

Lecture Notes in Computer Science 6024
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Cecilia Di Chio Stefano Cagnoni
Carlos Cotta Marc Ebner Anikó Ekárt
Anna I. Esparcia-Alcázar Chi-Keong Goh
Juan J. Merelo Ferrante Neri Mike Preuss
Julian Togelius Georgios N. Yannakakis (Eds.)

Applications
of Evolutionary
Computation
EvoApplicatons 2010: EvoCOMPLEX,
EvoGAMES, EvoIASP, EvoINTELLIGENCE,
EvoNUM, and EvoSTOC
Istanbul, Turkey, April 7-9, 2010
Proceedings, Part I

13

Volume Editors

see next page

Cover illustration:
"Pelegrina Galathea" by Stayko Chalakov (2009) Aston University, UK

Library of Congress Control Number: 2010923234

CR Subject Classification (1998): I.5, F.1, I.4, J.3, F.2, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-12238-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12238-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Volume Editors

Cecilia Di Chio
Dept. of Mathematics and Statistics
University of Strathclyde, UK
cecilia@stams.strath.ac.uk

Stefano Cagnoni
Dept. of Computer Engineering
University of Parma, Italy
cagnoni@ce.unipr.it

Carlos Cotta
Departamento Lenguajes y Ciencias
de la Computación
University of Malága, Spain
ccottap@lcc.uma.es

Marc Ebner
Wilhelm-Schickard-Institut
für Informatik
Universität Tübingen, Germany
marc.ebner@wsii.uni-tuebingen.de

Anikó Ekárt
Knowledge Engineering Research
Group, Aston University
Birmingham, UK
ekarta@aston.ac.uk

Anna I Esparcia-Alcázar
Instituto Tecnológico de Informática
Universidad Politécnica de Valencia,
Spain
anna@iti.upv.es

Chi-Keong Goh
Advanced Technology Centre
Rolls-Royce
Singapore
chi.keong.goh@rolls-royce.com

Juan J. Merelo
Departamento de Electrónica y
Tecnoloǵıa de los Computadores
Universidad de Granada, Spain
jmerelo@geneura.ugr.es

Ferrante Neri
Department of Mathematical
Information Technology
University of Jyväskylä, Finland
ferrante.neri@jyu.fi

Mike Preuss
TU Dortmund University, Germany
mike.preuss@tu-dortmund.de

Julian Togelius
Center for Computer Games Research
IT University of Copenhagen,
Denmark
julian@togelius.com

Georgios N. Yannakakis
Center for Computer Games Research
IT University of Copenhagen,
Denmark
yannakakis@itu.dk

Preface

Evolutionary Computation (EC) techniques are efficient, nature-inspired meth-
ods based on the principles of natural evolution and genetics. Due to their effi-
ciency and simple underlying principles, these methods can be used for a diverse
range of activities including problem solving, optimization, machine learning and
pattern recognition. A large and continuously increasing number of researchers
and professionals make use of EC techniques in various application domains.
This volume presents a careful selection of relevant EC examples combined with
a thorough examination of the techniques used in EC. The papers in the volume
illustrate the current state of the art in the application of EC and should help
and inspire researchers and professionals to develop efficient EC methods for
design and problem solving.

All papers in this book were presented during EvoApplications 2010, which
included a range of events on application-oriented aspects of EC. Since 1998,
EvoApplications — formerly known as EvoWorkshops — has provided a unique
opportunity for EC researchers to meet and discuss application aspects of EC
and has been an important link between EC research and its application in a
variety of domains. During these 12 years, new events have arisen, some have
disappeared, while others have matured to become conferences of their own, such
as EuroGP in 2000, EvoCOP in 2004, and EvoBIO in 2007. And from this year,
EvoApplications has become a conference as well.

EvoApplications is part of EVO*, Europe’s premier co-located events in the
field of evolutionary computing. EVO* was held from the 7th to the 9th of
April 2010 in the beautiful city of Istanbul, Turkey, which was European City
of Culture in 2010. Evo* 2010 included, in addition to EvoApplications, Eu-
roGP, the main European event dedicated to genetic programming; EvoCOP,
the main European conference on EC in combinatorial optimization; EvoBIO,
the main European conference on EC and related techniques in bioinformatics
and computational biology. The proceedings for all of these events, EuroGP 2010,
EvoCOP 2010 and EvoBIO 2010, are also available in the LNCS series (volumes
6021, 6022, and 6023).

Moreover, thanks to the large number of submissions received, the proceed-
ings for EvoApplications 2010 are divided across two volumes. The present vol-
ume, which contains contributions for: EvoCOMPLEX, EvoGAMES, EvoIASP,
EvoINTELLIGENCE, EvoNUM, and EvoSTOC; and volume two (LNCS 6025),
which contains contributions for: EvoCOMNET, EvoENVIRONMENT, EvoFIN,
EvoMUSART, and EvoTRANSLOG.

The central aim of the EVO* events is to provide researchers, as well as
people from industry, students, and interested newcomers, with an opportunity
to present new results, discuss current developments and applications, or just
become acquainted with the world of EC. Moreover, it encourages and reinforces

VIII Preface

possible synergies and interactions between members of all scientific communities
that may benefit from EC techniques.

EvoApplications 2010 consisted of the following individual events:

– EvoCOMNET, the 7th European Event on the Application of Nature-Inspired
Techniques for Telecommunication Networks and other Parallel and Dis-
tributed Systems

– EvoCOMPLEX, the 1st European Event on Evolutionary Algorithms and
Complex Systems

– EvoENVIRONMENT, the 2nd European Event on Nature-Inspired Methods
for Environmental Issues

– EvoFIN, the 4th European Event on Evolutionary and Natural Computation
in Finance and Economics

– EvoGAMES, the 2nd European Event on Bio-inspired Algorithms in Games
– EvoIASP, the 12th European Event on Evolutionary Computation in Image

Analysis and Signal Processing
– EvoINTELLIGENCE, the 1st European Event on Nature-Inspired Methods

for Intelligent Systems
– EvoMUSART, the 8th European Event on Evolutionary and Biologically

Inspired Music, Sound, Art and Design
– EvoNUM, the 3rd European Event on Bio-inspired Algorithms for Continu-

ous Parameter Optimization
– EvoSTOC, the 7th European Event on Evolutionary Algorithms in Stochas-

tic and Dynamic Environments
– EvoTRANSLOG, the 4th European Event on Evolutionary Computation in

Transportation and Logistics

EvoCOMNET addresses the application of EC techniques to problems in dis-
tributed and connected systems such as telecommunication and computer net-
works, distribution and logistic networks, interpersonal and interorganizational
networks, etc. To address these challenges, this event promotes the study and
the application of strategies inspired by the observation of biological and evolu-
tionary processes, that usually show the highly desirable characteristics of being
distributed, adaptive, scalable, and robust.

EvoCOMPLEX covers all aspects of the interaction of evolutionary algo-
rithms (and metaheuristics in general) with complex systems. Complex sys-
tems are ubiquitous in physics, economics, sociology, biology, computer science,
and many other scientific areas. Typically, a complex system is composed of
smaller aggregated components, whose interaction and interconnectedness are
non-trivial. This leads to emergent properties of the system, not anticipated by
its isolated components. Furthermore, when the system behavior is studied from
a temporal perspective, self-organization patterns typically arise.

EvoENVIRONMENT is devoted to the use of nature-inspired methods for
environmental issues. It deals with many diverse topics such as waste manage-
ment, sewage treatment, control of greenhouse gas emissions, biodegradation of
materials, efficient energy use, or use of renewable energies, to name but a few.

Preface IX

EvoFIN is the only European event specifically dedicated to the applications
of EC, and related natural computing methodologies, to finance and economics.
Financial environments are typically hard, being dynamic, high-dimensional,
noisy and co-evolutionary. These environments serve as an interesting test bed
for novel evolutionary methodologies.

EvoGAMES aims to focus the scientific developments onto computational
intelligence techniques that may be of practical value for utilization in existing
or future games. Recently, games, and especially video games, have become an
important commercial factor within the software industry, providing an excel-
lent test bed for the application of a wide range of computational intelligence
methods.

EvoIASP, the longest-running of all EvoApplications which celebrated its
12th edition this year, has been the first international event solely dedicated
to the applications of EC to image analysis and signal processing in complex
domains of high industrial and social relevance.

EvoINTELLIGENCE is devoted to the use of nature-inspired methods to cre-
ate all kinds of intelligent systems. The scope of the event includes evolutionary
robotics, artificial life and related areas. Intelligent systems do not necessarily
have to exhibit human or animal-like intelligence. Intelligent behavior can also
be found in everyday devices such as a digital video recorder or handheld devices
such as an MP3 player which learn from the human who is operating the device.

EvoMUSART addresses all practitioners interested in the use of EC tech-
niques for the development of creative systems. There is a growing interest in
the application of these techniques in fields such as art, music, architecture and
design. The goal of this event is to bring together researchers that use EC in
this context, providing an opportunity to promote, present and discuss the lat-
est work in the area, fostering its further developments and collaboration among
researchers.

EvoNUM aims at applications of bio-inspired algorithms, and cross-fertiliza-
tion between these and more classical numerical optimization algorithms, to
continuous optimization problems in engineering. It deals with theoretical as-
pects and engineering applications where continuous parameters or functions
have to be optimized, in fields such as control, chemistry, agriculture, electricity,
building and construction, energy, aerospace engineering, design optimization.

EvoSTOC addresses the application of EC in stochastic and dynamic en-
vironments. This includes optimization problems with changing, noisy, and/or
approximated fitness functions and optimization problems that require robust
solutions. These topics recently gained increasing attention in the EC commu-
nity and EvoSTOC was the first event that provided a platform to present and
discuss the latest research in this field.

EvoTRANSLOG deals with all aspects of the use of evolutionary computa-
tion, local search and other nature-inspired optimization and design techniques
for the transportation and logistics domain. The impact of these problems on
the modern economy and society has been growing steadily over the last few
decades, and the event aims at design and optimization techniques such as

X Preface

evolutionary computing approaches allowing the use of computer systems for
systematic design, optimization, and improvement of systems in the transporta-
tion and logistics domain.

Continuing in the tradition of adapting the list of the events to the needs
and demands of the researchers working in the field of evolutionary computing,
EvoINTERACTION, the European Event on Interactive Evolution and Human-
ized Computational Intelligence, and EvoHOT, the European Event on Bio-
inspired Heuristics for Design Automation, decided not to run in 2010 and will
run again in 2011. Two new events were also proposed this year: EvoCOMPLEX,
the First European Event on Evolutionary Algorithms and Complex Systems,
and EvoINTELLIGENCE, the First European Event on Nature-Inspired Meth-
ods for Intelligent Systems.

The number of submissions to EvoApplications 2010 was once again very
high, cumulating 188 entries (with respect to 133 in 2008 and 143 in 2009). The
following table shows relevant statistics for EvoApplications 2010 (both short
and long papers are considered in the acceptance statistics), compared with
those from the 2009 edition:

Event 2010 2009
Submissions Accept Ratio Submissions Accept Ratio

EvoCOMNET 17 12 71% 21 15 71%
EvoCOMPLEX 12 6 50% - - -
EvoENVIRONMENT 5 4 80% 5 4 80%
EvoFIN 17 10 59% 14 8 57%
EvoGAMES 25 15 60% 15 10 67%
EvoIASP 24 15 62% 14 7 50%
EvoINTELLIGENCE 8 5 62% - - -
EvoMUSART 36 16 44% 26 17 65%
EvoNUM 25 15 60% 16 9 56%
EvoSTOC 11 6 54% 11 7 64%
EvoTRANSLOG 11 5 45% 11 6 54%
Total 191 109 57% 143 91 64%

As for previous years, accepted papers were split into oral presentations and
posters. However, this year, each event made their own decision on paper length
for these two categories. Hence, for some events, papers in both categories are of
the same length. The acceptance rate of 57.1% for EvoApplications 2010, along
with the significant number of submissions, is an indicator of the high quality
of the articles presented at the events, showing the liveliness of the scientific
movement in the corresponding fields.

Many people have helped make EvoApplications a success. We would like to
thank the following institutions:

– Computer Engineering Department of Istanbul Technical University, Turkey,
for supporting the local organization

– Istanbul Technical University, Microsoft Turkey, and the Scientific and Tech-
nological Research Council of Turkey, for their patronage of the event

Preface XI

– Centre for Emergent Computing at Edinburgh Napier University, Scotland,
for administrative help and event coordination

We want to especially acknowledge our invited speakers: Kevin Warwick (Uni-
versity of Reading, UK), Luigi Luca Cavalli-Sforza (Stanford School of Medicine,
USA); and Günther Raidl (Vienna University of Technology, Austria) and Jens
Gottlieb (SAP, Walldorf, Germany) for their special EvoCOP 10th anniversary
talk.

We are also very grateful to all the people who provided local support, in
particular Sanem Sarıel-Talay, Şule Gündüz-Öğüdücü, Ayşegül Yayımlı, Gülşen
Cebiroğlu-Eryiğit, and H. Turgut Uyar.

Even with an excellent support and location, an event like EVO* would
not have been feasible without authors submitting their work, members of the
Program Committees dedicating their energy in reviewing those papers, and an
audience. All these people deserve our gratitude.

Finally, we are grateful to all those involved in the preparation of the event,
especially Jennifer Willies for her unfaltering dedication to the coordination of
the event over the years. Without her support, running such a type of confe-
rence with a large number of different organizers and different opinions would
be unmanageable. Further thanks to the local organizer A. Şima (Etaner) Uyar
for making the organization of such an event possible and successful. Last but
surely not least, we want to specially acknowledge Stephen Dignum for his hard
work as Publicity Chair of the event, and Marc Schoenauer for his continuous
help in setting up and maintaining the MyReview management software.

April 2010 Cecilia Di Chio
Stefano Cagnoni

Carlos Cotta
Marc Ebner
Anikó Ekárt

Anna I. Esparcia-Alcázar

Chi-Keong Goh
Juan J. Merelo

Ferrante Neri
Mike Preuss

Julian Togelius
Georgios N. Yannakakis

Organization

EvoApplications 2010 was part of EVO* 2010, Europe’s premier co-located
events in the field of evolutionary computing, that also included the conferences
EuroGP 2010, EvoCOP 2010, and EvoBIO 2010.

Organizing Committee

EvoApplications Chair: Cecilia Di Chio, University of Strathclyde, UK

Local Chairs: A. Şima (Etaner) Uyar, Istanbul Technical
University, Turkey

Publicity Chair: Stephen Dignum, University of Essex, UK

EvoCOMNET Co-chairs: Gianni A. Di Caro, IDSIA, Switzerland
Muddassar Farooq, National University of

Computer and Emerging Sciences, Pakistan
Ernesto Tarantino, Institute for High

Performance Computing and Networking,
Italy

EvoCOMPLEX Co-chairs: Carlos Cotta, University of Malaga, Spain
Juan J. Merelo, University of Granada, Spain

EvoENVIRONMENT Co-chairs: Marc Ebner, University of Tübingen, Germany
Neil Urquhart, Edinburgh Napier University,

UK

EvoFIN Co-chairs: Anthony Brabazon, University College Dublin,
Ireland

Michael O’Neill, University College Dublin,
Ireland

EvoGAMES Co-chairs: Mike Preuss, TU Dortmund University,
Germany

Julian Togelius, IT University of Copenhagen,
Denmark

Georgios N. Yannakakis, IT University of
Copenhagen, Denmark

EvoIASP Chair: Stefano Cagnoni, University of Parma, Italy

XIV Organization

EvoINTELLIGENCE Co-chairs: Marc Ebner, University of Tübingen, Germany
Cecilia Di Chio, University of Strathclyde, UK

EvoMUSART Co-chairs: Penousal Machado, University of Coimbra,
Portugal

Gary Greenfield, University of Richmond, USA

EvoNUM Co-chairs: Anna Isabel Esparcia-Alcazar,
ITI - Universidad Politécnica de Valencia,
Spain

Anikó Ekárt, Aston University, UK

EvoSTOC Co-chairs: Ferrante Neri, University of Jyväskylä, Finland
Chi-Keong Goh, Advanced Technology Centre

Rolls-Royce, Singapore

EvoTRANSLOG Co-chairs: Andreas Fink, Helmut-Schmidt-University
Hamburg, Germany

Jörn Grahl, Johannes Gutenberg University,
Germany

Program Committees

EvoCOMNET Program Committee

Özgür B. Akan Middle East Technical University, Turkey
Enrique Alba University of Malaga, Spain
Qing Anyong National University of Singapore, Singapore
Payman Arabshahi University of Washington, USA
Mehmet E. Aydin University of Bedfordshire, UK
Iacopo Carreras CREATE-NET, Italy
Arindam K. Das University of Washington, USA
Falko Dressler University of Erlangen, Germany
Frederick Ducatelle IDSIA, Switzerland
Luca Gambardella IDSIA, Switzerland
Jin-Kao Hao University of Angers, France
Malcolm I. Heywood Dalhousie University, Canada
Byrant Julstrom St. Cloud State University, USA
Graham Kendall University of Nottingham, UK
Kenji Leibnitz Osaka University, Japan
Manuel Lozano-Marquez University of Granada, Spain
Domenico Maisto ICAR CNR, Italy
Ronaldo Menezes Florida Institute of Technology, USA
Martin Middendorf University of Leipzig, Germany
Roberto Montemanni IDSIA, Switzerland
Chien-Chung Shen University of Delaware, USA
Tony White Carleton University, Canada
Lidia Yamamoto University of Basel, Switzerland
Nur Zincir-Heywood Dalhousie University, Canada

Organization XV

EvoCOMPLEX Program Committee

Antonio Córdoba Universidad de Sevilla, Spain
Carlos Cotta Universidad de Málaga, Spain
Jordi Delgado Universitat Politècnica de Catalunya, Spain
Carlos Gershenson UNAM, Mexico
Mario Giacobini Università di Torino, Italy
Anca Gog Babes-Bolyai University, Romania
Márk Jelasity University of Szeged, Hungary
Juan Luis Jiménez University of Granada, Spain
Jose Fernando Mendes Universidade de Aveiro, Portugal
Juan J. Merelo Universidad de Granada, Spain
Joshua L. Payne University of Vermont, USA
Mike Preuss Universität Dortmund, Germany
Katya Rodŕıguez-Vázquez UNAM, Mexico
Kepa Ruiz-Mirazo Euskal Herriko Unibertsitatea, Spain
Luciano Sánchez Universidad de Oviedo, Spain
Robert Schaefer AGH University of Science and Technology,

Poland
Marco Tomassini Université de Lausanne, Switzerland
Fernando Tricas Universidad de Zaragoza, Spain
Sergi Valverde Universitat Pompeu Frabra, Spain
Leonardo Vanneschi University of Milano-Bicocca, Italy

EvoENVIRONMENT Program Committee

Stefano Cagnoni University of Parma, Italy
Pierre Collet Université de Strasbourg, France
Kevin Cullinane Edinburgh Napier University, UK
Marc Ebner Universität Tübingen, Germany
James A Foster University of Idaho, USA
Nanlin Jin University of Leeds, UK
Rhyd Lewis Cardiff University, UK
William Magette University College Dublin, Ireland
R I (Bob) McKay Seoul National University, Korea
Michael O’Neill University College Dublin, Ireland
Stefano Pizzuti Energy New Tech. and Environment Agency,

Italy
Tom Rye Edinburgh Napier University, UK
Carlo Santulli University of Rome “La Sapienza”, Italy
Marc Schoenauer INRIA, France
Terence Soule University of Idaho, USA
John Summerscales University of Plymouth, UK
Neil Urquhart Edinburgh Napier University, UK
Tina Yu Memorial University of Newfoundland,

Canada
Mengjie Zhang University of Wellington, New Zealand

XVI Organization

EvoFIN Program Committee

Eva Alfaro-Cid Instituto Tecnológico de Informática, Spain
Antonia Azzini Università degli Studi di Milano, Italy
Anthony Brabazon University College Dublin, Ireland
Louis Charbonneau Concordia University, Canada
Gregory Connor National University of Ireland Maynooth,

Ireland
Ian Dempsey Pipeline Trading, USA
Rafal Drezewski AGH University of Science and Technology,

Poland
Manfred Gilli University of Geneva and Swiss Finance

Institute, Switzerland
Philip Hamill University of Ulster, UK
Ronald Hochreiter WU Vienna University of Economics and

Business, Austria
Youwei Li Queen’s University Belfast, UK
Dietmar Maringer University of Basel, Switzerland
Michael O’Neill University College Dublin, Ireland
Philip Saks University of Essex, UK
Robert Schafer AGH University of Science and Technology,

Poland
Andrea Tettamanzi Università Degli Studi di Milano, Italy
Garnett Wilson Memorial University of Newfoundland,

Canada

EvoGAMES Program Committee

Lourdes Araujo UNED, Spain
Wolfgang Banzhaf Memorial University of Newfoundland,

Canada
Luigi Barone University of Western Australia, Australia
Simon Colton Imperial College London, UK
Ernesto Costa Universidade de Coimbra, Portugal
Carlos Cotta Universidad de Málaga, Spain
Marc Ebner University of Tübingen, Germany
Anikó Ekárt Aston University, UK
Anna Esparcia Alcázar Instituto Tecnológico de Informática, Spain
Francisco Fernández Universidad de Extremadura, Spain
Antonio J Fernández Leiva Universidad de Málaga, Spain
Mario Giacobini Università degli Studi di Torino, Italy
Johan Hagelbäck Blekinge Tekniska Högskola, Sweden
John Hallam University of Southern Denmark, Denmark
David Hart Fall Line Studio, USA
Philip Hingston Edith Cowan University, Australia
Stefan Johansson Blekinge Tekniska Högskola, Sweden
Rilla Khaled IT University of Copenhagen, Denmark

Organization XVII

Elias Kosmatopoulos Dimocritian University of Thrace, Greece
Krzysztof Krawiec Poznan University of Technology, Poland
Pier Luca Lanzi Politecnico di Milano, Italy
Simon Lucas University of Essex, UK
Penousal Machado Universidade de Coimbra, Portugal
Juan J. Merelo Universidad de Granada, Spain
Risto Miikkulainen University of Texas at Austin, USA
Antonio Mora Universidad de Granada, Spain
Mike Preuss Universität Dortmund, Germany
Steffen Priesterjahn University of Paderborn, Germany
Moshe Sipper Ben-Gurion University, Israel
Terence Soule University of Idaho, USA
Julian Togelius IT University of Copenhagen, Denmark
Georgios N. Yannakakis IT University of Copenhagen, Denmark

EvoIASP Program Committee

Antonia Azzini University of Milan-Crema, Italy
Lucia Ballerini University of Edinburgh, UK
Leonardo Bocchi University of Florence, Italy
Stefano Cagnoni University of Parma, Italy
Oscar Cordon European Center for Soft Computing, Spain
Sergio Damas European Center for Soft Computing, Spain
Ivanoe De Falco ICAR - CNR, Italy
Antonio Della Cioppa University of Salerno, Italy
Laura Dipietro MIT, USA
Marc Ebner University of Tübingen, Germany
Francesco Fontanella University of Cassino, Italy
Şpela Ivekoviç University of Dundee, UK
Mario Koeppen Kyushu Institute of Technology, Japan
Krisztof Krawiec Poznan University of Technology, Poland
Jean Louchet INRIA, France
Evelyne Lutton INRIA, France
Luca Mussi University of Parma, Italy
Ferrante Neri University of Jyväskylä, Finland
Gustavo Olague CICESE, Mexico
Riccardo Poli University of Essex, UK
Stephen Smith University of York, UK
Giovanni Squillero Politecnico di Torino, Italy
Kiyoshi Tanaka Shinshu University, Japan
Andy Tyrrell University of York, UK
Leonardo Vanneschi University of Milan Bicocca, Italy
Mengjie Zhang Victoria University of Wellington,

New Zealand

XVIII Organization

EvoINTELLIGENCE Program Committee

Wolfgang Banzhaf Memorial University of Newfoundland,
Canada

Peter Bentley University College London, UK
Stefano Cagnoni University of Parma, Italy
Cecilia Di Chio University of Strathclyde, UK
Marc Ebner Eberhard Karls Universität Tübingen,

Germany
Mario Giacobini University of Turin, Italy
Greg Hornby University of California Santa Cruz, USA
Christian Jacob University of Calgary, Canada
Gul Muhammad Kahn University of Engineering and Technology,

Pakistan
Gabriela Kokai Fraunhofer Inst. für Integrated Circuits,

Germany
William B. Langdon King’s College, London, UK
Penousal Machado University of Coimbra, Portugal
Julian Miller University of York, UK
Gustavo Olague CICESE, Mexico
Michael O’Neill University College Dublin, Ireland
Thomas Ray University of Oklahoma, USA
Marc Schoenauer INRIA, France
Moshe Sipper Ben-Gurion University, Israel
Ivan Tanev Doshisha University, Japan
Mengjie Zhang Victoria University of Wellington,

New Zealand

EvoMUSART Program Committee

Mauro Annunziato Plancton Art Studio, Italy
Peter Bentley University College London, UK
Eleonora Bilotta University of Calabria, Italy
Tim Blackwell Goldsmiths College, University of London, UK
Simon Colton Imperial College, UK
Oliver Bown Monash University, Australia
Paul Brown University of Sussex, UK
Stefano Cagnoni University of Parma, Italy
Amilcar Cardoso University of Coimbra, Portugal
Vic Ciesielski RMIT, Australia
Palle Dahlstedt Göteborg University, Sweden
Hans Dehlinger Independent Artist, Germany
Steve DiPaola Simon Fraser University, Canada
Alan Dorin Monash University, Australia
Erwin Driessens Independent Artist, The Netherlands
Philip Galanter Texas A&M College of Architecture, USA
Pablo Gervás Universidad Complutense de Madrid, Spain

Organization XIX

Andrew Gildfind Google, Inc., Australia
Carlos Grilo Instituto Politécnico de Leiria, Portugal
David Hart Independent Artist, USA
Amy K. Hoover University of Central Florida, USA
Andrew Horner University of Science & Technology,

Hong Kong
Christian Jacob University of Calgary, Canada
Colin Johnson University of Kent, UK
Craig Kaplan University of Waterloo, Canada
Matthew Lewis Ohio State University, USA
Alain Lioret Paris 8 University, France
Bill Manaris College of Charleston, USA
Ruli Manurung University of Indonesia, Indonesia
Jonatas Manzolli UNICAMP, Brazil
Jon McCormack Monash University, Australia
James McDermott University of Limerick, Ireland
Eduardo Miranda University of Plymouth, UK
Nicolas Monmarché University of Tours, France
Gary Nelson Oberlin College, USA
Luigi Pagliarini PEAM, Italy & University of Southern,

Denmark
Rui Pedro Paiva University of Coimbra, Portugal
Alejandro Pazos University of A Coruna, Spain
Somnuk Phon-Amnuaisuk Multimedia University, Malaysia
Rafael Ramirez Pompeu Fabra University, Spain
Juan Romero University of A Coruna, Spain
Brian Ross Brock University, Canada
Artemis Sanchez Moroni Renato Archer Research Center, Brazil
Antonino Santos University of A Coruna, Spain
Kenneth O. Stanley University of Central Florida, USA
Jorge Tavares University of Coimbra, Portugal
Stephen Todd IBM, UK
Paulo Urbano Universidade de Lisboa, Portugal
Anna Ursyn University of Northern Colorado, USA
Maria Verstappen Independent Artist, The Netherlands
Gerhard Widmer Johannes Kepler University Linz, Austria

EvoNUM Program Committee

Eva Alfaro-Cid ITI – Universidad Politécnica de Valencia,
Spain

Anne Auger INRIA, France
Wolfgang Banzhaf Memorial University of Newfoundland,

Canada
Xavier Blasco Universidad Politécnica de Valencia, Spain
Hans-Georg Beyer Vorarlberg University of Applied Sciences,

Austria

XX Organization

Ying-ping Chen National Chiao Tung University, Taiwan
Carlos Cotta Universidad de Malaga, Spain
Marc Ebner Universität Würzburg, Germany
Gusz Eiben Vrije Universiteit Amsterdam,

The Netherlands
Şima Etaner-Uyar Istanbul Technical University, Turkey
Francisco Fernández

de Vega Universidad de Extremadura, Spain
Nikolaus Hansen INRIA, France
José Ignacio Hidalgo Universidad Complutense de Madrid, Spain
Andras Joo Aston University, UK
Bill Langdon King’s College London, UK
Juan J. Merelo Universidad de Granada, Spain
Boris Naujoks Log!n GmbH, Germany
Ferrante Neri University of Jyväskylä, Finland
Gabriela Ochoa University of Nottingham, UK
Petr Poš́ık Czech Technical University, Czech Republic
Mike Preuss University of Dortmund, Germany
Günter Rudolph University of Dortmund, Germany
Marc Schoenauer INRIA, France
Hans-Paul Schwefel University of Dortmund, Germany
P.N. Suganthan Nanyang Technological University, Singapore
Ke Tang University of Science and Technology of

China, China
Olivier Teytaud INRIA, France
Darrell Whitley Colorado State University, USA

EvoSTOC Program Committee

Hussein Abbass University of New South Wales, Australia
Dirk Arnold Dalhousie University, Canada
Hans-Georg Beyer Vorarlberg University of Applied Sciences,

Austria
Peter Bosman Centre for Mathematics and Computer

Science, The Netherlands
Juergen Branke University of Karlsruhe, Germany
Andrea Caponio Technical University of Bari, Italy
Ernesto Costa University of Coimbra, Portugal
Kalyanmoy Deb Indian Institute of Technology Kanpur, India
Andries Engelbrecht University of Pretoria, South Africa
Yaochu Jin Honda Research Institute Europe, Germany
Anna V. Kononova University of Leeds, UK
Jouni Lampinen University of Vaasa, Finland
Xiaodong Li RMIT University, Australia
John McCall Robert Gordon University, UK

Organization XXI

Ernesto Mininno University of Jyväskylä, Finland
Yew Soon Ong Nanyang Technological University of

Singapore, Singapore
Zhang Qingfu University of Essex, UK
William Rand University of Maryland, USA
Khaled Rasheed University of Georgia, USA
Hendrik Richter University of Leipzig, Germany
Philipp Rohlfshagen University of Birmingham, UK
Kay Chen Tan National University of Singapore, Singapore
Ke Tang University of Science and Technology of

China, China
Yoel Tenne Sydney University, Australia
Renato Tinos Universidade de Sao Paulo, Brazil
Ville Tirronen University of Jyväskylä, Finland
Shengxiang Yang University of Leicester, UK
Gary Yen Oklahoma State University, USA

EvoTRANSLOG Program Committee

Christian Blum Univ. Politecnica Catalunya, Spain
Peter A.N. Bosman Centre for Mathematics and Computer

Science, The Netherlands
Marco Caserta University of Hamburg, Germany
Loukas Dimitriou National Technical University of Athens,

Greece
Karl Doerner University of Vienna, Austria
Martin Josef Geiger Helmut-Schmidt-University Hamburg,

Germany
Stefan Irnich RWTH Aachen University, Germany
Hoong Chuin Lau Singapore Management University, Singapore
Christian Prins University of Technology of Troyes, France
Franz Rothlauf University of Mainz, Germany
Kay Chen Tan National University of Singapore, Singapore
Theodore Tsekeris Center of Planning and Economic Research,

Greece
Stefan Voß University of Hamburg, Germany
Oliver Wendt University of Kaiserslautern, Germany

Sponsoring Institutions

– Istanbul Technical University, Istanbul, Turkey
– Microsoft Turkey
– Scientific and Technological Research Council of Turkey
– The Centre for Emergent Computing at Edinburgh Napier University,

Scotland

Table of Contents – Part I

EvoCOMPLEX Contributions

Coevolutionary Dynamics of Interacting Species . 1
Marc Ebner, Richard A. Watson, and Jason Alexander

Evolving Individual Behavior in a Multi-agent Traffic Simulator 11
Ernesto Sánchez, Giovanni Squillero, and Alberto Tonda

On Modeling and Evolutionary Optimization of Nonlinearly Coupled
Pedestrian Interactions . 21

Pradyumn Kumar Shukla

Revising the Trade-off between the Number of Agents and Agent
Intelligence . 31

Marcus Komann and Dietmar Fey

Sexual Recombination in Self-Organizing Interaction Networks 41
Joshua L. Payne and Jason H. Moore

Symbiogenesis as a Mechanism for Building Complex Adaptive
Systems: A Review . 51

Malcolm I. Heywood and Peter Lichodzijewski

EvoGAMES Contributions

Co-evolution of Optimal Agents for the Alternating Offers Bargaining
Game . 61

Arjun Chandra, Pietro Simone Oliveto, and Xin Yao

Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary
Detection . 71

Dumitru Dumitrescu, Rodica Ioana Lung, Tudor Dan Mihoc, and
Reka Nagy

An Evolutionary Approach for Solving the Rubik’s Cube Incorporating
Exact Methods . 80

Nail El-Sourani, Sascha Hauke, and Markus Borschbach

Evolution of Artificial Terrains for Video Games Based on
Accessibility . 90

Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta

Evolving Behaviour Trees for the Commercial Game DEFCON 100
Chong-U Lim, Robin Baumgarten, and Simon Colton

XXIV Table of Contents – Part I

Evolving 3D Buildings for the Prototype Video Game Subversion 111
Andrew Martin, Andrew Lim, Simon Colton, and Cameron Browne

Finding Better Solutions to the Mastermind Puzzle Using Evolutionary
Algorithms . 121

Juan J. Merelo-Guervós and Thomas Philip Runarsson

Towards a Generic Framework for Automated Video Game Level
Creation . 131

Nathan Sorenson and Philippe Pasquier

Search-Based Procedural Content Generation . 141
Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne

Evolution of Grim Trigger in Prisoner Dilemma Game with Partial
Imitation . 151

Degang Wu, Mathis Antony, and K.Y. Szeto

Evolving a Ms. PacMan Controller Using Grammatical Evolution 161
Edgar Galván-López, John Mark Swafford, Michael O’Neill, and
Anthony Brabazon

Evolving Bot AI in UnrealTM . 171
Antonio Miguel Mora, Ramón Montoya, Juan Julián Merelo,
Pablo Garćıa Sánchez, Pedro Ángel Castillo,
Juan Lúıs Jiménez Laredo, Ana Isabel Mart́ınez, and
Anna Espacia

Evolutionary Algorithm for Generation of Entertaining Shinro Logic
Puzzles . 181

David Oranchak

Social Learning Algorithms Reaching Nash Equilibrium in Symmetric
Cournot Games . 191

Mattheos K. Protopapas, Francesco Battaglia, and
Elias B. Kosmatopoulos

Multiple Overlapping Tiles for Contextual Monte Carlo Tree Search 201
Arpad Rimmel and Fabien Teytaud

EvoIASP Contributions

A CNN Based Algorithm for the Automated Segmentation of Multiple
Sclerosis Lesions . 211

Eleonora Bilotta, Antonio Cerasa, Pietro Pantano, Aldo Quattrone,
Andrea Staino, and Francesca Stramandinoli

Table of Contents – Part I XXV

A Hybrid Evolutionary Algorithm for Bayesian Networks Learning: An
Application to Classifier Combination . 221

Claudio De Stefano, Francesco Fontanella, Cristina Marrocco, and
Alessandra Scotto di Freca

Towards Automated Learning of Object Detectors 231
Marc Ebner

Markerless Multi-view Articulated Pose Estimation Using Adaptive
Hierarchical Particle Swarm Optimisation . 241

Spela Ivekovic, Vijay John, and Emanuele Trucco

Hand Posture Recognition Using Real-Time Artificial Evolution 251
Benoit Kaufmann, Jean Louchet, and Evelyne Lutton

Comparing Cellular and Panmictic Genetic Algorithms for Real-Time
Object Detection . 261

Jesús Mart́ınez-Gómez, José Antonio Gámez, and
Ismael Garćıa-Varea

Bloat Free Genetic Programming versus Classification Trees for
Identification of Burned Areas in Satellite Imagery 272

Sara Silva, Maria J. Vasconcelos, and Joana B. Melo

Genetic Algorithms for Training Data and Polynomial Optimization in
Colorimetric Characterization of Scanners . 282

Leonardo Vanneschi, Mauro Castelli, Simone Bianco, and
Raimondo Schettini

New Genetic Operators in the Fly Algorithm: Application to Medical
PET Image Reconstruction . 292

Franck Patrick Vidal, Jean Louchet, Jean-Marie Rocchisani, and
Évelyne Lutton

Chaotic Hybrid Algorithm and Its Application in Circle Detection 302
Chun-Ho Wu, Na Dong, Wai-Hung Ip, Ching-Yuen Chan,
Kei-Leung Yung, and Zeng-Qiang Chen

Content-Based Image Retrieval of Skin Lesions by Evolutionary Feature
Synthesis . 312

Lucia Ballerini, Xiang Li, Robert B. Fisher, Ben Aldridge, and
Jonathan Rees

An Evolutionary Method for Model-Based Automatic Segmentation of
Lower Abdomen CT Images for Radiotherapy Planning 320

Vitoantonio Bevilacqua, Giuseppe Mastronardi, and
Alessandro Piazzolla

Evolution of Communicating Individuals . 328
Leonardo Bocchi, Sara Lapi, and Lucia Ballerini

XXVI Table of Contents – Part I

Dynamic Data Clustering Using Stochastic Approximation Driven
Multi-Dimensional Particle Swarm Optimization . 336

Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj

Automatic Synthesis of Associative Memories through Genetic
Programming: A First Co-evolutionary Approach . 344

Juan Villegas-Cortez, Gustavo Olague, Carlos Aviles,
Humberto Sossa, and Andres Ferreyra

EvoINTELLIGENCE Contributions

A Comparative Study between Genetic Algorithm and Genetic
Programming Based Gait Generation Methods for Quadruped
Robots . 352

Kisung Seo and Soohwan Hyun

Markerless Localization for Blind Users Using Computer Vision and
Particle Swarm Optimization . 361

Hashem Tamimi and Anas Sharabati

Particle Swarm Optimization for Feature Selection in Speaker
Verification . 371

Shahla Nemati and Mohammad Ehsan Basiri

Scale- and Rotation-Robust Genetic Programming-Based Corner
Detectors . 381

Kisung Seo and Youngkyun Kim

Self-organized and Evolvable Cognitive Architecture for Intelligent
Agents and Multi-Agent Systems . 392

Oscar Javier Romero López

EvoNUM Contributions

Investigating the Local-Meta-Model CMA-ES for Large Population
Sizes . 402

Zyed Bouzarkouna, Anne Auger, and Didier Yu Ding

Exploiting Evolution for an Adaptive Drift-Robust Classifier in
Chemical Sensing . 412

Stefano Di Carlo, Matteo Falasconi, Ernesto Sánchez,
Alberto Scionti, Giovanni Squillero, and Alberto Tonda

Automatically Modeling Hybrid Evolutionary Algorithms from Past
Executions . 422

Santiago Muelas, José-Maŕıa Peña, and Antonio LaTorre

Table of Contents – Part I XXVII

Gaussian Adaptation Revisited – An Entropic View on Covariance
Matrix Adaptation . 432

Christian L. Müller and Ivo F. Sbalzarini

Parallel Genetic Algorithm on the CUDA Architecture 442
Petr Pospichal, Jiri Jaros, and Josef Schwarz

A New Selection Ratio for Large Population Sizes . 452
Fabien Teytaud

Multi-Objective Probability Collectives . 461
Antony Waldock and David Corne

Parallel Random Injection Differential Evolution . 471
Matthieu Weber, Ferrante Neri, and Ville Tirronen

Effect of Spatial Locality on an Evolutionary Algorithm for Multimodal
Optimization . 481

Ka-Chun Wong, Kwong-Sak Leung, and Man-Hon Wong

A Directed Mutation Operator for Real Coded Genetic Algorithms 491
Imtiaz Korejo, Shengxiang Yang, and Changhe Li

Speedups between ×70 and ×120 for a Generic Local Search (Memetic)
Algorithm on a Single GPGPU Chip . 501

Frédéric Krüger, Ogier Maitre, Santiago Jiménez,
Laurent Baumes, and Pierre Collet

Advancing Model–Building for Many–Objective Optimization
Estimation of Distribution Algorithms . 512

Luis Mart́ı, Jesús Garćıa, Antonio Berlanga, and José M. Molina

Estimation Distribution Differential Evolution . 522
Ernesto Mininno and Ferrante Neri

Design of Continuous Controllers Using a Multiobjective Differential
Evolution Algorithm with Spherical Pruning . 532

Gilberto Reynoso-Meza, Javier Sanchis, Xavier Blasco, and
Miguel Mart́ınez

Parameter Tuning of Evolutionary Algorithms: Generalist vs.
Specialist . 542

S.K. Smit and A.E. Eiben

EvoSTOC Contributions

Memory Design for Constrained Dynamic Optimization Problems 552
Hendrik Richter

XXVIII Table of Contents – Part I

Multi-population Genetic Algorithms with Immigrants Scheme
for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc
Networks . 562

Hui Cheng and Shengxiang Yang

Measuring Fitness Degradation in Dynamic Optimization Problems 572
Enrique Alba and Briseida Sarasola

Handling Undefined Vectors in Expensive Optimization Problems 582
Yoel Tenne, Kazuhiro Izui, and Shinji Nishiwaki

Adaptive Noisy Optimization . 592
Philippe Rolet and Olivier Teytaud

Noise Analysis Compact Genetic Algorithm . 602
Ferrante Neri, Ernesto Mininno, and Tommi Kärkkäinen

Author Index . 613

Table of Contents – Part II

EvoCOMNET Contributions

Detection of DDoS Attacks via an Artificial Immune System-Inspired
Multiobjective Evolutionary Algorithm . 1

Uğur Akyazı and A. Şima Uyar

Performance Evaluation of an Artificial Neural Network-Based
Adaptive Antenna Array System . 11

Muamar Al-Bajari, Jamal M. Ahmed, and Mustafa B. Ayoob

Automatic Parameter Tuning with Metaheuristics of the AODV
Routing Protocol for Vehicular Ad-Hoc Networks . 21

José Garćıa-Nieto and Enrique Alba

WiMAX Network Planning Using Adaptive-Population-Size Genetic
Algorithm . 31

Ting Hu, Yuanzhu Peter Chen, and Wolfgang Banzhaf

Markov Chain Models for Genetic Algorithm Based Topology Control
in MANETs . 41

Cem Şafak Şahin, Stephen Gundry, Elkin Urrea, M. Ümit Uyar,
Michael Conner, Giorgio Bertoli, and Christian Pizzo

Particle Swarm Optimization for Coverage Maximization and Energy
Conservation in Wireless Sensor Networks . 51

Nor Azlina Ab. Aziz, Ammar W. Mohemmed, and Mengjie Zhang

Efficient Load Balancing for a Resilient Packet Ring Using Artificial
Bee Colony . 61

Anabela Moreira Bernardino, Eugénia Moreira Bernardino,
Juan Manuel Sánchez-Pérez, Juan Antonio Gómez-Pulido, and
Miguel Angel Vega-Rodŕıguez

TCP Modification Robust to Packet Reordering in Ant Routing
Networks . 71

Malgorzata Gadomska-Kudelska and Andrzej Pacut

Solving the Physical Impairment Aware Routing and Wavelength
Assignment Problem in Optical WDM Networks Using a Tabu Search
Based Hyper-Heuristic Approach . 81

Ali Keleş, A. Şima Uyar, and Ayşegül Yayımlı

A Generalized, Location-Based Model of Connections in Ad-Hoc
Networks Improving the Performance of Ant Routing 91

Michal Kudelski and Andrzej Pacut

XXX Table of Contents – Part II

Using Code Bloat to Obfuscate Evolved Network Traffic 101
Patrick LaRoche, Nur Zincir-Heywood, and Malcolm I. Heywood

ABC Supported Handoff Decision Scheme Based on Population
Migration . 111

Xingwei Wang, Hui Cheng, Peiyu Qin, Min Huang, and Lei Guo

EvoENVIRONMENT Contributions

A Hyper-Heuristic Approach for the Unit Commitment Problem 121
Argun Berberoğlu and A. Şima Uyar

Application of Genetic Programming Classification in an Industrial
Process Resulting in Greenhouse Gas Emission Reductions 131

Marco Lotz and Sara Silva

Influence of Topology and Payload on CO2 Optimised Vehicle
Routing . 141

Cathy Scott, Neil Urquhart, and Emma Hart

Start-Up Optimisation of a Combined Cycle Power Plant with
Multiobjective Evolutionary Algorithms . 151

Ilaria Bertini, Matteo De Felice, Fabio Moretti, and Stefano Pizzuti

EvoFIN Contributions

A Study of Nature-Inspired Methods for Financial Trend Reversal
Detection . 161

Antonia Azzini, Matteo De Felice, and Andrea G.B. Tettamanzi

Outperforming Buy-and-Hold with Evolved Technical Trading Rules:
Daily, Weekly and Monthly Trading . 171

Dome Lohpetch and David Corne

Evolutionary Multi-stage Financial Scenario Tree Generation 182
Ronald Hochreiter

Evolving Dynamic Trade Execution Strategies Using Grammatical
Evolution . 192

Wei Cui, Anthony Brabazon, and Michael O’Neill

Modesty Is the Best Policy: Automatic Discovery of Viable Forecasting
Goals in Financial Data . 202

Fiacc Larkin and Conor Ryan

Threshold Recurrent Reinforcement Learning Model for Automated
Trading . 212

Dietmar Maringer and Tikesh Ramtohul

Table of Contents – Part II XXXI

Active Portfolio Management from a Fuzzy Multi-objective
Programming Perspective . 222

Nikos S. Thomaidis

Evolutionary Monte Carlo Based Techniques for First Passage Time
Problems in Credit Risk and Other Applications in Finance 232

Olena Tsviliuk, Roderick Melnik, and Di Zhang

Calibrating the Heston Model with Differential Evolution 242
Manfred Gilli and Enrico Schumann

Evolving Trading Rule-Based Policies . 251
Robert Gregory Bradley, Anthony Brabazon, and Michael O’Neill

EvoMUSART Contributions

Evolving Artistic Styles through Visual Dialogues . 261
Jae C. Oh and Edward Zajec

Graph-Based Evolution of Visual Languages . 271
Penousal Machado, Henrique Nunes, and Juan Romero

Refinement Techniques for Animated Evolutionary Photomosaics Using
Limited Tile Collections . 281

Shahrul Badariah Mat Sah, Vic Ciesielski, and Daryl D’Souza

Generative Art and Evolutionary Refinement . 291
Gary Greenfield

Aesthetic Learning in an Interactive Evolutionary Art System 301
Yang Li and Chang-Jun Hu

Comparing Aesthetic Measures for Evolutionary Art 311
E. den Heijer and A.E. Eiben

The Problem with Evolutionary Art Is . 321
Philip Galanter

Learning to Dance through Interactive Evolution . 331
Greg A. Dubbin and Kenneth O. Stanley

Jive: A Generative, Interactive, Virtual, Evolutionary Music System 341
Jianhua Shao, James McDermott, Michael O’Neill, and
Anthony Brabazon

A Neural Network for Bass Functional Harmonization 351
Roberto De Prisco, Antonio Eletto, Antonio Torre, and
Rocco Zaccagnino

XXXII Table of Contents – Part II

Combining Musical Constraints with Markov Transition Probabilities
to Improve the Generation of Creative Musical Structures 361

Stephen Davismoon and John Eccles

Dynamic Musical Orchestration Using Genetic Algorithms and a
Spectro-Temporal Description of Musical Instruments 371

Philippe Esling, Grégoire Carpentier, and Carlos Agon

Evolutionary Sound Synthesis: Rendering Spectrograms from Cellular
Automata Histograms . 381

Jaime Serquera and Eduardo R. Miranda

Sound Agents . 391
Philippe Codognet and Olivier Pasquet

From Evolutionary Composition to Robotic Sonification 401
Artemis Moroni and Jônatas Manzolli

Musical Composer Identification through Probabilistic and Feedforward
Neural Networks . 411

Maximos A. Kaliakatsos-Papakostas, Michael G. Epitropakis, and
Michael N. Vrahatis

EvoTRANSLOG Contributions

Using an Evolutionary Algorithm to Discover Low CO2 Tours within a
Travelling Salesman Problem . 421

Neil Urquhart, Cathy Scott, and Emma Hart

A Genetic Algorithm for the Traveling Salesman Problem with Pickup
and Delivery Using Depot Removal and Insertion Moves 431

Volkan Çınar, Temel Öncan, and Haldun Süral

Fast Approximation Heuristics for Multi-Objective Vehicle Routing
Problems . 441

Martin Josef Geiger

Particle Swarm Optimization and an Agent-Based Algorithm for a
Problem of Staff Scheduling . 451

Maik Günther and Volker Nissen

A Math-Heuristic for the Multi-Level Capacitated Lot Sizing Problem
with Carryover . 462

Marco Caserta, Adriana Ramirez, and Stefan Voß

Author Index . 473

Coevolutionary Dynamics of Interacting Species

Marc Ebner1, Richard A. Watson2, and Jason Alexander3

1 Eberhard Karls Universität Tübingen, WSI für Informatik, Abt. RA, Sand 1,
72076 Tübingen, Germany

marc.ebner@wsii.uni-tuebingen.de
2 University of Southampton, School of Electronics and Computer Science, Highfield,

Southampton, SO17 1BJ, UK
raw@ecs.soton.ac.uk

3 London School of Economics, Department of Philosophy, Logic and Scientific
Method, Houghton Street, London WC2A 2AE, UK

J.Alexander@lse.ac.uk

Abstract. One of the open questions in evolutionary computation is
how an arms race may be initiated between coevolving entities such that
the entities acquire new behaviors and increase in complexity over time.
It would be highly desirable to establish the necessary and sufficient
conditions which lead to such an arms race. We investigate what these
conditions may be using a model of competitive coevolution. Coevolv-
ing species are modeled as points which are placed randomly on a two-
dimensional fitness landscape. The position of the species has an impact
on the fitness landscape surrounding the phenotype of the species. Each
species deforms the fitness landscape locally. This deformation, however,
is not immediate. It follows the species after some latency period. We
model evolution as a simple hill climbing process. Selection causes the
species to climb towards the nearest optimum. We investigate the impact
different conditions have on the evolutionary dynamics of this process.
We will see that some conditions lead to cyclic or stationary behavior
while others lead to an arms race. We will also see spontaneous occur-
rence of speciation on the two-dimensional landscape.

1 Introduction

Most research in evolutionary algorithms assumes that a population of individ-
uals is adapting to a fixed fitness landscape as defined by the fitness function.
However, some researchers also have looked at the problem of a population of in-
dividuals adapting to a fitness function which changes over time, e.g [5,9,16]. In
nature, the environment to which species adapt over the course of time is never
static. It is constantly changing because it mostly consists of other individuals
which themselves undergo evolution. In our research, we are focusing on coevolv-
ing species and their evolutionary dynamics. We try to isolate important factors
which have an impact on the coevolutionary dynamics of different species.

Let us assume that we have two species adapting to their local environment.
The fitness landscapes of coevolving species are coupled. If one species achieves

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 M. Ebner, R.A. Watson, and J. Alexander

BA

A

B

A

B

BA32

Fi
tn

es
s

Phenotype Space

1 4

Fig. 1. Two species are coupled by a shared fitness landscape

a higher fitness, i.e. higher reproductive rate, this also has a significant impact
on the fitness of the second species [7]. Two coevolving species may well reach
a higher optimum than either one alone. This may be the result of an arms
race which is induced between the two species [1]. An important question in
this respect is: what are the necessary and sufficient conditions for an arms race
between two or more coevolving species. For this work, we will speak of an arms
race when two or more species try to out-compete each other.

In our simulations, the species are placed on a single landscape to which they
have to adapt. The behavior of two species A and B is illustrated in Figure 1.
Each species is driven towards a local optimum due to the selective pressure.
Species B is moving towards the same optimum, i.e. is located inside the same
niche. It is assumed that if the niche is occupied by two or more species then
the fitness of these species is reduced.

Kauffman [7] suggested an abstract model for coevolution in order to investi-
gate coevolutionary dynamics. In his model, epistatic links between genes have
an influence on the smoothness or ruggedness of the landscape. Each species had
a separate landscape which was coupled to other species. According to Kauffman,
one of the conditions necessary for his coevolving system to accumulate benefi-
cial traits and to maintain fitness at a high level is that the couplings within each
species is roughly equal to the product of the coupling between species and the
number of other species each species interacts with. In contrast to Kauffman’s
work, our model uses a single shared fitness landscape for all species.

Other authors have also looked at evolutionary dynamics in several different
problem domains. For instance, Spector and Klein [12] visualized evolutionary
dynamics of a set of agents each representing a particular species inside a three-
dimensional environment. Observed behaviors included genetic drift, as well as
emergence of collective and multicellularity. In their work, interaction does not
occur through an explicit fitness landscape. Evolutionary dynamics in the con-
text of biological games are described by Nowak and Sigmund [10]. Game dy-
namics of finite populations are considered by Taylor et al. [14]. Evolutionary
dynamics on graphs are explored by Lieberman et al. [8].

Another focus is on the dynamics of coevolution. Can we provide an answer
to the question what conditions lead to an arms race between two coevolving
species and which don’t? What conditions produce a stable attractor where no
further progress is possible once the attractor has been reached? If we work
with open ended evolutionary systems, e.g. self-reproducing programs [11], we
don’t want evolution to halt. Hence, it is important to understand which set of

Coevolutionary Dynamics of Interacting Species 3

conditions is necessary and sufficient in order to establish an arms race where
the complexity of the coevolving species continuously improves.

2 Coevolutionary Dynamics on a Deformable Landscape

In order to visualize the dynamics of coevolution, we need an appropriate model.
The model has to be simple enough such that computations can be carried out
quickly. Hence, we have modeled evolution as a hill climbing process on a fitness
landscape. This concept was originally introduced by Wright [18]. Modeling an
entire population of individuals with reproduction and selection as would be
found in the usual evolutionary model would be much more costly. Instead, we
model only the population average phenotype of each species. Gradient ascent
is then used to update this average. Thus, the evolutionary process consisting of
replication, variation and selection is modeled as a single step. Each population is
represented by an n-dimensional vector which describes its position in phenotype
space. In the simplest case, i.e. a one-dimensional fitness landscape, we just have
a scalar value. This scalar value describes the position of the species inside a
one-dimensional world. Assuming that our world consists of n species then we
require n scalar values. Experiments on a one-dimensional fitness landscape have
been carried out by Ebner et al. [3]. In contrast to these experiments, we will be
using a two-dimensional landscape. We will see that an interesting phenomena
emerges as we switch from a one to a two-dimensional fitness landscape.

We experimented with three different models on how the population moves
through phenotype space. The first method computes the sign of the gradient
of the fitness landscape where the species is located and then moves the species
one step to the right or left depending on the sign of this gradient. Let f(x, t) be
the height of the fitness landscape at time t. Let a species be located at position
x(t) then we compute the velocity ẋ(t) using

ẋ(t) =

⎧⎪⎨⎪⎩
−1 if ∂

∂xf(x, t) < 0,

0 if ∂
∂xf(x, t) = 0,

1 if ∂
∂xf(x, t) > 0.

(1)

The second update method computes the gradient of the fitness landscape and
then sets the velocity of the species to the gradient multiplied by a constant
factor α. Whereas in equation (1) the movement of the population through
phenotype space has constant speed (and fitness information merely controls
the direction of movement), equation (2) presents a model where rate of change
in phenotype is proportional to fitness gradient. This is more in alignment with a
classical model where rate of change of fitness is proportional to fitness variance
assuming that variance in phenotype is constant.

ẋ(t) = α
∂

∂x
f(x, t) (2)

4 M. Ebner, R.A. Watson, and J. Alexander

The third update method also computes the gradient of the fitness landscape
and integrates this gradient over time.

ẋ(t) = α

(
∂

∂x
f(x, t)

)
+ βẋ(t− 1). (3)

This equation suggests that the mean of the population moves in response to
the gradient at the current position inside the fitness landscape and also in
response to the gradient at the previous time step. The effect of the previous
location of the population mean can be interpreted as an effect arising from
overlapping generations of individuals i.e. not all members of the population are
replaced every generation, some are maintained from the previous generation.
Such momentum terms are known to have interesting effects on many kinds of
dynamical systems, and the experiments that follow indicate that if such an
effect is active in biological populations then they may have significant effects
on coevolutionary dynamics.

The different species are placed on the same fitness landscape Figure 2(a).
Each species deforms the landscape in its vicinity Figure 2(b). We use a Gaussian
shaped deformation. The shape of the deformation can be considered to be due
to the distribution of a population around the population average assuming
Gaussian mutation. The species has a negative impact on fitness in its vicinity.
Such a negative impact on fitness is also used in evolutionary algorithms (where
it is called sharing [4]) when trying to populate different local optima. We use
the same type of deformation for all species. The deformation of this landscape
gets larger as more and more species occupy the same position.

The species are pushed towards local optima by the selective force of evolution
Figure 2(c). The deformation caused by the species can either have an immedi-
ate or a latent effect on the local fitness. A latent effect only becomes apparent
after some time steps Figure 2(d-f). We observe quite interesting behavior if the
deformation caused by the species occurs after a latency period of several time

(d)

(c)

(f)(e)

Latency

(a) (b)

Fig. 2. Deformation of the fitness landscape

Coevolutionary Dynamics of Interacting Species 5

steps. The analog with natural evolution would be the excessive use of resources
which are depleted after some time. Thus, we have basically two different modes.
In the non-latent model, the deformation of the landscape is positioned wher-
ever the species is located inside the fitness landscape. In the latent model, the
deformation is positioned wherever the species was located some number of time
steps in the past. In this model, the species may climb toward a local optimum.
However, after some time, this local optimum is depressed by the presence of
the species and the species then has to adapt to a new optimum. We set the
latency to a constant value for all species. Once we use such a latency period, we
will observe the Red Queen effect [13,17] as shown in Figure 2(e-f). The species
tries to climb to the top of a local optima. However, the deformation follows the
species. It thus seems as if no progress has been achieved. The species still has
the same fitness even though it moved through phenotype space.

In summary, our model has the following parameters. Each species is described
by its position on the landscape, anupdate rule, whichdescribes how the position of
the species for the next time step is derived, a function describing the deformation
caused by the species, and an update method which describes how the deformation
follows the species. The deformation, that is the impact a species has on the fitness
landscape, could also be made dependent on additional external parameters. How-
ever, in our view, the model should be made as simple as possible.

3 Experimental Results

Experiments were performed on a two-dimensional fitness landscape. We have
used circular boundary conditions. MPEG as well as AVI movies of these exper-
iments are available for download from1. The source code for these experiments
is also available for download.

The different parameter settings which were used are shown in Table 1. We
used 40 species due to the fact that the size of the landscape has increased
compared to the experiments on the one-dimensional landscape. A flat fitness
landscape was used for experiments 1 through 7 while experiments 8 and 9 used
a non-flat fitness landscape. For the latter two experiments, 100 Gaussian hills
(with the same standard deviation that was used for the depression caused by
the species) were distributed uniformly over the entire area.

Figure 3 shows the results for experiments 1, 3 and 5. For all three of these
experiments, the species spread out evenly over the environment and then move
over the environment. For experiment 2, we observe a clumped shift behavior
with continued motion. Figure 4 shows the results. The number in the upper left
hand corner shows the simulation time step. Eventually, the species synchronize
their motion and all move in the same direction. We consider this to be an arms
race type of movement as illustrated in Figure 2. The results of experiments 4,
and 6 are shown in Figure 5 and 6 respectively. For both of these experiments,
we observe a mixture between cyclic behavior and continued motion. This is best
observed in the movie or by using the program code.
1 http://www.ra.cs.uni-tuebingen.de/mitarb/ebner/welcome.html

6 M. Ebner, R.A. Watson, and J. Alexander

Table 1. Parameter settings which were used for the experiments on the two-
dimensional landscape

Exp. Species Update Rule Latency Hills Observed Behavior Fig.
1 40 Eqn (1) 0 0 spread out then shift 3
2 40 Eqn (1) 50 0 clumped shift (arms race) 4
3 40 Eqn (2) 0 0 spread out then tiny shift 3
4 40 Eqn (2) 50 0 cyclic 5
5 40 Eqn (3) 0 0 spread out then shift 3
6 40 Eqn (3) 2 0 cyclic 6
7 40 Eqn (3) 50 0 arms race 7 & 8
8 40 Eqn (3) 0 100 stasis 9
9 40 Eqn (3) 50 100 arms race 10

Exp 3 Exp 5Exp 1

Fig. 3. Experiment 1, 3 and 5: synchronous shift of the species. The movement is very
small for experiment 3.

A latency of 50 for experiment 7 resulted in an arms race similar to that of
the one-dimensional case. The first few steps and the resulting arms race are
shown in Figure 7. However, it also shows a very interesting difference. Even
though we work with separate species in our model, converged points in the
search space can be considered to be a single species. In the two-dimensional
environment, the racing species do not all arrive at the same point as they climb
out of the depression - rather they spread-out across the rim as can be seen
in Figure 8. This slight stochastic separation is exaggerated by the competi-
tive relationships of the species dynamics and occasionally produces a division
- separate depressions each with a separate sub-set of species engaged in an
arms race. This spontaneous speciation does not involve island models or other
mechanisms of segregation such as reproductive isolation from one another [6] or
mate preference due to marker traits [2]. In our model, speciation occurs through
the coupled dynamics of the coevolving species. Thus, in our model sympatric

1100 167001200

Fig. 4. Experiment 2: clumped shift behavior after convergence

Coevolutionary Dynamics of Interacting Species 7

920 960 1000

Fig. 5. Experiment 4: a mixture between cyclic behavior and continued motion

430 460 490

Fig. 6. Experiment 6: A latency of 2 produces cyclic behavior

40

60 901

0 20

Fig. 7. Experiment 7: arms race between different species

Fig. 8. Spontaneous speciation occurs during experiment 7. The species spread along
the rim of the depression. This causes the creation of several sub-sets of species engaged
in an arms race.

8 M. Ebner, R.A. Watson, and J. Alexander

(a) (b)

Fig. 9. (a) Non-flat environment (used for experiments 8 and 9). (b) Experiment 8:
The species spread over the landscape to avoid the negative influence of other species
and to exploit and fitness advantages present in the landscape.

0 20 40

800 820

Fig. 10. Experiment 9: An arms race occurs. The species can eventually sweep over all
local optima.

speciation [15], speciation without isolation, is also possible without modeling
preferences for ecological traits or preferences for certain marker traits of other
individuals.

For experiments 8 and 9 we have used the non-flat environment (shown in
Figure 9(a)). Experiment 8, which used a latency of 0, resulted in a state of
stasis with small local oscillations (shown in Figure 9(b)). This figure shows
very clearly how competitive coevolution is able to automatically promote a
niching behavior that distributes the species so as to equalize the landscape -
the almost flat resulting landscape (as compared to the underlying landscape
shown in Figure 9(a)) indicates that every part of the fitness landscape is being
used near optimally. Experiment 9 with a latency of 50 resulted in an arms race.
The result of this experiment is shown in 10.

We now address the question of why the use of a latency factor causes the
species to explore the entire landscape. Essentially species adapt to the nearest
local optimum. Consider species adapting to a non-flat fitness landscape with a
latency factor of zero. The species immediately deform the landscape but each
species still adapts towards a local optimum. The result is a stationary landscape
where the species are distributed over the landscape in such a way that any move
of the species would result in a lower fitness value for that species. Now suppose

Coevolutionary Dynamics of Interacting Species 9

that a sufficiently large latency factor is involved. If this is the case, then the
species adapt towards the nearest optimum. However, due to the latency factor,
the deformation caused by the species follows the species after some time. This
local optimum invites other species to climb towards it as long as the combined
negative influence of other species is smaller than the height of this optimum.
Once several species have reached the same optimum and the combined negative
influence of all of these species is larger than the height of this optimum, then
the deformation pushes the species away from its previously optimal position in
phenotype space. The species now have to climb towards new optima.

When several species climb towards the same optimum, they initially clump
together before they are pushed away from that optimum. The result is a Red
Queen type of arms race where the species are distributed along the rim of the
depression. This arms race lasts until the species are sufficiently distant from
each other. Note that the direction the species approach the optimum and also
the exact timing of this approach influences the way the species are pushed away
from the optimum. The result is that over time the species may reach any point
of the landscape provided that in the model, the combined depression caused
by the species is sufficiently large to push the species away from the highest
optimum of the landscape.

4 Conclusion

We have developed a simple evolutionary model which is used to investigate
the dynamics of competitive coevolution. Due to the simplicity of the model,
it is easy to implement and easy to understand. Most importantly, it can be
calculated fast enough which allows us to visualize the behavior in real time.
Adaptation of a species to its environment is modelled as a local hill-climbing
process which moves the population mean towards the nearest local optimum.
Each species has an influence on the environment where it is located. In our
model, each species deforms the fitness landscape and thereby interacts with
other species located nearby. This allows us to study the dynamics of coevolving
species. We have observed several qualitatively different behaviors. Depending
on the choice of parameters, the species distribute evenly over phenotype space
or engage in an arms race. In case of an arms race, all of phenotype space
is explored. The determining factor which causes the switch between the two
regimes was the latency parameter. The latency parameter determines the time
lapse for a species to have an impact on its current environment. This model has
shown that such delays in adaptive interactions can have a significant effect on
the dynamics of coevolving species.

References

1. Dawkins, R., Krebs, J.R.: Arms races between and within species. Proc. R. Soc.
Lond. B 205, 489–511 (1979)

2. Dieckmann, U., Doebeli, M.: On the origin of species by sympatric speciation.
Nature 400, 354–357 (1999)

10 M. Ebner, R.A. Watson, and J. Alexander

3. Ebner, M., Watson, R.A., Alexander, J.: Co-evolutionary dynamics on a deformable
landscape. In: Proceedings of the 2000 Congress on Evolutionary Computation, San
Diego, CA, vol. 2, pp. 1284–1291. IEEE Press, Los Alamitos (2000)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Publishing Company, Reading (1989)

5. Grefenstette, J.J.: Evolvability in dynamic fitness landscapes: A genetic algorithm
approach. In: Proc. of the 1999 Congress on Evolutionary Computation, vol. 3, pp.
2031–2038. IEEE Press, Washington (1999)

6. Higgs, P.G., Derrida, B.: Genetic distance and species formation in evolving pop-
ulations. Journal of Molecular Evolution 35, 454–465 (1992)

7. Kauffman, S.A.: The Origins of Order. Self-Organization and Selection in Evolu-
tion. Oxford University Press, Oxford (1993)

8. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Na-
ture 433, 312–316 (2005)

9. Morrison, R.W., Jong, K.A.D.: A test problem generator for non-stationary envi-
ronments. In: Proc. of the 1999 Congress on Evolutionary Computation, vol. 3, pp.
2047–2053. IEEE Press, Washington (1999)

10. Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Sci-
ence 303, 793–799 (2004)

11. Ray, T.S.: Is it alive or is it GA? In: Belew, R.K., Booker, L.B. (eds.) Proc. of
the 4th Int. Conf. on Genetic Algorithms, University of California, San Diego, pp.
527–534. Morgan Kaufmann Publishers, San Mateo (1991)

12. Spector, L., Klein, J.: Evolutionary dynamics discovered via visualization in the
breve simulation environment. In: Workshop Proc. of the 8th Int. Conf. on the
Simulation and Synthesis of Living Systems, Sydney, Australia, pp. 163–170. Uni-
versity of New South Wales (2002)

13. Stenseth, N.C., Smith, J.M.: Coevolution in ecosystems: Red queen evolution or
stasis? Evolution 38(4), 870–880 (1984)

14. Taylor, C., Fudenberg, D., Sasaki, A., Nowak, M.A.: Evolutionary game dynamics
in finite populations. Bulletin of Mathematical Biology 66, 1621–1644 (2004)

15. Tregenza, T., Butlin, R.K.: Speciation without isolation. Nature 400, 311–312
(1999)

16. Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environ-
ments. In: Proc. of the 1999 Congress on Evolutionary Computation, vol. 3, pp.
1843–1850. IEEE Press, Washington (1999)

17. Valen, L.V.: A new evolutionary law. Evolutionary Theory 1, 1–30 (1973)
18. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evo-

lution. In: Proc. of the 6th Int. Congress on Genetics, Ithaca, NY, pp. 356–366
(1932)

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 11–20, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Evolving Individual Behavior
in a Multi-agent Traffic Simulator

Ernesto Sanchez, Giovanni Squillero, and Alberto Tonda

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
{ernesto.sanchez,giovanni.squillero,alberto.tonda}@polito.it

Abstract. In this paper, we illustrate the use of evolutionary agents in a multi-
agent system designed to describe the behavior of car drivers. Each agent has
the selfish objective to reach its destination in the shortest time possible, and a
preference in terms of paths to take, based on the presence of other agents and
on the width of the roads. Those parameters are changed with an evolutionary
strategy, to mimic the adaptation of a human driver to different traffic condi-
tions. The system proposed is then tested by giving the agents the ability to per-
ceive the presence of other agents in a given radius. Experimental results show
that knowing the position of all the car drivers in the map leads the agents to
obtain a better performance, thanks to the evolution of their behavior. Even the
system as a whole gains some benefits from the evolution of the agents’
individual choices.

Keywords: Multi-agent systems, Evolution, Traffic simulation.

1 Introduction

Road traffic congestion is a crucial problem, the short-range consequences of which
can vary from delays to decreased throughput of vehicles. Long-range consequences
include reduced safety, environmental pollution, and reduced economic competitive-
ness. This problem is becoming more intense, not only in western cities but also in
countries where the presence of cars, once scarce, is growing at an alarming rate.

From websites displaying the current traffic conditions [1] to collections of traffic
control strategies [2] available online, information technology is playing a vital role in
the development of new approaches to traffic control, even by simply providing the
means to evaluate innovative methodologies, by means of sensors, databases and data
mining.

In this context, simulations are heavily employed to test the possible outcome of
new strategies, and often multi-agent systems are chosen as a simulation tool. An
agent is defined as a complex software entity that is capable of acting with a certain
degree of autonomy in order to accomplish tasks. A multi-agent system (MAS) is a
collection of software agents that work in conjunction with each other. They may
cooperate or they may compete, or some combination of the two, but there is some
common infrastructure that result in the collection being a ‘system’, as opposed to
simply being a disjoint set of autonomous agents [3]. Each agent in the MAS tries to
achieve some individual or collective task.

12 E. Sanchez, G. Squillero, and A. Tonda

Many works on MAS have been led around road traffic issues. For instance, agents
can be used for traffic management. In [4], the authors propose an application based
on coordination of agents to diagnostic and inform drivers about traffic problems in a
located area. Traffic-related issues are also the basis for [5], [12] and [13]. In [8] a
multi-agent simulation is used to validate three different self-organizing methods
aimed at optimizing the configuration of traffic lights in a city.

In [6] Doniec et al. experimented traffic simulation by modeling an intersection be-
tween two real roads, and studying the behavior of agents representing car drivers
who could choose whether to abide by the traffic rules or ignore them, with the selfish
objective to minimize the time they had to wait in order to cross the intersection. They
demonstrated that an accurately modeled MAS simulated the traffic trend effectively
going on during the day in the real world intersection.

To enhance a generic MAS traffic simulator, we propose to populate it with agents
able to evolve their behavior through an evolutionary strategy, mimicking human
ability to adapt to changing traffic conditions. Behaviors are optimized to provide a
more realistic simulation, that is, the result of the whole evolution process is a single
realistic scenario. The simulator is not intended to analyze evolution. We demonstrate
that the agents significantly improve their performance when given information on the
position of other cars, thanks to the evolution in their preference on roads to go
through. Since the change of behavior of an agent may trigger the change of behavior
of other agents, this interaction creates a co-evolutionary system. However the work
focuses on the global properties of the system, rather on an analysis of the co-
evolution itself. In section 2, we illustrate the specifications for the model we built.
Agents’ behavior and evolution are discussed in section 3. Section 4 shows the results
we obtained through experimental evaluation of a simple MAS. Section 5 contains the
conclusions we were able to draw from the experience.

2 Model Specifications

In this work we use a simplified MAS to simulate the traffic in the central part of a
typical medium-sized European town (e. g. with a population of 20,000 – 30,000
people), which usually has different kinds of roads, from the small alleys to the main
street, from one-way roads to large two-way ones, with several roundabouts but no
traffic lights. Each agent in the MAS models a car driver, and it has the objective of
traveling from a starting point to an arrival point in the map.

Each agent in the MAS previously described possesses various properties:

a) a starting location;
b) an ending location;
c) agent’s preferences when it has to choose a path.

Starting location and ending location are determined at the beginning of each run, for
each agent: the first one is randomized between all the points in the map, while the
second is chosen so that the path the car driver has to travel through is at least half the
size of the map (both on the horizontal axis and on the vertical axis). This means that
each agent has to pass through the center of the map in order to reach its destination,

 Evolving Individual Behavior in a Multi-agent Traffic Simulator 13

thus increasing the probability of traffic jams. Each agent is started at a different time
during the first seconds of the simulation.

The inclination of each agent to choose a certain road when it comes to a crossroad
in the map is expressed by a series of weights associated to the agent itself. Those
weights let an agent choose, for example, a longer but less crowded road over a short-
est but very busy one, applying the formula that represents the hypothetical time
needed to reach the next intersection on the road:

where:

- length is the length of the road;
- agents_num is the number of agents on the road at the time when it is evaluated;
- width_bool is a Boolean value which express whether we are considering a two-
lane or a one-lane road;
- w1 and w2 are the weights that lead the preference of the agent, making it choose
wider roads over less crowded ones, or viceversa.

Every time an agents reaches a crossroad, it computes the value road_weight for each
road departing from the crossroad, then for each road that road intersects, using
Dijkstra’s algorithm to find the path with minimum sum of road_weights based on
the current situation. It is important to notice that this procedure is repeated each time
an agent reaches a crossroad, because the parameter agents_num changes at each unit
of time of the simulation as the agents are moving through the map. Thus, a car driver
can change the path that it computed at the previous crossroad, as it perceives that the
road he was going to take is now more busy, depending on the values associated to its
weights.

Each agent has a perception of the situation of the roads around him up to a certain
range, which can be set by the user of the simulation tool, expressed in the same units
of length which are used for the map. For example, an agent could know how many
agents are moving in all the roads in a radius of 100 m from its current position: in
this situation, it would compute the road_weight for those roads as normal, but it
could not obtain the parameter agents_num for streets outside that range, and thus
would evaluate the remaining part of the map only on the basis of the length and
width of the roads. It is important to notice that two agents may have the same starting
and ending point in the map, and still follow two completely different paths, since
their weights could make them choose two opposite ways from the beginning of the
simulation.

The speed of an agent in the MAS is adjusted during each step of the simulation,
on the basis of the number of cars that are currently traveling immediately ahead of
him on the road the agent is going to take. If there are no cars, the agent will gradually
increase its speed up to a maximum value, the city speed limit. If other cars are on its
same path, vice versa, its speed will decrease by a value proportional to the number of
cars and the width of the road, up to a complete stop.

14 E. Sanchez, G. Squillero, and A. Tonda

3 Agents

The objective of each agent/car driver in the MAS is to travel from a starting point to
an arrival point in the map. A driver is rewarded when he manages to minimize its
own traveling time. It is important to notice that there is no common goal for all the
agents: each one tries to reach its objective working independently from all the others.
Despite this, we can have an index of how well the whole system is performing by
measuring the average speed and the average time needed to reach the arrival point,
considering all the agents roaming through the map.

3.1 Agents Structure

The genotype of each agent is a series of weights (w1, w2) that describe its behavior:
those values represent the preferences of the agent when he is about to choose its way
out of a crossroad, based on the number of other agents/cars on each street and on the
number of lanes of the roads.

3.2 Evolution

In order to evaluate whether an optimal choice of path for a single agent could lead to
an overall improvement in the mobility on all the roads, we chose to evolve the be-
havior of each agent, running the simulation through multiple generations.

There is, in fact, a series of problems that arise when we try to evaluate the global
performance of this system, since each agent has a selfish objective and will not co-
operate with other agents to reach it. Also, it is unlikely that the system itself will
reach a stable state at a certain generation, because the change of behavior of an agent
could potentially influence all the others: given that a car driver takes into account the
presence of other cars on the roads it could choose, even a single agent modifying its
path could lead to a chain-reaction of behavior modification for a great number of car
drivers in the MAS. In order to avoid dramatic fluctuations of the paths and to reflect
the behavior of human car drivers (that seldom change their track of choice), only a
given percentage of the agents spawns a child each generation.

3.3 Agents Evolution

The evolution is similar to an evolutionary strategy (1+1): at each generation step, a
single individual, which is represented by the weights associated to an agent, has a
certain probability to produce a child. The child is then evaluated by making the agent
behave on the basis of the new weights generated. It is important to notice that there is
no such thing as a “population of all the agents”: each agent stores a population made
of a single individual that spawns a single child.

The genotype of each individual is a vector of real values (w1, w2): the new individ-
ual is created by mutation. A random value, obtained through a Gaussian distribution
with mean 0, is added to each component of the vector. The selection is deterministic:
the child is compared to the parent, and if its fitness value is better, it becomes the new
parent; otherwise, it is discarded. The fitness, in our case, is based on the time it takes
the agent to reach its destination: the lesser, the better. The population at each step is

 Evolving Individual Behavior in a Multi-agent Traffic Simulator 15

thus composed by two individuals, parent and child. We made this choice because the
fitness value can be properly compared only between individuals with the same starting
and ending points on the map: since each agent represents a car driver, we are modeling
the fact that a human in this situation would probably learn from the experience, chang-
ing the parameters on which he makes his choices on the basis of his past experiences.

Every agent’s evolution is independent from the other agents, since car drivers,
unluckily, do not cooperate with each other to minimize their travelling time. There
is, however, a diffused co-evolution, since the behavior of each agent could influence
the choices of all the others: one of the parameters taken into account when a car
driver is selecting a path, is the number of cars on each road it could take. When even
a single agent modifies its behavior, and consequentially its path, it obviously changes
the number of cars that are going on a certain road: this could lead to a chain reaction
where a great number of other agents would change path because of that in-
crease/decrease in the quantity of cars on that road.

4 Experimental Evaluation

In order to experimentally evaluate our framework, we created a simplified model of
a medium-sized downtown, to easily verify whether the results we would obtain were
coherent to what we expected, while keeping the time needed for a simulation within
reasonable parameters.

In our simplified model:

- all cars/agents are represented as points;
- each crossroad has up to four roads departing from it;
- crossroads are not regulated by traffic lights, a common occurrence in small to

medium urban areas as the one in Figure 1, where roundabouts have replaced
traffic lights;

- roads can only be vertical (crossing the map north to south) or horizontal (cross-
ing the map east to west);

- the map of the city downtown is 0.16 Km2, a square with an edge of 400 m,
since we used meters as the unit of length to describe the roads and the cars, and
comprehends 12 different roads, eight 400 m single lane roads, four 200 m sin-
gle lane and two double lane 400 m ones.

- During each simulation, we chose to keep some parameters fixed, in order to
easily compare the experimental results:

- the number of agents on the map at the same time is 400, which makes our city
downtown quite crowded. Such a density is chosen to increase evolutionary
pressure;

- at the beginning of the simulation, 10 agents are placed on their starting point
every second. Each vehicle in a simulation run has the same initial and final lo-
cation in every generation;

- once every 10 generations, we chose to run a simulation where no agent pro-
duced offspring, in order to check what is the best strategy, expressed as a set of
weights, obtained for each agent up to that point;

- each car driver/agent can reach a maximum speed of 13 m/s, which is about
46.8 km/h or 29.1 MPH, slightly under the speed limits that are enforced in most

16 E. Sanchez, G. Squillero, and A. Tonda

downtown streets. Also, when the traffic is heavy, it is very unlikely that a
driver could run at a higher speed;

- when any agent reaches a crossroad and finds that its average speed computed
on the last 10 seconds of simulation is under 7 m/s (about 25.2 km/h or 15.7
MPH), it will compute again the path from its current location to the destination,
using an updated value for the number of agents on each road;

- each agent has a complete knowledge of the streets’ map;
- depending on the simulation, a certain number of agents possesses a knowledge

of the position of other agents the whole map, while the rest has a local view,
which means that it can perceive the presence of cars only in a radius of 150 m;

- we consider that each car occupies 6 m in a certain road, because most cars are 5
m long, and when they are in a line it is wise to keep a distance of at least 1 m
from the other cars. This parameter is used by the agents to detect the presence
of other car drivers inside their sight radius.

4.1 Complete Knowledge

In the first set of runs, we tested a simulation where every agent had a complete
knowledge of the position of all other agents. Only a third (33%) of the agents,
selected randomly, would produce an offspring at each generation step. We let our
system evolve for 10,000 generations, and then we evaluated the average speed (con-
sidering all cars in the MAS) each 10 generations, thus plotting only the simulations
with all the best individuals.

(A) (B)

Fig. 1. On the X axis, number of generations. On the y axis, average speed (m/s).
(A) Average speed for 100% global view agents, 33% evolving agents.
(B) Average speed for 100% global view agents, 100% evolving agents.

We can see that, while there is a fluctuation in the average speed (due to the agents

changing their paths), it quickly increases from 6.5 m/s to over 7 m/s during the first
3,000th generations, then it keeps shifting between 7.25 and 7.3 m/s, with a peak just
under 7.5 m/s. There are some generations, in the beginning of the simulation, where
the average speed drops to values around 5.5 m/s, probably because the system is
adjusting to the new paths chosen by a significant number of agents. After 5,000 gen-
erations, however, the fluctuations become smaller and smaller.

 Evolving Individual Behavior in a Multi-agent Traffic Simulator 17

Increasing the number of agents that generate an offspring at each step could im-
prove the performance of the system: thus, we ran another series of simulations where
we raised the percentage of car drivers trying new preferences at each generation up
to 100%.

As we can see the average speed rises faster during the first 3,000 steps, while the
fluctuations in the later generations seem to be a little stronger than in the previous
run, with drops in speed even after 5,000 generations.

4.2 Partial Knowledge

In a second time, we tested a set of simulations where no agent had a complete knowl-
edge of the position of the other agents: thus, 100% of the car drivers on the map could
perceive other cars only in a radius of 150 m from their current position. In this first
simulation, only 33% of the agents change their preferences at each generation.

(A) (B)

Fig. 2 . On the X axis, number of generations. On the y axis, average speed (m/s).
(A) Average speed for 100% local view agents, 33% evolving agents.

 (B) Average speed for 100% local view agents, 100% evolving agents.

As we expected, even from the first generation the average speed is lower than the

values obtained from the previous experiments, where all the car drivers could per-
ceive the presence of every car driver on every road. The average speed rises far
slowly and, even if there are generations with peaks just below 7 m/s, the values are
centered around 6.7 m/s. The improvement in the average speed is not so distinct as in
the previous runs, and even in the last generations we have points that are at the same
level of the initial value.

Increasing the number of car drivers trying new preferences at each generation
proved useful when we had agents with global information on the position of other
cars: running a set of simulations with 100% of partial-knowledge agents and 100%
of evolving ones produced the following graphic.

While there are various peaks over 7 m/s, the shape of the graphic is very similar to
the previous simulation where all the agents had only partial information.

18 E. Sanchez, G. Squillero, and A. Tonda

Table 1. Average time for an agent to reach its destination, under different conditions

Type of experiment
Average on the
first 5
generations

Average on the
last 5
generations

33% evolving 61.50 s 56.30 s 100%
complete
knowledge 100% evolving 60.09 s 55.10 s

33% evolving 63.29 s 61.34 s 100% partial
knowledge 100% evolving 63.73 s 61.33 s

The information in Table 1 shows that the average time the agents need to reach

their destination drops in a significant way during the simulations where all the agents
had all the global information on the map, while the improvement in the experiments
where the agents had only information on the position of the other cars in a limited
radius is much smaller.

From the experimental results, we can see that information about the position of
other cars in a heavy traffic situation like the one we simulated is surely useful, as we
expected, both for the single agent and for the system. Even if each agent used the
information it had in order to selfishly maximize his speed, without any cooperation
with the other car drivers, this behavior proved functional to the whole system: the
average speed of all the car drivers increased from the first generation up to a certain
value, and kept fluctuating around that speed.

We can notice that the increment is present in every simulation, even those where
all the agents can perceive the presence of other cars only in a radius of 150 m: we
can conclude that even partial information, provided in real-time to car drivers able to
evolve their behavior like humans do, could help lightning the traffic in the downtown
of great cities.

4.3 Mixed Agents

By setting up our MAS with both local-view agents and global-view agents, we ex-
pected to find a slower increase in the average speed (thus, a slower decrease of the
average time the agents need to arrive to their destination) than in the “complete
knowledge” case, while on the contrary obtaining better results than in the “partial
knowledge” simulation. We also assumed that, even if the presence of global-view
agents would surely improve the average performance of the system, above a certain
percentage of global-view agents there would be no further improvements. Thus, we
ran several experiments with mixed agents, in various proportions, while keeping the
other parameters fixed. The percentage of evolving agents is always 100%, and the
local view radius is 150 m.

Our results confirm what we supposed: the average time the agents need to reach
their arrival location drops steadily as the percentage of local-view agents drops and
the percentage of global-view agents increases. This could mean that in a real situa-
tion, even if not all the drivers could have access to all the information, there could be

 Evolving Individual Behavior in a Multi-agent Traffic Simulator 19

50

52

54

56

58

60

62

64

0% 33% 50% 66% 90%

Percentage of agents with complete knowledge

A
ve

ra
g
e

ti
m

e
(s

)

Fig. 3. Different arrival times with an increasing percentage of complete knowledge informa-
tion agents in the population

an improvement in the traffic given as long as a certain percentage of car drivers have
complete knowledge of the position of other cars.

5 Conclusions

We presented a MAS populated by agents able to evolve their behavior. Each agent
represents a car driver starting from a random point in the map, with the objective to
reach another random point, with the selfish objective of minimizing its traveling
time. Every agent is able to evolve its choices through a series of generations, and it
has a certain knowledge of the whole map. We tested the system with a number of
agents chosen in order to model a situation where traffic is heavy, for example at the
start or at the end of a business day, and providing each agent with information that
could help a real-world driver, able to change its behavior. Our experimental results
show that, even if there is no cooperation between agents, the average time used to
arrive at their goal will gradually decrease generation after generation, finally starting
to dynamically shift around a minimum value. This process is faster and the minimum
reached is lower when every agent has complete information of its surroundings and
of the position of every other agent. We can conclude that data obtained is consistent
with the expected results, and thus the evolution of agents’ behavior could provide
more realistic data in traffic simulations. Future works will include large scale simula-
tions with evolvable agents, implemented with open-source microscopic traffic
simulation packages [10][11].

20 E. Sanchez, G. Squillero, and A. Tonda

Acknowledgements

Our thanks to Chiara Patané for developing the software used in the simulations.

References

1. http://trafficinfo.lacity.org/index.html
2. Ding, W., Marchionini, G.: A Study on Video Browsing Strategies. Technical Report

UMIACS-TR-97-40, University of Maryland, College Park, MD (1997)
3. http://www.agtivity.com/def/multi_agent_system.htm
4. Hernandez, J.Z., Ossowski, S., Garca-Serrano, A.: Multiagent architectures for intelligent

traffic management systems. Transportation Research Part C: Emerging Technologies, 10,
473–506 (2002)

5. Bazzan, A.L.C.: A distributed approach for coordination of traffic signal agents. Journal of
Autonomous Agents and Multi-Agent Systems (10), 131–164 (2005)

6. Doniec, A., Espie, S., Mandiau, R., Piechowiak, S.: Non-normative behaviour in multi-
agent system: some experiments in traffic simulation. In: IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, IAT 2006, December 18-22, pp. 30–36
(2006)

7. Balan, G., Sean, L.: History-based Traffic Control. In: Proceedings of the fifth interna-
tional joint conference on Autonomous agents and multiagent systems, pp. 616–621 (2006)

8. Gershenson, C.: Self- Organizing Traffic Lights. Centrum Leo Apostel (2005)
9. Maroto, J., Delso, E., Félez, J., Cabanellas, J.M.: Real-time traffic simulation with a mi-

croscopic model. IEEE Trans. Intell. Transp. Syst. 7, 513 (2006)
10. Krajzewicz, D., Bonert, M., Wagner, P.: RoboCup 2006 Infrastructure Simulation Compe-

tition (2006)
11. Barceló, J., Codina, E., Casas, J., Ferrer, J.L., García, D.: Microscopic traffic simulation: A

tool for the design, analysis and evaluation of intelligent transport systems. Journal of In-
telligent and Robotic Systems 41(2-3) (January 2005)

12. Kesting, A., Treiber, M., Helbing, D.: Agents for Traffic Simulation, Contribution to
Agents, Simulation and Applications. In: Uhrmacher, A., Weyns, D. (eds.) eprint
arXiv:0805.0300 (May 2008)

13. Yang, J., Deng, W., Wang, J., Li, Q., Wang, Z.: Modeling pedestrians’ road crossing be-
havior in traffic system micro-simulation in China. Transportation Research Part A: Policy
and Practice 40(3), 280–290 (2006)

On Modeling and Evolutionary Optimization of
Nonlinearly Coupled Pedestrian Interactions

Pradyumn Kumar Shukla

Institute of Numerical Mathematics, TU Dresden, 01062 Dresden, Germany
Institute AIFB, Karlsruhe Institute of Technology, 76133 Karlsruhe, Germany

pradyumn.shukla@kit.edu

Abstract. Social force based modeling of pedestrians is an advanced
microscopic approach for simulating the dynamics of pedestrian motion.
The developments presented in this paper extend the widespread social
force model to include improved velocity-dependent interaction forces.
This modeling considers interactions of pedestrians with both static
and dynamic obstacles, which can be also be effectively used to model
pedestrian-vehicle interactions. The superiority of the proposed model
is shown by comparing it with existing ones considering several thought
experiments. Moreover, we apply an evolutionary algorithm to solve the
model calibration problem, considering two real-world instances. The
objective function for this problem comes from a set of highly nonlin-
ear coupled differential equations. An interesting feature that came out
is that the solutions are multi-modal. This makes this problem an ex-
cellent example for evolutionary algorithms and other such population
based heuristics algorithms.

Keywords: microscopic modeling, complex systems, optimization.

1 Introduction

In the past, there have been many approaches to modeling of pedestrians (see
[9,8] and references therein). The social force model [8,7], for example, is a widely
applied approach, which can model many observed collective behaviors. In this
contribution, we will discuss existing variants of the social force model and pro-
pose a more realistic treatment of avoidance maneuvers. As the concept of safety
is directly related to the velocity of the pedestrians, we will formulate a velocity-
dependent social force model. The new model is shown to predict realistic
microscopic pedestrian-pedestrian and pedestrian-static obstacle avoidance ma-
neuvers. The new model can also model pedestrian-dynamics obstacle interactions
and hence can also be used to model pedestrian-vehicle interactions, a topic which
has been neglected in the past.

Calibration of any pedestrian model is an important area of research as only
then the model could be applied for real-world simulations [10]. However, we
have found limited studies on calibration of pedestrian models. For the model
developed in this paper, we apply an evolutionary algorithm to calibrate and

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 21–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

22 P.K. Shukla

find an optimal set of parameters. Many factors play a role in calibration, like
cultural differences, age-factor, fraction of handicapped persons among others.
We take some macroscopic properties from previous real-world scenarios, like
the distance headway vs. speed and flow-density relationships [1]. These studies
also consider cultural-differences in them. We then apply an evolutionary algo-
rithm to obtain an optimal parameter set for the two real-world situations. An
interesting feature that came out from the optimization is that the solutions are
multi-modal. Moreover, the objective function for this problem comes from a set
of highly nonlinear coupled differential equations. We believe, that stochasticity
of the objective function together with multi-modality of solutions makes this
problem an excellent candidate for evolutionary algorithm.

The paper is organized as follows: Section 2 introduces different variants of the
existing social force and similar models while in Section 3 we discuss limitations
of the existing modeling approaches. Improved velocity-dependent forces are
also introduced in the same section and the performance of all the models on
different thought experiments are presented. Section 4 presents the evolutionary
algorithm which is used to find an optimal set of parameters for the new model.
Concluding remarks are made in the last section.

2 Existing Models

The social force model can be underpinned with a social science model of behav-
ioral changes proposed by Lewin [11]. He has introduced the idea that behavioral
changes were guided by so-called social fields or social forces. This idea has been
put into mathematical form by Helbing [4] and applied to pedestrian motion, and
vehicular traffic [14]. The social force model for pedestrians assumes that each
individual α is trying to move in a desired direction eα with a desired speed v0

α,
and that it adapts the actual velocity vα to the desired one, v0

α = v0
αeα within a

certain relaxation time τα. The velocity vα(t) = drα/dt, i.e. the temporal change
of the location rα(t), is itself assumed to change according to the acceleration
equation

dvα(t)
dt

= fα(t) + ξα(t) (1)

where ξα(t) is a fluctuation term and fα(t) the systematic part of the accelera-
tion force of pedestrian α given by

fα(t) =
1
τα

(v0
αeα − vα) +

∑
β(�=α)

fαβ(t) +
∑

i

fαi(t) . (2)

The terms fαβ(t), fαi(t) denote the repulsive forces describing the attempts to
keep a certain safety distance to other pedestrians β and obstacles i. The fluctu-
ations term ξα(t) reflects random behavioral variations arising from deliberate
or accidental deviations from optimal strategy of motion. The above equation
are nonlinearly coupled Langevin equations and can be solved numerically us-
ing Euler’s method. In very crowded situations (not considered in this paper),
additional physical contact forces come into play [7].

On Modeling and Evolutionary Optimization 23

There are at least six formulations of the repulsive pedestrian interaction
forces fαβ(t) in the literature of which five are based on social force model and
one based on magnetic force model.

1. Circular formulation: In Ref. [7], the psychologically induced repulsive
force of pedestrian β on α was, for reasons of simplicity, assumed to depend
only on the distance dαβ = ‖rα − rβ‖ between the centers of mass of two
pedestrians. Moreover, it was assumed that

fαβ(t) = A e(d−dαβ)/B dαβ

dαβ
(3)

The model parameters A and B denote the interaction strength and in-
teraction range, respectively, while d ≈ 0.6m is the sum of radii of both
pedestrians (i.e. the “pedestrian diameter”). dαβ = (rα− rβ) represents the
vector pointing from pedestrian β to α.

2. Elliptical formulation I: In Ref. [8], a first velocity-dependent interaction
force was formulated. It was assumed that the repulsive potential

Vαβ(b) = V 0
αβ e−b/σ (4)

is an exponentially decreasing function of b with equipotential lines having
the form of an ellipse that is directed into the direction of motion as shown
in Fig. 1(left). The semi-minor axis bαβ was determined by

2bαβ =
√

(‖dαβ‖+ ‖dαβ − vβ Δt eβ‖)2 − (vβ Δt)2 (5)

in order to take into account the length vβ Δt of the stride (step width) of
pedestrian β (where vα = ‖vα‖). The reason is that a pedestrian requires
space for movement, which is taken into consideration by other pedestrians.
Note that the bαβ-value (hence the repulsive force) is same along the equipo-
tential lines. The repulsive force is related to the repulsive potential as

fαβ(dαβ) = −∇dαβ
Vαβ(bαβ) = −dVαβ(bαβ)

dbαβ
∇dαβ

bαβ(dαβ) . (6)

3. Elliptical specification II: Recently, a variant of this approach has been
proposed [13], assuming

2bαβ :=
√

(‖dαβ‖+ ‖dαβ − (vβ − vα)Δt‖)2 − [(vβ − vα)Δt]2 . (7)

The special feature of this approach is its symmetrical treatment of both
pedestrians α and β.

4. Elongated formulation: A further improved, elongated form of the repul-
sive interaction potential was proposed in Ref. [5], see Fig. 1(right). It was
defined by the formula

Vαβ(bαβ) = A e−
√

(dαβ ·e1)2+(dαβ ·e2)2/(γα)2/B , (8)

24 P.K. Shukla

b

te β Δβ
F2

vβ
F1

e1e2

rα

-εv0
αeα

v0
βeβrβ

εv0
αeα

Fig. 1. Elliptical specification I (left) and Elongated specification (right) of pedestrian
interaction forces

where A and B are model parameters and the variable γα(t) is given by

γα =
{

ϑ if e2 · dαβ ≥ 0
1 + vα Δt otherwise. (9)

With

e2(t) :=
εv0

αeα(t) − v0
βeβ(t)

εv0
αeα(t) − v0

βeβ(t)
(10)

this takes into account not only a dependence on the length vα Δt of pedes-
trian α’s stride but also on the relative direction of motion. e1(t) denotes a
vector perpendicular to e2(t).

5. Centrifugal force formulation: This formulation was proposed in Ref. [15]
and the repulsive force as per this formulation is given by

fαβ(dαβ) := mα
{(vβ − vα) · eαβ + ‖(vβ − vα) · eαβ‖}2

2‖dαβ‖
dαβ . (11)

where mα is the mass of pedestrian α and eαβ denotes the unit vector in
the direction dαβ . This formulation improved the previous models in that it
considers not only the relative velocity between pedestrian α and β but also
the headway between them.

6. Magnetic force formulation: This formulation was proposed by Okazaki
as early as in 1979. The repulsive force as per this formulation is sum of two
forces one depends upon the headway while the other depends upon velocity
of pedestrian α and direction of relative velocity. For the details we refer the
reader to Ref. [12].

3 Limitations of Previous Approaches and a New
Microscopic Model

In order to study the limitations of above formulations, let us consider four set
of thought experiments.

On Modeling and Evolutionary Optimization 25

Pedestrian-pedestrian head-on interactions. Let us start with a first ex-
periment illustrated in Fig. 2. In this set of experiments we assume that two
pedestrians α and β are walking close-by. In Case 1 and Case 2, Pedestrian
α is moving towards pedestrian β with velocity vα

1 and vα
2 respectively.

Assume that vα
1 > vα

2. One can easily see that the repulsive force ex-
erted by β should be higher in Case 1. However, the Circular and Elliptical
I formulation of the pedestrian interaction force do not take into account
this velocity dependence and thus imply the same (unrealistic) social force
in both situations. In Case 3, (when pedestrian β also moves towards α)
consider the repulsive interaction force on β due to α. Now, the Circular and
Elongated formulation of the pedestrian interaction force does not depend
upon vα which is unrealistic. β perceives greater threat if vα is more and
hence a greater repulsive force should result. In Case 4, (when pedestrian β
moves away from α) consider the repulsive interaction force on α due to β.
let us assume that the relative velocity is the same. Then a larger headway
should result as effect of forces when speeds of pedestrians are more. This is
because pedestrians can move closer when their speeds are small compared
to when say, running. Now, the Elongated II formulation of the pedestrian
interaction force only depends upon the relative velocity which is unrealis-
tic. Thus from these set of experiments we conclude that, a realistic model
should have velocity dependence of both interacting pedestrians.

α β α β

α β α β

Case 1 Case 2

Case 3 Case 4

Fig. 2. Pedestrian-pedestrian head on interactions

Pedestrian-pedestrian sideways interactions. Let us start with a first
experiment illustrated in Fig. 3. In this set of experiments we assume that two
pedestrians α and β are walking sideways. In Case 1 they are on a collision
course compared to Case 2. Let the angle ϕ between direction of motion
of pedestrian α and the direction of the other pedestrian β be constant in
both cases, i.e. in both cases anisotropy (usually a function of ψ) is constant.
For the Elliptical I formulation of the interaction force, it can now be easily
seen that the bαβ-value in case A is smaller than the bαβ-value in case B.
Therefore, the repulsion force acting on pedestrian α should be higher in case
A than in case B. This is consistent with expectations according to safety
considerations. Similarly, the elongated formulation realistically predicts a
greater interaction force in case A. In contrast to expectation, however, the
Circular and Magnetic formulation predicts the same force in case A and

26 P.K. Shukla

α

Case 2

βψ
ψ

α
β

Case 1

Fig. 3. Pedestrian-pedestrian sideways
interactions

α
dαβ

α
dαβ

vαΔt
vαΔtr3

vαΔt dαβ
α

r1

α
dαβ r2

Case 1 Case 2

Case 3 Case 4

Fig. 4. Pedestrian-static obstacle interactions

case B, as the value of ϕ is the same. A realistic model should have also a
function of relative velocity of interacting pedestrians.

Pedestrian-static obstacle interactions. Consider a pedestrian walking to-
wards a wall with a given speed vα, but four different orientations e k

α (with
k ∈ {1, 2, 3, 4}), as shown in Fig. 4. This scenario can be treated analogously
to the movement relative to a standing pedestrian β, which implies vβ = 0.
Then, as per Elliptical formulation II the repulsive force is a monotonously
decreasing function of bαβ given by

2bαβ =
√

(‖dαβ‖+ ‖dαβ + vαΔteα‖)2 − (vαΔt)2 (12)

according to Eq. (7). For all four cases, the values of d := ‖dαβ‖ and vαΔt
(the step size of pedestrian α) are the same, but the values of dk

α := ‖dαβ +
vαΔtek

α‖ are different. We have d1
α < d3

α = d4
α < d2

α, so that we find F 1
α >

F 3
α = F 4

α > F 2
α for the magnitudes of the repulsive forces triggered by the wall

(as the direction of the forces is perpendicular to the wall in all four cases.)
This agrees well with experience, i.e. the anisotropic and orientation behavior
of pedestrians are realistically reproduced by the elliptical force specification
II. In contrast, the Elliptical model I implies bαβ = dαβ according to Eq.5
and predicts the same force in all four cases, as does the circular model.

Pedestrian-dynamic obstacle interactions. Although they have never been
thoroughly studied, they can treated in a manner similar to pedestrian-
pedestrian interactions.

Based on the above description of the models it can be concluded that in order
to model realistically the microscopic pedestrian interactions a realistic model
should take into account (i) dependence on pedestrian’s own velocity, (ii) rel-
ative velocity of interacting pedestrians, (iii) headway dependence. The well
studied car-following theories in vehicular traffic also take into account all these
three variables [6] while none of the above pedestrian interaction models takes
into consideration all these variables. Based on the above discussion we propose

On Modeling and Evolutionary Optimization 27

the following general repulsive force for pedestrian-pedestrian, static-obstacle,
dynamic-obstacle microscopic interactions.

New Elliptical specification: In this we assume that

2bαβ :=
√
{(‖dαβ‖+ ‖dαβ − (vβ − vα)Δt‖)2 − [(vβ − vα)Δt]2}/(1 + vαΔt)) .

With this, the repulsive force is given by

fαβ(dαβ , vα, vαβ) = Ae−bαβ/B · dαβ

‖dαβ‖
. (13)

Note that this model is a function of dαβ,vα and vαβ and thus it can also be effec-
tively used to model pedestrian interactions with dynamic obstacles like vehicles
for example. For pedestrian-vehicle interactions (the same) Equation 13 is used,
with the corresponding parameters Ao and Bo instead of A and B. Thus, for
calibration the parameters A, Ao and B, Bo (and an anisotropy factor described
shorty) need to be properly calibrated. The performance of all the models in
summarized in Table 1. We can see from the table that the New Elliptical model
is the only model that can successfully model all the avoidance maneuvers with-
out any extra parameters. Note that pedestrians react more strongly to things
happening in front of them than behind. This is termed as anisotropy and can
be taken into account in any of the above discussed model by multiplying the
force terms with the factor

ω (ψαβ(t)) := λα + (1− λα)
1 + cos(ψαβ)

2
,

where ψαβ is the angle between the vectors dαβ and eα and λα is a constant.

Table 1. Variables considered in all the models are summarized. The models are
evaluated for their performance on thought experiments.

Model Variables considered Unrealistic performance cases

Circular dαβ All
Elliptical I dαβ , vβ Ped.-ped. head-on
Elliptical II dαβ , vαβ Ped.-ped. head-on
Elongated dαβ , vα Ped.-ped. head-on
Centrifugal force dαβ , vαβ Ped.-ped. head-on
Magnetic force dαβ, direction of vαβ Ped.-ped. sideways
New Elliptical dαβ, vαβ and vα None

4 Evolutionary Parameter Optimization of the New
Model

In this section we use an evolutionary algorithm to calibrate the New Elliptical
model. In the next we describe the problem, algorithm and the results in detail.

28 P.K. Shukla

2m

2.
9m

0.
8m

Fig. 5. Sketch of the simulation set-up

4.1 The Problem

We use an evolutionary algorithm to calibrate New Elliptical model in two dif-
ferent situations. These situations have been used and described in [1]. It is a
corridor adopted from data collection in Germany and India. The situation is
illustrated in Fig. 5. The length of the corridor is 17.3m and we are interested
in the shaded rectangular region of length 2m. With a number of pedestrians
N = 30, the following speed-headway relation have been obtained the pedestrian
data:

h = 0.22 + 0.89v (Indian conditions) (14)
h = 0.36 + 1.04v (German conditions), (15)

where h, v denote the headway(m) and speed(m/s), respectively. We use this
macroscopic relationship to calibrate our model. We simulate our model with
N = 30 pedestrians in the corridor shown in Fig. 5. Data about headway and
speed is collected pedestrians for the shaded region. The average of the abso-
lute values between difference of observed and predicted (from the above h− v
equations) is used as the objective function. Obviously, this objective function

Table 2. Three set of optimal values of parameters obtained from the evolutionary
algorithms. The values are given for both Indian and German conditions.

A B Ao Bo λ Objective function
Indian conditions 1.12 0.25 1.12 0.25 0.64 0.41
German conditions 1.96 0.32 1.12 0.25 0.92 0.42

A B Ao Bo λ Objective function
Indian conditions 2.04 0.23 1.12 0.25 0.46 0.41
German conditions 2.14 0.32 1.12 0.25 0.73 0.40

A B Ao Bo λ Objective function
Indian conditions 3.0 0.23 1.12 0.25 0.45 0.41
German conditions 3.6 0.53 1.12 0.25 0.67 0.42

On Modeling and Evolutionary Optimization 29

needs to be minimized and, due to the difference between experimental data and
simulation results, we would not expect this value to be zero.

4.2 The Algorithm

In our calibration method, we used a real coded evolutionary algorithm see [2].
The maximum generation number and the population size are both set to be
100 and N , respectively. The tournament selection operator, simulated binary
crossover (SBX) and polynomial mutation operators [2] are used. The crossover
probability used is 0.9 and the mutation probability is 1/6. We use the distri-
bution indices [3] for crossover and mutation operators as ηc = 20 and ηm = 20,
respectively. For statistical accuracy, 100 runs were performed and the average
of the objective function value was taken. For simplicity, we take the same values
of A, B and λ for all the pedestrians.

4.3 Results

The next three table gives the different set of optimal values of the parameters
A, B and λ. As can be seen the solutions are multi-modal in nature. It is important
to highlight that all the three solutions were found in the same simulation run.

The following summarizes the important results from and application of the
evolutionary algorithm to this problem.

– Multi-modality is observed, i.e., there seem to be different parameter set
giving almost the same fitness value. The use of evolutionary algorithms in
such conditions is thus more justified. This is because these population based
algorithms can find all or many optimal solutions in a single run.

– The A (strength term) and B (decay term) for German conditions are more
and less than the corresponding Indian conditions, respectively. This has to
do with cultural differences and the personal space is more in Germans than
in Indians. Hence the A, B parameters are such that the repulsive force is
more in German conditions than in Indian ones.

– The anisotropy parameter λ is more for Indians than Germans. This might
be due to that Indians being less sensitive to pedestrians on sides. Among
the differences in other parameters like A and B, the difference in λ, between
Indians and Germans is more pronounced.

– The differences between the Indians and Germans and their walking be-
havior is reflected in the h − v equations (see Equations 14 and 15). The
evolutionary algorithm is able to translate this in the A and B parameters.
This is important since with the optimal set of A and B values one could
simulate a realistic pedestrian walking behavior, for both these countries.

5 Conclusions

While there have been many attempts to have a better microscopic pedestrian
interaction model, none of them seem to model all the aspects considered in this

30 P.K. Shukla

paper. This paper is an attempt to have a better model without any increase of
number of parameters. Although not reported in this short paper, the new model
also shows all the self-organizing phenomena that is observed in pedestrian traf-
fic. We have presented an evolutionary algorithm based approach for calibration
of this highly nonlinear and coupled interaction model. It came out that the
problem of calibration is multi-modal in nature and many solutions were found
in a single simulation run. We believe that evolutionary algorithms have a great
potential in optimization of (nonlinearly coupled) pedestrian interactions and
hope this study will simulate further research on parameter calibration studies
for other countries/ behaviors.

References

1. Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamen-
tal diagram across cultures. Adv. Complex Systems 12, 393–405 (2009)

2. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley
& Sons Ltd., Chichester (2001)

3. Deb, K., Agarwal, R.B.: Simulated binary crossover for continuous search space.
Complex Systems 9, 115–148 (1995)

4. Helbing, D.: A mathematical model for the behavior of pedestrians. Behavioral
Science 36, 289–310 (1991)

5. Helbing, D.: Verkehrsdynamik. Springer, Berlin (1997)
6. Helbing, D.: Traffic and related self-driven many-particle systems. Review of Mod-

ern Physics 73, 1067–1141 (2001)
7. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic.

Nature 407, 487–490 (2000)
8. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical Re-

view E 51, 4282–4286 (1995)
9. Hughes, R.: A continuum theory for the flow of pedestrians. Transportation Re-

search B 36, 507–535 (2002)
10. Johansson, A., Helbing, D., Shukla, P.: Specification of the social force pedestrian

model by evolutionary adjust- ment to video tracking data. Adv. Complex Sys-
tems 10, 271–288 (2007)

11. Lewin, K.: Field Theory in Social Science. Harper & Brothers, New York (1951)
12. Okazaki, S.: A study of pedestrian movement in architectural space, Part 1: Pedes-

trian movement by the application on of magnetic models. Trans. of A.I.J. (283),
111–119 (1979)

13. Shukla, P.K.: Modeling and Simulation of Pedestrians. Masters thesis, Indian In-
stitute of Technology Kanpur, India (2005)

14. Tilch, B., Helbing, D.: Evaluation of single vehicle data in dependence of the
vehicle-type, lane, and site. In: Helbing, D., Herrmann, H., Schreckenberg, M.,
Wolf, D. (eds.) Traffic and Granular Flow 1999, pp. 333–338. Springer, Berlin
(2000)

15. Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian
dynamics. Phys. Rev. E 72(2), 026112 (2005)

Revising the Trade-off between the Number of
Agents and Agent Intelligence

Marcus Komann1 and Dietmar Fey2

1 Friedrich-Schiller-University Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

marcus.komann@googlemail.com
2 University of Erlangen-Nürnberg

Martensstrasse 3, D-91058 Erlangen, Germany
dietmar.fey@informatik.uni-erlangen.de

Abstract. Emergent agents are a promising approach to handle com-
plex systems. Agent intelligence is thereby either defined by the number
of states and the state transition function or the length of their steering
programs. Evolution has shown to be successful in creating desired be-
haviors for such agents. Genetic algorithms have been used to find agents
with fixed numbers of states and genetic programming is able to balance
between the steering program length and the costs for longer programs.
This paper extends previous work by further discussing the relationship
between either using more agents with less intelligence or using fewer
agents with higher intelligence. Therefore, the Creatures’ Exploration
Problem with a complex input set is solved by evolving emergent agents.
It shows that neither a sole increase in intelligence nor amount is the
best solution. Instead, a cautious balance creates best results.

1 Introduction

“Emergence” can be shortly described as the global effect that is created by (in-
ter)actions of local individuals [18]. Two classic examples for it are ant colonies,
which are able to find the shortest path to a food resource with high probability
[7][2], or the “Game of Life”, a special Cellular Automaton [19]. Emergence has
been in the scope of researchers for some time and is still one of the major issues
today [16]. This especially holds for rather complex systems because it might
offer large benefits as result of the emergent process, e. g., self-organization, self-
healing, self-optimization, self-configuration, and so on [3].

Usual “top-down” or “bottom-up” solution finding strategies do not work
anymore for complex systems. The need for a different approach was discussed
in [6], [1], or [18]. These authors agree that this new approach should rely on
stepwise refinement of solutions in order to find a good or optimal solution in
the end. Evolution of emergence has already been proposed by these authors as
a way to achieve desired system capabilities.

Komann [11] evolved finite state machines that steer agents for the so-called
“Creatures’ Exploration Problem” (CEP), in which one or more agents shall visit

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 31–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

32 M. Komann and D. Fey

a maximal number of non-blocked cells in a regular grid. The CEP is a special
kind of a Cellular Automaton and forms the same highly nonlinear landscapes
in the search space. Practical applications of this problem are cleaning robots
that move through rooms of a university, the “Lawnmower Problem” [14], or the
controlled movement of so-called “Marching Pixels” agents, which emergently
traverse images in order to retrieve information about image objects [12].

For a specific set of input grids, Komann first showed that evolution can
robustly create CEP agents that visit 80%-90% of possible cells. This is worse
than optimal agents, which visit 96%-99%. But evolution found its results in 36
hours while searching optimal agents by enumeration and simulation needed 45
days (see the works of Halbach [10][8]). Komann concluded that using evolution
thus is feasble if good agents are needed fast.

In another work, Komann then tried to figure out the relationship between the
amount of agents and the amount of states [13]. He showed that each approach
on its own can be successful in principle but that a combination of both yields
best results. However, the input set Komann used showed to be too small and
simple. All evolutions with larger numbers of agents as well as larger numbers
of states found agents that robustly visited 100% of free cells. The statements
and conclusions from [13] are hence not very significant. In this paper, the same
experiments are thus executed with a larger input set and the results are revised.

The results are especially interesting if it is possible to execute agents in
parallel. Multiple agents have the capability to find better results faster. Anyhow,
multiple agents cost multiple implementation effort. But less agents with higher
capabilities are also costly. For the CEP model, the cost for an agent with a
larger numbers of states is high concerning its execution in functional units. It
might thus be useful to have more but cheaper parallel agents, which fulfill the
task as well or even better than fewer agents with more states.

The paper is structured as follows. Sec. 2 describes the CEP and its state ma-
chines in more detail. In Sec. 3, implications of increased agent numbers and intel-
ligence are discussed. Sec. 4 then recapitulates details on the evolutionary process.
This is followed by the results of the evolution runs on the extended input in Sec. 5
before the last section summarizes the paper and gives an outlook to future work.

2 The Creatures’ Exploration Problem
The “Creatures’ Exploration Problem” (CEP) was defined in [9]: Given is a
two-dimensional cellular field (regular grid) consisting of blocked cells and non-
blocked cells. This grid serves as a fixed environment for agents that move around
stepwise and have to fulfill a certain task. This task is visiting all non-blocked
cells at least once in shortest time. An agent can look ahead one cell in the
direction it currently moves in. It is only allowed to move onto non-blocked cells
and can perform four different actions:
– L (turn left),
– R (turn right),
– Lm (move forward and then turn left),
– Rm (move forward and then turn right).

Revising the Trade-off between the Number of Agents and Agent Intelligence 33

1 L
2 L
0 L
4 R
5 R
3 R
3 Lm
1 Rm
5 Lm
0 Rm
4 Lm
2 Rm

0 0
0 1
0 2
0 3
0 4
0 5
1 0
1 1
1 2
1 3
1 4
1 5

s r

v

m(a)

Lm

L

R

Rm

0 2

1

3 5

4

L

L

R R

LmLm
RmRm

Lm

L

R

Rm

0 2

1

3 5

4

L

L

R R

LmLm
RmRm

(b)s control state
r direction
v(r,d) new direction
m agent can move
L/R turn left/R if (m=1)
Lm/Rm turn left/R and move if (m=0)

d

s'

bl
oc

ke
d

no
n-

bl
oc

ke
d

Fig. 1. A state machine (a) models an agent’s behavior. Corresponding 6-state graph
(b), dashed line for m = 0, solid line for m = 1.

The agent always tries to move forward. If the front cell (the cell ahead in
the moving direction) is blocked, action L or R is performed. Action Lm or Rm is
performed if the front cell is not blocked.

Behavior of an agent is modeled by a finite state machine (see Fig. 1). The
state machine has n states s ∈ {0, 1 . . . , n− 1}, one binary input m (blocked or
non-blocked front cell) and one binary output d (turn left or right). It can be
depicted by a state graph (Fig. 1 (b)). E. g., being in current state s = 3 and
receiving input m = 0 (do not move), this agent will perform the action R and
the state transition to the next state s′ = 4.

The amount of state machines that can be coded is M = (n∗#y)(n∗#x) where
n is the number of states, #x is the number of different input values, and #y is
the number of different output actions. In this paper, we look at state machines
with maximally eight states. Thus, 1616 = 18, 446, 744, 073, 709, 551, 616 possi-
ble behaviors can be defined. Note that not all agent behaviors described by
state machines are distinct (e. g., permutation of the states leads to equivalent
behaviors) or useful (e. g., state graphs that make little use of the inputs or are
weakly connected).

The global behavior of a Cellular Automaton is difficult to foresee if one
changes the local cell rules. The same holds for the CEP. If agents are executed
with CEP state machines, changing one of the operations or switching to a dif-
ferent state often creates completely different agent movement on the same input
grids. Combined with the exponential increase in number of state machines, this
results in extremely large non-linear landscapes in the CEP’s search space.

3 Increasing Agent Capabilities

The goal of this paper is to revise how well the CEP can be solved if we make agents
more powerful. We use two different ways to give the agents more capabilities and

34 M. Komann and D. Fey

combine them. The first one is increasing the number of states per agent. The
second one is increasing the number of agents.

Concerning the number of states, the simplest case is a one-state CEP agent.
Such an agent can only decide if its front cell is blocked, move or not, and then
turn to either side. In the worst case, this agent just moves and turns left all
the time, eventually running in a four-cell-cycle instead of visiting more parts
of a grid. A higher quantity of states allows the agent to have a more distinct
movement scheme. If an agent is given more states, it has the opportunity to
change states and thus directions in order to leave cycles and have a much higher
rate of visited cells. This statement is not only true when turning from one state
to two. It also holds for higher numbers of states because ever more states give
the agent ever more opportunities to “react” on more sophisticated grids and
also to leave larger cycles.

The second way of elevating agent power is by increasing the number of agents.
This is a big extension because two agents might possibly visit the double amount
of free cells than a single agent in the same time. A comparison of them is hence
a little unfair. In order to decrease this unfairness, we let multiple agents start
at the same position like single agents. No two agents can be in the same cell
at the same time. Thus, the first agent is set to the same position as a single
agent. A second agent’s initial position is directly adjacent to the first one as is
the third’s and so on. Every added agent is as close to the first as possible in
our tests. Other strategies would be to distribute multiple agents over the grid
following a distribution function, e. g. uniform distribution or randomly, or to
start the agents maximally far apart from each other. But those schemes would
increase the unfairness because it would be much easier for multiple agents to
visit all cells if they started far apart.

The application of multiple agents also raises the question for communication.
In the CEP model, agents look ahead if the cell they want to move to is blocked
or not. If one agent is used, the agent only sees a blocked cell in front if that
front cell is blocked by the grid and can not be visited at any time. In order to
decrease the mentioned unfairness when applying more agents, we want multiple
agents to communicate as few as possible. Thus, the agents don’t directly transfer
knowledge between each other. The only communication occurs if agent A sees
agent B in its front cell. A is then not allowed to move to the position of B and
perceives that cell as blocked as long as B stays there.Using more agents should
make sophisticated agent movements possible, too. Multiple agents should be
able to leave cycles and thus have a higher cell visit rate than fewer agents. This
is because an agent in a cycle can possibly find a cell of its cycle suddenly blocked
by another agent, what makes it change its direction and leave the cycle.

4 Experimental Setup and Evolutionary Parameters

Komann evolved agents that solve the Creatures’ Exploration Problem (CEP)
[13] for the 26 input grids proposed by Halbach [8]. We want to do the same but
with a larger set of 62 input grids. In order to make the results comparable, we

Revising the Trade-off between the Number of Agents and Agent Intelligence 35

Fig. 2. Structure of a program/the state machine of an agent

have to use the same experimental setup like Komann. In this section, we hence
shortly recapitulate details of the evolutionary processes.

A CEP agent behavior is represented by a state machine/automaton, which
is executed by one or more agents on a grid. Such agents can also be steered by
a small program consisting of several basic operations in a specific structure as
presented in Fig. 2. The length of the program is depending on the number of
states an agent is provided with. The evolution is allowed to change the opera-
tions that are depicted in gray italics. Operations in black stay fixed. Evolution
is only allowed to change operations to an operation from that operation’s fam-
ily, for example New State Is One can be changed to New State Is Three but
not to Turn Left or If Old State Was Four.

One evolution run consisted of maximal 1000 generations with a population
size of 10. The initial population was filled with random agent programs. Selec-
tion was done by the “Roulette Wheel” operator where the fitness of an individ-
ual defines the size of its segment on a virtual roulette wheel relative to the sum
of the fitness of all individuals [15]. Selected individuals were replicated to a new
generation with a probability of 30% in order to create some kind of elitist pro-
cess. The reason for this strategy was the highly nonlinear nature of the search
space. Without using an elitist strategy, the probability of leaving landscapes
that promise high cell visit rates was too large. This is supported by Deb [4][5],
who showed that using elitist strategies can avoid leaving good local landshapes.
Two selected individuals were recombined with a probability of 40% using one-
point recombination.The remaining 30% of the population were mutated. The
amount of mutated operations as well as their position in the chromosome were
randomly chosen under the previously described structure constraints.

The fitness function represents the two objectives when evolving state ma-
chines for the CEP. The first one is that a maximal number of cells shall be

36 M. Komann and D. Fey

visited. The second, minor one is speed of the agents. Hence, the fitness F of an
individual I was defined as:

F (I) =
gridlast∑

k=gridfirst

(
1000 ∗ Cellsvisited(k)− Speed(k)

)
.

For Speed(k), agents count the amount of steps they run on a grid according to
their state machine. When all non-blocked cells have been visited, the number of
steps is added to the global speed term. The maximum number of steps agents
are allowed to take is 5000. When 5000 is reached, not all non-blocked cells are
visited. Then, the lower visit number is added to the fitness via the Cellsvisited(k)
term and 5000 is added via the speed term.

5 Results

The evolution results for 26 original input grids used by Komann were promising
[13]. But the drawback of these tests was that too many automata visited all non-
blocked cells for higher amounts of agents and states and significant statements
could not be made. Hence, we repeated the tests with the same 26 input grids
plus 36 new ones using the same operators, population sizes, generations, and
probabilities. More input makes it more difficult for agents to be equally well in
all grids because the decisions they make in a certain local situation in one grid
might be bad on global scale in the same situation in another grid. The resulting
success and speed tables should hence be more significant.

Using more input grids does not change the amount of possible automata. For
a defined number of states, this amount is equal regardless of the number of input
grids. The difference is that the automata are applied to more grids. Increasing
the amount of input ever more will decrease the effectiveness of automata with
a fixed number of states. The difference to less input lies mainly in the required
time. The fitness of an individual is calculated by simulating all input grids and
counting the number of visited pixels and required steps. Simulating more or
larger input grids takes more time and so does the evolution.

The added grids were created to be closer to real-world problems than the
initial grids. They consist of some letters and a set of different floor plans and
starting positions. Especially the last 12 input grids were chosen to be difficult
for the agents. The agents have to follow sophisticated paths to arrive at the
farthest non-blocked cells there.

5.1 Visit Rates

Tab. 1 presents the success of evolved agents on the extended set of 62 inputs.
It can be seen that, indeed, fewer automata reached the full visit rate of 13, 576
cells. Robust, full visits with σ = 0 required eight agents with five states (min-
imizing states) and five agents with seven states (minimizing agents). Besides,
many of the automata with higher amounts of states and/or agents were very
effective again. Most only slightly missed 100% visits with σ = 0.

Revising the Trade-off between the Number of Agents and Agent Intelligence 37

T
a
b
le

1
.
A

ve
ra

ge
x̄

an
d

st
an

da
rd

de
vi

at
io

n
σ

of
vi

si
te

d
ce

lls
of

th
e

be
st

in
di

vi
du

al
of

ea
ch

of
th

e
fiv

e
ru

ns
fo

r
62

in
pu

t
im

ag
es

St
at

es
1

2
3

4
5

6
7

8
Ø

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

Agents1
2
1
7
2

0.
0

9
6
6
0

0.
0

9
9
7
3

54
8.

7
9
8
0
7

13
5.

9
1
0
3
7
8

57
1.

0
1
0
4
6
3

43
1.

3
1
0
0
8
5

49
8.

9
1
0
5
0
2

33
1.

2
9
1
3
0

31
4.

6
2

5
7
0
4

0.
0

1
1
2
1
1

2.
20

4.
4

1
2
5
5
2

15
5.

4
1
2
7
2
7

19
9.

9
1
2
7
0
1

10
6.

0
1
2
8
5
2

15
7.

7
1
2
8
2
6

21
3.

5
1
2
8
4
5

20
6.

5
1
1
6
7
7

40
5.

4
3

7
1
8
3

0.
0

1
3
3
3
4

37
.3

1
3
3
7
0

38
.4

1
3
3
7
3

36
.4

1
3
4
2
6

23
.8

1
3
3
8
8

71
.4

1
3
4
3
0

37
.4

1
3
4
2
1

27
.4

1
2
6
1
6

34
.0

4
8
3
0
0

0.
0

1
2
7
7
6

1.
49

5.
4

1
3
5
2
8

39
.9

1
3
5
4
6

18
.4

1
3
5
6
4

11
.3

1
3
5
7
1

0.
6

1
3
5
6
8

5.
4

1
3
5
7
0

1.
6

1
2
8
0
3

19
6.

6
5

8
7
8
5

0.
0

1
2
9
5
2

1.
17

7.
8

1
3
5
6
4

16
.1

1
3
5
6
6

4.
4

1
3
5
6
7

8.
4

1
3
5
7
3

6.
0

1
3
5
7
6

0.
0

1
3
5
7
2

6.
0

1
2
8
9
4

15
2.

3
6

9
5
0
0

0.
0

1
3
5
7
2

2.
9

1
3
5
7
4

1.
4

1
3
5
7
4

3.
5

1
3
5
7
5

0.
4

1
3
5
7
5

1.
2

1
3
5
7
5

1.
2

1
3
5
7
6

0.
0

1
3
0
6
5

1.
3

7
9
9
2
1

0.
0

1
3
5
7
4

0.
8

1
3
5
7
4

0.
5

1
3
5
7
5

0.
8

1
3
5
7
5

1.
0

1
3
5
7
6

0.
0

1
3
5
7
6

0.
0

1
3
5
7
6

0.
0

1
3
1
1
8

0.
4

8
1
0
2
7
0

0.
0

1
3
5
7
5

0.
7

1
3
5
7
5

1.
0

1
3
5
7
6

0.
8

1
3
5
7
6

0.
0

1
3
5
7
6

0.
0

1
3
5
7
6

0.
0

1
3
5
7
6

0.
0

1
3
1
6
2

0.
3

Ø
7
7
2
9

0.
0

1
2
5
8
2

61
4.

9
1
2
9
6
4

10
0.

2
1
2
9
6
8

50
.0

1
3
0
4
5

90
.2

1
3
0
7
2

83
.5

1
3
0
2
7

94
.5

1
3
0
8
0

71
.6

1
2
3
0
8

13
8.

1

T
a
b
le

2
.
A

ve
ra

ge
x̄

an
d

st
an

da
rd

de
vi

at
io

n
σ

of
sp

ee
d

of
th

e
be

st
in

di
vi

du
al

of
ea

ch
of

th
e

fiv
e

ru
ns

fo
r

62
in

pu
t

im
ag

es

St
at

es
1

2
3

4
5

6
7

8
Ø

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

x̄
σ

Agents1
3
1
0
0
0
0

0
2
1
7
7
4
4

20
97

2
1
9
7
4
2

31
61

2
3
2
9
2
0

10
86

6
2
2
2
1
3
3

34
92

2
1
6
7
2
9

89
84

2
2
5
8
7
3

16
70

1
2
1
3
4
4
1

85
06

2
3
2
3
2
3

67
26

2
3
1
0
0
0
0

0
1
6
3
3
7
4

66
03

7
1
3
0
0
6
7

66
61

1
3
9
7
7
7

14
10

2
1
2
4
4
0
8

63
76

1
4
1
3
4
2

17
91

8
1
2
7
4
2
9

10
47

4
1
3
1
6
3
1

11
41

6
1
5
8
5
0
3

16
62

3
3

2
8
5
5
2
7

0
9
8
3
2
4

79
29

9
5
1
3
2

81
00

9
5
7
6
5

75
29

9
3
7
9
6

97
77

9
5
5
6
7

44
42

9
3
6
1
9

30
15

9
1
3
4
1

58
89

1
1
8
6
3
4

58
35

4
2
6
2
9
9
3

0
1
1
2
8
7
7

85
27

7
6
6
1
0
7

81
23

6
6
5
6
1

40
30

6
1
7
9
7

27
89

6
2
3
7
3

56
3

6
2
8
6
4

25
95

6
1
5
4
8

25
30

9
4
6
4
0

13
23

8
5

2
5
7
9
3
0

0
9
0
2
3
9

67
75

6
5
3
8
5
5

56
64

4
8
0
4
2

40
92

5
0
9
4
1

55
77

4
3
1
7
7

10
22

4
2
9
9
6

13
34

4
4
5
4
9

17
41

7
8
9
6
6

10
89

8
6

2
5
1
6
5
0

0
4
2
9
3
4

63
36

4
1
3
7
5

41
60

3
9
2
6
5

70
40

4
2
2
3
0

47
98

3
3
4
6
8

37
53

3
2
0
6
4

29
25

2
9
9
1
1

15
73

6
4
1
1
2

38
23

7
2
5
1
1
0
7

0
3
3
0
8
0

35
92

3
3
2
3
7

37
83

3
3
4
9
1

20
28

3
2
2
6
1

33
81

2
5
5
5
3

20
70

2
4
9
6
7

16
26

2
5
2
5
6

11
21

5
7
3
6
9

22
00

8
2
2
4
0
1
8

0
3
1
8
1
6

14
45

2
8
3
0
4

35
11

2
6
2
1
1

45
27

2
2
0
4
1

14
92

2
1
0
7
5

34
0

2
0
2
7
4

10
12

2
0
2
6
2

10
80

4
9
2
5
0

16
76

Ø
2
6
9
1
5
3

0
9
8
7
9
8

30
05

9
8
3
4
7
7

53
95

8
5
2
5
4

67
77

8
1
2
0
1

47
10

7
9
9
1
1

48
87

7
8
7
6
1

49
60

7
7
2
4
2

42
32

1
0
6
7
2
5

76
27

38 M. Komann and D. Fey

However, the conclusions made by Komann for 26 inputs grids are mirrored
in Tab. 1. Although the 62 input grids were a lot more difficult, the evolution
was successful and robust in higher amount of states and agents. The standard
deviation was again higher in lower amounts of states and agents. This indicates
that even this large and sophisticated set of input grids does not exceed the
capabilities of eight agents with eight states. Even some more input grids could be
learned and successfully traversed by agents with these amounts. Full visit rates
were already possible with a small amount of states and agents. Sole increase of
either states or agents was not effective. Like stated in [13], both values had to
be increased simultaneously to achieve good results.

Besides the similarities, two differences between the results for 26 and 62
input grids showed up. The first one is the influence of either states or agents.
For 26 inputs, increasing agents was more effective than increasing states. Now,
the average values in the bottom row and the right column are similar. They
indicate no significant difference in visiting success of either of the variables.
The second difference is that eight states here were slightly more successful than
seven states. Using more input, the surprising effect of seven states being better
than the (in principle) more powerful eight states vanished. For more complex
input, the larger search space of more states seems to be more effective.

5.2 Speed of the Agents

Tab. 2 illustrates the number of steps required by the agents to visit their amount
of cells in Tab. 1. 5,000 steps were maximally allowed per grid. Thus, 62∗5, 000 =
310, 000 steps could maximally be taken.

Like in the success table, the tendencies from the tests with 26 input grids
mirror here. Increasing both amount of states and amount of agents improved
the results significantly. Only using more agents (right column) again improved
the speed in every agent addition. A little different to Komann’s results for 26
grids where (apart from states = 1) increasing the states did not speed up the
agents, a continuous decrease in required steps can be seen here while increasing
states (bottom row).

The σ values increased slightly. Compared to the increase in possible steps
(130,000 to 310,000), their average increase was smaller. They show that the
evolution results were robust because they were relatively small with an overall
average of σ = 7, 627 for a steps average of x̄ = 106, 725, which is just 7.1%.

6 Summary and Outlook

Complex systems consisting of locally acting parts that evoke global system
characteristics mostly can’t be designed in classic ways. This is due to the of-
ten unforeseeable, nonlinear behavior emerging on global level that results from
changing the local units. The same reason creates the highly nonlinear search
spaces that have to be traversed to optimize these global system characteristics.

In this paper, we discussed how well evolved emergent agents can solve the
global objective to visit all non-blocked cells fast in several grids. We especially

Revising the Trade-off between the Number of Agents and Agent Intelligence 39

revised the question if it is better to use more agents or to give the agents
more intelligence. The tests showed that the latter already yields good results
but that more agents perform even better. Anyhow, the tests hinted that mixing
both seems to be the best way for agents of the Creatures’ Exploration Problem.

Which option should be used in a specific application depends on the imple-
mentation costs for either option. Using more agents as well as using more states
normally costs hardware resources. In the case of massively-parallel fine-grained
models like Cellular Automata [19], Cellular Neural Networks [17], or Marching
Pixels [12], implementing more agents that work simultaneously is no problem.
It is rather a feature of these models that they comprise multi-agent support.
When realizing such models in hardware, it is expensive to make the single cells
more powerful because they require more functional units, e. g., more memory to
save the states and a larger state transition table. But multiple agents in some
sense come for free in these models. The problem there is the search for correct
local rules that result in desired global behavior. As Komann stated, for such
systems, evolving agent behavior seems to be a feasible approach.

Future work on this topic consists of extending the communication capabilities
of the agents and then comparing the results to those in this paper. Extended
communication should make multiple agents even more powerful. This could,
for example, mean giving the agents small memory where they could memorize
their last few steps. This information could then be communicated from one
agent to another in order to prevent the receiving agent from visiting the same
cells again. Another opportunity that would especially fit to the mentioned fine-
grained parallelism would be to save information in the cells if any agent already
visited a cell before. This would refer very much to animals searching and eating
food on a plain. Agents then should visit fewer previously visited cells.

References

1. Anderson, C.: Creation of desirable complexity: strategies for designing selfor-
ganized systems. In: Complex Engineered Systems, pp. 101–121. Perseus Books
Group (2006)

2. Beckers, R., Deneubourg, J.L., Goss, S.: Trails and U-turns in the selection of the
shortest path by the ant Lasius Niger. Journal of Theoretical Biology 159, 397–415
(1992)

3. Branke, J., Schmeck, H.: Evolutionary design of emergent behavior. In: Organic
Computing, March 2008, pp. 123–140. Springer, Heidelberg (2008),
http://www.springer.com/978-3-540-77656-7

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

5. Deb, K.: A robust evolutionary framework for multi-objective optimization. In:
GECCO 2008: Proceedings of the 10th annual conference on Genetic and evolu-
tionary computation, pp. 633–640. ACM, New York (2008)

6. Edmonds, B.: Using the experimental method to produce reliable self-organised
systems. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal,
R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 84–99. Springer, Heidelberg
(2005)

http://www.springer.com/978-3-540-77656-7

40 M. Komann and D. Fey

7. Goss, S., Aron, S., Deneubourg, J., Pasteels, J.: Self-organized shortcuts in the
argentine ant. Naturwissenschaften 76(12), 579–581 (1989),
http://dx.doi.org/10.1007/BF00462870

8. Halbach, M.: Algorithmen und Hardwarearchitekturen zur optimierten Aufzählung
von Automaten und deren Einsatz bei der Simulation künstlicher Kreaturen. Ph.D.
thesis, Technische Universität Darmstadt (2008)

9. Halbach, M., Heenes, W., Hoffmann, R., Tisje, J.: Optimizing the behavior of a
moving creature in software and in hardware. In: Sloot, P.M.A., Chopard, B., Hoek-
stra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 841–850. Springer, Heidelberg
(2004)

10. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior
of several moving creatures. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.)
ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)

11. Komann, M., Ediger, P., Fey, D., Hoffmann, R.: On the effectiveness of evolution
compared to time-consuming full search of optimal 6-state automata. In: Vanneschi,
L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 280–291. Springer, Heidelberg (2009)

12. Komann, M., Fey, D.: Realising emergent image preprocessing tasks in cellular-
automaton-alike massively parallel hardware. International Journal of Parallel,
Emergent and Distributed Systems 22(2), 79–89 (2007)

13. Komann, M., Fey, D.: Evaluating the evolvability of emergent agents with different
numbers of states. In: GECCO, pp. 1777–1778. ACM, New York (2009)

14. Koza, J.R.: Scalable learning in genetic programming using automatic function
definition, pp. 99–117 (1994)

15. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd
edn. Springer, London (1996)

16. Müller-Schloer, C., Sick, B.: Emergence in Organic Computing systems: Discussion
of a controversial concept. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.) ATC
2006. LNCS, vol. 4158, pp. 1–16. Springer, Heidelberg (2006)

17. Roska, T., Chua, L.: The cnn universal machine: an analogic array computer.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Pro-
cessing 40(3), 163–173 (1993)

18. Wolf, T.D., Holvoet, T.: Emergence versus self-organisation: Different concepts but
promising when combined. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageor-
gos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 1–15. Springer,
Heidelberg (2005)

19. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)

http://dx.doi.org/10.1007/BF00462870

Sexual Recombination in Self-Organizing
Interaction Networks

Joshua L. Payne and Jason H. Moore

Computational Genetics Laboratory, Dartmouth Medical School,
Lebanon, NH 03756, USA

Joshua.L.Payne@Dartmouth.edu

Abstract. We build on recent advances in the design of self-organizing
interaction networks by introducing a sexual variant of an existing asex-
ual, mutation-limited algorithm. Both the asexual and sexual variants
are tested on benchmark optimization problems with varying levels of
problem difficulty, deception, and epistasis. Specifically, we investigate
algorithm performance on Massively Multimodal Deceptive Problems
and NK Landscapes. In the former case, we find that sexual recombi-
nation improves solution quality for all problem instances considered; in
the latter case, sexual recombination is not found to offer any significant
improvement. We conclude that sexual recombination in self-organizing
interaction networks may improve solution quality in problem domains
with deception, and discuss directions for future research.

1 Introduction

Many natural and physical systems can be characterized as networks, where
vertices denote system components and edges denote component interactions.
Recent advances in computational power and the increased availability of large-
scale data sets have provided several novel insights regarding the influence of
network structure on the functionality and vulnerability of these systems [15],
and on the dynamical processes that occur within them [4]. For example, at the
cellular level, the average connectivity of a genetic regulatory network affects
both its ability to discover novel phenotypes and its robustness to perturbation
[3]; at the population level, the spatial localization of interaction events affects
the maintenance of genetic diversity [12,22], the evolution of cooperation [16,10],
and the emergence of altruistic behavior [25].

Inspired by the interaction networks of such complex adaptive systems, recent
advances in cellular evolutionary algorithms have employed heterogeneous inter-
action networks as population structures. The saturation dynamics of advanta-
geous alleles have been investigated in both small-world [7] and scale-free [7,19]
interaction networks, and scale-free population structures have been analyzed in
the context of genetic algorithms for single [6] and multiobjective optimization
problems [13,14], and in evolutionary robotics applications [5].

While such complex population structures bear a closer resemblance to some
natural systems than their lattice-based predecessors [24,23,8], the analogy only

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 41–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

42 J.L. Payne and J.H. Moore

goes so far. In all of the examples cited above, the interaction network was gen-
erated prior to the evolution of the population, and its structure was held fixed
throughout the evolutionary process. Though this approach provides useful in-
sights regarding the influence of various topological properties on evolutionary
search [19], it is a gross oversimplification of the interaction networks of natural
systems, which are both dynamic and self-organizing. To date, only two studies
have attempted to incorporate these salient features of biological systems into
cellular evolutionary algorithms [2,26]. In [2], the global ratio of the horizontal
and vertical dimensions of a two-dimensional lattice population structure was
adaptively altered via a feedback loop with the evolutionary dynamics of the
population, offering significant performance improvements over static lattice-
based interaction networks. However, the local neighborhood structure of the
interaction network was assumed a priori and held constant throughout the
run and the global population structure was assumed to be regular. In con-
trast, the algorithm presented in [26] is not only dynamic, but also allows for
the self-organization of irregular local neighborhood structures and the emer-
gence of global network properties similar to the complex adaptive systems from
which nature-based optimization algorithms draw their inspiration. The results
of [26] demonstrate that mutation-limited genetic algorithms structured on such
self-organizing interaction networks improve both diversity maintenance and so-
lution quality over panmictic and lattice-based population structures, in specific
problem domains.

Here, we extend the algorithm presented in [26] to include sexual recombi-
nation, a variation operator that is integral to the exploration phase of evolu-
tionary search. We compare the asexual and sexual variants of this algorithm
on benchmark optimization problems with varying levels of problem difficulty,
multimodality, and epistasis.

2 Methods

2.1 Self-Organizing Interaction Networks

The details of the asexual variant of the self-organizing interaction networks
considered in this study are provided in [26]. For completeness, we provide a
high-level overview of this algorithm here.

The interaction network is initialized as a ring of M vertices, where each vertex
connects to its two nearest neighbors. A population of size M is then randomly
initialized, and each individual is placed in its own vertex. Since vertices are
always occupied by a single individual, the terms vertex and individual will be
used interchangeably.

The coupled evolution of the population and the interaction network is broken
into two phases per generation. In the first phase, M parents are selected to
produce offspring, each of which is placed in a new vertex. This results in a
network with 2M vertices. An offspring vertex connects to its parent vertex, and
inherits each of its parent’s edges with probability padd. If an offspring inherits
an edge from its parent, then the parent loses that edge with probability premove.

Sexual Recombination in Self-Organizing Interaction Networks 43

Since offspring connect to their parents, and a parent can only lose an edge if its
offspring gains that edge, it is guaranteed that the network will remain connected
(i.e., a finite path exists between all vertices). Parents are selected with uniform
probability from the population, with replacement. Thus, parent selection does
not depend on fitness. Offspring faithfully inherit the parental genotype, subject
to mutation.

In the second phase, selection pares the interaction network back down to M
vertices, as follows. A vertex is selected at random with uniform probability from
the population. This vertex then competes with its lowest-fitness neighbor. Of
this pair, the lower fitness vertex is removed from the network and the higher
fitness vertex inherits all of its links. Since the individual with the highest fit-
ness cannot lose one of these competitions, elitism is implicitly included in this
framework.

A key insight of [26] is that the fitness of a vertex should be considered in
the context of its local neighborhood. To do this, each individual is given a
rank r based on how its raw fitness f compares with the raw fitnesses of its d
neighbors. A rank of r = 0 denotes the best individual in a neighborhood and a
rank of r = d denotes the worst. Based on the individual’s rank r, it is assigned
a contextual fitness f ′ according to

f ′ =
d− r

d
, (1)

which is used in all competition events. After an individual is removed from the
network, the contextual fitnesses of all its neighbors are reevaluated.

These two phases are repeated for a specified number of generations. Each
vertex addition and removal transforms the network away from its original ho-
mogeneous form to something more closely resembling the topologies of complex,
natural systems [26] (Fig. 1).

2.2 Sexual Recombination

Here, we propose a simple extension of the asexual reproduction phase considered
in [26]. When a vertex i is chosen for reproduction, a mate j is subsequently
selected at random from the neighborhood of vertex i. A recombination operator
is then applied to the individuals situated in vertices i and j to form an offspring
in vertex z, which attaches to i and inherits i’s links in the same manner as the
asexual variant.

2.3 Benchmark Problems

In this section, we briefly describe the two benchmark optimization problems
used in this study. These problems were chosen because they possess impor-
tant characteristics of real optimization tasks, such as multimodality, deception,
and epistasis, and allow for a tunable degree of problem difficulty. Due to space
constraints, we limit our description of these problems to their defining char-
acteristics and the details needed to replicate our experiments. The interested
reader should refer to [2,11] for more details.

44 J.L. Payne and J.H. Moore

Fig. 1. Visualization of the evolutionary dynamics of self-organizing interaction net-
works. The network is initialized as a ring and the vertex addition and removal events
of subsequent generations (g) transform the network into a heterogenous form. For
visual clarity, these networks are deliberately smaller than any used in the experiments
(M = 30 vertices). These networks were generated by evolving a population on NK
landscapes with N = 30 and K = 2 (see Section 2.3).

Massively Multimodal Deceptive Problems. Massively multimodal de-
ceptive problems [2,9] consist of k concatenated subproblems, each with two
global optima and a single deceptive suboptimum. The subproblems are six bits
long, and the fitness contribution of each subproblem depends on the unita-
tion of the bits. Specifically, the unitation is used as an index into the vector
〈1.00, 0.00, 0.36, 0.64, 0.36, 0.00, 1.00〉. Thus, the global optima of each subprob-
lem are at maximum hamming distance from one another (at a unitation of zero
and six) and provide a fitness contribution of one. The deceptive suboptimum
provides a fitness contribution of 0.64 and is located at a unitation of three.
Maximum fitness is k, which we normalize to a maximum of 1.

NK Landscapes. NK landscapes are abstract models of fitness surfaces [11].
Each of the N bits in a binary string epistatically interact with K neighboring
bits to provide a fitness contribution. These contributions are in the range (0, 1)
and are extracted from a randomly generated look-up table with 2K+1 entries
for each of the N bits. The ruggedness of the fitness surface increases with the
number of interacting bits K. Fitness is defined as the arithmetic mean of the
N fitness contributions.

Sexual Recombination in Self-Organizing Interaction Networks 45

2.4 Experimental Design

To be consistent with [26], we use a population size of M = 100, a mutation rate
of 1/N (where N is the length of the binary string), and padd = premove = 0.1.
We use bit-flip mutation and, in the sexual case, one-point crossover (in addition
to mutation). For the MMDP, we consider 20 ≤ k ≤ 640 and allow evolution
to proceed for 1000 generations. (Preliminary experimentation with maximum
generation time indicated that 1000 generations was sufficient for population
convergence to occur, for all values of k considered.) For each problem instance,
we perform 500 independent replications, where the asexual and sexual variants
are seeded with the same initial populations. For the NK landscapes, we consider
N = 30 and 2 ≤ K ≤ 14, and allow the population to evolve for 5000 generations,
consistent with [26]. For each value of K, we randomly generate 500 problem
instances. For each problem instance, we generate a random initial population
and use it to seed both algorithm variants. This experimental design allows for
a paired statistical comparison of all results.

3 Results

3.1 Massively Multimodal Deceptive Problems

For all instances of the MMDP considered, the asexual and sexual algorithm
variants both converged on suboptimal, deceptive solutions. However, the sexual
variant always found higher fitness solutions. For example, in Fig. 2a, we depict
the average best fitness of the two algorithm variants on a representative MMDP
instance, with k = 80. In this case, the average best solution found by the asexual
variant had a fitness of 0.687 (±0.0004 s.e.), whereas the average best solution
found by the sexual variant had a fitness of 0.717 (±0.0005 s.e.).

This trend was consistent across all MMDP instances. In Fig. 3, we depict the
fitness of the best solutions found at the end of each replication as a function
of problem difficulty, for the asexual (A) and sexual (S) algorithm variants. The
average best fitness of the sexual variant was always significantly higher than
the average best fitness of its asexual counterpart (p < 0.05, paired t-test). As
problem difficulty increased, the average best fitness found by both algorithm
variants decreased (Fig. 3), an expected result given that the population size
was held constant for all experiments.

3.2 NK Landscapes

In Fig. 4, we compare the fitness of the best solutions found by the asexual (A)
and sexual (S) algorithms on NK landscapes with N = 30 and varying levels
of epistasis (K). For both algorithm variants, the fitness of the best solutions
varied non-monotonically with K, such that the highest fitness was observed for
6 ≤ K ≤ 8. For all values of K, the distributions of best fitness were statistically
indistinguishable between the two algorithms (p > 0.05, paired t-test).

46 J.L. Payne and J.H. Moore

0 200 400 600 800 1000
0.45

0.50

0.55

0.60

0.65

0.70

0.75

F
itn

es
s

Generation

(a) MMDP

Sexual

Asexual

0 1000 2000 3000 4000 5000

0.65

0.70

0.75

Generation

(b) NK

Sexual

Asexual

Fig. 2. Best raw fitness per generation of the sexual and asexual algorithm variants on
the (a) MMDP (k = 80) and (b) NK (N = 30, K = 10) test problems. Data points
are the average of all replications, and error bars denote standard error. (In (a) the
error bars are smaller than the symbol size.) The data are deliberately offset in the
horizontal dimension for visual clarity.

As an illustrative example, we depict in Fig. 2b the fitness of the best solutions
found by the two algorithms as a function of generation number, for a represen-
tative case of intermediate epistasis (K = 10). On these problem instances, the
best solutions found by both algorithm variants had an average fitness of 0.770
(±0.004 s.e.).

4 Discussion

In this study, we have demonstrated that including sexual recombination in self-
organizing interaction networks can improve solution quality in some problem
domains. In a direct comparison between an asexual, mutation-limited algorithm
[26] and a sexual, recombinative variant, we found that the sexual variant dis-
covered higher quality solutions when the problem instance was deceptive, but
offered no advantage when the problem instance was epistatic.

Our results on NK landscapes contrast those observed with panmictic genetic
algorithms [1], where recombination was shown to offer an advantage over a
mutation-limited variant for intermediate levels of epistasis (12 < K < 32 for NK
landscapes with N = 96). We found that the asexual and sexual variants produced
statistically indistinguishable results for all values of K considered. This result fol-
lows from the fact that both the ruggedness of a fitness landscape and the fitness
difference between peaks and valleys increases monotonically with K [17]. Thus,
not only is recombination more likely to produce offspring in maladaptive fitness
valleys as K increases, but the sheer depth of these valleys acts to preclude any

Sexual Recombination in Self-Organizing Interaction Networks 47

A S A S A S A S A S A S
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
k=20 k=40 k=80 k=160 k=320 k=640

F
itn

es
s

Algorithm Variant

Problem Size

Fig. 3. Best raw fitness after 1000 generations for various MMDP problem sizes (k),
using the asexual (A) and sexual (S) algorithm variants. The sexual variant produced
significantly higher quality solutions in all cases (p < 0.05, paired t-test).

possibility of mutational escape. While such maladaptive movements in genome-
space are often considered prerequisites for adaptive peak shifts in epistatic fitness
landscapes [17], they were not found to offer any advantage here.

The coupling of population dynamics and population structure [26] makes
these self-organizing interaction networks unique among those employed in cel-
lular evolutionary algorithms, and allows for better diversity maintenance than
static, lattice-based interaction networks [26]. An analysis of several structral
properties of the interaction networks evolved in this study, including charac-
teristic path length, clustering coeffecient, degree distribution, and assortativ-
ity, did not reveal any significant difference between the asexual and sexual
cases. Further, we did not find any relationship between the structure of the
evolved interaction networks and the underlying problem domain or its corre-
sponding difficulty. Future work will seek to investigate the relationship between
the topological characteristics of self-organizing interaction networks and the
population-level distribution of genetic information, in order to better under-
stand how diversity is maintained in both the asexual and sexual cases. This
will complement previous analyses of population distributions in static, regular
interaction networks [20].

Self-organizing population structures offer the potential to improve the effi-
cacy of evolutionary search, and better mimic some of the features of complex
biological systems. However, several important aspects of natural interaction

48 J.L. Payne and J.H. Moore

A S A S A S A S A S A S A S
0.66

0.70

0.74

0.78

0.82

0.86
K=2 K=4 K=6 K=8 K=10 K=12 K=14

F
itn

es
s

Algorithm Variant

Problem Size

Fig. 4. Best raw fitness after 5000 generations as a function of the degree of epistasis K
in NK landscapes with N = 30 for the asexual (A) and sexual (S) algorithm variants.
Solution quality was statistically indistinguishable between the asexual and sexual
algorithm variants (p > 0.05, paired t-test).

networks are not included in this framework. In biotic populations, individuals
often choose their own social ties, as opposed to inheriting them from their par-
ents, as was the case here. This ‘active linking’ has offered novel insights into
such pertinent topics as the evolution of cooperation, in both theoretical [18] and
experimental settings [21]. We believe that allowing individuals to strengthen (or
weaken) their ties with competitors or mating partners may further improve the
search capabilities of cellular evolutionary algorithms that employ self-organizing
interaction networks. Current research is directed along these lines.

References

1. Aguirre, H.E., Tanaka, K.: Genetic algorithms on NK-landscapes: Effects of selec-
tion, drift, mutation, and recombination. In: Raidl, G.R., Cagnoni, S., Cardalda,
J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Mar-
chiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003,
EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and Evo-
MUSART 2003. LNCS, vol. 2611, pp. 131–142. Springer, Heidelberg (2003)

2. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular
genetic algorithms. IEEE Transactions on Evolutionary Computation 9(2), 126–
142 (2005)

Sexual Recombination in Self-Organizing Interaction Networks 49

3. Aldana, M., Balleza, E., Kauffman, S.A., Resendis, O.: Robustness and evolvability
in genetic regulatory networks. Journal of Theoretical Biology 245, 433–448 (2007)

4. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Net-
works. Cambridge University Press, Cambridge (2008)

5. Gasparri, A., Panzieri, S., Pascucci, F., Ulivi, G.: A spatially structured genetic
algorithm over complex networks for mobile robot localisation. In: Proceedings of
the IEEE International Conference on Robotics and Automation, pp. 4277–4282.
IEEE Press, Los Alamitos (2007)

6. Giacobini, M., Preuss, M., Tomassini, M.: Effects of scale-free and small-world
topologies on binary coded self-adaptive cea. In: Gottlieb, J., Raidl, G.R. (eds.)
Evolutionary Computation and Combinatorial Optimization, pp. 86–98. Springer,
Heidelberg (2006)

7. Giacobini, M., Tomassini, M., Tettamanzi, A.: Takeover times curves in random
and small-world structured populations. In: Beyer, H.G. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO-2005, pp. 1333–1340.
ACM Press, New York (2005)

8. Giacobini, M., Tomassini, M., Tettamanzi, A., Alba, E.: Selection intensity in cellu-
lar evolutionary algorithms for regular lattices. IEEE Transactions on Evolutionary
Computation 9(5), 489–505 (2005)

9. Goldberg, D., Deb, K., Horn, J.: Massive multimodality, deception, and genetic
algorithms. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving From
Nature, pp. 37–46. North-Holland, Amsterdam (1992)

10. Hauert, C., Doebeli, M.: Spatial structure often inhibits the evolution of coopera-
tion in the snowdrift game. Nature 428, 643–646 (2004)

11. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolu-
tion. Oxford University Press, Oxford (1993)

12. Kerr, B., Riley, M.A., Feldman, M.W., Bohannan, B.J.M.: Local dispersal promotes
biodiversity in a real life game of rock-paper-scissors. Nature 418, 171–174 (2002)

13. Kirley, M., Stewart, R.: An analysis of the effects of population structure on scalable
multiobjective optimization problems. In: Thierens, D. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO-2007, pp. 845–852.
ACM Press, New York (2007)

14. Kirley, M., Stewart, R.: Multiobjective optimization on complex networks. In:
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007.
LNCS, vol. 4403, pp. 81–95. Springer, Heidelberg (2007)

15. Newman, M.E.J., Barabási, A.L., Watts, D.J. (eds.): The Structure and Dynamics
of Networks. Princeton University Press, Princeton (2006)

16. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–
829 (1992)

17. Ostman, B., Hintze, A., Adami, C.: Impact of epistasis on evolutionary adaptation.
arXiv:0909.3506v1 (2009)

18. Pacheco, J.M., Traulsen, A., Ohtsuki, H., Nowak, M.A.: Repeated games and direct
reciprocity under active linking. Journal of Theoretical Biology 250, 723–731 (2008)

19. Payne, J.L., Eppstein, M.J.: Evolutionary dynamics on scale-free interaction net-
works. IEEE Transactions on Evolutionary Computation 13(4), 895–912 (2009)

20. Preuss, M., Lasarczyk, C.: On the importance of information speed in structured
populations. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós,
J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN
2004. LNCS, vol. 3242, pp. 91–100. Springer, Heidelberg (2004)

21. Rand, D.R., Dreber, A., Ellingsen, T., Fudenberg, D., Nowak, M.A.: Positive in-
teractions promote public cooperation. Science 325, 1272–1275 (2009)

50 J.L. Payne and J.H. Moore

22. Reichenbach, T., Mobilia, M., Frey, E.: Mobility promotes and jeopardizes biodi-
versity in rock-paper-scissors games. Nature 448, 1046–1049 (2007)

23. Rudolph, G.: On takeover times in spatially structured populations: array and
ring. In: Lai, K.K., Katai, O., Gen, M., Lin, B. (eds.) Proceedings of the Second
Asia-Pacific Conference on Genetic Algorithms and Applications, APGA-2000, pp.
144–151. Global Link Publishing Company, Hong Kong (2000)

24. Sarma, J., De Jong, K.: An analysis of the effect of neighborhood size and shape on
local selection algorithms. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 236–244. Springer, Heidelberg (1996)

25. Werfel, J., Bar-Yam, Y.: The evolution of reproductive restraint through social
communication. Proceedings of the National Academy of Science 101(30), 11019–
11024 (2004)

26. Whitacre, J.M., Sarker, R.A., Pham, Q.T.: The self-organization of interaction net-
works for nature-inspired optimization. IEEE Transactions on Evolutionary Com-
putation 12(2), 220–230 (2008)

Symbiogenesis as a Mechanism for Building
Complex Adaptive Systems: A Review

Malcolm I. Heywood and Peter Lichodzijewski

Faculty of Computer Science, Dalhousie University
Halifax, NS, Canada

{mheywood,piotr}@cs.dal.ca

Abstract. In 1996 Daida et al. reviewed the case for using symbiosis as
the basis for evolving complex adaptive systems [6]. Specific observations
included the impact of different philosophical views taken by biologists
as to what constituted a symbiotic relationship and whether symbiosis
represented an operator or a state. The case was made for symbiosis as
an operator. Thus, although specific cost benefit characterizations may
vary, the underlying process of symbiosis is the same, supporting the op-
erator based perspective. Symbiosis provides an additional mechanism
for adaption/ complexification than available under Mendelian genetics
with which Evolutionary Computation (EC) is most widely associated.
In the following we review the case for symbiosis in EC. In particular,
symbiosis appears to represent a much more effective mechanism for au-
tomatic hierarchical model building and therefore scaling EC methods to
more difficult problem domains than through Mendelian genetics alone.

1 Introduction

Evolutionary Computation (EC) has long been associated with a Darwinian
model of evolution in which natural selection represents a metaphor for perfor-
mance evaluation and the motivation for maintaining a population of candidate
solutions, whereas metaphors from Mendelian genetics are generally invoked to
support the specifics of the representation and provide a model for credit assign-
ment [11]. As such this mirrors the classical development of biology, with recent
extensions including the introduction of developmental evolution – therefore re-
inforcing the use of Mendelian genetics – to the widespread use of coevolution,
particularly cooperative and competitive models. Indeed, even calls for the use
of more accurate biological models in EC have generally focused on the genetics,
thus reinforcing discoveries such as the process of transcription [4]. Conversely,
symbiosis as a coevolutionary process has been much less widely studied in the
EC literature.

Symbiosis was defined by De Bary in 1879 as the living together of organisms
from different species c.f., “unlike organisms live together” [8] (see [24,6,20] for
current surveys of the concept). As such the process can encompass both ex-
ploitive parasitic relationships and co-operative mutualistic associations. How-
ever, central to symbiosis is a requirement for long-term, but not necessarily

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 51–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

52 M.I. Heywood and P. Lichodzijewski

physical, association between partnering entities. The nature of the association,
and therefore the degree of antagonism versus mutualism linking different part-
ners, will vary as a function of environmental factors (see for example the clos-
ing commentary in [6]). When the symbiotic association leads to a long-term
relationship that, say, converts an initially exploitive relationship into one of co-
operative dependence resulting in a new species then the process is considered
to be that of symbiogenesis [26,27,25].

The core components include: (1) partners entering in a relationship from dif-
ferent species/ organisms; (2) partners adapting phenotypically under selection
pressure as a result of the symbiotic relationship, and; (3) a long term associa-
tion which facilitates the creation of a new species of organism(s). The first two
points are sufficient for symbiosis, whereas all three points provide symbiogen-
esis. The result is therefore increased functionality in the case of the final host
entity, through the learning or application of traits developed independently
by the symbiont(s) [26,27,25]. Conversely, a Darwinian model emphasizes the
vertical inheritance of genetic variation through sexual reproduction of part-
ners from the same species [19,25]. From an EC perspective symbiogenesis is
a form of coevolution that has the potential to provide the basis for hierarchi-
cal/ component-wise model building; whereas competitive coevolution provides
a mechanism for scaling EC to problem domains with truly vast state spaces
and cooperative coevolution supports processes by which parallel problem de-
composition / diversity is emphasized. Indeed systems utilizing multiple forms of
coevolution are beginning to appear in EC (e.g., [38,21]), whilst the interaction
of multiple evolutionary mechanisms in biology is widely acknowledged [19]. In
the following we review biological properties of symbiosis – thus revisit a general
abstract model of symbiosis that appears to be particularly useful under an EC
context – as well as recent attempts to make use of symbiotic style algorithms
in EC.

2 Biological Context

Despite De Bary’s early recognition of symbiosis, it was not until the 1970’s
that the phenomena received more widespread recognition. In particular Lynn
Margulis was instrumental in promoting Serial Endosymbiosis Theory as the
mechanism by which evolution from prokaryote to eukaryote took place [23]–
[27]. Moreover, most autopoietic entities require symbiotic (as well as Darwinian)
models of development [25]. From the perspective of theoretical biology, John
Maynard Smith was an early proponent, abstracting the concept of symbio-
genesis as a mechanism by which complexity may be increased [28]. Figure 1
summarizes his model in which: Individuals (symbionts) from candidate species
currently coexisting in a common genepool/ population/ ecosystem become en-
closed within a ‘compartment’ such that a subset of individuals interact, thus
identifying the partners. Over time, the interaction results in a mechanism being
established for the replication of the partners i.e., the interaction is beneficial
as measured by natural selection. Thus, the specific form of a symbiotic coevo-
lutionary interaction was not emphasized, but rather the key factors were that

Symbiogenesis as a Mechanism for Building Complex Adaptive Systems 53

Ecological

Coexistence

A

B

C

Subsets

of individuals

coexist

`Compartmentalization’

of the subsets

Synchronized

replication

Increasing complexity

Fig. 1. Abstract model of Symbiogenesis: Complexification as a process of compartmen-
talization (adopted from [28]). Individuals from independent species A, B, C already
under an ecological coexistence (far left) form an increasingly intimate coevolution-
ary partnership resulting in a ‘compartment’ (center) that supports the coordinated
replication of symbionts (right).

different species were involved and that the process establish an intimate asso-
ciation over a ‘significant time period.’ Note also that the concept of a ‘host’ is
quite abstract; the host may or may not be a currently existing entity.

Given this definition for the generic process of symbiogenesis – effectively es-
tablishing symbiosis as an operator rather than a state [6] (i.e., outcomes are
independent of the coevolutionary interaction) – a wide range of ‘resolutions’ ex-
ist that provide specific examples of symbiosis in nature: (1) Endosymbiotic:
Interactions that take place within a host potentially resulting in symbiogenesis.
Intracellular – in which integration at the cellular level takes place. Symbiont
cells enter the host, survive, reproduce and successfully appear in the host off-
spring e.g., as in the case of prokaryote to eukaryote transfers; Extracellular
– symbionts establish themselves between the host cells (as opposed to within
them) or within cavities of the host e.g., as in the case of the mammalian gut
(host) and E. coli (symbiont) a relation that enables mammals to digest food.
(2) Entosymbiotic: Represent symbiotic relationships that do not enter the
host ‘body’ and to date lack complete histories supporting symbiogenesis [20].
Daida et al. separate this into two forms [6]: Attachment Symbiosis – the host
and symbiont undergo a permanent/ semi-permanent attachment e.g., as in the
case of sea anemones riding the shells of hermit crabs. As such the relationship
tends to be one-to-one; Behavioral Symbiosis – rely on communication as the
medium to establish the basis for the symbiotic association. As such, relation-
ships can be much more flexible with hosts being served by different symbionts
over time e.g., the tooth cleaning relationship between crocodiles and birds.

In addition to this, intracellular endosymbiosis can be augmented by other pro-
cesses such as horizontal gene transfer (HGT) [1]. Classically, HGT was associated
with the transfer of plasmids – bacterial genes not in the main chromosome; where

54 M.I. Heywood and P. Lichodzijewski

genetic material in the plasmid is known to confer resistance to antibiotics through
the combination of high rates of plasmid exchange and a ‘noisy’ process of tran-
scription [1]. The process frequently appears in bacteria, but also considered to
result in the migration of plastids and mitochondria between bacteria, archaea
and eukarya [33]. From the view of molecular evolution, both HGT and symbiosis
imply that molecular development did not follow a tree of life, but a network of life
metaphor in which there is much more interbreeding of the gene pool [33,25]. How-
ever, the underlying message is that the process of variation is that of Lamarckian
inheritance augmented with mutation [26].

The above two level ontology is by no means the only scheme for distinguishing
between different forms of symbiosis. Indeed, we maintain in this work that it is
the relationship supporting the process of compartmentalization (Figure 1) that
more effectively summarizes developments under EC. Thus, five basic categories of
relationship might be identified (adapted from [24]): (1) Spatial relationships
– what degree of physical proximity is necessary to support the identification of
potential partners e.g., commensalism (a very intimate integration of partners)
versus mutualism (a purely behavioral compartment in which participants main-
tain physical independence); (2) Temporal relationships – defines over what
period of the participant’s lifetime the compartmentalization exists e.g., whether a
compartment is only established following: appropriate communication (therefore
symbiosis is an occasional behavioral activity), under a periodic model of refor-
mation and disengagement, or be permanent through the lifetime of participants;
(3) Metabolic relationships – to what degree a third party host is necessary to
provide the compartmentalization, in contrast with symbionts relying on a non-
physical identification (of compartmentalization). This might raise secondary fac-
tors such as to what degree participants provide mutually beneficial food sources;
(4) Genetic relationships – To what degree specific protein(s)/ gene(s) of a
participant are transfered to others; and, (5) Coevolutionary relationships
– symbionts need not be purely mutualistic in their interaction [26,27,6]. Indeed
coevolutionary relationships could fall under the categories of amensalism, com-
mensalism, competition, predation or mutualism.

Finally, we note that more recent observations from the field of theoretical
biology have increasingly emphasized that symbiosis is associated with confer-
ring robustness to the resulting biological entity. The resulting hypothesis of
‘self extending symbiosis’ refers to a process by which [18]: “evolvable robust
systems continue to extend their system boundary [a.k.a compartmentalization]
by incorporating foreign biological forms to enhance their adaptive capability
against environmental perturbations and hence improve their survivability and
reproduction potential.” In short, Mendelian genetics is associated with provid-
ing the genomic architecture, whereas symbiosis extends the host through new
‘layers of adaptation’ [18].

3 Summary of EC Models Supporting Symbiogenesis

In the following we review examples from EC in which symbiogenesis has played a
central role. Particular attention is given to the relationship supporting

Symbiogenesis as a Mechanism for Building Complex Adaptive Systems 55

compartmentalization (spatial, temporal, metabolic, genetic or coevolutionary).
That is to say, it is the combination of relations that promotes the state of
symbiosis as opposed to the relative resolution at which symbiosis takes place.

