
Evolving Behaviour Trees for the

Commercial Game DEFCON

Chong-U Lim, Robin Baumgarten, and Simon Colton

Computational Creativity Group
Department of Computing, Imperial College, London

www.doc.ic.ac.uk/ccg

Abstract. Behaviour trees provide the possibility of improving on ex-
isting Artificial Intelligence techniques in games by being simple to im-
plement, scalable, able to handle the complexity of games, and modular
to improve reusability. This ultimately improves the development pro-
cess for designing automated game players. We cover here the use of
behaviour trees to design and develop an AI-controlled player for the
commercial real-time strategy game DEFCON. In particular, we evolved
behaviour trees to develop a competitive player which was able to out-
perform the game’s original AI-bot more than 50% of the time. We aim
to highlight the potential for evolving behaviour trees as a practical ap-
proach to developing AI-bots in games.

1 Introduction

The ability of Artificial Intelligence methods in games to deliver an engaging
experience has become an important aspect of game development in the indus-
try, and as such, numerous techniques have been developed in order to deliver
realistic game AI. However, as Jeff Orkin remarked, that if the audience of the
Game Developers Conference were to be polled on the most common A.I tech-
niques applied to games, one of the top answers would be Finite State Machines
(FSMs) [11]. Behaviour trees have been proposed as an improvement over FSMs
for designing game AI. Their advantages over traditional AI approaches are be-
ing simple to design and implement, scalability when games get larger and more
complex, and modularity to aid reusability and portability. Behaviour trees have
recently been adopted for controlling AI behaviours in commercial games such
as first-person-shooter Halo2 [8] and life-simulation game Spore [7].

We investigate here the feasibility of applying evolutionary techniques to de-
velop competitive AI-bots to play commercial video games. The utility of this is
two-fold, i.e. to enable intelligent agents to compete against human players in 1-
player modes of games, and to act as avatars for players when they are not able
to play themselves (e.g. as temporary substitutes in multiplayer games). The
application of genetic programming has seen positive results in the fields such as
robotic games [10] and board games like Chess [6], as well as racing track genera-
tion [13]. It has also been used to evolve human-competitive artificial players for
Quake3 [12], and real-time strategy games [5]. By investigating the feasibility of

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 100–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Evolving Behaviour Trees for the Commercial Game DEFCON 101

applying an evolutionary approach with behaviours trees to develop a competi-
tive automated AI player for a commercial game, we hope to further exemplify
it as a viable means of AI development that may be adopted by the video games
industry. We demonstrate this by evolving a competitive automated player for
the game DEFCON, which is able to beat the hand-designed AI-bot written by
the programmers at Introversion Software Ltd. more than 50% of the time over
a large number of games. We provide relevant background reading in section 2,
outlining DEFCON and behaviour trees. Next, we describe how evolution is ap-
plied to behaviour trees in section 3, and provide a description of the different
fitness functions we employed in section 4. The experiments conducted and re-
sults obtained are in section 5, and we conclude and propose areas where future
work may be applicable in section 6.

2 Background

2.1 DEFCON

DEFCON1 is a commercial multiplayer real-time strategy game that allows play-
ers to take the roles of the military commanders of one of six possible world
territories. Players are given a set of units and structures at their disposal, and
have to manage these resources and inflict the greater amount of damage against
opposing players. The game is split into 5 discrete time intervals (DEFCON5 to
DEFCON1), and each dictate the movements and manipulation of units that are
allowed. There are 7 available territories in each game, with each controlled by
up to 1 party. A party represents the player, either human or AI-controlled, each
allocated a fixed quantity of units that it may place and make use of throughout
the course of the game. Playing the game involves strategic planning and deci-
sion making in coordinating all these units and winning by attaining the highest
score, calculated via various scoring modes. We used the default scoring mode: 2
points awarded for every million of the opponent’s population killed and a point
penalty for every million people belonging to the player lost.

