  

The next section presents the basic elements of the system: the interactive evolu-
tionary graphical interface, the omnidirectional vision system and the robotic control. 
In Section 3, experiments are described, followed by the results and a conclusion. 

2   AURAL Architecture 

AURAL is a system of third generation in which evolutionary computation was ap-
plied to algorithmic composition. The first one, VOX POPULI, was based on a 
mathematical model for automatic fitness evaluation of music structures described by 
MIDI events. The musical fitness was defined by heuristics for harmonic, melodic 
criteria and a fuzzy set modeling, as described in [9, 10]. Since then, this research has 
explored the parametric manipulation of that fitness criterion. A graphical interface 
was developed allowing the user to draw curves interfering in the fitness result, fully 
implemented in JaVOX [7]. In AURAL, the curves previously drawn by the user are 
combined with robotics trajectories. Thus, it is possible to have control curves drawn 
by humans beings or curves "drawn" by the robots (i.e. trajectories performed in an 
arena) and even both.  

The AURAL system, depicted in Figure 1, is made up of the following elements: a) 
the evolutionary composition interface JaVOX; b) the OmniEye, the artificial vision 
system, c) the supervisor module, TrajeCt, which receives the trajectory and super-
vises the master robot, d) a community of robots.  

Robot 

Robot Robot 

OmniEye 

Robot  
Tracking 

TrajeCt 

Robot  
Supervisor 

JaVOX 

Sound  
Translation 

MIDI Events 

 

Fig. 1. The AURAL architecture diagram 

The sonification produced by the AURAL system is based on a generative cycle, i.e., 
the user draws control curves on the GUI of the evolutionary sonification module, 
JaVOX. The curves are transmitted as trajectories to a master robot, Nomad, moving in 
an arena. The omnidirectional vision system, OmniEye, observes the navigation of the 
Nomad [11] while interacting with other mobile robots, the Creates [12]. The real time 
data sensed by the OmniEye is fed back into the JaVOX evolutionary composition sys-
tem producing new MIDI events. The cycle is repeated until the robots are stopped.  
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2.1   The OmniEye 

The OmniEye is the first module that is activated when the AURAL system is run. It 
occupies an important role, for it is the “observer” being used to feed back the robot 
localization. Part the AURAL development, the OmniEye is made up of a camera, a 
spherical convex mirror and a conical weight to align the camera and stabilize the set 
up [13]. Figure 2 shows, on the left, the OmniEye; on the right, the CamShift window 
[14], with an image of the whole arena.  

 

Fig. 2. On the left, the OmniEye with the spherical mirror and the camera. On the right, an 
image of the arena obtained with the OmniEye. 

The CamShift window, the interface of the OmniEye, is the first one to appear 
when AURAL starts. A strongly colored panel was fixed on each robot for tracking. 
The user marks each robot with the mouse on the window, assigning a voice number 
to it (to be seen in Section 2.2.1). A colored circle appears. The coordinates of the 
mass center of the circle are used to estimate the position of the robot. 

2.2   The Evolutionary Sound Interface 

JaVOX, the evolutionary sound interface, is the kernel of the AURAL system. It is 
activated just after the OmniEye and has four main areas: a Parameter Control; a 
Graphic Area; Dynamic Controls and a Performance Control, depicted in Figure 3, 
on the left.  

In the Graphic Area the user may draw a curve (red) to be sent as a trajectory to the 
Nomad, the master robot. When the Play button (Dynamic Controls) is pushed, differ-
ent processes are activated, such as, the trajectory is sent to the master robot, Nomad, 
as a sequence of points; the robots start to move and the sound production is trig-
gered. The paths crossed by the robots, observed by the OmniEye, are plotted as 
curves in different colors on the Graphic Area.  

The Graphic Area is associated with a conceptual sound space having two phase 
spaces, the “red” one, or melodic, and the “blue” one, or rhythmic. In the melodic 
phase space the x-axis is associated with the tonal center ([0, 11], representing the 
tones and semi-tones of a musical octave), and the y-axis with the octave range  
([0, 127] in MIDI protocol). The rhythmic space has a diversing parameter ([1, 30])  
 



404 A. Moroni and J. Manzolli 

 

 

 

 

  

Fig.  3. On the left, JaVOX interface. On the bottom, the Performance Control with Voices 1, 2, 
3, 4 (each voice is associated with a robot) and solo, block, sequence and block parameters. On 
the right, the mappings of the parameters melodic (mel) and octave range (oct) with the melodic 
phase space and the parameters rhythm (rhy) and diversity (bio) with the rhythmic phase space. 

associated with the x-axis. The diversity controls the number of eras of the genetic algo-
rithm. The rhythm ([0, 27]) is associated with the y-axis. The mappings of the parame-
ters with the melodic and rhythmic phase spaces are shown on Figure 3, on the right.  

The coordinates of the points of the red curve, sent to the Nomad as a trajectory, 
and of the blue curve, the path traversed by Nomad and observed by the OmniEye, are 
linked with the mel, bio, rhy and oct scrolls in the Parameter Control area. The mel 
and oct values are used as parameters in the fitness function [9, 10]. The bio scroll bar 
allows for interference in the duration of the genetic cycle, modifying the reproduc-
tion time. The bio value determines the slice of time necessary to apply the genetics 
operators, such as crossover and mutation, and may also be interpreted as the repro-
duction time for each generation, affecting the diversity of the population. The rhy 
value is used in the MIDI cycle and it interferes directly in the rhythm of the music 
making the rhythm become faster or slower. The points of the other curves are used in 
the Performance Control. 

2.2.1   The Evolutionary Sound Process 
In JaVOX, the MIDI protocol representation was used to code a musical genotype. In 
the evolutionary sound process, the individuals of the population are defined as 
groups of four voices, or notes. These voices are initially random generated within the 
interval [0, 127] with each value representing a MIDI event. In each generation, 30 
groups are produced.  
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Two cycles are integrated in the evolutionary sound process. The reproduction  
cycle is the evolving process that generates chords using genetic operators and select-
ing individuals. The parameters of the reproduction cycle are extracted from the red 
curve, sent as a trajectory to Nomad, and from the blue curve, the tracked path. In the 
MIDI cycle the interface looks for notes to be played. When a chord is selected, the 
program puts it in a critical area that is continually being verified by the interface. 
These notes are played until the next group is selected, considering the status of each 
voice in the Parameter Control, that are set according the distance among the robots 
(Section 2.2.2). Figure 4 depicts the reproduction cycle and the MIDI cycle.    

 

Fig. 4. The reproduction cycle and the MIDI cycle in the evolutionary process for the produc-
tion of sound 

The musical fitness for each chord, described in [9, 10], is a combination of three 
partial fitness functions: melody, harmony and vocal range, each resulting in a nu-
merical value.  

Musical Fitness = Melodic Fitness + Harmonic Fitness + Vocal Range Fitness (1)

An analogy can be made of each individual of the population with a choir of four 
voices (or orchestra of four instruments). At each generation of the process a new 
sonority is created by applying a fitness criteria considering a melodic line (mel) and a 
voice range (oct). The choir with the highest fitness is selected and played as a new 
MIDI event, the duration of the evolutionary cycle (bio) and music meter (rhy) is 
taken into account. Based on the order of consonance of musical intervals, the notion 
of approximating a sequence of notes to its harmonically compatible note, or tonal 
center, is used. This sequence produces a sound resembling a chord cadence or a fast 
counterpoint of note blocks.  

2.2.2   Music Real Time Performance Control 
The Performance Control area offers other possibilities to control the sound produc-
tion. For each of the four MIDI voices there are three controls: solo, sequence and 
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block. The Performance Control works as delay lines in which MIDI notes from pre-
vious generations are played again as solo, melodic patterns or chords. The Perform-
ance Control is also modified in real time by the robots. The relative position of the 
robots is used to select the solo, the sequence or block mode for each voice.  

When the solo control is selected, the sound events are sent directly to the MIDI 
board producing a single sequence of MIDI events at each step of the genetic cycle. 
When the sequence control has been selected, MIDI events are played as note se-
quences, such as arpeggios. When the block control is selected, events are sent to the 
MIDI board as fast as possible, almost simultaneously, generating overlapped chords. 
A slider in the GUI controls the number of notes sent to the MIDI board. This control 
may only be modified by the user, as well as the rhythm and the pitch controls, affect-
ing only the musical performance. 

A set of performance rules was used to combine the collective behavior of the ro-
bots with sound production in JaVOX. Table 1 describes the voice control considering 
the proximity between the mobile robots and the solo, sequence and block processes, 
of the Performance Control. 

Table 1.  Performance Rules: Proximity and Performance Control 

Distance between the Mobile Robots 
Rule Distance (m) Solo Sequence Block 
1 >0,5 X   
2 0,4 < D < 0,5 X X  
3 0,2 < D < 0,4  X  
4 D < 0,2   X 

2.3   Robotic Control 

Once a curve is drawn in the GUI, consecutive points of this curve are transmitted to 
the supervisor module TrajeCt (for trajectory control) so that the Nomad can navigate 
along the predetermined path. The applied algorithm is based on [15], where allow-
able navigation paths are defined as a sequence of straight lines between the given 
pathpoints, by controlling the robot heading. The heading change, at each pathpoint 
(between consecutive segments), may vary in a ±90° range and the distance between 
the actual robot position. The path is to be minimized in all cases. The supervisor 
system, therefore, receives the points from JaVOX and sends the movement com-
mands to the robot. Other mobile robots move in the arena; when there is a collision, 
the other robot moves away. The flow of information departs and returns to JaVOX to 
produce the sonification process. The interaction between the path covered by the 
Nomad and the free navigation of other robots generates a collective robotic behavior.  

3   Experiments 

Since AURAL is also a platform for experiments in mobile robotics, three types of 
robots were incorporated to AURAL: Nomad, Pioneer, and Create. Nomad and Pio-
neer act as master robots, in different contexts (Pioneer was incorporated to a web 
version of AURAL). All the experiments described in this paper were performed with 
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Nomad and Create robots. Three runs of the system with two robots are described to 
illustrate the methodology applied in the experiments. Three different trajectories, 
named here as Circle, Eight and Arcs, were sent to Nomad, depicted in Figure 5, left 
column.  
 

   

   

   

Fig.  5. Graphical results of three experiments 

In the center column, the observed trajectory of the Nomad is depicted in blue and 
the observed trajectory of the Create robot, in green. The right column shows, on a 
time line the occurrences of the solo (green bars) in milliseconds (x-axis), sequence 
(yellow bars) and block events (red bars). The arena was scaled to be 1x1 m (y-axis). 
The black curve shows on a time line the variation of the distance between the robots.  

Each row in Figure 5 is associated with an experiment. In Experiment 1 (row #1), 
the black curve (right column) shows that the Create trajectory was closer to the tra-
jectory of the Nomad, although it produced less block events in real time. The dis-
tance between Create and Nomad was higher in Experiment 3 (row #3, right column). 
The maximum distance in Experiment 1 was around 0.5 m, in Experiment 2 it was 
around 0.65 m and in Experiment 3, around 0.8 m. Comparing the distance variation 
among the bar charts, it is possible to verify that changes on Performance Control in 
real time comply to the performance rules established in Table 1. Experiment 1 was 
confined to a short range of distance around the Nomad. Experiment 3 generated 
more solo events (green bars) than Experiments 1 and 2, due to the value of distances 
that in Experiment 3 was higher.  

The next two sub-sections detail the relationship between the behavior of the ro-
bots, the evaluation of musical fitness and the sonification results. 
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3.1   Collective Behavior Affects Performance Control 

According to Section 2.2, the trajectories sent to Nomad robot control melodic (mel) 
and octave range (oct) parameters and the observed trajectories control the parameters 
rhythm (rhy) and diversity (bio). Red curves change fitness evaluation of pitch mate-
rial (MIDI note numbers) and observed blue curves change duration of the notes 
played by the system and also the duration of genetic cycles. In this way, original 
JaVox system produces MIDI notes and Nomad robot provides the rhythmic structure 
for them.  

In real time each robot is related to one performance voice. Nomad is always asso-
ciated with Voice 1 and the other Create robots are associated with the other voices. 
The results presented in Figure 6 refer to an experiment with Nomad and three Create 
robots, moving in the arena according to its area sweeping algorithm. In short, the 
robot initially performs a spiral. When it meets an obstacle, it turns left or right and 
moves straight, looking for a free way to avoid the obstacle. 

 

Fig.  6. From left to right the distance between the Nomad and Create robots 1, 2, and 3, while 
Nomad performed the arcs trajectory 

The integration between guided behavior of the Nomad and the sweeping mode of 
the Creates produces a collective behavior resulting in Performance Control changes 
(Table 1). In terms of sonification, “circle” and “eight” trajectories produces more 
repetitive patterns and “arcs” produces more rhythmic variations, illustrating how 
melodies are produced by the AURAL system, integrating JaVOX evolutionary en-
gine with the trajectories produced by the collective behavior of the robots. The 
movement of the robots associated with the performance rules of Table 1 introduces 
an element of pseudo musical improvisation in the system. It is important to note that 
the Block, Sequence and Solo modes are not exclusive; the three modes may be si-
multaneously assigned for each voice. The MIDI event associated with the voice is 
triggered off according to the selected mode, in the order in which it happened. Ac-
cording to the expectation, the occurrence of Solo events tends to decrease as the 
number of robots increases. The number of Solo events was lower in this series for all 
trajectories. The highest number was of Block events and occurred during the per-
formance of the Circle trajectory.  

The AURAL was presented as an installation at an Art Gallery, where visitors 
could draw curves in the JaVoX GUI and transmit it as trajectories to the Nomad. The 
visitors observed the interaction among the robots and the sound output produced by 
the robots exploring the associated conceptual sound space. On the last day of the 
exhibition, a dancer, three musicians and the AURAL system itself, with the Nomad 



 From Evolutionary Composition to Robotic Sonification 409 

 

and three Create robots, performed an interactive concert. MIDI files produced by the 
AURAL system were used as a basic material for generating instrumental composi-
tions. A piece titled “Robotic Variations” for Piano, Marimba and Electronics  
(computer and robots) was composed and performed at the AURAL installation. A 
choreography was designed so that a Create robot with a red panel left the room and 
was substituted by a dancer with a red hat. Her position was tracked by the OmniEye 
through the red hat and interfered in the performance of the sound. Figure 7 shows 
pictures of the musicians and the dancer during the performance. Scenes were broad-
casted  on television under the title "Robots compose music for man” [16].  

 

  
Fig. 7. From the left to the right, the musicians in a rehearsal, during the performance and the 
dancer, while substituting a robot, tracked by the red hat 

4   Conclusion 

All these experiments beared aspects to consider such as the area of the room and the 
number of robots when adopting robotic collective behavior as a strategy for auto-
matic composition. When the number of robots increases, the distribution of the 
events Block, Sequence and Solo tends to be uniform. Currently, the collected mate-
rial is being studied to determine the events that contribute for the generation of inter-
esting sound sequences, in order to teach the system to promote those events.  
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Abstract. During the last decade many efforts for music information retrieval
have been made utilizing Computational Intelligence methods. Here, we exam-
ine the information capacity of the Dodecaphonic Trace Vector for composer
classification and identification. To this end, we utilize Probabilistic Neural Net-
works for the construction of a “similarity matrix” of different composers and
analyze the Dodecaphonic Trace Vector’s ability to identify a composer through
trained Feedforward Neural Networks. The training procedure is based on clas-
sical gradient-based methods as well as on the Differential Evolution algorithm.
An experimental analysis on the pieces of seven classical composers is presented
to gain insight about the most important strengths and weaknesses of the afore-
mentioned approach.

1 Introduction

The common approach to tackle the composer identification and classification problem
is through music theory and involves symbolic or score element analysis, which is done
by musicians or musicologists, such as musical motif recognition, note durations and
musical interval analysis. The main domain in computer music data extraction is based
on statistical refinement through the wave forms of musical pieces [1]. In the literature,
significant results have been demonstrated for musical genre recognition [2,3], key sig-
nature [4,5], chord identification [5,6] and composer identification [7] among others.
A vital question would be: which symbolic features of a musical score embody the
required information for computer based composer identification?

Data extraction through score analysis has been proven to be useful for chordal
analysis [8], epoch classification of musical pieces [9] as well as composer identifi-
cation [1,10,11] among others.