3.1 Learning Classifier Systems (LCS)

Initial research used the control of a 4 legged robot as the environment to con-
sider issues such as [3]: (1) the allocation of rules from a fixed sized population to
one of the four robot legs (speciation); (2) symbiosis as used to control the iden-
tification of genetic information transferred between pairs of LCS rules. Thus
speciation controls the number of legs to which members of the rule population
are mapped, whereas symbiosis provided an operator for pairing rules initially
associated with each leg. The authors continue with this theme in later work
[34]. They note that in order to promote the identification of effective serial
combinations of rules, the symbiotic operator needs to focus on rules from dif-
ferent niches and be biased towards matching the rules that were sequentially
successful. Moreover, additional controls were necessary in order to build suit-
able mechanisms for effective credit assignment – or temporal persistence – when
using symbiosis. Once integrated, the model was able to provide favorable so-
lutions under a suite of ‘Woods’ reinforcement domain problems. The focus of
the earlier work was necessarily directed towards the impact of assuming dif-
ferent mechanisms for establishing the ‘compartmentalization’ of symbionts (or
the spatial relationships of Section 2), while simultaneously providing the basis
for providing solutions to a specific problem domain. Conversely, under the later
work, the key factor was the use of temporal relationships as the mechanism for
establishing stable compartments. Both approaches make use of macro opera-
tors for selecting individuals to appear in the host compartment and assume a
relatively loose model of metabolic relation.

3.2 Symbiogenesis and Genetic Linkage Learning

The overall goal of these algorithms is to establish a mechanism for dealing
with deceptive linkage/ epistasis in binary representations i.e., correlation of
gene changes with fitness is highly non-linear. As such, the participants take the
form of a Genetic Algorithm (GA) and most emphasis is placed on establishing
relevant metabolic and genetic relationships for compartmentalization to take
place. Conversely, the spatial and temporal relationships remain intimate and
permanent respectively. The process involved takes the form of either reordering
the genes of the host [32] or providing mechanisms for inserting different genetic
information within the context of an initial host individual [9,37,35]. In the lat-
ter case, the work of Dumeur defines a structure for building solutions out of
multiple symbionts in which the frequency of seeing similar values in the same
gene location makes the utility of that value more probable [9]. The process for
promoting symbiont membership is driven by how ‘open’ a host is to incorpo-
rating new symbionts. The ‘weaker’ a host, the more likely that it will accept

56 M.I. Heywood and P. Lichodzijewski

new symbionts and vice versa.1 The GA representation utilizes a pair of values
<gene location, gene value> where gene values are binary i.e., implementing a
binary GA.

A different approach is taken by the ‘composition’ model of Watson and Pol-
lack [37]. Again a binary GA is considered in which individuals only specify
subsets of the genes. Other genes are considered ‘neutral’ to that individual:
such neutral genes have no contribution other than to establish the alignment of
the remaining genes. Fixed length individuals are assumed in order to establish
gene alignment for the sharing of genetic material during symbiosis. Symbiosis
is the sole mechanism by which individuals are combined to produce a child.
To do so, a rule for combining non-neutral genes is established (referred to as
‘composition’). In a later work this is combined with a Pareto based competitive
coevolutionary model for determining whether a (symbiotic) child is retained
[38,36]. Thus a child is retained if it is better than the parents, in the Pareto
sense, over a random sample of training scenarios (i.e., a test for symbiogenesis).
Thus, children are only accepted if they are explicitly better than the parents.

Further efforts have been made to provide a more formal structure by which
composition may evolve solutions to problems with higher orders of linkage [15].
Recent results are along these lines [16] i.e., hierarchical model building . Ad-
ditional refinements to the composition model have also been introduced [13]:
(1) mutation for supporting population diversity (2) initial population limited
to single (non-neutral) genes but allowed to incrementally increase, thus mak-
ing the hierarchical gene linkage learning more explicit; and, (3) maintenance of
a worst case tabu list of poorly performing genomes to bias against revisiting
poor states during symbiosis. Moreover, the same process was also employed
for evolving fuzzy rules under a LCS context [2]. Watson has also continued to
develop the model, with a particular focus on the criteria for detecting ‘good’
symbiotic partners [29], dropping the requirement for children to strictly better
their parents. Finally, a ‘Symbiogenetic Coevolutionary’ framework also concen-
trates on the linkage learning problem under binary GAs with symbionts having
the capacity to ‘inject’ themselves into the host chromosome, over-writing se-
quences of bits [35]. Again binary deceptive problems were used to illustrate the
effectiveness of the approach under a fixed length representation.

3.3 Pairwise Symbiogenesis and Coevolution of Symbiont Behaviors

Kim et al. develop a model for the pairwise construction of symbionts [17]. Em-
phasis was placed on the exchange process for mapping participants between
independent symbiont and component populations i.e., spatial and temporal re-
lationships are used to control the mapping from independent species to com-
partmentalization (and viceversa). However, a natural penalty for this is that
there is no process for combining more than two partners in a symbiotic relation.

1 Incidentally, the early GA model of Daida et al. also made use of ‘switches’ to indicate
whether the corresponding gene of the host can be ‘infected’ with a symbiont of a
‘type’ also declared by the host [7].

Symbiogenesis as a Mechanism for Building Complex Adaptive Systems 57

The pairwise limitation also appears in the ‘linear’ model of Morrison and Op-
pacher [31]. What is particularly interesting in their linear model is that different
pairwise associations are initialized to represent different coevolutionary relation:
amensalism, commensalism, competition, predation and mutualism. Moreover,
the relative ‘strength’ of an association can be pre-specified as a design param-
eter. Defining the relevant strength parameter, however, was observed to be
problem dependent. Eguchi et al. address this by letting the association itself
evolve, this time under a multi-agent context [10]. Specifically, pairs of agents are
selected – ‘self’ and ‘opponent’ – as well as the children of the ‘self’ individual.
Pairwise evaluation under a Pareto framework is then performed under each of
the models of symbiotic association to establish their preferred relation. (In an
earlier work the authors describe an approach based on fuzzy rules [14]).

3.4 Models with Dissimilar Representations and Multiple
Populations

The evolution of neural networks provided an early example in which differ-
ent representations are employed for compartment and symbiont or hierarchical
Symbiotic Adaptive Neuroevolution [30]. Specifically, a ‘blueprint’ population in
this case expresses the compartment by indexing (symbiont) neurons from an
independent neuron population; thus model building is a combinatorial search
over the set of symbionts i.e., a spatial relationship. Similarly, the symbiogenetic
evolution of Genetic Programming (GP) has also been considered for ‘teaming’ –
that is forming teams of programs which collectively evolve to provide solutions
[21]. The Symbolic Bid-based (SBB) GP framework utilizes a GA to conduct a
combinatorial search for effective GP symbionts; thus each GA (host) individual
defines a compartmentalization. Central to this model is an explicit separation
of learning when to act (the bid or a temporal relation) and what to do (the
action) or Bid-based GP. Without this, the context under which each symbiont
program operated would be lost. Results demonstrate effectiveness at problem
decomposition under classification [21] and reinforcement learning domains [22].
Moreover, the symbiont population (Bid-based GP) content evolves under mu-
tation and a variable size population model in order to support symbiogenesis
in the best compartments (teams) with fitness sharing providing additional sup-
port for diversity. Finally, under a Tree structured GP context the evolution of
constants using a separate GA representation/ population was considered [5].
As such this may be interpreted as symbiosis where multiple GP populations
are evaluated using constants suggested by the GA population.

4 Discussion

A characterization of the form of symbiosis employed in EC is established through
emphasizing the nature of relationships used to support compartmentalization.
As such, genetic and metabolic relationships appear to be the norm in (binary)
GAs with symbiogenesis having strong implications for solving problems with

58 M.I. Heywood and P. Lichodzijewski

hierarchical relationships. LCS augment genetic relationships with temporal re-
lationships. The result is better properties for either constructing combinations
of rules (LCS) or much stronger mechanisms for resolving complex gene linkage
(GA), as illustrated in the case of solutions under binary deceptive or hierar-
chical building block style problem domains. Spatial and temporal relationships
appear as a central element to the model of Kim et al., whereas the other pair-
wise models of symbiosis emphasize the evolution of the degree of mutualism
versus competition or the coevolutionary relationship. When multiple popula-
tions are employed with different representations – as in Neural Evolution or
GP – then spatial and temporal relationships again establish the relevant model
of compartmentalization for symbiogenesis to take place.

Common to symbiosis in general is the explicit support for a divide and
conquer approach to evolution. EC frequently assumes sexual recombination
(crossover) as the principle mechanism for making use of modularity. However,
as demonstrated by the work of Watson [36], crossover requires very favorable
gene orderings for addressing problems with high orders of gene linkage. Like-
wise, EC models making use of symbiosis require support for suitable contextual
information. Models of gene alignment play a significant role in GAs support-
ing symbiogenesis whereas for the GP setting of SBB the concept of bidding is
central to enforcing a relevant behavioral context. Moreover, diversity mainte-
nance in the symbiont population must be explicitly addressed in order to avoid
premature convergence [13,29]. Indeed, any scheme of model building through
symbiosis must be augmented by suitable variation operators. This brings the
discussion back to the relation between Darwinism and Symbiogenesis. It is in-
creasingly apparent that mutation operates at many levels – micro, macro, mega
[26] – with symbiosis often considered a form of mega mutation, whereas more
gradualist forms of adaptation are associated with micro and macro models of
mutation [26]. With this in mind Watson considered ‘compositional evolution’ in
general as support for combining genetic material that was “semi-independently
preadapted in parallel” [36]. This covers more than just symbiotic models, includ-
ing specific forms of sexual recombination (implying that specific conditions for
population diversity and genetic linkage exist [36]) and horizontal gene transfer
(see for example ‘Transgenetic Algorithms’ [12]).

Finally, from the perspective of future developments, the advent of recursively
applied symbiotic operators is likely. Specifically, hosts reaching symbiogenesis
may themselves become candidate symbionts for the continued development of
more complex individuals. This is particularly likely when the host (compart-
ment) population make use of cooperative coevolutionary mechanisms, such as
fitness sharing, to encourage diversity at the host level. The next (recursive)
application of symbiosis would use (some subset of) a previously evolved host
population as the candidate symbionts for building new host compartments (see
for example the diversity in host/ team behaviors illustrated by [22]); thus, pro-
viding an automated process for ‘layered learning.’

Symbiogenesis as a Mechanism for Building Complex Adaptive Systems 59

Acknowledgements

P. Lichodzijewski was supported in part through Killam Predoctoral and NSERC
PGSD scholarships. M. Heywood was supported from an NSERC research grant.

References

1. Amabile-Cuevas, C.F., Chicurel, M.: Horizontal gene transfer. American Scien-
tist 81, 332–341 (1993)

2. Baghshah, M.S., Shouraki, S.B., Halavati, R., Lucas, C.: Evolving fuzzy classifiers
using a symbiotic approach. In: Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 1601–1607 (2007)

3. Bull, L., Fogarty, T.C.: Evolutionary computing in multi-agent environments: Spe-
ciation and symbiosis. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 12–21. Springer, Heidelberg (1996)

4. Burke, D.S., Jong, K.A.D., Grefenstette, J.J., Ramsey, C.L., Wu, A.S.: Putting more
genetics into Genetic Algorithms. Evolutionary Computation 6(4), 387–410 (1998)

5. Cagnoni, S., Rivero, D., Vanneschi, L.: A purely evolutionary memetic algorithm
as a first step towards symbiotic coevolution. In: Proceedings of the Congress on
Evolutionary Computation, pp. 1156–1163. IEEE Press, Los Alamitos (2005)

6. Daida, J.M., Grasso, C.S., Stanhope, S.A., Ross, S.J.: Symbionticism and complex
adaptive systems I: Implications of having symbiosis occur in nature. In: Proceed-
ings of the Annual Conference on Evolutionary Programming, pp. 177–186. MIT
Press, Cambridge (1996)

7. Daida, J.M., Ross, S.J., Hannan, B.C.: Biological symbiosis as a metaphor for
computational hybridization. In: Proceedings of the International Conference on
Genetic Algorithms, pp. 328–335. Morgan Kaufmann, San Francisco (1995)

8. de Bary, H.A.: Die Erscheinung der Symbiose. Votrag, gehalten auf der Versamm-
lung Deutscher Naturforscher und Aerzte zu Cassel (1879)

9. Dumeur, R.: Evolution through cooperation: The symbiotic algorithm. In: Alliot,
J.-M., Ronald, E., Lutton, E., Schoenauer, M., Snyers, D. (eds.) AE 1995. LNCS,
vol. 1063, pp. 145–158. Springer, Heidelberg (1996)

10. Eguchi, T., Hirasawa, K., Hu, J., Ota, N.: A study of evolutionary multiagent
models based on symbiosis. IEEE Transactions of Systems, Man, and Cybernetics–
Part B 36(1), 179–193 (2006)

11. Fogel, D.B. (ed.): Evolutionary Computation: The Fossil Record. IEEE Press, Los
Alamitos (1998)

12. Goldbarg, E.F.G., Goldbarg, M.C., Bagi, L.B.: Transgenetic algorithm: A new
evolutionary perspective for heuristics design. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 2701–2708 (2007)

13. Halavati, R., Shouraki, S.B., Heravi, M.J., Jashmi, B.J.: Symbiotic evolutionary
algorithm: A general purpose optimization approach. In: Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 4538–4545 (2007)

14. Hirasawa, K., Ishikawa, Y., Hu, J., Murata, J., Mao, J.: Genetic symbiosis algo-
rithm. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
1377–1384 (2000)

15. de Jong, E., Thierens, D., Watson, R.A.: Hierarchical genetic algorithms. In:
Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria,
J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 232–241. Springer, Heidelberg (2004)

60 M.I. Heywood and P. Lichodzijewski

16. de Jong, E., Watson, R.A., Thierens, D.: On the complexity of hierarchical problem
solving. In: Proceedings of the Genetic and Evolutionary Computation Conference,
vol. 2, pp. 1201–1208. ACM Press, New York (2005)

17. Kim, J.Y., Kim, Y., Kim, Y.K.: An endosymbiotic evolutionary algorithm for op-
timization. Applied Intelligence 15, 117–130 (2001)

18. Kitano, H., Oda, K.: Self-extending symbiosis: A mechanism for increasing robust-
ness through evolution. Biological Theory 1(1), 61–66 (2005)

19. Kutschera, U.: Symbiogenesis, natural selection, and the dynamic earth. Theory
in Biosciences 128, 191–203 (2009)

20. Kutschera, U., Niklas, K.J.: Endosymbiosis, cell evolution, and speciation. Theory
in Biosciences 124, 1–24 (2005)

21. Lichodzijewski, P., Heywood, M.I.: Managing team-based problem solving with
symbiotic bid-based Genetic Programming. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 363–370 (2008)

22. Lichodzijewski, P., Heywood, M.I.: Binary versus real-valued reward functions un-
der coevolutionary reinforcement learning. In: Proceedings of the International
Conference on Artificial Evolution (2009), https://lsiit.u-strasbg.fr/ea09

23. Margulis, L.: Symbiosis and evolution. Scientific American 225(2), 48–57 (1971)
24. Margulis, L.: Symbiogenesis and Symbionticism, ch. 1, pp. 1–14 (1991) in ([26])
25. Margulis, L.: Genome acquisition in horizontal gene transfer: Symbiogenesis and

macromolecular sequence analysis. In: Gogarten, M.B., et al. (eds.) Horizontal
Gene Transfer: Genomes in Flux, ch. 10, pp. 181–191. Springer, Heidelberg (2009)

26. Margulis, L., Fester, R. (eds.): Symbiosis as a Source of Evolutionary Innovation.
MIT Press, Cambridge (1991)

27. Margulis, L., Sagan, D.: Acquiring Genomes. Basic Books (2002)
28. Maynard Smith, J.: A Darwinian View of Symbiosis, ch. 3, pp. 26–39 (1991), in ([26])
29. Mills, R., Watson, R.A.: Symbiosis, synergy and modularity: Introducing the re-

ciprocal synergy symbiosis algorithm. In: Almeida e Costa, F., Rocha, L.M., Costa,
E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1192–
1201. Springer, Heidelberg (2007)

30. Moriarty, D.E., Miikkulainen, R.: Forming neural networks through efficient and
adaptive coevolution. Evolutionary Computation 5(4), 373–399 (1998)

31. Morrison, J., Oppacher, F.: A general model of coevolution for genetic algorithms.
In: Proceedings of Artificial Neural Networks and Genetic Algorithms (1999)

32. Paredis, J.: The symbiotic evolution of solutions and their representations. In:
Proceedings of the International Conference on Genetic Algorithms, pp. 359–365.
Morgan-Kaufmann, San Francisco (1995)

33. Smets, B.F., Barkay, T.: Horizontal gene transfer: Perspectives at a crossroads of
scientific disciplines. Nature Reviews Microbiology 3, 675–678 (2005)

34. Tomlinson, A., Bull, L.: Symbiogenesis in learning classifier systems. Artificial
Life 7, 33–61 (2001)

35. Wallin, D., Ryan, C., Azad, R.M.A.: Symbiogenetic coevolution. In: Proceedings
of the Congress on Evolutionary Computation, pp. 1613–1620. IEEE Press, Los
Alamitos (2005)

36. Watson, R.A.: Compositional Evolution: The impact of sex, symbiosis and modu-
larity on the gradualist framework of evolution. MIT Press, Cambridge (2006)

37. Watson, R.A., Pollack, J.B.: How symbiosis can guide evolution. In: European
Conference on Artificial Life, pp. 29–38. Springer, Heidelberg (1999)

38. Watson, R.A., Pollack, J.B.: A computational model of symbiotic composition in
evolutionary transitions. BioSystems 69, 187–209 (2003)

https://lsiit.u-strasbg.fr/ea09

Co-evolution of Optimal Agents for the
Alternating Offers Bargaining Game

Arjun Chandra, Pietro Simone Oliveto, and Xin Yao

The Centre of Excellence for Research in Computational Intelligence and
Applications (CERCIA), School of Computer Science, University of Birmingham, UK

{a.chandra,p.s.oliveto,x.yao}@cs.bham.ac.uk

Abstract. Bargaining, as an instance of sequential games, is a widely
studied problem in game theory, experimental and computational eco-
nomics. We consider the problem of evolving computational agents with
optimal (Subgame Perfect Equilibrium) strategies for the Alternating
Offers Bargaining Game. Previous work co-evolving agents for this prob-
lem has argued that it is not possible to achieve optimal agents at the
end of the co-evolutionary process due to the myopic properties of the
evolutionary agents. Emphasising the notion of a co-evolutionary solu-
tion concept, we show that this conclusion is mis-leading and present a
co-evolutionary algorithm that evolves optimal strategies for the bargain-
ing game with one round. We conclude by explaining why, using previous
evaluation procedures and strategy representations, the algorithm is not
able to converge to optimal strategies for games with more rounds.

1 Introduction

Co-evolution is a process of mutual adaptation, towards increasingly adaptive
behaviours, that occurs amongst a set of agents interacting strategically (re-
vealing a reward structure) in some domain. It has been used for both the
evolution of game playing strategies [8] in order to achieve a certain type of
agent behaviour, and at the same time using games as a test bed to under-
stand the co-evolutionary process properly [4]. However, the reported successes
of co-evolutionary applications are counter balanced by many failures [5]. These
failures are often attributed to co-evolutionary properties such as cyclic dynamic,
mediocre stable-state, collusion, forgetting etc [5]. It has been shown that often
these pathologies imply a lack of rigour in the definition of the solution con-
cept1 used for the co-evolutionary process [5]. Recently, generalisation has been
proposed and studied rigorously as an alternative to measuring strategy perfor-
mance quantitatively and unambiguously [3].

Sequential games, for which we have a closed form solution, specifically, a
single selected Nash Equilibrium i.e. Subgame Perfect Equilibrium (SPE) [11],
1 In co-evolutionary terms, a solution concept is defined by defining two search prob-

lems [5]: (1) searching for the desired solution i.e. SPE, and (2) searching for a
direction in terms of parts of the landscape/opponents that guide the search for the
desired solution.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 61–70, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 A. Chandra, P.S. Oliveto, and X. Yao

are useful for building, validating, and refining bottom-up approaches (like co-
evolution) to the equilibrium selection process. They provide us with a theo-
retically calculated optimum, and hence a solution concept, to aim for. This
gives support to the designed co-evolutionary algorithm to be applicable for
equilibrium selection in game settings where the theoretical equilibrium is in-
tractable. This is one of the fundamental ideas behind the field of computational
economics [9].

We consider the problem of co-evolving optimal agents for the alternating of-
fers bargaining game [10]. Previous work [2] using co-evolution for finding the
theoretical equilibrium (SPE) for the game suggested that it was not possible
to achieve optimal agents at the end of the co-evolutionary process, hence, that
the algorithm did not converge. This was attributed to the agents being myopic
or boundedly rational, in that the agents had no memory to remember past in-
teractions, no explicit rationality principles to use, and for more realistic game
settings with a stochastic element defining when the game ends, they were sup-
posedly unable to reason backwards from the deadline. While these issues may be
interesting, they do not directly answer why co-evolution, in this case, does not
lead to optimality and convergence. Since a given setting of the bargaining game
has only one SPE, it is worth investigating whether a co-evolutionary algorithm
can evolve the agents’ strategies towards optimality. In this paper we further
analyse the co-evolutionary algorithm used in [2,7] to understand why optimal
agents cannot be co-evolved and whether there are better co-evolutionary ap-
proaches that can be used in this case. The goal here is to identify general issues
that may influence co-evolution, not just for a particular game considered.

The rest of this paper is structured as follows. In Section 2, we introduce
the alternating offers bargaining game and the co-evolutionary setting used in
[7]. In Section 3, we analyse the previously used methodology and explain why
the conclusions were mis-leading. In Section 4, we present a co-evolutionary al-
gorithm that evolves strategies converging to theoretical optimality for games
with a single round. We then explain why the same results cannot be obtained
for games with more than one round using previous evaluation procedures and
strategy representations, influencing the general applicability of these algorithms
to sequential games, hence why the implemented solution concept has to be con-
siderably modified. We conclude in Section 5 by discussing ideas for future work
directed towards the obtainment of a fully convergent co-evolutionary algorithm
for the alternating offers bargaining problem with multiple rounds.

2 Preliminaries

2.1 Alternating Offers Multiple Issue Bargaining Game

We consider the multiple issue, finite horizon (finite number of rounds) version
of Rubinstein’s [10] alternating offers bargaining game. There are two agents,
‘Player 1’ and ‘Player 2’, and Player 1 always starts the game. A round entails
each agent (as an offerer), in turn, proposing an offer (a division of the surplus
on m issues, expressed as a vector o) to the other agent (i.e. the responder) and

Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game 63

the responder deciding whether or not to accept this offer by matching the utility
of the offer against a threshold. There are a maximum of n rounds. At the end
of each round, the game prematurely breaks down with a probability 1− p. The
probability p (of the game proceeding to the next round) reflects the players’
uncertainty about the deadline in real world bargaining interactions. The game
ends in a disagreement if there is a breakdown or if the responder rejects the
offer in the last round. In either case both agents receive nothing (i.e. the utility
is zero). The game ends in an agreement if the responder accepts the offer in
any of the rounds. In this case, the agents receive a positive payoff decided by
their respective utility functions.

As in [7], we assume, without loss of generality, that the total bargaining
surplus available for each issue is unity. For either agent, the utility of an offer
o is the dot product wj .o =

∑m
i=1 wi

jo
i, where wj is a vector containing agent

j’s weights for each issue and
∑m

i=1 wi
j = 1. In the rest of the paper we fix the

number of issues (m) to 2, w1 = (0.7, 0.3) and w2 = (0.3, 0.7), since the majority
of the results reported in [7] consider these values. Thus, a game is instantiated
by defining a specific value for p and n. For each combination of p and n, there
is a unique SPE solution that can be calculated using backward induction (refer
to [6]).

As an example, we consider the game with no breakdown i.e. p = 1. In this
case, the game theoretic solution (SPE) is the obvious one, where the first agent
gets everything on all issues (payoff of 1) and the second gets nothing (payoff of
0) if the number of rounds n is odd. On the other hand, if the number of rounds
n is even, then the first agent gets nothing and the second gets everything on
all issues. In other terms, if the number of rounds is fixed, then the agent that
turns out to be the responder in the last round should accept any offer since
the alternative is disagreeing, hence receiving no utility at all (it does not gain
anything from disagreeing).

2.2 The Co-evolutionary Algorithm

We apply the same co-evolutionary self adaptive (μ+λ)-Evolution Strategy (ES)
as that used in [7]. Two populations (of size μ) are considered, one for each type
of agent (Player 1 or Player 2). Each individual in a population plays a game
with every individual in the other population, and the fitness is evaluated as the
average utility that the individual gets from all these games. At each generation,
λ individuals are selected from each population uniformly at random (indepen-
dently) and then mutated to form the two offspring populations (of size λ), one
for each agent type. The individuals in the offspring populations are evaluated
by playing against every individual in the opponent parental population. The
fitness of each individual is the average utility obtained by playing against these
opponents. The μ fittest individuals are selected from the respective pools of
μ+λ individuals of both types for the next generation. Fig. 1 shows a schematic
diagram of this process. We replicate the same algorithmic parameters used

64 A. Chandra, P.S. Oliveto, and X. Yao

select

mutate

mutate

select

replace

replace

ba
rg

ai
n

bargain bargain

Player 1 parental
population

Player 1 offspring
population

Player 1 selected
population

Player 2 parental
population

Player 2 offspring
population

Player 2 selected
population

Fig. 1. Co-evolutionary (μ + λ)-ES

in [2] i.e. μ = λ = 25, initial σi = 0.1 and a lower bound on σi s.t. σi ≥ 0.025.
Also, the strategy representation is the same as in [7]. The agent strategy specifies
the offers oj(r) and thresholds tj(r) for each round r in the game for agents
j ∈ {1, 2}. At the start of each run, the offers and thresholds are initialised by
sampling random numbers in the interval [0.0, 1.0] from a uniform distribution.

3 Analysis of the Previous Methodology

Fig. 2 shows the mismatches between evolutionary and SPE results for bargain-
ing games with p = 1 and p = 0.95, as reported in [7]. Lines join SPE solutions
to guide the eye. It can be seen that the mean fitness of the populations over
25 runs is somewhat close to the SPE values but does not converge to them.
This holds for any p or any n. The reasons are attributed to the agents being
myopic [7]. Since this myopia is reported for all values of p and n, it sounds safe
to look into the most simple setting of the game, that of p = 1, in our following
analyses.

We re-implement the methodology from [7]. When running the algorithm we
see that, independently from the values of p and n, the populations indeed evolve
towards the pareto-efficient frontier (Fig. 3). And, as reported in [7], the agents
keep exploring the search space as a “moving cloud” of agreements along the
frontier, instead of evolving towards the equilibrium. Moreover, we see that, the
populations scatter in the long term, only to regroup, move along the frontier
and scatter again. Fig. 3 depicts the described “breakdowns”. This should not

(a) p = 1 [7]. (b) p = 0.95 [7].

Fig. 2. Comparing evolutionary results with SPE results for p = 1 and p = 0.95 [7]

Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game 65

Player 1 Utility

1

P
la
y
e
r
2
U
it
li
ty

(a) After 3200 generations.

Player 1 Utility

1

P
la
y
e
r
2
U
it
li
ty

(b) After 3700 generations.

Fig. 3. Outcomes of games played (agreements reached) by both parental populations
for p = 0.7 and n = 10 from a typical run. SPE = (0.769, 0.538). The dotted line is
the pareto-efficient frontier.

happen if our solution concept is that of finding the equilibrium for the game,
especially with elitist selection.

In Fig. 4 we plot the mean fitness of the populations in a typical run for
p = 0.7, n = 10 (Fig. 4(a)) and n = 1 (Fig. 4(b)) respectively, p = 1 by default
in the latter. In the first case we can see that the mean fitness of both populations
just goes up and down. The figure suggests that the strategies are not evolving
towards any direction. The wrong co-evolutionary solution concept might have
thus been applied. From Fig. 4(b) we can understand a bit more. Since for the
simple game with n = 1, the optimal solution is 1.0 for Player 1 and 0.0 for Player
2 (as discussed in Section 2.1), the fitness trajectories in Fig. 4(b) are clearer.
We see that the mean fitnesses do head towards the optimal values and then
collapse repeatedly. Although the causes for this divergence still remain unclear,
we see that the co-evolutionary methodology does not converge even for this
simpler game. In the following we continue studying the game where p = 1 and
simplify the experimental setup in order to gain insight into the co-evolutionary
dynamics, specifically convergence.

In particular, we remove the influence of a population by considering only 1
individual per agent type in the co-evolutionary setup (i.e. we get the (1+1)-
ES2). The idea is to study the causes of the breakdowns by looking at the
individual strategies. All other parameters remain the same as in the original
population based algorithm. Fig. 5(a) shows 500 generations of a typical run. We
see that (as also noted for the single issue case in [2], albeit, with a population),
the individuals actually reach the SPE of (1.0, 0.0) for odd n and (0.0, 1.0) for
even n. This however should not happen. It is theoretically impossible to reach
the optimum x∗ of a continuos optimisation problem in finite time, but only
a point x such that |x − x∗| ≤ ε for any constant ε > 0 [1]. The ES should

2 Note that in a (1+1)-ES, the offspring replaces the parent only if its fitness is greater
than or equal to that of the parent (i.e. if the parent and offspring have the same
fitness, selection is not performed uniformly at random).

66 A. Chandra, P.S. Oliveto, and X. Yao

Generation

M
e
a
n
fi
tn
e
s
s
(p
o
p
u
la
ti
o
n
)/
ru
n

Player 1

Player 2

(a) p = 0.7, n = 10.

Generation

M
e
a
n
fi
tn
e
s
s
(p
o
p
u
la
ti
o
n
)/
ru
n

Player 1

Player 2

(b) n = 1.

Fig. 4. Mean fitness of the populations in a typical run

converge towards the optimum by gradually decreasing the step size σ and only
reach the exact optimal point at infinity. Hence, there seems to be a problem
with the algorithm implementation.

It turns out that the mutation operator sets any mutated value larger than
unity (or smaller than zero) to unity (respectively zero) [7], instead of considering
solutions outside the search space as infeasible. Although this pushes the agents’
strategies to optimality (i.e. for p = 1), it turns out to be destructive. Once the
agents reach the SPE values exactly, the responder becomes indifferent between
getting nothing and disagreeing with the opponent. There is no selection pressure
for the responder to keep a threshold of 0.0 (while there would have been for 0+ε
for any positive ε). Hence the responder ends up accepting a random threshold
in the following generation with a high probability (in fact, 1) resulting in a
disagreement (i.e. the fitness goes down to 0). The new threshold would not be
too bad if the mutation step size were decreasing in time as it should. However,
the step size σ ends up evolving in the opposite way. The higher the σ, the
higher is the probability that an infeasible solution is created which in turn is
transformed into the optimal one. In Fig. 5(b) we plot the σ values for player 1
in a typical run. The same phenomenon happens for player 2. Where the values
of σi’s are not visible, they are higher than the plotted extreme.

4 An Improved Methodology

We modify the algorithm such that infeasible solutions (i.e. solutions outside the
search space) have worse fitness than any feasible search space point (i.e. -1.0),
hence are never accepted.

In Fig. 6, the worst run of the corrected (1+1)-ES is comparedwith a typical run
of the original version. It clearly shows the difference this simple correction to the
original approach makes. Now the strategies evolve towards optimality for long
periods of time. However, breakdowns still occur (although far less frequently)
and become more severe as the number of rounds n increases. We will discuss the
reasons in the next section by looking, once again, at the n = 1 case.

Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game 67

Generation

F
it
n
e
s
s

Player 1

Player 2

(a) A typical run.

Generation

(b) σi for Player 1.

Fig. 5. A typical run of the (1+1)-ES using the mutation procedure in [7] for n = 1

Generation

F
it
n
e
s
s

Player 1

1
Generation

1

F
it
n
e
s
s

Player 2

(a) A typical run.

Generation

F
it
n
e
s
s

Player 1

Player 2

(b) Worst (most divergent) of 25
runs.

Fig. 6. Runs for the (1+1)-ES using (a) the mutation procedure in [7] (separate plots
for agent types to make the severity of fluctuations unambiguous) and (b) the corrected
version, for n = 1

4.1 Selection of Incompatible Opponents and Local Evaluation

We call a pair of strategies as incompatible if they disagree when playing with
each other. A closer look at the evolved strategies reveals that the simultaneous
selection of incompatible offspring as the new parents leads to a disagreement,
and hence, a collapse. To illustrate this, we call P1 and P2 the two parents
(one for each agent type) at any given time during the co-evolutionary process,
and the offspring C1 and C2 respectively. If (P1, P2) are compatible, (P1, C2)
are compatible, and (C1, P2) are compatible, it does not necessarily follow that
(C1, C2) will be compatible. We argue that this was going un-noticed in the
original work [7] and being attributed to the myopic properties of the agents.
Note that an agent in equilibrium can be myopic in the sense that it may only
know how to play against another agent in equilibrium, which is when the issue of
myopia should be scrutinised. This is not the case here. Having not played a game
before, if the offspring are incompatible and selected to be in the next generation,
then they will inevitably disagree. This problem (i.e. selection of incompatible

68 A. Chandra, P.S. Oliveto, and X. Yao

Generation

M
e
a
n
fi
tn
e
s
s
(o
v
e
r
1
0
0
ru
n
s
)

Player 1

Player 2

(a) n = 1.

Generation

F
it
n
e
s
s

Player 1

Player 2

(b) n = 2.

Fig. 7. Modified (1+1)-ES for (a) n = 1 (mean across 100 runs) and (b) n = 2 (a
typical diverging run)

opponents) does not depend on myopic properties of agent strategies, but on an
unusual implementation of the co-evolutionary solution concept.

In the following, we modify the methodology by allowing the offspring to play
games against each other before selection. If this game results in a disagreement,
the offspring are not accepted, otherwise, the co-evolutionary process carries on
as in the previous methodology. This, by definition, eliminates the problem of
selection of incompatible opponents altogether. Fig. 7(a) shows the mean fitness
across 100 runs of the modified (1+1)-ES. No divergence was seen in any of the
runs (we also allowed the algorithm to run for a million generations, without
seeing one breakdown). Since there is no reason for breakdown occurring if we
add populations, the algorithm will now work also for μ > 1 and λ > 1. However,
the modifications we have applied do not imply convergence for n > 1. In fact,
already for n = 2, we observe some fitness breakdowns again. Figure 7(b) shows
a run of one million generations for n = 2.

Zooming into Fig. 7(b), to the generations where there is a sudden change from
the convergent trajectory (generations starting from 374400 for instance), and
investigating the agent strategies in these generations, reveals the cause for these
breakdowns. Fig. 8 takes the two agent (P1 and P2) strategies apart and shows
what each agent receives and wants in terms of utilities in both rounds (since
n = 2). It can be seen that the evaluation of a strategy is local with respect
to the rounds. Since the fitness of an individual is computed whenever there
is an agreement, which can happen in any round, the strategies only consider
the agreement round to evaluate themselves (i.e. it is the offers and thresholds
of the agreement round that determine the strategies’ payoffs). In Fig. 8, the
agreements happen in round 2 to begin with (when the outcomes are near SPE).
There is no real selection pressure for modifying round 1 offers and thresholds, so
the strategy chunks corresponding to this round vary randomly and at some point
are such that P1 offers more than what P2 needs. Consequently, the agreement
happens in round 1. Now, P1 can take advantage of the fact that it is in the
driver’s seat (as the utility of both agents is decided by the offer it makes,
when this offer is accepted, which it is), while P2 has lost its selection pressure

Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game 69

R
o
u
n
d
1

P1 wants

P2 is offered

P2 wants

1 1 2 2

2

1

R
o
u
n
d
2

P2 wants

P1 is offered

P1 wants

1 1 2 2
Generation + 374400

0 0

0 2

0 4

0

0

1 0

A
c
tu
a
l
U
ti
li
ty

Actual utility Player 1

Actual utility Player 2

Fig. 8. Snapshot of the modified (1+1)-ES for n = 2. Strategy evaluation is “local”
with respect to the rounds.

towards higher fitness (mismatch between its threshold and P1’s offer leading to
P2 getting what it is given). Meanwhile, the selection pressures for offers and
thresholds in round 2 vary randomly since the players agree in round 1 and
never reach round 2. By modifying the fitness evaluation procedure such that it
credits the whole strategy instead of just the part corresponding to the agreement
round, we may solve the problem. Alternatively, had the representation not been
treating each round as being separate from each other, we may solve the problem
too. These are our immediate next steps.

Note that co-evolutionary approaches to games such as bargaining influence a
general class of games i.e. sequential games. All these games specify the SPE as
the optimal. Using similar types of agent interactions, selection and evaluation
procedures, and representations, as scrutinised in this paper, can be causes for
divergence in these games. Thus, a thorough investigation and definition of the
co-evolutionary solution concept, as initiated here for bargaining games, is in
order and should generally apply to sequential games. One potential direction is
to adapt the theoretical work in [3] for our work here.

5 Conclusion

We presented a deeper analysis of an existing co-evolutionary approach to evolv-
ing optimal agents for multi-issue bargaining games. Three weaknesses were dis-
covered viz. the mutation procedure in the way it dealt with infeasible solutions,
the selection strategy in co-evolution in the way incompatible offspring were
handled, and the evaluation or representational issue, which, independently may
be responsible for the local evaluation of individuals. We were able to co-evolve
optimal agents that were previously impossible to obtain by addressing the first
two issues above. However, more work needs to be done to rectify the evalu-
ation/representational issue in order to obtain optimal agents for games with
more rounds. As immediate next steps, we intend to make agent behaviours in

70 A. Chandra, P.S. Oliveto, and X. Yao

different rounds dependent in some fashion, independently at the evaluation level
and at the representational level, to further understand and remove the causes
for divergence from optimality altogether. This should give us a systematically
designed solution concept. We then intend to test the algorithm on more complex
bargaining games, starting with p < 1, moving on to games involving a greater
number of issues, and games where the SPE are either hard to compute by hand
or even intractable, following on to other sequential games. It is important to
note that, without a well defined solution concept, results of co-evolutionary ap-
proaches to problems like the one considered in this paper (a common practice
in computational economics), may be mis-leading.

References

1. Beyer, H.: The theory of evolution strategies. Springer, New York (2001)
2. van Bragt, D.D.B., Gerding, E.H., La Poutré, J.A.: Equilibrium selection in

alternating-offers bargaining models - the evolutionary computing approach. The
Electronic Journal of Evolutionary Modeling and Economic Dynamics (2002)

3. Chong, S.Y., Tino, P., Yao, X.: Measuring generalization performance in coevolu-
tionary learning. IEEE Transactions on Evolutionary Computation 12(4), 479–505
(2008)

4. Darwen, P.J.: Co-evolutionary learning by automatic modularisation with specia-
tion. Ph.D. thesis, University of New South Wales (1996)

5. Ficici, S.G.: Solution concepts in coevolutionary algorithms. Ph.D. thesis, Brandeis
University (2004)

6. Gerding, E., van Bragt, D.D.B., La Poutré, J.A.: Multi-issue negotiation pro-
cesses by evolutionary simulation: validation and social extensions. Tech. Rep.
SEN-R0024, CWI, Amsterdam, The Netherlands (2000)

7. Gerding, E., van Bragt, D.D.B., La Poutré, J.A.: Multi-issue negotiation processes
by evolutionary simulation, validation and social extensions. Computational Eco-
nomics 22(1), 39–63 (2003)

8. Jin, N.: Constraint-based co-evolutionary genetic programming for bargaining
problems. Ph.D. thesis, University of Essex (2007)

9. Roth, A.: The economist as engineer: game theory, experimentation, and compu-
tation as tools for design economics. Econometrica 70(4), 1341–1378 (2002)

10. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1),
97–109 (1982)

11. Selten, R.: Re-examination of the perfectness concept for finite points in extensive
games. International Journal of Game Theory 4, 25–55 (1975)

Fuzzy Nash-Pareto Equilibrium: Concepts and
Evolutionary Detection

Dumitru Dumitrescu, Rodica Ioana Lung, Tudor Dan Mihoc, and Reka Nagy

Babeş Bolyai University, Cluj Napoca, Romania

Abstract. Standard game theory relies on the assumption that players
are rational agents that try to maximize their payoff. Experiments with
human players indicate that Nash equilibrium is seldom played. The goal
of proposed approach is to explore more nuance equilibria by allowing a
player to be biased towards different equilibria in a fuzzy manner. Several
classes of equilibria (Nash, Pareto, Nash-Pareto) are defined by using
appropriate generative relations. An evolutionary technique for detecting
fuzzy equilibria is considered. Experimental results on Cournot’ duopoly
game illustrate evolutionary detection of proposed fuzzy equilibria.

1 Introduction

The concept of fuzzy rationality of the players in non cooperative games is
introduced. Hopefully the proposed concept may capture the intrinsic fuzziness
of human decision making process.

Definition 1. A finite strategic game is defined as a system Γ = ((N, Si, ui), i =
1, n), where:

– N represents a set of n players, N = {1,, n};
– for each player i ∈ N , Si represents the set of actions available to her,

Si = {si1 , si2 , ..., sim}; S = S1 × S2 × ... × Sn is the set of all possible
strategies (situations of the game);

– for each player i ∈ N , ui : S → R represents the payoff function.

Denote by (sij , s
∗
−i) the strategy profile obtained from s∗ by replacing the strat-

egy of player i with sij i.e.

(sij , s
∗
−i) = (s∗1, s

∗
2, ..., s

∗
i−1, sij , s

∗
i+1, ..., s

∗
n).

A strategy is a Nash equilibrium [8,7,1] if each player has no incentive to uni-
laterally deviate i.e. it can not improve the payoff by modifying its strategy
while the others do not modify theirs. More formal, the strategy s∗ is a Nash
equilibrium if and only if the inequality

ui(si, s
∗
−i)− ui(s∗) ≤ 0, ∀si ∈ Si, ∀i ∈ N

holds.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 71–79, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

72 D. Dumitrescu et al.

2 Fuzzy Nash/Pareto-Biased Players

Each concept of equilibrium may be associated with a rationality type. We con-
sider games with players having several rationality types [4]. Each player can be
more or less biased towards a certain rationality. This bias may be expressed
by a fuzzy membership degree. A player may have for instance the membership
degree 0.7 to Nash and the membership 0.3 to Pareto. We may also say that the
player has a Nash rationality defect of 0.3.

Let us consider a fuzzy set AN on the player set N i.e.

AN : N → [0, 1]

AN (i) expresses the membership degree of the player i to the class of Nash-biased
players. Therefore AN is the class of Nash-biased players.

Similar a fuzzy set AP : N → [0, 1] may describe the fuzzy class of Pareto-
biased players.

The aim is to define several concepts of fuzzy equilibrium. These concepts are
completely different from those considered in the framework of fuzzy games [10].

An evolutionary technique for detecting fuzzy equilibria in non cooperative
games is proposed in section 6.1.

3 Fuzzy Nash Equilibrium

A fuzzy Nash equilibrium concept using an appropriate generative relation that
includes the membership degrees to fuzzy class Nash-biased players is defined
in this section. The new concept is a natural generalization of Nash equilibrium
characterization by generative relations [4].

3.1 Generative Relation for Nash Equilibrium

Let x and y be two pure strategies and k(y, x) denotes the number of players
which benefit by deviating from y towards x:

k(y, x) = card{i|ui(x, y−i) > ui(y)}.

k(y, x) is a relative quality measure of y and x – with respect to the Nash
equilibrium.

Strategy y is better than strategy x with respect to Nash equilibrium, and we
write y ≺ x, if and only if

k(y, x) < k(x, y)

We may consider ≺ as a generative relation of Nash equilibrium, i.e. the set of
nondominated strategies with respect to ≺ equals the Nash equilibrium [5].

Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection 73

3.2 Generative Relation for Fuzzy Nash Equilibrium

Our aim is now to define a generative relation for fuzzy Nash equilibrium. In this
respect the relative quality measure of two strategies has to involve the fuzzy
membership degrees.

Let us consider the threshold function:

t(a) =
{

1, if a > 0,
0, otherwise

The fuzzy version of the quality measure k(y, x) is denoted by EN (y, x) and may
be defined as

EN (y, x) =
n∑

i=1

AN (i)t(ui(x, y−i)− ui(y)).

EN (y, x) expresses the relative quality of the strategies y an x with respect to
the fuzzy class of Nash-biased players.

Let us consider the sharp (classical) relation ≺N defined as:
y ≺N x if and only if the inequality

EN (y, x) < EN (x, y)

holds.
Fuzzy Nash equilibrium is defined as the set of nondominated strategies with

respect to the relation ≺N .

Remark 1. By definition ≺N is the generative relation of the fuzzy Nash equi-
librium.

Remark 2. Fuzzy generative relations may also be defined in a similar way.

4 Fuzzy Pareto Equilibrium

Let us define the quantity P (y, x) as the number of players having a better payoff
for x than for y:

P (y, x) = card{i|ui(y) < ui(x)}.
Consider the relation defined as y x if and only if

P (y, x) < P (x, y).

We may admit that the relation expresses a certain type of Pareto rationality
i.e. each player is trying to maximize its payoff irrespective to the other play-
ers options. Otherwise stated the nondominated strategies with respect to the
relation represents a variety of Pareto equilibrium.

The fuzzy version of P (y, x) may be defined as

EP (y, x) =
n∑

i=1

AP (i)t(ui(x) − ui(y))

where AP is the fuzzy set of the Pareto-biased players.

74 D. Dumitrescu et al.

Consider now the relationP defined as y P x if and only if the inequality

EP (y, x) < EP (x, y)

holds.
Relation P can be considered a generative relation of fuzzy Pareto equi-

librium. Our aim is to investigate this type of equilibrium and combine it with
fuzzy Nash equilibrium.

5 Fuzzy Nash-Pareto Equilibrium

Let us consider a game involving both Nash and Pareto-biased players. It is
natural to assume that {AN , AP } represents a fuzzy partition of the player set.

Therefore the condition

AN (i) + AP (i) = 1

holds for each player i.
A fuzzy version of the sharp Nash-Pareto equilibrium introduced in [4] can be

considered. The relative quality measure of the strategies y and x with respect
to Nash-Pareto (fuzzy) rationality may be defined as

E(y, x) = EN (y, x) + EP (y, x).

Therefore

E(y, x) =
n∑

i=1

AN (i)t(ui(x, y−i)− ui(y)) +
n∑

i=1

AP (i)t(ui(x) − ui(y)).

Using the relative quality measure E we can compare two strategy profiles. Let
us introduce the relation ≺fNP defined as y ≺fNP x if and only if the strict
inequality

E(y, x) < E(x, y)

holds.
We define a new equilibrium called fuzzy Nash-Pareto equilibrium as the set

of non-dominated strategies with respect to the relation ≺fNP .

6 Numerical Experiments

Several numerical experiments have been conducted in order to illustrate evolu-
tionary detection of the proposed equilibria concepts.

6.1 Evolutionary Computing of Fuzzy Equilibria

Fuzzy equilibria can be detected by evolving a population of strategy profiles
based on generative relations [4]. For a certain equilibrium the corresponding

Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection 75

generative relation allows the comparison of two strategies. This comparison may
guide the search of an evolutionary algorithm towards the game equilibrium.

Nondomination (with respect to a generative relation) is considered for fit-
ness assignment purposes. Evolutionary Multiobjective Optimization Algorithms
[3,2] are efficient tools for evolving strategies based on a nondomination relation.

The state of the art NSGA2 [2] has been considered to illustrate how gen-
erative relations can be used for evolutionary detection of the proposed fuzzy
equilibria.

A population of 100 strategies has been evolved using a rank based fitness
assignment technique. In all experiments the process converges in less than 30
generations.

6.2 Cournot Model

The following Cournot model (see [9]) is considered for numerical experiments.
A single good is produced by n firms. The cost to firm i of producing qi units

of the good is Ci(qi), where Ci is an increasing function (more output is more
costly to produce). All the output is sold at a single price, determined by the
demand for the good and the firms total output. If the firms total output is Q,
than the market price is P (Q). Market price can be expressed as P (Q) = a−Q
if Q ≤ a and 0 otherwise. If the output of each firm is qi, then the price is
P (q1 + q2 + ... + qn) and the firm i’ revenue is qiP (q1 + q2 + ... + qn). The payoff
function for the player i is:

πi(q1, ..., qn) = qiP (q1 + ... + qn)− Ci(qi)

Suppose there are two firms, each firm cost function is Ci(qi) = cqi for all qi.
The profit of the firm i is:

πi(qi, qj) = qiP (Q)− Ci(qi)
= qi [a− (qi + qj)− c] .

In the following experiments we consider a = 24 and c = 9.
In all the figures the players’ payoffs detected for different equilibrium ap-

proximations are depicted.
The payoffs associated with the standard (sharp) Nash and Pareto equilibria,

detected by the evolutionary technique [4,5] are depicted in Figure 1.

6.3 Fuzzy Nash Equilibrium Detection

Consider a situation where the players are biased towards a unique equilibrium
type, namely fuzzy Nash equilibrium.

Each player i has a membership degree AN (i) to the Nash rationality (is
AN (i) Nash-biased). The generative relation of fuzzy Nash equilibrium is ≺N .

In the case of a two player game we may describe several fuzzy Nash-Nash
equilibria. We may have for instance a 0.2 – 0.99 fuzzy Nash equilibrium, meaning
that AN (1) = 0.2 (player one is 0.2 Nash biased) and AN (2) = 0.99. In this case

76 D. Dumitrescu et al.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

55

60

Pareto
Nash

Fig. 1. Detected sharp Nash equilibrium
and Pareto front for symmetric Cournot
game with two players

20 25 30
20

25

30

Nash
Fuzzy-Nash

Fig. 2. Detected Fuzzy Nash equilibrium
with AN(1), AN(2) ∈ (0, 1]. It is very
close to sharp Nash equilibrium.

the first player is not very interested in playing Nash strategy while the second
player is very close to pure Nash rationality.

Let us consider the case of players having an equal bias towards Nash equi-
librium:

AN (1) = AN (2) ∈ (0, 1].

The detected equilibria even at the slightest bias of the players towards Nash is
just the classical Nash equilibrium, as depicted in Figure 2.

6.4 Fuzzy Nash-Pareto Equilibrium Detection

Several numerical experiments have been conducted for the Fuzzy Nash-Pareto
equilibria, with different memberships degrees.

Consider both players to be Nash biased with 0.8 membership degree and
Pareto with 0.2. In this case a small tendency to deviate from pure Nash equi-
libria towards the Pareto front is detected (Figure 3a and Figure 3b).

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

55

60

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 3a. Detected Fuzzy Nash-Pareto
equilibrium with AN (1) = 0.8, AP (1) =
0.2, AN(2) = 0.8, AP (2) = 0.2

20 25 30 35
20

25

30

35

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 3b. Detected Fuzzy Nash-Pareto
equilibrium with AN(1) = 0.8, AP (1) =
0.2, AN(2) = 0.8, AP (2) = 0.2. Detail

Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection 77

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

55

60

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 4a. Detected Fuzzy Nash-Pareto
equilibrium with AN (1) = 0.5, AP (1) =
0.5, AN(2) = 0.5, AP (2) = 0.5

20 25 30 35
20

25

30

35

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 4b. Detected Fuzzy Nash-Pareto
equilibrium with AN(1) = 0.5, AP (1) =
0.5, AN(2) = 0.5, AP (2) = 0.5. Detail

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

55

60

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 5a. Detected Fuzzy Nash-Pareto
equilibrium with AN(1) = 0.25, AP (1) =
0.75, AN (2) = 0.25, AP (2) = 0.75

15 20 25 30 35 40
15

20

25

30

35

40

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 5b. Detected Fuzzy Nash-Pareto
equilibrium with AN (1) = 0.25, AP (1) =
0.75, AN(2) = 0.25, AP (2) = 0.75. Detail

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

55

60

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 6a. Detected Fuzzy Nash-Pareto
equilibrium with AN (1) = 0.8, AP (1) =
0.2, AN(2) = 0.2, AP (2) = 0.8

20 25 30 35
20

25

30

35

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 6b. Detected Fuzzy Nash-Pareto
equilibrium with AN(1) = 0.8, AP (1) =
0.2, AN(2) = 0.2, AP (2) = 0.8. Detail

78 D. Dumitrescu et al.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

55

60

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 7. Detected Fuzzy Nash-Pareto equi-
librium with AN(1) = 0.7, AP (1) = 0.3,
AN(2) = 0.1, AP (2) = 0.9

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

55

60

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 8. Detected Fuzzy Nash-Pareto equi-
librium with AN (1) = 0.4, AP (1) = 0.6,
AN(2) = 0.3, AP (2) = 0.7

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

45

50

55

60

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 9a. Detected Fuzzy Nash-Pareto
equilibrium with AN (1) = 0.9, AP (1) =
0.1, AN(2) = 0.4, AP (2) = 0.6

20 25 30 35
20

25

30

35

Pareto
Nash
Fuzzy Nash-Pareto

Fig. 9b. Detected Fuzzy Nash-Pareto
equilibrium with AN(1) = 0.9, AP (1) =
0.1, AN(2) = 0.4, AP (2) = 0.6. Detail

Increasing players Pareto membership degrees to 0.5 this tendency becomes
stronger (Figures 4a and 4b).

The detected Fuzzy Nash-Pareto equlibrium for players with Pareto member-
ship degree 0.75 is depicted in Figure 5a and Figure 5b. The strategies payoffs
are spread between the Nash equilibrium and the Pareto front.

An interesting phenomenon arises when the two players have different Nash
Pareto membership degrees. In Figures 6a, 6b, 7, 8, 9a, 9b the payoffs for the
detected equilibria in such cases are depicted. We denote the tendency of the
detected equilibria to spread between the Nash and the Pareto equilibria.

7 Conclusions

The paper represents one step in our program of making game theory more
realistic, robust and computationally effective.

Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection 79

We consider the players may be endowed with several types of (fuzzy) ratio-
nality. The rationality type expresses the measure a player is biased towards a
certain type of equilibrium. This biased may be expressed as a fuzzy set on the
set of players. Generative relations for several fuzzy equilibria are defined.

An evolutionary procedure is used to detect fuzzy equilibria in non-cooperative
games. Non-domination based fitness assignment is considered. Numerical exper-
iments indicate that the proposed approach may be effective in solving compu-
tationally difficult problems related to fuzzy equilibria detection.

Acknowledgements

This research is supported partially by the CNCSIS Grant ID508 New Compu-
tational paradigms for dynamic complex problems funded by the MEC, and from
the Sectoral Operational Programme Human Resources Development, Contract
POSDRU 6/1.5/S/3 Doctoral studies: through science towards society, Babeş -
Bolyai University, Cluj - Napoca, România.

References

1. Bade, S., Haeringer, G., Renou, L.: More strategies, more Nash equilibria, Working
Paper 2004-15, School of Economics University of Adelaide University (2004)

2. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast and Elitist Multi-Objective
Genetic Algorithm: NSGA-II KanGAL Report No. 200001, Indian Institute of
Tehnology Kanpur (2000)

3. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chich-
ester (2001)

4. Dumitrescu, D., Lung, R.I., Mihoc, T.D.: Evolutionary Equilibria Detection in
Non-cooperative Games. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro,
G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.)
EvoStar 2009. LNCS, vol. 5484, pp. 253–262. Springer, Heidelberg (2009)

5. Lung, R.I., Dumitrescu, D.: Computing Nash Equilibria by Means of Evolutionary
Computation. Int. J. of Computers, Communications & Control, 364–368 (2008)

6. Maskin, E.: The theory of implementation in Nash equilibrium: A survey. In: Hur-
wicz, L., Schmeidler, D., Sonnenschein, H. (eds.) Social Goals and Social Organi-
zation, pp. 173–204. Cambridge University Press, Cambridge (1985)

7. McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. In:
Amman, H.M., Kendrick, D.A., Rust, J. (eds.) Handbook of Computational Eco-
nomics. Elsevier, Amsterdam (1996)

8. Nash., J.F.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)
9. Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, New-

York (2004)
10. Wu, S.H., Soo, V.W.: A Fuzzy Game Theoretic Approach to Multi-Agent Coor-

dination. In: Ishida, T. (ed.) PRIMA 1998. LNCS (LNAI), vol. 1599, pp. 76–87.
Springer, Heidelberg (1999)

An Evolutionary Approach for Solving the
Rubik’s Cube Incorporating Exact Methods

Nail El-Sourani, Sascha Hauke, and Markus Borschbach

University of Applied Sciences,
Faculty of Computer Science, Chair of Optimized Systems,

Hauptstr. 2, D-51465 Bergisch Gladbach, Germany
nail@elsourani.com, sascha.hauke@fhdw.de, markus.borschbach@fhdw.de

Abstract. Solutions calculated by Evolutionary Algorithms have come
to surpass exact methods for solving various problems. The Rubik’s Cube
multiobjective optimization problem is one such area. In this work we
present an evolutionary approach to solve the Rubik’s Cube with a low
number of moves by building upon the classic Thistlethwaite’s approach.
We provide a group theoretic analysis of the subproblem complexity in-
duced by Thistlethwaite’s group transitions and design an Evolutionary
Algorithm from the ground up including detailed derivation of our cus-
tom fitness functions. The implementation resulting from these observa-
tions is thoroughly tested for integrity and random scrambles, revealing
performance that is competitive with exact methods without the need
for pre-calculated lookup-tables.

1 Introduction

Solving the Rubik’s Cube is a challenging task. Both the size of the solution
space induced by the number of attainable states and multiple desirable side-
objectives next to restoring the Cube (favorably in the smallest possible number
of moves and lowest calculation complexity) make this an interesting optimiza-
tion problem. Although invented in 1974, the number of moves required to solve
any state of Rubik’s Cube (the so-called God’s Number) is yet to be determined
after 30 years.

Various algorithms were devised to decrease the upper bound. However, all
those approaches are strictly exact methods and the most recent ones rely on
terabytes of pre-calculated lookup-tables. This is reflected by the current lowest
upper bound of 22 moves achieved by Rokicki [11]. This number was attained by
applying the same method he had used earlier for pushing the upper bound to
26, 25 and then 23 moves - using the very same algorithm only on more powerful
hardware and a longer calculation time [10], [11].

Evolutionary Algorithms have been successfully applied in a variety of fields,
especially highly complex optimization problems [2], [8], [14]. Oftentimes, supe-
rior solutions - as compared to classical algorithms have been achieved - notably
in multiobjective cases (for example multiconstraint knapsack problems [4]). This
gives rise to the idea of applying Evolutionary Algorithms to the Rubik’s Cube

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 80–89, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Evolutionary Approach for Solving the Rubik’s Cube 81

problem. All relevant approaches are based on dividing the solution space of the
Rubik’s Cube into mathematical groups, starting with Thistlethwaite using 4
[13], then Reid combining two of Thistlethwaite’s groups resulting in total of 3
[9] and finally Kociemba’s [7] and Rokicki’s approach using 2 subgroups. This
makes the group theoretic approach a reasonable starting point for designing
Evolutionary Algorithms. It is of particular interest to us to determine how such
an EA can solve the Cube without relying on extensive lookup-tables.

2 Notation and Basic Concepts

2.1 Rubik’s Cube

The subject of this paper is the classic 33 Rubik’s Cube. It consists of 26 pieces
called cubies: 8 corner cubies, 12 edge cubies and 6 center cubies, distributed
equally on the six sides of the Cube. Each side of the Cube is called face, each
2-dimensional square on a face is referred to as facelet.

A corner cubie shows 3 facelets, an edge 2 and a center 1. Each side of the
Cube can be rotated clockwise (CW) and counterclockwise (CCW). Each single
move changes the position of 4 edges and 4 corners. The center facelets remain
fixed in position. They determined their face’s color.

For each edge and corner we distinguish between position and orientation: i.e.
an edge can be in its right position (defined by the two adjacent center colors)
but in the wrong orientation (flipped).

There are several known notations for applying single moves on the Rubik’s
Cube. We will use F, R, U, B, L, D to denote a clockwise quarter-turn of the front,
right, up, back, left, down face and Fi, Ri, Ui, Bi, Li, Di for a counterclockwise
quarter-turn. Every such turn is a single move. In Cube related research, half-
turns (F2, R2, U2, B2, L2, D2) are also counted as single moves. This notation
is independent of colors but depends on the viewpoint. A sequence of moves, an
operation, is created by concatenating single moves and is called operation (i.e.
FRBiL2).

2.2 Applied Group Theory

A group G is a set together with multiplication and identity e (eg = g), inverse
(gg−1 = g−1g = e) and an associative law. A subgroup H < G is a subset H
that is closed under group operations. S ⊆ G, written G =< S > is a generator
of G if any element of G can be written as a product of elements of S and their
inverses. The order of the group is the number of elements in it, |G|. Given a
group G and a subgroup H < G, a coset of H is the set Hg = hg : h ∈ H ; thus,
H < G partitions G into cosets. The set of all cosets is written H�G.

Obviously, all possible states of a Rubik’s Cube are described by the group
generated by its applicable moves GC =< F, R, U, B, L, D >, also called the
Cube Group (|GC | = 4.3 · 1019). Let H =< L, R, F, B, U2, D2 > be a subgroup
of GC , representing a Cube where only the edge positions matter, as no edge
orientations can be altered. Thus, H�GC depicts the left coset space which

82 N. El-Sourani, S. Hauke, and M. Borschbach

contains all possibly attainable states when only flipping edge cubies (changing
an edges orientation). For extended explanation refer to [5], [12].

3 Related Work

3.1 Non-evolutionary Approaches

There are several computational approaches for solving the Rubik’s Cube, the
three most important being the work of Thistlethwaite, Kociemba and Rokicki.
Their advanced algorithms are based on group theory concepts and apply ad-
vanced concepts such as symmetry cancelation and dedicated traversal methods
(e.g. Iterative Deep Searching, IDA*).

Thistlethwaite’s Algorithm (TWA) works by dividing the problem into 4 sub-
problems - specifically subgroups and subsequently solving those. By using pre-
calculated lookup-tables, sequences are put together that move a Cube from one
group into another until it is solved [13].

Kociemba’s Algorithm takes the idea of dividing the problem into subgroups
from Thistlethwaite, but reduces the number of needed subgroups to only 2.
This method uses an advanced implementation of IDA*, generating small maps,
calculating and removing symmetries from the search tree and tends to solve
the Cube close to the shortest number of moves possible. Kociemba made his
approach available in form of a program called Cube Explorer which can be found
at [7].

Rokicki realised that the initial parts of the pathways computed by Kociemba’s
Algorithm are solutions to a large set of related configurations. He exploits this
property by dividing the problem into 2 billion cosets, each containing around
20 billion related configurations. With this method he was able to push the up-
per bound to 22 moves sufficing to solve the Cube from any initial scrambled
configuration [10], [11].

3.2 Evolutionary Approaches

Only a few evolutionary approaches dedicated to solving the Rubik’s Cube exist.
In 1994 Herdy devised a method which successfully solves the Cube [6] using
pre-defined sequences as mutation operators that only alter few cubies, resulting
in very long solutions. Another approach by Castella could not be verified due to
a lack of documentation. Recently Borschbach and Grelle [1] devised a 3-stage
Genetic Algorithm based on a common human “SpeedCubing” method, first
transforming the Cube into a 2x2x3 solved state, then into a subgroup where it
can be completed using only two adjacent faces (two-generator group).

4 Thistlethwaite’s Algorithm

The basic idea of the TWA is to divide the problem of solving the Cube into
four independent subproblems by using the following four nested groups: G0 =<

An Evolutionary Approach for Solving the Rubik’s Cube 83

F, R, U, B, L, D >, G1 =< F, U, B, D, R2, L2 >, G2 =< U, D, R2, L2, F2, B2 >
, G3 =< F2, R2, U2, B2, L2, D2 >, G4 = I. Obviously, G0 = GC . The functional
principle of Thistlethwaite’s Algorithm is to put the Cube into a state where it
can be solved by only using moves from Gi which again has to be achieved by
only using moves from Gi−1 for i = 1, . . . 4, thus named nested groups.

Specifically, every stage of the algorithm is simply a lookup table showing a
transition sequence for each element in the current coset space Gi+1�Gi to the
next one (i = i+1). These coset spaces, each describing a reduced form of the 33

Rubik’s Cube puzzle, induce different kinds of constraints. This directly results
in the total number of attainable states being reduced by using only moves from
some subgroup Gi+1. The exact orders for each group are calculated as follows:

G0 |G0| = 4.33 · 1019 represents the order of the Cube Group.

G1 The first coset space G1�G0 contains all Cube states, where the edge ori-
entation does not matter. This is due to the impossibility of flipping edge cubies
when only using moves from G1. As there are 211 possible edge orientations,

|G1�G0| = 211 = 2048 (1)

the order of |G1| is
|G1| ≡

|G0|
|G1�G0|

= 2.11 · 1016 . (2)

G2 Using only moves from G2, no corner orientations can be altered (eliminat-
ing 37 states). Additionally, no edge cubies can be transported to or from the
middle layer (eliminating 12!

(8!·4!) states). The coset space G2�G1 thus depicts a
reduced puzzle of the order

|G2�G1| = 37 · 12!
(8! · 4!)

= 1082565 (3)

and

|G2| ≡
|G1|

|G2�G1|
= 1.95 · 1010 . (4)

G3 Once in the coset space G3�G2, the Cube can be solved by only using
moves from G3, here the edge cubies in the L, R layers can not transfer to
another layer (eliminating 8!

(4!·4!) · 2 states) and corners are put into their correct
orbits, eliminating 8!

(4!·4!) · 3 states). Thus,

|G3�G2| = (
8!

(4! · 4!)
)2 · 2 · 3 = 29400 (5)

and

|G3| ≡
|G2|

|G3�G2|
= 6.63 · 105 . (6)

84 N. El-Sourani, S. Hauke, and M. Borschbach

G4 As G4 represents the solved state - obviously |G4| = 1 which means there
exist a mere |G3| possible states for which a solution needs to be calculated to
transfer from G4�G3 to solved state.

Most essential to TWA are the groups G1, G2, G3 as G0 simply describing
the Cube Group GC and G4 the solved state. To further exemplify how the
coset spaces simplify the Rubik’s Cube puzzle the following may prove helpful.
When looking at the constraints induced by G2�G1�G0 carefully (combining
the constraints induced by G2�G1 and G1�G2) it is essentially a Rubik’s Cube
with only 3 colors - counting two opposing colors as one. This representation can
be reached for each distinct coset space by examining and applying its effect to
the complete Rubik’s Cube puzzle.

While solving the Rubik’s Cube in a divide and conquer manner, breaking it
down into smaller problems (by generating groups and coset spaces) is effective,
there exists one major flaw. Final results obtained by concatenating shortest
subgroup solution do not necessarily lead to the shortest solution, globally.

5 The Thistlethwaite ES - An Evolution Strategy Based
on the Thistlethwaite’s Algorithm

As seen above, in the classic TWA the order of each subproblem is significantly
smaller than |GC | and is reduced from stage to stage. The four resulting problem
spaces are much more suitable to be solved via ES, as calculation complexity and
the probability of ending up in local minima is decreased. Further, this enables
the use of truly random mutation operators (otherwise highly ineffective in all
of |GC | [1]) opposed to the hard-coded sequence approach used by Herdy [6].

Thus, we present a 4-phase ES with each phase calculating one group tran-
sition (will be referred to as Thistlethwaite Evolution Strategy, TWES). These
phases share the same basic selection method but differ in mutation operators
and fitness functions. Effectively, the presented ES can best be described as four
consecutive ES, each using the solution of the previous one as starting individual
to be duplicated (the first using the scrambled input Cube).

5.1 Basic Workflow

A scrambled Cube is duplicated λ times and the main loop is started using a
fitness function phase0 and only mutation sequences from G0. As soon as μ
Cubes which solve phase0 have been evolved, the phase transition begins.

During phase transition, from those μ phase0-solving Cubes, a random Cube is
chosen and duplicated. This is repeated λ times and yields in the first population
after the phase transition. Now the phase-counter is increased by one, and the
main ES loop is entered again. This process is repeated until phase4 is solved (i.e.
phase5 is reached), presenting a solution sequence to the originally scrambled
Cube. This workflow is demonstrated in Fig. 1 (for in-depth implementation
details see [3]).

In order to avoid the TWES getting stuck in local optima an upper bound
for calculated generations is introduced. As soon as this upper bound is reached,

An Evolutionary Approach for Solving the Rubik’s Cube 85

population

mutation
phase i

fitness
calculation

phase i

selection

duplication

selection pool

phase 4 fitness = 0

i = 0

phase
transition

i = i+1

phase i = 0
and
x ≥ μ

phase i > 0
or
x < μ

x = number of phase-solving cubes

Fig. 1. Basic workflow of Thistlethwaite ES, i = 0, . . . , 5

the TWES resets itself and starts over again. Based on testing several scrambles,
the default upper bound is set to 150 generations.

5.2 Rubik’s Cube as an Individual

The Rubik’s Cube is represented using 6 2D matrices containing values from 1
to 6, each representing one color. Every quarter- and half-turn can be applied to
this representation, yielding a total of 18 different single moves while still leaving
the Cube’s integrity intact.

Thus, mutation is easily realized by not modifying a single facelet’s color
but applying a sequence of moves to the Cube. This guarantees that the Cube’s
integrity stays intact at all times and makes a separate integrity test superfluous.

Every individual remembers the mutations it has undergone, i.e. a list of moves
that have been applied. To keep this list as small as possible, redundant moves are
automatically removed. For example an individual that has been mutated with F
and is then mutated with FRRiB will only remember the optimized sequence F ·
FRRiB = F2B, preventing redundancy. Essentially, this is realized via a while-
loop, eliminating redundant moves in each pass until no further optimizations
can be made: e.g. F2BBiR2R2F is optimized to Fi by first removing BBi, then
removing R2R2 and finally transforming F2F into Fi.

5.3 Fitness Function

Translating the TWA into an appropriate Fitness Function for an Evolutionary
Algorithm essentially forces the design of four distinct subfunctions. As each

86 N. El-Sourani, S. Hauke, and M. Borschbach

subgroup of G0 has different constraints, custom methods to satisfy these con-
straints are proposed.

G0 → G1 To reach G1 from any scrambled Cube, we have to orient all edge
pieces right while ignoring their position. The fitness function for this phase sim-
ply increases the variable phase0 by 2 for each wrong oriented edge. Furthermore,
we add the number of moves that have already been applied to the particular
individual in order to promote shorter solutions. Finally, we adjust the weight
between w (number of wrong oriented edges) and c (number of moves applied
to current Cube individual). This will be done similarly in all subsequent phases.

phase0 = 5 · (2w) + c (7)

With a total of 12 edges which can all have the wrong orientation this gives
max{2w} = 24. The Cube has been successfully put into G1 when phase0 = c.
Reaching G1 is fairly easy to accomplish, thus making the weight-factor 5 a good
choice.

G1 → G2 In order to fulfill G2 the 8 corners have to be oriented correctly. Edges
that belong in the middle layer get transferred there. Tests with the Thistleth-
waite ES showed it somewhat problematic to do this in one step. Oftentimes,
the algorithm would get stuck in local optima. To solve this, the process of
transferring a Cube from G1 to G2 has been divided into two parts. First, edges
that belong into the middle layer are transferred there. Second, the corners are
oriented the right way. The first part is fairly easy and the fitness function is
similar to that from phase0 except for w (number of wrong positioned edges),
i.e. edges that should be in the middle layer but are not.

phase1 = 5 · (2w) + c (8)

In the second part, for each wrong positioned corner, 4 penalty points are as-
signed as they are more complex to correct than edges. Obviously, in order to
put the Cube from G1 to G2 both phases described here have to be fulfilled,
which yields:

phase2 = 10 · (4v) + phase1 (9)

where v represents the number of wrong oriented corners. The weighing factor
is increased from 5 to 10 to promote a successful transformation into G2 over a
short sequence of moves.

G2 → G3 We now have to put the remaining 8 edges in their correct orbit. The
same is done for the 8 corners which also need to be aligned the right way. Thus,
the colors of two adjacent corners in one circuit have to match on two faces. In
G3 the Cube will only have opposite colors on each face. Let x (number of wrong
colored facelets) and y (number of wrong aligned corners), then

phase3 = 5 · (x + 2 · y) + c . (10)

An Evolutionary Approach for Solving the Rubik’s Cube 87

G3 → G4(solved) The Cube can now be solved by only using half-turns. For
the fitness function we simply count wrong colored facelets. Let z be the number
of wrong colored facelets, then

phase4 = 5 · z + c . (11)

To summarize, 5 different fitness functions are needed for the Thistlethwaite ES.
phasei is solved if phasei = c, i = 0, ..., 4 and with the properties of nested
groups we can conclude, given the above, a solved Cube implies:

4∑
0

phasei = c . (12)

Fulfilling the above equation satisfies the constraints induced by the groups
G0, . . . , G4, with the final fitness value c describing the final solution sequence
length. The weight factors chosen are based on consecutive testing throughout
development. The ratio is dictated by the size of the nested groups. Finding
optimal weights presents a seperate optimization problem and may be subject
to future work.

5.4 Mutation Operators

The mutation operators are dictated by the subgroups used. Conveniently, the
maximum sequence length (s) needed to transform the Cube from one subgroup
to another is given by Thistlethwaite [13]. Those lengths are 7,13,15,17 (the sum
of which is 52, hence ”52 Move Strategy”) for each group transition respectively.
An individual in phase i is mutated by:

1. generating a random length (l) with 0 ≤ l ≤ s, according to i (i = 0 → s =
7, i = 1 → s = 13, i = 2, 3 → s = 15, i = 4 → s = 17)

2. concatinating l random single moves from the according group Gi

3. applying this sequence to the current Cube individual

For example: Let i = 2 (transitioning from G2 → G3). The maximum sequence
length for this step is s = 15. Let random l = 4, (0 ≤ 4 ≤ 15). Next, we chose
a random single move from G2, repeat this a total of 4 times and concatinate
these to form a sequence. Let those 4 single moves be D, F2, R2, U . This results
in the sequence DF2R2U representing the present mutation which is applied to
the current Cube individual.

In case of l = 0 the mutation is an empty sequence, leaving the current
individual untouched. Given an appropriate fitness, this allows distinct Cubes
to survive multiple generations.

5.5 Selection Method

The selection method used is a modified truncation selection. The selection pool
is generated by chosing the μ best individuals from the current population. There-
from, each individual is duplicated with the same probability 1

μ , repeated λ times

88 N. El-Sourani, S. Hauke, and M. Borschbach

to form the new population. This approach implicates a low selection pressure
and hence favors a higher diversity, as it is a key importance to enable the
survival of alleged suboptimal individuals. The combination of random muta-
tion operators, phase transitions and redundant move removal can result in an
abrupt fitness improvement of such individuals.

Furthermore, similar to Kociemba’s key idea of continuing calculation after
some solution to one phase has been found [7], our ES continues until μ different
such individuals have been evolved. These are then duplicated as described above
to form the inital population for the subsequent phase. Put simply, phasei+1
starts with a population pool of λ phasei-solving Cubes of high diversity. This
can have a positive effect on overall solution length and calculation time, as
remarked by Kociemba [7] and counters the major flaw of the classic TWA
mentioned in section 4.

6 Benchmarks

To provide a brief performance overview 100 random scrambles of minimum
length 10 and maximum length 50 were generated and and solved in 5 repetitions.
Solution lengths and calculation time are of particular interest to us. The test
was conducted with the TWES using (μ, λ) = (1000, 50000), weighing factors
(5, 5, 5, 5, 5), mutation lengths (5, 5, 13, 15, 17) and maximum generations before
reset (250).

Table 1. Solutions of 100 random scrambles, 5 repetitions, Thistlethwaite ES

Run 1 Run 2 Run 3 Run 4 Run 5

avg. Generations 95.72 100.63 92.71 99.66 92.22
avg. Moves 50.67 50.32 50.87 50.23 49.46
avg. Time(s) 321.78 381.68 393.99 312.98 287.93

As seen in Table 1, the solution sequences hit an average of about 50 single
moves, further demonstrating a consistent performance throughout the repeti-
tions. Most scrambles are solved in 35-45 moves, outliers are responsible for the
higher average count. Extensive additional benchmarks can be found in [3].

7 Conclusion

The benchmarks are promising, yielding comparable results to the classic TWA.
Outliers calculated by TWES provide both significantly shorter and longer solu-
tions. This is most probably due to inter-group dependencies and future focus lies
on increasing our TWES’ tendency to such shorter results. Instead of obtaining
static solutions dictated by the lookup-table used in the classic TWA, the dy-
namic evolution process enables those shorter solution sequences not previously
possible.

An Evolutionary Approach for Solving the Rubik’s Cube 89

Regarding the Rubik’s Cube optimization problem, our evolutionary approach
is evidently competitive with the exact method it adepts. As this was the first
such attempt - based on the first group theoretic exact approach using lookup-
tables (Thistlethwaite) - future work promises further improvement. This algo-
rithm only solves the classic 33 Rubik’s Cube, just as the exact method it is based
on does. However, our modular EA can also be used to solve higher dimensional
Rubik’s Cubes by appropriately substituting the current fitness functions.

The next developmental step will adept approaches that reduce the number of
subgroups to 3 and then 2, potentially yielding further improvement in solution
sequence length. Conveniently, our implementation already provides such possi-
bilities for extensions, enabling quick testing of different subgroup combinations.

References

1. Borschbach, M., Grelle, C.: Empirical Benchmarks of a Genetic Algorithm Incor-
porating Human Strategies. Technical Report, University of Applied Sciences, Ber-
gisch Gladbach (2009)

2. Boyzejko, W., Wodecki, M.: A Hybrid Evolutionary Algorithm for some Discrete
Optimization Problems. In: Proceedings of the 5th International Conference on
Intelligent Systems Design and Applications, pp. 326–331. IEEE Computer Society,
Washington (2005)

3. El-Sourani, N.: Design and Benchmark of different Evolutionary Approaches to
Solve the Rubiks Cube as a Discrete Optimization Problem. Diploma Thesis, WWU
Muenster, Germany (2009)

4. Florios, K., Mavrotas, G., Diakoulaki, D.: Solving Multiobjective, Multiconstraint
Knapsack Problems Using Mathematical Programming and Evolutionary Algo-
rithms. European Journal of Operational Research 203, 14–21 (2009)

5. Frey, A., Singmaster, D.: Handbook of Cubic Math. Enslow, Hillside (1982)
6. Herdy, M., Patone, G.: Evolution Strategy in Action, 10 ES-Demonstrations. Tech-

nical Report, International Conference on Evolutionary Computation (1994)
7. Kociemba, H.: Cube Explorer, http://kociemba.org/Cube.htm
8. Muehlenbein, H., Mahnig, T.: FDA - A Scalable Evolutionary Algorithm for the Op-

timization of Additively Decomposed Functions. Evol. Comput. 7, 353–376 (1999)
9. Reid, M.: Cube Lovers Mailing List,

http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/

Index by Author.html

10. Rokicki, T.: Twenty-Five Moves Suffice for Rubik’s Cube,
http://Cubezzz.homelinux.org/drupal/?q=node/view/121

11. Rokicki, T.:
http://www.newscientist.com/article/

mg19926681.800-cracking-the-last-mystery-of-the-rubiks-Cube.html

12. Singmaster, D.: Notes on Rubik’s Magic Cube. Enslow, Hillside (1981)
13. Thistlethwaite, M.B.: The 45-52 Move Strategy. London CL VIII (1981)
14. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and

Applications. Penn State (1999)

http://kociemba.org/Cube.htm
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Index_by_Author.html
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Index_by_Author.html
http://Cubezzz.homelinux.org/drupal/?q=node/view/121
http://www.newscientist.com/article/mg19926681.800-cracking-the-last-mystery-of-the-rubiks-Cube.html
http://www.newscientist.com/article/mg19926681.800-cracking-the-last-mystery-of-the-rubiks-Cube.html

Evolution of Artificial Terrains for Video Games
Based on Accessibility

Miguel Frade1, Francisco Fernandez de Vega2, and Carlos Cotta3

1 Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Portugal
mfrade@estg.ipleiria.pt

2 Centro Universitario de Mérida, Universidad de Extremadura, Spain
fcofdez@unex.es

3 ETSI Informática, Campus de Teatinos, Universidad de Málaga, Spain
ccottap@lcc.uma.es

Abstract. Diverse methods have been developed to generate terrains
under constraints to control terrain features, but most of them use strict
restrictions. However, there are situations were more flexible restrictions
are sufficient, such as ensuring that terrains have enough accessible area,
which is an important trait for video games. The Genetic Terrain Pro-
gram technique, based on genetic programming, was used to automati-
cally evolve Terrain Programs (TPs - which are able to generate terrains
procedurally) for the desired accessibility parameters. Results showed
that the accessibility parameters have negligible influence on the evolu-
tionary system and that the terminal set has a major role on the terrain
look. TPs produced this way are already being used on Chapas video
game.

Keywords: genetic terrain programming, artificial terrains, video games.

1 Introduction

Generating artificial terrains is an important topic in computer graphics, spe-
cially in video games where its application is probably more prominent. Some
of the most popular techniques are fractal algorithms. These algorithms are the
favorite ones by game designers, mainly due to their speed and simplicity of im-
plementation. However, procedural techniques, like fractals, have also their own
limitations [5]. The main disadvantage is the difficulty of modelling with them.
It is very difficult or impossible to know how to modify them to achieve a certain
local effect.

Diverse methods have been developed to produce terrains under constraints in
attempt to control terrain features. The technique in [12] consists in generating
a terrain model by computing the interpolation of point clouds or contour lines.
The authors of [10] managed to obtain good approximations of downsampled
elevation datasets using radial basis functions. Other methods use patches [13],
small-scale [3] or microscopic [4] features of existing terrains to synthesize new
ones that satisfy the user global constraints. The method presented in [11] de-
forms an initial fractal terrain by applying local modifications to satisfy a set

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 90–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Evolution of Artificial Terrains for Video Games Based on Accessibility 91

of various fixed constraints. A constrained fractal model based on midpoint dis-
placement algorithm is presented in [1]. However, most of these methods are
focused on the reconstruction of Data Elevation Models and use only height
constraints, besides many of them suffer from either time and/or manipulation
complexity.

To use height constraints the designer must specify both the height value and
its location. However, there might be situations were less strict restrictions are
preferable. For instance, a designer might want a nearly flat, or mountainous ter-
rain, without caring about the specific location or size of terrain features. A two
step approach, designated Genetic Terrain Programming (GTP), was proposed
in [6], [7] that allows the generation of terrains with the desired features or aes-
thetic appeal without formal restrictions. The first step consists of interactive
evolution, with genetic programming, of mathematical expressions designated
TPs (Terrain Programs). On the second step TPs are computed to generate
height maps. Due to the interactive nature of this approach, from now on it will
be abbreviated as GTPi. Nevertheless, there are terrain features that are better
evaluated by computers due to their numerical nature. Besides, the search for a
terrain with very specific features might be a tiresome endeavor on interactive
evolutionary applications [2].

Accessibility is a crucial structural feature that highly influences the attainable
movements of characters/avatars around the video game terrain, as well as the
potential placement of buildings and other structures. The author of [9] employs
accessibility restrictions to generate terrains, but the used technique may not
fully meet the constraints. On this paper it is presented a new version of GTP
that performs automatic evaluation of terrains based on accessibility constraints,
which will be designated from now on as GTPa.

Section 2 introduces some background about the generation of height maps
from TPs. The fitness function and the reasoning behind it are also detailed on
section 3. A set of tests were conducted and the used parameters, as well as
its results are showed in Section 4. Finally, the conclusions and future work are
presented on Section 5.

2 Background

An important characteristic of procedural techniques is their ability to generate
a scene with the required resolution and zoom level. This is probably the main
advantage of the procedural techniques over other techniques. In spite of the
procedural nature of TPs, the implementation in GTPi only allowed control
over terrain resolution, not zoom level. This is a limitation that runs against
the procedural advantages. Therefore, in GTPa both the terminal and function
sets were modified in order to generate TPs that permit also the control over
zoom. The function set used in GTPi was simplified to remove all functions
that prevented the zoom feature, Table 1 shows the GTPafunction set.

Three different terminal sets are used on this work to evaluate its influ-
ence on the resulting terrains: T1 = {noise(x, y), rec}, T2 = {x, y, rec} and

92 M. Frade, F.F. de Vega, and C. Cotta

Table 1. GP function set

Name Description

plus(a, b), minus(a, b), multiply(a, b) arithmetical functions
sin(a), cos(a), tan(a), atan(a) trigonometric functions

exp(a) returns ea

myLog(a) returns 0 if a = 0 and log(|a|) otherwise
myPower(a, b) returns 1 if b = 0, 0 if a = 0 and |a|b otherwise
myDivide(a, b) returns a if b = 0 and a ÷ b otherwise

mySqrt(a) returns
√

|a|
negative(a) returns −a

Fig. 1. Terrain view area

hr,c = f

(
c × Dx

nc−1

Sx
+ Lx,

r × Dy

nr−1

Sy
+ Ly

)
.

r ∈ {1, · · · , nr}, c ∈ {1, · · · , nc}, (1)

Dx, Dy , Sx, Sy ∈ R
+ and Lx, Ly ∈ R

T3 = {noise(x, y), x, y, rec}, where rec stands for random ephemeral constant.
The noise(x, y) terminal is a stochastic function that is commonly used in frac-
tals. Its ideal properties are [5]: have a repeatable pseudorandom output based on
its inputs variables x, y; the output range is known, namely from −1 to 1; when
analyzed in the frequency domain, the output is band-limited, with a maximum
frequency of about 1; the noise function should not exhibit obvious periodici-
ties or regular patterns; the noise function is stationary, that is, its statistical
character should be translationally invariant; and the noise function is isotropic,
that is, its statistical character should be rotationally invariant.

TPs are able to generate an unlimited continuous surface. In order to create
an height map from a TP, the continuous surface must be sampled with fixed
increments of x and y to obtain the corresponding altitude z, where z = f(x, y),
x, y, z ∈ R. The altitudes values are stored in matrix H , whose size nr × nc de-
pends on the amount of samples and therefore define the height map resolution.
Equation (1) shows the relation between the height map matrix H and the TPs
continuous function obtained with GTPa. hr,c represents the elevation value for
row r and column c, and Dx, Dy are the terrain dimensions. Sx, Sy allow the
control of the zoom level and Lx, Ly allow us to localize the origin of the terrain
view area (see Fig. 1).

Evolution of Artificial Terrains for Video Games Based on Accessibility 93

3 Accessibility Score Fitness Function

Movement and structure placing is often restricted to low slopes, therefore, it is
necessary to analyze the changes in declination of the terrain. For that purpose
the slope map S is defined to store the declination for each cell r, c of the height
map H . The slope values are calculated as the magnitude of the gradient vector
(tangent vector of the surface pointing in the direction of steepest slope) [8].
With this approach, the slope is computed at a grid point, which depends on
the partial derivatives ∂f

∂x and ∂f
∂y of the height map function z = f(x, y). The

most common approximation for partial derivatives is a weighted average of the
elevation differences between the given point and all points within its 3 × 3
neighborhood [8]. The estimate of the partial derivatives for cell z5 (see Fig. 2)
are given by (2) and (3), were Δx and Δy are the height map distances between
each cell.

Fig. 2. Neighbor positions

∂f

∂x
≈ (z3 + 2z6 + z9) − (z1 + 2z4 + z7)

8Δx
. (2)

∂f

∂y
≈ (z7 + 2z8 + z9) − (z1 + 2z2 + z3)

8Δy
. (3)

Player units must be able to move around the terrain and a sufficient number
of nearly flat areas must exist for building placement. Therefore, cells with a dec-
lination below a certain threshold allowing unit movement should be connected
in a large area. To analyze the slope map according to this criteria an accessi-
bility map A is created with the same size of the height map. A = {ar,c}r≤nr

c≤nc

is a binary map whose cell values depend on the threshold St, with ar,c = 0 if
sr,c < St or ar,c = 1 if sr,c ≥ St.

The nearly flat areas, whose sr,c < St, that are not connected to the main area
will be inaccessible, so the next step is to search for the biggest connected area
in A with a component labeling algorithm. This algorithm returns the amount
of connected areas and the number of cells contained within each one. Then,
the smaller connected areas are removed from the accessibility map. Next we
classify the terrains accordingly to the accessibility value υ given by (4), where
nrnc is total amount of cells in the height map and Ca is the number of cells
contained on the biggest connected area of A. The formula in (4) was built to
be minimized, so the smaller value of υ the larger the accessibility area is.

υ =
nrnc

Ca
, Ca �= 0 . (4)

The accessibility criteria alone would make a completely flat terrain the best
fit. However, a completely flat terrain does not add realism or interest to the
terrain and does not provide obstacles to units movement, which is undesirable.

94 M. Frade, F.F. de Vega, and C. Cotta

To prevent this, we defined the accessibility score υs, in (5). The biggest con-
nected area is limited by the threshold υt, where p ∈ [0, 1] is the desired area for
the biggest connected area. The ceil function is used to ensure that the amount
of desired cells for the biggest connected area is round up to the nearest integer
value. This way it will be possible for υs to achieve the exact value of zero and
stop the evolutionary process. Otherwise we would have to stipulate a tolerance
value within which υs would be considered close enough to zero to stop the evo-
lutionary process. However, the tolerance value would be dependent from the
chosen resolution for the height map, which is undesirable.

υs = |υ − υt| , where υt =
nrnc

�pnrnc�
, p �= 0 . (5)

4 Tests and Results

A battery of tests was conducted to access the features and realism of terrains
produced by terminal sets T1, T2 and T3 evaluated by the accessibility score. We
want also to assess the impact of different percentages of accessibility area, thus
for each terminal set three different percentages were used: p = 70%, p = 80%
and p = 90%. There are a total of 9 different tests that were performed on a
Pentium Core 2 Duo at 2.0 GHz with 1 GB of RAM running GNU/Linux. All
tests were conducted with the accessibility threshold set to St = 10% and the
parameters shown on Table 2. On the left side of Table 2 are the GP system
parameters and on the right side are the parameters used to compute height
maps from TPs.

Our main goal are TPs and the terrains they generate, Fig. 3 shows three
examples of height maps as gray-scale images (one for each terminal set) and
their respective accessibility maps. The second row shows the same terrains, but
computed in 3 dimensions with Blender 3D (www.blender.org) and rendered
with YafaRay (www.yafaray.org). These terrains were chosen because they were
the ones that presented the shortest TPs, which are displayed in Fig. 4.

The next step was to visually compare and analyze all the terrains pro-
duced by the resulting TPs of each terminal set. Our analysis focused on three

Table 2. GP and height map parameters

GP Value Height map Value

maximum generations 50 nr and nc 128
population size 500 Lx and Ly 0

initialization method half and half Sx and Sy 1
ramped from 2 to 6 Dx and Dy 10

max. depth 17
selection operator tournament, size 7
crossover operator rate 70%
mutation operator rate 30%

www.blender.org
www.yafaray.org

Evolution of Artificial Terrains for Video Games Based on Accessibility 95

Fig. 3. Examples of height maps (as gray-scale images) and their respective accessibil-
ity maps on the first row. The first pair of images were obtained with T1 (see TP1 on
Fig. 4), the second pair with T2 (see TP2) and the third pair with T3 (see TP3).The
second row has the terrains rendered in 3D.

Fig. 4. Terrain programs that generated the terrains on Fig. 3

terrain properties: suitability (to video games), realism and features diversity.
The terrains obtained from terminal set T1 were the ones that showed more
usefulness with several obstacles distributed around the terrain area. They also
present smooth transitions between the different terrain features and without
visible pattern repetition, which give them a natural look. However, apart from
a few exceptions, terrains tend to be very similar, like if the locations of the
hills and valleys were simply shifted or resized. On the opposite side are terrains
produced by terminal set T2. Terrains tend to exhibit geometric patterns and
sudden height changes, which gives them an unnatural look. The origin of the
terrain view area seems to have a big impact, because Lx = Ly = 0, a value were
the discontinuities of our protected functions happens. This suggests the further
study of T2 with a different view area origin values. Terrains obtained with T2
showed more diversity across the 20 runs than T1 terrains, but T2 terrains tend
to present a single large obstacle, which makes them less suitable. Our richest
terminal set, T3, was the one that brought out more diverse terrains. On these
terrains geometric patterns are occasionally visible, but with much less visual
impact than with T2. Regarding realism T3, some terrains look more natural
than others and a few have also an odd look. To sum up, we classify our ter-
minal sets (from better to worst) regarding realism: T3, T1 and T2; regarding
diversity: T3, T2 and T1; finally, regarding suitability: T1, T3 and T2.

96 M. Frade, F.F. de Vega, and C. Cotta

Table 3. Average values (and standard deviation of the mean) for 20 runs of GTPa

Terminal set T1 T2 T3

p 70% 80% 90% 70% 80% 90% 70% 80% 90%

Generations
8.25 8.80 8.00 7.95 8.00 9.10 8.40 7.30 7.65

(0.49) (0.39) (0.43) (0.53) (0.45) (0.64) (0.48) (0.61) (0.44)

TP size
44.75 44.35 44.20 48.20 50.25 61.70 39.10 30.80 40.90
(2.33) (4.51) (4.57) (3.97) (4.22) (5.55) (4.27) (3.48) (4.56)

TP depth
13.40 13.15 12.70 12.65 12.30 14.35 11.85 9.30 11.60
(0.60) (0.63) (0.84) (0.70) (0.59) (0.56) (0.93) (0.80) (0.95)

Run time (s)
99.52 112.26 102.82 93.17 88.78 102.87 97.57 77.86 77.78
(8.50) (6.05) (8.68) (12.56) (7.84) (13.47) (8.93) (9.12) (6.46)

The GP system returned also the number of generations, TP size (amount
of nodes), TP depth (tree depth) and run time of each run. This data is sum-
marized in Table 3 where the values shown are the average for 20 runs (with
different seeds) and the correspondent standard deviation of the mean inside
round brackets. The fitness value is not present on this table, because all runs
were able to reach the goal of υs = 0.

Regarding the TPs sizes and depths what stands out is that for terminal set
T1 these values are almost constant for all 3 values of p, for terminal set T2 they
tend to increase with p and that terminal set T3 is the one that has smaller
values. These results show that the richer terminal set T3 is able to produce
shorter and therefore simpler TPs than the other terminal sets. Run times are
also smaller for terminal set T3, except for p = 70% which is similar to the other
terminals. Run times for terminal set T1 are slightly longer, which was expected
because noise(x, y) is far more complex than the other terminals.

The average number of generations across all tests are very similar with values
ranging from 7.30 to 9.10. This means that the system is able to reach a fitness
value of zero easily and that there are many solutions to reach that goal. The
diversity of TPs to have a perfect fitness value is very interesting, because we
want to be able to generate a width range of terrains that fit our goal. This raised
the question: how different are the resulting terrains from each other when only
the seed is changed? To help answer this question we compared each accessibility
map with the other 19 from the 20 runs of each test. The comparison consists in
measuring how much inaccessible (black) area overlaps, as shown in Fig. 5. An
overlap value of 100% would mean that the maps were equal.

For each test the amount of comparisons is the result of combinations with-
out repetitions of

(20
2

)
= 190. The higher quantaties of comparisons returning

lower overlap values the bigger are the differences between accessibility maps by
changing only the seed. The boxplot on Fig. 6 show that the higher the value of p
is, the less the accessibility maps tend to overlap, independently of the used ter-
minal set. This is an expected result, because the inaccessible areas are smaller
the larger p is, so there are less probability of overlap. The overlap values from

Evolution of Artificial Terrains for Video Games Based on Accessibility 97

Fig. 5. Comparison of two accessibility maps obtained with T1 (first and center images)
and the resulting overlap (right image) - the amount of overlap is 50.07%

 0

 20

 40

 60

 80

 100

T1p70 T1p80 T1p90 T2p70 T2p80 T2p90 T3p70 T3p80 T3p90

A
cc

es
sb

ili
ty

 m
ap

s
ov

er
la

p
(%

)

Fig. 6. Boxplot of accessibility maps overlap for each test

Fig. 7. Screenshot of the Chapas video game with a terrain generated by a TP

maps obtained with terminal set T1 tend to be higher than the other ones, which
means that terrains will be more alike with each other, which corroborates our
visual inspection. For terminal set T2 the amount of overlap is highly influenced
by the value of p, presenting the higher values for p = 70% and the lowest for
p = 90%. Finally, for terminal set T3 there are lower chances to get similar ter-
rains, which is an advantage in our case. Nevertheless, none of the comparisons,
among all tests, returned overlap values of 0% or 100%.

TPs produced by GTPa are already being used on the video games Chapas,
which is still in development (see Fig. 7 and http://tr.im/chapas). To generate
a terrain with 1024× 1024 cells, the fastest TP (from T3) took 0.1 seconds and
the longest (from T1) took 1.1 seconds. Although these times are in the same

http://tr.im/chapas

98 M. Frade, F.F. de Vega, and C. Cotta

magnitude of the ones obtained by [1], they can be further improved because
TPs are easily parallelizable without requiring any interprocess communication.

5 Conclusions

A new version of GTP, GTPa, as been presented that performs automated eval-
uation of TPs based on accessibility parameters. These parameters allow us to
control the slope threshold, that differentiate the accessible from the inacces-
sible terrain areas, and how much area should be made accessible. Through a
series of experiments we have shown that our fitness function, the accessibil-
ity score, is able to produce many solutions that fit our goal. Furthermore, the
required number of generations is not influenced by changing the terminal set
or the amount of desired accessible area. The terminal set can have a great in-
fluence on the terrain look, with T3 producing more realistic terrains, but also
some odd looking terrains. T3 showed us the importance of rich terminal sets to
achieve shorter and simpler TPs. T1 produced the better suitable terrains for a
video game. However, our fitness function does not account for terrain realism,
requiring a visual inspection before using them. With regard to the previous
version of GTP, the new approach allowed to remove the human factor from the
evolutionary process and this way avoid designer fatigue. The usefulness of this
technique is shown by its integration on the Chapas video game.

Terrain view area is defined by several parameters and some of them, like
Lx,Ly, have influence on the result. Further tests must be conducted to access
the level and importance of their impact. Slope is just one metric from many that
geomorphology uses to classify height maps of real terrains. Other metrics, such
as convexity, can be incorporated on the fitness function to allow finner control
over terrain features. Multi-objective optimization techniques can be used in this
context. Finally, in spite of our interesting results, we have not found yet the
perfect terminal set to enable GTPa to achieve a widther range of real looking
terrains types. Further research on this topic is needed.

Acknowledgments. The second author is supported by National Nohnes
project TIN2007-68083-C02-01 of Spanish MS. The third author is supported
by project TIN2008-05941 of Spanish MICINN. Thanks are due to the reviewers
for their detailed and constructive comments.

References

1. Belhadj, F.: Terrain modeling: a constrained fractal model. In: 5th International
conference on CG, virtual reality, visualisation and interaction in Africa, pp. 197–
204. ACM, Grahamstown (2007)

2. Bentley, P.: Evolutionary Design by Computers. Morgan Kaufmann Publishers,
Inc., USA (1999)

3. Brosz, J., Samavati, F.F., Sousa, M.C.: Terrain synthesis by-example. In: First
International Conference on Computer Graphics Theory and Applications (2006)

Evolution of Artificial Terrains for Video Games Based on Accessibility 99

4. Chiang, M., Huang, J., Tai, W., Liu, C., Chang, C.: Terrain synthesis: An interac-
tive approach. In: International Workshop on Advanced Image Tech. (2005)

5. Ebert, D., Musgrave, K., Peachey, D., Perlin, K., Worley, S.: Texturing and Mod-
eling: A Procedural Approach, 3rd edn. Morgan Kaufmann, San Francisco (2003)

6. Frade, M., de Vega, F.F., Cotta, C.: Modelling video games’ landscapes by means of
genetic terrain programming - a new approach for improving users’ experience. In:
Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero,
J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008.
LNCS, vol. 4974, pp. 485–490. Springer, Heidelberg (2008)

7. Frade, M., de Vega, F.F., Cotta, C.: Breeding terrains with genetic terrain pro-
gramming - the evolution of terrain generators. International Journal for Computer
Games Technology 2009, (Article ID 125714) 13 (2009)

8. Horn, B.K.P.: Hill shading and the reflectance map. Proceedings of the IEEE 69(1),
14–47 (1981)

9. Olsen, J.: Realtime procedural terrain generation - realtime synthesis of eroded
fractal terrain for use in computer games. Department of Mathematics and Com-
puter Science (IMADA). University of Southern Denmark (2004)

10. Pouderoux, J., Gonzato, J.C., Tobor, I., Guitton, P.: Adaptive hierarchical RBF
interpolation for creating smooth digital elevation models. In: GIS 2004 - 12th
annual ACM international workshop on Geographic information systems, pp. 232–
240. ACM, New York (2004)

11. Stachniak, S., Stuerzlinger, W.: An algorithm for automated fractal terrain defor-
mation. Computer Graphics and Artificial Intelligence 1, 64–76 (2005)

12. Vemuri, B., Mandal, C., Lai, S.H.: A fast gibbs sampler for synthesizing constrained
fractals. IEEE Transactions on Visualization and Computer Graphics 3(4), 337–351
(1997)

13. Zhou, H., Sun, J.: Terrain synthesis from digital elevation models. IEEE Transac-
tions on Visualization and Computer Graphics 13(4), 834–848 (2007)

Evolving Behaviour Trees for the
Commercial Game DEFCON

Chong-U Lim, Robin Baumgarten, and Simon Colton

Computational Creativity Group
Department of Computing, Imperial College, London

www.doc.ic.ac.uk/ccg

Abstract. Behaviour trees provide the possibility of improving on ex-
isting Artificial Intelligence techniques in games by being simple to im-
plement, scalable, able to handle the complexity of games, and modular
to improve reusability. This ultimately improves the development pro-
cess for designing automated game players. We cover here the use of
behaviour trees to design and develop an AI-controlled player for the
commercial real-time strategy game DEFCON. In particular, we evolved
behaviour trees to develop a competitive player which was able to out-
perform the game’s original AI-bot more than 50% of the time. We aim
to highlight the potential for evolving behaviour trees as a practical ap-
proach to developing AI-bots in games.

1 Introduction

The ability of Artificial Intelligence methods in games to deliver an engaging
experience has become an important aspect of game development in the indus-
try, and as such, numerous techniques have been developed in order to deliver
realistic game AI. However, as Jeff Orkin remarked, that if the audience of the
Game Developers Conference were to be polled on the most common A.I tech-
niques applied to games, one of the top answers would be Finite State Machines
(FSMs) [11]. Behaviour trees have been proposed as an improvement over FSMs
for designing game AI. Their advantages over traditional AI approaches are be-
ing simple to design and implement, scalability when games get larger and more
complex, and modularity to aid reusability and portability. Behaviour trees have
recently been adopted for controlling AI behaviours in commercial games such
as first-person-shooter Halo2 [8] and life-simulation game Spore [7].

We investigate here the feasibility of applying evolutionary techniques to de-
velop competitive AI-bots to play commercial video games. The utility of this is
two-fold, i.e. to enable intelligent agents to compete against human players in 1-
player modes of games, and to act as avatars for players when they are not able
to play themselves (e.g. as temporary substitutes in multiplayer games). The
application of genetic programming has seen positive results in the fields such as
robotic games [10] and board games like Chess [6], as well as racing track genera-
tion [13]. It has also been used to evolve human-competitive artificial players for
Quake3 [12], and real-time strategy games [5]. By investigating the feasibility of

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 100–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Evolving Behaviour Trees for the Commercial Game DEFCON 101

applying an evolutionary approach with behaviours trees to develop a competi-
tive automated AI player for a commercial game, we hope to further exemplify
it as a viable means of AI development that may be adopted by the video games
industry. We demonstrate this by evolving a competitive automated player for
the game DEFCON, which is able to beat the hand-designed AI-bot written by
the programmers at Introversion Software Ltd. more than 50% of the time over
a large number of games. We provide relevant background reading in section 2,
outlining DEFCON and behaviour trees. Next, we describe how evolution is ap-
plied to behaviour trees in section 3, and provide a description of the different
fitness functions we employed in section 4. The experiments conducted and re-
sults obtained are in section 5, and we conclude and propose areas where future
work may be applicable in section 6.

2 Background

2.1 DEFCON

DEFCON1 is a commercial multiplayer real-time strategy game that allows play-
ers to take the roles of the military commanders of one of six possible world
territories. Players are given a set of units and structures at their disposal, and
have to manage these resources and inflict the greater amount of damage against
opposing players. The game is split into 5 discrete time intervals (DEFCON5 to
DEFCON1), and each dictate the movements and manipulation of units that are
allowed. There are 7 available territories in each game, with each controlled by
up to 1 party. A party represents the player, either human or AI-controlled, each
allocated a fixed quantity of units that it may place and make use of throughout
the course of the game. Playing the game involves strategic planning and deci-
sion making in coordinating all these units and winning by attaining the highest
score, calculated via various scoring modes. We used the default scoring mode: 2
points awarded for every million of the opponent’s population killed and a point
penalty for every million people belonging to the player lost.

Several implementations of automated players exist for DEFCON, and we re-
fer to these as AI-bots. For example, the default bot that comes with DEFCON
is a deterministic, finite-state-machine driven bot. It consists of a set of 5 states
and transits from one state to the next in sequence. Upon reaching the final
state, it remains in it until the end of the game. In 2007, an AI-bot was devel-
oped by Baumgarten [2] using a combination of case-based reasoning, decision
tree algorithms and hierarchical planning. For the case-based reasoning system,
high-level strategy plans for matches were automatically created by querying
a case base of recorded matches and building a plan as a decision tree, which
classified each case’s plan dictating the placement of fleets and units, and the
sequence of movements and attacks. The starting territories of each player were
used as a similarity measure for retrieving a case. The results, plans, and struc-
ture information were retained as a case in the case base at the end of a match,
1 The official DEFCON website is here: http://www.introversion.co.uk/defcon

102 C.-U. Lim, R. Baumgarten, and S. Colton

Fig. 1. Behaviour Tree: PlaceFleets

to enable an iterative learning process.
Furthermore, the low-level behaviour of
units, such as precisely timed bomber at-
tacks and ship manoeuvres within fleets
were added to improve the tactical
strength of the AI-bot. As a result, in cer-
tain configurations, these low level modi-
fications were able to influence the game
outcome significantly, resulting in a vic-
tory for Baumgarten’s AI-bot over the
Introversion implementation in roughly 7
out of 10 matches on average.

Both AI-bots covered above were implemented using the source-code of DE-
FCON, which gave it access to game state information that was required for
various calculations. The implementation of the AI-bot described here made use
of the an application programming interface (API)2 that allows the control of a
player in DEFCON by an external AI-bot, which can retrieve and invoke method
calls on DEFCON, providing a way for developers to build AI-bots without hav-
ing to work with the source-code of DEFCON directly. We avoided dictating
low-level strategic decisions in our implementation but still successfully man-
aged to evolve the behaviour trees to produce a competitive AI-bot with little
human intervention. In a DEFCON competition competing API-designed AI-
bots held at the Computational Intelligence and Games conference in Milan in
August 2009, our AI-bot emerged victorious (although it was a rather hollow
victory, as we were the only entrant to the inaugural competition!).

2.2 Behaviour Trees

A traditional approach to developing AI-controlled players for games has been to
use Finite State Machines (FSMs). The problem with FSMs is that as the AI-bot
grows in complexity, the number of states and transitions between them grows
exponentially with the size of the game, making it difficult to manage. Even
though Hierarchical Finite State Machines (HSFMs) overcome this, reusability is
often a problem. Behaviour trees provide a simple, scalable and modular solution
to embody complex AI behaviours. Each tree is goal-oriented, i.e. associated with
a distinct, high-level goal which it attempts to achieve. These trees can be linked
together with one another, allowing the implementation of complex behaviours
by first defining smaller, sub-behaviours. Behaviour trees are constructed from 2
types of constructs. Firstly, primitive constructs form the leaves of the tree, and
define low level actions which describe the overall behaviour. They are classified
into 2 types, actions, which execute methods on the game, and conditions,
which query the state of the game. Secondly, composite constructs can be used
to group such primitive constructs to perform a higher-level function. the 3 main
types of composites are sequences, selectors and decorators.

2 API and documentation available at: http://www.doc.ic.ac.uk/˜rb1006/projects:api

Evolving Behaviour Trees for the Commercial Game DEFCON 103

Fig. 2. Using A hand-crafted tree to generate a random behaviour tree

As an example, consider Figure 1 which shows a behaviour tree, with its nodes
labelled to identify the constructs used. At the root, the tree has a high-level
goal of placing a fleet. The sequence node dictates that, in order to achieve
this goal, it has to first achieve the sub-goal of checking that the game is in
DEFCON4 using a condition, followed by another composite sub-goal to place
the fleet within the game. Thus, all child nodes must succeed for a sequence to
succeed. The sub-goal is dictated by a selector, which will succeed as soon as
one of its child nodes succeeds. Each child task begins with a decorator, which
in this case acts as a counter to ensure that its child action node, used to place a
fleet of a specified composition at location (x,y), is only executed once. We read
the tree as one that achieves the goal of placing a fleet by first checking that it
is the correct point in the game to do so. Then, it selects one (x, y, composition)
combination at random and executes it in the game. If that combination fails,
it will try the next set combination until it has exhausted all of its options.

3 Evolving Behaviour Trees

We used behaviour trees to hand-craft an initial AI-bot to demonstrate that we
could encode the basic abilities that a player would be able to perform. The
AI-bot was given sufficient functionality to execute the basic actions to play
DEFCON. However, its decision of when and whether to apply the actions were
performed randomly. Ultimately, we planned to evolve the behaviour trees of
this random AI-bot by playing games against the default Introversion AI-bot
and afterwards, extract the best performing behaviour trees in different areas
before combining them to produce a competitive AI-bot overall.

3.1 Randomly Generating Behaviour Trees

To produce the original set of behaviour trees, we adopted Bryson’s Behaviour
Oriented Design approach [3,4]. We define a high-level goal for the AI-bot before
subsequently breaking it down into smaller sub-tasks that would form the basis
of the required behaviour trees. This iterative process identifies building blocks
of which to define more complex behaviours upon. Figure 2 shows how the hand-
crafted tree on the left was used to produce a new tree on the right for thepurpose
of placing silo units randomly. The left tree checks whether it is the appropriate
DEFCON level, selects a coordinate at random, and places the silo at that
randomly chosen location. The resultant tree capable of placing silos at those

104 C.-U. Lim, R. Baumgarten, and S. Colton

Fig. 3. Two behaviour trees with branches selected for recombination

Fig. 4. The offspring from the recombination between the two parent behaviour trees

locations is shown on the right. We vary the AI-bot’s behaviour (i.e. the number
and positions of silos placed) by choosing which of its branches to attach or
remove. We later made use of evolution to make these choices. We continued
with this approach to produce other behaviour trees that performed random
decisions with regards to other aspects of playing the game.

3.2 Applying Genetic Operators

Trees are structures which genetic operators are naturally applicable to [9], with
crossovers on branches and mutation on nodes. Figure 3 shows two behaviour
trees which have the same goal of placing fleet units. Using the left behaviour
tree as a reference, what occurs is a sequence that first checks if the current
DEFCON level is 4, and then proceeds to the priority selector if it is so. Looking
at the left most action node, it will attempt to place a fleet composed of 3
carriers and 3 battleships at longitude 24.0 and latitude 31.9. The parent counter
decorator ensures that the action is only executed once.

Crossovers are applied to randomly selected portions of the trees. Figure 4
shows the resulting offspring from recombination.Instead of placing a second
fleet at (22.0, -10.8) with a composition of 4 submarines, it now places a second
fleet at (7.90, 12.2) with a composition of 6 submarines. Random mutation can
be used to increase genetic diversity. In Figure 5, the green portion shows how
incremental mutation might occur to the left behaviour tree of figure 4, resulting
in a different topology. Instead of placing 4 fleet units, the AI-bot now places 5
fleet units. The location and fleet compositions used for the new branch (high-
lighted green) were generated randomly during mutation. The red portion shows
how a point mutation might occur. Since behaviour trees are not strongly-typed

Evolving Behaviour Trees for the Commercial Game DEFCON 105

Fig. 5. Two types of mutations occurring in one of the behaviour trees

for recombination, inferior offspring trees may result (i.e. placing units which the
AI-bot doesn’t possess, or in illegal positions.) These trees would presumably be
naturally selected against as the system evolves. In section 6, we mention ways
to extend this approach to produce richer and more descriptive behaviour trees.

4 Fitness Functions

As mentioned previously, we evolved behaviour trees for individual behaviours,
and combined the best performing trees into an overall AI-bot control mecha-
nism. For the 4 behaviours, we used these fitness functions to drive the search:
• Defence Potential of Silo Positions. Silos are ground installations which
play a significant role in both attack and defence. In both cases, a silo’s effective-
ness is affected not only by its absolute position, but also its position relative
to the other silos. We chose to focus on the defensive aspect of the silos by
measuring their defence potential – the total number of air units that were
successfully destroyed for a given game.
• Uncovered Enemy Units by Radars. While radars do not have a direct
influence on a player’s attack or defensive abilities, they provide an indirect
means of support by uncovering enemy units. This allows the AI-bot to then
react appropriately to the situation, i.e. by sending fighters to enemy sea units
or by shooting down missiles earlier. The coverage of the radars is determined by
their positions, and we used the number of enemy sea units uncovered before the
start of DEFCON1 as a fitness measure for evolving radar placement positions.
• Fleet Movement & Composition. The fitness of the fleet movement and
composition in a game was calculated by evaluating the number of enemy build-
ings uncovered, the number of enemy buildings destroyed and the number of
enemy units destroyed by the AI-bot. For each of these, a score was calculated
and the average of the 3 scores taken as an overall fitness for the behaviour tree.
• Timing of Attacks. We used the difference between the final end-game scores
as an indicator of how well the AI-bot performed for timing of attacks. A larger
difference indicated a convincing win whereas a smaller difference would mean a
narrower victory. We fixed the bounds for the maximum and minimum difference
to +250 and -250 respectively (with these values found empirically through some
initial experimentation). The fitness was calculated using the function:

106 C.-U. Lim, R. Baumgarten, and S. Colton

fitness =
differencescore − (−250)

250− (−250)
=

(score(AIbot) − score(Enemy)) + 250
500

5 Experiments and Results

5.1 Experimental Setup

We chose the following game options for our experiments. Firstly, the starting
territories for our AI-bot and the enemy were fixed as Africa and South America
respectively. Secondly, the default game scoring was used. Four main experi-
ments were performed, each evolving a set of AI-bots with the aim of improving
the population AI-bot’s performance as per the respective fitness functions de-
scribed above. Each population contained 100 individuals, and each experiment
was evolved between 80 to 250 generations. We employed a fitness proportionate
selection method to choose pairs for recombination and set the mutation rate
to 5%. These parameters were chosen after performing several initial experi-
ments. Naturally, there is a vast array of other parameter settings we could have
experimented with, but given the time constraints imposed by the number of
experiments and running time of each game, we had to decide upon the values
empirically. Via four evolutionary sessions, we evolved behaviour trees for:

1. Placement of silos to maximise defence against enemy air units
2. Placement of radar stations to maximise the number of enemy units detected

throughout the course of the game
3. The placement, composition and movement of the player’s fleet units to

maximise their overall attack capabilities
4. The timings of the attacks for 4 types of attach, namely, submarine attacks

using mid-range missiles, carrier bomber attacks using short range missiles,
air base bomber attacks using short range missiles and silo attacks using
long range missiles.

5.2 Distribution

Ultimately, the fitness functions rely on playing a game to completion. Unfor-
tunately, with 4 experiments, each running for about 100 generations with 100
individuals in a population would require 40,000 game runs. With each game
taking approximately 90 seconds to complete, a total time of 3.6 million seconds
(∼41 days) of continuous processing would be required for the project. To bring
the time-frame down to ∼2 days per experiment, we distributed the running of
DEFCON games over 20 computers, connected together via a local area network.

5.3 Results

For silo placements, Figure 6(a) shows that the mean fitness of the population
increased over the generations. The mean number of missiles destroyed increases

Evolving Behaviour Trees for the Commercial Game DEFCON 107

from around 70 to almost 100, and similarly, the mean number of bombers
destroyed increases from about 18 to about 34. However, the mean number of
fighters destroyed remained at around 18 across the generations, which we believe
is due to the silo placement locations evolving further away and out of enemy
fighter scout range over the generations. For radar placements, we observe a
similar increase in mean fitness. Figure 6(b) shows the mean number of detected
enemy sea units increasing from around 6 to 10, with the mean fitness of the
top 10% of the population even reaching 21.5 (∼90% of detectable enemies when
excluding submarines) at generation 80. For fleet placement, composition and
movement, Figure 6(c) shows an increase in the AI-bots’ mean fitness as the AI-
bot evolved over the generations, with the mean fitness increasing from about 8 to
26. Similarly, when evolving the attack timings for the AI-bot, Figure 6(d) shows
an increase in the average number of games won. Initially having on average 4
wins in a population of 100 AI-bots, the number reached 47 at Generation 65.
The average number of wins appears to be plateauing, which might indicate a
need to continue the evolution over more generations.

We constructed an AI-bot with a controller that used the best trees evolved
for each of the four behaviours. It was set to play 200 games against the de-
fault Introversion AI-bot. The difference between the scores obtained by both
the AI-bot and the opponent was used as an indicator of how well the AI-bot
had performed, which we term as the margin of victory. Prior to performing
the evolution, the AI-bot which consisted of behaviour trees which performed
random movements and choices (Section 3.1) managed to win around 3% of the

Fig. 6. Mean fitnesses over generations for each behaviour. (a) silo placement (b) radar
placement (c) fleet coordination (d) attack timings.

108 C.-U. Lim, R. Baumgarten, and S. Colton

Fig. 7. Summary of the Performance of the Evolved AI-bot

Fig. 8. Generating different topologies for random trees

time out of the 200 games. We ran the evolved AI-bot which beat the default
Introversion AI-bot 55% of the time in 200 games. Figure 7 shows the distribu-
tion of the margins of victory in these matches. We note that in a large number
of games, our AI-bot only lost to the opponent by a very low margin, indicating
that the the number of wins by our AI-bot could have been larger. The opponent
managed to beat our AI-bot by a moderate to a very high margin fairly often,
indicating more convincing victories. Using a binomial test at the 4% signifi-
cance level with a 50% winning probability, we were unable to reject the null
hypothesis that both AI-bots were equal in abilities.

6 Conclusions and Future Work

By evolving behaviour trees for individual behaviours and combining the trees
into an overall AI-bot, we have been able to produce a competitive player that
was capable of beating the original, hand-coded DEFCON AI-bot more than
50% of the time. This hints at the possibility that such an approach is indeed
feasible in the development of automated players for commercial games. Specu-
lating on the effect of further experimentation, we refer to the graphs in Figure 6.
Although we have seen improvements after approximately 100 generations, we
notice that the mean fitness seems to have reached a plateau, which might in-
dicate that performing the evolution for a greater number of generations may
not show significant improvements in mean fitness. This raises the question of
whether evolutionary techniques need to be supplemented with other techniques
in automating AI-bot design, and if so, which techniques should be investigated.

Evolving Behaviour Trees for the Commercial Game DEFCON 109

Evolving against a single opponent could have caused over-fitting. An im-
provement would be to perform experiments against other AI-bots or human
players. Also, in the event that no training AI-bot was present, it raises the
question of whether co-evolution [12] could have been applied. DEFCON is a
non-deterministic game, especially when involving human players. We did not
consider all possible permutations of starting locations for both the player and
the opponent. Africa and South America are within close proximity, so other
starting locations would increase the distance between players and might re-
quire different strategies. We also picked 4 tasks to concentrate on, but there are
other game-play aspects such as the coordination of air units that could have
been investigated. Our implementation only considered the transition between
two stages, from being defensive to launching an attack, which had to occur
in that order. It would be interesting to see the application of the evolution of
sub-trees using lookup decorators to allow the AI-bot to exhibit complex be-
haviours and adaptive game play styles to match opponents, resulting in more
descriptive behaviour trees. Figure 8 shows how the use of decorators can be
used to generate behaviour trees which may differ in topology.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments.

References

1. Bauckhage, C., Thurau, C.: Exploiting the fascination: Video games in machine
learning research and education. In: Proceedings of the 2nd International Workshop
in Computer Game Design and Technology (2004)

2. Baumgarten, R., Colton, S., Morris, M.: Combining AI Methods for Learning Bots
in a Real-Time Strategy Game. Int. J. of Computer Games Tech. (2009)

3. Bryson, J.: Action selection and individuation in agent based modelling. In: Pro-
ceedings of the Argonne National Laboratories Agent Conference (2003)

4. Bryson, J.: The behavior-oriented design of modular agent intelligence. In: Kowal-
czyk, R., Müller, J.P., Tianfield, H., Unland, R. (eds.) NODe-WS 2002. LNCS
(LNAI), vol. 2592, pp. 61–76. Springer, Heidelberg (2003)

5. Hagelbäck, J., Johansson, S.: Using multi-agent potential fields in real-time strat-
egy games. In: Proceedings of the 7th International Joint Conference on Au-
tonomous Agents and Multi-agent Systems, vol. 2 (2008)

6. Hauptman, A., Sipper, M.: GP-endchess: Using genetic programming to evolve
chess endgame players. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert,
J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 120–131. Springer,
Heidelberg (2005)

7. Hecker, C., McHugh, L., Argenton, M., Dyckhoff, M.: Three Approaches to Halo-
style Behavior Tree AI. In: Games Developer Conference, Audio Talk (2007)

8. Isla, D.: Managing complexity in the Halo 2 AI system. In: Proceedings of the
Game Developers Conference (2005)

110 C.-U. Lim, R. Baumgarten, and S. Colton

9. Langdon, W.: Size fair and homologous tree genetic programming crossovers. Ge-
netic programming and evolvable machines 1(1/2), 95–119 (2000)

10. Luke, S.: Genetic programming produced competitive soccer softbot teams for
RoboCup. In: Proceedings of the 3rd Annual Conference of Genetic Programming
(1998)

11. Orkin, J.: Three states and a plan: the AI of FEAR. In: Proceedings of the Game
Developers Conference (2006)

12. Priesterjahn, S., Kramer, O., Weimer, A., Goebels, A.: Evolution of human-
competitive agents in modern computer games. In: Proceedings of the IEEE
Congress on Evolutionary Computation (2006)

13. Togelius, J., De Nardi, R., Lucas, S.: Towards automatic personalised content cre-
ation for racing games. In: Proceedings of the IEEE Symposium on Computational
Intelligence and Games (2007)

Evolving 3D Buildings for the
Prototype Video Game Subversion

Andrew Martin, Andrew Lim, Simon Colton, and Cameron Browne

Computational Creativity Group
Department of Computing, Imperial College London

www.doc.ic.ac.uk/ccg

Abstract. We investigate user-guided evolution for the development of
virtual 3D building structures for the prototype (commercial) game Sub-
version, which is being developed by Introversion Software Ltd. Build-
ings are described in a custom plain-text markup language that can be
parsed by Subversion’s procedural generation engine, which renders the
3D models on-screen. The building descriptions are amenable to ran-
dom generation, crossover and mutation, which enabled us to implement
and test a user-driven evolutionary approach to building generation. We
performed some fundamental experimentation with ten participants to
determine how visually similar child buildings are to their parents, when
generated in differing ways. We hope to demonstrate the potential of
user-guided evolution for content generation in games in general, as such
tools require very little training, time or effort to be employed effectively.

1 Introduction

Creating content for a game world is a notoriously time-consuming process,
largely due to the complexities involved in 3D modelling. Of all of the environ-
ments that can be created in a 3D world, one of the most difficult to realise is a
city, and yet they are becoming increasingly common in modern games. Signifi-
cant amounts of time and money are required to create such environments, and
even for larger companies, this can represent a sizeable financial risk. Further-
more, it is often necessary to make significant concessions in order to achieve a
result within an appropriate time frame, such as repeatedly reusing the same as-
sets or settling for an unrealistically small game environment. Subversion is an
early game prototype by Introversion Software Ltd. (www.introversion.co.uk),
which will be set in an automatically generated city. The aim here was to create
a tool that would allow a player to rapidly design buildings for the Subversion
game world, to increase their engagement with the game and to make the 3D
environment richer and more diverse.

As described in section 2, buildings in Subversion are represented in a custom
structural markup language. This representation is amenable to random gener-
ation, crossover and mutation, as described in section 3. Hence, we were able
to implement a user-directed building creation interface which users/players can
employ to evolve a set of satisfactory and unique building models from an initial

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 111–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

112 A. Martin et al.

generation of stock (or randomly generated) models. If this interface is to find
its way into the Subversion release, various experiments relating to user satis-
faction have to be carried out. In section 4, we describe the most fundamental
such experiment. This tested whether the evolutionary operators lead to useful
changes, i.e., the user can make satisfying progress using the tool, where child
buildings look enough like their parents for there to be a purpose to choosing
candidates for evolution, but are not so similar that progress is too slow. As de-
scribed in section 5, other approaches could be used to solve this problem, such
as providing the user with intuitive modelling tools similar to those seen in the
popular game Spore. However, the main advantage of the evolutionary approach
is that the user/designer need not have a clear image of their desired result in
mind before proceeding. Instead, the user is presented with visual cues for the
duration of the design process, and simply has to visually assess each building
model presented to him/her. This also allows for a satisfyingly minimalist inter-
face, far removed from the rather intimidating interfaces normally found in 3D
modelling tools.

2 Building Generation

The Subversion procedural content engine is capable of generating and displaying
3D models of building represented as data files that describe their key features
as sets of structural commands. The language was custom designed for the de-
scription of buildings and the resulting data files are in human readable form.

2.1 Command Language

The command language essentially defines each building as a stack of three-
dimensional objects, each described as a two-dimensional shape that is verti-
cally extruded. The two-dimensional base shapes include circles, rectangles and
squares, and can be subject to various simple operations such as translation,
rotation and union. Base shapes may also be contracted, and it is also possible
to offset the base of a shape from its initial position using a three-dimensional
vector, which can be used in conjunction with a contraction to create slanted
edges. Examples of the command code used to describe two buildings are shown
in figure 1a, with an illustrative example given below. The Subversion interpreter
parses the building description files into internal tree representations, which can
then be used to rapidly generate 3D models of the buildings as required. An
advantage of internally representing objects in tree form is that this facilitates
their manipulation by evolutionary techniques, as described in section 3.

2.2 An Illustrative Example

Figure 2 portrays a pair of building files, where the first, CirclePart, has another
building (SquarePart) embedded on top of it. The internal data structure that
is used to represent the buildings is a node grid which consists primarily of a list
of vertices in addition to fields for vertical extrusions and height. The Creation

Evolving 3D Buildings for the Prototype Video Game Subversion 113

Fig. 1. (a) Two example buildings and their Subversion command code descriptions.
(b) Two children produced by crossing over the parents above. (c) A structural mutant
[left] and a parametric mutant [right].

114 A. Martin et al.

Fig. 2. A simple building represented as two building files, and the resulting node grid

section of each file in figure 2 expresses what the base shape for the building is
going to be. It allows for basic shapes like circles, rectangles and squares as well
as more complex shapes specified by vertex lists, which can also be subject to
various simple operations like rotation and union. The Sectors parts of building
files define transformations to be applied using the shape defined in Creation,
and they also allow for the embedding of other buildings by the CreateChild
command. The transformations include: rotation (which is applied to the entire
base shape as opposed to the per part rotation done in Creation), scaling and
contraction (which is the result of moving all the edges along their inner normal
at a constant rate, as shown in figure 2 by the protruding tower).

When parsed, the building file is split into two separate sections called
Creation and Sectors. As mentioned previously, when the generator is called
by the game engine, it uses the information in the file to generate a 3D node grid,
represented with a vertex list, height and child information. In our example, the
node grid generated by CirclePart after Creation is:

vertexlist = {(15, 0, 0), (10.6, 0 ,10.6), (0, 0, 15), (-10.6, 0, 10.6), (-15, 0, 0),
(-10.6, 0, -10.6), (0, 0, -15), (10.6, 0, -10.6)}

height = 0, child = null.

In this example, immediately after the base has been generated, the Sectors
commands will be run and for the CirclePart node grid, the vertexlist would re-
main unchanged, but the height would become 30 and the child field would point
to a new node grid, that eventually becomes the node grid for the SquarePart:

vertexlist = {(7.5, 0, 7.5),(-7.5, 0, 7.5),(-7.5, 0, -7.5),(7.5, 0, -7.5)}
height = 30 child = null

After a building has been generated into a node grid, the grid is triangulated and
passed to the renderer. The buildings themselves are then simply represented as

Evolving 3D Buildings for the Prototype Video Game Subversion 115

an array of triangles. The colour and alpha values of the triangles to be rendered
are stored elsewhere in the engine, where the RGBA values of everything that
is to be rendered inside the Subversion city are stored.

3 Evolving Buildings

Our building evolution tool maintains a population of building models and oper-
ates using a standard evolutionary approach. The population is initially seeded
with the randomly generated building descriptions, and those buildings which
are selected by the user constitute the breeding pool used to create the next
generation. If the breeding pool is empty when the user requests a new genera-
tion, then more random buildings are produced for the next generation. If not,
then random pairs of parents are selected from the breeding pool, crossed over to
create children and then mutated, based on the likelihoods specified through the
user interface (see subsection 3.3 below). This process is repeated until enough
children have been created to fill the next generation.

3.1 Crossover

Crossover is performed as per standard Genetic Programming techniques. Each
branch of the parent trees is assigned a tag denoting that branch’s role and
what other branches it is compatible with. For example, branches tagged Circle
and Square both denote two-dimensional base shapes, hence are functionally
equivalent within the language and therefore compatible. Similarly, a branch
tagged as a command to define extrusion length may be crossed over with other
similarly tagged branches. Each command within the subset of the language that
we use has a corresponding tag.

After the trees are tagged, both parents are cloned and a branch is randomly
selected from one of the clones. All branches in the other clone with match-
ing tags are then located and one is randomly selected; these two compatible
branches are then swapped. This process of swapping branches may then be
performed multiple times, depending on the user-specified crossover strength.
Once the swapping is completed, one of the modified clones will be deleted,
and the other saved as the child. Two examples of crossover can be found in
figure 1b. For example, the building depicted in figure 1b [left] is a child pro-
duced by single-swap crossover, taking buildings A and B depicted in figure 1a
respectively as its two parents. The child has taken A as its base, and has had its
Creation branch swapped for the Creation branch of B. The building depicted
in figure 1b (right) is a child produced by four-swap crossover between A and
B. The child has taken A as its base again, but this time the Circle subtree
was swapped for the Rectangle subtree of B, and then the entire Creation
subtree was swapped for the (now modified) Creation subtree of B, bringing
the Circle subtree back into A. Similarly, the entire Contraction subtree was
first swapped out for the CreateChild subtree of B, but then the CreateChild
subtree was swapped back out for a new Contraction subtree beneath the orig-
inal Contraction subtree. As we can see from figures 1a and 1b, the two children
are clearly different from both parents, but have inherited aspects of both.

116 A. Martin et al.

3.2 Mutation

After crossover, the following two kinds of mutation may be applied to the
resulting offspring, depending on the user-specified strengths.

• Structural Mutations. These apply to the structure of the tree itself, so
that some subtrees are completely replaced with randomly generated subtrees
(which are functionally equivalent, as explained in section 3.1). In order to struc-
turally mutate a tree, another tree is randomly generated with the constraint
that it must contain the same number of sections as the first tree. Swapping
is then performed between the trees as per crossover. As before, the strength
of the structural mutation is defined as the number of swaps performed be-
tween the randomly generated tree and the original tree. Figure 1c [left] shows
a structural mutation of a building. A random tree was generated containing a
Contract subtree, which was then swapped into the original building in place
of the CreateChild subtree.

• Parametric Mutations. These apply to those commands with numerical
parameters, such as the sizes of shapes, rotations, translations, extrusions and
contractions. The process is straightforward: numerical parameters are selected
at random from the tree and replaced with new values randomly generated within
each parameter’s specified range. For example, a value specifying the degree of
rotation might be mutated to any value between 0 and 360. The strength of the
parametric mutation dictates the number of parameters that will be mutated.
Figure 1c [right] shows a typical parametric mutation. Note that significant
changes may result from the parametric mutation of buildings with complex
Creation subtrees, but as we see from the experiments below, weak parametric
mutations will probably not have a significant effect.

3.3 User Interface

Upon starting a session with the building evolution tool, the user is shown an
initial generation of randomly generated data files, each describing a building, for
which the corresponding 3D models are generated and displayed as a grid of tiles.
The user can control a camera in virtual 3D space to view the buildings from any
desired angle; every building is viewed from the same angle to avoid the tedium of
manipulating a separate camera for each. Clicking on a tile expands that building
to fill the screen, and clicking again reverts the interface back to the tile view.
Each tile has a button to indicate its status as an individual of interest. The
interface also provides a number of sliders to control (a) the structural mutation
strength and likelihood (b) the parametric mutation strength and likelihood;
and (c) the crossover strength. When the user has finished selecting buildings of
interest and configuring the sliders, they click on the Next Generation button to
create a new generation of buildings from those selected. The tile grid is then
cleared and repopulated with the new generation; previous generations can be
revisited using tabs along the top of the grid.

Evolving 3D Buildings for the Prototype Video Game Subversion 117

4 Experimental Survey and Results

With user-driven evolutionary systems such as those found in evolutionary art,
the first question to be asked is whether the evolution of artefacts provides a
satisfying experience. To be satisfying, the user must feel like (a) their choices
make a difference, i.e., the children in each subsequent generation bear an ad-
equate resemblance to the parents that the user chose and (b) evolution is not
proceeding too slowly, i.e., the children in subsequent generations should not
look too much like their parents. Especially when evolving complex objects such
as building designs which are marked up, we should not take such a satisfying
search for granted, as it is possible that the objects are so complex that even
minor changes at genome level make huge changes at the artefact level.

For a fundamental experiment to address this question, and to test whether
the different generation techniques produce children as expected, ten participants
were asked to complete a survey where two parent buildings and 16 offspring
buildings were presented for twenty pairs of parents. Figure 3 shows an example
of the questionnaire sheet. We see that the participant is asked to rate each
child as being (a) too similar (b) too dissimilar or (c) neither: okay to their
parents. Designs marked as ‘too different’ often included those that were too
outlandish or physically infeasible to make pleasing buildings, while those that
showed trivial variation from either parent and therefore offered little genetic
diversity were often marked as too similar. The nature of the way in which the
16 children were generated was varied across the twenty questionnaire sheets. In
particular, the following six generation methods were exhibited, with the sheets
taken from the 1st, 6th and 14th populations, to produce 18 sheets:

Fig. 3. Example questionnaire sheet

118 A. Martin et al.

Table 1. Building designs by their construction method, with evaluation percentages
and average evaluation percentages per construction method indicated

1. Strong crossover (20 swaps per child).
2. Weak crossover (5 swaps per child).
3. Strong structural mutation (20 structural mutations per child).
4. Weak structural mutation (5 structural mutations per child).
5. Strong parametric mutation (20 parametric mutations per child).
6. Weak parametric mutation (5 parametric mutations per child).

Two sheets with randomly generated children were also used as controls.

4.1 Results

The results of the surveys are shown in table 1. The values shown indicate
the percentages of those designs marked too similar, too different and OK re-
spectively. The results were largely as to be expected. In particular, it is clear
that the random generations bear little resemblance to the supposed parents
(on average only 0.7% of the children were deemed too similar, with 67.4% of
the children deemed too different). As expected, the randomly generated con-
trol set performed worse than the controlled parameter sets, with children being

Evolving 3D Buildings for the Prototype Video Game Subversion 119

marked as OK much less often on average than any other generation method.
It is interesting to note, however, that 31.9% of randomly generated children
were deemed to be neither too similar nor too dissimilar (OK), which suggests
that some random introduction of building designs might be appreciated by the
user, and might enable them to drive the search in new directions. In overview,
it is encouraging that the non-random generation methods achieve a hit rate of
around 50% for OK children, although this could be improved upon.

As expected, we see that weak versions of crossover, structural mutation and
parametric mutation all produced children which were assessed far more often as
too similar to the parents than the strong versions of these generation methods.
Perhaps less expected is the observation that the weak form of each parame-
ter setting led to more child designs being marked by the user as OK than the
corresponding strong form, and we plan further experimentation to determine
why this might be. Furthermore, we can also see that the weak structural muta-
tion and weak parametric mutation settings led to more children being marked
as OK than any other settings, although this improvement is not marked. The
only obvious correlation with the generation number is exhibited by the weak
parametric generation method, where the percentage of children marked as too
different clearly decreases as the generation number increases. This can be ex-
plained by the size of the building design tree growing as the session progresses,
and because weak parametric mutation has little effect on larger designs.

5 Conclusions and Future Work

A good survey of procedural techniques for city generation is supplied in [3]. The
most well known example of procedural building generation is Pascal Mueller
et. al’s work [4], which forms part of the city generation procedures [5], which has
resulted in the commercial CityEngine package (www.procedural.com). Mueller’s
approach is different from the one presented here, because it employs a shape
grammar rather than a markup language, and is discussed primarily in the con-
text of heavily automated generation. While shape grammars have been evolved,
for instance in [9], we do not know of any application of evolutionary techniques
to Mueller’s approach. A genetic algorithms approach to conceptual building
design is presented in [8], where the emphasis is on decision support systems to
assist designers. Addressing fundamental questions of whether the evolutionary
techniques involved in evolutionary arts projects (in particular, image filter evo-
lution) are better than random generation is the topic of [1], where the authors
asked 30 participants to interact with a very similar interface (without the 3D
elements) to the one described here. They showed that intelligent generation of
image filters is preferred by users up to statistical significance, and the evolu-
tionary techniques outperformed image retrieval and database techniques. We
plan to compare and contrast our approach with other evolutionary approaches
to content generation for games, such as in [2].

We have demonstrated that a user-directed evolutionary process can be em-
ployed for generating custom building designs for game content in a city world

120 A. Martin et al.

for a commercial video game. We have further shown that the search process
the user undertakes is satisfying because it neither produces too many overly
similar nor overly dissimilar offspring buildings. As suggested by an anonymous
reviewer, we need to investigate how disruptive the crossover mechanism is that
we employ, and consider experimenting with homologous crossover methods [6]
[7]. Moreover, while our preliminary experiments have served an experimental
design purpose here, we need to gather more data in order to draw statistically
significant conclusions about the nature of user interaction with the system. In
future, we plan to develop a more sophisticated user interface for the evolu-
tion and selection process, by adding more constraints to both the command
language and the generation process. This will hopefully reduce the number of
outlandish and infeasible shapes that are invariably rejected by the user, which
could be further enhanced by the automated detection of such degenerate cases.
Another useful addition to the tool would be the inclusion of constraints for the
generation of themed content for situations in which particular building types
are required. Examples of such themes might include ‘corporate skyscraper’,
‘residential house’, and so on. Also, more sophisticated experiments comparing
combinations of parameter settings rather than each parameter setting in iso-
lation could reveal further insights into harmonious parameter settings for the
purpose of automated evolution.

Acknowledgements

We would like to thank the anonymous reviewers for their very useful comments.
This work was supported by a Technology Strategy Board grant.

References

1. Colton, S., Gow, J., Torres, P., Cairns, P.: Experiments in objet trouvé browsing.
In: Proceedings of the 1st Int. Joint Conference on Computational Creativity (2010)

2. Hastings, E., Guha, K., Stanley, K.: Evolving content in the galactic arms race video
game. In: Proceedings of the IEEE Symposium on Computational Intelligence and
Games (2009)

3. Kelly, G., McCabe, H.: A survey of procedural techniques for city generation. Insti-
tute of Technology Blanchardstown Journal 14 (2006)

4. Mueller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modelling
of buildings. ACM Transactions on Graphics 25(3), 614–623 (2006)

5. Parish, Y., Mueller, P.: Procedural modelling of cities. In: Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques (2001)

6. Park, J., Park, J., Lee, C., Han, M.: Robust and efficient genetic crossover operator:
Homologous recombination. In: Proc. Int. Joint Conf. on Neural Networks (1993)

7. Poli, R., Stephens, C., Nucleares, C., Wright, A., Rowe, J.: On the search biases
of homologous crossover in linear genetic programming and variable-length genetic
algorithms. In: Proc. Genetic and Evolutionary Computation Conference (2002)

8. Rafiq, Y., Mathews, J., Bullock, G.: Conceptual building design-evolutionary ap-
proach. Journal of Computing in Civil Engineering 17(3), 150–158 (2003)

9. Saunders, R., Grace, K.: Extending context free to teach interactive evolutionary
design systems. In: Proceedings of the EvoMUSART workshop (2009)

Finding Better Solutions to the Mastermind Puzzle
Using Evolutionary Algorithms

Juan J. Merelo-Guervós2 and Thomas Philip Runarsson1

1 School of Engineering and Natural Sciences, University of Iceland
tpr@hi.is

2 Department of Architecture and Computer Technology, ETSIIT, University of Granada, Spain
jmerelo@geneura.ugr.es

Abstract. The art of solving the Mastermind puzzle was initiated by Donald
Knuth and is already more than thirty years old; despite that, it still receives much
attention in operational research and computer games journals, not to mention
the nature-inspired stochastic algorithm literature. In this paper we revisit the
application of evolutionary algorithms to solving it and trying some recently-
found results to an evolutionary algorithm. The most parts heuristic is used to
select guesses found by the evolutionary algorithms in an attempt to find solutions
that are closer to those found by exhaustive search algorithms, but at the same
time, possibly have better scaling properties when the size of the puzzle increases.

1 Introduction

Mastermind in its current version is a board game that was introduced by the telecom-
munications expert Mordecai Merowitz [12] and sold to the company Invicta Plastics,
who renamed it to its actual name; in fact, Mastermind is a version of a traditional puz-
zle called bulls and cows that dates back to the Middle Ages. In any case, Mastermind
is a puzzle (rather than a game) in which two persons, the codemaker and codebreaker
try to outsmart each other in the following way:

– The codemaker sets a length � combination of κ symbols. In the classical version,
� = 4 and κ = 6, and color pegs are used as symbols over a board with rows of � = 4
holes; however, in this paper we will use uppercase letters starting with A instead
of colours.

– The codebreaker then tries to guess this secret code by producing a combination.
– The codemaker gives a response consisting on the number of symbols guessed in

the right position (usually represented as black pegs) and the number of symbols in
an incorrect position(usually represented as white pegs).

– The codebreaker then, using that information as a hint, produces a new combination
until the secret code is found.

For instance, a game could go like this: The codemaker sets the secret code ABBC, and
the rest of the game is shown in Table 1.

Different variations of the game include giving information on which position has
been guessed correctly, avoiding repeated symbols in the secret combination (bulls and

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 121–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

122 J.J. Merelo-Guervós and T.P. Runarsson

Table 1. Progress in a Mastermind game that tries to guess the secret combination ABBC. The
player here is not particularly clueful, playing a fourth combination that is not consistent with
the first one, not coinciding, for instance, in two positions and one color (corresponding to the
2 black/1 white response given by the codemaker) with it. The rest of the combinations would
effectively be consistent; for instance, ABBD coincides in two places (first A and third B) and
one “color” (B) with the first, and two positions (A and B in the first and second position) with
the second combination.

Combination Response
AABB 2 black, 1 white
ABFE 2 black
ABBD 3 black
BBBE 2 black
ABBC 4 black

cows is actually this way), or allowing the codemaker to change the code during the
game (but only if this does not make responses made so far false).

In any case, the codebreaker is allowed to make a maximum number of combinations
(usually fifteen, or more for larger values of κ and �), and the score corresponds to
the number of combinations needed to find the secret code; after repeating the game
a number of times with codemaker and codebreaker changing sides, the one with the
lower score wins.

Since Mastermind is asymmetric, in the sense that the position of one of the players
after setting the secret code is almost completely passive, and limited to give hints as
a response to the guesses of the codebreaker, it is rather a puzzle than a game, since
the codebreaker is not really matching his skills against the codemaker, but facing a
problem that must be solved with the help of hints, the implication being that playing
Mastermind is more similar to solving a Sudoku than to a game of chess; thus, the
solution to Mastermind, unless in a very particular situation (always playing with an
opponent who has a particular bias for choosing codes, or maybe playing the dynamic
code version), is a search problem with constraints.

What makes this problem interesting is its relation to other, generally called oracle
problems such as circuit and program testing, differential cryptanalysis and other puzzle
games (these similarities were reviewed in our previous paper [8]) is the fact that it has
been proved to be NP-complete [11,5] and that there are several open issues, namely,
what is the lowest average number of guesses you can achieve, how to minimize the
number of evaluations needed to find them (and thus the run-time of the algorithm),
and obviously, how it scales when increasing κ and �. This paper will concentrate on
the first issue.

This NP completeness implies that it is difficult to find algorithms that solve the
problem in a reasonable amount of time, and that is why initial papers [8,2] introduced
stochastic evolutionary and simulated annealing algorithms that solved the Mastermind
puzzle in the general case, finding solutions in a reasonable amount of time that scaled
roughly logarithmically with problem size. The strategy followed to play the game was
optimal in the sense that is was guaranteed to find a solution after a finite number of
combinations; however, there was no additional selection on the combination played
other than the fact that it was consistent with the responses given so far.

Finding Better Solutions to the Mastermind Puzzle Using Evolutionary Algorithms 123

In this paper, after reviewing how the state of the art in solving this puzzle has
evolved in the last few years and showing how different evolutionary algorithms fare
against each other, we try to apply some kind of selection to consistent solutions found
by the evolutionary algorithm, so that the combination played is most likely to shorten
the search time. In this we follow a path initiated by Berghman et al. [1], but taking into
account our own results [10] on the number of combinations that are needed to obtain a
reasonable result. The main idea driving this line of research is to try and obtain results
that are comparable with the exhaustive search methods, but without the need to see
all possible combinations at the same time. This will allow to create a method that can
work, in principle, for any problem size, and scale reasonably unlike exhaustive search
whose scaling is exponential in time and in memory.

The rest of the paper is organized as follows: next we establish terminology and
examine the state of the art; then the new evolutionary algorithms we introduce in this
paper are presented in section 3 and the experimental results in 4; finally, conclusions
are drawn in the closing section 5.

2 State of the Art

Before presenting the state of the art, a few definitions are needed. We will use the
term response for the return code of the codemaker to a played combination, cplayed . A
response is therefore a function of the combination, cplayed and the secret combination
csecret , let the response be denoted by h(cplayed,csecret). A combination c is consistent
with cplayed iff

h(cplayed,csecret) = h(cplayed,c) (1)

that is, if the combination has as many black and white pins with respect to the played
combination as the played combination with respect to the secret combination. Further-
more, a combination is consistent iff

h(ci,c) = h(ci,csecret) for i = 1..n (2)

where n is the number of combinations, ci, played so far; that is, c is consistent with all
guesses made so far. A combination that is consistent is a candidate solution. The con-
cept of consistent combination will be important for characterizing different approaches
to the game of Mastermind.

One of the earliest strategies, by Knuth [6], is perhaps the most intuitive for Master-
mind. In this strategy the player selects the guess that reduces the number of remaining
consistent guesses and the opponent the return code leading to the maximum number of
guesses. Using a complete minimax search Knuth shows that a maximum of 5 guesses
are needed to solve the game using this strategy. This type of strategy is still the most
widely used today: most algorithms for Mastermind start by searching for a consistent
combination to play.

In some cases once a single consistent guess is found it is immediately played, in
which case the object is to find a consistent guess as fast as possible. For example, in
[8] an evolutionary algorithm is described for this purpose. These strategies are fast
and do not need to examine a big part of the space. Playing a consistent combinations

124 J.J. Merelo-Guervós and T.P. Runarsson

eventually produces a number of guesses that uniquely determine the code. However,
the maximum, and average, number of combinations needed is usually high. Hence,
some bias must be introduced in the way combinations are searched. If not, the guesses
will be no better than a purely random approach, as solutions found (and played) are a
random sample of the space of consistent guesses.

The alternative to discovering a single consistent guess is to collect a set of consistent
guesses and select among them the best alternative. For this a number of heuristics
have been developed over the years. Typically these heuristics require all consistent
guesses to be first found. The algorithms then use some kind of search over the space of
consistent combinations, so that only the guess that extracts the most information from
the secret code is issued, or else the one that reduces as much as possible the set of
remaining consistent combinations. However, this is obviously not known in advance.
To each combination corresponds a partition of the rest of the space, according to their
match (the number of blacks and white pegs that would be the response when matched
with each other). Let us consider the first combination: if the combination considered
is AABB, there will be 256 combinations whose response will be 0b, 0w (those with
other colors), 256 with 0b, 1w (those with either an A or a B), etc. Some partitions may
also be empty, or contain a single element (4b, 0w will contain just AABB, obviously).
For a more exhaustive explanation see [7]. Each combination is thus characterized by
the features of these partitions: the number of non-empty ones, the average number of
combinations in them, the maximum, and other characteristics one may think of.

The path leading to the most successful strategies to date include using the worst
case, expected case, entropy [9,3] and most parts [7] strategies. The entropy strategy
selects the guess with the highest entropy. The entropy is computed as follows: for each
possible response i for a particular consistent guess, the number of remaining consistent
guesses is found. The ratio of reduction in the number of guesses is also the a priori
probability, pi, of the secret code being in the corresponding partition. The entropy is
then computed as ∑n

i=1 pi log2(1/pi), where log2(1/pi) is the information in bit(s) per
partition, and can be used to select the next combination to play in Mastermind [9]. The
worst case is a one-ply version of Knuth’s approach, but Irving [4] suggested using the
expected case rather than the worst case. Kooi [7] noted, however, that the size of the
partitions is irrelevant and that rather the number of non empty partitions created, n,
was important. This strategy is called most parts. The strategies above require one-ply
look-ahead and either determining the size of resulting partitions and/or the number of
them. Computing the number of them is, however, faster than determining their size.
For this reason the most parts strategy has a computational advantage.

Following a tip in one of the papers that tackled Mastermind, recently Berghman et
al. [1] proposed an evolutionary algorithm which finds a number of consistent guesses
and then uses a strategy to select which one of these should be played. The strategy
they apply is similar the expected size strategy. However, it differs in some fundamental
ways. In their approach each consistent guess is assumed to be the secret in turn and
each guess played against every different secret. The return codes are then used to com-
pute the size of the set of remaining consistent guesses in the set. An average is then
taken over the size of these sets. Here, the key difference between the expected size
method is that only a subset of all possible consistent guesses is used and some return

Finding Better Solutions to the Mastermind Puzzle Using Evolutionary Algorithms 125

codes may not be considered or considered more frequently than once, which might
lead to a bias in the result. Indeed they remark that their approach is computationally
intensive which leads them to reduce the size of this subset further.

The heuristic strategies described above use some form of look-ahead which is com-
putationally expensive. If no look-ahead is used to guide the search a guess is selected
purely at random, and any other way of ranking solutions might find a solution that is
slightly better than random, but no more. However, it has been shown [10] that in order
to get the benefit of using look-ahead methods, an exhaustive set of all consistent com-
binations is not needed; a 10% fraction is sufficient in order to find solutions that are
statistically indistinguishable from the best solutions found. This is the path explored in
this paper.

3 Description of the Method

Essentially, the method described is an hybrid between an evolutionary algorithm and
the exhaustive partition-based methods described above. Instead of using exhaustive
search to find a set of consistent combinations, which then are compared to see the way
they partition that set, we use evolutionary algorithms to find a set of consistent combi-
nations and compute then the partitions they yield. The size of the set is fixed according
to our previous results [10], which show that a set of size 20 is enough to obtain results
that are statistically indistinguishable from using the whole set of consistent combina-
tions. By using this approach we are assuming that the set of consistent combinations
found by the evolutionary algorithm is random; since evolutionary search introduces a
bias in search space sampling, this need not be the case.

The evolutionary algorithms used are similar to the Estimation of Distribution Algo-
rithm (EDA) that was also shown in our previous paper. The fitness function is similar
to the one proposed by Berghman et al. [1], except for the term proportional to the
number of positions; that is,

f (cguess) =
n

∑
i=1
|h(ci,cguess)−h(ci,csecret)| (3)

which is the number of black and white peg changes needed to make the current com-
bination cguess consistent; this number is computed via the absolute difference between
the number of black and white pegs h the combination ci has had with respect to the
secret code csecret (which we know, since we have already played it) and what cguess ob-
tains when matched with ci. For instance, if the played combination ABBB has obtained
as result 2w,1b and our cguess CCBA gets 1w,1b with respect to it, this difference will
be (2−1)w+(1−1)b = 1. This operation is repeated over all the combinations ci that
have been played. In the previous paper [10] a local entropy was used to bias search,
but in this paper we found this was harmful, so we have left it out. However, the first
combination was fixed to ACBA, same as before.

While in [10] the EDA presented proceeded until a consistent solution was found,
and then played the one with the highest local entropy (since they were ranked by local
entropy), in this work we will proceed in the following way:

126 J.J. Merelo-Guervós and T.P. Runarsson

– Continue evolutionary search until at least 20 consistent solutions are found.
– If a set of 20 solutions is not found, continue until the number of consistent solu-

tions does not change for three generations. This low number was chosen to avoid
stagnation of the population.

– If at least a single consistent solution is not found after 15 generations, reset the
population substituting it by a random one. Again, this was a number considered
high enough to imply stagnation of search and at the same time give the algorithm
a chance to find solutions.

If any of the conditions above hold (either a big enough set is found, or the algorithm has
not found any more solutions for 3 generations), a set of consistent solutions is obtained;
for each solution in this set, the way they partition the rest of the set is computed.
Then, the solution which leads to the maximum number of non-zero partitions (most
parts) is computed, in a similar way as proposed by [7] and differently from Berghman
[1], which use some form of expected size strategy. As shown by [10], most parts and
the entropy method are the best, however, most parts is faster to compute. We wanted
also to find out whether this strategy obtained better solutions than the plain vanilla
evolutionary algorithm.

Several evolutionary algorithms were also tested. A rank-based steady state algo-
rithm obtained generally good results, but there were occasions (around one in several
thousands) where it could not find it even with restarts, so it was eliminated.
Finally we settled for an EDA and a canonical genetic algorithm. In both cases let-
ter strings where used for representing the solutions; that means that when mutation
is used, a string mutation (change a letter for another in the alphabet) is used. Source
code and all parameter files used for these experiments are available as GPL’ed code
from http://sl.ugr.es/alg_mm/. The parameters used for both algorithms are
shown in table 2. No exhaustive tweaking of them has been made.

Results obtained with these algorithms are shown in the next section.

Table 2. Parameter values in the evolutionary algorithms used in this paper

Parameter EDA CGA
Operators N/A Mutation,

1-point crossover
Population 300 256
Replacement Rate 50% 40%

4 Experimental Results

In the same way as was done by ourselves [10] and Berghman [1], we have tested the
algorithms on every possible combination, but instead of doing it 3 times, we have
run the algorithm ten times for each combination from AAAA to FFFF to obtain a
higher statistical certainty. The whole 10K runs last several hours on an Intel quad-core
computer. The number of combinations obtained by both methods are shown in table 3
and compared with others, results for most parts and entropy are taken from our former
paper, and Berghman’s from his paper.

http://sl.ugr.es/alg_mm/

Finding Better Solutions to the Mastermind Puzzle Using Evolutionary Algorithms 127

Table 3. Comparison of results obtained for different Mastermind-solving algorithms. Entropy
and Most parts are taken from [10]; μ is the maximum size of the set of consistent solutions
used to find the solution. The EDA algorithm shown is the one that uses local entropy in fitness,
as explained in the text. Berghman uses different sizes, and we include only the smallest and
biggest; when the value has not been published, an empty slot is shown. The last two lines show
the results obtained by the algorithms presented in this paper.

Strategy min mean median max st.dev. max
guesses

Entropy μ = ∞ 4.383 4.408 4.408 4.424 0.012 6
Most parts μ = ∞ 4.383 4.410 4.412 4.430 0.013 7
Entropy μ = 20 4.438 4.468 4.476 4.483 0.016 7
Most parts μ = 20 4.429 4.454 4.454 4.477 0.016 7
EDA μ = 1 4.524 4.571 4.580 4.600 0.026 7
Berghman μ = 30 - 4.430 - - - 7
Berghman μ = 60 - 4.390 - - - -
CGA μ = 20 4.402 4.434 4.433 4.471 0.018 7
EDA μ = 20 4.419 4.445 4.448 4.467 0.017 7

The results obtained by these new methods, CGA and EDA, are competitive with
the exhaustive search methods with μ = 20, that is, they are all statistically equivalent.
All statistical tests were performed using the Wilcoxon rank sum test for equal medians
at a 0:05 significance level. When μ = 30 they become also statistically equivalent to
using the whole set of consistent guesses, i.e. μ = ∞, resulting in a method compara-
tive to exhaustive search. The results also show that sampling of the combination set,
as performed by the evolutionary algorithm, is actually random, since it behaves in the
same way as shown by the random sampling algorithm. In fact, this should be expected,
at least for EDA, since the results obtained by a plain-vanilla, play-as-find the solu-
tion go method, were statistically indistinguishable from a random algorithm. Besides,
EDA and CGA need roughly the same number of evaluations to find those solutions,
although, on average, EDA is better, since the maximum number of evaluations needed
by the CGA is six times bigger than the worst result obtained by the EDA.

On the other hand, and all things being equal1 the results appear very similar to
those obtained by Berghman with the smallest set size μ . We cannot say if they are
statistically indistinguishable, but it is quite likely that they actually are. We say this,
since the expected size strategy is worse than the most parts and entropy methods [10].
The running time, for an interpreted (not compiled) code which has not been optimized
in any way, is around one second per game, which is comparable to those published by
them2.

How do these algorithms actually work to obtain these results? Since the initial pool
has a good amount of combinations, they usually include a big enough pool of consis-
tent combinations, sufficient for the second play and on occasions also the third. The

1 That is, assuming the average has been computed in the same way as we did.
2 But please note that machines are quite different too. That only means that running times are

on the same order of magnitude.

128 J.J. Merelo-Guervós and T.P. Runarsson

0 1 2 3 4

1
2

5
10

20
50

Evolution of the size

Set of consistent combinations
Step

S
et

 s
iz

e

Fig. 1. Boxplot of the evolution of set size with the game, horizontal line in the box indicates
the average, the box upper and lower side the quartiles, and dots outside it outliers; the x axis
(labeled Step represents the number of combinations played after the first one, with the y axes
representing the set size; thus, at x = 0 the set size after the first combination has been played has
been represented. The y axis has been scaled logarithmically

remaining draws, notably including the secret code, must be found by the evolutionary
algorithm. In fact, the average number of elements in the set of consistent solutions
evolves with combinations played as shown in figure 1.

In that figure, the first set has a size close to 50, and the second is pegged at ap-
proximately 20, indicating that the evolutionary algorithm has probably intervened to
find a few consistent solutions. For the rest of the combinations it is quite unusual to
find a set of that size, at least with the constraints we have set; eventually the 4th and
5th draws are drawn from a single set. The figure also shows an idea of how set sizes
should scale for bigger sizes of the Mastermind problem; however, this hunch should
be proved statistically.

5 Conclusion and Future Work

In this paper we have introduced a new evolutionary algorithm that tries to find the
solution to the game of Mastermind, in as few games as possible, by finding a set of

Finding Better Solutions to the Mastermind Puzzle Using Evolutionary Algorithms 129

possible solutions and ranking them according to the most part heuristic. This approach
is as good as other systems that use exhaustive heuristic search, comparable to other
methods that represent the state of the art in evolutionary solution of this game, and
does not add too much overhead in terms of computing or memory, using time and
memory roughly in the same order of magnitude as the simple evolutionary algorithm.

This also proves that exhaustive heuristic search strategies can be successfully trans-
lated to evolutionary algorithms, provided that the size of the sample is tested in
advance. This might prove a bit more difficult as the size increases, but a systematic
exploration of the problem in different sizes might give us a clue about this. Our hunch
right now is that it will scale as the logarithm of the problem size, which would be a
boon for using evolutionary algorithms for bigger sizes.

This is probably an avenue we will pursue in the future: compute the size set of
consistent guesses needed to find the correct solution in a minimal number of draws,
and apply it to evolutionary algorithms of different shapes. One of these could be to find
a way of including the score of a consistent solution in the evolutionary algorithm by
using this as a fitness, and taking into account its consistency only as a constraint, not
as the actual fitness. This will prove increasingly necessary as the size of the consistent
solution sets increases with problem space size.

The space of EAs has not been explored exhaustively in this paper either. Although it
is rather clear that different parameter settings will not have an influence on the quality
of play, it remains to be seen how they will impinge on the number of evaluations
needed to find the consistent combinations. Different combinations of operators and
operator rates will have to be tested. And as the complexity of the system goes up with
the combination length and number of colors, distributed approaches will have to be
tested, which could have an influence not only on the running time, but also on the
number of evaluations needed to find it. These will be explored in the future.

Acknowledgements

This paper has been funded in part by the Spanish MICYT projects NoHNES (Spanish
Ministerio de Educación y Ciencia - TIN2007-68083) and TIN2008-06491-C04-01 and
the Junta de Andalucı́a P06-TIC-02025 and P07-TIC-03044.

References

1. Berghman, L., Goossens, D., Leus, R.: Efficient solutions for Mastermind using genetic al-
gorithms. Computers and Operations Research 36(6), 1880–1885 (2009),
http://www.scopus.com/inward/
record.url?eid=2-s2.0-56549123376

2. Bernier, J.L., Herráiz, C.I., Merelo-Guervós, J.J., Olmeda, S., Prieto, A.: Solving mastermind
using GAs and simulated annealing: a case of dynamic constraint optimization. In: Ebeling,
W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp.
554–563. Springer, Heidelberg (1996),
http://citeseer.nj.nec.com/context/1245314/0

http://www.scopus.com/inward/record.url?eid=2-s2.0-56549123376
http://www.scopus.com/inward/record.url?eid=2-s2.0-56549123376
http://citeseer.nj.nec.com/context/1245314/0

130 J.J. Merelo-Guervós and T.P. Runarsson

3. Bestavros, A., Belal, A.: Mastermind, a game of diagnosis strategies. Bul-
letin of the Faculty of Engineering, Alexandria University (December 1986),
http://citeseer.ist.psu.edu/bestavros86mastermind.html, avail-
able from http://www.cs.bu.edu/fac/best/res/papers/alybull86.ps

4. Irving, R.W.: Towards an optimum mastermind strategy. Journal of Recreational Mathemat-
ics 11(2), 81–87 (1978–1979)

5. Kendall, G., Parkes, A., Spoerer, K.: A survey of NP-complete puzzles. ICGA Journal 31(1),
13–34 (2008),
http://www.scopus.com/inward/
record.url?eid=2-s2.0-42949163946

6. Knuth, D.E.: The computer as Master Mind. J. Recreational Mathematics 9(1), 1–6 (1976–
1977)

7. Kooi, B.: Yet another Mastermind strategy. ICGA Journal 28(1), 13–20 (2005),
http://www.scopus.com/inward/
record.url?eid=2-s2.0-33646756877

8. Merelo-Guervós, J.J., Castillo, P., Rivas, V.: Finding a needle in a haystack using hints
and evolutionary computation: the case of evolutionary MasterMind. Applied Soft Com-
puting 6(2), 170–179 (2006),
http://www.sciencedirect.com/science/article/
B6W86-4FH0D6P-1/2/40a99afa8e9c7734baae340abecc113a,
http://dx.doi.org/10.1016/j.asoc.2004.09.003

9. Neuwirth, E.: Some strategies for Mastermind. Zeitschrift fur Operations Research. Serie
B 26(8), B257–B278 (1982)

10. Runarsson, T.P., Merelo, J.J.: Adapting heuristic Mastermind strategies to evolutionary algo-
rithms. In: NICSO 2010 Proceedings. LNCS. Springer, Heidelberg (2010) (to be published)
ArXiV: http://arxiv.org/abs/0912.2415v1

11. Stuckman, J., Zhang, G.Q.: Mastermind is NP-complete. CoRR abs/cs/0512049 (2005)
12. Wikipedia: Mastermind (board game) — Wikipedia, The Free Encyclopedia (2009),

http://en.wikipedia.org/w/
index.php?title=Mastermind board game&oldid=317686771
(Online; accessed 9-October-2009)

http://citeseer.ist.psu.edu/bestavros86mastermind.html
http://www.cs.bu.edu/fac/best/res/papers/alybull86.ps
http://www.scopus.com/inward/record.url?eid=2-s2.0-42949163946
http://www.scopus.com/inward/record.url?eid=2-s2.0-42949163946
http://www.scopus.com/inward/record.url?eid=2-s2.0-33646756877
http://www.scopus.com/inward/record.url?eid=2-s2.0-33646756877
http://www.sciencedirect.com/science/article/B6W86-4FH0D6P-1/2/40a99afa8e9c7734baae340abecc113a
http://www.sciencedirect.com/science/article/B6W86-4FH0D6P-1/2/40a99afa8e9c7734baae340abecc113a
http://dx.doi.org/10.1016/j.asoc.2004.09.003
http://arxiv.org/abs/0912.2415v1
http://en.wikipedia.org/w/index.php?title=Mastermind_board_game&oldid=317686771
http://en.wikipedia.org/w/index.php?title=Mastermind_board_game&oldid=317686771

Towards a Generic Framework for Automated Video
Game Level Creation

Nathan Sorenson and Philippe Pasquier

School of Interactive Arts and Technology,
Simon Fraser University Surrey, 250 -13450 102 Avenue, Surrey, BC

{nds6,pasquier}@sfu.ca

Abstract. This paper presents a generative system for the automatic creation of
video game levels. Our approach is novel in that it allows high-level design goals
to be expressed in a top-down manner, while existing bottom-up techniques do
not. We use the FI-2Pop genetic algorithm as a natural way to express both con-
straints and optimization goals for potential level designs. We develop a genetic
encoding technique specific to level design, which proves to be extremely flexi-
ble. Example levels are generated for two different genres of game, demonstrating
the system’s broad applicability.

Keywords: video games, level design, procedural content, genetic algorithms.

1 Introduction

Procedural content creation, which is the algorithmic generation of game assets nor-
mally created by artists, is becoming increasingly important in the games industry [1].
Not only does this automation provide a way to produce much more content than would
be possible in the typical game development process, but it could also allow for game
environments to be adapted to individual players, providing a more personalized and
entertaining experience.

Current level generation techniques [2,3] tend to be bottom-up, rule-based systems
which iterate over a set of production rules to construct an environment. These rules
must be carefully crafted to create playable levels, and design goals are restricted to the
emergent behaviour of the rule set. Furthermore, these techniques are extremely idio-
syncratic; no standard toolbox or library exists for game content generation, and every
game requires the construction of a specialized algorithm. These factors result in level
generation systems that can take more effort to construct than the levels themselves [1].

We describe an approach that avoids these issues by allowing designers to specify the
desired properties of the generated level, instead of requiring them to specify the details
of how levels are assembled. This is done using a Feasible-Infeasible Two-Population
(FI-2Pop) genetic algorithm [4], which is an evolutionary technique that proves to be
well suited to the present domain. Level designers specify a set of constraints, which
determine the basic requirements for a level to be considered playable. The “infeasible
population” consists solely of levels which do not yet satisfy all these constraints, and
these individuals are evolved towards minimizing the number of constraints violated.
When individuals are found to satisfy all the constraints, they are moved to the “feasible

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 131–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

132 N. Sorenson and P. Pasquier

population” where they are subjected to a fitness function that rewards levels based on
any criteria specified by the level designers. Essentially, this population is for generating
levels that are not only playable, but also fun.