Several implementations of automated players exist for DEFCON, and we re-
fer to these as AI-bots. For example, the default bot that comes with DEFCON
is a deterministic, finite-state-machine driven bot. It consists of a set of 5 states
and transits from one state to the next in sequence. Upon reaching the final
state, it remains in it until the end of the game. In 2007, an AI-bot was devel-
oped by Baumgarten [2] using a combination of case-based reasoning, decision
tree algorithms and hierarchical planning. For the case-based reasoning system,
high-level strategy plans for matches were automatically created by querying
a case base of recorded matches and building a plan as a decision tree, which
classified each case’s plan dictating the placement of fleets and units, and the
sequence of movements and attacks. The starting territories of each player were
used as a similarity measure for retrieving a case. The results, plans, and struc-
ture information were retained as a case in the case base at the end of a match,
1 The official DEFCON website is here: http://www.introversion.co.uk/defcon

102 C.-U. Lim, R. Baumgarten, and S. Colton

Fig. 1. Behaviour Tree: PlaceFleets

to enable an iterative learning process.
Furthermore, the low-level behaviour of
units, such as precisely timed bomber at-
tacks and ship manoeuvres within fleets
were added to improve the tactical
strength of the AI-bot. As a result, in cer-
tain configurations, these low level modi-
fications were able to influence the game
outcome significantly, resulting in a vic-
tory for Baumgarten’s AI-bot over the
Introversion implementation in roughly 7
out of 10 matches on average.

Both AI-bots covered above were implemented using the source-code of DE-
FCON, which gave it access to game state information that was required for
various calculations. The implementation of the AI-bot described here made use
of the an application programming interface (API)2 that allows the control of a
player in DEFCON by an external AI-bot, which can retrieve and invoke method
calls on DEFCON, providing a way for developers to build AI-bots without hav-
ing to work with the source-code of DEFCON directly. We avoided dictating
low-level strategic decisions in our implementation but still successfully man-
aged to evolve the behaviour trees to produce a competitive AI-bot with little
human intervention. In a DEFCON competition competing API-designed AI-
bots held at the Computational Intelligence and Games conference in Milan in
August 2009, our AI-bot emerged victorious (although it was a rather hollow
victory, as we were the only entrant to the inaugural competition!).

2.2 Behaviour Trees

A traditional approach to developing AI-controlled players for games has been to
use Finite State Machines (FSMs). The problem with FSMs is that as the AI-bot
grows in complexity, the number of states and transitions between them grows
exponentially with the size of the game, making it difficult to manage. Even
though Hierarchical Finite State Machines (HSFMs) overcome this, reusability is
often a problem. Behaviour trees provide a simple, scalable and modular solution
to embody complex AI behaviours. Each tree is goal-oriented, i.e. associated with
a distinct, high-level goal which it attempts to achieve. These trees can be linked
together with one another, allowing the implementation of complex behaviours
by first defining smaller, sub-behaviours. Behaviour trees are constructed from 2
types of constructs. Firstly, primitive constructs form the leaves of the tree, and
define low level actions which describe the overall behaviour. They are classified
into 2 types, actions, which execute methods on the game, and conditions,
which query the state of the game. Secondly, composite constructs can be used
to group such primitive constructs to perform a higher-level function. the 3 main
types of composites are sequences, selectors and decorators.

2 API and documentation available at: http://www.doc.ic.ac.uk/˜rb1006/projects:api

Evolving Behaviour Trees for the Commercial Game DEFCON 103

Fig. 2. Using A hand-crafted tree to generate a random behaviour tree

As an example, consider Figure 1 which shows a behaviour tree, with its nodes
labelled to identify the constructs used. At the root, the tree has a high-level
goal of placing a fleet. The sequence node dictates that, in order to achieve
this goal, it has to first achieve the sub-goal of checking that the game is in
DEFCON4 using a condition, followed by another composite sub-goal to place
the fleet within the game. Thus, all child nodes must succeed for a sequence to
succeed. The sub-goal is dictated by a selector, which will succeed as soon as
one of its child nodes succeeds. Each child task begins with a decorator, which
in this case acts as a counter to ensure that its child action node, used to place a
fleet of a specified composition at location (x,y), is only executed once. We read
the tree as one that achieves the goal of placing a fleet by first checking that it
is the correct point in the game to do so. Then, it selects one (x, y, composition)
combination at random and executes it in the game. If that combination fails,
it will try the next set combination until it has exhausted all of its options.

3 Evolving Behaviour Trees

We used behaviour trees to hand-craft an initial AI-bot to demonstrate that we
could encode the basic abilities that a player would be able to perform. The
AI-bot was given sufficient functionality to execute the basic actions to play
DEFCON. However, its decision of when and whether to apply the actions were
performed randomly. Ultimately, we planned to evolve the behaviour trees of
this random AI-bot by playing games against the default Introversion AI-bot
and afterwards, extract the best performing behaviour trees in different areas
before combining them to produce a competitive AI-bot overall.