In the paper at hand, we study the information capacity of a simple and compact
score-based data extraction technique, the Dodecaphonic Trace Vector (DTV), for the
Musical Composer Identification task (MCI). The DTV roughly represents densities
of degrees in a diatonic major scale in a musical piece and is analogous to the Pitch
Chroma Profile proposed in [6]. To this end, based on the DTV we examine the com-
poser identification task, by firstly discovering similarities between composers through
supervised classifiers, namely the Probabilistic Neural Networks, and secondly inves-
tigating the DTV representation identification capabilities through Feedforward Neural
Networks.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 411–420, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



412 M.A. Kaliakatsos-Papakostas, M.G. Epitropakis, and M.N. Vrahatis

The rest of the paper is organized as follows. In Section 2, the dataset acquisition
and the tools that have been applied to extract certain symbolic features of a score
are described. In Section 3, we briefly demonstrate the probabilistic and feedforward
neural networks, while Section 4 is devoted to the presentation of the methodology and
the produced experimental results. The paper ends with concluding remarks and some
pointers for future work.

2 Data Set and Data Extraction

This section is devoted to describe the methods and techniques utilized for data acqui-
sition and refinement to capture the desired information from musical pieces.

To this end, we have collected a dataset consisting of 350 musical pieces, composed
by seven classical music composers. Specifically, musical pieces of the composers
Bach, Beethoven, Brahms, Chopin, Handel, Haydn and Mozart, have been collected in
MIDI format from [12]. Fifty musical works have been collected from each composer.
To comply with constrains regarding composition styles for different musical instru-
ments, an effort has been made so that most of the works collected by each composer
were already transcribed for piano and correspond to an almost uniform collection of
musical forms. Furthermore, in order to formulate a scale-tolerant collection, an almost
equal number of major scale and minor scale pieces have been included.

To process each work, a conversion to a more understandable file format had to be
made. Hence, we have incorporated the MSQ tool to transform the MIDI file format to a
simple text file format [13]. MSQ converts each note to a text symbol preserving infor-
mation about duration, time onset, pitch and velocity. Through the above encoding each
Pitch Height can be described using an integer, but the information on the identity of
unison notes is not maintained, which has been named enharmonic equivalence [5,14],
e.g. whether a number corresponds to C� or D.

Here, we investigate whether a compact information index such as the Dodecaphonic
Trace Vector, which is briefly described in the following paragraph, may incorporate
sufficient information from a musical piece, to tackle the MCI task.

Dodecaphonic Trace Vector. A musical piece is like a journey, it begins and ends
following a certain path. This path could be based on notes of either a certain scale
(tonal music), or more than one scales, depending on the form of each piece and its
composer’s personal style. A collection of traces of this path can be created with the
Dodecaphonic Trace Vector described below.

We consider a 12-dimensional vector, the Chroma Profile [15] vector of a musical
piece denoted by CP = (CP (1),CP (2), . . . ,CP (12)), the elements of which can be
defined by the following equation:

CP
(
n mod (12) + 1

)
=

∑
n mod (12)∈M

1,

where n denotes a note in the musical piece M . This equation simply states that the first
element, CP (1), is the summation of all the notes n that satisfy the equation n mod
(12) ≡ 0, which has been characterized as octave equivalence [14]. In our example
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CP (1) is the summation of all Cs, while CP (2) is the summation of all C� or D in
any octave.

The norm of the CP vector of a musical piece depends on its length. A very short
piece is expected to have less notes than a very long one, under similar circumstances,
i.e. both being in the same tempo and composed by the same composer. To extract useful
data concerning the composer out of the CP vector, regardless the length of the piece,
a normalization has to be done. The normalized vector N = (N (1),N (2), . . . ,N (12))
can be defined by the following equation:

N (i) =
CP (i)

max
1�j�12

CP (j)
, for i ∈ {1, 2, . . . , 12}.

Finally, to follow the traces of the melodies and the harmony (chord changes) of a
composer, the utilized methods should be key tolerant, in a sense that the key of the
composed piece is not essential. What is considered to be important information, is the
way that a composer manipulates the degrees of the major or minor scale in his/hers
compositions and the deriving expansions occurring on scale changes through out the
piece. A procedure to capture that information of a collection of musical pieces is, first,
to transpose all these pieces in the key of C major and then to calculate their normalized
N vector. Additionally, the minor scale pieces were transposed in the key of A minor.
Thus, the Dodecaphonic Trace Vector is defined by the normalized vectors of musical
pieces transposed to the key of C major or A minor.

3 Classification Methods Tested

Our methodology is based on two simple steps and provides insights on the uniqueness
of the DTV in the compositions of each composer. Firstly, a classification is initiated
for the construction of a similarity matrix between the composers using a Probabilistic
Neural Network and secondly, a Feedforward Neural Network is utilized to identity
each composer from another. It has to be noted that the experimental results should be
discussed with musical experts to further verify the uniqueness of the DTV for each
composer.

For completeness purposes let us briefly describe the classification methods used for
the composer identification task.

Probabilistic Neural Networks. Probabilistic Neural Networks (PNNs) introduced by
Sprecht in 1990 [16] as a new neural network structure. PNNs are utilized to classify
objects in a predetermined number of classes. PNNs are based on kernel discriminant
analysis and incorporate the Bayes decision rule and a non-parametric density func-
tion [17]. A PNN’s structure consists of four layers, the input, the pattern, the summa-
tion and the output layer [16,18]. To this end, a pattern vector, x ∈ R

p is applied to
the p input neurons and propagates to the pattern layer. The pattern layer is fully in-
terconnected with the input layer, organized in K groups, where K is the number of
classes present in the data set. Each group of neurons in the pattern layer consists of
Nk neurons, where Nk is the number of training vectors that belongs to class k where



414 M.A. Kaliakatsos-Papakostas, M.G. Epitropakis, and M.N. Vrahatis

k = 1, 2, . . . , K . Hence, the i-th neuron in the k-th group of the pattern layer calculates
its output utilizing a Gaussian kernel function defined by the following equation:

fik(X) =
1

(2π)p/2|Σk|1/2 exp
(
−1

2
(X − Xik)�Σ−1

k (X − Xik)
)

,

where Xik ∈ R
p defines the center of the kernel and Σk is the matrix of smoothing

parameters of the kernel function. Furthermore, the summation layer consists of K
neurons and estimates the conditional probabilities of each class by,

Gk(X) =
Nk∑
i=1

πkfik(X), k ∈ {1, 2, . . . , K},

where πk is the prior probability of each class k (
∑K

k=1 πk = 1). Thus, a new pat-
tern vector X , not included in the training set, is classified to the class which produces
the maximum output of its summation neurons. It has to be noted here that PNN’s
classification ability is strongly affected by the value of the smoothing parameter, σ,
that, roughly speaking, determines the range of each class and consequently its perfor-
mance [16,19]. Probabilistic Neural Networks have been recently utilized in musical
applications [3].

Feedforward Neural Networks. Although, many different models of Artificial Neural
Network have been proposed, the Feedforward Neural Networks (FNNs) are the most
common and widely used. FNNs have been successfully utilized to tackle difficult real-
world problems [20,21,22,23]. For completeness purposes let us briefly describe their
structure and their supervised training methodology.

A Feedforward Neural Network consists of simple processing units called neurons,
which are arranged in layers, the input, the hidden layers and the output layer. The
neurons between successive layers are fully interconnected, and each interconnection
corresponds to a weight. The training process is an incremental adaptation of the con-
nection weights which acquires the knowledge of the problem at hand and stores it to
the network’s weights. More specifically, consider a FNN, net, whose l-th layer con-
tains Nl neurons, where l = 1, 2, . . . , M . When a pattern appears in its input layer
the signal deriving by the multiplication of the input and the weights of the first layer
neurons is summed and passed through a nonlinear activation function such as the well
known logistic function f(x) = (1 + e−x)−1. Those signals are then propagated to
the next layer of neurons, l, multiplied by the weights of the next neuron layer, and the
procedure continues until the signal reaches the output layer. Hence, the j-th layer, can
be described by netlj =

∑Nl−1
i=1 wl−1,l

ij yl−1
i , where wl−1,l

ij is the weight from the i-th
neuron at the (l − 1) layer to the j-th neuron of the l-th layer, while yl

j = f(netlj) is
the activation function of the j-th neuron in the l-th layer. The training procedure can
be accomplished by minimizing the error function E(w) which can be defined by the
sum of the squared differences between the actual output of the FNN, denoted by yM

j,p,
and the desired output, denoted by dj,p, relative to the appeared input,

E(w) =
1
2

P∑
p=1

NM∑
j=1

(
yM

j,p − dj,p

)2
=

P∑
p=1

Ep(w),
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where w ∈ R
n is the vector of the network weights and P represents the number of

patterns used in the training data set.
Traditional methods for minimizing the above error function require the estimation

of the partial derivatives of the error function with respect to each weight. These are
called gradient-based descent methods and information concerning the gradient are es-
timated by back propagating the error from the output to the first layer neurons using
the delta rule, a procedure thoroughly described in [20,24]. Furthermore, novel meth-
ods proposing stochastic evolution of the weight vector do not require the computation
of the gradient of the error function [21,22,25]. These methods are beneficial against
gradient-based methods not only in terms of computational cost but also their global
optimization characteristics enhance the training procedure which is less likely to be
trapped in local minima [21,22,23].

Here we incorporate, both classical and stochastic training methodologies to en-
hance the training procedure. Hence, we have used three well–known and widely used
classical methods, namely the Levenberg-Marquardt (LM) [26,27], the Resilient Back-
propagation (Rprop) [28], and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [29],
as well as, we have used an evolutionary approach, namely the Differential Evolution
method [25]. Due to space limitations, we are not in a position to briefly describe here
the above methods. The interested reader is referred to [25,26,27,28,29].

4 Methodology and Experimental Results

This section demonstrates the experimental results and the experimental procedure uti-
lized to tackle the Musical Composer Identification task. Hence, based on the DTV, the
first step of our methodology is to calculate the similarity of the composers through
the utilization of Probabilistic Neural Networks. To this end, we construct a similarity
matrix for all musical composers. The construction of the similarity matrix is based on
a simple method. To the best of our knowledge, this method is utilized for the first time
and it is described below.

The set of the seven composers that we have collected, allows the construction of a
square matrix with seven rows and seven columns. Each row and column represents one
composer. Each entry of the matrix would be wished to produce an indication about the
similarity between the composers corresponding to the respective row and column in
dependence to the similarity along the rest of the composers. It has to be noted here that
the diagonal elements of the aforementioned matrix, represents the similarity between
a composer with himself, and would have no entry to be computed. A final and notable
comment is that a consistent similarity matrix of this form should be symmetric.

We will demonstrate the PNNs role in the similarity matrix through a simple test
case example. Let us consider that we want to construct the entries of the first column,
which are related to Bach1. We utilize a PNN with six classes, one for each composer
except Bach, and we train it by incorporating all pieces from the six composers, i.e.
fifty pieces at the current data set. Afterwards, the fifty pieces of Bach are given to the
PNN for classification. Thus, the utilized network will classify them to the classes of

1 Since the first column is related to Bach, then the first row is related also to Bach.
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the other six composers. In this way it can be assumed that the more pieces classified to
a composer’s class, the more similar his composition style is related to Bach’s.

The construction of the first column of the similarity matrix is completed if we assign
no value to the first row (representing the similarity between Bach and himself) and
normalize the classified cases to probabilities per column by dividing every element of
the first column by the total of the pieces classified (50). We observe that the sum of the
column elements is one. To this end, Table 1 exhibits the similarity matrix obtained by
the described procedure. The PNNs have been implemented in MATLAB c© platform
with σ = 0.1.

Table 1. Musical Composers Similarity Matrix through Probabilistic Neural Networks

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 0.08 0.14 0.08 0.36 0.08 0.06
Beethoven 0.12 — 0.26 0.22 0.02 0.20 0.34
Brahms 0.16 0.10 — 0.30 0.06 0.08 0.08
Chopin 0.00 0.18 0.36 — 0.04 0.12 0.08
Handel 0.30 0.00 0.04 0.08 — 0.18 0.26
Haydn 0.26 0.22 0.08 0.26 0.22 — 0.18
Mozart 0.16 0.42 0.12 0.06 0.30 0.34 —

One can observe that the sum of the entries of each row is not one as well as the
matrix is not symmetric. For example, it can been seen that 26% of the pieces composed
by Bach were more similar to the composing traces of Haydn, while only 8% of Haydn’s
pieces fitted best Bach’s composing traces. The asymmetric property of the Table 1 is
discussed in the final section.

Other notable results have also been given through another classification task. For
each composer we have constructed two sets, (a) the set of training pieces and (b) the
set of test pieces. The former set consists of 35 and the latter of 15 pieces out of the 50 of
each composer. We have used the 35 training pieces of all seven composers to create a
PNN with seven classes. The remaining 15 pieces of a composer have been presented to
the PNN and the percentage of the pieces classified to each of the seven composer, has
been recorded in the composer’s related column. The results shown in Table 2 are the
average results of 100 classification tasks as described, each task has been accomplished
with different, randomly selected, training and test sets. For example, in the first column
we can see the percentage of the pieces of Bach classified to each composer, including
Bach.

It should be commented here that the fact that the diagonal elements are greater than
any other element in the respective row or column (with an exception made to the sixth
diagonal element), provides evidence for the compositional information capacity of the
Dodecaphonic Trace Vector. Furthermore, it has to be noted that the uniformly selected
musical forms of the pieces of each composer is reflected by the high values of some
non-diagonal elements compared to their corresponding diagonal element values.

FNN Identification Success Table. Each element of the Identification Success Ta-
ble (IST) (Tables 3–6) shows the mean value of the successful composer identification
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Table 2. PNN Verification Table

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach 64.6% 6.1% 4.5% 6.6% 14.3% 6.4% 5.5%
Beethoven 3.4% 33.3% 13.9% 11.1% 0.5% 13.6% 10.1%
Brahms 1.4% 4.7% 39.1% 15.0% 0.7% 5.0% 3.5%
Chopin 0.2% 12.4% 20.2% 53.0% 2.0% 5.6% 2.0%
Handel 13.4% 0.5% 4.7% 1.7% 66.1% 18.8% 10.6%
Haydn 6.1% 12.4% 6.5% 8.8% 6.6% 24.3% 11.6%
Mozart 10.9% 30.6% 11.1% 3.8% 9.8% 26.3% 56.7%

efforts of a FNN to distinguish whether a piece belongs to the composer of the respec-
tive row or column.

These are the mean values computed over 50 different training-testing identification
tasks for each pair of composers. During each of the 50 identification tasks between two
composers, of row A and column B, the network has been trained to respond 1 to the
35 training pattern of pieces composed by A and 0 to the 35 training pattern of pieces
composed by B.

To test the network’s performance we have used the 15 remaining pieces of A, for
which we know the network should respond a value near 1 (desired output), and the 15
remaining pieces of B, for which the network should respond a value near 0 (desired
output). When an unknown piece (a piece that does not belong to the training set) has
been presented to the network, the network’s response, x, has been considered as 1, if
x > 0.5 and 0 in any other case.

The success rate of an identification task has been estimated as the percentage of the
desired network outputs over all 30 test pieces, which is the sum of the right network
responses divided by 30. For each one of the 50 identification tasks a different set of 35
training pieces for each composer has been used, which it also holds for the 15 pieces
of each composer that have been used for testing. Moreover, a 5-fold cross-validation
methodology has also been conducted with similar results.

The presented values on the IST correspond to the mean success value of the 50 iden-
tification tasks for each composer pair. A final comment about the training procedure
would be that the sequence of the presented training patterns was randomized so that
their targets would not include more than four continuously presented patterns targeted
with 1.