A simple, yet expressive genetic encoding for levels is presented, based on the spec-
ification of simple design elements. These design elements are the building blocks used
by the GA to construct the level. We argue for the flexibility of this encoding by pro-
viding encodings for two different types of games: one is the 2D platformer Super
Mario Bros [5], and the other is an exploration-adventure game similar to The Legend
of Zelda [6]. With these encodings, we are able to evolve levels that satisfy a number
of game-specific constraints and, furthermore, are fun. To measure how enjoyable a
level is, we use a generic model of challenge-based fun described in previous work [7],
and we apply this model to the generated levels of both types of games. Early results
indicate that our approach is indeed useful and likely to be widely applicable.

2 Previous Work

Generative systems are often used to as a means to theoretically analyze the nature of
games, as opposed to simply providing a way to create more game content. Togelius
and Schmidhuber use GAs to generate novel game designs [8] that are subsequently
evaluated with a neural net to test how fun they are, relying on the hypothesis that
machine-learnable games are more entertaining. Similarly, Yannakakis and Hallam [9]
explore the relationship between difficulty and fun by generating computer opponents
of varying degrees of skill. Smith et. al. [10] share our goal of automatically generat-
ing game levels for 2D platformers; however, they use a generative grammar, which
is a bottom-up, rules-based approach to constructing game levels which is tied to this
specific genre. Pedersen et al. [11] generate levels for 2D platformers with the goal of
modeling player experience. Their model suggests how player behaviour and player fun
are related, however it does not provide any details on how specific level configurations
(at the local level) influence player enjoyment and it is unclear how this model would
effectively inform an automated level generation process. As well, their generative tech-
nique is restricted to the genre of 2D platformers.

In general, these applications of generative systems employ specific algorithms that
are tailored to address precisely defined research questions in a single domain, whereas
our goal is to present a widely applicable framework, usable in a variety of contexts.

3 Implementation

3.1 Feasible-Infeasible Two-Population Genetic Algorithm

Optimization is clearly an aspect of level design; game levels are constructed in order
to maximize the amount of fun a player experiences. However, levels generally consist
of a spatial arrangement of rooms, platforms, doors, and other components, and if these
elements do not align properly, the entire level can become unplayable. For these rea-
sons, the process of game design must be seen as both and optimization problem and
a constraint satisfaction problem. GAs are effective in solving high-dimensional opti-
mization problems, but are, in general, ineffective when tasked with solving constraint

Towards a Generic Framework for Automated Video Game Level Creation 133

satisfaction problems [12]. Gradual, incremental improvement becomes impossible if
there are too many constraints on the feasibility of the levels, and this causes the evolu-
tionary algorithm’s performance to suffer. Conversely, the nuanced and complex notion
of fun does not lend itself readily to the simple finite-domain predicates required by
most constraint solvers.

Kimbrough et al. [4] present the Feasible-Infeasible Two-Population genetic algo-
rithm (FI-2Pop) as an effective way to address these problems. FI-2Pop maintains two
separate populations, one containing only feasible solutions and the other containing
only infeasible solutions. Any solution that satisfies each specified constraint is moved
into the feasible population, and any solution that violates a constraint as a result of mu-
tation or crossover is moved into the infeasible population. FI-2Pop therefore requires
two different fitness functions: the first is a typical optimization function that drives in-
cremental changes towards a global optimum; the second fitness function is specifically
for generating individuals that satisfy a set of constraints. Kimbrough et al. suggest that
even a simple operation, such as counting the number of constraints violated, serves
as an effective way to guide the population towards feasibility. We essentially follow
this approach by summing up a set of individual constraint functions, which are each
responsible for measuring a specific kind of constraint violation.

The two populations exert evolutionary pressure on one another through frequent mi-
gration, and because infeasible individuals are not simply killed off, a degree of genetic
diversity can be maintained. Because level design criteria generally consist of a number
of hard constraints and a number of soft, high-level goals, we find the FI-2Pop GA to
be well suited to our domain. Though a multitude of evolutionary techniques have been
developed to address similar concerns [13], FI-2Pop is a technically straightforward and
conceptually simple approach to handling heavily constrained optimization problems.
The choice of this particular algorithm is not the central contribution of this work; it
is important to emphasize that, with our generic genotype encoding, we will be able to
employ a more sophisticated and efficient algorithm should it prove necessary.

3.2 Genetic Representation

Because we desire this system to maintain as much generality as possible, care must
be taken in the design of the genotype. Our genotype is therefore based on the notion
of a design element (DE). DEs are small, composable building blocks that represent
logical units of levels. For example, the DE for a game like Breakout [14] would be
an individual block. DEs can be parameterized; the Breakout block DE could have
parameters for both x and y coordinates, as well as for its physical properties. DEs do
not have to be atomic, and can be specified at any level of abstraction. For example, a
DE might be defined to create a star pattern of blocks, which would be parameterized
by the size of the star. Essentially, DEs constitute a one-to-one genotype-to-phenotype
mapping, as they literally describe a physical level element. They are therefore simple
to define, and their behaviour is easy to predict.

The genotype representation consists of a variable-size set of these design elements.
To allow for the use of typical variable-point crossover, we must impose an order onto
the set to treat it as a linear genotype. The DEs can be sorted by an arbitrary function
of their parameters, but crossover is most effective when genes exhibit strong genetic

134 N. Sorenson and P. Pasquier

linkage [15]. It is therefore best to sort the genotype in such a way that will tend to keep
mutually influential genes together, maximizing the probability that beneficial arrange-
ments of genes are not disrupted by crossover. Because level design is largely spatial
in nature, we sort based on the coordinate parameter of the design elements, with the
expectation that mutually influential genes will predominately represent level elements
that are in close proximity. The sorting decision is especially straight-forward in the case
of games such as 2D platformers; because all level elements are principally arranged
along the horizontal axis, we sort the genotype based on the x coordinate. However, the
second example we provide demonstrates that our approach is not restricted to linear
games and indeed works in two-dimensional situations as well.

Our mutation operator adjusts an arbitrary parameter of a random design element
gene in a genotype. Continuous values, such as height or width, are displaced using a
normal distribution with variance derived from their permissible range, and categorical
values are simply given a new permissible value.

3.3 Fitness Function

To generate enjoyable levels, we employ a fitness function that is able to identify how
fun a given level is. Certainly, the notion of fun is exceedingly complex and difficult
to define precisely. However, as a starting point, we can identify aspects of fun that
are more tractable for computational analysis. For example, a large number of theo-
rists [16,17,18,19] identify the presence of an appropriate level of challenge as integral
to nature of fun in games. This is particularly true for a skills-based action game such
as Super Mario Bros. Broadly speaking, a player has the most fun when presented with
challenges that are neither too easy nor too difficult. We currently use a generic model
of player enjoyment that is not restricted to a particular game, and is discussed in more
detail in [7]. The model does not require any genre-specific information, instead it re-
lies only a simple challenge measurement, c(t) to determine the perceived difficulty a
player experiences at time t, and rewards levels for matching a desired challenge con-
figuration. In other words, this model is used to characterize the amount of fun, f , that
is acquired by a player throughout the course of a level. The model is summarized in
Equation (1).

df

dt
= m ∗ c(t) (1)

The variable m can take the value of +1 or −1, and represents two important states of
the model at a given time. When m = 1, the amount of fun measured increases with
the challenge measurement. However, when m = −1, challenge serves to reduce the
amount of fun. We specify threshold values that determine when the value m changes.
When the amount of challenge in a given time period has exceeded the upper thresh-
old, m becomes negative. Conversely, if not enough challenge has been measured , as
determined by the lower threshold, m becomes positive. This model, in practice, tends
to reward level designs that interpose periods of high difficulty with segments of low
difficulty, and even though the challenge metric and model of fun are rough approx-
imations to reality, they have been constructed in a principled manner and appear to
produce acceptable results. Devising and characterizing such fitness functions is cer-
tainly a difficult question and will continue to be a topic for future study. We must

Towards a Generic Framework for Automated Video Game Level Creation 135

emphasize, however, that our framework does not necessarily depend on any particular
characterization of level quality. Indeed, any fitness function can be created to express
the subjective design goals of the game developer.

4 Validation Results

4.1 Super Mario Bros.

Our first example of this genetic encoding is based on the original Super Mario Bros.
(SMB) [5]. SMB is a 2D platformer game, in which levels consist of an arrangement of
platforms and enemies. Inspecting existing levels from the original game, we identify a
number of design elements occur frequently, which are shown in Figure 1:

1. Block(x, y). This DE is a single block, parameterized by its x and y coordinate.
2. Pipe(x, height, piranha). A pipe serves as both a platform and a possible con-

tainer of a dangerous piranha plant.
3. Hole(x, width). This specifies a hole of a given width in the ground plane.
4. Staircase(x, height, direction). Staircases are common enough to warrant a ded-

icated DE. The direction specifies whether the stairs are ascending or descending.
5. Platform(x, width, height). This specifies a raised platform of a given width and

height.
6. Enemy(x). This specifies an enemy at the given horizontal location.

In addition to the DEs, we provide the following constraint functions for the infeasible
population:

1. require-exactly(n, type). This function allows designers to specify the desired
number of certain types of design elements to be present in individuals. As a
penalty, it returns the absolute difference between the counted number of instances
of type and the desired amount n.

Fig. 1. The 6 DEs for SMB level design. Clockwise from top-left: block, pipe, hole, enemy,
platform, and staircase DE.

136 N. Sorenson and P. Pasquier

2. require-at-least(n, type). This function penalizes levels that contain less than n
of a given type, returning 0 if n ≥ type and returning type− n otherwise.

3. require-at-most(n, type). This function penalizes levels that contain more than n
of a given type, returning 0 if n ≤ type and returning n− type otherwise.

4. require-no-overlap(type1, type2, ...). This function states that the specified types
are not to overlap in the phenotype. It is, therefore, only relevant for design elements
that contain a notion of location and extent. In the present example, we specify that
pipes, stairs, enemies, and holes should not overlap one another. As a penalty, the
number of overlapping elements is returned.

5. require-overlap(type1, type2). Though similar to function 4, this function spec-
ifies that type1 must overlap type2, though type2 need not necessarily overlap
type1. We use this function to require that platforms must be positioned above
holes. The number of type1 elements that do not overlap with a type2 element is
returned.

6. traversible(). This function is to ensure that a player can successfully traverse the
level, meaning that there are no jumps that are too high or too far for the player
to reach. This is determined using a simple greedy search between level elements.
The penalty is the number of elements from which there is no subsequent platform
within a specified range, that is, the number of places a player could get stuck.

All the previous functions are specified such that a value of 0 reflects a satisfied con-
straint and a positive value denotes how severely a constraint is violated. Therefore, any
individual level that is given a score of 0 by all of the above functions is considered a
feasible solution and is moved into the feasible population for further optimization.The
feasible population is evaluated using our generic model of challenge-based fun. We
adapt this model to 2D platformers by providing a method for estimating challenge at
any given point in a level. This is done by a function that returns a challenge value for
each jump required between platforms, with difficult jumps being rated higher, and a
set constant for each enemy in the level.

With no pressing concern for efficiency, we choose to set the mutation rate to 10%
of individuals per generation and to generate the rest via crossover, using tournament
selection of size 3. Finally, following the convention of Kimbrough [4], we limit the
sizes of the infeasible and feasible populations to 50. Our stopping criterion is reached
if the fitness of the levels does not improve for twenty generations. Figure 2 depicts
some resulting levels.

A significant advantage of the evolutionary approach is the adaptability of the solu-
tion. For example, it is possible for an artist to hand-craft certain portions of a level,
and have the GA automatically fill in the gaps according to the specified constraints.
Consider the manually-created arrangement and the resulting evolved level in Figure 3.
No extra functionality was needed to provide this behaviour; the genotype was simply
hard-coded to always include the user-specified arrangement of DEs.

4.2 2D Adventure Game

A major disadvantage of typical generative systems is that they are restricted to a single
application. Any improvements to the generative technique will benefit only that partic-
ular application. We claim that our evolutionary framework provides the ability to factor

Towards a Generic Framework for Automated Video Game Level Creation 137

Fig. 2. Two different levels, created in 892 and 3119 generations, respectively. The number of
staircases, platforms, and enemies are specified through constraints. On a mid-range dual-core
laptop, the running time was for each was less than 30 minutes.

Fig. 3. An explicitly specified arrangement of platform DEs (left) is automatically wrapped in a
surrounding hole (right)

out some of the generative logic from any game-specific context. For this to be the case,
it must be relatively simple to express a variety of different game design goals without
requiring fundamental changes to the underlying system. As a proof-of-concept exam-
ple in support of this claim, we present a set of constraints for the evolution of levels
for a simple top-down 2D adventure game similar to The Legend of Zelda [6].

The levels for this game will be constructed from three design elements:

1. Hallway(x, y, length, direction). This codes for a hallway of a given length,
whose direction can either be vertical or horizontal.

2. Room(x, y, width, breadth). This creates a rectangular room of the specified size.
3. Monster(x, y). This creates a monster at a given coordinate.

The genotype and the mutation and crossover operators are the same as in the previous
example. Even though the coordinates of the design elements must now be expressed
as (x, y) pairs instead of as a single x coordinate, we find that sorting by x to linearize
the genotype produces acceptable results.

We specify two constraints for this simple game:

1. connected(start, end). Returns 0 if there is a 4-connected path between the start
and end points. Otherwise, penalizes levels for the minimum distance between the
two areas reachable from the start and end points. In other words, levels that are far
from being connected are penalized more than areas that are nearly connected.

2. require-overlap(type1, type2). We use this constraint, introduced in the 2D plat-
former experiment, to ensure monsters are located in rooms or hallways. The num-
ber of monsters that do not overlap hallways or rooms is returned.

138 N. Sorenson and P. Pasquier

Fig. 4. A small and a large level, created in 1629 and 2330 generations, respectively. The starting
point is labeled A and the goal is labeled B. On a mid-range dual-core laptop, the running time
was for each was less than an hour.

To evaluate the challenge of a level, we simulate a player’s traversal of the level from
the start to the end point, using a standard A* search algorithm. Challenge is determined
to be the number of monsters within a given radius at a given point along this traversal
path. With this measurement in place, we are able to employ the same fitness function
as specified in Section 3.3. Several runs of the algorithm are presented in Figure 4.

With very little extra effort, one can see levels generated for an entirely different type
of video game. The generic fitness function has resulted in creating rooms containing
clusters of enemies, interspersed with areas containing none, in a manner that could be
expected from a human-designed level. A bottom-up, rules-based approach would have
necessitated an entirely new set of production rules, but our approach has allowed us to
re-use the same genetic algorithm, fitness function, and even some constraints.

5 Discussion

The apparent simplicity of the two examples provided should not obscure the fact
that this approach represents a promising alternative to current generative techniques.
Firstly, the optimization fitness function allows the intended player experience to be
represented explicitly. In other words, instead of specifying how levels are assembled,
game designers may simply indicate the particular properties that levels should have. In
this way, levels are described declaratively rather than procedurally; instead of treating
player experience as an incidental side-effect of the level creation process, the fitness
function provides an effective means of handling it directly.

Furthermore, this approach does not exclude the possibility of other, complemen-
tary design techniques. Where rule-based generative systems tend to operate in isola-
tion, GAs can work well when used in conjunction with other techniques. As we have
shown, game designers are able to hand-craft particular portions of a level without being

Towards a Generic Framework for Automated Video Game Level Creation 139

required to make any changes to the system. This same idea could be used to interface
with other generative systems, either to glue together elements generated elsewhere, or
to directly manipulate and optimize the systems themselves.

Another advantage is that this approach is quite modular; constraints, optimizations,
and design elements can be added or removed individually. This makes it easier to adjust
and test the behaviour of the genetic search.

In a broad sense, this approach factors out the generative algorithm from a particular
game artefact. The drive to abstract and generalize implementation details is essential to
modern software development, and this practice is used heavily in game development.
Features such as 3d animation, physics, and artificial intelligence tend to be handled by
third party game engines and are no longer developed from scratch. In the same way that
game designers are now able to declaratively specify the specific graphical or physical
properties of a given aspect of a game, expecting these properties to be properly handled
by the underlying engine, we argue that our approach models a way in which this could
be done for level generation. Simple constraints, fun optimization functions, and design
elements can be defined for a particular game with no real concern for exactly how
these constraints are to be satisfied. Since it is more than likely that games will have
many constraints in common (for example, connectivity is a concern in many different
types of games), it is possible that these units can be shared among games.

6 Future Work and Conclusion

There are many promising avenues for future work in the area of automated game level
generation. Simply continuing to devise constraints and optimization functions for var-
ious types of games would likely prove fruitful in evaluating the general applicability
of this approach. For example, our current operational definition of fun only accounts
for challenge dynamics, which is certainly only one component of fun. A more compre-
hensive model of fun would need to be employed to account for the presence of game
elements not relating directly to challenge, such as collectible rewards. Also, though
this paper focuses on proof-of-concept examples rather than on efficiency, a more rigor-
ous comparison of the performance characteristics of the FI-2Pop GA to other possible
evolutionary techniques would certainly be worthwhile.

It is also our hope that our method will serve as a useful environment in which
to experiment with theoretical conceptualizations of game design. We believe that the
ability to explicitly realize models of enjoyment in games will contribute to furthering
knowledge in that field. In the same way that simple computational models can serve
to elucidate the dynamics of otherwise complex natural phenomena [20], it is possi-
ble that models of fun will serve to illustrate fundamental principals of game design.
Preliminary work of this nature is introduced in [7], where a model of challenge-based
fun in games is explored in more detail. Our generic level generation framework would
certainly contribute to this ongoing research.

Even though this work is presently in an exploratory stage, it already exhibits en-
couraging results and can be viewed as a prototype for a practical tool to assist level
designers. Much work is yet to be done, and we anticipate that our general top-down
approach to level generation will offer much to the practice and theory of game design.

140 N. Sorenson and P. Pasquier

References

1. Remo, C.: MIGS: Far Cry 2’s Guay on the importance of procedural content. Gamasutra
(November 2008),
http://www.gamasutra.com/php-bin/news_index.php?story=21165

2. Meier, S.: Civilization. MicroProse (1991)
3. The NetHack DevTeam: Nethack (2009), http://www.nethack.org/
4. Kimbrough, S.O., Lu, M., Wood, D.H., Wu, D.J.: Exploring a two-market genetic algorithm.

In: GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
415–422. Morgan Kaufmann Publishers Inc., San Francisco (2002)

5. Miyamoto, S., Yamauchi, H., Tezuka, T.: Super Mario Bros. Nintendo (1987)
6. Miyamoto, S., Nakago, T., Tezuka, T.: The Legend of Zelda. Nintendo (1986)
7. Sorenson, N., Pasquier, P.: The evolution of fun: Towards a challenge-based model of plea-

sure in video games. In: ICCC-X: First International Conference on Computational Creativ-
ity, Lisbon, Portugal, pp. 258–267 (2010)

8. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE Symposium
on Computational Intelligence and Games, pp. 111–118 (2008)

9. Yannakakis, G., Hallam, J.: Towards capturing and enhancing entertainment in computer
games. Advances in Artificial Intelligence, 432–442 (2006)

10. Smith, G., Treanor, M., Whitehead, J., Mateas, M.: Rhythm-based level generation for 2d
platformers. In: FDG 2009: Proceedings of the 4th International Conference on Foundations
of Digital Games, pp. 175–182. ACM, New York (2009)

11. Pedersen, C., Togelius, J., Yannakakis, G.: Modeling player experience in Super Mario Bros.
In: IEEE Symposium on Computational Intelligence and Games (September 2009)

12. Hemert, J.I.: Comparing classical methods for solving binary constraint satisfaction prob-
lems with state of the art evolutionary computation. In: Cagnoni, S., Gottlieb, J., Hart, E.,
Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002,
EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 82–91. Springer, Heidelberg (2002)

13. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Me-
chanics and Engineering 191(11-12), 1245–1287 (2002)

14. Bushnell, N., Bristow, S., Wozniak, S.: Breakout. Atari (1976)
15. Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty using

genetic algorithms. PhD thesis, Ann Arbor, MI, USA (1997)
16. Sweetser, P., Wyeth, P.: Gameflow: a model for evaluating player enjoyment in games. Com-

put. Entertain. 3(3), 3 (2005)
17. Salen, K., Zimmerman, E.: Rules of Play: Game Design Fundamentals, October 2003. The

MIT Press, Cambridge (2003)
18. Koster, R.: Theory of Fun for Game Design. Paraglyph Press, Scottsdale (2004)
19. Juul, J.: Fear of failing? the many meanings of difficulty in video games. In: Yao, X., Burke,

E., Lozano, J.A., Smith, J., Merelo-Guerv, J.J., Bullinaria, J.A., Rowe, J., Tino, P., Kabn, A.,
Schwefel, H.P. (eds.) The Video Game Theory Reader, vol. 2, pp. 237–252. Routledge, New
York (2009)

20. Humphreys, P.: Mathematical modeling in the social sciences. In: Turner, S.P., Roth, P.A.
(eds.) The Blackwell guide to the philosophy of the social sciences, pp. 166–184. Wiley-
Blackwell, New Jersey (2003)

http://www.gamasutra.com/php-bin/news_index.php?story=21165
http://www.nethack.org/

Search-Based Procedural Content Generation

Julian Togelius1, Georgios N. Yannakakis1,
Kenneth O. Stanley2, and Cameron Browne3

1 IT University of Copenhagen, Rued Langaards Vej 7, 2300 Copenhagen, Denmark
2 University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816

3 Imperial College London, London SW7 2AZ, UK
julian@togelius.com, yannakakis@itu.dk, kstanley@eecs.ucf.edu,

cameron.browne@btinternet.com

Abstract. Recently, a small number of papers have appeared in which
the authors implement stochastic search algorithms, such as evolution-
ary computation, to generate game content, such as levels, rules and
weapons. We propose a taxonomy of such approaches, centring on what
sort of content is generated, how the content is represented, and how the
quality of the content is evaluated. The relation between search-based
and other types of procedural content generation is described, as are
some of the main research challenges in this new field. The paper ends
with some successful examples of this approach.

1 Introduction

In this paper we aim to define search-based procedural content generation, inves-
tigate what can and cannot be accomplished by the techniques that go under
this name, and outline some of the main research challenges in the field. Some
distinctions will be introduced between approaches, and a handful of examples
of search-based procedural content generation (SBPCG) will be discussed within
and classified according to these distinctions. It is important to note that this
paper proposes an initial framework of SBPCG approaches that leaves room for
further new approaches to be co-located within this young yet emerging field.
To begin, procedural content generation is itself introduced.

Procedural content generation (PCG) refers to the creation of game content
automatically, through algorithmic means. In this paper, game content means
all aspects of a game that affect gameplay but are not non-player character
(NPC) behaviour or the game engine itself. This definition includes such aspects
as terrain, maps, levels, stories, dialogue, quests, characters, rulesets, camera
viewpoint, dynamics and weapons. The definition explicitly excludes the most
common application of search and optimisation techniques in academic games
research, namely, NPC artificial intelligence.

There are several reasons for game developers to be interested in PCG. The
first is memory consumption — procedurally represented content can typically
be compressed by keeping it “unexpanded” until needed. A good example is the
classic space trading and adventure game Elite (Acornsoft 1984), which managed

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 141–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

142 J. Togelius et al.

to keep hundreds of star systems in the few tens of kilobytes of memory available
on the hardware of the day by representing each planet as just a few numbers.
Another reason for using PCG is the prohibitive expense of manually creating
game content. Many current generation AAA titles employ software such as
SpeedTree to create whole areas of vegetation based on just a few parameters,
saving precious development resources while allowing large, open game worlds.

A third argument for PCG is that it might allow the emergence of completely
new types of games, with game mechanics built around content generation. If
new content can be generated with sufficient variety in real time then it may
become possible to create truly endless games. Further, if this new content is
created according to specific criteria, such as its suitability for the playing style
of a particular player (or group/community of players) or based on particular
types of player experience (challenge, novelty, etc.), it may become possible to
create games with close to infinite replay value.

A fourth argument for PCG is that it augments our limited, human imagina-
tion. Off-line algorithms might create new rulesets, levels, narratives, etc., which
can then inspire human designers and form the basis of their own creations.

2 Dissecting Procedural Content Generation

While PCG in different forms has been a feature of various games for a long
time, there has not been an academic community devoted to its study. This
situation is now changing with the recent establishment of a mailing list1, an
IEEE CIS Task Force2, a workshop3 and a wiki4 on the topic. However, there is
still no textbook on PCG, or even an overview paper offering a basic taxonomy
of approaches. Therefore, this section aims to begin to draw some distinctions.
Most of these distinctions are not binary, but rather a continuum wherein any
particular example of PCG can be placed closer to one or the other extreme.
Note that these distinctions are drawn for the purpose of clarifying the role of
search-based PCG; of course other distinctions will be drawn in the future as
the field matures.

2.1 Online versus Offline

The first distinction to be made is whether content generation is performed
online during the runtime of the game, or offline during game development. An
example of the former is when the player enters a door to a building and the
game instantly generates the interior of the building, which was not there before;
in the latter case an algorithm suggests interior layouts that are then edited and
perfected by a human designer before the game is shipped. Intermediate cases
are possible, wherein an algorithm running on e.g. an RTS server suggests new
maps to a group of players daily based on logs of their recent playing styles.
1 http://groups.google.com/proceduralcontent
2 http://game.itu.dk/pcg/
3 http://pcgames.fdg2010.org/
4 http://pcg.wikidot.com

Search-Based Procedural Content Generation 143

2.2 Necessary versus Optional Content

A further distinction relating to the generated content is whether that content
is necessary or optional. Necessary content is required by the players to progress
in the game — e.g. dungeons that need to be traversed, monsters that need
to be slain, crucial game rules, and so on — whereas optional content is that
which the player can choose to avoid, such as available weapons or houses that
can be entered or ignored. The difference here is that necessary content always
needs to be correct; e.g. it is not acceptable to generate an intractable dungeon
if such an aberration makes it impossible for the player to progress. On the other
hand, one can allow an algorithm that sometimes generates unusable weapons
and unreasonable floor layouts if the player can choose to drop the weapon and
pick another one or exit a strange building and go somewhere else instead.

2.3 Random Seeds versus Parameter Vectors

Another distinction concerning the generation algorithm itself is to what extent
it can be parameterised. All PCG algorithms create “expanded” content of some
sort based on a much more compact representation. At one extreme, the algo-
rithm might simply take a seed to its random number generator as input; at
another extreme, the algorithm might take as input a multidimensional vector
of real-valued parameters that specify the properties of the content it generates.

2.4 Stochastic versus Deterministic Generation

A distinction only partly orthogonal to those outlined so far concerns the amount
of randomness in content generation, as the variation in outcome between dif-
ferent runs of an algorithm with identical parameters is a design question. It is
possible to conceive of deterministic generation algorithms that always produce
the same content given the same parameters, but it is well known that many
algorithms do not. (Note that we do not consider the random number generator
seed a parameter here, as that would imply that all algorithms are deterministic.)

2.5 Constructive versus Generate-and-Test

A final distinction may be made between algorithms that can be called con-
structive and those that can be described as generate-and-test. A constructive
algorithm generates the content once, and is done with it; however, it needs to
make sure that the content is correct or at least “good enough” as it is being con-
structed. An example of this approach is using fractals to generate terrains [1].

A generate-and-test algorithm incorporates both a generate and a test mech-
anism. After a candidate content instance is generated, it is tested according to
some criteria (e.g. is there a path between the entrance and exit of the dungeon,
or does the tree have proportions within a certain range?). If the test fails, all
or some of the candidate content is discarded and regenerated, and this process
continues until the content is good enough.

144 J. Togelius et al.

3 Search-Based Procedural Content Generation

Search-based procedural content generation (SBPCG) is a special case of the
generate-and-test approach to PCG, with the following qualifications:

– The test function does not simply accept or reject the candidate content,
but grades it using one or a vector of real numbers. Such a test function is
sometimes called a fitness function and the grade it assigns to the content
its fitness.

– Generating new candidate content is contingent upon the fitness assigned
to previously evaluated content instances; in this way the aim is to produce
new content with higher fitness.

All of the examples below (see section 4) use some form of evolutionary algorithm
(EA) as the main search mechanism. In an EA, a population of candidate content
instances are held in memory. Each generation, these candidates are evaluated
by the fitness function and ranked. The worst candidates are discarded and
replaced with copies of the good candidates, except that the copies have been
randomly modified (i.e. mutated) and/or recombined. However, SBPCG does not
need to be married to evolutionary computation (EC); other search mechanisms
are viable as well. The same considerations about representation and the search
space largely apply regardless of the approach to search.

3.1 Content Representation and Search Space

A central question in EC concerns how to represent whatever is evolved. In other
words, an important question is how genotypes (i.e. the data structures that are
handled by the EA) are mapped to phenotypes (i.e. the data structure or pro-
cess that is evaluated by the fitness function). An important distinction among
representations is between direct encodings, wherein the size of the genotype is
linearly proportional to the size of phenotype and each part of the genome maps
to a specific part of the phenotype, and indirect encodings, wherein the genotype
maps nonlinearly to the genotype and the former need not be proportional to
the latter ([2,3,4]; see [5] for a review).

The study of representations for EC is a broad field in its own right, where
several concepts have originated that bear on SBPCG [6]. The problem represen-
tation should have the right dimensionality to allow for precise searching while
avoiding the “curse of dimensionality” associated with representation vectors
that are too large (or the algorithm should find the right dimensionality for the
vector). Another principle is that the representation should have a high locality,
meaning that a small change to the genotype should on average result in a small
change to the phenotype and a small change to the fitness value.

Apart from these concerns, of course it is important that the chosen repre-
sentation is capable of representing all the interesting solutions; this ideal can
be a problem in practice for indirect encodings, for which there might be areas
of phenotype space to which no genotypes map.

Search-Based Procedural Content Generation 145

These considerations are important for SBPCG as the representation and
search space must be well-matched to the domain if it is to perform optimally.
There is a continuum between SBPCG that works with direct and indirect rep-
resentation. As a concrete example, a maze (for use e.g. in a “roguelike” dungeon
adventure game) might be represented:

1. directly as a grid for which mutation works directly on the content (wall,
free space, door, monster) of each cell,

2. more indirectly as a list of the positions, orientations and lengths of walls
([7] provides an example),

3. even more indirectly as a repository of different reusable patterns of walls
and free space, and a list of how they are distributed (with various transforms
such as rotation and scaling) across the grid,

4. very indirectly as a list of desirable properties (number of rooms, doors,
monsters, length of paths and branching factor), or

5. most indirectly as a random number seed.

These representations yield very different search spaces. In the first case, all
parts of phenotype space are reachable, as the one-to-one mapping ensures that
there is always a genotype for each phenotype. Locality is likely high because
each mutation can only affect a single cell (e.g. turn it from wall into free space),
which in most cases changes fitness only slightly. However, because the length of
the genotype would be the number of cells in the grid, mazes of any interesting
size quickly encounter the curse of dimensionality.

At the other end of the spectrum, option number 5 does not suffer from search
space dimensionality because it searches a one-dimensional space. However, the
reason this representation is unsuitable for SBPCG is that there is no locality;
one of the main features of a good random number generator is that there is no
correlation between the numbers generated by different seed values. All search
performs as badly (or as well) as random search.

Options 2 to 4 might all be suitable representations for searching for good
mazes. In options 2 and 3 the genotype length would grow with the desired
phenotype (maze) size, but sub-linearly, so that reasonably large mazes could
be represented with tractably short genotypes. In option 4 genotype size is in-
dependent of phenotype size, and can be made relatively small. On the other
hand, the locality of these intermediate representations depends on the care and
domain knowledge with which each genotype-to-phenotype mapping is designed;
both high- and low-locality mechanisms are conceivable.

3.2 Fitness Functions

Once a candidate content item is generated, it needs to be evaluated by the fitness
function and assigned a scalar (or a vector of real numbers) that accurately reflects
its suitability for use in the game. Designing the fitness function is ill-posed; the
designer first needs to decide what, exactly, should be optimized and then how to
formalize it. For example, one might intend to design a SBPCG algorithm that
creates fun, immersive, frustrating or exciting game content, and thus a fitness

146 J. Togelius et al.

function that reflects how much the particular piece of content contributes to the
player’s respective affective states while playing. At the current state of knowl-
edge, any attempt to estimate the contribution to “fun” (or affective states that
collectively contribute to player experience) of a piece of content is bound to rely
on conflicting assumptions. More research is needed at this time to achieve fruitful
formalisations of such subjective issues; see [8] for a review.

Three key classes of fitness functions can be distinguished for the purposes of
PCG are direct, simulation-based and interactive fitness functions.

Direct Fitness Functions. In a direct fitness function, some features are ex-
tracted from the generated content, and these features are mapped directly to
a fitness value. Hypothetical such features might include the number of paths
to the exit in a maze, firing rate of a weapon, spatial concentration of resources
on an RTS map, and material balance in randomly selected legal positions for
board game rule set. The mapping between features and fitness might be lin-
ear or non-linear, but typically does not involve large amounts of computation,
and is typically specifically tailored to the particular game and content type.
This mapping might also be contingent on a model of the playing style, prefer-
ences or affective state of the player, meaning that an element of personalization
is possible. An important distinction within direct fitness functions is between
theory-driven and data-driven functions. In theory-driven functions, the designer
is guided by intuition and/or some qualitative theory of player experience to de-
rive a mapping. On the other hand, data-driven functions are based on collecting
data on the effect of various examples of content via e.g. questionnaires or phys-
iological measurements, and then using automated means to tune the mapping
from features to fitness.

Simulation-based Fitness Functions. It is not always apparent how to de-
sign a meaningful direct fitness function for some game content — in some
cases, it seems that the content must be sufficiently experienced and operated
to be evaluated. An indirect fitness function is based on an artificial agent play-
ing through some part of the game that involves the content being evaluated.
Features are then extracted from the observed gameplay (e.g. did the agent
win? How fast? How was the variation in playing styles employed?) and used
to calculate the fitness of the content. The artificial agent might be completely
hand-coded, or might be based on a learned behavioral model of a human player.

Another key distinction is between static and dynamic simulation-based fitness
functions. In a static fitness function, it is not assumed that the agent changes
while playing the game; in a dynamic fitness function the agent changes during
the game and the fitness value somehow incorporates this change. For example,
the implementation of the agent can be based on a learning algorithm and the
fitness be dependent on learnability, i.e. how well and/or fast the agent learns to
play the content that is being evaluated. Other uses for dynamic fitness functions
is to capture e.g. order effects and user fatigue.

Interactive Fitness Functions. Interactive fitness functions score content
based on interaction with a player in the game, which means that fitness is

Search-Based Procedural Content Generation 147

evaluated during the actual gameplay. Data can be collected from the player
either explicitly, using questionnaires or verbal input data, or implicitly by mea-
suring e.g. how often or long a player chooses to interact with a particular piece
of content [9], when the player quits the game, or expressions of affect such as
intensity of button-presses, shaking the controller, physiological response, gaze
fixation, speech quality, facial expressions and postures.

3.3 Situating Search-Based PCG

At this point, let us revisit the distinctions in Section 2 and ask how they relate to
SBPCG. As stated above, SBPCG algorithms are generate-and-test algorithms.
They might take parameter vectors (in particular, parameters that modify the
fitness function) or not. As evolutionary and similar search algorithms rely on
stochasticity (e.g. a random seed is required for mutation); for the same reasons,
these algorithms should be classified as stochastic rather than deterministic.

As there is no general proof that all EAs ultimately converge, there is no
guaranteed completion time for a SBPCG algorithm, and no guarantee that it
will produce good enough solutions. For these reasons it would seem that SBPCG
would be unsuitable for online content generation, and better suited for offline
exploration of new design ideas. However, as we shall see later, it is possible to
successfully base complete game mechanics on SBPCG, at least if the content
generated is optional rather than necessary.

We can also choose to look at the relation between indirect representation
and SBPCG from a different angle. If our SBPCG algorithm includes an indirect
mapping from genotype to phenotype, this mapping can be viewed as a PCG
algorithm in itself, and an argument can be made for why certain types of PCG
algorithms are more suitable than others for use as part of an SBPCG algorithm.
It is worth noting that some indirect encodings used in various EC application
areas bear strong similarities to PCG algorithms for games; several indirect
encodings are based on L-systems, as are algorithms for procedural tree and
plant generation [3].

4 Case Studies of Search-Based PCG

In this section, we present five examples of search-based procedural content
generation, and categorise those according to the distinctions made previously
in the paper.

4.1 Rulesets for Pac-Man-like Games

Togelius and Schmidhuber [10] conducted an experiment in which rulesets (nec-
essary content) were evolved offline for grid-based games in which the player
moves an agent around, in a manner similar to a discrete version of Pac-Man.
Apart from the agent, the grid was populated by walls and “things” of different
colours, which could be interpreted as items, allies or enemies depending on the

148 J. Togelius et al.

rules. Rulesets were represented fairly directly as fixed-length parameter vectors,
interpreted as the effects on various things when they collided with each other
or the agent, and their behaviour. A relatively wide range of games could be
represented using this vocabulary, and genotype generation was deterministic
except for the starting position of things. The fitness function was dynamic and
simulation-based, and completely hand-crafted: an evolutionary reinforcement
learning algorithm was used to learn each ruleset and the ruleset was scored de-
pendent on how well it was learned. Games that were impossible or trivial were
given low fitness, whereas those that could be learned after some time scored
well.

4.2 Rulesets for Board Games

Browne [11] developed a system for offline design of rules (necessary content) for
board games using a form of genetic programming. Game rules were represented
relatively directly as expression trees, formulated in a custom-designed game
description language. This language allowed representation of a sufficiently wide
variety of board games, including many well-known games. The EA used for
the creation of new rule sets was non-standard in that suboptimal children with
poor performance or badly formed rules were not discarded but were instead
retained in the population with a lower priority to maintain a necessary level
of genetic diversity. The fitness function was a complex combination of direct
measures and static simulation-based measures: for example, standard game-tree
search algorithms were used to play the generated game as part of the fitness
evaluation to investigate issues such as balance and time to play the game. While
hand-coded, the fitness function was based on extensive study of existing board
games, and measurements of user preferences for board games that exhibited
various features.

4.3 Tracks for a Racing Game

Togelius et al. [12] designed a system for offline/online generation of tracks (nec-
essary or optional content, dependent on game design) for a simple racing game.
Tracks were represented directly as fixed-length parameter vectors, interpreted
deterministically as b-splines (i.e. sequences of Bezier curves) that defined the
course of the track. The fitness function was simulation-based, static, and per-
sonalised. Each candidate track was evaluated by letting a neural network-based
car controller, which had previously been trained to drive in the style of a par-
ticular human player, drive on the track. The fitness of the track was dependent
on the driving performance of the car: amount of progress, variation in progress
and difference between maximum and average speed.

4.4 Weapons for a Space Shooter Game

Hastings et al. [9] developed a multi-player game built on SBPCG. In the game,
players guide a spaceship through various parts of space, engaging in fire-fights

Search-Based Procedural Content Generation 149

with enemies and collecting weapons (each weapon is optional, but having a good
set of weapons is necessary for success). Weapons are represented indirectly as
variable-size vectors of real values, which are interpreted as connection topologies
and weights for neural networks, which in turn control the particle systems that
underlie the weapons. The fitness function is interactive, implicit and distributed.
Fitness for each weapon depends on how often the various users logged on to
the same server choose to fire each weapon relative to how often the weapons sit
unused in users’ weapon caches.

4.5 Levels and Mechanics for Super Mario Bros

Pedersen et al. [13] modified an open-source clone of the classic platform game
Super Mario Bros to allow for personalised level and game mechanics generation.
Levels were represented very indirectly as a short parameter vector describing
mainly the number, size and placement of gaps in the level whereas the sole
mechanic investigated was represented as the percentage of the level played from
right to left. This vector was converted to a complete level in a stochastic fashion.
The fitness function was direct, data-driven and personalised, using a neural
network that converted level parameters and information about the player’s
playing style to one of six emotional state predictors (fun, challenge, frustration,
predictability, anxiety, boredom), which could be chosen as components of a
fitness function. These neural networks were trained through collecting both
gameplay metrics and data on player preferences using variants of the game on
a web page with an associated questionnaire.

5 Outlook

As reviewed in the previous section, a small number of successful experiments
are already beginning to show the promise of search-based procedural content
generation. By classifying these experiments according to the taxonomies pre-
sented in this paper, it can be seen both that (1) though all are examples of
SBPCG, they differ from each other in several important dimensions, and (2)
there is room for approaches other than those that have already been tried; both
the type of content generated and the algorithmic approach to generating it may
change in the future.

At the same time, there are several hard and interesting research challenges.
These include the appropriate representation of game content and the design
of relevant, reliable, and computationally efficient fitness functions. The latter
challenge in particular is likely to benefit from collaboration with experts from
fields other than computational intelligence, including psychology, game design
studies and affective computing. The potential gains from providing good so-
lutions to these challenges, however, are significant: the invention of new game
genres built on PCG, streamlining of the game development process, and further
understanding of the mechanisms of human entertainment are all possible.

150 J. Togelius et al.

Acknowledgements

Thanks to all the participants in the discussions in the Procedural Content
Generation Google Group. The research was supported in part by the Danish
Research Agency, Ministry of Science, Technology and Innovation; project name:
AGameComIn; project number: 274-09-0083.

References

1. Miller, G.S.P.: The definition and rendering of terrain maps. In: Proceedings of
SIGGRAPH, vol. 20 (1986)

2. Bentley, P.J., Kumar, S.: The ways to grow designs: A comparison of embryogenies
for an evolutionary design problem. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, pp. 35–43 (1999)

3. Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings
for physical design. In: Proceedings of IEEE CEC (2001)

4. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction
of development. Genetic Programming and Evolvable Machines Special Issue on
Developmental Systems 8(2), 131–162 (2007)

5. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial
Life 9(2), 93–130 (2003)

6. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer,
Heidelberg (2006)

7. Ashlock, D., Manikas, T., Ashenayi, K.: Evolving a diverse collection of robot path
planning problems. In: Proceedings of IEEE CEC, pp. 6728–6735 (2006)

8. Yannakakis, G.N.: How to Model and Augment Player Satisfaction: A Review. In:
Proceedings of the 1st Workshop on Child, Computer and Interaction, Chania,
Crete. ACM Press, New York (2008)

9. Hastings, E., Guha, R., Stanley, K.O.: Evolving content in the galactic arms race
video game. In: Proceedings of the IEEE Symposium on Computational Intelligence
and Games (2009)

10. Togelius, J., Schmidhuber, J.: An Experiment in Automatic Game Design. In:
Proceedings of the IEEE Symposium on Computational Intelligence and Games,
Perth, Australia, pp. 252–259. IEEE, Los Alamitos (2008)

11. Browne, C.: Automatic generation and evaluation of recombination games. PhD
thesis, Queensland University of Technology (2008)

12. Togelius, J., De Nardi, R., Lucas, S.M.: Towards automatic personalised content
creation in racing games. In: Proceedings of the IEEE Symposium on Computa-
tional Intelligence and Games (2007)

13. Pedersen, C., Togelius, J., Yannakakis, G.N.: Modeling Player Experience in Super
Mario Bros. In: Proceedings of the IEEE Symposium on Computational Intelligence
and Games, Milan, Italy, pp. 132–139. IEEE, Los Alamitos (2009)

Evolution of Grim Trigger in Prisoner Dilemma
Game with Partial Imitation

Degang Wu, Mathis Antony, and K.Y. Szeto�

Department of Physics,
Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong, HKSAR
phszeto@ust.hk

Abstract. The emergence of Grim Trigger as the dominant strategy in
the Iterated Prisoner Dilemma (IPD) on a square lattice is investigated
for players with finite memory, using three different kinds of imitation
rule: the traditional imitation rule where the entire data base of the
opponent’s moves is copied, and the two more realistic partial imitation
rules that copy only a subset of opponent’s moves based on information
of games played. We find that the dominance of Grim Trigger is enhanced
at the expense of some well known strategies such as tit-for-tat (TFT)
when a player has access only to those moves observed in past games
played with his opponents. The evolution of the clusters of Grim Trigger
in the early stage of the games obeys a common pattern for all imitation
rules, before these clusters of Grim Triggers coalesce into larger patches
in the square lattice. A physical explanation for this pattern evolution
is given. Implication of the partial imitation rule for IPD on complex
networks is discussed.

1 Introduction

Evolutionary game [1,2,3,4] provides a rich playground for the simulation of
multi-agent systems with complex dynamics revealed through the evolving pat-
terns of various strategies used by the players. These spatial-temporal patterns
are of interest to many scientists working in various fields, ranging from com-
puter science, physics, ecology and biology. One of the most studied games by
political scientists and sociologists is the Prisoner’s Dilemma, as it provides a
simple model of the difficulties of cooperation [5,6,7] in a world populated by
egoists. In the Prisoner Dilemma game (PD) two players can choose to cooper-
ate (C) or defect (D). Each player will gain a payoff depending jointly on his
choice and the opponent’s choice. Cooperation yields a payoff R(S) if the oppo-
nent cooperates (defects) and defection yields T (P) if the opponent cooperates
(defects). We call R the Reward for cooperation, S the Sucker ’s payoff, T the
Temptation to defect and P the Punishment. Typically, T > R > P > S and
2R > T + P . The Prisoner Dilemma game is a non zero sum game because one

� Corresponding Author.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 151–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

152 D. Wu, M. Antony, and K.Y. Szeto

player’s loss does not equal the opponent’s gain. For player without memory,
the best strategy for a selfish individual is to defect, although this will result in
mutual defection and lead to the worst collective effect for the society. In this
PD game, the expectation of defection (D) is greater than the expectation of
cooperation (C), independent of the opponent’s strategy, even though coopera-
tion yields a higher total payoff for the society. In order to further investigate
the emergence of cooperation, a variant of the PD game is the spatial PD game
(SPDG), which describes the evolution pattern for a set of players fixed on a
lattice, with each player playing the PD game with nearest neighbors. Since now
there is a spatial restriction on the players, cooperators can support each other
[8,9] and enhance the survival of cooperators [6,10]. For the SPDG, the prob-
lem can be mapped onto the statistical mechanics of the two-state Potts model
Hamiltonian [2,11] that describes the total income of player i by

Hi =
∑
j(i)

S˜T
i A˜S˜j with S˜T

i , S˜j ∈
{−→

C ,
−→
D
}

and−→C =
(

1
0

)
,
−→
D =

(
0
1

)
(1)

Here S˜j is the state vector for the player j who is the neighbor of player i

and the state vector can be either one of the two unit vectors
{−→

C ,
−→
D
}
. The

summation runs over all the neighbors of the player i sitting at node i, while the
neighborhood is defined by the topology of the given network. In the PD game,
complication arises for players with the ability to remember a fixed number of
the most recent events and supply each player with a set of answers to respond
to every possible given history of the game. We call such an answer a ”Move”.
The finite history of the responses of the players is recorded. The rule that
describes what move should be used given a particular history of interaction is
called a Strategy. A complete strategy should include an answer to every possible
situation. Players will adapt their strategies, imitating other more successful
players following certain Imitation Rule. Although each player at a particular
lattice site has a favorite strategy at time t, he may change to a different strategy
at a later time as he realizes from his opponents (his neighbors in SPDG) a better
choice. Consequently, the lattice at a particular time can be labeled by a colorful
collection of strategies defined on the N sites of the lattice, corresponding to the
favorite strategy of the N players at that time. The evolution of this pattern of
strategies is one of the main topics of analysis in our present work. Memory is the
key that leads to the possible switch of strategy of player i to a new strategy after
observing the success of his neighbors, who are his opponents. Without memory,
player i will not be able to remember the move of his successful neighbor j,
thereby imitating the strategy of player j. Now, the key idea of our model comes
from the modification of the traditional imitation rule used in the past research
on the PD game. The usual imitation rule assumes that the player will copy the
complete strategy of his idol, who is a more successful opponent in his encounter.
However, if only a subset of the complete strategy of the idol has been used, then
it is unrealistic for the player to copy the whole strategy, including the subset
that has never been observed. A realistic modification on the imitation rule is to

Evolution of Grim Trigger in Prisoner Dilemma Game with Partial Imitation 153

copy only those subsets of the complete strategy that have been observed. The
modification of the traditional imitation rule is necessitated by the fact that all
players can only have finite memory. This observation motivates us to consider
a new imitation rule called partial imitation rule, as it permits the player to
imitate at most the subset of the strategy his idol has used. In real life, a player
cannot even remember all the observed moves of his idol. We will formulate our
model in Section 2 and the imitation rule in Section 3. The results are discussed
in Section 5.

2 Memory Encoding

A two-player PD game yields one of the four possible outcomes because each
of the two independent players has two possible moves, cooperate (C) or defect
(D). To an agent i, the outcome of playing a PD game with his opponent, agent
j, can be represented by an ordered pair of moves SiSj. Here Si can be either
C for cooperate or D for defect. In any one game between them: {SiSj} takes
on one of these four outcomes {CC, CD, DC, DD}. For n games, there will be
a total of 4n possible scenarios. A particular pattern of these n games will be
one of these 4n scenarios, and can be described by an ordered sequence of length
2n of the form Si1Sj1 ... SinSjn. This particular ordered sequence of outcomes
for these n games is called a history of games between these two players, which
consists of n pairs of outcome {SiSj}, with the leftmost pair being the first
game played, while the rightmost pair being the outcome of the last gamed
played, or the most recent outcome. (We use capital S to denote the value of
either C or D in the history. For example, an ordered sequence of move pairs
DDDDDDCC represents that the two players cooperate right after the past
three mutual defection {DD} , {DD} , {DD}.) We use the convention that the
outcome {SiSj}, corresponds to Si being the move made by agent i, who is
the player we address, and Sj is the move made by agent j, the opponent of
our player. Depending on the player we address, the representation of the same
history is not unique. In SPDG, agent j is one of the neighbors of agent i.
We say that a player has a memory of fixed-length m, when this player can
remember exactly the outcomes of the most recent m games. A ”Memory” is a
sub-sequence of a history. For example, for an agent i with two-game memory
(m = 2), will only has a ”Memory” DDCC given a history represented by
DDDDDDCC. We encode the memory by a bit string using the convention
that cooperation is represented by 1 and defection by 0. Thus, the memory
DDCC can be represented by the binary number 0011 or the decimal number 3.
The number of all the possible memory, given that the agent can memorize the
outcomes of the last m games, is 4m. (Here 4 refers to the four possible outcomes
of one game which is 00, 01, 10, 11). To start the game, let’s Consider a non-
trivial example when m = 3. In this case there are 64 = 43 possible histories of
the strategies used by the two players. We need to reserve 1 bit for the first move
of our player:{D, C}, and use two more bits for the second move of our player
when confronted with the two possibilities of the first move of the opponent

154 D. Wu, M. Antony, and K.Y. Szeto

Table 1. Representation of Strategy Sequence in M1

Memorized History First Move DD DC CD CC

Players’ Strategy S0 S1 S2 S3 S4

{D, C}. (Our player can choose C or D when the opponent’s first move is D,
and our player also can choose C or D when the opponent’s first move is C. Thus
we need two more bits for our player). To account for the four possible scenarios
of the last two moves of the opponents: {DD, DC, CD, CC}, we need to reserve
4 more bits to record the third move of our player. Thus, for a PD game played
by prisoners who can remember 3 games, a player will need 1 + 2 + 4 = 7 bits
to record his first three moves [12]. After this initial stage, the strategy for our
player will need to respond to the game history with a finite memory. Since
there are a total of 64 = 43 possible Memory, i.e., 64 possible outcomes of the
last three games, our player will need 64 more bits. In conclusion, the length of
the strategy sequence is 7 + 64 = 71 and there are a total of 271 − 2.4 × 1021

possible strategies. Thus the strategy space for a m = 3 game is very large. Let’s
now denote the ensemble of m-step memory as Mm , then the total number of
bits required to encode the possible strategy sequence is b(m) = 2m − 1 + 4m

and the total number of possible strategies is |Mm| = 2b(m). For m = 1, the
enumeration of the encoding of the possible strategies shows that there are 32
possible strategies. This can be seen from Table 1 below.

The strategy in M1 can be denoted by S0|S1S2S3S4. Here the first move is
S0. If the memory is DD, then the move is S1. If the memory is DC, then the
move is S2. If the memory is CD, then the move is S3. If the memory is CC,
then the move is S4.

3 Imitation Rule

The standard imitation rule for the spatial PD game without memory is that
the focal agent i will adopt the pure strategy of a chosen neighbor depending on
payoff. The generalized imitation rule for PD game with memory is adopting the
entire set of the complete strategy. We call such imitation rule the traditional
imitation rule (tIR). In this way, tIR impose the condition that every agent has
complete information about the entire set of the strategy of all its neighbors.
Such assumption of complete information is unrealistic since the focal agent only
plays a few games with its neighbors while the space of strategies used by the
neighbor is generally astronomically larger than F (the number of games played
by two agents). A more realistic situation is that the focal agent i only has partial
information about the strategy of his neighbors. In this paper, every agent only
knows a subset of the strategy used by a chosen neighbor. For a pair of players
(i, j), playing F games, the focal player i will only observed a set (Sj(i, j))
of moves actually used by agent j. This set Sj(i, j) is usually much smaller
than the entire set of possible moves corresponding to the strategy of agent j.

Evolution of Grim Trigger in Prisoner Dilemma Game with Partial Imitation 155

With this partial knowledge of the moves of the neighbors, the new imitation
rule for agent i is called the partial imitation rule. We now give an example to
illustrate the difference between partial imitation rule and the traditional one for
one step memory. Let’s consider an agent i with C|DDDD strategy confronts
another agent j with the Tit-for-Tat (TFT) strategy (S0|S1S2S3S4 = C|DCDC)
and agent i decides to imitate the agent j’s strategy. In tIR, we assume that
agent i somehow knows all the five bits of TFT though in the confrontation with
agent j only four bits at most of TFT have been used. On the other hand, with
partial imitation rule (pIR), when a C|DDDD agent confronts a TFT agent,
the C|DDDD will know only four bits of TFT(S0|S1S2S3S4 = C|DCDC), i.e.,
S0 = C, S1 = D, S3 = D, S4 = C, and S2 is not applicable as we do not run
into S2 situation since it corresponds to the last pair of moves is DC and our
agent i always use D except the first move. Thus, when agent i imitates agent j
using pIR, agent i will become (C|DDDC), which corresponds to a Grim Trigger
(GT) instead of TFT (C|DCDC). We call this new imitation rule the type 1
partial imitation rule, denoted by pIR1.

In a more relaxed scenario, we can slightly loosen the restriction on the access
of our focal agent i to the information of neighbors’ strategy. If we denote the
set of agent j’s moves used during the confrontation between agent i and agent
j as Sj(i, j), then we can assume that agent i knows a larger subset of agent j’s
strategy, described by

Gj(i, j) =
⋃

k∈Ω(j)

Sj(k, j) (2)

where Ω(j) denotes the set of nearest neighbors of agent j. Note that this set
of moves used by agent j could be substantially larger than Sj(i, j), but still
should generally be much smaller than the entire set of strategy of player j. In
pIR1, we provide agent i information on agent j defined by the set Sj(i, j). We
now introduce a second type of partial imitation rule, denoted by pIR2, if we
replace Sj(i, j) by the larger set Gj(i, j).

Let’s illustrate pIR2 with an example. Consider an always-cooperating agent
i (C|CCCC) confronting a GT (C|DDDC) agent j, who has four neighbors,
including i. Let’s assume that the remaining three neighbors of agent j are
always-defecting (D|DDDD). Let’s call these three neighbors a, b, c. In the con-
frontation between agent i (C|CCCC) and agent j (GT), agent j uses only S0
and S4 of Grim Trigger. However, in the confrontation between agent j (GT) and
three neighbors other than i (agent a, b and c, who are D|DDDD), agent j will
use S0, S1 and S3 of Grim Trigger. With pIR1, if agent i imitates agent j, the
result is still C|CCCC as they will use C for S0 and S4 of Grim Trigger based
on the set Sj(i, j). Now, with pIR2, if agent i imitates agent j, i changes from
C|CCCC to C|DCDC, which is TFT. It is still not a Grim Trigger. Finally, if
we use tIR, the traditional imitation rule, we will directly replace agent i with
Grim Trigger (C|DDDC). This example shows that the result of tIR, pIR1 and
pIR2 could be very different, depending on the exact situation.

156 D. Wu, M. Antony, and K.Y. Szeto

4 Results of Monte Carlo Simulation

In this paper, agents will be placed on a fixed square lattice of size L× L, with
periodic boundary condition. Each agent only interacts with its four nearest
neighbors. For one confrontation we randomly choose an agent i and a neighbor
j of i and let them play a number (F) of games with each other. The reason
that in one confrontation, agent i and j have to play F (> 1) games is that mem-
ory effect will not be evident unless there is some repeated encounter between
the two players. In order to test the strategies for different F , we introduce a
probability parameter p. In a confrontation, the two players may stop playing
with a probability p at the end of a game. We further define one generation of
the PD game on the square lattice when L × L confrontations has been per-
formed. In this paper, for simplicity, we will treat the number of generations
passed as the measurement of time (t). With this stopping probability p, one
effectively control the average number of games played between pair of players,
thereby determining average F . According to (1), the payoff of agent i after
playing a game with agent j is given by the interaction term S˜T

i A˜S˜j . After F
games between these two agents, we obtain the average payoff U(i) and U(j)
of agent i and j over these games in this confrontation. The payoff parameters
used are T = 5.0, R = 3.0, P = 1.0, S = 0.0. Agent i will then imitate agent j
with a probability P (Si → Sj) = (1 + eβ(U(i)−U(j)))−1. Here, 1/β represents the
thermal noise level. We use β = 100.

In order to verify the correctness of our program on SPDG, we first test our
algorithm using the traditional imitation rule. We initialize the strategies of
every agent with each element assigned ”cooperation (C)” or ”defection (D)”
at equal probability. The result of the simulation, which is shown in Fig.1(a),
is very similar to the published result of Baek and Kim (Fig.3a in [13]). Here,
TFT and GT dominate at long time. These two strategies together with Pavlov
and C|CCDC are the only four surviving strategies in the long run. We then

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (Generation)

C
on

ce
nt

ra
tio

n

D|DDDD
GT C|DDDC
TFT C|DCDC
Pavlov C|CDDC
C|CCDC

10
1

10
2

0

0.01

0.02

0.03

(a)

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Generation)

C
on

ce
nt

ra
tio

n

D|DDDD
GT C|DDDC
TFT C|DCDC
Pavlov C|CDDC
C|CCDC

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

(b)

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Generation)

C
on

ce
nt

ra
tio

n

D|DDDD
GT C|DDDC
TFT C|DCDC
Pavlov C|CDDC
C|CCDC

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

(c)

Fig. 1. Concentrations of important strategies in M1 strategy space in SPDG on 100×
100 square lattice. Result is averaged over 1000 independent simulations, with β = 100
using 1(a) traditional Imitation Rule (tIR), 1(b) partial Imitation Rule 1 (pIR1) and
1(c) partial Imitation Rule 2 (pIR2). Practically, 100 runs are enough for producing
smooth curves.

Evolution of Grim Trigger in Prisoner Dilemma Game with Partial Imitation 157

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Evolution patterns of the GT clusters for tIR (2(a),2(d),2(g)), pIR1
(2(b),2(e),2(h)), pIR2 (2(c),2(f),2(i)) at time measured by generation number t =
5, 10, 20. Taken from one typical run for each of the three imitation rules.

use the same program but with the partial imitation rule. In Fig.1(b), we use
partial imitation rule 1 (pIR1) and in Fig.1(c), we use pIR2. In both cases,
only GT dominates and the concentration of TFT is dramatically reduced to
the level of Pavlov and C|CCDC. Results are independent of the lattice size.
Next, we should note that the average number of games in confrontation is
controlled by the probability p. Our numerical experiments show that p affects
the concentrations of all the strategies regardless of the imitation rule used.
When p = 1, agents will always cooperate or defect without making use of the
memory mechanism as the game ends with certainty. When p is smaller than 1,
there is a finite probability (1−p) that the agents continue playing games, thereby
making use of their memory to activate the various moves of their strategies. In
general, we should choose p sufficiently small so that the number of games played
is sufficiently large and memory effect is evident. As our main concern is on the
effect of using partial imitation rule on the dominance of various strategies, we
use p = 0.05 so that there are about 20 games played in every confrontation.
Indeed, we have verified that the general results of our analysis are not sensitive
to the values of p, provided that it is smaller than 0.2.

158 D. Wu, M. Antony, and K.Y. Szeto

In Fig.2, we show a particular run of the Monte Carlo simulation starting with
a randomized initial configuration of players, using three kinds of imitation rules:
tIR, pIR1, and pIR2. The time that we make the snapshot are t = 5, 10, 20. The
white clusters are the players adopting the GT strategy. These clusters grow till
they begin to merge into larger clusters. In order to understand the evolution of
strategies and the emergence of the dominant clusters of GT, we introduce the
following measures for the characterization of the topology of the GT clusters.
At a given time, the total number of players adopting the GT strategies can
be measured by the total area of the square lattice occupied by GT. Let this
total area be A(t). We can also count the length of the boundary between GT
and non GT players, and let’s denote this boundary as L(t). If we have a single
cluster of GT, we can approximate the relation between L(t) and A(t) using a
disk of radius R(t), so that A(t) = π(R(t))2, L(t) = 2πR(t). Now, if there are n
equal size disks of GT clusters of radius R(t), then we have An(t) = nπ(R(t))2

and boundary length Ln(t) = 2nπR(t). Therefore the number of GT clusters
can be estimated to be n(t) = (Ln(t))2/(4πAn(t)). Since both the total area
An(t) = nπ(R(t))2 and boundary length Ln(t) = 2nπR(t) are measurable, we
can obtain the approximate number of GT clusters. Once we obtain n(t), we
can obtained the average area of the GT clusters by dividing the total area of
GT by n(t): a(t) = A(t)/n(t). Here the total area of GT clusters is denoted by
A(t) ≡ An(t).

In Fig.3(a), we summarize the results by plotting the average total area of
GT players in the 100 × 100 square lattice as a function of time. We perform
this analysis of the GT clusters based on the evolution patterns of the SPDG
simulation results using different imitation rules as shown in Fig.2. In Fig.3(b),
we observe an interesting universal curve relating the average area a(t) of a
GT cluster and the total area A(t) of GT clusters. We see that for all three
imitation rules, the data collapse onto the same curve. The collapse of the data
is better at small total area, corresponding to the early stage of evolution shown
in Fig.3(a): for tIR, the time is less than 25, for pIR2, the time is less than
30, and for pIR1, the time is less than 60. Since the measurement of time is
different for different imitation rules, it is easier to measure time of evolution
using the total area occupied by GT players. Therefore, the data collapse for the
three imitation rules shown in Fig.3(b) indicates some intrinsic scaling relation
of the dynamics of the game. Indeed, for tIR, the saturation of the average area
of GT clusters in Fig.3(a) occurs sooner at time around 25, since there is a
complete knowledge of the opponent’s moves before imitation. This saturation
effect comes from the coalescence of the various GT clusters to form larger and
irregular shaped GT clusters. This phenomenon is shown clearly in Fig.2 for a
particular run of the evolution of the GT patterns. When the imitation rule is
partial, the knowledge of the possible moves by the GT player is less, so the
time needed for the saturation of the average area in Fig.3(a) will be longer for
games with partial imitation rule. The fact that the time for saturation for pIR1
is more than pIR2 is then clear, since there is less information on the moves
known to the player using pIR1 than pIR2, so saturation occurs sooner in pIR2

Evolution of Grim Trigger in Prisoner Dilemma Game with Partial Imitation 159

0 20 40 60 80 100
0

50

100

150

200

250

300

350

time

A
ve

ra
ge

 a
re

a
of

 G
T

 c
lu

st
er

s

tIR
pIR1
pIR2

(a)

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

Total area of GT clusters

A
ve

ra
ge

 a
re

a
of

 G
T

 c
lu

st
er

s

tIR
pIR1
pIR2

(b)

Fig. 3. 3(a) Evolution of the total area occupied by players using GT strategies in the
100 × 100 square lattice. Time is measured by generation number. 3(b) Average area
per GT clusters vs total area of the GT clusters. It shows a collapse of data for three
different imitation rules. Averaged from 100 independent simulations.

than in pIR1. When the information on the moves of one’s opponent is less
available, it will take more time to realize the advantage of the GT strategy,
so that the time for saturation of the average area is longer. Thus, in Fig.2,
we see that at time t = 10, the white clusters for pIR1 (Fig.2(b),2(e),2(h)),
which has less information on the opponent’s moves, are generally smaller than
the white clusters for pIR2 (Fig.2(c),2(f),2(i)), which has more information. For
tIR (Fig.2(a),2(d),2(g)), there is complete information, so GT clusters are even
larger. After saturation, the system enters into a state of dynamic equilibrium.

5 Conclusion

The memory of the agents has important implication on PD game. In view of the
fact that the traditional imitation rule is unrealistic in assuming that a player can
copy all the moves of the opponent, we introduce two kinds of partial imitation
rules, different by the size of subset of moves observed in past games, and we find
very different evolution patterns of various strategies. One major difference is
that GT now becomes dominant, and TFT succumbs to the same miserable level
of usage as Pavlov. We also observe a universal scaling of the average area of the
cluster of GT for all three different imitation rules. This observation implies that
there is some hidden scaling relation on the dynamics of SPDG with memory, and
the level of partial imitation, as demonstrated by pIR1 and pIR2, corresponds
to different region of the universal scaling curve. One generalization that we will
further our investigation is to relate the sequence of partial imitation rule to the
propagation of information on the moves of an opponent through his interaction
with his nearest neighbors, (pIR1 and pIR2), and next nearest neighbors and
so on. In this way, a social network based on the propagation of information
on the history of moves by this opponent can be established. It will be a very
interesting problem to relate this to ”rumors propagation” in complex networks.
Finally, our analysis indicates that more realistic players in PD game will prefer
using GT than TFT, when they use memory and access local information about

160 D. Wu, M. Antony, and K.Y. Szeto

the opponent before imitation. This result has important implication of previous
studies on PD game as partial knowledge of the opponents’ moves should be the
norm rather than the exception in real life.

Acknowledgement. K. Y. Szeto acknowledges the support of CERG grant
602506 and 602507.

References

1. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour.
Princeton University Press, Princeton (1944)

2. Szabo, G., Fath, G.: Evolutionary games on graphs. Physics Reports 446(4-6),
97–216 (2007)

3. Smith, J.M., Price, G.M.: The logic of animal conflict. Nature 246, 15–18 (1973)
4. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press,

Cambridge (1982)
5. Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evo-

lution of cooperation on graphs and social networks. Nature 441, 502–505 (2006)
6. Nowak, M.A.: Five Rules for the Evolution of Cooperation. Science 314(5805),

1560–1563 (2006)
7. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)
8. Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. of Bifurcation

and Chaos 3(1), 35–78 (1993)
9. Szabo, G., Vukov, J., Szolnoki, A.: Phase diagrams for an evolutionary prisoner’s

dilemma game on two-dimensional lattices. Phys. Rev. E 72(4), 47107 (2005)
10. Helbing, D., Lozano, S.: Routes to cooperation and herding effects in the prisoner’s

dilemma game (May 2009)
11. Ariosa, D., Fort, H.: Extended estimator approach for 2x2 games and its mapping

to the Ising Hamiltonian. Phys. Rev. E 71, 16132 (2005)
12. Bukhari, S., Adnan, H.A.S.: Using genetic algorithms to develop strategies for the

prisoners dilemma. Asian Journal of Information Technology 8(5), 866–871 (2006)
13. Baek, S.K., Kim, B.J.: Intelligent tit-for-tat in the iterated prisoner’s dilemma

game. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 78(1),
11125 (2008)

Evolving a Ms. PacMan Controller
Using Grammatical Evolution

Edgar Galván-López, John Mark Swafford,
Michael O’Neill, and Anthony Brabazon

Natural Computing Research & Applications Group,
University College Dublin, Ireland

{edgar.galvan,john-mark.swafford,m.oneill,anthony.brabazon}@ucd.ie

Abstract. In this paper we propose an evolutionary approach capable
of successfully combining rules to play the popular video game, Ms. Pac-
Man. In particular we focus our attention on the benefits of using Gram-
matical Evolution to combine rules in the form of “if <condition> then
perform <action>”. We defined a set of high-level functions that we think
are necessary to successfully maneuver Ms. Pac-Man through a maze
while trying to get the highest possible score. For comparison purposes,
we used four Ms. Pac-Man agents, including a hand-coded agent, and
tested them against three different ghosts teams. Our approach shows
that the evolved controller achieved the highest score among all the other
tested controllers, regardless of the ghost team used.

1 Introduction

Ms. Pac-Man, released in early 1980s, became one the most popular video games
of all time. This game, the sequel to Pac-Man, consists of guiding Ms. Pac-Man
through a maze, eating pills, power pills, and fruit. This task would be simple
enough if it was not for the presence of four ghosts that try to catch Ms. Pac-
Man. Each ghost has their own, well-defined, behaviour. These behaviors are the
largest difference between the Pac-Man and Ms. Pac-Man. In the original Pac-
Man, the ghosts are deterministic and players who understand their behavior
may always predict where the ghosts will move. In Ms. Pac-Man, the ghosts
have non-deterministic elements in their behavior and are not as predictable.

The gameplay mechanics of Ms. Pac-Man are also very easy to understand.
When Ms. Pac-Man eats a power pill, the ghosts change their status from inedible
to edible (only if they are outside their “nest”, located at the centre of the maze)
and remain edible for a few seconds. In the edible state they are defensive, and
if they are eaten, Ms. Pac-Man’s score is increased considerably (the first eaten
ghost gives 200 points, the second 400, the third 800, and 1,600 for the last).
When all the pills are eaten, Ms. Pac-Man is taken to the next level. Levels get
progressively harder by changing the maze, increasing the speed of the ghosts,
and decreasing the time to eat edible ghosts. The original version of Ms. Pac-
Man presents some very interesting features. For instance, Ms. Pac-Man moves
slightly slower than Ghosts when she’s eating pills, but she moves slightly faster

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 161–170, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 E. Galván-López et al.

when crossing tunnels. The most challenging element is the fact that the ghosts’
movements are non-deterministic. The goal of the ghosts is to catch Ms. Pac-
Man, so they are designed to attack her. Over the last few years, researchers
have tried to develop software agents able to successfully clear the levels and
simultaneously get the highest score possible (the world record for a human
player on the original game stands at 921,360 [4]). The highest score achieved by
a computer, developed by Matsumoto [5], based on a screen-capture system that
is supposed to be exactly the same as the arcade game, stands at 30,010 [4]. The
other top three scores achieved are 15640, 9000 and 8740 points, respectively [5].
It is worth pointing out that all of these methods used a hand-coded approach.

However, it is important to note that there has been work where researchers
have used a variety of artificial intelligence approaches to create Ms. Pac-Man
players. Some of these approaches state a goal of evolving the best Ms. Pac-Man
player possible. Others aim to study different characteristics of an algorithm
in the context of this non-deterministic game. Some previous approaches are
listed here, but will not be compared against each other due to differences in the
Ms. Pac-Man implementation and the goal of the approach.

One of the earliest, and most relevant, approaches comes from Koza [3]. He
used genetic programming to combine pre-defined actions and conditional state-
ments to evolve his own, simple Ms. Pac-Man game players. Koza’s primary
goal was to achieve the highest possible Ms. Pac-Man score using a fitness func-
tion that only accounts for the points earned per game. Work similar to [3] is
reported by Szita and Lõrincz [10]. Their approach used a combination of re-
inforcement learning and the cross-entropy method to assist the Ms. Pac-Man
agent in “learning” the appropriate decisions for different circumstances in the
game. More evolution of Ms. Pac-Man players was carried out by Gallagher [2].
He used a population-based incremental learning approach to help one Ms. Pac-
Man player “learn” how to improve its performance by modifying its different
parameters. Another, more recent, approach by Lucas [7] uses an evolutionary
strategy to train a neural network to play Ms. Pac-Man in hopes of creating the
best possible player.

The goal of our work is to successfully evolve rules in the form of “if
<condition> then perform <action>” to maneuver Ms. Pac-Man through the
maze, and at the same time, achieve the highest score possible. For this purpose
we are going to use Grammatical Evolution (GE) [8,1].

This paper is structured as follows. In the following section we describe how
GE works. In Sect. 3 we describe the high-level functions designed to evolve the
Ms. Pac-Man agent. In Sect. 4 we describe the experimental setup and Sect. 5
presents the results achieved by our approach, followed by a discussion. Finally,
Sect. 6 draws some conclusions.

2 Grammatical Evolution

In GE, rather than representing programs as parse trees, as in Genetic Pro-
gramming (GP) [3], a variable length linear genome representation is used.

Evolving a Ms. PacMan Controller Using Grammatical Evolution 163

This genome is an integer array with elements called codons. A genotype to
phenotype mapping process is employed on these integer arrays which uses a
user-specified grammar in Backus-Naur Form (BNF) to output the actual phe-
notype. A grammar can be represented by the tuple {N, T, P, S}, where N is
the set of non-terminals, T is the terminal set, P stands for a set of production
rules and, S is the start symbol which is also an element of N . It is important to
note that N may be mapped to other elements from N as well as elements from
T . The following is an example based on the grammar used in this work (Note:
the following is not the actual grammar, just a simplified version; see Fig. 2 for
the actual grammar):

Rule Productions Number
(a) <prog> ::= <ifs> | <ifs> <elses> (0), (1)

(b) <ifs> ::= if(<vars> <equals> <vars>){ <prog> } (0)
| if(<vars> <equals> <vars>){ <action> } (1)

(c) <elses> ::= else{ <action> } | else{ <prog> } (0), (1)

(d) <action> ::= goto(nearestPill) (0)
| goto(nearestPowerPill) (1)
| goto(nearestEdibleGhost) (2)

(e) <equals> ::= < | <= | > (0), (1), (2)
| >= | == (3), (4)

(f) <vars> ::= thresholdDistanceGhost (0)
| inedibleGhostDistance (1)
| avgDistBetGhosts | windowSize (2), (3)

To better understand how the genotype-phenotype mapping process works in
GE, here is a brief example. Suppose that we use the grammar defined previously.
It is easy to see that each rule has a number of different choices. That is, there
are 2, 2, 3, 5, and 4 choices for rules (a), (b), (c), (d), (e), and (f), respectively.
Given the following genome: 16 93 34 81 17 46, we need to define a mapping
function (i.e., genotype-phenotype mapping) to produce the phenotype. GE uses
the following function: Rule = c mod r, where c is the codon integer value and
r is the number of choices for the current symbol, to determine which produc-
tions are picked for the phenotype. Beginning with the start symbol, <prog> ,
and its definition, <prog> ::= <ifs> | <ifs> <elses> the mapping function is
performed: 16 mod 2 = 0. This means the left-most non-terminal, <prog> will be
replaced by its 0th production, <ifs> , leaving the current phenotype: <ifs> .

Because <ifs> has two productions and the next codon in the integer array
is, 93, <ifs> is replaced by: if(<vars> <equals> <var>){ <action> } . Follow-
ing the same idea, we take the next codon, 34, and left-most non-terminal,
<vars> and apply the mapping function. The results is 2, so the pheno-
type is now: if(avgDistBetGhosts <equals> <var>) { <action> }. Repeating
the same process for the remaining codons, we have the following expression:
if(avgDistBetGhosts <= inedibleGhostDistance){goto(nearestPowerPill) } .
It is worth mentioning that in this example, all the codons were used. How-
ever, cases may occur where some codons are not used or, during the genotype-
phenotype mapping, the end of the genome is reached and there are non-terminals

164 E. Galván-López et al.

remaining in the phenotype, causing it to be marked as invalid. If this is the case,
there are some options that one can use. For instance, the wrapping operator uses
the idea that if a phenotype is incomplete, then the process continues starting from
the first codon (from left to right) until a valid phenotype is built or the maximum
number of wraps has been reached. If the phenotype is still incomplete at the end
of this process, it will be necessary to assign the lowest possible fitness to the in-
dividual. As in GP, GE also uses crossover and mutation. The typical form of ap-
plying crossover in GE is selecting two genomes and randomly picking a crossover
point on each of them. All codons beyond these points are swapped between the
genomes. When applying a mutation, it is only necessary to select one genome
and then replace a codon at random. It is also possible to direct the search oper-
ators like crossover and mutation towards the derivation trees generated during
the genotype-phenotype mapping process, and thus operate as per standard GP.
In this study genetic operators are applied at the genome level.

3 Our GE Approach to Ms. Pac-Man

As highlighted by the literature there are many approaches one could take when
designing a controller for Ms. Pac-Man. We now describe the rule-based approach
we’ve taken. Broadly speaking, a rule is a sentence of the form “if <condition>
then perform <action>”. These rules are easy to read, understand, and more
importantly, they can be combined to represent complex behaviours.

A number of functions were implemented to be used as primitives in the
evolution of the Ms. Pac-Man controller (see Table 1). The aim of each of
these functions is to be sufficiently basic, allowing evolution to combine them
in a significant manner to produce the best possible behavior for the Ms. Pac-
Man controller. In other words, we provide hand-coded, high-level functions
and evolve the combination of these functions, pre-defined variables, and condi-
tional statements using GE. These functions were easy to implement, and can
be potentially very useful for our purposes. It is worth pointing out that we
do not consider these functions to be optimal. For instance, in the case of the
AvoidNearestGhost() function, we used a window that can provide some use-
ful information to Ms. Pac-Man regarding the location of a potential dangerous
ghost, but we could have also considered the idea of trying to guess the next
position of a ghost given its current location and direction, or keeping track of
all available paths in the entire maze given the location of the ghosts. It is also
important to mention that these functions are not exclusive. That is, suppose
when Ms. Pac-Man has eaten a power pill and is after a ghost, it may take a
path full of pills or it can take a path that contains power pills. The latter is not
an optimum scenario because it reduces significantly the chances of achieving
the highest score possible.

3.1 Hand-Coded Example

The code shown in Fig. 1 calls the functions described in Table 1. It is worth
mentioning that we tried different rule combinations with different values for the

Evolving a Ms. PacMan Controller Using Grammatical Evolution 165

Table 1. High-level functions used to control Ms. Pac-Man

Function Variable Description
NearestPill() npd In the original version of this function [4] the

agent finds the nearest food pill and heads
straight for it regardless of what ghosts are
in front of it. We modified it so that in the
event a power pill is found before the target
food pill, it waits next to the power pill until
a different condition is met.

NearestPowerPill() nppd The goal of this function is to go to the near-
est power pill.

EatNearestGhost() ngd When there is at least one edible ghost in the
maze, Ms. Pac-Man goes towards the nearest
edible ghost.

AvoidNearestGhost() ang Calculates the distance of the nearest inedi-
ble ghost in a “window” of size windowSize×
windowSize, given as a parameter set by
evolution, and returns the location of the far-
thest node from the ghost. This “window” is
a mask, where Ms. Pac-Man is at the center.

NearestInedibleGhost() nig Returns the distance from the agent to
the nearest inedible ghost. This func-
tion is used by the previously explained
AvoidNearestGhost().

variables (e.g., windowSize) and the code shown in Fig. 1 gave us the highest
score among all the combinations and different values assigned to the variable
that we tested. First, we count the number of edible ghosts. Based on this infor-
mation, Ms. Pac-Man has to decide if it goes to eat power pills, pills, or edible
ghosts. We will further explain this hand-coded agent in Sect. 5 where we will
compare it with the evolved controller. In the following section, the experimen-
tal setup is described to show how GE evolved the combination of the high-level
functions described in Table 1.

4 Experimental Setup

We use Lucas’ Ms. Pacman simulator [6]. It is important to mention that the
simulator only gives one life to Ms. Pac-Man and has only one level. The Ms. Pac-
Man implementation was tied into GE in Java (GEVA) [9]1. This involved cre-
ating a grammar that is able to represent what was considered the best possible
combination of the high level functions described in Table 1. This grammar can
be seen in Fig. 2. The fitness function is defined to reward higher scores. This is
done by adding the scores for each pill, power pill, and ghost eaten.

1 Available from http://ncra.ucd.ie/geva

166 E. Galván-López et al.

// edibleGhost counts for the number of edible ghosts.
windowSize = 13; avoidGhostDistance = 7; thresholdGhostDistanceGhosts = 10;
inedibleGhostDistance = Utilities.getClosest(current.adj, nig.closest, gs.getMaze());
switch(edibleGhosts){
case 0:{
if (inedibleGhostDistance < windowSize){

next = Utilities.getClosest(current.adj, ang.closest, gs.getMaze());
} else if (numPowerPills > 0) {

if (avgDistBetGhosts < thresholdDistanceGhosts){
next = Utilities.getClosest(current.adj, nppd.closest, gs.getMaze());

} else {
next = Utilities.getClosest(current.adj, npd.closest, gs.getMaze());}

} else { next = Utilities.getClosest(current.adj, npd.closest, gs.getMaze());}
break;

}
case 1: case 2: case 3: case 4:{

if (inedibleGhostDistance < avoidGhostDistance) {
next = Utilities.getClosest(current.adj, ang.closest, gs.getMaze());

}else {
next = Utilities.getClosest(current.adj, ngd.closest, gs.getMaze()); }

break;
}

}

Fig. 1. Hand-coded functions to maneuver Ms. Pac-Man

The experiments were conducted using a generational approach, a population
size of 100 individuals, the ramped half and half initialisation method, and the
maximum derivation tree depth, to control bloat, was set at 10. The rest of
the parameters are as follows: tournament selection of size 2, int-flip mutation
with probability 0.1, one-point crossover with probability 0.7, and 3 maximum
wraps were allowed to “fix” invalid individuals (in case they still are invalid
individuals, they were given low fitness values). To obtain meaningful results,
we performed 100 independent runs. Runs were stopped when the maximum
number of generations was reached.

5 Results and Discussion

5.1 The Best Evolved Controller

The best individual found by GE (Fig. 3) is quite different from the hand-coded
agent (Fig. 1). The first thing to notice are the differences in the values of the
variables used in the conditional statements. For instance, windowSize, which
is used by the function AvoidNearestGhost() has a different value. When we
hand-coded our functions, we set the value at 13, whereas the evolved code set
it at 19. Analysing these values, we can see that GE uses a wider window, so
Ms. Pac-Man can have more information about the location of ghosts.

Let us continue examining the evolved code. The first condition, if
(edibleGhosts == 0), asks if all the ghosts are in an inedible state (in this
state Ms. Pac-Man is unable to eat them) if so, it asks if there are power pills
available (numberPowerPills>0). If this condition holds true, then it executes

Evolving a Ms. PacMan Controller Using Grammatical Evolution 167

<prog> ::= <setup><main>
<setup> ::= thresholdDistanceGhosts = <ghostThreshold>; windowSize = <window>;

avoidGhostDistance = <avoidDistance>; avgDistBetGhosts = (int)adbg.score(gs);
ang.score(gs, current, windowSize);

<main> ::= if(edibleGhosts == 0){ <statements> } else{ <statements> }
<statements> ::= <ifs> | <ifs> <elses>
<ifs> ::= if(<condition>) { <action> } | if(<condition>) { <statements> }

| if(avgDistBetGhosts <lessX2> thresholdDistanceGhosts) { <actsOrStats> }
| if(inedibleGhostDistance <lessX2> windowSize) { <avoidOrPPill> }

<elses> ::= else { <action> } | else { <statements> }
<actsOrStats> ::= <action> | <statements>
<action> ::= next = getClosest(current.adj, <closest>, gs.getMaze());

| if (numPowerPills <more> 0){ <pPillAction> }
else{ next = getClosest(current.adj, npd.closest, gs.getMaze()); }

<closest> ::= npd.closest | ang.closest | ngd.closest
<avoidOrPPill> ::= <avoidAction> | <pPillAction>
<avoidAction> ::= next = getClosest(current.adj, <avoidClosest>, gs.getMaze());
<pPillAction> ::= next = getClosest(current.adj, <pPillClosest>, gs.getMaze());
<avoidClosest> ::= ang.closest
<pPillClosest> ::= nppd.closest
<condition> ::= <var> <comparison> <var>
<var> ::= thresholdDistanceGhosts | inedibleGhostDistance | avgDistBetGhosts

| avoidGhostDistance | windowSize
<ghostThreshold> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20
<avoidDistance> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15
<window> ::= 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19
<comparison> ::= <less> | <more> | <lessE> | <moreE> | <equals>
<lessX2> ::= <less> | <lessE>
<less> ::= "<"
<more> ::= ">"
<lessE> ::= "<="
<moreE> ::= ">="
<equals> ::= "=="

Fig. 2. The grammar used in our experiments to evolve a Ms. Pac-Man controller using
the functions described in Table 1

the NearestPowerPill() method. This is quite an interesting sequence of con-
ditions/instructions because it tries to rapidly increase Ms. Pac-Man’s score by
eating a power pill and then heading to the nearest edible ghost (shown in the
second part of conditions/instruction). It is worth noting that this is very differ-
ent from the previously used, hand-coded approach (see Fig. 1), where it takes
a more conservative approach.

If we carefully analyse the last part of the evolved controller (see Fig. 3),
we can see that only the last instruction is executed (next=Utilities.
getClosest(current.adj, ngd.closest, gs.getMaze());). This is because
there is a condition that is never met: if (thresholdDistanceGhosts <=
windowSize). There is also another element worth mentioning. The function
NearestInedibleGhost() is never called by the evolved agent. These two ele-
ments are absent from the evolved controller indicating that evolution ignored
them for the purpose of maneuvering Ms. Pac-Man through the maze. The
evolved controller, however, achieved that highest score among all the Ms. Pac-
Man agents, as shown in Table 2.

168 E. Galván-López et al.

thresholdDistanceGhosts = 20; windowSize = 19; avoidGhostDistance = 14; avgDistBetGhosts =
(int) adbg.score(gs, thresholdDistanceGhosts);ang.score(gs, current, windowSize);
if (edibleGhosts == 0) { if (numPowerPills > 0) {

next = Utilities.getClosest(current.adj, nppd.closest, gs.getMaze()); }
}else { if (thresholdDistanceGhosts <= windowSize) {

next = Utilities.getClosest(current.adj, ang.closest, gs.getMaze()); }
else {

next = Utilities.getClosest(current.adj, ngd.closest, gs.getMaze()); } }

Fig. 3. Evolved controller used to guide Ms. Pac-Man

5.2 Benchmarking Performance

In addition to the hand-coded agent and the evolved agent, we used three other
Ms. Pac-Man agents (implemented in the code developed by [6]) for comparison
purposes. The Random agent chooses one of five options (up, down, left, right,
and neutral) at every time step. This agent allows reversing at any time. The
second agent, called Random Non-Reverse, is the same as the random agent
except it does not allow Ms. Pac-Man to back-track her steps. Finally, the Simple
Pill Eater agent heads for the nearest pill, regardless of what is in front of it.

To compare all five different Ms. Pac-Man agents, three ghost teams already
implemented in [6] were used. The random ghost team chooses a random direc-
tion for each of the four ghosts every time the method is called. This method
does not allow the ghosts to reverse. The second team, Legacy, uses four different
methods, one per ghost. Three ghosts use the following distance metrics: Man-
hattan, Euclidean, and a shortest path distance. Each of these distance measures
returns the shortest distance to Ms. Pac-Man. The fourth ghost simply makes
random moves. Finally, the Pincer team aims to trap Ms. Pac-Man between
junctions in the maze paths. Each ghost attempts to pick the closest junction to
Ms. Pac-Man within a certain distance in order to trap her.

In Table 2, we show the results for the five different Ms. Pac-Man agents
vs. the three different ghost teams, described in the previous paragraph. As
expected, the results achieved by these agents versus ghosts are poor. This is
not surprising given their nature. It is very difficult to imagine how a controller
that does not take into account any valuable information in terms of both,
surviving and maximizing the score, can successfully navigate the maze. There
are, however, some differences worth mentioning. For instance, random agent
shows the poorest performance of all the agents explained previously. This is to
be expected mainly because of two reasons: it performs random movements and,
more importantly, it allows reversing at any time, so Ms. Pac-Man can easily
spend too much time going backwards and forwards in a small space. This is
different for the random non-reverse agent that does not allow reversing and as
a result of this achieves a higher score. The score achieved by the simple pill
eater is better compared with random and random non-reverse agents. This is
simply because there is a target of increasing the score by eating pills.

Now, let us take a look at the last two controllers: hand-coded and evolved.
The former was designed by the authors in order to achieve the highest score
possible. This was done by eating a power pill (if all the ghost are inedible)

Evolving a Ms. PacMan Controller Using Grammatical Evolution 169

Table 2. Results of the five different Ms. Pac-Man agents vs. three different ghost
teams over 100 independent runs. Highest scores are shown in boldface.

Ghost Team Minimum Maximum Standard Sum of
Score Score Deviation all Runs

Random Agent
Random Team 70 810 160.95 24,450
Legacy Team 40 200 31.75 8,670
Pincer Team 40 410 4.33 10,460

Random Non-Reverse Agent
Random Team 80 2,800 59.92 89,760
Legacy Team 80 5,310 74.40 69,950
Pincer Team 80 3,810 74.19 73,510

Simple Pill Eater Agent
Random Team 240 4,180 108.70 146,010
Legacy Team 250 5,380 107.04 154,720
Pincer Team 240 4,780 96.33 174,370

Hand-coded Agent
Random Team 180 11,220 242.68 579,590
Legacy Team 190 11,740 236.58 404,640
Pincer Team 790 12,820 327.10 409,040

Evolved Agent
Random Team 480 11,640 274.94 428,860
Legacy Team 470 12,350 311.60 394,560
Pincer Team 470 13,830 405.07 636,180

and then heading straight to the nearest edible ghosts while avoiding inedible
ghosts. Once a ghost has been eaten by Ms. Pac-Man, it returns to the ghost nest,
resets its status to inedible, and re-enters the maze. The big difference between
the hand-coded controller (depicted in Fig. 1) and the evolved controller (shown
in Fig. 3) is that the latter takes a more risk-based approach by heading for the
power pill (each of these awards 50 points) and then heading for edible ghosts
(without taking into account if there are inedible ghosts in the way of Ms. Pac-
Man), whereas the former takes a more conservative approach by taking into
account the positions of potential dangerous ghosts and if any of these are in the
path of Ms. Pac-Man, it tries to avoid the ghost(s). As can be seen in Table 2
the highest score, regardless of the ghost team used, was achieved by the evolved
controller.

6 Conclusions

This work proposes a method to evolve high-level functions, described in Table 1,
to maneuver Ms. Pac-Man through a maze where the goal is to achieve the
highest possible score while avoiding dangerous ghosts. To achieve this goal we
used GE for its flexibility in specifying rules in the form of “if <condition>

170 E. Galván-López et al.

then perform <action>”. These rules were combined by means of evolution and
the resulting evolved controller (Fig. 3) achieved the highest score (Table 2)
compared against four other controllers, including a hand-coded controller. All
competitors were played against three different ghost teams also described above.
As can be seen, the evolved controller is different from the hand-coded controller
(shown in Fig. 1) in the sense that the former takes a more risk-based approach
whereas the latter is more conservative by checking the positions of ghosts. It is
also important to note that the evolved controllers here did not match or exceed
the score of Matsumoto’s [5] (he used a hand-coded agent). However, this is not
discouraging due to the fact that our controller was only allowed one level and
one life where Matsumoto’s was given three initial lives, could earn more lives,
and had more than one level to play.

Acknowledgments

This research is based upon works supported by the Science Foundation Ireland
under Grant No. 08/IN.1/I1868.

References

1. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for
Dynamic Environments. Springer, Heidelberg (2009),
http://www.springer.com/engineering/book/978-3-642-00313-4

2. Gallagher, M.: Learning to play pac-man: An evolutionary, rule-based approach.
In: CEC 2003, The 2003 Congress on Evolutionary Computation, pp. 2462–2469.
IEEE, Los Alamitos (2003)

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge (1992)

4. Lucas, S.: Ms Pac-Man Competition (September 2009),
http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html

5. Lucas, S.: Ms Pac-Man Competition - IEEE CIG 2009 (September 2009),
http://cswww.essex.ac.uk/staff/sml/pacman/CIG2009Results.html

6. Lucas, S.: Ms Pac-Man versus Ghost-Team Competition. (September 2009),
http://csee.essex.ac.uk/staff/sml/pacman/kit/AgentVersusGhosts.html

7. Lucas, S.: Evolving a neural network location evaluator to play ms. pac-man. In:
IEEE Symposium on Computational Intelligence and Games, pp. 203–210 (2005)

8. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003),
http://www.wkap.nl/prod/b/1-4020-7444-1

9. O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., Brabazon, A.:
GEVA - grammatical evolution in java (v 1.0). Tech. rep., UCD School of Computer
Science (2008)

10. Szita, I., Lõrincz, A.: Learning to play using low-complexity rule-based policies:
illustrations through ms. pac-man. J. Artif. Int. Res. 30(1), 659–684 (2007)

http://www.springer.com/engineering/book/978-3-642-00313-4
http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html
http://cswww.essex.ac.uk/staff/sml/pacman/CIG2009Results.html
http://csee.essex.ac.uk/staff/sml/pacman/kit/AgentVersusGhosts.html
http://www.wkap.nl/prod/b/1-4020-7444-1

Evolving Bot AI in Unreal��

Antonio Miguel Mora1, Ramón Montoya2, Juan Julián Merelo1,
Pablo Garćıa Sánchez1, Pedro Ángel Castillo1, Juan Lúıs Jiménez Laredo1,

Ana Isabel Mart́ınez3, and Anna Espacia3

1 Departamento de Arquitectura y Tecnoloǵıa de Computadores,
Universidad de Granada, Spain

{amorag,jmerelo,pgarcia,pedro,juanlu,}@geneura.ugr.es
2 Consejeria de Justicia y Administración Pública, Junta de Andalućıam, Spain

rangel.montoya@juntadeandalucia.es
3 Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Spain

{amartinez,aesparcia}@iti.upv.es

Abstract. This paper describes the design, implementation and results
of an evolutionary bot inside the PC game Unreal�, that is, an au-
tonomous enemy which tries to beat the human player and/or some
other bots. The default artificial intelligence (AI) of this bot has been
improved using two different evolutionary methods: genetic algorithms
(GAs) and genetic programming (GP). The first one has been applied
for tuning the parameters of the hard-coded values inside the bot AI
code. The second method has been used to change the default set of
rules (or states) that defines its behaviour. Both techniques yield very
good results, evolving bots which are capable to beat the default ones.
The best results are yielded for the GA approach, since it just does a
refinement following the default behaviour rules, while the GP method
has to redefine the whole set of rules, so it is harder to get good results.

1 Introduction and Problem to Solve

Unreal� [9] is a First Person Shooter (FPS), an action game in which the player
can only see the hands, and the current weapon of his character, and has to
fight against enemies by shooting to them. It was developed by Epic Games and
launched for PCs in 1998, with great success since it incorporates one of the best
multiplayer modes to date. In that mode, up to eight players (in the same PC or
connected through a network) fight among themselves, trying to defeat as much
of the others (enemies) as possible, getting the so-called frag for each defeat,
moving in a limited scenario (or map) where some weapons and useful items
appear frequently. The players can be human or automatic and autonomous
ones, known as bots. Each player has a life level which is decreased every time
he receives a weapon impact, this decrement depends on the weapon power, the
distance, and damaged zone in the character. In addition there are some items
that can be used to increase this level or to protect the player.
� Supported in part by the MICYT projects NoHNES (TIN2007-68083) and TIN2008-

06491-C04-01, and the Junta de Andalućıa (P06-TIC-02025 and P07-TIC-03044).

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 171–180, 2010.
� Springer-Verlag Berlin Heidelberg 2010

172 A.M. Mora et al.

There are many games which include multiplayer modes against human or
bots, but there are some features, which made Unreal� the best framework for
us, such as the fact that its native bots already have a high level AI, and it offers
an own programming language, UnrealScript, which is easy, useful and quite
powerful. This does not mean that UnrealScript is without drawbacks, including
the fact that arrays must be one-dimensional and the limitation in the number of
iterations in a loop. These will have to be taken into account when programming
a native bot, but in spite of these lacks, it is still the best environment we have
found to develop our work.

We should also emphasize that the Unreal� bot’s AI was (and still is) consid-
ered as one of the best in all the FPS bots ever designed. It is mainly based on
the definition and handling of states, each of them modelling the behaviour of
the bot when it has a specific status, location in the map, or relationship with
the other players (enemies). Many possible states, and many different flow lines
between them are defined in a finite state machine [1].

The bot, during a game, changes its current state depending on some factors
present in its surroundings and depending on its own status and situation. So,
the state change depends most of the times on some specific parameters. They
are usually compared with some values, which are most of times hard-coded.
This way, the state change (and the power of the Bot’s AI) strictly depends on
some constant values.

Therefore, the first issue addressed in this work has been the improvement
of these constants using a Genetic Algorithm [3], since it is possible to define
an array including those parameters and change (evolve) their values to get a
better behaviour in the game.

In addition, the finite state machine which determines the bot’s AI flow, could
be improved too, by avoiding superfluous states or changing the flow between
them, in order to arise new transitions between different states. With this ob-
jective, a Genetic Programming Algorithm [4] has been applied, since it is an
excellent metaheuristic to improve graphs or trees, as is this case.

In both cases we have implemented bots with a Genetic AI, or Genetic Bots
(G-Bots). We have used evolutionary algorithms to improve the Unreal� AI
given their well-known capacity for optimization.

These way, each G-Bot improves its AI by playing a game; getting a better
global behaviour in time, that is, defeating as much enemies as possible (getting
frags) and being defeated as less as possible.

2 State of the Art

At the very beginning, the FPS games just included a single player mode (e.g.
Wolfenstein in 1987), after this, most of them offered multiplayer possibilities
but always against other human players, such as Doom in 1988. The first known
game in including autonomous bots (with a simple AI) was Quake in 1992. It
presented not only the option of playing against machine-controlled bots, but
also the possibility to modify them (just in appearance or in other few aspects) or

Evolving Bot AI in Unreal� 173

create new ones. In order to do this, the programmers could use a programming
language called QuakeC, widely used in those years, but which presented some
troubles, since it was strictly limited and hard-constrained. So, the bots created
using it showed a simple AI (based in fuzzy logic in the best case), and it was
not possible to implement more complex techniques as evolutionary algorithms.
Unreal� appeared some years later, being the first game that included an easily
programming environment and a more powerful language, so plenty of bots where
created. But just a few applied metaheuristics or complex AI techniques, and
most of them are based in predefined hard-coded scripts.

Nowadays, there are many games that offer similar possibilities, but almost all
of them are devoted to the creation of new maps (sceneries) or characters, being
mainly related to the graphical aspect or modifications in their appearance.

In the last few years there have been some studies related to the application
of metaheuristics to the behaviour improvement of bots in computer games, as
[2,8] where the authors apply Artificial Neural Networks, [6] where evolutionary
techniques are used, or [7] in which an evolutionary rule-based system (every
individual is a set of conditions, which depend on the bot status and a spe-
cific action) has been applied, and which has also been developed under the
Unreal� framework (Unreal Tournament� 2004).

In the present work we have chosen the original Unreal� instead of the newer
game, since it has a simpler environment but which is enough to perform the
proposed study.

3 Genetic Bots

As previously stated in Sect. 1, the objective is to improve the behaviour of an
Unreal standard bot, by changing its AI algorithm. Specifically there are two
approaches: the first one consist in modifying the default AI by improving the
values considered in the conditions assessed to change the current state (and go
to another one); the second one is related to the improvement of the finite state
machine which the bot’s AI follows.

This way, the Genetic Algorithm-based Bot (GA-Bot from now on), tries
to optimise the values of a set of parameters which represent each one of the
hard-coded constants that are in the bot’s AI code. These parameters determine
the final behaviour of the bot, since most of them are thresholds depending on
which, the bot state changes (for instance the distance to an enemy or the bot’s
health level).

So firstly, it was necessary to determine the parameters to optimise. This way
and after a deep analysis of the bot’s AI code, 82 parameters were identified.
These were too many parameters, since UnrealScript considered as the maximum
length for an array 60 floats. In addition it is difficult to evolve such a big array
inside a game, since the evaluation function depends on the results of the game,
and it would need many individuals and generations to do it.

The number must be reduced, so some parameters were redefined as function
of others, and some of the less relevant were unconsidered in the GA individual.

174 A.M. Mora et al.

At the end, the array includes just 43 parameters. This set corresponded to an
individual in the GA. Thus, each chromosome in the population is composed by
43 genes represented by normalised floating point values (it is a real-coded GA).
This way, each parameter moves in a different range, depending on its meaning,
magnitude and significance in the game, but all of them are normalised to the
[0,1] range. The limits of the range have been estimated, conforming a width
interval when the parameters are just modifiers (they are added or subtracted),
and a short one if they are considered as the main factor in the bot’s decision
taking, to avoid an extremely bad behaviour.

This models, in such a way, one approach to the bot’s AI. So, the GA evolves
’the behaviour of the bot’ (it evolves the trigger values to change between states).

The evaluation of one individual is performed by setting the correspondent
values in the chromosome as the parameters for a bot’s AI, and placing the bot
inside a scenario to fight against other bots (and/or human players). This bot is
fighting until a number of global frags is reached, since it is not possible to set a
time play for a bot in Unreal, so once the frags threshold has been reached (and
the current bot is defeated), the next bot’s AI will be the correspondent to the
next chromosome in the GA.

Two-point crossover and simple gene mutation (change the value of a random
gene (or none) by adding or subtracting a random quantity in [0,1]) have been
applied as genetic operators (see [5] for a survey). The GA follows the gener-
ational + elitism scheme, considering as the selection probability (SP) for one
individual a value calculated using its rank in the population depending on the
fitness value, instead of calculating it directly considering the fitness function.
This way, it is avoided that superindividuals (those with a very high fitness
value) dominate the next population, and a premature convergence occurs. This
method is known as lineal order selection. Once the SP has been calculated, a
probability roulette wheel is used to choose the parents in each cross operation.
The elitism has been implemented by replacing a random individual in the next
population with the global best at the moment. The worst is not replaced in
order to preserve diversity in the population.

The fitness function was defined considering the main factors to score a game
(through an evaluation function), after some experimentation, they are:

� frags, the number of defeated enemies by the bot
� W, the number of weapons the bot has picked up
� P, the associated power to these weapons
� I, the number of items the bot has collected
� d, the number of times the bot has been defeated
� t, game time the bot has been playing

So, the fitness function equation for the chromosome i is:

Fi =
fragsi + [Pi

di
+ (Wi·10

di
)−1] + Ii

10 −
di

10

ti
(1)

Where the constant values are used to decrease the relative importance of each
term. So, as can be seen, frags is the most important term in the formula.

Evolving Bot AI in Unreal� 175

The following factor (inside square brackets) is related to the weapons; it is
composed by two terms: the first one considers the importance of the associated
power of the picked up weapons, in average, since a player loses all the weapons
once it is defeated. The second term weighs the number of weapons collected
by the bot, but it is again an average. In addition this term is inverted since
it should take low values when the bot has collected lots of weapons in a life.
The objective of this whole factor is to assign a higher weight to a bot which
has picked up less but powerful weapons, since searching for them is a risky
task, and takes some extra time. The other two factors are devoted to weigh
the collected items and the number of times the bot has been defeated (with a
negative weight). All the terms are divided by the time the bot has been playing
to normalise the fitness of all the chromosomes (they play for a different time).

Since it is the first approach, we have decided to consider an aggregative
function instead of a multi-objective one. It is easier to implement and test,
and it requires less iterations. The multi-objective approach will be addressed in
future works.

The Genetic Programming-based Bot (GP-Bot from now on) works in
a different way, since it is based in a genetic programming algorithm [4], which
can be used to evolve a set of rules. The idea is to redefine the initial set of rules
(flows between states) which determines the behaviour of the bot.

The first approach was to work with all the possible inputs and outputs which
can be considered, looking at the whole set of states that a default bot can man-
age, but due to the big amount of them and their complexity, this would mean
a huge set of rules to evolve (represented as trees), which can be unapproach-
able by an algorithm defined inside UnrealScript (due to its strong array size
constraints, and limited resources).

So, we decided just to consider the two most important states:

– Attacking, in which the bot decides between some possible actions as: search,
escape, move in a strategic way, attack and how to do it (from distance,
nearby, close, from a flank).

– Roaming, in which the bot searches for weapons and items

The flow diagrams of both states are respectively shown in Fig. 1 and Fig. 2.
Then, only the functions applied in the decision taking (since there are some

others just used to show an animation in the game, for instance, such as HitWall)
were studied, in order to get the inputs and the outputs. These functions are
devoted to determine the next state to pass, from the one in which the bot
currently is, so each one of the functions is divided into a set of sub-functions
(inputs), and being the outputs the correspondent ’jumps’ to the next states/sub-
states. For example, there is a function to check if the bot has found an item
(ItemFound), which returns a ’TRUE’ or a ’FALSE’ value depending on what
the bot has found. It can be considered as an input. One possible output could
be GotoState(’Roaming’, ’Camp’), for instance.

This way, all the possible inputs and outputs for these states are used to define
rules in the form:

IF <INPUT> [AND <INPUT>] THEN <OUTPUT>

176 A.M. Mora et al.

Fig. 1. Flow diagram of Bot’s Attacking state. The states are represented by stars.

Fig. 2. Flow diagram of Bot’s Roaming state. The states are represented by stars, and
the sub-states by circles.

Where just two inputs have been considered as a maximum, since after several
experimental runs, rules having three (or more) inputs were never triggered.

These rules are modelled as trees, considering as parent nodes the IF and AND
expressions, connected through RL nodes (lists); and having as final nodes, the
considered input and outputs.

An example tree can be seen in Fig. 3, where a Bot’s AI is modelled with four
rules:
IF X1 THEN Y7, IF X3 AND X5 THEN Y2, IF X8 THEN Y1, and IF X9 THEN Y9

So, every GP-Bot would have an AI structure based in the main set of states,
but instead of the two previously mentioned (Attacking and Roaming), they

Evolving Bot AI in Unreal� 177

Fig. 3. Example Tree of rules for a Bot’s AI. The rules are defined by IF nodes, Xs are
inputs and Ys are outputs.

consider one tree of rules, which should be obtained by the evolution of the
individuals in the GP algorithm. Thus, every individual in the algorithm is com-
posed by the tree of rules, and also by one chromosome like those considered in
the GA-Bot. This way, the evolution is performed over two different AI aspects:
the rules, and the parameters, which means it is a GPGA-Bot.

During the evolution some genetic operators are used, firstly on the parame-
ters (cross and mutation) which are those presented in the GA-Bot. In addition
two specific operators are considered to perform the evolution of the rule trees.
The tree-crossover operator has been implemented by choosing two different
nodes in the parents and interchanging all the sub-tree, below each one of these
nodes, taking into account some restrictions to preserve the tree coherence (i.e.
not to have an IF node as a final one, or two AND nodes as parent and child). The
tree-mutation operator just chooses a random node and substitutes the whole
sub-tree below it by a randomly generated (but coherent) one. The selection
mechanism is the same as in the GA-Bot (the lineal order selection).

Relating to the fitness function, in this case it should be valued both, the
tree of rules and the parameter configuration, so the function has been lightly
updated, considering two new factors:

� S, the number of shoots the bot has fired. Included to reward the bots which
pick up weapons and use them (some bots do not use them, or do not do it
correctly).

� rR, the repetition of rules. Tries to avoid the excessive repetition of rules in
the behaviour of a bot, so every 5 repetitions for a rule, it is increased.

So, the fitness function equation for the chromosome i is:

Fi =
fragsi + [Pi

di
+ (Wi·10

di
)−1] + Ii

10 −
di

10 + Si

50 −
rRi

500

ti
(2)

Where all the factors are the same as in Equation 1, excepting the last two,
which have been included to evaluate the behaviour in a more accurate way. But
neither of these factors has a high relevance.

178 A.M. Mora et al.

4 Experiments and Results

We have performed some experiments to test the algorithms. Each of them
consists in launching a game match for eight players, being all of them bots1,
and being one of them (its AI) the GA-Bot or the GPGA-Bot.

Each run takes plenty of time (around one hour per generation in average)
since every individual in the algorithms (an AI approach), is playing until a num-
ber of defeats is reached, and the match is played in real-time. It also depends
very much on the map where the bots are fighting so, if it is a big map, it takes
longer to reach this number (and change to the next individual). We have con-
sidered the parameters showed in Table 1, which have been defined starting from
the ’standard’ values, and tuning them through systematic experimentation.

Table 1. Parameters of GA and GP-GA algorithms

Number of individuals 30
Mutation Probability 0.01
Crossing Probability 0.6
Number of defeats per chromosome 40

In this work, the experiments have been devoted to test the good behaviour
of the algorithms (and also of the bots), since they cannot be compared for the
moment with the results yielded by other algorithms.

Four maps have been considered, and five bots of each type (GA and GP-
GA) have been tested in each one of these maps. A classical run takes in average
around 20 hours for 15 generations, but it depends on the map size.

The algorithms behaviour (related to the fitness) has resulted to be the ex-
pected, with some fluctuations in the average due to the classical diversification
in the evolutionary algorithms, as can be seen in the Fig. 4 for some examples.

In this figure, a clear evolution in the average fitness is showed for all the
cases. This evolution is more marked in the GPGA-Bots, since there are stronger
changes in the AI in this algorithm (it evolves the bot’s state transition rules),
so the improvements in the behaviour are much more obvious, and follow a clear
progression. In the GA-Bots this change is less marked since the behaviour is
quite similar, but a bit optimised in each generation. These bots show a very
coherent behaviour just from the first generation, because their behaviour rules
remain the same, and just the decision parameters are changed (evolved). On the
other hand, the GPGA-Bots have most of times an incoherent behaviour at the
very beginning, since the rules belonging to the main states can be almost ran-
dom, but the improvements can be more easily noticed after some generations,
as has been previously commented.

Relating to the game score, the GA-Bots always beat their rivals, getting
a high number of frags in some generations. The GPGA ones cannot get the
first position, since the bad behaviour presented in the first generations means
low frags, and also being an easy target for their enemies. Two screenshots are
1 Although it is possible to include also human players.

Evolving Bot AI in Unreal� 179

Fig. 4. Example results for two GA-Bots and two GPGA-Bots in two different maps

Fig. 5. Screenshots of the final score (after some generations) for one GA-Bot (Genet-
icBOT, on the left) and one GPGA-Bot (PGeneticBOT, on the right)

showed in Fig. 5, where it can be seen the classification for both types of bots
after some generations.

In both cases we have implemented the final AI configuration (yielded by each
one of the algorithms) into two definitive bots, being both of them better than
the standard ones presented in Unreal�, winning all the matches.

5 Conclusions and Future Work

In this work, two different evolutionary algorithms have been implemented to
improve the AI of the default bots in a PC game named Unreal�. The approaches
have been a genetic algorithm, to optimise the decision parameters in the bots;
and a genetic programming method, to optimise the set of rules which the bots
consider in their AI. Looking at the results, both algorithms work as expected,
reaching a clear improvement, and yielding final bot’s AI configurations which
get the best scores in the matches against the standard bots.

This is our first approach to this problem so there are many future lines
of work starting from this point. The first one is the implementation of some

180 A.M. Mora et al.

different methods to evolve the AI bots, in order to compare the results with
those yielded by the presented algorithms, and also perform some studies to find
the best parameter setting for the current algorithms. Another task to address is
the implementation of these algorithms inside a newer engine (as Unreal Tour-
nament�), in order to avoid the constraints which obstruct a better problem
definition and solving (such as limited arrays and number of iterations in loops).

The third line of improvement is related to the fitness function which is cur-
rently an aggregative function, so it could (or should) be separated into different
functions, transforming the problem into a multi-objective one, closer to the real
problem to address for getting a good bot’s AI.

We also want to remark that this is a rather ’noisy’ problem, were each of the
individuals has a different value for the fitness function at every time, since it
depends on many factors which continuously change in time and can be different
between two evaluations for the same bot (i.e. the position of the bots while it has
been playing, their weapons, the situation of the new weapons, or the position of
our bot when it appears in the map), which complicate sometimes the evolution
in the algorithms. So maybe a dynamical approach could yield better results.

The last ideas are related to the performance study of a co-evolutionary ap-
proach, since it is possible to put in action more than one G-Bot in an scenario.
Following the same line, we would also like to implement a cooperative method,
where the bots would be grouped into teams which fight between them to get
the best results as a whole.

References

1. Booth, T.L.: Sequential Machines and Automata Theory, 1st edn. John Wiley and
Sons, Inc., New York (1967)

2. Cho, B.H., Jung, S.H., Seong, Y.R., Oh, H.R.: Exploiting intelligence in fighting
action games using neural networks. IEICE - Trans. Inf. Syst. E89-D(3), 1249–1256
(2006)

3. Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning.
Addison-Wesley, Reading (1989)

4. Koza, J.R.: Genetic Programming: On the programming of computers by means of
natural selection. MIT Press, Cambridge (1992)

5. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd
edn. Springer, Heidelberg (1996)

6. Priesterjahn, S., Kramer, O., Weimer, A., Goebels, A.: Evolution of human-
competitive agents in modern computer games. In: IEEE Congress on Computa-
tional Intelligence, CEC 2006, pp. 777–784 (2006)

7. Small, R., Bates-Congdon, C.: Agent Smith: Towards an evolutionary rule-based
agent for interactive dynamic games. In: IEEE Congress on Evolutionary Compu-
tation, CEC 2009, May 2009, pp. 660–666 (2009)

8. Soni, B., Hingston, P.: Bots trained to play like a human are more fun. In: IEEE
International Joint Conference on Neural Networks, IJCNN 2008, IEEE World
Congress on Computational Intelligence, pp. 363–369 (June 2008)

9. Wikipedia: Unreal — wikipedia, the free encyclopedia (2009),
http://en.wikipedia.org/wiki/Unreal

http://en.wikipedia.org/wiki/Unreal

Evolutionary Algorithm for Generation of
Entertaining Shinro Logic Puzzles

David Oranchak

http://oranchak.com

Abstract. A Shinro puzzle is a type of deductive reasoning puzzle that
originated in Japanese periodicals. To solve the puzzle, one must locate
twelve hidden stones on an 8x8 grid using only clues in the form of stone
counts per row and column, and arrows placed in the grid that point to
some of the hidden stones. Construction of these puzzles by hand is te-
dious. We explore the use of a simple genetic algorithm that automates
construction of Shinro puzzles with desirable qualities which improve
their entertainment value.

Keywords: genetic algorithm, logic puzzles.

1 Introduction

Puzzability is a company that specializes in creating and selling a variety of
puzzles. In 2007, the company developed and sold a new kind of logic puzzle to
Southwest Airlines. The airline began publishing these new puzzles as a regular
feature in Spirit, their inflight magazine. Named Shinro, a Japanese word that
means “compass bearing”, the puzzle is a simple 8x8 square grid containing
twelve holes in unknown locations. Along the top of the grid is an additional
row of eight squares. Each square indicates the total number of holes hidden
in the column under that square. Similarly, along the left side of the grid is an
additional column of eight squares, each indicating the total number of holes
hidden in the row to the right of that square. Directional arrows within the
puzzle point to some of the hidden holes. Example puzzles are shown in Fig. 1.
One solves the puzzle by making a series of reasoned deductions in a process
of elimination, identifying squares that must contain holes, and squares that
cannot possibly contain holes. The puzzle solver continues until all twelve holes
have been located.

Henceforth, we refer to the holes as “stones” to reflect our own implementation
of Shinro.

The popularity of the Shinro puzzles in Spirit has led to development of
various Shinro video games [1,2,3] and web sites [4,5]. This suggests there is a
market for creating new Shinro puzzles. Puzzles are created by selecting hidden
stone locations, directional arrow locations, and a desired difficulty in deducing
the solution. Construction of these puzzles via automation eliminates the time-
consuming and tedious task of designing valid and entertaining puzzles by hand.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 181–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

182 D. Oranchak

Fig. 1. Sample Shinro puzzles published in Spirit magazine [6]

The number of possible Shinro puzzle configurations is astronomical. Each of the
64 positions of an 8x8 puzzle grid can have one of ten possible values (empty,
a stone, or one of eight kinds of arrows), bringing the total search space size
to 1064. We can reduce this by observing that every valid board must have
exactly 12 stones. Thus there are s =64 C12 = 64!

12!(64−12)! possible ways to place
stones, and c = 952 remaining possible combinations for the grid positions that
lack stones, bringing the total search space down to s× c = 8.0× 1040 puzzles.
Still much too large for exhaustive searches. A genetic algorithm is suitable for
searching such a large space [7]. Mantere and Koljonen were able to show that a
GA was an efficient method of generating another kind of constraint satisfaction
problem: the sudoku puzzle [8].

2 Methodology

Automatic construction of Shinro puzzles requires development of an algorithm
that can automatically solve them. This solver algorithm is used to measure the
validity and difficulty of a constructed puzzle, and to estimate its entertainment
value. This requires identification of each of the techniques used to solve the
puzzles. A similar strategy employed by Ortiz-Garcia et. al. was effective for
generating picture-logic puzzles [9].

Stones are located by identifying logical consequences to observations of the
puzzle grid state. Similar observations lead to the identification of locations
that cannot contain stones. Such locations are marked as “filled”. Some of these
identifications are easy or trivial to make, while others can be quite challenging.
The logical deductions described below are used to automatically solve many
Shinro puzzles. The automated solver is the basis for the evolutionary algorithm
discussed later.

Count of unfilled positions equals number of remaining stones: If the
number of free positions along a row (column) equals the stone count of that

Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles 183

row (column), less the number of stones that have already been placed in that
row (column), then these positions must contain stones (Fig. 2).

Row or column count is satisfied: If the number of stones placed in a row
(column) exactly matches the stone count for that row (column), then all free
positions can be marked as filled (Fig. 3).

Fig. 2. A and B must be locations of
stones since the stone count for that row
is two

Fig. 3. A, B, and C can be marked as
filled because the row count is satisfied
by the stone in the third column

Arrow points to only one free square: An unsatisfied arrow is an arrow
that points to no placed stone. Therefore, there is a hidden stone somewhere
along the unsatisfied arrow’s path. If there is exactly one free position along the
arrow’s path, then it must contain a stone (Fig. 4).

One stone remains to be placed, and there is a horizontal or vertical
arrow: Consider a row (column) whose stone count, less the number of placed
stones along the row (column), is equal to one. If this row (column) contains an
unsatisfied horizontal (vertical) arrow, it must point towards the one remaining
stone. Therefore, all free positions the arrow points away from cannot contain
stones, and thus can be marked as filled (Fig. 5).

Fig. 4. A has to be a stone. It is the only
free position the arrow to its upper right
is pointing to.

Fig. 5. A, B, and C cannot possibly be
stones, since the horizontal arrow points
towards the region of the row that con-
tains the one remaining stone

Locations can be excluded based on identification of non- intersecting
arrow paths: This type of deduction identifies regions of rows (columns) in
the puzzle in which some number of possible stone placements can be marked
as filled due to constraints imposed by unsatisfied arrows pointing into those
regions. Figure 6 depicts an example.

Let X denote all free positions within some subset of rows (columns) of the
puzzle, where |X | > 1. Let n denote the total count of stones remaining to be
placed within the rows (columns) of X . Let A denote some subset of unsatisfied

184 D. Oranchak

Fig. 6. Two arrows indicate stones along the dotted paths. Since the paths do not
intersect, there must be a total of two stones represented by the paths. The covered
rows have a total stone count of two. Therefore, none of the non-dotted positions along
the covered rows can possibly be a stone, and thus they can all be marked as filled.

arrows of the puzzle. Let us require that each arrow in A has free positions along
its path that are contained entirely within X , and that no arrow in A has a path
whose free positions intersect the free positions in the path of another arrow
in A. Let P denote the set of positions within X that are covered by the free
positions along the paths of every arrow in A. If |A| = n, then we know that
all remaining stones must be located somewhere in positions in P. Therefore, no
stones will be found in X \ P , and these remaining positions can be marked as
filled.

These moves can be quite difficult to locate.

Locations can be excluded based on satisfiability of remaining arrows:
A free position can be marked as filled if placing a stone there causes an arrow
to become unsatisfiable (Fig. 7).

Locations can be excluded based on the pigeonhole principle: This is
another type of move that can be difficult to locate. In this move, unsatisfied ar-
rows impose constraints on a row (column) such that their satisfaction results in
narrowing down the possible choices for filled positions along the row (column).
This narrowing of choices for the filled position entails a reduction in the possi-
ble locations for remaining stones to be placed in that row (column). Figure 8
depicts an example.

Let X denote a row (column). Let n be the number of stones remaining to be
placed in X . Let m > n be the number of unfilled positions in X . Let P be the
set of unfilled positions in X , whose column (row) count of remaining stones, less
the count of placed stones, is equal to one. A total of m−n positions along X will
be marked as filled. We seek m− n unsatisified arrows, A, whose paths contain
unfilled positions. Let us require that there is no arrow in A whose unfilled
positions intersect the unfilled positions of another arrow in A, or whose unfilled
positions intersect P . Let us also impose that every unfilled position represented
by A must share the column (row) of a position in P . Thus, satisfaction of an
arrow in A identifies a subset of P in which a filled position must be located. Let
S be the set of all such subsets. Each time a subset is added to S, the possible

Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles 185

stone positions in X is reduced by one. Once this count reaches m− n, then we
know that stones must be located in any position in X that is not in P .

Stone placements can be excluded due to impossible scenarios: An
attempt to place a stone at a given position can be excluded if the placement
results in subsequent moves that lead to an impossible or invalid puzzle state. It
is assumed that such brute force attempts to solve Shinro puzzles by exhaustion
have little entertainment value. Therefore, we will not consider these moves,
except for the simple form shown in Fig. 7.

There may be further types of useful deductions that are not identified above.

Fig. 7. Placement of a stone at A or B
results in an arrow that is impossible to
satisfy. Therefore, A and B can be marked
as filled.

Fig. 8. Pigeonhole principle: The indi-
cated arrow points to a stone along the
dotted path. Either placement will satisfy
its corresponding column count. There-
fore, either C or D will be marked as
filled. Thus there are only three possible
stone placements remaining along the row
ABCD. Since the filled position must be
C or D, and the row count is also three,
A and B must be stones.

2.1 Entertainment Value

We assume that completely randomized puzzle configurations are not very fun to
play in the long term. We want the generator to create a variety of interesting and
entertaining puzzles. Therefore, we need to measure or estimate these qualities.
Some of the factors guiding the puzzle designs are listed below.

– We require a degree of control of the difficulty level of generated puzzles.
They should neither be too difficult nor too easy to solve. Trivial puzzles
and unusually difficult puzzles will quickly tire players.

– Puzzles should have exactly one valid solution.
– We should generate puzzles whose stones and/or arrows form a variety of

interesting patterns and symmetries that are more pleasing to view than
completely randomized puzzles.

186 D. Oranchak

3 Evolutionary Algorithm

A simple genetic algorithm is used to generate the Shinro puzzles. The values
of several configuration parameters determine the type of puzzle that is gener-
ated. A selection of fitness functions is available to guide the development of
an assortment of puzzle varieties. A target pattern constraint can be optionally
configured, restricting the possible values for some set of positions of the puzzle
grid. This permits evolution of puzzles that conform to pre-designed patterns,
shapes, and configurations.

3.1 Genome Encoding

Generated puzzles are encoded in an nxn matrix of integer values representing
the contents of puzzle grid squares. The possible grid square interpretations are:
empty, hidden stone, and arrow pointing in one of eight possible directions.

The optional target pattern constraint can be specified as another nxn matrix
of constraint values. This matrix is consulted during population initialization
and mutation to prevent insertion of grid square values that violate the given
constraints. The constraint types are: Square has no constraint, square must
contain an arrow with a specific direction, square must contain a stone, square
must be empty, square must contain any arrow, square must contain a stone or
any arrow, and square must not be an arrow.

3.2 Initialization

The population of genomes is set to a small size, 10, due to the amount of time
needed to perform the fitness evaluation described below. Genomes are initial-
ized to random values. If a target pattern constraint is present, initialization of
constrained grid squares is limited to values that do not violate the constraint.

3.3 Genetic Operators

At each generation, a new population is constructed using tournament selection
of size three. Elitism is used to prevent loss of good individuals. This is imple-
mented by simply tracking the best evolved individual for the entire run, and
copying this individual into each new population.

Crossover is not implemented due to its assumed destructive effect on the sat-
isfaction of constraints of the Shinro puzzles, namely the required fixed number
of stones, the set of valid arrows that each point to at least one stone, and the
optional target pattern constraint. Further research is necessary to determine
the effectiveness of various crossover operators.

When the new population is constructed, mutation is applied by randomly
selecting one of a number of available mutators:

– Loop through the puzzle grid and probabilistically change the value of a
square. The mutation rate is itself randomly selected from the range [0, 1].

Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles 187

– Swap two randomly selected puzzle grid squares. Repeat n times, where n
is randomly selected from the range [1, 3].

– Add an arrow to a randomly selected square.
– Randomly select an arrow and remove it.
– Add a stone to a randomly selected square.
– Randomly select a stone and remove it.

Further, the mutator randomly decides whether or not to enforce symmetry,
and whether or not to enforce rotational symmetry. If symmetry is enforced,
the selected mutator projects the resulting mutations about the horizontal and
vertical axes of the puzzle, both located at the center of the puzzle grid. But if
rotational symmetry is enforced, the selected mutator instead projects a puzzle
quadrant’s mutation into the remaining quadrants by repeatedly rotating the
quadrant of the originating mutation by 90 degrees.

The algorithm stops when a minimum number of generations has passed with-
out any improvement to the best genome. The run’s statistics and best genome
are noted, the population is again reset, and the evolutionary algorithm is re-
peated. This is done to collect many generated puzzles of high fitness. A final
step runs a brute force search on the generated puzzle to ensure that only one
unique solution is possible. This computation is not performed during fitness
evaluation due to its significant performance impact.

3.4 Fitness Function

The automated solver for generated Shinro puzzles is the basis for fitness com-
putations. The solver inspects each generated puzzle and attempts to solve it
using a greedy approach. In the greedy approach, the algorithm looks for easy
moves first before proceeding to more difficult moves. Once a move is found, the
search for more difficult moves is aborted, and the found move is applied to the
puzzle state. The search then repeats until all stones have been located, or no
further moves are located. This greedy approach is used to reduce the execution
time of the search. The algorithm tracks the counts and types of moves. These
counts are used in fitness computations.

We used several fitness functions to evolve a variety a puzzles. Each fitness
function shares a common factor: the normalized error count:

ε =
1

1 + |s− s′|+ a + v + |m−m′|+ e
(1)

s is the number of stones required for this puzzle. s′ is the number of stones
encoded in the genome. a is the number of arrows found that do not point
to a stone. If a target pattern constraint is used, v is the number of violated
constraints found; otherwise, it is zero. m is the minimum number of solver
moves required for acceptance of this generated puzzle. m′ is the actual number
of moves (of any difficulty level) used by the solver to solve this puzzle. If we are
evolving for symmetry, e is the number of grid positions that violate symmetry;
otherwise, it is zero.

188 D. Oranchak

By itself, this single factor applies evolutionary pressure to locate puzzles that
satisfy fundamental constraints. We evolve other desirable puzzle properties by
introducing other factors into the fitness function:

– Maximizing the number of moves required to solve the puzzle:

f = ε× [1− 1
(1 + stepsd)

] (2)

where stepsd is the number of moves used by the solver to reach a solution.
d represents the difficulty factor. When evolving for maximum count of all
move types, all move difficulties are counted, and stepsd is equivalent to m′.
Otherwise, we only count moves of the specified difficulty level; thus, stepsd

may be less than m′.
– Maximizing the clustering of stones and/or arrows:

f = ε× [1− 1
(1 + stepsd)

]× [1− 1
1 + c

], (3)

c =
∑
i,j

s(i, j), (4)

s(i, j) =
u=i+1,v=j+1∑

u=i−1,v=j−1,(u,v) �=(i,j)

count(u, v) (5)

The following applies only if the item at position (i, j) is the type of item for
which we are clustering: count(u, v) returns 1 if the item at (i, j) is found at
(u, v) and (u, v) is horizontally or vertically adjacent to (i, j). This represents
a strong clustering. count(u, v) returns 1

4 if the item at (i, j) is also found
at (u, v) and (u, v) is diagonally adjacent to (i, j). This represents a weak
clustering. count(u, v) returns 0 if the item at (i, j) is not found at (u, v).

4 Results and Conclusions

The first optimization task was to maximize the number of moves required to
solve the generated Shinro puzzles. Figure 9 shows a high-fitness evolved puzzle
requiring 37 moves in the automated solver to reach a solution. Despite the high
number of moves, the puzzles generated this way remain very easy to solve,
because the high numbers of arrows generally give up many clues about stone
locations.

Evolution of puzzles with horizontal, vertical, and rotational symmetry of
stone and arrow positions was greatly improved by introducing symmetric op-
erations to the standard mutation operators. For instance, instead of chang-
ing a single grid value, each of the symmetric grid values are simultaneously
changed during a single mutation. Figure 10 shows a generated symmetric puzzle.
Figure 11 shows a generated puzzle that has rotational symmetry.

Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles 189

Fig. 9. Evolved puzzle configuration that
requires 37 moves to solve

Fig. 10. Puzzle with symmetry. Requires
24 moves to solve.

Fig. 11. Puzzle with rotational symme-
try, including arrow direction. Requires 30
moves to solve.

Fig. 12. Puzzle evolved with target pat-
tern constraint: Stones must form “A”
shape. Requires 19 moves to solve.

Similarly, when a target pattern constraint is specified, we wanted to prevent
mutation from introducing violations to the specified constraint (Fig. 12 depicts
a sample constraint that the stones must form the letter “A”). The modified
mutation operator checks the constraint prior to changing a grid square value.
If the change violates the constraint, the change is suppressed.

To control the difficulty of generated puzzles, several evolutionary runs con-
centrated on maximizing specific types of moves. The most difficult move repre-
sented by the automated solver is the move based on the “pigeonhole” principle.
The easiest of any other available move is greedily selected by the automated
solver, reflecting the assumed bias of human players to locate the easiest moves
first. Pigeonhole moves are not selected unless no other moves are available.

190 D. Oranchak

Fig. 13. Evolved puzzle that requires four “pigeonhole” moves. Moves proceed from
left to right. Dots indicate sets of possible stone positions that further constrain the
indicated row or column. Each s indicates the deduced location of a stone due to the
necessary placement of another stone somewhere among the dots.

Thus, puzzles that maximize these moves were challenging to discover. One such
discovered puzzle, requiring four distinct pigeonhole moves, is depicted in Fig. 13.

The simple genetic algorithm was very effective for the construction of a wide
variety of interesting, challenging, and fun Shinro puzzles. Several aspects of our
approach warrant further study. The first is the impact of the greedy aspect of
the automated solver on evolutionary search. To what extent does the order of
moves affect the optimization of puzzle metrics? Another area of future study
is the identification of move types that are not represented herein. Can they
be discovered by evolutionary search? Would their discovery greatly affect the
current evaluation of desirable qualities of generated puzzles? Also, other metrics
of desirable puzzle qualities, such as balance of move types, or arrow density,
may be useful in further research.

Acknowledgments. I wish to thank Arash Payan, creator of the wonderful
iPhone game Jabeh which is based on Shinro, and Amy Goldstein of Puzzability,
the company that created Shinro puzzles, for their contributions to my research
on the background and origins of Shinro puzzles.

References

1. Jabeh - Logic Game for iPhone and iPod Touch, http://jabeh.org/
2. Shinro Mines for iPhone and iPod Touch,

http://www.benjiware.com/main/Shinro_Mines.html

3. Shinro - the Next Sudoku (iPhone game),
http://web.me.com/romancini/Far_Apps/Shinro.html

4. Shinro Puzzles, http://shinropuzzles.web.officelive.com
5. Sternenhimmel, http://www.janko.at/Raetsel/Sternenhimmel/index.htm
6. Fun and Games. Southwest Airlines Spirit Magazine (2007)
7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, Reading (1989)
8. Mantere, T., Koljonen, J.: Solving, rating and generating Sudoku puzzles with GA.

In: IEEE Congress on Evolutionary Computation (2007)
9. Ortiz-Garćıa, E.G., Salcedo-Sanza, S., Leiva-Murillob, J.M., Pérez-Bellidoa, A.M.,

Portilla-Figuerasa, J.A.: Automated generation and visualization of picture-logic
puzzles. Computers & Graphics 31(5), 750–760 (2007)

http://jabeh.org/
http://www.benjiware.com/main/Shinro_Mines.html
http://web.me.com/romancini/Far_Apps/Shinro.html
http://shinropuzzles.web.officelive.com
http://www.janko.at/Raetsel/Sternenhimmel/index.htm

Social Learning Algorithms Reaching Nash
Equilibrium in Symmetric Cournot Games

Mattheos K. Protopapas1, Francesco Battaglia1, and Elias B. Kosmatopoulos2

1 Department of Statistics, University of Rome “La Sapienza”,
Aldo Moro Square 5, 00185 Rome Italy

{matteo.protopapas,francesco.battaglia}@uniroma1.it
2 Department of Production Engineering and Management,

Technical University of Crete, Agiou Titou Square
kosmatop@dssl.tuc.gr

Abstract. The series of studies about the convergence or not of the
evolutionary strategies of players that use co-evolutionary genetic al-
gorithms in Cournot games has not addressed the issue of individual
players’ strategies convergence, but only of the convergence of the ag-
gregate indices (total quantity and price) to the levels that correspond
either to the Nash or Walrash Equilibrium. Here we discover that while
some algorithms lead to convergence of the aggregates to Nash Equilib-
rium values, this is not the case for the individual players’ strategies (i.e.
no NE is reached). Co-evolutionary programming social learning, as well
as a social learning algorithm we introduce here, achieve this goal (in
a stochastic sense); this is displayed by statistical tests, as well as “NE
stages” evaluation, based on ergodic Markov chains.

1 Introduction

The “Cournot Game” models an oligopoly of two or more firms that decide -
independently and simultaneously- the quantities they produce and supply to
the market. The total quantity produced by all the firms define -via an exogenous
demand function- the equilibrium price at the market. The companies’ goal is
to maximize their profit (1), which is the difference of their sales revenue and
their production cost. Co-evolutionary Genetic Algorithms have been used for
studying Cournot games, since Arifovic [3] studied the cobweb model. In contrast
to the classical genetic algorithms used for optimization, the co-evolutionary
versions are distinct at the issue of the objective function. In a classical genetic
algorithm the objective function for optimization is given before hand, while in
the co-evolutionary case, the objective function changes during the course of
play as it is based on the choices of the players.

In the algorithms we use here, each chromosome’s fitness is proportional to
its profit, as given by

π(qi) = Pqi − ci(qi) (1)

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 191–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

192 M.K. Protopapas, F. Battaglia, and E.B. Kosmatopoulos

where ci(qi) is the player’s cost for producing qi items of product and P is the
market price, as determined by all players’ quantity choices, from the inverse
demand function

P = a− b
n∑

i=1

qi (2)

In Arifovic’s algorithms [3], populations are updated after every single Cournot
game is played, and converge to the Walrasian (competitive) equilibrium and
not the Nash equilibrium [2],[15]. Convergence to the competitive equilibrium
means that agents’ actions -as determined by the algorithm- tend to maximize
(1), with price regarded as given, instead of

max
qi

π(qi) = P (qi)qi − ci(qi) (3)

that gives the Nash Equilibrium in pure strategies [2]. Later variants of Arifovic’s
model [5],[7] share the same properties.

Vriend was the first to present a co-evolutionary genetic algorithm in which
the equilibrium price and quantity on the market -but not the strategies of the
individual players as we will see later- converge to the respective values of the
Nash Equilibrium [16]. In his individual learning, multi-population algorithm,
which is one of the two algorithms that we study -and transform- in this arti-
cle, chromosomes’ fitness is calculated only after the chromosomes are used in a
game, and the population is updated after a given number of games are played
with the chromosomes of the current populations. Each player has its own pop-
ulation of chromosomes, from which he picks at random one chromosome to
determine its quantity choice at the current round. The fitness of the chromo-
some, based on the profit acquired from the current game is then calculated,
and after a given number of rounds, the population is updated by the usual
genetic algorithm operators (crossover and mutation). Since the populations are
updated separately, the algorithm is regarded as individual learning. These set-
tings yield Nash Equilibrium values for the total quantity on the market and,
consequently, for the price as well, as proven by Vallee and Yildizoglou [15]. In
this study, as well as in [11], we have studied the convergence of the individual
agents’ choices to the Nash Equilibrium quantities.

Finally Alkemade et al. [1] present the first (single population) social learning
algorithm that yields Nash Equilibrium values for the total quantity and the
price. The four players pick at random one chromosome from a single population,
in order to define their quantity for the current round. Then profits are calculated
and the fitness value of the active chromosomes is updated, based on the profit
of the player who has chosen them. The population is updated by crossover and
mutation, after all chromosomes have been used. As Alkemade et al. [1] point
out, the algorithm leads the total quantities and the market price to the values
corresponding to the NE for these measures.

Social Learning Algorithms Reaching NE in Symmetric Cournot Games 193

2 The Models

In all the above models, researchers assume symmetric cost functions (all players
have identical cost functions), which implies that the Cournot games studied are
symmetric. Additionally, Vriend [16], Alkemade et al. [1] and Arifovic [3] -in one
of the models she investigates- use linear (and decreasing) cost functions. If a
symmetric Cournot Game, has in addition, indivisibilities (discrete, but closed
strategy sets), it is a pseudo-potential game [6] and the following theorem holds:

Theorem 1. “Consider a n-player Cournot Game. We assume that the inverse
demand function P is strictly decreasing and log-concave; the cost function ci

of each firm is strictly increasing and left-continuous; and each firm’s monopoly
profit becomes negative for large enough q. The strategy sets Si, consisting of
all possible levels of output producible by firm i, are not required to be convex,
but just closed. Under the above assumptions, the Cournot Game has a Nash
Equilibrium [in pure strategies]” [6].

This theorem is relevant when one investigates Cournot Game equilibrium using
Genetic Algorithms, because a chromosome can have only a finite number of
values and, therefore, it is the discrete version of the Cournot Game that is
investigated, in principle. Of course, if one can have a dense enough discretization
of the strategy space, so that the NE value of the continuous version of the
Cournot Game is included in the chromosomes’ accepted values, it is the case
for the NE of the continuous and the discrete version under investigation to
coincide.

In all three models we investigate in this paper, the assumptions of the above
theorem hold, and hence there is a Nash Equilibrium in pure strategies. We
investigate those models for the cases of n = 4 and n = 20 players.

The first model we use is the linear model used in [1]: The inverse demand is
given by

P = 256−Q (4)

with Q =
∑n

i=1 qi, and the common cost function of the n players is

c(qi) = 56qi (5)

The Nash Equilibrium quantity choice of each of the 4 players is q̂ = 40 [1]. In
the case of 20 players we have, by solving (3), q̂ = 9.5238. The second model has
a polynomial inverse demand function.

P = aQ3 − b (6)

and linear symmetric cost function

c = xqi + y (7)

If we assume a < 0 and x > 0 the demand and cost functions will be decreasing
and increasing, respectively, and the assumptions of theorem (1) hold. We set
a = −1, b = 7.36× 107 + 10, x = y = 10, so q̂ = 20 for n = 20 and q̂ = 86.9401
for n = 4.

194 M.K. Protopapas, F. Battaglia, and E.B. Kosmatopoulos

Finally, in the third model, we use a radical inverse demand function

P = aQ
3
2 + b (8)

and the linear cost function (7). For a = −1, b = 8300, x = 100 and y = 10
theorem (1) holds and q̂ = 19.3749 for n = 20, while q̂ = 82.2143 for n = 4.

3 The Algorithms

We use two multi-population (each player has its own population of chromo-
somes representing its alternative choices at any round) co-evolutionary genetic
algorithms, Vriend’s individual learning algorithm [16] and co-evolutionary pro-
gramming, a similar algorithm that has been used for the game of prisoner’s
dilemma [10] and, unsuccessfully, for Cournot Duopoly [13]. Since those two al-
gorithms don’t, as it will be seen, lead to convergence to the NE in the models
under consideration, we introduce two different versions of the algorithms, as
well, which are characterized by the use of opponent choices, when the new gen-
eration of each player’s chromosome population is created, and therefore can be
regarded as “socialized” versions of the two algorithms. The difference between
the “individual” and the “social” learning versions of the algorithms is that in
the former case the population of each player is updated on itself (i.e. only the
chromosomes of the specific player’s population are taken into account when the
new generation is formed), while on the latter, all chromosomes are copied into a
common “pool”, then the usual genetic operators (crossover and mutation) are
used to form the new generation of that aggregate population and finally each
chromosome of the generation is copied back to its corresponding player’s popu-
lation. Thus we have “social learning”, since the alternative strategic choices of a
given player at a specific generation, as given by the chromosomes that comprise
its population, are affected by the chromosomes (the ideas should we say) all
other players had at the previous generation.

Co-evolutionary programming [13] is quite similar, with the difference that
the random match-ups between the chromosomes of the players’ population at a
given generation are finished when all chromosomes have participated in a game;
and then the population is updated, instead of having a parameter (GArate) that
defines the generations at which populations update takes place.

In our implementation, we don’t use elitism. The reason is that by using only
selection proportional to fitness, single (random) point crossover and finally,
mutation with fixed mutation rate for each chromosome bit throughout the sim-
ulation, we ensure that the algorithms can be classified as canonical economic
GA’s [13], and that their underlying stochastic process form an ergodic Markov
Chain [13].

In order to ensure convergence to Nash Equilibrium, we introduce the two
“social” versions of the above algorithms. Vriend’s multi-population algorithm
could be transformed to:

1. A set of strategies [chromosomes representing quantities] is randomly drawn for
each player.

Social Learning Algorithms Reaching NE in Symmetric Cournot Games 195

2. While Period < T
(a) (If Period mod GArate = 0): Use GA procedures (roulette wheel selection,

single, random point crossover and mutation), to create a new generation of
chromosomes, from a population consisting of the chromosomes belonging to
the union of the players’ populations. Copy the chromosomes of the new gener-
ation to the corresponding player’s population, to form a new set of strategies
for each player.

(b) Each player selects one strategy. The realized profit is calculated (and the
fitness of the corresponding chromosomes, is defined, based on that profit).

And social co-evolutionary programming is defined as:

1. Initialize the strategy population of each player
2. Choose one strategy of the population of each player randomly from among the

strategies that have not already been assigned profits. Input the strategy informa-
tion to the tournament. The result of the tournament will decide profit values for
these chosen strategies.

3. Repeat step (2) until all strategies are assigned a profit value.
4. Apply the evolutionary operators (selection, crossover, mutation) at the union of

players’ populations. Copy the chromosomes of the new generation to the corre-
sponding player’s population to form the new set of strategies.

5. Repeat steps (2)-(4) until maximum number of generations has been reached.

So the difference between the social and individual learning variants is that
chromosomes are first copied in an aggregate population, and the new generation
of chromosomes is formed from the chromosomes of this aggregate population.
From an economic point of view, this means that the players take into account
their opponents choices when they update their set of alternative strategies. So
we have a social variant of learning, and since each player has its own population,
the algorithms should be classified as “social multi-population economic Genetic
Algorithms” [12],[13]. It is important to note that the settings of the game allow
the players to observe their opponent choices after every game is played, and
take them into account, consequently, when they update their strategy sets.

It is not difficult to show that the stochastic process of all the algorithms
presented here form a regular Markov chain [9]. Having a Markov chain implies
that the usual performance measures -namely mean value and variance- are
not adequate to perform statistical inference, since the observed values in the
course of the genetic algorithm are inter-dependent. In a regular Markov chain
however, one can estimate the limiting probabilities of the chain by estimating
the components of the fixed frequency vector the chain converges to, by

π̂i =
Ni

N
(9)

where Ni is the number of observations in which the chain is at state i and N is
the total number of observations [4]. In the algorithms presented here, assuming
n players, with k chromosomes consisting of l bits in each player’s population,
the total number of possible states is 2knl, making the estimation of the limiting
probabilities of all possible states, practically impossible. On the other hand,

196 M.K. Protopapas, F. Battaglia, and E.B. Kosmatopoulos

one can estimate the limiting probability of one or more given states, without
needing to estimate the limiting probabilities of all the other states. A state of
importance could be the state where all chromosomes of all populations represent
the Nash Equilibrium quantity (which is the same for all players, since we have
a symmetric game). We call this state Nash State.

4 Simulation Settings

We use two variants of the three models in our simulations. One about n = 4
players and one having n = 20 players. We use 20-bits chromosomes for the
n = 4 players case and 8-bits chromosomes for the n = 20 case. A usual mech-
anism [3],[16] is used to transform chromosome values to quantities. After an
arbitrary choice for the maximum quantity, the quantity that corresponds to a
given chromosome is given by:

q =
1

qmax

L∑
k=1

qijk2k−1 (10)

where L is the length of the chromosome and qijk is the value of the kth bit of
the given chromosome (0 or 1). According to (10) the feasible quantities belong
in the interval [0, qmax]. By setting

qmax = 3q̂ (11)

where q̂ is the Nash Equilibrium quantity of the corresponding model, we en-
sure that the Nash Equilibrium of the continuous model is one of the feasible
solutions of the discrete model, analyzed by the genetic algorithms, and that
the NE of the discrete model will be therefore, the same as the one for the con-
tinuous case. And, as it can be easily proven by mathematical induction, that
the chromosome corresponding to the Nash Equilibrium quantity, will always be
0101 . . .01, provided that chromosome length is an even number.

The GArate parameter needed in the original and the “socialized” versions
of Vriend’s algorithms, is set to GArate = 50, an efficient value suggested in the
literature [15],[16]. We use single - point crossover, with the point at which chro-
mosomes are combined [8] chosen at random. Probability of crossover is always
set up to 1, i.e. all the chromosomes of a new generation are products of the
crossover operation, between selected parents. The probability of mutating any
single bit of a chromosome is fixed throughout any given simulation -something
that ensures the homogeneity of the underlying Markov process. The values that
have been used (for both cases of n = 4 and n = 20) are

pm = 0.1, 0.075, . . . , 0.000025, 0.00001.

We used populations consisting of

pop = 20, 30, 40, 50

chromosomes. These choices were made after preliminary tests that evaluated
the convergence properties of the algorithms for various population choices, and

Social Learning Algorithms Reaching NE in Symmetric Cournot Games 197

they are in accordance to the population sizes used in the literature ([16],[1],
etc.).

Finally, the maximum number of generations that a given simulation runs,
were

T = 103, 2 ∗ 103, 5 ∗ 103, 104, 2 ∗ 104, 5 ∗ 104

Note that the number of total iterations (number of games played) of Vriend’s
individual and social algorithms is GArate times the number of generations, while
in the co-evolutionaryprogramming algorithms is number of generations times the
number of chromosomes in a population, which is the number of match-ups.

We run 300 independent simulations for each set of settings for all the al-
gorithms, so that the test statistics and the expected time to reach the Nash
Equilibrium (NE state, or first game with NE played), are estimated effectively.

5 Synopsis of Results

Although the individual - learning versions of the two algorithms led the esti-
mated expected value of the average quantity (as given in eq.(12))

Q̄ =
1

nT

T∑
t=1

n∑
i=1

qit (12)

(T = number of iterations, n = number of players), close to the corresponding
average quantity of the NE, the strategies of each one of the players converged
to different quantities. The trajectory of the average market quantity in Vriend’s
algorithm

Q =
1
n

n∑
i=1

qit (13)

(calculated in (13) is quite similar to the trajectory of the same measure in the
co-evolutionary case. The estimated average values of the two measures (eq.(12))
were 86.2807 and 88.5472 respectively, while the NE quantity in the polynomial
model (6) is 86.9401. The unbiased estimators for the standard deviations of the
Q (eq.(14)) were 3.9776 and 2.6838, respectively.

sQ =
1

T − 1

T∑
i=1

(Qi − Q̄)2 (14)

The estimators of the mean values of each player’s quantities, as calculated by
eq.(15),

q̄i =
1
T

T∑
i=1

qi (15)

are given on table 1.
That significant difference between the mean values of players’ quantities was

observed in all simulations of the individual - learning algorithms, in all models

198 M.K. Protopapas, F. Battaglia, and E.B. Kosmatopoulos

Table 1. Mean Players’ Quantities for n = 4 players, pop = 50, GArate = 50, pcr = 1,
pmut = 0.01, T = 2, 000 generations

Player Vriend’s algorithm Co-evol. programming
1 91.8309 77.6752
2 65.3700 97.8773
3 93.9287 93.9287
4 93.9933 93.9933

and in both n = 4 and n = 20, for all the parameter sets used (which were
described in the previous section). We used a sample of 300 simulation runs for
each parameter set and model, for hypothesis testing. The hypothesis H0 : Q̄ =
qNash was accepted for a = .05 in all cases. On the other hand, the hypotheses
H0 : qi = qNash, were rejected for all players in all models, when the probability
of rejection the hypothesis, under the assumption it is correct, was a = .05.
There was not a single Nash Equilibrium game played, in any of the simulations
of the two individual - learning algorithms.

In the social - learning versions of the two algorithms, both the hypotheses
H0 : Q̄ = qNash, and H0 : qi = qNash were accepted for a = .05, for all models
and parameters sets. We used a sample of 300 different simulations for every
parameter set, in those cases, as well.

Notice that the all players’ quantities have the same mean values (eq. (15)).
Mean values of the individual players’ quantities on table 2.

Table 2. mean values of the individual players’ quantities for pop = 40, pcr = 1,
pmut = 0.00025, T = 10, 000 generations

Player Social Social Individual Individual
Vriend’s alg. Co-evol. prog. Vriend’s alg. Co-evol. prog.

1 86.9991 87.0062 93.7536 97.4890
2 86.9905 87.0089 98.4055 74.9728
3 86.9994 87.0103 89.4122 82.4704
4 87.0046 86.9978 64.6146 90.4242

On the issue of establishing NE in -some- of the games played and reaching
the Nash State (all chromosomes of every population equals the chromosome
corresponding to the NE quantity) there are two alternative results. For one
subset of the parameters set, the social - learning algorithms managed to reach
the NE state and in a significant subset of the games played, all players used the
NE strategy.

In the cases where mutation probability was too large, the “Nash” chromosomes
were altered significantly and therefore the populations couldn’t converge to the
NE state (within the given iterations). On the other hand, when themutation prob-
ability was low the number of iterations was not enough to have convergence. A
larger population, requires more generations to converge to the “NE state” as well.
Apparently, the Nash state s0 has greater than zero frequency in the simulations

Social Learning Algorithms Reaching NE in Symmetric Cournot Games 199

that reach it. The estimated time needed to reach Nash State (in generations), to
return to it again after departing from it, and the percentage of total games played
that were played on NE, are presented on table 31.

Table 3. Percentage of the total games in Nash Equilibrium

Model Algorithm pop pmut T Gen NE Ret
Time

NE
Games

4-Linear Vriend 30 .001 10,000 3,749.12 3.83 5.54
4-Linear Co-evol 40 .0005 10,000 2,601.73 6.97 73.82
20-Linear Vriend 20 .0005 20,000 2,712.45 6.83 88.98
20-Linear Co-evol 20 .0001 20,000 2,321.32 6.53 85.64
4-poly Vriend 40 .00025 10,000 2,483.58 3.55 83.70
4-poly Co-evol 40 .0005 10,000 2,067.72 8.77 60.45
20-poly Vriend 20 .0005 20,000 2,781.24 9.58 67.60
20-poly Co-evol 20 .0005 50,000 2,297.72 ,6.63 83.94
4-radic Vriend 40 .00075 10,000 2,171.32 4.41 81.73
4-radic Co-evol 40 .0005 10,000 2,917.92 5.83 73.69
20-radic Vriend 20 .0005 20,000 2,136.31 7.87 75.34
20-radic Co-evol 20 .0005 20,000 2,045.81 7.07 79.58

6 Conclusions

We have seen that the original individual - learning versions of the multi - pop-
ulation algorithms do not lead to convergence of the individual players’ choices,
at the Nash Equilibrium quantity. On the contrary, the “socialized” versions
introduced here, accomplish that goal and, for a given set of parameters, estab-
lish a very frequent Nash State, making games with NE quite frequent as well,
during the course of the simulations. The statistical tests employed, proved that
the expected quantities chosen by players converge to the NE in the social -
learning versions while that convergence cannot be achieved at the individual
- learning versions of the two algorithms. Therefore it can be argued that the
learning process is qualitatively better in the case of social learning. The ability
of the players to take into consideration their opponents strategies, when they
update theirs, and base their new choices at the totality of ideas that were used
at the previous period (as in [1]), forces the strategies into consideration to con-
verge to each other and to converge to the NE strategy as well. Of course this
option would not be possible, if the profit functions of the individual players
were not the same, or, to state that condition in an equivalent way, if there were
no symmetry at the cost functions. If the cost functions are symmetric, a player
can take note of its opponents realized strategies in the course of play, and use

1 GenNE = Average number of Generations needed to reach s0, starting from popu-
lations having all chromosomes equal to the opposite chromosome of the NE chromo-
some, in the 300 simulations. RetT ime = Interarrival Times of s0(average number of
generations needed to return to s0) in the 300 simulations. NEGames = Percentage
of games played that were NE in the 300 simulations.

200 M.K. Protopapas, F. Battaglia, and E.B. Kosmatopoulos

them as they are when he updates his ideas, since the effect of these strategies
at his individual profit, will be the same. Therefore the inadequate learning pro-
cess of the individually based learning can be perfected, at the symmetric case.
One should note that the convergence to almost identical values displayed in the
representative cases of the previous section, holds for any parameter set used in
all the models presented in this paper.

References

1. Alkemade, F., La Poutre, H., Amman, H.: On Social Learning and Robust Evo-
lutionary Algorithm Design in the Cournot Oligopoly Game. Comput. Intell. 23,
162–175 (2007)

2. Alos-Ferrer, C., Ania, A.: The Evolutionary Stability of Perfectly Competitive
Behavior. Econ. Theor. 26, 497–516 (2005)

3. Arifovic, J.: Genetic Algorithm Learning and the Cobweb Model. J. Econ. Dynam.
Contr. 18, 3–28 (1994)

4. Basawa, I.V., Rao, P.: Statistical Inference for Stochastic Processes. Academic
Press, London (1980)

5. Dawid, H., Kopel, M.: On Economic Applications of the Genetic Algorithm: A
Model of the Cobweb Type. J. Evol. Econ. 8, 297–315 (1998)

6. Dubey, P., Haimanko, O., Zapechelnyuk, A.: Strategic Complements and Subtitutes
and Potential Games. Game Econ. Behav. 54, 77–94 (2006)

7. Franke, R.: Coevolution and Stable Adjustments in the Cobweb Model. J. Evol.
Econ. 8, 383–406 (1998)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison - Wesley, Reading (1989)

9. Kemeny, J., Snell, J.: Finite Markov Chains. D.Van Nostrand Company Inc.,
Princeton (1960)

10. Price, T.C.: Using Co-Evolutionary Programming to Simulate Strategic Behavior
in Markets. J. Evol. Econ. 7, 219–254 (1997)

11. Protopapas, M., Kosmatopoulos, E.: Two genetic algorithms yielding Nash Equi-
librium in Symmetric Cournot Games. COMISEF Working Paper Series, WPS-04
(2008)

12. Riechmann, T.: Learning and Behavioral Stability. J. Evol. Econ. 9, 225–242 (1999)
13. Riechmann, T.: Genetic Algorithm Learning and Evolutionary Games. J. Econ.

Dynam. Contr. 25, 1019–1037 (2001)
14. Son, Y.S., Baldick, R.: Hybrid Coevolutionary Programming for Nash Equilibrium

Search in Games with Local Optima. IEEE Trans. Evol. Comput. 8, 305–315 (2004)
15. Vallee, T., Yildizoglou, M.: Convergence in Finite Cournot Oligopoly with Social

and Individual Learning. Working Papers of GRETha, 2007-07 (2007), GRETha,
http://www.gretha.fr (accessed November 10, 2007)

16. Vriend, N.: An Illustration of the Essential Difference between Individual and Social
Learning, and its Consequences for Computational Analyses. J. Econ. Dynam.
Contr. 24, 1–19 (2000)

http://www.gretha.fr

Multiple Overlapping Tiles for Contextual
Monte Carlo Tree Search

Arpad Rimmel and Fabien Teytaud

TAO (Inria), LRI, UMR 8623(CNRS - Univ. Paris-Sud), bat 490 Univ. Paris-Sud
91405 Orsay, France

Abstract. Monte Carlo Tree Search is a recent algorithm that achieves
more and more successes in various domains. We propose an improve-
ment of the Monte Carlo part of the algorithm by modifying the simula-
tions depending on the context. The modification is based on a reward
function learned on a tiling of the space of Monte Carlo simulations.
The tiling is done by regrouping the Monte Carlo simulations where two
moves have been selected by one player. We show that it is very efficient
by experimenting on the game of Havannah.

1 Introduction

Monte Carlo Tree Search (MCTS) [1] is a recent algorithm for taking decisions
in a discrete, observable, uncertain environment with finite horizon that can be
described as a reinforcement learning algorithm. This algorithm is particularly
interesting when the number of states is huge. In this case, classical algorithms
like Minimax and Alphabeta [2], for two-player games, and Dynamic Program-
ming [3], for one-player games, are too time-consuming or not efficient. As MCTS
explores only a small relevant part of the whole problem, this allows it to ob-
tain good performance in such situations. This algorithm achieved particularly
good results in two-player games like computer Go or Havannah. But this algo-
rithm was also successfully applied on one-player problems like the automatic
generation of libraries for linear transforms [4] or active learning [5].

The use of Monte Carlo simulations to evaluate a situation is an advantage
of the MCTS algorithm; it gives an estimation without any knowledge of the
domain. However, it can also be a limitation. The underlying assumption is that
decisions taken by an expert are uniformly distributed in the whole space of
decisions. This is not true in most of the cases. In order to address this problem,
one can add expert knowledge in the Monte Carlo simulations as proposed in
[6]. However, this solution is application-dependent and limited because all the
different situations have to be treated independently.

In this paper, we present a first step to solve this problem in a generic way.
We introduce a modification of the Monte Carlo simulations that allows them to
be automatically modified depending on the context: Contextual Monte Carlo
(CMC) simulations. We show that it improves the performance for the game of
Havannah. In order to do that, we learn the reward function on a tiling of the

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 201–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

202 A. Rimmel and F. Teytaud

space of Monte Carlo simulations and use this function to modify the following
simulations. The idea is to group simulations where two particular actions have
been selected by the same player. Then, we learn the average reward on those
sets. And finally, we try to reach simulations from sets associated to a high
reward. This modification is generic and can be applied to two-player games as
well as one-player games. To the extent of our knowledge, this is the first time
a generic and automatic way of adapting the Monte Carlo simulations in the
MCTS algorithm has been proposed.

We first present reinforcement learning, the principle of the Monte Carlo Tree
Search algorithm and the principle of tiling. Then, we introduced those new
simulations: CMC simulations. Finally, we present the experiments and conclude.

2 Value-Based Reinforcement Learning

In a reinforcement learning problem, an agent will choose actions in an environ-
ment described by states with the objective of maximizing a long-term reward.
The agent will act based on his previous trials (exploitation) and try new choices
(exploration).

Let S be a set of states. Let A be a set of actions. Let R ⊂ R be a set of
rewards.

At each time t ∈ 1, ..., T , the current state st ∈ S is known. After an action
at ∈ A is chosen, the environment returns the new state st+1 and the reward
rt+1 ∈ R.

The goal is to find a policy function π : S → A that maximizes the cumulative
reward Rt for each t:

Rt =
T∑

k=t+1

rk

In value-based reinforcement learning, an intermediate value function is learned
to compute the policy. The value function V π(s) is the expected cumulative
reward starting state s and following the policy π thereafter.

V π(s) = Eπ[Rt|st = s]

This function is not known and will be empirically evaluated: V̂ π.
While there is some time left, the algorithm will iterate two different steps:

– utilization of the empirical estimation of the value function. V̂ π is used in or-
der to choose the actions (often based on a compromise between exploration
and exploitation).

– update of the empirical estimation of the value function. V̂ π is modified based
on the rewards obtained.

This is known as the policy iteration process [7].
The utilization and update of V̂ π can be done by different algorithms. For

example, [8] propose the TD(λ) algorithm in order to do the update. A classical
utilization of V̂ π is the ε-greedy algorithm.

Multiple Overlapping Tiles for Contextual Monte Carlo Tree Search 203

3 Monte Carlo Tree Search

The principle of MCTS is to construct a highly unbalanced tree representing the
future by using a bandit formula and to combine it with Monte Carlo simulations
to evaluate the leaves.

3.1 Bandits

A classical k-armed bandit problem is defined as follows:

– A finite set J = {1, . . . , k} of arms is given.
– Each arm j ∈ J is associated to an unknown random variable Xj with an

unknown expectation μj .
– At each time step t ∈ {1, 2, . . .}:
• the algorithm chooses jt ∈ J depending on (j1, . . . , jt−1) and

(r1, . . . , rt−1).
• Each time an arm j is selected, the bandit gives a reward rt, which is a

realization of Xjt .

The goal of the problem is to minimize the so-called regret: the loss due to the
fact that the algorithm will not always chose the best arm.

Let Tj(n) the number of times an arm has been selected during the first n
steps. The regret after n steps is defined by

μ∗n−
k∑

j=1

μjE[Tj(n)] where μ∗ = max
1≤i≤k

μi

[9] achieve a logarithmic regret (it has been proved that this is the best regret
obtainable in [10]) uniformly over time with the following algorithm: first, tries
one time each arm; then, at each step, selects the arm j that maximizes

x̄j +

√
2ln(n)

nj
(1)

x̄j is the average reward for the arm j.
nj is the number of times the arm j has been selected so far.
n is the overall number of trials so far.
This formula consists in choosing at each step the arm that has the highest

upper confidence bound. It is called the UCB formula.

3.2 Monte Carlo Tree Search

The MCTS algorithm constructs in memory a subtree T̂ of the global tree T
representing the problem in its whole (see algorithm 1 (left) and Fig. 1 (left)).

The construction of the tree is done by the repetition while there is some time
left of 3 successive steps: descent, evaluation, growth.

204 A. Rimmel and F. Teytaud

Fig. 1. Left.Illustration of the Monte Carlo Tree Search algorithm from a presentation
of Sylvain Gelly. Right.Illustration of 3 overlapping tilings from the article [11].

Descent. The descent in T̂ is done by considering that taking decision is a k-
armed bandit problem. We use the formula 1 to solve this problem. In order to
do that, we suppose that the necessary information is stored for each node. Once
a new node has been reached, we just repeat the same principle until we reached
a situation S outside of T̂ .

Evaluation. Now that we have reached S and that we are outside of T̂ , there is
no more information available to take a decision. As we are not at a leaf of T , we
can not directly evaluate S. Instead, we use a Monte Carlo simulation (taking
decisions uniformly until a final state is reached) to have a value for S.

Growth. We add the node S to T̂ . We update the information of S and of all
the situations encountered during the descent with the value obtained with the
Monte Carlo evaluation.

3.3 Monte Carlo Tree Search as a Reinforcement Learning
Algorithm

The tree representing the problem solved by MCTS can be described as a rein-
forcement learning problem with the following correspondence: states ∼ nodes
of the tree, actions ∼ branches of the tree, rewards ∼ results at the terminal
nodes of the tree.

The MCTS algorithm is a value-based reinforcement learning algorithm with
a UCB policy. The value V̂ UCB(s) is stored in the node corresponding to the
state s. It corresponds to the average reward for the situation s so far.

The utilization part of the algorithm is defined as follows: the action a chosen
in the state s is selected according to⎧⎪⎨⎪⎩

argmaxa(V̂ UCB(sa) +
√

2ln(ns)
nsa

) if s ∈ T̂

mc(s) otherwise
(2)

Multiple Overlapping Tiles for Contextual Monte Carlo Tree Search 205

sa is the situation reached from s after choosing the action a.
nsa is the number of times the action a has been selected so far from the

situation s.
ns is the overall number of trials so far for situation s.
mc(s) returns an action uniformly selected among all the possible actions from

the state s.
When s is in T̂ , the action is chosen according to the UCB formula 1 (descent

part). When s is outside of T̂ , the action is chosen uniformly among the possible
actions (evaluation part).

The update part of the reinforcement learning algorithm is done after a final
state is reached and a new node has been added to T̂ . The reward is the value
r associated to the final state. For all states s ∈ T̂ that were reached from the
initial state to the final state

V̂ UCB(s) ← V̂ UCB(s) +
r

ns

4 Tile Coding

When the number of states is very large or even infinite in the case of continuous
parameters, it is necessary to use a function approximation to learn the value
function.

In tile coding (see [7]), the space D is divided into tiles. Such a partition
is called a tiling. It is possible to use several overlapping tilings. A weight is
associated by the user to each tile. The value of a point is given by the sum
of the weight of all the tiles in which the point is included. A representation of
3 overlapping tilings for a problem with one continuous dimension is given on
Fig. 1 (right).

Tile coding will lead to a piecewise constant approximation of the value
function:

∀p ∈ D, ∃z ∈ R such that, ∀p′ ∈ D ∧ distance(p, p′) < z, V̂ π(p) = V̂ π(p′)

5 Contextual Monte Carlo

In this section, we present how we learn the reward function on the space of
Monte Carlo simulations by defining a tiling on this space. Then, we explain
how we use this function to improve the following Monte Carlo simulations.

5.1 A New Tiling on the Space of Monte Carlo Simulations

We consider a planning problem, the goal is to maximize the reward. We consider
that a Monte Carlo Tree Search algorithm is used to solve this problem. Let G be
the set of the possible actions. We focus on the space of Monte Carlo simulations
EMC . A Monte Carlo simulation is the sequence of moves from outside the tree
T̂ until a final state. Each Monte Carlo simulation is therefore associated to a

206 A. Rimmel and F. Teytaud

reward. We define the tiles L(a1, a2) on EMC where (a1, a2) ∈ G2. L(a1, a2) is
composed of all the simulations containing a1 and a2 and where a1 and a2 has
been selected by one player P .

L = {{sim s such that a1 ∈ s ∧ a2 ∈ s ∧ Ps(a1) ∧ Ps(a2)}; (a1, a2) ∈ G2} (3)

We define V̂CMC : the empirical reward function based on L. In order to learn
the value V̂CMC(a1, a2), each time that a simulation s is rewarded with a value
r, we update the values for each tiles containing s.

For each L(a1, a2) such that s ∈ L(a1, a2),

V̂ CMC(a1, a2) ← V̂ CMC(a1, a2) +
r

nCMC(a1, a2)

nCMC(a1, a2) is the number of times a simulation in L(a1, a2) has been played.
V̂ CMC(a1, a2) corresponds to the estimated reward for any simulation in

which two particular actions have been selected. If this value is high, it means
that each time the player manages to play a1 and a2 in a simulation, there is a
high chance that the simulation will give a high reward for that player.

5.2 Improving Monte Carlo Simulations

We focus on tiles where the estimated reward is high (superior to a user-defined
threshold B). The policy should try to reach simulations in those tiles. In order
to do that, if a tile associated with two actions a1 and a2 and with an estimated
value inferior to B exists and if one player previously selected one of the actions,
we will then select the other. In fact, if several such tiles exist, we will select
the action that will lead to the simulation from the tile with the highest average
reward.

As the policy for situations in T̂ is already efficient, we modify the policy for
situations outside T̂ .