3.1 Randomly Generating Behaviour Trees

To produce the original set of behaviour trees, we adopted Bryson’s Behaviour
Oriented Design approach [3,4]. We define a high-level goal for the AI-bot before
subsequently breaking it down into smaller sub-tasks that would form the basis
of the required behaviour trees. This iterative process identifies building blocks
of which to define more complex behaviours upon. Figure 2 shows how the hand-
crafted tree on the left was used to produce a new tree on the right for thepurpose
of placing silo units randomly. The left tree checks whether it is the appropriate
DEFCON level, selects a coordinate at random, and places the silo at that
randomly chosen location. The resultant tree capable of placing silos at those

104 C.-U. Lim, R. Baumgarten, and S. Colton

Fig. 3. Two behaviour trees with branches selected for recombination

Fig. 4. The offspring from the recombination between the two parent behaviour trees

locations is shown on the right. We vary the AI-bot’s behaviour (i.e. the number
and positions of silos placed) by choosing which of its branches to attach or
remove. We later made use of evolution to make these choices. We continued
with this approach to produce other behaviour trees that performed random
decisions with regards to other aspects of playing the game.

3.2 Applying Genetic Operators

Trees are structures which genetic operators are naturally applicable to [9], with
crossovers on branches and mutation on nodes. Figure 3 shows two behaviour
trees which have the same goal of placing fleet units. Using the left behaviour
tree as a reference, what occurs is a sequence that first checks if the current
DEFCON level is 4, and then proceeds to the priority selector if it is so. Looking
at the left most action node, it will attempt to place a fleet composed of 3
carriers and 3 battleships at longitude 24.0 and latitude 31.9. The parent counter
decorator ensures that the action is only executed once.

Crossovers are applied to randomly selected portions of the trees. Figure 4
shows the resulting offspring from recombination.Instead of placing a second
fleet at (22.0, -10.8) with a composition of 4 submarines, it now places a second
fleet at (7.90, 12.2) with a composition of 6 submarines. Random mutation can
be used to increase genetic diversity. In Figure 5, the green portion shows how
incremental mutation might occur to the left behaviour tree of figure 4, resulting
in a different topology. Instead of placing 4 fleet units, the AI-bot now places 5
fleet units. The location and fleet compositions used for the new branch (high-
lighted green) were generated randomly during mutation. The red portion shows
how a point mutation might occur. Since behaviour trees are not strongly-typed

Evolving Behaviour Trees for the Commercial Game DEFCON 105

Fig. 5. Two types of mutations occurring in one of the behaviour trees

for recombination, inferior offspring trees may result (i.e. placing units which the
AI-bot doesn’t possess, or in illegal positions.) These trees would presumably be
naturally selected against as the system evolves. In section 6, we mention ways
to extend this approach to produce richer and more descriptive behaviour trees.

4 Fitness Functions

As mentioned previously, we evolved behaviour trees for individual behaviours,
and combined the best performing trees into an overall AI-bot control mecha-
nism. For the 4 behaviours, we used these fitness functions to drive the search:
• Defence Potential of Silo Positions. Silos are ground installations which
play a significant role in both attack and defence. In both cases, a silo’s effective-
ness is affected not only by its absolute position, but also its position relative
to the other silos. We chose to focus on the defensive aspect of the silos by
measuring their defence potential – the total number of air units that were
successfully destroyed for a given game.
• Uncovered Enemy Units by Radars. While radars do not have a direct
influence on a player’s attack or defensive abilities, they provide an indirect
means of support by uncovering enemy units. This allows the AI-bot to then
react appropriately to the situation, i.e. by sending fighters to enemy sea units
or by shooting down missiles earlier. The coverage of the radars is determined by
their positions, and we used the number of enemy sea units uncovered before the
start of DEFCON1 as a fitness measure for evolving radar placement positions.
• Fleet Movement & Composition. The fitness of the fleet movement and
composition in a game was calculated by evaluating the number of enemy build-
ings uncovered, the number of enemy buildings destroyed and the number of
enemy units destroyed by the AI-bot. For each of these, a score was calculated
and the average of the 3 scores taken as an overall fitness for the behaviour tree.
• Timing of Attacks. We used the difference between the final end-game scores
as an indicator of how well the AI-bot performed for timing of attacks. A larger
difference indicated a convincing win whereas a smaller difference would mean a
narrower victory. We fixed the bounds for the maximum and minimum difference
to +250 and -250 respectively (with these values found empirically through some
initial experimentation). The fitness was calculated using the function:

106 C.-U. Lim, R. Baumgarten, and S. Colton

fitness =
differencescore − (−250)