Experimental results for the trained FNNs. In Tables 3–6, we exhibit the IST for
FNNs that have been trained using the LM, Rprop and BFGS methods, respectively,
as well as, with the Differential Evolution algorithm [25]. These results have been pro-
duced by the FNNs of the Neural Networks Toolbox of MATLAB [31] using the de-
fault toolbox parameters. Additionally, for the Differential Evolution algorithm we have
utilized a population of twenty potential solutions and have evolved them for 500 gen-
erations with the DE/best/1/bin strategy by incorporating the default parameters for its
control parameters i.e. F = 0.5, and CR = 0.9 [25].
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Table 3. Identification Success Table for FNN trained with the LM method

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 81.20% 76.40% 87.00% 67.13% 69.33% 82.20%
Beethoven 83.13% — 66.46% 63.86% 84.06% 65.00% 69.80%
Brahms 75.80% 66.40% — 54.06% 84.13% 76.20% 78.00%
Chopin 85.46% 64.86% 55.33% — 85.73% 77.86% 77.00%
Handel 69.80% 84.53% 84.93% 85.33% — 70.86% 78.06%
Haydn 71.40% 62.33% 76.73% 74.80% 69.13% — 55.80%
Mozart 82.33% 71.06% 80.00% 79.06% 80.06% 53.60% —

Table 4. Identification Success Table for FNN trained with the Rprop method

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 82.86% 78.20% 85.00% 68.46% 72.06% 83.20%
Beethoven 83.13% — 70.00% 65.20% 85.40% 65.60% 71.06%
Brahms 79.86% 66.60% — 52.73% 85.46% 79.26% 80.60%
Chopin 87.06% 65.00% 54.93% — 87.40% 76.80% 78.66%
Handel 69.13% 86.60% 86.06% 88.73% — 71.60% 78.40%
Haydn 72.20% 65.67% 77.67% 76.33% 72.20% — 55.06%
Mozart 83.53% 73.00% 80.06% 77.86% 80.60% 53.93% —

Table 5. Identification Success Table for FNN trained with the BFGS method

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 83.46% 79.26% 87.33% 67.60% 72.46% 82.73%
Beethoven 84.00% — 66.20% 66.06% 86.86% 64.26% 72.40%
Brahms 77.46% 68.33% — 53.66% 85.13% 78.86% 77.33%
Chopin 86.40% 66.53% 55.13% — 88.53% 74.93% 79.26%
Handel 65.33% 85.60% 85.86% 88.86% — 70.53% 79.53%
Haydn 70.13% 63.66% 78.80% 75.33% 67.13% — 53.86%
Mozart 81.53% 72.46% 79.06% 78.53% 78.33% 54.60% —

Table 6. Identification Success Table for FNN trained with DE/best/1/bin

Bach Beethoven Brahms Chopin Handel Haydn Mozart

Bach — 82.20% 75.13% 83.53% 69.00% 71.80% 81.80%
Beethoven 80.80% — 62.60% 66.20% 80.86% 66.40% 69.80%
Brahms 75.86% 68.33% — 50.06% 82.53% 79.40% 77.00%
Chopin 83.80% 64.66% 47.46% — 84.53% 76.86% 78.73%
Handel 69.66% 86.46% 79.60% 86.40% — 70.53% 80.93%
Haydn 72.80% 66.66% 77.93% 75.73% 72.00% — 51.40%
Mozart 82.60% 71.80% 78.00% 75.26% 79.53% 52.26% —
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5 Discussion and Concluding Remarks

Through this work, evidence has been provided that the Dodecaphonic Trace Vector
and, consequently, the Chroma Profile vector contain considerable capacity of infor-
mation for the individuality of a composer. Moreover, experts with sufficient musical
background need to amplify the findings of the work at hand and aid the musical anal-
ysis by educing related information.

The PNN similarity matrix in Table 1, as well as the IST table of the FNNs imply
that as long as the similarity between two composers increases, the identification ef-
fectiveness between those two decreases. The latter comment is a sensible assumption,
though we can see some exceptions, for example in Table 1 we can see that the sim-
ilarity between Mozart and Handel is greater than the similarity between Mozart and
Haydn, though in Table 3 the identification task is more precise for the first couple.

Future work would incorporate further analysis of the lack of symmetry of Table 1
and inquiry on the perspective for information extraction out of it. These pieces of
information, combined with historical facts, could lead to an influence diagram between
the composers that provides or validates the evidence on the existence of composers of
fundamental influence.

More accurate results could be reached by refining further the musical structure
through the symbolic analysis of musical scores using more sophisticated representa-
tion of musical items, or by incorporating pitch transitions and pitch durations. It is also
intended to compare the DTV efficiency against other approaches. Moreover, instead of
the PNN used here, any other supervised clustering tool, such as Support Vector Ma-
chines [32], could be used for the construction of the similarity matrix. The same holds
for the identification success table. Finally, it is evident that a widely acceptable musi-
cal database should be created, in order to analyze and compare musical data extraction
approaches.
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Abstract. This paper examines the issues surrounding the effects of us-
ing vehicle emissions as the fitness criteria when solving routing problems
using evolutionary techniques. The case-study examined is that of the
Travelling Salesman Problem (TSP) based upon the road network within
the City of Edinburgh, Scotland. A low cost path finding algorithm (A*)
is used to build paths through the street network between delivery points.
The EA is used to discover tours that utilise paths with low emissions
characteristics. Two methods of estimating CO2 emissions are examined;
one that utilises a fuel consumption model and applies it to an estimated
drive cycle and one that applies a simplistic CO2 calculation model that
focuses on average speeds over street sections. The results of these two
metrics are compared with each other and with results obtained using a
traditional distance metric.

1 Introduction and Motivation

Vehicle routing may be measured in terms of emissions produced as well as
the more traditional raw distance metric. Vehicle emissions are dependant on
the physical characteristics of the vehicle such as engine type and overall mass
as well as factors related to the current driving activities such as acceleration
and speed. Previous research in the area of optimisation has examined routing
problems such as Travelling Salesman on the basis of a simplistic underlying
geographical model, with a fitness function being based on the distance taken
by a vehicle within a given solution. This paper will examine the effects of
using emissions rather than distance covered as evaluation criterion. A more
realistic underlying geographical model is required, rather than one that assumes
a constant Euclidean distance between points.

In this paper we examine the Travelling Salesman Problem (TSP) based on
real-world street data using CO2 emissions as our evaluation criterion. The EA
employed produces permutations of delivery points, the path taken through the
street network between each point determined by the A* algorithm. It is feasible
to use a CO2 costing metric as the cost function of a search technique such as
Dijkstra’s algorithm, but the time taken to construct paths can be prohibitive.
In this work we are using the EA to find paths created on the basis of distance
that will contribute to a low CO2 TSP tour.
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2 Previous Work

The TSP is a well known mathematical problem that involves construction a
Hamiltonian Path within a graph. It is traditionally presented as finding the
shortest route that allows a travelling salesman to visit each location. The TSP
has been extensively investigated since the 1930s (for a brief history of TSP
investigation see [1]). Because of its simple construction the TSP has been used
for testing newly developed heuristics and algorithms.

The use of heuristic approaches to solve the TSP, such as Lin-Kernighan [2]
are discussed in [3] [4] [5] [6]. The authors of [4] [5] [6] have carried out extensive
investigations into the application of the Lin-Kernighan heuristic to very large
instances of the TSP. The work of these authors has included the implementa-
tion of the Lin-Kernighan heuristic within a TSP solver entitled CONCORDE
(Combinatorial Optimisation and Networked Combinatorial Optimisation Re-
search and Development Environment). A set of benchmark TSP instances is
maintained on the internet at the TSPLIB site [7]. Considerable research into
solving the TSP using EAs has been undertaken [8] [9] [10] some investigation
into the use of EAs to solve the Vehicle Routing Problem (VRP) has also been
undertaken [11][12][13][10].

3 Problem Description

3.1 The Geographical Data Source

In recent years sources of accurate geographical data have been made available
online by vendors such as Google Maps, ViaMichelin and TeleAtlas. Such encap-
sulates the topology of streets and to a certain extent the layout and character-
istics of road junctions. Within this paper the authors have used data from the
Open Street Map (OSM) project (available from www.osm.org under the terms
of the Creative Commons Attribution-Share Alike 2.0 licence). Data represent-
ing the street graph for the City of Edinburgh, Scotland has been downloaded
and stored within a local MySQL database. For each road section the length
and road class are stored. The authors have applied empirical knowledge and
data presented in [14] to allocate a realistic average speed to each class of road
(see table 1). At junctions the appropriate intersecting street details are stored
along with attributes such as the existence of traffic signals or a roundabout.
The model in use within this paper does not take into account waiting time at
junctions or gradients.

The A* algorithm may be used to construct a path between any two locations
within the OSM dataset, on the basis of shortest distance. A metric may subse-
quently be applied to calculate the cost associated with the route. In previous
research this metric has often been based upon distance travelled. By examining
the attributes of streets and junctions traversed within the route it is feasible to
apply a CO2 emissions metric to the route.
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Table 1. Average speeds allocated to OSM link classes. For any link class not in the
list, the default value (32kph) is used.

OSM Catagory Speed (kph)
default 32

unclassified 32
secondary 36
residential 36

primary 38
tertiary 38

trunk 64
motorway-link 80

motorway 112

3.2 Estimating Vehicle Emissions

The emissions characteristics of a specific vehicle will depend on a range of fac-
tors, such as engine size, fuel type and vehicle mass. The actual driving activity
and style also influences emissions through variables such as speed, acceleration
and gradient. The calculation of estimated vehicle emissions is non-trivial ex-
ercise for which a number of approaches have been proposed. In this paper we
examine two estimating techniques one based on [15] which attempts to calculate
fuel consumption over each second of the journey and relate emissions produced
to fuel used. The other (see section 3.4) is based on the work of [15] and assumes
and average emissions rate over a road based on the probable speed of vehicles
on that category of road.

3.3 Emissions Calculations Using a Fuel Consumption Model

A power based instantaneous fuel consumption model for road vehicles was pro-
posed in [15]. The model may be described as follows:

dF = αdt + β1RT dx + [β2aR1]a>0 forRT > 0 (1)
= αdt forRT ≤ 0 (2)

where

dF = fuel (mL) consumed over distance dx (metres) during time dt(s)
α = idle fuel rate (mL/s)
β1 = fuel consumption per unit of energy
β2 = fuel consumption during positive acceleration
a = acceleration (m/s), negative when slowing down
Rt = total force required to drive the vehicle (kN) expressed as follows:
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Rt = RD + Rl + RG,

RD = b1 + b2v
2,

Rl = Ma/1000,

RG = 9.81M(G/100)/1000,

(3)

where
v= speed (dx/dt) m/s
G = gradient (%) +ve or -ve
M = vehicle mass (kg)
b1, b2 = drag force function parameters

Appropriate values are provided in [15] to allow the model to be calibrated with
respect to a Ford saloon car, these values were derived from observations made
using an instrumented vehicle. This model is used by the authors of this paper
to estimate fuel consumed within a given solution to the TSP. The litres fuel
consumed are converted to Kg of co2 by multiplying by a conversion factor of
2.317 as specified in [16]. To estimate emissions from a route the model has
to be utilised in conjunction with a drive cycle. A drive cycle being a series
of data points representing the vehicles speed at given intervals (typically one
second in many applications). The authors convert the OSM route into a series
of interconnected drive cycles. Data for likely acceleration/deceleration curves is
taken from [14]. The drive cycle is built as follows:

– for each street section establish a likely average speed based upon the OSM
category using the values in table 1.

– create data points for that street within the drive cycle, speeds are not
constant but deviate slightly in cycles derived from TRL data [14]

– evaluate the action required for each junction (change in speed, stop/restart
etc) and plot appropriate data points (using acceleration/declaration curves
from the TRL data [14])

The estimated changes in speed required at a junction are based upon the fea-
tures present at the junction (traffic signals, roundabout etc) and the classifi-
cation of the incoming and outgoing roads. It is assumed that at any junction
having the attributes of a roundabout or traffic signals the vehicle will stop and
restart.

3.4 Emissions Calculations Using a Simpler Model

The model described in 3.3 requires the construction of a drive cycle, which
facilitates an attempt to model junctions, but is computationally expensive.
As a contrast a simpler model based on the work of [17] is also tested. This
is available as spreadsheet based model from the UK National Atmospheric
Emissions Inventory [18].

The model proposed by [17] is an average speed model that is applied to
each street section, with junctions being explicitly modelled. This negates the
requirement to construct a drive cycle. The model may be described as follows:
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em = (a + b.v + c.v2 + d.ve + f.ln(v) + g.v3 + h/v + i/v2 + j/v3)

Where

em = the emissions produced as grams of CO2 per km
v = speed (kph)
a,b,c,d,e,f,g,h,i,h =coefficients that define the specific characteristics of the ve-
hicle under consideration.

Values for a-j are provided within [17] for a range of vehicles. For the purposes
of linking this model to the EA under consideration the spreadsheet model has
been re-implemented as a set of Java classes. The model is applied to each street
within the route, the length of street and class of street being available from the
underlying OSM database. The average speed for that class of road is derived
from observations within [14]. This is a computationally simpler model, but lacks
the detail of that in section 3.3.

4 Experimental Method and Results

4.1 Problem Instances

Six problem instances were utilised, each requiring a visit to between 10 and 30
delivery points (addresses within the City of Edinburgh data set, see section 3.1)
starting and ending at specific start point. Table 2 shows the respective distances
between delivery points. The two data sets known as DS1 and DS2 were utilised
their delivery points were chosen at random, two data sets referred to as Ring
Road and City Centre were also utilised and two data sets big-20 and big-30 are
used to explore longer runs. Ring Road uses delivery points located adjacent to
the city’s outer ring-road and City Centre used 15 delivery points located within
the city centre area.

Table 2. A summary of the data sets used

DS1 DS2 Ring Road City Centre Big-20 Big-30
Delivery points 10 10 10 15 20 30

Average dist (km) 8.29 12.9 18.52 1.45 11.65 9.181

4.2 The Evolutionary Algorithm Employed

The evolutionary algorithm uses a steady state population of 10 individuals.
Each individual is a permutation of the points to be visited within the TSP
instance. Within each generational cycle a parent is selected using tournament
selection of size 2. A child is cloned from the parent and a mutation applied.
The child is copied back into the population, by conducting another tournament
and having the child replace the looser.
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The fitness function builds a route through the street data visiting the points
in the order they appear in the chromosome. To determine the path to be taken
between each set of points the A* algorithm is utilised as described in section
3.1. The metric used to cost the route will be as set in section 4.3.

4.3 Experimental Method

The EA was executed on each of the four data sets with each of the three routing
metrics were used to cost the TSP tours. The metrics used were raw distance and
those outlined in sections 3.3 and 3.4. Within the results tables these metrics are
referred to as dist, em and sEm respectively. Because of the non-deterministic
nature of EAs all experiments were repeated 10 times and the results averaged.

Where results produced using dist and sEm as the evaluation criterion are
being evaluated the em metric is applied to the final solution to produce a
comparable emissions value.

4.4 Results

The results obtained by the methods outlined in section 4.3 are illustrated in
table 5. The distances of tours do not increase significantly when the emissions
metrics are utilised. Note that in two cases (City Centre and DS2) a slight
decrease in the average distance is noted when optimising for emissions. The
biggest increase in distance being the 10% increase noted on the Ring Road
dataset. Table 3 shows the average emissions (kg/CO2) produced by solutions
when optimising for distance and for emissions. When comparing the emissions
produced by tours evaluated using the dist and em metrics all of the data sets
show an improvement. Less of an improvement is noted when sEm is utilised, in
the example of DS1, no improvement is noted. The improvements produced when
using the larger datasets (Big-20 and Big-30) are less than the improvement with
the smaller data sets.

Table 4 compares the emissions values produced by the individual results for
each dataset and metric using t-tests. The T-test is used to establish where
the difference in results is significant underlying changes. It suggests that the
improvements noted in emissions between TSP tours evolved with the dist and
em metrics are most significant in the smaller data sets. When optimising for
low emissions some increase in distance may be expected as evidenced in table
5. The reduction in emissions is shown in table 3.

Table 3. The average emissions (kg/CO2) produced by solutions when optimising for
distance and for emissions. Note that the final solution produced when using sEM or dist
is recalculated using em to ensure that it is comparable with that produced using em.

metric DS1 DS2 Ring Road City Centre big-20 big 30
dist 3.56 4.59 4.35 1.02 5.61 6.46
em 3.29 4.17 3.83 0.97 5.44 6.45

sEm 4.44 4.39 4.04 1.01 5.57 6.76
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Fig. 1. Two typical tours produced with the DS1 problem instance, showing each
delivery point (B-K) and the start/end point (A and L). The upper tour is op-
timised for minimum distance, the lower for minimum emissions. (Map c©2009
CloudMade - Map data CCBYSA 2009 OpenStreetMap.org contributors. http :
\\cloudmade.com/terms conditions )

Table 4. T-test results based on the raw emissions data presented in table 3 . The
t-test compares the emissions values produced by the individual tours with the em and
sEm metrics versus the dist metric.

metric DS1 DS2 Ring Road City Centre big-20 big 30
em 0.0034 0.0001 0.0001 0.079 0.391 0.9637

sEm 0.445 0.1096 0.0079 0.7 0.1748 0.2944

Table 6 shows how the road categories used in solutions based on raw distance
differs from those based on the emissions model. There do not appear to be any
general trends, which suggest that a specific class of road is generally utilised
more or less when costing the tours using a specific metric. But it should be
noted that the Ring Road data set shows a significant switch to roads of the
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Table 5. The average solution distance (km) when optimising for distance and for
emissions

metric DS1 DS2 Ring Road City Centre big-20 big 30
dist 60.2 84.9 70.6 13.1 107.6 114.43
em 60.8 88.33 79.8 13.3 113.3 125.08

sEm 60.7 83.9 77.8 12.8 110.9 117.15

Table 6. The effect of routing using the emissions metric by road class (expressed as
a %)

ds1 ds2 city centre
dist em sEm dist em sEm dist em sEm

primary 28.39 30.95 29.5 21 21.34 21.18 24.26 21.43 24.38
secondary 9.86 12.49 11.48 17.26 16.6 19.32 0.12 0.12 0.13
residential 29.38 29.85 26.34 27.52 24.49 27.93 16.03 16.89 15.99

unclassified 6.49 3.83 5.63 15.99 14.32 13.52 54.29 55.96 54.40
trunk 2.19 2.31 2.44 3.58 4.6 4.12 0.00 0.00 0.00

tertiary 23.69 20.57 24.62 14.65 18.67 13.92 5.30 5.59 5.10
ring road big-20 big-30

dist em sEm dist em sEm dist em sEm
primary 30.46 23.59 27.07 24.58 27.48 24.41 25.81 23.51 25.08

secondary 15.99 9.72 13.67 13.44 10.62 11.93 11.76 14.31 11.46
residential 13.73 10.72 11.12 28.74 26.51 28.29 26.81 27.26 28.47

unclassified 9.8 4.08 7.24 9.02 8.09 9.97 12.79 12.26 13.14
trunk 16.96 43.13 30.96 3.81 4.41 4.68 2.85 3.29 2.66

tertiary 13.06 8.76 9.95 20.41 22.88 20.72 19.97 19.37 19.20

trunk class when optimising for emissions and that all data sets show a slight
reduction in their use of unclassified roads when optimising for emissions.