The utilization part previously defined in Eq. 2 is now defined as follows: The
action a chosen in the state s is selected according to⎧⎪⎪⎪⎨⎪⎪⎪⎩

argmaxa(V̂ UCB(sa) +
√

2ln(ns)
nsa

) if s ∈ T̂

{
cmc(s) if random() < prob
mc(s) otherwise otherwise

(4)

prob is a parameter between 0 and 1. It corresponds to the probability of choosing
cmc(s) instead of mc(s). random() is a random number generated between 0 and
1. cmc(s) is defined as follows:

cmc(s) = argmaxa,a∈Es(S(V̂ CMC(a, b)))

Multiple Overlapping Tiles for Contextual Monte Carlo Tree Search 207

Es is the set of the possible actions in the state s. b is the previous move
played by the same player. S is a threshold function with a threshold at B,
formally defined as follows:

S(x) =
{

x if x > B
0 otherwise (5)

In order to keep the diversity in Monte Carlo simulation (the importance of
diversity is discussed in [6]), we apply this modification with a certain probability
prob. This probability is defined by the user.

The resulting algorithm is given in algorithm 1 (right).

Algorithm 1. Left. MCTS(s) Right. CMCTS(s) //s a situation

Initialization of T̂ , V̂ UCB , n
while there is some time left do

s′ = s
Initialization of game
//DESCENT//
while s′ in T̂ and s′ not terminal do

s′ = reachable situation chosen according
to the UCB formula (1)
game = game + s′

end while
S = s′

//EVALUATION//
while s′ is not terminal do

s′ = mc(s′)
end while
r = result(s′)
//GROWTH//
T̂ = T̂ + S
for each s in game do

ns ← ns + 1
V̂ UCB(s) ← V̂ UCB(s) + r

ns
end for

end while

Initialization of T̂ , V̂ UCB , n, V̂ CMC , nCMC

while there is some time left do
s′ = s
Initialization of game,gamemc
//DESCENT//
while s′ in T̂ and s′ not terminal do

s′ = reachable situation chosen according
to the UCB formula (1)
game = game + s′

end while
S = s′

//EVALUATION//
while s′ is not terminal do

if random() < prob then
s′ = cmc(s′)

else
s′ = mc(s′)

end if
gamemc ← gamemc + s′

end while
r = result(s′)
//GROWTH//
T̂ = T̂ + S
for each s in game do

ns ← ns + 1
V̂ UCB(s) ← V̂ UCB(s) + r

ns
end for
for each (P (a1), P (a2)) in s′, P being one
player do

nCMC(a1, a2) ← nCMC(a1, a2) + 1
V̂ CMC(a1, a2) ← V̂ CMC(a1, a2) +

r

nCMC(a1,a2)
end for

end while

6 Experiments

We have tested the effect of contextual Monte Carlo simulations on the game of
Havannah. In this section, we first describe the game of Havannah and then give
our results.

208 A. Rimmel and F. Teytaud

6.1 Havannah

Havannah is a two-player board game recently introduced in the community of
computer game [12]. Invented by Christian Freeling, the game of Havannah is
played on an hexagonal board with hexagonal locations, and different board sizes
(size of 8 or 10 is usual). The rules are really simple. White player starts, and
after that each player plays alternately by putting a stone in an empty location.
If there is no any empty location free, and if no player has won yet, then the
game is a draw. To win, a player has to realize :

– a ring, which is a loop around one or more cells (empty or not, occupied by
black or white stones).

– a bridge, which is a continuous string of stones connecting to one of the six
corners to another one.

– a fork, which is a continuous string of stones linking three edges of the board
(corner locations are not considered as belonging to the edges).

Fig. 2. Three finished games: a ring (a loop, by black), a bridge (linking two corners,
by white) and a fork (linking three edges, by black)

On Fig. 2, we present these three ways to win a game.
The game of Havannah is known as hard for computers for different reasons.

First, there is a large action space, for instance, in size 10, there are 271 possible
moves for the first player. Second, there is no pruning rule for reducing the
number of possible moves. Another important reason is that, there is no natural
evaluation function. A such function is really useful, in the sense that, it gives a
very good evaluation of a position, as, for instance in chess. And finally, a last
reason is the lack of patterns in the game of Havannah. A pattern is an expert
knowledge which give information on a move or a position. For instance, in chess,
it is always good having his king in a safe place, therefore, a pattern could be
castling if it is possible.

6.2 Results

In this section we experiment our Havannah program with the CMC improve-
ment against the same player without this improvement. The reward is 1 (if the
situation is a won game) or 0 (if the situation is a loss). The experiments are
done with 1000 simulations per move for each player.

Multiple Overlapping Tiles for Contextual Monte Carlo Tree Search 209

Fig. 3. Left.Winning percentage for the CMC version against the basic version with
prob = 35. Right.Winning percentage for the CMC version against the basic version
with B = 0.

We study the impact of the two parameters prob and B. prob defines the
percentage of time our modification will be applied (see Algo. 1). B defines
which tiles we want to reach (see Eq. 5). The results are given on Fig. 3 and are
commented below.

First, we see that the utilization of CMC is efficient. It leads to 57% of victory
against the base version for prob = 35 and B = 0.

On Fig. 3 (left), we show the effect of changing B for a fixed value of prob =
75%. The winning percentage starts at 56% for B = 0 and is stable until B = 60
where it starts going down to 50% for B = 100. When B is too high, CMC is
used less often and therefor the results are worse. When B is low, it means that
we will select the best tile even if all the possible tiles have a bad average reward.
It seems that this is never worst than playing randomly. In the following, we use
B = 0.

On Fig. 3 (right), we modify the value of prob while keeping B fixed. When
prob is too high, the diversity of the Monte Carlo simulations is not preserved
and the results are worse. On the other hand, if prob is too low, the modification
has not enough effect. There is a compromise between this two properties.

7 Conclusion

We presented a domain-independent improvement of the Monte Carlo Tree
Search algorithm. This was done by modifying the MC simulations by using
a reward function learned on a tiling of the space of MC simulations: CMC. To
the extent of our knowledge, this is the first time that an automatic modification
of the Monte Carlo has been proposed.

It achieves very good results for the game of Havannah with a winning per-
centage of 57% against the version without CMC.

It is, for the moment, tested only in the case of one example of two-player
game. An immediate perspective of this work is to experiment CMC on other
problems.

210 A. Rimmel and F. Teytaud

It is possible to apply an infinite amount of tilings to the space of Monte
Carlo simulations. We proposed a successful specific one but others can surely
be found as we used only a small part of the information contained in this space.
In the future, we intend to give a formal description of the learning in the space
of Monte Carlo simulations.

References

1. Kocsis, L., Szepesvari, C.: Bandit-based monte-carlo planning. In: Fürnkranz,
J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212,
pp. 282–293. Springer, Heidelberg (2006)

2. Pearl, J.: Heuristics. Intelligent search strategies for computer problem solving.
Addison-Wesley, Reading (1984)

3. Bertsekas, D.P.: Neuro-dynamic programming. In: Encyclopedia of Optimization,
pp. 2555–2560 (2009)

4. De Mesmay, F., Rimmel, A., Voronenko, Y., Püschel, M.: Bandit-Based Optimiza-
tion on Graphs with Application to Library Performance Tuning. In: International
Conference on Machine Learning, Montréal Canada (2009)

5. Rolet, P., Sebag, M., Teytaud, O.: Optimal active learning through billiards and
upper confidence trees in continous domains. In: Proceedings of the European
Conference on Machine Learning (2009)

6. Chaslot, G., Fiter, C., Hoock, J.B., Rimmel, A., Teytaud, O.: Adding expert
knowledge and exploration in Monte-Carlo Tree Search. In: Advances in Computer
Games, Pamplona Espagne. Springer, Heidelberg (2009)

7. Sutton, R., Barto, A.: Reinforcement learning: An introduction. MIT Press, Cam-
bridge (1998)

8. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine
Learning, 9–44 (1988)

9. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2/3), 235–256 (2002)

10. Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics 6, 4–22 (1985)

11. Sherstov, E.A., Stone, P.: Function approximation via tile coding: Automating
parameter choice. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI),
vol. 3607, pp. 194–205. Springer, Heidelberg (2005)

12. Teytaud, F., Teytaud, O.: Creating an Upper-Confidence-Tree program for Havan-
nah. In: Advances in Computer Games 12, Pamplona Espagne (2009)

A CNN Based Algorithm for the Automated
Segmentation of Multiple Sclerosis Lesions

Eleonora Bilotta1, Antonio Cerasa2, Pietro Pantano1, Aldo Quattrone2,
Andrea Staino1, and Francesca Stramandinoli1

1 Evolutionary Systems Group, University of Calabria,
87036 Arcavacata di Rende, Cosenza, Italy

{bilotta,piepa}@unical.it,
{andreastaino,francescastramandinoli}@gmail.com

2 Neuroimaging Research Unit, Institute of Neurological Sciences,
National Research Council, 88100 Catanzaro, Italy

{a.cerasa,a.quattrone}@isn.cnr.it

Abstract. We describe a new application based on genetic algorithms
(GAs) that evolves a Cellular Neural Network (CNN) capable to auto-
matically determine the lesion load in multiple sclerosis (MS) patients
from Magnetic Resonance Images (MRI). In particular, it seeks to iden-
tify in MRI brain areas affected by lesions, whose presence is revealed by
areas of lighter color than the healthy brain tissue. In the first step of the
experiment, the CNN has been evolved to achieve better performances
for the analysis of MRI. Then, the algorithm was run on a data set of
11 patients; for each one 24 slices, each with a resolution of 256 × 256
pixels, were acquired. The results show that the application is efficient
in detecting MS lesions. Furthermore, the increased accuracy of the sys-
tem, in comparison with other approaches, already implemented in the
literature, greatly improves the diagnosis for this disease.

Keywords: Cellular Neural Networks, Genetic Algorithms, Automated
Magnetic Resonance Imaging Analysis, Multiple Sclerosis lesion load.

1 Introduction

Cellular Neural Networks (CNNs), first introduced by Leon O. Chua and Lin
Yang [3] in 1988, are an array of nonlinear programmable analog processors,
called cells, that perform parallel computation. Each cell is a dynamical sys-
tem whose state evolves in time, according to a specific mathematical model,
and whose output is a nonlinear function of the state. Unlike artificial neural
networks, in a CNN interconnections among cells are local, that is each pro-
cessing unit directly interacts only with the neighboring cells, located within
a prescribed sphere of influence. For image processing purpose, the most usual
CNN architecture is a regular two dimensional grid. Given a CNN of M × N
cells, the neighborhood Sij(r) of radius r ≥ 0 for the cell Cij is the set of cells
satisfying the following property:

Sij(r) = {Ckl : max (|k − i|, |l− j|) ≤ r} 1 ≤ k ≤M, 1 ≤ l ≤ N (1)

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 211–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

212 E. Bilotta et al.

In the original model [3], each CNN cell is a simple nonlinear analog circuit
(Fig. 1), composed of a linear capacitor, an independent current source, an in-
dependent voltage source, two linear resistors and at most 2m linear voltage-
controlled current sources, m being the number of neighbors cells of the consid-
ered unit. The voltage vxij(t) across the capacitor is called the state of the cell
Cij , while vuij and vyij(t) represent the input and the output respectively. The
characteristics of the generators Ixy(i, j; k, l; t) and Ixu(i, j; k, l) are defined as:

Ixy(i, j; k, l; t) = A(i, j; k, l)vykl
(t), Ixu(i, j; k, l) = B(i, j; k, l)vukl

(2)

By setting the coupling parameters A(i, j; k, l) and B(i, j; k, l), it is possible to
control the strength of interactions between cells. The output vyij (t) is deter-
mined by the nonlinear voltage controlled current source Iyx that is the only
nonlinear element of the cell. It is characterized by the following equation:

Iyx =
1

Ry
f
(
vxij (t)

)
(3)

where f is the characteristic function of the nonlinear controlled current source,
defined as:

f (vij(t)) =
1
2
(
|vxij (t) + 1| − |vxij (t)− 1|

)
(4)

Using the Kirchhoff laws, the state of a CNN cell can be described by the fol-
lowing nonlinear differential equation:

C v̇xij (t) = − 1
Rx

vxij (t) + z +
∑

Ckl∈Sij(r)

(A(i, j; k, l)f (vxkl(t)) + B(i, j; k, l)vukl) (5)

where f holds the nonlinearity. Therefore, given input, initial state for each
cell Cij such that 1 ≤ i ≤ M , 1 ≤ j ≤ N , and boundary conditions, the
dynamics of a two-dimensional standard CNN are uniquely specified by the
synaptic weights between a cell and its neighbors. These parameters, together
with a bias value z, define a CNN template that can be expressed in the form
{A(i, j; k, l), B(i, j; k, l), z}. The process performed by the system on the input
image is fully defined by the set of coefficients in the CNN template. An evolu-
tionary approach can be used in order to find a template that allows to obtain
a desired process.

In [2], CNNs are proposed as a parallel computing paradigm especially suited
for processing analog array signals, with important applications in image pro-
cessing, pattern recognition, numerical solution of PDEs and investigation of
nonlinear phenomena. CNNs have been successfully applied in various image
processing applications, especially because of the high pay-off offered by the
CNN based architectures [1]. Neuroimaging is one of the most important area
in which CNNs were also used in order to support medical diagnosis, both with
magnetic resonance imaging (MRI) and computed tomography (CT) [5][8]. In
the last years, there has been increased interest in developing novel techniques for
automated multiple sclerosis (MS) lesions segmentation. MS is a demyelinising
disease of the central nervous system that leads to inflammatory pathology. MS

A CNN Based Algorithm for the Automated Segmentation of MS Lesions 213

Fig. 1. Original CNN cell model

pathology is primarily expressed as focal lesions in the white matter of the brain.
Because of its superior contrast, MRI is the modality of choice for clinical eval-
uation of MS. Generally, manual delineation of MS lesions is a time-consuming
task, as three-dimensional information, from several MR contrasts, must be in-
tegrated. In [5], a CNN based approach to classify MR images with respect to
the presence or absence of mesial temporal sclerosis has been proposed, using a
genetic algorithm-based learning procedure in order to optimize the networks’
parameters, concerning the assigned classification task. By developing a new and
efficient CNN based approach of MR images processing and by using a genetic
algorithm which improves the technique developed in [5], this paper presents a
fully automated method for the segmentation of MS lesions. The paper is orga-
nized as follows. After the introduction, the second section deals about the GA
formal aspects to evolve the CNN templates. The third section reports about
the CNN simulation to test the system’s implementation. The fourth and the
fifth sections present the experiments we have performed and some results. The
final remarks close the work.

2 GA Methods for Evolving CNN

From the work of J.H. Holland in 1975, Genetic Algorithms (GAs) are computa-
tional bio-inspired methods for solving problems. To evaluate the performance of
each individual in relation to the problem, it is possible to define an appropriate
fitness function, which quantitatively measures the performance of each individ-
ual, in a given generation, for all the generations [1]. The standard method for
developing a GA is to choose a genetic representation, a fitness function and
then it proceeds with the following steps:

1. Generating a random number of strings (initial population), that encode
possible solutions to the problem.

2. Decoding of the genotypes of the population and assessment of each individ-
ual (phenotype), according to the fitness function.

3. If the current population contains a satisfactory solution, the algorithm
stops.

4. If the system doesn’t find a “good” solution, a new evolution starts, generat-
ing a new population of individuals, by applying the operators of selection,
crossover and mutation.

214 E. Bilotta et al.

Fig. 2. Marked areas corresponding to MS lesions in the white matter of the brain.
Lesions are brighter than other tissues on MRI.

The process continues with the evaluation of new individuals through the fitness
function and continues cyclically in this manner until a satisfactory solution to
a given problem is obtained. GAs and, more generally, evolutionary computing,
have been successfully applied to image processing tasks related to medical im-
ages classification [10]. In this paper, genetic algorithms have been applied in
order to evolve a CNN, capable of detecting MS lesions from MRI. The main
issue is to develop a CNN algorithm for automated segmentation of MS lesions,
whose presence is revealed by regions in the brain that are brighter than their
surroundings (Fig. 2).

In image processing applications, a neighborhood of radius r = 1 is commonly
used and, in most cases, space-invariant templates are chosen, that is the oper-
ators A(i, j; k, l) and B(i, j; k, l) depend only on the relative position of a cell
with respect to its neighbors. With such assumption, the whole system is char-
acterized by a 3 × 3 feedback matrix A, a 3 × 3 control matrix B and a scalar
z and so 19 parameters are needed to “program” a cellular neural network; this
means that, once initial state and boundary conditions have been assigned, the
operation performed by the CNN on a given input image is determined only
by 19 real values that completely define the properties of the network. For our
aims, to design a genetic algorithm to search the weights of a standard two-
dimensional space invariant CNN, in which each cell has a radius of influence
r = 1, it is convenient to adopt a representation of templates in vector form. To
this end, the 19 parameters that define the triple {A, B, z} are arranged in an
array consisting of 9 feedback synaptic weights, defining the A matrix, 9 control
synaptic weights, defining the B matrix, and the threshold z (Fig. 3). These 19
coefficients represent a gene for the CNN, which is associated with a particular
function performed by the network. The genetic algorithm has been designed to
get template to be used for image processing applications. For this reason, we
chose to impose that the matrices A and B are symmetric with respect to the
central element, respectively.

In this way, we set the conditions for the stability of the CNN, provided in the
complete stability theorem [2], which ensures the convergence of the network.
It also reduces the computational load of the algorithmic search, since it is
necessary to determine only 11 coefficients, 5 belonging to the matrix A, 5 to the

A CNN Based Algorithm for the Automated Segmentation of MS Lesions 215

Fig. 3. Representation of a CNN template in vector form

matrix B and one corresponding to the threshold z. Each genotype is represented
by a vector G of 11 elements:

G = [a11 a12 a13 a21 a22 b11 b12 b13 b21 b22 z] (6)

while the corresponding phenotype is the actual cellular neural network, config-
ured by using the parameters in the genotype. The key step in the genotype-to-
fenotype mapping is the construction of the CNN template {A, B, z} from the
elements of a given vector G; this can be easily accomplished by re-arranging
genotype coefficients as shown in Fig. 3. To assess the fitness of a CNN gene
compared to an assigned problem, we introduce a target image T of M ×N pix-
els to be used for training the network. Applying the template corresponding to
G to the input image to CNN, it generates an image IG which can be compared
with T , through the cost function:

diff(G) =
M∑
i=1

N∑
j=1

IG
ij

⊕
Tij (7)

where the operator ⊕ denotes the logic xor between the element in position
(i, j) of the target image and the corresponding pixel in the CNN output. The
fitness function for each phenotype CNNG, then, is evaluated by calculating the
number of pixels equal between T and the CNN output:

fitness(CNNG) = M ×N − diff(G) (8)

Hence, the fitness measures the number of equal pixels between the target image
and that obtained from the CNN simulation. In this way, higher values of fitness
are associated with phenotypes corresponding to templates that produce outputs
with a high number of pixels, that in turn coincide with the image target.

3 Experiments on the CNN Performance

The algorithm proposed for the segmentation of the MS lesions consists of three
principal steps:

216 E. Bilotta et al.

(a) (b)

Fig. 4. Input (a) and target (b) image used in the CNN training

– Step 1: Lesions detection and their binarization,
– Step 2: Segmentation of the white matter of the brain,
– Step 3: Lesions extraction and isolation.

Genetic algorithms have been applied to determine the CNN synaptic weights
that, for a given MR Image, perform a binarization in such a way that only MS
lesions are detected inside the brain area. The subsequent steps have been neces-
sary in order to remove the skull and other unwanted pixels. Because of different
shapes and intensity of the lesions, it has been necessary to train the genetic
algorithm on images presenting different characteristics; for this reason, the net-
work was evolved using Fig. 4(a) as input and Fig. 4(b) as the corresponding
desired output.

The evolution of the CNN has been carried out using CNNSimulator, a soft-
ware environment for the analysis of CNN dynamics; at each step of the training
process, the error function to be minimized by the GA was the number of dif-
ferent pixels between the desired and the actual output of the CNN. In our
implementation, we ran an initial random population of 35 individuals, making
them evolve for 300 generations; the number of individuals was kept constant
during the evolutionary process, weighted roulette wheel selector was used as se-
lection method, mutations and elitism strategies were applied. In order to reduce
the computational effort due to the large search space, we chose to constrain the
elements of each genotype to be in the range [−8, 8]. The GA was conducted
as follows: after evaluating the fitness of each phenotype, the elite individual,
i.e. the most performant one, has been directly copied in the next generation; a
number of single-point crossover operations, depending on the population size,
has been performed. In our experiments, we used a crossover percentage of 30%,
meaning that the number of genetic crossing over operations has been 0.3 mul-
tiplied by the population size. Mutations have been randomly applied in order
to prevent trapping into local minima. The elements of the genotypes in the
population have been randomly mutated according to a given mutation rate,
that is each coefficient had a given probability of being changed by a randomly
selected real number that falls in the chosen interval [−8, 8]. Using a mutation
rate of 0.05, each component had 5% probability of being changed, resulting in
1/20 parameters being mutated on average. Once genetic operators have been
applied, a fixed number of genotypes has been selected and moved on the next
generation population. Obviously, the selection has been guided by the fitness,

A CNN Based Algorithm for the Automated Segmentation of MS Lesions 217

Fig. 5. Evolution of the Cellular Neural Network

i.e. higher probabilities of survival have been associated to phenotypes providing
higher fitness values. At the end of the training process, the following template
matrices were found:

A =

⎡⎣−3.51879 3.42019 −3.48386
6.47032 7.75293 6.47032
−3.48386 3.42019 −3.51879

⎤⎦ B =

⎡⎣ 1.33076 −3.86887 1.53728
−2.30849 −7.76398 −2.30849
1.53728 −3.86887 1.33076

⎤⎦ z = −4.81797 (9)

Figure 5 shows the output generated by the CNN corresponding to the highest
fitness value, together with the fitness achieved by the best individual in each
generation.

The removal of the skull and other unwanted features has been achieved by an
AND operation between the output of the evolved CNN and the corresponding
white matter of the brain, segmented in the second step of the algorithm. It gave
the MS lesions in output, while the remaining parts have been removed. We used
SPM8 [7] for white matter segmentation, while greyscale image binarization and
logic AND operation could be easily performed, by using the templates proposed
in the CNN software library [6]. The third step of the proposed algorithm is
shown in Fig. 6. Once the pixels corresponding to the lesions have been extracted
for each slice of a given MS patient, knowing the voxel size in the acquired MRI
sequence, it is possible to perform a quantitative evaluation of the MS total
lesion load (TLL). The performances of the process have been quantitatively
evaluated by comparing the CNN output and the expert’s manual delineation of
MS lesions, using the Dice coefficient [4] as a metric. The Dice coefficient D is a
statistic measure used for comparing the extent of spatial overlap between two
binary images. It is commonly used in reporting performance of segmentation
and its values range between 0 (no overlap) and 1 (perfect agreement). In this
paper the Dice values, expressed as percentages, are computed as follows:

D =
2
∣∣LCNN ∩ LG

∣∣
|LCNN | + |LG| × 100 (10)

where LCNN is the automated segmentation result and LG the manual one. We
applied the algorithm to a data set of real MR images acquired from 11 MS
patients, for whom 24 slices were taken to cover the whole brain. Each slice

218 E. Bilotta et al.

Fig. 6. Skull and unwanted features removal

had a resolution of 256 × 256 pixels and voxel size is 0.94mm × 0.94mm ×
5.00mm. The simulation results showed that the CNN based system is effective
in segmenting MS lesions in fast fluid-attenuated inversion-recovery (FLAIR)
axial images.

4 Results

The exposed method gives satisfactory results, showing that after the learning
process the cellular neural network is capable of detecting MS lesions with dif-
ferent shapes and intensities, even in MRI slices with different contrasts between
white and grey matter with respect to the images used during the genetic training
process. The vast majority of the lesion load, detected by CNN for the described
sample, ranges from D = 0.7 to D = 0.8. The technique we propose for segment-
ing white matter lesions in MS is a fully automatic method and does not require
manually segmented data; in fact, while semiautomatic methods [9] are highly
dependent on the choice of an appropriate threshold to effectively detect lesions
(threshold that usually may vary between different slices even for the same pa-
tient, thus leading to a time consuming task), our algorithm allows for obtaining
the desired output by programming a fully automated strategy on the entire
data set, without the need of external calibration. Simulations have allowed to
verify the validity of the above described algorithm. The output generated by
the CNN can be viewed in MRIcro medical image viewer (www.mricro.com), as
shown in Fig. 7. Calculating the number of pixels corresponding to the injury

A CNN Based Algorithm for the Automated Segmentation of MS Lesions 219

Fig. 7. Results of lesion-CNN segmentation on one of the MS patients

Fig. 8. A 3D reconstruction of lesion-CNN segmentation results. 3D reconstruction
shows the typical spatial dissemination of lesions affecting white matter in MS.

and knowing the size of the voxel which scanning uses, it is possible to estimate
the TLL for any patient. This method provides an important parameter to mon-
itor the progress of the pathological disease. It should be emphasized that the
results (Fig. 7) were obtained without changing the template from one slice to
another. In fact, no manual thresholding is required during the segmentation
process.

Obviously, operating with an ad hoc manual calibration of the network on any
single slice, the algorithm is able to produce more precise results. Overlapping
the slices and the output of CNN, it is possible to obtain a 3D reconstruction
of the brain of the patient (Fig. 8), which displays the region of the brain tissue
that presents multiple sclerosis.

5 Conclusions

In this paper we have presented an innovative CNN based method for automati-
cally detect MS lesions. The results obtained by applying the proposed algorithm

220 E. Bilotta et al.

have been very convincing, since CNN can determine most of the lesions in all
the patients. The system could provide a useful MR support tool for the evalu-
ation of lesions in MS, particularly to assess the evolution of the lesions. From a
comparison with other existing methods in the literature on this topic, we can
say that the results obtained with our method are effective and the threshold of
recognition is currently at 70%. Furthermore, it should be emphasized the real
improvement of the proposed method with respect to [5] for the greater accuracy
of the system, its adaptation to different conditions of the stimuli, its ability to
create 3D images of the injured areas of the brain, thus effectively supporting
medical diagnosis.

References

1. Bilotta, E., Pantano, P.: Cellular Non-Linear Networks as a New Paradigm for Evo-
lutionary Robotics. In: Iba, H. (ed.) Frontiers in Evolutionary Robotics, Vienna,
Austria, pp. 87–108 (2008)

2. Chua, L.O., Roska, T.: Cellular Neural Networks and Visual Computing: Founda-
tions and Applications. Cambridge University Press, Cambridge (2004)

3. Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Transaction on
Circuits and Systems 35(10), 1257–1272 (1988)

4. Dice, L.R.: Measures of the amount of ecologic association between species. Ecol-
ogy 26, 297–302 (1945)

5. Döhler, F., Mormann, F., Weber, B., Elger, C.E., Lehnertz, K.: A Cellular Neural
Network based Method for Classification of Magnetic Resonance Images: Towards
an Automated Detection of Hippocampal Sclerosis. In: Proceedings of the 7th IEEE
International Workshop on Cellular Neural Networks and their Applications, pp.
579–586 (2004)

6. Kek, L., Karacs, K., Roska, T.: Cellular Wave Computing Library (Templates,
Algorithms and Programs), ver. 2.1. Cellular Sensory Wave Computers Laboratory,
Hungarian Academy of Sciences (2007)

7. SPM8 - Statistical Parametric Mapping,
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

8. Szabo, T., Barsi, P., Szolgay, P.: Application of Analogic CNN algorithms in
Telemedical Neuroradiology. Journal of Neuroscience Methods 170(7), 2063–2090
(2005)

9. Valentino, P., Cerasa, A., Chiriaco, C., Nisticò, R., Pirritano, D., Gioia, M., Lanza,
P., Canino, M., Del Giudice, F., Gallo, O., Condino, F., Torchia, G., Quattrone, A.:
Cognitive deficits in multiple sclerosis patients with cerebellar symptoms. Multiple
Sclerosis 15, 854–859 (2009)

10. Völk, K., Miller, J.F., Smith, S.L.: Multiple Network CGP for the Classification
of Mammograms. In: Giacobini, M., Brabazon, A., Cagnoni, S., Caro, G.A.d.,
Ekart, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P., McCormack,
J., O’Neill, M., Neri, F., Preuß, M., Rothlauf, F., Tarantino, E., Yang, S. (eds.)
EvoWorkshops 2009. LNCS, vol. 5484, pp. 405–413. Springer, Heidelberg (2009)

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

A Hybrid Evolutionary Algorithm for Bayesian
Networks Learning: An Application to Classifier

Combination

Claudio De Stefano, Francesco Fontanella, Cristina Marrocco,
and Alessandra Scotto di Freca

Università di Cassino
Via G. Di Biasio, 43 02043 Cassino (FR) – Italy

{destefano,fontanella,cristina.marrocco,a.scotto}@unicas.it

Abstract. Classifier combination methods have shown their effectiveness in a
number of applications. Nonetheless, using simultaneously multiple classifiers
may result in some cases in a reduction of the overall performance, since the
responses provided by some of the experts may generate consensus on a wrong
decision even if other experts provided the correct one. To reduce these undesired
effects, in a previous paper, we proposed a combining method based on the use
of a Bayesian Network. The structure of the Bayesian Network was learned by
using an Evolutionary Algorithm which uses a specifically devised data structure
to encode Direct Acyclic Graphs. In this paper we presents a further improvement
along this direction, in that we have developed a new hybrid evolutionary algo-
rithm in which the exploration of the search space has been improved by using
a measure of the statistical dependencies among the experts. Moreover, new ge-
netic operators have been defined that allow a more effective exploitation of the
solutions in the evolving population. The experimental results, obtained by using
two standard databases, confirmed the effectiveness of the method.

1 Introduction

The idea of combining the results provided by different experts for improving the over-
all classification rate has been widely investigated in the literature and it is now an active
area of research in the fields of Machine Learning and Pattern Recognition [8,9,6]. The
rationale behind this idea is that the weakness of each single expert may be compensated
without losing the strength of each of them, thus obtaining an overall performance that
can be better than that of any single expert. Even if many studies have been published
in the literature, which demonstrate, theoretically or empirically, the effectiveness of
combining methods and their advantages over individual classifier models [11], their
use may result in some cases in a reduction of the overall performance. This effect is
mainly due to the fact that the responses provided by some of the experts may generate
consensus on a wrong decision, even if other classifiers in the combining pool provided
the correct class. Thus, the main problem to be solved is that of defining a combining
rule able to solve these conflicts and to take the right classification decision even when
the experts disagree.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 221–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 C. De Stefano et al.

We believe that an effective way to overcome the above drawbacks is that of con-
sidering the combined effects of the whole set of responses provided by the experts on
the final decision, trying to estimate the statistical dependencies among them. In a pre-
vious work [4] we have exploited this idea by considering the above set of responses
as representative of the collective behaviour of the combiner, and we have reformulated
the classifier combination problem as a pattern recognition one, in which each sam-
ple to be recognized is represented by the set of class labels provided by the experts
when classifying that sample. Thus, the role of the combiner is that of estimating the
conditional probability of each class, given the set of labels provided by the experts
for each sample of a training set. On the basis of these conditional probabilities, the
final decision about the class to be assigned to an unknown sample is obtained by us-
ing the maximum a-posteriori probability (MAP) rule. In this way, the combining rule
is automatically derived through the estimation of the conditional probability of each
class. In our study, we adopted a Bayesian Network (BN) [13] to automatically infer
the joint probability distributions between the outputs of the classifiers and the classes.
This choice is motivated by the fact that BN’s provide a natural and compact way to
encode joint probability distributions through graphical models, and allow to gain un-
derstanding about complex problem domain. Even if the obtained results were very
interesting, learning the structure of a BN, represented as Direct Acyclic Graph (DAG),
is a NP-hard problem [1] and its exact solution becomes very soon computationally in-
tractable as the number of random variables increases. This is the reason why standard
algorithms search for suboptimal solutions by maximizing at each step a local scoring
function which takes into account only the local topology of the DAG.

Moving from these considerations, we have proposed in [5] a new version of the
combining method in which the structure of the BN is learned by means of an Evolu-
tionary algorithm, using a direct encoding scheme of the BN structure. Such encoding
scheme is based on aspecifically devised data structure, called Multilist, used for repre-
senting a DAG in each individual in the evolving population. The Multilist also allows
an effective and easy implementation of the genetic operators. The experimental re-
sults confirmed the effectiveness of this approach showing some improvements with
respect to the performance obtained by using our previous method. They also showed
that the learning was quite slow, due to the complexity of the search space, and that
the obtained solutions represented DAG structures with a large number of connections
between nodes.

This paper represents a further development along this direction, in that we have
developed a new hybrid evolutionary algorithm in which the exploration of the search
space has been improved by using a measure of the statistical dependencies among the
experts. Moreover, new genetic operators have been defined that allow a more effective
exploitation of the solutions in the evolving population.

There are in the literature other few approaches for evolutionary learning of the
Bayesian Network structure [12,15] but their main drawback is the use of data struc-
tures for representing DAG’s in the form of adjacency matrix: this data structure makes
difficult to implement genetic operators and does not guarantee that the new generated
individuals are DAG’s. The effect is twofold: on one hand, it is necessary to verify that
new generated individuals satisfy the properties of DAG and this is a time consuming

A Hybrid Evolutionary Algorithm for Bayesian Networks Learning 223

task; on the other hand, the individuals not representing DAG’s must be deleted making
less efficient the exploration of the search space.

The remainder of the paper is organized as follows: Section 2 illustrates the archi-
tecture of the combining method. Section 3 discusses the evolutionary algorithm for
evolving DAG’s. Section 4 reports the experimental results, while Section 5 reports
some concluding remarks.

2 The Architecture of the Combiner

Consider the responses e1, . . . , eL provided by a set of L classifiers (experts) for an
input sample x in a N class problem, and assume that such responses constitute the
input to the combiner, as shown in figure 1. The combiner can be defined as a “higher
level” classifier that works on a L-dimensional discrete-values feature space.

It is assumed that the combiner uses a supervised learning strategy, where the learn-
ing procedure consists in the observation of the set of responses e = {e1, . . . , eL} and
of the “true” class label u of a sample x, for computing p(u|e1, . . . , eL). Once this
conditional probability has been learned, the combiner provides the output û for each
unknown input sample, as the most probable class given the expert observations, by the
following expression:

û = arg max
u∈C

p (u|e1, ..., eL) (1)

where C is the set of classes. Considering the definition of conditional probability and
omitting the terms not depending on the variable u to be maximized, Eq. (1) can be
rewritten as:

û = arg max
u∈C

p (u, e1, ..., eL). (2)

that involves only the joint probabilities p (u, e1, ..., eL). Hence the combining problem
represented in Eq. (1) is equivalent to that of maximizing the joint probability in Eq.
(2): this problem may be effectively been solved by using Bayesian Networks.

In the next subsections we will introduce some basic concepts and some mathemati-
cal properties of Bayesian Networks, as well as the basic concepts relative to Bayesian
Network learning. A more detailed description of the Bayesian Networks theory can be
found in [7].

e1 {C1,…, CN }E1

E2

EL

Combiner

e2 {C1,…, CN }

eL {C1,…, CN }

x

e1 {C1,…, CN }E1

E2

EL

Combiner

e2 {C1,…, CN }

eL {C1,…, CN }

x

Fig. 1. The architecture of our combiner

224 C. De Stefano et al.

2.1 Bayesian Networks Properties

A BN allows the representation of a joint probability law through the structure of a
Direct Acyclic Graph (DAG). The nodes of the graph are the variables, while the arcs
are their statistical dependencies. An arrow from the generic node i to node j has the
meaning that j is conditionally dependent on i, and we can refer to i as the parent of
j. For each node, a conditional probability quantifies the effect that the parents have on
that node.

Considering that a DAG describes the statistical dependencies among variables, the
conditional probability distribution of a random variable ei, given all the other, can be
simplified as follows:

p(ei | paei , ndei) = p(ei | paei) (3)

where paei indicates the set of nodes which are parents of node ei, and ndei indicates all
the remaining nodes. Eq (3), known as causal Markov property, allows the description
of the joint probability of a set of variables {u, e1, . . . , eL} as:

p (u, e1, . . . , eL) = p (u | pau)
∏

ei∈L

p (ei | paei) (4)

In case of a node having no parents, the conditional probability coincides with the a
priori probability of that node. It is worth noticing that the node u may be parent of one
or more nodes of the DAG. Therefore, it may be useful to divide the L nodes of the
DAG in two groups: the first one Lu contains the nodes having the node u among their
parents, and the second one Lu the remaining nodes. With this assumption, the Eq. (4)
can be rewritten as:

p(u, e1, . . . , eL) = p(u| pau)
∏

ei∈Lu

p(ei| paei)
∏

ei∈Lu

p(ei| paei) (5)

It is worth noticing that the last term of Eq. (5) is constant in the variable u and then it
can be discarded while maximizing with respect to u. Therefore the Eq. (2) becomes:

û = arg max
u∈C

p(u| pau)
∏

ei∈Lu

p(ei| paei) (6)

In such a way the approach detects the experts that do not add information to the choice
of û, or, in other words, selects a reduced set of relevant experts whose outputs are
actually used by the combiner to provide the final output.

2.2 Learning Bayesian Network

BN estimates the joint probability distribution of random variables by a supervised pro-
cedure that allows to learn, from a training set of examples, both the network structure,
which determines the statistical dependencies among variables, and the parameters of
such a probability distribution. Let us denote with Sh the structure of the DAG and with
D a training set of samples. In our study, each sample of D, corresponding to a pattern
x to be classified, is made of both the ordered list of labels provided by the classifiers

A Hybrid Evolutionary Algorithm for Bayesian Networks Learning 225

for that pattern, and the “true” label of x. Under the assumption made in [7], learning
structure and parameters from data means maximizing the function p(D|Sh).

According to the chain rule property of random variables in a DAG, the likelihood
p(D|Sh) can be factorized as follows:

p(D|Sh) = Score(Sh) =
L∏

i=0

localscore(i) (7)

where localscore(i) is a function formally defined in [7]. It is worth noticing that any
change in Sh requires that only the local scores of the nodes affected by that change
need to be updated for computing Score(Sh).

The function localscore(i) measures how much the expert ei is statistically depen-
dent on the set of its parent nodes paei and it is computed as follows:

localscore(i) =

Spaei∏
m=1

Γ (αim)
Γ (αim + Nim)

N∏
k=1

Γ (αimk + Nimk)
Γ (αimk)

. (8)

where Γ (.) is the Euler Gamma function and Spaei
is the total number of states of paei .

Considering that in our case ei has N states corresponding to each of the classes in C,
if the expert ei has q parents Spaei

= N q . This is the reason why for each response
provided by the expert ei, a vector of q terms representing the answers of the parent
nodes of ei must be analyzed. The term Nimk represents how many times paei in the
state m and the expert ei is in the state k. The term Nim, instead, represents how many
times paei is in the state m independently from the response provided by the expert ei.
The terms αim and αimk are normalization factors.

Summarizing, the learning of a Bayesian Network can be performed by finding the
DAG structure Sh, which maximizes the function Score(Sh). To solve this problem,
we have defined an evolutionary algorithm which encodes a DAG structure in each
individual and uses the function Score(Sh) as fitness function. In the next Section, a
detailed description of the proposed evolutionary algorithm will be provided.

3 Evolutionary Bayesian Network Learning

The algorithm that we have implemented for Bayesian network learning encodes DAG’s
through a specifically devised data structure called multilist. The algorithm consists of
two phases: a preliminary phase and a search phase. In the preliminary phase, for each
couple of variables, a measure of their statistical dependencies is computed by means
of the mutual information [3] and stored in a matrix M . In the search phase, a gener-
ational evolutionary algorithm is used to find the Bayesian network for the combining
problem. Before presenting the details of our hybrid algorithm, let us describe the en-
coding scheme and the genetic operators.

3.1 DAG Encoding and Genetic Operators

In the DAG terminology a source is a node with no incoming arcs while a sink is a node
with no outgoing arcs. In a DAG nodes are partially ordered: if it exists a directed path

226 C. De Stefano et al.

5

2 3 6

4 1

Fig. 2. A multilist (right) and the encoded DAG’s(left)

from node i to node j then i precedes j, otherwise it is not possible to define an order-
ing between them. The data structure that we have devised for encoding DAG, called
multilist (ML), consists of two basic lists. The first one, called main list, contains all
the nodes of the DAG ordered according to the partial ordering previously defined. This
implies that source nodes occupy the first positions, while sink node, the last positions.
Moreover, nodes having both incoming and outgoing arcs are inserted in the main list
after their parents. To each node of the main list is associated a second list called sub-
list, representing the outgoing connections among that node and the other nodes in the
DAG. More specifically, if si is the sublist associated to the i− th element of the main
list, then it contains information about the outgoing arcs possibly connecting the i− th
element and the other elements following it in the main list, ordered according to the
position of such elements. Since an arc may be present or not, each element of a sublist
contains a binary information: 1 if the arc exists, 0 otherwise (see figure 2). Note that
the length of the sublists decreases as the position of the element in the main list in-
creases: assuming that there are K nodes in the DAG, the first sublist contains (K − 1)
elements, the second one (K − 2) elements and so on. In fact, the informations about
the arcs connecting a node and the previous ones in the main list are already expressed
in the previous sublists. As a consequence, the sublist of the last element in the main
list is void. Thus a ML has a triangular shape: the base of the triangle is the main list
and contains K elements, while the height is represented by the first sublist containing
(K − 1) elements.

As regards the genetic operators, we have defined two mutation operators which can
modify a ML in two different ways: (i) swapping two elements of the main list; (ii)
adding and/or deleting one or more arcs in a sub list. In the following these mutations
will be called respectively m and s mutation. The m–mutation performs a permutation
on the elements of the main list, but leaves unchanged the connection topology of the
ML. This mutation consists of two steps: (i) randomly pick two elements in the main list
and swap their position; (ii) modify sublist elements in such a way to restore the con-
nection topology as it was before the step (i). It is worth noticing that the m–mutation
generates a new ordering of the variables, which modifies the directions of the exist-
ing arcs in the DAG, but preserves dependencies between variables. If we consider the
DAG in figure 2, for instance, the swap between the second and the fourth node in the
main list changes only the directions of the arcs connecting the couples of nodes (1, 5)
and (5, 2). Finally, given a multilist, this operator is applied to its main list according
to a probability value pm. The s–mutation, instead, modifies the values of the sublist
elements. For each element of the sublists, ps represents the probability of changing

A Hybrid Evolutionary Algorithm for Bayesian Networks Learning 227

(a)

5

3 1 6

4

2

(b)

Fig. 3. (a) The multilist generated by swapping the second and the fourth node of the main list
of the DAG in figure 2(b); the sublist elements modified to restore the connection topology are
shaded. (b) The encoded DAG; the inverted arcs are in bold.

its value from 0 to 1, or viceversa. Thus the effect of this operator is that of adding or
deleting arcs in the DAG. Such an operation is applied with probability ps.

3.2 The Hybrid Evolutionary Algorithm

In order to implement the hybrid approach, we have computed in the preliminary phase
the mutual information I(i, j) between each couple of nodes in the DAG, and we have
stored such values in a matrix M . We have also stored the values mmin and mmax,
representing the minimum and maximum value in M , respectively. The rationale behind
this idea is that of using the mutual information between each couple of variables to
decide whether or not the an arc connecting the corresponding nodes in the DAG may
be added during the search process. In particular, for each couple of variables i and j,
if M [i, j] is less than a given threshold θ, the arcs i −→ j and j −→ i are excluded
from the search space, meaning that they are not considered neither during the random
generation of the initial population, nor during the evolution by the s-mutation operator.
It is worth noting that the choice of the value for the threshold θ is crucial: if a too high
value is chosen, most of the arcs are pruned away while, using a too low value, all the
arcs are considered and the search space is not reduced at all. To cope with this problem
we decided to evolve the value of θ, putting this information in the genotype. As a
consequence, each individual considers a different search space of DAG’s: the value of
θ is randomly initialized at the beginning of the evolution and is dynamically modified
during the subsequent generations. As the evolutionary search proceeds, individuals
having improper values of θ will eventually be eliminated.

The evolutionary algorithm starts by generating an initial population of P individu-
als. The initialization of each individual consists of three steps:

1. a value is randomly chosen in the range [mmin, mmax] and assigned to θ;
2. the stochastic variables, representing the responses of the experts to be combined,

are randomly associated to the nodes in the main list;
3. arcs are initialized taking into account both the value of θ previously chosen, and

the probability pa of inserting a connection between two nodes. In practice, for each
couple of nodes i and j, where i precedes j in the main list, the corresponding arc

228 C. De Stefano et al.

i −→ j is added if and only if the value M [i, j] > θ and the the function flip(pa)1

returns TRUE.

The evolution process is repeated for ng generations. At each generation the following
steps are executed:

1. the fitness of the individuals in the current population is evaluated using the likeli-
hood p(D|Sh) defined in eq. 7;

2. the best e individuals are selected and copied in the new population in order to
implement an elitist strategy;

3. (P − e) individuals are selected: in order to control loss of diversity and selection
intensity, we have used the tournament selection method;

4. for each selected individual, m–mutation and s–mutation are applied with probabil-
ity pm and ps, respectively, and a new value for θ is obtained adding or subtracting
to the previous one an offset in the range [0, Δθ];

5. the modified individuals are then added to the new population.

4 Experimental Results and Discussion

The proposed method has been tested on two standard databases, namely the Multiple
Feature (MFeat) and the IMAGE database from the UCI Machine Learning Repository.
The first database contains handwritten digits, while the second one images with differ-
ent textures. In each experiment we split the samples of each class in three statistically
independent sets: TR1, TR2 and TS. TR1 is used for training each single classifier,
while TR2 and TS are used to collect the responses of each single classifier on their
samples. The responses collected on TR2 are used for training the combiner, while
those collected on TS are used for evaluating the combiner performance. As with re-
spect to the classifiers, we have used two different schemes: a Back-Propagation neural
network (BP) [14] and a Learning Vector Quantization neural network (LVQ) [10]. Dur-
ing a training phase, each classifier was separately trained on TR1. For each database,
the pool of experts has been obtained by generating an ensemble of BP nets and an
ensemble of LVQ nets.

In the first experiment, the 2000 available samples have been divided in the following
way: TR1 contains 700 samples, while both TR2 and TS include 650 samples. The
pool of experts has been obtained by combining each classification scheme with the
six feature sets included in the MF Database, totaling twelve experts. In the second
experiment, TR1 was made of 210 samples, 30 per each of the 7 classes, while both TR2
and TS contain 1050 elements, 150 per class. The pool of experts has been obtained by
combining two ensembles of BP and LVQ nets, each containing 10 different experts
obtained by randomly initializing the nets.

As regards the values of the evolutionary parameters, they have been determined by
a set of preliminary experiments and are summarized in Table 1. The probability ps to
apply the s–mutation is equal to 1/Ns, where Ns is total number of elements in the

1 The function flip(x) returns the value 1 with a probability x and the value 0 with a probability
(1 − x).

A Hybrid Evolutionary Algorithm for Bayesian Networks Learning 229

Table 1. Values of the basic evolutionary parameters used during the experiments

Parameter symbol value
population size P 100
tournament size T 6
elitism size e 2
m–mutation probability pm 0.8
s–mutation probability ps 1/Ns

arc probability pa 0.1
offset range Δθ 0.01
number of generations Ng 2000

Table 2. Comparison of Classification Results

Best Majority BN Evo–BN1 Evo–BN2
Expert vote Combiner Combiner Combiner

MFeat 96.89% 97.33% 99.10% 99.28% 100%

IMAGE 91.00% 89.14% 91.90% 92.30% 93.42%

sublists of an individual. It is worth noting that this value depends on the number K of
nodes in the DAG to be learned, since Ns is equal to K(K−1)/2. Thus this probability
value is such that, on the average, only one sublist element is modified when it is ap-
plied. The results of our EC-based method for Bayesian networks learning (EVO-BN2
in the following) have been compared with those obtained by our previous EC-based ap-
proach presented in [5] (EVO-BN1 in the following). EVO–BN1 also uses the multilist
data structure for DAG encoding, but a different set of genetic operators. Table 2 shows
the classification results: the first column reports the results of the best single expert in
the pool, while the second column reports the results of the Majority Vote Combining
rule [11]. The third column reports the results of the Bayesian Combiner (BN) imple-
mented by using a standard greedy search algorithm [2] to learn the DAG structure. The
fourth and the fifth columns, respectively, show the results of the Evolutionary Bayesian
Combiners Evo–BN1 and Evo–BN2. Note that we have reported only the best results
obtained in each experiment: the average values, in fact, are practically identical be-
cause the standard deviations are very small, exhibiting values always lower than 10−3.
The data reported in the Table 2 show that Evo–BN2 improves the performance with
respect to Evo–BN1 on both datasets. As regards the MFeat dataset EVO–BN2 has fur-
ther improved the good rates obtained by EVO-BN1, reducing to zero the error rate on
the test set. Also on the IMAGE dataset, the results are better than those obtained with
EVO–BN1. These results confirm that the use of a hybrid strategy, together with the
new definition of the genetic operators, allows us to improve the obtainable results.

5 Conclusions

A new EC-based algorithm for Bayesian Network learning has been presented. The
proposed approach uses a special data structure called multilist specifically devised for

230 C. De Stefano et al.

encoding DAG’s. The use of the multilist makes the Bayesian Networks learning more
efficient, because it intrinsically encodes DAG’s, avoiding the time consuming task of
checking the acyclicity property. Moreover, in order to improve the effectiveness of
the proposed method with respect to our previous implementations, two strategies have
been adopted: (i) the operators has been modified in order to better preserve the structure
of the multilist to which they are applied; (ii) an hybrid approach which exploits the
knowledge given by the measure of the mutual information has been used in order to
reduce the search space.

References

1. Chickering, D.M., Geiger, D., Heckerman, D.: Learning bayesian networks is np-hard. Tech.
rep. (1994)

2. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks
from data. Machine Learning 9(4), 309–347 (1992)

3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommuni-
cations and Signal Processing. Wiley-Interscience, Hoboken (2006)

4. De Stefano, C., D’Elia, C., Marcelli, A., Scotto di Freca, A.: Classifier combination by
bayesian networks for handwriting recognition. International Journal of Pattern Recognition
and Artificial Intelligence 23(5), 887–905 (2009)

5. De Stefano, C., Fontanella, F., Marcelli, A., Scotto di Freca, A.: Learning bayesian networks
by evolution for classifier combination. In: ICDAR 2009: Proceedings of the 2009 10th Inter-
national Conference on Document Analysis and Recognition, pp. 966–970. IEEE Computer
Society, Los Alamitos (2009)

6. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS
2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

7. Heckerman, D.: A tutorial on learning with bayesian networks. Tech. rep., Learning in Graph-
ical Models (1995)

8. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE
Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)

9. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions
on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

10. Kohonen, T.: Self organizing map. Springer, Berlin (1995)
11. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience,

Hoboken (2004)
12. Larranaga, P., Poza, M., Yurramendi, Y., Murga, R.H., Kuijpers, C.M.: Structure learning

of bayesian networks by genetic algorithms: A performance analysis of control parameters.
IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 912–926 (1996)

13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Francisco (1988)

14. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

15. Wong, M.L., Leung, K.S.: An efficient data mining method for learning bayesian networks
using an evolutionary algorithm-based hybrid approach. IEEE Trans. Evolutionary Compu-
tation 8(4), 378–404 (2004)

Towards Automated Learning of
Object Detectors

Marc Ebner

Eberhard-Karls-Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Abt. Rechnerarchitektur, Sand 1, 72076 Tübingen, Germany
marc.ebner@wsii.uni-tuebingen.de

http://www.ra.cs.uni-tuebingen.de/mitarb/ebner/welcome.html

Abstract. Recognizing arbitrary objects in images or video sequences
is a difficult task for a computer vision system. We work towards auto-
mated learning of object detectors from video sequences (without user
interaction). Our system uses object motion as an important cue to de-
tect independently moving objects in the input sequence. The largest
object is always taken as the teaching input, i.e. the object to be ex-
tracted. We use Cartesian Genetic Programming to evolve image pro-
cessing routines which deliver the maximum output at the same position
where the detected object is located. The graphics processor (GPU) is
used to speed up the image processing. Our system is a step towards
automated learning of object detectors.

1 Motivation

A human observer has no problems in identifying different objects in an image.
How do humans learn to recognize different objects in an image? Enabling a
computer vision system to perform this feat is a daunting task. However, we try
to work towards this goal. An ideal computer vision system would be able to
automatically learn different object detectors from scratch. It is obviously highly
desirable to develop self-adapting and self-learning vision systems which work
without human intervention [4]. We have developed an evolutionary computer
vision system which is able to automatically generate object detectors without
human intervention.

Our system is based on a previously developed evolutionary vision system
using GPU accelerated image processing [6]. Input to the system is a continuous
stream of images. Each input image is processed by several different computer
vision algorithms. The best algorithm is used to supply the overall output, i.e. to
detect objects in the input image. Evolutionary operators are used to generate
new alternative algorithms. The original system required user interaction to
identify the objects to be detected. We have extended this system such that no
user interaction is required.

For humans, motion serves as an important cue to identify interesting objects.
Our system detects differences between consecutive images in order to detect in-
dependently moving objects in the image. Each detected object is equipped with

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 231–240, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

232 M. Ebner

a 2D motion model which describes the motion of the object on the screen [3].
This motion model is continuously updated based on the motion differences be-
tween two consecutive images. By directly transforming a sequence of difference
images into a 2D motion model, the computational resources needed to compute
the teaching input, is reduced to a minimum. As soon as one or more objects
have been detected in the input sequence, the system always focuses on the
largest object. The center of the object is taken as the teaching input.

The paper is structured as follows. In Section 2 we give a brief overview
about related research in evolutionary computer vision. Section 3, describes how
motion is used to obtain the teaching input. The GPU accelerated evolutionary
vision system is described in Section 4. Experiments are presented in Section 5.
Conclusions are provided in Section 6.

2 Evolutionary Computer Vision

Evolutionary algorithms can be used to search for a computer vision algorithm
when it is not at all clear what such an algorithm should look like. Evolution-
ary algorithms can also be used to improve upon an existing solution. Work in
evolutionary computer vision started in the early 1990s. Lohmann has shown
how an Evolution Strategy may be used to find an algorithm which computes
the Euler number of an image [15]. Early research focused on evolving low-level
operators, e.g. edge detectors [8] or feature detectors [20]. However, evolutionary
algorithms were also used for target recognition [12].

In theory, evolutionary methods can be used to evolve adaptive operators
which would be optimal or near optimal for a given task [7]. Poli noted very
early on, that Genetic Programming [13] would be particularly useful for image
processing [19]. Genetic Programming has been used to address a variety of dif-
ferent tasks in computer vision. Johnson et al. have evolved visual routines using
Genetic Programming [11]. Current work in evolutionary computer vision ranges
from the evolution of low-level detectors [22], to object recognition [14] or even
camera calibration [9]. Cagnoni [2] gives a taxonomic tutorial on evolutionary
computer vision.

Experiments in evolutionary computer vision usually require enormous com-
putational resources. Each individual of the population has to be evaluated over
several generations. That’s why experiments in evolutionary computer vision are
usually performed off-line. A notable exception (also working with on-line learn-
ing) is the work of Mussi and Cagnoni [17]. In our context, multiple alternative
image processing algorithms have to be applied to each incoming image. This
is only possible through the use of GPU accelerated image processing. Before
we describe our evolutionary computer vision system, we first describe how the
teaching input is obtained from the input sequence.

3 Fast Detection of Moving Objects in Image Sequences

We have developed a fast method for detecting independently moving objects
in image sequences. It is assumed that the camera remains stationary while the

Towards Automated Learning of Object Detectors 233

σ

σ

x

y

x

σ

σ

y

predicted object

v

p(x, y)

extracted object

motion

v

gray pixels indicate

velocity of object

Fig. 1. Differences between two consecutive images are assigned to the nearest object
which is predicted from a previous time step. The coordinates of the object predictions
(x, y) for the current time step are given by the center of gravity which is computed
using all pixels assigned to the object. Two extracted objects are shown.

image sequence is taken. If the camera itself moves, then information about the
ego-motion of the camera could be used to compute a quasi-stationary camera
sequence [3].

The method is fast, because image processing operations are reduced to a
minimum. Image processing operations are costly because they are applied at
least once to every pixel. Operations such as convolution or averaging are par-
ticularly costly if they are applied in image space because they require a sliding
window and multiple surrounding pixels are accessed for each image pixel.

Thus, we only compute a difference image between two successive images and
use this information to update object hypotheses [3]. The approach could be
considered to be a minimalistic variant of a particle filtering approach [1,10]
where only a single particle is used per object. We compute the average of the
differences of the three channels red, green and blue. Differences smaller than
than 10% from the maximum (assumed to be noise) are set to zero. We continue
by only considering differences larger than this threshold.

Let us assume that we have a set of previously extracted objects, i.e. a pre-
diction where objects will be located in the current image. Each object consists
of a center of gravity with coordinates p = (x, y) and also has an associated
velocity v = (vx, vy) with which it moves across the image (Figure 1). Each
object also has an associated standard deviation in x- and y-direction (σx, σy).
The standard deviations determine the extent of the object. Each pixel with a
difference larger than the threshold contributes to the nearest object. In case
a pixel difference cannot be assigned to any object prediction, a new object is
created. For newly created object predictions, the center of gravity as well as the
standard deviations describing the shape of the object are continuously updated
as new pixels are assigned to it.

234 M. Ebner

The center of gravity for the updated object position is computed using all
pixels which are located within a distance no more than twice the standard
deviation from the center of the object. Pixels further away are assumed to
belong to a different object. The standard deviations describing the extent of
the object are updated using the same pixels. Let p(t0) and p(t1) be the positions
of the object at time steps t0 and t1 respectively. The difference d = p(t1)−p(t0)
between the object position for the previous image and the current image is used
to update the motion vector of the object. We filter this difference to obtain a
smooth approximation of the actual motion vector v using

v(t1) = 0.9v(t0) + 0.1d. (1)

If an object does not have any associated pixel differences, then the old motion
vector is simply added to the center of gravity to predict the new object position
for the next time step. If an object does not have any associated pixel differences
for three consecutive images, then the object is deleted.

1

2

1

2

(x, y)
(x , y)

(x , y)

Fig. 2. Nearby objects are merged if they are close to each other

After existing objects have been updated and new objects have been detected,
we iterate over all objects to find objects which need to be merged (Figure 2).
Let p1 and p2 be the center of gravities of two different objects at the same
time step. New objects (for which no motion vector exists yet) are merged if the
distance between their center of gravities is smaller than twice the sum of their
standard deviations, i.e. if

p1 − p2 ≤ 2(σ1 + σ2) (2)

with σi =
√

σ2
x,i + σ2

y,i. Existing objects are merged only if the distance between
their center of gravities is less than the sum of their standard deviations. They
are also merged if the distance is less than twice the sum of their standard
deviations provided that they approximately move in the same direction, i.e.
their motion vector differs by less than 10%.

Figure 3 shows how a moving objects are detected and tracked over several
frames in two image sequences. We will use the same sequences to evolve a
detector for these objects.

Towards Automated Learning of Object Detectors 235

(a)

(b)

Fig. 3. Moving object detected in two video sequences. The yellow circle marks the
detected object. (a) radio-controlled car (b) toy train.

4 A GPU Accelerated Evolutionary Vision System

Ebner [6] has developed a GPU accelerated evolutionary vision system. When
searching for a solution to a computer vision algorithm, one basically has to as-
semble computer vision operators in the correct order and also has to decide with
which parameters these operators are applied. We are using Cartesian Genetic
Programming [16] to automatically search the space of optimal algorithms.

The system works with a (nx × ny) matrix of image processing operators
as shown in Figure 4. In addition to this matrix, a set of n1 high level image
processing operators are applied to the input image. We will refer to all of these
operators as processing nodes. Each individual of the population codes for an
arrangement of image processing operators. High level operators use the original
image as input and also create an image as output. Low level operators can have
either one or two inputs. Low level operators only perform point operations, i.e.
low level operators can be computed by iterating once over all image pixels.

High level operators include operators such as the original image at different
scale levels or with a small offset, derivatives in the x- and y-direction, the
Laplacian, the gradient magnitude, computation of gray scale images from RGB,
segmentation or a convolution. Note that the individuals only have access to a
single image frame. We deliberately do not supply two different frames to the
system. Individuals should be able to recognize objects in single image frames.

The output of the high level operators is processed by the low level operators
inside the (nx × ny) matrix. Data is always fed from left to right. A particu-
lar node has only access to the data stored in the previous column. The wiring
for this matrix is completely under the control of evolution. Low level operators
include arithmetic operations, step functions, gate functions, maximum and min-
imum operations and related functions which access the output from either one
or two nodes. The parameters used inside the nodes are also under the control

236 M. Ebner

to obtain result

Node 1 Node 2 Node 7

High Level Operators
(n nodes)1

Low Level Point−Operators
(matrix of n x n nodes)x y

Input Nodes

Output Nodes

Image
(scale,offset)

Gradient
(scale,offset)

Convolution
(weights)

1

2

3

4

5

6

7

Multiply

(Threshold)
Step

Maximum

Select
Red Channel

Interpretation as
image processing
algorithm

Individual (Byte Array) 102 75 21 132 24 19 37 201155

are averaged
Output nodes

Fig. 4. Sample individual. A linear byte array is mapped to an image processing pro-
gram consisting of n1 high level operators and a processing matrix of nx ×ny low level,
point operators. The output is averaged to obtain the resulting image.

of evolution. A full description of the operators is given by Ebner [6]. The same
system is used here except that the constants (0, 0.5 and 1) have been moved
from the set of high level operators to the set of low level operators.

Most of the operators are taken directly from the specification of the OpenGL
Shading Language (OpenGLSL) [21]. The OpenGL Shading Language was used
to accelerate the image processing because it allows easy access to scale spaces
which is particularly important for the implementation of the high level oper-
ators. It is not clear whether a CUDA [18] implementation would provide any
advantage to the GPU acceleration method used here.

Each individual transforms the input image into some other image, the out-
put image. The output image is computed by averaging the output of the ny

rightmost nodes. In order to determine where the object is detected by an indi-
vidual, we iterate over all image pixels. The position with the maximum output
(RGB components are treated as an integer) is taken as the object position. If
more than one pixel has the same maximum value, we compute the center of
gravity of these pixels. More than 20 pixels having the same maximum value are
discouraged by assigning a bad fitness value. We want to the system to clearly
mark the detected object in the image.

This representation is referred to as a n1 + nx × ny representation. It is fully
described by Ebner [5,6]. The system works with a linear genotype. Each node
has three associated parameters. The first parameter determines the operator
used. The remaining two parameters are either used as parameters for the image
processing operator or are used to determine from which previous node the input
is received. Each parameter is represented by 8 bits in the genotype.

Towards Automated Learning of Object Detectors 237

Each genotype is mapped to the representation shown in Figure 4. A set of
np individual constitutes the parent population. From the parent population, no

offspring are generated by applying genetic operators. An additional nr offspring
are generated randomly. Mutation and crossover are used as genetic operators.
For each incoming image, parent as well as offspring are evaluated. The best np

individuals among parents and offspring become the parents for the next input
image. When selecting new parents, no double fitness values are allowed. Indi-
viduals with the same fitness are assumed to be identical. Using this approach
we try to encourage a diverse population of parent individuals.

The fitness of an individual is simply the Euclidian distance between the
position detected by the individual and the desired position which is computed
using the method described in the previous section.

5 Experiments

For our experiments, we have used np = 3 parents which generate no = 20 off-
spring and nr = 20 randomly generated offspring. Offspring are generated using
two point crossover with a crossover probability of pcross = 0.5. The remaining
individuals are generated through mutation. The mutation operator either uses
a GA-style mutation with a bit wise probability of pmut = 2

l where l is the length
of the genotype in bits, or increases or decreases one of the parameters by one.
This is to allow also smooth changes of the parameters. A gray code could have
been used instead to achieve the same effect.

Given the automated method to extract moving objects, we have objective
data to work with and we can rigorously analyze how the method works. This is
in contrast to the previous method, where the user had to manually select the
object which should be extracted. We work with two video sequences (sample
images are shown in Figure 3). The first video sequence shows a radio-controlled
car moving around. It consists of 2097 image frames (1m:24s) of size 512× 288.
The car has a pronounced color which only occurs on the car and not on other
objects shown in the sequence. In other words, it is quite easy to come up with
an object detector for this car. A simple color filter will do the job. The second
video sequence shows a toy train moving around on a track in circles. It consists
of 1581 image frames (1m:03s) of size 512× 288. The toy train is mostly colored
in yellow and red. The same red color can also be found on a wagon which
is always present in the image. The yellow color is also shown on the wagon.
However, the yellow color on the wagon takes up only a smaller area compared
to the yellow on the train.

For our experiments, we turn the evolutionary process on, as long as the
desired position differs by more than 25 pixels from the detected position by
the individual. The size of the car is approximately 45 × 50 pixels and the toy
train is approximately 34 × 24 pixels. Evolution is turned off if the detected
position is very close to the actual position, i.e. the difference between the two
is less than 10 pixels for five consecutive frames. If this happens, then only the
parent individuals are evaluated and no new offspring are generated. Once the

238 M. Ebner

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1-
1x

1

1-
1x

2

1-
2x

1

2-
2x

2

3-
2x

1

3-
1x

2

3-
2x

2

3-
3x

3

4-
2x

2

4-
3x

3

4-
4x

4

5-
2x

2

5-
5x

5

of

 r
es

ta
rt

s
re-learning (radio controlled car)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1-
1x

1

1-
1x

2

1-
2x

1

2-
2x

2

3-
2x

1

3-
1x

2

3-
2x

2

3-
3x

3

4-
2x

2

4-
3x

3

4-
4x

4

5-
2x

2

5-
5x

5

of

 r
es

ta
rt

s

re-learning (toy train)

Fig. 5. Average number of restarts for the two image sequences (radio-controlled car
and toy train). The standard deviation is also shown.

fitness, i.e. the error, rises to more than 25 pixels, then the evolutionary process
is turned on again. Note that the individuals do not have to be re-initialized due
to the continuous injection of random individuals into the population.

We evaluate how easy or difficult it is to evolve solutions using different
n1 + nx × ny representations. For both image sequences, we measure how often
evolution has to be restarted. As described above, evolution has to be restarted
if the object is no longer tracked. If evolution has to be restarted only once
in a while, then the evolved detectors are very general. If evolution has to be
restarted frequently, then the detectors are not general. Such detectors depend
on the orientation and/or the size of the object in the image. Figure 5 shows
the results for both image sequences. Five experiments were carried out using
different random seeds to compute the average.

For the radio controlled car, evolution was only required for 4.5% of the im-
age frames (averaged across all representations and experiments). For 95.5% of
the image frames, the object was successfully detected. The object was detected
on average with an accuracy of 7 pixels. For the toy train, evolution was only
required for 14.6% of the image frames (averaged across all representations and
experiments). For 85.4% of the image frames, the object was successfully de-
tected. The object was detected on average with an accuracy of 8 pixels.

It is apparent that the toy train is more difficult to recognize. The data also
shows that the problem gets more difficult as the size of the representation is
increased. Thus, we want to keep the complexity of the representation minimal
while still making sure that the solution is still inside the search space.

Figure 6 shows how long evolution was required to come up with a solution
depending on the representation used. Again, the more complex the representa-
tion, the longer it took to find good solutions. The toy train sequence is clearly
more difficult for the system. For the toy train sequence, it is not sufficient to
only use a color detector. The system also has to take the arrangements of the
colors into account. To come up with an effective detector for the toy train, the
system would have to archive good solutions and to create an overall detector
which would recombine the output of several archived detectors. Establishing an
archive of detectors will be our next research goal.

Towards Automated Learning of Object Detectors 239

 0

 100

 200

 300

 400

 500

1-
1x

1

1-
1x

2

1-
2x

1

2-
2x

2

3-
2x

1

3-
1x

2

3-
2x

2

3-
3x

3

4-
2x

2

4-
3x

3

4-
4x

4

5-
2x

2

5-
5x

5

av
er

ag
e

of

 g
en

er
at

io
ns

difficulty of problem (radio controlled car)

 0

 100

 200

 300

 400

 500

1-
1x

1

1-
1x

2

1-
2x

1

2-
2x

2

3-
2x

1

3-
1x

2

3-
2x

2

3-
3x

3

4-
2x

2

4-
3x

3

4-
4x

4

5-
2x

2

5-
5x

5

av
er

ag
e

of

 g
en

er
at

io
ns

difficulty of problem (toy train)

Fig. 6. Number of evolutionary steps. The standard deviation is also shown.

6 Conclusions

We have created a GPU accelerated evolutionary image processing system. The
system automatically detects moving objects in a video sequence taken with a
stationary camera. The coordinates of the detected objects are used to evolve
object detectors which are able to recognize the object in a single image. We
deliberately use one cue (motion) to train an object detector which is able to
recognize objects in images when this cue is not available. The long term goal of
this research is to come up with a system which automatically generates object
detectors. Our system is a step towards automated learning of object detectors.

References

1. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle
filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Trans. on Signal
Processing 50(2), 174–188 (2002)

2. Cagnoni, S.: Evolutionary computer vision: a taxonomic tutorial. In: 8th Int. Conf.
on Hybrid Int. Systems, pp. 1–6. IEEE Computer Society, Los Alamitos (2008)

3. Ebner, M.: Extraction of moving objects with a moving mobile robot. In: Salichs,
M.A., Halme, A. (eds.) 3rd IFAC Symposium on Intelligent Autonomous Vehicles,
Madrid, Spain, vol. II, pp. 749–754. Elsevier Science, Amsterdam (1998)

4. Ebner, M.: An adaptive on-line evolutionary visual system. In: Hart, E., Paechter,
B., Willies, J. (eds.) Workshop on Pervasive Adaptation, Venice, Italy, pp. 84–89.
IEEE, Los Alamitos (2008)

5. Ebner, M.: Engineering of computer vision algorithms using evolutionary algo-
rithms. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) Ad-
vanced Concepts for Intelligent Vision Systems, Bordeaux, France, pp. 367–378.
Springer, Berlin (2009)

6. Ebner, M.: A real-time evolutionary object recognition system. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 268–279. Springer, Heidelberg (2009)

7. Ebner, M., Zell, A.: Evolving a task specific image operator. In: Poli, R., Voigt,
H.-M., Cagnoni, S., Corne, D.W., Smith, G.D., Fogarty, T.C. (eds.) EvoIASP 1999
and EuroEcTel 1999. LNCS, vol. 1596, pp. 74–89. Springer, Heidelberg (1999)

240 M. Ebner

8. Harris, C., Buxton, B.: Evolving edge detectors with genetic programming. In:
Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming,
Proceedings of the 1st Annual Conference, Stanford University, pp. 309–314. The
MIT Press, Cambridge (1996)

9. Heinemann, P., Streichert, F., Sehnke, F., Zell, A.: Automatic calibration of camera
to world mapping in RoboCup using evolutionary algorithms. In: Proceedings of
the IEEE International Congress on Evolutionary Computation, pp. 1316–1323.
IEEE, San Francisco (2006)

10. Isard, M., Blake, A.: Condensation – Conditional density propagation for visual
tracking. Int. Journal of Computer Vision 29(1), 5–28 (1998)

11. Johnson, M.P., Maes, P., Darrell, T.: Evolving visual routines. In: Brooks, R.A.,
Maes, P. (eds.) Artificial Life IV, Proc. of the 4th Int. Workshop on the Synthesis
and Sim. of Living Systems, pp. 198–209. The MIT Press, Cambridge (1994)

12. Katz, A.J., Thrift, P.R.: Generating image filters for target recognition by genetic
learning. IEEE Trans. on Pattern Analysis and Machine Int. 16(9), 906–910 (1994)

13. Koza, J.R.: Genetic Programming. On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge (1992)

14. Krawiec, K., Bhanu, B.: Visual learning by evolutionary and coevolutionary feature
synthesis. IEEE Trans. on Evolutionary Computation 11(5), 635–650 (2007)

15. Lohmann, R.: Bionische Verfahren zur Entwicklung visueller Systeme. Ph.D. thesis,
Technische Universität Berlin, Verfahrenstechnik und Energietechnik (1991)

16. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using
a cartesian genetic programming approach. In: Banzhaf, W., Daida, J., Eiben,
A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 1135–1142. Morgan
Kaufmann, San Francisco (1999)

17. Mussi, L., Cagnoni, S.: Artificial creatures for object tracking and segmentation. In:
Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero,
J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008.
LNCS, vol. 4974, pp. 255–264. Springer, Heidelberg (2008)

18. NVIDIA: CUDA. Compute Unified Device Architecture. Version 1.1 (2007)
19. Poli, R.: Genetic programming for image analysis. In: Koza, J.R., Goldberg, D.E.,

Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming, Proc. of the 1st Annual Conf.,
Stanford University, pp. 363–368. The MIT Press, Cambridge (1996)

20. Rizki, M.M., Tamburino, L.A., Zmuda, M.A.: Evolving multi-resolution feature-
detectors. In: Fogel, D.B., Atmar, W. (eds.) Proc. of the 2nd Am. Conf. on Evolu-
tionary Programming, pp. 108–118. Evolutionary Programming Society (1993)

21. Rost, R.J.: OpenGL Shading Language, 2nd edn. Addison-Wesley, Upper Saddle
River (2006)

22. Trujillo, L., Olague, G.: Synthesis of interest point detectors through genetic pro-
gramming. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Seattle, WA, pp. 887–894. ACM, New York (2006)

Markerless Multi-view Articulated Pose Estimation
Using Adaptive Hierarchical Particle Swarm

Optimisation

Spela Ivekovic, Vijay John, and Emanuele Trucco

School of Computing, University of Dundee, Dundee DD1 4HN
{spelaivekovic,vijayjohn,manueltrucco}@computing.dundee.ac.uk

Abstract. In this paper, we present a new adaptive approach to multi-view mark-
erless articulated human body pose estimation from multi-view video sequences,
using Particle Swarm Optimisation (PSO). We address the computational com-
plexity of the recently developed hierarchical PSO (HPSO) approach, which suc-
cessfully estimated a wide range of different motion with a fixed set of parameters,
but incurred an unnecessary overhead in computational complexity. Our adaptive
approach, called APSO, preserves the black-box property of the HPSO in that it
requires no parameter value input from the user. Instead, it adaptively changes the
value of the search parameters online, depending on the quality of the pose es-
timate in the preceding frame of the sequence. We experimentally compare our
adaptive approach with HPSO on four different video sequences and show that the
computational complexity can be reduced without sacrificing accuracy and with-
out requiring any user input or prior knowledge about the estimated motion type.

1 Introduction

Video-based markerless articulated pose estimation is an important problem in computer
vision which has been given much attention recently [11,16]. Established commercial
systems for accurate articulated pose estimation, e.g., Vicon [22], require subjects to
wear tight Lycra suits and optical or magnetic markers, an expensive, intrusive and time-
consuming solution [16]. Video-based markerless motion capture promises an unintru-
sive, cheaper and less time-consuming alternative for articulated motion capture.

If the markerless pose estimation is to become truly useful in practice, a black-box
solution is necessary which won’t require the user to have a detailed knowledge of
its internal structure and parameter values. From the user’s perspective, regardless of
the type of articulated motion being estimated, the algorithm should accept a video
sequence as the input and produce a high-quality articulated pose estimate as the output.

In this paper, we present such a black-box approach to articulated pose estimation
from multi-view video sequences. We use a powerful global optimisation approach,
called particle swarm optimisation (PSO), which has been shown to outperform other
search methods (e.g., simulated annealing) on large, difficult and non-linear optimisa-
tion problems [7]. John et al. [8] use the PSO framework to formulate the articulated
pose estimation as a hierarchical search in a constrained search space. Their approach,
called HPSO, works as a black box in the sense that it generalises well to different types

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 241–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

242 S. Ivekovic, V. John, and E. Trucco

of motion with fixed PSO parameter settings. However, this ability comes at the price of
unnecessarily large computational complexity (although still smaller than the compet-
ing techniques). In this paper, we present an adaptive extension of HPSO, called APSO,
designed to reduce the search complexity of the HPSO approach without affecting its
black-box nature.

This paper is organised as follows. We begin with a discussion of recent related work
in Section 2. We describe the PSO algorithm in Section 3, followed by a description of
the body model, PSO parametrisation and fitness function in Section 4. The HPSO
approach is described in Section 5, and the adaptive extension, APSO, in Section 6. We
quantitatively compare our approach with HPSO on several multi-view sequences in
Section 7 and conclude in Section 8.

2 Related Work

The literature on markerless human body motion capture is large; recent surveys are
[11,16]. Here, we discuss the recent work with respect to the use of motion models and
search algorithms.

Motion models. The key motivation behind using motion models is to reduce the di-
mensionality of an otherwise very expensive or unfeasible search problem. We can
regard motion models for human motion tracking as instantaneous or global. Instanta-
neous models predict pose on a frame-by-frame basis; examples are Kalman filtering
approaches [10] and particle filtering and variations [2,5,23]. Global models seek to de-
scribe whole actions (e.g., walking, sitting down) [4,17,14] to provide a context strongly
constraining the next pose. The price is reduced generality, as tracking becomes specific
to a dictionary of pre-determined actions. Recently, solutions have been proposed which
make use of global optimisation to remove the dependency on the pre-trained motion
models [8,6], which is also the research direction this paper pursues.

Search. Nearly invariably, pose estimation or tracking is cast as a search in a high-
dimensional parameter space, so that an efficient optimiser is of paramount importance.
In addition to statistical estimation of dynamic systems (e.g., Kalman and particle filter-
ing), search algorithms reported include iterative closest point (ICP) and variations [12],
constrained non-rigid factorization [19], Markov models [14] and gradient boosting [3].
In terms of evolutionary approaches, articulated pose estimation from video sequences
has been reported with genetic algorithms [13,24], particle swarm optimisation [7,8,18],
and indirectly from voxel data using evolutionary algorithms [20].

In this paper, we extend the pose estimation work recently reported by John et al. [8],
primarily addressing the computational complexity of the black-box hierarchical PSO
search proposed in [8].

3 Particle Swarm Optimisation

PSO is a swarm intelligence technique introduced by Kennedy and Eberhart [9]. The
original PSO algorithm has since been modified by several researchers to improve its
search capabilities and convergence properties. In this paper, we use the PSO algorithm
with an inertia weight parameter, introduced by Shi and Eberhart [21].

Markerless Multi-view Articulated Pose Estimation Using Adaptive HPSO 243

3.1 PSO Algorithm with Inertia Weight Parameter

Assume an n-dimensional search space S ⊆ Rn, a swarm consisting of N particles,
each particle representing a candidate solution to the search problem, and a fitness
function f : S → R defined on the search space. The i-th particle is represented as
an n-dimensional vector xi = (x1, x2, ..., xn)T ∈ S. The velocity of this particle is
also an n-dimensional vector vi = (v1, v2, ..., vn)T ∈ S. The best position encountered
by the i-th particle so far (personal best) is denoted by pi = (p1, p2, ..., pn)T ∈ S and
the value of the fitness function at that position pbesti = f(pi). The index of the parti-
cle with the overall best position so far (global best) is denoted by g and gbest = f(pg).
The PSO algorithm with inertia weight can then be stated as follows:

1. Initialisation:
– Initialise a population of particles {xi}, i = 1 . . .N, with random positions and

velocities in the search space S. For each particle evaluate the desired fitness
function f and set pbesti = f(xi). Identify the best particle in the swarm and
store its index as g and its position as pg.

2. Repeat until stopping criterion (see below) is satisfied:
– Move the swarm by updating the position of every particle xi according to

vi
t+1 = wvi

t + ϕ1(pi
t − xi

t) + ϕ2(p
g
t − xi

t)

xi
t+1 = xi

t + vi
t+1 (1)

where subscript t denotes the time step (iteration) and ϕ1, ϕ2 are defined below.
– For i = 1 . . .N update pi, pbesti, pg and gbest.

The usual stopping criterion is either that the maximum number of iterations is reached
or that the gbest improvement in subsequent iterations becomes small enough. The pa-
rameter w is the inertia weight. The parameters ϕ1 = c1rand1() and ϕ2 = c2rand2(),
where c1, c2 are constant and rand() is a random number drawn from [0, 1], influence
the social and cognition components of the swarm behaviour, respectively. In line with
[9], we set c1 = c2 = 2, which gives the stochastic factor a mean of 1.0 and causes the
particles to ”overfly” the target about half of the time, while also giving equal impor-
tance to both social and cognition components.

The Inertia Weight. We model the inertia change over time with an exponential func-
tion which allows us to use a constant sampling step α to gradually guide the swarm
from a global to more local exploration:

w(α) =
A

eα
, α ∈ [0, ln(10A)], (2)

where A denotes the starting value of w, when the sampling variable is α = 0. The step
α is incremented by a constant Δα = ln(10A)/C, where C is the chosen number of
inertia weight changes per search. The optimisation ends when w(α) falls below 0.1.

4 Body Model, PSO Parametrisation and Fitness Function

To enable performance comparison, we use the same body model and fitness function
as the HPSO technique and originally proposed by Balan et al. [1]. In this section, we
provide a short summary for completeness and refer the reader to [8,1] for details.

244 S. Ivekovic, V. John, and E. Trucco

Table 1. Body model joints and their corresponding DOF. There are 31 DOF in total.

JOINT (index) # DOF JOINT (index) # DOF
Global body position (1) 3 rx, ry, rz Right shoulder orientation (7) 3 α7

x, β7
y , γ7

z

Global body orientation (1) 3 α1
x, β1

y , γ1
z Right elbow orientation (8) 1 β8

y

Torso orientation (2) 2 β2
y , γ2

z Head orientation (9) 3 α9
x, β9

y , γ9
z

Left clavicle orientation (3) 2 α3
x, β3

y Left hip orientation (10) 3 α10
x , β10

y , γ10
z

Left shoulder orientation (4) 3 α4
x, β4

y , γ4
z Left knee orientation (11) 1 β11

y

Left elbow orientation (5) 1 β5
y Right hip orientation (12) 3 α12

x , β12
y , γ12

z

Right clavicle orientation (6) 2 α6
x, β6

y Right knee orientation (13) 1 β13
y

4.1 Body Model

The human body shape is modelled as a collection of truncated cones (Figure 1(a)). The
underlying articulated motion is modelled with a kinematic tree containing 13 nodes,
each node corresponding to a specific body joint. For illustration, the indexed joints
are shown overlaid on the test subject in Figure 1(b). Every node can have up to 3
rotational degrees of freedom (DOF), while the root node also has 3 translational DOF.
In our model, we use a total of 31 DOF, detailed in Table 1.

4.2 PSO Parametrisation

The PSO particle position vector represents an articulated body pose and hence consists
of 31 parameters corresponding to the 31 DOF in Table 1:

xi = (rx, ry, rz , α
1
x, β1

y , γ1
z , . . . , β13

y). (3)

4.3 Fitness Function

The fitness function f(xi) measures how well a candidate pose xi matches the pose of
the person in the sequence. It consists of two parts, an edge-based part and a silhouette-
based part:

f(xi) = MSEedge(xi) + MSEsilhouette(xi), (4)

(a) (b) (c)

Fig. 1. (a) The truncated-cone body model. (b) Joint positions. (c) Kinematic tree.

Markerless Multi-view Articulated Pose Estimation Using Adaptive HPSO 245

where MSE denotes the mean-square error. The edge-based part penalises the distance
between the projections of truncated cone edges and the edges in the edge maps ob-
tained from the input images. In the silhouette-based part, a predefined number of points
on the surface of the articulated model is projected into the silhouette images and the
overlap estimated.

5 The Hierarchical PSO

The HPSO algorithm by John et al. [8] splits the 31-dimensional search space into 12
disjoint subspaces which are searched in a pre-defined hierarchical sequence dictated
by the hierarchical structure of the kinematic tree representing the human body motion.
The subspaces are defined in such a way that only one limb segment at a time is being
optimised (see Table 2). Formulating the search in this way significantly reduces its
complexity.

Table 2. 12 hierarchical steps of HPSO (Cf. Table 1.)

(Step 1) Body position (Step 5) Left lower arm (Step 9) Left upper leg
3 DOF: rx, ry, rz 2 DOF: γ4

z , β5
y 2 DOF: α10

x , β10
y

(Step 2) Body orientation (Step 6) Right upper arm (Step 10) Left lower leg
3 DOF: α1

x, β1
y , γ1

z 4 DOF: α6
x, β6

y , α7
x, β7

y 2 DOF: γ10
z , β11

y

(Step 3) Torso (Step 7) Right lower arm (Step 11) Right upper leg
2 DOF: β2

y , γ2
z 2 DOF: γ7

z , β8
y 2 DOF: α12

x , β12
y

(Step 4) Left upper arm (Step 8) Head (Step 12) Right lower leg
4 DOF: α3

x, β3
y , α4

x, β4
y 3 DOF: α9

x, β9
y , γ9

z 2 DOF: γ12
z , β13

y

The HPSO algorithm is designed to be used as a black box, that is, the user is not
required to tweak the search parameters in order to customise the search for a particular
type of motion. Instead, the parameter values are set in a way that guarantees that a very
wide range of motion, for example, walk, jog, kick, jump, etc. can be estimated with-
out requiring any adjustments. The range of motion that can be successfully estimated
depends on the value of the inertia parameter - the higher the starting inertia value (A
in Equation (2)), the more agile the motion can be.

6 The Adaptive PSO

When the range of motion we want to estimate with the same parameter settings is very
wide, for example, from a simple slow walk to a fast karate kick, the easy solution is
to set the starting inertia value A high enough to guarantee that the exploration (rather
than exploitation) is given sufficient priority and therefore the fastest motion will be
estimated reliably. While the high inertia value is indeed necessary for sequences with
fast and sudden motion, it is excessive in sequences where the subject is only walking.
In such slow sequences, the high starting inertia value introduces an unnecessary com-
putational overhead. To address this inconsistency, we formulate an adaptive extension
of the HPSO approach, the APSO, where the starting inertia value A is adjusted on a
frame-by-frame basis.

246 S. Ivekovic, V. John, and E. Trucco

Fig. 2. Adaptive inertia state transition diagram for step s in the hierarchy. At the end of the
search, the best pose estimate Ps(t) is evaluated against two fitness function thresholds, τ0 and
τ1. The higher the f(Ps(t)), the better the pose estimate and the smaller the starting inertia for
this hierarchical step in the next frame.

6.1 APSO Algorithm

In order to adjust the value of A automatically, online and without user interference,
the adjustment process must exploit the information about the search performance in
the preceding frame. The APSO approach therefore adaptively changes the next-frame
starting inertia value for every hierarchical step in Table 2 by making use of two quality
thresholds, τ0 and τ1: when the pose estimate Ps(t) for a hierarchical step s in the
current frame is evaluated as good, f(Ps(t)) ≥ τ1, where f is the fitness function, the
search region in the next frame is kept small (At+1

s = w0) as the search is thought to be
on target; when the pose estimate is very bad, f(Ps(t)) < τ0, the search is losing the
target and hence the search region in the next frame is expanded significantly (At+1

s =
w2). When the estimate is average, τ0 ≤ f(Ps(t)) < τ1, the search region is expanded
moderately (At+1

s = w1), where w0 < w1 < w2. The process of adaptively changing
the inertia value is illustrated with a state transition diagram in Figure 2.

The adaptive inertia scheme is also used to correct for the effects of an occasional
bad starting inertia proposal. For example, in a case where the search is on target in
frame t, f(Ps(t)) ≥ τ1, and hence w0 is proposed for the search in frame t + 1, but
from frame t to frame t+1 a sudden, large motion occurs, for which w0 is not sufficient.
We deal with this case as follows. After the search for a particular hierarchical step has
been completed, we check the quality of the final pose estimate. If the estimate is bad
or average, f(Ps(t)) < τ1 and the proposed starting inertia value that was used was
not the highest inertia value available, At

s = wi, i < 2, then the starting inertia value is
increased to the next higher value, At

s = wi+1 and the search for this hierarchical step
is repeated. The process repeats until either the highest inertia value has been reached,
At

s = w2, or the pose estimate is sufficiently good, f(Ps(t)) ≥ τ1. The value At+1
s for

the next frame is then determined the same way as described in the previous paragraph
and illustrated in Figure 2.

The rationale behind the use of this adaptive scheme is in the observation that even
fast and sudden actions like, for example, karate kick, consist of segments with slow,
medium and fast motion, and therefore searching with the highest inertia value in

Markerless Multi-view Articulated Pose Estimation Using Adaptive HPSO 247

every frame would be excessive. The adaptive scheme favours a smaller inertia weight
and as the experimental results in Section 7 demonstrate, this is not a bad assumption;
the search time indeed decreases in comparison with HPSO without sacrificing the ac-
curacy of the estimates. In fact, given the stochastic nature of the PSO, in our limited
experimental evaluation the accuracy actually slightly increases owing to the search re-
peat strategy which corrects for bad starting values. Making the starting inertia value
dependent on the quality of the pose estimate very effectively prevents the search from
losing the target and ensures that even very erratic and sudden motion can be followed
without diverging.

6.2 Setting τ0 and τ1

As a first attempt, we determined the values for τ0 and τ1 from a video sequence ac-
companied with ground truth optical motion capture data. The ground truth poses were
used to evaluate the fitness function over a 200-frame sequence and the highest and
lowest value of the fitness function were recorded. The interval between the highest and
lowest value was then split into three identical bands and the boundaries of the middle
band were used as τ0 and τ1. As we show with the experimental results, specifying τ0
and τ1 in this way does improve the efficiency of the pose estimation, however, we must
stress that this is by no means the final solution. Further research is necessary to find
a principled way of setting these thresholds which will allow an optimal choice of the
search region for every frame of the sequence.

7 Experiments

In this section we compare the performance of the proposed APSO algorithm with that
of HPSO.

Datasets. In our experiments, we used 4 datasets: the Lee walk sequence included in the
Brown University evaluation software [1] and 3 datasets courtesy of the University of

Fig. 3. The error graph on the Lee Walk 30fps sequence

248 S. Ivekovic, V. John, and E. Trucco

Table 3. Lee Walk sequence: the mean and standard deviation of the distance from the ground
truth

Sequence HPSO (μ ± σ) Avg time (5 trials) APSO (μ ± σ) Avg time (5 trials)
Lee Walk 30Hz 52.5±11.7mm 1 hr,35min 50.8±10.4mm 1 hr, 5min

Table 4. The silhouette/edge overlap measure for the Surrey sequence. Bigger number means
better performance.

Sequence HPSO Avg time (5 trials) APSO Avg time (5 trials)
Mean ± Std.dev Mean ± Std.dev

Jon Walk 1.38±0.01 2hr,30min 1.39±0.01 2hr,15min
Tony Kick 1.29±0.02 1hr,30min 1.31±0.01 1hr,15min

Tony Punch 1.32±0.01 1hr,30min 1.34±0.01 1hr,15min

Surrey: Jon walk, Tony kick and Tony punch. The Lee walk dataset was captured with 4
synchronised grayscale cameras with resolution 640× 480 at 60 fps and came with the
ground truth articulated motion data acquired by a Vicon system. The Surrey sequences
were acquired by 10 synchronised colour cameras with resolution 720× 576 at 25 fps.
The test sequences were chosen to cover a range of different body motions.

HPSO and APSO setup. In [8] HPSO was run with only 10 particles; the starting
inertia weight was set to A = 2, guaranteeing that the particles visit the entire search
space, and the stopping inertia was fixed at w = 0.1 for all sequences. This amounted
to 60 PSO iterations per hierarchical step in HPSO or 7200 fitness function evaluations
per frame. In order to enable a meaningful comparison, APSO was also run with only
10 particles, the starting inertia values were set to w0 = 0.5, w1 = 1.2 and w2 =
2.0, the stopping inertia was fixed at 0.1 and pose estimate accuracy thresholds τ0, τ1
were derived from the ground-truth pose estimates of the Lee walk sequence for every
hierarchical step.

7.1 Comparison of APSO vs. HPSO

Lee Walk Results. We tested on a downsampled frame rate of 30 fps instead of the
original 60 fps. The results are shown in Table 3 and Figure 3 and indicate that APSO
uses less time while also maintaining the average accuracy of the estimation. Table 3
shows the error calculated as the distance between the ground-truth joint values and the
values from the pose estimated in each frame. As the algorithm is stochastic in nature,
the results shown are averaged over 5 trials. A larger number of trials would provide a
better insight, however due to the computational complexity of the algorithm, running
a significantly larger number of trials was not practical as HPSO took 70 sec per frame,
while APSO varied between 40 sec and 100 sec per frame.

Surrey Results. The Surrey test sequences contain faster motion than the Lee walk se-
quence. Again, our results for all tested sequences show that APSO reduces the tracking

Markerless Multi-view Articulated Pose Estimation Using Adaptive HPSO 249

time. The average overlap and standard deviation for the Surrey sequence over 5 trials
are shown in Table 4.

Recovery. John et al. [8] remark that HPSO demonstrates the ability to recover from
wrong estimates due to error propagation in the hierarchical search within a few frames.
APSO, with its search-restart strategy, in fact encounters the error propagation prob-
lem a lot less frequently, as any potentially stray estimates are immediately corrected.
That explains the slight improvement in APSO estimation accuracy when compared to
HPSO.

8 Discussion

Markerless pose estimation from multi-view video sequences is an important problem
in computer vision. For any solution to become a useful motion capture tool in practical
applications, algorithms are required which can take the burden of parameter tuning
and deep algorithmic knowledge away from the intended end-user and work well on a
variety of input sequences. A step in the direction of developing such a black-box pose
estimation approach was made recently by John et al. [8], however, in guaranteeing
the black-box property, the HPSO algorithm incurred an unnecessary overhead in com-
putational complexity. In this paper, we presented an adaptive extension of the HPSO
approach which reduces the computational complexity of the search. We experimen-
tally demonstrated that the proposed algorithm is computationally more efficient and
can still be used on a range of different motions without requiring any parameter tuning
by the user.

The adaptive scheme presented in this paper relies only on the information about the
quality of the pose estimate in the preceding frame. It does not take into account the
information about the speed of the estimated motion which can be extracted from the
preceding estimates online, during search. A k-th order autoregressive model trained
online to predict the required inertia value based on the estimates in the previous k
frames would further improve the efficiency of the search as it would reduce the number
of search-restart events which happen due to bad predictions. The choice of inertia
values w0, w1, w2 can also be made more principled on the basis of recent work by
Poli [15]. We will investigate these improvements in future work.

References

1. Balan, A.O., Sigal, L., Black, M.J.: A quantitative evaluation of video-based 3d person track-
ing. In: ICCCN 2005, pp. 349–356 (2005)

2. Balan, A.O., Sigal, L., Black, M.J., Davis, J.E., Haussecker, H.W.: Detailed human shape
and pose from images. In: CVPR 2007 (2007)

3. Bissacco, A., Yang, M.H., Soatto, S.: Fast human pose estimation using appearance and
motion via multi-dimensional boosting regression. In: CVPR 2007 (2007)

4. Caillette, F., Galata, A., Howard, T.: Real-time 3-d human body tracking using learnt models
of behaviour. CVIU 109(2), 112–125 (2008)

5. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. IJCV 61(2)
(2005)

250 S. Ivekovic, V. John, and E. Trucco

6. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Optimization and filtering for human motion
capture - a multi-layer framework. IJCV (online first) (2008)

7. Ivekovic, S., Trucco, E., Petillot, Y.: Human body pose estimation with particle swarm opti-
misation. Evolutionary Computation 16(4) (2008)

8. John, V., Ivekovic, S., Trucco, E.: Articulated human tracking using HPSO. In: Proceedings
of International Conference on Computer Vision Theory and Applications (VISAPP), vol. 1,
pp. 531–538 (2009)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE ICNN,
vol. 4, pp. 1942–1948 (1995)

10. Mikic, I., Trivedi, M., Hunter, E., Cosman, P.: Human body model acquisition and tracking
using voxel data. IJCV 53(3), 199–223 (2003)

11. Moeslund, T.B., Hilton, A., Krueger, V.: A survey of advances in vision-based human motion
capture and analysis. CVIU 104(2-3), 90–126 (2006)

12. Muendermann, L., Corazza, S., Andriacchi, T.P.: Accurately measuring human movement
using articulated icp with soft-joint constraints and a repository of articulated models. In:
CVPR 2007 (2007)

13. Ohya, J., Kishino, F.: Human posture estimation from multiple images using genetic algo-
rithm. In: ICPR, vol. 1, pp. 750–753 (1994)

14. Peursum, P., Venkatesh, S., West, G.: Tracking-as-recognition for articulated full-body hu-
man motion analysis. In: CVPR 2007 (2007)

15. Poli, R.: Mean and variance of the sampling distribution of particle swarm optimizers during
stagnation. IEEE Transactions on Evolutionary Computation 13(3), 1–10 (2009)

16. Poppe, R.: Vision-based human motion analysis. CVIU 108(1-2), 4–18 (2007)
17. Rosenhahn, B., Brox, T., Seidel, H.P.: Scaled motion dynamics for markerless motion cap-

ture. In: CVPR (2007)
18. Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D.: Parallel global opti-

mization with the particle swarm algorithm. International Journal for Numerical Methods in
Engineering 61(13) (2004)

19. Shaji, A., Siddiquie, B., Chandran, S., Suter, D.: Human pose extraction from monocular
videos using constrained non-rigid factorization. In: BMVC (2008)

20. Shen, S., Deng, H., Liu, Y.: Probability evolutionary algorithm based human motion tracking
using voxel data. In: Proceedings of IEEE CEC 2008, pp. 44–49 (2008)

21. Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE International Con-
ference on Evolutionary Computation, pp. 69–73 (1998)

22. Vicon: Motion capture systems. (November 2008), http://www.vicon.com
23. Wang, P., Rehg, J.M.: A modular approach to the analysis and evaluation of particle filters

for figure tracking. In: CVPR 2006, vol. 1, pp. 790–797 (2006)
24. Zhao, X., Liu, Y.: Generative tracking of 3d human motion by hierarchical annealed genetic

algorithm. Pattern Recognition 41(8), 2470–2483 (2008)

http://www.vicon.com

Hand Posture Recognition
Using Real-Time Artificial Evolution

Benoit Kaufmann1, Jean Louchet2, and Evelyne Lutton1

1 INRIA Saclay, Parc Orsay Université, 4 rue Jacques Monod, 91893 Orsay Cedex
benoit.kaufmann@gmail.com, evelyne.lutton@inria.fr

2 ARTENIA, 24 rue Gay Lussac, 92320 Chatillon
jean.louchet@gmail.com

Abstract. In this paper, we present a hand posture recognition system (config-
uration and position) we designed as part of a gestural man-machine interface.
After a simple image preprocessing, the parameter space (corresponding to the
configuration and spatial position of the user’s hand) is directly explored using
a population of points evolved via an Evolution Strategy. Giving the priority to
exploring the parameter space rather than the image, is an alternative to the clas-
sical generalisation of the Hough Transform and allows to meet the real-time con-
straints of the project. The application is an Augmented Reality prototype for a
long term exhibition at the Cité des Sciences, Paris. As it will be open to the gen-
eral public, rather than using conventional peripherals like a mouse or a joystick, a
more natural interface has been chosen, using a microcamera embedded into vir-
tual reality goggles in order to exploit the images of the user’s hand as input data
and enable the user to manipulate virtual objects without any specific training.

1 Introduction

The work described in this paper is part of the REVES project1, whose aim is to create a
prototype for a permanent exhibition at the Cité des Sciences et de l’Industrie de Paris2,
called «Objectifs Terre : La Révolution des satellites»3 (objective: Earth). One of the
components of this exhibition is devoted to artificial satellites and includes a virtual
reality device that enables the user to interact with them.

The user’s interface is based on the recognition of hand postures, using a fast gen-
eralised Hough transform operated using artificial evolution. The augmented reality
device is described in Section 1.1 and the gestural interface in Section 1.2. We present
the evolutionary Hough transform methology in Section 2, then describe two different
implementations of hand model determination in Sections 3 et 4. Results are presented
in Section 5 and the conclusions in Section 6.

1 REVES ANR (French National Research Agency) contract No 2160 (2007-2009).
2 http://www.cite-sciences.fr/english
3 http://www.cite-sciences.fr/objectifs-terre

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 251–260, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

252 B. Kaufmann, J. Louchet, and E. Lutton

1.1 The Augmented Reality Device

The public will be staying around a large table. Above the table is a videoglobe4 which
displays an animated image of the Earth. Each user is provided with augmented reality
“see through” goggles5 (see figure 1) which allow to display the satellites that turn over
the globe, or two- or three-dimensional information when the user is looking down
at the table. To this end, the goggles are fitted with a miniature camera. Processing
the images from this camera allows to position the synthetic images (e.g. the satellite
images) displayed by the goggles relative to what the user can directly see through the
goggles. It also allows the user to manipulate the objects displayed, by analysing the
user’s hand gestures.

Our contribution to this project was to design the algorithms that allow real-time
recogniton of hand posture and position from the embedded camera and enable the user
to interact with the virtual objects.

The googles. Example of usage.

Fig. 1. The interactive device (courtesy Zile Liu, Laster Technologies)

1.2 The Gestural Interface

In order to ensure natural interaction and allow the user to move whithin the available
multimedia content, the interface should provide at least an object designation tool. The
object may be e.g. a 3D object, an hypertext link, an icon or a menu entry. Selecting it
allows to visualise richer information or move into different menu options. As this is
assumed to replace the usual mouse click, we had to devise a simple communication
language based on hand configuration.

In addition to this, it is often useful to create a pointer which indicates where the
system did locate the user’s hand, in order to correct the eye-to-camera parallax and
reduce the uncertainty that goes with the size of the detected patterns (e.g. pointed in-
dex or the whole hand). Then it is necessary to define two distinct gestures: one to
move the pointer, and one to activate the object that has been pointed. The object is
selected by changing the hand configuration. The advantage of the latter is the possi-
bility to implement extra primitives such as rollover which allow access to other pieces
of information by changing the pointer shape or the object colour. It is also possible to
implement commands that move the display zone, or rotate a 3-D object.

4 Developed by Agenium (http://www.agenium.eu/sections.php?op=listarticles&secid=40)
5 Developed by Laster Technologies (http://www.laster.fr/?lg=en)

Hand Posture Recognition Using Real-Time Artificial Evolution 253

This could have been made possible through using the mouse buttons: a long pres-
sure would switch from one shape to another one, and releasing the button would get
back to the first shape. In fact we implemented this functionality by interpreting changes
in the user’s hand posture: closing and opening the hand is given the same semantics
as pressing and releasing a mouse button. This improves the user’s feeling to actually
interact physically and grasp the object in order to turn or move it. Other display param-
eters (e.g. the scale) may be edited through creating cursors and moving them a similar
way. It is also possible to relate the scale change to the apparent scale of the hand: a
grasp plus a movement toward the user corresponds to zooming in, and reversely for
zooming out.

The major problem to be solved here is the robust and real time detection of several
hand gestures (at least, an open and a closed hand), without prior calibration or learning.
To this end we developed an evolutionary Hough transform.

There exists an abundant literature about hand detection, but most of the proposed
methods were not adapted to our conditions of use: for instance some methods are based
on the detection of the entire body[4,9,3], or at least the user’s foreharm[13] to deduce
the position of the hands. This solution does not fit with our device because the camera
is located on the user’s face and therefore can only see the hand and not the rest of
the body. Other methods only detect the hand but need a uniform[8] or at least a fixed
background[17]. Because the camera we are using is head-mounted, the user may turn
their head, which makes the background change and show moving objects that could be
wrongly detected as hands and disturb detection. For the same reason, motion-based[6]
and multi-camera[16,10] detection methods cannot be applied.

2 EvHough, Evolutionary Exploration of a Parameter Space

The Hough Transform[7] and its classical generalisations[14] fundamentally scan the
image looking for a certain type of local features. Each time such a feature has been
found, it writes into the parameter space by reversing a model in order to increment
the number of votes for the parameter values that are able to provide an explanation to
the feature found. As the model is usually not injective, if n is the dimension of the set
of parameters, each detected feature generates into the parameter space a variety with
dimension n− 1 : a curve if n = 2, a surface if n = 3, etc. This results into a very slow
process with n = 3 and unrealistic processing times beyond.

The alternative proposed in [12] then in [11] consists in a direct, smart exploration
of the parameter space, using a heuristics given by the Artificial Evolution paradigm. It
does not involve any domain-specific knowledge (here, knowledge in image processing)
except what has been expressed through the so-called “synthesis model” that allows to
calculate the features corresponding to any point in the parameter space.

To this end, the algorithm creates a randomly initialised population of points in the
parameter space, then evolves it using genetic operators: selection, mutation, crossover
[15,1,5]. The selection process is based on a fitness function which, for each point in
the parameter space, executes the model and calculates a value of similarity between
the synthesised and the actual feature.

254 B. Kaufmann, J. Louchet, and E. Lutton

Thus, in the simplest case of sraight line detection, for each pair (ρ, θ), the evolution-
ary Hough algorithm will calculate the equation of the corresponding line, then evaluate
e.g. the number of interest points on this line or the average contrast along it, in order
to get the fitness value of the parameter pair (ρ, θ) in question.

The main interest of this is to open the possibility to work efficiently with high di-
mensional parameter spaces, where a direct Hough-style approach would fail. The main
limitation is a classical one in the field of evolutionary algorithms: it remains uneasy to
decide when the algorithm has to be terminated. However, in practice this is not a real
issue: artificial evolution is naturally time-compliant and, unlike most classical image
processing algorithms, may work on data that can be changed during processing. As
shown below, this can be an interesting point when processing image sequences in real
time.

3 Detection of Hand Models

3.1 Preliminary Processing

The searched models are hand contours shapes, encoded as lists of points, in order to
keep the number of points to be tested low. We thus apply a series of filters to the video
sequences to be analysed.

Four convolution filters are first used to compute the gradient in 4 directions (vertical,
horizontal and two diagonals). For each pixel of the input image, the largest of these 4
values then yields the gradient direction and value. The same information is also kept
in memory for each point of the models.

In order to accelerate the computation and facilitate the optimisation process, a prox-
imity function (equation 1) is computed at each frame, and gives for each x of the input
image a measurement of its proximity to a contour[2].

prox(x) = maxy∈image(grady/distx,y) (1)

where

– x and y are two pixels of the input image,
– grady is the gradient value of pixel y, as defined earlier,
– distx,y is the distance between x and y according to equation 26, with xi, for i =

1..8, the 8 immediate neighbours of x, as defined on figure 2.

distx,x = 1

if x �= y, distx,y = min(distx1,y +
√

2, distx2,y + 1, distx3,y +
√

2, (2)

distx4,y + 1, distx5,y + 1, distx6,y +
√

2, distx7,y + 1, distx8,y +
√

2)

The gradient direction for each point of the input image is also updated in order to give
the direction of the closest contour point.

In the same time, the colour encoding of the input image (RGB) is transformed to
Lab coordinates. In this colorimetric space, a skin colour model has been defined as a

6 This distance is an approximation of the euclidean distance, that is computed faster.

Hand Posture Recognition Using Real-Time Artificial Evolution 255

x1 x2 x3

x4 x x5

x6 x7 x8

Fig. 2. Neighbourhood of x

input image proximity image

Fig. 3. Example of a proximity image

cylinder parallel to the luminance axis whose basis is circular in the space of chromi-
nance (corresponding to an average range of chrominance coordinates of skins). This
allows then to compute a low resolution binary image IndC, which reads which pixel
(or corresponding square area of the input image) may correspond to a skin colour or
not. Several cylinders can be defined according to different skin colours, in which case
the IndC binary image will indicate if the corresponding pixel area corresponds to at
least one of the colour cylinders.

3.2 Genome and Similarity Criterion

The search space, i.e. the space of all possible solutions, is a 5 dimension space, which
corresponds to the 5 following parameters:

– model for the hand model (see figure 4)
– tx for the horizontal translation of the model,
– ty for the vertical translation,
– scale for the apparent scale of the model, which varies with the size of the user’s

hand and its distance to the camera,
– rotate for the rotation of the hand with respect to the optical axis of the camera.

The other rotations are ignored, as we consider that the user designates objects with
arms stretched, and hands quasi othogonal to the optical axis. This allow to restrict the
search to 2D models of hands.

The similarity criterion (or fitness) is a combination of three independent criteria,
f1, f2 and f3.

– f1 gives a measure of the distance between the image and model contours, it is
based on the use of the proximity image (see figure 3):

f1(S) =

∑
p∈contour p× prox(proj(p))

card(contour)
(3)

S = [model, tx, ty, scale, rotate] is a point of the search space, proj(p) is the pro-
jection of p via the transformation defined by S and card(contour) is the number
of contour pixels. Dividing by card(contour) allows the criterion to be indepen-
dent of the number of contour pixels.

256 B. Kaufmann, J. Louchet, and E. Lutton

– f2 measures the correpondance of gradient directions between image area and
model:

f2(S) =
card(C)

card(contour)
(4)

card(C) is the number of contour pixels x whose direction corresponds to the
model’s direction, and card(contour) is the number of pixels of the contour.

– f3 uses the binary image IndC to verify if the interior of models contours has the
right colour (this calculation is usually done on a lower scale image):

f3(S) =
card(D)
card(E)

(5)

card(D) is the number of interior pixels of the model whose projection on the
image corresponds to “true” on IndC and card(E) is the number of interior pix-
els of the model. Once again dividing by card(E) allows to have a measurement
independent to the size of the model.

The resemblance criterion for a solution S is then:

fitness(S) =
α1 × f1(S) + α2 × f2(s) + α3 × f3(S)

α1 + α2 + α3
(6)

In our implementation, we choose α1 = 10, α2 = 10 and α3 = 1.

3.3 Genetic Engine

A steady state approach has been chosen for the EA engine, which means that each
new individual immediately replaces an old unadapted one within the population: no
generation synchronism is used. The individuals to be replaced are chosen using the
tournament technique. Three genetic operators are used:

– immigration: a new individual is randomly generated,
– mutation: a new individual is a small perturbation of an existing one,
– crossover: a new individual is created as a random weighted average of two existing

individuals.

After an immigration or a mutation is done, two individuals are chosen in the population
and the one who gets the lower fitness is replaced with the new individual (tournament
of size 2). After a crossover, a tournament of size 3 is used.

Steady state engine and tournament selection have been chosen in order to better
maintain the diversity and limit the risk of premature convergence. This point is actu-
ally critical here, as we operate a small sized population in order to obtain real time
performance. A generational process would necessitate fitness ranking which is time
consuming. For the same reason, a fixed size population is used, in order to minimise
time consuming memory allocations.

Additionnally, as this EA runs on an varying environment, the fitness function is
recomputed at each new frame. We actually get an asynchronous algorithm, that uses
video information at the time it is available.

Finally, to compare with a generational EA, we measure the evolution in terms of
“pseudo-generations”, which corresponds here to the evaluation of a number of indi-
viduals equivalent to a generation gap (i.e. 40% of the population size, see section 5).

Hand Posture Recognition Using Real-Time Artificial Evolution 257

4 Additional Improvements

Experiments based on the previous algorithm yield good results, however in some con-
ditions, some model representatives were lost in the population. As a consequence, the
detection of a model change was unstable and slower. We thus preferred an encod-
ing that naturally balances the number of representatives within the population, by not
explicitly using the model any more: the fitness is then computed for each searched
model. Each individual thus has now n fitness values, one for each of the n searched
models. The resulting fitness is the maximal value of the n fitness:

fitness(i) = max(fitness1(i), ..., f itnessn(i)) (7)

fitness(i) is the fitness value of individual i and fitnessk(i) is the fitness value of
individual i according to model k (k ∈ [1..n]), computed using equation 6.

For each frame, the detected model is the one which corresponds to the highest fit-
ness, as soon as it is greater than a fixed threshold (0.3 for the results presented in the
next section). To avoid unstabilities due to the definitions of a strict threshold, the detec-
tion decision is based on a double threshold and takes into account the model recognised
at the previous frame:

– if the largest fitness of the last population of the current frame is larger than thresh-
old T , the corresponding model is detected,

– if the largest fitness is in [0.7×T, T], and corresponds to the detected model of the
previous frame, it is maintained as “detected,”

– else, nothing is detected.

5 Results

The results presented below have been obtained on a netBook MSI U100, equipped
with a single core 1,60 GHz Intel Atom N270 processor, with 1 GB of memory, and
using GNU/Linux Mandriva 2009. The images are captured with the integrated web-
cam (resolution of 160 × 120 pixels).

Examples of detection on a video sequence are displayed on figure 6, and the curves
of figure 5 give a representation of the distribution of representatives of each of the
searched models within the population. Each graph (one per searched model, see
figure 4) presents three curves which are the maximal and average of fitness values,

Model 1 Model 2 Model 3

Fig. 4. Hand models: the white pixels are contours, blue pixels are pixels where the colour model
is evaluated, and black pixels are ignored

258 B. Kaufmann, J. Louchet, and E. Lutton

Fig. 5. Variation of the population models distribution
and fitness values, for a sequence where the 3 models
of figure 4 are searched

Fig. 6. Example of detection on
a video sequence in natural light
environment. Blue shapes show
the detected model, red points
correspond to the position (origin
of the models) (x, y) of all indi-
viduals of the current population.

Hand Posture Recognition Using Real-Time Artificial Evolution 259

Fig. 7. Example of a detection on a video sequence in controlled light environment. A yellow
marker represents the mouse position.

and the proportion of individuals whose fitness is at least equal to 90% of the maximal
fitness. The horizontal line represents the model detection threshold (0.3). Vertical lines
mark the transition between two successive frames. For each frame, its number, and the
number of generations that were run on it, are displayed.

It can be noticed that the curve corresponding to the fitness max of model 1 (which is
not present in this part of the video) never crosses the 0.3 threshold. On the contrary, one
may notice on graphs of models 2 and 3, an alternance of detection of these models, and
for each detection phase, a concentration of the population around the maximal values
(green curve).

Other examples of detection are given on figure 7, in the experimental conditions de-
scribed in section 1.1. A video sequence is also available on http://apis.saclay.
inria.fr/twiki/bin/view/Apis/HandGestureRecognition

6 Conclusion

We showed that a real-time evolutionary algorithm can be run on a general-public de-
vice, using low computation power. The specific components of this evolution algorithm
are a small population, an asynchronous steady-state genetic engine, that produces a
variable number of generations between two frames, depending on the computation
load of the whole system. An implementation on another computer would result in a
different average number of generations between two frames. This characteristic yields
an efficient capability to the algorithm, as it is able to exploit the available data as soon
as they appear. Of course the number of generations between two frames condition the
quality of the detection, and its reactivity to sudden changes. In extreme conditions, if
the algorithm cannot obtain enough computation power, the population does not have
enough time to converge between two frames. From the user’s side, this results in late
detections, and unability to follow rapid moves.

The genetic encoding finally adopted (section 4) has been preferred for robustness
and reactivity reasons. In case the genome carries the model, a delay is necessary in or-
der to let representatives of a new model grow, while in the second version, this change
can be immediate. Of course this solution is only efficient if the number of searched
models is low, as fitness calculation is longer (n fitness computations for n models).

Additionnally, for the application described in section 1.1, a Kalman filter on the
detected parameters for each frame allows to obtain a smoother detection. Finally, the

260 B. Kaufmann, J. Louchet, and E. Lutton

display of a “mouse pointer” in the virtual environment (yellow mark in figure 7) gives
functionalities similar to classical computer mouses.

Acknowledgments. The authors thank Sergio Alejandro Mota-Gutierrez, of Guanaju-
ato University, Mexico, student of the Electrical Engineering Master Program, for his
contribution to the colour based fitness computation.

References

1. Baeck, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: International
Conference on Genetic Algorithms, July 13-16, pp. 2–10 (1991)

2. Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics,
and Image Processing 27, 321–345 (1984)

3. Carbini, S., Viallet, J.E., Bernier, O.: Pointing gesture visual recognition by body feature
detection and tracking. Computational Imaging and Vision 32, 203–208 (2006)

4. Darby, J., Li, B., Costen, N.: Activity classification for interactive game interfaces. Int. J.
Comput. Games Technol. 2008, 1–7 (2008)

5. Goldberg, D.A.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Inc., Reading (1989)

6. Harper, R., Rauterberg, M., Combetto, M. (eds.): ICEC 2006. LNCS, vol. 4161. Springer,
Heidelberg (2006)

7. Hough, P.V.C.: Methods and means of recognizing complex patterns. Tech. rep., US Patent
3.069.654.18 (December 1962)

8. Ionescu, B., Coquin, D., Lambert, P., Buzuloiu, V.: Dynamic hand gesture recognition using
the skeleton of the hand. EURASIP J. Appl. Signal Process. 2005, 2101–2109 (2005)

9. Kim, H.J., Kwak, K.C., Lee, J.: Bimanual Hand Tracking. In: Gavrilova, M.L., Gervasi, O.,
Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS,
vol. 3980, pp. 955–963. Springer, Heidelberg (2006)

10. Kirishima, T., Manabe, Y., Sato, K., Chihara, K.: Real-time multiview recognition of human
gestures by distributed image processing. J. Image Video Process. 2010, 1–13 (2010)

11. Louchet, J.: From Hough to Darwin: an Individual Evolutionary Strategy applied to Artificial
Vision. In: Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M., Ronald, E. (eds.) AE 1999.
LNCS, vol. 1829. Springer, Heidelberg (2000)

12. Lutton, E., Martinez, P.: A Genetic Algorithm for the Detection of 2D Geometric Primitives
in Images. In: 12-ICPR, Jerusalem, Israel, October 9-13 (1994)

13. Maimon, D., Yeshurun, Y.: Hand Detection by Direct Convexity Estimation. In: Tistarelli,
M., Bigun, J., Grosso, E. (eds.) Advanced Studies in Biometrics. LNCS, vol. 3161, pp. 105–
113. Springer, Heidelberg (2005)

14. Maître, H.: Un panorama de la transformation de Hough. Traitement du Signal 2(4), 305–317
(1985)

15. Rechenberg, I.: Evolution Strategy : Nature’s way of optimization. In: Bergman, H.W. (ed.)
Optimization : methods and and applications. Possibilities and Limitations. Lecture Notes in
Engineering, vol. 17, pp. 106–126. Springer, Berlin (1989)

16. Stødle, D., Hagen, T.M.S., Bjørndalen, J.M., Anshus, O.J.: Gesture-based, touch-free multi-
user gaming on wall-sized, high-resolution tiled displays. Journal of Virtual Reality and
Broadcasting 5(10) (November 2008)

17. Zhao, S., Tan, W., Wen, S., Liu, Y.: An improved algorithm of hand gesture recognition under
intricate background. In: Xiong, C.-H., Liu, H., Huang, Y., Xiong, Y.L. (eds.) ICIRA 2008.
LNCS (LNAI), vol. 5314, pp. 786–794. Springer, Heidelberg (2008)

Comparing Cellular and Panmictic Genetic
Algorithms for Real-Time Object Detection

Jesús Mart́ınez-Gómez, José Antonio Gámez, and Ismael Garćıa-Varea

Computing Systems Department, SIMD i3A
University of Castilla-la Mancha, Albacete, Spain
{jesus martinez,jgamez,ivarea}@dsi.uclm.es

Abstract. Object detection is a key point in robotics, both in localiza-
tion and robot decision making. Genetic Algorithms (GAs) have proven
to work well in this type of tasks, but they usually give rise to heavy com-
putational processes. The scope of this study is the Standard Platform
category of the RoboCup soccer competition, and so real-time object de-
tection is needed. Because of this, we constraint ourselves to the use of tiny
GAs. The main problem with this type of GAs is their premature conver-
gence to local optima. In this paper we study two different approaches to
overcoming this problem: the use of population re-starts, and the use of
a cellular GA instead of the standard generational one. The combination
of these approaches with a clever initialisation of the population has been
analyzed experimentally, and from the results we can conclude that for
our problem the best choice is the use of cellular GAs.

1 Introduction

For mobile robotics, image processing has become one of the most important
elements. Most current proposals have to choose between low execution time
and good system performance. This balance becomes a keystone for RoboCup[9]
environments, where robotic teams play football matches within controlled fields
using specific rules. All the robots have to take real-time decisions using the
information retrieved from the environment with their sensors (mainly vision
cameras).

Our approach to real-time object detection is the use of genetic algorithms[7]
(GAs). According to the definition of this type of algorithms, the individuals will
represent the object we want to detect, and the fitness function will represent
the quality of the detection process.

In order to develop a real-time system, the number of parameters that govern
a GA (number of generations and population size) must be reduced as much
as possible. This reduction speeds up the processing but low quality individuals
may be obtained. The convergence of a GA with a low number of generations
should be fast to obtain high-quality individuals, but that increases the risk of
falling into local optima. The negative impact of local optima can be avoided by
preventing premature convergence or using strategies to escape from them.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 261–271, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

262 J. Mart́ınez-Gómez, J.A. Gámez, and I. Garćıa-Varea

In this paper we study restart scheduling to escape from local optima and
a cellular structure[1] is proposed to prevent premature convergence. Different
experiments were carried out to compare panmictic and cellular GAs and to
study the impact of restart scheduling over these structures.

This study was mainly inspired by a vision system developed for the RoboCup
2009 soccer competition[6]. That system was developed using a panmictic GA
with hard processing time restrictions. In that work, all the experiments were
carried out using a population size of 12 individuals and 24 iterations. Under
these conditions, GAs can have problems to converge and the population ini-
tialization becomes a keystone. In order to guarantee good convergence, the
information retrieved from the image processing and from the last n detections
is used to initialize the population. In this situation, an individual can be ini-
tialized in three different ways: randomly, using the information extracted from
the image processing or cloning an individual from a previous population.

The main drawback of this new reasoning is the high risk of local optima,
which is increased due to the new population initialization. In order to escape
from local optima, different approaches have been proposed[4]. Most of these
approaches propose a restart scheduling and that was the option adopted in [6].

2 Vision System

The vision system has to detect and estimate distance and orientation to key
elements in a football field. These elements are field lines, opponents, team mem-
bers, the ball and the goals. Some of these elements have not changed during the
last few years (field lines and the ball), and their detections can be performed
using fast and simple techniques based on colour filters and scan-lines [10,5,3].

In this paper, we focus on goal detection because the new goals are very dif-
ferent from those used in previous editions (the new size is considerably bigger
than the old one). The shape of a goal in a frame depends on the position and
orientation between the robot camera and the goal. Therefore, a high number
of partial occlusions and observations appear and this makes impossible to use
a case-based approach. The ball and the new goal (partially observed) are illus-
trated in Fig.1, which is a real frame captured by the robot camera.

When using a genetic approach to solve the problem of goal detection, an
individual has to represent the detection of the goal g placed at distance d with
orientation or. This information is contrasted with that extracted from the last

Fig. 1. Frame showing the ball and a partial observation of the blue goal

Comparing Cellular and Panmictic GAs for Real-Time Object Detection 263

frame captured by the robot camera. The fitness will be high for individuals
whose information is plausible with respect to the last image.

2.1 Individual Representation

An individual must store the information necessary to evaluate the fitness func-
tion. An individual is represented by four genes: < d, α, β, θ >. Fig.2 graphically
shows three of the parameters to be estimated: d is the distance between camera
and goal, and α and β are the differences in orientation in the x-axis and in
the y-axis respectively. A third component for the orientation difference in the
z-axis is not needed, because by using horizon detection techniques[2] the image
can be processed to show all the objects parallel to the floor.

Fig. 2. Meaning of d, α, β

Gen θ represents own goal orientation and its value is limited to between −90
and 90 degrees. All the genes are represented by numerical values, limited by
the maximum distance detection for d, and by the field of view for α and β.

2.2 Fitness Function

The fitness function returns numeric values, according to the goodness of the
projection obtained with the parameters < d, α, β, θ > of an individual. To
evaluate an individual, its genes are translated into the projection of the goal
that the individual represents. The projection needs a start position < x, y >,
obtained from α and β, and the size of the object depends on d.

Fig. 3. Projections obtained for six individuals

Fig.3 shows six projections obtained with six different individuals representing
yellow goals. It can be observed how goals which are far from the camera obtain
smaller projections, and how some parts of the projections are beyond the frame
boundaries.

264 J. Mart́ınez-Gómez, J.A. Gámez, and I. Garćıa-Varea

A goal projection is evaluated by comparing it with the information obtained
from the filtering process. All the pixels obtained with the projection are matched
with the pixel distribution obtained after applying the yellow or the blue filter (it
depends on the goal we are trying to detect). The colour filtering is carried out
by defining a top and bottom limit for the YUV colour components. A pixel will
successfully pass a filter only if all its components are between these limits. Fig.4
shows a colour (yellow, white and orange) filtering example. Lighting conditions
are constant for RoboCup environments and we assume the use of optimal filters.

Fig. 4. Colour-filtering process

The fitness of an individual is defined as the minimum value of:

– % of pixels of the projection that have passed the colour filter.
– % of pixels that passed the colour filter and belong to the valid projection

pixels.

2.3 General Processing Scheme

The processing starts for every frame captured by the camera of the robot.
A new frame will evolve a new population only for a goal (blue and yellow)
that is likely to appear in the image. That plausibility is estimated studying
the number of pixels that correctly passed the corresponding colour filter. Fig.5
presents the algorithm of the general processing scheme, where the population
evolution depends on the type of GA we are using: cellular or panmictic.

Capture a new image and filter it with colour filters
for each one of the two goals

if we have obtained enough pixels
Evolve a new population
Apply local search over the best individual
Return the estimated distance and orientation to the goal

end if
end for

Fig. 5. General system processing scheme

Comparing Cellular and Panmictic GAs for Real-Time Object Detection 265

2.4 Population Initialization

The current vision system must work in real-time. Therefore, convergence of the
algorithm must be obtained with a small number of generations and individu-
als. In order to achieve this goal, population initialization is performed using
information obtained from two different sources: colour filtering (centroid and
number of pixels of the colour distribution) and previous populations. The in-
formation obtained from previous populations allows us to take advantage of
the high similarity between consecutives frames; that is, if a frame shows the
blue/yellow goal at distance d with orientation or, the next frame has a high
probability of showing the same goal with similar d and or values.

An individual can now be initialized in three different ways:

– Randomly (R)
– Using the information from the filtering process (F)
– Cloning an individual from a previous population (C)

A probabilistic selection is carried out to select the way in which an individ-
ual is initialized. These probabilities depend on the number of frames from the
last frame that detected the goal we are studying (denoted as NFLR). These
probabilities are computed as follows:

P (C) = max(0.5− 0.5 ∗ (NFLR/10), 0)
P (F) = (1− (P (C))) ∗ 0.66
P (R) = (1− (P (C))) ∗ 0.34

If the value of NFLR is bigger than 10, P (C) will be 0 because we assume that
after 10 frames, similarity between frames cannot be exploited.

3 Genetic Algorithm Structure

As was mentioned in section 1, the system proposed in [6] was developed using
a panmictic GA. The solution adopted to escape from early local optima was to
restart the population after a percentage of iterations failed to improve the best
fitness.

In this paper, we propose to use an alternative structure named cellular GAs.
Using this structure, the crossover between individuals will only be performed
if both individuals are similar. Therefore, it is necessary to define a structure
for the individuals which is based on their genes. This step can be hard to solve
when the genes have nominal values, but not with numeric values.

We propose a structure based on the gene d, which represents the distance
between the robot camera and the goal. This gene has numeric values limited
to between 30 (minimum distance to perform an object detection) and 721 cm
(the football field is 600 x 400 cm). Distance is considered the most important
information and therefore the gene d was selected to define the structure. The
difference between a panmictic and a cellular structure can be observed in Fig.6,

266 J. Mart́ınez-Gómez, J.A. Gámez, and I. Garćıa-Varea

where the darkness represents distance values (white for closer goals and black for
distant goals). With the panmictic structure, no order is defined for individuals
and all crossovers between them are possible. On the other hand, with the cellular
structure the population is ordered and a crossover between two individuals can
only be performed if they are close together.

Fig. 6. Cellular (a) and Panmictic (b) Structure

The minimum degree of similarity between two individuals which is necessary
to perform the crossover is dynamically defined. If we denote dmaxdif

as the
maximum difference for d (dmax − dmin) and nind as the size of the population,
individuals ia and ib can only be crossed if the difference between d values
of ia and ib is smaller than dmaxdif

/(nind/2). This neighbourhood threshold
(dmaxdif

/(nind/2)) is denoted as nt. In order to illustrate this neighbourhood,
Fig. 7 shows two different scenarios where a change in the distribution of 10
individuals causes nt to vary considerably.

Fig. 7. Different individual distributions and neighbourhood thresholds

It can be observed how the neighbourhood threshold (nt) is reduced when
individuals are close together. For the distribution proposed in the upper image
of Fig. 7, the individual i2 can be crossed with individuals i1, i3 and i4. All these
individuals i1...i4 are repeated for the bottom image, but due to the new nt

value, i2 can only be crossed with i1 and i3.

3.1 Algorithm Evolution

In order to highlight the main differences between both structures, we will per-
form some experiments over a test frame. This test frame contains a partially
occluded goal, placed at a distance of 240 cm. These experiments show how the
algorithm converges during the iterations. We will use a bubble graph (see Fig.8),

Comparing Cellular and Panmictic GAs for Real-Time Object Detection 267

where the x-axis represents the iterations, the y-axis the value for gene d and
the size of the bubbles represents the fitness value of the individual. The same
experiment with the same parameters was performed for two different struc-
tures: panmictic and cellular GA. These experiments were performed with 12
individuals, 24 iterations, 5% mutation probability and one-point as crossover
operator. No restarting schedule was applied.

Panmictic GA. Fig. 8a shows the typical evolution for the fitness of 12 indi-
viduals over 24 iterations using a panmictic GA. It can be observed that after
5 or 6 iterations, all the individuals have similar values for the gene d, which
represents the distance to the goal in centimetres.

Fig. 8. Individual fitness evolution for a panmictic (a) and a cellular (b) GA. Bubble’s
diameter represents an individual’s fitness.

The best fitness value is not improved upon after iteration 6, where a value
of 0.26907 is obtained. At the end of the algorithm most of the individuals
have fitness values close to 0.22. The fast convergence of the algorithm into local
optima makes increasing the number of iterations pointless. This happens due to
the special characteristics of the fitness function. Only individuals really close to
the solution obtain fitness values greater than zero. Moreover, small variations in
the values of the genes cause enormous variations in the goodness value obtained
with the fitness function.

Cellular GA. Fig. 8b shows the evolution for the fitness of 12 individuals over
24 iterations using a cellular structure. In this case, the convergence of the system
is slower than that obtained in Fig. 8a. During the iterations, a bigger section
of the search space is explored and the best fitness value (0.6527) is obtained
at the last iteration. Even when 10 of the individuals converge to the global
optima (distance 240) at the last iteration, two individuals explore the search
space between distance values of 40 and 80.

The cellular structure allows the algorithm to obtain best fitness values and
to escape from local optima. The convergence is slower but better individuals
are reached. Fig.9 shows the evolution of the best fitness for both structures. In
this graph, the best fitness gradually increases from the first to the last iteration

268 J. Mart́ınez-Gómez, J.A. Gámez, and I. Garćıa-Varea

Fig. 9. Best fitness evolution for a panmictic and a cellular structure

for the cellular structure. On the other hand, the panmictic GA obtains the best
fitness value at iteration 6, and after this moment no improvements are obtained.

In view of these results, the most appropriate structure for our proposed
genetic algorithm is cellular.

4 Experiments and Results

The experiments were carried out on a RoboCup Standard Platform football field,
with the official goals, a 6 x 4 metre carpet and a ball. A biped robotNao1 was used,
taking images in YUV format. While the robot was moving around the environ-
ment, the frames captured by the robot’s camera were stored. In addition to this
information, we also stored the real distance to the yellow and blue goal for each
frame. In order to perform a complete comparison of our entire proposal, we used
the same test sequence for all the experiments. This test sequence contains frames
that captured the blue goal placed between 217 and 103 cm.

Using the real distance to the goals (at the instant when a frame was captured),
our algorithm was evaluated by studying the difference between the real and the
estimated distance as the error rate. The estimated distance was the value of the
d gene of the individual with the highest fitness value. Lighting conditions were
stable throughout the experiments, and the colour filters were optimal.

All the experiments were performed using 12 individuals, 24 iterations, 5%
mutation probability and one-point as crossover type. No elitism was used and so
the entire population was replaced by the offspring at the end of each iteration.

After the population has evolved, a simple local-search process (Hill Climbing)
is applied to the best individual. This processing allows us to improve the best
fitness. The local search is applied by evaluating positive and negative variations
for the genes of the individual. Using concepts and strategies from different
metaheuristics, our algorithm should be termed a memetic algorithm [8] instead
of a genetic one.

4.1 Experiment 1 - Adding Restart Scheduling

The first experiment has the objective of testing the use of restart scheduling for
the panmictic structure. We applied our genetic algorithm using the standard
1 http://www.aldebaran-robotics.com/eng/Nao.php

Comparing Cellular and Panmictic GAs for Real-Time Object Detection 269

parameters described above. Restart scheduling consists of restarting the popu-
lation after 25% of the iterations have failed to improve the best fitness value.
The test sequence (30 frames) was processed 10 times, saving the difference be-
tween the real and estimated distance. Table 1 shows the mean absolute error
(MAE) for the panmictic GA, with and without restarts. In order to illustrate
the robustness of both proposals, the table shows the percentage of frames that
obtained an error rate lower than 100, 75, 50 and 25 cm.

Table 1. Mean Absolute Error (MAE) in centimetres and Standard Deviation (Sd)
for a panmictic(a) and a cellular(b) genetic algorithm, with and without restarts

Percentage of frames (in cm)
Restart Scheduling MAE(cm) Standard Deviation ≤ 100 cm ≤ 75 cm ≤ 50 cm ≤ 25 cm

Panmictic GA
Without restarts 90.79 53.98 53.3% 47.7% 43.7% 34.3%

With restarts 58.53 43.68 76.0% 67.3% 55.7% 40.3%
Cellular GA

Without restarts 39.21 35.35 89.0% 80.0% 68.3% 50.3%
With restarts 59.39 41.78 76.3% 64.3% 53.7% 32.7%

4.2 Experiment 2 - Testing the Cellular Structure

The objective of the second experiment was to prove that, for our problem,
the cellular structure is more appropriate than the panmictic one. We tested
two different configurations using a cellular GA, with and without a restarting
schedule. For this experiment we used the same test sequence and restarting
schedule as those used for the first experiment.

If we compare table 1 (a) and (b) we can see that the robustness and the
performance of the algorithm have improved. Mean absolute error for the best
configuration (cellular GA without restarts) is lower than 40 cm (in an environ-
ment with a maximum distance of 721 cm.) and nearly 70% of frames obtained
differences for the distance estimation under 50 cm. Highest error values were
obtained at the beginning of each test sequence, as can be observed in Fig. 10.

Fig. 10. Error evolution for ten executions of a cellular GA without restarts

270 J. Mart́ınez-Gómez, J.A. Gámez, and I. Garćıa-Varea

After a few frames the error decreased and, specially after the 17th frame, the
error was lower than 50 for 9 of the 10 executions.

In contrast to the improvement obtained for the panmictic GA, restart schedul-
ing obtained worse results when using the cellular structure. This is because the
cellular structure causes a slower convergence and the restarts (after 45% of it-
erations fail to improve the best fitness) do not allow the algorithm to achieve
the best results.

5 Conclusions and Future Work

In this paper we have dealt with the problem of object detection in real time
by using GAs. The use of GAs is justified by the complexity of the environment
(which includes occlusions,) which makes it imposible to use a case-based ap-
proach. However, because of the real-time requirements, tiny GAs must be used.
This type of GAs (few individuals per population and few generations) have a
great risk of converging to a local optimum.

We have tested two different approaches: panmitic GAs with restarts and
cellular GAs. Of the two options, our empirical results support the argument
that cellular GAs get the best results in the problem under study. The low error
rate obtained for the best configuration tested should allow the system to be
used to perform robot self-localization, and this topic is one of the lines for
future research that we want to explore.

Acknowledgements

The authors acknowledge the financial support provided by the Spanish “Junta
de Comunidades de Castilla-La Mancha (Consejeŕıa de Educación y Ciencia)”
under PCI08-0048-8577 and PBI-0210-7127 Projects and FEDER funds.

References

1. Alba, E., Dorronsoro, B.: Cellular genetic algorithms, vol. 1 (March 2008)
2. Bach, J., Jungel, M.: Using pattern matching on a flexible, horizon-aligned grid for

robotic vision. Concurrency, Specification and Programming-CSP 1(2002), 11–19
(2002)

3. Coath, G., Musumeci, P.: Adaptive arc fitting for ball detection in robocup. In:
APRS Workshop on Digital Image Analysing. pp. 63–68 (2003)

4. Fukunaga, A.: Restart scheduling for genetic algorithms. In: Eiben, A.E., Bäck, T.,
Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 357–366.
Springer, Heidelberg (1998)

5. Jüngel, M., Hoffmann, J., Lötzsch, M.: A real-time auto-adjusting vision system
for robotic soccer. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.)
RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 214–225. Springer, Heidelberg (2004)

6. Mart́ınez-Gómez, J., Gámez, J.A., Garćıa-Varea, I., Matellán, V.: Using genetic
algorithm for real-time object detection. In: Proceedings of the 2009 RoboCup
Symposium, pp. 215–227. Springer, Heidelberg (2009)

Comparing Cellular and Panmictic GAs for Real-Time Object Detection 271

7. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

8. Moscato, P.: Memetic algorithms: a short introduction. Mcgraw-Hill’S Advanced
Topics in Computer Science Series, pp. 219–234 (1999)

9. Rofer, T., Brunn, R., Dahm, I., Hebbel, M., Hoffmann, J., Jungel, M., Laue, T.,
Lotzsch, M., Nistico, W., Spranger, M.: GermanTeam 2004. Team Report RoboCup
(2004)

10. Wasik, Z., Saffiotti, A.: Robust color segmentation for the robocup domain. In:
Proc. of the Int. Conf. on Pattern Recognition (ICPR), vol. 2, pp. 651–654 (2002)

Bloat Free Genetic Programming versus
Classification Trees for Identification of

Burned Areas in Satellite Imagery

Sara Silva1,2, Maria J. Vasconcelos3, and Joana B. Melo3,4

1 INESC-ID Lisboa, Portugal
2 Center for Informatics and Systems of the University of Coimbra, Portugal

3 Tropical Research Institute, Lisbon, Portugal
4 Instituto Superior de Agronomia, UTL, Portugal

sara@{kdbio.inesc-id.pt,dei.uc.pt}
{maria.perestrelo,joana.lx.bm}@gmail.com

Abstract. This paper compares Genetic Programming and Classifica-
tion Trees on a problem of identification of burned areas in satellite
imagery. Additionally, it studies how the most recently recognized bloat
control technique, Operator Equalisation, affects the quality of the solu-
tions provided by Genetic Programming. The merit of each approach is
assessed not only by its classification accuracy, but also by the ability to
predict the correctness of its own classifications, and the ability to pro-
vide solutions that are human readable and robust to data inaccuracies.
The results reveal that both approaches achieve high accuracy with no
overfitting, and that Genetic Programming can reveal some surprises and
offer interesting advantages even on a simple problem so easily tackled
by the popular Classification Trees. Operator Equalisation proved to be
crucial.

1 Introduction

Genetic Programming (GP) is the automated learning of computer programs,
using Darwinian selection and Mendelian genetics as sources of inspiration [10].
The search space of GP is virtually unlimited and programs tend to grow larger
during the evolutionary process. Code growth is a natural result of genetic oper-
ators in search of better solutions, but it has been shown that beyond a certain
program length the distribution of fitness converges to a limit [7]. Bloat can be
defined as an excess of code growth without a corresponding improvement in fit-
ness. Several theories explaining bloat, and many different bloat control methods,
have been proposed in the literature (for reviews see [12,13]). The most recent
bloat theory, Crossover Bias [9,2,4,11], explains code growth in tree-based GP
by the effect that standard subtree crossover has on the distribution of program
lengths in the population. Developed alongside Crossover Bias, Operator Equal-
isation (OpEq) is the newest bloat control method available [3,14,15]. Although
still in its infancy, it has already proven to be very successful in both benchmark
and real life problems [15,16].

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 272–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bloat Free Genetic Programming versus Classification Trees 273

Classification Trees are a non-parametric, non-linear rule based classifier that
generates classification rules through an induction procedure described in [1].
They are based on a hierarchical decision scheme where the feature space is
subject to a binary recursive partitioning that successively splits the data. This
is the basic divide and conquer methodology used in the C4.5 algorithm, with
some differences in terms of the tree structure, the splitting criteria, the pruning
method, and the way missing values are handled [5]. In the Classification and
Regression Tree (CART) algorithm [1], heuristics techniques are used to achieve
an inverted tree type structure, starting in a root node with all the data, and
generating descendent nodes with a series of splitting decisions (if-then rules)
until terminals are reached, meaning that the classes are all differentiated. CART
is a popular and successful classification algorithm.

This paper compares GP and CART on a problem of identification of burned
areas in satellite imagery. Additionally, it studies how the OpEq bloat control
technique affects the quality of the solutions provided by GP. The goal is to
understand if and how a GP approach armed with the latest bloat control tech-
nique can beat the high quality solutions provided by a well established method
like CART. The merit of each approach is assessed not only by its classification
accuracy, but also by the ability to predict the correctness of its own classifica-
tions, and the ability to provide solutions that are human readable and robust
to data inaccuracies. We do not consider the time it takes to deliver a solution
with each of the techniques, since that is not such an important factor in this
type of application.

The next section briefly describes OpEq, since it is still a very recent and
widely unknown bloat control technique. Section 3 provides details regarding
the data, while Section 4 describes the techniques and parameters used for the
experiments. Section 5 reports and discusses the results, and Section 6 concludes
and suggests future developments of this work.

2 Operator Equalisation

Developed alongside the Crossover Bias theory [9,2,4,11], OpEq is one of the few
bloat control methods based on a precise theoretical study. By filtering which
individuals are accepted in each new generation, this technique allows accurate
control of the distribution of program lengths inside the population, easily bias-
ing the search towards smaller or larger programs. In the first published version
of OpEq [3] the user had to specify the desired length distribution, called target,
as well as a maximum allowed program length. Both remained static throughout
the entire run. Each newly created individual was accepted or rejected for the
new generation based on its length and the target distribution.

This first implementation was shortly followed by a dynamic version of OpEq,
called DynOpEq [14], where both the target and the maximum allowed program
length are self adapted along the run. In DynOpEq the acceptance or rejection
of the newly created individuals is based not only on their length, but also on
their fitness. In [14] DynOpEq was tested on four well known GP benchmark

274 S. Silva, M.J. Vasconcelos, and J.B. Melo

problems (symbolic regression, artificial ant, even-parity and multiplexer), while
in [15] DynOpEq was used on a real life drug discovery application (prediction
of human oral bioavailability).

Also in [15] a new version of OpEq was defined. Contrarily to DynOpEq, it
does not reject any individuals, and instead transforms them by slightly mutating
their genotype until they reach the desired length. This new implementation has
been called MutOpEq. Both DynOpEq and MutOpEq were very successful in
controlling bloat without harming fitness. In [16] both these techniques were
used in another drug discovery application (prediction of toxicity), once again
with much success.

3 Data

The satellite image used in this study is an orthorectified Landsat 7 ETM+
scene over Guinea-Bissau, corresponding to Path/Row 204/52, and downloaded
free of charge from the USGS site1. The image was collected in the end of the
dry-season (May 13, 2002), thus ensuring the presence of burned areas and the
highest possible discrimination among vegetation types in a forested/wooded
savanna tropical ecosystem. Landsat 7 ETM+ images consist of eight different
bands (of which we used the first seven) with a radiometric resolution of 8 bits.
Thus, the reflectance of objects on the surface is encoded on a 30 meter resolution
grid as a digital number (DN) varying between 0 and 255, for each spectral band.

Visual inspection of the RGB combination of bands 7, 4 and 3, allows depict-
ing burned areas very clearly [8]. Using a 7-4-3 RGB combination as a basis,
samples of burned and not burned areas were delimited on screen. The pixels
included in those polygons were extracted to constitute the data for our study,
in a total of 3637 samples (1889 burned and 1748 not burned). Each sample
consists of the observed DN values for the seven variables (the seven bands) and
the corresponding target value, burned (1) or not burned (0).

To assess the learning and generalization ability of the different classification
techniques, 30 random partitions were created from this data set, each containing
70% of the samples for training, and 30% for testing. Neither GP nor CART
require any normalization or other pre-processing of the data. However, since
GP is used in a regression-like fashion (see Sect. 5) the input variables were
scaled from [0, 255] to [0, 1] so they would be closer to the expected output
values (0 or 1).

4 Methods

Four different techniques were studied. One of them is the well established CART
algorithm, used as a single tree classifier with linear combination of the variables,
the Gini index criteria for node splitting, equal class prior probabilities, equal
classification error costs for the two classes, and terminal nodes with a minimum
1 http://glovis.usgs.gov/

Bloat Free Genetic Programming versus Classification Trees 275

of 20 observations. Due to its high popularity and successfulness, CART is here
regarded as the baseline.

The others are GP techniques. The first is standard GP (StdGP), the most
traditional implementation of tree-based GP, using minimal bloat control imple-
mented as the historical maximum tree depth of 17 [6]. The others are the two
flavors of OpEq (see Sect. 2), DynOpEq and MutOpEq, none of them using any
depth or size limits. We used populations of 500 individuals allowed to evolve
for 200 generations, a function set containing only the four binary operators +,
−, ×, and /, protected as in [6], and a terminal set containing only the seven
variables. We adopted the remaining parameters from [15,16].

To perform the experiments we used CART 5.02 and a modified version of
GPLAB 3.03. Each of the four techniques was run 30 times, once in each partition
of the data set. Statistical significance of the null hypothesis of no difference was
determined with pairwise Kruskal-Wallis non-parametric ANOVAs at p = 0.05.

5 Results and Discussion

A solution provided by CART is a set of if-then rules that for each sample
indicates which class it belongs to. It is possible to use GP to evolve classification
rules, but in this work we used it as if we were dealing with a symbolic regression
problem. Therefore, a GP solution is a single function that for each sample
returns a real value, expected to be close to either 0 or 1. This value is then
converted to its closest class. In the following sections we add more details on
this subject, while reporting and discussing the results from four different points
of view: accuracy, reliability, complexity and robustness.

5.1 Accuracy

Accuracy is the first, sometimes the only, indicator of classifier quality. All four
techniques achieved very high accuracy values (calculated as the percentage of
correctly classified samples) in both training and test sets. Figure 1 shows a
boxplot containing these results.

None of the techniques revealed a significant difference in accuracy between
the training set and the test set. This means there is no overfitting, a fact that
would allow us to report the remaining results in the unpartitioned original
data set. However, a closer look reveals that the relative merit of the different
techniques is not the same in both sets. While in the training set a number of
techniques revealed significant differences between each other, in the test set
there was only one significant difference: DynOpEq achieved better accuracy
than CART. Therefore, we report the remaining results only in the test set
(more precisely, in the 30 test sets).

Given that CART and GP operate differently from each other, and return
solutions in distinct formats (rules vs functions), it is interesting to check whether
2 http://salford-systems.com/cart.php
3 http://gplab.sourceforge.net/

276 S. Silva, M.J. Vasconcelos, and J.B. Melo

CART StdGP DynOpEq MutOpEq CART StdGP DynOpEq MutOpEq
0.98

0.985

0.99

0.995

1
A

cc
ur

ac
y

Training Test

Fig. 1. Boxplot of the accuracy values on the training and test sets. MutOpEq has
outliers at 95.5% (training) and 94.5% (test), not shown.

the few misclassified samples are the same in both approaches. The answer is
that almost half of the total misclassifications is common to CART and GP.
We concluded this by measuring the overlap between the sets of misclassified
samples (as if they were independent across the 30 test sets) of each technique.
The percentage of common samples to CART and each of the GP techniques
StdGP, DynOpEq and MutOpEq is 48%, 45% and 44%, respectively. The overlap
among the three GP techniques ranges from 56% to 65%. In a set where the
percentage of misclassifications is so low, the probability of achieving such a
large overlapping by pure chance is extremely low.

5.2 Reliability

Along with the classification of each sample, CART also returns learn-based
fractions in each terminal node as predicted probabilities that the samples ac-
tually belong to each class. This is very important to the end user, as long as
this probability faithfully represents the reliability of the classification. When
using GP as a regression tool like we did in this work, it is also possible to
calculate the probability of correctness, or reliability. For each classified sample
i the reliability value ri is calculated as 1 − di, where di is the distance be-
tween the real value returned by the GP function and its nearest class. Because
the GP function can potentially return any real value, we apply if di > 0.5
then di = 0.5 so that the reliability values are always in the range between 0.5
and 1.

Figure 2(a) shows the distribution of the reliability values for the correctly and
incorrectly classified samples (once again as if they were independent across the
30 test sets) for all techniques. It is immediately apparent that CART concen-
trates its reliability values in a very narrow interval (any value below 0.95 is an
outlier), while the GP techniques exhibit a high dispersion of values. For GP, the
incorrectly classified samples use the entire range between 0.5 and 1, while the
correct classifications use narrower intervals and consider a tremendous amount

Bloat Free Genetic Programming versus Classification Trees 277

(a) (b)

C I C I C I C I

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
bi

lit
y

 CART StdGP DynOpEq MutOpEq

0.5 1

0.7

0.8

0.9

1

Reliability

A
cc

ur
ac

y

CART
StdGP
DynOpEq
MutOpEq

Fig. 2. (a) Distribution of reliability values for correctly (C) and incorrectly (I) classi-
fied samples; (b) Accuracy obtained for samples in different reliability intervals

of outliers4. In all cases the overlapping of boxes and whiskers between correct
and incorrect classifications is very high, particularly in the CART technique,
making it difficult to predict the correctness of the classifications.

Nevertheless, the reliability does have some predictive value. Figure 2(b) plots
the accuracy obtained in all test samples, for different reliability intervals. Ten
intervals were considered using equidistant points between 0.5 and 1. Given that
CART uses few different reliability values, we could not use a higher number
of intervals or most of them would be left empty in CART (with 10 intervals,
already three of them are empty). This plot shows that with the GP techniques
it is possible to use the reliability value to predict the accuracy, but not so much
with CART. DynOpEq is the one providing a finer prediction.

5.3 Complexity

It is feasible to compare different solutions obtained with different CART ex-
periments in terms of the number and length of their rules. It is also possible to
compare the length of the different solutions returned by GP, preferably taking
care to simplify the raw expressions provided (although many times only the ex-
pressions containing redundant parts benefit from this procedure). We can even
use these measurements to talk about the complexity of the solutions, using the
term complexity in a very informal manner, as a mere indicator of whether the
solution is easily readable and understood by a human user. However, compar-
ing the complexity of a set of rules to the complexity of a single function is an
impossible task. Figure 3 shows examples of different solutions provided by the
four techniques.

The CART solution shown is one of the shortest, while the GP solutions were
the result of some simplification. The solution shown for MutOpEq is surprisingly

4 The “bars” below the lowest whiskers are just a high concentration of crosses repre-
senting the outliers.

278 S. Silva, M.J. Vasconcelos, and J.B. Melo

Example of solution by CART:

if (0.641x4 − 0.768x6 <= −0.357192) and (x2 <= 0.335) then class = 1
if (0.641x4 − 0.768x6 <= −0.357192) and (x2 > 0.335) then class = 0
if (0.641x4 − 0.768x6 > −0.357192) then class = 0

Example of solution by StdGP:

y = x6 − (x2 + x4) + (x6 + x7 − 3x4)
(
3x6 − (x1 + 3x4) + x1

(
2x1 + x6 + x7−

(x3 + 5x4) + (7x6 − 10x1 − 4x4 + 12x7 − 2x2 − 7x3)(8x1 − 3x6 + x4 − 3x7)
))

Example of solution by DynOpEq:

y =
x3x6

x7
+ x1 − x4 + x2

6 −
x6

x5
+

x5x
3
6

x1x2
3

(
1
x3

− x7

x5

)⎛⎝x5

x3
+

1 − x3x5
x2
6x7

x2
5

x2
7

+ x6 + x7 − x3 − x6
x5

⎞⎠
Example of solution by MutOpEq:

y = x2 − x5 + x3x6 +
x3

x6

(rule to apply to all GP solutions: if y < 0.5 then class = 0 else class = 1)

Fig. 3. Examples of solutions provided by the four techniques

shorter than its original raw expression, a truly uncommon feat that this technique
was able to achieve in several different runs. StdGP produced functions that, be-
sides exhibiting a different format than the solutions by the OpEq techniques
(see Sect. 5.4), are generally much longer, due to bloat. Figure 4(a) shows the
evolution of the average length of the solutions along the generations (median
of 30 runs). While StdGP keeps increasing solution length, both DynOpEq and
MutOpEq stabilize it very soon and maintain it along the entire evolution. Fig-
ure 4(b) shows the relationship between the average length and the best fitness
achieved in the test set (median of 30 runs), along the evolution (there is an
implicit downwards timeline along the fitness axis). Here we can see the turning
point when the OpEq techniques keep improving fitness while maintaining the
average length of the solutions. Unlike StdGP, both DynOpEq and MutOpEq
are completely bloat free.

5.4 Robustness

Looking at the solutions provided by CART, we noticed that the same input vari-
ables, x4 and x6, are always selected as the most important in the classification,
while others are always considered little important. The same order of impor-
tance was found in all 30 solutions (x4, x6, x2, x5, x3, x1, x7), suggesting a large
degree of homogeneity among the different experiments. GP is known for finding
extremely varied solutions from one run to the other, so we decided to check if,

Bloat Free Genetic Programming versus Classification Trees 279

(a) (b)

0 50 100 150 200
0

100

200

300

400

Generations

A
ve

ra
ge

 L
en

gt
h

StdGP
DynOpEq
MutOpEq

0 100 200 300 400
0.1

0.2

0.3

0.4

Average Length

T
es

t F
itn

es
s

StdGP
DynOpEq
MutOpEq

Fig. 4. (a) Evolution of the average length of the solutions along the generations; (b)
Relationship between average length and test fitness along the evolution

along the 30 runs, GP had some preference for x4 or x6, or indeed any other
variable. Without doing any sensitivity analysis, we simply counted the median
number of times that each variable appears in each of the 30 solutions. This can
hardly be regarded as an indicator of variable importance, but at least it can
reveal the differences among the techniques. Besides the seven variables, we also
counted the four arithmetic operators in the same way. The results did reveal
something interesting. In all three GP techniques the least repeated variables
were x1, x2 and x3, by no particular order. The most repeated were x4 and x6
in StdGP and MutOpEq, and x5 and x7 in DynOpEq. Although StdGP always
used both x4 and x6 in each of the 30 solutions, both OpEq techniques could
find good solutions without using one or the other. In terms of the operators,
the most interesting finding was that StdGP uses + and − almost exclusively,
a few ×, and absolutely no /, while the OpEq techniques use all operators. It is
beyond the scope of this work to analyze the reasons behind these differences.

Given the varied characteristics of the solutions obtained by the different tech-
niques, we performed a simple test to check which techniques produce more robust
solutions, where robustness is measured as the ability to deal with noisy data. It is
expected that a technique that always depends on the same variables, like CART,

Original Noisy Original Noisy Original Noisy Original Noisy
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

A
cc

ur
ac

y

 CART StdGP DynOpEq MutOpEq

Fig. 5. Boxplot of the accuracy values on the original and noisy data sets. MutOpEq
has additional outliers at 95.2% (original) and 92.9% (noisy), not shown.

280 S. Silva, M.J. Vasconcelos, and J.B. Melo

is less robust to perturbations of those same variables. So we used a new data set
that is exactly the same as the original unpartitioned data set except for the fact
that in each sample the variable x4 has its value randomly increased or decreased
by 10% (x4 = x4±0.1×x4). Figure 5 shows the accuracy obtained in this noisy set,
compared to the original set. It is not surprising to know that the results of CART
suffered a very significant decrease of accuracy. What is interesting is that, among
the GP techniques, both OpEq also suffered significant differences, while StdGP
did not - precisely the only GP technique where all the solutions used x4! Recalling
previous work [15] where StdGP exhibited a lot more “resistance” to overfitting
than DynOpEq, and considering that failure to cope with noisy data is indeed a
suggestion of overfitting, we wonder, once again, about the possible “protective”
(and counterintuitive) effect that bloat may have on overfitting.

6 Conclusions and Future Work

We have compared GP and CART on a problem of identification of burned areas
in satellite imagery. Two of the GP techniques used the latest bloat control
method available, OpEq. The quality of the solutions was assessed in terms of
accuracy, reliability, complexity and robustness, with the goal of understanding
whether GP can outperform the popular and successful CART, and how does
OpEq contribute to it. The first OpEq technique was able to achieve significantly
higher accuracy than all the other techniques. All the GP techniques showed
good predictive ability of the correctness of their own classifications, while CART
was not very reliable. In terms of complexity, the second OpEq technique was
the only one providing surprisingly short solutions that challenge the simplest
rules produced by CART. Another surprise was the robustness that standard
GP exhibited to noisy data. Given that one of the OpEq techniques equalled or
surpassed CART in all the tests, our main conclusion is that using GP provides
advantages even in a problem where a well established and successful method
like CART already produces excellent results. Among all the experiments, GP
was in fact able to find models that are more reliable, and as accurate, robust
and human readable as the ones from CART.

In the future we plan to use GP and CART on harder classification tasks
where a comparison can be made also in terms of overfitting and the potential of
each technique to avoid it. In a more general way, we want to study what makes
a particular technique more or less prone to overfitting, and how that may be
related (or unrelated) to bloat. We also plan to use GP to evolve classification
rules and compare the results with these. Finally, we want to produce burned
area maps using the best technique.

Acknowledgements

The authors acknowledge projects “CARBOVEG-GB – Quantifying the carbon
stocks and sink effects in the forests of Guinea-Bissau” (APA/RELAC 2006) and
“EnviGP – Improving Genetic Programming for the Environment and Other
Applications” (PTDC/EIA-CCO/103363/2008).

Bloat Free Genetic Programming versus Classification Trees 281

References
1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regres-

sion trees, Wadsworth (1984)
2. Dignum, S., Poli, R.: Generalisation of the limiting distribution of program sizes in

tree-based genetic programming and analysis of its effects on bloat. In: Thierens,
D., et al. (eds.) Proceedings of GECCO 2007, pp. 1588–1595. ACM Press, New
York (2007)

3. Dignum, S., Poli, R.: Operator equalisation and bloat free GP. In: O’Neill, M.,
Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa,
A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 110–121. Springer,
Heidelberg (2008)

4. Dignum, S., Poli, R.: Crossover, sampling, bloat and the harmful effects of size
limits. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 158–169. Springer, Heidelberg (2008)

5. Kohavi, R., Quinlan, J.R.: Decision-tree discovery. In: Klosgen, W., Zytkow, J.M.
(eds.) Handbook of Data Mining and Knowledge Discovery, ch. 16.1.3, pp. 267–276.
Oxford University Press, Oxford (2002)

6. Koza, J.R.: Genetic programming – on the programming of computers by means
of natural selection. MIT Press, Cambridge (1992)

7. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidel-
berg (2002)

8. Pereira, J.M.C., Sá, A.C.L., Sousa, A.M.O., Silva, J.M.N., Santos, T.N., Carreiras,
J.M.B.: Spectral characterisation and discrimination of burnt areas. In: Chuvieco,
E. (ed.) Remote Sensing of Large Wildfires in the European Mediterranean Basin,
pp. 123–138. Springer, Heidelberg (1999)

9. Poli, R., Langdon, W.B., Dignum, S.: On the limiting distribution of program
sizes in tree-based genetic programming. In: Ebner, M., O’Neill, M., Ekárt, A.,
Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp.
193–204. Springer, Heidelberg (2007)

10. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming,
http://www.gp-field-guide.org.uk (2008) (With contributions by J. R. Koza),
http://lulu.com

11. Poli, R., McPhee, N.F., Vanneschi, L.: The impact of population size on code
growth in GP: analysis and empirical validation. In: Keijzer, M., et al. (eds.) Pro-
ceedings of GECCO 2008, pp. 1275–1282. ACM Press, New York (2008)

12. Silva, S.: Controlling bloat: individual and population based approaches in genetic
programming. PhD thesis, Dep. Informatics Engineering, Univ. Coimbra (2008)

13. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and a
review of past and current bloat theories. Genet. Program. Evolvable Mach. 10(2),
141–179 (2009)

14. Silva, S., Dignum, S.: Extending operator equalisation: Fitness based self adaptive
length distribution for bloat free GP. In: Vanneschi, L., Gustafson, S., Moraglio,
A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 159–170.
Springer, Heidelberg (2009)

15. Silva, S., Vanneschi, L.: Operator equalisation, bloat and overfitting - a study on
human oral bioavailability prediction. In: Rothlauf, F., et al. (eds.) Proceedings of
GECCO 2009, pp. 1115–1122. ACM Press, New York (2009)

16. Vanneschi, L., Silva, S.: Using operator equalisation for prediction of drug toxicity
with genetic programming. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M., et
al. (eds.) EPIA 2009. LNCS, vol. 5816, pp. 65–76. Springer, Heidelberg (2009)

http://www.gp-field-guide.org.uk
http://lulu.com

Genetic Algorithms for Training Data
and Polynomial Optimization

in Colorimetric Characterization of Scanners

Leonardo Vanneschi, Mauro Castelli, Simone Bianco, and Raimondo Schettini

Department of Informatics, Systems and Communication (D.I.S.Co.)
University of Milano-Bicocca, Milan, Italy

{vanneschi,castelli,bianco,schettini}@disco.unimib.it

Abstract. Generalization is an important issue in colorimetric characterization
of devices. We propose a framework based on Genetic Algorithms to select train-
ing samples from large datasets. Even though the framework is general, and can
be used in principle for any dataset, we use two well known datasets as case stud-
ies: training samples are selected from the Macbeth ColorCheckerDC dataset and
the trained models are tested on the Kodak Q60 photographic standard dataset.
The presented experimental results show that the proposed framework has better,
or at least comparable, performances than a set of other computational methods
defined so far for the same goal (Hardeberg, Cheung, CIC and Schettini). Even
more importantly, the proposed framework has the ability to optimize the training
samples and the characterizing polynomial’s coefficients at the same time.

1 Introduction

Many devices, like scanners or printers, have their own reference systems for the spec-
ification of color (device-dependent spaces). To facilitate the reproduction of colors
on various devices and supports, it is often useful to employ a system of description
that allows us to define the color in a univocal fashion, i.e. in a device-independent
space, separating the way colors are defined from the way the various devices represent
them. A point in RGB space indicates how a color stimulus is produced by a given
device, while a point in a colorimetric space, such as CIELAB space, indicates how
the color is perceived in standard viewing conditions. Now let us consider the function
that at every point in the device dependent space associates the colorimetric value of
the corresponding color. The colorimetric characterization of a scanner device means
to render this function explicitly. It must take into account the peculiar characteristics
of the device; consequently, every device calls for specific conversion functions. Sev-
eral different approaches to the characterization problem have appeared so far (see for
instance [5,14,4]).

High-order multidimensional polynomials are often used for scanner characteriza-
tion. However, since there is no clear relationship between polynomials adopted and
imaging device characteristics, they must be empirically determined and defined for
each device, and for a specific device, each time a change is made in any component
of the system [11]. Using an average color error as the functional to be minimized,

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 282–291, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Genetic Algorithms for Training Data and Polynomial Optimization 283

the polynomial coefficients can be found by using the Least Square method or the
Total Least Squares method [10]. More powerful methods, such as Total Color Dif-
ference Minimization and CIELAB Least Squares minimization, have been recently
proposed [13] to minimize non linear functionals that take into account the average
CIELAB colorimetric error. An evolutionary framework integrating Genetic Program-
ming and Genetic Algorithms (GAs) [9,7] was proposed in [1,2] for optimizing the
polynomial’s shape and coefficients.

All the results presented in the contributions quoted above confirm that the accuracy
of the characterization increases as the number of terms in the polynomial increases
and also that there is not a simple way to avoid data over-fitting. For this reason, data
overfitting avoidance and generalization is becoming more an more an issue for col-
orimetric characterization of scanners. In this work, we address this issue presenting a
GA based system to find, out of large datasets, those training samples that allow us a
reasonable generalization. GAs performance is compared here with some of the most
well known state of the art methods for training samples selection. Besides showing
that GAs have better, or at least comparable, performance than those methods in select-
ing training samples, the goal of this work is also to show that GAs can, at the same
time, choose accurate polynomial coefficients, an ability that the other methods consid-
ered here do not have. The datasets used to evaluate the color rendition accuracy and
the generalization ability of the proposed color selection methods are two widely used
datasets: the Macbeth ColorCheckerDC (MDC) and the Kodak Q60 photographic stan-
dard (IT8). The interested reader is referred for instance to [2] for an introduction to
these datasets.

This paper is structured as follows: Section 2 briefly introduces the scanner charac-
terization problem. Section 3 contains an introduction to four state of the art methods
for training samples selection: Hardeberg, Cheung, CIC and Schettini. In Section 4 we
present our GA based system. In Section 5we report and discuss the obtained experimen-
tal results. Finally, Section 6 concludes the paper and proposes ideas for future research.

2 Scanner Characterization

The basic model that describes the response ρ = [R,G,B] of a three-channel color scan-
ner can be formulated as [13,14]: ρ = F (SIR+ n), where ρ is a 3× 1 vector, S is the
3×N matrix formed by stacking the scanner spectral sensitivities row-wise, I is the
N×N diagonal matrix whose elements are the samples of the scanner-illuminant spec-
tral power distribution, R is the N × 1 vector of the reflectance of the surface being
scanned, n is the 3× 1 noise vector and F is an optoelectronic conversion function
representing the input-output nonlinearity that may characterize the scanner response.
Similarly, the CIEXYZ tristimulus values, denoted by a 3×1 vector s, can be defined as:
s = CLR, where C is the 3×N matrix of the CIEXYZ color matching functions and L
is the N×N diagonal matrix whose elements are the samples of the viewing-illuminant
spectral power distribution.

The characterization problem is to find the mapping M which transforms the recor-
ded values ρ to their corresponding CIEXYZ values s: s = M (ρ). Usually, given an
optoelectronic conversion function F , a mth-order polynomial mapping M is applied

284 L. Vanneschi et al.

to the linearized data F −1(ρ) to obtain s. The general mth-order polynomial P(R,G,B)
with three variables can be given as: P(R,G,B) = ∑m

i=0 ∑m
j=0 ∑m

k=0 RiG jBk, with i+ j +
k ≤ m. Given the scanner response ρ, their linearized values F −1(ρ) and the poly-
nomial model P to use, we can calculate the polynomial expansion r of F −1(ρ) as
r = P

(
F −1(ρ)

)
. Using the polynomial modeling, the previous equation then becomes:

s = MP
(
F −1(ρ)

)
= Mr. The first step to find the matrix M is to select a collection

of color patches that spans the device gamut. The reflectance spectra of these Nc color
patches will be denoted by Rk for k ∈ {1, . . . ,Nc}. These patches are measured using
a spectrophotometer or a colorimeter which provides the device independent values:
sk = CLRk with k ∈ {1, . . . ,Nc}. Without loss of generality, sk can be transformed
in any colorimetric or device independent values. The same Nc patches are also acquired
with the scanner to be characterized providing ρk = F (SIRk + n) with calculated poly-
nomial expansions rk, for k ∈ {1, . . . ,Nc}. In equation, the characterization problem is
to find the matrix M:

M = arg

(
min

M∈R3×q

Nc

∑
k=1

||Mrk−L (sk) ||2
)

(1)

where L (·) is the transformation from CIEXYZ to the appropriate standard color space
chosen and || · || is the error metric in the color space. M is a 3×q matrix, where q is the
number of terms of the polynomial P(R,G,B); the number of terms q is related to the order
m of the polynomial by: q =

[
∑m

k=1

(
k+2

2

)
+ 1
]
. Being M a 3×q matrix, the problem of

finding M amounts to determine 3q coefficients; to have enough equations to solve for the
3q unknowns and to deal with a less ill-posed problem, we have to use Nc ≥ q different
color patches. In other words, the bigger is the order of the polynomial, the greater is
the number of its terms and consequently the greater is the number of different color
patches we have to use. Different functionals to be minimized can be defined to find the
unknown matrix M. In this work, we consider the ΔE94 error (see for instance [13]). The
use of higher order polynomials as characterization functions permits to reach higher
colorimetric accuracy on the training set at the expense of generalization capability. In
order to have a single characterization function for all the possible input supports that
can be acquired with the scanner, and to not derive a new characterization function for
each different input support, it is thus necessary to design new optimization strategies
which permit to find characterization functions with higher generalization capability. In
the next section, we briefly introduce some of the most known state of the art methods to
accomplish this task. The generalization ability of those methods will be compared with
the one of the proposed GA system, introduced in Section 4.