250 − (−250)
=

(score(AIbot) − score(Enemy)) + 250
500

5 Experiments and Results

5.1 Experimental Setup

We chose the following game options for our experiments. Firstly, the starting
territories for our AI-bot and the enemy were fixed as Africa and South America
respectively. Secondly, the default game scoring was used. Four main experi-
ments were performed, each evolving a set of AI-bots with the aim of improving
the population AI-bot’s performance as per the respective fitness functions de-
scribed above. Each population contained 100 individuals, and each experiment
was evolved between 80 to 250 generations. We employed a fitness proportionate
selection method to choose pairs for recombination and set the mutation rate
to 5%. These parameters were chosen after performing several initial experi-
ments. Naturally, there is a vast array of other parameter settings we could have
experimented with, but given the time constraints imposed by the number of
experiments and running time of each game, we had to decide upon the values
empirically. Via four evolutionary sessions, we evolved behaviour trees for:

1. Placement of silos to maximise defence against enemy air units
2. Placement of radar stations to maximise the number of enemy units detected

throughout the course of the game
3. The placement, composition and movement of the player’s fleet units to

maximise their overall attack capabilities
4. The timings of the attacks for 4 types of attach, namely, submarine attacks

using mid-range missiles, carrier bomber attacks using short range missiles,
air base bomber attacks using short range missiles and silo attacks using
long range missiles.

5.2 Distribution

Ultimately, the fitness functions rely on playing a game to completion. Unfor-
tunately, with 4 experiments, each running for about 100 generations with 100
individuals in a population would require 40,000 game runs. With each game
taking approximately 90 seconds to complete, a total time of 3.6 million seconds
(∼41 days) of continuous processing would be required for the project. To bring
the time-frame down to ∼2 days per experiment, we distributed the running of
DEFCON games over 20 computers, connected together via a local area network.

5.3 Results

For silo placements, Figure 6(a) shows that the mean fitness of the population
increased over the generations. The mean number of missiles destroyed increases

Evolving Behaviour Trees for the Commercial Game DEFCON 107

from around 70 to almost 100, and similarly, the mean number of bombers
destroyed increases from about 18 to about 34. However, the mean number of
fighters destroyed remained at around 18 across the generations, which we believe
is due to the silo placement locations evolving further away and out of enemy
fighter scout range over the generations. For radar placements, we observe a
similar increase in mean fitness. Figure 6(b) shows the mean number of detected
enemy sea units increasing from around 6 to 10, with the mean fitness of the
top 10% of the population even reaching 21.5 (∼90% of detectable enemies when
excluding submarines) at generation 80. For fleet placement, composition and
movement, Figure 6(c) shows an increase in the AI-bots’ mean fitness as the AI-
bot evolved over the generations, with the mean fitness increasing from about 8 to
26. Similarly, when evolving the attack timings for the AI-bot, Figure 6(d) shows
an increase in the average number of games won. Initially having on average 4
wins in a population of 100 AI-bots, the number reached 47 at Generation 65.
The average number of wins appears to be plateauing, which might indicate a
need to continue the evolution over more generations.

We constructed an AI-bot with a controller that used the best trees evolved
for each of the four behaviours. It was set to play 200 games against the de-
fault Introversion AI-bot. The difference between the scores obtained by both
the AI-bot and the opponent was used as an indicator of how well the AI-bot
had performed, which we term as the margin of victory. Prior to performing
the evolution, the AI-bot which consisted of behaviour trees which performed
random movements and choices (Section 3.1) managed to win around 3% of the

Fig. 6. Mean fitnesses over generations for each behaviour. (a) silo placement (b) radar
placement (c) fleet coordination (d) attack timings.

108 C.-U. Lim, R. Baumgarten, and S. Colton

Fig. 7. Summary of the Performance of the Evolved AI-bot

Fig. 8. Generating different topologies for random trees

time out of the 200 games. We ran the evolved AI-bot which beat the default
Introversion AI-bot 55% of the time in 200 games. Figure 7 shows the distribu-
tion of the margins of victory in these matches. We note that in a large number
of games, our AI-bot only lost to the opponent by a very low margin, indicating
that the the number of wins by our AI-bot could have been larger. The opponent
managed to beat our AI-bot by a moderate to a very high margin fairly often,
indicating more convincing victories. Using a binomial test at the 4% signifi-
cance level with a 50% winning probability, we were unable to reject the null
hypothesis that both AI-bots were equal in abilities.