5 Conclusions and Future Work

The results presented suggest that within the context of the TSP there exist new
challenges based upon the use of real-world data and emissions metrics. Of the
metrics used sEm (see section3.4) results are broadly similar to those obtained
using raw distance, this might be expected given that both methods rely heavily
on road weights. The em metric (see section 3.3) appears to reduce emissions
further with relatively little increase in distance, the principle difference between
the metrics being that em takes account of junctions. It should also be noticed
that within the City-Centre data set, very little improvement in emissions is
achieved. This data set has delivery points that are on average 1.45km apart,
which provides few opportunities for alternative routes that provide a lower emis-
sions factor. Overall it should be noted that the emissions reductions achieved
by the EA have been based on the ordering of the points to be visited. The path
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taken through the streets is determined by the A* algorithm. The improvement
is due to the EA evolving tours that incorporate paths with a low emissions cost.
There exists further potential for emissions reduction by applying the emissions
metric at the path finding stage.

Both of the emissions metrics discussed in this paper have weaknesses, neither
of them take into account all of the possible variables which may effect emis-
sions. Further research to determine those variables that most affect emissions
is required. Also required is to enhance the underlying map data to include fac-
tors such as congestion patterns and gradients. The inclusion of such additional
factors (especially those with a dynamic aspect such as congestion) will further
increase the complexity of the fitness function. A major challenge is to integrate
such techniques into existing EA and heuristics. It is desirable to apply the tech-
niques suggested in this paper to larger and more complex routing problems such
as the Vehicle Routing Problem with Time Windows.

The successful use of A*, rather than a heuristic specially designed to build
paths that meet low emission criterion suggests the potential to integrate with
existing routing services and products. It is anticipated that demand for such ser-
vices will increase as legislation forces communities and organisations to account
for, and reduce emissions.
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Abstract. In this work, we consider the Traveling Salesman Problem
with Pickup and Delivery (TSPPD), which is an extension of the well-
known NP-hard Traveling Salesman Problem. We propose a Genetic Al-
gorithm (GA) based on a specially tailored tour improvement procedure
for the TSPPD. Computational experiments are reported on the test in-
stances taken from the literature. The experimental results suggest that
the proposed GA yields a promising performance in terms of both accu-
racy and efficiency compared to existing algorithms in the literature.

Keywords: Genetic Algorithm, Traveling Salesman Problem, Pickup
and Delivery.

1 Introduction

The Traveling Salesman Problem with Pickups and Deliveries (TSPPD) is de-
fined on a complete graph G = (V, E). The vertex set is defined as V =
{0} ∪ Vd ∪ Vp, and it consists of a central depot 0, delivery customers Vd with
requirement di > 0, and pickup customers Vp with requirement pi > 0 for
i = 1, . . . , n. The edge (arc) set E = V × V denotes the edges connecting all
pairs of vertices. Let cij denote the length of the arc (i, j) between customers
i and j. Delivery customers receive goods from the central depot and pickup
customers send goods to the depot. A single vehicle of a given capacity Q serves
all customers without exceeding its own capacity. The vehicle starts and finishes
its tour at the depot. The objective is to minimize the overall tour length.

When the capacity Q is less than either
n∑

i=1
di or

n∑
i=1

pi, then there is no feasible

solution. The capacity constraints are redundant when di = pi = 0 for i = 1, . . . , n
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or Q is sufficiently large. For instance, when Q >
n∑

i=1
di +

n∑
i=1

pi holds the TSPPD

reduces to the classical Traveling Salesman Problem (TSP) (see Gutin and Pun-
nen [5]). The TSPPD is a generalization of the NP-hard TSP because the TSPPD
considers the additional capacity constraints such that the vehicle load should re-
main less than Q along the tour. TSPPD has many real-life applications such as
the distribution system of beverage industry where full bottles must be delivered
and empty ones must be collected.

In this work we deal with the standard TSPPD in which the total pickup and

delivery quantities are equal to the vehicle capacity, namely
n∑

i=1
di =

n∑
i=1

pi = Q

holds. In other words, the vehicle starts the tour at the depot fully loaded with
the total demand, performs all deliveries and pickups, and returns back to the
depot again fully loaded with total pickup quantities. Any TSPPD instance can
be transformed into the standard form by adding artificial customers located
to the depot that makes the total pickup and delivery quantities equal to the
vehicle capacity.

The TSPPD assumes that each customer is visited exactly once. Furthermore,
the delivery and pickup quantities are served simultaneously for each location. If
both a delivery and a pickup are located at the same location, the overall effect of
their service on the vehicle’s load is |di − pi| . That is to say, the vehicle should
first unload its delivery then should load its pickup. We can assume that the
customer is a delivery (pickup) customer if its delivery (pickup) size is greater
than or equal to its pickup (delivery) size. We also assume that for a customer i
with equal pickup and delivery quantities, i.e. di = pi, it is not possible to skip
the visit of customer i, because the customer cannot use its own stock to meet
the demand. Therefore, this customer must be visited although the visit does
not change the vehicle’s load. Note that if delivery and pickup quantities are
equal for each location then the problem reduces to the TSP.

Let xij denote whether the vehicle immediately travels from customer i to
customer j, yi stand for the total load carried immediately after delivery to
customer i, and zi denote the total load carried immediately before pickup from
customer i. According to the above mentioned assumptions the TSPPD can be
formulated as follows (Süral and Bookbinder [12]).

min
n∑

i=0

n∑
j=0

cijxij (1)

subject to
n∑

i=0

xij = 1 j = 1, . . . , n (2)

n∑
j=0

xij = 1 i = 1, . . . , n (3)

yj − yi + Qxij ≤ Q − dj i, j = 1, . . . , n; i 
= j (4)
zi − zj + Qxij ≤ Q − pi i, j = 1, . . . , n; i 
= j (5)
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yi + zi ≤ Q i = 1, . . . , n (6)
xij ∈ {0, 1} , yi ≥ 0, zi ≥ 0 i, j = 1, . . . , n; i 
= j (7)

The objective function is to minimize overall tour length. Constraints (2) and
(3) are the assignment constraints. Constraints (4) and (5) are the subtour elim-
ination constraints adapted from Miller et al. [8]. These two constraints ensure
that the vehicle load is kept less than or equal to its capacity at every customer.
Constraints (6) ensure that the delivery and pickup operations are performed
without exceeding the vehicle capacity Q. Finally, nonnegativity and binary re-
strictions are given in (7).

The earliest work on the TSPPD is performed by Mosheiov [11] who for-
mulated the problem and proposed the first TSP based heuristic algorithms.
Anily and Mosheiov [1] proposed an efficient O(n2) heuristic with worst case
performance of 2 based on the computation of shortest spanning trees on de-
livery and pickup customers. Gendreau et al. [4] have developed two different
heuristics: One is based on transformation of a TSP tour into a feasible tour
to the TSPPD and the other one is a Tabu Search (TS) approach employ-
ing a 2-exchange neighborhood (Lin [7]). Baldacci et al. [2] have proposed a
two commodity flow formulation of the TSPPD and devised a branch and cut
algorithm while Süral and Bookbinder [12] have solved the formulation given
above by using a standard integer programming solver. Hernández-Perez and
Salazar-González [6] have proposed two heuristics for the one-commodity pickup-
and-delivery traveling salesman problem. These algorithms are also used to solve
the TSPPD. The authors have put forward a greedy heuristic with a k-optimality
criterion and an incomplete branch-and-cut algorithm. Recently, Zhao et al. [13]
have developed a hybrid Genetic Algorithm (HGA) for the TSPPD. The authors
have used a new pheromone based crossover operator which uses both local and
global information to construct offspring. To the best of our knowledge there is
no other work published on the TSPPD.

In this work, we propose a Genetic Algorithm (GA) for the TSPPD. It runs
with a specially tailored depot removal-insertion based tour improvement pro-
cedure. We have observed that the GA with the tour improvement procedure
yields promising results. The rest of this work is organized as follows. In Section
2 we present the GA and the depot removal-insertion based tour improvement
procedure. The next section is where we present computational experiments.
Finally, we conclude with Section 4.

2 An Evolutionary Approach for the TSPPD

2.1 A Genetic Algorithm

In our GA we have randomly generated an initial population of solutions. The
initial Hamiltonian tours are generated considering all vertices except the depot.
Then we try to insert the depot to the first feasible available location. Finally,
2-exchange moves are applied to improve the initial instances. The length of a
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Hamiltonian tour has been considered as its fitness function. The path represen-
tation has been used as a chromosome representation of a Hamiltonian tour. In
this representation, the Hamiltonian tour is represented by an ordered sequence
of vertices.

The population size is carefully determined based on some preliminary ex-
periments. We have observed that when the size of the population is smaller;
the convergence of the GA becomes faster. Moreover, with the increasing pop-
ulation size one may encounter convergence problems. Considering the trade-off
between the population size and the convergence of the GA, we have decided to
employ a population size of 30 solutions. We have employed the Nearest Neigh-
bor Crossover (NNX) operator to generate an offspring. NNX randomly selects
a vertex as the starting point on the parent graph containing the edges from
the parents’ tours. A single offspring is generated by visiting the nearest unvis-
ited vertex using only the edges from the parents. Hence, NNX concentrates on
preserving edges from the parents. If a feasible tour cannot be found using the
edges from the parents, NNX considers all arcs in the original data to find the
next unvisited vertex. During the evolution process, we form a mating pool from
the current population by replicating each chromosome twice. Then we select
random pairs of the parents without replacement and we generate one offspring
from each pair by using the NNX operator. As a result of this operation the pop-
ulation is doubled. We sort the parents and offspring according to their fitness
values and we choose the best half of these chromosomes to the next generation.
After these steps, we apply mutation operators to the new population. For that
purpose, we perform a 3-exchange move to randomly selected 3 edges. Then,
among all possible combinations including the original Hamiltonian tour, we
choose the one with the lowest fitness function. The mutation operator is per-
formed for each offspring included in the new population. The population has
evolved through a number of generations until a stopping criterion is satisfied.
After a careful experimentation and fine-tuning process, number of generations
:= 2 × n is found to be a suitable choice for the algorithm. We stop the algo-
rithm, when the average fitness is the same in two consecutive generations. For
the details of EAs, see Michalewicz and David [10] and Michalewicz [9].

2.2 Tour Improvement Procedure

In his early paper Mosheiov [11] has shown that given a Hamiltonian tour
(i1, i2, . . . , ik, . . . , in) covering all the pickup and delivery points but the depot,
there exists at least one starting point ik on this tour such that when the depot
is inserted between ik and ik+1 the resulting tour, (i1, i2, . . . , ik, 0, ik+1, . . . , in)
is feasible for the TSPPD. Using this result Mosheiov [11] has proposed a two
stage Depot Insertion (DI) heuristic. In this heuristic first a Hamiltonian tour
consisting of pickup and delivery points is found. Then a starting point ik on
this tour is found such that the depot is feasibly inserted right after it. Mosheiov
[11] has noted that since the starting point that we will insert the depot is not
necessarily unique, among all possible starting points, the one which yields the
minimum tour length should be chosen.
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One possible direction to improve the DI heuristic is the use of a local neigh-
borhood search scheme. For instance, after the second stage of the DI heuristic
one may employ the (feasible) arc exchange neighborhood scheme proposed by
Gendreau et al. [4]. Another enhancement direction of the DI heuristic is to em-
ploy local search strategies in the first phase. After improving the Hamiltonian
tour in the first phase, one can find at least one feasible starting point where the
depot can feasibly be inserted in the new improved tour. The idea is illustrated
as follows. Consider a feasible TSPPD tour (0, 1, 2, 3, 4, 0) for a five vertex prob-
lem instance. When we apply 2-exchange operations on this TSPPD, assuming
that we do not harm the feasibility, we obtain the following five solutions:

(i) (0, 3, 2, 1, 4, 0) (ii) (0, 1, 3, 2, 4, 0) (iii) (0, 1, 2, 4, 3, 0)
(iv) (0, 2, 1, 3, 4, 0) (v) (0, 1, 4, 3, 2, 0)

As an alternative operation, first we propose to disconnect the depot from
the original TSPPD tour (0, 1, 2, 3, 4, 0) and we obtain the Hamiltonian tour
(1, 2, 3, 4, 1). Then when we apply 2-exchange on this tour, we obtain the follow-
ing neighbors:

(vi) (1, 2, 4, 3, 1) (vii) (1, 3, 2, 4, 1)

For each of these tours, including (1, 2, 3, 4, 1), we have four alternative locations
to reinsert the depot:

(viii) (0, 1, 3, 4, 2, 0) (xii) (0, 1, 4, 2, 3, 0) (xvi) (0, 1, 4, 3, 2, 0)
(ix) (0, 1, 2, 4, 3, 0) (xiii) (0, 1, 3, 2, 4, 0) (xvii) (0, 2, 1, 4, 3, 0)
(x) (0, 2, 1, 3, 4, 0) (xiv) (0, 2, 4, 1, 3, 0) (xviii) (0, 3, 2, 1, 4, 0)
(xi) (0, 3, 1, 2, 4, 0) (xv) (0, 2, 3, 1, 4, 0) (xix) (0, 1, 2, 3, 4, 0)

In total, we obtain 12 solutions. Observe that (i) and (xviii), (ii) and (xiii), (iii)
and (ix), (iv) and (x), and (v) and (xvi) are the same tours. Henceforth, we
can say that the depot removal, 2-exchange, and depot reinsertion operations
include (at least) all the neighbor solutions obtained with 2-exchange operation
applied to the original tour (0, 1, 2, 3, 4, 0).

Fig.1 illustrates the depot removal-insertion based tour improvement opera-
tion. Black (white) vertices represent the deliveries (pickups). There are eight
customers indicated by numbers on vertices and their demands are given in
parentheses. Positive (negative) demands correspond to pickup (delivery) re-
quests. The vehicle capacity Q is equal to 10. In the left hand side of Fig.1, the
solution is (0, 3, 2, 1, 4, 5, 6, 7, 8, 0) with the tour length 34.05 while in the right
hand side the improved solution is (0, 6, 5, 4, 3, 2, 1, 8, 7, 0) with the tour length
23.28. Observe that we have deleted edges (3, 0), (0, 8), (7, 6), (1, 4) and added
edges (1, 8), (7, 0), (0, 6), (3, 4).

The proposed depot removal-insertion based tour improvement procedure is
performed at the end of our GA for each Hamiltonian tour in the population.
Then the best solution is reported as the final output of the GA algorithm.
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Fig. 1. Depot Removal-Insertion Based Tour Improvement Operation

3 Computational Experiments

The proposed GA is tested on standard instances taken from the literature.
Our test bed contains two classes of instances generated by Gendreau et al.
[4]. Gendreau et al. [4] have used a β parameter to indicate the percentage of
demand allocated to pickups. More specifically, given the demand quantity di

of each vertex i of a vehicle routing problem (VRP) test instance, the delivery
quantity of that vertex is set to di and the pickup quantity pi is determined
according to the following rule:

pi =
{ �(1 − β)di�
�(1 + β)di�

if i is even
if i is odd i = 1, . . . , n

For each instance size, we set β = 0.00, 0.05, 0.10, 0.20,∞. For β = 0 we have a
TSP instance, and for β = ∞, the di and pi values are uncorrelated.