3 State of the Art Methods for Training Samples Selection

Hardeberg. The method proposed by Hardeberg et. al [8] selects a set of reflectance
samples from a large set of patches so that the chosen spectra in reflectance space are as
different as possible. It is an iterative procedure. The first sample selected r1 is the spectral
reflectance function with the largest root mean square value: RMS(ri1)≥ RMS(rk)∀k =
1, . . . ,K where K is the number of samples in the considered reflectance dataset, and

Genetic Algorithms for Training Data and Polynomial Optimization 285

RMS(r) =
√

1
n ∑n

i=1 xi where n is the number of samples of the reflectance spectra. The
second sample selected r2 is the one which minimizes the condition number of the matrix
[r1r2]. Let us denote λmax and λmin respectively the largest and the smallest singular values

of the matrix [r1r2], then the second sample selected is the one which satisfies:
λmax[ri1 ri2]
λmin[ri1 ri2] ≤

λmax[ri1 rk]
λmin[ri1 rk]

∀k = 1, . . . ,K,k �= i1. The j-th sample is then selected in a similar way:
λmax[ri1 ...ri j]
λmin[ri1 ...ri j]

≤
λmax[ri1 ...ri j−1 rk]
λmin[ri1 ...ri j−1 rk]

∀k = 1, . . . ,K,k �= i1, . . . , i j−1.

Cheung. The method proposed by Cheung and Westland [3] also selects the sam-
ples which are as different as possible. It is similar to the method proposed by Harde-
berg et. al but it differs by the way the sample similarity is computed. The first
sample selected is the one with the lowest variance of spectral reflectance. The sec-
ond sample selected is the one with the largest ΔE colorimetric difference from the first
sample. The j-th sample is selected in a similar way: it is first calculated the ΔE colori-
metric difference from all the j−1 selected samples, and then its minimum values are
recorded. It is then selected as the j-th sample, the one having the maximum minimum
ΔE distance from the samples already selected.

CIC. The method proposed by Chou et. al [6] makes use of two different data sets to
select the best training samples: the source data and the decision data sets. Assume that
there are N samples from the source data set. Each of them is considered as candidate
and used to train the characterization model. Each model is then applied to the decision
data set. The sample which returns the model with the lowest ΔE colorimetric error on
the decision set is selected as the first sample. The procedure is then iterated to identify
the sample that paired with the first one gives the model with the lowest error on the
decision set. The subsequent samples are selected in the same way.

Schettini. The method proposed by Schettini et. al [12] uses the values recorded by the
acquisition device to select the samples that are as different as possible from each other.
The first sample selected is the one satisfying: SSE(ri1) ≥ SSE(rk) ∀k = 1, . . . ,K
where SSE(r) =

√
∑n

i=1 xi
2. The maximum absolute difference (MAD) in terms of cam-

era coordinates for the recorded samples is calculated from the first selected sample. The
one having the maximum MAD value is then selected. The other samples are similarly
selected: the j-th sample is the one having the maximum minimum MAD value from
all the j−1 samples already selected.

4 The Proposed GA System

In this work, we have used GAs for three different tasks: (i) optimizing training samples
to improve generalization using fixed polynomial coefficients (for this first task, GAs
performance is compared to the one of the methods presented in Section 3); (ii) optimiz-
ing polynomial coefficients using fixed training samples and (iii) optimizing polynomial
coefficients and training samples at the same time. The ways GAs have been used for
tasks (i), (ii) and (iii) are described below.

(i) GAs for optimizing training samples using fixed polynomial coefficients. Let
D = (di j) be an N×M matrix representing the MDC dataset, where each line represents

286 L. Vanneschi et al.

one of the samples and each column a feature. Our goal is to select a number of training
samples smaller or equal to a given k < N. A GA individual is represented by a k-
dimensional vector v = (v1,v2, ...,vk) where, for each i = 1,2, ...,k, vi is an integer
number between 1 and N. Intuitively, each GA individual represents a set of samples
taken from the MDC dataset.

The fitness of each GA individual v is calculated as follows: we use only the samples
represented by individual v for finding the unknown matrix M in Equation (1). Given
that fitness is the most time-consuming task in an evolutionary algorithm, and it has to
be calculated many times during the evolution, we use a rather simple and fast method
to find matrix M: we minimize functional HLS = ||s− ŝ||2 with ŝ = Mr using the
Least Squares minimization [10]. Analytically, the matrix M can be easily found by:
M = srT (rrT)−1. Successively, we consider as fitness value of individual v the ΔE94

error obtained by the trained model on the N− k samples included in the MDC dataset
and not represented by v.

The genetic operators we use work as follows: mutation replaces, with a given prob-
ability pm, each allele in an individual with a random integer number chosen with uni-
form distribution between 1 and N (it intuitively corresponds to the replacement of
a sample of the MDC dataset with another random one). Crossover is similar to the
standard one-point GAs crossover [9,7], except that we have explicitly avoided the pos-
sibility of a number to appear in more than one allele in the offspring.

(ii) GAs for optimizing polynomial coefficients using fixed training samples. For
optimizing the polynomial coefficients, we use binary coded GAs. Each allele corre-
sponds to one term of the complete polynomial of a given degree. The value 0 indicates
absence of that term in the polynomial represented by the individual, while the value 1
indicates presence of the term. For a given k < N, k samples in the MDC dataset are
selected at random at each GA run, and fitness is calculated as follows: we use only
these k samples and the polynomial represented by the GA individual for finding the
unknown matrix M in Equation (1) with Least Squares minimization. Successively, we
consider as fitness value the ΔE94 error obtained by the trained model on the other N−k
samples included the MDC dataset. In this case, genetic operators are standard binary
coded GAs crossover and mutation [9,7].

(iii) GAs for optimizing polynomial coefficients and training samples at the same
time. When the target is to optimize polynomial coefficients and training samples at
the same time, GA individuals are represented using diploid chromosomes [7], i.e. they
are represented by two strings. The first one of these strings is coded as the individuals
described in (i) and it has exactly the same meaning, while the second one is coded as
the individuals described in (ii). In other words, the first string represents the selected
training samples and the second one the chosen polynomial coefficients.

Fitness of such an individual is calculated as follows: we use the samples represented
in the first string and the polynomial represented in the second string for finding the
unknown matrix M in Equation (1) using Least Squares minimization. Successively,
we consider as fitness value the ΔE94 error obtained by the trained model on the N− k
samples included in the MDC dataset and not represented by the first string, obtained
using the polynomial represented by the second string.

Genetic Algorithms for Training Data and Polynomial Optimization 287

The genetic operators this time work as follows: given two individuals v and w, the
first string of the offspring is given by the offspring of the crossover between the first
strings of v and w as described in (i) and the second string of the offspring is given by
the offspring of the crossover between the second strings of v and w as described in (ii).
Mutation is applied with probability pm to all alleles of both strings, but for the first
string the used mutation is the one described in (i), while for the second string mutation
is the one described in (ii).

5 Experimental Results

In this section we outline the results produced by the exploited computational methods.
Results are organized as follows: we first show the results obtained by GAs and the other
considered methods keeping fixed polynomials and looking for the training samples
that allow the best generalization. Secondly, we present the results produced by GAs
using fixed training samples and looking for the best polynomial’s coefficients. Finally,
we present the results obtained by GAs where the learning process involves both the
training samples and the polynomial’s coefficients estimation at the same time. In all
cases, the GA parameters we have used are: population size equal to 100 individuals;
number of generations equal to 150; crossover probability pc equal to 0.95; mutation
probability pm equal to 0.1; tournament selection of size 3; elitism (i.e. copy of the best
individual unchanged in the next population at each generation). In all the experiments
described in this section, models have been trained on selected subsets of the MDC
dataset, while the reported results have been obtained by testing the models on the IT8
dataset, that has absolutely not been used during the training phase.

Optimizing training samples using fixed polynomial coefficients. In this first set of
experiments, we use four different fixed polynomials and the goal is to find the training
samples, extracted from the MDC dataset, that allow the best generalization ability. We
performed several experiments in order to extract 12, 18, 24, 50, 75 and 100 samples

Table 1. Values of the ΔE94 error on the test set (IT8) obtained by the models trained on the
samples selected by each studied method. Fixed complete first degree polynomial without offset.
The minimum, maximum, mean, median, 90 percentile and standard deviation of ΔE94 error are
reported. For GAs results averaged over 50 independent runs are reported.

n. samp. Min Max Mean Median 90 prc std dev n. samp. Min Max Mean Median 90 prc std dev
HARD 12 0.91 13.94 4.87 4.61 7.92 2.41 HARD 50 0.58 11.01 4.15 3.99 6.33 1.89
CHEU 12 0.56 10.27 4.16 4.23 6.37 1.98 CHEU 50 0.54 9.32 3.96 3.69 6.01 1.71
CIC 12 0.70 9.92 3.79 3.56 6.35 2.04 CIC 50 0.69 10.31 3.89 3.69 6.21 1.98
SCHE 12 0.66 11.32 4.52 4.49 7.81 2.63 SCHE 50 0.39 12.13 4.36 4.22 7.43 2.58
GAs 12 0.52 9.33 3.95 3.79 6.40 3.77 GAs 50 0.63 9.85 3.84 3.58 6.35 4.03
HARD 18 0.80 12.69 4.68 4.52 8.05 2.23 HARD 75 0.41 10.43 4.53 4.28 7.74 2.18
CHEU 18 0.61 10.96 4.26 4.07 6.70 1.99 CHEU 75 0.89 10.14 4.02 3.76 6.16 1.78
CIC 18 0.72 9.74 3.81 3.53 6.09 1.92 CIC 75 0.69 10.04 3.86 3.65 6.12 1.94
SCHE 18 0.10 9.46 4.20 4.10 7.38 2.44 SCHE 75 0.25 11.32 4.16 3.85 7.20 2.44
GAs 18 0.54 9.29 3.87 3.68 6.32 3.67 GAs 75 0.66 9.78 3.85 3.63 6.26 3.83
HARD 24 0.85 12.45 4.32 4.18 6.60 2.16 HARD 100 0.37 10.20 4.55 4.28 8.05 2.20
CHEU 24 0.64 10.26 4.05 3.83 6.16 1.82 CHEU 100 0.69 10.37 4.02 3.75 6.19 1.83
CIC 24 0.70 10.10 3.83 3.64 6.35 2.06 CIC 100 0.62 10.22 3.88 3.61 6.15 1.95
SCHE 24 0.44 12.12 4.52 4.41 7.52 2.54 SCHE 100 0.31 10.94 4.01 3.74 6.89 2.31
GAs 24 0.50 9.78 3.86 3.61 6.46 4.14 GAs 100 0.66 10.13 3.86 3.61 6.37 4.12

288 L. Vanneschi et al.

Table 2. Values of the ΔE94 error on the test set (IT8) by the models trained on the samples
selected by each studied method. Fixed complete first degree polynomial. The minimum, maxi-
mum, mean, median, 90 percentile and standard deviation of ΔE94 error are reported. For GAs
results averaged over 50 independent runs are reported.

n. samp. Min Max Mean Median 90 prc std dev n. samp. Min Max Mean Median 90 prc std dev
HARD 12 0.96 13.79 3.59 2.81 6.41 2.33 HARD 50 0.47 10.77 2.43 2.01 3.68 1.67
CHEU 12 0.67 10.35 2.53 2.11 4.21 1.59 CHEU 50 0.48 9.09 2.19 1.84 3.22 1.33
CIC 12 0.55 8.68 2.11 1.79 3.34 1.29 CIC 50 0.54 9.17 2.19 1.82 3.51 1.36
SCHE 12 1.02 9.53 2.26 1.90 3.32 1.36 SCHE 50 0.79 9.85 2.49 2.19 3.78 1.44
GAs 12 0.60 7.69 1.97 1.71 3.03 1.44 GAs 50 0.51 8.65 2.08 1.75 3.35 1.72
HARD 18 0.95 12.52 3.18 2.46 5.71 2.08 HARD 75 0.47 10.40 2.36 1.94 3.58 1.60
CHEU 18 0.67 10.97 2.54 2.06 4.10 1.68 CHEU 75 0.56 9.79 2.31 1.98 3.35 1.45
CIC 18 0.53 8.71 2.11 1.79 3.36 1.29 CIC 75 0.56 9.11 2.17 1.80 3.47 1.35
SCHE 18 0.70 7.71 2.13 1.91 2.98 1.06 SCHE 75 0.80 9.47 2.36 2.04 3.63 1.38
GAs 18 0.58 7.82 2.01 1.74 3.17 1.49 GAs 75 0.55 8.93 2.10 1.72 3.46 1.83
HARD 24 0.66 12.29 3.00 2.43 4.94 1.91 HARD 100 0.47 10.03 2.30 1.88 3.54 1.54
CHEU 24 0.54 10.12 2.38 2.00 3.47 1.49 CHEU 100 0.56 9.93 2.31 1.99 3.44 1.49
CIC 24 0.62 8.87 2.13 1.80 3.41 1.31 CIC 100 0.54 9.01 2.15 1.79 3.51 1.34
SCHE 24 0.88 10.37 2.59 2.26 3.86 1.53 SCHE 100 0.61 9.42 2.33 2.03 3.61 1.35
GAs 24 0.59 8.18 2.06 1.76 3.21 1.56 GAs 100 0.53 8.76 2.09 1.74 3.41 1.78

Table 3. Values of the ΔE94 error on the test set (IT8) by the models trained on the samples se-
lected by each studied method. Fixed complete second degree polynomial. The minimum, max-
imum, mean, median, 90 percentile and standard deviation of ΔE94 error are reported. For GAs
results averaged over 50 independent runs are reported.

n. samp. Min Max Mean Median 90 prc std dev n. samp. Min Max Mean Median 90 prc std dev
HARD 12 0.36 8.16 2.84 2.39 5.61 1.73 HARD 50 0.55 4.96 1.79 1.66 2.44 0.73
CHEU 12 0.71 3.91 1.67 1.57 2.40 0.56 CHEU 50 0.63 3.35 1.63 1.57 2.22 0.53
CIC 12 0.39 3.27 1.53 1.53 2.13 0.55 CIC 50 0.53 3.22 1.49 1.49 2.09 0.52
SCHE 12 0.65 2.90 1.88 1.91 2.49 0.47 SCHE 50 0.75 3.96 1.83 1.80 2.39 0.53
GAs 12 0.49 4.14 1.55 1.55 2.15 0.35 GAs 50 0.59 3.61 1.49 1.47 2.07 0.27
HARD 18 0.31 4.91 1.96 1.84 2.88 0.77 HARD 75 0.43 4.55 1.73 1.66 2.32 0.68
CHEU 18 0.81 3.52 1.66 1.61 2.23 0.50 CHEU 75 0.77 4.50 1.74 1.68 2.32 0.64
CIC 18 0.42 3.17 1.49 1.50 2.12 0.52 CIC 75 0.57 3.03 1.50 1.49 2.15 0.52
SCHE 18 0.87 2.83 1.78 1.82 2.37 0.45 SCHE 75 0.76 4.06 1.77 1.72 2.35 0.55
GAs 18 0.47 3.72 1.52 1.51 2.11 0.31 GAs 75 0.65 3.15 1.53 1.53 2.10 0.24
HARD 24 0.45 5.40 2.09 1.99 3.00 0.81 HARD 100 0.54 4.28 1.68 1.62 2.30 0.65
CHEU 24 0.69 3.33 1.61 1.55 2.16 0.48 CHEU 100 0.70 4.48 1.72 1.67 2.26 0.64
CIC 24 0.42 3.05 1.50 1.50 2.13 0.52 CIC 100 0.59 3.13 1.50 1.49 2.11 0.51
SCHE 24 0.77 4.03 2.21 2.14 3.24 0.71 SCHE 100 0.81 4.20 1.79 1.77 2.36 0.56
GAs 24 0.47 3.63 1.51 1.51 2.09 0.29 GAs 100 0.64 3.46 1.51 1.49 2.11 0.25

from the initial dataset made of 240 total samples. The polynomials that we have consid-
ered are: first degree polynomial without offset (results reported in Table 1); complete
first degree polynomial (results reported in Table 2); complete second degree polyno-
mial (results reported in Table 3); complete third degree polynomial (results reported in
Table 4). Because of the non deterministic nature of GAs, we ran 50 independent execu-
tions and all the results we report were averaged over these runs. The other techniques
used in this paper are deterministic, hence only one execution was needed. Follow-
ing [13], the tables report the minimum, maximum, mean and median ΔE94 calculated
on the lines of the test set (i.e. the IT8 dataset).

When the first degree polynomial without offset is considered (Table 1), GAs obtain
better maximum error than all the other methods for 12, 18, 24, 75 and 100 samples; it
obtains better mean error than all the other methods for 50, 75 and 100 samples and it

Genetic Algorithms for Training Data and Polynomial Optimization 289

Table 4. Values of the ΔE94 error on the test set (IT8) by the models trained on the samples
selected by each studied method. Fixed complete third degree polynomial. The minimum, max-
imum, mean, median, 90 percentile and standard deviation of ΔE94 error are reported. For GAs
results averaged over 50 independent runs are reported.

n. samp. Min Max Mean Median 90 prc std dev n. samp. Min Max Mean Median 90 prc std dev
HARD 24 0.44 5.55 2.01 1.71 3.48 0.96 HARD 75 0.58 2.66 1.42 1.40 2.07 0.45
CHEU 24 0.57 2.88 1.45 1.48 2.08 0.49 CHEU 75 0.62 2.52 1.42 1.41 2.11 0.48
CIC 24 0.50 3.84 1.64 1.62 2.28 0.60 CIC 75 0.62 2.62 1.44 1.43 2.10 0.48
SCHE 24 0.62 6.52 2.52 2.16 4.49 1.28 SCHE 75 0.58 2.55 1.47 1.48 2.04 0.42
GAs 24 0.47 4.34 1.58 1.56 2.26 0.42 GAs 75 0.57 2.64 1.43 1.43 2.02 0.20
HARD 50 0.64 2.65 1.53 1.49 2.22 0.48 HARD 100 0.51 2.49 1.39 1.38 2.01 0.44
CHEU 50 0.58 2.84 1.42 1.39 2.23 0.52 CHEU 100 0.61 2.52 1.44 1.43 2.13 0.48
CIC 50 0.62 2.74 1.46 1.41 2.15 0.50 CIC 100 0.61 2.56 1.43 1.43 2.04 0.46
SCHE 50 0.61 3.08 1.50 1.48 2.12 0.46 SCHE 100 0.56 2.57 1.48 1.49 2.05 0.44
GAs 50 0.51 3.69 1.45 1.43 2.02 0.26 GAs 100 0.60 2.80 1.42 1.41 2.00 0.20

Table 5. Number of times (absolute and percentage values) in which the used techniques have
produced the best and the worst performance on the test set (IT8), using the selected training
samples

Best Worst %Best %Worst
HARD 1 10 4.55 45.45
CHEU 3 0 13.65 0
CIC 8 0 36.35 0
SCHE 0 12 0 54.55
GAs 10 0 45.45 0

Table 6. Left Part: results on the test set (IT8) returned by GAs using a fixed (randomly gen-
erated) training set and looking for the best third degree polynomial. Results averaged over 50
independent runs. The minimum, maximum, mean, median, 90 percentile and standard deviation
of ΔE94 error are reported. Right Part: analogous results returned by GAs when optimizing both
training samples and polynomial coefficients at the same time.

n. samp. Min Max Mean Median 90 prc std dev n. samp. Min Max Mean Median 90 prc std dev
24 0.45 4.82 1.63 1.56 2.42 0.54 24 0.54 3.91 1.55 1.53 2.18 0.34
50 0.54 3.25 1.46 1.47 2.02 0.23 50 0.55 3.00 1.44 1.44 1.97 0.21
75 0.58 2.77 1.45 1.45 2.06 0.21 75 0.55 2.63 1.43 1.43 2.011 0.20
100 0.56 2.63 1.43 1.42 2.04 0.21 100 0.62 2.69 1.43 1.42 1.99 0.19

Table 7. Upper part: best polynomial obtained in the same 50 independent GA runs as the ones
of Table 6 (left part). Lower Part: best polynomials obtained from the same 50 independent GA
runs as Table 6 (right part).

n. samples Best polynomial
24 1+B2 +B3 +G1B1 +G1B2 +G2B1 +G3 +R1 +R1B1 +R1B2 +R1G1 +R1G1B1 +R1G2 +R2 +R2B1 +R2G1

50 1+B1 +B2 +B3 +G1B1 +G1B2 +G2B1 +R1 +R1B2 +R1G1 +R1G1B1 +R1G2 +R2 +R2B1 +R2G1 +R3

75 B2 +B3 +G1 +G1B1 +G1B2 +G2 +G2B1 +G3 +R1 +R1B1 +R1B2 +R1G1 +R1G2 +R2 +R2B1 +R2G1 +R3

100 B1 +B2 +G1B1 +G1B2 +G2 +G2B1 +G3 +R1B2 +R1G1 +R1G1B1 +R1G2 +R2 +R2B1 +R2G1 +R3

24 B1 +B2 +B3 +G1 +G1B1 +G2 +G3 +R1B1 +R1B2 +R1G1 +R1G2 +R2 +R2B1 +R2G1 +R3

50 1+B1 +B2 +B3 +G1 +G1B1 +G1B2 +G2 +G2B1 +G3 +R1 +R1B2 +R1G1 +R1G2 +R2B1 +R2G1 +R3

75 1 + B1 + B2 + B3 + G1 + G1B1 + G1B2 + G2 + G2B1 + G3 + R1 + R1B1 + R1B2 + R1G1 + R1G1B1 + R1G2 +
R2 +R2B1 +R2G1 +R3

100 1 + B1 + B2 + B3 + G1 + G1B1 + G1B2 + G2 + G2B1 + G3 + R1 + R1B1 + R1B2 + R1G1 + R1G1B1 + R1G2 +
R2 +R2B1 +R2G1 +R3

290 L. Vanneschi et al.

obtains better median error than all the other methods for 24, 50 and 75 samples. When
the complete first degree polynomial is considered (Table 2), GAs obtain better maxi-
mum error than all the other methods for 12, 24, 50, 75 and 100 samples and it obtains
both mean and median better errors than all the other methods for all the considered
sampled sizes (12, 18, 24, 50, 75 and 100). When the second degree polynomial is con-
sidered (Table 3), GAs obtain better mean error than all the other methods for 18 and
50 samples and it obtains better median error than all the other methods for 50 and 100
samples. When the third degree polynomial is considered (Table 4), GAs obtain better
minimum error than all the other methods for 50 and 75 samples.

To summarize the results obtained in this phase, in Table 5 we report the number
of times (both in absolute and percentage values) in which the exploited techniques
produced the best and the worst performances. GAs perform better than all the other
considered techniques in about 45% of the experiments (and this is the maximum value
reached by any of the studied techniques). Furthermore, GAs do not perform worse than
all the other techniques in any of the considered experiments.

Optimizing polynomial coefficients using fixed training samples. In this phase we
consider a fixed set of training samples and we want to learn the polynomial coefficients
that produce the lowest mean ΔE94 error. In Table 6 (left part), the results produced
by GAs, averaged over 50 runs, are reported. In every run a random set of samples is
chosen with uniform probability from the MDC dataset, then the algorithm looks for the
best third degree polynomial coefficients. Notice that the obtained results are similar to
the values presented in Table 4, but the polynomials produced by the algorithm rarely
contain all the terms of the complete third degree polynomial. This is a rather important
result because working with a simpler polynomial is computationally less expansive
than working with the full polynomial. Table 7 (upper part) reports the best polynomials
obtained when 24, 50, 75 and 100 prefixed training samples have been used.

Optimizing polynomial coefficients and training samples at the same time. The
goal of the third experimental phase is to learn both the training samples and the poly-
nomial coefficients at the same time. In Table 6 (right part) results produced by GAs
are shown. Finally in table 7 (lower part) the best generated polynomials are reported.
Comparing the values presented in Table 6 (right part) with those displayed in Table 4,
it is possible to notice a performance improvement. We have performed a t-test to un-
derstand whether the difference between the mean values shown in these two tables are
significant. The t-test, performed with a confidence interval α=95% gave the following
results: the difference of mean ΔE94 of the two distributions is statistically significant
for 24 and 50 samples, while it is not for 75 and 100 samples.

6 Conclusions and Future Work

We have proposed a framework based on Genetic Algorithms (GAs) to optimize the
most promising training samples from large datasets. The presented experimental
results show that the proposed framework has better, or at least comparable, perfor-
mances than a set of other computational methods defined so far for the same goal

Genetic Algorithms for Training Data and Polynomial Optimization 291

(Hardeberg, Cheung, CIC and Schettini). Even more importantly, the proposed frame-
work has the ability to optimize the training samples and the characterizing polyno-
mial’s coefficients at the same time (which is not feasible using the other computational
methods studied here). Interestingly, the proposed framework is able to evolve poly-
nomials that have a comparable performance with the one of full polynomials of the
same degree, but using a randomly generated training set, instead of a chosen one.
Furthermore, when the proposed framework evolves both the training samples and the
polynomial’s coefficient, it is able to find smaller average errors than in the case full
polynomials are used.

Acknowledgments. L. Vanneschi and M. Castelli gratefully acknowledge project
PTDC/EIACCO/103363/2008 from Fundação para a Ciência e a Tecnologia, Portugal.

References

1. Bianco, S., Gasparini, F., Schettini, R., Vanneschi, L.: An evolutionary framework for colori-
metric characterization of scanners. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro,
G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J.,
O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWork-
shops 2008. LNCS, vol. 4974, pp. 245–254. Springer, Heidelberg (2008)

2. Bianco, S., Gasparini, F., Schettini, R., Vanneschi, L.: Polynomial modeling and optimiza-
tion for colorimetric characterization of scanners. Journal of Electronic Imaging 17(4), 1–13
(2008)

3. Cheung, T.L., Westland, S.: Color selections for characterization charts. In: Proceedings of
the Second European Conference on Colour in Graphics, Imaging and Vision, Aachen, Ger-
many, pp. 116–119 (2004)

4. Cheung, T., Westland, S., Connah, D., Ripamonti, C.: Characterization of colour cameras
using neural networks and polynomial transforms. Journal of Coloration Technology 120(1),
19–25 (2004)

5. Cheung, V., Westland, S., Li, C., Hardeberg, J., Connah, D.: Characterization of trichromatic
color cameras by using a new multispectral imaging technique. J. Opt. Soc. Am. A 22, 1231–
1240 (2005)

6. Chou, Y., Li, C., Luo, M.: A new colour selection method for characterising digital cameras.
In: Proceedings of the 17th Color Imaging Conference (2009) (to appear)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading (1989)

8. Hardeberg, J.Y., Brettel, H., Schmitt, F.J.M.: Spectral characterization of electronic cameras.
In: Electronic Imaging: Processing, Printing, and Publishing in Color. SPIE, Zurich (1998)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor (1975)

10. Huffel, S., Vandewalle, J.: The total least squares problem: computational aspects and anal-
ysis. Society for Industrial and Applied Mathematics, Philadelphia (1991)

11. Kang, H.: Computational coolor technology, vol. PM159. SPIE Press (2006)
12. Pellegri, P., Novati, G., Schettini, R.: Training set selection for multispectral imaging systems

characterization. Journal of Imaging Science and Technology 48(3), 203–210 (2004)
13. Shen, H.L., Mou, T.S., Xin, J.: Colorimetric characterization of scanners by measures of

perceptual color error. Journal of Electronic Imaging 15(4), 1–5 (2006)
14. Shen, H.L., Xin, J.: Spectral characterization of a color scanner by adaptive estimation. Jour-

nal of the Optical Society of America A 21(7), 1125–1130 (2004)

New Genetic Operators in the Fly Algorithm:
Application to Medical PET Image

Reconstruction

Franck Patrick Vidal1,�, Jean Louchet2,
Jean-Marie Rocchisani1,3, and Évelyne Lutton1

1 INRIA Saclay - Île-de-France/APIS, 4 rue J. Monod 91893 Orsay Cedex, France
2 Artenia, 24 rue Gay-Lussac, 92320 Châtillon, France

3 Paris XIII University, UFR SMBH & Avicenne hospital, 74 rue Marcel Cachin,
93017 Bobigny, France

Abstract. This paper presents an evolutionary approach for image re-
construction in positron emission tomography (PET). Our reconstruc-
tion method is based on a cooperative coevolution strategy (also called
Parisian evolution): the “fly algorithm”. Each fly is a 3D point that
mimics a positron emitter. The flies’ position is progressively optimised
using evolutionary computing to closely match the data measured by
the imaging system. The performance of each fly is assessed using a
“marginal evaluation” based on the positive or negative contribution of
this fly to the performance of the population. Using this property, we
propose a “thresholded-selection” method to replace the classical tour-
nament method. A mitosis operator is also proposed. It is triggered to
automatically increase the population size when the number of flies with
negative fitness becomes too low.

1 Introduction

Image reconstruction in tomography is an inverse problem that is ill-posed: a
solution does not necessarily exist (e.g. in extreme cases of excessive noise), and
the solution may not be unique. This problem can be solved as an optimisation
problem, and on such cases, evolutionary algorithms have been proven efficient in
general, and in particular in medical imaging [2,4,13]. We focus here on positron
emission tomography (PET) reconstruction in nuclear medicine.

Nuclear medicine appeared in the 1950’s [1]. Its principle is to diagnose or
treat a disease by administering to patients a radioactive substance (also called
tracer) that is absorbed by tissue in proportion to some physiological process.
When a pathology occurs, the metabolism most of the times increases: there are
more molecules in the pathology area, i.e. the radioactivity also increases.

� Member of Fondation Digiteo (http://www.digiteo.fr/). Now with University of Cal-
ifornia San Diego, Rebecca and John Moores Cancer Center, Radiation Oncology,
CA, USA.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 292–301, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

New Genetic Operators in the Fly Algorithm 293

It is possible to reconstruct slices through the human body using methods
similar to those used in conventional X-ray computed tomography [7]. In nuclear
medicine, this method makes use of a gamma emitter as radio-tracer. It is called
Single-Photon Emission Computed Tomography (SPECT). The reconstruction
allows to recover the 3D distribution of the tracer through the body.

The other main tomographic technique in nuclear medicine is PET. Here a
positron emitter is used as radionuclide for labelling, rather than a single gamma
emitter. Positrons are emitted with high energy (1 MeV). After interactions, a
positron combines with an electron to form a positronium. Then the electron and
positron pair is converted into radiations. It is the annihilation reaction, which
generally produces two photons of 511 keV emitted in opposite directions. Taking
advantages of this property, this radiation is detected in coincidence, i.e. using
the difference in arrival times of the detected photons of each pair, and consid-
ering that each annihilation produces two photons emitted in exactly opposite
directions. The line between the detectors that have been activated for a given
pair of photons is called “line of response” (LOR). Prior to the reconstruction,
the LOR data is often rebinned into a sinogram [5,8]. This intermediate data
representation corresponds to projection data that can be used by conventional
tomographic reconstruction codes. A broad overview of reconstruction methods
using projection data in nuclear medicine can be found in [8,14].

The PET reconstruction methods are often divided into two classes: i) an-
alytical methods, and ii) iterative statistical methods. Analytical methods are
based on a continuous modelling and the reconstruction process consists of the
inversion of measurement equations. The most frequently used is the filtered
back-projection algorithm (FBP) [7]. Statistical methods are based on iterative
correction algorithms. These include the most widely used techniques in SPECT
and PET, such as the maximum-likelihood expectation-maximization method
(ML-EM) [10] and its derivative, the ordered subset expectation-maximization
algorithm (OS-EM) [6].

In a previous paper, we showed that a cooperative coevolution strategy (also
called Parisian evolution) called “fly algorithm” [9] could be used in SPECT
reconstruction [3]. Here, each fly corresponds to a 3D point that is emitting
photons. The evolutionary algorithm is used to optimise the position of flies.

However, PET has taken over SPECT in routine clinical practice. Effort has
therefore been made to propose an efficient evolutionary scheme that takes into ac-
count PET data acquisition principles [11,12], but these were still restricted to low
resolution PET scanners in 2D-mode. This paper describes our current research
activities aimed at providing an effective method in both 2D or fully-3D mode,
and it describes recent developments, such as i) the introduction of “thresholded-
selection” replacing the traditional “tournament selection” and ii) taking advan-
tage of the thresholded-selection to increase the population size (when the number
of flies, whose fitness is negative, is too low), i.e. improve the statistics of the final
image. The following section gives an overviewof the methodology. The results and
performance of our method using numerical phantoms are presented in Section 3.

294 F.P. Vidal et al.

The paper ends with a conclusion that discusses the work that has been carried
out and it provides directions for future work.

2 Material and Methods

2.1 Main Principles

Each individual, or fly, corresponds to a 3D point that mimics a radioactive emit-
ter, i.e. a stochastic simulation of annihilation events is performed to compute
the fly’s illumination pattern. For each annihilation event, a photon is emitted
in a random direction. A second photon is then emitted in opposite direction.
If both photons are detected by the scanner, the fly’s illumination pattern is
updated. The scanner properties (e.g. detector blocks and crystals positions) are
modelled, and each fly is producing an adjustable number of annihilation events.
Each fly keeps a record of its simulated LORs. Therefore the result of these sim-
ulations consist of a list, per fly, of pairs of detector identification numbers that
correspond to LORs. These lists are aggregated to form the population total
illumination pattern.

Initially, the flies’ position is randomly generated in the volume within the
scanner. Using genetic operations to optimise the position of radioactive emitters,
the population of flies evolves so that the population total pattern matches
measured data. The final population of flies corresponds to the tracer density
in the patient, i.e. the reconstructed data. Note that cross-over operations are
not used in this application. In our context, the result of such an operation may
lead to meaningless results, e.g. in the case of cross-over between two flies of two
distinct objects (the new fly will be wrongly located in between). Only mutation
and immigration (i.e. a fly is created at a random position) are used.

2.2 Fitness Metrics

The fitness metrics corresponds to a distance measurement between the simu-
lated data and the actual data given by the imaging system. City block distance
provides a good compromise between accuracy and speed. Note that smaller the
population’s cost is, closer the simulated data is to the actual data.

In [3], we showed that, when we were addressing the SPECT problem, if we de-
fined the fitness of a fly as the consistency of the image pattern it generates, with
the actual images, it gave an important bias to the algorithm with a tendency
of the smaller objects to disappear. This is why we then introduced marginal
evaluation (Fm (i)) to assess a given fly (i). It is based on the leave-one-out
cross-validation method. We use a similar approach in PET:

Fm(i) = dist (pop, input)− dist (pop− {i} , input) (1)

with Fm(i) the marginal fitness of Fly i, dist (A, B) the city block distance be-
tween two tables A and B, pop is the set of LORs simulated by the whole pop-
ulation, input is the set of LORs extracted from the input data, and pop− {i}

New Genetic Operators in the Fly Algorithm 295

is the set of LORs simulated by the whole population without Fly i. The fitness
of a given fly will only be positive when the global cost is lower (better) in pres-
ence rather than in the absence of this fly. We therefore used a fixed threshold
to operate selection.

2.3 Thresholded Selection

At each iteration of the evolution loop, a fly has to be killed, and a fly may be
used during the mutation. We saw in the previous section that the fly’s fitness is
its own contribution (positive or negative) with respect to the whole population.
We take advantage of this principle as follows: i) any “bad” fly (its fitness is
negative) is a candidate for death, and ii) any “good” fly (its fitness is positive)
is a candidate for mutation. When a fly is killed, its LORs are removed from the
total set of simulated LORs. When a new fly is created, its LORs are added.
This process needs to be fast to be able to decrease the number of bad flies and
increase the number of good flies as much as possible.

2.4 Mitosis

To obtain accurate, high resolution images it is necessary to use large popula-
tions of flies. However, as processing time is roughly proportional to the number
of flies to be processed, we choose a simple scheme that begins with a small
population, then multiply the population along the algorithm execution using a
mitosis process: each fly is duplicated. Newly created flies will have their own
illumination pattern.

It is triggered whenever the number of flies with a negative fitness gets too low.
In practice, at each step in the steady state process, one fly is chosen randomly
and its fitness tested: a genetic operator will only be applied if the fly is bad.
We launch the population mitosis every time 50 consecutive flies are found with
a positive fitness.

3 Results

We have developed numerical phantom models to assess the reconstruction al-
gorithm. To date, no scattering and no tissue attenuation have been considered.
Whilst this is not physically correct, it allows us to test and validate our approach
in the simplest cases. First, we present quantitative results in 2D-mode, both
in low and high resolutions. Then, qualitative results in 3D-mode are presented
using a complex object. For each test case, the initial population is 5,000 flies.
When the current number of flies of the population is above a given threshold,
e.g. 16 or 26, the evolution loop is stopped whenever the number of flies with
a negative fitness becomes too low, i.e. the stopping criteria is similar to the
mitosis criteria. 70 LORs per fly have been simulated in the 2D test cases. The
probability of LORs to be detected is much higher in the 3D case. Thus only 10
LORs per fly have been simulated in the 3D case.

296 F.P. Vidal et al.

(a) Phantom model (b) Reconstructed data in
high resolution

Fig. 1. Simulated PET System: a single ring of 72 linear blocks that include 8 crys-
tals; two boxes (7 × 7 × 0.4 cm3 and 10 × 10 × 0.4 cm3) with the same radioactivity
concentrations (∼ 930.000 counts/ml)

(a) Phantom model (b) Reconstructed data

Fig. 2. Slices (512 × 512 pixels) through the cubes

3.1 2D-Mode

Test 1: large objects with different sizes and similar radioactivity con-
centration. The purpose of this test was to assess the ability of the algorithm
to retrieve relatively large objects, whose sizes are different, but with the same
radioactivity concentration. Fig. 1 shows the simulated set up. The phantom
is made of two boxes (7 × 7 × 0.4 cm3 and 10 × 10 × 0.4 cm3) with the same
radioactivity concentrations (∼ 930.000 counts/ml). The simulated PET system
is made of a single ring of 72 linear blocks that include 8 crystals. To evaluate
the results, a 512× 512 pixel slice is produced (see Fig. 2). Note that the typical
image size in PET is 128× 128 pixels. The slices are post-filtered using a gaus-
sian convolution kernel, then linearly rescaled between zero and one. Profiles in
this reconstructed image are compared to corresponding profiles in the phantom
data (see Fig. 3). For both boxes, the reconstructed data seems to be close to the
input data. Full width at half maximum (FWHM) is also measured to quantify
errors (see Table 1). These results show that our evolutionary scheme is able to
accurately recover the width of our test objects.

Test 2: small objects with different sizes and radioactivity concentra-
tions. This test case has been designed to assess the ability of our algorithm

New Genetic Operators in the Fly Algorithm 297

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180

N
or

m
al

is
ed

 c
on

ce
nt

ra
tio

n

Pixel

Real data
Reconstructed data (flies’ fitness ≥ 0)

(a) Cube size: 10 × 10 × 0.4 cm3

 0

 0.2

 0.4

 0.6

 0.8

 1

 320 340 360 380 400 420

N
or

m
al

is
ed

 c
on

ce
nt

ra
tio

n

Pixel

(b) Cube size: 7 × 7 × 0.4 cm3

Fig. 3. Profiles extracted from Fig. 2

Table 1. FWHM estimated from Fig. 3

FWHM from phantom model FWHM from slice Relative difference
(in mm) (in mm) (in %)

71 72 1
99 99 0

C1 C5

C3 C2C4

(a) Phantom model

C ′1 C ′5

C ′3 C ′2C ′4

(b) Data reconstructed from
low resolution scanner

C ′′1 C ′′5

C ′′3 C ′′2C ′′4

(c) Data reconstructed from
high resolution scanner

Fig. 4. Slices (512 × 512 pixels) through the cylinders

to detect small objects, and their relative radioactivity concentrations. Fig. 4(a)
shows nine cylinders having two different radii (1 cm and 2.5 cm) and five differ-
ent radioactivity concentrations (C1 = 114, 590 count/ml, C2 = 2C1, C3 = 3C1,
etc.). A low resolution PET system has first been considered. It is made of a
single ring of 72 linear blocks that include only 1 crystal.

To evaluate the results, a 512 × 512 pixel slice is produced once again (see
Fig. 4(b)). The reconstructed data appears to be visually close to the input data.
In particular, the size and concentration of cylinders are visually well preserved.

To estimate the diameter of each cylinder, horizontal profiles have been ex-
tracted so that they crossed the cylinders in their respective centre (see Fig. 5).

298 F.P. Vidal et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 200 250 300 350 400

N
or

m
al

is
ed

 c
on

ce
nt

ra
tio

n

Pixel

Real data
Reconstructed data (flies’ fitness ≥ 0)

(a) 1st line

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 200 250 300 350 400

N
or

m
al

is
ed

 c
on

ce
nt

ra
tio

n

Pixel

(b) 2nd line

Fig. 5. Profiles extracted from Fig. 4(b)

Table 2. FWHM estimated from Fig. 5 (using a low resolution PET system), and
Fig. 6 (using a high resolution PET system)

FWHM from FWHM Relative difference FWHM Relative difference
phantom model in Fig. 5 in Fig. 5 in Fig. 6 in Fig. 6

Object (in mm) (in mm) (in %) (in mm) (in %)
1 19 13 31.6 18 5.7
2 49 43 12.2 48 2.3
3 19 14 26.3 18 6.8
4 49 44 10.2 47 3.2
5 19 12 36.8 17 8.6

As the lower profiles are symmetrically similar to the upper profiles, they are not
plotted here. FWHM is measured once again to quantify errors (see Table 2).
Let Object i be the cylinder whose concentration is Ci in the phantom model
and C′

i in the reconstructed slice. Whilst the profiles in the reconstructed slice
seem to match respective profiles in the phantom model, error measurements in
FWHM are relatively high for the smallest cylinders (up to 35%). To investigate
the influence of the reconstructed slice resolution with respect to the low spatial
resolution of the PET system, the test case presented in the next section makes
used of similar objects and a PET scanner with higher spatial resolution.

To assess the validity of the radioactivity concentration within cylinders, the
average value at the centre of each cylinder has been measured in Fig. 4(b)
(see Table 3). We compare the respective ratio of the different concentrations to
the lower value (C′

1), so that we can compare the reconstructed values with the
theoretical values. In theory, we should get C′

2 = 2C′
1, C′

3 = 3C′
1, etc. Table 3

shows that the relative concentrations have been preserved in the reconstructed
slice. However, the maximum relative error is about 16.50%.

Test 3: higher scanner resolution. The previous test case shows that our
algorithm is able to retrieve the respective size of objects and their respective
concentration. However, relative errors can be as high as 35% for the FWHM

New Genetic Operators in the Fly Algorithm 299

Table 3. Relative radioactivity concentration estimated from Fig. 4(b) (using a low
resolution PET system), and Fig. 4(c) (using a high resolution PET system)

Relative Relative error Relative Relative error
concentration in Fig. 4(b) concentration in Fig. 4(c)

Object in Fig. 4(b) (in %) in Fig. 4(c) (in %)
1 C′

1 N/A C′′
1 N/A

2 2.13 × C′
1 6.5 2.17 × C′′

1 8.4
3 2.67 × C′

1 16.5 3.19 × C′′
1 9.5

4 3.80 × C′
1 10.0 4.40 × C′′

1 19.9
5 5.02 × C′

1 1.0 5.35 × C′′
1 17.5

and 16,5% for the concentration. In this test case, similar objects have been
simulated. The size of crystals has been reduced so that their width matches
the width of real crystals. A similar methodology is used to assess the results: i)
Fig. 4(c) shows a 512 × 512 pixel slice that has been reconstructed, ii) profiles
have been extracted (see Fig. 6), iii) FWHM estimated (see Table 2), and iv)
the concentrations assessed (see Table 3). These results show that using a high

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 200 250 300 350 400

N
or

m
al

is
ed

 c
on

ce
nt

ra
tio

n

Pixel

Real data
Reconstructed data (flies’ fitness ≥ 0)

(a) 1st line

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 200 250 300 350 400

N
or

m
al

is
ed

 c
on

ce
nt

ra
tio

n

Pixel

(b) 2nd line

Fig. 6. Profiles extracted from Fig. 4(c)

resolution PET scanner reduced the maximum error in object size by a factor of
4. This is due to the improvement of the spatial resolution. On the other hand,
errors in radioactivity concentration have not been reduced.

3.2 3D-Mode

The last case has been performed in fully-3D, i.e. the PET imaging system is
made of a stack of detector rings. For a coincidence event, the two photons of a
LOR can be detected onto different rings. Only visual results are presented here.

A complex 3D shape is used in this test. The simulation is performed using
a polygon mesh (here we use the dragon model from The Stanford 3D Scanning
Repository, http://graphics.stanford.edu/data/3Dscanrep/, last access 17 Jan

300 F.P. Vidal et al.

Fig. 7. Top row: simulated object; bottom row: volume rendering of the reconstruction

2010) that is uniformly filled with radio-tracers (see top row in Fig. 7). Then,
LORs are recorded in fully-3D mode. Finally, we run our evolutionary recon-
struction scheme. Note that the reconstruction algorithm is similar in both 2D
and 3D modes. The only difference is the geometrical property of the simulated
PET scanner. The bottom row in Fig. 7 presents the reconstructed dataset after
volume rendering. One can visually distinguish the shape of the dragon from the
population of flies.

4 Conclusion

It may occur that complex applications fuel fundamental technical developments.
In the research presented here, we addressed a complex problem that had never
been approached in the past using evolutionary computing, by transposing the
Fly Algorithm technique originally developed in a stereovision context. We then
faced several difficult issues which encouraged the development of new tools
that can probably be used into other application fields in evolutionary comput-
ing. Using the ‘marginal fitness’ concept opened the way to using a simplified
thresholded selection, which in turn allowed to introduce the mitosis operator
that duplicates the population whenever the proportion of individuals with a
negative contribution to the global fitness becomes too low, thus periodically
reviving the efficiency of the classical operators (mutation and immigration).

New Genetic Operators in the Fly Algorithm 301

Preliminary results on tests objects show the validity of this approach in both
2D and fully-3D modes. In particular, the size of objects, and their relative
concentrations can be retrieved in the 2D mode. In fully-3D, complex shapes
can be reconstructed.

To date, only true coincidence events have been considered. Further work
will therefore include the use of more realistic input data (including random
events and scattering), which will finally lead to implement the correction of
scattering within our algorithm. A comparison study against ML-EM and/or
OS-EM methods will also need to be conducted.

References

1. Badawi, R.D.: Nuclear medicine. Phys. Educ. 36(6), 452–459 (2001)
2. Bosman, P.A.N., Alderliesten, T.: Evolutionary algorithms for medical simulations:

a case study in minimally-invasive vascular interventions. In: Workshops on Genetic
and Evolutionary Computation 2005, pp. 125–132 (2005)

3. Bousquet, A., Louchet, J., Rocchisani, J.M.: Fully three-dimensional tomographic
evolutionary reconstruction in nuclear medicine. In: Monmarché, N., Talbi, E.-G.,
Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 231–
242. Springer, Heidelberg (2008)

4. Cagnoni, S., Dobrzeniecki, A.B., Poli, R., Yanch, J.C.: Genetic algorithm-based
interactive segmentation of 3D medical images. Image Vision Comput. 17(12),
881–895 (1999)

5. Fahey, F.H.: Data acquisition in PET imaging. J. Nucl. Med. Technol. 30(2), 39–49
(2002)

6. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered sub-
sets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

7. Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. Society
of Industrial and Applied Mathematics (2001)

8. Lewitt, R.M., Matej, S.: Overview of methods for image reconstruction from pro-
jections in emission computed tomography. Proc. of IEEE 91, 1588–1611 (2003)

9. Louchet, J.: Stereo analysis using individual evolution strategy. In: International
Conference on Pattern Recognition 2000, p. 1908 (2000)

10. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomogra-
phy. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

11. Vidal, F.P., Lazaro-Ponthus, D., Legoupil, S., Louchet, J., Lutton, E., Rocchisani,
J.: Artificial evolution for 3D PET reconstruction. In: Artificial Evolution 2009.
LNCS. Springer, Heidelberg (2009) (to appear)

12. Vidal, F.P., Louchet, J., Lutton, E., Rocchisani, J.: PET reconstruction using a
cooperative coevolution strategy in LOR space. In: IEEE Medical Imaging Con-
ference 2009 (2009) (to appear)

13. Völk, K., Miller, J.F., Smith, S.L.: Multiple network CGP for the classification
of mammograms. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS,
vol. 5484, pp. 405–413. Springer, Heidelberg (2009)

14. Zaidi, H. (ed.): Quantitative Analysis in Nuclear Medicine Imaging. Springer, US
(2006)

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 302–311, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chaotic Hybrid Algorithm and Its Application in Circle
Detection

Chun-Ho Wu1, Na Dong1,2, Wai-Hung Ip1, Ching-Yuen Chan1, Kei-Leung Yung1,
and Zeng-Qiang Chen2

1 Department of ISE, The Hong Kong Polytechnic University, HungHom, Kln, Hong Kong
2 Department of Automation, Nankai University, Tianjin, 300071, China
jack.wu@polyu.edu.hk, dongna1110@hotmail.com,
{mfwhip,mfcychan,mfklyung}@inet.polyu.edu.hk,

chenzq@nankai.edu.cn

Abstract. An evolutionary circle detection method based on a novel Chaotic
Hybrid Algorithm (CHA) is proposed. The method combines the strengths of
particle swarm optimization, genetic algorithms and chaotic dynamics, and in-
volves the standard velocity and position updating rules of PSO with the ideas
of GA selection, crossover and mutation. In addition, the notion of species is
introduced into the proposed CHA to enhance its performance in solving mul-
timodal problems. The effectiveness of the Species based Chaotic Hybrid Algo-
rithm (SCHA) is proven through simulations and benchmarking, and finally, it
is successfully applied to solve circle detection problems.

Keywords: Circle Detection, Chaos, PSO, GA, Multimodal Optimization.

1 Introduction

Genetic Algorithms (GA) and Particles Swarm Optimization (PSO) are both popula-
tion based algorithms that have proven to be successful in solving a variety of diffi-
cult problems. However, both models have strengths and weaknesses. Comparisons
between GAs and PSOs have been performed by Eberhart and Angeline and both
conclude that a hybrid of the standard GA and PSO models could lead to further ad-
vances [1, 2]. Recently, a hybrid GA/PSO algorithm, Breeding Swarms (BS), combin-
ing the strengths of GA with those of PSO, was proposed by Matthew and Terence
[3]. The performance of BS is competitive with both the GA and PSO, and was able
to locate an optimum significantly faster than either GA or PSO. In a GA, if an indi-
vidual is not elite or selected for crossover, the individual’s information is lost. How-
ever, without a selection operator, PSOs usually waste resources on poor individuals.
The hybrid algorithm combines the standard velocity and position updating rules of
PSO with the ideas of GA selection, crossover and mutation. The operations inherited
from GA facilitate a search globally, but not exactly, while the interactions of PSO
effectuate a search for an optimum. In order to improve the whole performance and to
enhance the GA’s operations in terms of searching ability, the notion of chaos is in-
troduced into the initialization and replaces the ordinary GA mutation. Chaos is a kind

 Chaotic Hybrid Algorithm and Its Application in Circle Detection 303

of characteristic of nonlinear systems and chaotic motion can traverse every state in a
certain region by its own regularity, and nowadays has been applied in different fields
[4, 5]. Due to the unique ergodicity and special ability in avoiding being trapped in
local optima, the performance of chaos search is much higher than some other sto-
chastic algorithms [6].

Multimodal optimization is used to locate all the optima within the searching
space, rather than one and only one optimum, and has been extensively studied by
many researchers [7]. Many algorithms based on a large variety of different tech-
niques have been proposed in the literature. Among them, ‘niches and species’ and a
fitness sharing method [8] were introduced to overcome the weakness of traditional
evolutionary algorithms for multimodal optimization. Here, the notion of species [9]
is combined with the proposed Chaotic Hybrid Algorithm (CHA) to solve multimodal
problems, and it is then put into use in the application of circle detection.

The circle detection problem has attracted many researchers and most of them ap-
ply Hough transform based techniques. For examples, Lam and Yuen [10] proposed
an approach which is based on hypothesis filtering and Hough transforms to detect
circles. Rosin and Nyongesa [11] suggested a soft computing approach to shape clas-
sification. In this paper, the three-edge-point circle representation is adopted [12],
which can reduce the search space by eliminating infeasible circle locations in the
captured images.

2 GA/PSO Hybrid Algorithms

Since the paper presents a new version of a combined evolutionary search method, a
brief literature review on the GA/PSO hybrid algorithm is included. The proposed
CHA will then be introduced.

2.1 Breeding Swarms (BS)

The hybrid algorithm combines the standard velocity and position updating rules of
PSO with the ideas of selection, crossover and mutation [3]. An additional parameter,
the breeding ratio (ϕ), determines the proportion of the population which undergoes

breeding (selection, crossover and mutation) in the current generation. Values for the
breeding ratio parameter range within (0.0 : 1.0). In each generation, after the fitness
values of all the individuals in the same population are calculated, the bottom portion
(N ·ϕ), where N is the population size, is discarded and removed from the popula-

tion. The remaining individuals’ velocity vectors are updated and acquire new
information from the population. The next generation is then created by updating the
position vectors of these individuals to refill (N · (1 −ϕ)) individuals in the next

generation. The (N ·ϕ) individuals, which are required to refill in the population, are

selected from the preserved individuals. The velocity of each individual is updated by
undergoing the Velocity Propelled Averaged Crossover (VPAC) and mutation, and
the above mentioned process is repeated in each iteration. The crossover operator,
VPAC, incorporates the PSO velocity vector. The goal is to create two child particles
whose positions are between the parents’ positions, but accelerated away from the

304 C.-H. Wu et al.

parent’s current directions (negative velocity) in order to increase diversity in the
population. Equation (1) shows how the new child position vectors are calculated:

1 1 2 1 1

2 1 2 2 2

() (() ()) / 2.0 ()

() (() ()) / 2.0 ()
i i i i

i i i i

c x p x p x p v

c x p x p x p v

ε
ε

= + −
= + −

 (1)

where, 1()ic x and 2 ()ic x are the positions of children 1 and 2 in dimension i,

respectively. 1()ip x and 2 ()ip x are the positions of parents 1 and 2 in dimension i,

respectively. 1()ip v and 2 ()ip v are the velocities of parents 1 and 2 in dimension i,

respectively. ε is a uniform random variable in the range [0.0 : 1.0]. The child parti-

cles retain their parent’s velocity vector, 1 1() ()c v p v= and 2 2() ()c v p v= .The previ-

ous best vector is set to the new position vector of the child.

2.2 Chaotic Hybrid Algorithm (CHA)

In this paper, a new hybrid algorithm based on GA and PSO, CHA, is proposed. In
order to improve the whole performance and to let the operations inherited from GA
have a better performance in the global search situation, the notion of chaos is intro-
duced into the initialization and as a replacement of the mutation process. In this
paper, the tent map is used to generate chaos variables. It shows the outstanding ad-
vantages and higher iterative speed [13] which is more suitable for the uniform distri-
bution function in the interval [0, 1]. The tent map is defined by:

()1 01 2 0.5 ,0 1 0,1, 2,n nz z z nμ+ = − − ≤ ≤ =， (2)

where (0,1)u∈ is the bifurcation parameter. Specifically, when μ=1, the tent map

exhibits entirely chaotic dynamics and ergodicity in the interval [0, 1]. The tent map
chaotic dynamics have been used to initialize the particle swarm. Firstly, the tent
map(μ=1)is used to generate the chaos variables, and rewriting Equation (2), gives:

()(1) ()1 2 0.5i i
j jz zμ+ = − − , 1, 2, ,j D= (3)

where zj denotes the jth chaos variable, and i denotes the chaos iteration number. Set
i=0 and generate D chaos variables by Equation (3). After that, let i=1, 2,…, m in
turn, and generate the initial swarm. Then, the above chaos variable () , 1, 2, ,i

jz i m= ,

will be mapped into the search range of the decision variable:

()()
min, max, min, , 1,2, ,i

ij j j j jx x z x x j D= + − = (4)

defining:

Xi= (xi1, xi2,…, xiD), i=1,2,…,m. (5)

and then, the chaos initialized particle swarm can be obtained.

 Chaotic Hybrid Algorithm and Its Application in Circle Detection 305

The above chaos initialization method is used to initialize the whole swarm, and
unlike the BS, in the proposed CHA, the GA mutation process is not operated by the
traditional mutation method of changing the ‘0, 1’ sequence, but is replaced by the
chaos re-initialization approach. That is, when an individual is chosen to do the muta-
tion, it is re-initialized by the chaos initialization. For clarity, the flow of the proposed
chaotic method is illustrated in Fig. 1, where n = (N · (1 −ϕ)).

P1 ... Pn Pn+1 ... PN

Ind.? ... Ind.? Ind.? ... Ind.?

Discard

Velocity
Update

Position
Update

Tournament
Selection

VPAC
Crossover

When an individual is chosen,
it is reinitialized by the chaos

initialization method

Ind. P1 ... Ind. Pn Ind. Pn+1 ... Ind. PN

Generation N

Generation N+1

Parents Offspring

Rank

Fig. 1. Flow Diagram of the Chaotic Hybrid Algorithm

3 Species Based Chaotic Hybrid Algorithm (SCHA)

Multimodal optimization is used to locate all the optima within the search space,
rather than one and only one optimum, and has been extensively studied by many
researchers. Many algorithms based on a large variety of different techniques have
been proposed in the literature. Recently, a speciation based particle swarm optimiza-
tion (SPSO) method [9] was introduced to solve multimodal problems. The SPSO
aims to identify multiple species within a population, and determines the neighbor-
hood best for each species. The multiple species are produced adaptively, in parallel,
and are used to optimize multiple optima. In this paper, the notion of species is incor-
porated into the proposed CHA, and to generate a new Species based Chaotic Hybrid
Algorithm (SCHA).

3.1 Procedure of SCHA

The notion of species has been incorporated with CHA. A species can be defined as a
group of individuals sharing common attributes according to some similarity metric.
This similarity metric could be based on the Euclidean distance for genotypes using
a real coded representation. The smaller the Euclidean distance between two indi-
viduals, the more similar they are. The definition of species also depends on another

306 C.-H. Wu et al.

parameter γs, which denotes the radius measured in the Euclidean distance from the
center of a species to its boundary. The center of a species, the species seed, is always
the fittest individual in the species. All particles that fall within the γs distance from
the species seed are classified as the same species. The particles start searching for the
optimum of a given objective function by moving through the search space at a ran-
dom initial position. The manipulation of the swarm can be represented by Equations
(6) and (7). Equation (6) updates the particle velocity and Equation (7) updates each
particle’s position in the search space, where pid is the personal best position and lbesti
is the neighborhood best of particle i.

1
1 1 2 2 () ()k k k k k k

id id id id id idv v c r p x c r lbest xω+ = + − + − (6)

1 1k k k
id id idx x v+ += + (7)

Once the species seeds have been identified from the population, one can then allo-
cate each seed to be the lbest to all the particles in the same species at each iteration
step. The whole population can then be divided into several sub-species when the
species seeds have been identified from the population. At each iteration step, all
particles within each sub-species are updated by the proposed CHA method.

3.2 Testing Results

In order to test the proposed SCHA’s ability to locate multiple maxima, Himmel-
blau’s function is introduced as a test function:

2 2 2 2(,) 200 (11) (7)F x y x y x y= − + − − + − (8)

It has two variables x and y, where -6 ≤ x, y ≤ 6. This function has four identical
global maxima which all equal to 200. For comparison, the notion of species is also
incorporated into the BS algorithm [3]. Its procedure is similar to the proposed
SCHA, and it just modifies the particles’ updating rules by the BS method. All the
trial tests are coded in MATLAB and executed on an Intel (R) 3.0 GHz CPU with a
2G RAM desktop computer. In the simulation, the parameter settings are: swarm size
120, the inertia weight ω is linearly decreased from 0.9 to 0.2, the cognitive coeffi-
cients c1 = c2 = 2, tournament size of 3, mutation rate is reduced linearly each
generation from 1.0 to 0.1, and γs is given by a moderate value of 3.0, for both the
Species based BS algorithm and the proposed SCHA. The maximum number of itera-
tions is set to 1500 and the simulation is conducted by running the Species based BS
and the SCHA 30 times. The maximal, the minimal and the mean iteration required to
locate the maxima are shown in Table 1, and the maximal, the minimal and the mean
of the total time to locate the maxima are shown in Table 2. From Tables 1 and 2, it
can be seen clearly that the proposed SCHA is much more efficient and more effec-
tive than the Species based BS. The optima searching process has been improved over
77% using the proposed SCHA, in terms of averaged run time. Thus, the SCHA is a
better means for solving multi-hump problems.

 Chaotic Hybrid Algorithm and Its Application in Circle Detection 307

Table 1. The maximal, the minimal and the mean iteration steps to locate all the maxima

Algorithm Min. Iteration Max. Iteration Successful Rate* (%) Iteration (Mean & Std.
err.)

Species based BS 199 1500 43.33 1041.4±582.67
SCHA 163 278 100 201.9±25.12

* Successful rate means how many times that all maxima can be successfully located out of 30 runs.

Table 2. The maximal, the minimal and the mean time to locate the maxima out of 30 runs

Algorithm Min. Run Time (s) Max. Run Time (s) Successful Rate*
(%)

Time (Mean &
Std. err.)

Species based BS 0.69 3.98 43.33 2.81±1.45

SCHA 0.52 1.22 100 0.62±0.12

* Successful rate means how many times that all maxima can be successfully located during 30 runs.

4 Application of the SCHA in Circle Detection

In this section, we applied the proposed SCHA method to the application of circle
detection. In this paper, the three-edge-point circle representation method [12] is
adopted, which can reduce the search space by eliminating infeasible circle locations.

4.1 Circle Representation and Fitness Evaluation

Each particle composes three edge points which represent a circle (C). In this repre-
sentation, edge points are stored as an index to their relative position in the edge array
V of the image. This will encode an individual as the circle that passes through the
three points vi vj and vk. Each C is represented by the three parameters x0, y0 and r,
with (x0, y0) being the (x, y) coordinates of the center of the circle and r being its ra-
dius. One can compute the equation of the circle passing through 3 edge points as:

2 2 2
0 0() ()x x y y r− + − = (9)

with:
2 2 2 2

2 2 2 2

0

() 2()

() 2()

4(()() ()())

j j i i j i

k k i i k i

j i k i k i j i

x y x y y y

x y x y y y
x

x x y y x x y y

+ − + −

+ − + −
=

− − − − −

(10)

2 2 2 2

2 2 2 2

0

2(x) ()

2(x) ()

4(()() ()())

j i j j i i

k i k k i i

j i k i k i j i

x x y x y

x x y x y
y

x x y y x x y y

− + − +

− + − +
=

− − − − −

(11)

The shape parameters (for the circle, 0, 0[,]x y r) can then be represented as a transfor-

mation T of the edge vector indexes i, j, k. T is the transformation composed of the
previous computations for x0, y0 and r.

308 C.-H. Wu et al.

0, 0[,] (, ,)x y r T i j k= (12)

In order to compute the fitness value of a single C, the test set for the points is

1 2{ , ,..., }NsS s s s= with Ns test points where the existence of an edge border will be

sought. The test point set S is generated by the uniform sampling of the shape bound-
ary. The Ns test points are generated around the circumference of the candidate circle.
Each point si is a 2D-point where its coordinates (xi, yi) are computed as follows:

0 0
2 2

cos , sin
s s

i i
r y y r

N N
x xi i

π π
= + ⋅ = + ⋅ (13)

The fitness function F(C) accumulates the number of expected edge points (i.e. the
points in the set S) that are actually present in the edge image. That is:

1

0
() ((,)) /sN

i i si
F C E x y N

−

=
= ∑ (14)

with (,)i iE x y being the evaluation of the edge features in the image coordinates (xi, yi)

and Ns being the number of pixels in the perimeter of the circle corresponding to the
individual C under test. As the perimeter is a function of the radius, this serves as a
normalization function with respect to the radius. That is, F(C) measures the com-
pleteness of the candidate circle and the objective is then to maximize F(C) because a
larger value implies a better circularity.

4.2 Simulation Results

To test the proposed SCHA method, 3 synthetic images of 640 x 480 pixels have
generated, with randomly located circles (Fig. 2). Results of interest are the center of
the circle position and its diameter. The algorithms have been run 30 times for each
test. The species radius γs is defined as the distance between each two circles’ centers.
For the three test images, the exact number of circles and the distances between their
centers are known, and the species radius γs is set normally to a value smaller than the
distance between the two closest circles. The parameters in the setup, for both the
Species based BS and the SCHA, are: swarm size 120, inertia weight ω is linearly
decreased from 0.9 to 0.2, cognitive coefficients c1 = c2 = 2, tournament size of 3,
mutation ratio is reduced linearly each generation from 1.0 to 0.1, and maximum
generation of 5000. The simulation results are shown in Tables 3, 4 and 5.

Fig. 2. Three synthetic testing images: Five circles (Left); Three merged circles (Middle); Two
circles with mixed shapes (Right)

 Chaotic Hybrid Algorithm and Its Application in Circle Detection 309

Table 3. The simulation results of the five-circle testing image

Methods Species based BS SCHA
Successful rate 100% 100%
Time (mean & std. err) 0.63s±0.29 0.52s±0.21
Time (min.) 0.250 0.172

* Successful rate means how many times that all 5 circles can be successfully located during 30 runs

Table 4. The simulation results on the three-merged-circle testing image

Methods Species based BS SCHA
Successful rate 100% 100%
Time (mean & std. err) 0.23s±0.07 0.14s±0.05
Time (min.) 0.141s 0.109s

* Successful rate means how many times that all 3 circles can be successfully located during 30 runs

Table 5. The simulation results on the two-circle with mixed shapes testing image

Methods Species based BS SCHA
Successful rate 76.7% 100%
Time (mean & std. err) 26.25s±21.10 16.66s±13.46
Time (min.) 7.547s 1.516s

* Successful rate means how many times that both 2 circles can be successfully located during 30 runs

Fig. 3. Three captured natural images and the circle detection results

From Table 3 and Table 4, it can be seen that both the Species based BS and the
SCHA can achieve 100% successful rate to locate all the circles, but the proposed
SCHA method is more efficient than the Species based BS, and gives more exact posi-
tions and diameters of the circles, in most cases. From Table 5, the advantages of the
proposed SCHA are more obvious. It can take less time and has a 100% successful rate,

310 C.-H. Wu et al.

while the Species based BS can only achieve 76.7%. By using the SCHA, the average
error for localization is 0.08 pixels and maximum error (the worst case) is 0.94. Thus,
the algorithm identifies circles in a sub-pixel level.

In order to fully illustrate the effectiveness of the proposed SCHA method, three
natural images are introduced in Fig. 3 and the corresponding circle detection results are
shown below. Since the ground truth reference data is not available, the results have
been statistically analyzed for comparison. The mean and standard deviation for the
detected parameters for a 30 run test for each image have been computed. The standard
deviation is within the 0.96 pixels range and all circles are detected with a 100% suc-
cessful rate. These are positive results because the proposed algorithm is robust in trans-
lation, scale in the field of view, existing noise and irregularities in shape.

5 Conclusions

In this paper, a novel Chaotic Hybrid Algorithm (CHA) is proposed, combining the
strengths of chaos dynamics, particle swarm optimization and genetic algorithms. The
notion of species is also introduced into the novel CHA to solve multimodal prob-
lems. The proposed Species based Chaotic Hybrid Algorithm (SCHA) is compared to
the Species based BS algorithm, in evolving solutions to a standard Himmelblau func-
tion. Results show that the proposed algorithm is highly competitive, often outper-
forming the other method. The effectiveness of the SCHA method is proven through
simulations, and finally, after proving its effectiveness through simulations on three
synthetic images, it was successfully applied to solve single and multiple circles de-
tection problems in natural images. According to the performance of the proposed
method, future work will be directed towards applying it to more challenging cases,
for examples, PCB components and ball grid array inspection. The SCHA will also be
extended to other imaging problems.

Acknowledgments. Our gratitude is extended to the research committee and the
Dept. of ISE of the Hong Kong Polytechnic University for support in this project
(GYG44). This work was also supported in part by the Application Base and Frontier
Technology Research Project of Tianjin, China, under 08JCZDJC21900.

References

1. Angeline, P.: Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy
and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS,
vol. 1447, pp. 601–610. Springer, Heidelberg (1998)

2. Eberhart, R., Shi, Y.: Comparison between Genetic Algorithms and Particle Swarm Opti-
mization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS,
vol. 1447, pp. 611–616. Springer, Heidelberg (1998)

3. Settles, M., Soule, T.: Breeding Swarms: a GA/PSO Hybrid. In: The Genetic and Evolu-
tionary Computation Conference (GECCO 2005), pp. 161–168. ACM, New York (2005)

4. Wong, K.W., Kwok, S.H., Law, W.S.: A Fast Image Encryption Scheme Based on Chaotic
Standard Map. Phys. Lett. A. 372, 2645–2652 (2008)

 Chaotic Hybrid Algorithm and Its Application in Circle Detection 311

5. Lu, Z., Shieh, L.S., Chen, G.R.: On Robust Control of Uncertain Chaotic Systems: a Slid-
ing Mode Synthesis via Chaotic Optimization. Chaos, Solitons Fractals 18, 819–827
(2003)

6. Li, B., Jiang, W.S.: Optimizing Complex Functions by Chaos Search. Int. J. Cybern.
Syst. 29(4), 409–419 (1998)

7. Petalas, Y.G., Antonopoulos, C.G., Bountis, T.C., Vrahatis, M.N.: Detecting Resonances
in Conservative Maps Using Evolutionary Algorithms. Phys. Lett. A 373, 334–341 (2009)

8. Goldberg, D.E., Richardson, J.: Genetic Algorithms with Sharing for Multimodal Function
Optimization. In: Proc. 2nd International Conference on Genetic Algorithms (ICGA), pp.
41–49 (1987)

9. Parrott, D., Li, X.: Locating and Tracking Multiple Dynamic Optima by a Particle Swarm
Model Using Speciation. IEEE Trans. Evol. Comput. 10(4), 440–457 (2006)

10. Lam, W., Yuen, S.: Efficient Techniques for Circle Detection Using Hypothesis Filtering
and Hough Transform. IEE Proc. Visual Image Signal Proc. 143(5), 292–300 (1996)

11. Rosin, P.L., Nyongesa, H.O.: Combining Evolutionary, Connectionist, and Fuzzy Classifi-
cation Algorithms for Shape Analysis. In: Cagnoni, S., et al. (eds.) EvoWorkshops 2000.
LNCS, vol. 1803, pp. 87–96. Springer, Heidelberg (2000)

12. Victor, A.R., Carlos, H.G.C., Arturo, P.G., Raul, E.S.Y.: Circle Detection on Images Using
Genetic Algorithms. Pattern Recognit. Lett. 27(6), 652–657 (2006)

13. Zhang, H., Shen, J.H., Zhang, T.N., Li, Y.: An Improved Chaotic Particle Swarm Optimi-
zation and Its Application in Investment. In: Proc. International Symposium on Computa-
tional Intelligence and Design, vol. 1, pp. 124–128 (2008)

Content-Based Image Retrieval of Skin Lesions by
Evolutionary Feature Synthesis

Lucia Ballerini1, Xiang Li1, Robert B. Fisher1, Ben Aldridge2, and Jonathan Rees2

1 School of Informatics, University of Edinburgh, UK
x.li-29@sms.ed.ac.uk, lucia.ballerini@ed.ac.uk, rbf@inf.ed.ac.uk

2 Dermatology, University of Edinburgh, UK
ben.aldridge@ed.ac.uk, jonathan.rees@ed.ac.uk

Abstract. This paper gives an example of evolved features that improve image
retrieval performance. A content-based image retrieval system for skin lesion im-
ages is presented. The aim is to support decision making by retrieving and dis-
playing relevant past cases visually similar to the one under examination. Skin
lesions of five common classes, including two non-melanoma cancer types, are
used. Colour and texture features are extracted from lesions. Evolutionary algo-
rithms are used to create composite features that optimise a similarity matching
function. Experiments on our database of 533 images are performed and results
are compared to those obtained using simple features. The use of the evolved
composite features improves the precision by about 7%.

1 Introduction

Research in content-based image retrieval (CBIR) today is an extremely active disci-
pline. There are already review articles containing references to a large number of sys-
tems and description of the technology implemented [21,24]. A more recent review [7]
reports a tremendous growth in publications on this topic. Applications of CBIR sys-
tems to medical domains already exist [17], although most of the systems currently
available are based on radiological images. A query-by-example CBIR involves pro-
viding the CBIR system with an example image and retrieves the most visually similar
images. This is our goal as described later.

Most of the work in dermatology has focused on skin cancer detection. Different tech-
niques for segmentation, feature extraction and classification have been reported by sev-
eral authors. Concerning segmentation, Celebi et al. [3] presented a systematic overview
of recent border detection methods: clustering followed by active contours are the most
popular. Numerous features have been extracted from skin images, including shape,
colour, texture and border properties [26,23,14]. Classification methods range from dis-
criminant analysis to neural networks and support vector machines [22,16,4]. These
methods are mainly developed for images acquired by epiluminescence microscopy
(ELM or dermoscopy) and they focus on melanoma, which is actually a rather rare,
but quite dangerous, condition whereas other skin cancers are much more common.

To our knowledge, there are few CBIR systems in dermatology. Chung et al. [5] cre-
ated a skin cancer database. Users can query the database by feature attribute values

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 312–319, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

CBIR of Skin Lesions by Evolutionary Feature Synthesis 313

(shape and texture), or by synthesised image colours. It does not include a query-by-
example method, as do most common CBIR systems. Their report concentrates on the
description of the web-based browsing and data mining. However, nothing is said about
database details (number, lesion types, acquisition technique), nor about the perfor-
mance of the retrieval system. Celebi et al. [2] developed a system for retrieving skin
lesion images based on shape similarity. The novelty of that system is the incorporation
of human perception models in the similarity function. Results on 184 skin lesion im-
ages show significant agreement between computer assessment and human perception.
However, they only focus on silhouette shape similarity and do not include many fea-
tures (colour and texture) described in other papers by the same authors [4]. Rahman
et al. [20] presented a CBIR system for dermatoscopic images. Their approach include
image processing, segmentation, feature extraction (colour and textures) and similarity
matching. Experiments on 358 images of pigmented skin lesions from three categories
(benign, dysplastic nevi and melanoma) are performed. A quantitative evaluation based
on the precision curve shows the effectiveness of their system to retrieve visually sim-
ilar lesions (average precision � 60%). Dorileo et al. [9] presented a CBIR system for
wound images (necrotic tissue, fibrin, granulation and mixed tissue). Features based
on histogram and multispectral co-occurrence matrices are used to retrieve similar im-
ages. The performance is evaluated based on measurements of precision (� 50%) on
a database of 215 images. All these approaches only consider a few classes of lesions
and/or do not exploit many useful features in this context.

Dermatology atlases containing a large number of images are available online [8,6].
However, their searching tool only allows query by the name of the lesion. On the other
hand, the possibility of retrieving images based on visual similarity would greatly ben-
efit both the non-expert users and the dermatologists. There is a need for CBIR as a
decision support tool for dermatologists in the form of a display of relevant past cases,
along with proven pathology and other suitable information [17,20]. CBIR could be
used to present cases that are not only similar in diagnosis, but also similar in appear-
ance and cases with visual similarity but different diagnoses. Hence, it would be useful
as a training tool for medical students and researchers to browse and search large col-
lection of disease related illustrations using their visual attributes.

Motivated by this, we propose a CBIR approach for skin lesion images. The present
work focuses on 5 common classes of skin lesions: Actinic Keratosis (AK), Basal Cell
Carcinoma (BCC), Melanocytic Nevus / Mole (ML), Squamous Cell Carcinoma (SCC),
Seborrhoeic Keratosis (SK). Our system mainly relies on colour and composite texture
features, evolved using genetic algorithms, and gives values of precision between 67%
and 82%. The use of the evolved composite features improves the precision by about
7%. The structure of the paper is as follows. Section 2 defines the simple features.
Section 3 is devoted our new proposal. Section 4 defines the similarity criteria. Results
are presented in 5. Conclusions follow.

2 Feature Extraction

CBIR requires the extraction of several features from each image, which, consequently,
are used for computing similarity between images during the retrieval procedure. These

314 L. Ballerini et al.

features describe the content of the image and that is why they must be appropriately
selected according to the context. The features have to be discriminative and sufficient
for the description of different pathologies. Basically, the key to attaining a success-
ful retrieval system is to choose the right features that represent each class of images
as uniquely as possible. Many feature extraction strategies have been proposed [26,23]
from the perspective of classification of images as malignant or benign. Different fea-
tures attempt to reflect the parameters used in medical diagnosis, such as the ABCD
rule for melanoma detection [12]. These features are certainly effective for the classifi-
cation purpose, as seen from the performance of some classification-based systems in
this domain, claiming a correct classification up to 100% [16] or specificity/sensitivity
of 92.34%/93.33% [4]. However, features good for classification or distinguishing one
disease from another may not be suitable for retrieval and display of similar appearing
lesions. In this retrieval system, we are looking for similar images in term of colour,
texture, shape, etc. By extracting good representative features, we may be able to iden-
tify images similar to an unknown query image, whether it belongs to the same disease
group or not. Skin lesions appear mainly characterised by their colour and texture. In
this section we will describe simple features that can capture such properties. Later we
will describe how to evolve composite features from these simple ones.

Colour features are represented by the mean colour μ = (μR, μG, μB) of the lesion

and their covariance matrix Σ. Let μX = 1
N

∑N
i=1 Xi and CXY = 1

N

[∑N
i=1 XiYi

]
−

μXμY , where: N is the number of pixels in the lesion, Xi the colour component of
channel X (X, Y ∈ {R, G, B}) of pixel i. Assuming to use the original RGB (Red,

Green, Blue) colour space, the covariance matrix is: Σ =

⎡⎣CRR CRG CRB

CGR CGG CGB

CBR CBG CBB

⎤⎦. In this

work, RGB, HSV (Hue, Saturation, Value) and CIE Lab, CIE Lch (Munsell colour
coordinate system [20]) and Otha [19] colour spaces are used. A number of normali-
sation techniques have been applied before extracting colour features. We normalised
each colour component by the average of the same component of the healthy skin of the
same patient, because it had best performance. After experimenting with the 5 different
colour spaces, we choose the normalised RGB, because it gave slightly better results
than the other colour spaces.

Texture features are extracted from generalised co-occurrence matrices (CGM), that
are the extension of the co-occurrence matrix [11] to multispectral images. Assume an
image I having Nx columns, Ny rows and Ng grey levels. Let Lx = {1, 2, · · · , Nx}
be the columns, Ly = {1, 2, · · · , Ny} be the rows, and Gx = {0, 1, · · · , Ng − 1}
be the set of quantised grey levels. Let u and v be two colour channels. The gener-
alised co-occurrence matrices are: P

(u,v)
δ (i, j) = #{((k, l), (m, n)) ∈ (Ly × Lx) ×

(Ly × Lx)|Iu(k, l) = i, Iv(m, n) = j} i.e. the number of co-occurrences of the pair
of grey level i and j which are a distance δ = (d, θ) apart. In our work, the pixel pairs
(k, l) and (m, n) have distance d = 1, · · · , 6 and orientation θ = 0◦, 45◦, 90◦, 135◦, i.e.
(m = k+d, n = l), (m = k+d, n = l+d), (m = k, n = l+d), (m = k−d, n = l+d).
In order to have orientation invariance for our set of GCMs, we averaged the matrices
with respect to θ. Quantisation levels NG = 64, 128, 256 are used for the three colour
spaces: RGB, HSV and CIE Lab. From each GCM we extracted 12 texture features:

CBIR of Skin Lesions by Evolutionary Feature Synthesis 315

energy, contrast, correlation, entropy, homogeneity, inverse difference moment, cluster
shade, cluster prominence, max probability, autocorrelation, dissimilarity and variance
as defined in [11], for a total of 3888 texture features (12 features × 6 inter-pixel dis-
tances × 6 colour pairs × 3 colour spaces × 3 grey level quantisations).

Texture features are also extracted from the sum- and difference-histograms (SDHs)
as proposed by Unser [25]. We generalised the SDHs by considering the intra- and
inter-plane sum- and difference-histograms: h

(u,v)
S,D (i) = #{((k, l), (m, n)) ∈ (Ly ×

Lx) × (Ly × Lx)|Iu(k, l) ± Iv(m, n) = i}. We constructed a set of SDHs varying
pixel displacement, orientation, quantisation level, and colour spaces. From each SDH
we extracted 15 features: sum mean, sum variance, sum energy, sum entropy, diff mean,
diff variance, diff energy, diff entropy, cluster shade, cluster prominence, contrast, ho-
mogeneity, correlation, angular second moment, entropy as defined in [25], as well as
the relative illumination invariant features described by Münzenmayer [18], for a total
of other 9720 features (15 features× 2 illumination invariants× 6 inter-pixel distances
× 6 colour pairs × 3 colour spaces × 3 grey level quantisations).

3 Evolutionary Feature Synthesis

Evolutionary algorithms have already been applied to feature synthesis problems. Au-
rnhammer [1] and Lam et al. [13] described the use of genetic programming to generate
texture features and reported very promising results on image classification problems.
Li et al. [15] proposed a hybrid of a co-evolutionary genetic programming and expec-
tation maximisation algorithm applied on partially labelled data. They show that their
algorithm outperforms support vector machines in the sense of both the classification
performance and the computational efficiency in the testing phase.

In our work, each synthesised feature is derived by combining simple features using
a series of operators. A genetic algorithm (GA) [10] is used in this phase.

The main issues in applying a GA to any problem are selecting an appropriate encod-
ing representation of the solutions, defining an adequate evaluation function (fitness),
and choosing the values of the parameters used by the algorithm (e.g. population size,
crossover, etc.). In the case of synthesised features there are two basic items: the index
of the simple features (among the 13608 extracted) to be selected and the operators used
to combine them. Each chromosome is composed of two parts: a part which encodes the
index set of the simple features and a part which encodes the operators. In this work we
present results obtained using 6 operators: {1, 2, +,−, ∗, /}. Each operator is applied
to a pair of features. The first 2 operators mean that only the first or the second features
of the pair is chosen. The last 4 operators perform the given mathematical operation
on the two features of the pair. The fitness is the number of correctly retrieved images,
i.e. the images belonging to the same class as the query image. We averaged it using
each image in the database as query image, and asking the system to retrieve 10 similar
images for each presented image (not retrieving itself).

In the GA, the feature indexes and the operators are encoded in the chromosomes
as integer numbers. Each chromosome contains 10 features and 5 operators (one for
each pair of the 10 features). The implementation of mutation and crossover on integer
numbers is straightforward, with the condition to generate children satisfying the range

316 L. Ballerini et al.

and integer constraints on decision variables. Other GA parameters (determined after a
number of experiments varying such parameters) are: 200 individuals, 0.9 crossover
rate, 0.01 mutation rate, stochastic uniform selection. The stopping criteria is upon
reaching the maximum number of generations (30) or having a change in the fitness
of less than 10−6. Results reported later are the average over 20 runs.

4 Similarity Matching

The retrieval system is based on a similarity measure defined between the query image
Q and a database image I .

For colour covariance-based features, the Bhattacharyya distance metric DC(Q, I)=

1
8 (μQ − μI)T

[
(ΣQ+ΣI)

2

]−1
(μQ − μI) + 1

2 ln

∣∣∣ (ΣQ+ΣI)
2

∣∣∣√
|ΣQ||ΣI |

is used, where μQ and μI

are the average colour (over all pixels in the lesion) feature vectors, ΣQ and ΣI are
the covariance matrices of the lesion of Q and I respectively (computed as described in
Section 2), and | · | denotes the matrix determinant. The Euclidean distance DT (Q, I) =

‖fQ
comp − f I

comp‖ =
√∑m

i=1(f
Q
i − f I

i)2 is used for distances between the composite
features fcomp, evolved as previously described. where m is the number of features:
m = 5 for the composite features, m = 10 for the simple features used for comparison.

We aggregated the two distances into a similarity matching function as:

S(Q, I) = wC ·DC(Q, I) + (1− wC) ·DT (Q, I) (1)

where wC is a weighting factor that has been selected experimentally, after trying all
the values: {0.1, 0.2, · · · , 0.9}. In our case, wC = 0.7 gave the best results.

5 Results and Evaluation

Our image database comprises 533 lesions, belonging to 5 classes (20 AK, 116 BCC,
224 ML, 20 SCC, 153 SK). Images are acquired using a Canon EOS 350D SRL cam-
era, having a resolution of about 0.03 mm. Lesions are segmented using the method
described in [27]. The ground truth used for the experiments is based on agreed clas-
sifications by 2 dermatologists. Feature synthesis is performed using only 100 images
(20 for each class randomly chosen). The effectiveness of the proposed retrieval system
is then evaluated on the entire database.

One example of the composite feature set is shown in Figure 1, together with the plot
of class distribution of one of them, where it can be seen it slightly distinguishes ML
and SK from AK, BCC, SCC. A typical screen-shot of our CBIR system is shown in
Figure 2(a).

For medical image retrieval systems, the evaluation issue is very often neglected in
most of the papers [17]. In an information retrieval scenario, precision is defined as the
number of relevant documents retrieved by a search divided by the total number of doc-
uments retrieved by that search (scope), and recall is defined as the number of relevant
documents retrieved by a search divided by the total number of existing relevant docu-
ments. We show average precision/scope curves obtained by evaluating top N retrieved

CBIR of Skin Lesions by Evolutionary Feature Synthesis 317

colours feature name dist q.level operator

1 BB homogeneity ii 4 64 +
HS entropy 3 64

2 ab correlation 2 128 -
HH diff entropy ii 5 256

3 aa diff variance ii 2 64 -
bb entropy ii 5 128

4 RB inv diff moment 3 128 1
5 VV diff energy ii 4 128 +

La cluster prom 3 256

Fig. 1. Example of evolved composite features, and class distribution of feature 2

results (scope). We compare our results with the results obtained by the same system
except using simple features. The simple features are selected by a GA (using the same
parameters as the other GA). Similarity function (1) is used with m = 10 in DT . Our 5
composite features originate from 10 simple features, therefore we decided to compare
5 composite features against 10 simple ones.

Figure 2(b) shows the precision/scope curves obtained using the composite features
synthesised by our method. Precision/scope curves obtained using simple features and
only colour features are shown for comparison. Note that using m = 5 composite fea-
tures outperform m = 10 simple features and that the use of the composite features
improves the precision by about 7%, where at scope=1 the difference is 1%. The com-
parison with the performances obtained using only the colour features makes clear the
improvement of our system due to the composite texture features.

(a) (b)

Fig. 2. (a) A screenshot showing retrieved images similar to the query image (top left image). (b)
Precision/Scope curves using our evolved composite features, simple features and colour only
features. Vertical bars report performance over 20 runs (mean ± std).

318 L. Ballerini et al.

As far we know, our system is the first query-by-example CBIR system for these 5
classes of lesions, therefore comparison with other system is not possible. The use of a
system developed for generic image retrieval gave very poor results on our data.

6 Conclusions

We have presented a CBIR system as a diagnostic aid for skin lesion images. We be-
lieve that presenting images with known pathology that are visually similar to an image
being evaluated may provide intuitive clinical decision support to dermatologists. We
have shown that the use of evolved composite features improves the performance of
the system compared to the use of a larger number of standard features. Given the en-
couraging results obtained using a small set of feature combination operators we plan
to investigate the use of a larger number of operators that combine an arbitrary number
of features. Genetic programming (GP) may offer several advantages over GA. Further
studies will also include the extraction of other texture-related features (i.e. fractal di-
mension, Gabor- and Tamura-based) as well as shape and boundary features. We plan
also to include relevance feedback, which is commonly used in image retrieval, but has
not yet been used for medical images.

Acknowledgements. We thank the Wellcome Trust for funding this project.

References

1. Aurnhammer, M.: Evolving texture features by genetic programming. In: Giacobini, M. (ed.)
EvoWorkshops 2007. LNCS, vol. 4448, pp. 351–358. Springer, Heidelberg (2007)

2. Celebi, M.E., Aslandogan, Y.A.: Content-based image retrieval incorporating models of hu-
man perception. In: International Conference on Information Technology: Coding and Com-
puting (ITCC 2004), vol. 2, pp. 241–245. IEEE Computer Society, Los Alamitos (2004)

3. Celebi, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V.: Lesion border detection in der-
moscopy images. Computerized Medical Imaging and Graphics 33(2), 148–153 (2009)

4. Celebi, M.E., Kingravi, H.A., Uddin, B., Iyatomi, H., Aslandogan, Y.A., Stoecker, W.V.,
Moss, R.H.: A methodological approach to the classification of dermoscopy images. Com-
puterized Medical Imaging and Graphics 31(6), 362–373 (2007)

5. Chung, S.M., Wang, Q.: Content-based retrieval and data mining of a skin cancer image
database. In: International Conference on Information Technology: Coding and Computing
(ITCC 2001), pp. 611–615. IEEE Computer Society, Los Alamitos (2001)

6. Cohen, B.A., Lehmann, C.U.: Dermatlas (2000-2009), dermatology Image Altas,
http://dermatlas.med.jhmi.edu/derm/

7. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the
new age. ACM Computing Surveys 40(2), 5:1–5:60 (2008)

8. Dermnet: the dermatologist’s image resource (2007), dermatology Image Altas,
http://www.dermnet.com/

9. Dorileo, E.A.G., Frade, M.A.C., Roselino, A.M.F., Rangayyan, R.M., Azevedo-Marques,
P.M.: Color image processing and content-based image retrieval techniques for the analysis
of dermatological lesions. In: 30th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBS 2008), August 2008, pp. 1230–1233 (2008)

http://dermatlas.med.jhmi.edu/derm/
http://www.dermnet.com/

CBIR of Skin Lesions by Evolutionary Feature Synthesis 319

10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading (1989)

11. Haralick, R.M., Shanmungam, K., Dinstein, I.: Textural features for image classification.
IEEE Transactions on Systems, Man and Cybernetics 3(6), 610–621 (1973)

12. Johr, R.H.: Dermoscopy: alternative melanocytic algorithms–the ABCD rule of der-
matoscopy, menzies scoring method, and 7-point checklist. Clinics in Dermatology 20(3),
240–247 (2002)

13. Lam, B., Ciesielski, V.: Discovery of human-competitive image texture feature extraction
programs using genetic programming. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H.G., Burke,
E., Darwen, P., Dasgupta, D., Floreano, D., Foster, J., Harman, M., Holland, O., Lanzi, P.L.,
Spector, L., Tettamanzi, A., Thierens, D., Tyrrell, A. (eds.) GECCO 2004, Part II. LNCS,
vol. 3103, pp. 1114–1125. Springer, Heidelberg (2004)

14. Lee, T.K., Claridge, E.: Predictive power of irregular border shapes for malignant
melanomas. Skin Research and Technology 11(1), 1–8 (2005)

15. Li, R., Bhanu, B., Dong, A.: Feature synthesized EM algorithm for image retrieval. ACM
Transaction on Multimedia Computing Communications and Applications 4(2), 10:1–10:24
(2008)

16. Maglogiannis, I., Pavlopoulos, S., Koutsouris, D.: An integrated computer supported acqui-
sition, handling, and characterization system for pigmented skin lesions in dermatological
images. IEEE Transactions on Information Technology in Biomedicine 9(1), 86–98 (2005)

17. Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image re-
trieval systems in medical applications - clinical benefits and future directions. International
Journal of Medical Informatics 73, 1–23 (2004)

18. Münzenmayer, C., Wilharm, S., Hornegger, J., Wittenberg, T.: Illumination invariant color
texture analysis based on sum- and difference-histograms. In: Kropatsch, W.G., Sablatnig, R.,
Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 17–24. Springer, Heidelberg (2005)

19. Ohta, Y.I., Kanade, T., Sakai, T.: Color information for region segmentation. Computer
Graphics and Image Processing 13(1), 222–241 (1980)

20. Rahman, M.M., Desai, B.C., Bhattacharya, P.: Image retrieval-based decision support system
for dermatoscopic images. In: IEEE Symposium on Computer-Based Medical Systems, pp.
285–290. IEEE Computer Society, Los Alamitos (2006)

21. Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: Current techniques, prominsign directions,
and open issues. Journal of Visual Communication and Image Representation 10, 39–62
(1999)

22. Schmid-Saugeons, P., Guillod, J., Thiran, J.P.: Towards a computer-aided diagnosis system
for pigmented skin lesions. Computerized Medical Imaging and Graphics 27, 65–78 (2003)

23. Seidenari, S., Pellacani, G., Pepe, P.: Digital videomicroscopy improves diagnostic accuracy
for melanoma. Journal of the American Academy of Dermatology 39(2), 175–181 (1998)

24. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image re-
trieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22(12), 1349–1380 (2000)

25. Unser, M.: Sum and difference histograms for texture classification. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8(1), 118–125 (1986)

26. Wollina, U., Burroni, M., Torricelli, R., Gilardi, S., Dell’Eva, G., Helm, C., Bardey, W.:
Digital dermoscopy in clinical practise: a three-centre analysis. Skin Research and Technol-
ogy 13, 133–142 (2007)

27. Xiang, L., Aldridge, B., Ballerini, L., Fisher, R., Rees, J.: Depth data improves skin lesion
segmentation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C., et al. (eds.)
MICCAI 2009. LNCS, vol. 5762, pp. 1100–1107. Springer, Heidelberg (2009)

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 320–327, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Evolutionary Method for Model-Based Automatic
Segmentation of Lower Abdomen CT Images

for Radiotherapy Planning

Vitoantonio Bevilacqua1,2, Giuseppe Mastronardi1,2, and Alessandro Piazzolla1

1 Department of Electrical and Electronics, Polytechnic of Bari,
Via Orabona, 4 – 70125 Bari – Italy

bevilacqua@poliba.it
2 e.B.I.S. s.r.l. (electronic Business in Security), Spin-Off of Polytechnic of Bari,

Via Pavoncelli, 139 – 70125 Bari – Italy

Abstract. Segmentation of target organs and organs at risk is a fundamental
task in radiotherapy treatment planning. Since its completion carried out by a
radiation oncologist is really time-consuming, there is the need to perform it
automatically. Unfortunately there is not a universal method capable to segment
accurately every anatomical structure in every medical image, so each problem
requires a study and an own solution. In this paper we analyze the problem of
segmentation of bladder, prostate and rectum in lower abdomen CT images and
propose a novel algorithm to solve it. It builds a statistical model of the organs
analyzing a training set, generates potential solutions and chooses the segmenta-
tion result evaluating them on the basis of an aprioristic knowledge and the
characteristics of patient image, using Genetic Algorithms. Out method has
been tested qualitatively and quantitatively and offered good performance.

Keywords: Segmentation, lower abdomen CT, radiotherapy planning, genetic
algorithms.

1 Introduction

Radiotherapy is a medical treatment which consists of delivering high speed ionizing
radiation, typically X-rays, in order to cure various kinds of cancer pathologies. Ra-
diation therapy works by disrupting DNA activity; because cancer cells have smaller
ability to repair DNA damages, they are inherited through cell division and accumu-
late themselves leading the diseased cells to death or to a slower reproduction. During
the radiation process also healthy cells could be hit, causing side effects that, in some
organs, are acute or chronic. This is the reason why an important goal is to administer
a high dose of radiation to tumor tissues, avoiding as much as possible normal tissues
and specially organs at risk (OARs). The achievement of this aim requires an accurate
treatment planning.

Nowadays treatment planning is guided by 3D medical images, acquired in several
modalities like Computed Tomography (CT) and Magnetic Resonance (MR). In in-
verse planning a radiation oncologist delineates target volumes and organs at risk in

 An Evolutionary Method for Model-Based Automatic Segmentation 321

each slice and defines doses; then, the treatment plan is formulated by an automatic
algorithm. In [3] this task is performed by a genetic algorithm-based framework that
computes beam intensity, beam shape and beam orientation, considering it as an op-
timization problem. The planning accuracy could be improved removing artifacts in
patient images. They are generally due to patient motion, beam hardening and metal-
lic object. In [2] Bevilacqua et al. presented a method based on Artificial Neural
Networks to reduce metallic artifacts produced by reperi, which are used to help the
radiation oncologist in localizing some structures on patient images but are removed
during the treatment.

In this paper we focus on the organ segmentation. The novel model-based method
of automatic segmentation we propose is based on Genetic Algorithms (GA) [7].
GAs are very useful in image understanding applications, especially in medical imag-
ing, as summarized in survey papers [1,12], where this task becomes harder for sev-
eral reasons as a considerable variability of shapes, lack of contrast, missing or diffuse
boundaries and artifacts. A promising approach consists in formulating the segmenta-
tion problem as an optimization problem and using GAs to determine the parameters
set which maximizes (or minimizes) a quality (or poorness) criterion, searching it into
a parameter search space. The application of GAs does not guarantee that the global
optimal will be found, but empirical results show that in many cases the final solution
is close to it and, for this reason, they represent an efficient and robust tool on which
to base the segmentation process. In facts, since in medical imaging the search space
is very discontinuous and nosily, the classical gradient search techniques are often
sentenced to fail; on the other hand it is too large to conduct an exhaustive search.
GAs permit to avoid the main weakness of another popular class of segmentation
methods for medical images based on an energy-minimizing approach, the traditional
deformable models, presented by Kass et al. in [8], that evolve toward a minimal en-
ergy configuration driven by image forces but are prone to convergence to local min-
ima, resulting in bad results where the initialization is too rough. On the other hand,
an automatic initialization close to the boundaries is possible only when the inter-
patient variability of anatomical structures is not strong, but this is not the case of
lower abdomen CT.

There are many works in literature about medical image segmentation and GAs.
They typically learn from example how to segment the target image. In [4], Cagnoni
et al. employed GAs at first in order to evolve a contour detector, making use of a
small set of manually traced contours acquired from the target image, and then in or-
der to find the parameters of an elastic-contour model. In [10] shape and textural pri-
ors, derived from a dataset of images manually segmented, affect the evolution, which
is conducted by a GA, of a segmenting curve represented by a level set function. In
[14] GAs are used to overcome typical weak spots of traditional deformable models
as model initialization, deformable parameter selection and local optima avoiding;
moreover, GAs have been combined with constrained shape deformations to explore
the search space.

In this paper we deal with the problem of automatic identification of prostate, blad-
der and rectum contours in pelvic CT. It has been faced with several means in literature
but in the most of cases previous works focus on only some of the three organs or
sometimes require a user intervention; some existing approaches make use of deform-
able surfaces [6, 15], region growing [13], genetic algorithms [10] and artificial neural

322 V. Bevilacqua, G. Mastronardi, and A. Piazzolla

networks [11]. The method we propose employs a statistical representation of organs’
features, using Point Distribution Models, obtained by Principal Component Analysis,
and Probability Distributions of gray values; this knowledge has been exploited during
the search of organs of interest, which is based on GAs.

Analysis of this problem, methods, materials and validations are described in the
next chapters.

2 Analysis of the Problem

Organs of interest considered in this study are bladder, prostate and rectum. Analyz-
ing the problem, we drew the following considerations:

1. boundaries between bladder and prostate are not strong, this is due to a poor con-
trast and makes problematic using a lot of existing techniques based on gradient
operator;

2. rectum contains internal dark structures. It means that some techniques could be
misled by their boundaries that are obviously different from the rectum boundaries
so, for example, it becomes almost impossible to use a snake ([8]) without initializ-
ing it very close to the real edges;

3. the shapes of the same organ could be remarkably dissimilar from a patient to
another;

4. intensity profile of some organs are similar, so it is inadvisable to base the research
only on the gray values;

5. shapes of some organs are similar, so it’s inadvisable to base the research only on
the shapes.

The observations 1) and 2) indicate that, in this context, good performance could be
obtained only by a robust segmentation method: for example, if we apply a local
search, modifying a deformable surface placed on target image, we will run the risk of
overcoming the right boundaries or of converging to false ones during its evolution.
Moreover, the outstanding variability, pointed out by comment 3), discourages the
employment of an atlas constituted by a single labeled image, and consequently it
would be preferable to build a statistical model of the shapes. So we developed a new
algorithm that makes use of the knowledge about shapes, gray values and typical
pose, on the basis of the remarks 3), 4) and 5). We used a dataset of labeled images to
train a statistical model of each organ, described by a Point Distribution Model
(PDM); a detailed explanation about this topic is exhaustively discussed in [15]. The
research process follows a top-down strategy: we generate shapes compatible with the
model shape, placing them on the target image with different parameters of pose, and
then measure their fitness against the vicinity of possible edge pixels and the similar-
ity of the histograms; we entrust this task to GAs.

3 Workflow of Our Method

Our segmentation method for lower abdomen CT is set out in two phases. The first is
a training phase, in which the system acquires knowledge about shapes, gray values

 An Evolutionary Method for Model-Based Automatic Segmentation 323

distribution inside organs, gray values range at the interface between the inside and
the outside of the organs, average position and size. The latter is the research phase, in
which, given a target image, the following tasks are performed: pose parameters ini-
tialization through a first genetic algorithm, pose parameters refinement and shape pa-
rameters searching through a second genetic algorithm and finally error correction.

Note that it is possible to set up the system once, executing only the research phase
when one wants to segment an image.

3.1 The Training Phase

The training phase is aimed to build statistical models of bladder, prostate and rectum
and involves shapes, gray values, positions and dimensions. It requires a dataset of
images in which a radiation oncologist has segmented manually the structures; in or-
der to obtain brighter performance, it would be better to construct it with CT images
related to many different patients.

The characteristics of the shapes are learnt creating PDMs. As regard the informa-
tion about gray values, exploiting the training dataset, for each organ of interest we
calculate their internal distribution and the range of intensity at the boundary between
the interior and the exterior of the anatomical structure. Moreover, the system grasps
the average position and size of each organ.

3.2 The Research Phase

The research phase aspires to find the instance of the shape model and the pose parame-
ters that best fit with the image target. This is done by generating admissible solutions
and evaluating them considering two kinds of information extracted from the patient’s
image: the gray values and the corresponding edge map. The edge map is a binary im-
age in which the pixels are marked as edge pixels or not and it could be the output pro-
vided by the Canny algorithm with an adaptive selection of the threshold values to make
to come out the most part of the edge pixels of bladder, prostate and rectum and as less
as possible the edge pixels relative to other structures. In particular, upper threshold is
defined as the littlest gray-value such that the sum of the occurrences of littler gray-
values of gaussian smoothed image, with a standard deviation of one, is greater or equal
to 70% of total number of pixels. Below threshold has been set multiplying by 0.4 the
upper threshold. According to the observations originated in the analysis of the problem,
we expect that the edge map does not show each real edge pixel between bladder and
prostate and contains some spurious edge pixels inside rectum. We can improve a bit
the edge map canceling the pixels marked as edge whose gray value does not belong to
the range at the interface related to the organ we want to segment that has been learnt
during the training phase, through a threshold operation.

The search starts with the initialization of the pose parameters and is performed by
a genetic algorithm whose chromosomes are composed by four genes: the coordinates
of the center of gravity, the scaling factor and the rotation angle. The fitness function
to minimize is

torscalingFac

dist
f yyaBhattachar

GA1 = (1)

324 V. Bevilacqua, G. Mastronardi, and A. Piazzolla

where distBhattacharyya is the Bhattacharyya distance between the gray values distribution
learnt during the training phase and that of the average segment, having the pose pa-
rameters of the individual of the population to be evaluated. The Bhattacharyya dis-
tance between two distributions H1 and H2 is defined as

∑
∑∑

−=
i

i
2

i
1

21
21yyaBhattachar

(i)H(i)H

(i)(i)HH
1)H,(Hdist (2)

Low scores indicate a good match, instead high scores indicate bad match; therefore a
perfect match is 0, a total mismatch is 1. Note that also an accurate segment could
lead to a distBhattacharyya greater than 0, especially in rectum, caused by air or by other
reasons. However, the presence of air doesn’t reduce dramatically algorithm perform-
ance, because it doesn’t alter the whole distribution.

Note that scalingFactor is 1 when the shape size matches with the average size, es-
timated analyzing the training set, and its presence in GA1f is aimed to avoid that a

very small surface with a gray-scale distribution similar to the model one could be
preferred to a surface with a little less similar intensity distribution, but having a size
closer to the average size.

To avoid generating individuals surely unfit, we can vary the coordinates of the
center of gravity around the average coordinates of the organ to be contoured. This is
just a soft constraint because the range of excursion may still be wide.

The second GA looks for the final solution, generating new individuals; its chro-
mosomes are composed by 4+t genes, where t is computed for each organ as sug-
gested in [14]: the four pose parameters, which can slightly differ from those found by
the first GA, and other t elements representing a set of shape parameters related to the
shape models learnt, which can vary within a well-defined value range, according
with the general theory of PDMs reported by [14]. The fitness function to minimize is

)dist(1distf yyaBhattacharedgeGA2 +⋅= (3)

where distedge is the average distance between the landmarks of the shape generated
with the pose corresponding to the individual to be evaluated and the nearest edge
pixel in the edge map. Note that the value of distedge is used as weight for the rele-
vance of distBhattacharyya: in this way, if it is low, a more remarkable difference between
gray-values distributions will be tolerated.

In the end, the errors in estimated segmentation could be partially corrected calcu-
lating a weighted mean involving the results obtained for adjacent slices, getting
better results when the resolution is finer. Figure 1 shows three examples of detected
organs, in which linear interpolation has been performed on points found by the algo-
rithm; moreover, shapes have been corrected considering the results obtained for the
previous and the following slices too. Since each shape, sampled with a constant
number n of points, could be seen as a 2n element vector, x, we used formula (4).

4

2 11 −+ ++= zzzc
z

xxx
x (4)

 An Evolutionary Method for Model-Based Automatic Segmentation 325

Fig. 1. Automatic segmentation (in blue) against manual segmentation of bladder (on the left),
prostate (on the center), rectum (on the right)

4 Experimental Results

Our method has been implemented in C++ using the GAlib library [9] and has been
tested in order to evaluate its performance. The training set we had was composed by
21 CT images (512x512 pixels) labeled manually by an only radiation oncologist, but
future works will be relying on manual contouring by different experts; rectum shapes
have been sampled with 16 points, instead bladder and prostate shapes have been
sampled with 12 points. The segmentation has been conducted on 30 images for each
organ (bladder, prostate and rectum), randomly chosen from a lower abdomen CT
dataset, resulting in 90 executions of the algorithm proposed. Although GAs are sto-
chastic methods, the algorithm has been tested once for each image, in order to repro-
duce a more realistic situation. Table 1 summarizes GAs parameters we used.

Table 1. GAs parameters

 GA 1 GA 2
Population 100 100
Generations 150 150

Crossover probability 20% 20%
Mutation probability 80% 80%

Coordinates
of center of gravity (pixel)

[mean-75, mean+75] [init.-5, init.+5]

scaling factor [0.4, 1.6] [init.-0.05, init.+0.05]
rotation angle (rad.) [-0.05, 0.05] [init.-0.05, init.+0.05]

bi --- [iλ3− , iλ3+]

The results obtained have been quantitatively measured using four surfaces overlap

metrics: Target Overlap (TO), Mean Overlap (MO), Union Overlap (UO) and our Ac-
curacy metric. Denoting with S the set of the pixels included to the segment found by
our algorithm and with T the set of the pixels included to the segment manually drawn
by the expert and, for this reason, considered as true, the metrics are defined as:

T

TS
TO

∩
= (5)

326 V. Bevilacqua, G. Mastronardi, and A. Piazzolla

TS

TS2
MO

+
∩

=
(6)

TS

TS
UO

∪
∩

=
(7)

T

T\STS
Accuracy

−∩
=

(8)

Their measured values in best, worst and average case are reported in table 2.

Table 2. Metrics values

 Bladder Prostate Rectum
TO (best) 0.97307 0.97884 0.98271
TO (worst) 0.84818 0.71494 0.89252
TO (average case) 0.92453 0.84577 0.93350
MO (best case) 0.97223 0.91833 0.94359
MO (worst case) 0.83778 0.81630 0.88458
MO (average case) 0.92986 0.86074 0.92673
UO (best case) 0.94596 0.84900 0.89321
UO (worst case) 0.72084 0.68961 0.79305
UO (average case) 0.87053 0.75682 0.86393
Accuracy (best case) 0.94413 0.83994 0.89177
Accuracy (worst case) 0.67152 0.67821 0.74921
Accuracy (average case) 0.86026 0.72979 0.85102

Examining these results and considering that TO, MO and UO are 1 in a perfect

match and 0 in a total mismatch, and that accuracy is 1 in a perfect match and a nega-
tive value in a total mismatch, we can say that the algorithm we propose has been
proved to be capable of segmenting quite correctly the target CT images. Furthermore
our method does not require a manual initialization of contours, so it can provide a
fully automatic segmentation. The highest performance are reached in segmentation
of bladder and rectum, instead are worse in prostate contouring.

5 Conclusions

In this work we have developed a novel algorithm to automatically segment organs of
interest for radiotherapy in lower abdomen CT images. It exploited an a priori knowl-
edge of the organs, taking into account their particular characteristics and the image
acquisition modality, according to the observations made during the analysis of the
problems: we generated a series of potential valid solutions, consistent with a statistical
model, and evaluated them choosing as solution what best fits to the patient’s image.

 An Evolutionary Method for Model-Based Automatic Segmentation 327

This technique could be useful to delineate automatically target organs or organs at risk
during the radiotherapy planning treatment, especially to cure prostatic carcinoma; actu-
ally this task is generally performed by a radiation oncologist, consuming a lot of time.
The performance of our algorithm, evaluated qualitatively and measured quantitatively
using four surfaces overlap metrics, is good.

References

1. Alander, J.T.: An indexed bibliography of genetic algorithms in optics and image process-
ing. Report series no. 94-1-OPTICS, Department of Electrical Engineering and Automa-
tion, University of Vaasa, Finland (2000)

2. Bevilacqua, V., Aulenta, A., Carioggia, E., Mastronardi, G., Menolascina, F., Simeone, G.,
Paradiso, A., Scarpa, A., Taurino, D.: Metallic artifacts removal in breast CT images for
treatment planning in radiotherapy by means of supervised and unsupervised neural net-
work algorithms. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS,
vol. 4681, pp. 1355–1363. Springer, Heidelberg (2007)

3. Bevilacqua, V., Mastronardi, G., Piscopo, G.: Evolutionary approach to inverse planning
in coplanar radiotherapy. Image and Vision Computing 25(2), 196–203 (2007)

4. Cagnoni, S., Dobrzeniecki, A.B., Poli, R., Yanch, J.C.: Genetic algorithm-based interactive
segmentation of 3D medical images. Im. and Vis. Comp. 17, 881–895 (1999)

5. Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The use of active shape models for locating
structures in medical images. Im. and Vis. Comp. 12(6), 355–366 (1994)

6. Costa, M.J., Delingette, H., Novellas, S., Ayache, N.: Automatic segmentation of bladder
and prostate using coupled 3D deformable models. In: Ayache, N., Ourselin, S., Maeder,
A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 252–260. Springer, Heidelberg
(2007)

7. Holland, J.: Adaptation in natural and artificial systems, 2nd edn. MIT Press, Cambridge
(1992)

8. Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: Active Contour Models. International
Journal of Computer Vision 1(4), 321–331 (1988)

9. GAlib: A C++ library of genetic algorithms components,
 http://lancet.mit.edu/ga

10. Ghosh, P., Mitchell, M.: Segmentation of medical images using a genetic algorithm. In:
Proc. of the 8th annual conference on genetic and evolutionary computation, pp. 1171–
1178 (2006)

11. Lee, C.C., Chung, P.C.: Identifying abdominal organs using robust fuzzy inference model.
In: IEEE int. conf. on networking, sensing and control, vol. 2, pp. 1289–1294 (2004)

12. Maulik, U.: Medical image segmentation using genetic algorithms. IEEE Transactions on
Information Technology in Biomedicine 13(2), 166–173 (2009)

13. Mazonakis, M., Damilakis, J., Varveris, H., Prassopoulos, P., Gourtsoyiannis, N.: Image
segmentation in treatment planning for prostate cancer using the region growing technique.
The British journal of radiology 74, 243–248 (2001)

14. McIntosh, C., Hamarneh, G.: Genetic algorithm driven statistically deformed models for
medical image segmentation. In: ACM Workshop on medical applications of genetic and
evolu-tionary computation, in conjunction with GECCO (2006)

15. Pekar, V., McNutt, T.R., Kaus, M.R.: Automated model-based organ delineation for radio-
therapy planning in prostatic region. International Journal of Radiation Oncology Biology
Physics 60(3), 973–980 (2004)

Evolution of Communicating Individuals

Leonardo Bocchi1, Sara Lapi1, and Lucia Ballerini2

1 Dept. of Electronics and Telecommunications, Univ. of Florence, Italy
leonardo.bocchi@unifi.it

2 School of Informatics, University of Edinburgh, UK
lucia.ballerini@ed.ac.uk

Abstract. Verbal communication between individuals requires the parallel evo-
lution of a vocal system capable of emitting different sounds and of an auditory
system able to recognize each vocal pattern. In this work we present the evolu-
tion of a population of twins where the selection pressure is based on the ability of
learning a communication pattern which allows verbal transmission of informa-
tion. The fitness of each pair of twins (i.e. individuals having the same genotype)
is based on the percentage of correct recognition of the perceived sounds. Re-
sults indicate the evolved communication system, in absence of noise, rapidly
evolves and reaches almost 100% correct classifications, while, even in presence
of a strong noise either in the channel, or in the sound generation parameters, the
system can obtain a very good performance (approximately 80% correct classifi-
cations in the worst case).

1 Introduction

One of the most important aspects which differentiate human beings from other ani-
mal species is the larger capability of transmitting structured information using vocal
sounds. This capability, indeed, allows the transmission of experience and learned in-
formation from one individual to another, and it is crucial for humanity, from a cultural
and technological point of view. Transmission of structured information requires both
a set of symbols (sounds) and a semantic interpretation for sequences of sounds to re-
construct the high level information which has been transmitted.

While the building of a semantic structure and of a language is mostly a cultural
process (every person is able to learn any language), the capability of generating a large
number of different sounds is structurally related to the shape of the vocal tract and
to the capability of changing this shape, which allows modulation of the fundamental
frequency (produced by vibration of vocal folds) producing a well defined shape of
the spectrum of the emitted sound. This process gives rise to the production of vocal
sounds, which are almost periodic sounds, characterized and discriminated from each
other by the position of the formants (resonance frequencies of the vocal tract). Dy-
namic changes in shape of the vocal tract are used to produce most of the consonants,
which are mostly non periodic sounds.

Together with the development of a vocal tract for emission of sounds, it is neces-
sary to develop an auditory system which is able to characterize different sounds and
discriminate vowels from consonants and from noise. As a first approximation, how-
ever, the auditory system of humans are not structurally different from the auditory

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 328–335, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Evolution of Communicating Individuals 329

Voice
production

model

Information
to be transmitted

Model
parameters

Transmission
noise

Twin A

Acoustical
model

Parameter
extraction

Neural
system

perceived information

Twin B

Chromosome
information

Fig. 1. Schematic representation of the evolving genotype: Twin A is emitting a sound, while
Twin B is learning to recognize the emitted sound

systems of other mammalians, which in some cases presents a higher capability than
the human auditory system (for instance larger and positionable ears which give a bet-
ter localization of sound source). Moreover, as already noted before, communication
between individuals is not only a matter of genetic evolution, but also involves a learn-
ing phase of each individual, before he can actually communicate with other individuals
of the same specie.

2 Methods

In this work we emulate the evolution of a population, which is pressed from evolution-
ary constraints to learn to communicate. The fitness of the genotype is related to the
speed and accuracy of the communication which can take place.

As communication requires the presence of similar individuals who actively try to
communicate, we simulate that each genotype of the evolving population give birth to
two identical twins, which try to exchange some piece of communication. The geno-
type, in our simulation, affect only the vocal tract of the individuals, as we suppose the
auditory system in all the population shares the same functionality. This hypothesis,
which allows us to greatly reduce the complexity of the algorithm, derives from the ob-
servation that in nature the basic structure of the auditory system is basically unchanged
in all high level species.

The other part which takes an active (and probably, the most important) part in the
development of the communications system is the learning by each individual of the
proper patterns. This learning is (in humans) performed inside the brain (Broca region).
In our system, the role of the brain is represented by a neural network which can be
trained to listen to sounds produced by an individual having the same genotype, in
order to discriminate between the different vocal emissions.

The overall communication model is represented in Figure 1. The whole system is
composed of several blocks, describing the voice production part and the recognition
part.

2.1 Voice Production Model

The vocal tract can be functionally described as a sound source (the vocal folds in the
glottis) connected to an acoustic filter (the vocal tract) which can be modeled as a tube

330 L. Bocchi, S. Lapi, and L. Ballerini

of varying section [8]. Several mathematical models have been introduced to describe
the voice generation process [2,3,6,7,9], but the most common representation, although
with a relatively large degree of approximation, is based on a linear model:

P (ω) = S(ω)T (ω)R(ω) (1)

where the voice spectrum P is related to the source spectrum S, filtered by the re-
sponse frequency of the vocal tract T and by the lips radiation characteristics R. In this
hypothesis, each of the three components can be independently modeled.

The source can be modeled either as a white noise source, which is rather unrealistic
but gives good results for consonant simulation, or as a pulse modulated airflow source,
which represents the opening and closing cycles of the vocal folds as a train of almost
triangular pulses. In our model, for simplicity, the source is simulated as a train of uni-
tary triangular pulses with a repetition frequency f0, randomly selected in the interval
from 50Hz to 100Hz, similar to the physiological range of human voices.

The model of the vocal tract is usually represented as a lossless tube, which is further
simplified by assuming the tube is composed of a series of N cylindrical sections. Using
this assumption, the airflow inside the tube can be analyzed using mono dimensional
equations. If we consider a cylindrical section of the tube (of index k, 1 ≤ k ≤ N),
having transversal area equal to Ak and length lk, the relation between the air speed uk

and the air pressure pk inside the tube, at time t and position x, can be written as:

pk(x, t) =
ρc

Ak

[
u+

k (t− x/c) + u−
k (t− x/c)

]
(2)

uk(x, t) = u+
k (t− x/c)− u−

k (t− x/c) (3)

where c is the propagation speed, ρ is the air density, and u+
k and u−

k represent the waves
traveling in the positive and negative direction inside the tube. At each connection point
between two consecutive sections of the tube, each wave is partly transmitted and partly
reflected. The reflection coefficient rk can be evaluated by using the continuity of the
flow over the junction [13]:

rk =
Ak+1 −Ak

Ak+1 + Ak
(4)

Assuming a constant value of lk across all sections, the time delay for each wave is
constant, and the transfer function of a section can be described, in the z domain and in
matrix notation, as:

Uk = QkUk+1, (5)

where

Uk =
[

U+
k (z)

U−
k (z)

]
and Qk =

[
z1/2

1+rk

−rkz1/2

1+rk

−rkz1/2

1+rk

z1/2

1+rk

]
(6)

From this equation, it can be determined [10] the overall transfer function:

V (z) =
0.5 ∗ z−N/2 ∗ (1 + r0) ∗

∏N
k=1(1 + rk)

Dk(z)
(7)

Evolution of Communicating Individuals 331

where r0 is the reflection coefficient at the junction between glottis and the vocal tract
and Dk(z) is a polynomial:

D(z) = [1,−r0]
[

1 −r1
−r1z

−1 z−1

]
· · ·
[

1 −rN

−rNz−1 z−1

] [
1
0

]
. (8)

The resulting transfer function is therefore represented as an all-poles lattice filter, with
coefficients which depend on the values of transversal areas Ak.

The resulting signal P (ω) has been evaluated, in the time domain, as the convolution
of the source impulse train and the frequency response of the filter. Before transmission,
the signal has been normalized by dividing it by its variance. To remove transitory
effects, we generated a pulse train composed on N=2048 samples and transmitted only
the second half of the signal, obtaining a waveform including 1024 samples.

2.2 Acoustic Model

The acoustic model of the auditory system is based on the extraction of the MFCC
(Mel-Frequency Cepstral Coefficients) vector [11]. The algorithm used to evaluate the
MFCC can be described as follow:

– Split the input signal y(t) in frames yn(t) of equal length, usually a power of 2 to
ease following steps.

– Evaluate the power spectrum Py(ω) of the frame, using short term Fourier trans-
form, applying an adequate windowing function w(t) (we used Hanning window):

Py(ω) = |F(yn(t)w(t))|2 (9)

– Calculate the energy Sk in each of the Mel windows

Sk =
∑
ω

Wk(ω)S(ω) (10)

where 1 ≤ k ≤ 13, and Wk(ω) is the triangular weighting function centered on the
k-th Mel window in the Mel scale.

– The DCT (Discrete Cosine Transform) of the logarithm of the values Sk is com-
puted [5] to obtain the desired coefficients cm:

cm =
M∑

k=1

log(Sk) cos
[
m(k − 0.5)

π

M

]
(11)

where 1 ≤ m ≤ 13, which is the selected order of the MFCC.

2.3 Interpretation Model

Once each frame of the received audio signal has been associated to the MFCC vector,
a neural network is used to identify the signal as one of the possible vowel sounds.
The neural network is a standard feed forward network, having an input layer of 13
units (MFCC coefficients), a hidden layer of 10 units, and an output layer correspond-
ing to the number of possible vowels which can be emitted by the speaker. Network is
trained, during each fitness evaluation, using the backpropagation algorithm with adap-
tive learning rate.

332 L. Bocchi, S. Lapi, and L. Ballerini

2.4 Genotype

In Figure 1, a generic genotype gives birth to two identical twins, A and B, which are
trying to learn to communicate. Because of the symmetry of the situations, we suppose
the twin A can produce a vocal sound selected from the set S = S1, S2, . . . , SN , each
element of which represents an information which can be selected from the set I =
I1, I2, . . . , IN . The genetic information stored in the chromosomes of the individual
describes the features of the vocal tract, encoding the capability of the individual to
produce different sounds. The chromosome, therefore, stores the transverse section of
the vocal tract for each of the emitted sounds. The number of vocal sounds which the
individual is able to generate has been assumed fixed and equal to five. The number
of different sections has been fixed equal to ten, which gives a reasonable number of
degrees of freedom, keeping the computational resources at an acceptable level. The
number of sections which are required to generate a set of artificial sounds which are
almost not discriminable from pure vocal sounds is considerably higher (up to forty, in
some works [1,4,12]). Therefore, the chromosome is constituted by a vector of 50 float
numbers, representing the ten cross-sectional areas for each of the five possible sounds.

2.5 Learning Phase

The task of twin B is to listen to the sound Ŝi, which can be corrupted by a random
noise, and to correctly identify the information Ii which was intended to be transmit-
ted by twin A. At birth, similar to a human baby, twin B is unable to understand the
information and therefore a learning phase is required. In this phase, twin A “teaches”
twin B by repeating a series of known informations Ii, which twin B listens to. From
the numerical point of view, this requires the production of training set composed of a
given number (30) of samples of each vocal sound associated to each information Ii.
This set is then used, together with the known values of Ii, to train the neural network
representing the “brain” of twin B.

2.6 Fitness Evaluation

Once the training phase is completed, it is possible to evaluate the communication ca-
pability, by generating an unknown information which needs to be transmitted from A
to B. The evaluation of the fitness of the individual is related to the number of correct
identifications over a set of vocal sounds which are produced by the speaking twin,
and received through the transmission channel. A test set, including 30 sound samples
for each of the different sounds (for a total of 150 samples) is generated by twin A.
The sound is transmitted (adding noise) to twin B, which listens to and classifies each
sample in one of the five classes, using the trained neural network.

To allow a good selection of the individuals, the fitness function f has been assumed
equal to the ratio (CC) of correctly identified frames (i.e. short segments) of the re-
ceived samples: f = CC. Therefore, the optimal individual, which correctly identifies
all frames of the received sounds, has a fitness values equal to one, while an individual
which fails to identify any frame has a fitness value of zero.

Evolution of Communicating Individuals 333

2.7 Reproduction and Selection

The structure of the chromosome allows the use of standard crossover and mutation
(Gaussian) operators. The only particular care which is required is to limit the area
function to be strictly positive (to this end we introduced a minimal value ε of the area
to avoid numerical instabilities of the filtering stage).

The selection of the population is based on the stochastic uniform method. This
method lays out a line in which each parent corresponds to a section of the line of
length proportional to its scaled value. The algorithm moves along the line in steps of
equal size. At each step, the algorithm allocates a parent from the section it lands on.
The first step is a uniform random number less than the step size.

3 Results

The system has been tested in three different environments: in the ideal case, where no
noise contamination is present, and the signal is received exactly as it was generated.
In the second experiment, we added a white transmission noise, while in the last ex-
periment, we also introduced a generation error, where the actual transverse sections
used to generate each sound are affected by a random error with respect to the values
specified in the chromosome.

In absence of noise, the different sounds appear to be easily discriminated from each
other, and evolution, with a large enough population size, reaches almost optimal per-
formance (more than 99% correct identification, in all runs of the algorithm) in a few
tens of generations.

In the second experiment, we used a noisy channel, where random white noise is
added to the transmitted signal. We simulated different noise levels, up to a variance of
the noise σ = 0.33, which means approximately 30% of the signal variance. Simulation
results indicate the evolved system is able to mantain a good level of reliability (almost
100% correct classifications) also in case of very high noise levels. Even with a noise
level equal to the 50% of the signal variance, a population of 30 individuals and 100
generations, the best individuals are able to classify approximately 95% of the received
sounds. A further increase of the noise shows that at a noise level of 100% (variance
of the noise equal to the variance of the signal), the evolved population achieves lower
performances, as shown in the example plot reported in Figure 2. In this case, the evo-
lution is unable to obtain the optimal individual, and best performance is about 90% of
correct classifications. Even in this last case, the performances (both as average and as
best fitness) reach their minimum value approximately after 70-80 generations.

A second possible noise source has been identified in the variability of the speaker.
We emulate this variability as a random error which is applied to the area vector each
time the individuals emit a sound. This error represents, therefore, the error which the
individual commits in shaping it vocal tract as specified in the chromosome. Errors
occurring in each section are independent of each other, with a Gaussian distribution
with zero mean and unitary variance.

Although this source of error may potentially have a larger impact on the frequency
response of the vocal tract, during the evolution the performance of individuals are
only marginally affected by the noise. Figure 3, top, reports the typical evolution trend

334 L. Bocchi, S. Lapi, and L. Ballerini

0 10 20 30 40 50 60 70 80 90 100

1

0.9

0.8

0.7

0.6

Generation

F
itn

es
s

va
lu

e

Fitness

Best
Average

Fig. 2. Evolution of the fitness in case of additive white noise on the channel, noise level 100%

obtained with a noise level equal to the 20% of the signal variance, a population size
of 20 individuals and a number of generations equal to 200. On the average, the best
individuals are able to classify approximately 95% of the received sounds. It can be
observed that, in this situation the fitness values keep improving almost until the end of
the simulation.

Increasing the noise level to 33%, the evolved population achieves sensibly lower
performances, as shown in the example plot reported in Figure 3, bottom. In this case,
the evolution is unable to obtain the optimal individual, stagnates before 100 genera-
tions, and best performance, on average, is about 80% of correct classifications.

0 20 40 60 80 100 120 140 160 180 200

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

Generation

F
itn

es
s

va
lu

e

Fitness

Best
Average

0 10 20 30 40 50 60 70 80 90 100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

1

Generation

F
itn

es
s

va
lu

e

Fitness

Best
Average

Fig. 3. Evolution of the fitness in case of additive white noise on the channel and on the vocal
tract shape, levels 20% (top) and 33% (bottom)

Evolution of Communicating Individuals 335

4 Conclusions

In this paper, a simulation of the evolution of voice communication has been described.
Results indicate that during the evolution the individuals can achieve a high reliability
in the transmission of the information through an acoustic channel, also in presence of
high levels of additive noise. The model appears to be quite robust also against errors
in the shaping of the vocal tract.

Future development aims to introduce a more refined model of the chromosome
representation which introduces physical constraints on the shape of the vocal tract, as
well as the possibility to evolve a variable number of sounds, in order to better emulate
the different number of vowels in the various spoken languages.

Acknowledgements. We thank Steven McDonagh for proof reading the manuscript.

References

1. Beautemps, D., Badin, P., Laboissière, R.: Deriving vocal-tract area functions from midsagit-
tal profiles and formant frequencies: A new model for vowels and fricative consonants based
on experimental data. Speech Communication 16(1), 27–47 (1995)

2. Bonada, J., Loscos, A., Cano, P., Serra, X., Kenmochi, H.: Spectral approach to the modeling
of the singing voice. In: Proceedings of 111th AES Convention (2001)

3. Christophe, B.D., Henrich, N.: The voice source as a causal/anticausal linear filter. In: Proc.
ISCA ITRW VOQUAL 2003, pp. 15–19 (2003)

4. Clément, P., Hans, S., Hartl, D., Maeda, S., Vaissière, J., Brasnu, D.: Vocal tract area func-
tion for vowels using three-dimensional magnetic resonance imaging. a preliminary study.
Journal of Voice 21, 522–530 (2007)

5. Deller, J.J.R., Hansen, J.H.L., Proakis, J.G.: Discrete-Time Processing of Speech Signals,
2nd edn. Wiley-IEEE Press, Chichester (1999)

6. Kob, M., Alhäuser, N., Reiter, U.: Time-domain model of the singing voice (1999)
7. Macon, M.W., Clements, M.A.: Sinusoidal modeling and modification of unvoiced speech.

IEEE Transactions on Speech and Audio Processing, 557–560 (1997)
8. Maeda, S.: A digital simulation method of the vocal-tract system. Speech Communication 1,

199–229 (1982)
9. Narayanan, S., Alwan, A.: Noise source models for fricative consonants. IEEE Transactions

on Speech and Audio Processing 8, 2000 (2000)
10. Rabiner, L., Schafer, R.: Digital Processing of Speech Signals. Prentice Hall, Englewood

Cliffs (1978)
11. Rabiner, L.R., Juang, B.H.: Fundamentals of Speech Recognition. Prentice Hall, Englewood

Cliffs (1993)
12. Story, B., Titze, I.: Parameterization of vocal tract area functions by empirical orthogonal

modes. J. Phonetics 26, 223–260 (1998)
13. Wakita, H.: Direct estimation of the vocal tract shape by inverse filtering of acoustic speech

waveforms. IEEE Transactions on Audio and Electroacoustics 21(5), 417–427 (1973)

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 336–343, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Dynamic Data Clustering Using Stochastic
Approximation Driven Multi-Dimensional Particle

Swarm Optimization

Serkan Kiranyaz1, Turker Ince2, and Moncef Gabbouj1,*

1 Tampere University of Technology, Tampere, Finland
{serkan.kiranyaz,moncef.gabbouj}@tut.fi

2 Izmir University of Economics, Izmir, Turkey
turker.ince@ieu.edu.tr

Abstract. With an ever-growing attention Particle Swarm Optimization (PSO)
has found many application areas for many challenging optimization problems. It
is, however, a known fact that PSO has a severe drawback in the update of its
global best (gbest) particle, which has a crucial role of guiding the rest of the
swarm. In this paper, we propose two efficient solutions to remedy this problem
using a stochastic approximation (SA) technique. For this purpose we use simul-
taneous perturbation stochastic approximation (SPSA), which is applied only to
the gbest (not to the entire swarm) for a low-cost solution. Since the problem of
poor gbest update persists in the recently proposed extension of PSO, called
multi-dimensional PSO (MD-PSO), two distinct SA approaches are then inte-
grated into MD-PSO and tested over a set of unsupervised data clustering applica-
tions. Experimental results show that the proposed approaches significantly
improved the quality of the MD-PSO clustering as measured by a validity index
function. Furthermore, the proposed approaches are generic as they can be used
with other PSO variants and applicable to a wide range of problems.

Keywords: Particle Swarm Optimization, stochastic approximation, multi-
dimensional search, gradient descent, dynamic data clustering.

1 Introduction

The particle swarm optimization (PSO) [4,10,11] exhibits certain similarities with the
other evolutionary algorithms (EAs) [2]. The common point of all is that EAs are in
population based nature and they can avoid being trapped in a local optimum. Thus
they can find the optimum solutions; however, this is never guaranteed. In a PSO
process, a swarm of particles (or agents), each of which represent a potential solution
to an optimization problem, navigate through the search (or solution) space. One
major drawback of PSO is the direct link of the information flow between particles
and the global-best particle, gbest, which primarily “guides” the rest of the swarm and
thus resulting in the creation of similar particles with some loss of diversity. Hence
this phenomenon increases the probability of being trapped in local optima [7] and it
is the main cause of the premature convergence problem especially when the search

* This work was supported by the Academy of Finland, project No. 213462 (Finnish Centre of

Excellence Program (2006 - 2011).

 Dynamic Data Clustering Using SA Driven Multi-Dimensional PSO 337

space is of high dimensions [10] and the problem to be optimized is multi-modal [7].
This makes it clear that at any iteration of a PSO process, gbest is the most important
particle; however, it has the poorest update equation, i.e. when a particle becomes
gbest, it resides on its personal best position (pbest) and thus both social and cognitive
components are nullified in the velocity update equation. Although it guides the
swarm during the following iterations, ironically it lacks the necessary guidance to do
so effectively. In that, if gbest is (likely to get) trapped in a local optimum, so the rest
of the swarm due to the aforementioned direct link of information flow. This defi-
ciency has been raised in a recent work [5] where an artificial GB particle, the aGB, is
created at each iteration as an alternative to gbest. However, the underlying mecha-
nism for creating the aGB particle, the so-called fractional GB formation (FGBF), is
not generic, rather problem dependent.

For the problem of finding a root *θ (either minimum or maximum point) of the

gradient equation: 0
)(

)(=
∂

∂≡
θ
θθ L

g for some differentiable function 1: RRL p → ,

when g is present and L is a uni-modal function, there are powerful deterministic

methods for finding the global *θ such as traditional steepest descent and Newton-
Raphson methods. However, in many real problems g cannot be observed directly
and/or L is in multi-modal nature, which presents many deceiving local optima. This
brought the era of the stochastic optimization algorithms, which can estimate the
gradient and may avoid being trapped into a local optimum due to their stochastic
nature. One of the most popular stochastic optimization techniques is stochastic ap-
proximation (SA), in particular the form that is called “gradient free” SA. Among
many SA variants the one and somewhat different SA application is called simultane-
ous perturbation SA (SPSA) proposed by Spall in [8].

In this paper we shall propose two approaches, one of which drives gbest effi-
ciently or simply put, guides it with respect to the function (or error surface). The idea
behind this is quite simple: since the velocity update equation of gbest is quite poor,
SPSA as a simple yet powerful search technique is used to drive it instead. The sec-
ond approach has a similar motivation with the FGBF proposed in [5], i.e., an artifi-
cial Global Best (aGB) particle is created by SPSA this time, which is applied over
the personal best (pbest) position of the gbest particle. The aGB particle will then
guide the swarm instead of gbest if and only if it achieves a better fitness score than
the (personal best position of) gbest. Note that both approaches only deal with the
gbest particle and hence the internal PSO process remains as is. They are then applied
to the multi-dimensional extension of PSO, the MD-PSO technique proposed in [5],
which can find the optimum dimension of the solution space. SA-driven (SAD) MD-
PSO is then tested and evaluated against the standalone MD-PSO application over
several data clustering problems.

2 Proposed Technique: SAD MD-PSO

2.1 SPSA Overview

The goal of the deterministic optimization methods is to minimize a loss func-
tion 1: RRL p → , which is a differentiable function of θ and the minimum (or maxi-
mum) point *θ corresponds to zero-gradient point, i.e.

338 S. Kiranyaz, T. Ince, and M. Gabbouj

0
)(

)(* =
=∂

∂≡
θθθ

θθ L
g (1)

As mentioned earlier, in cases where more than one point satisfies this equation (e.g. a
multi-modal problem), then such algorithms may only converge to a local minimum.
Moreover, in many practical problems, g is not readily available. This makes the SA
algorithms quite popular and they are in the general SA form:

)(1 kkkkk ga θθθ −=+ (2)

where)(kkg θ is the estimate of the gradient)(θg at iteration k and ka is a scalar

gain sequence satisfying certain conditions [8]. There are two common SA methods:
finite difference SA (FDSA) and simultaneous perturbation SA (SPSA). FDSA adopts
the traditional Kiefer-Wolfowitz approach to approximate gradient vectors as a vector
of p partial derivatives where p is the dimension of the loss function. On the other

hand, SPSA has all elements of kθ perturbed simultaneously using only two meas-

urements of the loss function as,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δ
Δ

Δ−−Δ+=

−

−

−

1

1
2

1
1

.

.

.

2

)()(
)(

kp

k

k

k

kkkkkk
kk c

cLcL
g

θθθ

(3)

where the p-dimensional random variable kΔ is usually chosen as Bernoulli 1± dis-

tribution and kc is a scalar gain sequence satisfying certain conditions [8]. Spall [8]

presents conditions for convergence of SPSA (i.e. *θθ →k) and show that under

certain conditions both SPSA and FDSA have the same convergence ability –yet
SPSA needs only 2 measurements whereas FDSA needs 2p. This makes SPSA our
natural choice for driving gbest in both approaches. SPSA has 5 parameters. Spall [9]
recommended to use values for A (the stability constant), α , and γ as 60, 0.602 and

0.101, respectively. However, he also concluded that “the choice of both gain se-
quences is critical to the performance of the SPSA as with all stochastic optimization
algorithms and the choice of their respective algorithm coefficients”. This especially
makes the choice of gain parameters a and c critical for a particular problem. i.e.
Maryak and Chin [6] varied them with respect to the problem whilst keeping the other
three (A, α , and γ) as recommended.

2.2 SAD MD-PSO

As mentioned earlier, in this work two distinct SAD MD-PSO approaches are pro-
posed, each of which is only applied in each dimension on the gbest of the positional
PSO whilst keeping the internal PSO processes (both positional and dimensional)

 Dynamic Data Clustering Using SA Driven Multi-Dimensional PSO 339

intact. Since both SPSA and positional PSO are iterative processes, in both ap-
proaches SPSA can thus easily be integrated into PSO by using the same iteration
count (i.e. kt ≡). The following sub-sections will detail each approach.

A1) First SAD MD-PSO approach: gbest update by SPSA

In this approach, at each iteration gbest particle is updated using SPSA. This re-
quires the adaptation of the SPSA elements (parameters and variables) and integration
of the internal SPSA part (within the loop) appropriately into the PSO pseudo-code.
Due to space limitations, we have to skip the pseudo code details of this approach.
Note that such a “plug-in” approach will not change the internal PSO structure and
only affects the gbest particle’s movement. It only costs two extra function evalua-
tions and hence at each iteration the total number of evaluations is increased from S to
S+2 (recall that S is the swarm size).

Since the fitness of each particle’s current position is computed within the PSO
process, it is possible to further diminish this cost to only one extra fitness evaluation
per iteration. Let)(txxc d

akkk =Δ+θ and thus)(kkk cL Δ+θ is known a priori. Then

naturally,
kk

d
akkk ctxxc Δ−=Δ− 2)(θ , which is the only (new) location where the

(extra) fitness evaluation ()(kkk cL Δ−θ) has to be computed. Once the gradient

()(kkg θ) is estimated, then the next (updated) location of the gbest will be:

1)1(+=+ k
d
a txx θ . Note that the difference of this “low-cost” SPSA update is that

)1(+txx d
a

 is updated (estimated) not from)(txxd
a , instead from

kk
d
a ctxx Δ−)(. Note

that in a MD-PSO process there is a distinct gbest particle, gbest(d). So SPSA is
applied individually over the position of each gbest(d) if it (re-) visits the dimension
d, (i.e.)(txdd gbest=). Therefore, there can be)(2 minmax DD − number of function evalua-

tions, indicating a significant cost especially if a wide dimensional range is used.
However, this is a theoretical limit, which can only happen if

jiDDjiforjgbestigbest ≠∈∀≠],,[,)()(maxmin
and all particles altogether visit the

particular dimensions in which they are gbest (i.e.],1[,)()(iterNotdtxd dgbest ∈∀=).

Especially in a wide dimensional range, note that this is highly unlikely due to the
dimensional velocity, which makes particles move (jump) from one dimension to
another at each iteration. It is straightforward to see that under the assumption of a
uniform distribution for particles’ movements over all dimensions within the dimen-
sional range, SAD MD-PSO too, would have the same cost overhead as the SAD
PSO. Experimental results indicate that the practical overhead cost is only slightly
higher than this.

A2) Second SAD PSO approach: aGB formation by SPSA

The second approach replaces the FGBF operation proposed in [5] with the SPSA

to create an aGB particle. SPSA is basically applied over the pbest position of the
gbest particle. The aGB particle will then guide the swarm instead of gbest if and only
if it achieves a better fitness score than the (personal best position of) gbest. SAD
MD-PSO pseudo-code as given in Table 1 can then be plugged into the MD-PSO.

340 S. Kiranyaz, T. Ince, and M. Gabbouj

Note that in this approach, there are three extra fitness evaluations (as opposed to two
in the first one) at each iteration. Yet as in the first approach, it is possible to further
diminish the cost by one (from three to two fitness evaluations per iteration). In order
to create an aGB particle for all dimensions in the given range (i.e.],[maxmin DDd ∈∀)

SPSA is applied individually over the personal best position of each gbest(d) particle
and furthermore, the aforementioned competitive selection ensures that

],[,)(maxmin DDdtxyd
aGB ∈∀ is set to the best of the)1(+txxd

aGB and)(txyd
aGB . As a

result, the SPSA creates one aGB particle providing (potential) GB solutions
(],[),1(maxmin DDdtxyd

aGB ∈∀+) for all dimensions in the given dimension range.

The pseudo-code of the second approach as given in Table 1 can then be plugged in
between steps 3.2 and 3.3 of the MD-PSO pseudo-code, given in [5].

Table 1. MD-PSO Plug-in for the second approach at dimension d

A2) SAD MD-PSO Plug-in (, a, c, A, ,)

1. Create a new aGB particle,],[)}1(),1({ maxmin DDdfortxytxx d
aGB

d
aGB

2. For],[maxmin DDd do:

2.1. Let k=t,)(tyx d
k and L=f

2.2. Let)/(kAaak and kcck /

2.3. Compute)(kkk cL and)(kkk cL
2.4. Compute)(kkg using Eq. (3)

2.5. Compute 1)1(k
d
aGB txx using Eq. (2)

2.6. If ())(())1((txyftxxf d
aGB

d
aGB) then)1()1(txxtxy d

aGB
d
aGB

2.7. Else)()1(txytxy d
aGB

d
aGB

2.8. If ())(())1(()(txyftxyf d
dgbest

d
aGB then)1()()(txytxy d

aGB
d

dgbest

3. End For.
4. Re-assign dbest:))(((minarg)(],[maxmin

txyfdbest d
dgbestDDd

3 Experimental Results

In order to test each approach of the proposed SAD MD-PSO technique over cluster-
ing, we created 8 synthetic data spaces as shown in Figure 1 where white dots (pixels)
represent data points. For illustration purposes each data space is formed in 2D; how-
ever, clusters are formed with different shapes, densities, sizes and inter-cluster dis-
tances to test the robustness of clustering application of the proposed approaches
against such variations. Furthermore, recall that the number of clusters determines the
(true) dimension of the solution space in a PSO application and hence it is also kept

 Dynamic Data Clustering Using SA Driven Multi-Dimensional PSO 341

varying among data spaces to test the converging accuracy to the true (solution space)
dimension. As a result, significantly varying complexity levels are established among
all data spaces to perform a general-purpose evaluation of each approach.

C3: 10 ClustersC2: 10 ClustersC1: 6 Clusters

C5: 16 Clusters

C4: 13 Clusters

C6: 19 Clusters C8: 22 ClustersC7: 22 Clusters

Fig. 1. 2D synthetic data spaces carrying different clustering schemes

The maximum number of iterations is set to 10000 and the use of cut-off error as a

termination criterion is avoided since it is not feasible to set a unique Cε value for all

clustering schemes. For MD-PSO, we used the swarm size, S=200 and for both SAD
MD-PSO approaches, a reduced number is used in order to ensure the same number
of evaluation among all competing techniques. w is linearly decreased from 0.75 to
0.2 and we again used the recommended values for A, α , and γ as 60, 0.602 and

0.101, whereas a and c are set to 0.4 and 10, respectively. For each dataset, 20 cluster-
ing runs are performed.

For visual evaluation, Figure 2 presents the worst and the best clustering results of
the two competing techniques, standalone vs. SAD MD-PSO, based on the highest
(worst) and lowest (best) fitness scores achieved among the 20 runs. In the figure each
cluster is represented in one of the three color codes (red, green and blue) for illustra-
tion purposes and each cluster centroid (each dimensional component of the gbest
particle) is shown with a white ‘+’.The clustering results of the best performing SAD
MD-PSO approach are shown whilst excluding C1 since results of all techniques are
quite close for this data space due to its simplicity. Note first of all that the results of
the (standalone) MD-PSO deteriorate severely as the complexity and/or the number of
clusters increases. Particularly in the worst results, the critical errors such as under-
clustering often occur with dislocated cluster centroids. For instance 4 out of 20 runs
for C6 results in severe under-clustering with 3 clusters, similar to the one shown in
the figure whereas this goes up to 10 out of 20 runs for C8. Although the clusters are
the simplest in shape and in density for C7, due to the high solution space dimension
(e.g. number of clusters = 22), even the best MD-PSO run is not immune to under-
clustering errors. In some of the worst SAD MD-PSO runs too, one or few under-
clusterings do occur; however, they are minority cases in general and definitely not as
severe as in MD-PSO runs. It is quite evident from the worst and the best results in

342 S. Kiranyaz, T. Ince, and M. Gabbouj

C3

C2

C6

C5

C4

C8

C7

MD-PSO SAD MD-PSO

Worst Best BestWorst

Fig. 2. The worst and the best clustering results using standalone (left) and SAD (right) MD-PSO

the figure that SAD MD-PSO achieves a significantly superior clustering quality and
usually converges to a close vicinity of the global optimum solution.

4 Conclusions

In this paper, we draw the focus on a major drawback of the PSO algorithm: the poor
gbest update. This can be a severe problem, which may cause pre-mature convergence
to local optima since gbest as the common term in the update equation of all particles,
is the primary guide of the swarm. SPSA is purposefully adapted to guide (or drive)
the gbest particle (with simultaneous perturbation) towards the “right” direction with
the gradient estimate of the underlying surface (or function) whilst avoiding local
traps due to its stochastic nature. In that, the proposed SAD MD-PSO is not a new

 Dynamic Data Clustering Using SA Driven Multi-Dimensional PSO 343

MD-PSO variant or extension, rather a “guided MD-PSO” algorithm, which has an
identical process with the MD-PSO as guidance is only provided to gbest particle –not
the whole swarm.

SAD MD-PSO is then applied to the unsupervised clustering problem within which
the (clustering) complexity can be thought of as synonymous to (function) modality
and tested over 8 synthetic data spaces in 2D with ground truth clusters. The statistical
results obtained from the clustering runs approve the superiority of SAD MD-PSO in
terms of global convergence. We have applied a fixed set of SPSA parameters and
observed that if the setting of the critical parameters, e.g. a and c is appropriate, then a
significant performance gain can be achieved by SAD MD-PSO. If not, SAD MD-
PSO still outperforms the standalone MD-PSO. This shows that SPSA, even without
proper parameter setting still performs better than the PSO’s native gbest update.
Furthermore, we have noticed that the performance gap widens especially when the
clustering complexity increases since the performance of the standalone MD-PSO
operation, without any proper guidance, severely deteriorates. One observation worth
mentioning is that the second approach on SAD MD-PSO has a significant overhead
cost, which is anyway balanced by using reduced number of particles in the experi-
ments; therefore, the low-cost mode should be used with a limited dimensional range
for those applications with high computational complexity.

References

1. Abraham, A., Das, S., Roy, S.: Swarm Intelligence Algorithms for Data Clustering. In:
Soft Computing for Knowledge Discovery and Data Mining book, Part IV, October 25, pp.
279–313 (2007)

2. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithm for parameter optimiza-
tion. Evolutionary Computation 1, 1–23 (1993)

3. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Cluster Validation Techniques. Journal of
Intelligent Information Systems 17(2, 3), 107–145 (2001)

4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on
Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)

5. Kiranyaz, S., Ince, T., Yildirim, A., Gabbouj, M.: Fractional Particle Swarm Optimization
in Multi-Dimensional Search Space. IEEE Trans. on Systems, Man, and Cybernetics
(2009) (in print)

6. Maryak, J.L., Chin, D.C.: Global random optimization by simultaneous perturbation sto-
chastic approximation. In: Proc. of the 33rd Conf. on Winter Simulation, Washington, DC,
December 9-12, pp. 307–312 (2001)

7. Riget, J., Vesterstrom, J.S.: A Diversity-Guided Particle Swarm Optimizer - The ARPSO,
Technical report, Department of Computer Science, University of Aarhus (2002)

8. Spall, J.C.: Multivariate Stochastic Approximation Using a Simultaneous Perturbation
Gradient Approximation. IEEE Transactions on Automatic Control 37, 332–341 (1992)

9. Spall, J.C.: Implementation of the simultaneous perturbation algorithm for stochastic opti-
mization. IEEE Trans. on Aerospace and Electronic Systems 34, 817–823 (1998)

10. Van den Bergh, F.: An Analysis of Particle Swarm Optimizers, PhD thesis, Department of
Computer Science, University of Pretoria, Pretoria, South Africa (2002)

11. Yan, Y., Osadciw, L.A.: Density estimation using a new dimension adaptive particle
swarm optimization algorithm. Journal of Swarm Intelligence 3(4) (2009)

Automatic Synthesis of Associative Memories
through Genetic Programming: A First

Co-evolutionary Approach

Juan Villegas-Cortez1, Gustavo Olague2, Carlos Aviles1, Humberto Sossa3,
and Andres Ferreyra1

1 Universidad Autónoma Metropolitana - Azcapotzalco. Departamento de
Electrónica. Av. San Pablo 180 Col. Reynosa, 02200. México D.F., México

jvillegas@gmail.com
2 Centro de Investiación Cient́ıfica y de Educación Superior de Ensenada CICESE.

Ensenada, B.C. México
olague@cicese.mx

3 Centro de Investigacion en Computacion CIC-IPN. México D.F., México
hsossa@cic.ipn.mx

Abstract. Associative Memories (AMs) are mathematical structures
specially designed to associate input patterns with output patterns within
a single stage. Since the last fifty years all reported AMs have been manu-
ally designed. The paper describes a Genetic Programming based method-
ology able to create a process for the automatic synthesis of AMs. It paves
a new area of research that permits for the first time to propose new AMs
for solving specific problems. In order to test our methodology we study
the application of AMs for real value patterns. The results illustrate that
it is possible to automatically generate AMs that achieve good recall per-
formance for problems commonly used in pattern recognition research.

1 Introduction

An associative memory (AM) is a special type of Artificial Neural Network
(ANN) designed to recall output patterns in terms of input patterns by means of
simple operations using reduced computing structures. The enormous simplicity
of AMs constitutes a very useful advantage versus traditional ANN models which
have a higher structural complexity. In the former, the information is stored by a
learning process where the association between input, X , and output Y , patterns
is denoted as (Xk, Y k); where, k is the corresponding association. The associa-
tive memory M is represented by a matrix whose components can be seen as the
synapses of a simple neural network. The matrix M is generated from an a priori
set of finite known associations, named as the fundamental set of associations
and is represented by

{
(Xk, Y k)|k = 1, ..., p

}
, where p is the number of associ-

ations. If (Xk = Y k)∀k = 1, . . . , p, then M is considered as auto-associative,
otherwise as hetero-associative. Also, a distorted version of a pattern X to be
restored will be denoted as X̃ . Thus, if M is fed with a distorted version of Xk

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 344–351, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automatic Synthesis of Associative Memories through Genetic Programming 345

and the output being obtained is exactly Y k; then, the recalling feature is con-
sidered as perfect. As for the associations of M , these are conformed by simple
operations such as: addition, multiplication, maximum, minimum and others. In
order to preserve its simplicity the process of creating new structures for AMs
turns out to be a matter of science and art. Several models of AMs have been de-
veloped during the last few years, refer to:[7]. However, those AMs have several
limitations; for example: their limited storage capacity, their difficulty to deal
with more than one type of patterns (binary, polar, integer or real valued), their
lack of robustness to deal with different kinds of noises (additive, subtractive,
mixed, Gaussian, etc.); and above all, most of them work only for the purpose
for which they were specially designed and not for any other. Since every model
has been manually developed by the human mind, their implementation takes
at least one or two years.

In this paper we improve our methodology presented in a previous report [8],
inspired from biological evolution, which is based on Genetic Programming (GP).
GP is based on Neodarwinian evolution principles aiming to automatically create
computer programs by means of natural selection and is used in the solution of
real world complex problems. The implementation of GP is commonly performed
by a set of individuals or computer programs written as tree structures. These are
easily evaluated in a recursive way using prefix notation; thus, every node has one
function operator and every terminal has a corresponding element. It is widely
acknowledged that GP has been successfully applied in a huge range of areas. In
particular, we can mention those related with computer vision (see:[2],[4]). This
work describes for the first time a GP system that is able to synthesize new AMs.

This article is organized as follows. Section 2 provides a brief description of
the problem. In section 3 we present our co-evolutionary GP methodology for
the automatic synthesis of AM through GP. Section 4 shows our results. Finally,
conclusions and suggestions for further research are presented in section 5.

2 Automatic Synthesis of AMs through GP

In general, the generation of AMs with evolutionary algorithms consists of the
following two-stage rule. The evolution starts as a simple ANN with a pre-
established topology evolved from more than one connection [9]. The process
continues with the evolution of architectures with the aim of generating different
topological structures; this involves the definition of the connectivity for every
synapse.

Based on [8] we introduced a very important modification using the co-
evolutionary framework. Initially, we considered as a basis for the definition of
an AM one simple association, using elementary arithmetic operators and having
special care with vector multiplication. Then, we focused on the connectivity of
every synapse that was carried-out between the components of the corresponding
input and output vectors; hence, using a one-to-one correspondence.

On the whole, the design of AMs uses different sets of operators: one for
association and another for the recalling stage. So, we decided to implement the
co-evolutionary framework through the definition of two search spaces in three

346 J. Villegas-Cortez et al.

steps. First, we defined the operators for the association stage; later, we defined
the recalling space using an association matrix generated previously; and finally,
we implemented the co-evolutionary approach that solved the problem using
both search spaces. Here, the cooperative co-evolutionary paradigm was central
to achieve our purpose of evolving AMs [3],[5].

3 The Design of AMs Using a Co-evolutionary Model

Our proposal for a GP-development of AMs comprises two populations for each
evolutionary process, the solutions for the association phase are in the first pop-
ulation, and the solutions for the recalling phase are in the second one. The
cooperative co-evolution is inspired by the ecological relationship between dif-
ferent species living together in the same environment, where each one provides
one part of the solution for the community survival skill. In our problem these
species are considered as possible solutions for each part of the global solution
of our problem. In Fig. 1 we present a framework of the application of this
idea. There, the solutions of AMs come from two search spaces, and the inter-
action between the first evolution process implied in the second evolution stage
is depicted. The fitness of the whole process tries to be representative of the
framework.

The components of our new model are defined through the following points
(see, Fig. 2):

– Opa
k. The evolutionary operator for the pattern association. It corresponds

to the encoded genotype. The local association matrix μi is made by the
Opa

k operator-rule, as it is depicted in Fig. 2.
– Mk. The k-th association matrix which is taken as the sum of all local associ-

ations (μi), it provides the cumulative knowledge inspired by the perceptron
principle.

– Ta = {xj , yj}. The Terminal Set for the association stage, xj ∈ X and
yj ∈ Y .

– Fa = {+,−, min, max, ∗}. The Function Set for the association stage. These
functions have been defined considering the solutions reported in the litera-
ture in order to target the space of possible structures. This aims to produce
individuals similar in performance to the reviewed AMs models.

– Opr
p. The evolutionary operator-rule for the pattern recall. It comprises the

input vector Xj, as well as the association matrix Mk.
– Tr = {v, R1, R2, . . . , Rm, Mk}. The Terminal Set for the recalling stage, with

v ∈ X , as the input vector, and Ri as the ith-row-vector ∈Mk.
– Fr = {+,−, min, max, mytimesm}. The Function Set for the recalling stage.

mytimesm is defined as the multiplication operator between vector compo-
nents, mytimesm(X, Y) = [x1∗y1, x2∗y2, . . . , xn∗yn]. When the association
matrix is considered, mytimesm(X, Mk) = X ∗Mk. Hence, it satisfies the
dimensionality of the multiplication operator between matrices.

– Ŷj . The approximated Yj pattern resulting from the application obtained
with the rule Opr

p in the recalling stage.

Automatic Synthesis of Associative Memories through Genetic Programming 347

Fig. 1. Proposed framework of the cooperative co-evolution process

Fig. 2. Proposed co-evolutionary model for the GP-development of AMs

Fig. 3. Fitness model for the GP-development of AMs

The evolutionary process demands the assignation of a fitness value to those
individuals included in both stages: association and recalling. For the sake of
simplicity the fitness function was considered to be equal to the cosine similarity
of the angle between the goal (Y) and the calculated pattern (Ŷ), which is defined
as follows:

348 J. Villegas-Cortez et al.

f =
Y · Ŷ

√
Y · Y

√
Ŷ · Ŷ

(1)

The optimum is found when f = 1, corresponding to the matching of all values.
The worst case takes place for f = 0, implying that not a single value is matched.
We apply Eq. (1) as our fitness function per every stage. The evaluation was
carried out in three steps per every prong. First, we applied the association
between X and Y implemented by Opa

k. Second, we performed a simple recalling
by the known multiplication operator in order to have a local estimator for this
step. Third, the computation of Eq. (1) between Y and Ŷ , for all the local
associations, was carried out in order to have a global fitness for the association
stage fitnessa

g and it was associated to the Opa
k operator. We applied the same

method during the recalling process. First we computed the recalled patterns
using the evolutionary operator Opp

r , this step involved the association matrix,
Mk, generated with the association operator Opk

a. Second, we computed the
fitness for Opp

r using the same fitness function of the recalling stage, the local
recalling fitness, fitnessr

i , associated to the evolutionary operator functioning
as the recalling rule. Third, a global fitness was evaluated and assigned for every
operator pair (Opr

a, Opp
r); we took the highest-fitness grade of each solution pair.

This process is shown schematically in Fig. 2 and Fig. 3.

3.1 GP Setup

The experiments were implemented using Matlab with GPLab toolbox [6]. Due
to the simplicity of the function set we performed several batches of “N” runs,
each consisting of 50 generations, each with 70 individuals for the association
phase, and another “N” batch of 50 generations, each with 70 individuals for
the recalling phase; during the last phase each evolutionated individual, resulting
from the previous phase, cooperates with its own association-rule and its own
fitness value in all the generations obtained during the recalling phase (see Fig.
1). After the development of all of this batch process we obtained one possible
evolutionary solution for our problem (a pair of GP trees, one individual for
association and its corresponding individual for recalling).

The GP parameters used in our experiments was similar to those suggested
by Koza [1], taking values of 0.7 for the crossover rate and 0.3 for the mutation
rate operations, respectively. Mutation was based on the ramped-half-and-half
initialization method, which was also used to initialize the population.

4 Results and Analysis

We applied this methodology in autoassociative relationship in order to have
new AMs to be applied to very-well known databases from the University of
California Machine Learning Repository: (i) the Iris Plant (4 features, 3 classes,
150 instances); and (ii) the Wine database (13 features, 2 clases, 178 instances).

Results comming from the Iris Plant database are discussed as follows. The
three resulting AMs suitable for this problem are shown in operators of Eq. 2

Automatic Synthesis of Associative Memories through Genetic Programming 349

Table 1. Winner pairs of the association rules with their corresponding recalling rules,
and their global fitness

Association rule Recalling rule Global Fitness
Competition(Opa

1 , Opa
2 , Opa

3) := Opa
1 Opr

1 1
Competition(Opa

1 , Opa
2 , Opa

3) := Opa
1 Opr

2 1
Competition(Opa

1 , Opa
2 , Opa

3) := Opa
1 Opr

3 1

and 3, three possible association rules for the association stage, and three for
the recalling stage, then the co-evolutionary process was executed to find the
winner pairs. Each individual has a tag per every evolutionary process, and the
global fitness for every winner dupla is shown in Table 1.

According to Table 1, the evolutionary process produces miscellaneous so-
lutions. Complex (Opa

1 , Opr
3), intermediate (Opa

1 , Opr
2), and simple (Opa

1 , Opr
1).

However, the only valid operator for the association stage turned out to be Opa
1 ;

see first column, Table 1. It is interesting to note that the association operators
Opa

2 and Opa
3 do not generate any valid association, for their generated asocia-

tion matrices were not adequate (their combination with the recalling operator
yielded poor results).

An important feature revealded through this methodology is the characteris-
tics of the main synapses or connections playing in competition. For this example
the winner rule for the recalling stage shows the rows numbers 1, 2 and 4, be-
longing to their association matrix Mk, generated by the association rule Op

a
1 .

These rows are the most significant during the recalling phase. They are related
to three features: the sepal length, the sepal width and the petal width; all of
them evaluated in cm. So, the new AM shows only three of the four features as
the most relevant from the Iris Plant database.

On the other hand, the results comming from the Wine database are dis-
cussed as follows. One resulting AM is shown in Eq. 4. There, the simplicity of
the recalling operator compensates the complexity of the association rule. One
important feature of this pattern set is revealed in the recalling rule operator.
Contrary to the Iris case, where the attibute set was reduced into three relevant
characteristics, the Wine case comprises all the whole features of the database.
So, our methodology shows that all attributes are relevant for the association
purposes to this pattern set.

F
i
t
n

e
s
s

0

0.2

0.4

0.6

0.8

1

Error percent

0 2 4 6 8 10

Fig. 4. Robustness to noisy patterns for the evolutionary AMs

350 J. Villegas-Cortez et al.

We tested these new AMs —the solution of the Iris case (Opa
1 , Opr

3); and the
pair corresponding to Eq. 4 (Opa

1 , Opr
2)—by adding random noise to the input

pattern set X , from 0 to 10 %. The resulting fitness is depicted in Fig. 4. We
observe that the recalling rate decreases slowly as the noise increases for the Iris
case, on the contrary for the Wine case, which evolutionary AM works only for
the training pattern set.

Opa
1 = min(+(∗(+(min(−(x, y), y), x), y),−(+(∗(max(x,∗(y, ∗(x, y))), x),

− (x, y)), max(+(+(max(y,x), +(y, x)), x), max(−(+(y,x), x), y)))),

min(+(−(min(+(y, y), y), x),+(−(+(y, x), y), y)), y))

Opa
2 = min[y, (x ∗ x − x) ∗ min(max(x ∗ x − x, y), y ∗ x + y) − max(x ∗ x − x, y)]

Opa
3 = min(max(−(∗(max(y,∗(y, min(y, x))),min(max(−(∗(y,min(y, x)), y),

− (−(∗(∗(y,−(x, +(∗(y, x), y))), ∗(y, x)), y),−(−(x,+(+(x,x), y)),

+ (−(y, ∗(y, y)), x)))), x)), y),−(−(∗(∗(+(y, ∗(x, y)),−(−(∗(∗(+(y, ∗(x, y)),

− (x,+(∗(y, x), y))), ∗(y, x)), y), y)), ∗(y, x)), y), y)), y)
(2)

Opr
1 = min[R3 + max[mytimesm(X,Mk) + min(mytimesm(X,Mk), R1),

min(max[min(X,R2), R1 ∗ X],

mytimesm(X,Mk))], X − [R2 + mytimesm(X,Mk) + mytimesm(X,Mk),

mytimesm(X,Mk) − (R2 − max(X,R1))] + max(R4, R2 ∗ X)

− mytimesm(X,Mk)] + max[min[min(max[min(mytimesm(X,Mk),

R4), R1 ∗ X], mytimesm(X,Mk)),mytimesm(X,Mk)], X]

Opr
2 = min[min(min(X, mytimesm(X,Mk)), R1), min(mytimesm(X,Mk),

min(R2, mytimesm(X,Mk)))]

Opr
3 = min(X, R3)

(3)

Opa
1 =min(−(max(−(y,x),−(∗(+(−(−(max(−(y,x),min(−(x, x),+(∗(∗(min(−(x, x),

+ (∗(−(−(−(x, y), y),min(y, min(y, x))),−(min(y, x), y)), x)), x),

− (min(y, x), y)), x))), y), y), x), x),+(min(∗(y, x), max(−(y,x),

min(+(y, y), y))),−(+(x, x), y)))),+(∗(+(y, x),−(min(y, x), y)), x)), y)

Opr
2 = min(+(x, x),mytimesm(x,Mk))

(4)

5 Conclusions

We improved our first approach where we originally proposed the GP methodol-
ogy for the synthesis of AMs development[8]. We obtained several AMs that fit
perfectly each pattern set by means of GP coevolutionary methodology. Instead
of the traditional approach that takes several years of research performed by
human experts, the time necessary to generate such solutions varies from hours
to days, depending on the computational time being necessary to synthesize ten

Automatic Synthesis of Associative Memories through Genetic Programming 351

or more models. Our methodology has one very important advantage, the possi-
bility to develop AMs specially designed for specific pattern sets. The resulting
evolutionary AMs are produced by the efficiency of the GP that searches for
optimized solutions. In particular, our methodology can be implemented to have
several solutions per pattern applications with lower computing time. Right now
we are working on improving our methodology with the use of new fitness func-
tions and metric spaces according to the kind of the pattern sets. We expect to
deal soon with challenging real world applications.

Acknowledgments

The authors give thanks to CIC-IPN and COFAA-IPN for the economical sup-
port. Authors also thank SIP-IPN under grant 20091421. This document was
prepared with economical support of the European Community, the European
Union and CONACYT under grant FONCICYT 93829. The content of this doc-
ument is an exclusive responsibility of the IPN, CICESE and UAM, and cannot
be considered as the position of the European Community.