6 Conclusions and Future Work

By evolving behaviour trees for individual behaviours and combining the trees
into an overall AI-bot, we have been able to produce a competitive player that
was capable of beating the original, hand-coded DEFCON AI-bot more than
50% of the time. This hints at the possibility that such an approach is indeed
feasible in the development of automated players for commercial games. Specu-
lating on the effect of further experimentation, we refer to the graphs in Figure 6.
Although we have seen improvements after approximately 100 generations, we
notice that the mean fitness seems to have reached a plateau, which might in-
dicate that performing the evolution for a greater number of generations may
not show significant improvements in mean fitness. This raises the question of
whether evolutionary techniques need to be supplemented with other techniques
in automating AI-bot design, and if so, which techniques should be investigated.

Evolving Behaviour Trees for the Commercial Game DEFCON 109

Evolving against a single opponent could have caused over-fitting. An im-
provement would be to perform experiments against other AI-bots or human
players. Also, in the event that no training AI-bot was present, it raises the
question of whether co-evolution [12] could have been applied. DEFCON is a
non-deterministic game, especially when involving human players. We did not
consider all possible permutations of starting locations for both the player and
the opponent. Africa and South America are within close proximity, so other
starting locations would increase the distance between players and might re-
quire different strategies. We also picked 4 tasks to concentrate on, but there are
other game-play aspects such as the coordination of air units that could have
been investigated. Our implementation only considered the transition between
two stages, from being defensive to launching an attack, which had to occur
in that order. It would be interesting to see the application of the evolution of
sub-trees using lookup decorators to allow the AI-bot to exhibit complex be-
haviours and adaptive game play styles to match opponents, resulting in more
descriptive behaviour trees. Figure 8 shows how the use of decorators can be
used to generate behaviour trees which may differ in topology.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments.

References

1. Bauckhage, C., Thurau, C.: Exploiting the fascination: Video games in machine
learning research and education. In: Proceedings of the 2nd International Workshop
in Computer Game Design and Technology (2004)

2. Baumgarten, R., Colton, S., Morris, M.: Combining AI Methods for Learning Bots
in a Real-Time Strategy Game. Int. J. of Computer Games Tech. (2009)

3. Bryson, J.: Action selection and individuation in agent based modelling. In: Pro-
ceedings of the Argonne National Laboratories Agent Conference (2003)

4. Bryson, J.: The behavior-oriented design of modular agent intelligence. In: Kowal-
czyk, R., Müller, J.P., Tianfield, H., Unland, R. (eds.) NODe-WS 2002. LNCS
(LNAI), vol. 2592, pp. 61–76. Springer, Heidelberg (2003)

5. Hagelbäck, J., Johansson, S.: Using multi-agent potential fields in real-time strat-
egy games. In: Proceedings of the 7th International Joint Conference on Au-
tonomous Agents and Multi-agent Systems, vol. 2 (2008)

6. Hauptman, A., Sipper, M.: GP-endchess: Using genetic programming to evolve
chess endgame players. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert,
J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 120–131. Springer,
Heidelberg (2005)

7. Hecker, C., McHugh, L., Argenton, M., Dyckhoff, M.: Three Approaches to Halo-
style Behavior Tree AI. In: Games Developer Conference, Audio Talk (2007)

8. Isla, D.: Managing complexity in the Halo 2 AI system. In: Proceedings of the
Game Developers Conference (2005)

110 C.-U. Lim, R. Baumgarten, and S. Colton

9. Langdon, W.: Size fair and homologous tree genetic programming crossovers. Ge-
netic programming and evolvable machines 1(1/2), 95–119 (2000)

10. Luke, S.: Genetic programming produced competitive soccer softbot teams for
RoboCup. In: Proceedings of the 3rd Annual Conference of Genetic Programming
(1998)

11. Orkin, J.: Three states and a plan: the AI of FEAR. In: Proceedings of the Game
Developers Conference (2006)

12. Priesterjahn, S., Kramer, O., Weimer, A., Goebels, A.: Evolution of human-
competitive agents in modern computer games. In: Proceedings of the IEEE
Congress on Evolutionary Computation (2006)

13. Togelius, J., De Nardi, R., Lucas, S.: Towards automatic personalised content cre-
ation for racing games. In: Proceedings of the IEEE Symposium on Computational
Intelligence and Games (2007)

	Evolving Behaviour Trees for the Commercial Game DEFCON
	Introduction
	Background
	DEFCON
	Behaviour Trees

	Evolving Behaviour Trees
	Randomly Generating Behaviour Trees
	Applying Genetic Operators

	Fitness Functions
	Experiments and Results
	Experimental Setup
	Distribution
	Results

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