The first class of instances generated by Gendreau et al. [4] consists of 26 test
problems with customer sizes varying from 6 to 261. Test problems are derived
from the symmetric VRP instances from the literature. The second class consists
of randomly generated instances with n = 25, 50, 75, 100, 150, 200. di values are
randomly chosen within the interval [1, 100]. For each pair of n and β values, 10
instances are generated. Note that for instances in the second class with β = ∞,
di and pi values are uncorrelated and generated uniformly random in [1, 100].

Table 1. Best bounds obtained on the first class of instances

β TS TBB HGA GA
0.00 100.51 100.05 100.05 100.046
0.05 102.45 100.61 100.04 100.028
0.10 104.34 100.72 100.08 100.038
0.20 106.16 100.90 100.06 100.058
Average 103.37 100.57 100.06 100.04
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Tables 1 and 2 summarize the results of the first class of test instances. Each
cell of these tables stands for the average value obtained with 26 instances in the
first class. In Tables 3 and 4 we present the results obtained with the instances
in the second class. Each cell of Tables 3 and 4, indicates the average results of
10 instances for each pair of n and β values. In Tables 1 and 3, we present the
results obtained with several upper bounding approaches. The values reported

Table 2. Average CPU times spent on the first class of instances

β TS TBB HGA GA
0.00 3.10 0.93 1.41 1.69
0.05 2.18 0.87 1.41 1.78
0.10 2.31 1.07 1.42 1.78
0.20 2.26 1.02 1.43 1.58
Average 2.46 0.97 1.42 1.71

Table 3. Best bounds obtained on the second class of instances

β n TS TBB HGA GA
0.00 25 100.00 100.00 100.00 100.00

50 100.20 100.00 100.00 100.00
75 100.78 100.00 100.00 100.00
100 101.27 100.10 100.10 100.01
150 102.37 100.34 100.33 100.10
200 103.13 100.35 100.36 100.41

0.05 25 107.36 102.07 100.00 100.00
50 103.95 100.17 100.00 100.00
75 110.13 100.83 100.12 100.04
100 107.23 100.39 100.13 100.02
150 108.72 100.35 100.26 100.11
200 108.57 100.69 100.57 100.39

0.10 25 108.21 101.18 100.00 100.00
50 106.34 100.47 100.00 100.00
75 113.28 101.32 100.15 100.15
100 111.53 100.50 100.12 100.15
150 110.90 100.68 100.46 100.12
200 111.31 100.76 100.72 100.44

0.20 25 107.28 102.59 100.00 100.05
50 106.53 100.79 100.00 100.05
75 114.25 101.77 100.12 100.06
100 113.09 100.96 100.20 100.12
150 111.69 101.02 100.60 100.17
200 113.28 100.99 100.85 100.46

∞ 25 105.64 101.32 100.00 100.00
50 110.86 102.47 100.00 100.03
75 111.86 100.91 100.13 100.10
100 110.34 100.87 100.15 100.13
150 112.85 100.63 100.39 100.29
200 113.03 100.83 100.71 100.46

Average 108.20 100.85 100.22 100.13
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Table 4. Average CPU times spent on the second class of instances

β n TS TBB HGA GA
0.00 25 0.16 1.10 0.25 0.04

50 0.75 1.20 0.51 0.25
75 1.82 1.50 0.90 0.39
100 3.24 1.60 2.25 1.00
150 8.35 2.70 4.25 4.15
200 15.27 3.40 6.93 7.32

0.05 25 0.18 1.00 0.24 0.05
50 0.60 1.20 0.50 0.25
75 1.32 1.10 0.89 0.40
100 2.37 1.90 2.28 0.90
150 5.46 2.80 4.15 3.49
200 11.15 3.00 6.71 7.87

0.10 25 0.17 1.10 0.24 0.05
50 0.63 1.10 0.51 0.27
75 1.42 1.40 0.95 0.39
100 2.60 2.30 2.25 0.93
150 6.19 3.00 4.18 3.28
200 11.93 3.10 6.92 7.98

0.20 25 0.20 1.10 0.24 0.06
50 0.72 1.10 0.50 0.28
75 1.44 1.50 0.88 0.42
100 2.61 2.00 2.26 0.91
150 6.01 2.50 4.30 3.27
200 11.85 3.50 6.94 7.12

∞ 25 0.18 1.00 0.25 0.07
50 0.73 1.20 0.51 0.30
75 1.42 1.20 0.92 0.44
100 2.59 1.70 2.29 0.94
150 5.78 2.40 4.22 3.62
200 11.21 3.60 6.98 7.65

Average 3.95 1.91 2.51 2.14

Table 5. Scaled CPU times

Instance Set TS TBB HGA GA
First Class 2.46 0.97 0.77 1.05
Second Class 3.95 1.91 1.36 1.32
Average 3.21 1.44 1.07 1.19

are computed as 100×zUB/zTSP , where zUB(zTSP ) is the upper bound obtained
with the corresponding algorithm (the optimum TSP solution value). In Tables 2
and 4, we give the average CPU times. In Tables 1-4, the first columns include β
parameters. TS columns indicate the results obtained with the TS algorithm by
Gendreau et al. [4]. TBB columns include the results reported with the truncated
branch and bound algorithm by Hernández-Perez and Salazar-González [6]. HGA
columns indicate the results of the HGA devised by Zhao et al. [13]. The last
columns are for the results obtained with the GA. The last rows of the tables
stand for the averages of the corresponding columns.
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In order to compare the CPU time requirements of the algorithms we consider
the performance evaluation and benchmarking approach proposed by Dongarra
[3]. The author proposes to measure the power of a computer by its floating-point
rate of execution in Mflops. Both the TS and TBB are run on an AMD 1.333
GHz PC with 649 Mflops. The HGA is tested on a Pentium 1.33 GHz PC with
352 Mflops. Our experiments were performed on an Intel Pentium 2.2 GHz PC
with 400 Mflops. The estimated powers of these computers, in terms of Mflops,
are taken from Dongarra [3]. We scale the average CPU times to the slowest
computer namely, the computer on which the TS and TBB are run. Considering
the CPU times reported in Table 5, we can say that the HGA is slightly better
than the GA. However, for the instances in the second class, the GA is slightly
better. Therefore we can conclude that the proposed GA yields a comparable
efficiency to the HGA with a better accuracy.

Recall that the GA runs with the tour improvement procedure at the final
step for each member in the population and outputs the best solution. For the
sake of clarity, we should report that when the GA runs without the final tour
improvement procedure we have obtained average bounds of 100.29 (100.68) for
the first (second) class of instances. However, the bounds obtained with using
the tour improvement procedure are 100.04 (100.13) for the first (second) class of
instances. This shows us the power of our improvement that is specially tailored
for the TSPPD.

4 Conclusion

In this work, we consider the TSPPD which is an extension of the well-known
TSP. We have proposed a GA which includes specially tailored tour improve-
ment procedure for the TSPPD. Computational experiments are reported on the
standard test instances from the literature. According to the experimental re-
sults, we can say that the proposed GA performs at least as good as the recently
proposed HGA in terms of both accuracy and efficiency.

Acknowledgments. The authors thank two anonymous referees for their valu-
able comments and suggestions. The second author acknowledges the support
by Galatasaray University Research Foundation Grant 09.402.20.

References

1. Anily, S.E., Mosheiov, G.: Traveling Salesman Problem with Delivery and Back-
hauls. Operations Research Letters 16, 11–18 (1994)

2. Baldacci, R., Hadjiconstantinou, E., Mingozzi, A.: An Exact Algorithm for the
Traveling Salesman Problem with Deliveries and Collections. Networks 42, 26–41
(2004)

3. Dongarra, J.J.: Performance of Various Computers Using Standard Linear Equa-
tions Software, Technical Report CS-89-85, University of Tennessee CS Dept.
(2009)
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Abstract. The article describes an investigation of the use of fast
approximation heuristics for multi-objective vehicle routing problems
(MO-VRP). We first present a constructive heuristic based on the savings
approach, which we generalize to fit the particular multi-objective nature
of the problem. Then, an iterative phase based on local search improves
the solutions towards the Pareto-front. Experimental investigations on
benchmark instances taken from the literature show that the required
computational effort for approximating such problems heavily depends
on the underlying structures of the data sets. The insights gained in our
study are particularly valuable when giving recommendations on how to
solve a particular MO-VRP or even a particular MO-VRP instance, e. g.
by means of a posteriori or interactive optimization approaches.

1 Introduction

Since the early development of operations research techniques for problems found
in logistics, a considerable progress can be observed with solving challenging
optimization models from that domain. Nowadays, (semi-)automated planning
systems are available for a number of logistical applications. A prominent exam-
ple can be found in vehicle routing, where a given set of transportation orders
has to be served using a fleet of vehicles. The solution to such problems generally
involves the assignment of orders to resources (vehicles), as well as the routing
of the vehicles, and a common optimality criterion is found in the minimization
of the total cost of transportation. Besides, complex side constraints have to be
obeyed, such as time windows defining the availability of resources or express-
ing preferences of the customers. Often, such problems are referred to as ‘rich’
vehicle routing problems.

Practical vehicle routing problems not only involve numerous constraints, but
also other criteria besides the cost minimization objective, e. g. the maximization
of the provided service. Consequently, multi-objective problem formulations are
proposed in the literature. The simultaneous consideration of conflicting objec-
tives has some effects on the solution of vehicle routing problem formulations.
Since not a single optimal solution exists that optimizes all criteria at once, a
Pareto-set P containing equally Pareto-optimal alternatives must be found, and
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the choice of a most-preferred solution x∗ ∈ P must be made involving a human
decision-maker.

Solution strategies for multi-objective vehicle routing problems can be organized
in three ways.

1. A priori approaches first reduce the multi-objective formulation into a single-
objective one by introducing a utility function or some other approach with
which the preference of the decision maker can be expressed and measured.

2. A posteriori approaches on the other hand identify the Pareto-set P in an
offline optimization phase, and then allow the decision maker to identify
some most-preferred element x∗ ∈ P .

3. Interactive approaches aim to combine the above mentioned concepts by
allowing a gradual articulation of preferences, alternating between optimiza-
tion and decision making phases until some satisfying alternative is found.

Obviously, both the optimization and the decision making phase are time-
consuming processes, and time is, especially in operative planning problems, a
limited resource. Therefore, any practical implementation of a solution concept
must find the correct balance of each part. From that perspective, no general
recommendation of which of the three concepts should be used can be given.

(Meta-)heuristics have become increasingly popular for solving vehicle routing
problems [1,2,3,4]. More recently, multi-objective adaptations of such techniques
have been proposed and applied to the VRP [5,6,7]. Interactive approaches are
however still rather new and need to be studied further [8].

In the light of the explanations above, it becomes clear that more thorough
investigations are needed with respect to two issues. (i) First, fast approximation
approaches are needed, that allow the (approximation) solution of hard combina-
torial optimization problems within little time. Such ideas generally contribute
to the development of interactive approaches, that have to rely on decision sup-
port systems providing fast responses. (ii) Second, the cost of approximating
multi-objective vehicle routing problems using heuristic search algorithms must
be further studied, with ‘cost’ measuring the required computations effort for
finding (local) optima. The results obtained from the investigation may then
be used when trying to give recommendations on whether to opt for a priori,
a posteriori, or interactive approaches in the particular problem domain. As we
cannot expect to observe an algorithmic behavior independent from the under-
lying characteristics of the particular benchmark instances, structurally different
data sets are used for the experiments.

2 Problem Statement

The vehicle routing problem under multiple objectives as tackled in this article
is defined by a given set of customers, each of which must be served with a
given number of goods from a depot by means of a vehicle. It therefore falls
into the class of deterministic problems, an assumption which appears on a
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short planning horizon to be feasible in many practical cases. A formal problem
representation is possible using a graph G = (V, E), consisting of vertices vi ∈ V
representing customers i at given locations, and an interconnecting edge set
E representing the route network between the nodes, and traveling along the
edges of the graph results in a given travel time. For each customer i, time
windows [tei , t

l
i] are given, which define the desired time of service. With respect

to our multi-objective formulation of the problem, the earliest possible time of
service tei is interpreted as a constraint. The lasted desired time tli however may
be violated, but is penalized by means of an additional objective function as
described below [9].

Additional side constraints of the problem are capacity constraints of the ve-
hicles and their maximum total travel time tmax, which easily can be represented
by a (hard) time window at the depot node v0 by [te0 = 0, tl0 = tmax]. We further
require that all customers are serviced by exactly one vehicle, therefore avoiding
split-deliveries.

A feasible solution to the problem defines routes and thus delivery schedules
for each customer, respecting all given side constraints of the problem. Alterna-
tives are evaluated with respect to two criteria: The minimization of the resulting
cost and the maximization of the quality of the provided of service. While the
first criterion is translated into the minimization of the total traveled distances,
the second is represented by the total tardiness, thus providing a measure for
the punctuality of the deliveries.

Besides the scope of this investigation, other criteria might be of relevance
also, e. g. the minimization of the number of vehicles in use. On a short planning
horizon however, the available fleet for transportation is often constant, and
therefore is left aside here.

A considerable conflict among the two objective functions can be expected. A
simple argument for this is that a direct delivery to each customer will yield into
a minimum achievable tardiness, but will inflict high cost. Any practical solution
consequently must find a balance between the two criteria, and a human decision
maker will have to state his/her preferences with respect to the two issues in
order to identify a preferred compromise solution. From a decision support and
optimization point of view, being able to find all Pareto-optimal solutions, or at
least approximations to them, is therefore vital.

3 Solution Approach

3.1 Encoding of Alternatives

Alternatives to the above introduced problem are represented by a set of routes
R = {R1, . . . , Rm}, where each route Rj is driven by a particular vehicle. A route
Rj defines an ordered set of customers vi, which are visited in the sequence in
which they appear in the route Rj . Overall, it is thus possible to describe the
alternative as a permutation of customers, with additional partitions within the
permutation defining the routes.
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3.2 Constructive Phase: A Multi-objective Savings Heuristic

The construction of initial solutions is based on the savings heuristic [10]. In
this procedure, each customer is first assigned to a distinct vehicle. Then, routes
are, if feasible, combined, yielding a ‘savings’ in terms of the driven distances.
For example, the routes R1 = {v1} and R2 = {v2} may be combined into
R1′ = {v1, v2}, reducing the total driven distance by v0v1 + v0v2 − v1v2, with
v0 denoting the depot. Obviously, driving direction decisions play a role when
considering time windows. Therefore, R1′ = {v1, v2} but also R2′ = {v2, v1}
must be examined in this more general case.

It is possible to further generalize this approach for the above described two-
objective case, i. e. the case in which time window violations are generally allowed
but minimized by an objective function. What is needed is a mechanism control-
ling the degree to which time window violations are permitted. This is possible
by introducing an parameter TARDYmax that acts as a constraint when executing
the constructive savings procedure. While a minimum of TARDYmax = 0 is possi-
ble, no trivial statements can be made about its’ maximum value. Therefore, a
first setting of the control parameter would be to assume TARDYmax = ∞.

Algorithm 1 describes the logic behind the proposed procedure. A natural
termination criterion is found when obtaining a value of TARDYmax < 0, which
cannot be used an a constraint in a further loop. As a result, the algorithm
returns a first approximation of the Pareto-set, denoted with P approx.

Algorithm 1. Multi-objective savings heuristic
1: Set P approx = ∅
2: Set TARDYmax = ∞
3: repeat
4: Create new alternative using the Clarke and Wright savings heuristic [10]: In

this procedure, allow a maximum tardiness per customer of TARDYmax

5: Update P approx with the new alternative
6: Obtain the maximum tardiness TARDY′max from the constructed alternative, set

TARDYmax := TARDY′max

7: Set TARDYmax := TARDYmax − 1
8: until TARDYmax < 0
9: return P approx

3.3 Iterative Phase: Population-Based Multi-operator Search

The elements of the initial approximation P approx are further improved by means
of local search. In contrast to the single-objective case, which commonly concen-
trates on the minimization of the traveled distances (or a similar function), some
modifications must be made to heuristic search procedures in order to treat the
multi-objective nature of the problem.
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One the one hand, a set of solutions must be kept throughout the iterative
phase. Naturally, evolutionary approaches possess this property, and therefore
are a good basis for the considered case. On the other hand, the chosen neigh-
borhood operators must be able to improve the solutions not only with respect
to the classical minimization of the traveled distances, but also with respect to
other criteria.