References

1. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

2. Olague, G., Puente, C.: Honeybees as an intelligent based approach for 3d recon-
struction. In: International Conference on Pattern Recognition, Hong Kong, China,
August 20-24 (2006)

3. Paredis, J.: Coevolutionary computation. Artif. Life 2(4), 355–375 (1995)
4. Perez, C., Olague, G.: Learning invariant region descriptor operators with genetic

programming and the f-measure. In: International Conference on Pattern Recogni-
tion (2008)

5. Potter, M.A., Jong, K.A.D.: Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Computation 8, 1–29 (2000)

6. Silva, S., Almeida, J.: Gplab-a genetic programming toolbox for matlab (2004),
http://gplab.sourceforge.net/

7. Vázquez, R.A., Sossa, H.: Hetero-associative memories for voice signal and image
processing. In: Iberoamerican Congress on Pattern Recognition, pp. 659–666 (2008)

8. Villegas-Cortez, J., Sossa, H., Aviles-Cruz, C., Olague, G.: Automatic synthesis of
associative memories by genetic programming, a first approach. Research in Com-
puting Science. Advances in Computer Science and Engineering 42, 91–102 (2009)

9. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE, 1423–1447
(1999)

http://gplab.sourceforge.net/

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 352–360, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Comparative Study between Genetic Algorithm and
Genetic Programming Based Gait Generation Methods

for Quadruped Robots

Kisung Seo and Soohwan Hyun

Dept. of Electronic Engineering, Seokyeong University, Seoul, Korea

Abstract. Planning gaits for legged robots is a challenging task that requires
optimizing parameters in a highly irregular and multidimensional space. Two
gait generation methods using GA (Genetic Algorithm), GP (genetic program-
ming) are compared to develop fast locomotion for a quadruped robot.
GA-based approaches seek to optimize a pre-selected set of parameters which
include locus of paw and stance parameters of initial position. A GP-based tech-
nique is an effective way to generate a few joint trajectories instead of the locus
of paw positions and many stance parameters. Optimizations for two proposed
methods are executed and analyzed using a Webots simulation of the quadruped
robot built by Bioloid. Furthermore, simulation results for the two proposed
methods are tested in a real quadruped robot, and the performance and motion
features of GA-, GP -based methods are compared.

Keywords: Robot Automatic Gait Generation, Quadruped Robot, Genetic Al-
gorithm, Joint Space Trajectory, Genetic Programming.

1 Introduction

The mobility of a walking robot including quadruped robots is distinguished from that
of a wheeled robot by the ability to traverse uneven and unstructured environments
[1,14]. Planning gaits for quadruped robots is a challenging task, because there are
many degrees of freedom and, therefore, parameters, to be set properly [3,7]. Existing
automatic generation methods for quadruped gaits include: GA-(Genetic Algorithm-)
based approaches, GP- (Genetic Programming-) based approaches.

Most current GA-based approaches seek to optimize a pre-selected set of parame-
ters. They typically belong to three groups: locus of paw, initial position, and number
of movement points per cycle [3,4,6,10,12,15].

An efficient approach was proposed [13] by authors to use genetic programming to
optimize joint trajectories instead of the locus of paw positions in Cartesian space.
The joint-space-oriented method has to optimize only 4-6 joint trajectories, rather
than the more numerous parameters of Cartesian space. GP-based search is an effec-
tive way to generate the joint trajectories in an open-ended manner.

However, it is difficult to choose a specific gait generation method for a given robot,
because there are many different conditions to that influence the decision, including
robot features and characteristics of problem spaces. Moreover, there is no published

 A Comparative Study between Genetic Algorithm and Genetic Programming 353

research comparing these three approaches in the same environments for the same ro-
bots. Therefore, experimental comparisons and analysis for automatic gait generation
methods will be a useful guideline for selection of gait generation method.

In this paper, both representative gait generation methods named above are compared
for the quadruped robot represented by the Bioloid Kit [11]. In order to compare the two
methods in as fair and unbiased a fashion as possible, the same experimental environ-
ments and performance indexes are selected for all.

Forward velocity of gait is widely used as a performance index in previous works
[3,4,7,10], which rewards forward motion and penalizes sideways diversion. There-
fore, it is very reasonable to compare the two gait generation methods above accord-
ing to speed of walking without sideways diversion.

In this paper, two evolutionary based and gait generation approaches are compared
for the quadruped robot. To investigate the characteristics of the two approaches, im-
plementations and experiments on GA-, GP-based gait evolution are executed for the
Bioloid quadruped robot in the Webots environment. Section 2 discusses problems of
gait generation and models of a quadruped robot. Section 3 describes GA-based evolu-
tion of gait in the Cartesian space. and Section 4 explains GP-based evolution of gait in
the joint trajectory framework. Section 5 presents experimental results for evolved gaits,
and Section 6 concludes the paper.

2 GA-Based Gait Generation in Cartesian Space

With the parameterizations described in Section 2, the problem of optimizing the gait
speed becomes a parameter optimization problem in multi-dimensional space. As a
first method, we use an evolutionary approach based on genetic algorithms to opti-
mizing the locus of the robot’s paw for gait generation. A conventional SGA (Simple
Genetic Algorithm) [5] is chosen.

Fig. 1. An example of third-order spline locus and stance parameters for quadruped robot

To evolve the locus of paw positions for a quadruped robot, in this paper, the shape
of the locus is represented by a third-order spline, which has been found by others [4]
to be a preferred representation.

Not only must we select a certain type of locus, but we must also search for the
optimal parameters for the given locus, such as height and width. There also exist

354 K. Seo and S. Hyun

independent parameters for initial position (so-called “stance” parameters) as shown
in Figure 1.

3 GP-Based Gait Control in Joint Space

Given that a GA-based approach utilized a large set of parameters for gait and stance,
we propose an efficient approach with fewer parameters to use genetic programming
to optimize joint trajectories instead of the locus of paw positions in Cartesian space.
The joint-space-oriented method has to optimize only 4-6 joint trajectories, rather
than the more numerous parameters of Cartesian space. GP-based search is an effec-
tive way to generate the joint trajectories in an open-ended manner.

Similar research on automatic generation of control programs for walking robots
using GP exists [2], but it is focused on generating a general-purpose control program
for a virtual and morphology-independent robot consisting only of simple blocks.
Because there is no morphology-related information such as specified lengths or dis-
tances, it does not take into account many practical problems of a specific, real robot
and it is not suitable for the optimization of real gaits. The proposed GP-based gait
generation method is more practical and problem specific and deals with many real
phenomena and problems presented by real robots.

The proposed approach has the following unique features. First, a solution for gait
is represented by each joint’s trajectory rather than by the locus of paw positions and
stance parameters. Second, genetic programming is used to evolve trajectories, rather
than a GA-based approach, providing flexibility in the form of trajectories being
searched. Third, inverse kinematics calculations are not necessary to compute the gait
of the quadruped robot. Fourth, a solution for gait is a form of continuous curve, so no
interpolation process is required.

Fig. 2. Gait generation in joint space and Representation of trajectory of a joint via a GP tree

The concept of the gait generation in joint space is shown in Figure 2. The joint
trajectories of shoulder and knee for Aibo are represented in 2-D space; the vertical
axis is joint angle and the horizontal axis is time. Without the need for conversion of
paw position from Cartesian space to a set of joint angles, a gait is determined directly
by a series of joint positions (or angles), which corresponds to one cycle of paw locus
in Cartesian space.

Specification of gait as a set of joint trajectories is done by evolving a polynomial
function of time for each joint as a separate GP tree, but evolving them simultaneously.

 A Comparative Study between Genetic Algorithm and Genetic Programming 355

The numerical expressions generated by each GP tree resemble those generated when
using GP to perform symbolic regression. In Figure 2, the GP tree on the right side
represents some polynomial expression that translates as shown on the left into the joint
angle for one of the quadruped robot joints.

4 Experiments and Analysis

Here the above two representative gait generation methods are compared for a Bioloid
Kit quadruped robot. In order to compare the two methods fairly and with as little bias
as possible, the same experimental environments, performance indexes and available
computational efforts are used.

Forward velocity of gait is selected as a performance index, which promotes mov-
ing straight ahead, and reduces sideways diversion. To maximize velocity during
walking without falling down is good and well-defined performance index, also use-
ful for investigating the characteristics of the search space and capabilities of each
method.

4.1 Simulation Environments

The Webots [8] mobile robotics simulation software developed by Cyberbotics pro-
vides the user with a rapid prototyping environment for modeling, programming and
simulating mobile robots. Webots relies on ODE (Open Dynamics Engine) to perform
accurate dynamic physics simulation. Figure 3 shows real and simulation model of the
quadruped robot by Bioloid Kit [11].

Fig. 3. Real and simulation model of the quadruped robot

4.2 Fitness Function and GA, GP Parameters

The fitness function of gait generation is defined to obtain the joint trajectory set that
provides the fastest walking with only a small sideways diversion described in equa-
tion (1), where x is total forward distance reached, z is sideway diversion.

2|))4.0(|))(9.0((zxfitness ×−−×= (1)

The GA and GP parameters specified were as shown below (Table 1).

356 K. Seo and S. Hyun

Table 1. The GA and GP Parameters

GA Parameters GP Parameters
Number of generations: 100
Population sizes: 150
Selection: Roulette Wheel
Crossover: Arithmetic Crossover, 0.9
Mutation: Random Mutation, 0.1

Terminal Set : Random Constants, X
Function Set : SIN, COS, +, -, *, /
Number of generations : 100
Population sizes : 30*5 multiple populations
Initial population : half_and_half
Initial depth : 1-6
Max depth : 15
Selection : Tournament (size=7)
Crossover : 0.6
Mutation : 0.1
Reproduction : 0.3

4.3 Simulation Results

Two gait generation methods—GA (Genetic Algorithm), GP (Genetic Programming)
—are executed using Webots simulation. The number of evaluations to be used by the
two methods is set to be equal, to make a fair comparison. Fifteen experiments are
executed for each method, and of those fifteen, ten runs are chosen for use in summa-
rizing statistics, eliminating those that do not work properly during replay of the
simulation even though they fared well in the evolution process. These results that
failed to replay properly are removed. These experiments were run on a single Core 2
Duo 2.13GHz PC with 2GB RAM.

4.3.1 Performance of Velocity
The tabular results of average and max velocities for generated gaits by GA, dis-
played versus number of movement points per cycle, are provided in Table 2.

The average velocity is an average of 10 iterations for the max velocity in each ex-
periment. The maximum velocity represents the best values among the 10 experi-
ments. “Movement points” represents the number of segments associated with the
selected locus of the paw.

Table 2. Results by variation of movement points per cycle(GA)

Movement points Average velocity Maximum velocity

40 15.62 20.14

50 19.25 21.84

60 16.73 18.60

In the GA-based experiment, the best performance is 21.84 cm/s for max velocity

(velocity) and 19.25 cm/s for average velocity of 10 experiments using 50 movement
points. The max velocity with 40 movement points is better than with 60 points, but
the average velocity with 40 movement points is worse than with 60 points.

 A Comparative Study between Genetic Algorithm and Genetic Programming 357

The tabular results of the GP-based methods displayed against number of move-
ment points per cycle are provided in Table 3. Here, movement points represent the
number of segments associated with the obtained trajectory of the joints. The max
velocity of best performance is 26.53 cm/s for 40 movement points and the average
velocity is 15.04 cm/s. Lower numbers (40) of movement points show better results
than higher numbers 50 and 60. Compared to the results from the GA, the GP results
show more deviation between max and average.

Table 3. Results by variation of movement points per cycle(GP)

Movement points Average velocity Maximum velocity

40 15.04 26.53

50 13.53 18.53

60 11.28 18.01

Summarizing Tables 2 to 3, we observe that the GP-based method yielded the best

max velocity, and the GA results showed superior average velocity to the other meth-
ods. The GP results showed larger deviation even though the max velocity was highest.

4.3.2 Movement Data for Gait Behavior
Tables 4-5 provides the vertical variation and average height of shoulder from ground
to investigate to allow examining the motions of a quadruped robot for comparison of
GA and GP. The vertical variation means the difference between the highest and
lowest y coordinate of the shoulder during walking. The average height and SD repre-
sent the mean y coordinate of the shoulder during walking, measured every 32ms, and
its standard deviation. The unit is cm. Both values are averages of 10 experiments.

Table 4. Measured data for height of shoulder during walk by GA method

 Vertical variation Average height (SD)
Left 11.92 15.14(3.11) Front

Right 12.66 15.08(3.19)
Left 8.55 14.18(1.98)

Back
Right 7.49 14.13(1.99)

Total average 10.15 14.63(2.57)

Table 5. Measured data for height of shoulder during walk by GP method

 Vertical variation Average height (SD)
Left 10.03 15.23(2.44) Front

Right 11.26 15.21(2.77)
Left 7.71 14.03(1.72)

Back
Right 7.86 14.00(1.86)

Total average 9.22 14.62(2.20)

358 K. Seo and S. Hyun

Table 4 includes variation and height of motion data for the GA method. The
movements of the front legs are larger than of the rear legs in vertical variation. That
is also verified through the larger standard deviations of average height. The average
height of the front legs is higher than of the rear legs. The total average vertical varia-
tion is 10.15 cm and total average height is 14.63 cm.

Table 5 indicates same data for the GP method. The movements of the front legs
and rear legs are similar to those of the GA method. The total average vertical varia-
tion is 9.22 cm and total average height is 14.62 cm. We see that the vertical variation
is less than with the GA method, and height is almost the same.

4.3.3 Simulation Images of Gaits Obtained
Images of the robot walking are shown in Figure 4 in the Webots simulation. The
obtained gaits of the best individuals for each method are displayed with frame im-
ages captured at intervals of 320ms. The images of the GA method show that the
robot spreads its front legs out in turn, maintaining a low position. This gait shows
relatively larger horizontal sway motions than the others.

The results of GP are somewhat similar to the GA results, but they show more bal-
anced horizontal motion and the rear legs are used as well as the front legs.

GA

GP

Fig. 4. Simulation movement comparison between GA, GP (Best)

4.4 Bioloid Real Robot Results

Experiments for the real robot are executed through transferring simulation data of the
best individual for each method into the controller of the Bioloid quadruped robot.
Figure 5 shows experimental results for the two methods when executed on a hard
stone floor. The images of the real walking of the quadruped robot are obtained from
video clips at the same intervals as the simulation images.

GA

GP

Fig. 5. Real movement comparison between GA, GP from Bioloid robots on the floor

 A Comparative Study between Genetic Algorithm and Genetic Programming 359

The real walking with the GA method shows similar results to those from the simu-
lation, relying primarily on the front legs for locomotion. However, there are some
motions that result in some turning toward the right during walking. In comparison
between frames 3 and 4 of the simulation in Figure 4, and same sequence in the real
run in Figure 5, we can see the robot maintain its body without slipping in simulation,
but not fully recovering its previous orientation after slippage in the real walking.
This is what appears to be responsible for a slight right-turning tendency of the actual
robot on the stone floor.

The results of the GP method appear more similar to the results in the simulation
images than they did with the GA method. Most corresponding frames in the real and
simulation runs appear almost identical. The only notable difference exists in the 3rd
frame, in which the real robot raises its right front leg a little higher than it does in the
simulation. Besides that, there is also some slippage during walking, but less than in
the case of GA.

4.5 Analysis of Two Methods for Gait Evolution

The two methods (GA, GP) all seem to have some unique features for gait generation.
The GA method provides intuitive understanding of gait shapes, because they are
affected mainly by the locus of the paw. Therefore we can figure out some character-
istics of gait based on analyzing the loci of paw positions. However, this approach
depends heavily on the pre-defined shape of the paw locus, so is very different from
global optimization.

The GP method with joint trajectory optimization has more possibility to reach
global optimization because it is not dependent on a locus shape, but depends only on
performance. However, it is difficult to obtain a global optimum because of the enor-
mous size of the search space.

5 Conclusions

Two gait generation methods using GA (Genetic Algorithm), GP (genetic program-
ming) are implemented for comparison to develop a fast locomotion scheme for a
quadruped robot. Optimizations using the two proposed methods are executed and
analyzed using the Webots simulation for a quadruped robot built by Bioloid.

In simulation, the GP method shows superior results in max velocity, while the GA
methods show good performance in average speed.

In real experiments, the GA and GP approaches showed relatively similar move-
ments to their respective simulation data. Especially, the GP method showed very
similar movement between simulation and real experiment.

Further study will aim at refinement of the two methods to better reflect the charac-
teristics of the gait problem and evolution of gait to minimize effects due to friction
and slippage.

Acknowledgments

This work was supported by National Research Foundation of Korea Grant funded by
the Korea government (2009-0071419).

360 K. Seo and S. Hyun

References

1. Bekey, G.A.: Autonomous Robots-From Biological Inspiration to Implementation and
Control. MIT Press, Cambridge (2005)

2. Busch, J., Ziegler, J., Aue, C., Ross, A., Sawitzki, D., Banzhaf, W.: Automatic generation
of control programs for walking robots using genetic programming. In: Foster, J.A., Lut-
ton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp.
258–267. Springer, Heidelberg (2002)

3. Chernova, S., Veloso, M.: An Evolutionary Approach To Gait Learning For Four-Legged
Robots. In: Proceedings of IROS 2004, Sendai, Japan, September 2004, pp. 2562–2567
(2004)

4. Dong, H., Zhao, M., Zhang, J., Shi, Z., Zhang, N.: Gait Planning Of Quadruped Robot
Based On Third-Order Spline Interpolation. In: Proceedings of the 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Beijing, China, October 9-15, pp.
5756–5761 (2006)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Ad-
dison-Wesley, Reading (1989)

6. Golubovic, D., Hu, H.: Parameter Optimisation of an Evolutionary Algorithm for On-line
Gait Generation of Quadruped Robots. In: Proceedings of IEEE International Conference
on Industrial Technology – ICIT 2003, Maribor, Slovenia, December 2003, pp. 221–226
(2003)

7. Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous Evolution of Dy-
namic Gaits with Two Quadruped Robots. IEEE Trans. Robotics 21(3), 402–410 (2005)

8. Hohl, L., Tellez, R., Michel, O., Ijspeert, A.J.: Aibo and Webots: Simulation, wireless re-
mote control and controller transfer. Robotics and Autonomous Systems 54(6), 472–485
(2006)

9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection. MIT Press, Cambridge (1992)

10. Mericli, T., Akın, H.L., Mericli, C., Kaplan, K., Celik, B.: The Cerbus 2005 Team Report
11. Robotis Corporation, http://www.robotis.com
12. Röfer, T.: Evolutionary Gait-Optimization Using a Fitness Function Based on Propriocep-

tion. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004.
LNCS (LNAI), vol. 3276, pp. 310–322. Springer, Heidelberg (2005)

13. Seo, K., Hyun, S.: Genetic Programming Based Automatic Gait Generation for Quadruped
Robots. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2008, Atlanta, July 2008, pp. 293–294 (2008)

14. Tenreiro, J.A., Silva, M.F.: An Overview of Legged Robots. In: Proceedings of the Inter-
national Symposium on Mathematical Methods in Engineering, pp. 27–29 (2006)

15. Wang, Z.D., Wong, J., Tam, T., Leung, B., Kim, M.S., Brooks, J., Chang, A., Huben,
N.V.: The 2002 rUNSWift Team Report (2002)

Markerless Localization for Blind Users Using
Computer Vision and Particle Swarm

Optimization

Hashem Tamimi and Anas Sharabati

Information Technology Department,
College of Administrative Sciences and Informatics,

Palestine Polytechnic University,
Ein Sara Str., P.O. Box 198, Hebron, Palestine

htamimi@ppu.edu

Abstract. In this paper, we propose a novel approach, which aims to
solve the localization and target-finding problem for blind and partially
sighted people. A guidance system, solely implemented on a mobile phone
with a camera, is employed. A computer vision approach integrated with
Particle Swarm Optimization (PSO) is proposed for tracking the loca-
tion. Using PSO leads to many advantages: first, it is possible to obtain
robust localization results by combining the current and historical in-
formation about the location of the blind person. Second, it helps the
system to resolve from ambiguous situations caused by facing similar
images at different locations. Third, it can detect and recover from cases
where the calculated location is wrong. Experimental results show that
the proposed method works efficiently because of the simplicity of the
approach, which makes it suitable for mobile applications.

1 Introduction
People depend on sight to achieve most of their work, including determining
their location. Blind people usually rely on other sensors, odometry, and artifi-
cial devices in order to achieve similar tasks. The walking cane is the most basic,
inexpensive, and practical tool that accompanies the blind during his move-
ment. Nowadays, blind persons face a more complicated world than before and
the amount of help from sighted people is becoming less. Therefore, the use of
technology to help the blind person is now of great need [2].

There have been many attempts and alternatives to guide the blind person.
For example, in [18] a 3D-map of the environment is built and stored in a wear-
able computer, when the user walks in the environment, the system refers to the
3D-map and gives the user some directions, a body mounted camera is used for
image acquisition. Another approach, proposed in [9], uses stereo images which
enable depth detection; here also there is a need for a wearable computer and
stereo vision for detecting depth.

Other ideas, such as [4] and [8], are based on augmenting the whole environ-
ment with RFID tags to give the blind an independent environment for them-
selves, These systems focus on giving the user information about the objects and

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 361–370, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

362 H. Tamimi and A. Sharabati

about the way to reach them, but the environment must be fully pre-engineered
with RFID tags. In [5], the place where the user walks contains artificial visual
markers that can be detected by a mobile phone in order to guide the user.
The problem in this approach is to guide the blind user to find the markers
themselves.

From the above literature, it is obvious that there is a high demand for a low
cost, light weight, and efficient alternative. In our work, we present a system that
aims to aid the blind user in order to find her/his location by using a mobile
phone with a camera (which is now available in most mobile phone models in the
market). The system is supposed to communicate with the blind person through
auditory massages. In addition, we aim to solve the localization problem indoors
as a substitute for the GPS systems which are not reliable in closed places [3].

In the presented approach, a set of images are first captured from the envi-
ronment under study, and the corresponding set of features are extracted from
these images using a computer vision approach. These features, which implicitly
represent the map of the environment, are stored in the memory of the mobile
phone. Later, images from the location of the blind person are used as a query
to determine the location. This is done by comparing their corresponding fea-
tures with the implicit map. In order for the system to track the location of the
user as she/he moves around in the environment, Particle Swarm Optimization
is applied. In contrast with [5], the proposed system does not require any spe-
cial visual artificial markers to be placed in the surroundings; it simply relies
on the natural belongings of the environment. In addition to that, the proposed
system can take into account the historical information to decide the location of
the blind person. This makes the system more robust than the system proposed
by [5] because the latter relies on a single image only.

This paper is organized as follows: section 2 presents the approach we have
taken to solve the two main problems associated with constructing a navigational
system. Section 3 introduces the features that we use in the system and the
criteria of comparing them. Section 4 discusses the main algorithm that is used
in the tracking of the location which is the PSO and shows the main advantages
of using PSO for localization. Section 5 discusses the experiments and results of
this paper.

2 The Establishment of the System

There are two phases for the proposed system. Phase 1 involves setting up the
map and storing it in the mobile device. While Phase 2 deals with the steps of
determining the location of the blind person as he moves. The two phases are
explained below.

2.1 Phase 1

In this phase, images from the environment are captured using the mobile phone.
For each image, or set of images, a given label that identifies the current location

Markerless Localization for Blind Users Using Computer Vision 363

is attached, and a short-voice massage is stored for each label. Then, a set of
image based features are extracted from the images and stored in the mobile
memory. These features are invariant to the expected image transformations
that could occur during the motion of the blind person. For example, if we find
a feature of some image, we expect that it will be similar to the feature of the
rotated version of the same image to a high extent.

2.2 Phase 2

In this phase, the determination of the location for the blind person is carried
out. First, new images are taken from a location. Then, features are extracted
from these images. A comparison between the novel features and the stored
features from Phase 1 is carried out. The label of most similar features in the
database is identified and the corresponding voice message notifies to the user.

3 Color Histogram

There are many image-based features in the literature, such as Scale Invariant
Feature Transform (SIFT) [11], integral invariants [17], orientation histogram
[6]Ě etc. Nevertheless, we have chosen the color histogram in this work since it
can be efficiently computed using the processor of the mobile phone. Color his-
tograms are widely used as features for comparing images [12] because they can
reflect the original image to a high extent and they are invariant to rotation and
known to be very robust to occlusion. Although color histograms are sensitive
to illumination changes found in outdoor applications, we avoid this problem by
applying localization process indoors under limited illumination changes.

For an image M of size N0 × N1 , the histogram can be defined at a given
intensity value c = M(x0, x1) as:

H(c) = 1
N0N1

N0−1∑
x0=0

N1−1∑
x1=0
δ (M (x0, x1)− c). (1)

In Equation 1, δ is the unitary impulse function. We notice that H(c) values are
normalized in order to sum to one. Elements of the histogram can be referred to
as bins.

For comparing the histogram of the novel image with the previously stored
histograms of Phase 1, we use Bhattacharyya distance[1]:

B(H1, H2) =

√√√√1−
N∑
1

√∑
H1i.
∑

H2i. (2)

Where H1 and H2 are two histograms, and N is the number of bins. The Bhat-
tacharyya distance value is bounded between 0 and 1, where the value 0 refers
for identical images. The larger the value the more the images are different.

364 H. Tamimi and A. Sharabati

Fig. 1. Bhattacharyya distance chart, where X-axis represents the image number and
the Y-axis represents the Bhattacharyya distance value

Figure 1 shows the Bhattacharyya distance function between a given histogram
and another 50 histograms. The 50 histograms are taken from 50 different but
overlapping images; this is why there is smoothness in the figure. We notice that
the 34th element is a local minimum and therefore the corresponding image is
the most similar to the image in the query.

In the localization process we can not rely on one image only because it will
make the system fail when there are different locations with the similar visual
appearances [14]. Therefore we must take into account both the current image
as well as the historical data that leads to the current location. Such approaches
are inherited from the robot localization process [15] where a decision about
the location is calculated from the robot sensor at the current state as well
as the previous decisions, Examples of such approaches are Particle Filter [16],
and Particle Swarm Optimization [10]. We have adopted latter approach for its
simplicity and effectiveness.

4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was proposed in 1995 by James Kennedy
and Russell C. Eberhart [7,13]. The algorithm is inspired by the biological be-
havior of bird flocks, bees or fish during their search for food. In this algorithm,
a number of particles search the space for a given target. Each particle searches
its surrounding area for a local best solution and all the particles are affected by
the best solution found, which is called the global best. The movement of the
particles toward the goal is iterative and is controlled by the following equations:

vi (t) = ω · vi (t− 1) + c1 · α1 · (li − xi (t− 1))
+c2 · α2 · (g − xi (t− 1)) ,

(3)

Markerless Localization for Blind Users Using Computer Vision 365

xi (t) = xi (t− 1) + vi (t) . (4)

Where i is the particle number, t is the iteration number, xi is the position of
the particle, vi is the velocity of the particle, w, c1, c2 are scalar values, g is the
global best value, li is a local best value of each particle, and α1, α2 are random
values uniformly distributed between 0 and 1.

Equation 3 calculates the velocity of the particle, which indicates how many
unites the particles move, whereas Equation 4 updates the position based on the
velocity. At initialization all variables of the PSO are uniformly distributed in
the search space.

The search space in the presented problem is one dimensional. One may as-
sume that the searching process can be performed easily even sequentially with
limited computation time. But the main reason of applying PSO here is the
ability of the particles to establish a representation about the confidence of the
correct location. Also, the particles can easily represent a motion model of the
blind. The following subsections demonstrates some advantages of using PSO
for localization:

4.1 Robust Localization

Initially, it is assumed that the particles are uniformly distributed all over the
locations; this reflects a lost case since the probability for the blind to be at any
location is equal. After applying Equation 3 and Equation 4 for a given number
of iterations, the particles will move toward local minima, and the location with
the maximum number of particles is assumed to be the right location of the
blind person. When the blind person start moving, she or he is expected to be
in a place not far from the previous position and the majority particles will start
moving toward a new nearby local minima since the motion of particle is govern
by the two equations above. This will eventually make the whole swarm follow
the motion of the human robustly. In most cases, there will be no need to fully
reinitializing the searching process each time a new location is encountered.

4.2 Ambiguous Locations

In real situations, it is possible to face similar images at different locations such
as similar doors, windows or similar furniture at offices or hospitals. In such
cases, the localization process depending on one-shot-decision can lead to wrong
location. Another reason for this to happen is the weakness of the feature ex-
traction algorithm to find unique features for dissimilar images. In both cases, it
is not recommended to rely on the current location in isolation of the previous
location(s) that leads to it during the motion of the blind person. One major
advantage of applying PSO for localization is that the current decision about
the location of the blind is actually an accumulation from the historical informa-
tion. PSO memorizes and preserves the context that leads to a current behavior,
which makes it very suitable for this application.

366 H. Tamimi and A. Sharabati

Fig. 2. The system steps for each image received

4.3 Lost Cases

In addition to preserving the context of the motion of the blind person, another
advantage of the proposed system is the ability to detect and recover from the
cases where it gets lost. This is important in order not to miss-guide the blind
person. We define a lost case is a non-initial case where the Bhattacharyya
distance of each particle larger than a given threshold. If this happens it means
that the particles are giving the wrong directions or that the environment is not
pre-defined. To recover from this case, the PSO algorithm will fully restart the
search process by re-distributing the particles to whole search space and then
tries to find the correct location again.

Figure 2 shows the block diagram of the proposed system. It is worth mention-
ing that communication with the blind user does not occur immediately after a
single query image but after capturing a given number of images in order for the
particles to gather at the right location. The number of images that is required
for this purpose is found experimentally as explained in the experimental part
of this paper.

5 Experiments and Results

The experiments were done with a simulation program which accepted training
histograms as explained in Phase 1 and test images as explained in Phase 2. The
samples were collected form a mid-size grocery store with 16 different locations.
We used a set of 2748 images in the experiment. Several types of color histograms
were studied, namely grayscale histograms with 64, 128, and 256 bins as well
as a 3D-histogram for colored images with 8 bins for each color intensity. The
experiment involved a simulation of a moving person and the images that faced
her/him during her/his motion were identified. This is clarifed in Figure 3, where
the Start and the End positions of an image sequence (path) were identified.
The number of particles, the PSO constants, and the PSO iterations were also
adjustable in the program. Once these parameters are entered, the simulation
showed us the images that corresponds to blind person location as she/he moves

Markerless Localization for Blind Users Using Computer Vision 367

Fig. 3. The simulation program

from the staring position to the ending position. This is referred to as the Best
Location in Figure 3. Based on PSO, this Best Location is the one which has the
maximum number of particles.

Several experiments with different paths were carried out. For each path,
the number of images (N) needed to find a given location, and the number
of times the system failed to find the right location (E) were recorded, (this
happened when the system needs to re-initialize the particles). In addition, the
cases were the system completely failed to find a path (-) is recorded. Table 1(a)
to Table 1(b) show the results of these experiments using different histograms.

From Table 1(a) to Table 1(c) we can see that grayscale histograms failed
most of the time to find and follow the test path, and to correct itself in case of
a failure in localization. In large environments with similar location the grayscale
histogram cannot distinguish the images. On the other hand, a 3D histogram in
Table 1(d) with 8 bins for each intensity succeeded to follow all the test paths,
which means it is the best histogram to use.

In order to test the system ability to recover from faults, some faults were
intentionally entered in the test paths by inserting a number of images that did
not belong to a given image sequence. The system was able to detect the these
faults and recover from them.

368 H. Tamimi and A. Sharabati

Table 1. Experimental Results using different histograms

(a) Grayscale 64 bin histogram
Test path N E Reach Destination?
Location 1 to 2 1 2 No
Location 2 to 4 3 0 Yes
Location 6 to 4 4 0 Yes
Location 8 to 10 2 0 Yes
Location 12 to 10 - - No
Location 15 to 12 - - No
Location 14 to 12 - - No
Location 14 to 16 - - No

Success Rate 37.5%

(b) Grayscale with 128 bin histogram
Test path N E Reach Destination?
Location 1 to 2 1 1 No
Location 2 to 4 2 0 Yes
Location 6 to 4 3 0 Yes
Location 8 to 10 3 0 Yes
Location 12 to 10 4 0 Yes
Location 15 to 12 3 0 Yes
Location 14 to 12 - - No
Location 14 to 16 - - No

Success Rate 62.5%

(c) Grayscale with 256 bin histogram
Test path N E Reach Destination?
Location 1 to 2 1 1 No
Location 2 to 4 2 0 Yes
Location 6 to 4 4 0 Yes
Location 8 to 10 4 0 Yes
Location 12 to 10 - - No
Location 15 to 12 4 0 Yes
Location 14 to 12 3 0 Yes
Location 14 to 16 - - No

Success Rate 62.5%

(d) Color 3D histogram with 8 bins
Test path N E Reach Destination?
Location 1 to 2 1 0 Yes
Location 2 to 4 2 0 Yes
Location 6 to 4 3 0 Yes
Location 8 to 10 3 0 Yes
Location 12 to 10 3 0 Yes
Location 15 to 12 3 0 Yes
Location 14 to 12 3 0 Yes
Location 14 to 16 3 0 Yes

Success Rate 100.0%

From Table 1(d), we can also see that the number of images needed to follow
the test path correctly is 3. This means we can apply the system efficiently be-
cause most cameras in the mobile phones can run in a rate of 10 to 30 frames/sec.

In addition to the above experiments, we made some other experiments that
involved testing the system under illumination changes. For example, we have
tested the proposed system in places near windows or doorway allowing the
sunlight to affect the images. It was obvious that the system did not find the
right locations in most cases that involved illumination changes. In order to
overcome this problem, we have observed that the system reports these locations
as being in a lost location. Therefore, the blind person has the ability to move
the camera nearer to the location, if she or he was notified by the system.

6 Conclusion

In this paper we proposed a new approach for guiding a blind person in indoor
environment. The proposed system has many advantages such as: it can be de-
veloped on a mobile phone that has an embedded camera which means that the
user does not need to carry heavy equipments. It relies on historical informa-
tion to find the location which is better than depending on one image, because
depending on history solves the problem of similar places in the environment.
It has low setup cost and does not involve the placement of tags or any other
markers in the environment.

Markerless Localization for Blind Users Using Computer Vision 369

In the experimental work, we have concluded that the integration of PSO
with 3D color histogram is more successful than the gray scale histograms. The
proposed system is robust, it can detect and recover from the lost cases, and
therefore does not miss-guide the blind user. The problem of illumination is to
be further investigated in the future.

References

1. Aherne, F., Thacker, N., Rockett, P.I.: The bhattacharyya metric as an absolute
similarity measure for frequency coded data. Kybernetika 4(4), 363–368 (1998)

2. Brabyn, J.: Technology as a support system for orientation and mobility. The Free
Library, September 22 (1997)

3. Chiu, D., O’Keefe, K.: Seamless outdoor-to-indoor positioning. GPS World 20(3),
32–38 (2009)

4. Coroama, V., Röthenbacher, F.: The chatty environment - providing everyday in-
dependence to the visually impaired. In: Workshop on ubiquitous computing for
pervasive healthcare applications at UbiComp 2003, Seattle (October 2003)

5. Coughlan, J., Manduchi, R.: Functional assessment of a camera phone-based
wayfinding system operated by blind and visually impaired users. International
Journal on Artificial Intelligence Tools 18(3), 379–397 (2009)

6. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of
flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006.
LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)

7. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, pp. 39–43. IEEE Service Center, Nagoya (1995)

8. Hub, A., Diepstraten, J., Ertl, T.: Augmented indoor modeling for navigation sup-
port for the blind. In: The International Conference on Computers for People with
Special Needs (CPSN 2005), Las Vegas, pp. 54–62 (2005)

9. Hub, A., Hartter, T., Ertl, T.: Interactive tracking of movable objects for the blind
on the basis of environment models and perception-oriented object recognition
methods. In: Assets 2006: Proceedings of the 8th international ACM SIGACCESS
conference on computers and accessibility, pp. 111–118. ACM, New York (2006)

10. Kronfeld, M., Weiß, C., Zell, A.: A dynamic swarm for visual location tracking. In:
Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.)
ANTS 2008. LNCS, vol. 5217, pp. 203–210. Springer, Heidelberg (2008)

11. Lowe, D.: Distinctive image features from scale-invariant keypoints. International
Journal on Computer Vision 60(2), 91–110 (2004)

12. Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In:
Proceedings of the 3rd IEEE Workshop on Applications of Computer Vision
(WACV), pp. 96–102. IEEE Computer Society Press, Washington (1996)

13. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelli-
gence 1(1), 33–57 (2007)

14. Sonnoqrot, F., Younis, E., Tamimi, H.: Vision-based localization aid for the blind.
In: Palestinian International Conference on Computer and Information Technology
(PICCIT), Hebron, Palestine, September 1-3 (2007)

15. Tamimi, H.: Vision-based features for mobile robot localization. Ph.D. thesis, Uni-
versity of Tüebingen. Tuebingen, Germany (2006)

370 H. Tamimi and A. Sharabati

16. Tamimi, H., Andreasson, H., Treptow, A., Duckett, T., Zell, A.: Localization of
mobile robots with omnidirectional vision using particle filter and iterative sift.
In: Proceedings of the European Conference on Mobile Robots (ECMR), Ancona,
Italy, pp. 1–7 (2005)

17. Tamimi, H., Halawani, A., Burkhardt, H., Zell, A.: Appearance-based localiza-
tion of mobile robots using local integral invariants. In: Proceedings of the In-
ternational Conference on Intelligent Autonomous Systems (IAS-9), Tokyo, Japan
(March 2006)

18. Treuillet, S., Royer, E., Chateau, T., Dhome, M., Lavest, J.: Body mounted vi-
sion system for visually impaired outdoor and indoor wayfinding assistance. In:
Proceedings of the Conference and Workshop on Assistive Technologies for People
with Vision and Hearing Impairments: Assistive Technology for All Ages (CVHI
2007), Granada, Spain, August 28-31 (2007)

Particle Swarm Optimization for Feature
Selection in Speaker Verification

Shahla Nemati and Mohammad Ehsan Basiri

Young Research Club, Islamic Azad University, Arsanjan Branch, fars, Iran
Department of Computer Engineering, Faculty of Engineering, University of Isfahan,

Hezar Jerib Ave., 81744 Isfahan, Iran
nemati@iaua.ac.ir

basiri@eng.ui.ac.ir

Abstract. The problem addressed in this paper concerns the feature
subset selection for an automatic speaker verification system. An effec-
tive algorithm based on particle swarm optimization is proposed here
for discovering the best feature combinations. After feature reduction
phase, feature vectors are applied to a Gaussian mixture model which
is a text-independent speaker verification model. The performance of
proposed system is compared to the performance of a genetic algorithm-
based system and the baseline algorithm. Experimentation is carried out,
using TIMIT corpora. The results of experiments indicate that with the
optimized feature subset, the performance of the system is improved.
Moreover, the speed of verification is significantly increased since by use
of PSO, number of features is reduced over 85% which consequently de-
crease the complexity of our ASV system.

Keywords: Particle Swarm optimization (PSO), Feature Selection (FS),
Speaker Verification, Gaussian Mixture Model (GMM), Genetic
Algorithm (GA).

1 Introduction

Automatic speaker verification (ASV) systems are designed to answer the ques-
tion ”Is the present speaker the one s/he claims to be, or not?”. The verification
process terminates with a binary decision (access is granted or not) that depends
on the degree of similarity between the speech sample and a predefined model
for the user, whose identity the speaker claims [1].

There are many applications to speaker verification; Access control to fa-
cilities, secured transactions over a network, electronic commerce applications,
forensic application and telephone banking are the most important ones [2].

ASV refers to the task of verifying speaker’s identity using speaker-specific
information contained in speech signal. Low-level acoustic features contain some

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 371–380, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

372 S. Nemati and M.E. Basiri

redundant features, which can be eliminated using feature selection (FS) tech-
niques. The purpose of FS is to reduce the maximum number of irrelevant fea-
tures while maintaining acceptable classification accuracy. By doing that, it also
reduces redundancy in the information provided by the selected features [3].

Feature selection is of considerable importance in signal processing [4], bioin-
formatics [5], text categorization [6], data mining and pattern recognition [3]. FS
has been occasionally used in ASV systems. Nemati et al. [4] used an ant colony
optimization (ACO) algorithm to select relevant features for text-independent
speaker verification; Day and Nandi [7] employed genetic programming (GP) for
FS; also Pandit and Kittkr [8] used L plus-R minus feature selection algorithm
for text-dependent speaker verification. Furthermore, Cohen and Zigel [9] em-
ployed dynamic programming for FS in speaker verification and Ganchev et al.
[1] used information gain (IG) and gain ratio (GR) for FS in ASV task.

Among too many methods that are proposed for FS, population-based opti-
mization algorithms such as genetic algorithm (GA), ACO and particle swarm
optimization (PSO) have attracted a lot of attention [5,10,11]. These methods
are stochastic optimization techniques attempt to achieve better solutions by
application of knowledge from previous iterations.

Particle swarm optimization is a population-based stochastic optimization
technique inspired by behavior of natural swarms and was developed by Kennedy
and Eberhart in 1995 [12,13]. PSO has many advantages over other evolution-
ary computation techniques (for example, genetic algorithms) such as simpler
implementation, faster convergence rate and fewer parameters to adjust [14].

In this paper, we propose a PSO-based algorithm for feature selection and ap-
ply it to feature vectors containing mel-frequency cepstral coefficients (MFCCs)
and their delta coefficients, two energies, linear prediction cepstral coefficients
(LPCCs) and their delta coefficients. Then, feature vectors are applied to a
Gaussian mixture models (GMM), which is a text-independent speaker verifica-
tion model. Finally, verification performance and the length of selected feature
vectors of proposed PSO-based algorithm are compared to a GA-based and the
baseline algorithm for performance evaluation. To the best of our knowledge, it is
the first paper to apply a particle swarm optimization technique to the problem
of feature selection in ASV systems.

The rest of this paper is organized as follows. Section 2 presents a brief
overview of ASV systems. Proposed system is described in Section 3.
Section 4 reports computational experiments. It also includes a brief discussion
of the results obtained and finally the conclusion and future works are offered in
the last section.

2 An Overview of ASV Systems

The typical process in most proposed ASV systems involves some form of pre-
processing of the data (silence removal) and feature extraction, followed by
some form of speaker modeling to estimate class dependent feature distribu-
tions. These steps are described in following sections in more details.

Particle Swarm Optimization for Feature Selection 373

2.1 Feature Extraction

The original signal, the speech waveform, comprises all information about the
speaker, and each step in the extraction process can only decrease the mutual
information or leave it unchanged. The objective of feature extraction is to re-
duce the dimension of the extracted vectors and thereby reduce the complex-
ity of the system. The main task for the feature extraction process is to pack
as much speaker-discriminating information as possible into as few features as
possible.

The choice of features in any proposed ASV system is of primary concern,
because if the feature set does not yield sufficient information then trying to
estimate class dependent feature distributions is pointless [10]. Most commonly
used feature extraction techniques, such as MFCCs and LPCCs have been par-
ticularly popular for ASV systems in recent years. This transforms give a highly
compact representation of the spectral envelope of a sound [15].

2.2 Feature Selection

Feature selection is a problem of global combinatorial optimization in machine
learning, which reduces the number of features, removes irrelevant, noisy and
redundant data, and results in acceptable classification accuracy.

Searching for an optimal feature subset is known to be an NP-complete prob-
lem. Usually FS algorithms involve heuristic or random search strategies in an
attempt to avoid this prohibitive complexity. However, the degree of optimality
of the final feature subset is often reduced [3].

The objectives of feature selection are manifold, the most important ones
being: improving models performance, providing faster and more cost-effective
models, and to obtain a profounder insight into the underlying processes that
generated the data. Some surveys of feature selection algorithms are given in
[16,17].

2.3 Speaker Modeling

The speaker modeling stage of the process varies more in the literature. The aim
of speaker modeling is to distinguish an individual that is enrolled into an ASV
system with the aim of defining a model (usually feature distribution values). The
most popular methods in the literature are GMM [15], and vector quantization
(VQ). Other techniques such as decision trees, support vector machine (SVM)
and artificial neural network (ANN) have also applied [4]. In this paper, GMM
is used for speaker modeling.

3 Proposed System

Fig. 1 shows the overall process of the proposed system. To apply a PSO
algorithm to solve a feature selection problem, some aspects need first to be
addressed.

374 S. Nemati and M.E. Basiri

Fig. 1. Overall process of PSO feature selection for ASV

3.1 Representation of Position

PSO is initialized with N particles moving around in a D -dimensional search
space. The position of the ith particle at tth iteration is represented by Xt

i =
(xi1, xi2, . . . , xiD). The best position encountered by a particle (pbest) denoted
as Pi = (pi1, pi2, . . . , piD) and the best position encountered by the whole swarm
(gbest) denoted as Pg = (pg1, pg2, . . . , pgD). Every bit represents a feature and
the value ’1’ indicates the selection of corresponding feature. Therefore, each
position is a feature subset [12].

3.2 Representation of Velocity

Every particle’s velocity is represented as a positive integer, varying between
1 and Vmax. It implies how many of the particle’s bits (features) should be
changed, to be the same as that of the global best position. The number of
different bits between two particles relates to the difference between their posi-
tions. The rate of the position change (velocity) for particle i at iteration t is
represented as V t

i = (vi1, vi2, . . . , viD).

3.3 Position Update Strategies

The particle successively adjusts its position toward the global optimum accord-
ing to pbest and gbest. The particles are manipulated according to the Equations
(2) and (3)

vid(t+1) = w×vid(t)+c1.r1d(t).[pid(t)−xid(t)]+c2.r2d(t).[pgd(t)−xid(t)], (1)

xid(t + 1) = xid(t) + vid(t + 1), (2)

Particle Swarm Optimization for Feature Selection 375

where w is the inertia weight; it is a positive linear function of time changing
according to the generation iteration. The acceleration constants c1 and c2 in
Equation (2) represent the weighting of the stochastic acceleration terms that
pull each particle toward pbest and gbest positions. r1d and r2d are two random
functions in the range [0, 1].

After updating the velocity, a particle’s position will be updated by the new
velocity. Assume that the new velocity is V ; the number of different bits between
the current particle and gbest is ng. If V ≤ ng, V bits of the particle are randomly
changed, different from that of gbest. The particle then moves toward the global
best while still exploring the search space, instead of simply being same as gbest.
If V > ng, In addition to changing all the different bits to be same as that of
gbest, we should further randomly change (V − ng) bits outside the different
bits between the particle and gbest. So after the particle reaches the global best
position, it keeps on moving some distance toward other directions, enabling
further search.

3.4 Fitness Function

In our experiments, the fitness function is defined according to Equation (4)

Fitness = α× ψS + β × |N | − |S||N | , (3)

where ψ(S) is classifier performance for the feature subset S, |N | is the total
number of features, |S| is feature subset length, α ∈ [0, 1] and β = 1 − α. This
formula means that the classifier performance and feature subset length have
different significance for feature selection task. In our experiment we assume
that classification quality is more important than subset length and we choose
α = 0.8 and β = 0.2.

3.5 Proposed Feature Selection Algorithm

The main steps of proposed feature selection algorithm are shown in Fig. 2.
The process begins by generating a population of particles with random po-
sitions in the search space. In the next step Equation (4) is used to evaluate
each particle. pbest and gbest are calculated at the end of each iteration and
if the quality of solution found by a particle is higher than its previous pbest,
this solution will be the new pbest for that particle and the best pbest among
all particles is selected as gbest. In the next step, stop criteria are tested; if an
optimal subset has been found or the algorithm has executed a certain number
of times, then the process halts and outputs the best feature subset encoun-
tered. If none of these conditions hold, then position and velocity of particles
are updated according to Equations (2) and (3) then, the process iterates once
more.

376 S. Nemati and M.E. Basiri

Fig. 2. PSO-based feature selection algorithm

4 Experimental Results

4.1 TIMIT Dataset

The TIMIT corpus [18] is used in this paper. This corpus contains 630 speakers
(438 male and 192 female) representing 8 major dialect regions of the United
States, each speaking ten sentences. There are two sentences that are spoken by
all speakers and the remaining eight are selected randomly from a large database.
The 100 speakers included in both the test and train directories were used during
the TIMIT(100) trials.

4.2 Evaluation Measure

We evaluated our ASV system with detection error tradeoff (DET) curves, which
show the tradeoff between false alarm (FA) and false rejection (FR) errors. Typ-
ically equal error rate (EER), which is the point on the curve where FA = FR,
is chosen as evaluation measure. We also used detection cost function (DCF)
defined as

DCF = Cmiss.FRR.Ptarget + CFA.FAR.(1− Ptarget), (4)

where Ptarget is the priori probability of target tests with Ptarget = 0.1, FRR
and FAR are false rejection rate and false acceptance rate respectively at an
operating point and the specific cost factors Cmiss = 10 and CFA = 1 [4].

Particle Swarm Optimization for Feature Selection 377

Table 1. GA and PSO parameter settings

Population Iteration Crossover Prob. Mutation Prob. c1 c2 w Vmax

GA 30 50 0.7 0.3 - - - -
PSO 30 50 - - 1 1 0.4-1.4 1-17

4.3 Experimental Setup

Various values were tested for the parameters of GA and proposed algorithm.
The experiments show that the highest performance is achieved by setting the
control parameters to values shown in Table 1. Experiments were conducted
on a subset of TIMIT corpora consist of 60 male and 40 female speakers of
different accent that were selected randomly. Data were processed in 20 ms
frames (320 samples) with 50% overlaps. Frames were segmented by Hamming
window and pre-emphasized with α = 0.97 to compensate the effect of micro-
phone’s low pass filter. At first, feature vector was created by extracting MFCCs
from silence-removed data for each frame. In the next step, delta
coefficients were calculated based on the MFCCs and appended to existing fea-
ture vector. Furthermore, two energies were applied to input vectors as
described earlier. Then we consider the LPCCs and their delta coefficients re-
spectively and append them to the feature vector. The final feature set con-
tains F = 50 features. Finally, verification process was performed using the
GMM approach with different number of Gaussian (16, 32). The performance
criterion is due to EER and DCF according to an adopted decision threshold
strategy.

4.4 Results

The verification quality and feature subset length are two criteria that are con-
sidered to assess the performance of algorithms. Comparing the first criterion, we
noted that both PSO-based and GA-based algorithms reduce the dimensionality
of feature space. Furthermore, the PSO-based algorithm selects a smaller subset
of features than the GA-based algorithm. Table 2 shows the number of selected
features by PSO-based and GA-based approaches. As we can see in Table 2,
PSO can degrade dimensionality of features over 85%. The second performance
criterion is due to EER and DCF according to an adopted decision threshold
strategy. The EER and DCF for baseline algorithm (using all possible features)

Table 2. Selected Features of PSO-GMM

Selection Method Number of selected features Percentages of selected features
PSO-GMM(16) 9 18%
PSO-GMM(32) 7 14%
GA-16 16 32%
GA-32 17 34%

378 S. Nemati and M.E. Basiri

Table 3. EER and DCF for three algorithms with different number of Gaussians

Number GMM PSO GA
of

Gaussians EER DCF EER DCF EER DCF
16 5.18 0.0571 4.907 0.0491 4.866 0.0500
32 4.965 0.0501 3.634 0.0312 4.56 0.0467

PSO-based and GA-based algorithms with different number of Gaussian (16, 32)
were shown in Table 3.

DET curves for GA-based and PSO-based algorithms with 16, 32 Gaussians
are shown in Fig. 3. From the results, it can be seen that PSO-GMM yields
a significant improvement in speed than the baseline GMM approach. The im-
provement is due to the selection of optimal feature set by PSO algorithm.

4.5 Discussion

Experimental results show that the use of unnecessary features decrease veri-
fication performance and hurt classification accuracy and FS is used to reduce
redundancy in the information provided by the selected features. Using only
a small subset of selected features, the PSO and the GA algorithms obtained
better verification accuracy than the baseline algorithm using all features.

Fig. 3. DET curves for GMM, PSO-GMM and GA with (a) 16 Gaussians and (b) 32
Gaussians

Both PSO and GA are stochastic population-based search approaches that
depend on information sharing among their population members to enhance
their search processes using a combination of deterministic and probabilistic

Particle Swarm Optimization for Feature Selection 379

rules. They are efficient, adaptive and robust search processes, producing near
optimal solutions, and have a large degree of implicit parallelism. The main
difference between PSO compared to GA, is that PSO does not have genetic
operators such as crossover and mutation. Particles update themselves with the
internal velocity; they also have a memory that is important to the algorithm.

In GAs, chromosomes share information with each other, so the whole pop-
ulation moves like one group towards an optimal area. In PSO, only the ’best’
particle gives out the information to others. It is a one-way information sharing
mechanism, the evolution only looks for the best solution. Compared with GAs,
all the particles tend to converge to the best solution quickly even in the local
version in most cases.

Compared to GAs, the PSO has a much more intelligent background and
can be implemented more easily. The computation time used in PSO is less
than in GAs. The parameters used in PSO are also fewer. However, if the proper
parameter values are set, the results can easily be optimized. The decision on the
parameters of the particle swarms affects the exploration-exploitation tradeoff
and is highly dependent on the form of the objective function [19]. Successful
feature selection was obtained even using conservative values for the PSO basic
parameters [12].

5 Conclusion and Future Research

In this paper, we have addressed the problem of optimizing the acoustic feature
set by PSO algorithm for text-independent speaker verification system based
on GMM. Original feature set contains MFCCs and their delta coefficients, two
energies, LPCCs and their delta coefficients. Proposed PSO-based feature se-
lection algorithm selects the most relevant features among all features in order
to increase the performance of our ASV system. We compare its performance
with another prominent population-based feature selection method, genetic al-
gorithm. The experimental results on a subset of TIMIT database showed that
PSO selects the more informative features without losing the performance than
GA. The feature vectors size reduced over 85% that led to a less complexity
of our ASV system. Moreover, verification process in the test phase speeds up
because less complexity is achieved by the proposed system in comparison with
current ASV systems.

PSO has the ability to converge quickly; it has a strong search capability in
the problem space and can efficiently find minimal feature subset. Experimental
results demonstrate competitive performance. More experimentation and further
investigation into this technique may be required.

For future work, the authors plan to investigate the performance of proposed
ASV system by taking advantage of using VQ, GMM-UBM and other models
instead of GMM. Another research direction will involve the consideration of uti-
lizing hybrid approaches like PSO-SVM, PSO-GA and other hybrid algorithms
for feature selection in ASV systems.

380 S. Nemati and M.E. Basiri

References

1. Ganchev, T., Zervas, P., Fakotakis, N., Kokkinakis, G.: Benchmarking Feature Se-
lection Techniques on the Speaker Verification Task. In: Fifth International Sym-
posium on Communication Systems, Networks And Digital Signal Processing, pp.
314–318 (2006)

2. Bimbot, F., et al.: A Tutorial on Text-Independent Speaker Verification. EURASIP
Journal on Applied Signal Processing 4, 430–451 (2004)

3. Jensen, R.: Combining rough and fuzzy sets for feature selection. Ph.D. Thesis,
University of Edinburgh (2005)

4. Nemati, S., Boostani, R., Jazi, M.D.: A Novel Text-Independent Speaker Verifica-
tion System Using Ant Colony Optimization Algorithm. In: Elmoataz, A., Lezoray,
O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 421–429.
Springer, Heidelberg (2008)

5. Nemati, S., Basiri, M.E., Ghasem-Aghaee, N., Aghdam, M.H.: A novel ACO-GA
hybrid algorithm for feature selection in protein function prediction. Expert sys-
tems with applications 36, 12086–12094 (2009)

6. Aghdam, M.H., Ghasem-Aghaee, N., Basiri, M.E.: Text Feature Selection using
Ant Colony Optimization. Expert systems with applications 36, 6843–6853 (2009)

7. Day, P., Nandi, A.K.: Robust Text-Independent Speaker Verification Using Genetic
Programming. IEEE Transactions on Audio, Speech, and Language Processing 15,
285–295 (2007)

8. Pandit, M., Kittkr, J.: Feature Selection for a DTW-Based Speaker Verification
System, pp. 796–799. IEEE, Los Alamitos (1998)

9. Cohen, Zigel, Y.: On Feature Selection for Speaker Verification, of COST 275
workshop on The Advent of Biometrics on the Internet (2002)

10. Basiri, M.E., Ghasem-Aghaee, N., Aghdam, M.H.: Using ant colony optimization-
based selected features for predicting post-synaptic activity in proteins. In: Mar-
chiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 12–23. Springer,
Heidelberg (2008)

11. Liu, Y., Qin, Z., Xu, Z., He, X.: Feature Selection with Particle Swarms. In: Zhang,
J., He, J.-H., Fu, Y. (eds.) CIS 2004. LNCS, vol. 3314, pp. 425–430. Springer,
Heidelberg (2004)

12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceeding of IEEE In-
ternationalConferenceonNeuralNetworks, pp. 1942–1947. IEEEPress,Perth (1995)

13. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, pp. 39–43 (1995)

14. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization an overview. J.
Swarm Intelligence 1, 33–57 (2007)

15. Cheung-chi, L.: GMM-Based Speaker Recognition for Mobile Embedded Systems,
Ph.D. Thesis, University of Hong Kong (2004)

16. Mladenič, D.: Feature Selection for Dimensionality Reduction. In: Saunders, C.,
Grobelnik, M., Gunn, S., Shawe-Taylor, J. (eds.) SLSFS 2005. LNCS, vol. 3940,
pp. 84–102. Springer, Heidelberg (2006)

17. Bins, J.: Feature Selection fromHugeFeature Sets in theContext ofComputerVision.
Ph.D. dissertation,DepartmentComputer Science,Colorado StateUniversity (2000)

18. Garofolo, J., et al.: DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus
CD-ROM. National Institute of Standards and Technology (1990)

19. Trelea, I.C.: The particle swarm optimization algorithm: Convergence analysis and
parameter selection. J. Inf. Process. Lett. 85, 317–325 (2003)

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 381–391, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Scale- and Rotation-Robust Genetic Programming-Based
Corner Detectors

Kisung Seo and Youngkyun Kim

Dept. of Electronic Engineering, Seokyeong University Seoul, Korea

Abstract. This paper introduces GP- (Genetic Programming-) based robust
corner detectors for scaled and rotated images. Previous Harris, SUSAN and
FAST corner detectors are highly efficient for well-defined corners, but fre-
quently mis-detect as corners the corner–like edges which are often generated in
rotated images. It is very difficult to avoid incorrectly detecting as corners many
edges which have characteristics similar to corners. In this paper, we have fo-
cused on this challenging problem and proposed using Genetic Programming to
do automated generation of corner detectors that work robustly on scaled and
rotated images. Various terminal sets are presented and tested to capture the key
properties of corners. Combining intensity-related information, several mask
sizes, and amount of contiguity of neighboring pixels of similar intensity, al-
lows a well-devised terminal set to be proposed. This method is then compared
to three existing corner detectors on test images and shows superior results.

Keywords: corner detector, genetic programming, automated generation, scale
and rotation robust.

1 Introduction

Corner detection is used for various applications such as tracking, SLAM (simultane-
ous localization and mapping), image matching and recognition.

Many algorithms for corner detection have been introduced in computer vision
research. Moravec [8] developed an interest point detector based on the auto-
correlation function. He measured the differences between the feature window and
its shifted versions. Kitchen and Rosenfeld [6] proposed a corner measure based on
the change of gradient direction along an edge contour at the local gradient magni-
tude. Harris and Stephens [5] modified the Moravec method and proposed the fa-
mous Harris corner detector by estimating the autocorrelation from the first-order
derivatives.

Different types of corner detectors examine the area morphologically and try to lo-
cate corner-like shapes. Smith and Brady [13] proposed a corner detection algorithm
known as the SUSAN corner detector based on brightness comparison and a corner
mask in a circular window. Rosten and Drummond [10] introduced the FAST (Fea-
tures from Accelerated Segment Test) feature detector. This is sufficiently fast that it
allows on-line operation of a tracking system. To optimize the detector for generality

382 K. Seo and Y. Kim

and speed, this model is used to train a decision tree classifier. This recent approach
shows good performance in repeatability and efficiency in real world application.

However, those competitive algorithms may detect false corners when the bounda-
ries are step-like or there is a small change in slope which just represents an edge.
Edge pixels have similar characteristic with corner pixels, so this phenomenon can
occur after reduction and rotation of images. In the other hand, most corner detectors
are hand-coded designs, product of the analysis and interpretations of how the prob-
lem has been confronted by a human mind.

On the other hand, the importance of automated synthesis approaches has been
growing. GP [7] is an approach to automatic programming, in which a computer can
construct and refine its own programs to solve specific tasks. Zhang [15, 16] uses GP
for a number of object classification and detection problems. Good results have been
achieved on classification and detection of regular objects against a relatively unclut-
tered background.

There exist some contributions directly related to our work, and specifically ad-
dressing the problem of corner detector. Ebner [3, 4] posed interest point detection as
an optimization problem, and attempted to evolve the Moravec interest point operator
[8] using Genetic Programming. The approach by Ebner fails to capture the essence
of the desired properties that a general interest point detector should attempt to fulfill.
The shortcomings of these contributions are overcome in Trujillo and Olague’s work
[9, 14] by realizing a thorough analysis in order to define a suitable measure of the
stability, as given by the operators’ repeatability rates; as well as by quantification of
the operators’ global separability. However, the results were compared only with the
Harris detector, and showed just similar performance.

We propose Genetic Programming-based automated generation of corner detectors
which is robust to scale and rotational transformation. Various terminal sets are intro-
duced to capture the key properties of corners, combining intensity-related informa-
tion, several mask sizes, and contiguity of neighboring pixels allows a well-devised
terminal set to be proposed. The proposed method is compared to existing corner
detectors on scaled and rotated test images.

2 Problem and Proposed Method

2.1 Problem Statements

Most existing algorithms perform well for well-defined corners in images (top panels
in Figure 1). However, some corners are ill-defined because of noise and some non-
corners are often misclassified as corners for example, inclined edges (bottom panels
in Figure 1. Especially corner-like edges are often generated when an image is ro-
tated. It is very difficult to detect correctly these edges which have characteristics
similar to corners. In this paper, we have focused on the challenging problem above
and proposed a Genetic Programming-based automated generation of corner detectors
that is robust to scaling and rotation of images.

 Scale- and Rotation-Robust Genetic Programming-Based Corner Detectors 383

Fig. 1. Corners (top) and edges (bottom) on an image

2.2 Genetic Programming

Genetic programming [7] is an extension of the genetic algorithm, using evolution to
optimize actual computer programs or algorithms to solve some task, such as automated
synthesis. Genetic programming can manipulate variable-sized entities and can be used
to “grow” trees that specify increasingly complex corner detectors, as described below.
To evolve corner detectors, we need to specify the set of terminals and the set of ele-
mentary functions.

Besetti and Soule [1] examine different functions sets for the linear regression
problem to begin to understand how choice of function sets influences the search
process. They found that different reasonable function sets can have a significant
effect on performance. We believe that this phenomenon might vary strongly accord-
ing to the domain or characteristics of the problems to be treated. In our experience, it
is very important in corner detection to define function and terminal sets carefully.
The terminal set seems to be especially critical, because it is more closely related to
physical characteristics of corner points than is the function set, which usually repre-
sents general-purpose operators.

2.3 GP Function and Terminal Set

The function set for the proposed GP-based detector involves 5 arithmetic operator
and 3 conditional operators as follows.

 F = { +, -, ×, ÷, abs, if, min, max } (1)

The set of primitive functions has to be sufficient to allow solution of the problem at
hand, but there are typically many possible choices of sets of operators that meet this
condition. For corner detection, the choice of function set seems to be less critical
than the choice of terminal set.

Several efforts have been made to design an appropriate terminal set for corner de-
tection. Ebner [3, 4] selected a gray scale representation of the input image as the sole
terminal. The image intensities were scaled to the range [0,1]. Trujillo and Olague
[14] found that an effective IP operator requires information pertaining to the rate of

384 K. Seo and Y. Kim

change in image intensity values, based on previous research on the analytical proper-
ties of corner detectors described in [2, 11], Consequently, they used a terminal set
that included first and second order image derivatives. However, they did not assure
that this set is either necessary or sufficient.

Below, various terminal sets are presented and tested to capture the key properties
of corners, derived from mathematical information. A terminal set obtained by com-
bining intensity-related information, several mask sizes, and continuity of neighboring
pixels is proposed as suitable for this task.

Pattern-based terminals. A pattern mask is easy to derive to detect a corner, because
the corner point has a different intensity or there is an intensity change in some direc-
tion to its neighboring pixels. The following terminal set based on shape of partial
patterns is defined first, as follows in Figure 2. The terminals consist of various pat-
terns and are designed to have symmetry in a 7 by 7 rectangular area. In here, an av-
erage intensity value of pixels for given patterns is used as a node of a GP tree.

Fig. 2. Pattern-based terminals

Mask area and intensity-based terminals. For each pixel in a rectangular mask,
the intensity of the pixel relative to the center pixel is classified into one of darker,
similar, or brighter states in Figure 3. Additionally, different sizes of rectangular
masks are used 3x3, 5x5, and 7x7. The terminals are defined combining these two
intensity and size measures of masks as shown in equation (2). For example, the d3
represents the number of pixels of darker intensity than a center pixel in a 3x3
mask, and s7 represents the number of pixels of similar intensity to a center pixel in
a 7x7 mask.

 Scale- and Rotation-Robust Genetic Programming-Based Corner Detectors 385

⎪
⎩

⎪
⎨

⎧

≤+
+<<−
−≤

=×

nni

nnni

ni

ii

ItIb

tIItIs

tId

M

,

,

,

)((2)

Fig. 3. Terminals based on partitions of mask and brightness

Contiguity and intensity-based terminals. It may not always be possible to classify
a pixel as a corner based only on the number of pixels matching certain area- and
intensity-based terminals. In order to improve on this, we propose to use the number
of pixels of similar intensity in contiguous regions of various sizes as a terminal, as
illustrated in Figure 4. Just as was done with the mask area and intensity-based
terminals, the contiguity and intensity-based terminals are defined according to
different sizes of rectangular masks 3x3, 5x5, and 7x7.

Fig. 4. Terminals based on continuity and intensity

2.4 Fitness Function

The goal of corner detection in our paper is to achieve robust performance under
rotation and scaling. First, both MR (Miss Rate not finding a corner) and FPR (False
Positive Rate calling a feature a corner that is not) are used as basic indexes below.

The fitness function is based on a combination of the MR and the FPR under scal-
ing and rotational transformations. The coefficient α is a weighing value for the miss
rate, for SIMR and RIMR. β is used to weight rotated errors RIMR and RIFPR. SI and RI
represent scaled index and rotated index.

386 K. Seo and Y. Kim

The fitness of a genetic program is obtained as follows. Apply the program as a
moving n x n window template (n is the size of the input field) to each of the training
images and obtain the output value of the program at each possible window position.
Match the detected corners with the known locations of each of the desired true cor-
ners. Calculate the MR and the FPR of the evolved GP tree. Compute the fitness func-
tion as follows in equation (3):

MR = (miss/total_corners)× 100
FPR = (false/total_non-corners)× 100

))(()(βαα ×+×++×= FPRMRFPRMR RIRISISIFuctionFitness (3)

3 Experiments and Analysis

3.1 Experimental Environments

We use five images in the experiments (Figure 6 in section 3.4). One is a commonly
used synthetic benchmark image and the others are scaled and rotated images) of the
original one. The original image includes many corner types, including L-Junctions,
Y-Junctions, T-Junctions, Arrow-Junctions and X-Junctions. It has been widely used
to evaluate corner detectors. Many corner-like edges are generated when the image is
rotated. We have tested various images rotated by 30, 45, and 60 degrees.

The GP programs were run on a Pentium Core2Duo 2.66GHz with 4GB RAM us-
ing GPLAB ver.3. [12] The GP parameters used for the corner detector design were
as follows:

Number of generations: 100
Population sizes: 100, 200, 300
Max depth: 7, 10, 12, 17
Selection: Tournament (size=7)
Crossover: 0.8
Mutation: 0.2

3.2 Experiments with Various Terminal Sets

First, experiments were executed on the original image using various terminal sets.
We tested and compared the three terminal sets defined in Section 2: pattern-based
terminals (T1), mask area and intensity-based terminals (T2), and contiguity and inten-
sity-based terminals (T3). T1 and T2 were used independently, but T3 was used in
combination with T2.

The comparison results in Table 1 show that terminal set T2 + T3 was much better
on this problem than were T1 or T2. The reason may be that this terminal set was
carefully designed for robustness, combining intensity-related information, several
mask sizes, and continuity of neighboring pixels. Therefore, terminal set T2 + T3 was
chosen for use in the experiments that follow.

 Scale- and Rotation-Robust Genetic Programming-Based Corner Detectors 387

Table 1. Comparison of error rates on original image for various terminal sets

Terminal MR(%) FPR(%) MR + FPR

T1 1.53 8.48 10.01

T2 3.84 1.89 5.73

T2 + T3 0 1.23 1.23

3.3 Experiments Using Various Population Size and Tree Depths

Typical GP runs with population sizes of 100, 200 and 300 are compared again run
against only the original, unrotated and unscaled image. Ten trials were done for each
population size. The average values of error rates for SIMR, SIFPR, RIMR, and RIFPR are
displayed in Figure 5(left). Population size 300 shows better results than other sizes,
for all indexes. The error rates of SIMR and RIMR are quite sharply reduced.

Fig. 5. Error rate indexes by various population sizes and tree depths

The maximum depth of the GP tree is an important factor that affects the structure
of the solution, the performance, and the time needed for evolution of a good solution.
Various maximum tree depths, including 7, 10, 12 and 17, were tested with popula-
tion size 300 on the given images. The average values of error rates for SIMR, SIFPR,
RIMR, and RIFPR are displayed versus tree depth in Figure 5(right). GP tree max depth
of 12 showed the best results. For the case of max depth 17, it is speculated that there
might have been a problem such as proliferation of introns that hindered the search
efficiency of the evolution process.

3.4 Experimental Comparison with Existing Methods

Below, the proposed GP-based corner detector is compared to several typical corner
detectors, namely Harris, SUSAN, and FAST, on all five test images. Table 2 shows
the results of detected corners of scaled (80%) and rotated (30°, 45°, 60°) images for
four methods: Harris, SUSAN, FAST, and the proposed GP-based method, where
Nground is the total number of corners in the ground truth data, Ndetected is the total num-
ber of corners detected by a specific corner detector, and Ncorrect is the total number of
correct matching corners when comparing the ground truth data.

388 K. Seo and Y. Kim

Table 2. Comparison of the number of detected corners

 Nground Ndetected Ncorrect

Harris 92 75

SUSAN 83 76

FAST 75 75
Original

GP

78

80 78

Harris 87 73

SUSAN 90 75

FAST 83 75
80%

GP

78

79 76

Harris 133 73

SUSAN 113 77

FAST 84 76
30°

GP

78

87 78

Harris 97 76

SUSAN 120 76

FAST 84 75
45°

GP

78

80 77

Harris 132 71

SUSAN 115 76

FAST 85 77
60°

GP

78

87 78

The detected corners of Harris and SUSAN for all five images had bigger differ-

ences from the total number of real corners than FAST and the proposed GP-based
method had, especially in cases of rotated (30°, 45°, 60°) images. Between FAST
and GP-based method, the detected corners of GP were slightly closer to the num-
ber of real corners.

In terms of the total number of correctly matched corners, GP-based method was
better than FAST, and much better than Harris and SUSAN across all images. The
proposed detector clearly outperformed the others. Therefore it is verified that the
proposed detectors’ performance was superior to existing detectors on the scaled and
rotated transformed images tested.

Figure 6 shows images of corner maps obtained by the Harris, SUSAN, FAST, GP-
based corner detectors. We can see that Harris and SUSAN detectors mis-detect as
corners many corner-like edges in rotated images, especially as shown in the first and
second columns of Figure 6. The FAST detector reduced sharply the false detection of
these corner-like edges, but missed several actual corners in rotated images. The GP-
based corner detector shows the best performance in both false positives and false
negatives as shown on the far right of Figure 6.

 Scale- and Rotation-Robust Genetic Programming-Based Corner Detectors 389

Fig. 6. Result images of corner maps (80%, 100%, 30°, 45°, 60° transformed images from top,
and Harris, SUSAN, FAST, GP-based corner detector form left)

4 Conclusions

GP- (Genetic Programming-) based robust corner detectors for scaled and rotated
images are presented. Our approach posed corner detection as an optimization prob-
lem, and developed an evolution methodology which enables automatic generation of
corner detectors. GP terminals and functions were carefully designed to discriminate

390 K. Seo and Y. Kim

corners correctly from noise and corner-like edges. Various terminal sets were pre-
sented and tested to capture the key properties of corners, derived from mathematical
properties. Combining intensity-related information, several mask sizes, and continu-
ity of neighboring pixels allowed generation of a high-performance terminal set. The
fitness function was defined to promote performance in terms of both accuracy and
robustness for scaled and rotated images.

The proposed GP-based corner detector is compared to three typical existing corner
detectors, Harris, SUSAN and FAST, on a test image and its scaled and rotated ver-
sions. Performance measures were selected to evaluate accuracy and robustness for
scaled and rotated images. Experimental results showed that the proposed approach
generated a superior corner detector to those of existing methods. Further study will
aim at refinement of the GP representation, improvement of the GP evolution, seeking
of image-independent generalizations about terminal sets, and application to more
complex natural images.

Acknowledgments

This work was supported by National Research Foundation of Korea Grant funded by
the Korea government (2009-0071419).

References

1. Besetti, S., Soule, T.: Function Choice, Resiliency and Growth in Genetic Programming.
In: Proceedings of the 2005 conference on Genetic and Evolutionary Computation
(GECCO 2005), USA, pp. 1771–1772 (2005)

2. Bastanlar, Y., Yardimci, Y.: Corner Validation based on Extracted Corner Properties.
Computer Vision and Image Understanding 112(3), 243–261 (2008)

3. Ebner, M.: On the Evolution of Interest Operators using Genetic Programming. In: Pro-
ceeding of the First European Workshops on Genetic Programming (EuroGP 1998), Paris,
pp. 6–10 (1998)

4. Edner, M., Zell, A.: Evolving Task Specific Image Operator. In: Proceeding of the First
European Workshops on Evolutionary Image Analysis, Signal Processing and Telecom-
munications (EvolASP 1999), Goteborg, pp. 74–89 (1999)

5. Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Proceeding of the 4th
Alvey Vision Conference, UK, pp. 147–151 (1988)

6. Kitshen, L., Rosenfeld, A.: Gray-level corner detection. Pattern Recognition Letters 1(2),
95–102 (1982)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural Selec-
tion. MIT Press, Cambridge (1992)

8. Moravec, H.P.: Visual mapping by a robot rover. In: Proceeding of the 6th International
Joint Conference on Artificial Intelligence (IJACI), Tokyo, pp. 598–600 (1979)

9. Olague, G., Hernández, B.: A New Accurate and Flexible Model based Multi-Corner De-
tector for Measurement and Recognition. Pattern Recognition Letters 26(1), 27–41 (2005)

10. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to
corner detection. IEEE Trans. Pattern Analysis and Machine Intelligence (2008)

 Scale- and Rotation-Robust Genetic Programming-Based Corner Detectors 391

11. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of Interest Point. International Journal of
Computer Vision 37(2), 151–172 (2000)

12. Silva, S.: GPLAB: A Genetic Programming Toolbox for MATLAB. Version 3 (2009),
http://gplab.sourceforge.net/index.html

13. Smith, S.M., Brady, J.B.: SUSAN-A New Approach to Low Level Image Processing. In-
ternational Journal of Computer Vision 23(1), 45–78 (1997)

14. Trujillo, L., Olague, G.: Synthesis of Interest Point Detectors through Genetic Program-
ming. In: Proceeding of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO 2006), Seattle, pp. 887–893 (2006)

15. Zhang, M.: Improving Object Detection Performance with Genetic Programming. Interna-
tional Journal on Artificial Intelligence Tools 16(5), 849–873 (2007)

16. Zhang, M., Gao, X., Lou, W.: A New Crossover Operator in Genetic Programming for Ob-
ject Classification. IEEE Trans. Systems, Man and Cybernetics, Part B 37(5), 1332–1343
(2007)

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 392–401, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Self-organized and Evolvable Cognitive Architecture
for Intelligent Agents and Multi-Agent Systems

Oscar Javier Romero López

Fundación Universitaria Konrad Lorenz, Bogotá, Colombia
ojrlopez@hotmail.com

Abstract. Integrating different kinds of micro-theories of cognition in intelli-
gent systems when a huge amount of variables are changing continuously, with
increasing complexity, is a very exhaustive and complicated task. Our approach
proposes a hybrid cognitive architecture that relies on the integration of emer-
gent and cognitivist approaches using evolutionary strategies, in order to
combine implicit and explicit knowledge representations necessary to develop
cognitive skills. The proposed architecture includes a cognitive level controlled
by autopoietic machines and artificial immune systems based on genetic algo-
rithms, giving it a significant degree of plasticity. Furthermore, we propose an
attention module which includes an evolutionary programming mechanism in
charge of orchestrating the hierarchical relations among specialized behaviors,
taking into consideration the global workspace theory for consciousness. Addi-
tionally, a co-evolutionary mechanism is proposed to propagate knowledge
among cognitive agents on the basis of memetic engineering. As a result, sev-
eral properties of self-organization and adaptability emerged when the proposed
architecture was tested in an animat environment, using a multi-agent platform.

Keywords: Cognitive architectures, gene expression programming, artificial
immune systems, neural nets, memetics.

1 Introduction

In the last fifty years, the study of artificial cognitive systems have involved a number
of disciplines such as artificial intelligence, cognitive science, psychology and more,
in order to determine the necessary, sufficient and optimal conditions and resources
for the development of agents exhibiting emergent intelligence. There are several
theories of cognition, each taking a different position on the nature of cognition, what
a cognitive system should do, and how a cognitive system should be analyzed and
synthesized. From these, it is possible to discern three broad classes: the cognitivist
approach based on symbolic information processing representational systems; the
emergent systems approach embracing connectionist systems, dynamical systems, and
enactive systems, all based on a lesser or greater extent of principles of self-
organization [1],[2]; and the hybrid approach which combine the best of the emergent
systems and cognitivist systems [3].

Some of the most relevant cognitive architectures which follow a cognitivist approach
are: SOAR [4], ACT-R [5], ICARUS [3], and EPIC [3]. Some of the architectures of the

 Self-organized and Evolvable Cognitive Architecture for Intelligent Agents 393

emergent approach of major importance are: GW [6], SASE [3], and DARWIN [3]. The
hybrid approach architectures are known as CEREBUS [3], KISMET [7], CLARION
[8], Polyscheme[9], and LIDA[10]. Some of these architectures deal with aspects of
cognitive modeling and representation; some others include learning modules, inference
and knowledge generalization; and there are others that try to go further and add motiva-
tional and meta-cognition components. The hybrid approach is more complex and of
greater interest to us since it seeks to unify the different dichotomies of symbolic vs. sub-
symbolic models, explicit vs. implicit learning, and cognitive vs. emergent approaches.
However, a common weakness in the hybrid approach architectures is that they usually
abridge the system functionality into a rigid structure of symbolic and sub-symbolic
components resulting in a poor ability to self-organize and adapt to new environments.

The present research focuses on implementing a hybrid architecture for cognitive
agents supported by both cognitivist and emergent approaches. On the one hand, the
cognitivist approach provides an explicit knowledge representation through the use of
symbolic AI techniques. On the other hand, the emergent approach defines three evo-
lutionary strategies as observed in nature [11]: Epigenesis, Ontogenesis, and Phy-
logenesis, endowing the architecture with implicit knowledge learning, sub-symbolic
representations, and emergent behavior guided by bio-inspired computational intelli-
gence techniques. As the cognitivist approach is well known, we will briefly describe
it here before elaborating on the emergent approach. The remainder of this paper is
organized as follows. The description of the proposed architecture is detailed in Sec-
tion 2. Sections 3, 4, and 5 describe in more detail each module of the emergent ap-
proach according to the three evolutionary strategies. Section 6 outlines and discusses
the results of the experiments. The concluding remarks are shown in Section 7.

2 Proposed Hybrid Cognitive Architecture

Figure 1 gives an overview of the hybrid architecture which has six main modules:
Attention module, Procedural module, Intentional/Declarative module, Motor module,
Motivational module, and Co-evolutionary module. Each module is composed of sub-
modules with more specific functionalities which are communicated to each other by
broadcasting mechanisms. Architecture is distributed in two dimensions: horizontal and
vertical dimensions. At horizontal dimension, modules belong to either emergent or
cognitivist level, whereas modules at vertical dimension are distributed according to
their functionality (attention, procedural reasoning, intentions, motor processing etc.).

We will first give a brief description of all the modules of the architecture and then
provide a more detailed description of those modules that have been developed so far.
Initially, our work has focused on developing the procedural and co-evolutionary
modules and their interaction with attention and motor modules. The remainder of the
modules will be considered in subsequent stages of the research, and therefore are not
described in this work.

The Procedural module corresponds to an area of the mammalian brain called
Basal Ganglia [5] which is in charge of functions such as rule matching, conflict reso-
lution, cognition, learning, and selection and the execution of actions. This module is
composed of several components called Specialist Behaviors (SB), which are organ-
ised horizontally, and three sub-modules which are distributed vertically. The three

394 O.J.R. López

sub-modules are: the connectionist module, the autopoietic machines module, and the
productions module. The horizontally-formed components of the procedural module
will be explained in the next section. The Connectionist module (found at the emer-
gent level of the diagram) models innate skills, which require less processing time in
comparison with other deliberation processes. It therefore uses the Backpropagation
Neural Networks (BNN) which is more appropriate for enacting reactive reasoning.
The Autopoietic Machines module is formed by multiple self-organized and self-
regulated systems: Artificial Immune Systems [17], where each one models a set of
sub-symbolic rules on the basis of autopoietic principles [11]. The Productions mod-
ule manages different sets of symbolic rules which simulates either the innate knowl-
edge passed on genetically by an evolutionary process, or the knowledge acquired by
a previous experience.

Fig. 1. Hybrid Cognitive Architecture

The Intentional module represents the agent’s intentionality through goal and plan
generation at the cognitivist level, as well as prospection strategies and internal simu-
lation at the emergent level. This module will have a declarative knowledge represen-
tation composed of chunks of semantic and episodic memories which are accessed
indirectly, as proposed in [8]. This module is able to predict the outcomes of the ac-
tions produced by the system and construct a model of events for controlling percep-
tion through stimuli anticipation.

The Attention module has the responsibility of interpreting the perceived informa-
tion through the sensors and transforming it into percepts (sensory inputs translated
into property/value pairs). The Attention module is based on Global Workspace the-
ory and Theater Metaphor for Consciousness [6]. This module has the responsibility
for coordinating the execution of several SBs, which compete and cooperate in order
to get the attention focus (consciousness). The most innovative aspect of this module

 Self-organized and Evolvable Cognitive Architecture for Intelligent Agents 395

is the behavior orchestration managed by a mechanism that uses Gene Expression
Programming (GEP), an evolutionary programming algorithm proposed by Ferreira
[12]. This mechanism will be discussed later in section 4.

3 Epigenetic Approach: Implicit Learning at Emergent Level

The epigenesis refers to heritable changes in phenotype (appearance) or gene expres-
sion, caused by mechanisms other than changes in the underlying DNA sequence.
Therefore, the epigenesis represents the final tuning process by means of each indi-
vidual adapts efficiently to its environment from the abilities included in its genetic
code.

In our work, the epigenetic approach references to the mechanisms that allow agent
modifying some aspects of its both internal and external structure as a result of inter-
acting with its environment, in other words, “learning”. Therefore, we propose the
development of two main approaches which intend to simulate the most evident epi-
genetic systems observed in nature: the central nervous system (CNS) and the im-
mune system. In our work, the connectionist module which represents the CNS is
organized in groups of Backpropagation Neural Networks (BNN), each one represent-
ing the sub-symbolic specialization of a task as in [13]. Each specialized BNN is
classified according to its purpose, in order to filter the perceived stimuli from envi-
ronment and select the respective reactive actions. We propose an AIS as autopoietic
machine [11] which starts with an sensory input data set (antigens) that stimulate an
immune network, and then goes through a dynamic process until it reaches some type
of stability. Specifically, each autopoietic machine is based on AiNet [15], a model
which implements a discrete immune network that has been developed for data com-
pression and clustering and later for optimization.

3.1 Vertical Integration: Specialist Behaviors

The Specialist Behaviors (SB) are proposed as hybrid units of procedural process-
ing which are in charge of specializing the cognitive skills of the architecture. These
specialists are hybrid because of incorporation of both symbolic and sub-symbolic
elements at the procedural module. In particular, the procedural module arranges a
set of SBs distributed vertically, every one made up of each horizontally-formed
component (i.e., an specific SB has one BNN, one AIS, one ER set, and one SER
set, as in Figure. 1).

Thus, SBs help the architecture to articulate the set of skills because of each SB at-
tends on an specific set of stimuli signals and gives an appropriated response to the
environment. Accordingly, each SB can be formalized as follows:

<SB> = <ER> U <SER> U <AM> U <BNN>

The purpose of including multiple components in an SB is that each one compensates
the weaknesses of the rest. For example, BNN are often better at making forward
inferences about object categories than ERs, whereas ERs are often better at making
forward inferences involving causal change than neural networks. AIS is able to make
both kind of inferences from implicit representations but it involves more processing

396 O.J.R. López

time discovering new rules than the other two components. In addition, a reinforce-
ment signal (as a factor of learning in the procedural module) is used to modify the
future responses of the agent. This is achieved through adjusting the connections in
BNNs, rewarding the activated antibodies in AISs, and extracting sub-symbolic
knowledge from emergent level in SERs.

4 Ontogenetic Approach: Behavior Orchestration

Ontogenetic principles involve all the mechanisms in charge of developing an agent
on the basis of the stored information in its own genetic code without interposing the
environment influence. Additionally, it defines the history of structural change in a
unity without the lost of organization that allows that unity to exist. Some outcomes
of these principles as self-replication and self-regulation properties in biological sys-
tems can be valued. In our work, the ontogenetic approach is simulated through the
interaction among different modules: the Attention module, the Goal module, the
Anticipatory Module, and the SBs in Procedural module. The main idea in this ap-
proach is that the attention module supported by Global Workspace theory, orches-
trates the different SBs in such a way that either cooperate or compete among them.

The attention module defines a set of attention machines (AM), which are systems
implemented as attention fixations that execute algorithms by sequences of SBs. Each
AM has a set of premises that describe the pre-conditions of AM activation, the
stream of SBs, and the post-conditions that will have to guarantee after the execution
of the stream. Te pre-conditions indicate the goals, expectations, emotions, and stim-
uli (provided by the working memory) which the agent will have to process and sat-
isfy at any given time. The stream of SBs is a sequence of SBs and relations among
them which describes how the agent must behave in a particular situation. Finally,
post-conditions are a set of states and new goals generated after the execution of the
stream. The main question that addresses the development of the attention module is
how it will be able to arbitrate autonomously the execution of SBs in each AM given
a set of stimuli, expectations, goals, and emotions?

As a result, we propose an evolutionary model based on GEP [12] that is used to
evolve the AMs in order to generate an appropriated behavior orchestration without
defining a priori the conditions of activation about each SB. GEP uses two sets: a
function set and a terminal set. Our proposed function set is: IFMATCH, AND, OR,
NOT, INHIBIT, SUPRESS, AGGREGATE, COALITION, and SUBORDINATION.
The AND, OR and NOT functions are logic operators used to group or exclude sub-
sets of elements (SBs, goals, working memory items, etc.). The conditional function
IFMATCH is an applicability predicate that matches specific stimuli. This function
has three arguments; the first argument is the rule’s antecedent, an eligibility condi-
tion which correspond with a subset of sensory inputs, motivational indicators (inter-
nal states, moods, drives, etc.), and working memory elements, which model the
agent’s current state. All elements of these subsets are connected with logic operators.
If the whole set of conditions exceeds a threshold, then the second argument, the
rule’s consequent, is executed, otherwise the third argument is executed. Second and
third argument should be a set of functions such as INHIBIT, SUPPRESS, AGGRE-
GATE, COALITION, or SUBORDINATION, or maybe an AND/OR function con-
necting more elements when is necessary.

 Self-organized and Evolvable Cognitive Architecture for Intelligent Agents 397

The INHIBIT, SUPPRESS and AGGREGATE functions have two SBs as argu-
ments (SBA, SBB) and indicate that SBA inhibits, suppresses, or aggregates SBB. The
COALITION/SUBORDINATION functions, instead of binomial functions mentioned
above, perform a set of SBs. The COALITION function describes a cooperation rela-
tionship among SBs where actuators may activate multiple actions. The SUBORDI-
NATION function defines a hierarchical composition of SBs which are activated in a
specific sequence. In addition to, the terminal set is composed by the SB set, the mo-
tivational indicators, the goal set, and the working memory elements. Additionally
“do not care” elements are included so whichever SB, motivational indicator, goal, or
working memory item can be referenced.

Each agent has a multigenic chromosome, that means, each chromosome has a gene
set where each gene is an eligibility rule like in the example, so the agent has several
rules (genes) as part of its genotype and each one is applied according to the situation
that matches the rule antecedent. Each gene becomes to a tree representation and after-
wards some genetic operators are applied among genes of the same agent and genes of
other agents, as in [12]. Some of these genetic operators are: selection, mutation, root
transposition, gene transposition, two-point recombination and gene recombination, in
order to evolve chromosomal information. After certain number of evolutionary genera-
tions, valid and better adapted AMs are generated. A roulette-wheel method is used to
select individuals with most selection probability derived from its own fitness. Fitness
represents how good interaction with environment during agent’s lifetime was.

5 Phylogenetic Approach: C-evolutionary Mechanism

In biology, phylogenesis (evolution) collects all those mechanisms which, leaded by
natural selection, have given place to the broad variety of species observed in nature.
Evolutionary mechanism operates in populations and as a result, it gets a genetic code
which allows individuals of a concrete population to adapt to the environment where
they live in. On the basis of phylogenetic theory [11], a co-evolutionary mechanism is
proposed to evolve fine-grained units of knowledge through the multi-agent system,
taking the foundation of meme and memetic algorithms. The term “meme” was intro-
duced and defined by Dawkins [16], as the basic unit of cultural transmission or imi-
tation that may be considered to be passed on by non-genetic means. In our work,
each meme contains a symbolic and sub-symbolic representation of knowledge, and
also a set of indicators such as demotion, reliability, rule support and fitness.

As a result, our co-evolutionary mechanism is based on a Memetic Algorithm [16]
which is inspired by both Darwinian principles of natural evolution and Dawkins’
notion of a meme. This mechanism can be viewed as a population-based hybrid ge-
netic algorithm coupled with an individual learning procedure capable of performing
local refinements. Most evolutionary approaches use a single population where evolu-
tion is performed; instead of this, in our co-evolutionary approach, the SBs are
discriminated in categories and make them evolve in separate pools without any inter-
action among themselves. After certain period of time a co-evolutionary mechanism
is activated. For each behavior pool, a stochastic selection method is executed, where
those SBs that had the best performance (fitness) will have more probability to repro-
duce. Then, a crossover genetic operator is applied among each pair of selected SBs
and some memes are both selected and interchanged with other ones.

398 O.J.R. López

6 Experimentation

In order to evaluate the proposed cognitive model, following aspects were considered:

• Learning convergence and knowledge generalization of the procedural module,
• Analysis of eligibility rules evolved by GEP in the attention module, and
• Learning convergence of the co-evolutionary mechanism.

An artificial life environment called Animat (animal + robot) is proposed to test the
experiments. The environment simulates virtual agents competing for getting food
and water, avoiding obstacles, and so forth. Each animat, driven by an agent, disposes
a set of 8 proximity sensors around itself. In Figure 2 is depicted the three environ-
ments and the desired paths that the agent should cross. The environment in Figure
2a. was a basic learning scenario where the agent had to follow a simple path. In Fig-
ure 2b. some little changes were included, and in Figure 2c. the environment was
more complex because of a new path of food and more elements that were introduced.
The experiments were made using three agent behaviors: looking for food (SB-eat),
avoiding obstacles (SB-avoid-obstacles), and escaping from predators (SB-escaping-
from-predators).

Fig. 2. Animat environments. a) basic environment, b) modified environment, and c) complex
environment.

Thus, some experiments designed to evaluate the performance aspects mentioned
above are described next.

6.1 Analysis of Eligibility Rules Evolved by GEP

After the attention machines in the attention module have evolved during a specific
number of generations, we analyze the final eligibility rules of the best adapted agents
where emergent properties arose.

Initially, we present an initial eligibility rule which has syntax conflicts; therefore
an evolved eligibility rule syntactically well-formed emerges from GEP.

We have chosen an eligibility rule from a non-trained agent and afterwards we
show the same evolved eligibility rule but now it has no syntax conflicts and also it's
better well-suited than its predecessor.

 Self-organized and Evolvable Cognitive Architecture for Intelligent Agents 399

Eligibility Rule at generation 0:

IFMATCH:
 {food},{tree},{empty},{empty},{empty},{empty},
 {empty},{tree} AND {goal-is-eat}
THEN:
 {SB-eat} INHIBITS {SB-avoid-obstacles} AND
 {SB-avoid-obstacles} SUPRESSES {SB-eat}
ELSE:
 SUBORDINATION {SB-avoid-obstacles} AND
 {SB-eat}

The above eligibility rule means that when the agent senses “food” around it, it
must do something to get the food while is avoiding obstacles, but is contradictory
because {SB-eat} can't inhibit {SB-avoid-obstacles} while {SB-avoid-obstacles} is
suppressing {SB-eat} at the same time. So, the evolved consequent of the eligibility
rule after 17 epochs is:

IFMATCH:
 {food},{tree},{empty},{empty},{empty},{empty},
 {empty},{tree} AND {goal-is-eat}
THEN
 COALITION {SB-eat} AND {SB-avoid-obstacles}
ELSE
 {SB-avoid-obstacles} INHIBITS {SB-eat}

It is important to notice that evolved eligibility rule does not present any syntax
conflict and is a valid rule which forms a coalition among {SB-avoid-obstacles} and
{SB-eat} behaviors when the agent reads food and obstacles around it. Otherwise, the
agent always will execute the rule: {SB-avoid-obstacles} inhibits {SB-eat}, focusing
the agent attention on obstacles because of {SB-eat} behavior has a lower priority and
is less reactive than {SB-avoid-obstacles} behavior.

6.2 Learning Convergence of the Co-evolutionary Mechanism

This experiment examines if the fitness of every separate behavior pool increments
gradually until it reaches a convergence point while evolution takes place. The ex-
periment was carried out with the parameters on Table 1.

Table 1. Co-evolution learning parameters

Parameter Value
Epochs 50
Number of epochs per run 50
Crossover probability 0.7
Mutation probability 0.3
Mutation rate η 0.85
Mutation rate θ 0.25
Mutation rate κ 1.03
Mutation rate γ 0.01

400 O.J.R. López

Three behavior pools were selected for the experiment: avoiding-obstacles, look-
ing-for-food, and escaping-from-predators. The results are depicted in Figure 3.

Figure 3 depicted some differences in each learning curve, because of environ-
mental conditions, however the pools always tried to converge and reach certain
knowledge stability at the same number of epochs (approximately after 30 epochs),
that means the evolution has been effective and each behavior pool has established a
coherent knowledge base getting a consensus among its own behavior instances and
about what the “behavior category” should do.

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Epochs

F
it

n
es

s
A

ve
ra

g
es

 …
.

AO Behaviour
LFF Behaviour
EFD Behaviour

Fig. 3. Evolution convergence rate in 3 behaviour pools

7 Conclusions

The evolutionary mechanisms used in this work, provided a plasticity feature allow-
ing the agent to self-configure its own underlying architecture; thus, it can avoid cre-
ating exhaustive and extensive knowledge bases, pre-wired behavior structures of
behaviors, and pre-constrained environments. Instead of this, the cognitive agents
which use our architecture only need to interact with an arbitrary environment to
adapt to it and take decisions in both a reactive and deliberative fashion.

In the experimentation, the emergent properties were difficult to discover because
it took a lot of time to evolve the overall system despite of using a multi-agent plat-
form with a distributed configuration. Maybe, it can be similar to the natural evolution
where adaptation occurs slowly and sometimes produces poor adapted creatures.

In our future work we expect to continue working on designing more adaptive and
self-configurable architectures, incorporating intentional and meta-cognition modules.
One concrete application of this research will be the development of a cognitive mod-
ule for Emotive Pedagogical Agents where the agent will be able to self-learn of per-
spectives, believes, desires, intentions, emotions and perceptions about itself and
other agents, using the proposed approach which will be responsible of driving the
cognitive architecture.

 Self-organized and Evolvable Cognitive Architecture for Intelligent Agents 401

References

1. Anderson, M.L.: Embodied cognition: A field guide. Artificial Intelligence 149(1), 91–130
(2003)

2. Berthoz, A.: The Brain’s Sense of Movement. Harvard Univ. Press, Cambridge (2000)
3. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: Implications

for the autonomous development of mental capabilities in computational agents. IEEE
Trans. Evolutionary Computation 11(2) (April 2007)

4. Rosenbloom, P., Laird, J., Newell, A. (eds.): The Soar Papers: Research on integrated in-
tell. MIT Press, Cambridge (1993)

5. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated
theory of the mind. Psy. Rev. 111(4), 1036–1060 (2004)

6. Shanahan, M.P., Baars, B.: Applying global workspace theory to the frame problem. Cog-
nition 98(2), 157–176 (2005)

7. Breazeal: Emotion and sociable humanoid robots. Int. J. Human-Computer Studies 59,
119–155 (2003)

8. Sun, R., Merrill, E., Peterson, T.: From implicit skills to explicit knowledge: A bottom-up
model of skill learning. Cognitive Science 25, 203–244 (2001)

9. Cassimatis, N.L.: Adaptive Algorithmic Hybrids for Human-Level Artificial Intelligence.
Advances in Arti. Intell. (2007)

10. Franklin, S.: The LIDA architecture: Adding new modes of learning to an intelligent,
autonomous, software agent. In: Proc. of the Int. Conf. on Integrated Design and Process
Technology (2006)

11. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living.
Boston Studies on the Philosophy of Science. D. Reidel Publishing Company, Dordrecht
(1980)

12. Ferreira, C.: Gene Expression Programming: A new adaptive algorithm for solving prob-
lems. Complex Systems 13, 87–129 (2001)

13. Rumelhart, D., McClelland, J.: Parallel Distributed Processing: Explorations in the Micro-
structures of Cognition. MIT Press, Cambridge (1986)

14. Watkins, C., Dayan, P.: Q-learning. Machine Learning 3, 279–292 (1992)
15. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelli-

gence Approach (2002)
16. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1989)
17. Romero, D., Niño, L.: An Immune-based Multilayered Cognitive Model for Autonomous

Navigation, CEC, Vancouver, pp. 1115–1122 (2006)

Investigating the Local-Meta-Model CMA-ES
for Large Population Sizes

Zyed Bouzarkouna1,2, Anne Auger2, and Didier Yu Ding1

1 IFP (Institut Français du Pétrole)
1,4 avenue de bois préau

92852 Rueil-Malmaison Cedex, France
2 TAO Team, INRIA Saclay-Ile-de-France

LRI, Paris Sud University
91405 Orsay Cedex, France

Abstract. For many real-life engineering optimization problems, the
cost of one objective function evaluation can take several minutes or
hours. In this context, a popular approach to reduce the number of func-
tion evaluations consists in building a (meta-)model of the function to
be optimized using the points explored during the optimization process
and replacing some (true) function evaluations by the function values
given by the meta-model. In this paper, the local-meta-model CMA-ES
(lmm-CMA) proposed by Kern et al. in 2006 coupling local quadratic
meta-models with the Covariance Matrix Adaptation Evolution Strat-
egy is investigated. The scaling of the algorithm with respect to the
population size is analyzed and limitations of the approach for popu-
lation sizes larger than the default one are shown. A new variant for
deciding when the meta-model is accepted is proposed. The choice of the
recombination type is also investigated to conclude that the weighted
recombination is the most appropriate. Finally, this paper illustrates the
influence of the different initial parameters on the convergence of the
algorithm for multimodal functions.

Keywords: Optimization, Covariance Matrix Adaptation, Evolution
Strategy, CMA-ES, Meta-models.

1 Introduction

Many real-world optimization problems are formulated in a black-box scenario
where the objective function to optimize f : Rn �→ R may have noise, mul-
tiple optima and can be computationally expensive. Evolutionary algorithms
(EAs) are stochastic population based optimization algorithms that are usually
a good choice to cope with noise and multiple optima. For expensive objective
functions–several minutes to several hours for one evaluation–a strategy is to
couple EAs with meta-models: a model of f is built, based on “true” evaluations
of f , and used during the optimization process to save evaluations of the expen-
sive objective function [1]. One key issue when coupling EAs and meta-models
is to decide when the quality of the model is good enough to continue exploiting

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 402–411, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Investigating the Local-Meta-Model CMA-ES for Large Population Sizes 403

this model and when new evaluations on the “true” objective functions should
be performed. Indeed, performing too few evaluations on the original objective
function can result in suboptimal solutions whereas performing too many of
them can lead to a non efficient approach.

The covariance matrix adaptation ES (CMA-ES) [2,3] is an EA recognized as
one of the most powerful derivative-free optimizers for continuous optimization1.
At each iteration of CMA-ES, the evaluation of candidate solutions on the objec-
tive function are performed. However, from those evaluations only the ranking
information is used. In consequence the algorithm is invariant to transforma-
tions on f preserving the ranking. CMA-ES was coupled with local meta-models
by Kern et al. [4]. In the proposed algorithm, lmm-CMA, the quality of the
meta-model is appraised by tracking the change in the exact ranking of the best
individuals. The lmm-CMA algorithm has been evaluated on test functions us-
ing the default population size of CMA-ES for unimodal functions and for some
multimodal functions and has been shown to improve CMA-ES [4].

In this paper, we analyze the performance of lmm-CMA when using popu-
lation sizes larger than the default one. We show that tracking the exact rank-
change of the best solutions to determine when to re-evaluate new solutions is a
too conservative criterion and leads to a decrease of the speedup with respect to
CMA-ES when the population size is increased. Instead we propose a less con-
servative criterion that we evaluate on test functions. This paper is structured
as follows. Section 2 gives an overview of CMA-ES and lmm-CMA. In Section 3,
we evaluate lmm-CMA-ES for population size larger than the default one. In
Sections 4.1 and 4.2, we propose a new variant of lmm-CMA. In Section 4.3, the
influence of the recombination type on the new variant is tested. The influence
of initial parameters is analyzed in Section 4.4.

2 CMA-ES with Local Meta-Models

The Covariance Matrix Adaptation ES. CMA-ES is a stochastic optimiza-
tion algorithm where at each iteration g, a population of λ points is sampled
according to a multivariate normal distribution. The objective function of the
λ points is then evaluated and the parameters of the multivariate normal dis-
tribution are updated using the feedback obtained on the objective function.
More specifically, let (mg, g ∈ N) be the sequence of mean values of the mul-
tivariate normal distribution generated by CMA-ES, constituting the sequence
of estimate of the optimum and let (σg, g ∈ N) and (Cg, g ∈ N) be respectively
the sequences of step-sizes and covariance matrices. Assume that mg, σg,Cg are
given, new points or individuals are sampled according to:

xg
i = mg + σgNi(0,Cg), for i = 1 . . .λ , (1)

where (Ni(0,Cg))1≤i≤λ are λ independent multivariate normal distributions
with zero mean vector and covariance matrix Cg. Those λ individuals are ranked
according to f :
1 See http://coco.gforge.inria.fr/doku.php?id=bbob-2009-results

404 Z. Bouzarkouna, A. Auger, and D.Y. Ding

f(xg
1:λ) ≤ . . . f(xg

μ:λ) ≤ . . . f(xg
λ:λ) (2)

where we use the notation xg
i:λ for ith best individual. The mean mg is then up-

dated by taking the weighted mean of the best μ individuals, mg+1 =
μ∑

i=1
ωix

g
i:λ ,

where in general μ = λ
2 and (wi)1≤i≤μ are strictly positive and normalized

weights, i.e., satisfying
μ∑

i=1
ωi = 1. The default weights are equal to:

ωi =
ln(μ + 1)− ln(i)

μ ln(μ + 1)− ln(μ!)
, for i = 1 . . .μ. (3)

Furthermore σg and Cg are updated as well after evaluation and we refer to [3]
for the equation updates. All updates rely on the ranking determined by Eq. 2
only and not on the exact value of the objective functions such that the CMA-ES
is invariant when optimizing f or g ◦ f where g : R �→ R is a strictly increasing
mapping. The default population size λ equals 4 + �3 ln(n)�.

Locally weighted regression. During the optimization process, a database,
i.e., a training set is built by storing, after every evaluation on the true objective
function, points together with their objective function values (x, y = f(x)). We
will later then show that some points whose evaluation is asked by the optimizer
are not evaluated on the true objective function. Assuming that the training set
contains a sufficient number m of couples (x, f(x)), for each individual in the
population, denoted now q ∈ Rn, locally weighted regression builds an approxi-
mate objective function using (true) evaluations stored in the training set. Kern
et al [4] have tested several types of models for the objective function (linear,
quadratic, ...) and have investigated the impact of the choice of the model com-
plexity and recommend to use a full quadratic meta-model that we will hence
consider in this paper. The full quadratic meta-model is built based on minimiz-
ing the following criteria w.r.t. the vector of parameters β ∈ R

n(n+3)
2 +1 of the

meta-model at q:

A(q) =
m∑

j=1

[(
f̂ (xj , β)− yj

)2
K

(
d (xj ,q)

h

)]
, (4)

where f̂ is the meta-model defined by

f̂ (x, β) = βT
(
x2

1, · · · , x2
n, · · · , x1x2, · · · , xn−1xn, x1, · · · , xn, 1

)T
, (5)

with x = (x1, . . . , xn). The kernel weighting function K (.) is defined by K(ζ) =
(1−ζ2)21{ζ<1} where 1{ζ<1} is one if ζ < 1 and zero otherwise, and d denotes the
Mahalanobis distance with respect to the current covariance matrix C between

2 individuals defined as d (xj ,q) =
√

(xj − q)T C−1 (xj − q) , and h is the
bandwidth defined by the distance of the kth nearest neighbor data point to q
where k = n (n + 3) + 2 .

Investigating the Local-Meta-Model CMA-ES for Large Population Sizes 405

Table 1. Test functions and their corresponding initial intervals and standard devia-
tions. The starting point is uniformly drawn from the initialized interval.

Name Function Init. σ0

Noisy Sphere fNSphere(x) = (
n∑

i=1
x2

i) exp (εN (0, 1)) [−3, 7]n 5

Schwefel fSchw(x) =
n∑

i=1
(

i∑
j=1

xj)2 [−10, 10]n 10

Schwefel1/4 f
Schw1/4(x) = (fSchwefel (x))

1
4 [−10, 10]n 10

Rosenbrock fRosen (x) =
n−1∑
i=1

(
100.

(
x2

i − xi+1
)2 + (xi − 1)2

)
[−5, 5]n 5

Ackley fAck (x) = 20 − 20 exp
(−0.2

√
1
n

n∑
i=1

x2
i

)
+ e − exp(1

n

n∑
i=1

cos (2πxi)) [1, 30]n 14.5

Rastrigin fRast (x) = 10n +
n∑

i=1

(
x2

i − 10. cos (2πxi)
)

[1, 5]n 2

1 approximate f̂ (xk) , k = 1 . . . λ
2 rank the μ best individuals ranking0

3 evaluate f for the ninit best individuals, add to the training set
4 for nic := 1 to

(
λ−ninit

nb

)
do

5 approximate f̂ (xk) , k = 1 . . . λ
6 rank the μ best individuals rankingnic

7 if (rankingnic �= rankingnic−1) then
8 evaluate f for the nb best unevaluated individuals, add to the training set
9 else
10 break
11 fi
12 od
13 if (nic > 2) then ninit = min(ninit + nb, λ − nb)
14 elseif (nic < 2) then ninit = max(nb, ninit − nb)

Fig. 1. The approximate ranking procedure, performed once the training set contains
a sufficient number of evaluations to build the meta-model. ninit and nb are initialized
respectively to λ and max[1, (λ

10
)] .

Approximate Ranking Procedure. The lmm-CMA-ES algorithm is using the
approximate ranking procedure to decide when the quality of the model built is
satisfactory [5]. This procedure heavily exploits the ranked-based property of the
CMA-ES algorithm. Fig. 1 gives the implementation of this procedure proposed
in [4]. Initially, a number ninit of best individuals based on the meta-model are
evaluated using the true objective function and then added to the training set. A
batch of nb individuals is evaluated until satisfying the meta-model acceptance cri-
terion: keeping the ranking of each of the μ best individuals based on the meta-model
unchanged for two iteration cycles. Hence, (ninit,g + nic nb) individuals are evalu-
ated every generationwhere nic represents the number of iteration cyclesneeded to
satisfy the meta-model acceptance criterion. We note that ninit and nb are initial-
ized respectively to λ and max[1, (λ

10)]. The parameter ninit is adapted depending
on the number of iteration cycles nic: ninit is increased if (nic > 2) (Line 13 in
Fig. 1) and decreased if (nic < 2) (Line 14 in Fig. 1).

406 Z. Bouzarkouna, A. Auger, and D.Y. Ding

Table 2. Success performance SP1, i.e., the average number of function evaluations
for successful runs divided by the ratio of successful runs, standard deviations of the
number of function evaluations for successful runs and speedup performance spu, to
reach fstop = 10−10 of lmm-CMA and nlmm-CMA. The ratio of successful runs is
denoted between brackets if it is < 1.0. Results with a constant dimension n = 5 and
an increasing λ are highlighted in grey.

Function n λ ε lmm-CMA spu nlmm-CMA spu CMA-ES
fRosen 2 6 291 ± 59 2.7 252 ± 52 3.1 779 ± 236

4 8 776 ± 102 [0.95] 2.8 719 ± 54 [0.85] 3.0 2185 ± 359 [0.95]
5 8 1131 ± 143 2.7 1014 ± 94 [0.90] 3.0 3012 ± 394 [0.90]
5 16 1703 ± 230 [0.95] 2.0 901 ± 64 3.7 3319 ± 409
5 24 2784 ± 263 1.4 1272 ± 90 [0.95] 3.0 3840 ± 256
5 32 3364 ± 221 1.3 1567 ± 159 2.9 4515 ± 275
5 48 4339 ± 223 1.3 1973 ± 144 2.9 5714 ± 297
5 96 6923 ± 322 1.2 3218 ± 132 2.5 7992 ± 428
8 10 2545 ± 233 [0.95] 2.1 2234 ± 202 [0.95] 2.4 5245 ± 644

fSchw 2 6 89 ± 9 4.3 87 ± 7 4.4 385 ± 35
4 8 166 ± 8 5.4 166 ± 6 5.4 897 ± 51
8 10 334 ± 9 6.2 333 ± 9 6.2 2078 ± 138

16 12 899 ± 40 5.9 855 ± 30 6.2 5305 ± 166
f
Schw1/4 2 6 556 ± 25 2.4 413 ± 25 3.3 1343 ± 72

4 8 1715 ± 87 1.7 971 ± 36 2.9 2856 ± 135
5 8 2145 ± 69 1.6 1302 ± 31 2.7 3522 ± 136
5 16 3775 ± 137 1.3 1446 ± 31 3.4 4841 ± 127
5 24 5034 ± 142 1.2 1825 ± 45 3.4 6151 ± 252
5 32 6397 ± 174 1.2 2461 ± 43 3.2 7765 ± 227
5 48 8233 ± 190 1.2 3150 ± 58 3.2 10178 ± 202
5 96 11810 ± 177 1.2 4930 ± 94 2.9 14290 ± 252
8 10 4046 ± 127 1.5 2714 ± 41 2.2 5943 ± 133

fNSphere 2 6 0.35 124 ± 14 2.7 109 ± 12 3.1 337 ± 34
4 8 0.25 316 ± 45 2.3 236 ± 19 3.1 739 ± 30
8 10 0.18 842 ± 77 1.8 636 ± 33 2.4 1539 ± 69

16 12 0.13 2125 ± 72 1.3 2156 ± 216 1.3 2856 ± 88
fAck 2 5 302 ± 43 [0.90] 2.6 227 ± 23 3.5 782 ± 114 [0.95]

5 7 1036 ± 620 2.0 704 ± 23 [0.90] 3.0 2104 ± 117 [0.85]
10 10 2642 ± 93 [0.90] 1.4 2066 ± 119 [0.95] 1.8 3787 ± 151 [0.95]

fRast 2 50 898 ± 160 [0.95] 2.7 524 ± 48 [0.95] 4.7 2440 ± 294 [0.75]
5 70 19911 ± 599 [0.15] 0.6 9131 ± 135 [0.15] 1.3 11676 ± 711 [0.50]
5 140 6543 ± 569 [0.80] 1.6 4037 ± 209 [0.60] 2.6 10338 ± 1254 [0.85]
5 280 10851 ± 1008 [0.85] 1.3 4949 ± 425 [0.85] 2.9 14266 ± 1069

Fig. 2. Speedup of nlmm-CMA (�) and lmm-CMA (�) on (a) fSchw1/4 , (b) fRosen and
(c) fRast for dimension n = 5

3 Evaluating lmm-CMA on Increasing Population Size

3.1 Experimental Procedure

The lmm-CMA and the other variants tested are evaluated on the objective
functions presented in Table 1 corresponding to the functions used in [4] except
two functions: (1) the function fSchw1/4 where we compose the convex quadratic
function fSchw by a strictly increasing mapping g : x ∈ R �→ x1/4, introduced be-
cause we suspect that the results on fSchw are artificial and only reflect the fact
that the model used in lmm-CMA is quadratic and (2) the noisy sphere function

Investigating the Local-Meta-Model CMA-ES for Large Population Sizes 407

fNSphere whose definition has been modified following the recommendations of
[6]. We have followed the experimental procedure in [4] and performed for each
test function 20 independent runs using an implementation of lmm-CMA based
on a java code of CMA-ES2 randomly initialized from initial intervals defined
in Table 1 and with initial standard deviations σ0 in Table 1 and other stan-
dard parameter settings in [3]. The algorithm performance is measured using
the success performance SP1 used in [7]. SP1 is defined as the average number
of evaluations for successful runs divided by the ratio of successful runs, where a
run is considered as successful if it succeeds in reaching fstop = 10−10. Another
performance measure that might be used was the expected running time ERT
[8] which is defined as the number of function evaluations conducted in all runs
(successful and unsuccessful runs) divided by the ratio of successful runs. In this
paper, we opt for SP1 since the stopping criteria for unsuccessful runs were not
properly tuned which can affect the performance comparison. We have repro-
duced the results for the lmm-CMA presented in [4, Table 3]. Those results are
presented in Table 23.

3.2 Performances of lmm-CMA with Increasing Population Size

In lmm-CMA, a meta-model is accepted if the exact ranking of the μ best in-
dividuals remains unchanged. However, this criterion is more and more diffi-
cult to satisfy when the population size λ and thus μ(= λ/2) increases. We
suspect that this can have drastic consequences on the performances of lmm-
CMA. To test our hypothesis we perform tests for n = 5 on fRosen, fSchw1/4 with
λ = 8, 16, 24, 32, 48, 96 and for fRast for λ = 70, 140, 280. The results are pre-
sented in Fig. 2 and in Table 2 (rows highlighted in grey). On fRosen and fSchw1/4 ,
we observe, as expected that the speedup with respect to CMA-ES drops with
increasing λ and is approaching 1. On fRast, we observe that the speedup for
λ = 140 is larger than for λ = 280 (respectively equal to 1.6 and 1.3).

4 A New Variant of lmm-CMA

We propose now a new variant of lmm-CMA, the new-local-meta-model CMA-
ES (nlmm-CMA) that tackles the problem detected in the previous section.

4.1 A New Meta-Model Acceptance Criteria

We have seen that requiring the preservation of the exact ranking of the μ best
individuals is a too conservative criterion for population sizes larger than the
default one to measure the quality of meta-models. We therefore propose to
2 See http : //www.lri.fr/∼hansen/cmaes inmatlab.html
3 Experiments have been performed with k = n(n + 3) + 2 indicated in [4]. However

we observed some differences on fRosen and fSchwwith this value of k and found out
that k = n(n+3)

2
+ 1 allows to obtain the results presented in [4, Table 3]. We did

backup this finding by using the matlab code provided by Stefan Kern.

408 Z. Bouzarkouna, A. Auger, and D.Y. Ding

1 approximate f̂ (xk) , k = 1 . . . λ
2 determine the μ best individuals set : set0
3 determine the best individual : elt0
4 evaluate f for the ninit best individuals, add to the training set
5 for nic := 1 to

(
λ−ninit

nb

)
do

6 approximate f̂ (xk) , k = 1 . . . λ
7 determine the μ best individuals set : setnic

8 determine the best individual : eltnic

9 if (ninit + nic nb < λ
4
)

10 if ((setnic �= setnic−1) or (eltnic �= eltnic−1)) then
11 evaluate f for the nb best unevaluated individuals, add to the training set
12 else
13 break
14 fi
15 elseif (eltnic �= eltnic−1) then
16 evaluate f for the nb best unevaluated individuals, add to the training set
17 else
18 break
19 fi
20 od
21 if (nic > 2) then ninit = min(ninit + nb, λ − nb)
22 elseif (nic < 2) then ninit = max(nb, ninit − nb)

Fig. 3. The new approximate ranking procedure, performed once the training set con-
tains a sufficient number of evaluations to build the meta-model. ninit and nb are
initialized respectively to λ and max[1, (λ

10
)] .

replace this criterion by the following one: after building the model and ranking
it, a meta-model is accepted if it succeeds in keeping, both the ensemble of
μ individuals and the best individual unchanged. In this case, we ignore any
change in the rank of each individual from the best μ individuals, except for
the best individual which must be the same, as long as this individual is still
an element of the μ best ensemble. Another criterion is added to the acceptance
of the meta-model: once more than one fourth of the population is evaluated,
the model is accepted if it succeeds to keep the best individual unchanged. The
proposed procedure is outlined in Fig. 3. Considering only changes in the whole
parent set, without taking into account the exact rank of each individual, and
setting an upper limit on the number of true objective function evaluations was
first proposed in [9]. The new variant is called nlmm-CMA in the sequel.

4.2 Evaluation of nlmm-CMA

The performance results of nlmm-CMA are presented in Table 2 together with
the one of lmm-CMA. Table 2 shows that on fRast, the nlmm-CMA speedup is in
between 2.5 and 5 instead of 1.5 and 3 for lmm-CMA and on fAck, nlmm-CMA
outperforms lmm-CMA with speedups between 1.5 and 3.5 for nlmm-CMA and

Investigating the Local-Meta-Model CMA-ES for Large Population Sizes 409

Table 3. SP1, standard deviations of the number of function evaluations for successful
runs and speedup performance spu, to reach fstop = 10−10 of nlmm-CMA, nlmm-CMAI

(intermediate recombination and default initial parameters), nlmm-CMA1(default re-
combination, initial values of ninit and nb set to 1) and nlmm-CMA2(default recombi-
nation type, ninit = 1 and nb = 1 during the whole optimization process). The ratio
of successful runs is denoted between brackets if it is < 1.0.

Function n λ ε nlmm-CMA spu nlmm-CMAI spu nlmm-CMA1 spu nlmm-CMA2 spu
fRosen 2 6 252 ± 52 3.1 357 ± 67 2.2 250 ± 80 3.1 229 ± 53 3.4

4 8 719 ± 54 [0.85] 3.0 833 ± 100 2.6 596 ± 55 3.7 575 ± 68 3.8
8 10 2234 ± 202 [0.95] 2.4 2804 ± 256 [0.95] 1.9 2122 ± 133 2.5 2466 ± 207 [0.85] 2.1

fSchw 2 6 87 ± 7 4.4 110 ± 10 3.5 75 ± 8 5.2 73 ± 7 5.3
4 8 166 ± 6 5.4 220 ± 15 4.1 138 ± 6 6.5 136 ± 5 6.6
8 10 333 ± 9 6.2 423 ± 15 4.9 374 ± 16 5.6 380 ± 21 5.5

16 12 855 ± 30 6.2 947 ± 24 5.6 794 ± 27 6.7 786 ± 37 6.8
f
Schw1/4 2 6 413 ± 25 3.3 550 ± 29 2.4 411 ± 20 3.3 398 ± 16 3.4

4 8 971 ± 36 2.9 1320 ± 76 2.2 938 ± 32 3.1 909 ± 30 3.1
8 10 2714 ± 41 2.2 2714 ± 257 2.2 2668 ± 40 2.2 2677 ± 36 2.2

fNSphere 2 6 .35 109 ± 12 3.1 135 ± 19 2.5 92 ± 11 3.7 87 ± 9 3.9
4 8 .25 236 ± 19 3.1 306 ± 40 2.4 216 ± 16 3.4 219 ± 16 3.4
8 10 .18 636 ± 33 2.4 788 ± 47 2.0 611 ± 35 2.5 619 ± 45 2.5

16 12 .13 2156 ± 216 1.3 2690 ± 421 1.1 2161 ± 148 1.3 2195 ± 142 1.3
fAck 2 5 227 ± 23 3.5 329 ± 29 [0.85] 2.4 226 ± 21 [0.95] 3.5 208 ± 19 3.8

5 7 704 ± 23 [0.90] 3.0 850 ± 43 [0.90] 2.5 654 ± 35 [0.95] 3.2 652 ± 32 [0.95] 3.2
10 10 2066 ± 119 [0.95] 1.8 2159 ± 58 1.8 2394 ± 52 [0.80] 1.6 1925 ± 44 2.0

fRast 2 50 524 ± 48 [0.95] 4.7 796 ± 68 [0.75] 3.1 569 ± 26 [0.35] 4.3 1365 ± 28 [0.10] 1.8
5 140 4037 ± 209 [0.60] 2.6 5265 ± 313 [0.55] 2.0 13685 ± 257 [0.10] 0.8 7910 ± 82 [0.10] 1.3

between 1.4 and 3 for lmm-CMA. On these functions, nlmm-CMA is significantly
more efficient. For the other tested functions fRast, fSchw and fSchw1/4 , nlmm-
CMA is marginally more efficient than the standard lmm-CMA. In Fig. 2 and in
Table 2 (highlighted rows), we evaluate the effect of increasing λ on nlmm-CMA
using the same setting as in Section 3.2. Using population sizes larger than the
default one, nlmm-CMA improves CMA-ES by a factor between 2.5 and 3.5 for
all tested functions fRosen, fSchw1/4 and fRast. Therefore, nlmm-CMA maintains
a significant speedup for λ larger than the default one contrary to lmm-CMA
which offers a speedup approaching to 1 for fRosen and fSchw1/4 and a decreasing
speedup (from 1.6 to 1.3) when λ increases (from 140 to 280) for fRast.

4.3 Impact of the Recombination Type

The choice of the recombination type has an important impact on the efficiency
of ES in general [10] and CMA-ES in particular [2,3]. In the previous section,
all the runs performed use the default weighted recombination type defined by
Eq. 3. In the new variant of lmm-CMA, the meta-model acceptance criterion does
not take into account the exact rank of each individual except the best one. By
modifying the meta-model acceptance criteria of lmm-CMA, a possible accepted
meta-model may be a meta-model that preserves the μ best individuals set and
the best individual but generates a ranking far from the “true” ranking, i.e., the
one based on the true objective function. We now compare nlmm-CMA using
weighted recombination where weights are defined in Eq. 3 and intermediate
recombination where weights are all equal to 1/μ: nlmm-CMAI . Results are
presented in Table 3. The algorithm nlmm-CMA outperforms nlmm-CMAI in
all cases suggesting that even if the exact ranking is not taken into account

410 Z. Bouzarkouna, A. Auger, and D.Y. Ding

for assessing the quality of the meta-model in nlmm-CMA , this ranking is not
random and has still an amount of information to guide CMA-ES.

4.4 Impact of Initial Parameters

In the tests presented so far, the initial parameters of the approximate ranking
procedure (ninit, nb) were initialized at the beginning of the optimization pro-
cess to (λ, max[1, (λ

10)]). Every generation g, the number of initial individuals
evaluated ninit is adapted (increased or decreased) depending on the meta-model
quality (Lines 21 and 22 in Fig 3). The number of evaluations performed every
generation is (ninit,g + nic,g × nb). We quantify now the impact of the initial
values of (ninit and nb) on the total cost of the optimization process. The al-
gorithm nlmm-CMA is compared to a similar version where initial parameters
are chosen as small as possible, i.e., ninit and nb are equal to 1. Moreover, we
consider two cases: (1) with update denoted nlmm-CMA1, i.e., where initial pa-
rameters are adapted depending on the iteration cycle number (Lines 21 and
22 in Fig 3), and (2) without update denoted nlmm-CMA2, i.e., parameters are
equal to 1 during the entire optimization process (omitting lines 21 and 22 in
Fig. 3). We note that in case (1), the number of evaluations for each generation
g is (ninit,g + nic,g × nb) where ninit,0 = 1 and nb = 1. In case (2), every gener-
ation, lmm-CMA evaluates (1 + nic,g) individuals. The results on different test
functions are summarized in Table 3.

On the unimodal functions fSchw, fSchw1/4 , setting ninit and nb as small as
possible in every generation, is marginally more efficient than the default def-
inition of initial parameters on small dimensions except for dimension n = 8
and λ = 10. On fRosen, nlmm-CMA2 is the most efficient compared to other
approaches, except for dimension n = 8 and λ = 10 which can be justified by a
higher number of unsuccessful runs compared to other approaches. On the mul-
timodal function fAck, modifying the initial parameter ninit does not have an
important impact on the speedup of lmm-CMA (between 1.5 and 4). However on
fRast, using a small initial ninit decreases considerably the probability of success
of the optimization, from 0.95 to between 0.35 and 0.10 for dimension n = 2 and
λ = 50, and from 0.60 to 0.10 for dimension n = 5 and λ = 140. These results
confirm the initial parameter choice suggested in [4].

5 Summary

In this work, we have investigated the performances of the lmm-CMA algorithm
coupling CMA-ES with local meta-models. On fRosen and fSchw1/4 , we have
shown that the speedup of lmm-CMA with respect to CMA-ES drops to one
when the population size λ increases. This phenomenon has been explained by
the too restrictive condition used to stop evaluating new points dedicated at
refining the meta-model, namely requiring that the exact ranking of the μ = λ/2
best solutions is preserved when evaluating a new solution on the exact objective
function. To tackle this problem, we have proposed to relax the condition to: the

Investigating the Local-Meta-Model CMA-ES for Large Population Sizes 411

set of μ best solutions is preserved and the best individual is preserved. The
resulting new variant, nlmm-CMA outperforms lmm-CMA on the test functions
investigated and the speedup with CMA-ES is between 1.5 and 7. Moreover,
contrary to lmm-CMA it maintains a significant speedup, between 2.5 and 4,
when increasing λ on fRosen, fSchw1/4 and fRast. The study of the impact of the
recombination weights has shown that the default weights of CMA-ES are more
appropriate than equal weights. The influence of two parameters, nb and ninit,
corresponding to the number of individuals evaluated respectively initially and
in each iteration cycle has been investigated. We have seen that setting those
parameters to 1 during the whole optimization process can marginally improve
the performances on uni-modal functions and some multimodal test functions.
However it increases the likelihood to be stuck in local minima for the Rastrigin
function suggesting that the default parameter of lmm-CMA are still a good
choice for nlmm-CMA.

Acknowledgments. The authors would like to thank Nikolaus Hansen for
insightful discussions. This work was partially funded by the French National
Research Agency (ANR) grant No. ANR-08-COSI-007.

References

1. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Computing 9(1), 3–12 (2005)

2. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

3. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test
functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós,
J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.)
PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

4. Kern, S., Hansen, N., Koumoutsakos, P.: Local meta-models for optimization using
evolution strategies. In: Parallel Problem Solving from Nature PPSN X, pp. 939–
948. Springer, Heidelberg (2006)

5. Runarsson, T.P.: Constrained evolutionary optimization by approximate ranking
and surrogate models. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-
Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P.
(eds.) PPSN 2004. LNCS, vol. 3242, pp. 401–410. Springer, Heidelberg (2004)

6. Jebalia, M., Auger, A., Hansen, N.: Log linear convergence and divergence of the
scale-invariant (1+1)-ES in noisy environments. Algorithmica (accepted, 2010)

7. Auger, A., Hansen, N.: Performance evaluation of an advanced local search evo-
lutionary algorithm. In: IEEE Congress on Evolutionary Computation, pp. 1777–
1784 (2005)

8. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2009: Experimental setup. Research Report RR-6828, INRIA (2009)

9. Runarsson, T.P.: Approximate evolution strategy using stochastic ranking. In:
IEEE Congress on Evolutionary Computation, pp. 745–752 (2006)

10. Arnold, D.V.: Optimal weighted recombination. In: Wright, A.H., Vose, M.D.,
De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 215–237.
Springer, Heidelberg (2005)

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 412–421, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Exploiting Evolution for an Adaptive Drift-Robust
Classifier in Chemical Sensing

Stefano Di Carlo1, Matteo Falasconi2, Ernesto Sánchez1, Alberto Scionti1,
Giovanni Squillero1, and Alberto Tonda1

1 Politecnico di Torino – Torino, Italy
2 Università di Brescia & SENSOR CNR-INFM– Brescia, Italy

Abstract. Gas chemical sensors are strongly affected by drift, i.e., changes in
sensors’ response with time, that may turn statistical models commonly used
for classification completely useless after a period of time. This paper presents
a new classifier that embeds an adaptive stage able to reduce drift effects. The
proposed system exploits a state-of-the-art evolutionary strategy to iteratively
tweak the coefficients of a linear transformation able to transparently transform
raw measures in order to mitigate the negative effects of the drift. The system
operates continuously. The optimal correction strategy is learnt without a-priori
models or other hypothesis on the behavior of physical-chemical sensors. Ex-
perimental results demonstrate the efficacy of the approach on a real problem.

Keywords: real-valued function optimization, parameter optimization, real-
world application, chemical sensors, and artificial olfaction.

1 Introduction

Chemical sensing is an intrinsically challenging task. Artificial olfaction [1], also
known as electronic nose, tries to mimic human olfaction by using arrays of gas
chemical sensors together with pattern recognition (PARC) techniques. The most
common class of sensors used for chemical sensing is metal oxide semiconductors
(MOX) [2]. When sensors come in contact with volatile compounds, the adsorption of
these elements on the sensor’s surface causes a physical change of the sensor itself,
and hence, a change of its electrical properties. Each sensor is potentially sensitive to
all volatile molecules in a specific way. The response of the sensor is recorded by its
electronic interface, and the corresponding electrical signal is then converted into a
digital value. Recorded data are finally elaborated and classified by PARC algorithms
(a brief overview of which is presented in Section 2.1) often based on statistical mod-
els [3]. The power and appropriateness to data of the PARC strategy determine the
final performance of the electronic nose. Yet, independently on that, chemical sensors
drift can ultimately invalidate some of the classification models.

Sensor drift is defined as the temporal shift of sensors’ response under constant envi-
ronmental (physical and chemical) conditions. Sensor drift is one of the most serious
impairments afflicting all kinds of sensors such as for instance pressure sensors [4], pH
sensors [5], conductivity sensors [6], as well as chemical sensors [7]. Sensor drift origi-
nates from unknown dynamic processes in the sensor device typically related to sensing

 Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing 413

material modifications. These modifications are usually caused by irreversible phenom-
ena such as poisoning or aging. Nowadays, the only effective counteraction to prevent
negative effects of drift is frequent sensor calibration. However, while this approach is
rather simple to implement for physical sensors where the quantity to be measured is
exactly known, chemical sensors pose a series of challenging problems. Indeed, in
chemical sensing, the choice of the calibrant strongly depends on the specific applica-
tion and, when the sensing device is composed of a number of cross-correlated sensors,
a univariate signal correction is not feasible.

Long-term drift produces dispersion in the patterns that may change the clusters
distribution in the data space. As a consequence, learnt classification boundaries may
turn completely useless after a given period of time. Methods for algorithmically cor-
recting, retraining or physically minimizing sensor drift are therefore highly requested
by any robust chemical sensing system.

Drift correction algorithms are not new in the field [1] (chapter 13). Notwithstand-
ing the first attempts to tackle this problem date back to early 90s, the study of drift is
still a challenging task for the chemical sensor community (see Section 2.2).

In this paper we propose a novel architecture for an evolutionary adaptive drift-
robust classifier (Section 3). A linear transformation is applied to the raw measures
read by the electronic nose. Such linear transformation is initially described by the
identity matrix, and slowly evolved to compensate drift effects in the classification
process. The evolutionary core is continuously active, monitoring the performance of
the classification and adjusting the matrix coefficients on each new measure. It makes
use of a covariance matrix adaptation evolution strategy (CMA-ES), perfectly suited
for solving difficult optimization problems in continuous domain. The output of the
classifier is used to calculate the fitness function. Compared to existing adaptive solu-
tions, the proposed approach is able to transparently adapt to changes in the sensors’
responses even when the number of available samples is not high and new classes of
elements are introduced in the classification process at different time frames. To
prove this we tested our approach on an experimental data set for detection and classi-
fication of chemical compounds by a gas sensor array (Section 4).

2 Background

2.1 Pattern Classification

Pattern recognition is a widely addressed topic in the literature [8]. Automatic recog-
nition, description, classification, and grouping of patterns are important problems in
a variety of engineering and scientific disciplines such as biology, psychology, medi-
cine, marketing, computer vision, artificial intelligence, remote sensing, and artificial
olfaction as well [3].

The primary goal of pattern recognition is supervised or unsupervised classifica-
tion. In supervised classification the dataset is normally composed of two sub-sets
of samples: an initial set called training set made of known samples used to train
the classifier, and a second group called test set composed of unknown samples to
classify.

414 S. Di Carlo et al.

After the signal pre-processing stage, the first critical step in the classification
process is feature extraction and/or selection. This phase involves several steps de-
signed to organize and reduce the data space dimensionality, and to avoid problems
associated with high-dimensional sparse datasets (course of dimensionality). During
the training phase, feature extraction/selection algorithms find the appropriate features
to represent the input patterns, and the classifier is trained to partition this resulting
feature space.

Dimensionality reduction techniques are also employed for data visualization in or-
der to have a preliminary insight of the multidimensional pattern distribution. Tech-
niques for visualizing and projecting multidimensional data, along with cluster analysis
methods, are also referred to as exploratory data analysis. The most used exploratory
analysis method is principal component analysis (PCA). PCA takes linear combinations
of initial variables to identify the directions of maximum variance of the data (called
principal components). Typically, only the first two or three components - exploring the
highest variance - are retained for visualization purposes, but this is generally enough to
understand how data are clustered, i.e., the position and shape of clusters.

Among the various frameworks in which pattern recognition has been traditionally
formulated, the statistical approach has been most intensively studied and used in
practice [9]. Under this framework several classification algorithms have been pro-
posed and extensively used for chemical sensing, such as: linear discriminant analysis
(LDA), k–nearest neighbors (KNN) [10], and more recently support vector machines
(SVM) [11] and random forests [12]. Neural networks (NNET) [13] and methods im-
ported from statistical learning theory also received special attention in the field of
artificial olfaction [1] (chapter 6).

2.2 Drift Compensation Approaches for Chemical Sensing

Several methods have been proposed to tackle the problem of drift compensation for
chemical sensing [1] (chapter 13). Current solutions fall into three categories: (a) use
of calibrants to return the classifier to its original state; (b) attune the classifier with
proper feature selection/extraction to reduce drift effects; (c) use of “adaptive” models
to real-time update the classifier.

Use of a single calibrant or a set of calibrants to retrain a classifier is perhaps the
only robust method for determining precise information regarding the degradation of
the classification model regardless of the degree of sensor drift [14]. It is also the only
method able to sustain a high degree of classification performance even in presence of
inconsistent sensor drift over an extremely long period of time. Nevertheless, calibra-
tion is the most time-intensive method for drift correction since it requires system re-
training. Hence, it should be used sparingly. Moreover, the calibrant selection must be
accurately chosen depending on the application. This leads to loss of generalization
and lack of standardization, which would be highly required by industrial systems.

Attempts to attune the classifier to specific features of interest have been used
in conjunction with both PCA [15] and independent components analysis (ICA)
[16] to determine which dimensions of the analyte space most highly correlate
with the differences between the analytes in the set. These presumably represent
the dimensions that are least noisy and/or are least affected by drift and therefore are
the only ones retained in constructing the classification model. Attuning methods can

 Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing 415

provide significant improvements in classification over a fixed time period. How-
ever, adding new analytes to the recognition library represents a major problem
since the previously rejected dimensions might be necessary to robustly identify
these new classes. Additionally, these methods contain no provisions for updating
the model, and thus may ultimately be invalidated by time evolving drift effects.

Adaptive models try to on-line adjust the classifier by taking into account pattern
changes due to drift effects. Neural networks, such as self-organizing maps (SOMs)
[17] or adaptive resonance theory (ART) networks [18], have been frequently used in
the past. Under such schemes, newly recognized data that match the stored analyte
fingerprints, i.e., processed measures used as input for the classifier, can be continu-
ously used to retrain the classifier. This technique has the advantage of simplicity be-
cause no recalibration is required. Yet, two main weaknesses can be identified. First,
a discontinuity in response between two consecutive exposures (regardless of the time
interval between the exposures) would immediately invalidate the classification
model and would prevent adaptation. Second, a key to obtain reliable results is to set
appropriate thresholds for choosing the winning neuron, and this typically requires a
high number of training samples owing to the complexity of the network topology.

3 Proposed Architecture

Figure 1 graphically represents the architecture exploited in this paper to implement a
drift-robust classification system for chemical sensing. The proposed approach cou-
ples a standard classifier with an adaptive mechanism able to compensate drift effects.
It is important to highlight that the classifier itself is not modified, and no additional
training is required.

The basic idea is to map the vector of raw measures associated to each sample ana-
lyzed by the electronic nose (Rm) with a new fingerprint used as input for the classi-
fier (Fp). Fp is obtained by applying a linear transformation represented by a square
matrix C to Rm (Fp = C × Rm).

The classifier receives the produced fingerprints and provides as output a partition
of the test set in a given number of classes. The performance of the full classification
system can be measured in terms of the percentage of fingerprints correctly classified.

The matrix C evolves while the system is operating with the goal of supporting the
classifier in compensating the drift effects. At the beginning C is initialized to the
identity matrix, hence, no modification is performed. Whenever a new sample is col-
lected and classified, an evolutionary optimizer slightly tweaks the matrix coefficients
in order to increase the robustness of the classification.

The evolutionary scheme is backed up by an adaptation manager in charge of de-
ciding whether to activate the evolutionary core that updates the matrix C depending
on the classification confidence delivered by the classifier for every fingerprint.

The resulting system is potentially able to compensate any possible drift with the
reasonable assumption that the drift should be a relatively slow phenomenon com-
pared to the sampling rate. This allows describing the disturbance as a continuous
function over a limited number of consecutive measures. Since parameters are
adapted seamlessly, the system is able to compensate disturbance up to quite relevant
magnitudes. Considering the drift as a slow phenomenon implies that the initial train-
ing data can be considered not affected by it.

416 S. Di Carlo et al.

Fig. 1. Main architecture of the adaptive drift-resistant classifier

As evolutionary optimizer we exploit a covariance matrix adaptation evolution
strategy. Briefly speaking, an evolution strategy (ES) is a stochastic, population-
based, iterative optimization method belonging to the class of evolutionary algo-
rithms, devised in the early 60s by Ingo Rechenberg and Hans-Paul Schwefel. An ES
represents an individual as a vector of real-valued numbers. Mutation is performed by
adding a normally distributed random value to each vector component. Generating the
offspring through mutation corresponds to a sampling in the solution space. The ES is
able to determine the optimal value of some of its parameters. Remarkably, the step
size, i.e., the standard deviation of the normal distribution used for sampling the muta-
tion, is usually self-adapted. The covariance matrix adaptation (CMA) is a method to
update the covariance matrix of the multivariate normal mutation distribution in the
ES. New candidate solutions are generated according to the mutation distribution.
Original ES implementations simulate the evolution at the level of species and do not
include any recombination operators, although later implementations often do.

The covariance matrix describes the pair-wise relationships between the variables
in the distribution. CMA-ES represents the latest breakthrough in the ES field [19].
Results reported in the literature demonstrate that it can easily tackle problems where
the fitness landscape presents discontinuities, sharp bends or ridges, noise, and local
optima.

In the presented approach, each time a fingerprint is classified with a confidence in
a range delimited by an upper-bound and a lower-bound threshold, the adaptation
manager enables the CMA-ES. The probability estimates produced by the classifier
for the predicted class can be exploited as a measure of the confidence of the classi-
fier in its prediction. This confidence is the fitness value of an individual for the
CMA-ES. The two thresholds allow identifying which fingerprints to use to evolve
the system, i.e., update the linear transformation C, in order to adapt to the drift modi-
fications. The lower threshold aims at discarding spurious fingerprints, i.e., finger-
prints whose classification confidence is too low and therefore do not provide reliable

 Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing 417

information for the given class, making the proposed framework resistant to spikes.
The upper threshold identifies fingerprints that are already corrected in a satisfactory
way by the current linear transformation and could not be further enhanced in a sensi-
ble way. Skipping these samples allows to reduce the computation effort by activating
the evolution only for samples where the effect of the drift becomes more visible.

In order to maximize the correction ability of the proposed architecture, the linear
transformation is computed considering the selected fingerprint and a group of K pre-
vious fingerprints. The current matrix C is applied to the current measure and to the K
previous raw samples. Thus, the evolution continues until the classification confi-
dence for the current fingerprint reaches the upper threshold, and the classification
confidence of the K previous ones is not decreased more than ε percent when using
the current matrix C.

The final linear transformation matrix is obtained as a linear combination between
the current linear transformation matrix and the new one obtained by the application
of the CMA-ES, as follows: Cn = Cn ⋅α + Cn−1 ⋅ (1−α) , where Cn and Cn-1 are respec-
tively the new and the current linear transformation matrices, and α is a parameter
modeling the inertia of the system when moving from the old to the new transforma-
tion. This limits the possibility of generating linear transformation matrices unable to
improve the classification process. Both ε and α are input parameters of the pro-
posed system with values ranging in the interval 0,1[].

4 Experimental Results and Discussion

The proposed approach has been validated on a real data set collected at SENSOR
Lab, an Italian research laboratory specialized in the development of chemical sensor
arrays (more information is available at http://sensor.ing.unibs.it/).

The data under consideration have been obtained using the EOS835 electronic
nose composed of 6 chemical MOX sensors (further information on sensors and
equipment can be found in the review paper [2] and its references). The main goal of
the performed experiments is to determine the capability of the EOS835 to identify
five pure organic vapors, namely: ethanol (1), water (2), acetaldehyde (3), acetone
(4), ethyl acetate (5). These are common chemical compounds to be detected in real-
world applicative scenarios such as food industry, industrial processes, and biomedi-
cal field.

Five different measurement sessions were performed during a period of time of
about one month. The elapsed time, though not very long, is enough to obtain data
affected by a certain amount of drift.

Different classes have been introduced during the different measurement sessions,
a common practice in real world experiments: classes 1 and 2 are measured since the
beginning, class 3 is first introduced during the second session (one week later), while
classes 4 and 5 appear only during the third session (ten days after the beginning of
the experiment).

The number of samples contained in the data set is high (545 measurements) if
compared to datasets reported in the literature. It must be noticed that performing
measurements with arrays of chemical sensors is a time consuming task that limits the
amount of samples that can be produced.

418 S. Di Carlo et al.

There is not a perfect balance among the number of measurements belonging to
every class, with a clear predominance of classes 1, 2 and 3 over classes 4 and 5. This
perfectly respects real situations, and additionally increases the difficulty of properly
compensating the sensor drift.

PCA plot in figure 2 clearly shows the presence of sensor drift in the considered
data set, i.e. shift of samples in a direction over the time. Measures of the test set tend
to drift toward a direction that is perfectly visible on the first two principal compo-
nents. This phenomenon leads to an overlapping of the different classes and, conse-
quently, to a loss of classification performance as time goes on.

Fig. 2. PCA plot for the test set. The effect of the drift is visible as a shift of the samples over
the time towards the upper-left corner.

The classifier used in the experience is a linear discriminant analysis (LDA) clas-
sification algorithm implemented using the R scripting language [20], while the adap-
tation block is implemented in C and PERL.

The training set for the classifier is composed of the first 20 measurements of each
class, while the remaining 445 samples have been used as test set. The considered
training set is quite small compared to common experimental setups that tend to use
about one third of the samples to build the prediction model. Nevertheless, this allows
to work with a reasonable number of test samples that can be used to better test the
evolutionary approach. In order to better understand the characteristics of the consid-
ered data model, a preliminary classification of the test set performed with the LDA
classifier without drift compensation has been performed. The classifier by itself per-
forms relatively well, with about 90% of the test set correctly classified. Only 43
samples are incorrectly classified. Figure 3-A summarizes this result with a confusion
matrix, i.e., a matrix that shows how many samples belonging to a class A have been
correctly assigned to class A or misclassified w.r.t. true labels. The figure highlights

 Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing 419

how critical samples belonging to class 1, due to the drift, tend to overlap with classes
3 and 4.

The proposed correction system has been applied considering the following pa-
rameters, set after 100 experiments aimed at tuning the framework: α = 0.99, ε = 1,
the lower and upper bounds respectively set to 0.65 and 0.99, and K = 40. Small dif-
ferences in the adopted parameters haven’t led to better performance for the proposed
system.

The CMA-ES does not require parameter tuning for its application: finding good
strategy parameters is considered as part of the algorithm design. In fact, the choice of
strategy internal parameters is not left to the user, with the exception of the population
size λ = 100 and the initial standard deviation set to 10-2 because of the order of mag-
nitude of the measures in the experiments.

(A) (B)

Fig. 3. (A) Confusion matrix for the not corrected LDA classifier and (B) overall results for the
robust classifier

In order to experimentally validate our approach, 150 repetitions of the classifica-
tion experiments were executed using the previously presented setup (figure 3-B).
The proposed approach has improved the original performance of the classifier in
90% of the runs while none of the executions worsened the initial classification. In
27% of the runs all 445 raw measures belonging to the test set have been correctly
classified. 63% of the runs produced classification results with an average perform-
ance of about 97% approaching the theoretical performance of 100% computed for
the LDA algorithm performing cross validation on the training set with 20 iterations
and 5% of samples left out at each iteration. The proposed approach can be used for a
real-time measurement correction since the time required to obtain a good adjustment
(up to 20 mins) is much smaller compared with drift time scale. Moreover it is com-
parable with the sensors’ recovery time.

5 Conclusions

This paper presented an adaptive drift-robust classification system based on an evolu-
tionary strategy. To date, this is the first attempt to exploit evolutionary algorithms
capabilities to approach the drift problem in chemical sensing.

420 S. Di Carlo et al.

The obtained results on a real dataset are encouraging. The classification perform-
ances increase to a level close to the theoretical upper bound for the chosen classifica-
tion algorithm. Yet, while the results are encouraging in terms of improvement of the
classification rate, the main drawback of the proposed approach is that it is not able to
produce a clear representation of the drift and actually remove it from the row meas-
ures. The parameters found by the CMA-ES slightly shift the raw measures in a direc-
tion usually orthogonal to the drift, obtaining a better separation of the different
classes that allows the LDA classifier to discriminate more accurately among them.
This is mainly due to the fact that the evolutionary core of our system does not in-
clude any model of the drift that could be exploited to drive the evolution toward a
real elimination of the drift effect on the row measures. We are currently working to-
wards the inclusion of several heuristics and considerations on spatial measures in the
fitness values, to allow the CMA-ES to both increase the classification rate and per-
form drift correction. This includes considering different models for the drift effect on
chemical sensors.

Comparison between artificially data sets and real data sets will be used to validate
our framework.

Acknowledgements

We would like to thank Isabella Concina for technical assistance during experimental
measurements.

References

[1] Pearce, T.C., Shiffman, S.S., Nagle, H.T., Gardner, J.W.: Handbook of machine olfac-
tion. Wiley-VHC Ed., Weinheim (2003)

[2] Pardo, M., Sberveglieri, G.: Electronic olfactory systems based on metal oxide semicon-
ductor sensor arrays. MRS Bulletin 29(10), 703–708 (2004)

[3] Gutierrez-Osuna, R.: Pattern Analysis for Machine Olfaction: A Review, June 2002,
vol. 2, pp. 189–202 (2002)

[4] Polster, A., Fabian, M., Villinger, H.: Effective resolution and drift of Paroscientific pres-
sure sensors derived from long-term seafloor measurements. Geochem. Geophys. Geo-
syst. 10(Q08008) (2009)

[5] Chen, D.Y., Chan, P.K.: An Intelligent ISFET Sensory System With Temperature and
Drift Compensation for Long-Term Monitoring. IEEE Sensor Journal 8(11-12), 1948–
1959 (2008)

[6] Owens, W.B., Wong, A.P.S.: An improved calibration method for the drift of the conduc-
tivity sensor on autonomous CTD profiling floats by theta–S climatology. Deep-Sea Re-
search Part I-Oceanographic Research Papers 56(3), 450–457 (2009)

[7] Aliwell, S.R., et al.: Ozone sensors based on WO3: a model for sensor drift and a meas-
urement correction method. Measurement Science & Technology 12(6), 684–690 (2001)

[8] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience,
Hoboken (2000)

[9] Jain, A.K., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22, 4–37 (2000)

 Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing 421

[10] Dasarathy, B.V. (ed.): Nearest neighbor (NN) norms: Nn pattern classification
[11] Pardo, M., Sberveglieri, G.: Classification of electronic nose data with support vector

machines. Sensors and Actuators B: Chemical, 730–737, June 29 (2005)
[12] Pardo, M., Sberveglieri, G.: Random forests and nearest shrunken centroids for the classi-

fication of sensor array data. Sensors And Actuators B-Chemical 131, 93–99 (2008)
[13] Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Univ. Press, Oxford

(1995)
[14] Sisk, B.C., Lewis, N.S.: Comparison of analytical methods and calibration methods for

correction of detector response drift in arrays of carbon black-polymer composite vapor
detector. Sensors and Actuators B: Chemical, 249–268, January 24 (2005)

[15] Artursson, T., et al.: Drift correction for gas sensors using multivariate methods. Journal
of Chemometrics 14, 711–723 (1999); Special Issue: Proceedings of the SSC6, HiT/TF,
Norway (August 1999)

[16] Di Natale, C., Martinelli, E., D’Amico, A.: Counteraction of environmental disturbances
of electronic nose data by independent component analysis. Sensors and actuators. B,
Chemical 82(2-3), 158–165 (2002)

[17] Marco, S., Ortega, A., Pardo, A., Samitier, J.: Gas Identification with Tin Oxide Sensor
Array and Self-Organizing Maps: Adaptive Correction of Sensor Drifts. IEEE Transac-
tions on Instrumentation and Measurement 47, 316–321 (1998)

[18] Vlachos, D.S., Fragoulis, D.K., Avaritsiotis, J.N.: An adaptive neural network topology
for degradation compensation of thin film tin oxide gas sensors. Sensors and Actuators B:
Chemical, 223–228, December 15 (1997)

[19] Hansen, N.: The CMA evolution strategy: a comparing review, towards a new evolution-
ary computation. In: Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Advances
on estimation of distribution algorithms, pp. 75–102. Springer, Heidelberg (2006)

[20] Kuhn, K.: Building Predictive Models in R Using the caret Package. Journal of Statistical
Software 28(5), 1–26 (2008)

Automatically Modeling Hybrid Evolutionary
Algorithms from Past Executions

Santiago Muelas, José-Maŕıa Peña, and Antonio LaTorre

DATSI, Facultad de Informática
Universidad Politécnica de Madrid, Spain
{smuelas,jmpena,atorre}@fi.upm.es

Abstract. The selection of the most appropriate Evolutionary
Algorithm for a given optimization problem is a difficult task. Hybrid
Evolutionary Algorithms are a promising alternative to deal with this
problem. By means of the combination of different heuristic optimiza-
tion approaches, it is possible to profit from the benefits of the best
approach, avoiding the limitations of the others. Nowadays, there is an
active research in the design of dynamic or adaptive hybrid algorithms.
However, little research has been done in the automatic learning of the
best hybridization strategy. This paper proposes a mechanism to learn a
strategy based on the analysis of the results from past executions. The
proposed algorithm has been evaluated on a well-known benchmark on
continuous optimization. The obtained results suggest that the proposed
approach is able to learn very promising hybridization strategies.

1 Introduction

The selection of the most appropriate Evolutionary Algorithm (EA) for a given
optimization problem is a difficult task, sometimes considered an optimization
problem itself [2].

Even though the No Free Lunch Theorem asserts that “any two algorithms
are equivalent when their performance is averaged across all possible problems”,
in practice, and being constrained to certain types of problems, the performance
of some particular algorithms is better than others. In most of the cases, the
selection of the most appropriate algorithm is carried out by the execution of
several alternative algorithms (advised by the literature or the own experience)
and then choosing the one reporting the best results.

Supported by these arguments, hybrid evolutionary techniques are a promis-
ing alternative to deal with these situations. By combining different heuristic
optimization approaches, it is possible to profit from the benefits of the best
approach, avoiding the limitations of the others. These hybrid algorithms also
hold the hypothesis that the combination of several techniques can outperform
the sole usage of its composing algorithms. This hypothesis is based on the idea
that the comparative performance of the algorithms is not the same along the
whole optimization process. Moreover, it is possible to identify different best
performing algorithms for different phases of the optimization process.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 422–431, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automatically Modeling Hybrid Evolutionary Algorithms 423

Nowadays, there is an active research in the design of dynamic or adaptive
hybrid algorithms. However, this paper introduces a different perspective, barely
explored in the literature. This contribution proposes a mechanism to learn the
best hybrid strategy from the analysis of the results from past executions. The
idea of using past executions to induce the most appropriate hybridization tech-
nique is particularly useful in those scenarios in which an optimization problem is
solved multiple times. These multiple executions could include slightly different
conditions that actually have an influence in the position of the optimal value,
but do not change the main characteristics of the fitness landscape in which this
optimization process searches. Many industrial problems have this characteristic
in which the fitness function is mainly the same, but the particular conditions
or other input parameters are changed on each execution, e.g., the optimization
of engineering structures evaluated under different stress conditions.

A rather näıve solution to this approach is the design of an alternating strat-
egy, based on the generation number or the fitness values. Nevertheless, this idea
does not consider that reaching a given fitness value or a particular generation
number is achieved via a stochastic process. This process does not ensure that
the same generations or the same fitness values reached by an algorithm actually
represent the same situation of the search process in two different executions.
Any successful strategy would need not only this general parameters, but also
other statistical or introspective information of the evolving population, in order
to identify a situation similar to one previously learned.

This paper presents a new hybrid Evolutionary Algorithm that learns the best
sequence of techniques according not only to their performance but also to other
statistical/informative parameters of the evolved population. This new algorithm
has been evaluated using a well-known benchmark of continuous optimization
functions and its results have been validated using non-parametric tests.

The rest of the paper is organized as follows: Section 2 presents an overview of
several hybrid algorithms. Section 3 details the proposed algorithm. In Section 4
the experimental scenario is described in detail. Section 5 presents and comments
on the results obtained and lists the most relevant facts from this analysis.
Finally, Section 6 contains the concluding remarks obtained from this work.

2 Related Work

In this section, some of the most relevant work on High-level relay hybrid (HRH)
algorithms will be reviewed. The HRH terminology was introduced in [7], one of
the first attempts to define a complete taxonomy of hybrid metaheuristics. This
taxonomy is a combination of a hierarchical and a flat classification structured
into two levels. The first level defines a hierarchical classification in order to
reduce the total number of classes, whereas the second level proposes a flat
classification, in which the classes that define an algorithm may be chosen in
an arbitrary order. From this taxonomy, four basic hybridization strategies can
be derived: (a) LRH (Low-level relay hybrid): One metaheuristic is embedded
into a single-solution metaheuristic. (b) HRH (High-level relay hybrid): Two

424 S. Muelas, J.-M. Peña, and A. LaTorre

metaheuristics are executed in sequence. (c) LTH (Low-level teamwork hybrid):
One metaheuristic is embedded into a population-based metaheuristic. (d) HTH
(High-level teamwork hybrid): Two metaheuristics are executed in parallel. For
this work, we have focused on the HRH group, the one the algorithm proposed
in this paper belongs to.

There has been an intense research in HRH models in the last years combining
different types of metaheuristics. In the following paragraphs some of the most
recent and representative approaches will be reviewed.

The DE algorithm is one of the evolutionary algorithms that has been recently
hybridized following the HRH strategy. For example, it has been combined with
Evolutionary Programming (EP) in [9]. The EP algorithm is executed for each
trial vector created by the DE algorithm which is worse than its associated target
vector. DE has also been combined with PSO [3]. In this case, the PSO algorithm
is executed as the main algorithm but, from time to time, the DE algorithm is
launched to move particles from already explored areas to new positions. The
particles preserve their velocity when they are moved by the DE in order to
minimize the perturbation in the general behavior of the PSO algorithm.

There have also been some studies that have tried to use adaptive learning for
combining the algorithms. In [6], the authors propose two adaptive strategies, one
heuristic and one stochastic, to adapt the participation of several local searches
when combined with a Genetic Agorithm (GA). In both strategies, there is
a learning phase in which the performance of each local search is stored and
used in later generations in order to select the local search to apply. In [1,10]
several local searches are combined with a metaheuristic algorithm using also
an adaptive scheme. The application of each algorithm is based on a population
diversity measure which varies among the studies. When applied to the DE
algorithm, this strategy prevents the stagnation problems of the DE by reducing
the excessive difference of the best individual and the rest of the population.

Finally, as far as the authors are concerned, no other study has ever tried
to focus on doing a post-execution learning of the best patterns for combining
the algorithms of a HRH algorithm. Therefore, this contribution proposes a new
approach, based on this idea, to try to exploit the potential synergies between
different search strategies.

3 Contribution

In this study, we propose the hypothesis that it is possible, based on the behavior
of previous executions, to learn a hybridization strategy for the algorithms of
an HRH algorithm in order to select the most appropiate algorithm for each
iteration of the execution.

For this task, a new methodology for executing HRH algorithms has been de-
veloped. Briefly, the methodology “observes” the execution of a HRH algorithm
and stores some information about each state of the execution along with the
information (for that state) of the performance of the algorithms involved in the
hybrid algorithm. With this information, the methodology is able to construct a

Automatically Modeling Hybrid Evolutionary Algorithms 425

model and use it as a hybridization strategy of a new algorithm which will try in
future executions to select the most appropiate algorithm for each state found.

The main steps of this proposal are depicted in Figures 1.a and 1.b. As pre-
viously mentioned, the methodology starts the execution of a HRH algorithm
which, as all hybrid algorithms, has a hybridization strategy that determines the
combination of the algorithms involved in the hybrid. Let Pi be the population of
iteration i and the active algorithm the one selected by the hybridization strat-
egy for executing at that iteration. First, the active algorithm is executed over
Pi for M evaluations (period of evaluations) generating the population P active

i+M .
In order to compare its performance, the remaining algorithms are also executed
with the same starting population Pi, generating a new population P j

i+M for
each j algorithm. The algorithm that produces the individual with the highest
score from P active

i+M and all P j
i+M populations is granted a win. Since the involved

algorithms are stochastic, this process needs to be repeated several times in or-
der to obtain a more reliable measure of the performance. After N repetitions
starting with the same population Pi, the methodology generates a data record
which stores the information of the state and the number of wins of each of the
involved algorithms. The state of an iteration is determined by some extracted
measures from both the population and the hybridization strategy. The execu-
tion continues with the population of the active algorithm of the last repetition
and continues this process until the stop criterion is satisfied.

After a number of executions, a broad data set of data records, which store
the performance of the algorithms over different states, is obtained. Then, the
records are preprocessed, filtering out those which have the same number of wins
for all the algorithms and adding a class attribute which contains the algorithm
with the highest number of wins. The resultant data set is used as input for
a machine learning algorithm (c4.5 in this study), which returns a set of rules
that determine the best algorithm to apply at each state. This model is used to
construct the proposed smartHRH algorithm which, at each iteration, analyzes
the state and selects (according to the model) the most appropriate algorithm.

Since the proposed methodology can be applied to any HRH algorithm, the
described process can also be successively applied to the smartHRH algorithm
to refine the learned model. To infer the model of each version of smartHRH, the
previous data sets of data records are also considered. Each data set participates
with the same number of records, therefore, the maximum number which are
sampled is determined by the smallest data set.

Although the proposed process can be started with any HRH algorithm, an
HRH algorithm which tries to select the best combination of algorithms has
been used as the initial algorithm. This algorithm, called baseHRH, uses the
information of the number of wins described earlier in order to select the best
algorithm for a specific state. It follows the same steps of Figure 1.a but continues
the execution with the population of the last attempt of the algorithm that
obtained the greatest number of wins. This way, the initial set of records used
for learning come from a potentially good sequence of algorithms.

426 S. Muelas, J.-M. Peña, and A. LaTorre

Pi

Pactive
i+M

Pj
i+M

Each algorithm is executed for M evaluations

Then the max scores are
compared. The one with

the maximum score gets a
win

algactive
nwins 2

algi
nwins 1

Repeat N times After N attempts,
a new data record

is created with
several measures
and the n# of wins
of the algorithms

Finally, the execution
continues with the

last population of the
active algorithm

alg1 nwinsAge

1 80.1

Score class

alg1

alg2 nwins

1

...alg1 nwinsAge

1 80.1

Score class

alg1

alg2 nwins

1

...alg1 nwinsAge

1 80.1

Score class

alg1

alg2 nwins

1

...

 ...alg1 nwinsAge

1 80.1

Score

HRH
Algorithm

On each execution the
algorithm generates a

set of records

Exec #1

Exec #2

Exec #nexecs

Machine
Learning
Algorithm

Model
smartHRH

Model

 ...alg1 nwinsAge

10 20.8

Score

 ...alg1 nwinsAge

2 50.2

Score

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score ...alg2 nwins

1

alg1 nwinsAge

1 80.1

Score class

alg1

alg2 nwins

1

...

The records with
the same nwins per

algorithm are
filtered

The class attribute
is generated based

on the nwins
difference

(a)

(b)

+1

Pactive
i+M

Age alg1 #evals alg2 #evals Score
2 1200 500.23

Alg1nwins Alg2nwins
0.23

...
2

Fig. 1. Generation of the data records and learning procedure

4 Experimentation

For this experimentation, the benchmark from the workshop on Evolutionary
Algorithms and other Metaheuristics for Continuous Optimization Problems -
A Scalability Test held at the ISDA 2009 Conference has been considered. This
benchmark defines 11 continuous optimization functions. The first 6 functions
were originally proposed for the ‘Special Session and Competition on Large Scale
Global Optimization” held at the CEC 2008 Congress [8]. The other 5 functions

Automatically Modeling Hybrid Evolutionary Algorithms 427

Table 1. Functions

Id Name
f1 Shifted Sphere Function
f2 Shifted Schwefel’s Problem 2.21
f3 Shifted Rosenbrock’s Function
f4 Shifted Rastrigin’s Function
f5 Shifted Griewank’s Function
f6 Shifted Ackley’s Function
f7 Schwefel’s Problem 2.22
f8 Schwefel’s Problem 1.2
f9 Extended f10

f10 Bohachevsky
f11 Schaffer

Table 2. DE Parameter Values

Parameter Values
Population size 25
CR 0.5
F 0.5
Crossover Op. Exponential
Selection Op. Tournament 2

have been specially proposed for the Workshop of the ISDA 2009 Conference.
These functions, presented in Table 1, have different degrees of difficulty and
can scale to any dimension. Detailed information about the selected benchmark
can be found at the web page of the organizers of the workshop1.

The results reported in this section are the aggregation of 25 independent ex-
ecutions on 200 dimensional functions. The performance criterion is the distance
(error) between the best individual found and the global optimum in terms of
fitness value. Following the benchmark recommendations, the maximum number
of Fitness Evaluations has been fixed to 5000 × D, where D is the number of
dimensions. Due to the constraints of the framework employed, the maximum
reachable error without loosing precision is 1E−14.

The algorithms that were used for the new HRH algorithm are two which com-
bination obtained very competitive results on the workshop of the ISDA 2009
Conference [5]. These two are the DE algorithm and the first of the local searches
of the MTS algorithm [11]. The MTS algorithm was designed for multi-objetive
problems but it has also obtained very good results with large scale optimization
problems. In fact, it was the best algorithm of the CEC’08 competition [8]. The
DE algorithm is one of the recent algorithms that, due to its results, has quickly
gained popularity on continuous optimization. In the last IEEE competitions on
continuous optimization, a DE-based algorithm has always reached one of the best
three positions. Nevertheless, DE is subject to stagnation problems which could
heavily influence the convergence speed an the robustness of the algorithm [4].
Therefore, the idea of combining them is to assist the explorative power of DE by
an exploitative local search which has proven to obtain some of the best results.
The reason for selecting only the first of the three local searches of the MTS is
that, in a previous study by the authors on the same set of functions, this local
search was the one that achieved the best results. Besides, we have slightly modi-
fied this local search so that, at each iteration, it only explores a subset of randomly

1 http://sci2s.ugr.es/programacion/workshop/Scalability.html

428 S. Muelas, J.-M. Peña, and A. LaTorre

selected dimensions (75% of the total). This modification has achieved a similar
performance with a 25% less of evaluations on a preliminary analysis allowing the
hybrid algorithm to spend more evaluations in the DE algorithm. The parameters
used for the DE are the same ones of a hybrid algorithm presented at the ISDA
2009 Conference [5] and are presented in Table 2. Any measure could be used for
specifying a state but, for the experiments, the following were selected: maximum
age, number of evaluations, total and average number of evaluations per algo-
rithm, number of activations of each algorithm and the ration of one against the
other, number of evaluations of the best individual without improvement and
the best score.

Finally, the period of evaluations used to compare the performance of both
algorithms has been set to 1250 evaluations, a value that obtained good results
in a set of previous tests.

For analyzing the results, the following algorithms were executed over the
benchmark: the DE algorithm, the first local search of the MTS algorithms (LS1),
a randomHRH algorithm which, at each iteration, selects an algorithm based on
a binomial distribution of p = 1/2, the baseHRH algorithm used for obtaining
the first model described in Section 3 and the best smartHRH algorithm. Up to
eight versions of smartHRH algorithms were obtained per function. From those
eight, the one with the best average score was selected. Then, the algorithm was
executed again using the same model of this best execution in order to be fair
with the remaining algorithms.

5 Analysis of the Results

Table 3 presents the results of the average score of the 25 executions. The best
values for each function are highlighted in the table. It can be seen that the
smartHRH algorithm obtains the best results in 9 out of 11 functions, reaching
the global optimum2 in 8 functions. It can also be seen that the smartHRH algo-
rithm outperforms the other HRH algorithms (random and base) in most of the
functions. In order to obtain a better comparison, each algorithm was compared
against each other using the non-parametric Wilcoxon signed-rank test. Each
cell Di,j in Table 4 displays the functions for which the results of algorithm i
were signicantly better than those of algorithm j with a p− value < 0.05. Here,
the smartHRH algorithm is also the clear winner obtaining better results than
any other algorithm in at least four functions whereas it only looses against ran-
domHRH in f2 and against DE and randomHRH in f3. In these two functions,
the DE algorithm is better than the LS1 algorithm at only certain stages of the
evolution and only when allowed to execute for more evaluations than the ones
used for the comparison of the algorithms (1250 in this case). If selected at these
stages, the DE algorithm is able to reach better regions of the search space that
could solve premature convergence problems or accelerate the convergence to
the global optimum. Since the initial data does not provide any information to
predict the long-term benefits of selecting an algorithm (due to the length of
2 As mentioned earlier with a precission of 1E−14.