In the light of the discussion above, a population-based local search strategy
making use of several neighborhood operators at once has been used to solve the
problem at hand. We propose to use inversion, exchange, and move operators,
each modifying the sequence of customers within the routes. An inversion is
defined by the reversal of a subsequence of customers, e. g. transferring R =
{v1, v2, v3, v4, v5, v6} with the given positions p1 = 2 and p2 = 5 into R′ =
{v1, v5, v4, v3, v2, v6}. An exchange swaps the positions of two jobs, i. e. for the
example of R = {v1, v2, v3, v4, v5, v6} and the given positions p1 = 2 and p2 = 5 a
resulting R′ = {v1, v5, v3, v4, v2, v6}. Finally, a move-operator moves a customer
from some position p1 to p2, keeping the rest of the sequence untouched.

As the neighborhoods are not disjunct, some calculations can be omitted
when starting with a particular neighborhood and then continuing with another,
obtaining a computational speedup by avoiding unnecessary (duplicate) moves.

Algorithm 2 describes the steps of the procedure. Again, a natural termina-
tion criterion can be mentioned, which is the identification of an approximation
set P approx containing local optima only.
Overall, the procedure can be characterized as a multi-point multi-neighborhood
search algorithm. The concept incorporates ideas from Pareto Local Search
[11] and Variable Neighborhood Search (VNS) [12]. Contrary to VNS however,
all neighborhood operators are applied when improving the alternatives, thus
searching the neighborhoods considerably more thoroughly.

Algorithm 2. Multi-objective local search
Require: P approx, P approx 
= ∅
Require: Neighborhood definitions NH = {NH1, . . . , NHk}
1: repeat
2: Select some element x from P approx that is not marked as ‘investigated’
3: Compute all feasible neighbors NH(x) =

⋂k
i=1 NHi(x)

4: Evaluate the neighbors
5: Update P approx with NH(x)
6: if x ∈ P approx then
7: Mark x as ‘investigated’ w. r. t. the local search, thus excluding it in further

loops from the neighborhood search procedure
8: end if
9: until All elements of P approx are locally optimal w. r. t. NH

10: return P approx

Remark. Step 6 is required, simply because the previous line 5 may lead to a
removal of x from P approx.
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4 Experimental Investigation

Experiments have been conducted with the initially sketched aim of investigating
the computational effort that comes with solving certain data sets. Recalling, that
in an interactive setting with alternating phases of search and decision making, the
time allocated for the optimization runs may be limited, such insights come useful
when giving recommendations for how to tackle a particular problem.

4.1 Benchmark Data

We chose to use established benchmark data from the literature for our experi-
ments. Firstly, this data is openly available, and thus can easily be cross-checked
by our peers. Secondly, different problem characteristics are present in the data
sets, allowing us to compare the obtained results for instances with differing
attributes.

First investigations have been carried out using the famous Solomon VRPTW
instances [13]. The data sets contain 100 customers, distributed in an euclidian
space, following certain distribution patterns. Such patterns comprise ‘clustered’,
‘random’, and a mixture of both, ‘random-clustered’ instances. Besides, variants
with ‘wide’ and ‘narrow’ time windows exist, simply meaning that average values
of tli − tei are considerable smaller in the latter case.

Figure 1 plots the geographical data of the instances. Interestingly, the
clustered data sets show a different geographical distribution of the customers
depending on the properties of the time windows. The random and random-
clustered instances are however geographically identical, independent from time
window data.

4.2 Experiments and Results

Both the constructive and the iterative phase of the local search algorithm have
been tested on the described benchmark data sets. A total of 56 instances has
been used, as reported in more detail in Table 1.

Table 1. Solomon data sets

Graph Time windows No of instances

Clustered Narrow 9
Clustered Wide 8
Random Narrow 12
Random Wide 11
Random-clustered Narrow 8
Random-clustered Wide 8
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Fig. 1. Solomon instances: Geographical distribution of the depot and the customers

Constructive phase. Table 2 gives the data obtained from the constructive phases
of the algorithm. Obviously, the average computational effort is heavily influ-
enced by the underlying structures of the problem, especially when comparing
the classes of clustered versus random/random-clustered data sets. Clustered
data sets are in average more than ten times faster approximated than instances
of the other categories.

Besides the sheer difference in terms of the amount of computations, the aver-
age number of elements in the first approximation set P approx differ depending
on the structural properties of the data sets. Few solutions are found for clustered
instances, and significantly more for the ones of the other classes.

The two findings of this phase of the algorithm go hand in hand. It can
be expected that an approximation run yielding a set of larger cardinality is
more costly. Then however, this does not entirely explain the apparent difference
between the classes of instances. We can suspect that the clustered instances
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Table 2. Results of the constructive phase

Graph Time Average Average of Average
windows eval. |P approx| hypervolume

Clustered Narrow 2,983 6 0.5775
Clustered Wide 4,276 4 0.4724
Random Narrow 92,702 29 0.7417
Random Wide 44,151 31 0.6891
Random-clustered Narrow 54,336 31 0.7378
Random-clustered Wide 56,469 38 0.6981

favor solutions in which vehicles do not travel in between clusters, canceling out
a rather big number of potential solutions. As the other, random instances do
not posses this property, more savings are feasible here. In combination with the
recursive computation of alternatives as given in Algorithm 1, this leads to an
approximation set of larger cardinality.

The rightmost column of Table 2 states the average hypervolume [14] of the
obtained approximations. By normalizing the objective function values, the hy-
pervolume assumes a value between 0 and 1, 1 being the best-possible outcome.
The reference point has been chosen such that each element of the approximation
sets contributes to the hypervolume, also including the later following results of
the iterative phase.

It can be seen, that the average hypervolume obtained for instances with nar-
row time windows is better than the one for instances with wide time windows.
Besides, instances with random and random-clustered customers are better ap-
proximated when considering the resulting hypervolume indicator.

Iterative phase. The results of the succeeding improvement phase are given in
Table 3.

Again, a considerable difference of the computational effort for finding local
optima can be, depending on the structural properties of the instances, found.
While the algorithm converges rather fast for clustered data sets, significantly
more evaluations are required for random, and even more for random-clustered

Table 3. Results of the iterative phase

Graph Time Average Average of Average Hypervolume
windows eval. |P approx| hypervolume improvement

Clustered Narrow 52,473 6 0.8715 63%
Clustered Wide 186,456 5 0.9569 178%
Random Narrow 1,379,383 270 0.8312 13%
Random Wide 12,425,077 418 0.8115 20%
Random-clustered Narrow 2,032,069 320 0.8443 15%
Random-clustered Wide 24,412,509 557 0.8497 22%
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instances. Then, the influence of the time windows becomes apparent. Relatively
wider time windows lead to less constrained problems, resulting in more potential
candidate solutions that have to be examined before reaching a set of local
optima.

The difference of the average cardinality of the approximation sets P approx is
rather big. This is especially the case between the clustered instances and the
random/random-clustered ones with large time windows. It is interesting obtain-
ing this result, especially as it implies that a decision making phase involving a
human decision maker will have to work with candidate sets of rather different
cardinality. Consequently, different Multiple Criteria Decision Making/Aiding
techniques may be used, depending on whether they support decision aiding for
many efficient alternatives or not.

Clearly, the iterative phase further contributes to the quality of the obtained
results. In case of each single instance, significantly improved solutions have been
found. Table 3 illustrates this by reporting the average hypervolume and the rel-
ative improvement upon the results of the constructive phase. Relatively higher
improvements have been achieved in cases where the constructive phase first led
to weaker results. This implies that the succeeding iterative phase successfully
balances out the comparably weaker first approximation. Especially for clustered
data sets, this is the case.

5 Conclusions

Several insights in the structures of the investigated problem and several con-
clusions arise from our work.

First, a fast approximation heuristic based on the savings construction proce-
dure has been presented. A first and computationally cheap approximation has
been possible by use of the proposed concept. Considerable differences of the
computational effort can be found depending on the structures of the data sets.
Especially for instances with geographically clustered customers, comparably
few computations are required before the algorithm terminates. Nevertheless, a
range of alternatives is obtained, allowing the presentation of some first variety
of solutions to the decision maker.

Second, population-based local search using multiple neighborhood structures
has been tested on the benchmark instances. Again, the computational effort
required for finding local optima is significantly influenced by the geographical
distribution of customers, and the tightness of the time windows. Maps with
randomly distributed customers and wide time windows require significantly
more computations than clustered data sets with narrow time windows. With
respect to the overall quality of the results, the local search significantly improves
the initial approximation.

With respect to our aim of providing decision support in multi-objective vehi-
cle routing, we may conclude that clustered data sets with narrow time windows
appear better suited for interactive approaches than instances with randomly
distributed customers and wide time windows. In the latter case, a posteriori
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approaches should be given preference, assuming that the time allocated for
search in between decision making phases is scarce.
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Abstract. Eight problems of a practical staff scheduling application
from logistics are used to compare the effectiveness and efficiency of
two fundamentally different solution approaches. One can be called cen-
tralized and is based on search in the solution space with an adapted
metaheuristic, namely particle swarm optimization (PSO). The second
approach is decentralized. Artificial agents negotiate to construct a staff
schedule. Both approaches significantly outperform todays manual plan-
ning. PSO delivers the best overall results in terms of solution quality
and is the method of choice, when CPU-time is not limited. The agent
approach is vastly quicker in finding solutions of almost the same quality
as PSO. The results suggest that agents could be an interesting method
for real-time scheduling or re-scheduling tasks.

Keywords: staff scheduling, sub-daily planning, particle swarm opti-
mization, multi-agent system, combinatorial optimization.

1 Introduction

Employees spend up to 36% of their working time unproductively, depending
on the branch [14]. Major reasons include a lack of planning and controlling.
Staff scheduling assigns employees to workstations subject to constraints. In
practice, planning often takes place based on prior experience or with the aid
of spreadsheets [1]. It is obvious that demand-oriented staff scheduling cannot
be realised with these planning tools. Even with popular staff planning software
employees are regularly scheduled for one workstation per day. However, in many
branches, such as logistics and trade, the one-employee-one-station concept does
not correspond to the actual requirements and sacrifices potential resources.
Intra-day variations in demand require more flexible changes of employees among
workstations. Therefore, sub-daily planning should be an integral component of
demand-oriented staff scheduling.

Staff scheduling is a hard optimization problem. Garey and Johnson [6] demon-
strate, that even simple versions of staff scheduling problems are NP-complete.
Kragelund and Kabel [10] show the NP-hardness of the general employee
timetabling problem. According to Puppe et al. [15], centralized scheduling ap-
proaches are difficult to employ successfully. In this paper we investigate whether
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this is actually true for sub-daily staff scheduling problems, which are typical for
industries such as trade and logistics as well as call centers. A centralized meta-
heuristic approach that utilizes Particle Swarm Optimization (PSO) is compared
to a decentralized multi-agent approach. PSO was chosen because in previous tests
it outperformed other heuristics, namely evolution strategies [12] and Local Search
[16] on the given test problems. Multiple artificial agents, on the other hand, are a
promising way to achieve decentralized problem solving.

In the following section, we describe the practical planning scenario from
logistics before we discuss work related to our own research in Section 3. Section
4 presents the two solution methods based on PSO and artificial agents. The
experimental setup and empirical results are presented and discussed in Section
5. The paper concludes with a short summary.

2 A Real-World Problem from Logistics

Due to the given page limit the problem can not decribed in detail here. For
a compehensive description and a mathematical representation see [12]. And
for real-world data sets and benchmarks see [16]. The present problem origi-
nates from a German logistics service provider where the task is to find a staff
schedule that respects certain hard constraints and minimizes the violation of
soft contraints. An example of a hard constraint is that any one employee must
only be assigned to one workstation at a time. An example of a soft constraint
would be the avoidance of understaffing. The violation of soft constraints is pe-
nalized with error points that reflect the companys requirements. The objective
is to minimize the total count of error points. Ernst et al. offer a summary of
papers related to the issue of staff scheduling [5]. They identify certain categories
of problems, such as flexible demand. Our application can be classified as this
category and additionally as task assignment.

The tasks of employees concern logistic services e.g. loading and unloading
or short distance transportation. The employees are quite flexible in terms of
their working hours, which results in 13 different working-time models. There
are strict regulations with regard to qualifications, because the assignment of
unqualified employees might lead to significant damage. Many employees can
work at several different workstations. Currently, monthly staff scheduling is
carried out manually within MS EXCELTM. Employees are assigned a working-
time model and a fixed workstation each day. Several considerations are included,
such as absence, timesheet balances, qualifications and resting times etc. The
personnel demand for each workstation is subject to large variations during the
day, causing large phases of over- and understaffing. This lowers the quality of
service and the motivation of employees and leads to unnecessary personnel costs
as well as downtime.

We investigate a total of 8 problem instances associated with this practical
case: planning for the full week as well as planning each of the seven days indi-
vidually. The full week problem covers seven days (20 hours each), divided into
15-minute intervals. It includes 65 employees and, thus, an uncompressed total
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of 36,400 dimensions for the optimization problem to be solved. The general
availability of the employees (based on working-time models) is known for each
interval from the previous full-day planning and must not be changed. Nine
different workstations need to be filled. Planning the individual days is less com-
plex with 80 time slots and between 38 and 46 employees to be considered. The
demand schemes vary significantly for different days so that a representative
spectrum of the real-world situation is given in the problem instances.

A solution is represented as a two-dimensional matrix of employees and time
periods, where the cells are filled with workstation assignments (Table 1). To
mark times, in which an employee is not present due to his work-time model,
workstation 0 is used. For example, employee two is absent in the first period
and then is assigned to workstation 2. Assignment changes can only be made to
cells of available employees.

Table 1. Assignment of workstations in a matrix

period
employee

1 2 3 4 5 6 ...
1 1 1 1 1 1 1
2 0 2 2 2 2 2
3 0 1 1 2 2 2
...

3 Related Work

Poli analysed the IEEE Xplore database for the thematic grouping of PSO ap-
plications in 2007 [13]. Of approximately 1,100 publications only one work is
focused specifically on timetabling [3], which is related to our own application
problem. Chu et al. adjust PSO to the combinatorial domain [3]. No longer is
the position of a particle determined by its speed, but rather by using permuta-
tion operators. Brodersen uses this concept for a related problem of university
timetabling [2].

In a different paper, we compare heuristics based on PSO and evolution strate-
gies (ES) for the current problem set. PSO outperforms ES on a statistically
significant level [12]. Moreover, PSO also shows better performance than local
search [16]. It is this PSO-implementation (with a repair heuristic added) that
we compare to a multi-agent approach here. In [7] various neighbourhood topolo-
gies are tested for the same problems with a gBest topology, where each particle
is a neighbour of every other particle, performing best.

Puppe et al. [15] present two concepts for artificial agents on scheduling in
hospitals. In the resource-oriented view each resource or the associated organi-
zational unit is represented as an agent. This concept is more applicable, when
the problem is static. In the patient-oriented view, an agent is created for every
patient examination, which is more adapted to dynamical problems.
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Krempels [11] also creates a staff schedule by using agents. The agent approach
is divided in several phases. Initially a planner agent creates a plan ignoring staff
preferences. Thereafter, the planner tries to improve the plan by incorporating
preferences. A knowledge tank stores all relevant aspects of the resources. In case
of a conflict, an agent is created for each staff member, followed by a negotiation
phase.

De Causemaecker et al. [4] make comments on negotiation schemes for course
timetabling. Only necessary information should be exchanged among agents.
Moreover, a negotiation process should not take exceedingly long.

4 PSO and Artificial Agent Approach

4.1 PSO for This Application

The basic principles of PSO were developed by Kennedy and Eberhart among
others [8], [9]. Swarm members are assumed to be massless, collision-free
particles, that search for optima with the aid of a fitness function within a
solution space. In this process, each single particle together with its position
embodies a solution to the problem. While looking for the optimum, a particle
does not simply orient itself using its own experience, but also using the ex-
perience of its neighbours. The particles exchange information, which can then
positively influence the development of the population in the social system as a
whole. The following pseudocode presents an overview of the implemented PSO.
Here, pBest represents the best position found so far by the particle while gBest
corresponds to the best position of all particles globally.

01: initialise the swarm
02: evaluate the particles of the swarm
03: determine pBest for each particle and gBest
04: loop
05: for i = 1 to number of particles
06: calculate new position // use the 4 alternative actions
07: repair the particle
08: evaluate the particle
09: if f(new position)<f(pBest) then pBest=new position // new pBest
10: if f(pBest)<f(gBest) then gBest=pBest // new gBest
11: next i
12: until termination

The initialisation of the particle position creates valid assignments w.r.t. the
hard constraints by using information from the company’s current full-day staff
schedule. Valuable prior knowledge is not wasted. Based on this plan, improved
solutions can now be determined that include plausible workstation changes.

In each iteration the new particle position is determined by traversing all di-
mensions and executing one of the following actions with predefined probability.
The probability distribution was heuristically determined in prior tests. The be-
haviour of the PSO-heuristic is relatively insensitive to changes of p1, p3, and
p4. The optimal value for p2 depends on the problem size.
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– No change (p1=9.7%): The workstation already assigned remains.
– Random workstation (p2=0.3%): A workstation is randomly determined

and assigned. Only those assignments are made, for which the employee is
qualified. The probability function is uniformly distributed.

– pBest workstation (p3=30%): The corresponding workstation is assigned to
the particle dimension from pBest. Through this, the individual PSO com-
ponent is taken into account.

– gBest workstation (p4=60%): The corresponding workstation is assigned to
the particle dimension from gBest. gBest was found to work best as a neigh-
bourhood topology for this type of application in [7]. By considering the best
position of all particles, the swarm’s experience is included in the position
calculation.

PSO employs a repair heuristic to reduce the total error points of a solution
before it undergoes evaluation. This repair heuristic corrects constraint violations
in the following order, based on error point size:

– qualification: employees, not qualified for the currently assigned workstation,
are given an appropriate assignment, whilst ignoring under- or overstaffing.

– no demand: employees, currently assigned to a workstation with zero de-
mand, are given a different assignment (if possible), whilst simultaneously
considering their qualification.

– understaffing: if workstations are understaffed, employees are reassigned from
other workstations with overstaffing (if possible) also considering their qua-
lification. Simultaneously the problem of overstaffing is reduced.

The characteristics of PSO have not been changed with these modifications.
There are merely changes in the way to determine a new particle position, so
that the calculation of the velocity is not needed. The current form of position
determination makes it unnecessary to deal with dimension overruns. All other
peculiarities of PSO, regarding social or individual behaviour, remain. In our
implementation, PSO terminates after 400,000 inspected solutions. Alternatively,
convergence-based termination criteria could be employed.

4.2 Artificial Agents for This Application

Following the suggestion of Puppe et al. [15], resource-oriented agents are used
for this static staff scheduling application. In our problems, constraints and
preferences come from two directions. On one side is the employer who aims
at reduced overall costs, a high service level, the consideration of qualifications
in the schedule etc. On the other side there are the employees, that try to en-
force their rights, such as legal regulations and the minimization of workstation
rotations during the day. Consequently, following Krempels [11], our approach
is structured in two phases associated with employer and employees.

Fig. 1 shows a schematic representation of our multi-agent approach, which
also respects the recommendations in [4]. The individual steps, that finally con-
struct a staff schedule, can be described as follows:
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Fig. 1. Representation of the agent approach for the logistics problem

– First, the properties of existing resources, current demands and conditions
of the problem space are stored in the knowledge tank (0). This information
includes absence of employees, required qualifications, error-point values for
violations of restrictions, personnel requirements of each interval etc.

– The information in the knowledge tank is supplied (1) to three agents (2),
(5) and (6).

– Before starting to plan, service agent (2) initialises the schedule by assigning
all employees to a dummy workstation. This indicates, that these employees
are not currently assigned to an actual workstation.

– Following that, service agent (2) ranks the nine workstations, with the high-
est priority going to workstations for which the least number of employees are
qualified. Should the number of qualified staff for two or more workstations
be identical, then the priorities are ordered at random.

– Scheduling agents (3) are sequentially initialised by the service agent (2),
according to priority. Each scheduling agent (3) represents one of the nine
workstations. Only one scheduling agent (3) exists at any time. The schedul-
ing agent, for which the fewest employees are qualified, begins. He schedules
qualified employees, who are present and have not yet been assigned. Over-
and understaffing should be minimised as much as possible. The planning
result of the first scheduling agent is passed (4) to service agent (2), which in
turn gives feedback regarding the schedule to the knowledge tank (1). Then,
service agent (2) initiates the next scheduling agent (3), which also attempts
to cover its personnel demand as best as possible. During this process, previ-
ously assigned employees may not be deployed to subsequent workstations.
Service agent (2) sequentially initiates scheduling agents (3) until all nine
workstations have been processed.

– After an assignment plan was created, there could still be employees in some
timeslots, who have not yet received an assignment. Switching employees to
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other workstations could result in better coverage of demand. The service
agent (2) calls a scheduling agent (5), also connected (1) to the knowledge
tank. Scheduling agent (5) finalises the schedule by deploying all workers,
who are still unassigned, necessarily accepting overstaffing. Possible switches
are again checked as to whether they would lead to better demand coverage
and those that would are carried out.

– Assignment planning was done up to now from the point of view of the
company. This occurred while neglecting employee needs – the reduction of
the number of workstation rotations. For this reason, scheduling agent (5)
initiates another service agent (6) in order to consider employee preferences.
This service agent (6) is also connected to the knowledge tank (1).

– Service agent (6) examines each timeslot in the schedule and checks whether
a workstation rotation occurs. If this is the case, all workers are identified
for whom a negotiation could occur for this timeslot. They must be present
in the timeslot and qualified for the switch. Service agent (6) simultaneously
generates a staff agent (7) for each relevant employee. In contrast to the
scheduling agents (3), more than one staff agent exists at the same time.

– Two staff agents (7) negotiate a workstation assignment switch (8) in the
following way: The staff agent where the service agent (6) identified a work-
station rotation sequentially asks the other staff agents for a swap. Each
staff agent knows its current workstation assignment at times t, t-1 und
t+1. The two communicating staff agents exchange only information about
their assignments at time t. Without re-calculating the whole fitness function
they can now decide, if a swap would reduce the overall error count of the
schedule. If this is the case, they agree to swap and communicate (9) this
to the service agent (6). Then, the swap is executed and all staff agents are
deleted. If a swap would not reduce the error count, the process continues
by asking the next staff agent in the queue. As a result, a swap may or may
not occur for each staff agent where a workstation rotation was identified,
depending on the availability of a swap option that improves the overall error
count of the schedule.

– In addition to the negotiation (8) between staff agents (7), a negotiation is
also carried out between the service agent (6) and the staff agent, for which
the workstation rotation was identified. The goal of this negotiation is not to
execute a switch with another staff agent, but rather to carry out a switch
at time t for the workstation at which the employee is working at times t-1
or t+1. This also helps reduce the number of workstation rotations. Service
agent (6) only agrees to the switch, if the overall quality of staff assignments
does not deteriorate. The result of the negotiation is either the assignment
to a different workstation at time t (and thus the reduction of workstation
rotations) or keeping the assignment as is. This decision is reported to service
agent (6) and carried out.

– Service agent (6) repeats the last three steps up to the point where no further
improvements occur.
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Table 2. Comparison (error points) of the approaches, based on 30 independent runs
each. Best results are bold and underlined. For PSO, the swarm size is given in brackets.

error number wrong under- overstaffing
of skills staffing in minutes

heuristic mean min standard job- in in demand demand
deviation changes minutes minutes >0 =0

manual plan 411330 411330 - 0.0 1545 20130.0 14610.0 33795.0
PSO (10) 51752 51736 9.2 1502.2 0 7365.0 28395.0 7245.0
PSO (20) 51781 51763 9.3 1531.4 0 7365.0 28395.0 7245.0
PSO (100) 51826 51811 9.0 1575.8 0 7365.0 28395.0 7245.0
Agents 51829 51801 15,4 1579,0 0 7365.0 28395.0 7245.0

Table 3. t-test results for comparison of multi-agent approach and best PSO

95% confidence intervall
H1 T df

significance mean
of differences

H0 (l-tailed) difference
lower upper

PSO(10) < Agents -23.57 47.17 < 0.001 -77.27 -83.86 -70.67

5 Results and Discussion

The results of the various scheduling approaches for the problem of the whole
week are shown in Table 2. All test runs were conducted on a PC with an
Intel 4 x 2.67 GHz processor and 4 GB of RAM. Thirty independent runs were
conducted each time for each of the experiments to allow for statistical testing.
An individual run with the multi-agent approach takes approx. 1 sec of CPU-
time. The runtime requirements for the PSO approach are much higher and
in the order of 50 minutes per run (PSO terminates after 400,000 inspected
solutions). This effort, however, is acceptable as there is sufficient time available
for creating the schedule.

Starting with the complex entire week problem, the full-day manual staff
schedule with MS EXCELTM results in 411,330 error points. All heuristics for
sub-daily staff scheduling significantly outperform the manual full-day schedule
in terms of total error points. This demonstrates the value of sub-daily scheduling
as compared to today’s standard staff scheduling approach. The problems of
understaffing and overstaffing for periods without demand are greatly reduced.
On the other hand, all approaches lead to more overstaffing in periods with
demand > 0, as compared to the initial plan. This, however, is sensible because
employees can still support each other instead of being idle when demand = 0.

PSO provides the best results with a rather small swarm size of 10 particles,
but also larger swarm sizes produce good results. Many steps are required to
arrive at a good schedule. Thus, it seems preferable to track changes for more
iterations as compared to a higher diversity through larger population or swarm
size with the current termination criterion.



PSO and an Agent-Based Algorithm for a Problem of Staff Scheduling 459

The results from the multi-agent system are quite close to the schedules cre-
ated by PSO. With 30 independent runs for each heuristic it is possible to test the
performance difference of the best parameterisation of PSO (swarm size 10) and
the multi-agent approach for statistical significance with a t-test (see Table 3). A
Levene-test revealed the heterogeneity of variances (test level 5%) between both
groups (F = 6.585, p = 0.013). The corresponding t-test with a 95% confidence
interval confirms the better performance of PSO (10) with a very high statistical
significance (p < 0.001 for H0).

An advantage of the multi-agent system, alongside the low CPU-requirements,
is the relative simplicity of its scheduling strategy. While it is hard for a staff
planner to grasp what is really happening during optimization with PSO, the
acceptance for the agent-derived solution is likely to be far higher, since the indi-
vidual steps of the planning and negotiation procedure are relatively straightfor-
ward and familiar for staff managers. The importance of this comprehensibility
for the acceptance of the resulting schedule should not be underestimated.

The agent approach does not violate qualification constraints and over- as
well as understaffing are reduced to the possible minimum as found by PSO.
It is only the number of sub-daily workstation rotations that is greater in the
solutions produced by the multi-agent system. To achieve an improved solution
quality, an extended re-scheduling and swapping of assignments would have been
required. It must consider more than two staff members in parallel as well as
large parts of the planning horizon. This is beyond what is possible through one-
to-one negotiation of a staff agent with the service agent or other staff agents.
It can only be achieved with the aid of a central planning instance, that partly
ignores the individual preferences of agents for a better overall result of the
entire schedule. Such a central planning instance, however, is not in line with
the distributed negotiation and decision scheme that is generally associated with
multi-agent systems.

The multi-agent and PSO approaches were also tested on the smaller problem
sets, representing the individual days of the week. Table 4 shows the respective
mean errors (based again on 30 runs) for each day. The relative performance
is similar to the more complex week problem discussed before, supporting our
previous conclusions.

Two forms of hybridization of the agent approach with PSO were tested, but
both could not improve upon the results for the ”pure” approaches presented
above. First, our additional experiments indicated, that initializing the PSO
start solutions with the help of the multi-agent system leads to premature con-

Table 4. Mean results for individual days of the week problem (30 runs each). Best
results are bold and underlined.

Mo Tu We Th Fr Sa So
PSO (10) 7712 5900 8161 8248 5500 8838 7330
PSO (20) 7726 5910 8171 8257 5508 8846 7325

PSO (100) 7725 5909 8170 8255 5508 8844 7325

Agents 7727 5917 8183 8272 5528 8861 7337
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vergence. The swarm is not sufficiently diversified from the beginning and the
particles are already in a very good local optimum, such that further progress
is extremely difficult. Second, trying to use PSO as an individual optimization
strategy for staff agents was also not successful, since it is relatively straightfor-
ward how individual agents can improve their situation through negotiation. (If
an employee wants to remove his workstation rotation at time t, then his staff
agent negotiates with other staff agents whether he can work at the workstation
he occupies at t-1 or t+1.) The same applies to the strategy of the scheduling
agents. Thus, so far the experimental results indicate, that hybridization of PSO
and the agent-based scheduling approach is not a fruitful strategy in our domain.

6 Conclusion and Future Work

Using complex, high-dimensional and highly constrained planning scenarios, it
was demonstrated, that PSO (as a rather centralized approach) and artificial
agents (a constructive and decentralized approach) produce far better results
than today’s spreadsheet-based full day scheduling. Thus, sub-daily scheduling
significantly increases the value contributions of individual staff members.

Because PSO in its traditional form is not suitable for the planning prob-
lems at hand, the method was adapted to the combinatorial domain without
sacrificing the basic PSO mechanism. Based purely on solution quality, the PSO
approach has a slight advantage over the agent approach and should, thus, be
favored when runtime is not a seriously limiting factor for optimization. In our
practical applications this is the case. This success of PSO contradicts Puppe et
al. [15] who suggest that centralized scheduling methods are likely to fail due to
the many constraints and complexity of the task.

The multi-agent approach is vastly quicker in finding solutions of almost the
same quality as PSO. Multi-agent systems have rarely been shown to be compet-
itive with modern metaheuristics. Moreover, the results suggest, that artificial
agents could be useful for real-time scheduling or re-scheduling tasks where run-
time for the optimization is usually very limited.

Investigations of seven easier versions of the same application problem were
undertaken, in which similar results were achieved. In order to base the con-
clusions of this work on a wider foundation, the investigations done here are
currently extended to a practical problem from the trade domain, which is even
more extensive with respect to dimensions and constraints.
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Abstract. We present a math-heuristic algorithm for the lot sizing
problem with carryover. The proposed algorithm uses mathematical pro-
gramming techniques in a metaheuristic fashion to iteratively solve
smaller portions of the original problem. More specifically, we draw ideas
from the corridor method to design and impose exogenous constraints on
the original problem and, subsequently, we solve to optimality the con-
strained problem using a MIP solver. The algorithm iteratively builds
new corridors around the best solution found within each corridor and,
therefore, explores adjacent portions of the search space. In the attempt
of fostering diversification while exploring the original search space, we
generate a pool of incumbent solutions for the corridor method and,
therefore, we reapply the corridor method using different starting points.
The algorithm has been tested on instances of a standard benchmark li-
brary and the reported results show the robustness and effectiveness of
the proposed scheme.

1 Introduction

The Multi-Level Capacitated Lot Sizing Problem (MLCLSP) finds application
in production systems where setup times are significant (see, e.g., [2,14]). An
example of such a production system is the job-shop system, i.e., a production
system where operations require specialized manufacturing processes such as
costumer adapted orders or small batch jobs. The MLCLSP is an extension of
the Capacitated Lot Sizing Problem (CLSP) [9,13]. In the problem, multiple
items (products) must be produced following a known Bill of Material (BOM).
The objective is to find an optimal production plan that minimizes production,
setup, and inventory costs, and delivers optimal lot sizes and production periods
for each product. In the problem, the external demands (volume) are given for
predefined periods. When an item is produced, machine (resource) capacity is
consumed, which is limited. When there is a change of production from one item
to another, it is also necessary to account for setup costs as well as setup times.
Incurring in setup times means reducing the available machine capacity. Lastly,
whenever there is an excess of production over the current demand in a given
period for a specific item, inventory is built up and, consequently, inventory
holding costs must be paid.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 462–471, 2010.
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This work deals with the MLCLSP with setup carry-over (MLCLSP-CO), also
called MLCLSP with linked lot sizes [2,14,10,3]. The MLCLSP-CO introduces
some scheduling information into the classical lot sizing problem. Whenever an
item is produced over two consecutive periods on the same machine, its setup
in the second period can be discounted, under the assumption that its setup
state is “carried over” the two periods. This implies that a partial scheduling is
introduced, i.e., which item is produced as the last one in the first period and
the first one in the second period is established [9]. Under the classical “small
bucket vs. big bucket” classification, MLCLSP-CO is a big-bucket model [10,12],
as it is an extension of the CLSP. Thus, the MLCLSP-CO, being an extension
of the standard CLSP, is NP-hard [8].

In [14] a lagrangean heuristic is presented. First, inventory balance constraints,
capacity constraints, and carryover constraints are relaxed in a lagrangean fash-
ion. A Wagner-Within algorithm is used to compute a lower bound. Next, a pool
of repair schemes is used to find a feasible solution.

Similarly, in [3] a corridor method algorithm paired with dynamic program-
ming and a lagrangian based heuristic is used to generate a (possible infeasible)
solution. Subsequently, three different repair mechanisms are implemented to
reach a feasible solution.

In this paper we present a math-heuristic algorithm for the MLCLSP-CO.
The proposed algorithm hybridizes mathematical programming techniques with
a metaheuristic to iteratively solve smaller portions of the original problem.
More specifically, we utilize the corridor method together with a mathematical
programming formulation which is solved with a MIP solver.