Automatically Modeling Hybrid Evolutionary Algorithms 429

Table 3. Average Score Values

Function DE LS1 baseHRH randomHRH smartHRH
f1 6.78E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 7.71E+01 5.99E+01 1.58E+01 5.34E+00 1.34E+01
f3 2.46E+02 6.98E+03 8.25E+03 1.26E+03 7.63E+03
f4 1.33E+00 0.00E+00 4.78E−01 1.60E+01 0.00E+00

f5 1.72E−01 3.25E−03 4.63E−03 9.86E−04 0.00E+00

f6 9.77E−02 1.00E−12 1.00E−12 1.00E−12 0.00E+00

f7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f8 1.97E+05 4.78E+00 4.54E+00 8.30E+00 4.52E+00

f9 0.00E+00 5.23E+02 3.97E−06 8.16E+01 0.00E+00

f10 0.00E+00 0.00E+00 0.00E+00 1.06E−08 0.00E+00

f11 0.00E+00 4.91E+02 8.41E−06 7.89E+01 0.00E+00

Table 4. Comparison between algorithms

algorithm baseHRH smartHRH DE LS1 randomHRH
baseHRH 1,2,4,8 2,9,11 4,8,9,10,11
smartHR 5,6,9,11 1,2,4,8 2,5,6,9,11 4,5,6,8,9,10,11
DE 3,5,6,9,11 3 3,5,6,9,11 3,4,5,6,9,10,11
LS1 1,2,4,8 4,8
randomHRH 2,3,5,6,8 2,3 1,2 2,3,5,9,11

the period of evaluations), no record of the DE algorithm is generated and no
transition to this algorithm is made in the smartHRH algorithm.

In the remaining functions, the smartHRH algorithm is able to detect the
best strategy for obtaining the best results. For some functions, the smartHRH
decides to execute only one of the algorithms (the best one for that function)
whereas for others it combines them in order to obtain more stable results or
to reach better solutions. For example, in f5, all the algorithms reach the global
optimum in some of their executions, whereas the smartHRH algorithm is the
only one to achieve this goal in all of its executions. In f6, the combination of
both algorithms allow the smartHRH algorithm to reach the global optimum
in all of its executions whereas none of the other algorithms is able to reach it
in any of its executions. An example of the evolution of the score of a single
execution of the algorithms over the f6 function is displayed in Figure 2. The
DE algorithm is not displayed because it quickly converges to poor regions of
the search space. It can be seen that the smartHRH algorithm has discovered a
beneficial pattern (executing the DE algorithm after several evaluations of the
LS1 algorithm) which allows it to reach the global optimum.

An example of the rules generated by the algorithm for functions f5 and f6
is presented in Table 5. As mentioned before, for f6, the algorithm extracts a
simple pattern based on the number of evaluations which allows it to reach the
global optimum in all the executions. In f5, the evolution of the algorithms is not

430 S. Muelas, J.-M. Peña, and A. LaTorre

Fig. 2. Comparison of the evolution of the score

Table 5. Rules obtained for functions f5 and f6

f5
conditions algorithm support precision
if #activationsde <= 9 and
agemax <= 1899 and
avgnevalsls1 <= 68126 ls1 600 0.99
else if avgnevalsls1 <= 37662 de 169 0.93
else if #activationsls1 <= 2 and
scoremax <= 0.99 de 64 0.64
else ls1 65 0.83
f6
conditions algorithm support precission
if #evaluations <= 88925 ls1 809 1.0
else de 358 0.99

always the same and has different patterns. For this reason, the induced model
has more rules of higher complexity.

6 Conclusions

In this work, a new hybrid algorithm that learns the best sequence of algorithms
has been presented. This learning process uses the information of several param-
eters of the population, the hybridization and the performance of the algorithms
in order to determine the future hybridization strategy. For the experimentation,
the benchmark from the workshop on continuous optimization of the ISDA 2009
Conference has been considered. The results have been analyzed and compared
with statistical tests. The analysis has proven that the new algorithm is able

Automatically Modeling Hybrid Evolutionary Algorithms 431

to obtain the best overall results, reaching the global optimum in 9 out of 11
functions. This is a first study for validating that the proposed approach can
learn very promising hybridization strategies for an HRH algorithm over a set
of well-known functions. It must be taken into account that the objective of this
study is not to compete against the best algorithms on continuous optimization,
since it would not be fair due to the extra number of evaluations used in the
learning phase and the per function tuning of the proposed algorithm. As future
work we plan to apply this approach to scenarios in which a slightly different op-
timization problem needs to be solved multiple times. Therefore, the smartHRH
algorithm could be trained with several instances of the problem so the resultant
algorithm could obtain better results on unseen instances.

Acknowledgments. The authors thankfully acknowledge the computer
resources, technical expertise and assistance provided by the Centro de Supercom-
putación y Visualización de Madrid (CeSViMa) and the Spanish Supercomputing
Network. This work was supported by the Madrid Regional Education Ministry
and the European Social Fund and financed by the Spanish Ministry of Science
TIN2007- 67148.

References

1. Caponio, A., Neri, F., Tirronen, V.: Super-fit control adaptation in memetic differ-
ential evolution frameworks. Soft Computing - A Fusion of Foundations, Method-
ologies and Applications 13(8), 811–831 (2009)

2. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics 16, 122–128 (1986)

3. Hendtlass, T.: A combined swarm differential evolution algorithm for optimiza-
tion problems. In: Monostori, L., Váncza, J., Ali, M. (eds.) IEA/AIE 2001. LNCS
(LNAI), vol. 2070, pp. 11–18. Springer, Heidelberg (2001)

4. Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In:
Proc. of Mendel 2000, pp. 76–83 (2000)

5. Muelas, S., LaTorre, A., Peña, J.M.: A memetic differential evolution algorithm
for continuous optimization. In: Proc. of ISDA 2009 (November 2009)

6. Ong, Y.-S., Keane, A.: Meta-lamarckian learning in memetic algorithms. IEEE
Transactions on Evolutionary Computation 8(2), 99–110 (2004)

7. Talbi, E.-G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5),
541–564 (2002)

8. Tang, K., Yao, X., Suganthan, P., MacNish, C., Chen, Y., Chen, C., Yang, Z.:
Benchmark functions for the cec 2008 special session and competition on large
scale global optimization. Technical report, USTC (2007)

9. Thangaraj, R., Pant, M., Abraham, A., Badr, Y.: Hybrid evolutionary algorithm
for solving global optimization problems. In: Corchado, E., Wu, X., Oja, E., Her-
rero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 310–318. Springer,
Heidelberg (2009)

10. Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An enhanced
memetic differential evolution in filter design for defect detection in paper pro-
duction. Evolutionary Computation 16(4), 529–555 (2008)

11. Tseng, L., Chen, C.: Multiple trajectory search for large scale global optimization.
In: Proc. of IEEE CEC 2008, June 2008, pp. 3052–3059 (2008)

Gaussian Adaptation Revisited –
An Entropic View on Covariance Matrix Adaptation

Christian L. Müller and Ivo F. Sbalzarini

Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics,
ETH Zurich, CH-8092 Zurich, Switzerland

christian.mueller@inf.ethz.ch, ivos@ethz.ch
http://www.mosaic.ethz.ch

Abstract. We revisit Gaussian Adaptation (GaA), a black-box optimizer for dis-
crete and continuous problems that has been developed in the late 1960’s. This
largely neglected search heuristic shares several interesting features with the well-
known Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and with
Simulated Annealing (SA). GaA samples single candidate solutions from a mul-
tivariate normal distribution and continuously adapts its first and second moments
(mean and covariance) such as to maximize the entropy of the search distribution.
Sample-point selection is controlled by a monotonically decreasing acceptance
threshold, reminiscent of the cooling schedule in SA. We describe the theoretical
foundations of GaA and analyze some key features of this algorithm. We empir-
ically show that GaA converges log-linearly on the sphere function and analyze
its behavior on selected non-convex test functions.

Keywords: Gaussian Adaptation, Entropy, Covariance Matrix Adaptation,
Evolution Strategy, Black-Box Optimization.

1 Introduction

High-dimensional, non-convex, and noisy optimization problems are commonplace in
many areas of science and engineering. In many cases, the applied search algorithms
have to operate in a black-box scenario, where only zeroth-order information about the
objective is available. Such problems can usually only be tackled by stochastic search
heuristics, such as Simulated Annealing (SA) [1] or Evolutionary Algorithms (EA).
For non-convex, real-valued objective functions, Evolution Strategies (ES), a subclass
of EA’s, are nowadays the preferred optimization paradigm. A particularly successful
example is the Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) [2].

In the present paper we revisit Gaussian Adaptation (GaA), a stochastic design-
centering and optimization method for discrete and continuous problems that has been
introduced and developed since the late 1960s by Gregor Kjellström [3,4]. Although
the method shares several interesting features with CMA-ES and with Simulated An-
nealing, it has been largely neglected in the optimization literature. It is the scope of
this work to reintegrate GaA into the field of optimization, as it builds on theoretical
concepts that might prove valuable also for other search heuristics. We hereby focus on
GaA for continuous sampling and optimization.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 432–441, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Gaussian Adaptation Revisited – An Entropic View on Covariance Matrix Adaptation 433

Gaussian Adaptation is a stochastic black-box optimizer that works on discontinu-
ous and noisy functions, where gradients or higher-order derivatives may not exist or
are not available. During exploration of the search space, GaA samples single candi-
date solutions from a multivariate normal distribution and iteratively updates the first
and second moments of the sampling distribution. While the selection mechanism and
moment adaptation of CMA-ES are intended to increase the likelihood of sampling bet-
ter candidate solutions, GaA adapts the moments such as to maximize the entropy of the
search distribution under the constraint that acceptable search points are found with a
predefined, fixed hitting (success) probability. If minimization of an objective function
is considered, sample-point selection (acceptance) is controlled by a monotonically de-
creasing, fitness-dependent threshold, reminiscent of the cooling schedule in SA. This
ensures that the algorithm focuses on regions with better fitness values.

In order to facilitate understanding of the GaA algorithm and to highlight the key
differences in the mean and covariance matrix adaptation strategies, we briefly review
several variants of CMA-ES in the following section. We then describe the theoretical
foundations of GaA, the algorithmic flow, and the strategy parameter settings. Section 3
illustrates the convergence of GaA on the sphere function and its dependence on search
space dimensionality. In order to demonstrate the efficiency of the covariance matrix
update, we also report convergence results on Rosenbrock’s function. We conclude
Section 3 by sketching the maximum entropy behavior of GaA using a test function
introduced by Kjellström. Section 4 discusses the obtained results and concludes this
work by formulating some theoretical challenges around GaA.

2 Covariance Matrix Adaptation and Gaussian Adaptation

This section summarizes the key concepts of ES with Covariance Matrix Adaptation.
Equipped with these preliminaries we then outline the canonical Gaussian Adaption al-
gorithm as developed by Kjellström and co-workers and propose a general parametriza-
tion, constraint handling, and initialization protocol.

2.1 Evolution Strategies with Covariance Matrix Adaptation

Standard CMA-ES [2], [5] is a (μ/μw,λ)-ES that uses weighted intermediate recombina-
tion, cumulative step size adaptation, and a combination of rank-μ update and rank-one
update for the covariance adaptation [6]. At each iteration of the algorithm, the λ mem-
bers of the candidate population are sampled from a multivariate normal distributionN
with mean m ∈ Rn and covariance C ∈ Rn×n. The sampling radius is controlled by
the overall standard deviation (step size) σ. Let x(g)

k the kth individual at generation g.
The new individuals at generation g + 1 are sampled as:

x(g+1)
k ∼m(g) + σ(g)N

(
0,C(g)

)
k = 1, . . . , λ . (1)

Selection is done by ranking the λ sampled points in order of ascending fitness and
retaining the μ best. This procedure renders the algorithm invariant to strictly mono-
tonic transformation of the objective function. The mean of the sampling distribution

434 C.L. Müller and I.F. Sbalzarini

given in Eq. 1 is updated using weighted intermediate recombination of the selected
points. The covariance matrix for the next generation is adapted using a combination of
rank-μ and rank-one update (see [5] for details). The fundamental objective behind the
covariance adaptation scheme is to increase the likelihood of finding good samples in
the next generation. In addition, self-adaptation of the step size σ enables the algorithm
to explore the search space at different scales. Standard settings for the strategy param-
eters of CMA-ES have been derived from theoretical and empirical studies (see [6] for
a comprehensive summary). The restart variant of CMA-ES with iteratively increasing
population size (IPOP-CMA-ES) [7] can be considered a parameter-free CMA-ES.

The (1+1)-variant of CMA-ES establishes a direct link to GaA by combining the
classical (1+1)-ES with a rank-one update of the covariance matrix [8]. In the next
subsection, we show that Gaussian Adaptation has been designed in a similar spirit, yet
grounding its theoretical justification on a different foundation.

2.2 Gaussian Adaptation

Gaussian Adaptation has been developed in the context of electrical network design.
There, the key goal is to find an optimal setting of design parameters x ∈ Rn, e.g., nom-
inal values of resistances and capacities in an analog network, that fulfill two require-
ments. First, the parameter settings satisfy the specifications imposed by the engineer,
i.e. some (real-valued) objective (or criterion) function f(x) applied to the network out-
put, and second, the nominal values should be robust with respect to intrinsic random
variations of the components during operation of the electrical device. Kjellström re-
alized that with increasing network complexity classical optimizers such as conjugate
gradients perform poorly, especially when analytical gradients are not readily available
or when the objective function is multimodal. He suggested to search the space of valid
parameter settings with stochastic methods that only rely on evaluations of the objective
function. Starting from an exploration method that can be considered an adaptive ran-
dom walk through design space [3], he refined his algorithm to what he called Gaussian
Adaptation [4].

Before turning to the problem of optimization, Kjellström considered the following
simpler situation: Assume that the engineer of an electrical circuit can vary the set of de-
sign parameters and can decide whether these settings fulfill a specified criterion or not.
How can one describe the set A ⊂ Rn of acceptable solutions in a general and com-
pact manner? Based on Shannon’s information theory, Kjellström derived that under
the assumption of finite mean m and covariance C of the samples, a Gaussian distribu-
tion may be used to characterize A [4]. Although not specifically stated in the original
publication, Kjellström applied the maximum entropy principle, developed by Jaynes
in 1957 [9]. This principle is a type of statistical inference that gives the least biased
estimate possible on the given information. In the case of given mean and covariance
information, the Gaussian distribution maximizes the entropy H, and hence is the pre-
ferred choice to describe the region of acceptable points. The entropy of a multivariate
Gaussian distribution is:

H(N) = log
(√

(2πe)n det(C)
)

, (2)

Gaussian Adaptation Revisited – An Entropic View on Covariance Matrix Adaptation 435

Fig. 1. Illustration of Gaussian Adaptation. The white, non-convex region defines the acceptable
region A in a 2D design-parameter space x. Both the left (dark) and right (light gray) dots and
ellipsoids represent the means and covariances of two Gaussian distributions with the same hitting
probability P . GaA moves away from the boundary toward the center and adapts the distribution
to the shape of A.

where C is the covariance matrix. In order to get the most informative characterization
of the region A, Kjellström envisioned an iterative sampling strategy with a Gaussian
distribution that satisfies the following criteria: (i) The probability of finding a feasible
design parameter set should be fixed to a predefined value P < 1, and (ii) the spread of
the samples quantified by their entropy should be maximized. As Eq. 2 shows, this can
be achieved by maximizing the determinant of the covariance matrix. In the situation
where the parameters have to fulfill a predefined static criterion, the iterative sampler
should push the mean of the distribution toward the center of the feasible design space.
Simultaneously, it should adapt the orientation and scale of the covariance matrix to
the shape of A under the constraint of the fixed hitting probability. The final mean can,
e.g., be used as the nominal design parameter set. Fig. 1 illustrates this process, which
is called “design centering” or “design tolerancing” in electrical engineering.

When the criterion function f(x) yields real values, the sampler can be turned into a
minimizer by introducing a fitness acceptance threshold cT that is monotonically low-
ered until some convergence criteria are met. A similar idea has later also been em-
ployed in the popular Simulated Annealing algorithm [1].

The GaA Algorithm. In order to realize an iterative procedure that works both on
design-tolerancing and optimization problems, Kjellström proposed the Gaussian Adap-
tation method. The process starts by setting the mean m(0) of a multivariate Gaussian
to an initial point x(0) ∈ A. The covariance C(g) is decomposed as follows:

C(g) =
(
r ·Q(g)

)(
r ·Q(g)

)T

= r2
(
Q(g)

)(
Q(g)

)T

, (3)

where r is the scalar step size and Q(g) is the normalized square root of C(g). Like
in CMA-ES, Q(g) is found by eigendecomposition of the covariance matrix C(g). The
initial Q(0) is set to the identity matrix I. A point in iteration g + 1 is sampled from a
Gaussian distribution according to:

x(g+1) = m(g) + r(g)Q(g)η(g) , (4)

436 C.L. Müller and I.F. Sbalzarini

where η(g) ∼ N
(
0, I
)

. The new sample is evaluated by the criterion functionf(x(g+1)).

Only if the sample fulfills the specification, i.e. x(g+1) ∈ A in the design-tolerancing
scenario or f(x(g+1)) < c

(g)
T in the optimization scenario, the following adaptation rules

are applied: The step size r is increased according to r(g+1) = ss · r(g), where ss > 1
is called the expansion factor. The mean is updated via

m(g+1) =
(

1− 1
Nm

)
m(g) +

1
Nm

x(g+1) . (5)

Nm is a weighting factor that controls how fast the mean is shifted. The covariance
matrix is updated through:

C(g+1) =
(

1− 1
NC

)
C(g) +

1
NC

(
x(g+1) − x(g)

)(
x(g+1) − x(g)

)T

. (6)

NC weights the influence of the accepted sample point on the covariance adaptation.
Kjellström introduced an alternative update rule that is mathematically equivalent to
Eq. 6, but numerically more robust. It acts directly on the square root Q(g) of the co-
variance matrix:

ΔC(g+1) =
(

1− 1
NC

)
I(g) +

1
NC

(η(g))(η(g))T , ΔQ(g+1) = (ΔC(g+1))
1
2 . (7)

Q(g+1) is then updated as Q(g+1) = Q(g)ΔQ(g+1). In order to decouple the volume of
the covariance (controlled by r(g+1)) and its orientation, Q(g+1) is normalized such that
det(Q(g+1)) = 1. As in CMA-ES, the full adaptation of the covariance matrix gives
GaA the appealing property of being invariant to arbitrary rotations of the problem.

In case x(g+1) is not accepted at the current iteration, only the step size is adapted
by r(g+1) = sf · r(g), where sf < 1 is the contraction factor.

A crucial ingredient for optimization using GaA is the adaptation of the acceptance
threshold cT. Kjellström suggested the following rule:

cT
(g+1) =

(
1− 1

NT

)
cT

(g) +
1

NT
f(x(g+1)) , (8)

where NT controls the weighting between the old threshold and the objective value of
the accepted sample. It can readily be seen that this fitness-dependent threshold update
leaves the algorithm invariant to linear transformations of the objective function.

Strategy Parameters in GaA. Gaussian Adaptation comprises strategy parameters that
influence its exploration behavior. We outline a standard parameter setting that is ex-
pected to work for a large class of design centering and optimization problems. We first
consider the hitting (acceptance) probability P . Kjellström investigated the information-
theoretic optimality of P for a random walk in a simplex region [3] and for Gaussian
Adaptation in general regions [4]. In both cases, he concluded that the efficiency of the
process and P are related as E ∝ −P log P , leading to P = 1

e ≈ 0.3679, where e is
Euler’s number. A proof is provided in [10]. Maintaining the desired hitting probability

Gaussian Adaptation Revisited – An Entropic View on Covariance Matrix Adaptation 437

corresponds to leaving the volume of the distribution, det(C), constant under stationary
conditions. As det(C) = r2n det(QQT), the expansion and contraction factors ss and
sf increase or decrease the volume by a factor of ss2n and sf2n, respectively. After S
successful and F failed samples, a necessary condition for constant volume thus is:

S∏
i=1

(ss)2n
F∏

i=1

(sf)2n = 1 . (9)

Using P = S
S+F and introducing a small β > 0, one can verify that ss = 1+β(1−P)

and sf = 1−βP satisfies Eq. 9 to first order. The scalar rate β is coupled to the strategy
parameters NC and NT, but not to Nm. As Nm influences the update of m ∈ Rn, it is
reasonable to set Nm ∝ n. In this study we propose Nm = en. A similar reasoning
is employed for NC and NT. NC influences the update of C ∈ Rn×n that contains
n2 entries. Hence, NC should be proportional to n2. Kjellström suggests using NC =
(n+1)2

log(n+1) as a standard value, and coupling NT = NC
2 and β = 1

NC
[11].

It is noteworthy that the simple (1+1)-ES is a limit case of GaA. Setting Nm =
NT = 1 moves GaA’s mean directly to the accepted sample and cT to the fitness of the
accepted sample. For NC → ∞, the covariance stays completely isotropic and GaA
becomes equivalent to the (1+1)-ES with a P th-success rule. Keeping NC finite results
in an algorithm that is almost equivalent to the (1+1)-CMA-ES [8]. Slight differences,
however, remain in deciding when to update the covariance and how to adapt the step
size. Moreover, (1+1)-CMA-ES does not normalize the volume of the covariance ma-
trix. Replacing GaA’s acceptance rule by a probability based on Boltzmann-weighted
fitness differences, and setting NC → ∞, makes GaA equivalent to SA.

Constrained Handling and Initialization. In the context of box-constrained opti-
mization, where the boundaries are explicitly given by x ∈ [A,B] ⊂ Rn, several
boundary handling techniques can be employed. We suggest projecting the components
of samples that violate the constraints onto the boundary along the coordinate axes,
and evaluating the projected samples. In the case of box constraints, the initial mean
m(0) is drawn from a uniform distribution in the box. The initial step size is set to
r(0) = 1/e (maxB − minA), similar to the global search setting of the initial σ in
CMA-ES [7]. The initial threshold c

(0)
T is set to f(m(0)).

3 Numerical Examples

We show the convergence of GaA on quadratic functions by considering the sphere
function. The covariance matrix adaptation mechanism is then demonstrated on Rosen-
brock’s function. Finally, we sketch the entropic behavior of GaA on a multimodal
function introduced by Kjellström [12].

3.1 Gaussian Adaptation on the Sphere Function

We consider the sphere function as a prototypical quadratic function in order to study
convergence of the GaA algorithm. It is defined as:

438 C.L. Müller and I.F. Sbalzarini

fSphere(x) =
n∑

i=1

x2
i . (10)

The global minimum is at the origin 0 with fSphere(0) = 0. For practical purposes,
search is restricted to x ∈ [−5, 5]n. In order to study the dimension-dependence of
GaA’s convergence properties, we use the standard strategy parameter values, con-
straint handling, and initialization. 10 repetitions are conducted for dimensions n =
2, 5, 10, 20, 30, 40, 50. Fig. 2 summarizes the results. We observe the expected log-
linear convergence of GaA on the sphere function. Nevertheless, we show the results
in a log-log plot in order to better discriminate the trajectories for different dimensions
(Fig. 2a). The mean number of function evaluations (FES) needed to achieve an accu-
racy of 10−9 grows slightly faster than quadratically with n (Fig. 2b). The measured
(empirical) hitting probability P̂ approaches the optimal P = 1/e with increasing di-
mension. A least-squares fit of a power law yields P̂ (n) = −0.2077n−0.1831 + 0.4265
(Inset in Fig. 2b).

Fig. 2. (a) Log-log plot of the current best fitness value f(x(g)
best) vs. the number of function eval-

uations (FES) on the sphere function for n = 2, 5, 10, 20, 30, 40, 50 (from left to right). The
dashed line shows the target fitness (stopping criterion). (b) Average number of FES needed to
reach the target fitness vs. dimensioniality n. The dashed curve is a perfect fit of the power law
FES(n) = 47.11n2.138 + 857.8. The inset shows the mean and standard deviation of the empir-
ical hitting probability P̂ vs. n. The dashed line represents the desired optimal P = 1/e.

3.2 Gaussian Adaptation on Rosenbrock’s Function

We study the behavior of the covariance matrix adaptation scheme on Rosenbrock’s
valley function, defined as:

fRosen(x) =
n−1∑
i=1

(
100(xi+1 − x2

i)
2 + (xi − 1)2

)
. (11)

The global minimum is at 1 with fRosen(1) = 0. Search is constrained to x ∈ [−2, 2]n.
Rosenbrock’s function is multimodal for n > 3, and it exhibits an interesting topol-
ogy. On a global length scale (‖xi‖ > 1), the first summand dominates and attracts

Gaussian Adaptation Revisited – An Entropic View on Covariance Matrix Adaptation 439

Fig. 3. Typical trajectory of GaA on Rosenbrock’s function for n = 20. (a) 2D Contour plot with
the sub-covariances along the first two dimensions (black ellipses) shown every 1000 iterations.
(b) Evolution of the components of x

(g)
best vs. the number of FES (= iterations) for the same run.

most search heuristics toward the origin. On smaller length scales (‖xi‖ 1), how-
ever, the second term dominates and forms a bent parabolic valley that leads from
the origin to the global minimum 1. Hence, it becomes favorable to constantly re-
orient the covariance matrix along the valley. We perform 10 optimization runs with
the same protocol for n = 2, 5, 10, 20, 30, 40. GaA finds the global minimum in all
cases. Similar to CMA-ES, GaA’s search on Rosenbrock can be divided into three
phases: (1) log-linear convergence toward the origin; (2) a plateau region for covari-
ance adjustment along the valley; (3) log-linear convergence near the global minimum.
Fig. 3 shows a typical trajectory of GaA for n = 20. The same qualitative behavior
is observed also in all other dimensions. After rapidly approaching the origin, GaA
efficiently adapts its covariance to follow the valley. The objective variables migrate,
in order of increasing dimension, toward the global minimum. The mean number of
function evaluations needed to achieve an accuracy of 10−9 follows the power law
FES(n) = 60.13n2.462 + 2807, with offset, prefactor, and exponent being larger than
on the sphere function. P̂ , however, converges toward the optimal value faster than on
the sphere function: P̂ (n) = −0.1405n−0.917 + 0.3582.

3.3 Gaussian Adaptation on Kjellström’s Function

We consider the highly multimodal test function fKjell as introduced by Kjellström [12].
This function allows demonstrating under which circumstances a maximum-entropy
method such as GaA is effective and efficient. It is defined as:

fKjell(x) =
n∏

i=1

(1 + h(xi)), h(xi) = 0.01
5∑

j=1

[cos(jxi + bj)] , (12)

with b = [b1, . . . , b5] = [1.982, 5.720, 1.621, 0.823, 3.222] and x ∈ [0, 2π]n. The n-
dimensional fKjell is the Cartesian product of n 1D functions. We thus first consider
fKjell in 1D, i.e. x = x1, as depicted in Fig. 4a. In 1D, fKjell has 5 minima. The global
minimum is at xmin ≈ 2.3486 with fKjell(xmin) ≈ 0.9692. The global maximum xmax

440 C.L. Müller and I.F. Sbalzarini

Fig. 4. (a) The multimodal function fKjell in 1D. The global minimum xmin is contained in a
locally convex region (dashed bar) that belongs to the larger (i.e., maximum entropy) sub-region
of the space (solid gray bar). The global maximum xmax separates this region from the right part
of the space. (b) Typical evolution of GaA’s mean m(g) on fKjell in n = 25. After a global search
phase (dotted bar), GaA first adapts a high-entropy distribtion to the broad region (solid gray bar)
before it converges to the locally convex global-minimum region (dashed bar).

(located at a value slightly larger than x = π) divides the search space into two parts.
The region x < xmax covers a bit more than half of the space and therefore yields
higher entropy for an adapted Gaussian distribution (solid gray bar in Fig. 4a). More-
over, it contains, on average, lower function values than the other region, including the
global minimum. In n dimensions, fKjell is a separable multimodal function with 5n

minima. The global minimum is within a region that allows for hierarchical adaptation
of Gaussians with high entropy and includes, on average, low objective function values.
Despite the staggering number of minima, the function can be solved efficiently. The
standard setting for NC (and the coupled parameters NT and β), however, results in
premature convergence of the search in one of the 525 ≈ 3 · 1017 minima (success rate
<10%). A simple parameter search on NC shows that the setting NC = 10n2 is better
on fKjell with respect to success rate. It leads to a 100% success rate up to n = 50.
Fig. 4b depicts the trace of the mean m(g) for a typical run in n = 25 dimensions with
optimized NC. In the first phase (dotted interval), GaA explores the entire search space
(dotted interval in Fig. 4a). In the second phase (solid interval), it adjusts a high-entropy
distribution to the center of the broad region that contains low fitness values (solid in-
terval in Fig. 4a). Finally, GaA proceeds to the region that contains the global minimum
with function value fKjell(xmin) ≈ 0.969225 ≈ 0.4570 (dashed interval).

4 Conclusions and Discussion

We have revisited Gaussian Adaptation (GaA), a stochastic design-centering and opti-
mization method that dates back to the 1960’s. We have summarized GaA’s key con-
cepts, including the maximum entropy principle and the adaptation of the covariance
matrix. Furthermore, we have proposed a standard parameter setting, as well as con-
straint handling and initialization procedures for GaA. We have empirically shown the
convergence of GaA on the sphere function and the covariance adaptation mechanism

Gaussian Adaptation Revisited – An Entropic View on Covariance Matrix Adaptation 441

on Rosenbrock’s function. Furthermore, we have re-introduced a highly multimodal
function, referred to as Kjellström’s function. This function can efficiently be solved
by GaA despite the exponentially growing number of minima. This is due to the func-
tion’s global topology, where the global minimum is located in a region that is suited to
maximum-entropy adaptation. Future work will involve a more comprehensive study of
GaA’s convergence behavior, including a full evaluation on the CEC 2005 benchmark
test suite and a convergence proof for quadratic functions. Due to GaA’s theoretical
foundation on the maximum entropy principle, a framework relating it to modern sam-
pling strategies, such as Adaptive Metropolis or Slice Samplers, is also conceivable.

Acknowledgments. We thank Gregor Kjellström for valuable correspondence, and the
TRSH 2009 participants and the anonymous reviewers for their constructive remarks.

References

1. Kirkpatrick, S., Gelatt, C., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

2. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaption in Evolution Strate-
gies. Evolutionary Computation 9(2), 159–195 (2001)

3. Kjellström, G.: Network Optimization by Random Variation of Component Values. Ericsson
Technics 25(3), 133–151 (1969)

4. Kjellström, G., Taxen, L.: Stochastic Optimization in System Design. IEEE Trans. Circ. and
Syst. 28(7) (July 1981)

5. Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test Func-
tions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria,
J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242,
pp. 282–291. Springer, Heidelberg (2004)

6. Hansen, N.: The CMA Evolution Strategy: A Tutorial (2007)
7. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In:

Proc. of IEEE Congress on Evolutionary Computation (CEC 2005), vol. 2, pp. 1769–1776
(2005)

8. Igel, C., Suttorp, T., Hansen, N.: A computational efficient covariance matrix update and a
(1+1)-CMA for evolution strategies. In: GECCO 2006: Proceedings of the 8th annual con-
ference on Genetic and evolutionary computation, pp. 453–460. ACM, New York (2006)

9. Jaynes, E.T.: Information Theory and Statistical Mechanics. Phys. Rev. 106(4), 620–630
(1957)

10. Kjellström, G.: On the Efficiency of Gaussian Adaptation. J. Optim. Theory Appl. 71(3)
(December 1991)

11. Kjellström, G.: Personal communication
12. Kjellström, G., Taxen, L.: Gaussian Adaptation, an evolution-based efficient global opti-

mizer. In: Comp. Appl. Math., pp. 267–276. Elsevier Science, Amsterdam (1992)

Parallel Genetic Algorithm on the
CUDA Architecture

Petr Pospichal, Jiri Jaros, and Josef Schwarz

Brno University of Technology, Faculty of Information Technology, Department of
Computer Systems, Bozetechova 2, 612 66 Brno, Czech Republic

Tel.: +420-54114 1364; Fax: +420-541141270
{ipospichal,jarosjir,schwarz}@fit.vutbr.cz

Abstract. This paper deals with the mapping of the parallel island-
based genetic algorithm with unidirectional ring migrations to nVidia
CUDA software model. The proposed mapping is tested using Rosen-
brock’s, Griewank’s and Michalewicz’s benchmark functions. The ob-
tained results indicate that our approach leads to speedups up to seven
thousand times higher compared to one CPU thread while maintaining a
reasonable results quality. This clearly shows that GPUs have a potential
for acceleration of GAs and allow to solve much complex tasks.

1 Introduction

Genetic Algorithms (GA) [3] are powerful, domain-independent search tech-
niques inspired by Darwinian theory. In general, GAs employ selection, mutation,
and crossover to generate new search points in a state space. A genetic algorithm
starts with a set of individuals that forms a population of the algorithm. Usually,
the initial population is generated randomly using a uniform distribution. On
every iteration of the algorithm, each individual is evaluated using the fitness
function and the termination function is invoked to determine whether the ter-
mination criteria have been satisfied. The algorithm ends if acceptable solutions
have been found or the computational resources have been spent. Otherwise, the
individuals in the population are manipulated by applying different evolutionary
operators such as mutation and crossover. Individuals from the previous popula-
tion are called parents while those created by applying evolutionary operators to
the parents are called offsprings. The consecutive process of replacement forms
a new population for the next generation.

Although GAs are very effective in solving many practical problems, their ex-
ecution time can become a limiting factor for some huge problems, because a lot
of candidate solutions must be evaluated. Fortunately, the most time-consuming
fitness evaluations can be performed independently for each individual in the
population using various types of parallelization.

There are different ways of exploiting parallelism in GAs: master-slave models,
fine-grained models, island models, and hybrid models [6].

One of the most promising variant is an island model. Island models can fully
explore the computing power of course grain parallel computers. The population

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 442–451, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Genetic Algorithm on the CUDA Architecture 443

is divided into a few subpopulations, and each of them evolves separately on
different processor. Island populations are free to converge toward different sub-
optima. The migration operator is supposed to mix good features that emerge
locally in the different subpopulations.

Nowadays modern Graphic Processing Units (GPU), although originally de-
signed for real-time 3D rendering can be seen as very fast highly parallel general-
purpose systems [4,5] and hence, employed with advantage to accelerate GAs.
The second section introduces the main features of nVidia GPU platform. Sec-
tion 3 describes the mapping of parallel GA onto nVidia CUDA architecture
taking into account restrictions of data-parallel processing. Experimental results
are presented and discussed in section 4. Section 5 concludes the paper.

2 General Purpose Computation on GPU

Driven by ever increasing requirements from the video game industry, GPUs have
evolved into very powerful and flexible processors, while their price remained in
the range of consumer market. They now offer floating-point calculation much
faster than today’s CPU and, beyond graphics applications; they are very well
suited to address general problems that can be expressed as data-parallel com-
putations (i.e. the same code is executed on many different data elements).

Moreover, several general purpose high-level languages for GPUs have become
available such as CUDA [7] and OpenCL [8] and thus developers do not need
any more to master the extra complexity of graphics programming APIs when
they design non graphics applications [9].

Modern graphics cards are in fact very powerful massively parallel computers
that have (among others) one main drawback: all the elementary processors
on the card are organised into larger multi-processors. They have to execute the
same instruction at the same time but on different data (SIMD model, for Single
Instruction Multiple Data).

GAs need to run an identical evaluation function on different individuals (that
can be considered as different data), meaning that this is exactly what GPUs
have been designed to deal with. The most basic idea that comes to mind when
one wants to parallelize an evolutionary algorithm is to run the evolution engine
in a sequential way on some kind of master CPU (potentially the host computer
CPU), and when a new generation of offsprings have been created, get them
all to evaluate rapidly on a massively parallel computer. This approach has
been examined in [12]. The proposed evolutionary algorithm reaches the speedup
about 100. But, the bottleneck can be seen in slow data transfers from host
memory to GPU and back, especially for small transactions [7].

Another way, how to parallelize GA is to move the whole algorithm on GPU.
However, very few researchers so far have gone this way. They usually used Cg
language [10,11] which does not allow access to some GPU features (i.e. man-
ual thread and block control). A parallel genetic algorithm targeted to numeri-
cal optimization has been published in [13]. Unfortunately, this implementation
reached only small speedups between 1.16 and 5.30 depending on population
size. Several interesting publication can be also found in [9].

444 P. Pospichal, J. Jaros, and J. Schwarz

We would like to show, that the movement of entire genetic algorithm can
be accomplished in a straightforward way. Moreover, excluding the system bus
from the execution, much higher speedups could be achieved.

3 GPU-Based Genetic Algorithm

We have chosen CUDA (Compute Unified Device Architecture) [7] framework
to implement our GA on GPU. This toolkit promises best achieved speedups on
GPU so far and vast community of developers. CUDA can be performed on any
nVidia graphics card from GeForce 8 generation on both Linux and Windows
platform. Natural parallelism of computation on GPU is expressed by a few
compiler directives added to the well known C programming language.

As mentioned earlier, nVidia GPUs consist of multiprocessors capable to per-
form tasks in parallel. Threads running in these units are very lightweight and
can be synchronized using barriers so that data consistency is maintained. This
can be done with very low impact on the performance in a multiprocessor, but
not between multiprocessors. This limitation forces us to evolve islands either
completely independent or perform migrations between them asynchronously.

The memory attached to graphics cards is divided into two levels — main
memory and on-chip memory. Main memory has a big capacity (hundreds of
MB) and holds a complete set of data as well as user programs. It also acts
as an entry/output point during communication with CPU. Unfortunately, big
capacity is outweighed with high latency. On the other hand, on-chip memory
is very fast, but has very limited size. Apart from per-thread local registers, on-
chip memory contains particularly useful per-multiprocessor shared segments.
This 16KB array acts as a user managed L1 cache. The size of on-chip mem-
ory is a strongly limiting factor for designing efficient GA, but existing CUDA
applications greatly benefit there.

In order to summarize earlier paragraphs, our primary concern during design-
ing GA accelerated by GPU is to create its efficient mapping to CUDA software
model with a special focus on massive parallelism, usage of shared memory within
multiprocessors and avoiding the system bus bottleneck.

Fig. 1 shows the GA mapping to CUDA software model. We assume an island
based GA with the migration along an unidirectional ring. Every individual
is controlled by a single CUDA thread. The local populations are stored in
shared on-chip memory on particular GPU multiprocessors (CUDA blocks). This
ensures both computationally intensive execution and massive parallelism needed
for GPU to reach its full potential. Our implementation also utilizes a uniform
and Gaussian fast random number generators described in [2].

The proposed algorithm begins with the input population initialization on
the CPU side. Then, chromosomes and GA parameters are transferred to the
GPU main memory using the system bus. Next, the CUDA kernel performing
genetic algorithm on GPU is launched. Depending on kernel parameters, the in-
put population is distributed to several blocks (islands) of threads (individuals).
All threads on each island read their chromosomes from the main memory to the
fast shared (on-chip) memory within a multiprocessor. From this point, shared

Parallel Genetic Algorithm on the CUDA Architecture 445

Fig. 1. Mapping of the genetic algorithm to CUDA software model

memories maintain local island populations. The process of evolution then pro-
ceeds for a certain number of generations in isolation, whereas, the islands as
well as individuals are evolved on the graphics card in parallel. Each generation
consists of fitness function evaluation and application of the selection, crossover
and mutation (see section 3.1). The operators are separated by CUDA block
barriers with zero overhead [7] so that data consistency is ensured.

In order to mix up suitable genetic material from isolated islands, the mi-
gration (see section 3.2) is employed. Because migration requires an inter-island
communication, slower main memory has to be used for this process. Moreover,
since CUDA blocks (islands) cannot be synchronized easily without a significant
performance loss, the migration is done asynchronously (it does not wait for the
neighbours to complete the predefined number of generations). This is unaccept-
able for common applications, where data consistency is required, but it works
well for stochastic method like GA.

The algorithm iterates until a terminating condition is met (currently the
maximum number of generations is set). Finally, every thread writes its evolved
chromosome back to the main memory from where it will be read by CPU
through the bus.

3.1 Implementation of Genetic Operators

Tournament selection and arithmetic crossover are tightly connected, as it is
evident from Fig. 2. Limited shared memory is thereby used efficiently.

446 P. Pospichal, J. Jaros, and J. Schwarz

Fig. 2. Scheme of tournament selection with crossover

Threads (individuals) are grouped into pairs using shared variables and barri-
ers so that crossover can be performed in parallel for the whole island population.
First, each thread from a pair randomly selects one parent to crossover and it
compares the fitness of its own individual using. Then, the index of the better
one is written to the shared memory (shared array 1) to notify the other thread
in the pair of a more suitable partner to crossover. Next, the parallel uniform
random numbers generation is performed in the whole island and the results
are written to the shared array 2. Pairs of threads then look up their common
random number in this array and compare it with the crossover probability to
decide whether perform the crossover or not. This task consumes the first half of
the shared array 2. The second half is exploited during the arithmetic crossover
as aggregation weights:

O1 = a · P1 + (1 − a) · P2 (1)
O2 = (1− a) · P1 + a · P2 (2)

where O1 and O2 represent offsprings, P1 and P2 represent parents and a denotes
the aggregation weight. This approach wastes the selection of individuals in
the case that the crossover is not finally made, but it is from 0.1 to 2% faster
(depending on island population size) due to SIMD GPU optimization.

The Gaussian mutation and fitness evaluation are performed in parallel for
each thread (see Fig. 1). Finally, the newly generated offsprings replace the
parents and the evolutionary cycle is repeated. The elitism is not ensured as
crossover may destroy the best chromosome in the island population.

Parallel Genetic Algorithm on the CUDA Architecture 447

3.2 Migration between Islands

Migration is illustrated in Fig. 3. The islands are interconnected by an unidirec-
tional ring thus an island can only accept individuals from one neighbour. The
exchange is done asynchronously using the GPU main memory. The number of
migrated individuals is determined by the parameter M . First, the local island
population is sorted according to its fitness using Bitonic-Merge sort [1]. Next,
M best individuals are written to a part of the main memory belonging to the
left neighbour while M worst individuals are overwritten by migrants from a
part of the main memory belonging to the right neighbour. Both sorting and
migrations are done in parallel for all individuals.

The experimental results show that the migration can significantly improve
the convergence to the best solutions in the search space, see table 2.

Fig. 3. Scheme of migrations between islands

4 Results

Achievable speedups and solution quality of the proposed GA were examined
using Griewank’s, Michalewicz’s and Rosenbrock’s artificial benchmark functions
that are often used for GA analysis [15]. CPU version of GA is a single-thread
program implemented using well known GAlib library [14].

4.1 Achieved Performance

The speedup of our implementation was investigated using intel Core i7 920
processor and several nVidia consumer-level graphics cards: 8800 GTX (16 mul-
tiprocessors / 128 cores), GTX 285 (30 multiprocessors / 240 cores) and GTX
260-SP216 (27 multiprocessors / 216 cores).

The speedup of GPU against CPU were investigated on two dimensional in-
stances of the benchmark functions with mutation probability 5%, crossover rate
70%, no migration and terminating condition of 100 generations. Built-in CUDA
timer functions were used to measure GPU kernel execution time [7].

448 P. Pospichal, J. Jaros, and J. Schwarz

We measured the performance using island population sizes from 2 to 256 in-
dividuals, and islands quantity from 1 to 1024. The performance unit was chosen
to be population-size independent as IIGG=

∏
(Island population size, number of

Islands, Genotype length, number of Generations) per second. As we expected,
CPU performance is almost constant while GPU performance highly varies ac-
cording to the degree of parallelism (global population size). The performance of
graphics cards is also greatly affected by compiler parameter -use_fast_math
which causes usage of faster, but less precise mathematical functions. This pa-
rameter turned out to be profitable for GA because quality of results remains
unaffected.

Table 1. Comparsion of CPU and GPU execution performance depending on is-
land population size varying from 2 to 256 individuals. FastMath marks usage of -
use fast math CUDA compiler parameter.

arch. fitness function (min – max) IIGG·106 per second

CPU
Rosenbrock 2.6 – 2.8
Michalewicz 1.8 – 2.5
Griewank 2.5 – 2.8

GPU

8800GTX GTX260 GTX285
Rosenbrock 14.2 – 8877 12.0 – 13094 14.3 – 18669
Rosenbrock-FastMath 18.5 – 11914 15.5 – 17318 18.5 – 24288
Michalewicz 6.9 – 5893 5.8 – 8850 7.0 – 12937
Michalewicz-FastMath 11.7 – 9894 9.8 – 13692 11.6 – 19400
Griewank 9.6 – 7108 8.0 – 10515 9.9 – 14496
Griewank-FastMath 15.9 – 10507 13.3 – 15360 15.8 – 20920

Table 1 shows measured mean values of IIGG from 5 independent runs to
reduce an influence of underlying operating system. GPUs always outperform
CPU and truly excel at maximum speeds where measured performance is several
thousand times better. Such a huge speedup promises solving problems that took
hours to be completed in second-order time.

The results also show that two different generations of GPU, 8800 GTX and
GTX285 offer the same performance for the low level of parallelism and dif-
fer significantly only at maximum speed. This clearly points out that the new
technology is heading for massively-parallel computing rather than improving
performance for single threaded applications (see Fig. 4).

The charts shown in Fig. 4 illustrate achieved speedups on two different GPUs
against CPU, based on population sizes and the number of simulated island.
The 8800 GTX graphic card saturates its computational resources from 256 is-
lands and 32 individuals individuals per an island. The maximal speedup of
3735 against CPU is reached with 256 islands and 64 individuals per island.
The GTX285 provides about twice better peak speedup, but it is necessary to
provide much more computational work to it. The computational resources of

Parallel Genetic Algorithm on the CUDA Architecture 449

1 2 4 8 16 32 64 128 256 5121024
2

4
8

16
32

64
128

256

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

sp
ee

du
p

w
rt

 C
P

U

max=[256,64]=3735.318
min=[1,2]=5.653

islands
(blocks)

individuals on island
(threads in block)

1 2 4 8 16 32 64 128 256 5121024
2

4
8

16
32

64
128

256

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

(a) 8800 GTX

1 2 4 8 16 32 64 128 256 5121024
2

4
8

16
32

64
128

256

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

sp
ee

du
p

w
rt

 C
P

U

max=[1024,128]=7437.170
min=[1,2]=5.617

islands
(blocks)

individuals on island
(threads in block)

1 2 4 8 16 32 64 128 256 5121024
2

4
8

16
32

64
128

256

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

(b) GTX 285

Fig. 4. Speedup on Griewank’s function depending on GA parameters and GPU

this GPU are not saturated even for 1024 islands and 128 individuals per island,
where this GPU has attacked the speedup of 74371.

From the both charts in fig. 4 also flow that the usage of the GPU for a small
number of island and/or a few individuals per island is not advantageous. The
maximum performance is achieved for high number of simulated islands and
increasing population size.

4.2 Solutions Quality

The proposed implementation of the tournament selection slightly differs from
the original GAlib’s one (see section 3.1). In order to ensure the same testing
condition for the both CPU and GPU versions, the GAlib’s selection were reim-
plemented. Arithmetic crossover and mutation were kept untouched as they have
been defined in the same way.

Tests CPU and GPU1 were performed on artificial benchmark functions men-
tioned earlier on a single island (obviously with no migrations) with 32 individ-
uals, 70% crossover probability, 5% mutation probability and elitism turned off.
Each run was terminated after 100 generations of evolution and the best (lowest)
fitness value was taken into consideration.

Test GPU2 was performed with the same GA parameters and benchmarks but
with maximum GPU exploitation resulting from simulating 1024 populations (is-
lands) in parallel. Additionally, migrations were performed every 10 generations
with 3 individuals (approx. 10% of population).

To compare algorithms adaptability to rising problem complexity, varying
number of genes (variables) was tested as well.

Table 2 shows mean value over 100 measured runs. Rosenbrock’s and Grie-
wank’s functions have the value of the global optimum equal to 0. The value
1 As it was mentioned earlier, a single threaded CPU implementation was tested.

Benchmarked CPU Core i7 allows parallelisation to 4 physical cores + 4 virtual
Hyper-Threading ones. Hence, ideally paralleled CPU version with 50% speed benefit
from HT technology would change the maximum speedup from 7437 to approx. 1239
times. GAlib also computes variety of additional statistics.

450 P. Pospichal, J. Jaros, and J. Schwarz

Table 2. Comparison of the solutions quality

genes mean best fitness

Rosenbrock Michalewicz Griewank
CPU GPU1 GPU2 CPU GPU1 GPU2 CPU GPU1 GPU2

2 0.086 3.468 7.57·10−7 -1.022 -1.768 -1.801 0.0005 0.0020 3.99·10−12

3 1.897 4.996 0.447 -1.220 -2.336 -2.760 0.0051 0.0048 1.06·10−8

4 8.900 4.997 0.494 -1.459 -2.748 -3.696 0.0156 0.0188 1.22·10−7

5 22.112 17.332 2.042 -1.684 -3.184 -4.628 0.0246 0.0414 0.0001
6 48.450 56.045 4.313 -1.817 -3.654 -5.440 0.0408 0.0570 0.0005
7 83.455 42.509 6.903 -2.035 -3.646 -6.163 0.0479 0.0620 0.0012
8 128.710 155.233 9.257 -2.120 -3.805 -6.659 0.0650 0.1360 0.0027
9 167.329 131.737 12.045 -2.176 -4.830 -7.136 0.0749 0.1444 0.0042
10 233.364 184.370 15.379 -2.391 -5.009 -7.649 0.0805 0.1758 0.0058

of the global optimum of Michalewicz’s function varies based on the number of
genes – it is approximately linear interpolation from -1.8 (2 genes) to -9.66 (10
genes). Lower value means better solution for all tested functions.

Michalewicz’s and Rosenbrock functions are optimised much better on GPU
in most cases. On the contrary, Griwank’s function for a single island (GPU1)
reaches better solutions on CPU. This can be an effect of simplified random num-
ber generator which uses very limited amount of shared GPU memory. However,
any negative effects are greatly outperformed by massive parallelism. Test GPU2
shows that fully utilized GPU can achieve far better results in the same number
of iterations.

Overall, GPU1 results are better than CPU by approx. 20%. This shows that
proposed GPU implementation of GA is able to optimise numerical functions.

5 Conclusions

Speedups up to seven thousand times higher clearly show that GPUs have proven
their abilities for acceleration of genetic algorithms during optimization of simple
numerical functions. The results also show that the proposed GPU implemen-
tation of GA can provide better results in the shorter time or produce better
results in equal time.

The future work will be oriented to introducing more complex numerical op-
timization inspired by real-world problems. Moreover, we would like to compare
parallel island-based GA running on CPU with the proposed GPU version.

Acknowledgement

This researchhasbeen carriedoutunder thefinancial supportof the researchgrants
“NaturalComputing on UnconventionalPlatforms”,GP103/10/1517(2010-2013)
of Grant Agency of Czech Republic, and “Security-Oriented Research in Informa-
tion Technology”, MSM 0021630528 (2007-13).

Parallel Genetic Algorithm on the CUDA Architecture 451

References

1. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison-Wesley Pro-
fessional, Reading (2005)

2. Nguyen, H.: GPU gems 3. Addison-Wesley Professional, Reading (2007)
3. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-

gan Press (1975)
4. Jiang, C., Snir, M.: Automatic Tuning Matrix Multiplication Performance on

Graphics Hardware. In: Proceedings of the 14th International Conference on Par-
allel Architectures and Compilation Techniques, pp. 185–196 (2005)

5. Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient Al-
gorithms for Solving Dense Linear Systems on Graphics Hardware. In: Proceedings
of the ACM/IEEE SC 2005 Conference, vol. 3 (2005)

6. Cant-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-
demic Publishers, Dordrecht (2000)

7. NVIDIA, C.: Compute Unified Device Architecture Programming Guide. NVIDIA:
Santa Clara, CA (2007)

8. Munshi, A.: The OpenCL specification version 1.0. Khronos OpenCL Working
Group (2009)

9. Harris, M., Luebke, D.: GPGPU: General-purpose computation on graphics hard-
ware. In: Proceedings of the International Conference on Computer Graphics and
Interactive Techniques: ACM SIGGRAPH 2005 Courses, Los Angeles, California
(2005)

10. Yu, Q., Chen, C., Pan, Z.: Parallel genetic algorithms on programmable graphics
hardware. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612,
pp. 1051–1059. Springer, Heidelberg (2005)

11. Li, J.-M., Wang, X.-J., He, R.-S., Chi, Z.-X.: An efficient fine-grained parallel
genetic algorithm based on gpu-accelerated. In: IFIP International Conference on
Network and Parallel Computing Workshops, NPC Workshops, pp. 855–862 (2007)

12. Maitre, Q., Baumes, L.A., Lachiche, N., Corma, A., Collet, P.: Coarse grain paral-
lelization of evolutionary algorithms on GPGPU cards with EASEA. In: Proceed-
ings of the 11th Annual conference on Genetic and evolutionary computation table of
contents, Montreal, Qubec, Canada, pp. 1403–1410 (2009) ISBN 978-1-60558-325-9

13. Wong, M.L., Wong, T.T.: Implementation of Parallel Genetic Algorithms on
Graphics Processing Units. In: Intelligent and Evolutionary Systems, vol. 187,
pp. 197–216. Springer, Heidelberg (2009)

14. Matthew, W.: GAlib: A C++ Library of Genetic Algorithm Components. Mas-
sachusetts Institute of Technology (1996)

15. Pelikan, M., Sastry, K., Cantú-Paz, E.: Scalable Optimization via Probabilistic
Modeling: From Algorithms to Applications. Studies in Computational Intelligence.
Springer, Heidelberg (2006)

A New Selection Ratio for Large Population
Sizes

Fabien Teytaud

TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud), bat 490 Univ. Paris-Sud
91405 Orsay, France
fteytaud@lri.fr

Abstract. Motivated by parallel optimization, we study the Self-
Adaptation algorithm for large population sizes. We first show that the
current version of this algorithm does not reach the theoretical bounds,
then we propose a very simple modification, in the selection part of the
evolution process. We show that this simple modification leads to big
improvement of the speed-up when the population size is large.

1 Introduction

Evolution Strategies [4,1] are well-known methods for solving an optimization
problem. Their main advantages are robustness and simplicity, but, because they
are population based they are also well suitable for parallelization. However, it
has been shown in [2,6] that ES are not very efficient for large population sizes
whereas we can notice that the number of parallel machines, supercomputers
and grids, has increased, suggesting big population sizes.

We define λ as the population size, μ as the number of offspring used for the
recombination of the parent, and N as the dimensionality. Then, a (μ/μ, λ)-ES
(Evolution Strategy) is an evolution strategy with a population size of λ and
the μ best offspring will be used, with equal weights, to create the new parent.
A (1, λ)-ES is an evolution strategy in which the new parent is simply the best
offspring among the population.

It is widely believed that (μ/μ, λ)-ES are more parallel (efficient for large
population sizes) than (1, λ)-ES, which is shown by rough calculus as in e.g. [1]
and by experiments with intermediate values of λ.

Experimentally however, (μ/μ, λ)-ES are less efficient than (1, λ)-ES for a
(sufficiently) large population size λ, for the usual parametrization of the algo-
rithms, as shown in [6]; in particular, the theoretical speedups of ES for parallel
optimization (the best possible speed-ups, for optimal algorithms) are far better
than the results of current implementations. In this paper, we show that chang-
ing the parametrization of self-adaptive (μ/μ, λ)-ES leads to a huge improvement
for large λ, and that, with this improvement we can reach the theoretical bounds
shown in [7]. These bounds are :

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 452–460, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A New Selection Ratio for Large Population Sizes 453

– For (μ/μ, λ)-ES, the speed-up is linear until λ of the same order as the
dimensionality. For larger value of λ the speed-up becomes logarithmic as a
function of λ.

– For (1, λ)-ES, the speed-up is logarithmic as a function of λ.

Choosing a good selection ratio μ
λ is crucial whatever the dimensionality. Usually,

the number of selected individuals μ is function of the population λ; in general,
μ = λ

2 as suggested in [3] for the covariance matrix adaptation algorithm; μ = λ
4

is suggested for the covariance matrix self-adaptation algorithm in [2] which is
especially devoted to big population sizes.

We work on the Self-Adaptation Evolution Strategy (SA-ES). It has been
proposed in [4] and [5], and extended in [2], in the special case of large λ. This
algorithm is very simple and provides one of the state of the art results for
large λ. This algorithm is presented in Algorithm 1. N(0, Id) denotes standard
multivariate Gaussian random variables with identity covariance matrix.

Algorithm 1. Mutative self-adaptation algorithm. For large population sizes τ
is usually equal to 1/

√
N ; other tuning of τ can been used (e.g. 1/

√
2N) which

is sometimes found in papers.
Initialize σavg ∈ R, y ∈ RN .
while Halting criterion not fulfilled do

for i = 1..λ do
σi = σavgeτNi(0,1)

zi = σiNi(0, Id)
yi = y + zi

fi = f(yi)
end for
Sort the individuals by increasing fitness; f(1) < f(2) < · · · < f(λ).
zavg = 1

μ

∑μ
i=1 z(i)

σavg = 1
μ

∑μ
i=1 σ(i)

y = y + zavg

end while

In this paper, we are considering minimization problems.

2 Discrepancy between Theory and Practice, and the
Tuning of the Selection Ratio of the Self-Adaptation
Evolution Strategy

In [7], a lot of theoretical bounds have been shown, and, especially that we should
reach Θ(log(λ)) with a (μ/μ, λ)-ES. In practice (i.e. with usual parametrizations
of the algorithm), the SA-ES does not reach that speed-up, as shown in Fig. 1.

In Fig. 1, we can note that the selection ratio μ is a crucial parameter for the
behaviour of the SA algorithm. Unless μ = 1, the speed-up reaches a plateau
when λ is very large.

454 F. Teytaud

0
10

1
10

2
10

3
10

4
10

5
10

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of SA algorithm, m = lambda/4

Lambda

lo
g|

|x
||*

N
/n

N=3
N=10
N=30

0
10

1
10

2
10

3
10

4
10

5
10

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of SA algorithm, mu = lambda/2

Lambda

lo
g|

|x
||*

N
/n

N=3
N=10
N=30

0
10

1
10

2
10

3
10

4
10

5
10

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of SA algorithm, mu=1

Lambda

lo
g|

|x
||*

N
/n

N=3
N=10
N=30

Fig. 1. Speed-up of the Self-Adaptation algorithm as a function of λ, on the sphere
function. For this experiment, the initial step size is 1, the initial point is (1, . . . , 1)
and the fitness function to hit is 10−10. Top left (μ = λ

4
) and top right (μ = λ

2
) do not

show a logarithmic speedup whatever the dimensionality.

μ = λ
2 is never a good choice whatever the population size, and if the pop-

ulation size becomes really large, the speedup tends to a constant. μ = λ
4 is

often used in the literature because it offers a good convergence if the popula-
tion size is not too large. In fact, Fig. 1 shows that in dimension 10, μ = λ

4 is
better than μ = 1 until a population size of 200. In dimension 30, μ = λ

4 is
also a good choice, in particular if the population size is smaller than 6400. The
main problem is that the convergence rate tends to a constant (depending on
the dimensionality); theoretical results suggest that we should have something
better. As said previously, in [7], it is shown that for (μ/μ, λ)-ES algorithms the
convergence rate should be linear as a function of λ if the population size is
smaller than the dimension. If the population is larger than the dimension the
speedup is Θ(log(λ)).

In practice, this is not true. As we can observe in Fig. 1, if the population size
is large compared to the dimension, the convergence rate of (μ/μ, λ)-ES tends to

A New Selection Ratio for Large Population Sizes 455

a constant. (1, λ)-ES only shows a logarithmic convergence rate as a function of
λ, which suggests that this is the best choice when the population size is large.

3 Solving the Discrepancy between Theory and Practice
by a Good Tuning of SA

In Fig. 2 we show that we can improve the convergence rate by using a simple
rule for the selection ratio. Experiments have been done on the sphere function.
The initial point is (1, . . . , 1) and the initial step size is 1. The fitness function to
reach is fstop = 10−10. In this figure, we compare the Self-Adaptation algorithm

0
10

1
10

2
10

3
10

4
10

5
10

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of SA algorithm, N=3

Lambda

lo
g|

|x
||*

N
/n

SA
modified SA

0
10

1
10

2
10

3
10

4
10

5
10

−7

−6

−5

−4

−3

−2

−1

−0

Speed−up of SA algorithm, N=10

Lambda

lo
g|

|x
||*

N
/n

SA
Modified SA

0
10

1
10

2
10

3
10

4
10

5
10

−12

−10

−8

−6

−4

−2

−0

Speed−up of SA algorithm, N=30

Lambda

lo
g|

|x
||*

N
/n

SA
Modified SA

Fig. 2. This figure shows the convergence rate on the sphere function for the Self-
Adaptation algorithm and for the modified version of this algorithm. In the modified
self adaptation algorithm, the selection ratio is chosen equals to μ = min(N, λ/4). For
the standard self adaptation algorithm, we have chosen the best selection ratio for a
large population size (μ = 1). Results are obtained for three dimensions 3, 10 and
30. In dimensions 10 and 30, the modified self adaptation algorithm outperforms the
standard version. In dimension 3, results are really close, simply because in that case,
the selection ratio of both versions of the algorithm is almost the same (due to the
small dimensionality).

456 F. Teytaud

with μ = 1 and a modified version of this algorithm. We have chosen μ = 1 for
the comparison because it is the best choice for the SA algorithm for large λ, as
shown in the previous section.

The modified version is a SA algorithm but with a number of selected points
μ equal to the minimum between the dimensionality and the population size
divided by 4. Formally, in that case, μ = min(N, λ

4). Intuitively, we want μ = N
for large λ, and λ/4 for small value of the population size.

In dimension 3, both convergence rates are very close, because the value of
the selection ratio of the Self-Adaptation algorithm and of the modified Self-
Adaptation algorithm are close to each other.

In dimension 10, the modified version of the Self-Adaptation algorithm out-
performs the standard version. We also have a logarithmic convergence rate as
predicted by the theory. For a population size of 12800 we have a speedup of
41% over the Self-Adaptation algorithm with μ = 1.

In dimension 30 finally, we have a really big improvement. We have a loga-
rithmic convergence rate, as a function of the population size, and here again
results for large population sizes are really good, with a speedup of 114% for a
population size of 12800. In this case, for small population sizes, the convergence
rate is also slightly better than μ = λ

4 .

4 Experiments on the Covariance Matrix Self-Adaptation
Evolution Strategy

The Covariance Matrix Self-Adaptation Evolution Strategy (CMSA-ES) has
been proposed in [2], and is now the state of the art algorithm for large popu-
lation sizes. This algorithm is based on the SA algorithm presented previously.
In the CMSA-ES, the routine used to adapt the global step size σ is the Self-
Adaptation one. But we have here a full covariance matrix adaptation algorithm,
in order to learn the shape of the fitness function. This algorithm is presented
in Algorithm 2.

Following the recommendations in [2] for the tuning of the CMSA-ES algo-
rithm, a selection ratio μ/λ equals to 1/4 should be used. In this section, we
experiment the CMSA evolution strategy with two different selection ratios: the
previous one which is recommended, and we also tried our modified version
μ = min(N, λ/4) as above.

4.1 Test Functions

We do our experiments on three well-known functions. Functions are defined
in Table 1. The first one is the sphere function, which is a well-known test
function in optimization. The second one is the Schwefel Ellipsoid for which the
adaptation of the covariance matrix is helpful. The third one is the Rosenbrock
function which requires, due to its shape, continuous changes of the covariance
matrix.

A New Selection Ratio for Large Population Sizes 457

Algorithm 2. Covariance Matrix self-adaptation. τ is equal to 1/
√

N ; < . >
represents the recombination. The initial covariance matrix C is the identity
matrix. The time constant τC is equal to 1 + N(N+1)

λ
2

.

Initialize σavg ∈ R, y ∈ RN , C.
while Halting criterion not fulfilled do

for i = 1..λ do
σi = σavgeτNi(0,1)

si =
√

CσiNi(0, Id)
zi = σisi

yi = y + zi

fi = f(yi)
end for
Sort the individuals by increasing fitness; f(1) < f(2) < · · · < f(λ).
zavg = 1

μ

∑μ
i=1 z(i)

savg = 1
μ

∑μ
i=1 s(i)

σavg = 1
μ

∑μ
i=1 σ(i)

y = y + zavg

C = (1 − 1
τC

)C + 1
τC

< ssT >
end while

Table 1. Test functions considered in this paper

Name Objective function yinit σinit fstop

Sphere f(y) =
N∑

i=1

y2
i (1, . . . , 1) 1 10−10

Schwefel f(y) =
N∑

i=1

(
i∑

j=1

yi)2 (1, . . . , 1) 1 10−10

Rosenbrock f(y) =
N∑

i=1

(100(y2
i − yi+1)2 + (yi − 1)2) (0, . . . , 0) 0.1 10−10

4.2 Results

In our experiments, we have considered different dimensionalities, N = 3, 10, 30.
We have compared different selection ratios for different population sizes, spe-
cially large population sizes. For each point of each experiment we take the
average of 60 independent runs. We have chosen to look at the convergence rate.
We measure N×log||y||

number of Iterations as a function of the population size. Choosing
to measure the convergence rate (instead of the number of iterations as in [2])
is here justified by the fact that we know the theoretical limits of this criterion
(up to a constant factor), and we know that many usual algorithms have only a
bounded speed-up; we want to take care of this.

Fig 3 shows that using a bad selection ratio could be harmful, especially for
large population sizes. Even for not so large population sizes (e.g. λ = 20) using

458 F. Teytaud

0
10

1
10

2
10

3
10

4
10

−16

−14

−12

−10

−8

−6

−4

−2

−0

Speed−up of CMSA algorithm, Sphere function, N=3

Lambda

lo
g|

|x
||*

N
/n

mu=lambda/4

mu=N

mu=lambda/4

mu=N

0
10

1
10

2
10

3
10

4
10

−20

−15

−10

−5

−0

Speed−up of CMSA algorithm, Schwefel function, N=3

Lambda

lo
g|

|x
||*

N
/n

mu=lambda/4

mu=N

0
10

1
10

2
10

3
10

4
10

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−0.0

Speed−up of CMSA algorithm, Rosenbrock function, N=3

Lambda

lo
g|

|x
||*

N
/n

mu=lambda/4

mu=N

Fig. 3. Results of the CMSA evolution strategy in dimension 3 for the sphere function
(top left), the Schwefel function (top right) and the Rosenbrock function. Convergence
rate for the standard selection ratio (μ = λ/4) and the new selection ratio (μ =
min(N, λ/4)) are plotted. Choosing a selection ratio equals to μ = min(N, λ/4) is
good choice in the three experiments. We reach a logarithmic speedup on the sphere
function and the Schwefel function.

the selection ratio μ = min(N, λ/4) is a good choice. The best speed-ups are
reached for large population sizes, more precisely we obtains a speed-up of 136%
for the sphere function and 139% for the Schwefel function for a population
size equals to 10000 (more than twice faster in both cases), and 146% for the
Rosenbrock function for a population size of 5000.

In Fig 4 we experiments the sphere function and the Schwefel function in
dimension 10. Due to big computation time, the largest population size for this
experiment is 800. Speedup of 37% is reached for the sphere function and 41%
for the Schwefel function for a population size of 400.

In Fig 5, we reproduce the experiments as previously, but in bigger dimen-
sionality, 30. Results are similar, and we reach a speedup of 44% for the sphere
function and 34% for the Schwefel function for λ = 800.

A New Selection Ratio for Large Population Sizes 459

1
10

2
10

3
10

−9

−8

−7

−6

−5

−4

−3

Lambda

lo
g|

|x
||*

N
/n

mu=lambda/4

mu=N

1
10

2
10

3
10

−10

−9

−8

−7

−6

−5

−4

−3

Lambda

lo
g|

|x
||*

N
/n

mu=lambda/4

mu=N

Fig. 4. Results of the CMSA evolution strategy in dimension 10 for the sphere function
(top left) and the Schwefel function (top right). Convergence rate for the standard
selection ratio (μ = λ/4) and the new selection ratio (μ = min(N, λ/4)) are plotted.

2
10

3
10

−13

−12

−11

−10

−9

−8

−7

−6

Speed−up of CMSA algorithm, Sphere function, N=30

Lambda

lo
g|

|x
||*

N
/n

mu=lambda/4

mu=N

2
10

3
10

−11

−10

−9

−8

−7

−6

−5

−4

Speed−up of CMSA algorithm, Schwefel function, N=30

Lambda

lo
g|

|x
||*

N
/n

mu=lambda/4

mu=N

Fig. 5. Results of the CMSA evolution strategy in dimension 3 for the sphere function
(top left) and the Schwefel function (top right). Convergence rate for the standard
selection ratio (μ = λ/4) and the new selection ratio (μ = min(N, λ/4)) are plotted.

5 Conclusion

In this paper we experiment a new rule for the selected population size μ =
min(N, λ/4). This rule is a simple modification, and has very good results for
the CMSA evolution strategy. We can seemingly reach a logarithmic speed-up
with this rule, which is consistent with the theoretical bounds.

To summarize this paper, we have shown in section 2 that the current version
of the Self Adaptation rule only reaches the theoretical speedup (logarithmic as
a function of λ) when the selection ratio is equal to μ

λ = 1/λ, i.e. μ = 1.
A selection ratio of 1/2 or 1/4 is better at first view, but it’s indeed harmful

when the population size λ is large enough (larger than the dimension).

460 F. Teytaud

In section 3, we have shown that having μ = min(N, λ/4) could lead to a
very good speedup, better than both with μ = 1 and with μ = λ/4 or μ = λ/2.
Finally, we experiment the same rule on the CMSA algorithm (section 4), which
is known to be a good evolution strategy when the population size is large.

Unfortunately, due to hard computation time, we only have experimented
with small population sizes for dimensions 10 and 30. Experiments with large
population sizes should be done in the future. Another future work will be to
try this kind of modification on the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES), i.e. in algorithms using cumulative step-length adaptation.

References

1. Beyer, H.G.: The Theory of Evolutions Strategies. Springer, Heidelberg (2001)
2. Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited - the CMSA evo-

lution strategy. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.)
PPSN 2008. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008)

3. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

4. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach Prinzip-
ien des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart (1973)

5. Schwefel, H.P.: Adaptive Mechanismen in der biologischen Evolution und ihr Einfluss
auf die Evolutionsgeschwindigkeit. Interner Bericht der Arbeitsgruppe Bionik und
Evolutionstechnik am Institut für Mess- und Regelungstechnik Re 215/3, Technische
Universität Berlin (Juli 1974)

6. Teytaud, F., Teytaud, O.: On the parallel speed-up of Estimation of Multivari-
ate Normal Algorithm and Evolution Strategies. In: Giacobini, M., et al. (eds.)
EvoWorkshops 2009. LNCS, vol. 5484, pp. 655–664. Springer, Heidelberg (2009)

7. Teytaud, O., Fournier, H.: Lower bounds for evolution strategies using
VC-dimension. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.)
PPSN 2008. LNCS, vol. 5199, pp. 102–111. Springer, Heidelberg (2008)

Multi-Objective Probability Collectives

Antony Waldock1 and David Corne2

1 Advanced Technology Centre, BAE Systems, Bristol, UK
antony.waldock@baesystems.com

2 School of MACS, Heriot-Watt University, Edinburgh, UK
dwcorne@macs.hw.ac.uk

Abstract. We describe and evaluate a multi-objective optimisation
(MOO) algorithm that works within the Probability Collectives (PC)
optimisation framework. PC is an alternative approach to optimization
where the optimization process focusses on finding an ideal distribution
over the solution space rather than an ideal solution. We describe one
way in which MOO can be done in the PC framework, via using a Pareto-
based ranking strategy as a single objective. We partially evaluate this
via testing on a number of problems, and compare the results with state
of the art alternatives. We find that this first multi-objective probability
collectives (MOPC) approach performs competitively, indicating both
clear promise, and clear room for improvement.

1 Introduction

1.1 Multi-Objective Optimisation

Multi-objective optimisation (MOO) continues to gain increasing attention [7],
as it becomes recognised that (a) a large number of real-world optimisation
problems are multi-objective; (b) the classical simplifying approach of combining
many objectives into one has several drawbacks [4]; (c) several efficient and
effective methods now exist that address MOO in a more principled way (e.g.
[32,8,21]).

A MOO problem is formally posed as arg minx∈X Gm(x), where Gm(x) is
an objective function and x is defined as a vector of decision variables (or a
solution) in the form x = (x1, x2.., xN) from the set of solutions X . The aim is
to find the Pareto set which contains all the solutions that are not dominated
by any other solution. A solution x1 is said to be dominated by x2, if and only
if, x1 is as good as x2 in all objectives and x1 is strictly better then x2 in at
least one objective. A distinguishing feature of MOO is that the target is a set
of solutions rather than a single ‘best’.

The most effective MOO approaches to date are generally regarded to be
MOEAs (multi-objective evolutionary algorithms). EAs naturally maintain di-
versity (by working with a population of solutions), and many additional tech-
niques exist (e.g. [11,14,19]). MOEAs encompass a broad family of approaches to
MOO; particularly successful among them are those based on particle swarm op-
timisation (PSO) [17,20,24], and others based on decomposing the MOO problem

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 461–470, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

462 A. Waldock and D. Corne

into several different single-objective problems [16,10]. In the former approach,
PSO is combined with the use of measures to maintain a diverse set of ‘targets’,
usually ensuring these are spread well across the developing Pareto set. In the
latter approach, the idea is to exploit the relationship between MOO and sin-
gle objective problems. Roughly speaking, different regions of the Pareto set are
optima of different weighted sums of the original objectives; such methods simul-
taneously progress several different single-objective searches, together aiming to
cover the Pareto set.

Meanwhile, an alternative framework for optimisation is Probability Collec-
tives (PC) [3,29], distinguished by a focus on finding an ideal distribution over
solution space, rather than an ideal solution. This has similarities to estima-
tion of distribution algorithms (EDAs). However, EDAs operate by continually
updating a distribution guided by the results of sampling, with the goal of find-
ing optimal samples. PC, on the other hand, optimizes the distribution itself,
and this is reflected in a principled approach to the way that sample evalua-
tions influence the distribution. PC-based optimization is naturally well-suited
to maintaining diversity, as well as handling uncertainty and noise. Meanwhile,
PC shares with EDAs the clear advantages of using a distribution as the fo-
cus of search, rather than just concentrating (and perhaps being misled by) the
‘survivors’ represented by a current set of samples.

PC clearly has much potential for use in MOO. In this paper, we explore an
initial approach to adapting the PC framework for MOO, by formulating the
problem using a proxy single-objective, in a similar vein to PSO. It is revealing
to see how well this preliminary approach fares against state of the art MOO
methods. In the remainder, section 2 introduces Probability Collectives, section
3 introduces the proposed algorithm: Multi-Objective Probability Collectives
(MOPC), the experimental set-up and results are in section 4, and we conclude
in section 5 with conclusions and future work.

2 Probability Collectives

Probability Collectives (PC) is a framework for black-box optimisation with deep
theoretical connections to game theory, statistical physics [26], and optimisation
[28]. It has been applied so far to problems, ranging from sensor management
[25] to distributed flight control [2].

Typically a single-objective problem is solved by manipulating a vector of
decision variables x in an attempt to minimise a scalar function (G(x)). In PC,
however, optimisation is performed on probability distributions q(x) over the
decision variables, seeking a distribution highly peaked around values of the
decision variables that minimise G(x). This approach has various demonstrated
advantages; it is: easily parallelised (each variable’s distribution can be updated
independently [18]); applicable to continuous, discrete, or arbitrary spaces [3];
robust to noise and irregularity [9]; provides sensitivity information – a variable
with a peaky distribution can be deemed more important than one with a broad
distribution. The PC framework formally defines optimisation as in Equation 1.

Multi-Objective Probability Collectives 463

arg min
qθ∈P

Eqθ
(G(x)) (1)

where qθ is a parametric distribution over the decision variables x in the set of
all possible distributions P, minimising the expectation Eqθ

(G(x)).
PC does not prescribe a specific approach for minimising this expecta-

tion. Many alternatives are discussed in [27]. From hereon, we follow one
such approach in which, based on considering the expectation of all possible
distributions[22], EP(G(x)), one solution is the point-wise limit of the Boltz-
mann distributions shown in Equation 2.

p∗(x) = lim
β→∞

pβ(x) (2)

where pβ(x) is defined as exp[−βG(x)]. So, as β tends towards ∞ the distri-
butions of pβ become peaked around the solutions that minimise G(x). To find
p∗(x), a parametrised distribution qθ is used to approximate the Boltzmann
distributions, and fitted to the Boltzmann distribution pβ by minimising the
Kullback-Leibler (KL) divergence [13] in Equation 3.

Eqθ
(G(x)) = −KL(pβ‖qθ) = −

∫
pβ ln

(
pβ

qθ

)
dx (3)

By minimising the KL Divergence, qθ will approximate the “target” of pβ(x).
The β term is used as a regularization parameter controlling the evolution of
the distribution towards areas of decision space minimising G(x). The high-level
algorithm we use can now be presented in Alg. 1. We formulate the minimisation

Algorithm 1. PC Optimisation
1. Initialise β to be βmin

2. Initialise the number of evaluations to 0
3. repeat
4. Draw a set D from X using uniform distribution on the first run or qθ thereafter
5. Evaluate G(x) for each sample drawn
6. Find qθ by minimising the KL Divergence
7. Update β
8. Update evaluations
9. until (evaluations > maximum evaluations)

of KL divergence as cross-entropy minimisation [23] using a single multivariate
Gaussian density with mean μ and covariance σ. Means μ and co-variances σ
are updated from samples as follows:

μ =
∑

D sixi∑
D si

; σ =
∑

D si(xi − μ)(xi − μ)T∑
D si

(4)

464 A. Waldock and D. Corne

where si is defined as p(xi) and xi is the ith sample in the sample set D. Recall
that p(xi) is defined using a Boltzmann distribution exp[−βG(xi)].

Note that there are close parallels with Expectation Maximisation (EM). The
difference from EM is the inclusion of the si term which is driven by β included
in the Boltzmann distribution. We can regard β as parametrising a trade-off;
when small, the parametric distribution tends to fit the samples, regardless of
G(x). As β tends towards infinity, the focus shifts towards samples with the best
G(x) by producing a highly peaked distribution.

3 Multi-Objective Probability Collectives

Multi-Objective Probability Collectives (MOPC) is implemented here by using
a single-objective ‘proxy’ – i.e. a single-objective score that attempts to evaluate
a solution’s quality for inclusion in the Pareto set. For this purpose we adopt the
maximin function from [17]. There are alternatives, such as Average Ranking
or others detailed in [5,1], however our choice of maximin is based on promis-
ing performance within a PSO based MOO strategy [17]. Broad pseudocode for
MOPC is shown in Alg. 2. In MOPC, β is replaced by T , defined as 1

β for

Algorithm 2. MOPC Optimisation
1. Initialise the archive set A to empty, T to Tstart and calculate Tdecay and the

number of evaluations to 0
2. Initialise the set of MOPC Particles P
3. repeat
4. for all MOPC Particles do
5. Update MOPC Particle using A (see algorithm 3)
6. Increment the number of evaluations taken
7. end for
8. if (T > Tend) then Decrement T end if
9. until (evaluations > maximum evaluations)

10. Output the non-dominated set from archive set A

convenience. Firstly, MOPC initialises an archive A to keep track of the devel-
oping Pareto set, which in our current implementation is maintained in the same
way as the Crowding Archive used in NSGAII [8]. Next, MOPC initialises T and
a counter for number of evaluations. MOPC calculates the decay rate for T based
on Tstart, Tend, the maximum number of evaluations allowed E, the number of
particles |P | and the number of samples taken on each iteration |D|.

Tdecay =
Tend

Tstart

|P |∗|D|
E

(5)

MOPC then repeatedly updates each of the particle’s parametric distributions
while reducing T until the maximum number of evaluations is reached. The
output of MOPC is the archive A. Details of line 7 of Alg. 2 are given by Alg. 3.

Multi-Objective Probability Collectives 465

Algorithm 3. Update MOPC Particle
1. if first run then
2. Draw and evaluate a set of samples D from X using a uniform distribution for

the first run and qθ thereafter
3. end if
4. Add the samples taken in D to a local cache L
5. Calculate maximin for the members of L ∪ A
6. Find the new qθ (using L) by minimising the KL Divergence (Eqs. 3, 4)
7. Add the samples from D that are not dominated to the archive A

In Alg. 3, each particle performs its own PC optimisation. First, samples are
drawn from qθ (initially, a uniform distribution), and then added to local cache
L to enable previously used samples to be reused when upating the parametric
distribution; members of L ∪A are then evaluated using fmaximin (Eqn 6):

fmaximin(x) = max
j=1,2..|L∪A|;x �=xj

(min
m=1,..,M

(Gi(x) −Gi(xj))) (6)

where m is the objective function, xj is the jth sample in the set and fmaximin(x)
is the fitness value for the sample x. This returns a value indicating how much
x is dominated by the other samples. When fmaximin(x) is < 0| = 0| > 0, x
is non-dominated | weakly-dominated | dominated. Hence, the distribution is
driven towards non-dominated solutions. Distribution qθ is the updated, and
finally, non-dominated samples from D are archived.

4 Experiments and Results

We first explore the behaviour of MOPC on the DEB2 problem in [6], which
was specificially designed to present difficult challenges for MOO, arising from
multimodality (multiple suboptimal Pareto sets) and deception (structures in the
search space that tend to mislead optimisation algorithms towards non-optimal
areas). We then consider the set of unconstrained 2-objective problems from the
CEC 2009 competition [31]. The DEB2 problem is defined by:

minimise G1(x1, x2) = x1 minimise G2(x1, x2) =
g(x2)
x1

(7)

where g(x2) = 2.0 − exp
(
−
(

x2−0.2
0.004

)2) − 0.8 exp
(
−
(

x2−0.6
0.4

)2)
and x1 and x2

are defined in the range [0.1, 1.0]. DEB2 is convenient for preliminary explo-
ration since it is two-dimensional and so suitable for visualisation. It has a local
minimum around x2 ≈ 0.6 and a global minimum around x2 ≈ 0.2, facilitating
comparison of the relative behaviour of MOPC with other methods.

In these experiments, all the algorithms used 35,000 evaluations for DEB2
and 300,000 evaluations for the CEC2009 problems, and we present means
and standard deviations over 30 independent runs. MOPC used 50 particles,

466 A. Waldock and D. Corne

|A| = 100, |D| = 20, |L| = 400, Tstart = 1 and Tend = 0.0001. NSGAII,
MOEA/D-DE and SMPSO implementations where taken from the jMetal frame-
work (jmetal.sourceforge.net/v.2.2), all with archive sizes of 100 and other
parameters were set as defined in the CEC2009 paper for MOEA/D [30] or as
default in JMetal.

4.1 Investigating MOPC on the DEB2 Problem

Table 1 gives means and standard deviations of hypervolume, spread and IGD
on DEB2. MOPC and SMPSO outperform MOEA/D and NSGAII, approaching
the maximum achievable hypervolume (0.82628), while MOEA/D and NSGAII
seem prone to fall into the local minima at x2 ≈ 0.6. But, SMPSO achieves
better spread than MOPC. Recall that MOPC uses the maximin function and
hence should prompt a more uniform spread. To explore this, Figure 1 shows
the results of single runs of MOPC and NSGAII. MOPC finds the Pareto set in
the small region x2 ≈ 0.2, and its dynamics can be seen in Figure 2, showing
the evolution of the parametric distribution after 1, 10, 20 and 35 (the final)
generations.

Initially centred (by definition of the algorithm), from 10 to 20 iterations the
distribution slides to the left and down towards the local minima (of weakly non-
dominated solutions) where x1 = 0.1 and x2 = 0.6. Over time, it focuses in two
areas where x2 is approx. 0.2 and along the entire length of x1, which corresponds
to the Pareto set, and the area of weakly non-dominated solutions where x1 is
0.1. This attraction to weakly non-dominated solutions stymies progression of

Table 1. Comparison between MOPC, NSGAII and MOEAD on the DEB2 problem

Measure MOPC MOEA/D-DE[15] NSGAII[8] SMPSO[21]
HV 0.81956 (0.00317) 0.73897 (0.08384) 0.77543 (0.07794) 0.82331 (0.00003)
IGD 0.05354 (0.04774) 0.15857 (0.13238) 0.09122 (0.12665) 0.01161 (0.00006)

SPREAD 0.43821 (0.15238) 0.87355 (0.14272) 0.44967 (0.08857) 0.10700 (0.01550)

Fig. 1. Decision and objective space for MOPC results on DEB2

Multi-Objective Probability Collectives 467

Fig. 2. Parametric distributions of qθ during optimisation of the DEB2 at iterations 1,
10, 20 and 35

this part of the Pareto set (this can be seen in Figure 1 (b) where the solutions
do not exactly match the benchmark set between 0.1 and 0.2).

Overall, the results show that MOPC can find the Pareto set in a small area
of the decision space when local minimum exist. Also, MOPC outperforms the
MOEA/D and NSGAII implementations tested, but an attraction to weakly non-
dominated regions may compromise performance on higher dimensional prob-
lems. To investigate this concern, the next section presents experimental results
on 30-dimensional problems taken from the CEC 2009 competition [31].

4.2 MOPC Performance on the CEC 2009 Problems

Again, our comparative algorithms are SMPSO [21], MOEA/D [15] and NSGA-II
[8]; these are respectvely: an exemplar of the high-performing family of MOEAs
based on particle swarm optimisation, the (arguably) state of the art MOEA/D
in terms of performance (also an exemplar of the approach to MOO of performing
simultaneous single-objective searches in different ‘directions’, and, finally, the
well known accepted benchmark method for MOEAs. They are compared in
terms of the IGD metric, which measures the distance from the known Pareto
front of the problem in hand. Though not ideal as a comparison metric on MOO
[12], this was the chosen metric for the CEC 2009 competition.

468 A. Waldock and D. Corne

Table 2. Comparison of IGD for MOPC, MOEAD, NSGAII and SMPSO on CEC2009

Problem MOPC MOEA/D-DE[15] NSGAII[8] SMPSO[21]
UF1 0.02417 (0.00355) 0.00855 (0.01438) 0.08803 (0.02916) 0.06279 (0.00663)
UF2 0.03857 (0.00147) 0.03397 (0.00038) 0.03831 (0.00102) 0.04393 (0.00157)
UF3 0.17403 (0.01925) 0.01467 (0.01238) 0.15237 (0.03909) 0.12459 (0.03697)
UF4 0.11505 (0.00605) 0.08440 (0.01070) 0.08314 (0.00356) 0.10830 (0.00463)
UF5 0.50165 (0.02940) 0.73351 (0.11537) 0.37613 (0.07276) 0.74538 (0.15191)
UF6 0.11150 (0.01554) 0.11250 (0.05029) 0.12647 (0.05887) 0.33251 (0.03695)
UF7 0.05208 (0.00297) 0.03880 (0.00020) 0.04878 (0.00280) 0.04810 (0.00139)
UF8 0.36911 (0.01215) 0.39651 (0.10624) 0.15329 (0.00682) 0.23546 (0.01406)
UF9 0.15139 (0.00443) 0.39029 (0.03152) 0.17136 (0.01193) 0.18704 (0.02434)
UF10 0.44892 (0.01813) 0.71918 (0.17908) 0.29066 (0.03195) 0.28438 (0.02143)

The results in Table 2 were produced using the JMetal implementations. We
observed that the IGD metric in JMetal was different from that used in the CEC
competition, and we note there are several other differences between the jMetal
implementation of MOEA/D to the one used in the CEC 2009 competition[30],
so, we do not compare our results with those published for the CEC 2009 com-
petition, and consider instead a self-contained comparison among the algorithms
described herein.

A broad analysis considering the mean IGD values (lower is better), finds that
none of the four algorithms clearly dominates the others. When we consider mean
rank of performance over the 10 cases, where 1 is best and 4 is worst, these are
respectively 2.2, 2.3, 2.7 and 2.8 for NSGA-II, MOEA/D, MOPC and SMPSO,
however this obscures a wide variation in relative performance, Focusing on
MOPC, we find its mean is better than MOEA/D in 4 of the 10 cases, better
than NSGA-II in 3 of the 10, and better than SMPSO in 5 of the 10. Finally we
note there was no attempt to optimise or understand the parameters of MOPC
in this initial study.

As a preliminary approach to MOO within the PC framework, it is clear that
MOPC indicates some promise for this line of research, showing an ability to
outperform, at least in a minority of cases, state of the art MOEAs.

5 Conclusions, Discussion and Future Work

We presented MOPC, a first attempt to design a MOO algorithm within the PC
framework. First we explored MOPC on the hard but low-dimensional DEB2
problem, finding that it could approximate the Pareto set well, outperforming
NSGAII and MOEA/D, but bettered by SMPSO. We attributed the gap between
MOPC and SMPSO to the minimax fitness function, which does not differentiate
ideally in the relative selection pressure towards strongly and weakly dominated
areas of objective space. On the CEC 2009 problems, MOPC remained promis-
ing, outperforming each comparative methods on at least some of the problems.
Considering that MOPC is a first approach to MOO within the PC framework,

Multi-Objective Probability Collectives 469

it is clear that its competitive performance against state of the art MOEAs
indicates some promise for the PC strategy in multi-objective optimisation.

Regarding future work, it seems plausible that an approach based on decom-
position (as in MOEA/D), is likely to perform well within the PC framework. For
example, MOEA/D pursues several single objective optimisation in several well-
spread ‘directions’ at once, where a direction corresponds to a specific weighted
sum of the original objectives; this can be done in the PC framework by mapping
each such direction to a separate PC-based single-objective optimization. A re-
lated highly promising direction is the incorporation of local search, whereby PC
provides the global search strategy, but each sample is locally optimzed before
the distributions are updated. Finally, a further promising thread is to extend the
parametric representation used here to a more complex representation (such as
mixtures of multivariate Gaussians) to allow a greater diversity of distributions
to be modelled by a single particle.

Acknowledgments

Funded by the Systems Eng. for Autonomous Systems (SEAS) Defence Tech.
Centre (DTC). Patent pending - UK application no. 0919343.4.

References

1. Bentley, P., Wakefield, J.: Finding acceptable solutions in the Pareto-optimal range
using multiobjective genetic algorithms. Springer, Heidelberg (1997)

2. Bieniawski, S.: Distributed Optimization and Flight Control Using Collectives.
Thesis, Stanford University (2005)

3. Bieniawski, S., Kroo, I., Wolpert, D.: Discrete, continuous, and constrained opti-
mization using collectives. In: Proc. 10th AIAA/ISSMO M.A.O. Conf., NY (2004)

4. Corne, D., Deb, K., Fleming, P., Knowles, J.: The good of the many outweighs the
good of the one. Evol. mult. opt. coNNectionS 1(1), 9–13 (2003)

5. Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: Some
nondominated points are better than others. In: Proc. GECCO 2007 (2007)

6. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction
of test problems. Evolutionary Computation 7, 205–230 (1999)

7. Deb, K.: Multi-Objective Optimization Using EAs. John Wiley and Sons Inc.,
Chichester (2002)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: Nsga-ii. IEEE Trans on Evol. Comp. 6, 182–197 (2000)

9. Huang, C., Bieniawski, S., Wolpert, D., Strauss, C.: A comparative study of prob.
collectives based multi-agent systems and gas. In: GECCO (June 2005)

10. Jaskiewicz, A.: On the perf. of multiple objective genetic local search on the 0/1
knapsack problem: a comparative exp. IEEE Trans. E.C. 6(4), 402–412 (2002)

11. de Jong, E., Watson, R., Pollack, J.: Reducing bloat and promoting diversity using
multi-objective methods. In: GECCO, pp. 11–18. MK (2001)

12. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proc.
2002 Congress on Evolutionary Computation, pp. 711–716 (2002)

470 A. Waldock and D. Corne

13. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math.
Statist. 22(1), 79–86 (1951)

14. Kuo, T., Hwang, S.Y.: Using disruptive selection to maintain diversity in genetic
algorithms. Applied Intelligence, 257–267

15. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, moea/d and nsgaii. IEEE Trans. Evolutionary Computation (2008)

16. Li, H., Zhang, Q.: Multiobjective Optimization Problems With Complicated Pareto
Sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comp. 13(2), 229–242 (2009)

17. Li, X.: Better spread and convergence: Particle swarm multiobjective optimization
using the maximin fitness function. In: Deb, K., et al. (eds.) GECCO 2004. LNCS,
vol. 3102, pp. 117–128. Springer, Heidelberg (2004)

18. Macready, W., Wolpert, D.H.: Distributed optimization. In: International Confer-
ence on Complex Systems, Boston, MA (May 2004)

19. Morrison, J., Oppacher, F.: Maintaining genetic diversity in genetic algorithms
through co-evolution. In: Mercer, R.E. (ed.) Canadian AI 1998. LNCS, vol. 1418,
pp. 128–138. Springer, Heidelberg (1998)

20. Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective
particle swarm optimization (mopso). In: Proc. of 2008 IEEE Swarm Intelligence
Symposium, pp. 26–33. IEEE Service Center, Los Alamitos (2008)

21. Nebro, A., Durillo, J., Garćıa-Nieto, J., Coello Coello, C., Luna, F., Alba, E.:
Smpso: A new pso-based metaheuristic for multi-objective optimization. In: 2009
IEEE Symp. on MCDM, pp. 66–73. IEEE, Los Alamitos (2009)

22. Rajnarayan, D., Wolpert, D.H., Kroo, I.: Optimization under uncertainty using
probability collectives. In: 10th AIAA/ISSMO M.A.O. Conf. (2006)

23. Shore, J., Johnson, R.: Properties of cross-entropy minimization. IEEE Transac-
tions on Information Theory 27(4), 472–482 (1981)

24. Sierra, M.R., Coello, C.A.C.: Improving PSO-based multi-objective optimization
using crowding, mutation and ε-dominance. In: Coello Coello, C.A., Hernández
Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer,
Heidelberg (2005)

25. Waldock, A., Nicholson, D.: Cooperative decentralised data fusion using probability
collectives. In: ATSN 2007, at AAMAS 2007, pp. 47–54 (2007)

26. Wolpert, D.H.: Information Theory - the bridge connecting bounded rational game
theory and statistical physics (2004)

27. Wolpert, D., Strauss, C., Rajnarayan, D.: Advances in distributed optimization
using probability collectives. Advances in Complex Systems 9 (2006)

28. Wolpert, D.: Collective intelligence. In: Fogel, D., Robinson, D. (eds.) Computa-
tional Intelligence Beyond 2001: Real and Imagined. Wiley, Chichester (2001)

29. Wolpert, D., Bieniawski, S.: Distributed control by lagrangian steepest descent. In:
Proc. 43rd IEEE Conf. on Decision and Control, pp. 1562–1567 (2004)

30. Zhang, Q., Liu, W., Li, H.: The performance of a new version of moea/d on cec09
unconstrained mop test instances. In: CEC 2009: Proceedings of the Eleventh con-
ference on Congress on Evolutionary Computation, pp. 203–208. Institute of Elec-
trical and Electronics Engineers Inc. (2009)

31. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., Tiwari, S.: MOO test inst.
for CEC 09 spec. session and comp. Tech. Rep. CES-887, U. Essex and NTU (2008)

32. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

Parallel Random Injection Differential
Evolution�

Matthieu Weber, Ferrante Neri, and Ville Tirronen

Department of Mathematical Information Technology,
University of Jyväskylä, P.O. Box 35 (Agora), FI-40014, Finland

{matthieu.weber,ferrante.neri,ville.tirronen}@jyu.fi

Abstract. This paper proposes the introduction of a generator of ran-
dom individuals within the ring topology of a Parallel Differential Evo-
lution algorithm. The generated random individuals are then injected
within a sub-population. A crucial point in the proposed study is that a
proper balance between migration and random injection can determine
the success of a distributed Differential Evolution scheme. An experimen-
tal study of this balance is carried out in this paper. Numerical results
show that the proposed Parallel Random Injection Differential Evolution
seems to be a simple, robust, and efficient algorithm which can be used
for various applications. An important finding of this paper is that pre-
mature convergence problems due to an excessively frequent migration
can be overcome by the injection of random individuals. In this way, the
resulting algorithm maintains the high convergence speed properties of
a parallel algorithm with high migration but differs in that it is able to
continue improving upon the available genotypes and detect high quality
solutions.

1 Introduction

Differential Evolution (DE), see [1], is a versatile optimizer which has shown
high performance in several applications, especially continuous problems, for ex-
ample [2]. As highlighted in [3], the success of DE is contained in its implicit
self-adaptation which allows an extensive domain exploration during early stages
of the evolution and a progressive narrowing of the search within the most promis-
ing areas of the decision space. Although this mechanism is effective, it conceals
a drawback: the DE contains a limited amount of search moves which could
cause the population to fail at enhancing upon the available genotypes, thus
resulting in a stagnation condition. In order to overcome this drawback, com-
puter scientists in recent years have attempted to improve the DE performance
by modifying the basic DE. Some popular examples of this scientific trend are
contained in [4] where multiple search logics are employed, in [5] where the off-
spring are generated by combining two mating pools (one global and one local,
� This research is supported by the Academy of Finland, Akatemiatutkija 130600,

Algorithmic Design Issues in Memetic Computing.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 471–480, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

472 M. Weber, F. Neri, and V. Tirronen

respectively), and in [6] where a randomization of the parameters increases the
variability of the potential search moves.

Another popular way to enhance the DE performance is through employment
of structured populations. In [7] a distributed DE scheme employing a ring topol-
ogy (the cores are interconnected in a circle and the migrations occur following
the ring) has been proposed for the training of a neural network. In [8], an ex-
ample of DE parallelization is given for a medical imaging application. A few
famous examples of distributed DE are presented in [9] and [10]; in these pa-
pers the migration mechanism and the algorithmic parameters are adaptively
coordinated according to criterion based on genotypical diversity. In paper [9], a
distributed DE that preserves diversity in the niches is proposed in order to solve
multi-modal optimization problems. In [11], a distributed DE characterized by
a ring topology and the migration of individuals with the best performance, to
replace random individuals of the neighbor sub-population, has been proposed.
Following similar logic, paper [12] proposes a distributed DE where the compu-
tational cores are arranged according to a ring topology and, during migration,
the best individual of a sub-population replaces the oldest member of the neigh-
boring population. In [13] a distributed DE has been designed for the image
registration problem. In these papers, a computational core acts as a master
by collecting the best individuals detected by the various sub-populations run-
ning in slave cores. The slave cores are connected in a grid and a migration is
arranged among neighbor sub-populations. In [14], a distributed DE which mod-
ifies the scheme proposed in [11] has been presented. In [14], the migration is
based on a probabilistic criterion depending on five parameters. It is worthwhile
mentioning that some parallel implementations of sequential (without structured
population) DE are also available in literature, see [15]. An investigation of DE
parallelization is given in [16].

This paper focuses on distributed DE and in particular on the ring topology
scheme presented in [11]. The main novelty in Parallel Differential Evolution
(PDE) described in [11] consists of the migration scheme and its related prob-
ability: the DE is independently performed on each sub-population composing
the ring and, at the end of each generation, with a certain probability the indi-
vidual with the best performance is copied in the neighbor sub-population and
replaces a randomly selected individual from the target sub-population. In [11] a
compromise value of migration probability is proposed. In this paper we propose
a novel algorithm based on PDE, namely Parallel Random Injection Differential
Evolution (PRIDE). The PRIDE algorithm includes within the ring topology a
random generator of candidate solutions: at the end of each generation a random
individual replaces a randomly selected individual from a sub-population of the
ring topology. This simple mechanism, if properly used, can have a major impact
on the algorithmic performance of the original PDE scheme. In addition, the re-
sulting effect of migration (with its probability levels) and random injection is a
very interesting topic and has thus been analyzed in this paper.

The remainder of this article is organized in the following way. Section 2
describes the working principles of DE, PDE and PRIDE. Section 3 shows the

Parallel Random Injection Differential Evolution 473

experimental setup and numerical results of the present study. Section 4 gives
the conclusions of this paper.

2 Parallel Random Injection Differential Evolution

In order to clarify the notation used throughout this chapter we refer to the
minimization problem of an objective function f (x), where x is a vector of n
design variables in a decision space D.

At the beginning of the optimization process Spop individuals are pseudo-
randomly sampled with a uniform distribution function within the decision space
D (for simplicity, the term random will be used instead of pseudo-random in the
reminder of this paper). The Spop individuals constituting the populations are
distributed over them sub-populations composing the ring. Each sub-population
is composed of Spop

m individuals.
Within each sub-population a standard DE, following its original definition,

is performed. At each generation, for each individual xi of the Spop, three indi-
viduals xr, xs and xt are randomly extracted from the population. According to
the DE logic, a provisional offspring x′off is generated by mutation as:

x′off = xt + F (xr − xs) (1)

where F ∈ [0, 1+[is a scale factor which controls the length of the exploration
vector (xr − xs) and thus determines how far from point xi the offspring should
be generated. With F ∈ [0, 1+[, it is meant here that the scale factor should be
a positive value which cannot be much greater than 1, see [1]. While there is no
theoretical upper limit for F , effective values are rarely greater than 1.0. The
mutation scheme shown in Equation (1) is also known as DE/rand/1. It is worth
mentioning that there exist many other mutation variants, see [4].

When the provisional offspring has been generated by mutation, each gene
of the individual x′off is exchanged with the corresponding gene of xi with a
uniform probability and the final offspring xoff is generated:

xoff ,j =
{
xoff ,j if rand (0, 1) ≤ CR
x′i,j otherwise

(2)

where rand (0, 1) is a random number between 0 and 1; j is the index of the gene
under examination.

The resulting offspring xoff is evaluated and, according to a one-to-one spawn-
ing strategy, it replaces xi if and only if f(xoff) ≤ f(xi); otherwise no replace-
ment occurs. It must be remarked that although the replacement indexes are
saved one by one during generation, actual replacements occur all at once at the
end of the generation.

According to its original implementation, PDE uses the Parallel Virtual Ma-
chine (PVM), allowing multiple computers (called nodes) to be organized as a
cluster and exchange arbitrary messages. PDE is organized around one master
node and m sub-populations running each on one node, and organized as a uni-
directional ring. It must be noted that although the logical topology is a ring

474 M. Weber, F. Neri, and V. Tirronen

which does not contain the master node, the actual topology is a star, where
all communications (i.e., the migrations of individuals) are passing through the
master.

Each sub-population runs a regular DE algorithm while the master node co-
ordinates the migration of individuals between sub-populations. On each gener-
ation, the sub-population has a given probability φ to send a copy of its best
individual to its next neighbor sub-population in the ring. When migration oc-
curs, the migrating individual replaces a randomly selected individual belonging
to the target sub-population.

The PRIDE introduces an apparently minor modification to the PDE scheme.
At the end of each generation, according to a certan probability ψ a random
individual is generated and inserted within a randomly selected sub-population
by replacing a randomly selected individual. However, the replacement cannot
involve the individual with the best performance in that sub-population, which
is saved in an elitist fashion. For the sake of clarity a scheme highlighting the
working principles of PRIDE is shown in Figure 1.

Migrate xbest with a φ probability

Inject a random new individual with a ψ
probability to a randomly selected
sub-population

Random
individual
generator

Sub-population

Fig. 1. Working principle of the Parallel Ran-
dom Injection Differential Evolution

In order to understand the
rationale behind the proposed
mechanism, it is important to
analyze the concept of paral-
lelism and migration in a PDE
scheme. As highlighted above,
in panmictic DE, stagnation oc-
curs when the algorithm does
not manage to improve upon
any solution of its population for
a prolonged number of genera-
tions. In other words, for each
stage of the optimization pro-
cess, DE can generate a limited
amount of exploratory moves. If
these moves are not enough for
generating new promising solu-
tions, the search can be heavily
compromised.

Thus, in order to enhance the DE performance, alternative search moves
should support the original scheme and promote a successful continuation of
the optimization process. The use of multiple populations in distributed DE algo-
rithms allows an observation of the decision space from various perspectives and,
most importantly, decreases the risk of stagnation since each sub-population im-
poses a high exploitation pressure. In addition, the migration mechanism ensures
that solutions with a high performance are included within the sub-populations
during their evolution. This fact is equivalent to modifying the set of search
moves. If the migration privileges the best solutions, the new search moves pro-
mote detection of new promising search directions and thus allow the DE search

Parallel Random Injection Differential Evolution 475

structure to be periodically “refurbished”. Thus, the migration is supposed to
mitigate risk of stagnation of the DE sub-populations and to enhance global
algorithmic performance.

Migration in PDE has a very interesting effect. Low migration probability val-
ues (low values of φ) make the algorithm rather explorative, i.e. the PDE slowly
improves upon the available solutions and eventually detects individuals charac-
terized by a (relatively) high performance. On the other hand, high migration
probability values produce very quick improvements during the early stages of
the optimization but eventually cause a premature convergence. The final values
detected in these cases may likely have an unsatisfactory performance. This fact
can be easily explained as the consequence of a diversity loss due to a high mi-
gration: the best individuals are too often copied into the target sub-populations
thus causing an excessively aggressive/exploitative algorithmic behavior. In or-
der to obtain an algorithm which produces high quality results with a reasonably
good convergence speed, in [11] a compromise on the φ value (subsequent to a
tuning) has been implemented.

This paper proposes the idea of making use of the highly exploitative behavior
of a PDE with a high migration probability, but to inhibit premature convergence
by including new genotypes within the ring structure. The algorithmic philoso-
phy employed here is a balance between two opposite and conflicting actions: the
migration exploits available search directions by promoting quick improvements
upon available genotypes (φ action) while the random injection mechanism is
supposed to generate completely new genotypes which assist the PDE framework
in testing novel promising search directions (ψ action) thus avoiding diversity
loss. Analogous to the balance between exploration and exploitation in Evolu-
tionary Algorithms, a proper balance between φ and ψ actions determine the
success of the proposed PRIDE algorithm.

3 Experimental Results

The test problems listed in Table 1 have been considered in this study.
The rotated version of some of the test problems listed in Table 1 have been

included into the benchmark set. These rotated problems have been generated
through the multiplication of the vector of variables by a sparse orthogonal ro-
tation matrix, created by composing n rotations of random angles (uniformly
sampled in [−π, π]), one around each of the n axes of the search space. The
boundaries of rotated problems are kept the same as for the non-rotated prob-
lems. In total, ten test problems have been considered in this study with n = 500.
The choice of the relatively high dimensionality for the test problems in this study
is due to the fact that the advantages of PDE-based algorithms with respect to
panmictic DE is not evident for low dimensional problems, see [17].

In order to prove the effectiveness of the random injection and its relation-
ship with the migration constant, for each test problem the PDE and PRIDE
algorithms have been run with φ equal to 0.2 (suggested value in [11]), 0.5, and
1 respectively. On the basis of a preliminary tuning, we decided to set ψ = 1

476 M. Weber, F. Neri, and V. Tirronen

Table 1. Test Problems

Test
Problem

Function Decision Space Features

Ackley
−20 + e+ 20 exp

(
− 0.2
n

√∑n

i=1
x2
i

)
− exp
(

1
n

∑n

i=1
cos(2π · xi)xi

) [−1, 1]n multimodal,
non-separable

Alpine
∑n

i=1
|xi sin xi + 0.1xi| [−10, 10]n multimodal,

separable

DeJong’s
Sphere ‖x‖2 [−5.12, 5.12]n unimodal,

separable

Michalewicz −
∑
n

i=1
sin xi
(

sin
(
i·x2
i
π

))20
[0, π]n multimodal,

separable

Rastrigin 10n+
∑
n

i=0

(
x2
i − 10 cos(2πxi)

)
[−5.12, 5.12]n multimodal,

separable

Schwefel −
∑
n

i=1
xi sin
(√

|xi|
)

[−500, 500]n multimodal,
separable

for all the versions of PRIDE contained in this paper. All the algorithms in
this study have been run with populations of 200 individuals divided into 5 sub-
populations of 40 individuals each. Regarding scale factor and crossover rate,
F has been set equal to 0.7 and CR equal to 0.1 for all the algorithms in this
study. Each algorithm has undergone 50 independent runs for each test problem;
rotated problems have been rotated using the same matrix on each run. Each
single run has been performed for 500, 000 fitness evaluations.

Table 2 shows the average of the final results detected by each algorithm ± the
standard deviations, with the 500 dimension case. Results are organized in PDE
vs PRIDE pairs. The best results of each pairwise comparison are highlighted
in bold face. The best overall results for each problem are also underlined. With
the notation PDE-φ and PRIDE-φ we mean the PDE and PRIDE algorithms,
respectively, running with the corresponding φ value. In order to prove statis-
tical significance of the results, the Wilcoxon Rank-sum test has been applied
according to the description given in [18] for a confidence level of 0.95. Table 3
shows results of the test. A “+” indicates the case in which PRIDE statistically
outperforms its corresponding PDE variant; a “=” indicates that a pairwise com-
parison leads to success of the Wilcoxon test, i.e., the two algorithms have the
same performance; a “-” indicates that PRIDE is outperformed. In order to carry
out a numerical comparison of the convergence speed performance for each test
problem, the average final fitness value returned by the best performing algo-
rithm (of each pair PDE vs PRIDE under consideration) G has been considered.
Subsequently, the average fitness value at the beginning of the optimization pro-
cess J has also been computed. The threshold value THR = J −0.95(J−G) has
then been calculated. The value THR represents 95% of the decay in the fitness
value of the algorithm displaying the best performance. If during a certain run
an algorithm succeeds in reaching the value THR, the run is said to be successful.
For each test problem, the average amount of fitness evaluations n̄e required for
each algorithm to reach THR has been computed. Subsequently, the Q-test (Q

Parallel Random Injection Differential Evolution 477

Table 2. Fitness ± standard deviation

PDE-0.2 PRIDE-0.2 PDE-0.5
Ackley 1.62e− 01± 1.67e− 02 2.86e− 01± 1.92e− 02 1.31e− 01± 5.49e− 02
Alpine 8.88e + 01± 1.26e + 01 1.22e + 02± 1.36e+ 01 8.45e+ 01± 1.64e + 01
DeJong’s Sphere 1.92e + 01± 3.57e + 00 4.82e + 01± 6.00e+ 00 1.17e + 01±5.17e + 00
Michalewicz −3.06e + 02± 5.68e + 00 −2.95e + 02± 6.50e+ 00 −2.86e+ 02± 9.56e + 00
Rastrigin 1.91e + 03± 9.94e + 01 1.92e + 03± 9.04e+ 01 2.24e+ 03± 1.60e + 02
Schwefel −1.30e + 05± 3.17e+ 03 −1.32e + 05± 2.35e + 03 −1.23e+ 05± 4.11e + 03
Rt. Ackley 2.15e− 01± 2.50e− 02 3.67e− 01± 3.33e− 02 1.72e− 01±5.72e− 02
Rt. Michalewicz −1.76e + 02± 7.76e + 00 −1.76e + 02± 5.86e+ 00 −1.52e+ 02± 7.48e + 00
Rt. Rastrigin 1.95e + 03± 1.51e + 02 2.09e + 03± 1.06e+ 02 2.34e+ 03± 1.96e + 02
Rt. Schwefel −1.65e + 05± 4.74e+ 03 −1.65e + 05± 4.78e + 03 −1.53e+ 05± 6.10e + 03

PRIDE-0.5 PDE-1.0 PRIDE-1.0
Ackley 1.24e− 01±1.17e− 02 2.80e− 01± 9.08e− 02 9.99e− 02±1.10e− 02
Alpine 5.56e + 01±7.21e + 00 1.59e + 02± 2.47e + 01 4.08e + 01±5.34e + 00
DeJong’s Sphere 1.32e + 01± 2.35e+ 00 4.85e + 01± 1.89e + 01 8.41e + 00±1.70e + 00
Michalewicz −3.55e + 02±5.45e + 00 −2.56e + 02± 9.29e + 00 −3.83e + 02±4.21e + 00
Rastrigin 1.40e + 03±7.85e + 01 2.82e + 03± 1.88e + 02 1.17e + 03±6.07e + 01
Schwefel −1.48e + 05±1.94e + 03 −1.12e + 05± 4.54e + 03 −1.57e + 05±1.86e + 03
Rt. Ackley 1.95e− 01± 2.66e− 02 3.11e− 01± 8.27e− 02 1.65e− 01±2.40e− 02
Rt. Michalewicz −2.09e + 02±4.57e + 00 −1.34e + 02± 7.50e + 00 −2.24e + 02±4.47e + 00
Rt. Rastrigin 1.67e + 03±9.08e + 01 2.95e + 03± 2.32e + 02 1.51e + 03±6.93e + 01
Rt. Schwefel −1.71e + 05±4.55e + 03 −1.36e + 05± 6.61e + 03 −1.74e + 05±4.35e + 03

Table 3. Wilcoxon Rank-Sum test (PDE vs. corresponding PRIDE)

PDE-0.2 PDE-0.5 PDE-1.0
Ackley - = +
Alpine - + +
DeJong’s Sphere - - +
Michalewicz - + +
Rastrigin = + +
Schwefel + + +
Rt. Ackley - - +
Rt. Michalewicz = + +
Rt. Rastrigin - + +
Rt. Schwefel = + +

stands for Quality) described in [3] has been applied. For each test problem and
each algorithm, the Q measure is computed as Q = n̄e

R where the robustness R
is the percentage of successful runs. It is clear that, for each test problem, the
smallest value equals the best performance in terms of convergence speed. The
value “∞” means that R = 0, i.e., the algorithm never reached the THR. Results
of the Q-test are given in Table 4. Best results are highlighted in bold face.

Results can be analyzed from two complementary perspectives: by considering
the pairwise comparisons for fixed values of migration constant φ and by con-
sidering the entire experimental setup. By analyzing the pairwise comparisons,
it is clear that in the case φ = 0.2 the random injection does not lead to any
improvement; on the contrary in most cases it leads to a worsening of the algo-
rithmic performance and a slowdown in the convergence. In the case φ = 0.5,

478 M. Weber, F. Neri, and V. Tirronen

Table 4. Q-test

PDE-0.2 PRIDE-0.2 PDE-0.5 PRIDE-0.5 PDE-1.0 PRIDE-1.0
Ackley 3.75e+03 4.59e+03 3.43e+03 3.29e+03 7.19e+03 3.05e+03
Alpine 3.84e+03 4.74e+03 3.33e+03 3.22e+03 ∞ 2.93e+03
DeJong’s Sphere 2.28e+03 2.82e+03 1.69e+03 1.92e+03 1.75e+03 1.63e+03
Michalewicz 4.36e+03 8.51e+03 ∞ 4.39e+03 ∞ 4.25e+03
Rastrigin 3.74e+03 4.18e+03 ∞ 3.64e+03 ∞ 3.61e+03
Schwefel 4.27e+03 4.30e+03 ∞ 4.02e+03 ∞ 4.03e+03
Rt. Ackley 3.79e+03 5.79e+03 3.40e+03 3.70e+03 5.60e+03 3.39e+03
Rt. Michalewicz 4.57e+03 4.84e+03 ∞ 4.30e+03 ∞ 4.19e+03
Rt. Rastrigin 3.87e+03 4.60e+03 6.44e+04 3.61e+03 ∞ 3.49e+03
Rt. Schwefel 4.06e+03 4.43e+03 4.73e+04 3.91e+03 ∞ 3.92e+03

-160000
-140000
-120000
-100000
-80000
-60000
-40000
-20000

 0

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE-0.2
PDE-0.5
PDE-1.0

PRIDE-0.2
PRIDE-0.5
PRIDE-1.0

(a)

-160000
-140000
-120000
-100000
-80000
-60000
-40000
-20000

 0

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE-0.2
PRIDE-1.0

(b)

Fig. 2. Performance trend (Schwefel)

employment of random injection is advisable since it succeeds at improving upon
the PDE performance in seven cases out of the ten considered in this study. How-
ever, not in all cases is this extra component beneficial. Finally in the case φ = 1,
there is a clear benefit in the employment of random injection in terms of both
final results and convergence speed. In particular Q-test results show that the
PDE algorithm in the comparison PDE-1.0 vs PRIDE-1.0 displays many∞ val-
ues, i.e. it is not competitive with respect to its PRIDE variant. This fact can
be seen as a confirmation that the introduction of novel (random) individuals
within the ring topology can be an efficient countermeasure against premature
convergence.

An analysis of the entire experimental setup shows that the PRIDE with
φ = ψ = 1 is a very efficient algorithm which outperforms (at least for those
tests carried out in this paper) all the other algorithms in this study, in par-
ticular the PDE with its most promising parameter tuning (φ = 0.2). More
specifically the PRIDE, analogous to the PDE-1.0, tends to reach improvements
very quickly during early stages of the evolution, but instead of converging pre-
maturely continues generating solutions with a high performance and eventually
detects good results. According to our interpretation, this algorithmic behavior
is due to an efficient balance in the exploitation of promising search directions
resulting from the frequent migrations and testing of unexplored areas of the de-
cision space resulting from the random injections. Both these components within

Parallel Random Injection Differential Evolution 479

a DE structure seem to compensate for the lack of potential search moves and
the stagnation inconvenience.

For sake of clarity an example of the performance trend is shown in Figure 2(a).
In order to highlight the benefit of random injection, the trend of the average
fitness ± standard deviation is shown in Figure 2(b).

4 Conclusion

This paper proposes the generation of random solutions during the evolution
of a Parallel Differential Evolution algorithm previously proposed in literature.
These random solutions are intended to propose new promising search directions
to the sub-populations during the optimization process. An analysis of the algo-
rithmic performance, dependant on the value of migration probability, has been
carried out. Experimental results show that while random injections do not lead
to benefits for low values of migration probabilities, they could be extremely
beneficial in conjunction with high migration probabilities. In particular, an al-
gorithm combining frequent migrations and random injections seems very robust
and efficient for various problems and seems to outperform the original Parallel
Differential Evolution regardless of its parameter setting. An important finding
of this research is the relationship between high migration and random injections
which can be seen as parametrization, in relation to Parallel Differential Evolu-
tion, of the general concept of balance between exploration and exploitation in
Evolutionary Computation.

References

1. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach
to Global Optimization. Springer, Heidelberg (2005)

2. Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An enhanced memetic
differential evolution in filter design for defect detection in paper production. Evo-
lutionary Computation 16, 529–555 (2008)

3. Feoktistov, V.: Differential Evolution in Search of Solutions, pp. 83–86. Springer,
Heidelberg (2006)

4. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Transactions on Evo-
lutionary Computation 13, 398–417 (2009)

5. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution with a
neighborhood-based mutation operator. IEEE Transactions on Evolutionary Com-
putation 13(3), 526–553 (2009)

6. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

7. Kwedlo, W., Bandurski, K.: A parallel differential evolution algorithm. In: Proceed-
ings of the IEEE International Symposium on Parallel Computing in Electrical
Engineering, pp. 319–324 (2006)

480 M. Weber, F. Neri, and V. Tirronen

8. Salomon, M., Perrin, G.R., Heitz, F., Armspach, J.P.: Parallel differential evolu-
tion: Application to 3-d medical image registration. In: Price, K.V., Storn, R.M.,
Lampinen, J.A. (eds.) Differential Evolution–A Practical Approach to Global Op-
timization. Natural Computing Series, pp. 353–411. Springer, Heidelberg (2005)

9. Zaharie, D.: Parameter adaptation in differential evolution by controlling the pop-
ulation diversity. In: Petcu, D., et al. (eds.) Proceedings of the International Work-
shop on Symbolic and Numeric Algorithms for Scientific Computing, pp. 385–397
(2002)

10. Zaharie, D., Petcu, D.: Parallel implementation of multi-population differential
evolution. In: Proceedings of the NATO Advanced Research Workshop on Concur-
rent Information Processing and Computing, pp. 223–232. IOS Press, Amsterdam
(2003)

11. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differen-
tial evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 2023–2029 (2004)

12. Kozlov, K.N., Samsonov, A.M.: New migration scheme for parallel differential evolu-
tion. In: Proceedings of the International Conference on Bioinformatics of Genome
Regulation and Structure, pp. 141–144 (2006)

13. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Satellite image
registration by distributed differential evolution. In: Giacobini, M. (ed.) EvoWork-
shops 2007. LNCS, vol. 4448, pp. 251–260. Springer, Heidelberg (2007)

14. Apolloni, J., Leguizamón, G., García-Nieto, J., Alba, E.: Island based distributed
differential evolution: An experimental study on hybrid testbeds. In: Proceedings
of the IEEE International Conference on Hybrid Intelligent Systems, pp. 696–701
(2008)

15. Nipteni, M.S., Valakos, I., Nikolos, I.: An asynchronous parallel differential evolu-
tion algorithm. In: Proceedings of the ERCOFTAC Conference on Design Optimi-
sation: Methods and Application (2006)

16. Lampinen, J.: Differential evolution - new naturally parallel approach for engi-
neering design optimization. In: Topping, B.H. (ed.) Developments in Computa-
tional Mechanics with High Performance Computing, pp. 217–228. Civil-Comp
Press (1999)

17. Weber, M., Neri, F., Tirronen, V.: Distributed differential evolution with
explorative-exploitative population families. Genetic Programming and Evolvable
Machines 10(4), 343–371 (2009)

18. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bul-
letin 1(6), 80–83 (1945)

Effect of Spatial Locality on an Evolutionary Algorithm
for Multimodal Optimization

Ka-Chun Wong, Kwong-Sak Leung, and Man-Hon Wong

Department of Computer Science & Engineering
The Chinese University of Hong Kong, HKSAR, China
{kcwong,ksleung,mhwong}@cse.cuhk.edu.hk

Abstract. To explore the effect of spatial locality, crowding differential evolu-
tion is incorporated with spatial locality for multimodal optimization. Instead of
random trial vector generations, it takes advantages of spatial locality to generate
fitter trial vectors. Experiments were conducted to compare the proposed algo-
rithm (CrowdingDE-L) with the state-of-the-art algorithms. Further experiments
were also conducted on a real world problem. The experimental results indicate
that CrowdingDE-L has a competitive edge over the other algorithms tested.

1 Introduction

Real world problems always have different solutions. Unfortunately, most traditional
optimization techniques focus on solving for a single optimal solution. They needs to
be applied several times; yet all solutions are not guaranteed to be found. Thus mul-
timodal optimization problem was proposed. In this problem, we are interested in not
only a single optimal point, but also the others. Given an objective function, an algo-
rithm is expected to find all optimal points in a single run. With strongly parallel search
capability, evolutionary algorithms are shown to be particularly effective in solving this
type of problems [7].

2 Background

The work by De Jong [3] is one of the first known attempts to solve multimodal op-
timization problems by an evolutionary algorithm. He introduced a technique called
“crowding”: An offspring replaces the most similar individual. As a result, it can main-
tain different types of individuals in a single run to increase the chance for locating
multiple optima. Since then, researchers have proposed different genetic algorithms for
multimodal optimization problems. In particular, crowding [3], fitness sharing [8], and
speciation [9,19] techniques are the most popular techniques. They have also been in-
tegrated in differential evolution [17] and demonstrated promising results [18,10].

Differential Evolution was proposed by Storn and Price [17]. Without loss of gen-
erality, a typical strategy of differential evolution (DE/rand/1) [6] is briefly described
as follows: For each individual indivi in a generation, the algorithm randomly selects
three individuals to form a trial vector. One individual forms a base vector, whereas the
value difference between the other two individuals forms a difference vector. The sum

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 481–490, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

482 K.C. Wong, K.S. Leung, and M.H. Wong

of these two vector forms a trial vector, which recombines with indivi to form an off-
spring. In a comparison to crossover and mutation operations, it can provide differential
evolution a self-organizing ability and high adaptability for choosing suitable step sizes
which demonstrated its potential for continuous optimization in the past contests [2].

2.1 CrowdingDE

To extend the capability of differential evolution, Thomsen [18] incorporates the crowd-
ing technique [3] into differential evolution (CrowdingDE) for multimodal optimization.
Although an intense computation is accompanied, it can effectively transform differen-
tial evolution into an algorithm specialized for multimodal optimization. To determine
the dissimilarity (or distance) between two individuals, the dissimilarity measurement
proposed in Goldberg et al. [8] and Li et al. [9] is adopted. The dissimilarity between
two individuals is based on their Euclidean distance. The smaller the distance, the more
similar they are and vice versa.

2.2 Locality of Reference

Locality of Reference [15] (or The Locality Principle [5]), is one of the most funda-
mental principles widely used in computing. The principle was originated from memory
management methods in order to predict which memory entries would be referenced
soon. The main idea is to make use of neighborhood relationships for prediction, op-
timizing the throughput. To define the neighborhood relationship, time and space are
typically taken as the proximity measures. If time is taken, it is called temporal locality.
If space is taken, it is called spatial locality.

3 Proposed Method

3.1 Motivation

If we do not apply any specific technique to maintain diversity, most evolutionary al-
gorithms will prematurely converge and get stuck in a local optimum. To cope with
the problem, the algorithms for multimodal optimization are usually equipped with
their own local operations for diversity maintenance. In CorwdingDE, its local oper-
ation is the crowding technique. Thinking this technique more deeply, it is to propose
a restriction on the individual replacement policy such that an individual gets replaced
only when a fitter offspring is generated within the same niche. Thus the choice of the
offspring generation method becomes a critical performance factor. Unfortunately, the
offspring generations in CrowdingDE mainly relies on random trial vector generations.
They are too random to offer enough feasible replacement schemes for all individu-
als. Thus we propose a new method for trial vector generation, in order to increase the
chances for successful replacements.

3.2 CrowdingDE-L

Close individuals tend to have similar characteristics. For instance, two population
snapshots of CrowdingDE are shown on Fig. 1. For each snapshot, the population can

Effect of Spatial Locality on an Evolutionary Algorithm for Multimodal Optimization 483

(a) 5000 function evaluations (b) 20000 function evaluations

Fig. 1. Population snapshots of CrowdingDE [18] on F5 with population size = 200

be seen to be divided into different niches. Within each niche, the individuals exhibit
similar positions and step-sizes for improvement. After several generations, the differ-
ence between niches may be even larger. It will be a disaster if a single evolutionary
strategy is applied to all of them regardless of their niches. Luckily, it is a two-edged
sword. Such property also gives us spatial locality: crossovers between close individuals
can have higher chances to generate better trial vectors.

Thus a local operation is proposed to take advantage of it: the individuals which are
closer to a parent should be given more chances to be involved in the parent’s trial vector
generation. In other words, to bring such neighborhood idea into the trial vector gener-
ation, the distances between the parent and its candidate individuals are first computed.
Then the distances are transformed into the proportions of a roulette-wheel [4]. Within
the roulette-wheel, larger proportions of the roulette-wheel are given to closer candidate
individuals. It follows that closer individuals are given higher chances for trial vector
generations. For the sake of clarity, the local operation is outlined in Algorithm 1.

Combined with the local operation, Crowding Differential Evolution (CrowdingDE)
is reformulated as a hybrid algorithm which takes advantages of spatial locality. Thus
it is named Crowding Differential Evolution using Spatial Locality (CrowdingDE-
L). A trial vector generation can be tailor-made for each individual. Fitter trial vec-
tors are more likely to be generated. More feasible replacement schemes can thus be
provided.

Mathematically, a function is needed to transform distances to proportions of a
roulette-wheel. Thus two transformation functions are proposed in this paper: Since
closer individuals are given higher values (proportions), the transformation function
must be a monotonically decreasing function over the interval [0,MaxDistance], where
MaxDistance is the maximum distance between a parent and all of its candidate individ-
uals. Thus a simple function and Gaussian function are proposed for the transformation.
The simple function is based on the formula: Proportion = (MaxDistance−distance

MaxDistance)a where
a is a scaling constant. On the other hand, the Gaussian function is based on the formula:
Proportion = exp(−(distance2

2×SD2)) where SD = MaxDistance
3 . Since spatial locality is normal

in nature [5], the Gaussian function is adopted in CrowdingDE-L for the transformation
if not specified explicitly.

484 K.C. Wong, K.S. Leung, and M.H. Wong

Algorithm 1. Trial Vector Generation Using Spatial Locality
P: Parent individual
trial: Trial vector
DG: Genome dimension
CR: Crossover probability
I[i]: The gene value of individual I at dimension i
rand(): A random number in the interval [0,1]

procedure NEWTRIALVECTORGENERATION(P)

1. Transform the distances between P and all candidate individuals
to proportions using a transformation function;

2. Prepare a roulette-wheel based on the transformed proportions;
3. Use the roulette-wheel to pick 3 different individuals I1, I2, I3 where P �= I1 �= I2 �= I3;

trial = P;
i ← �rand()×DG�;
for (k = 0; k < DG; k = k +1) do

if rand() < CR then
trial[i] = I1[i]+F× (I2[i]− I3[i]);
i = (i+1) mod DG;

end if
end for
return trial;

end procedure

4 Experiments

We implemented all the algorithms using Sun’s Java programming language. The devel-
opment was based on the EC4 framework [4]. Experiments to compare the performance
among CrowdingDE-L and other algorithms were conducted on ten benchmark func-
tions. The other algorithms include: Crowding Genetic Algorithm (CrowdingGA) [3],
CrowdingDE [18], Fitness Sharing Genetic Algorithm (SharingGA) [8], SharingDE
[18], Species Conserving Genetic Algorithm (SCGA) [9], and SDE [10]. The first five
benchmark functions are widely adopted in literatures: F1 is Deb’s 1st function [19],
F2 is Himmelblau function [1], F3 is Six-hump Camel Back function [12], F4 is Branin
function [12] and F5 is Rosenbrock function [16]. The remaining five benchmark func-
tions were derived from [19,11].

4.1 Performance Measurements

For multimodal optimization, there are several performance metrics proposed
[11,10,9,18]. The focuses of this paper are on the ability of the algorithms to locate
the optima and the accuracy of the optima found by the algorithms. Hence we adopted
the Peak Ratio (PR) and Average Minimum Distance to the Real Optima (D) [11,19] as
the performance metrics.

Effect of Spatial Locality on an Evolutionary Algorithm for Multimodal Optimization 485

As different algorithms perform different operations in one generation, it is unfair
to set the termination condition as the number of generations. Alternatively, it is also
unfair to adopt CPU time, since it substantially depends on the implementation tech-
niques for different algorithms. For instance, the sorting techniques and the program-
ming languages used. In contrast, fitness function evaluation is always the performance
bottleneck. Thus the number of fitness function evaluations was set as the termination
condition in the following experiments. All algorithms were run up to a maximum of
40000 fitness function evaluations. The above performance metrics were obtained by
taking the average and standard deviation of 50 runs.

4.2 Parameter Setting

Sun’s Java Double (double-precision 64-bit IEEE 754 floating point) was used as the
real number representation for all algorithms. All populations were initialized ran-
domly. The random seed was 12345. For all DE algorithms, the crossover probability
(CR) was 0.9 and F was 0.5. The common GA parameter settings of CrowdingGA,
SharingGA and SCGA for all benchmarks were the same as Table 5 in [19]. For all
crowding algorithms, population size was set to 100 for Peaks2, Peaks3 and Peaks4.
50 was set for the remaining benchmark functions. The parameter settings of Shar-
ingDE, SharingGA, SCGA and SDE for different benchmarks are tabulated in Table 1.
For SharingDE and SharingGA, σ and α denote the niche radius and scaling factor
respectively. The parameters have been tuned in a few preliminary runs with manual
inspections for all algorithms.

Table 1. Parameter setting of SharingDE, SharingGA, SCGA and SDE for different benchmarks

SharingDE [18] SharingGA [8] SCGA [9] and SDE [10]
Benchmark Population Size α σ α σ Species Distance*
F1 100 1 0.001 1 0.001 0.01
F2 100 1 0.03 5 0.1 3
F3 100 1 0.01 2 40 0.5
F4 100 1 0.01 1 0.1 6
F5 100 3 30 3 30 10
Peaks1 200 1 100 1 50 50
Peaks2 200 1 100 2 50 25
Peaks3 200 1 5 1 0.5 3
Peaks4 200 1 5 1 0.5 3
Peaks5 200 1 300 1 300 150

4.3 Results

Table 2 shows the experimental results. Mann-Whitney U tests (two-tailed) have been
conducted to reject the null hypothesis that the performance metrics of CrowdingDE-
L and those of another algorithm are sampled from the same population. For D in all

Species Distance = σs/2 in [9].

486 K.C. Wong, K.S. Leung, and M.H. Wong

Table 2. Experimental Results for all algorithms tested (averaged over 50 runs)

Benchmark Measurement CrowdingDE-L CrowdingGA [3] CrowdingDE [18] SharingGA [8] SharingDE [18] SDE [10] SCGA [9]

Mean of D 2.81E-10 2.24E-06 3.72E-10 4.08E-03 1.14E-03 1.59E-03 1.09E-03
StDev of D 8.00E-11 4.81E-06 2.03E-10 1.21E-02 4.53E-04 7.87E-03 1.16E-03
Minimum of D 8.44E-11 4.35E-09 1.38E-10 2.34E-05 4.66E-04 8.43E-07 6.06E-05

F1 Median of D 3.31E-11 2.24E-06 2.82E-10 1.28E-04 1.33E-03 4.15E-06 1.13E-03
Mean of Peak Ratio 1.00 1.00 1.00 0.98 1.00 0.99 1.00
StDev of Peak Ratio 0.00 0.00 0.00 0.06 0.00 0.04 0.00
Mean of D 2.20E-07 4.93E-04 3.86E-05 2.06E+00 4.92E-01 1.20E+00 2.59E-01
StDev of D 1.53E-06 5.49E-04 1.51E-05 1.05E+00 7.77E-01 6.36E-01 1.17E-01
Minimum of D 2.63E-10 1.30E-05 1.11E-05 7.39E-03 2.63E-02 2.60E-03 2.34E-02

F2 Median of D 2.68E-09 3.03E-04 5.49E-05 7.42E-01 5.01E-02 1.23E+00 1.63E-01
Mean of Peak Ratio 1.00 1.00 1.00 0.66 0.91 0.78 0.44
StDev of Peak Ratio 0.00 0.00 0.00 0.17 0.14 0.11 0.18
Mean of D 1.66E-09 2.21E-05 4.86E-07 1.44E-01 1.55E-02 6.22E-03 2.03E-02
StDev of D 4.35E-10 3.38E-05 4.58E-07 2.89E-01 4.96E-03 2.26E-03 2.22E-02
Minimum of D 6.07E-10 3.52E-08 9.41E-08 2.14E-04 4.55E-03 1.49E-03 3.54E-04

F3 Median of D 1.76E-09 1.49E-06 5.75E-07 5.85E-04 1.63E-02 5.25E-03 5.62E-02
Mean of Peak Ratio 1.00 1.00 1.00 0.90 1.00 1.00 0.95
StDev of Peak Ratio 0.00 0.00 0.00 0.20 0.00 0.00 0.15
Mean of D 4.87E-07 5.96E-02 2.45E-04 3.39E+00 1.38E+00 2.61E-01 6.63E-01
StDev of D 1.50E-06 1.14E-01 1.25E-04 1.99E+00 1.85E+00 7.81E-01 5.91E-01
Minimum of D 1.20E-08 3.08E-05 6.44E-05 6.09E-03 7.94E-03 3.84E-03 7.72E-02

F4 Median of D 1.62E-07 1.22E-01 3.74E-04 5.84E+00 1.96E+00 1.06E+00 4.22E-01
Mean of Peak Ratio 1.00 0.89 1.00 0.61 0.88 0.97 0.41
StDev of Peak Ratio 0.00 0.16 0.00 0.21 0.16 0.10 0.14
Mean of D 7.81E-03 1.22E-02 2.28E-02 8.59E-03 4.14E-02 4.23E-02 8.76E-03
StDev of D 7.54E-03 2.84E-02 2.03E-02 1.83E-02 1.40E-01 3.07E-02 1.11E-02
Minimum of D 3.77E-04 2.31E-05 1.11E-03 1.54E-05 1.63E-09 1.29E-03 9.38E-13

F5 Median of D 5.05E-03 2.57E-02 1.10E-02 6.84E-03 3.63E-02 5.24E-02 7.55E-03
Mean of Peak Ratio 1.00 0.96 1.00 1.00 0.92 0.94 1.00
StDev of Peak Ratio 0.00 0.20 0.00 0.00 0.27 0.24 0.00
Mean of D 4.95E-07 6.36E-01 7.79E-06 4.84E+00 2.67E+01 5.00E+01 2.11E+00
StDev of D 2.12E-06 1.18E+00 5.58E-06 7.78E+00 3.12E+01 7.71E+00 9.10E-01
Minimum of D 1.08E-10 1.62E-05 1.16E-06 6.88E-01 2.90E-01 3.74E+01 4.80E-01

Peaks1 Median of D 1.77E-09 9.40E-04 1.64E-05 1.87E+01 8.00E+00 5.48E+01 1.92E+00
Mean of Peak Ratio 1.00 0.86 1.00 0.01 0.37 0.21 0.34
StDev of Peak Ratio 0.00 0.17 0.00 0.05 0.10 0.16 0.05
Mean of D 1.30E+01 7.43E+00 1.24E+01 3.66E+01 3.60E+01 6.92E+01 5.76E+00
StDev of D 8.64E-01 3.52E+00 1.51E+00 4.55E+00 1.01E+01 8.08E+00 1.24E+00
Minimum of D 9.65E+00 1.49E+00 9.29E+00 2.10E+01 1.43E+01 6.58E+01 3.29E+00

Peaks2 Median of D 1.33E+01 4.68E+00 1.14E+01 3.59E+01 3.38E+01 6.60E+01 6.11E+00
Mean of Peak Ratio 0.70 0.36 0.66 0.00 0.21 0.19 0.11
StDev of Peak Ratio 0.03 0.07 0.08 0.02 0.04 0.04 0.02
Mean of D 5.75E-03 9.15E-02 1.44E-02 1.59E+00 2.24E-01 3.69E+00 4.07E-01
StDev of D 1.43E-03 8.21E-02 2.04E-03 3.66E-01 1.28E-01 6.48E-01 1.09E-01
Minimum of D 3.32E-03 1.89E-02 1.05E-02 9.92E-01 7.05E-02 2.34E+00 2.57E-01

Peaks3 Median of D 5.64E-03 6.31E-02 1.44E-02 1.92E+00 2.44E-01 4.72E+00 3.77E-01
Mean of Peak Ratio 1.00 0.84 1.00 0.61 0.55 0.34 0.27
StDev of Peak Ratio 0.00 0.09 0.00 0.07 0.12 0.05 0.08
Mean of D 3.24E-03 2.69E-01 1.76E-02 2.49E+00 4.90E-01 3.36E+00 5.20E-01
StDev of D 8.89E-04 1.75E-01 2.87E-02 4.32E-01 1.81E-01 6.96E-01 1.19E-01
Minimum of D 1.89E-03 5.56E-02 8.77E-03 1.92E+00 1.77E-01 2.47E+00 3.29E-01

Peaks4 Median of D 3.95E-03 1.73E-01 1.37E-02 2.90E+00 4.55E-01 3.37E+00 5.31E-01
Mean of Peak Ratio 1.00 0.69 1.00 0.24 0.33 0.33 0.20
StDev of Peak Ratio 0.00 0.08 0.01 0.09 0.12 0.04 0.06
Mean of D 7.80E-01 1.29E+02 6.14E+00 1.84E+02 3.19E+01 2.81E+01 1.13E+02
StDev of D 1.50E+00 1.58E+01 1.14E+00 1.54E+01 2.46E+01 2.85E+01 1.70E+01
Minimum of D 2.80E-03 8.71E+01 2.37E+00 1.40E+02 1.04E+01 1.24E-02 8.39E+01

Peaks5 Median of D 1.06E-01 1.25E+02 6.33E+00 1.93E+02 3.41E+01 2.57E+01 1.04E+02
Mean of Peak Ratio 0.83 0.00 0.00 0.00 0.00 0.83 0.00
StDev of Peak Ratio 0.14 0.00 0.00 0.00 0.00 0.24 0.00

Effect of Spatial Locality on an Evolutionary Algorithm for Multimodal Optimization 487

benchmarks, except that with SCGA in F5, their differences are found statistically sig-
nificant with α-level=0.01. For PR in all benchmarks, except that with SDE in F1, F5,
and Peaks5 and that with CrowdingGA in F5, their differences are found statistically
significant with α-level=0.05. On the whole, CrowdigDE-L showed its competitive re-
sults with other existing algorithms.

4.4 Effect of Spatial Locality

To demonstrate the effect of spatial locality, experiments between CrowdingDE-L and
CrowdingDE were conducted on all the benchmark functions. Figure 2 depicts the
results.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(a) F1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(b) F2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(c) F3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(d) F4

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(e) F5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(f) Peaks1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(g) Peaks2

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(h) Peaks3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(i) Peaks4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 S

uc
ce

ss
fu

l T
ria

l V
ec

to
r

G
en

er
at

io
ns

Number of Function Evaluations

CrowdingDE-L
CrowdingDE

(j) Peaks5

Fig. 2. Effect of Spatial Locality (averaged over 50 runs)

Each sub-figure corresponds to one benchmark function. The vertical axis is the
number of successful trial vector generation (averaged over 50 runs). A successful trial
vector generation is defined as the generation of an offspring, which can replace an
individual in a parent population. On the other hand, the horizontal axis is the number
of fitness function evaluations. It could be observed that CrowdingDE-L generate a
higher number of successful trial vectors than CrowdingDE no matter how the fitness
function evaluations were varied from 1000 to 50000. More chances for convergence
were provided in CrowdingDE-L.

5 Real World Application

To verify the proposed algorithm in real world optimization, we have adopted an optical
system design problem [14,13] as a benchmark problem.

5.1 Varied-Line-Spacing Holographic Grating Design

Holographic gratings have been widely applied in optical instruments for aberration
corrections. In particular, the Varied-Line-Spacing (VLS) holographic grating dis-
tinguishes itself from others by the high order aberration eliminating capability in
diffractive optical systems. It is commonly used in high resolution spectrometers and

488 K.C. Wong, K.S. Leung, and M.H. Wong

monochromaters. A recording optical system of VLS holographic grating is outlined
in [14].

The objective for the design is to find several sets of design variables (or recording
parameters [14]) to form the expected groove shape of G (or the distribution of groove
density [13]). Mathematically, the goal is to minimize the definite integral of the square
error between the expected groove density and practical groove density [14]:

min J =
∫ w0

−w0

(np−ne)2dw

where w0 is the half-width of the grating, np is the practical groove density and ne is the
expected groove density. These two groove densities are complicated functions of the
design variables [14].

Theoretically, the above objective is simple and clear. Unfortunately, in practice,
there are many other auxiliary optical components, which constraints are too difficult
to be expressed and solved in mathematical forms. Single optimal solution is not nec-
essarily a feasible and favorable solution. Thus optical engineers often need to tune
the design variables to find as many optimal solutions as possible for multiple trials.
Multimodal optimization becomes necessary for the design problem.

5.2 Performance Measurements

As the objective function is an unknown landscape, the exactly optimal information is
not available. Thus the previous performance metrics cannot be simply adopted in this
section. We propose two new performance metrics in this section. The first one is the best
fitness, which is the fitness value of the fittest individual in the last population. The second
one is the number of distinct peaks, where a distinct peak is considered found when there
exists an individual which fitness value is below a threshold 0.0001 and there isn’t an
individual within 0.1 distance unit and found as a peak before in the last population. The
threshold is chosen to 0.0001 because the fitness values of the solutions found in [14]
is around this order of magnitude. On the other hand, the distance is chosen to 0.1 unit
because it has already been set for considering peaks found in peak ratio [19,11].

5.3 Parameter Setting

Same as before, all algorithms were run up to a maximum of 40000 fitness function eval-
uations. The above performance metrics were obtained by taking the average and stan-
dard deviation of 50 runs. The groove density parameters followed the setting in [14]:
n0 = 1.400×103(line/mm), b2 = 8.2453×10−4(1/mm), b3 = 3.0015×10−7(1/mm2)
and b4 = 0.0000×10−10(1/mm3). Half-width w0 was 90mm. The radii of spherical mir-
rors M1 and M2 were 1000mm. The recording wavelength (λ0) was 413.1nm. The previ-
ous settings were adopted except the algorithm-specific parameters: The species distance
of SDE and SCGA was set to 500. The scaling factor and niche radius of SharingDE and
SharingGA were set to 1 and 1000 respectively. The population size was set to 50.

5.4 Results

The result is tabulated in Table 3. CrowdingDE-L showed slightly better results among
the algorithms.

Effect of Spatial Locality on an Evolutionary Algorithm for Multimodal Optimization 489

Table 3. Experimental Results for all algorithms tested on the VLS holographic grating design

Measurement CrowdingDE-L CrowdingGA [3] CrowdingDE [18] SharingGA [8] SharingDE [18] SDE [10] SCGA [9]

Mean of Best Fitness 4.47E-10 1.94E-09 2.88E-07 5.05E-03 2.41E+02 1.38E-01 7.81E+03
StDev of Best Fitness 3.16E-09 1.06E-08 2.04E-06 1.67E-02 3.45E+02 2.34E-01 1.52E+04
Min of Best Fitness 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.18E-02 1.69E-04 9.35E-01
Median of Best Fitness 1.12E-08 0.00E+00 0.00E+00 5.33E-06 4.08E+01 7.09E-02 8.46E+03
Means of Peaks Found 50.00 17.08 50.00 2.16 0.00 0.00 0.00
StDev of Peaks Found 0.00 4.55 0.00 3.47 0.00 0.00 0.00
Min of Peaks Found 50.00 10.00 50.00 0.00 0.00 0.00 0.00
Median of Peaks Found 50.00 15.50 50.00 1.50 0.00 0.00 0.00

6 Conclusion

Confirmed by the experimental results, CrowdingDE-L is highlighted with its ability
for generating fitter trial vectors, which can successfully replace parent individuals. Ex-
tensive experiments have been conducted. The results indicate that CrowdingDE-L has
its own competitive edge over the other algorithms tested, in terms of the performance
metrics.

The locality principle is proven simple and useful in computing [5]. In a macro-
view, the work in this paper can be regarded as a case study for integrating the locality
principle into an evolutionary algorithm. The numerical results can also be viewed as
a valuable resource for comparing the state-of-the-art algorithms for multimodal opti-
mization.

Acknowledgment

The authors are grateful to anonymous reviewers for their valuable comments. The
authors would also like to thank Ling Qing for his source codes and insightful dis-
cussions. This research is partially supported by the grants from the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project Nos. 414107
and 414708).

References

1. Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multimodal function
optimization. Evol. Comput. 1(2), 101–125 (1993)

2. Bersini, H., Dorigo, M., Langerman, S., Seront, G., Gambardella, L.: Results of the first in-
ternational contest on evolutionary optimisation (1st ICEO). In: Proceedings of IEEE Inter-
national Conference on Evolutionary Computation, Nagoya, Japan, May 1996, pp. 611–615
(1996)

3. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D.
thesis, University of Michigan, Ann Arbor (1975); University Microfilms No. 76-9381

4. De Jong, K.A.: Evolutionary Computation. A Unified Approach. MIT Press, Cambridge
(2006)

5. Denning, P.J.: The locality principle. Commun. ACM 48(7), 19–24 (2005)

490 K.C. Wong, K.S. Leung, and M.H. Wong

6. Feoktistov, V.: Differential Evolution - In Search of Solutions. Springer Optimization and Its
Applications, vol. 5. Springer-Verlag New York, Inc., Secaucus (2006)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

8. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function
optimization. In: Proceedings of the Second International Conference on Genetic Algorithms
and their application, pp. 41–49. L. Erlbaum Associates Inc., Hillsdale (1987)

9. Li, J.P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for
multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)

10. Li, X.: Efficient differential evolution using speciation for multimodal function optimization.
In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary compu-
tation, pp. 873–880. ACM, New York (2005)

11. Lung, R.I., Chira, C., Dumitrescu, D.: An agent-based collaborative evolutionary model
for multimodal optimization. In: GECCO 2008: Proceedings of the 2008 GECCO confer-
ence companion on Genetic and evolutionary computation, pp. 1969–1976. ACM, New York
(2008)

12. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn.
Springer, London (1996)

13. Qing, L., Gang, W., Qiuping, W.: Restricted evolution based multimodal function optimiza-
tion in holographic grating design. In: The 2005 IEEE Congress on Evolutionary Computa-
tion, Edinburgh, Scotland, September 2005, vol. 1, pp. 789–794 (2005)

14. Qing, L., Gang, W., Zaiyue, Y., Qiuping, W.: Crowding clustering genetic algorithm for
multimodal function optimization. Appl. Soft Comput. 8(1), 88–95 (2008)

15. Rogers, A., Pingali, K.: Process decomposition through locality of reference. SIGPLAN
Not. 24(7), 69–80 (1989)

16. Shang, Y.W., Qiu, Y.H.: A note on the extended rosenbrock function. Evol. Comput. 14(1),
119–126 (2006)

17. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global op-
timization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997),
http://www.springerlink.com/content/x555692233083677/

18. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In:
Congress on Evolutionary Computation, CEC 2004, June 2004, vol. 2, pp. 1382–1389 (2004)

19. Wong, K.C., Leung, K.S., Wong, M.H.: An evolutionary algorithm with species-specific ex-
plosion for multimodal optimization. In: GECCO 2009: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pp. 923–930. ACM, New York (2009)

http://www.springerlink.com/content/x555692233083677/

A Directed Mutation Operator for Real Coded
Genetic Algorithms

Imtiaz Korejo, Shengxiang Yang, and Changhe Li

Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK
{iak5,s.yang,cl160}@mcs.le.ac.uk

Abstract. Developing directed mutation methods has been an inter-
esting research topic to improve the performance of genetic algorithms
(GAs) for function optimization. This paper introduces a directed mu-
tation (DM) operator for GAs to explore promising areas in the search
space. In this DM method, the statistics information regarding the fit-
ness and distribution of individuals over intervals of each dimension is
calculated according to the current population and is used to guide the
mutation of an individual toward the neighboring interval that has the
best statistics result in each dimension. Experiments are carried out to
compare the proposed DM technique with an existing directed variation
on a set of benchmark test problems. The experimental results show
that the proposed DM operator achieves a better performance than the
directed variation on most test problems.

1 Introduction

Genetic algorithms (GAs) are a class of probabilistic optimization techniques
inspired by genetic inheritance and natural evolution. GAs have been used for
solving many optimization problems due to the properties of self-learning, self-
organization, and self-adaptation, as well as the properties of implicit parallelism
[1,5]. GAs are population based approaches, where new populations are gener-
ated by the iterative application of selection and variation of individuals in the
population. For example, mutation is used to explore new solutions, crossover
exchanges genetic information between two individuals, and selection selects rel-
atively fit individuals for the next population. The fitness of an individual is
evaluated by a fitness function, which defines the external environment of a GA.
The performance of a GA depends on not only the above variation operators,
but also some other factors, e.g., the population size and selection method, etc.

Mutation is a key operator to increase the diversity of the population and
hence enables GAs to explore promising areas of the search space [9]. The step
size and search direction are major factors that determine the performance of
mutation operators. It may be beneficial to use different values during differ-
ent stages of evolution in order to get a better performance of GAs. However,
it is impossible to know the optimum mutation step size and search direction

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 491–500, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

492 I. Korejo, S. Yang, and C. Li

for real-world problems. Hence, it is usually beneficial to use some statistics in-
formation to guide the mutation operator for GAs [4]. Strategy parameters are
adjusted according to one of the three methods: deterministic adaptation ad-
justs the values of parameters according to predefined rules without using any
learning information from GAs; adaptive adaptation alters the parameters using
some learning information from the search space. The best example of adaptive
adaptation is Rechenberg’s ‘1/5’ success rule in evolutionary strategies; and self-
adaptive adaptation embeds the parameters into the chromosomes of individuals
and modifies the parameters by the GA itself.

Several researchers have tried to increase the performance of real-coded GAs
by using directed mutation techniques [2,6,11]. In [3], the authors proposed a
co-evolutionary technique where each component of a solution vector is added
one extra bit to determine the direction of mutation. The direction bit is adapted
by using the feedback information from the current population. A directed mu-
tation based on momentum was proposed in [11], where each component of an
individual is attached a standard gaussian mutation and the current momentum
to mutate that component.

In this paper, a new directed mutation technique is proposed for GAs to
explore promising areas in the search space. This approach first calculates the
statistical information from the current population regarding the average fitness
and the number of individuals distributed within each interval of each dimension
of the search space. Then, the statistical information is used to guide the muta-
tion of an individual toward the neighboring interval that has a better statistics
result in each dimension. In order to investigate the performance of the pro-
posed directed mutation, an experimental study is carried out to compare the
performance of the GA with the proposed directed mutation and the GA with
the directed variation in [13].

2 Related Work

A directed variation (DV) technique was proposed by Zhou and Li [13]. This
algorithm does not introduce a scheme for completely generating an average
step size but adjusts some individuals by using the feedback information from
the current population. Suppose the population is a set of N individuals X =
{−→x 1,

−→x 2, · · · ,−→x N} and each individual is a K-dimensional vector, denoted by
−→x i = [xi1, xi2, · · · , xiK]. Denote the minimal d-th component of the individuals
at generation t by xL

d and the maximum by xU
d , that is, the range of the d-th

dimension at time t is Rd(t) = [xL
d , xU

d]. This range can be equally divided into
L intervals. The fitness of a nonempty interval, say, the j-th interval of the d-th
dimension, is defined by:

Fdj =
N∑

i=1

I(xid ∈ Bdj)fNorm(−→x i) (1)

I(xid ∈ Bdj) =
{

1, if xid ∈ Bdj

0, otherwise (2)

A Directed Mutation Operator for Real Coded Genetic Algorithms 493

where Bdj denotes the range (lower and upper bounds) of the j-th interval of the
d-th dimension, N presents the population size, I(.) is the indicator function,
and the fitness of each solution vector −→x i is normalized as follows:

fNorm(−→x i) =
f(−→x i)− fmin

fmax − fmin
(3)

where fmax and fmin represent the maximum and minimum fitness of the whole
population respectively.

With DV, in each generation some individuals are selected for directed varia-
tion in each component. DV is applied on a component, say, the d-th component,
only when the range of the d-th dimension of all solutions in the current gen-
eration decreases in comparison with that of the previous generation, i.e., the
population converges regarding that dimension. DV works as follows. First, the
fitness of interval, i.e., Fdj , is calculated according to Eq. (1). Then, DV is ap-
plied for an individual component by component, where each component of the
individual may be shifted from its current interval to a neighboring interval that
has a higher fitness with a certain probability, as described below.

In DV, for each component xid ∈ Bdj of an individual −→x i, whether it is
mutated depends on the value Fdj and the fitness of its neighboring intervals,
i.e., Fd,j−1 and Fd,j+1. If Fdj is bigger than both Fd,j−1 and Fd,j+1, then DV is
not applied to the d-th component of any selected individuals with (xid) ∈ Bdj .
If Fdj is in the middle, without loss of generality, suppose Fd,j−1 > Fdj > Fd,j+1,
the probability of directed variation, PDV

dj , can be calculated as follows:

PDV
dj = 1− Fdj

Fd,j−1
(4)

With this probability, xid is replaced with a number, randomly generated be-
tween xid and the center of Bd,j−1. If Fdj is smaller than both Fd,j−1 and Fd,j+1,
then either Bd,j−1 or Bd,j+1 is randomly selected with an equal probability and
xid moves towards the selected interval, i.e., replaced with a number randomly
generated between xid and the center of the selected interval.

3 Directed Mutation for Genetic Algorithms

The main motivation behind directed mutation (DM) is to explore promising
areas in the search space by using the feedback information from the current
population, e.g., the fitness and some other factors. It is a modified version of
the standard mutation. Since individuals in DV only move toward the interval
with the highest fitness, it may easily cause the premature convergence problem.
This paper introduces a DM technique which aims to explore promising areas of
the search space with fixed boundaries according to the fitness of intervals and
the percentage of individuals in each interval of each dimension.

In the proposed DM operator, individual shifting is not only based on the feed-
back information of the average fitness of intervals, but also on the population

494 I. Korejo, S. Yang, and C. Li

Fig. 1. Fitness landscape of the d-th dimension

distribution. By taking into account the information of population distribution,
DM efficiently avoids the premature convergence problem. The key idea of the
DM operator is illustrated in Fig. 1.

From Fig. 1, we consider the j-th interval, if we only consider DV, the two
individuals of interval j will move toward the (j − 1)-th interval due to the
higher fitness of the (j − 1)-th interval. However, the right direction should be
the (j + 1)-th interval since the (j + 1)-th interval is more promising than the
(j − 1)-th interval. Hence, DM is an enhanced version of DV.

The framework of the GA with the proposed DM operator is given in Algorithm
1. The proposed GA differs from the standard GA in that in each generation, a
set of individuals are selected to undergo the DM operation iteratively. As shown
in Algorithm 2, the DM operator is applied for each component of a selected so-
lution in a similar way as the DV operator described above. The difference lies in
the calculation of the probability of moving a component of a solution from one
interval to its neighboring interval, which is described in detail below.

Similar to the DV operator, the range of the d-th dimension of individuals
at generation t, i.e., Rd(t) = [xL

d , xU
d], is also equally divided into L intervals.

DM is applied only when the range of the d-th component Rd(t) of all solution
vectors of current generation t decreases in comparison with that of previous
generation t − 1. The fitness Fdj of each non-empty interval is calculated by
Eq. (1), Eq. (2), and Eq. (3). In addition to the fitness of each interval, the
percentage of individuals in each interval is also calculated in the DM operator
as follows:

Pdj =
1
N

N∑
i=1

I(xid ∈ Bdj) (5)

where Pdj represents the percentage of individuals with the d-th component
in the j-th interval in the current population, and Bdj and I(.) are the same
as defined before in Eq. (1) and Eq. (2). From Fdj and Pdj, we calculate a

A Directed Mutation Operator for Real Coded Genetic Algorithms 495

Algorithm 1. GA with Directed Mutation (DM)
1: Randomly generate an initial population pop
2: Evaluate the fitness of each individual of pop
3: t := 0.
4: while t < max gen do
5: for each individual i in pop do
6: Select individual j by the roulette wheel method
7: Crossover individual i with individual j using the arithmetic crossover method
8: Mutate individual i by using the Gaussian mutation with mean zero and pre-

selected or adaptive standard deviation
9: end for

10: Apply DM on a set of individuals randomly selected from the population
11: t := t + 1
12: end while

Algorithm 2. Directed Mutation
1: for each dimension d ∈ {1, 2, · · · , K} do
2: if Rd(t) < Rd(t − 1) then
3: for each interval j do
4: Calculate Fdj according to Eq. (1)
5: Calculate the number of individuals Pdj according to Eq. (5)
6: end for
7: for each interval j do
8: Calculate FPdj according to Eq. (6)
9: end for

10: for each interval j do
11: Calculate P DM

dj according to Eq. (7)
12: end for
13: Shift the genes xid of selected individuals to their neighboring interval with a

higher fitness with the associated probability
14: end if
15: end for

value that is associated with the j-th interval of the d-th dimension, assuming
Fd,j−1 > Fdj > Fd,j+1, as follows:

FPdj =
Fdj

Fd,j−1
+

Pdj

Pd,j−1
(6)

With above definitions, the component xid of a selected individual −→x i is mu-
tated by associated value of FPdj. Where Fdj is bigger than the fitness of
both neighboring intervals, i.e., Fd,j−1 and Fd,j+1, no directed mutation will
be used to xid . If FPdj is in the middle in comparison with the fitness of
its two neighbor intervals j − 1 and j + 1, without loss of generality, suppose
FPd,j−1 > FPdj > FPd,j+1. Then, move the individual −→x i towards the interval
j − 1 with a certain probability, which is calculated as follows.

496 I. Korejo, S. Yang, and C. Li

PDM
dj =

FPdj∑L
j=1 FPdj

(7)

where the DM probabilities PDM
dj are normalized over all intervals. In this case,

the solution −→x i is moved toward the interval j−1 by replacing xid with a number
randomly generated between xid and the center of Bd,j−1 as follows:

xid = rand(xid, Bd,j−1) (8)

Otherwise, if FPdj < FPd,j−1 and FPdj < FPd,j+1, then either Bd,j−1 or Bd,j+1
is selected with an equal probability and the solution −→x i moves towards the
selected interval with the probability PDM

dj .

4 Experimental Study

4.1 Experimental Setting

In order to test the performance of GA with DM, three unimodal functions
and eleven multimodal functions, which are widely used as the test functions in
the literature [10,12], were selected as the test bed in this paper. The number
of dimensions n is set to 10 for all test functions. The details of these test
functions are given in Table 1. Function f9 is a composition function proposed
by Suganthan et al. [10], which is composed of ten benchmark functions: the
rotated version and shifted version of f1, f2, f3, f4, and f5, as also listed in Table
1, respectively. Functions f10 to f14 are rotated functions, where the rotation
matrix M for each function is obtained using the method in [7].

The idea of DV was taken from [13], which is implemented in the peer GA.
The adaptive standard deviation [8] is used in DM. The population size (100)
and total number of generations (500) are the same for both DM and DV on all
problems, the total number of intervals L was set to 3, 6, 9, and 12, respectively.
The mutation probability Pm for the Gaussian mutation is the same for DM
and DV, which was set to different values for different test problems, as listed
in Table 1. Both the GA with DM and the GA with DV were run 30 times
independently on each test problem.

4.2 Experimental Results and Analysis

The average results of 30 independent runs of the GA with directed mutation
and the GA with directed variation on the test problems are shown in Table 2.
From Table 2, it can be seen that the number of intervals used for each dimension
is a key parameter. The performance of the GA with DM becomes significantly
better on some problems than that of the GA with DV as the number of intervals
increases. The performance of both operators is different on different problems.

When the number of intervals is set to 3, the results of DM are better than
DV on half of the test problems. DM is trapped into local optima due to the

A Directed Mutation Operator for Real Coded Genetic Algorithms 497

Table 1. Test functions of n = 10 dimensions, where D (D ∈ Rn) and fmin, denote
the domain and the minimum value of a function respectively. M is rotation matrix.

Test Function Pm D fmin

f1(x) =
∑n

i=1 x2
i 0.1 [−100, 100] 0

f2(x) =
∑n

i=1 (x2
i − 10 cos(2πxi) + 10) 0.01 [-5.12,5.12] 0

f3(x)=
n∑

i=1

kmax∑
k=0

[ak cos(2πbk(xi + 0.5))]−n
kmax∑
k=0

[ak cos(πbk)], 0.01 [-0.5,0.5] 0

a = 0.5, b = 3, kmax = 20

f4(x) = 1
4000

∑n
i=1(xi − 100)2 −

∏n
i=1cos(

xi−100√
i

) + 1 0.01 [-600, 600] 0

f5(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x2

i) − exp(1
n

∑n
i=1 cos(2πxi)) 0.01 [-32, 32] 0

+20 + e

f6(x) =
∑n

i=1 100(x2
i+1 − xi)2 + (xi − 1)2) 0.05 [-30, 30] 0

f7(x) =
∑n

i=1 −xi sin (
√

|xi|) 0.01 [-500, 500] -4189.829

f8(x) =
∑n

i=1 (
∑i

j=1 xj)2 0.01 [-100, 100] 0

f9(x) = Composition function (CF 5) in [10] 0.05 [-5, 5] 0

f10(x) =
∑n

i=1 100(y2
i+1 − yi)2 + (yi − 1)2), y = M ∗ x 0.05 [-100, 100] 0

f11(x) = 1
4000

∑n
i=1(yi − 100)2 −

∏n
i=1cos(

yi−100√
i

) + 1, 0.01 [-600, 600] 0
y = M ∗ x

f12(x)=−20exp(−0.2
√

1
n

∑n
i=1 y2

i) − exp(1
n

∑n
i=1 cos(2πyi)) 0.01 [-32,32] 0

+20+e, y = M ∗ x

f13(x) =
∑n

i=1 (y2
i − 10 cos(2πyi) + 10), y = M ∗ x 0.01 [-5, 5] 0

f14(x)=
n∑

i=1

kmax∑
k=0

[ak cos(2πbk(yi + 0.5))]−n
kmax∑
k=0

[ak cos(πbk)], 0.01 [-0.5,0.5] 0

a = 0.5, b = 3, kmax = 20, y = M ∗ x

large range of intervals. It is interesting that DM achieves the best result on f9,
f10, and f12 over all different number of intervals.

When we increase the number of intervals to 6, the performance of DM is
better than DV on most benchmark problems. Although DV presents better
results than DM on f1, f2, f9, and f14, DM obtains close results to DV on these
functions.

Similar observations can be made as the number of intervals increases to 9. The
results obtained by DM are better than that of DV. Compared with the results
of DM with the number of intervals of 6, the performance of DM deteriorates
on some multimodal problems. However, the results of DM with the number of
intervals of 9 are better than the results with the number of intervals of 6 on
most unimodal problems.

When L = 12, the results of DM are better than the results of DV on most
test functions. Similar results can be viewed as the number of interval 6 but the
performance of DM increases compared with the number of interval of 9 on some
multimodal problems.

498 I. Korejo, S. Yang, and C. Li

Table 2. Comparison results between DV and DM with the number of intervals for
each dimension set to different values for different problems

function f1 f2 f3 f4 f5 f6 f7

L = 3
DV 8.28e-06 0.0151 0.2590 0.0985 0.0088 49.41 -2667
DM 7.33e-06 0.0122 0.2304 0.1116 0.0082 33.87 -2062

L = 6
DV 7.55e-06 0.0093 0.2030 0.0820 0.0114 95.25 -2692
DM 8.99e-06 0.0172 0.1837 0.0385 0.0090 18.84 -1797

L = 9
DV 6.19e-06 0.0087 0.2181 0.0731 0.0076 68.78 -2574
DM 9.03e-06 0.0067 0.2558 0.1143 0.0089 22.97 -1857

L = 12
DV 7.21e-06 0.0191 0.2271 0.0972 0.0107 16.63 -2578
DM 7.86e-06 0.0153 0.2196 0.0341 0.0080 5.65 -1905

t-test DV-DM ∼ ∼ ∼ ∼ ∼ + -
function f8 f9 f10 f11 f12 f13 f14

L = 3
DV 2.7677 102 61 0.0929 0.0476 2.0971 0.4200
DM 3.5671 100 21 0.0891 0.0093 2.8655 0.4794

L = 6 DV 2.6971 64 82 0.1147 0.0470 2.5969 0.4283
DM 1.9957 18 14 0.0386 0.0089 2.1034 0.3483

L = 9 DV 3.8969 94 30 0.0726 0.0974 2.1034 0.4099
DM 3.8160 24 24 0.0998 0.0077 2.7950 0.4833

L = 12 DV 2.0960 230 50 0.0826 0.0472 3.0315 0.4175
DM 2.7178 63 53 0.0444 0.0086 1.9218 0.4180

t-test DV-DM ∼ + + ∼ + ∼ ∼

Table 2 also shows the statistical analysis of comparing DM with DV when
L = 6 by using the two-tailed t-test with a 58 degree of freedom at a 0.05
level of significance, where the t-test result is presented as “+”, “−”, or “∼” if
the performance of the GA with DM is significantly better than, significantly
worse than, or statistically equivalent to the GA with DV, respectively. The
DM operator is significantly better on four problems, significantly worse on one
problem, and statistically similar on the rest of the problems.

From Table 2, three conclusions can be made. First, the overall performance of
DM is better than DV on half test functions at least. Especially, on f9, f10 and f12,
the performance of DM is better over all different settings of the number of inter-
vals. Second, the interval quantity is a crucial factor to the performance of both
DM and DV on different benchmark functions. According to variable number of
intervals, the result of DM and DV varies on different test problems. Third, a larger
number of intervals is needed on multimodal problems than unimodal problems.
The smaller number of intervals causes the larger number of local optima within
an interval, since multimodal problems have many local optima.

Fig. 2 presents the evolutionary process for DM and DV operators on f4, f6, f7,
and f9 respectively, where the result on f4 is presented in a log scale. From Fig. 2,
it can be seen that the convergence speed of DM is faster than that of DV except
on f9. This result validates our idea that the performance of DV can be enhanced
by taking into account the population distribution in the search space.