The paper is structured as follows. First, in the next section, we provide a
mathematical programming formulaton of the problem. Then, the basic idea
of the algorithm is outlined in Section 3. A simple scheme for the generation
of feasible incumbent solutions is presented in Section 4. Section 5 presents
computational results on a set of benchmark instances and, finally, Section 6
offers a few final remarks.

2 A Formal Model for the MLCLSP-CO

In this section, we present a mixed integer formulation for the problem. The
MLCLSP-CO model presented in this work is based on some models from the
literature, particularly [2], [14], [10], [3], and [12].The following notation is used
to formulate the MLCLSP-CO.

Indices and index sets:
j is the items index, with j = 1, 2, ..., J ;
m is the machine index, with m = 1, 2, ..., M ;
t is the period index, with t = 1, 2, ..., T ;
Γ (m) is the set of items produced on machine m;
Λ(j ) is the set of predecessors of item j;
Σ(j ) is the set of successors of item j.



464 M. Caserta, A. Ramirez, and S. Voß

Parameters:
fjt is the setup cost of item j in period t;
cjt is the unitary production cost of item j in period t;
hjt is the unitary holding cost of item j in period t;
tpjt is the unitary resource usage of item j in period t;
tsjt is the setup time of item j in period t;
bmt is the capacity of resource m in period t;
djt is the external demand of item j in period t;
γij is the number of units of item i required to produce one unit of item j;
Z big number;
ŝj is the physical inventory of item j at the beginning of the planning horizon.

Decision variables:
xjt is the binary setup variable for item j in period t;
ωjt is the binary setup carry-over variable for item j at the beginning of period
t;
yjt is the production quantity (lot size) of item j in period t;
sjt is the inventory of item j at the end of period t.

A MIP formulation for the problem is given below (we assume a lead time of
1 period). It captures the following features: Constraints (1)–(3) are balance
constraints; Constraint (4) is a capacity constraint, taking into account both
variable production times and setup times; Constraint (5) establishes the relation
between production and setup variables; Constraint (6) ensures that only one
carryover per machine is fixed; Constraints (7) and (8) account for the relation
between setup and carryover variables; Constraint (9) ensures that consecutive
carryover for the same item are allowed only when no other items are setup on
that machine; and Constraint (10) makes sure that no carryover is established
in the first period.

3 General Idea and Algorithm

The general idea of the proposed algorithm relies on the combination of mathe-
matical programming techniques with metaheuristic features. More precisely, we
use mathematical programming techniques in a metaheuristic fashion, following
the paradigm of “math-heuristic” algorithms.

Small-size instances of the MLCLSP-CO can be solved to optimality using
modern MIP solvers. However, when the size of the instances grows, such solvers
fail to deliver optimal solutions in a timely fashion. Nevertheless, in many cases,
the same MIP solvers are able to quickly provide good quality solutions in a short
computational time when used on constrained versions of the original problem.
The key idea of the proposed approach is to iteratively define smaller versions
of the MLCLSP-CO problem by imposing exogenous constraints on the original
problem. Thus, the MIP solver is used to solve, perhaps to optimality, such
smaller problems. The mechanism guiding the generation of subproblems is, in
turn, guided by a metaheuristic.
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min
T∑

t=1

J∑
j=1

[cjtyjt + fjt(xjt − ωjt) + sjthjt]

s.t.

sjt−1 + yjt = sjt + djt +
∑

k∈Σ(j)

γjkxkt+1,
j = 1, . . . , J,
t = 1, . . . , T − 1,

(1)

sjT−1 + yjT = sjT + djT , j = 1, . . . , J, (2)

sj0 = ŝj −
∑

k∈Σ(j)

yk1, j = 1, . . . , J, (3)

∑
j∈Γ (m)

tpjtyjt + tsjt(xjt − ωjt) ≤ bmt,
m = 1, . . . , M,
t = 1, . . . , T,

(4)

yjt ≤ Zxjt,
j = 1, . . . , J,
t = 1, . . . , T,

(5)

∑
j∈Γ (m)

ωjt ≤ 1,
m = 1, . . . , M,
t = 2, . . . , T,

(6)

ωjt ≤ xjt,
j = 1, . . . , J,
t = 2, . . . , T,

(7)

ωjt ≤ xjt−1,
j = 1, . . . , J,
t = 2, . . . , T,

(8)

Z (2 − ωjt − ωjt+1) + 1 ≥
∑

i∈Γ (m)

xit,
t = 2, . . . , T,
m = 1, . . . , M,
j ∈ Γ (m),

(9)

ωj1 = 0, j = 1, . . . , J, (10)

yjt, sjt ≥ 0,
j = 1, . . . , J,
t = 1, . . . , T,

(11)

xjt, ωjt ∈ {0, 1} ,
j = 1, . . . , J,
t = 1, . . . , T.

(12)

The corridor method (CM) is a hybrid metaheuristic proposed by [11]. While
some successful applications of the method have already been reported (e.g.,
[5,6]), its full exploitation to solve complex combinatorial optimization problems
still needs to be advanced. The central idea of the CM is the use of a (possibly
exact) method to solve smaller “versions” of the original optimization problem,
i.e., to find the optimal solution on a limited portion of the solution space.

Given a problem P belonging to the class of NP-hard problems, a very large
solution space X , and an exact method M that could be used to solve problem P
to optimality if X were not too large, the method receives as input an incumbent
solution x ∈ X . The CM defines a “corridor” around the incumbent solution by
imposing exogenous constraints on P and, therefore, by cutting out portions of
the solution space X . The nature of the exogenous constraints is problem and
method specific; however, ideally, the resulting neighborhood built around x,
i.e., N (x), should be such that it could be explored in (pseudo) polynomial time
using method M.
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Let us now consider how the CM can be applied to the MLCLSP-CO. In
the following, let us indicate with X the feasible space of the problem , while
we indicate with M a branch and bound algorithm implemented within a MIP
solver. Let us suppose that we are given an incumbent solution (x,y, s, ω)I . We
build a neighborhood around the incumbent solution by imposing the following
constraint:

J∑
j=1

T∑
t=1

xI
jtxjt ≥ δni (13)

where δ ∈ [0, 1] is a parameter used to define the corridor width, and ni =∑J
j=1

∑T
t=1 xI

jt accounts for the number of setups in the incumbent solution.
Therefore, the corridor constraint establishes a lower bound in the number of
setups of a possible solution. It is worth noting, though, that such constraint is
“flexibly” fixing some of the setup variables to 1. Constraint (13) cuts out of the
solution space X all those (originally feasible) solutions that do not fix to 1 at
least δ% of the setup variables currently set to 1 in the incumbent solution. The
difference between arbitrarily fixing to 1 δ% of the variables in MLCLSP-CO and
the introduction of the corridor constraint lies in the fact that, with the corridor
constraint, we let the MIP solver the flexibility to choose which variables have
to be fixed to 1.

It is easy to see that, by increasing (decreasing) the value of δ, we reduce
(enhance) the corridor width and, consequently, the size of the search space.
Constraint (13) can also be seen as a type of distance, or diversity, measure and,
therefore, the addition of such constraint to MLCLSP-CO generates a neighbor-
hood around the incumbent solution (x,y, s, ω)I , defined as:

Nδ(xI) =

⎧⎨⎩(x,y, s, ω) ∈ X :
J∑

j=1

T∑
t=1

xI
jtxjt ≥ δni

⎫⎬⎭ (14)

In Figure 1 we present an outline of the overall algorithm. The algorithm is
iteratively repeated using different incumbent solutions for every iteration. We
create and store each incumbent solution in Ω. Such set is used to check that no
incumbent solution is fed to the corridor method more than once.

Each iteration of the corridor method (step S2) stops when one of the two
stopping criteria is met, i.e., either a maximum running time for the exploration
of the neighborhood is reached, or a maximum number of new feasible solutions
have been collected. It is worth noting that the incumbent solution is used as
starting point by the MIP solver and its objective function value as a cut. There-
fore, every new feasible solution found by the MIP solver within the corridor has
an objective function value better than the incumbent itself.

The overall algorithm terminates once a predefined stopping criterion is
reached, i.e., (i) a maximum running time; or (ii) a maximum number of in-
cumbent solutions in Ω.
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S1. Initialization

– Generation of the incumbent solution. A simple scheme (Sec-
tion 4) is used to generate a new feasible incumbent (x,y, s, ω)I ,
i.e., a feasible solution such that (x,y, s, ω)I /∈ Ω.

– Add (x,y, s, ω)I to Ω.

S2. Corridor Method
(
(x,y, s, ω)I , δ, δm

)
– Add the corridor constraint (13) and solve the resulting MIP

problem.
– Stopping criteria of the MIP solver:

• maximum running time
• maximum number feasible solutions

– (x,y, s, ω)c is the best solution found in Nδ(xI)

S3. Update
(
(x,y, s, ω)I , δ, δm

)
– If (x,y, s, ω)c is better than (x,y, s, ω)I , then set (x,y, s, ω)c as

incumbent and go to S2.
– If no solution better than the incumbent has been found:

• If 0.9δ ≥ δm, set δ ← 0.9δ (enhance the corridor) and go to
S2.

• If a minimum δ value has been reached (δm), stop the corridor
method and go to S1.

Fig. 1. Outline of the proposed algorithm

4 Incumbent Solution Generation: A Metaheuristic
Scheme

As presented in Section 3, one of the main ingredients of the proposed algorithm
is the generation of an incumbent solution, around which a corridor is going to
be build. In this section, we illustrate how a metaheuristic method can be used
to generate a set of incumbent solutions for the corridor method.

The cross entropy method (CE) has been presented by [7] and its application
to the CLSP has been proposed by [4]. The CE can be used to generate a
population of N binary matrices X1, . . . , XN , to identify the periods in which
each item is setup. Given a binary matrix Xi, we fix the corresponding xjt

variables accordingly, hence fixing periods in which a setup is scheduled. The
problem obtained after fixing the setup variables is composed of continuous
variables (s and y) and binary variables (ω) strongly connected to the value
of the setup variables, as established by constraints (6)– (8). Such restricted
problem can quickly be solved to (near) optimality using a standard MIP solver.
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If the restricted problem obtained after fixing the setup variables has a feasible
solution, we associate the objective function value of the best solution found
to the corresponding stochastic matrix Xi. Otherwise, if the derived problem is
infeasible, we simply discard the stochastic matrix Xi and we generate a new
stochastic matrix.

Let us define a probability matrix P = {pjt}, where pjt is the probability that
a setup is scheduled for item j in period t. In order to exploit the stochastic
nature of the proposed approach, we generate a population of Xi of size N , all
drawn under the same initial probability matrix P . Inspired by the spirit of CE,
we then use the “Maximum Likelihood Estimator” method to generate a new
probability matrix P 1 that better describes the best individuals of the current
population. Therefore, we update the set of probabilities pjt in order to reflect
how likely it is that, in a high-quality solution, a setup of item j in period t is
scheduled. Once a new probability matrix P 1 is obtained, a new population of
size N can be drawn under such matrix. Hopefully, such matrix better describes
high quality solutions obtained in the previous generation and, therefore, the
chances of obtaining high quality individuals under the new matrix are higher.

This process of “probability matrix update” and “population generation” can
be iterated until either the P matrix converges to a binary matrix (therefore,
the process converges to a unique solution) or a pre-specified maximum number
of iterations has been reached.

The “Maximum Likelihood Estimator” method is used to modify probabilities
pjt in such a way that the new stochastic matrix better reflects the chances of
obtaining high quality solutions. Let us assume that, based upon the current
stochastic matrix P k, we have generated a population of size N , i.e., X1, . . . , XN .
Let us now find, within the current population, the objective function value of
the (1 − ρ)% quantile, i.e., the value γ for which ρ% of the population have
a better objective function value and (1 − ρ)% of the population have a worse
objective function value.

We modify the probability matrix using the following updating rule:

p̂jt =

N∑
i=1

xi
jt × I{f(Xi)≤γ}

ρN
(15)

where xi
jt indicates component (j, t) of matrix Xi, f(Xi) is the objective function

value of the ith solution (Xi, ωi,yi, si), and I{f(Xi)≤γ} is the indicator function,
whose value is 1 if f(Xi) ≤ γ and 0 otherwise.

Remark. As pointed out by [7], in order to prevent the CE from converging too
fast to a suboptimal solution, a smoothing factor α (typically 0.7 ≤ α ≤ 0.9)
could be used in the updating rule. Therefore, to foster a more thorough explo-
ration of the solution space, at each iteration k we use the following updating
rule:

pk+1
jt = αp̂jt + (1 − α)pk

jt. (16)
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5 Computational Results

In order to evaluate the quality of the proposed approach, we ran the algorithm
on benchmark instances from the literature. More specifically, we solved some
of the instances of Tempelmeier et al. [14]. In this section, we present results on
the first and fourth classes of such instances. The two classes had been chosen
firstly, to see for a simpler class to which extent the approach could provide
meaningful results, and secondly, to see whether those results are also confirmed
when considering the hardest instances among those literature data. Class one
covers one general and one assembly product structure, 10 products, 3 resources,
and 4 periods. A total of 480 instances are contained in this class. Class four is
characterized by 20 products, 6 resources, and 16 periods and composed of 240
instances. These instances have been downloaded from the author’s web page,
and recreated following the instructions provided by the authors themselves, as
indicated in [14].

All computational experiments have been carried out on a 2.0 GHz Pentium
4 Workstation with 2Gb of RAM running Linux. The algorithm has been coded
in C++ and compiled with the GNU g++4.3 compiler.

The values of the algorithmic parameters N , ρ, and α have been determined
using the response surface methodology [1], as presented in [4]. The MIP solver
used is Cplex 11. As reported by [14], many of these instances could not be
solved to optimality using a MIP solver within a time limit of 3600 seconds.

The stopping criteria for both the overall algorithm and the corridor method
are (These values have been chosen such as to find a balance between solution
quality and CPU time.):
– Maximum running time of the overall algorithm: 300 seconds.
– Maximum number of incumbent solutions in Ω: 10.
– Maximum running time of the constrained MIP (corridor method): 10 sec-

onds.
– Maximum number of new solutions visited within a corridor: 10.
– Initial value of δ : 0.1.
– Maximum value of δ : 0.2.

In Table 1 we summarize the computational results on these 720 benchmark
instances. The first three columns describe the instance, in terms of number of
items, number of periods and number of resources (e.g., machines), respectively.
Column four reports the results of the algorithm presented in [14]. The computa-
tional time of these authors is provided as an average over all the instances, and
reported as being 0.15 seconds. Since many of the benchmark instances could
not be solved to optimality within the established time limit, we measure the
solution quality computing the dual gap, as in [14]. Dual gap and computational
time are used to measure the algorithmic performance of the proposed algorithm.
The lower bound values used to compute the distance from optimality have been
obtained solving the MLCLSP-CO with Cplex 11 for 3600 seconds. Therefore,
for each instance of the class, we computed the optimality gap as

γ =
zH − lb

lb
× 100,
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Table 1. Results on first and fourth classes of benchmark instances. Time measured
in CPU seconds and averaged over each instance class.

Instance Details Tempelmeier et al. Proposed Algorithm
No. Items No. Periods No. Machines Gap Gap Time

10 4 3 1.39 0.10 2.7
20 6 16 21.90 8.56 59.3

where zH is the objective function value of the heuristic solution found by the
proposed algorithm, and lb is the best lower bound obtained by Cplex.

From the table we can confirm the robustness and the effectiveness of the
proposed scheme in dealing with these classes of instances of the MLCLSP-CO.
If we compare the running time of the proposed algorithm with that of [14], we
can observe that the average time of the proposed algorithm is of 31 seconds as
opposed to 0.15 seconds of [14]. However, such an increase in computational time
allows to sensibly reduce the gap and, therefore, to find better quality solutions.

6 Conclusions

We have presented a math-heuristic algorithm for the multi-item multi-period
capacitated lot sizing problem with carryover, which is a variation of the standard
lot sizing problem where some scheduling information is included in the final
solution. More specifically, given any two consecutive periods, it is possible to
introduce information about the last item scheduled in one period and the first
item scheduled in the subsequent period. Therefore, by extending a setup of an
item over two consecutive periods, a setup in the second period can be saved,
hence leading to more realistic solutions.

We have proposed a three-step algorithm, where (i) an incumbent solution is
generated through the use of the cross entropy method; (ii) an iterative corridor
method algorithm is applied starting from the incumbent solution and moving
in the direction dictated by the best solution found in each corridor; and (iii)
an updating phase, in which either the corridor is enhanced or the method is
reapplied starting from a different portion of the original search space.

The method has been tested on a limited set of benchmark instances, more
precisely, on “extreme” classes one and four of a larger set of benchmark instances
from [14]. Our results show that the algorithm is effective, both from the point
of view of the solution quality as well as from the perspective of computational
time.
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