A Directed Mutation Operator for Real Coded Genetic Algorithms 499

-2

-1.5

-1

-0.5

 0

 0.5

 1

125 250 75 500

A
ve

ra
ge

 B
es

t
F

it
ne

ss
 (

L
og

)

Generations

Directed Variation
Directed Mutation

 0

 50

 100

 150

 200

 250

 300

125 250 75 500

A
ve

ra
ge

 B
es

t
F

it
ne

ss

Generations

Directed Variation
Directed Mutation

(a) (b)

-3000

-2800

-2600

-2400

-2200

-2000

-1800

125 250 75 500

A
ve

ra
ge

 B
es

t
F

it
ne

ss

Generations

Directed Variation
Directed Mutation

 0

 50

 100

 150

 200

 250

 300

125 250 75 500

A
ve

ra
ge

 B
es

t
F

it
ne

ss

Generations

Directed Variation
Directed Mutation

(c) (d)

Fig. 2. Evolutionary progress of directed mutation and directed variation operators on
(a) f4 with L = 12, (b) f6 with L = 12, (c) f7 with L = 3, and (d) f9 with L = 6

5 Conclusions

In this paper, a directed mutation operator is proposed for genetic algorithms
to explore promising solutions in the search space. In the proposed directed
mutation, individual shifting is not only based on the feedback information of
the fitness of each interval, but also on the population distribution. By taking
into account the information of the population distribution, directed mutation
greatly improves the performance of directed variation.

In order to justify the proposed directed mutation, a set of benchmark func-
tions was used as the test base to compare the performance of the directed
mutation operator with the directed variation operator from the literature [13].
The experimental results show that the efficiency of DV is improved by the
proposed enhancement on four out of fourteen functions.

Although DM achieves better results on the test problems, there is a limi-
tation, i.e., different problems need different optimum values of the number of
intervals to achieve the best result. So, how to adaptively adjust the number
of intervals is our major work in the future, and we will consider to compare

500 I. Korejo, S. Yang, and C. Li

the performance of proposed DM technique with DV on CMA-ES benchmark
problems.

References

1. Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press, Oxford (1996)

2. Berlik, S.: A directed mutation framework for evolutionary algorithms. In: Proc. of
the Int. Conf. on Soft Computing, MENDEL, pp. 45–50 (2004)

3. Berry, A., Vamplew, P.: PoD Can Mutate: A simple dynamic directed mutation
approach for genetic algorithms. In: Proc. of AISAT 2004: Int. Conf. on Artificial
Intelligence in Science and Technology, pp. 200–205 (2004)

4. Eiben, A.E., Michalewics, Z., Schoenauer, M., Smith, J.E.: Parameter control in
evolutionary algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Param-
eter Setting in Evolutionary Algorithms, ch. 2, pp. 19–46 (2007)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison Wesley, New York (1989)

6. Hedar, A.R., Fukushima, M.: Directed evolutionary programming: Towards an im-
proved performance of evolutionary programming. In: Proc. of the 2006 IEEE
Congress on Evol. Comput., pp. 1521–1528 (2006)

7. Salomon, R.: Reevaluating genetic algorithm performance under coordinate rota-
tion of benchmark functions: A survey of some theoretical and practical aspects of
genetic algorithms. BioSystems 39(3), 263–278 (1996)

8. Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, New York (1995)
9. Spears, W.M.: Crossover or mutation? In: Whitley, L.D. (ed.) Foundations of Ge-

netic Algorithms 2, pp. 81–89. Morgan Kaufmann Publishers, San Mateo (1993)
10. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari,

S.: Problem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization. Technical Report, Nanyang Technological University,
Singapore (2005)

11. Temby, L., Vamplew, P., Berry, A.: Accelerating real valued genetic algorithms
using mutation-with-momentum. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS
(LNAI), vol. 3809, pp. 1108–1111. Springer, Heidelberg (2005)

12. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. on
Evol. Comput. 3(2), 82–102 (1999)

13. Zhou, Q., Li, Y.: Directed variation in evolutionary strategies. IEEE Trans. on
Evol. Comput. 7(4), 356–366 (2003)

Speedups between ×70 and ×120 for a Generic
Local Search (Memetic) Algorithm on a Single

GPGPU Chip

Frédéric Krüger1, Ogier Maitre1, Santiago Jiménez2, Laurent Baumes2,
and Pierre Collet1

1 LSIIT – UMR 7005, Pôle API, Bd Sébastien Brant, 67400 Illkirch, France
2 Instituto de Tecnologia Quimica, UPV-CSIC Valencia, Spain

{frederic.kruger,ogier.maitre,pierre.collet}@unistra.fr,
{baumesl,sanjiser}@itq.upv.es

Abstract. This paper presents the first implementation of a generic
memetic algorithm on one of the two GPU (Graphic Processing Unit)
chips of a GTX295 gaming card. Observed speedups range between ×70
and ×120, mainly depending on the population size.

An automatic parallelization of a memetic algorithm is provided
through an upgrade of the EASEA language, so that the EC commu-
nity can benefit from the extraordinary power of these cards without
needing to program them.

1 Introduction

GPGPU (General Purpose Graphic Processing Unit) cards are about to revolu-
tionize evolutionary computation because of their monstrous computing power
that evolutionary algorithms can directly use.

Up to now, the best speedups obtained on one GPU chip (vs one core of a
recent CPU) range between ≈ ×100 on simple EAs (for the complete algorithm)
[6] to ≈ ×250 on the more demanding evaluation of a population of diverse GP
trees for as few as 32 fitness cases [8].

In the case of memetic algorithms, some papers have been written on the
subject, but always in specific cases like Munawar et al., who recently report a
×25 speedup on an expensive TESLA machine thanks to the addition of a local
search routine to an evolutionary algorithm to solve the Max-Sat problem [7],
or Wong et al. who report a maximum speedup of ×4.24 in what may be one of
the first papers on the subject [10], or Luo et al. on a similar topic [5], but no
work has been found that addresses the problem in a non specific (generic) way.

So the aim of this paper is to study the implementation of a generic memetic
algorithm (i.e. an evolutionary algorithm coupled with a local search [3]) on a
GPGPU card and the resulting speedup, independently of the problem, the local
search, or even the type of evolutionary algorithm.

Then, in order to allow other researchers to use these very specialised cards
without needing to understand how to program them, the feature is incorportated

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 501–511, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

502 F. Krüger et al.

in the old EASEA language [1] that creates a complete C++ source file out of the
specification of an EA.

2 What Are GPGPUs and How Have They Been
Designed?

Some years ago, transistor density on silicon and clock speed seemed so closely
related that many people thought that Moore’s law applied to the “speed” of
computers. This is not true anymore, since even though the doubling of tran-
sistors per square millimeters every other year still seems to apply, increase in
CPU clock speed has stopped to around 3GHz for many years now.

However Moore’s law still applies, meaning that manufacturers still manage
to put twice as many transistors on the same surface of silicon every two years.

As a result, manufacturers now increase the power of their chips by making
them parallel, which can be done in several ways: one possibility is to more or less
duplicate a complete CPU if enough space is available, which is the way chosen
by AMD or Intel for their dual or quad-core CPUs. The advantage is that all the
different cores can execute independent tasks in parallel (Multiple Instruction
Multiple Data paradigm), the price to pay being that it is not possible to put
many cores on the chip.

Another possibility is to try to maximise computing power by putting in
common all functional units, and use all the available space on the chip to cram
in as many Arithmetic and Logic Units as possible. The advantage is that the
numbers crunching capacity of the chip becomes monstrous, but the price to
pay is that ALUs that have common functional units must execute the same
instruction at the same time (Single Instruction Multiple Data paradigm).

2.1 GPU Chips and the Gaming Industry

In order to obtain fluid games with realistic rendering, it is necessary to run
the very same algorithm on millions of pixels / vertices as fast as possible. The
gaming industry with its billion dollars market (9 billion euros in France only!)
therefore elected to create specialised chips that would maximise the number of
ALUs, to the detriment of versatility.

nVidia cards such as the 295GTX offer 1.8 TeraFlops for around $400 but
with many constraints. These cards host 2×240 cores that are not independent,
and with no memory cache (that uses a lot of space on a chip).

Cache memory is not really needed for rendering algorithms because there are
many more pixels/vertices than there are available cores. This means that it is
possible to stack up many threads on one core, and swap between them whenever
one thread does a memory access. This results in some kind of pipelining process
that allows to keep the cores busy even with a huge memory latency (600 cycles).

2.2 GPU Chips and Evolutionary Computation

What looks like problematic constraints for most algorithms is fine for Evo-
lutionary Algorithms, as their flowchart is very similar to that of rendering

Speedups between ×70 and ×120 for a Generic Local Search Algorithm 503

algorithms: in an evolutionary algorithm, a large population of different genomes
(read pixels) needs to be evaluated using the same fitness function (read ren-
dering algorithm). This similarity between the two kinds of algorithms makes it
possible for EAs to use GPGPU cards as if they had been designed for EC.

3 Programming GPGPU Cards

The CUDA environment used in this paper allows direct access to nVidia hard-
ware without going through DirectX or OpenGL layers. It is therefore very effi-
cient, but quite difficult to program and portability is limited to nVidia cards.

3.1 Software Architecture

CUDA (released in 2004 by nVidia) is an abstract representation of a unified
“computing accelerator.” Its goal is to achieve a hardware abstraction of the
underlying computing device by defining portable concepts across different ar-
chitectures without any modification.

The model handles threads of parallel tasks which can be executed on the
accelerator. A thread is, as per the classical definition, an independent process,
which executes instructions on data. Threads can be arranged in 2D arrays
(called blocks), allowing them to map a 2D data array as a 2D texture. The
CUDA software architecture defines a complex memory hierarchy, that contains
a cache-less large global memory (2×896MB DRAM on a GTX295), read-only
cache memories for textures, constants and instructions and small banks of ultra-
fast shared memory (16KB) that allow all threads to communicate inside a block.

4 Running a Memetic Algorithm on GPGPU

Memetic algorithms are also referred to as hybrid algorithms. They couple a
population-based global search (e.g. an evolutionary algorithm) with a local
search algorithm, that rapidly optimizes children in a possibly deterministic
way.

The algorithm is very similar to a standard evolutionary algorithm: a memetic
algorithm creates and initializes a (possibly random) population of individuals
after which all individuals are evaluated in order to create a population of par-
ents. Then, until a stopping condition is met, a population of children is created
using stochastic genetic operators (such as crossover and mutation) and the point
that makes memetic algorithms different from standard evolutionary algorithms
is that before the replacement operator elects the individuals that will constitute
the next generation, the children undergo a local search optimization.

Here, not only can the evaluation function be computed on the GPU card,
but the local search too can be performed on the parallel card. The only problem
is that if the local search improves a child, it is then necessary to transfer the
new genotype back onto the CPU that runs the evolutionary algorithm.

504 F. Krüger et al.

5 Implementation of a Parallelized Memetic Algorithm

The automatic parallel implementation of a memetic algorithm for the CUDA
environment has been incorporated into the EASEA language, that was de-
signed to basically allow anybody to describe and implement their evolutionary
algorithm without having the difficult task to program the algorithm itself. By
specifying only application-dependent functions and parameters, the user gets
the source code for a full evolutionary algorithm, possibly implementing efficient
methods such as CMA-ES with no effort. The -cuda option has been added to
the compiler to parallelize the algorithm over a GPGPU card.

5.1 Standard EASEA Evolutionary Algorithm

The EASEA compiler uses basic functions that are implemented in the EASEA
library. The EASEA language [1] uses a user readable template of an algorithm,
that is used to generate source code that incorporates the user functions, and
some evolutionary engine specifications (such as the kind of selectors to be used
for parent selection, population size, . . .).

The evolutionary engine is kept on the CPU, that has the task of generating
a population of individuals to evaluate (initial population, and subsequently
children population). The evaluation function is compiled for the GPU card
using the nvcc (nVidia C Compiler) compiler and transferred on the GPU card.
Then, as soon as a new population is ready, it is transferred onto the GPU where
all individuals get evaluated in parallel (cf. fig. 1).

In a standard algorithm, an array containing the fitness values is sent back
to the CPU and the evolutionary loop can continue. In the case of a memetic
algorithm, evaluation of a child incorporates a local search that can modify the

Fig. 1. Flowchart of the parallel evolutionary algorithm generated by EASEA

Speedups between ×70 and ×120 for a Generic Local Search Algorithm 505

child’s genome. This means that the whole population is sent back to the CPU
along with the last evaluation of each individual.

5.2 Implementation

The implementation of a memetic algorithm on GPGPU was done in three steps,
using the EASEA compiler:

1. The first step was to generate a standard algorithm with parallel evaluation
over GPGPU using the -cuda option (that was developed for [6]). Then, the
generated code was modified by hand to implement the memetic algorithm.

2. The second step was to optimize and minimize the changes done to the code.
3. Finally, the resulting modifications were integrated back into the EASEA

library so that the EASEA language was able to automatically output the
modified code, for a memetic algorithm with parallel evaluation on GPGPU,
out of the same original .ez EA specification.

The major change that was applied to the standard generated algorithm was
to implement a population transfer from the GPU memory back to the CPU
memory, so that the evolutionary algorithm running on the CPU could continue
with the modified children (in the “standard” parallel evolutionary algorithm,
only an array containing the fitnesses was sent back to the CPU).

5.3 Local Search Algorithm

Since GPGPU cards are not fitted with a random number generator, a deter-
ministic local search algorithm was used, although pseudo-random generators
have been efficiently implemented on GPGPUs [4].

The local search algorithm used for the experiments requires a specific step
and a specific number of search iterations. Until the maximum number of itera-
tions is reached, the algorithm adds the step value to the first dimension of the
individual, then evaluates the individual and compares its fitness to the fitness
of the best individual to date. If the fitness improved, the individual replaces
the best one and one step is added to the same dimension until the fitness stops
improving, in which case the next dimension is explored in the same way. If, after
the first attempt on one dimension, the fitness did not improve, the algorithm
starts looking in the opposite direction.

Once the algorithm has browsed through all the dimensions, it goes back to
the first dimension and repeats the process again until the specified number of
iterations has been reached.

This algorithm is very crude, in that the step size is not adaptive, for instance.
But the aim of this study is not to find the best local search algorithm that would
fit all problems, but to experiment a memetic algorithm on a GPGPU card.

Other local search algorithms were tested during the development process but
no impact on speedup has been detected. Therefore, all presented results use the
simple algorithm described above.

506 F. Krüger et al.

6 Experiments

Experiments have been performed on “one half” of a GTX295 nVidia card vs
a 3.6GHz Pentium IV with 3GB RAM under linux 2.6.27 32 bits with nVidia
driver 190.18 and CUDA 2.3. By “one half,” we mean that only one of the 2
GPUs that are present on a GTX295 card has been used. This choice was made
in order to have a one to one comparison: one GPU chip vs one core of a CPU.

Timings have been performed with the gettimeofday() POSIX function.
Speedups have been measured on the whole algorithm or on the evaluation func-
tion only. When only the evaluation function was timed, what was really done
is that the evaluation function only was timed on the CPU, while on the GPU,
population transfer time to and from the GPU was added for fairness.

6.1 Tests on the Rosenbrock Benchmark

In this paper, the purpose of the experiments was not to test the efficiency of
the local search algorithm, but rather to measure the speedup that parallelizing
the local search would bring.

The first set of experiments were performed on the Rosenbrock function be-
cause it is very fast to compute. The idea was to expose the incurred overheads
as much as possible so as to obtain the worst possible results and get a fair idea
on the advantages of parallelizing the optimisation on a GPGPU card. Using an
evaluation function that was much longer to evaluate would have hidden away
the inevitable overhead.

Rosenbrock’s function [9] can be defined by the following equation :

f(x1, x2, . . . , xN) =
N/2∑
i=1

[
100(x2

2i−1 − x2i)2 + (x2i−1 − 1)2
]

where N represents the number of dimensions, and therefore the genome size.

6.2 Speedups on Evaluation Time Only

Fig 2 shows the obtained speedup for (evaluation time + population transfer
time) to and from the GPU vs (evaluation time only) on the Intel CPU, i.e. all
this without the evolutionary algorithm.

Maximum speedup reaches a plateau above ×120 for a population size of 32K
individuals and as few as 256 iterations of the local search function.

Maximum speedup is attained for 2,048 and more individuals because under
this population size, the cores of the GPU card are not fully loaded.

A “reasonably” good speedup of ×58 is obtained for 2,048 individuals and 256
iterations but it is important to remember that this very fast benchmark func-
tion maximises the influence of overhead. The surface seems to rise steeply still
afterwards, but this impression is given by the fact that the scales are logarith-
mic. It requires 16K individuals to obtain a ×115 speedup, i.e. approximately
only a double speedup (over ×58) for 8 times the population size.

Speedups between ×70 and ×120 for a Generic Local Search Algorithm 507

Fig. 2. Speedup for evaluation+transfer time only

Maximum speedup (×120) is obtained for 32K individuals and 256 iterations.
No reasonable explanation was found for the “pass” observed for 1,024 and

2,048 iterations above 8K individuals.
Since the power of GPU cards comes from their parallel architecture, one must

use large populations to benefit from it.

6.3 Speedups on the Complete Memetic Evolutionary Algorithm

Fig 3 shows the obtained speedup for the complete memetic algorithm (and not
evaluation time only) automatically created by the EASEA language.

Maximum speedup reaches a plateau at around ×91 for a population size of
32K individuals and 32K iterations of the local search function.

As above, speedup is not considerable until 2,048 individuals, because under
this population size, the cores of the GPU card are not fully loaded.

A “reasonably” good speedup of ×47 is obtained for 2048 individuals and 2048
iterations. Much larger numbers are required in order to overcome the overhead
of the evolutionary algorithm that runs on the CPU. Maximum speedup (×95)
is obtained for 32K individuals and 16K iterations.

6.4 Influence of Population Transfer Time and Genome Size

Fig. 4 (top) shows evaluation time for 32K individuals and 32K iterations, w.r.t.
the number of dimensions of the problem (×4 to get the genome size in bytes).
Eval. time ranges from 3.44s for 16 dimensions to 238.9s for 1,024 dimensions.

Fig. 4 (bottom) shows the measured transfer time of the whole population
towards the GPU and back for 32K individuals. GPU cards are designed to

508 F. Krüger et al.

Fig. 3. Speedup for the complete algorithm

Fig. 4. Influence of transfer time and genome size

transfer millions of pixels per image frame, so throughput is huge (0.2 seconds
for 32K individuals of 1,024 dimensions, i.e. 4KBytes).

Transfer time of the population to the GPU and back is negligible.

6.5 Real World Experiment

Evaluating speedup on a benchmark such as Rosenbrock is great, but this gets
nowhere near the kind of evaluation function that is used in real world problems.

Speedups between ×70 and ×120 for a Generic Local Search Algorithm 509

Fig. 5. Speedup on a real-world 12 dimensions problem

Therefore, the same setup was tested on a real chemistry example, where the
400 lines fitness function evaluates the probability for a crystal structure to be
a zeolite. The genome is made of 12 floats (x, y, z position of 4 atoms) and the
fitness function is in fact a composition of 4 sub-functions:

F (ax, ay, az, . . . , dx, dy, dz) = (Fa + Fb + Fc)/1000 ∗ (1 + Fd)

Fa, Fb, Fc, and Fd are functions of atoms distances, angles, mean angles, and
connectivity respectively [2].

The fitness function takes much more time to evaluate than the Rosenbrock
function, meaning that the number of iterations does not much impact speedup,
and overhead is minimized, which accounts for a more predictible surface: 32
iterations are sufficient to keep the GPU cores busy (where many more iterations
were needed for the ultra-fast Rosenbrock function). The quality of the results
is discussed in a chemistry paper.

Therefore, only population size has an influence on speedup. As usual, the
card needs at least 2048 individuals to get a “reasonable” ×71 speedup for only
32 iterations. Then, adding more individuals allows the card to optimize its
scheduling, and a maximum speedup of ×94 is obtained for 65K individuals and
64 iterations (to be compared with ×91 for 65K individuals and 32 iterations,
or ×84 obtained with 16K individuals only and 32 iterations).

We have no explanation for the drop for 4096 individuals.

7 Conclusion and Future Work

This paper clearly shows how memetic algorithms (evolutionary algorithms cou-
pled with a local search function) can fully benefit from being executed on highly

510 F. Krüger et al.

parallel GPGPU cards that were originally designed to execute the same ren-
dering algorithm in parallel on millions of different pixels / vertices.

As soon as a population size of 2,048 individuals is reached, a speedup of
≈ ×47 is attained compared to a 3.6GHz Pentium 4 CPU, rising up to ≈ ×120 on
a very simple benchmark function (Rosenbrock) or ×91 on a real world problem,
but the price to pay to maximise scheduling is to use a huge population.

Note that for the sake of simplicity these speedups were obtained on one GPU
chip of a dual-GPU GTX295 nVidia card vs one core of a CPU. Tests with a
memetic algorithm on the full card have not been performed yet, but preliminary
tests on Genetic Programming show that using several cards is not much of a
problem. However, using both GPUs of the GTX295 card will certainly imply
doubling the population size for a double speedup. Other nVidia cards can be
used, with different speedups.

PC motherboards exist that can host 4 such cards, so speedups of around
×960 can be envisaged compared to a single core of an INTEL CPU, meaning
that a one day computation on such a machine would be equivalent to several
years’s computation on a regular PC. This could allow to tackle problems that
are up to now intractable.

Finally, (and this is a big part of the presented work), the presented GPU par-
allelization has been included in the EASEA language. The same rosenbrock.ez
file will compile for CPU only if no option is given on the easea compiler com-
mand line. If the computer contains a GTX295 card, the presented results will
be obtained if the rosenbrock.ez file is compiled with the -cuda option.

Future work consists in implementing other evolutionary paradigms onto
GPGPU cards and to include them in the EASEA language. Doing this will al-
low the EC community to use these great cards without the need to understand
how to program them. This is very important for evolutionary computation, that
can use such massive parallelization.

References

1. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it easea. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 891–901. Springer, Heidelberg (2000)

2. Corma, A., Moliner, M., Serra, J.M., Serna, P., Diaz-Cabanas, M.J., Baumes, L.A.:
A new mapping/exploration approach for ht synthesis of zeolites. Chemistry of
Materials, 3287–3296 (2006)

3. Hart, W.E., Krasnogor, N., Smith, J.E.: Recent Advances in Memetic Algorithms.
Springer, Heidelberg (2005)

4. Langdon, W.B.: A fast high quality pseudo random number generator for graphics
processing units. In: Wang, J. (ed.) 2008 IEEE World Congress on Computational
Intelligence, Hong Kong, June 1-6, pp. 459–465. IEEE, Los Alamitos (2008)

5. Luo, Z., Liu, H.: Cellular genetic algorithms and local search for 3-SAT problem
on graphic hardware. In: IEEE Congress on Evolutionary Computation CEC 2006,
pp. 2988–2992 (2006)

6. Maitre, O., Baumes, L.A., Lachiche, N., Corma, A., Collet, P.: Coarse grain par-
allelization of evolutionary algorithms on gpgpu cards with easea. In: GECCO,
pp. 1403–1410 (2009)

Speedups between ×70 and ×120 for a Generic Local Search Algorithm 511

7. Munawar, A., Wahib, M., Munetomo, M., Akama, K.: Hybrid of genetic algorithm
and local search to solve max-sat problem using nvidia cuda framework. Genetic
Programming and Evolvable Machines 10(4), 391–415 (2009)

8. Maitre, O., Lachiche, N., Collet, P.: Fast evaluation of GP trees on GPGPU by
optimizing hardware scheduling. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S.,
Dignum, S., Şima Uyar, A. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 301–312.
Springer, Heidelberg (2010)

9. Shang, Y.-W., Qiu, Y.-H.: A note on the extended rosenbrock function. Evol. Com-
put. 14(1), 119–126 (2006)

10. Wong, M., Wong, T.: Parallel hybrid genetic algorithms on Consumer-Level
graphics hardware. In: IEEE Congress on Evolutionary Computation, CEC 2006,
pp. 2973–2980 (2006)

Advancing Model–Building for Many–Objective
Optimization Estimation of Distribution

Algorithms

Luis Mart́ı, Jesús Garćıa, Antonio Berlanga, and José M. Molina

Universidad Carlos III de Madrid, Group of Applied Artificial Intelligence
Av. de la Universidad Carlos III, 22. Colmenarejo, Madrid 28270, Spain

{lmarti,jgherrer}@inf.uc3m.es, {aberlan,molina}@ia.uc3m.es

Abstract. In order to achieve a substantial improvement of MOEDAs
regarding MOEAs it is necessary to adapt their model–building algo-
rithms. Most current model–building schemes used so far off–the–shelf
machine learning methods. These methods are mostly error–based learn-
ing algorithms. However, the model–building problem has specific re-
quirements that those methods do not meet and even avoid.

In this work we dissect this issue and propose a set of algorithms
that can be used to bridge the gap of MOEDA application. A set of
experiments are carried out in order to sustain our assertions.

1 Introduction

The multi–objective optimization problem (MOP) can be expressed as the prob-
lem in which a set of objective functions should be jointly optimized. In this class
of problems the optimizer must find one or more feasible solutions that jointly
minimizes (or maximizes) the objective functions. Therefore, the solution to this
type of problem is a set of trade–off points.

Evolutionary algorithms (EAs) have proven themselves as a valid and com-
petent approach from theoretical and practical points of view. These multi–
objective evolutionary algorithms (MOEAs) [4] have succeeded when dealing
with these problems because of their theoretical properties and real–world ap-
plication performance.

There is a class of MOPs that are particularly appealing because of their inher-
ent complexity: the so–called many–objective problems [18]. These are problems
with a relatively large number of objectives.

The results of works that have ventured into these problems called for the
search of other approaches that could handle many–objective problems with
a reasonable performance. Among such approaches we can find estimation of
distribution algorithms (EDAs) [13]. However, although multi–objective EDAs
(MOEDAs) have yielded some encouraging results, their introduction has not
lived up to their a priori expectations. This fact can be attributed to different
causes, some of them, although already existing in single–objective EDAs, are
better exposed in MOEDAs, while others are derived from the elements taken

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 512–521, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Advancing Model–Building for Many–Objective Optimization EDAs 513

from MOEAs. An analysis on this issue led us to distinguish a number of incon-
veniences, in particular, the drawbacks derived from the incorrect treatment of
population outliers; the loss of population diversity, and; the dedication of an
excessive computational effort to finding an optimal population model.

There have been some works that have dealt with those three issues, in par-
ticular with the loss of diversity. Nevertheless, the community has failed to ac-
knowledge that, perhaps, the underlying cause for those problems can be traced
back to the algorithms used for model–building in EDAs.

In this work we examine the model–building issue of EDAs in order to show
that some its characteristics, which have been ignored so far, render most current
approaches inviable. We hypothesize that the problems of current EDAs can be
traced back to the error–based machine learning algorithms used for mode–
building and, that new classes of algorithms must be applied to properly deal
with the problem. With that idea in mind we carried out a set of experiments
that compare some algorithms typically used for model–building with other that,
according to our hypothesis should perform well in this class of problems.

Reaching a rigorous understanding of the state–of–the–art in MOEDAs’
model–building is hard since each model builder is embedded in a different
MOEDA framework. Therefore, in order to comprehend the advantages and
shortcomings of each algorithm, they should be tested under similar conditions
and isolated from the MOEDA it is part of. That is why, in this work we as-
sess some of the main machine learning algorithms currently used or suitable
for model–building in a controlled environment and under identical conditions.
This framework guarantees the direct comparison of the algorithms and allows
for valid tests.

The rest of this contribution proceeds as we introduce the theoretical aspects
that support our discussions. We then deal with the model–building problem,
its properties and how it has been approached by the main MOEDAs. Subse-
quently, a set of experiments, using community–accepted, complex and scalable
test problems with a progressive increase in the number of objective functions.
Finally some concluding remarks and lines for future work are put forward.

2 Theoretical Background

The concept of multi–objective optimization refers to the process of finding one
or more feasible solutions of a problem that corresponds to the extreme values
(either maximum or minimum) of two or more functions subject to a set of
restrictions.

More formally, a multi–objective optimization problem (MOP) can be defined
as:

Definition 1 (Multi–objective Optimization Problem)

minimize F (x) = 〈f1(x), . . . , fM (x)〉 ,
with x ∈ D ,

}
(1)

514 L. Mart́ı et al.

where D is known as the decision space. The functions f1(x), . . . , fM (x) are the
objective functions. The image set, O, product of the projection of D through
f1(x), . . . , fM (x) is called objective space (F : D → O).

In this class of problems the optimizer must find one or more feasible solutions
that jointly minimizes (or maximizes) the objective functions. Therefore, the
solution to this type of problem is a set of trade–off points. The adequacy of
a solution can be expressed in terms of the Pareto dominance relation. The
solution of (1) is the Pareto–optimal set, D∗; which is the subset of D that
contains elements that are not dominated by other elements of D. Its image in
objective space is called Pareto–optimal front, O∗.

MOPs have been addressed with a broad range of approaches. Among them,
evolutionary algorithms (EAs) have proven themselves as a valid and com-
petent approach from theoretical and practical points of view. These multi–
objective evolutionary algorithms (MOEAs) have succeeded when dealing with
these problems because of their theoretical properties and real–world application
performance.

2.1 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) have been claimed as a paradigm
shift in the field of evolutionary computation. Like EAs, EDAs are population
based optimization algorithms. However in EDAs the step where the evolution-
ary operators are applied to the population is substituted by construction of a
statistical model of the most promising subset of the population. This model
is then sampled to produce new individuals that are merged with the original
population following a given substitution policy. Because of this model–building
feature EDAs have also been called probabilistic model–building genetic algo-
rithms (PMBGAs).

The introduction of machine learning techniques implies that these new al-
gorithms lose the biological plausibility of its predecessors. In spite of this, they
gain the capacity of scalably solve many challenging problems, significantly out-
performing standard EAs and other optimization techniques.

Probably because of their success in single–objective optimization, EDAs have
been extended to the multi–objective optimization problem domain, leading to
multi–objective EDAs (MOEDAs) [17].

3 Error–Based Learning in Model–Building Algorithms

One topic that remains not properly studied inside the MOEDA scope is the
scalability of the algorithms. The most critical issue is the dimension of the
objective space. It has been experimentally shown to have an exponential rela-
tion with the optimal size of the population. This fact implies that, with the
increase of the number of objective functions an optimization algorithm needs
an exponential amount of resources made available to it.

Advancing Model–Building for Many–Objective Optimization EDAs 515

Notwithstanding the diverse efforts dedicated to providing usable model–
building methods for EDAs the nature of the problem itself has received rela-
tively low attention. In spite of the progressively improving succession of results of
EDAs, one question arises when looking for ways to further improve them. Would
current statistically sound and robust approaches be valid for the problem being
addressed? or, in other terms, does the model–building problem have particular
demands that require custom–made algorithms to meet them? Machine learning
and statistical algorithms, although suitable for their original purpose, might not
be that effective in the particular case of model–building.

Generally, those algorithms are off–the-shelf machine learning methods that
were originally intended for other classes of problems. On the other hand, the
model–building problem has particular requirements that those methods do not
meet and even have conflicts with. Furthermore, the consequences of this misun-
derstanding would be more dramatic when scaling up in the amount of objectives
since the situation is aggravated by the implications of the curse of dimensionality.

An analysis of the results yielded by current multi–objective EDAs and their
scalability with regard to the number of objective leads to the identification
of certain issues that might be hampering the obtention of substantially better
results with regard to other evolutionary approaches. Among those issues we
can distinguish the following: incorrect treatment of data outliers, and; loss of
population diversity.

This behavior, in our opinion, can be attributed the error–based learning ap-
proaches that take place in the underachieving MOEDAs. Error–based learning
is rather common in most machine learning algorithms. It implies that model
topology and parameters are tuned in order to minimize a global error measured
across the learning data set. This type of learning isolated data is not taken into
account because of their little contribution to the overall error and therefore they
do not take an active part of learning process. In the context of many problems
this behavior makes sense, as isolated data can be interpreted as spurious, noisy
or invalid data.

That is not the case of model–building. In model–building all data is equally
important and, furthermore, isolated data might have a bigger significance as
they represent unexplored zones of the current optimal search space. This as-
sessment is supported by the fact that most the approaches that had a better
performance do not follow the error–based scheme. That is why, perhaps another
class of learning, like instance–based learning [11] or match–based learning [7]
would yield a sizable advantage. Therefore, it can be presumed that, in order to
obtain a substantial improvement on this matter, algorithms that conform those
types of learning should be applied.

3.1 Randomized Leader Algorithm

The randomized leader algorithm [8] is a fast and simple partitioning instance–
based algorithm that was first used in the EDA context as part of the IDEA
framework [3]. Its use is particularly indicated in situations when the overhead
introduced by the clustering algorithm must remain as low as possible. Besides

516 L. Mart́ı et al.

its small computational footprint, this algorithm has the additional advantage
of not having to explicitly specify in advance how many partitions should be
discovered. On the other hand, the drawbacks of the leader algorithm are that
it is very sensitive to the ordering of the samples and that the values of its
thresholds must be guessed a priori and are problem dependent.

The algorithm goes over the data set exactly once. For each sample drawn
it finds the cluster whose leader is the closest, given threshold the ρLd. If such
partition can not be found, a new partition is created containing only this single
sample. Once the amount of samples in a cluster have exceeded the amount ρLc,
the leader is substituted by the mean of the cluster members. The mean of a
partition changes whenever a sample is added to that partition. After obtaining
the clustering a Gaussian mixture is constructed relying on it, as described for
the näıve MIDEA algorithm [3]. This allows the sampling of the model in order
to produce new elements.

3.2 Model–Building Growing Neural Gas

The model–building growing neural gas network (MB–GNG) [15] has been pro-
posed as a form of dealing with the model–building issue. It has been devised with
to deal with the model–building issue. The multi–objective neural EDA (MON-
EDA) [14], that incorporates MB–GNG, has yielded relevant results [14, 16].

MB–GNG is a modified growing neural gas (GNG) network [6]. GNG networks
have been chosen previously presented as good candidates for dealing with the
model–building issue because of their known sensibility to outliers [19].

The network grows to adapt itself automatically to the complexity of the
dataset being modelled. It has a fast convergence to low distortion errors and in-
corporates a cluster repulsion term to the original adaptation rule that promotes
search and diversity.

3.3 Gaussian Adaptive Resonance Theory Network

Adaptive Resonance Theory (ART) neural networks are capable of fast, sta-
ble, on-line, unsupervised or supervised, incremental learning, classification, and
prediction following a match–based learning scheme [7]. During training, ART
networks adjust previously–learned categories in response to familiar inputs, and
creates new categories dynamically in response to inputs different enough from
those previously seen. A vigilance test allows to regulate the maximum tolera-
ble difference between any two input patterns in a same category. It has been
pointed out that ART networks are not suitable for some classes of classical
machine–learning applications [20], however, what is an inconvenience in that
area is a feature in our case.

There are many variations of ART networks. Among them, the Gaussian ART
[21] is most suitable for model–building since it capable of handling continuous
data. The result of applying Gaussian ART is a set of nodes each representing
a local Gaussian density. These nodes can be combined as a Gaussian mixture
that can be used to synthesize new individuals.

Advancing Model–Building for Many–Objective Optimization EDAs 517

4 Experimental Analysis

To identify the model–building issue and its relation to error–based learning it
is helpful to devise a comparative experiment that casts light on the different
performance of a selected set of model–building algorithms subject to the same
conditions when dealing with a group of problems of scaling complexity. In par-
ticular, we deal with two of the problems of the Walking Fish Group (WFG)
continuous and scalable problem set [9], in particular the WFG4 and WFG9.

WFG4 is a separable and strongly multi–modal problem while WFG9 is non–
separable, multi–modal and have deceptive local–optima. Both problems have a
concave Pareto–optimal front that lies in the first orthant of a unit hypersphere
located at the coordinates origin. This feature make them suitable for high–
dimensional experiments where assessing the progress of algorithms is expensive
for other shapes of fronts.

A MOEDA framework is shared by the model–building algorithms involved
in the tests in order to ensure the comparison and reproducibility of the results.

The model–building algorithms involved in the tests were: (i) expectation
maximization algorithm, as described for MIDEA [3]; (ii) Bayesian networks, as
used in MrBOA [1]; (iii) (1 + λ)–CMA–ES as described in [10]; (iv) randomized
leader algorithm, (v) MB–GNG, and; (vi) Gaussian ART.

4.1 Shared EDA Framework

To test MB–GNG is it essential to insert it in an EDA framework. This frame-
work should be simple enough to be easily understandable but should also have
a sufficient problem solving capacity. It should be scalable and preserve the di-
versity of the population.

Our EDA employs the fitness assignment used by the NSGA–II algorithm
[5] and constructs the population model by applying MB–GNG. The NSGA–II
fitness assignment was chosen because of its proven effectiveness and its relative
low computational cost.

It maintains a population of individuals, Pt, where t is the current iteration.
It starts from a random initial population P0 of z individuals. It then proceeds
to sort the individuals using the NSGA–II fitness assignment function. A set P̂t

containing the best �α |Pt|� elements is extracted from the sorted version of Pt,∣∣∣P̂t

∣∣∣ = α |Pt| . (2)

The population model is then built using P̂t. The model is then used to create
�ω |Pt|� new individuals is synthesized. Each one of these individuals substitute
a randomly selected ones from the section of the population not used for model–
building Pt \ P̂t. The set obtained is then united with best elements, P̂t, to form
the population of the next iteration Pt.

Iterations are repeated until a given stopping criterion is met. The output of
the algorithm is the set of non–dominated individuals of Pt.

518 L. Mart́ı et al.

4.2 Results

The WFG4 and WFG6 problems were configured with 3, 5 and 7 objective func-
tions. The dimension of the decision space was set to 10. Tests were carried
out under the PISA experimental framework [2]. The binary additive epsilon
indicator [12] was used to assess the performance. Although many other suit-
able indicators exist we have limited to this one because its low computational
footprint and the space constraints imposed to this paper.

Figure 1 shows the box plots obtained after 30 runs of each algorithm for
solving the different the problem/dimension configuration.

In the three dimensional problems our approach performed similarly to the
rest of the algorithms. This was an expected outcome. However, in the case of

(a) WFG4; M = 3. (b) WFG9; M = 3.

(c) WFG4; M = 5. (d) WFG9; M = 5.

(e) WFG4; M = 7. (f) WFG9; M = 7.

Fig. 1. Boxplots of the binary additive epsilon indicator values obtained when dealing
with the WFG4 and WFG9 problems with EDAs using expectation–maximization
(EM), Bayesian networks (Bays), covariance matrix adaptation ES (CMA), randomized
leader algorithm (RLdr), modified growing neural gas networks (MGNG) and Gaussian
adaptive resonance theory neural networks (GART) for model–building. The result of
each algorithm is measured against a sampled version of the Pareto–optimal front.

Advancing Model–Building for Many–Objective Optimization EDAs 519

(a) WFG4; M–B CPU ops. (b) WFG4; Obj. func. evals.

(c) WFG9; M–B CPU ops. (d) WFG9; Obj. func. evals.

Fig. 2. Analysis of the computational cost of dealing with WFG4 and WFG9. The
number of CPU ops dedicated for model–building and the number of objective functions
evaluations are measured in each case (see Fig. 1 for algorithms’ acronyms).

five and seven the three non–error–based learning algorithms outperform the
rest of the optimizers applied.

One can hypothesize that, in this problem, the model–building algorithm
induces the exploration of the search space and therefore it manages to discover
as much as possible of the Pareto–optimal front. It is most interesting that our
proposal exhibits rather small standard deviations. This means that it performed
consistently well across the different runs. These results must be investigated
further to understand if the low dispersion of the error indicators can only be
obtained in the problems solved or if can be extrapolated to other problems.

These results are further confirmed by inspecting figure 2. Here the advantages
of using error–based learning in approximation quality terms are supplemented
by the low computational costs of those algorithms. It can be perceived that,
while all algorithms used similar numbers of objective function evaluations, the
three non–error-based ones required far less computational resources to build
the population models.

It is important to underline the performance of Gaussian ART that had never
been used before in this application context. Gaussian ART outperformed the
rest of the approaches in 5 and 7 objectives in WFG4 and WFG6 in terms of
solution quality and computational cost.

520 L. Mart́ı et al.

5 Conclusions

In this paper we have discussed an important issue in current evolutionary multi–
objective optimization: how to build algorithms that have better scalability with
regard to the number of objectives. In particular, we have focused on one promis-
ing set of approaches, the estimation of distribution algorithms.

We have argued that most of the current approaches do not take into account
the particularities of the model–building problem they are addressing and, be-
cause of that they fail to yield results of substantial quality.

In any case, it seems obvious after the previous discussions and experiments
that the model–building problem deserves a different approach that takes into
account the particularities of the problem. Perhaps the ultimate solution to this
issue is to create custom–made algorithms that meet the specific requirement of
this problem.

Acknowledgements

This work was supported by projects CICYT TIN2008-06742-C02-02/TSI, CI-
CYT TEC2008-06732-C02-02/TEC, SINPROB, CAM CONTEXTS S2009/TIC-
1485 and DPS2008-07029-C02-0.

References

1. Ahn, C.W.: Advances in Evolutionary Algorithms. Theory, Design and Practice.
Springer, Heidelberg (2006)

2. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—A Platform and Program-
ming Language Independent Interface for Search Algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003)

3. Bosman, P.A.N., Thierens, D.: The näıve MIDEA: A baseline multi–objective EA.
In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS,
vol. 3410, pp. 428–442. Springer, Heidelberg (2005)

4. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Al-
gorithms for Solving Multi-Objective Problems. In: Genetic and Evolutionary
Computation, 2nd edn. Springer, New York (2007),
http://www.springer.com/west/home/computer/foundations?SGWID=

4-156-22-173660344-0

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

6. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touret-
zky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems,
vol. 7, pp. 625–632. 625–632. MIT Press, Cambridge (1995)

7. Grossberg, S.: Studies of Mind and Brain: Neural Principles of Learning, Percep-
tion, Development, Cognition, and Motor Control. Reidel, Boston (1982)

8. Hartigan, J.A.: Clustering Algorithms. Wiley Series in Probability and Mathemat-
ical Statistics. John Wiley & Sons, New York (1975)

http://www.springer.com/west/home/computer/foundations?SGWID=4-156-22-173660344-0
http://www.springer.com/west/home/computer/foundations?SGWID=4-156-22-173660344-0

Advancing Model–Building for Many–Objective Optimization EDAs 521

9. Huband, S., Hingston, P., Barone, L., While, L.: A Review of Multiobjective Test
Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary
Computation 10(5), 477–506 (2006)

10. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evolutionary Computation 15(1), 1–28 (2007)

11. Kibler, D., Aha, D.W., Albert, M.K.: Instance–based prediction of real–valued
attributes. Computational Intelligence 5(2), 51–57 (1989)

12. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of
stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich (2006)

13. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. A new
tool for Evolutionary Computation. In: Genetic Algorithms and Evolutionary Com-
putation. Kluwer Academic Publishers, Dordrecht (2002)

14. Mart́ı, L., Garćıa, J., Berlanga, A., Molina, J.M.: Introducing MONEDA: Scalable
multiobjective optimization with a neural estimation of distribution algorithm. In:
Thierens, D., Deb, K., Pelikan, M., Beyer, H.G., Doerr, B., Poli, R., Bittari, M.
(eds.) GECCO 2008: 10th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 689–696. ACM Press, New York (2008); EMO Track “Best Paper”
Nominee

15. Mart́ı, L., Garćıa, J., Berlanga, A., Molina, J.M.: Scalable continuous multi-
objective optimization with a neural network–based estimation of distribution
algorithm. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drech-
sler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J.,
O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.)
EvoWorkshops 2008. LNCS, vol. 4974, pp. 535–544. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-78761-7_59

16. Mart́ı, L., Garćıa, J., Berlanga, A., Molina, J.M.: Solving complex high–
dimensional problems with the multi–objective neural estimation of distribution
algorithm. In: Thierens, D., Deb, K., Pelikan, M., Beyer, H.G., Doerr, B., Poli, R.,
Bittari, M. (eds.) GECCO 2009: 11th Annual Conference on Genetic and Evolu-
tionary Computation. ACM Press, New York (2009) (to appear)

17. Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective estimation of distribution
algorithms. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization
via Probabilistic Modeling: From Algorithms to Applications. Studies in Compu-
tational Intelligence, pp. 223–248. Springer, Heidelberg (2006)

18. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflict-
ing objectives. IEEE Transactions on Evolutionary Computation 11(6), 770–784
(2007), http://dx.doi.org/10.1109/TEVC.2007.910138

19. Qin, A.K., Suganthan, P.N.: Robust growing neural gas algorithm with ap-
plication in cluster analysis. Neural Networks 17(8–9), 1135–1148 (2004),
http://dx.doi.org/10.1016/j.neunet.2004.06.013

20. Sarle, W.S.: Why statisticians should not FART. Tech. rep., SAS Institute, Cary,
NC (1995)

21. Williamson, J.R.: Gaussian ARTMAP: A neural network for fast incremental learn-
ing of noisy multidimensional maps. Neural Networks 9, 881–897 (1996)

http://dx.doi.org/10.1007/978-3-540-78761-7_59
http://dx.doi.org/10.1109/TEVC.2007.910138
http://dx.doi.org/10.1016/j.neunet.2004.06.013

Estimation Distribution Differential Evolution�

Ernesto Mininno and Ferrante Neri

Department of Mathematical Information Technology P.O. Box 35 (Agora) 40014
University of Jyväskylä, Finland

{ernesto.mininno,ferrante.neri}@jyu.fi

Abstract. This paper proposes a novel adaptation scheme for Differ-
ential Evolution (DE) frameworks. The proposed algorithm, namely Es-
timation Distribution Differential Evolution (EDDE), is based on a DE
structure and employs randomized scale factor ad crossover rate values.
These values are sampled from truncated Gaussian probability distri-
bution functions. These probability functions adaptively vary during the
optimization process. At the beginning of the optimization the truncated
Gaussian functions are characterized by a large standard deviation values
and thus are similar to uniform distributions. During the later stages of
the evolution, the probability functions progressively adapt to the most
promising values attempting to detect the optimal working conditions of
the algorithm. The performance offered by the proposed algorithm has
been compared with those given by three modern DE based algorithms
which represent the state-of-the-art in DE. Numerical results show that
the proposed EDDE, despite its simplicity, is competitive with the other
algorithms and in many cases displays a very good performance in terms
of both final solution detected and convergence speed.

1 Introduction

Differential Evolution (DE, see [1]) is an efficient function optimizer which has
a good performance for diverse continuous optimization problems. Reasons for
success of the DE can be found in its simplicity and ease of implementation, while
at the same time demonstrating reliability and high performance. In addition, the
fact that only three parameters require tuning greatly contributes to the rapid
diffusion of DE schemes among computer scientists and practitioners. Although
the DE undoubtedly has a great potential, setting of the control parameters is
not a trivial task, since it has a heavy impact on the algorithmic performance.
Thus, over the years, the DE community has intensively investigated the topic
of parameter setting. Several studies have been reported, e.g. in [2], [3], and [4],
and led to contradictory conclusions.

From an algorithmic viewpoint, reasons for the success of DE have been high-
lighted in [5]: success of DE is due to an implicit self-adaptation contained within
� This research is supported by the Academy of Finland, Akatemiatutkija 130600, Al-

gorithmic Design Issues in Memetic Computing and by Tekes - the Finnish Funding
Agency for Technology and Innovation, grant 40214/08 (Dynergia).

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 522–531, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Estimation Distribution Differential Evolution 523

the algorithmic structure. More specifically, since, for each candidate solution,
the search rule depends on other solutions belonging to the population, the ca-
pability of detecting new promising offspring solutions depends on the current
distribution of the solutions within the decision space. During early stages of the
optimization process, solutions tend to be spread out within the decision space.
For a given scale factor value, this implies that the mutation appears to generate
new solutions by exploring the space by means of a large step size when candi-
date solutions are, on average, distant from each other. During the optimization
process, the solutions of the population tend to concentrate on specific parts of
the decision space. Therefore, step size in the mutation is progressively reduced
and the search is performed in the neighborhood of the solutions. In other words,
due to its structure, a DE scheme is highly explorative at the beginning of the
evolution and subsequently becomes more exploitative during optimization.

Although this mechanism seems at first glance to be very efficient, it hides
a limitation. If for some reason, the algorithm does not succeed in generating
offspring solutions which outperform the corresponding parent, the search is
repeated again with similar step size values and will likely fail by falling into an
undesired stagnation condition (see [6]). Stagnation is the undesired effect which
occurs when a population-based algorithm does not converge to a solution (even
suboptimal) and the population diversity is still high. In the case of the DE,
stagnation occurs when the algorithm does not manage to improve upon any
solution of its population for a prolonged number of generations. In other words,
the main drawback of the DE is that the scheme has, for each stage of the
optimization process, a limited amount of exploratory moves. If these moves are
not enough for generating new promising solutions the search can be heavily
compromised.

Thus, in order to enhance the DE performance, alternative search moves
should support the original scheme and promote a successful continuation of
the optimization process. For example, paper [7] propose a dynamic scale factor
and a randomized scale factor (similar to jitter and dither [1]). Paper [8] proposes
a controlled randomization of scale factor and crossover rate. Papers [9] and [10]
propose the hybridization of a DE framework with a local search component.
Paper [11] proposes a novel index-based neighborhood concept which enlarges
the set of possible offspring generated. Paper [12] employs multiple mutation
strategies coordinated by a memory based adaptive system. Paper [13] proposes
a complex adaptive system for a randomized selection of control parameters.

In this fashion, the present paper proposes a novel, relatively simple, and effi-
cient adaptive scheme for performing control parameter setting in DE frame-
works. The proposed control scheme is inspired by Estimation Distribution
Algorithms (EDAs), see [14]. Control parameters are sampled from truncated
Gaussian Probability Distribution Functions (PDFs) which adapt during the op-
timization process towards the most promising values and attempt to follow the
needs of the evolution. The resulting algorithm is here indicated as Estimation
Distribution Differential Evolution (EDDE).

524 E. Mininno and F. Neri

The remainder of this paper is organized in the following way. Section 2 de-
scribes the proposed algorithm. Section 3 gives the experimental setup and com-
pares the performance of the proposed EDDE with three DE based algorithms,
recently proposed in literature. Section 4 gives the conclusions of this work.

2 EDDE Algorithm

In order to clarify the notation used throughout this chapter we refer to the
minimization problem of an objective function f (x), where x is a vector of n
design variables in a decision space D.

The proposed EDDE consists of the following steps. At the beginning of the
optimization process, Np individuals are randomly sampled. Each individual xi
is characterized by the following structure:

xi = 〈xi,1, xi,2, ..., xi,j , ...xi,n, Fi, CRi〉 . (1)

where xi,j ∀j are the design variable sampled from the decision space D by
means of a uniform distribution function; Fi and CRi are control parameters
(namely scale factor and crossover rate respectively) sampled from two truncated
Gaussian PDFs. The first PDF is for sampling the scale factor Fi while the
second is for sampling the crossover rate CRi. The PDF related to the scale
factors is initialized with mean value μF = 0.6, truncation interval [0, 1.2], and
standard deviation σF = 10. The PDF related to the crossover rates is initialized
with mean value μCR = 0.5, truncation interval [0, 1], and standard deviation
σCR = 10. The initialization of σ values equal to 10 is done in order to simulate
(at the initial stage) uniform distributions, see Figs. 1.

At each generation, for each individual xi of the Np, three individuals xr, xs
and xt are pseudo-randomly extracted from the population. A new scale factor
Foff is sampled from its PDF in order to perform the mutation. According to the
most classical DE logic, a provisional offspring x′off is generated by mutation as:

x′off = xt + Foff (xr − xs). (2)

When the provisional offspring has been generated by mutation, each gene of the
individual x′off is exchanged with the corresponding gene of xi with a uniform
probability and the final offspring xoff is generated:

xoff,j =
{
xi,j if rand (0, 1) < CRoff
x′off,j otherwise

(3)

where rand (0, 1) is a uniformly sampled random number between 0 and 1, j is
the index of the gene under examination, and CRi is the crossover rate sampled
from its PDF. The offspring is then composed of its design variables xi,j and
the newly generated Foff and CRoff . The resulting offspring xoff is evaluated
and, according to a one-to-one spawning strategy, it replaces xi at the end of
the generation if and only if f (xoff) ≤ f (xi); otherwise no replacement occurs.

Estimation Distribution Differential Evolution 525

If f (xoff) ≤ f (xi) the PDFs related to F and CR are updated in order to
increase the likelihood of selecting the control parameter values which allowed
the generation of promising offspring. This operation is obtained by moving the
mean values of PDFs towards the most promising parameter values and varying
the standard deviation around the mean values. The standard deviation values
are decreased when successful control parameters are generated close to the
mean value and increased when a successful value is distant from the mean.
This mechanism means that the adaptive system tends to focus on promising
values but if the guess turns out to be incorrect the adaptive system attempts to
explore again a larger set of values. Let us indicate with winner the scale factor
(or crossover rate) related to the solution, between parent xi and offspring xoff ,
characterized by the lowest fitness value and with loser the scale factor (crossover
rate) related to the other solution. For each pairwise comparison, the values of
μF , μCR, σF , and σCR are updated according to the following rules:

μk+1 = μk + 1
Np

(winner − loser) , (4)

and
(
σk+1)2 =

(
σk
)2 +
(
μk
)2 − (μk+1)2 + 1

Np

(
winner2 − loser2) . (5)

where k is the comparison index. Since the update rules for F and CR have
the same structure, formulas are reported (without pedex F or CR) only once.
In addition, it must be remarked that although each pairwise comparison con-
tributes to the update of the new truncated Gaussian PDF, the actual updates
are performed all at once, at end of each generation, i.e. after Np comparisons.
Formulas (4) and (5) are derived from the study reported in [15] where the trun-
cated Gaussian PDFs model the population of a compact Genetic Algorithm.

The main ideas behind the proposed EDDE are the following. As mentioned
above the success of DE is due to its implicit self-adaptation. However, this
mechanism often fails to converge to the optimum and typically leads to a sit-
uation characterized by the incapability of outperforming the best individual
of the population despite a high diversity condition, see [6]. This fact can be
justified from complementary perspectives. From the first perspective, DE has
a too deterministic structure where the available search moves are generated by
the possible combinations among population individuals. An increase in the ran-
domization of a DE structure or the integration of randomized search within DE
evolutionary loop has been widely applied in literature, see [7] and [8]. Looking
at the same phenomenon from a complementary perspective, we can observe that
DE has a limited amount of search moves. Thus, in order to enhance upon the
performance of a DE algorithm extra moves are needed. This conclusion is sup-
ported by recent studies, e.g. [9], [10], and [16], where extra search moves with
respect to those belonging to the DE logic are integrated within DE structure
in order to outperform standard DE. Finally, some recently proposed algorithms
combine randomization and extra search moves, see [12] and [13]. In addition,

526 E. Mininno and F. Neri

although a proper parameter setting can help to have a good algorithmic perfor-
mance, the fact that such setting is very problem dependant, see e.g. [4], makes
the choice of parameters a difficult task. In addition, due to the dynamic nature
of DE (as well as all metaheuristics), probably there is not an optimal parameter
setting for a given problem since it varies during the optimization process.

In this light, the proposed EDDE takes into account the dynamic nature of
DE and thus promotes a co-evolution of the algorithmic parameters. It can be
noticed that the PDFs evolve with the population of solutions during optimiza-
tion process. Thus, the F and CR values which seem to generate solutions with
the most promising performance are more likely to be selected for the subsequent
generations. When the parameter setting is not promising anymore during the
evolution the adaptive system searches for new promising values by enlarging
standard deviations. Since it cannot be established a priori the most promis-
ing values for scale factor and crossover rate and their optimal values does not
seem to follow a clear trend during the evolution, the adaptive system is built
up in order to follow the natural development of the optimal control parameter
values. Moreover, F and CR are sampled from PDFs. Thus, a randomization is
introduced into the search logic. This randomization is supposed to implicitly
increase the search moves of the algorithm and to not fix control parameters
values but allow a certain range of variability for their selection.

Figs. 1 give a graphical representation of the behavior of the truncated PDFs,
at the beginning of the optimization and at a later stage of the process. The
long-dashed line indicates the theoretical Gaussian PDF. The short-dashed line
indicates the corresponding scaled Gaussian curve, i.e. the Gaussian PDF is
scaled in order to obtain that its integral between two prefixed extremals (in our
case −1 and 1 as shown in Figs. 1) is equal to one (unitary area). The solid line
represents the truncated the final truncated PDF, i.e. that portion of the scaled
gaussian curve between the two extremals.

Finally it must be highlighted that the EDDE version here presented is based
on the so called rand/1/bin strategy described in formulas (2) and (3). Thus, the

(a) beginning of the optimization (b) late stage of the optimization

Fig. 1. Truncated gaussian PDFs

Estimation Distribution Differential Evolution 527

generate Np individuals of the initial population and initial PDF pseudo-randomly
while budget condition do

for i = 1 : Np do
compute f (xi)

end for
k = 1
for i = 1 : Np do

{** Mutation **}
select three individuals xr, xs, and xt
sample Foff from PDF
compute x′off = xt + Foff (xr − xs)
{** Crossover **}
xoff = x′off
sample CRoff from PDF
for j = 1 : n do

generate rand(0, 1)
if rand(0, 1) < CRoff then
xoff ,j = xi,j

end if
end for
{** Selection **}
if f (xoff) ≤ f (xi) then

save index for replacement xi = xoff
end if
{** Update PDFs**}
define winner and loser for F and CR
for F and CR do
μk+1 = μk + 1

Np
(winner − loser)(

σk+1
)2

=
(
σk
)2

+
(
μk
)2 − (μk+1

)2
+ 1
Np

(
winner2 − loser2

)
end for
k = k + 1

end for
perform replacements
perform updates of PDFs

end while

Fig. 2. Pseudo-code of EDDE/rand/1/bin

algorithm presented in this section can be indicated as EDDE/rand/1/bin. How-
ever, the proposed adaptation can be easily integrated within different mutation
and crossover schemes, see e.g. [12].

For the sake of clarity, the pseudo-code highlighting working principles of the
EDDE/rand/1/bin is shown in Fig. 2.

3 Experimental Results

The following test problems have been considered in this paper in order to verify
the viability of the proposed approach.

1. Ackley’s function:
f1 (x) = −20 + e+ 20 exp

(
− 0.2
n

√∑n
i=1 x

2
i

)
+ − exp

(1
n

∑n
i=1 cos(2π · xi)xi

)
,

with n = 30. Decision space D = [−32, 32]n.
2. Michalewicz’s function:
f2 (x) = −∑ni=0 sin(xi)

(
sin
(
ix2
i

π

))2n
,

528 E. Mininno and F. Neri

with n = 30. Decision space D = [0, π]n.
3. Pathological function:
f3 (x) =

∑n−1
i=1 1/2 +

(
sin
(√

100x2
i + x2

i+1 − 1/2
))
/

/
(

1 + 0.001
(
x2
i − 2xixi+1 + x2

i+1
)2)

with n = 30. Decision space D = [−100, 100]n.
4. Tirronen’s function:
f4 (x) = 3 exp

(
− ‖x‖2

10n

)
− 10 exp

(−8‖x‖2)+
+ 2.5
n

∑n
i=1 cos

(
5
(
xi + (1 + i mod 2)cos

(‖x‖2)))
with n = 30. Decision space D = [−5, 10]n.

The test problems f5-f8 have been obtained from f1-f4, by setting n = 100. In
addition, four test problems here indicated with f9, f10, f11 and f12 have been
generated from test problems f2, f4, f6, f8 respectively by applying a rotation
operation. More specifically, these rotated problems have been generated through
the multiplication of the vector of variables by a randomly generated orthogonal
rotation matrix.

In order to perform a fair comparisons, three modern DE based algo-
rithms have been considered in this study. More specifically, the proposed
EDDE/rand/1 /bin, here indicated with EDDE for simplicity, has been com-
pared with j-Differential Evolution (jDE) proposed in [8], J-Adaptive Differen-
tial Evolution (JADE) proposed in [13], and Self-Adaptive Differential Evolution
(SADE) described in [12]. With reference to the notation contained in the origi-
nal papers jDE has been run with Fl = 0.1, Fu = 0.9, and τ1 = τ2 = 0.1, JADE
has been run with c = 0.1, SADE apart from the population size, which will
be discussed later, is parameterless. In other words, each algorithm has been
run with the parameter setting recommended by the original authors. EDDE
has been run with the initial parameters on mean value and standard deviation
indicated above. The population size Np has been set equal to 2× n for all the
algorithms under consideration. For each algorithm 50 independent runs have
been performed. Each run has been stopped after 5000× n fitness evaluations.

Experimental results in terms of average final fitness and related standard
deviation are given in Table 1. The best results are highlighted in bold face.

Table 1. Fitness ± standard deviation

Test Problem jDE JADE SADE EDDE
f1 5.773e-15 ± 1.76e-15 2.007e+00 ± 9.14e-01 1.051e-14 ± 8.73e-15 5.921e-15 ± 1.79e-15
f2 -2.917e+01 ± 2.39e-01 -2.147e+01 ± 5.15e-01 -2.641e+01 ± 1.52e+00 -2.926e+01 ± 1.37e-01

f3 -9.273e+00 ± 1.72e+00 -5.752e+00 ± 1.47e+00 -1.017e+01 ± 1.47e+00 -1.004e+01 ± 1.33e+00
f4 -2.499e+00 ± 8.42e-04 -2.364e+00 ± 2.05e-02 -1.504e+00 ± 4.37e-01 -2.500e+00 ± 1.52e-07

f5 2.354e-14 ± 4.30e-15 7.481e+00 ± 2.84e+00 1.913e+00 ± 1.01e+00 1.253e+00 ± 3.61e-01
f6 -8.876e+01 ± 1.37e+00 -3.973e+01 ± 1.07e+00 -7.625e+01 ± 4.76e+00 -9.254e+01 ± 1.15e+00

f7 -2.357e+01 ± 3.12e+00 -1.164e+01 ± 4.27e+00 -1.682e+01 ± 5.77e+00 -3.043e+01 ± 3.84e+00

f8 -2.473e+00 ± 8.05e-03 -2.143e+00 ± 2.29e-02 -1.056e+00 ± 6.61e-01 -2.500e+00 ± 1.00e-15

f9 -9.338e+00 ± 1.79e+00 -9.406e+00 ± 1.86e+00 -1.250e+01 ± 1.55e+00 -1.094e+01 ± 1.30e+00
f10 -2.246e+00 ± 1.95e-01 -2.023e+00 ± 1.72e-01 -2.373e+00 ± 1.12e-01 -2.389e+00 ± 1.01e-01

f11 -1.201e+01 ± 2.93e+00 -1.323e+01 ± 2.84e+00 -1.990e+01 ± 2.41e+00 -1.456e+01 ± 2.63e+00
f12 -2.149e+00 ± 1.92e-01 -2.186e+00 ± 2.96e-01 -2.381e+00 ± 8.37e-02 -2.387e+00 ± 6.90e-02

Estimation Distribution Differential Evolution 529

In order to carry out a numerical comparison of the convergence speed perfor-
mance, for each test problem, the average final fitness value returned by the best
performing algorithm G has been considered. Subsequently, the average fitness
value at the beginning of the optimization process J has also been computed.
The threshold value THR = J−0.95(J−G) has then been calculated. If an algo-
rithm succeeds during a certain run to reach the value THR, the run is said to be
successful. For each test problem, the average amount of fitness evaluations n̄e
required, for each algorithm, to reach THR has been computed. Subsequently,
the Q-test (Q stands for Quality) described in [5] has been applied. For each
test problem and each algorithm, the Q measure is computed as Q = n̄e

R where
the robustness R is the percentage of successful runs. For each test problem, the
smallest value equals the best performance in terms of convergence speed. The
value “∞” means that R = 0, i.e., the algorithm never reached the THR. Results
of the Q-test are given in Table 2. In order to prove statistical significance of
the results, the Wilcoxon Rank-sum test has been applied for a confidence level
of 0.95. Table 2 shows results of the test. A “+” indicates the case in which
EDDE statistically outperforms the other algorithm indicated in the heading of
the column; a “=” indicates that the two algorithms have the same performance;
a “-” indicates that EDDE is outperformed.

For the sake of clarity two examples of performance trend are shown in Fig. 3.
Numerical results show that EDDE is competitive with the other modern al-

gorithms considered in this study. More specifically, results displayed in Table 1
show that EDDE obtains the best final value in eight cases out of the twelve con-
sidered. The statistical analysis carried out by means of Wilcoxon test confirms
that in most cases EDDE significantly outperforms the other algorithms. As it
can been observed in Table 2, over the thirty-six pairwise comparisons, EDDE
is outperformed in only three cases and obtains similar results in seven cases.
Thus, for the experimental setup considered in this paper, EDDE outperforms
the other algorithms in 72.2% of the cases, has a comparable performance in
19.4% of the cases, and is outperformed in 8.3% of the cases. The performance
in terms of convergence speed shows that EDDE obtains the best Q-measure val-
ues in eight cases out of the twelve considered. Thus, for this preliminary study
we can conclude that EDDE is a very promising enhanced version of DE and

Table 2. Q-test and Wilcoxon Rank-Sum test

Test Problem jDE JADE SADE EDDE jDE JADE SADE
f1 624.6528 3116.6667 492.1007 441.4062 = + +
f2 2528.4722 ∞ 22212.5 1985.5903 = + +
f3 1566 16050 874.3945 660.6481 = + =
f4 1742.5347 143200 46144.4444 1293.1424 + + +
f5 1600.1736 ∞ 13061.1111 12994.4444 - + +
f6 12501.2755 ∞ ∞ 6532.2049 + + +
f7 16027.7778 ∞ 44050 2242.2902 + + +
f8 5534.2014 ∞ 74359.375 3772.2222 + + +
f9 69075 29512.5 4312.426 38772.2222 + + -
f10 12113 35312.5 2111.4958 5127.1468 + + =
f11 ∞ 483600 14649.2188 ∞ + = -
f12 66631.9444 29487.6033 5437.875 13733.3678 + + =

530 E. Mininno and F. Neri

0 1 2 3 4 5

x 10
5

−100

−80

−60

−40

−20

0

Fitness evaluation

Fi
tn

es
s

va
lu

e

jDE
JADE
EDDE
SADE

(a) Performance trend on problem f6

0 1 2 3 4 5

x 10
5

−40

−20

0

20

40

60

Fitness evaluation

Fi
tn

es
s

va
lu

e

jDE
JADE
EDDE
SADE

(b) Performance trend on problem f7

Fig. 3. Examples of performance trend

seems able to compete with other modern DE based algorithms, representing
the state-of-the-art in the field.

4 Conclusion

This paper proposes a novel adaptive scheme for Differential Evolution algo-
rithms. This adaptation consists of a randomization of scale factor and crossover
rate by means of truncated Gaussian Probability Distribution Functions and an
update rule which modifies the parameters of these probability functions on the
basis of the success of the most promising control parameters. The resulting algo-
rithm seems robust and efficient over a set of various test problems. The proposed
algorithm, despite its simplicity, offers a good performance compared to other
modern sophisticated algorithms based on a Differential Evolution structure.
Numerical results prove that the proposed algorithm is competitive for many
test problems and outperforms the other algorithms considered in this study in
most of considered cases. Future development of this work will consider possible
memetic versions including local search components which follow an adaptive
logic similar to the one proposed in this paper and an adaptive compact version
of the algorithm here presented for implementation within micro-controllers and
other systems presenting limited hardware features.

References

1. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach
to Global Optimization. Springer, Heidelberg (2005)

2. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization 11,
341–359 (1997)

3. Price, K., Storn, R.: Differential evolution: A simple evolution strategy for fast
optimization. Dr. Dobb’s J. Software Tools 22(4), 18–24 (1997)

Estimation Distribution Differential Evolution 531

4. Zielinski, K., Weitkemper, P., Laur, R., Kammeyer, K.D.: Parameter study for
differential evolution using a power allocation problem including interference can-
cellation. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
1857–1864 (2006)

5. Feoktistov, V.: Differential Evolution. Springer, Heidelberg (2006)
6. Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm.

In: Oŝmera, P. (ed.) Proceedings of 6th International Mendel Conference on Soft
Computing, pp. 76–83 (2000)

7. Das, S., Konar, A., Chakraborty, U.K.: Two improved differential evolution schemes
for faster global search. In: Proceedings of the 2005 conference on Genetic and
evolutionary computation, pp. 991–998. ACM, New York (2005)

8. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

9. Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local
search. IEEE Transactions on Evolutionary Computation 12(1), 107–125 (2008)

10. Neri, F., Tirronen, V.: Scale factor local search in differential evolution. Memetic
Computing, 153–171 (2009)

11. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution with a
neighborhood-based mutation operator. IEEE Transactions on Evolutionary Com-
putation 13(3), 526–553 (2009)

12. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Transactions on Evo-
lutionary Computation 13(2), 398–417 (2009)

13. Zhang, J., Sanderson, A.C.: Jade: Adaptive differential evolution with optional
external archive. IEEE Transactions on Evolutionary Computation 13(5), 945–958
(2009)

14. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation. Kluwer, Dordrecht (2001)

15. Mininno, E., Cupertino, F., Naso, D.: Real-valued compact genetic algorithms for
embedded microcontroller optimization. IEEE Transactions on Evolutionary Com-
putation 12(2), 203–219 (2008)

16. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition-based differential evo-
lution. IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)

Design of Continuous Controllers Using a
Multiobjective Differential Evolution Algorithm

with Spherical Pruning

Gilberto Reynoso-Meza, Javier Sanchis, Xavier Blasco, and Miguel Mart́ınez

Instituto Universitario de Automática e Informática Industrial,
Universidad Politécnica de Valencia,

Camino de Vera s/n, 46022 Valencia, España
gilreyme@posgrado.upv.es, {jsanchis,xblasco,mmiranzo}@isa.upv.es

Abstract. Controller design has evolved to a multiobjective task, i.e.,
today is necessary to take into account, besides any performance re-
quirement, robustness requisites, frequency domain specifications and
uncertain model parameters in the design process. The designer (control
engineer), as Decision Maker, has to select the best choice according to
his preferences and the trade-off he wants to achieve between conflicting
objectives. In this work, a new multiobjective optimization approach us-
ing Differential Evolution (DE) algorithm is presented for the design of
(but not limited to) Laplace domain controllers. The methodology is used
to propose a set of solutions for an engineering control benchmark, all
of them non-dominated and pareto-optimal. The obtained results shows
the viability of this approach to give a higher degree of flexibility to the
control engineer at the decision making stage.

1 Introduction

Nowadays, design techniques in engineering control have evolved. Controller de-
sign techniques oriented to fulfill a single specification are not suitable because
industry needs controllers that fulfil simultaneously several requirements and
performance specifications.

Multiobjective optimization can deal with problems with multiple objectives,
since all are important to the designer. It differs from single objective optimiza-
tion in considering all the objectives simultaneously without a weighting vector
or any a priori representation of the designer´s preferences.

In this work, a multiobjective optimization algorithm is presented for con-
troller design with several performance objectives and robustness requirements.
Additionally, a multiobjective methodology is proposed which includes the iden-
tification and control design steps. The algorithm and methodology are validated
with an engineering control benchmark.

The rest of this work remains as follows: in section 2 the multiobjective op-
timization statement is presented; in section 3 the multiobjective optimization
tool used in this work is proposed and explained. In section 4 the benchmark
example is discussed. Finally, in section 5 some concluding remarks are given.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 532–541, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Design of Continuous Controllers Using a Multiobjective DE Algorithm 533

2 Multiobjective Optimization Statement

The multiobjective optimization problem, without loss of generality, can be
stated as follows:

min
θ∈n

J(θ) = [J1(θ), . . . , Jm(θ)] ∈ �m (1)

where θ ∈ �n is defined as the decision vector and J as the objective vector. In
general, it does not exists a unique solution because there is not a solution better
than other in all the objectives. Then a set of solutions, the Pareto set ΘP is
defined and its projection into the objective space JP is known as the Pareto
front. Each point in the Pareto front is said to be a non-dominated solution (see
definition 1).

Definition 1. Dominance: given a solution θ1 with cost function value J(θ1)
dominates a second solution θ2 with cost value J(θ2) if and only if:{
∀i ∈ [1, 2, . . .m], Ji(θ1) ≤ Ji(θ2)

}
∧
{
∃q ∈ [1, 2, . . .m] : Jq(θ1) < Jq(θ2)

}
which is denoted as θ1 ≺ θ2

Multiobjective optimization techniques search for the best discrete approxima-
tion Θ∗

P of the Pareto set which generates the best description for the Pareto
front J∗

P. In this way, the Decision Maker has a set of solutions for a given prob-
lem and a higher degree of flexibility to choose a particular or desired solution.

3 Multiobjective Optimization Tool: sp-MODE

3.1 Multiobjective Optimization Algorithm Design

The two main challenges for a multiobjective optimization algorithm are:

– To avoid premature convergence into suboptimal solutions, losing description
and generalization on the true Pareto front JP.

– To find a set of solutions with enough diversity in order to have a good
discrete representation of the Pareto front JP.

A multiobjective optimization algorithm must deal with these challenges in order
to offer to the designer a good-quality set of solutions, descriptive enough to allow
flexible decisions. To overcome these difficulties a multiobjective optimization
algorithm, the sp-MODE has been developed. It is an evolutionary algorithm
based on the Differential Evolution (DE) algorithm [1]. This algorithm, instead
using an ε-dominance concept [2] or related approaches [3,4] to get well-spread
solutions and promote diversity, it uses an Spherical Pruning (definition 6) in
the objective space to reduce the cardinality of Θ∗

P . Spherical Selection Pruning
helps to overcome the drawbacks of ε-dominance related methods, where non-
dominated solutions could be lost (see figure 1) in the evolution process [4]. As
other multiobjective optimization algorithms, it uses an initial population P (0)
to explore the search space, it stores the best solutions found so far into a file A
and uses them in the evolution process.

534 G. Reynoso-Meza et al.

Definition 2. Spherical Coordinates: given a solution θ1 and J1 = J(θ1), let
it be S(J1) = [N2(J1), α(J1)] its normalized hyperspherical coordinates from the

ideal solution J ideal =
[

min
Ji∈J∗

P

J i
1, . . . , min

Ji∈J∗
P

J i
m

]
, where α(J1) = [α1

1, . . . , α
1
m−1] is

the arc vector and N2(J1) the Euclidean distance to the normalized ideal solution.

Definition 3. Sight Range: The sight range from the ideal solution to the
Pareto front approximation J∗

P is bounded by αU and αL:

αU =

[
max

Ji∈J∗
P

(
αJi

1

)
, . . . , max

Ji∈J∗
P

(
αJi

m−1

)]
, αL =

[
min

Ji∈J∗
P

(
αJi

1

)
, . . . , min

Ji∈J∗
P

(
αJi

m−1

)]

Definition 4. HyperCone Grid: Given a set of solutions in the objective
space, the hypercone grid on the m-dimensional space in arc increments αε =

[αε
1, . . . , α

ε
m−1] is defined as: ΛJ∗

P = αU−αL

αε
=
[

αU
1 −αL

1
αε

1
, . . . ,

αU
m−1−αL

m−1
αε

m−1

]
Definition 5. Spherical Sector: The normalized spherical sector of a solution

θ1 is defined as: Λε(θ1) =
[⌈

α1
1

Λ
J∗

P
1

⌉
, . . . ,

⌈
α1

m−1

Λ
J∗

P
m−1

⌉]
Definition 6. Spherical Pruning: given two solutions θ1 and θ2, θ1 has an
spherical preference over θ2 if and only if:[

Λε(θ1) = Λε(θ2)
]
∧
[
N2(J1) < N2(J2)

]
With this new concept, the multiobjective optimization algorithm is less sensitive
to lose non-nominated solutions due to the a priori unknown geometry of the
Pareto front. This approach can be understood as, if the designer stands at the
ideal solution (or any desired solution), he will be searching for the nearest non-
dominated solution in the Pareto front in any possible direction using discrete
arc increments (vid. figure 1).

3.2 Multiobjective sp-MODE Algorithm

Due to the multiobjective nature of the optimization approach, just the DE stan-
dard mutation and crossover operators will be used in the evolution mechanism
of the sp-MODE algorithm.

Mutation: For each target (parent) vector xi,k, a mutant vector vi,k is generated
at generation k according to equation 2:

vi,k = xr1,k + F (xr2,k − xr3,k) (2)

Where r1 �= r2 �= r3 �= i and F is known as the Scaling Factor.

Crossover: For each target vector xi,k and its mutant vector vi,k, a trial (child)
vector ui,k = [ui,1,k,, ui,2,k, . . . , ui,m,k] is created as follows:

ui,j,k =
{

vi,j,k if rand(0, 1) ≤ Cr
xi,j,k otherwise

(3)

Design of Continuous Controllers Using a Multiobjective DE Algorithm 535

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Objective 1

O
b

je
c

ti
v

e
 2

(a)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Objective 1

O
b

je
c

ti
v

e
 2

Non−dominated solutions are lost due to
the ε−dominance concept

(b)

Fig. 1. Spherical pruning and box selection comparison for two objectives. While ε-
dominance criterion uses hyperboxes to get well spread solutions (b), the Spherical
Selection Pruning uses hypercones to get well spread solutions (a).

where j ∈ 1, 2, 3 . . .n and Cr is the Crossover probability rate.
More details about these operators and implementation using DE can be found

in [1,5]. The main steps of the multiobjective optimization sp-MODE algorithm
are as follows:

Step 1: Initialize P (0) with Np individuals randomly selected from the decision
space θ ∈ �n.

Step 2: Evaluate initial population P (0).
Step 3: Look for non-dominated solutions on P (0) (definition 1) to get D(0).
Step 4: Perform spherical pruning (definition 6) in D(0) to get A(0) and store

the solutions.
Step 5: For k = 1 : MaxGen and convergence criterion not reached

Step 5.1: Select randomly from P (k) and A(k) a subpopulation NS(k).
Step 5.2: Apply the fundamental DE operators on subpopulation NS(k)

to get the offspring O(k):
1. Mutation (equation 2)
2. Crossover (equation 3)

Step 5.3: Evaluate offspring O(k); if child ≺ parent, the parent is substi-
tuted by its child.

Step 5.4: Apply dominance on A(k)
⋃

O(k) to get D(k)
Step 5.5: Apply Spherical Pruning on D(k) to get A(k + 1)
Step 5.6: Store the solution A(k + 1)

Step 6: Algorithm terminates. Solutions in A are the approximations to the
Pareto set and Pareto front, Θ∗

P and J∗
P, respectively.

To validate the sp-MODE algorithm, a subset of the IEEE CEC2007 bench-
mark problems on non-constrained multiobjective optimization [6] were used.
The benchmark problems selected were WFG1, WFG8 and WFG9 for m = 3
and m = 5 objectives.

536 G. Reynoso-Meza et al.

Table 1. The results for hypervolume indicator IH (left) and R indicator (right) on
test problems for 5e+5 function evaluations

m WFG1 WFG8 WFG9
Best 6.62E-02 -2.16E-01 -1.22E-01

Median 1.74E-01 -1.86E-01 -1.02E-01
3 Worst 1.97E-01 -1.55E-01 -8.24E-02

Mean 1.59E-01 -1.88E-01 -1.02E-01
Std 4.45E-02 2.90E-02 1.64E-02
Best 8.60E-02 -3.91E-01 -2.04E-01

Median 1.80E-01 -3.22E-01 -1.68E-01
5 Worst 2.22E-01 -2.89E-01 -1.34E-01

Mean 1.62E-01 -3.31E-01 -1.68E-01
Std 4.45E-02 2.90E-02 1.64E-02

m WFG1 WFG8 WFG9
Best 1.10E-02 -2.82E-02 -1.51E-02

Median 3.29E-02 -2.27E-02 -1.17E-02
3 Worst 3.71E-02 -1.72E-02 -8.35E-03

Mean 2.99E-02 -2.35E-02 -1.18E-02
Std 6.99E-03 2.54E-03 1.72E-03
Best 5.35E-03 -1.08E-02 -1.76E-03

Median 1.31E-02 -7.68E-03 1.89E-04
5 Worst 1.63E-02 -4.46E-03 1.92E-03

Mean 1.16E-02 -7.66E-03 1.82E-04
Std 3.55E-03 1.63E-03 9.77E-04

The sp-MODE was run with the following parameter values: scaling factor
F = 0.5, crossover rate Cr = 0.1, initial population size car(P (k)) = 100,
subpopulation size car(NS(k)) = 100, arc increments αε = [16, 16] for prob-
lems with three objectives and αε = [6, 6, 6, 6] with 5 objectives. Scaling factor,
crossover rate and population size are adjusted as reported by the GDE3 algo-
rithm [7] for comparison purposes. The GDE3 is a multiobjective optimization
algorithm which uses Differential Evolution and among the algorithms which
share this characteristic in the CEC2007 benchmark (MOSaDE [8], DEMOwSA
[9], MO DE [10]) was the one with the the best ranking. As reported by GDE3,
these fixed parameters are used instead of parameter adjustment to show how
the algorithm contributes to the results.

The sp-MODE were tested under the conditions imposed by the CEC2007
benchmark and as result two indicators were obtained. By one hand the R indi-
cator is a performance index of the J∗

P utility compared with a reference set. On
the other hand the hypervolume difference to a reference set (IH) measures the
quality of J∗

P to cover the objective space. In both cases, the smaller the value,
the better the Pareto front approximation. Results are shown in table 1.

On m = 3 problems, the sp-MODE has the second best value for hypervolume
on problems WFG1 and WFG8 whilst has the better value on problem WFG9.
Concerning the R indicator, the sp-MODE achieves a lesser performance on
problems WFG1 and WFG8, but on problem WFG9 has the second best value.
Referring to m = 5 problems, the sp-MODE is among the first three places for
both indicators.

To test the effectiveness and applicability of the algorithm, a solution to an en-
gineering control benchmark (ECB) example is proposed in the following section.

4 Application Example: Helicopter Pitch Angle Control

4.1 Benchmark Description

The multiobjective approach will be used to propose a set of solutions to the
contest organized by the CEA-IFAC 2007 Control Engineering group [11]. The
engineering control benchmark (ECB07) consists in the design of a controller
Gk(s) for the pitch angle of an academic helicopter bench (figure 2). The ECB07
transfer function for the pitch angle α (in radians) and voltage ν (in volts)

Design of Continuous Controllers Using a Multiobjective DE Algorithm 537

Fig. 2. Control Loop for the ECB07. The objective of the benchmark is to design the
controller Gk(s) to regulate the pitch angle of the helicopter Gp(s).

was stated by the organizers (equation 4) with the uncertain parameters k ∈
[0.07, 0.12], ξ ∈ [0.10, 0.16], ωn ∈ [0.55, 0.60] and T ∈ [0.09, 0.11].

A Matlab/Simulink c© file with the model and a script to evaluate the con-
troller performance under a known reference trajectory was available to the
participants. The benchmark ended with an evaluation on the real helicopter
with the given trajectory, but in this work just simulation studies are presented.
Details on results and winning controllers can be found in [12].

Gp(s) =
α(s)
ν(s)

=
kω2

n

s2 + 2ξωns + ω2
n

e−sT (4)

In order to select a nominal model for control design purposes, a multiobjective
optimization approach were followed as proposed in [13]. The sp-MODE was run
with an initial population of 100 solution vectors and a subpopulation size of
16 individuals to find the Pareto Front in 200 generations (F = 0.5, Cr = 0.9,
αε = [6, 6, 6]). Simulations were carried out on a Windows XP PC, Pentium(R)
4 processor, 3.4 Ghz and 1.96 Gb Ram. The optimization process took 0.5 hours.
As a result, a set of 425 different models were found.

The model with the best compromise between objectives and confidence in-
dexes, i.e. the solution vector with lower N∞ value in the normalized objective
space. This leads to the model of equation 5.

Ĝp =
α(s)
ν(s)

=
0.114 · 0.5872

s2 + 2 · 0.156 · 0.587s + 0.5872 e−0.099s (5)

4.2 Controller Design

The multiobjective approach could be used to design any kind of controller
(see for example [13]), but for comparison purposes, Laplace domain controllers
will be designed. A continuous PID controller based on the structure of the
nominal controller defined by the organizers (equation 6) will be proposed and
its performance will be compared with the winning controller Gw1(s) and the
second classified Gw2(s) at the ECB07.

Gk(s) =
x1 (s + x2) (s + x3)

s (s + x4)
(6)

538 G. Reynoso-Meza et al.

Search and Objective Space Definition. The following objectives are
defined:

J1 : Multiplicative Error
∥∥∥W GkĜp

1+GkĜp

∥∥∥
∞

J2 : Additive Error
∥∥∥ Gk

1+GkĜp

∥∥∥
∞

J3 : Time weighting absolute error on ramp reference signal. J3 =
∫ 50
30 |e(t)| ·t ·dt

J4 : Time weighting absolute error in presence of a disturbance. J4 =
∫ 80
50 |e(t)| ·

t · dt
J5 : Time weighting absolute error on a step reference. J5 =

∫ 95
80 |e(t)| · t · dt

J6 : Time weighting absolute error on a parabolic reference. J6 =
∫ 120
95 |e(t)|·t·dt

J7 : Integral of control action J7 =
∫ 120
30 |ν(t)| · dt

J8 : Integral of the derivative of the control action J8 =
∫ 120
30

∣∣∣ν(t)
dt

∣∣∣ · dt

Where e(t) is the error and ν(t) is the control action (figure 2). Objectives J3
to J8 are defined by the benchmark organizers with a specific weighting vector
β [11]. The ECB07 main objective is to minimize JECB07 = β · [J3 . . .J8]T on
the real model. Objectives J1 and J2 are included in order to assure robustness.
W is the usual bound for the parametric uncertainty, and it will be computed
using the remaining models of the Pareto front (for details see [14]).

The bounds defined for the search space are: x1 ∈ [0, 10000], x2 ∈ [0, 50],
x3 ∈ [0, 50] and x4 ∈ [0, 100]. The parameter settings are F = 0.5, Cr = 0.9,
αε = [6, 6, 6, 6, 6, 6, 6, 6]. In a first sp-MODE run, a set of 800 optimal controllers
in 500 generations were found.

To visualize the decision and objective spaces, the Level Diagram Tool is
used [15]. Level Diagram Tool is based on the classification of the Pareto front
obtained where every objective is normalized with respect to its minimum and
maximum values. Then, a norm is applied to evaluate the distance to the ideal
point Jideal = [min(J1), . . . , min(Jm)].

The level diagram lets the designer include visualization preferences discrimi-
nating non desired solutions. In this case, the ECB07 is very specific on its eval-
uation criteria: the organizers have preferences on controllers with JECB07 < 1
(JECB07 = 1 is the base controller performance provided). Analyzing the first
solution, the controllers which satisfy this requirement lie in x1 ∈ [1000, 5000],
x2 ∈ [1, 4], x3 ∈ [0, 0.1] and x4 ∈ [10, 30] approximately. Therefore, a new mul-
tiobjective run were carried and a total of 427 new controllers on the specified
subspace are found in 500 generations. The total time of computation for both
runs were approximately 3 hours. The Level Diagram of the last solution ob-
tained with the sp-MODE algorithm is shown on figure 3.

The following geometrical remarks (left) and specific control remarks (right)
can be noticed:

Design of Continuous Controllers Using a Multiobjective DE Algorithm 539

10
−0.001

10
0

0

0.5

1

1.5

2

2.5

 J1
(Multiplicative Error)

62 64 66 68 70 72 74
0

0.5

1

1.5

2

2.5

 J2
(Aditive Error, dB)

10
1

0

0.5

1

1.5

2

2.5

 J3
(Ramp Tracking)

10
0

0

0.5

1

1.5

2

2.5

 J4
(Disturbance Rejection)

10
0

10
1

0

0.5

1

1.5

2

2.5

 J5
(Step Tracking)

10
0

10
1

0

0.5

1

1.5

2

2.5

 J6
(Parabolic Tracking)

10
3

10
4

0

0.5

1

1.5

2

2.5

 J7
(Integral Control Action)

10
4

0

0.5

1

1.5

2

2.5

 J8
(Integral Δ Control Action)

Fig. 3. Pareto front for controller Gk coloured according to the ECB07 preferences
(JECB07 < 1). The darker the solution, the lower JECB07. Light solutions do not
match the ECB07 preferences (JECB07 > 1).

1: The lower J3 or J4, the farther
from the solution with minimum
N2.

2: The higher J2, J7 and J8, the far-
ther from the solution with mini-
mum N2.

3: Objectives J5 and J6 are well
spread into the objective space.

1,2: The better the ramp tracking
(J3) or the better the disturbance
rejection (J4), the higher the noise
sensitivity (J2) for control actions.

3: The step tracking (J5) and
parabolic tracking (J6) are not de-
terminant to achieve JECB07 < 1.

4: Objectives J3 and J4 are in conflict
with objectives J2, J7 and J8.

5: J4 has a positive correlation with
JECB07. (The darker the solution,
the lower J4).

4: Performance (J3,J4) is in conflict
with smooth control actions (J2,
J7, J8), and the designer must
found a satisfactory trade-off.

5: Disturbance rejection (J4) is deter-
minant to achieve JECB07 < 1.

A controller with the lowest high frequency gain and the best possible JECB07
performance is needed. On the one hand, a controller with low high frequency
gain has a low noise sensitivity and on the other hand a controller with the best
performance possible would lead to a less robust controller (typical trade-off
between performance and robustness). Using the Level Diagram tool, is possible
to identify controllers matching this requirement.

The controller Gk(s) = 1736.1211(s+1.9234)(s+0.0017)
s(s+10.4978) has been selected from the

Pareto front approximation J∗
P due to its good disturbance performance and its

high frequencies maximum gain indexes. For validation, the winning controllers
Gw1(s) and Gw2(s) (see [12] for details) and the proposed one were tested on

540 G. Reynoso-Meza et al.

Table 2. JECB07 performance of the proposed controller (Gk) and winning controllers
of the ECB07 (Gw1,Gw2) on 50 random plants

Noise ±0 Noise ±0.0015/2 Noise ±0.0015
Gw1 Gw2 Gk Gw1 Gw2 Gk Gw1 Gw2 Gk

Avg 0.719 0.532 0.651 0.780 0.921 0.734 0.871 1.429 0.868

Des 0.112 0.008 0.051 0.094 0.018 0.064 0.076 0.013 0.068

65 66 67 68 69 70 71 72 73 74 75
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Time (secs)

A
n

g
le

 (
ra

d
ia

n
s)

Fig. 4. JECB07 performance assessment in the presence of a disturbance of the proposed
controller (...) and the winning controller (-.-) with noise on measurements

50 random plants with different noise levels on measurements (±0, ±0.0015/2
and ±0.0015 radians). The results are given in table 2. In general the proposed
controller Gk(s) has a slight improvement over the winning controller Gw1(s)
respect its performance, having a reduced order. Consequently, it is easier to
implement. Controller Gw2(s) shows better performance on the first test, but it
is quickly degraded by noise.

5 Conclusions

A new multiobjective optimization algorithm, the sp-MODE has been presented.
This algorithm shows competitive performances among other MODE algorithms.
With the sp-MODE, a set of Laplace domain controllers has been designed to
match the specifications defined by the ECB07. The multiobjective optimization
lets us define a set of controllers, all of them non-dominated, with different trade-
offs in the objective space.

During the decision making phase, the control engineer has a higher degree of
flexibility to choose a particular or desired solution. Therefore, it was possible
to select a controller according to the EBC07 preferences with a lower order
than the winning controller and with a better performance on the simulations
performed.

Acknowledgments. This work is partially funded by DPI2008-02133/DPI,
Ministerio de Ciencia e Innovación, Gobierno de España.

Design of Continuous Controllers Using a Multiobjective DE Algorithm 541

References

1. Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11, 341–359
(1997)

2. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diver-
sity in evolutionary multiobjective optimization. Evolutionary Computation (3),
263–282 (2002)

3. Herrero, J.M., Mart́ınez, M., Sanchis, J., Blasco, X.: Well-distributed pareto front
by using the epsilon-moga evolutionary algorithm. In: Sandoval, F., Prieto, A.G.,
Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 292–299.
Springer, Heidelberg (2007)

4. Hernández-Dı́as, A.G., Santana-Quintero, L.V., Coello Coello, C.A., Molina, J.:
Pareto-adaptive ε-dominance. Evolutionary Computation 15(4), 493–517 (2007)

5. Storn, R.: Sci: Differential evolution research: Trends and open questions. In:
Chakraborty, U.K. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp.
1–31. Springer, Heidelberg (2008)

6. Huang, V.L., Qin, A.K., Deb, K., Zitzler, E., Suganthan, P.N., Liang, J.J., Preuss,
M., Huband, S.: Problem definitions for performance assessment on multi-objective
optimization algorithms. Technical report, Nanyang Technological University,
Singapore (2007)

7. Kukkonen, S., Lampinen, J.: Performance assesment of generalized differential evo-
lution 3 (gd3) with a given set of problems. In: Proceedings of the IEEE congress
on evolutionary computation (CEC 2007), September 2007, pp. 3593–3600 (2007)

8. Huang, V.L., Qin, A.K., Suganthan, P.N., Tasgetiren, M.F.: Multi-objective op-
timization based on self-adaptive differential evolution algorithm. In: Proceedings
of the IEEE congress on evolutionary computation (CEC 2007), September 2007,
pp. 3601–3608 (2007)

9. Zamuda, A., Brest, J., Boskovic, B., Zumer, V.: Differential evolution for multiob-
jective optimization with self adaptation. In: Proceedings of the IEEE congress on
evolutionary computation (CEC 2007), September 2007, pp. 3617–3624 (2007)

10. Zielinski, K., Laur, R.: Differential evolution with adaptive parameter setting for
multi-objective optimization. In: Proceedings of the IEEE congress on evolutionary
computation (CEC 2007), September 2007, pp. 3585–3592 (2007)

11. Garćıa-Sanz, M., Elso, J.: Ampliación del benchmark de diseño de controladores
para el cabeceo de un helicóptero. Revista Iberoamericana de Automática e In-
formática Industrial 4(1), 107–110 (2007)

12. Garćıa-Sanz, M., Elso, J.: Resultados del benchmark de dise no de controladores
para el cabeceo de un helicóptero. Revista Iberoamericana de Automática e In-
formática Industrial 4(4), 117–120 (2007)

13. Reynoso-Meza, G., Blasco, X., Sanchis, J.: Diseño multiobjetivo de controladores
pid para el benchmark de control 2008-2009. Revista Iberoamericana de Au-
tomática e Informática Industrial 6(4), 93–103 (2009)

14. Gu, D.W., Petkov, P.H., Konstantinov, M.M.: Robust control design with Matlab.
Springer, Heidelberg (2005)

15. Blasco, X., Herrero, J.M., Sanchis, J., Mart́ınez, M.: A new graphical visualization
of n-dimensional pareto front for decision-making in multiobjective optimization.
Information Sciences 178(20), 3908–3924 (2008)

Parameter Tuning of Evolutionary Algorithms:
Generalist vs. Specialist

S.K. Smit and A.E. Eiben

Vrije Universiteit Amsterdam
The Netherlands

{sksmit,gusz}@cs.vu.nl
http://mobat.sourceforge.net

Abstract. Finding appropriate parameter values for Evolutionary Al-
gorithms (EAs) is one of the persistent challenges of Evolutionary Com-
puting. In recent publications we showed how the REVAC (Relevance
Estimation and VAlue Calibration) method is capable to find good EA
parameter values for single problems. Here we demonstrate that REVAC
can also tune an EA to a set of problems (a whole test suite). Hereby we
obtain robust, rather than problem-tailored, parameter values and an EA
that is a ‘generalist, rather than a ‘specialist. The optimized parameter
values prove to be different from problem to problem and also different
from the values of the generalist. Furthermore, we compare the robust
parameter values optimized by REVAC with the supposedly robust con-
ventional values and see great differences. This suggests that traditional
settings might be far from optimal, even if they are meant to be robust.

Keywords: parameter tuning, algorithm design, test suites, robustness.

1 Background and Objectives

Finding appropriate parameter values for evolutionary algorithms (EA) is one
of the persisting grand challenges of the evolutionary computing (EC) field. As
explained by Eiben et al. in [8] this challenge can be addressed before the run
of the given EA (parameter tuning) or during the run (parameter control). In
this paper we focus on parameter tuning, that is, we are seeking good parameter
values off-line and use these values for the whole EA run. In today’s practice, this
tuning problem is usually ‘solved’ by conventions (mutation rate should be low),
ad hoc choices (why not use uniform crossover), and experimental comparisons
on a limited scale (testing combinations of three different crossover rates and
three different mutation rates). Until recently, there were not many workable
alternatives. However, by the developments over last couple of years now there
are a number of tuning methods and corresponding software packages that enable
EA practitioners to perform tuning without much effort. In particular, REVAC
[10,13] and SPOT [3,5,4] are well developed and documented.

The main objective of this paper is to illustrate the advantage of using tuning
algorithms in terms of improved EA performance. To this end, we will select

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 542–551, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist 543

a set of test functions and compare a benchmark EA (with robust parameter
values set by ‘common wisdom’) with an EA whose parameters are tuned for
this set of functions. A second objective is to compare specialist EAs (that are
tuned on one of our test functions) with a generalist EA (that is tuned on the
whole set of test functions). For this comparison we will look at the performance
of the EAs as well as the tuned parameter values. Furthermore, we want to show
what kind of problems rise when tuning evolutionary algorithms. At the end we
hope to provide a convincing showcase justifying the use of a tuning algorithm
and to obtain novel insights regarding the good parameter values.

2 Parameters, Tuners, and Utility Landscapes

To obtain a detailed view on parameter tuning we distinguish three layers: the
application layer, the algorithm layer, and the design or tuning layer. The lower
part of this three-tier hierarchy consists of a problem on the application layer
(e.g., the traveling salesman problem) and an EA (e.g., a genetic algorithm) on
the algorithm layer trying to find an optimal solution for this problem. Simply
put, the EA is iteratively generating candidate solutions (e.g., permutations of
city names) seeking one with maximal fitness. The upper part of the hierarchy
contains a tuning method that is trying to find optimal parameter values for
the EA on the algorithm layer. Similarly to the lower part, the tuning method
is iteratively generating parameter vectors seeking one with maximal quality,
where the quality of a given parameter vector is based on the performance of
the EA using the values of it. To avoid confusion we use the term utility, rather
than fitness, to denote the quality of parameter vectors. Table 1 provides a quick
overview of the related vocabulary.

Using this nomenclature we can define the utility landscape as an abstract
landscape where the locations are the parameter vectors of an EA and the height
reflects utility, based on any appropriate notion of EA performance. It is obvious
that fitness landscapes –commonly used in EC– have a lot in common with utility
landscapes as introduced here. To be specific, in both cases we have a search
space (candidate solutions vs. parameter vectors), a quality measure (fitness vs.
utility) that is conceptualized as ‘height’, and a method to assess the quality of
a point in the search space (evaluation vs. testing). Finally, we have a search
method (an evolutionary algorithm vs. a tuning procedure) that is seeking for a
point with maximum height.

Table 1.

problem solving parameter tuning
Method at work evolutionary algorithm tuning procedure
Search space solution vectors parameter vectors
Quality fitness utility
Assessment evaluation testing

544 S.K. Smit and A.E. Eiben

3 Generalist EAs vs. Specialist EAs

Studying algorithm performance on different problems has led to the no-free-
lunch theorem stating that algorithms (of a certain generic type) performing
well on one type of problem, will perform worse on another [14]. This also holds
for parameter values in the sense that a parameter vector that performs good
on one type of problems, is likely to perform worse on another. However, very
little effort is spent on studying the relation between problem characteristics and
optimal parameter values. It might be argued that this situation is not a matter
of ignorance, but a consequence of an attitude favoring robust parameter values
that perform good on a wide range of different problems. Note that the term
’robust’ is also used in the literature to indicate a low variance in outcomes when
performing multiple repetitions of a run on the same problem with different
random seeds. To avoid confusion, we will use the term generalist to denote
parameter values that perform good on a wide range of problems. The opposite
of such a generalist is then a specialist, namely a parameter set that shows
excellent performance on one specific type of problems.

The notion of a generalist raises a number of issues. First, a true generalist
would perform good on all possible test functions. However, this is impossible
by the no-free-lunch theorem. So, in practice, one needs to restrict the set of test
functions a generalist must solve well and formulate the claims accordingly. For
instance, a specific test suite {F1, . . . , Fn} can be used to support such claims.

The second problem is related to the definition of utility. In simplest case, the
utility of a parameter vector p is the performance of the EA using the values of
p on a given test function F. This notion is sufficient to find specialists for F .
However, for generalists, a collection of functions {F1, . . . , Fn} should be used.
This means that the utility is not a single number, but a vector of utilities
corresponding to each of the test functions. Hence, finding a good generalist
is a multi-objective problem, for which each test-function is one objective. In
this investigation we address this issue in a straightforward way, by defining the
utility on a set {F1, . . . , Fn} as the average of utilities on the functions Fi.

4 Experimental Setup and System Description

As described earlier, the experimental setup consist of a three layer architecture.
On the application layer, we have chosen a widely used set of 10 dimensional
test-functions to be solved, namely: Ackley, Griewank, Sphere, Rastrigin, and
Rosenbrock. For Ackley, Griewank and Rosenbrock, the Evolutionary Algorithm
is allowed for 12.000 function evaluations. On Rastrigin it is allowed for 10.000
evaluations, and on the Sphere function only 8.000. This is a rather limited set
of problems, but due to a large runtime more exhaustive and complex test suites
are not yet feasible.

On the algorithm layer, we have chosen a simple genetic algorithm using
N-point crossover, bitflip mutation, k-tournament parent selection, and deter-
ministic survivor selection. These choices require 6 parameters to be defined as

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist 545

Table 2. Parameters to be tuned, and their ranges

Parameter Min Max

Population size 2 200
Offspring size 1 200
Mutation probability 0 1
crossover points 1 149
Crossover probability 0 1
Tournament size 1 200

described in Table 2. the allowed values for most of the parameters a define by
either the population size or genome length (150). For population size, we have
chosen a maximum value of 200, which we believe is big enough for this genome
size and allowed number of evaluations.

The offspring size determines the number of individuals that are born ev-
ery generation. These newborn individual replace the worst individuals in the
population. If the offspring size is bigger than the population size, then the
whole population is replaced by the new group of individuals, causing an in-
crease in population size. N-point crossover is chosen to allow for a whole range
of crossover operators, such as the commonly used 1-point crossover (N=1)
and 2-point crossover (N=2). The same holds for k-tournament selection. The
commonly used random uniform selection (k=1), deterministic selection (k ≥
population-size) and everything in between can be used by means of selecting k
accordingly. Because the test-functions require 10 dimensional real-valued strings
as input, a 15-bit Gray coding is used to transform the binary string of length
150, into a real-valued string of length 10.

On the design layer, REVAC [9] is used for tuning the parameters of the
Evolutionary Algorithm. Technically, REVAC is a heuristic generate-and-test
method that is iteratively searching for the set of parameter vectors of a given
EA with a maximum performance. In each iteration a new parameter vector
is generated and its performance is tested. Testing a parameter vector is done
by executing the EA with the given parameter values and measuring the EA
performance. EA performance can be defined by any appropriate performance
measure and the results will reflect the utility of the parameter vector in question.
Because of the stochastic nature of EAs, in general a number of runs is advisable
to obtain better statistics. A detailed explanation of REVAC can be found in
[13] and [11].

REVAC itself has some parameters too, which need to be specified. The
REVAC-parameter values used in these experiments are the default settings,
and can be found in Table 3.

4.1 Human Expert

Tuning an algorithm requires a lot of computer power, while some people argue
that this is a waste of time. General rules of thumb as a population size of

546 S.K. Smit and A.E. Eiben

Table 3. REVAC Parameters

Population Size 80
Best Size 40
Smoothing coefficient 10
Repetitions per vector 10
Maximum number of vectors tested 2500

Table 4. Best Parameter Values and their Mean Best Fitness (to be minimized).
Standard deviations shown within brackets.

Common Generalist Specialist

Ackley Griewank Sphere Rastrigin Rosenbrock

Pop. size 100 173 125 12 34 148 107
Offspring size 2 18 67 83 5 9 94
Mutation prob. 0.006 0.0453 0.0405 0.0261 0.0077 0.0301 0.0393
N-point crossover 2 96 115 19 71 18 27
Crossover prob. 1 0.7733 0.4136 0.8153 0.9236 0.7516 0.9762
Tournament size 5 186 30 53 19 104 118
Ackley 1.755 (1.747) 0.127 (0.539) 0.026 (0.013) 0.113 (0.542) 2.005 (2.312) 0.244 (0.753) 0.243 (0.782)
Griewank 0.089 (0.038) 0.059 (0.023) 0.082 (0.040) 0.081 (0.032) 0.083 (0.056) 0.070 (0.037) 0.079 (0.030)
Sphere 0.007 (0.028) 0.021 (0.015) 0.087 (0.056) 0.01 (0.012) 0.000 (0.000) 0.002 (0.003) 0.029 (0.022)
Rastrigin 14.57 (10.48) 6.92 (4.70) 7.28 (3.65) 10.40 (5.97) 16.23 (11.71) 7.60 (4.99) 9.85 (4.91)
Rosenbrock 134.3 (395.0) 64.2 (110.4) 125.2 (129.4) 68.4 (126.5) 151.7 (229.8) 103.8 (195.2) 62.5 (123.4)
Average 30.1328 14.2726 26.5324 15.7996 34.0037 22.3373 14.5420

100 and low mutation probabilities are supposed to perform reasonably well.
The question rises how beneficial tuning, and more specific automated tuning,
is even to experienced practitioners. For quick assessment of the added value of
algorithmic tuning, we have tested the EA using parameter values defined by
‘common wisdom’ (Table 4).

4.2 Performance Measures

The quality of a certain parameter vector, is measured two times. First, the
estimated utility is used to asses a performance to the parameter-vector during
the tuning procedure. This estimated utility is calculated by taking the Mean
Best Fitness of 10 independent runs using these parameter-values. Secondly,
after the tuning procedure is finished, a validated utility is calculated for the 5
parameter vectors with the best estimated utility. This validated utility is based
on 25 independent runs instead of 10, and is therefore supposed to be a better
estimate of the true utility of the parameter vector.

After this validation step, we define the ‘best parameter values’ as the param-
eter vector with the highest validated utility. Furthermore, we tried to indicate
good ranges for each of the parameters. Such a range is defined by taking the
value of .25 and .75 quantile of the 25 parameter vectors with the highest esti-
mated utility. This removes outliers that are caused by parameters vectors that
were ‘lucky’, and received a estimated utility that is much higher than their true
utility.

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist 547

4.3 System Description

The complete experiment is defined in MOBAT[12] (Meta-Heuristic Optimizer
Benchmark and Analysis Toolbox), a toolbox for defining, tuning and evaluating
Evolutionary Algorithms on a distributed system. The default package of MO-
BAT contains all the components for composing the evolutionary algorithm used
in these experiments, the test-functions and REVAC. MOBAT is open source
and freely available via SourceForge.net.

The experiments are ran on a single 2.93 GHz Intel Core 2 Duo processor with
4GB of memory. A specialist tuning-session took on average 8 hours to finish,
while the generalist experiment on our testsuite of 5 test functions finished in
40 hours.

5 Results

5.1 Performance

In this section we present the outcomes of our experiments. As explained in
section 3, our goal is to find the best parameter vectors for both specialists and
generalists. Furthermore, we stated that a good generalist, is the one with the
best average performance. From the results in Table 4 we can immediately see
the effect of this choice. The Rosenbrock function appeared to be much harder
to solve than the other functions, causing big differences in utility. Therefore the
best generalist, was the one that performed very well on the Rosenbrock function,
without losing too much performance on the other functions. From Table 5, it
is even clear that there is no significant difference in multi-function performance
between the three best performing instances on the Rosenbrock function (based
on a t-test with α = 0.1). Furthermore, we can observe that the generalist is only
outperformed by a specialist on the Sphere function. However, focusing more on
the sphere function makes hardly any difference in the average performance, due
to the small function values on this problem. The parameter values chosen by
‘common wisdom’ are, except on the Sphere function, significantly outperformed
by the other parameter vectors.

When looking at the specialists, we can observe some interesting phenomena.
It is apparently very easy to tune parameters in such a way that they are purely
specialized on the Sphere function. This specialist is the only one that solves
its problem perfectly, but on the downside, it performs very bad on the others
functions. The Ackley specialist, on the other hand, does not only perform best
on its ’own’ function, but also outperforms most others on the Rastrigin func-
tion. Interestingly, the Rosenbrock and Griewank specialists show very similar
behavior on all functions, however it is remarkable that the Griewank specialist
has only an average performance on the function it is tuned to.

Estimated Utility vs. Validated Utility: One of the causes of such sub-
optimal performance on its ’own’ function, is a difference between the estimated
utility, that is used during tuning, and the validated utility, as shown in the

548 S.K. Smit and A.E. Eiben

Table 5. The specialists/generalist (colums) that show significantly better performance
(α = 0.1) on a certain problem(rows), based on the results from Table 4

Common Generalist Specialist

Ackley Griewank Sphere Rastrigin Rosenbrock

(1) (2) (3) (4) (5) (6) (7)
Ackley 1,5 1,5,6,7 1,5 1,5 1,5
Griewank All
Sphere 2,3,7 3,7 2,3,7 All 1,2,3,4,7 3
Rastrigin 1,4,5,7 1,4,5,7 1,5 1,4,5,7 1,5
Rosenbrock 1,3,5 1,3,5 1,3,5
Average 1,3,5 1,3,5 1,3,5

results. In some cases, these validated utilities are twice as bad as the estimated
utility. These differences can be explained by looking at the fitness landscapes
of the functions.

In most cases, a fitness landscape consists of multiple local optima and a global
optimum, with certain bases of attraction. It is likely that an evolutionary algo-
rithm will terminate with a value that is (close to) a local or global optimum, be-
cause it will continue to climb the hill it is currently on, using small mutations
until it gets stuck. The utility vector, therefore consists of values that are all close
to an optima. For example, the utility vector of the ‘common wisdom’ parameter
values on the Ackley function has 58% of the values close to the global optimum.
35 % of the values is between 3 and 4, which are exactly the values on the first
ring of local optima surrounding the global optimum. Finally 7 % of the fitness
values at termination, is between 5 and 7, which is equal to value of the second
ring of local optima. Such a distribution can disturb the tuning run heavily, for
example in 7.5% of the cases the estimated utility, based on 10 runs, of this set of
parameter values will be lower than 0.2, which is nine times lower than the ’true’
utility. Such a lucky one can therefore steer evolution into the wrong direction.

5.2 Best Parameter Values

To get better insight into the best parameter ranges, we have chosen not to use
the single best solution, but the 1% of the best performing parameters values
during the tuning phase. Figure 1 shows the .25 and .75 quantile of those values
for each of the specialists and the generalist relative to the parameter ranges. The
most obvious conclusion that can be drawn from these charts, is that mutation
should be low, in order to get a good performance. However, there are also some
less standard conclusions. One of the most interesting results is that, although
the ranges for population-size are quite different for each of the functions, the
’guesstimate’ of population-size equals 100 is not that bad after all. To be more
specific, on all five problems, a population-size of 100 lies within the .25 and .75
quantile. However, most other parameter values are completely different than
the ’common wisdom’ ones. For example the N parameter of N-Point crossover
is much higher than 2, which indicated that uniform crossover like crossover,

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist 549

(a) Generalist (b) Ackley (c) Griewank

(d) Sphere (e) Rastrigin (f) Rosenbrock

Fig. 1. The good parameter ranges for each of the parameters on each test function,
and the combined set. The parameter ranges from Table 2 are scaled to [0, r].

outperforms common 1 or 2-point crossover on these problems. This is probably
due to the separable (Sphere, Rastrigin and Ackley) or partially separable nature
of the test functions.

Furthermore, we can observe a much higher selection pressure than normally
used. Tournament sizes are almost equal to the population size, causing the
evolutionary algorithm to rapidly converge towards the best individuals in the pop-
ulation. However, such behavior can be explained by the limited number of evalu-
ations that the evolutionary algorithm was allowed to perform. The question rises,
if such a fast-converging algorithm is always preferred over a slow-but-accurate in-
stance. In somecases it is,while in other cases itmightnotbe thepreferredbehavior.
Therefore, we emphasize that the ’best parameter values’ presented here are highly
related to the choices that are made in the experimental setup.

6 Conclusions and Outlook

In this paper we have shown that REVAC is not only capable to find good EA
parameter values for a single problem (test function), but also for a set of prob-
lems (test functions). The parameter values we found for our generalist, differ
greatly from the ’common wisdom’ values that are supposed to be robust. The
‘optimal’ selection pressure for these problems, appears to be much higher than
commonly used. Furthermore, a many-point crossover operator outperforms the
commonly used 1 -and 2-point crossover on all five problems. On the other hand,
a population-size of 100 turned out to be not that bad after all. The scope of
these conclusions is limited, we do not advocate them as being the new best

550 S.K. Smit and A.E. Eiben

general parameters, because different test-suites, aggregation functions and per-
formance measures will lead to different ‘optimal’ parameters. The best generalist
will therefore always depend upon the choices that are made to define it. Based
on the definition of generalist in this paper, our generalist performed quite good
on most problems. However, the results on the Sphere function confirm that the
no-free-lunch theorem also holds on a parameter vector level.

Furthermore, the experiments revealed some major issues for parameter tun-
ing in general. Estimating the utility has a key role in parameter tuning, both for
specialists and generalists. Our experiments revealed how the number of runs per
vector can influence the outcome of the experiments. Too many runs lead to high
computational costs, while too few lead to an inaccurate estimated utility and
therefore inaccurate results. Therefore we advocate the use of racing [2,6,15,13]
and sharpening [4,13] to deal with this issue. This, on the one hand sharpens the
estimate of the utility, and on the other hand reduces the computational effort.

Tuning for a generalist raises specific problems. In general, it is not clear how
a good generalist should be defined. In the area of multi-objective optimization
several approaches are known. One approach is to use aggregation methods, like
the simple average that we used here. From the results we can observe the effect
of such choices; it is more effective to focus on the ’hard’ problems that can lead
to high deviation in the average utility, rather than searching for a generalist
that performs good on all functions. When defining tuning sessions, one have to
be aware of the fact that a tuner will optimize on the problem that is defined,
rather than the problem they wished to be solved.

Future work can overcome this issue, by using an approach known from multi-
objective optimization, namely searching for the Pareto front. Rather than ag-
gregating the results based on choices made beforehand, such an approach allows
the researcher to study the effect of a certain design choice afterwards. In [7] such
an approach is used to show which parameter values are optimal, when compar-
ing on both algorithm speed and algorithm accuracy at the same time, without
specifying weights for those two objective beforehand. This approach can easily
be extended to multi-function optimization, which can give insight into the the
ranges of parameter-values that are most efficient on a certain problem, a class
of problems, or on a whole test suite.

By means of one extensive run, one can identify specialists, class-specialist,
or a true generalist without defining those terms beforehand. Based on such
studies, one no longer has to rely on ’common wisdom’ in order to choose their
parameter values wisely but can select one that fits their needs.

References

1. Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim,
May 18-21. IEEE Press, Los Alamitos (2009)

2. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the f-race
algorithm: Sampling design and iterative refinement. In: Hybrid Metaheuristics,
pp. 108–122 (2007)

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist 551

3. Bartz-Beielstein, T., Lasarczyk, C.W.G., Preuss, M.: Sequential parameter opti-
mization. In: Corne, D., et al. (eds.) Proceedings of the 2005 IEEE Congress on
Evolutionary Computation IEEE Congress on Evolutionary Computation, Edin-
burgh, UK, vol. 1, pp. 773–780. IEEE Press, Los Alamitos (2005)

4. Bartz-Beielstein, T., Parsopoulos, K.E., Vrahatis, M.N.: Analysis of Particle Swarm
Optimization Using Computational Statistics. In: Chalkis (ed.) Proceedings of
the International Conference of Numerical Analysis and Applied Mathematics
(ICNAAM 2004), pp. 34–37 (2004)

5. Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world appli-
cations: A regression tree based approach. Technical Report of the Collaborative
Research Centre 531 Computational Intelligence CI-172/04, University of Dort-
mund (March 2004)

6. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Langdon, W.B. (ed.) GECCO 2002: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kauf-
mann, San Francisco (2002)

7. Dréo, J.: Using performance fronts for parameter setting of stochastic metaheuris-
tics. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2009), pp. 2197–2200. ACM, New York (2009)

8. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

9. Nannen, V., Eiben, A.E.: Relevance Estimation and Value Calibration of Evo-
lutionary Algorithm Parameters. In: Veloso, M.M. (ed.) Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI), pp. 1034–1039
(2007)

10. Nannen, V., Eiben, A.E.: A Method for Parameter Calibration and Relevance
Estimation in Evolutionary Algorithms. In: Keijzer, M. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 183–190.
Morgan Kaufmann, San Francisco (2006)

11. Nannen, V., Smit, S.K., Eiben, A.E.: Costs and benefits of tuning parameters of
evolutionary algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume,
N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 528–538. Springer, Heidelberg (2008)

12. Smit, S.K.: MOBAT (2009), http://mobat.sourceforge.net
13. Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary

algorithms. In: [1]
14. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE

Transaction on Evolutionary Computation 1(1), 67–82 (1997)
15. Yuan, B., Gallagher, M.: Combining Meta-EAs and Racing for Difficult EA Param-

eter Tuning Tasks. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter
Setting in Evolutionary Algorithms, pp. 121–142. Springer, Heidelberg (2007)

http://mobat.sourceforge.net

Memory Design for Constrained Dynamic
Optimization Problems

Hendrik Richter

HTWK Leipzig, Fakultät Elektrotechnik und Informationstechnik
Institut Mess–, Steuerungs– und Regelungstechnik

Postfach 30 11 66, D–04251 Leipzig, Germany
richter@fbeit.htwk-leipzig.de

Abstract. A proposal for a memory design is given that is suitable for
solving constrained dynamic optimization problems by an evolutionary
algorithm. Based on ideas from abstract memory, two schemes, blending
and censoring, are introduced and tested. Using a new benchmark we
show in numerical experiments that such a memory can improve solving
certain types of constrained dynamic problems.

1 Introduction

Dynamic optimization problems are characterized by fitness landscapes that
change their topology during the run–time of the evolutionary algorithm (EA).
Hence, instead of finding the optimum as in solving static problems, dynamic
optimization means tracking the movement of the optimum. Constraints restrict
the allowed search space of the optimization problem as they define which solu-
tions are permissible and which are not. Geometrically, they can be interpreted
as (possibly moving) boundaries in the fitness landscape that separate feasible
solutions from infeasible ones. Solving such kind of problems recently attracted
much interest, see e.g. [8,15] and references cited there.

A key issue in solving dynamic optimization problems is the management
of the population’s genetic diversity. For addressing genetic diversity, differ-
ent types of schemes have been proposed, for instance (self–) adaption of the
EA’s parameters [1], or random diversity enhancement by hyper–mutation [7]
or random immigrants [16], or different types of memory [3,9,13,17]. As it has
been shown that memory, in particular, seems to be a promising option in solv-
ing dynamic optimization problems, our question is if this remains the case
for (possibly dynamic) constraints to the problem. However, to the best of our
knowledge, so far there have been no reported attempts to use a memory–based
approach for constrained dynamic optimization problems. We here employ a
memory scheme recently suggested for solving dynamic optimization problems,
abstract memory [9,10], and propose modifications to make it fit for constrained
problems, namely blending and censoring. Our results show that for certain types
of constrained dynamic problems such a scheme can improve the algorithm’s
performance.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 552–561, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Memory Design for Constrained Dynamic Optimization Problems 553

We next review work related to memory design for constrained dynamic op-
timization problems. In Sec. 3 dynamic fitness landscapes with constraints are
considered, a new class of benchmark problems is introduced, and two standard
schemes for solving static constrained optimization problems, penalty functions
and repair algorithms, are recalled. In the numerical experiments, presented in
Sec. 5, these two schemes are employed with and without the proposed memory
to investigate its usefulness. Prior to this, Sec. 4 gives the memory design. We
end with summarizing the results and pointing at future problems.

2 Related Work

Work directly related to memory design for constrained dynamic optimization
problems exists in two fields: constraint–handling in evolutionary optimization
and memory schemes for dynamic optimization problems. As mentioned before,
constraints do restrict the permissible search space and divide solutions into
feasible and infeasible ones. For the evolutionary search process this means not
only the optima need to be found but also it must be ascertained that they be-
long to the feasible space. So, the following (possibly contradictory) aims need
to be pursued in evolutionary search. On the one hand, computational effort
should not be wasted in the infeasible region, but the boundary region between
feasible and infeasible solutions should also be searched effectively. While the
first aim suggests to discard all infeasible solutions, the latter indicates that at
least some infeasible solutions should be employed in the search process and
furthermore that infeasible solutions may carry information that is important
and usable. Nevertheless, it is easy to imagine that optima situated on small
feasible “islands” within a vast infeasible “sea” constitute a problem that is very
difficult to solve by evolutionary computation. To solve static optimization prob-
lems, different methods have been suggested for constraint–handling [5], which
can be categorized into four groups: (i.) The use of penalty functions [4,5], (ii.)
employing repair algorithms [12], (iii.) approaches maintaining and using infea-
sible solutions [15] and (iv.) methods reformulating and solving the constrained
problem as a multi–objective (un–constrained) optimization problem [4].

The usage of memory is a popular method to address the diversity issue
and has shown to be a promising option in solving dynamic optimization prob-
lems [3,9,13,17]. The key points in employing memory are to select useful in-
formation about the solving process (usually in form of individuals that have
distinguished themselves in optimum seeking), storing the information in an ef-
fective and organized way, and finally retrieving it in order to boost exploration
after a change has happened. The memory schemes suggested range from simply
storing best individuals and re–insert them into the population after a change
(called direct memory [3,14]), over storing best individuals together with some
quantifiers of the state the dynamic problem has (called associated memory [17])
to storing best individuals to build a probabilistic model for the spatial distribu-
tion of future solutions of the problem (called abstract memory [9,10]). Further
questions addressed in the literature are the organization of the memory (up-
dating rules, memory size etc.) and which individuals should be selected.

554 H. Richter

3 Dynamic Fitness Landscapes with Constraints

In dynamic optimization the topological features of the fitness landscape evolve
with time, which means that the optima change their coordinates, shapes and
surroundings. Constraints define which points in the search space are feasible
and which are not. With dynamic constraints this definition changes with the
run–time of the EA. This, consequently, has an effect on the dynamic fitness
landscape itself, but also on the EA’s individuals populating the landscape.
For the dynamic fitness landscape with dynamic constraints this may result
in the following scenarios. After a change the former global optimum and its
surrounding becomes infeasible or there is a connection and/or disconnection
between feasible search space regions or the global optimum jumps from one
feasible region to another. Apart from the obvious fact that there are feasible
and infeasible individuals, for the population a change may also mean that the
percentage of infeasible individuals might rise or fall dramatically. All this has
consequences for the design of the diversity management needed in dynamic
optimization by evolutionary computation.

Most known modifications of EAs proposed for solving dynamic optimiza-
tion problems share the same structural and functional pattern: they (a) detect
a change in the dynamic fitness landscape, (b) enhance and/or maintain the
population’s diversity to enable exploration, (c) try to converge to the optimum
with maximal speed by exploitation, and (d) prepare for the next change by con-
trolling and/or maintaining diversity. The main effect of most existing schemes
to cope with dynamic environments is modifying the composition of the pop-
ulation after each change in the fitness landscape. As mentioned before this
might for instance be accomplished by substantial random alteration of the in-
dividuals (hyper–mutation [7]), introducing randomly generated new individuals
(random immigrants [16]), retrieving individuals from memory (different kinds
of memory schemes [3,9,13,17]) or generating specific individuals on propose (an-
ticipating and predicting the landscape dynamics [2,10,14]). The trouble with
all these schemes in constrained dynamic optimization is that the compositional
modification might fall flat because all or a considerable part of the “modified
population” appears infeasible [8,15]. Of course, the problem could be remedied
by checking the feasibility of the modified population, but that would somehow
pretend that evaluating feasibility comes at no numerical cost.

Solving constrained dynamic optimization problems is a new field in evolu-
tionary computation and there is a certain lack of established benchmark prob-
lems. Recently, a set of problems has been proposed [8]; we here introduce an
alternative. It consists of a well–known and often–studied dynamic optimization
problem, an n–dimensional “field of cones on a zero plane”, where N cones with
coordinates ci(k), i = 1, · · · , N , are moving with discrete time k ∈ N0. These
cones are distributed across the landscape and have randomly chosen initial co-
ordinates ci(0), heights hi, and slopes si. So, the dynamic fitness function is

f(x, k) = max
{

0 , max
1≤i≤N

[hi − si‖x− ci(k)‖2]
}

. (1)

Memory Design for Constrained Dynamic Optimization Problems 555

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

X
2

x
1

X
2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 1. (a) Norm–based constraints (2) (b) Image of the memory Cμ

In addition, the dynamic optimization problem is subjected to dynamic norm–
based constraints

gj(x, k) = ‖bjx− ccj(k)‖pj − rj ≤ 0, j = 1, 2, . . . , m. (2)

The exact appearance of the constraints depends on the center point ccj, the size
rj , the ratio bj (which defines the relative size with respect to the different spatial
directions x) and the shape pj (which is diamond–like for pj = 1, sphere–like for
pj = 2, manhatten–like for pj = ∞, and anything in-between for 0 < pj < ∞, see
Fig. 1a for an example). An advantage of using norm–based constraints (2) is that
the parameters ccj , rj , bj and pj allow an easy geometrical interpretation. This
might be helpful in measuring and evaluating the resulting constrained dynamic
fitness landscape. In principle, all these four parameters of the constraints (2)
could change with time k. We here only allow the center coordinates ccj(k) to
change with time, assuming that the other parameters are set in initialization
and remain constant for the run–time of the EA.

So, the constrained dynamic optimization problem we intend to solve is finding
the maximal xS ∈M in a fixed bounded search space M ⊂ Rn with f(xS , k) ≥
f(x, k), ∀x ∈ M for every k ≥ 0 while at least one of the constraints gj(x, k) is
not violated:

fS(k) = max
x∈M

f(x, k), subject to (min
j

gj(x, k)) ≤ 0, k ≥ 0. (3)

Due to the analytic nature of f(x, k) and gj(x, k), the value of fS(k) can be calcu-
lated exactly for every k, which is helpful in determining the EA’s performance.
The EA we consider for solving problem (3) has a real number representation and
λ individuals pκ ∈ Rn, κ = 1, 2, . . . , λ, which build the population P ∈ Rn×λ. Its
dynamics is described by the generation transition function ψ : Rn×λ → Rn×λ,
which can be interpreted as a nonlinear probabilistic dynamical system that
maps P (t) onto P (t+1) and hence transforms a population at generation t ∈ N0
into a population at generation t + 1, P (t + 1) = ψ (P (t)) , t ≥ 0. The time
scales t and k are related by the change frequency γ ∈ N as t = γk with γ being

556 H. Richter

constant. Further, we assume that the change frequencies and change points for
both dynamic fitness function and dynamic constraints are identical.

As pointed out in Sec. 2 there are several ways to deal with (static) constraints.
In the experiments reported here, we employ and test two schemes: penalty
functions and repair algorithms. Both schemes are briefly recalled next. The
working mode of an EA includes calculating the dynamic fitness function f(x, k)
and the dynamic constraints gj(x, k) for each individual pκ at the beginning
of every generation t. For the penalty function method, we calculate for all
individuals pκ(t) ∈ P (t) a penalized fitness function value fpen(x, k) from the
dynamic fitness function (1) and the dynamic constraints (2):

fpen(pκ(t), k) = f(pκ(t), k)−
m∑

j=1

max(0, gj(pκ(t)), k), (4)

where t = γk. This quantity is used as the fitness of each individual in the fol-
lowing evolutionary operators (mainly selection, but possibly also recombination
and mutation). By the penalized fitness function individuals that are not feasi-
ble are punished so that their survival in the evolutionary process becomes less
likely. So, it is intended that the population moves towards feasible regions.

For an implementation of a repair algorithm, we use methods from GENO-
COP III [6], which works like this. After evaluating the dynamic fitness function
f(x, k) and the dynamic constraints gj(x, k) for all individuals pκ, the feasible
population Pfeas (defined by its individuals not violating any of the constraints
(2)) is separated from the infeasible Pinfeas. All individuals of Pinfeas are then
repaired by the following procedure. Let pinfeas be an infeasible individual from
Pinfeas. We randomly select a feasible individual pfeas from Pfeas and calculate
a candidate pcand by pcand = apinfeas +(1−a)pfeas with a being a realization of
a uniformly distributed random variable. The process is repeated until pcand is
feasible. Then pinfeas is replaced by pcand. By doing so for all infeasible pinfeas,
the whole population becomes feasible, and thus, becomes repaired.

4 Memory Design

Designing memory for improving the quality of solving unconstrained dynamic
optimization is an established practice. The usual practice is to set aside a mem-
ory space to hold a certain number of individuals (taken from the population).
At certain time steps (which are pre–defined or event–triggered) individuals that
have performed exceptionally well in solving the dynamic optimization problem
are identified and put to the memory, possibly replacing some other using an up-
dating strategy. Later on, if either a change in the fitness landscape is detected [11]
and/or the algorithm’s performance deteriorates, the stored individuals are re-
trieved from the memory and inserted into the population, possibly substituting
other (poor performing) individuals. By fine–tuning the strategies for identify-
ing suitable individuals, replacing, retrieving, and having the appropriate size of
the memory, this approach has been successfully used in solving (unconstrained)
dynamic optimization problems, particularly those that show a certain degree of
recurrence in its dynamics. However, it is not clear if such an approach is also

Memory Design for Constrained Dynamic Optimization Problems 557

a promising option for constrained dynamic optimization problems. As not only
the fitness function but also the constraints may change with time, individuals
that have been put to the memory because they were good and feasible might,
if retrieved, be infeasible. To address this issue, an alternative and new memory
strategy for constrained dynamic optimization problems is proposed. It uses some
basic ideas from an abstract memory scheme recently introduced [9,10]. Abstract
memory is different from conventional memory schemes in two respects. One is
that the memory itself is not an extension of the population and hence neither a
storing place for individuals (and is therefore likely to have a representation that
is different from the individuals’), but it accounts for the spatio–temporal distri-
bution of regions in the search space that are most promising to contain good so-
lutions. Another is the storing and retrieving process.

We briefly recall the memory design, referring to [10] for further details. For
setting up the abstract memory, we assume that the bounded search space M
has a lower and upper limit [xi min , xi max], i = 1, 2, . . . , n in each direction.
We define a grid size ε to partition M into rectangular (hyper–) cells. With hi =
�xi max−xi min

ε � we obtain Πn
i=1hi such cells. All cells together are represented by

the memory matrix M(t) ∈ Rh1×h2×...×hn , while each cell is specified by the
memory matrix element m�1�2...�n(t) with �j = 1, 2, . . . , hi. Each memory ma-
trix element m�1�2...�n(t) consists of a counter count�1�2...�n(t), which is empty
initially, i.e., count�1�2...�n(0) = 0 for all �j. For each individual pκ(t) ∈ P (t)
selected to be part of the memorizing, the counter of the element representing
the partition cell that the individual belongs to is increased by one. That is, we
calculate the index �i = �pi κ−xi min

ε � for all pκ = (p1κ, p2κ, . . . , pnκ)T and all
1 ≤ i ≤ n and increment the corresponding count�1�2...�n(t). Note that this pro-
cess might be carried out several times in a generation t if more than one individ-
ual selected belongs to the same partition. For retrieval we first form an adjunctive
memory matrixMμ(t) by dividingM(t) by the sum of all elements inM(t), i.e.,
Mμ(t) = 1∑

hi
M(t)M(t). Hence, each element in Mμ(t) is an approximation of

the natural measure μ ∈ [0, 1], which expresses the probability that a good solu-
tion can be found in the corresponding partition cell M�1�2...�n of the search space.
We then fix the number of individuals to be generated by τ (1 ≤ τ ≤ λ) and pro-
duce these individuals randomly such that their statistical distribution regarding
the partition cells matches the one stored in the memoryMμ(t).

The given storage process builds up a probabilistic model of the occurrence of
good solutions in the search space. This model is used in the retrieval process to
generate randomly new individuals that are likely to drive the evolutionary pro-
cess towards such promising areas. In the memory design for constrained dynamic
optimization problems, we extend this idea of ”spatio–temporal cartographing”
to the dynamic constraints. Therefore, we put all individuals that have not vio-
lated the constraints to a constraint memory matrix C(t) ∈ Rh1×h2×...×hn using
the same process as described above, which results in an adjunctive constraint
memory matrix Cμ(t) = 1∑

hi
C(t)C(t) having equivalent probabilistic properties;

see Fig. 1b for a typical image of matrix Cμ(t), where the degree of darkness
indicates the spatio–temporal probability of a feasible region.

558 H. Richter

With Mμ(t) and Cμ(t) we have two memories that represent (an approxima-
tion of) the spatio–temporal distribution of (a) likely good candidates for solv-
ing the (unconstrained) dynamic optimization problem and (b) likely feasible
regions. For using these memories, we consider two schemes, which we will call
blending and censoring. For blending, we again fix the number of individuals to
be inserted by τ and produce τM individuals based onMμ(t) and τC individuals
based on Cμ(t) by the abstract retrieval process given earlier (in the experiments
we use τM = τC). The τM + τC = τ individuals are blended together by includ-
ing all of them into the population. The τM retrieved individuals are expected
to be nearby likely solutions of the (unconstrained) optimization problem, the
τC are situated in likely feasible regions. As both groups of individuals together
with the remaining population subsequently undergo the constraint processing
(either penalty function or repair algorithm) before they are subjected to the
evolutionary process of the EA, both aspects of problem hardness (dynamic fit-
ness function and/or dynamic constraints) are addressed separately by blending.
So, blending applies the principles that both memories contribute equally and
independently to the production of retrieved individuals and that all produced
new individuals are blended into the population.

Censoring pursuits a different strategy. Here, we first produce a number of
candidate individuals based on the memory matrix Mμ(t) alone. This number
exceeds the number τ of individuals to be inserted (in the experiments 5τ is
used). These candidate individuals are censored by the constraint memory Cμ(t)
as follows. For each candidate individual it is checked if its corresponding par-
tition cell and its surrounding cells have non–zero entries in Cμ(t). All non–zero
entries are summed up. The τ individuals with the largest summed-up entries
from Cμ(t) are inserted into the population. With such a calculation, it is ensured
that only those individuals are considered that not only represent likely solutions
to the dynamic optimization problem, but also have a high probability of being
feasible. Hence, censoring uses both memories hierarchically. The distribution
of the individuals regarding the partition cell is fixed entirely based on Mμ(t),
while Cμ(t) is used to fine–tune this selection.

5 Numerical Experiments

In the following, we report three groups of experiments, involving (a) dynamic
constraints and a dynamic fitness function, (b) static constraints and a dynamic
fitness function, and (c) dynamic constraints and a static fitness function. The
dynamics here is a random process with each ci(k) and/or ccj(k) for each k be-
ing an independent realization of a normally distributed random variable with
fixed mean and variance, which makes it recurring in an ergodic sense. We con-
sider the dynamic fitness function (1) with dimension n = 2 and the number
of cones N = 7. The upper and lower bounds of the search space are set to
x1 min = x2 min = −3 and x1 max = x2 max = 3. The dynamic norm–based
constraints (2) use m = 4 constraints, see Fig. 1a for illustration. To build the
memory Mμ(t), the best three individuals of the population take part in the
memorizing process for all three generations before a change; all individuals not

Memory Design for Constrained Dynamic Optimization Problems 559

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

4.5

5

no mem

blending

censoring

γ

M
F

E

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

no mem

blending

censoring

γ

M
F

E

(a) penalty (b) repair

0 5 10 15 20 25 30 35
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

no mem

blending

censoring

γ

M
F

E

0 5 10 15 20 25 30 35
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no mem

blending

censoring

γ

M
F

E

(c) penalty (d) repair

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

no mem

blending

censoring

γ

M
F

E

0 5 10 15 20 25 30 35
7

8

9

10

11

12

13

14

no mem

blending

censoring

γ

M
F

E

(e) penalty (f) repair

Fig. 2. Memory performance measured by the MFE over change frequency γ: (a,b)
dynamic landscape and dynamic constraints, (c,d) dynamic landscape and static con-
straints (e,f) static landscape and dynamic constraints

560 H. Richter

violating the constraints participate in composing Cμ(t). The employed EA has
λ = 40 individuals, tournament selection of tournament size 2, a fitness–related
intermediate sexual recombination (in which λ times two individuals are chosen
randomly to produce an offspring that is the fitness–weighted arithmetic mean
of both parents) and a standard mutation with the mutation rate 0.1 and hyper–
mutation with hyper–mutation rate 5. The memory grid size is ε = 0.1; τ = 6
individuals are retrieved and inserted.

Fig. 2 shows the results as the mean fitness error (MFE) for 100 runs and
1000 generations, including the 95% confidence intervals. Penalty functions and
repair algorithms are compared for no memory usage and for the proposed mem-
ory with both blending and censoring. The results show a better performance of
censoring with a repair algorithm in contrast to blending and no memory, but
mainly to penalty functions, for dynamic fitness functions and static constraints,
and to some extend also for dynamic fitness functions and dynamic constraints.
For static landscapes with dynamic constraints the results are generally much
poorer, with penalty functions outperforming repair algorithms. A possible ex-
planation for this might be that with static landscapes and dynamic constraints,
repair (and hence making all individuals feasible) deprives the evolutionary drive
of its flexibility; experimentally observed low diversity and low variety in the per-
centage of feasible individuals seems to support this view. The experiments have
further shown that these results are relatively robust against varying landscape
and constraint parameters.

6 Conclusions and Future Work

We proposed a memory design usable to solve constrained dynamic optimization
problems. The design was implemented and tested with two schemes, blending
and censoring. The results show that for problems with dynamic fitness functions
and static constraints, and to some extend also for problems with dynamic fit-
ness functions and dynamic constraints, an improvement is obtained in connec-
tion with repair algorithms. The numerical experiments considered only dynamics
that is random. Further studies should also treat other kinds of dynamics, for in-
stance regular or chaotic. Besides, the conjecture could be studied that the mem-
ory is notwithstanding only sensible if the dynamics of fitness functions and/or
constraints shows recurrence in an ergodic sense. For sake of brevity, a detailed
analysis of the design parameters of the proposed memory scheme is not reported
here, but this should still be done. Finally, setting up a memory inevitably results
in initiating learning processes, at least implicitly. So, analysing the learning in
the proposed scheme would be another interesting topic for further research.

References

1. Arnold, D.V., Beyer, H.G.: Optimum tracking with evolution strategies. Evol. Com-
put. 14, 291–308 (2006)

2. Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In:
Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and
Uncertain Environments, pp. 129–152. Springer, Berlin (2007)

Memory Design for Constrained Dynamic Optimization Problems 561

3. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Angeline, P.J., et al. (eds.) Proc. Congress on Evolutionary Compu-
tation, IEEE CEC 1999, pp. 1875–1882. IEEE Press, Piscataway (1999)

4. Coello Coello, C.A.: Theoretical and numerical constraint–handling techniques
used with evolutionary algorithms: a survey of the state of the art. Comp. Meth.
Appl. Mech. Eng. 191, 1245–1287 (2002)

5. Mezura–Montes, E.: Constraint–Handling in Evolutionary Optimization. Springer,
Berlin (2009)

6. Michalewicz, Z., Nazhiyath, G.: Genocop III: A Co–evolutionary Algorithm for
Numerical Optimization Problems with Nonlinear Constraints. In: Michalewicz,
Z. (ed.) Proc. 2nd IEEE International Conference on Evolutionary Computation,
vol. 2, pp. 647–651 (1995)

7. Morrison, R.W., De Jong, K.A.: Triggered hypermutation revisited. In: Zalzala,
A., et al. (eds.) Proc. Congress on Evolutionary Computation, IEEE CEC 2000,
pp. 1025–1032. IEEE Press, Piscataway (2000)

8. Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems.
In: Tyrrell, A. (ed.) Proc. Congress on Evolutionary Computation, IEEE CEC
2009, pp. 690–697. IEEE Press, Piscataway (2009)

9. Richter, H., Yang, S.: Memory based on abstraction for dynamic fitness functions.
In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt,
A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M.,
Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S., et al. (eds.) EvoWork-
shops 2008. LNCS, vol. 4974, pp. 596–605. Springer, Heidelberg (2008)

10. Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic
optimization problems. Soft Computing 13, 1163–1173 (2009)

11. Richter, H.: Detecting change in dynamic fitness landscapes. In: Tyrrell, A. (ed.)
Proc. Congress on Evolutionary Computation, IEEE CEC 2009, pp. 1613–1620.
IEEE Press, Piscataway (2009)

12. Salcedo–Sanz, S.: A survey of repair methods used as constraint handling tech-
niques in evolutionary algorithms. Comp. Sci. Rev. 3, 175–192 (2009)

13. Simões, A., Costa, E.: Variable-size memory evolutionary algorithm to deal
with dynamic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS,
vol. 4448, pp. 617–626. Springer, Heidelberg (2007)

14. Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: Pre-
diction using linear regression and Markov chains. In: Rudolph, G., Jansen, T.,
Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315.
Springer, Heidelberg (2008)

15. Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibil-
ity driven evolutionary algorithm (IDEA) on constrained dynamic single objective
optimization problems. In: Tyrrell, A. (ed.) Proc. Congress on Evolutionary Com-
putation, IEEE CEC 2009, pp. 3127–3134. IEEE Press, Piscataway (2009)

16. Tinós, R., Yang, S.: A self–organizing random immigrants genetic algorithm for
dynamic optimization problems. Genet. Program. Evol. Mach. 8, 255–286 (2007)

17. Yang, S.: Associative memory scheme for genetic algorithms in dynamic environ-
ments. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler,
R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G.,
Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 788–799. Springer,
Heidelberg (2006)

Multi-population Genetic Algorithms with
Immigrants Scheme for Dynamic Shortest Path
Routing Problems in Mobile Ad Hoc Networks

Hui Cheng and Shengxiang Yang

Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom

{hc118,s.yang}@mcs.le.ac.uk

Abstract. The static shortest path (SP) problem has been well addressed using
intelligent optimization techniques, e.g., artificial neural networks, genetic algo-
rithms (GAs), particle swarm optimization, etc. However, with the advancement
in wireless communications, more and more mobile wireless networks appear,
e.g., mobile ad hoc network (MANET), wireless mesh network, etc. One of the
most important characteristics in mobile wireless networks is the topology dy-
namics, that is, the network topology changes over time due to energy conser-
vation or node mobility. Therefore, the SP problem turns out to be a dynamic
optimization problem in mobile wireless networks. In this paper, we propose
to use multi-population GAs with immigrants scheme to solve the dynamic SP
problem in MANETs which is the representative of new generation wireless net-
works. The experimental results show that the proposed GAs can quickly adapt to
the environmental changes (i.e., the network topology change) and produce good
solutions after each change.

1 Introduction

A mobile ad hoc network (MANET) [11] is a self-organizing and self-configuring
multi-hop wireless network, comprised of a set of mobile hosts (MHs) that can move
around freely and cooperate in relaying packets on behalf of each other. In this paper,
we investigate the shortest path (SP) routing, which concerns with finding the shortest
path from a specific source to a specific destination in a given network while mini-
mizing the total cost associated with the path. The SP problem has been investigated
extensively. It involves a classical combinatorial optimization problem arising in many
design and planning contexts [1,2].

There are several search algorithms for the SP problem: the Dijkstra’s algorithm,
the breadth-first search algorithm and the Bellman-Ford algorithm, etc. All these al-
gorithms have polynomial time complexity. Therefore, they will be effective in fixed
infrastructure wireless or wired networks. But, they exhibit unacceptably high com-
putational complexity for real-time communications involving rapidly changing net-
work topologies [2,3]. Since the algorithms with polynomial time complexity are not
suitable for the real-time computation of shortest paths, quite a few research work
have been conducted to solve SP problems using artificial intelligence techniques, e.g.,
artificial neural networks (ANNs) [2], genetic algorithms (GAs) [3], and particle swarm
optimization (PSO) [7].

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 562–571, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Multi-population Genetic Algorithms with Immigrants Scheme 563

However, so far all these algorithms mainly address the static SP problem. When the
network topology changes, they will regard it as a new network and restart the solving
process over the new topology. As is well known that the topology changes rapidly in
MANETs due to the characteristics of wireless networks, e.g., battery exhaustion and
node mobility. Therefore, for the dynamic SP problem in MANETs, these algorithms
are not good choices since they require frequent restart and cannot meet the real-time re-
quirement. Therefore, for the dynamic SP problem in a changing network environment,
we need to employ new appropriate approaches.

In recent years, studying EAs for DOPs has attracted a growing interest due to its
importance in EA’s real world applications [14]. The simplest way of addressing DOPs
is to restart EAs from scratch whenever an environment change is detected. Although
the restart scheme really works for some cases [13], for many DOPs it is more efficient
to develop other approaches that make use of knowledge gathered from old environ-
ments. One of the possible approaches is to maintain and reintroduce diversity during
the run of EAs, i.e., the immigrants schemes [15]. Multi-population approach [4] is also
an effective technique for DOPs. In the multi-population GA (MPGA), some popula-
tions are responsible for exploiting and others for exploring. By both exploiting and
exploring the solution space, MPGA can well adapt to the environmental changes.

In this paper, the multi-population GA with immigrants scheme is implemented and
applied to solve the dynamic SP problem. The algorithm is denoted as iMPGA. A large
population is created, which will split into several small populations after evolving for
a certain time. These small populations continue the search by either exploiting or ex-
ploring the solution space. Once the topology is changed, all the small populations are
processed in an appropriate way and then merge together. At each generation, to en-
hance the diversity a small number of random immigrants are added into the single
population or the small populations which are responsible for exploring. This process
is repeated for each change interval. Since end-to-end delay [10] is a pretty important
quality-of-service (QoS) metric to guarantee the real-time data delivery, we also require
the routing path to satisfy the delay constraint. For comparison purposes, we also imple-
ment the Standard GA (SGA), the Restart GA, and the random immigrants GA (RIGA).
By simulation experiments, we evaluate their performance on the dynamic SP problem.
The results show that iMPGA significantly outperforms the other three GA methods.

2 Model

In this section, we first present our network model and then formulate the problem of
dynamic SP routing. We consider a MONET operating within a fixed geographical re-
gion. We model it by a undirected and connected topology graph G0(V0, E0), where
V0 represents the set of wireless nodes (i.e., routers) and E0 represents the set of com-
munication links connecting two neighboring routers falling into the radio transmission
range. A communication link (i, j) can not be used for packet transmission until both
node i and node j have a radio interface each with a common channel. However, the
channel assignment is beyond the scope of this paper. In addition, message transmis-
sion on a wireless communication link will incur remarkable delay and cost.

Here, we summarize some notations that we use throughout this paper.

– G0(V0, E0), the initial MANET topology graph.

564 H. Cheng and S. Yang

– Gi(Vi, Ei), the MANET topology graph after the ith change.
– s, the source node.
– r, the destination node.
– Pi(s, r), a path from s to r on the graph Gi.
– dl, the transmission delay on the communication link l.
– cl, the cost on the communication link l.
– Δ(Pi), the total transmission delay on the path Pi.
– C(Pi), the total cost of the path Pi.

The problem of the dynamic SP routing can be informally described as follows. Initially,
given a network of wireless routers, a delay upper bound, a source node and a destina-
tion node, we wish to find a delay-bounded least cost loop-free path on the topology
graph. Then periodically or stochastically, due to energy conservation or some other is-
sues, some nodes are scheduled to sleep or some sleeping nodes are scheduled to wake
up. Therefore, the network topology changes from time to time. The objective of our
problem is to quickly find the new optimal delay-constrained least cost acyclic path
after each topology change.

More formally, consider a mobile ad hoc network G(V, E) and a unicast communi-
cation request from the source node s to the destination node r with the delay upper
bound Δ. The dynamic delay-constrained shortest path problem is to find a series of
paths {Pi|i ∈ {0, 1, ...}} over a series of graphs {Gi|i ∈ {0, 1, ...}}, which satisfy the
delay constraint as shown in (1) and have the least path cost as shown in (2).

Δ(Pi) =
∑

l∈Pi(s,r)

dl ≤ Δ . (1)

C(Pi) = min
P∈Gi

⎧⎨⎩ ∑
l∈P (s,r)

cl

⎫⎬⎭ . (2)

3 Design of GA for SP Problem
This section describes the design of the GA for the SP problem. The GA operations
consist of several key components: genetic representation, population initialization, fit-
ness function, selection scheme, crossover and mutation. A routing path consists of a
sequence of adjacent nodes in the network. Hence, it is a natural choice to adopt the
path-oriented encoding method. For the routing problems, the path-oriented encoding
and the path-based crossover and mutation are also very popular [3]. For the selection
scheme, the pair-wise tournament selection without replacement [6] is employed and
the tournament size is 2.

3.1 Genetic Representation

A routing path is encoded by a string of positive integers that represent the IDs of
nodes through which the path passes. Each locus of the string represents an order of a
node (indicated by the gene of the locus). The gene of the first locus is for the source
node and the one of the last locus is for the destination node. The length of a routing
path should not exceed the maximum length |V0|, where V0 is the set of nodes in the
MANET. Chromosomes are encoded under the delay constraint. In case it is violated,
the encoding process is usually repeated so as to satisfy the delay constraint.

Multi-population Genetic Algorithms with Immigrants Scheme 565

3.2 Population Initialization

In GA, each chromosome corresponds to a potential solution. The initial population
Q is composed of a certain number, denoted as n, of chromosomes. To explore the
genetic diversity, in our algorithm, for each chromosome, the corresponding routing
path is randomly generated. We start to search a random path from s to r by randomly
selecting a node v1 from N(s), the neighborhood of s. Then we randomly select a node
v2 from N(v1). This process is repeated until r is reached. Thus, we get a random path
P(s, r)={s, v1, v2, ..., r}. Since the path should be loop-free, the nodes that are already
included in the current path are excluded, thereby avoiding reentry of the same node.
The initial population is generated as follows.

Step 1: Start(j=0).
Step 2: Generate chromosome Chj : search a random loop-free path P(s, r);
Step 3: j=j+1. If j < n, go to Step 2, otherwise, stop.

Thus, the initial population Q = {Ch0, Ch1, ..., Chn−1} is obtained.

3.3 Fitness Function

Given a solution, we should accurately evaluate its quality (i.e., fitness value), which is
determined by the fitness function. In our algorithm, we aim to find the least cost path
between the source and the destination. Our primary criterion of solution quality is the
path cost. Therefore, among a set of candidate solutions (i.e., unicast paths), we choose
the one with the least path cost. The fitness value of chromosome Chj (representing the
path P), denoted as F(Chj), is given by:

F (Chj) = [
∑

l∈P (s,r)

cl]−1 . (3)

The proposed fitness function only involves the total path cost. As mentioned above,
The delay constraint is checked for each chromosome in the course of the run.

3.4 Crossover and Mutation

GA relies on two basic genetic operators - crossover and mutation. Crossover processes
the current solutions so as to find better ones. Mutation helps GA keep away from local
optima [3]. The performance of GA depends on them greatly. The type and implemen-
tation of operators depend on problem-specific encoding.

In our algorithm, since chromosomes are expressed by the path structure, we adopt
single point crossover to exchange partial chromosomes (subpath) at positionally inde-
pendent crossing sites between two chromosomes [3]. With the crossover probability,
each time we select two chromosomes Chi and Chj for crossover. Chi and Chj should
possess at least one common node. Among all the common nodes, one node, denoted

as v, is randomly selected. In Chi, there is a path consisting of two parts: (s
Chi−→ v) and

(v
Chi−→ r). In Chj , there is a path consisting of two parts: (s

Chj−→ v) and (v
Chj−→ r). The

crossover operation exchanges the subpaths (v
Chi−→ r) and (v

Chj−→ r).
The population will undergo the mutation operation after the crossover operation is

performed. With the mutation probability, each time we select one chromosome Chi on

566 H. Cheng and S. Yang

which one gene is randomly selected as the mutation point (i.e., mutation node), denoted

as v. The mutation will replace the subpath (v
Chi−→ r) by a new random subpath.

Both crossover and mutation may produce new chromosomes which are infeasible
solutions. Therefore, we check if the paths represented by the new chromosomes are
acyclic. If not, repair functions [8] will be applied to eliminate the loops. Here the detail
is omitted due to the space limit. All the new chromosomes produced by crossover or
mutation satisfy the delay constraint since it has already been considered.

4 iMPGA: Multi-population GAs with Immigrants Scheme

The random immigrants approach was proposed by Grefenstette [5] with the inspira-
tion from the flux of immigrants that wander in and out of a population between two
generations in nature. It maintains the population diversity level by replacing some in-
dividuals of the current population with random individuals, called random immigrants,
every generation. As to which individuals in the population should be replaced, usually
there are two strategies: replacing random individuals or replacing the worst ones. In
order to avoid that random immigrants disrupt the ongoing search progress too much,
especially during the static period between two environmental changes, the ratio of the
number of random immigrants to the population size, ri, is usually set to a small value.

The traditional genetic algorithm has a single population searching through the en-
tire search space. Multi-population approach tries to divide the search space into several
parts and then uses a number of small populations to search them separately. Normally,
one of the small populations acts as the parent population or the core population. In the
Forking genetic algorithms (FGAs) [12], the parent population continuously searches
for new optimum, while a number of child populations try to exploit previously detected
promising areas. In the Shifting Balance GA [9], the core population is used to exploit
the best solution found, while the colony populations are responsible for exploring dif-
ferent areas in the solution space.

In this paper, we generally follow the idea of the FGAs. However, to address the
dynamic SP problem, we still need to make specific design in our algorithm. To measure
the similarity degree between two individuals, we define the distance between any two
individuals by counting the same links shared by them. The more same links they share,
the closer they are. For the parent population which is responsible for exploring, we
expect that the individuals in it are kept far away from each other in the distance. Thus,
the population can search a wide area. For a child population which is responsible for
exploiting, we expect that the individuals in it stay close to an optimum and perform
lots of local search.

In iMPGA, initially we randomly generate a large single population. For each given
change interval I, the whole population will evolve together for �I/2� generations. Then
the single population is split into three small populations. Of them, one small population
will act as the parent population for exploring and the other two will act as the child pop-
ulations for exploiting. To achieve this goal, we develop the following splitting method.
First, we identify the present optimal individual Pop1opt in the whole population. Then
we find its closest neighbor Pop11, 2nd closest neighbor Pop12, 3rd closest neighbor
Pop13, till the (m-1)th closest neighbor Pop1m−1. All these m individuals form the first

Multi-population Genetic Algorithms with Immigrants Scheme 567

child population {Pop1opt, Pop11, Pop12, Pop13, ..., Pop1m−1}. Among all the remain-
ing individuals of the whole population, the optimal one is identified again, denoted as
Pop2opt. Similarly, among the remaining individuals, we determine its closest neigh-
bor Pop21, 2nd closest neighbor Pop22, 3rd closest neighbor Pop23, till the (m-1)th
closest neighbor Pop2m−1. All these m individuals form the second child population
{Pop2opt, Pop21, Pop22, Pop23, ..., Pop2m−1}. All the remaining individuals form the
third population, i.e., the parent population.

These three small populations keep evolving independently till the change interval
ends. When a new change is detected, i.e., the topology is modified, all of them need
to be processed appropriately and then merged together in order to form a single pop-
ulation again. We develop the following processing method for these small populations
to adapt to the environmental changes. For each of them, if the optimal individual in
it becomes infeasible, the whole population will be replaced by random immigrants.
Otherwise, if the optimal individual in it is feasible, only the infeasible individuals in
the population will be replaced by random immigrants. The reason to do so is that if
the optimal individual becomes infeasible, all the other individuals are also infeasible
and therefore the whole population should be abandoned. However, if the optimal in-
dividual is suitable for the new environment, we also want to keep other individuals
which are also suitable for the new environment. Thus, the useful information in the old
environment can be reused to guide the search in the new environment.

In our algorithm, at each generation, a small number of random immigrants are added
into the population. Before the splitting of the population, all the random immigrants are
imported into the single population to replace the worst ones. After the splitting, all the
random immigrants are only imported into the parent population since it is responsible
for exploring.

5 Experimental Study

We implement iMPGA, RIGA, SGA, and Restart GA for the dynamic SP problem
by simulation. For RIGA and SGA, if the change makes one individual in the current
population become infeasible (e.g., one link in the corresponding path is lost after the
change), we add penalty value to that individual. By simulation experiments, we evalu-
ate their performance in a continuously changing mobile ad hoc network.

5.1 Experimental Design

All the algorithms start from the initial network topology of 100 nodes. Then every I
generations, the present best path is identified and a certain number (say, U) of links
on the path are selected for removal. It means that the selected links will be forced to
be removed from the network topology. However, just before the next change occurs,
the network topology will be recovered to its original state and ready for the oncoming
change. The population is severely affected by each topology change since the optimal
solution and possibly some other good solutions become infeasible suddenly. Consid-
ering that the optimal path length could not be a large number, we let U range from 1
to 3 to see the effect of the change severity. Under this network dynamics model, the

568 H. Cheng and S. Yang

topology series cannot be generated in advance because every change is correlated with
the running of the algorithm. We allow 10 changes in each run of the algorithms. We set
up experiments to evaluate the impact of the change interval and the change severity,
and the improvements over traditional GAs and RIGA.

In all the experiments, the whole population size n is set to 100, the child population
size m is set to 20, and the mutation probability is set to 0.1. For the random immigrants
scheme, ri is set to 0.2. In addition, we set the number of changes to 19 and therefore
the algorithms will work over 20 different but highly-correlated network topologies (the
initial topology plus the 19 changed topologies). Both the source and destination nodes
are randomly selected and they are not allowed to be scheduled in any change. The
delay upper bound Δ is set to be 2 times of the minimum end-to-end delay.

5.2 Experimental Results and Analysis

At each generation, for each algorithm, we select the best individual from the current
population and output the cost of the shortest path represented by it. We repeat each
experiment 10 times and get the average values of the best solutions at each generation.
First, we investigate the impact of the change interval on the algorithm performance.
We set I to 5, 10, and 15 separately to see the impact of change interval (i.e., change
frequency) on the algorithm performance. Here the number of links removed per change
is fixed to 2.

When the change interval is 5, the population evolves only 5 generations between
two sequential changes. Intuitively, a larger interval will give the population more time
to evolve and search better solutions than what a smaller interval does. We compare the
quality of solutions obtained by iMPGA at different intervals. However, one problem is
that the total generations are different for different intervals, i.e., 100, 200 and 300 ver-
sus the interval 5, 10, and 15 when there are 20 different topologies. Since the number
of change points (i.e., the generation at which a new topology is applied) is the same
for all the intervals, we take the data at each change point and its left two and right two
generations. Thus, the three different data sets can be aligned over the three different
intervals. Fig. 1 shows the comparison results in terms of the change intervals.

Since the generation number does not correspond to the actual number when the
interval is 10 or 15, we rename it as pseudo generation. From the two subfigures, it can
be seen that the solution quality becomes better when the change interval is increased
from 5 to 10. However, when the change interval is increased from 10 to 15, the results
in both subfigures are slightly different. In Fig. 1(a), the iMPGA shows competing
performance for both intervals. For five times, the performance at interval 10 is better
and for the other five times, the performance at interval 15 is better. In Fig. 1(b), the
performance at interval 15 is better than the performance at interval 10 for all the times.
The reason is that in Fig. 1(b), the generations that the whole population has evolved at
interval 15 are much larger than the generations that the whole population has evolved
at interval 10. Longer evolution brings better solutions. Therefore, the capability of
the multi-population genetic algorithm in searching the optimum has been significantly
enhanced. In traditional GA, the population may converge after evolving for a while.
However, in iMPGA, due to the introduction of random immigrants, the population can
keep evolving and get out of the trap in the local optimum.

Multi-population Genetic Algorithms with Immigrants Scheme 569

0 5 10 15 20 25 30 35 40 45 50
420

440

460

480

500

520

540

Pseudo Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 T

re
e

 C
o

st

iMPGA:5
iMPGA:10
iMPGA:15

50 55 60 65 70 75 80 85 90 95 100
430

440

450

460

470

480

490

500

510

520

Pseudo Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 T

re
e

 C
o

st

iMPGA:5
iMPGA:10
iMPGA:15

(a) (b)

Fig. 1. Comparison of the solution quality of iMPGA with different change intervals from (a)
generation 0-49 and (b) generation 50-99

To evaluate the effect of the change severity on the algorithm performance, we vary
the number of links removed per change from 1 to 3. Meanwhile, the change interval is
fixed to 10 since it is a reasonably good change frequency as shown in the above experi-
ments. With more links removed from the network, the environmental changes become
more severe. Furthermore, since all the removed links come from the present best path,
some individuals including the optimal one in the population become infeasible. It is
also possible that the whole population becomes infeasible if each individual contains
at least one removed link. The more the links removed, the higher the probability of an
individual being infeasible.

Fig. 2 shows the comparison results in terms of the change severities. It can be seen
that the quality of solution is the best when the number of links removed per change is
1 and the worst when the number is 3. However, the difference between iMPGA:1 and
iMPGA:2 is less significant than the difference between iMPGA:2 and iMPGA:3. The
reason is that the increase in the number of links removed per change is not proportional
to the increase in the change severity. To remove one more link will bring a much
higher change severity to the network and therefore affect much more individuals in the
population. Another interesting point is that in Fig. 2(b), the performance differences
between the algorithms with different change severities become less than the differences
in Fig. 2(a). It is also due to the enhanced search capability of the multi-population
algorithm after long time evolution as explained above.

The quality of solution is the most important metric to evaluate the algorithm per-
formance. We compare iMPGA with both traditional GAs and random immigrants GA.
The two traditional GAs are Standard GA and Restart GA. We set the change interval
to 10 and the number of links removed per change to 2, respectively. Since iMPGA is
a dynamic GA which is specifically designed for the dynamic environment, it should
show better performance than the traditional GAs over our dynamic shortest-path prob-
lem. Fig. 3(a) shows the comparison results between iMPGA and traditional GAs. It
can be seen that iMPGA achieves better solutions than both of the traditional GAs.
Restart GA shows the worst performance due to frequent restart which does not give the

570 H. Cheng and S. Yang

0 10 20 30 40 50 60 70 80 90 100
420

440

460

480

500

520

540

Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 T

re
e

 C
o

st

iMPGA:1
iMPGA:2
iMPGA:3

100 110 120 130 140 150 160 170 180 190 200
430

440

450

460

470

480

490

500

510

Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 T

re
e

 C
o

st

iMPGA:1
iMPGA:2
iMPGA:3

(a) (b)

Fig. 2. Comparison of the solution quality of iMPGA with different change severities from (a)
generation 0-99 and (b) generation 100-199

0 10 20 30 40 50 60 70 80 90 100
420

440

460

480

500

520

540

560

580

Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 T

re
e

 C
o

st

iMPGA
SGA
Restart GA

0 10 20 30 40 50 60 70 80 90 100
420

440

460

480

500

520

540

Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 T

re
e

 C
o

st

iMPGA
RIGA

(a) (b)

Fig. 3. Comparison of the solution quality of iMPGA against (a) traditional GAs and (b) RIGA

population enough time to evolve. Although RIGA is also a dynamic GA, it does not
utilize the approach of multiple populations to help search. Fig. 3(b) shows the com-
parison results between iMPGA and RIGA. It shows that iMPGA performs better than
RIGA. This verifies that the multi-population approach helps improve the capability of
GA in handling dynamic environment.

6 Conclusions

The static SP problem considers the static network topology only. Intuitively, it is a
much more challenging task to deal with the dynamic SP problem in a rapidly chang-
ing network environment such as MANETs than to solve the static one in a fixed in-
frastructure. Recently, there has been a growing interest in studying GAs for dynamic
optimization problems. Among approaches developed for GAs to deal with DOPs, the

Multi-population Genetic Algorithms with Immigrants Scheme 571

multi-population GA aims at handling the problem dynamics by using multiple small
populations to perform both exploration and exploitation. Random immigrants scheme
is another approach which maintains the diversity of the population throughout the run
via introducing new individuals into the current population. In this paper, we propose
iMPGA which combines both the multi-population approach and immigrants. We well
design the GA components for the SP problem and the multi-population GA with im-
migrants scheme. Simulation experiments are conducted in a large scale MANET. The
results show that iMPGA is a powerful technique for solving the dynamic SP problem
and has potential to be applied to the real-world telecommunication network. In the
future work, we will further investigate the robustness of the solutions provided by us.

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research Council
(EPSRC) of UK under Grant EP/E060722/1.

References

1. Ali, M.K., Kamoun, F.: Neural networks for shortest path computation and routing in com-
puter networks. IEEE Trans. on Neural Networks 4(6), 941–954 (1993)

2. Ahn, C.W., Ramakrishna, R.S., Kang, C.G., Choi, I.C.: Shortest path routing algorithm using
hopfield neural network. Electronics Letters 37(19), 1176–1178 (2001)

3. Ahn, C.W., Ramakrishna, R.S.: A genetic algorithm for shortest path routing problem and
the sizing of populations. IEEE Trans. on Evol. Comput. 6(6), 566–579 (2002)

4. Branke, J., Kaußler, T., Schmidt, C., Schmeck, H.: A multi-population approach to dynamic
optimization problems. In: Proc. 4th Int. Conf. on Adaptive Computing in Design and Man-
ufacture, pp. 299–308 (2000)

5. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd Int. Conf. on
Parallel Problem Solving from Nature, pp. 137–144 (1992)

6. Lee, S., Soak, S., Kim, K., Park, H., Jeon, M.: Statistical properties analysis of real world
tournament selection in genetic algorithms. Applied Intell. 28(2), 195–205 (2008)

7. Mohemmed, A.W., Sahoo, N.C., Geok, T.K.: Solving shortest path problem using particle
swarm optimization. Applied Soft Comput. 8(4), 1643–1653 (2008)

8. Oh, S., Ahn, C., Ramakrishna, R.: A genetic-inspired multicast routing optimization algo-
rithm with bandwidth and end-to-end delay constraints. In: Proc. 13th Int. Conf. on Neural
Information Processing, pp. 807–816 (2006)

9. Oppacher, F., Wineberg, M.: The shifting balance genetic algorithm: improving the GA in a
dynamic environment. In: Proc. Genetic and Evol. Comput. Conf., pp. 504–510 (1999)

10. Parsa, M., Zhu, Q., Garcia-Luna-Aceves, J.: An iterative algorithm for delay-constrained
minimum-cost multicasting. IEEE/ACM Trans. on Networking 6(4), 461–474 (1998)

11. Perkins, C.E. (ed.): Ad Hoc Networking. Addison-Wesley, London (2001)
12. Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking genetic algorithms: GAs with search space

division schemes. Evol. Comput. 5(1), 61–80 (1997)
13. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms

for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)
14. Yang, S., Yao, X.: Population-based incremental learning with associative memory for dy-

namic environments. IEEE Trans. on Evol. Comput. 12(5), 542–561 (2008)
15. Yang, S.: Genetic algorithms with memory- and elitism-based immigrants in dynamic envi-

ronments. Evol. Comput. 16(3), 385–416 (2008)

Measuring Fitness Degradation in Dynamic
Optimization Problems

Enrique Alba and Briseida Sarasola

Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga, 29071 Málaga, Spain

Abstract. Measuring the performance of algorithms over dynamic op-
timization problems (DOPs) presents some important differences when
compared to static ones. One of the main problems is the loss of solu-
tion quality as the optimization process advances in time. The objective
in DOPs is tracking the optima as the landscape changes; however it is
possible that the algorithm fails to follow the optima after some changes
happened. The main goal in this article is to introduce a new way of
measuring how algorithms are able to maintain their performance dur-
ing the dynamic optimization process. We propose a measure based on
linear regression and study its behaviour. In order to do so, we propose
a scenario based on the moving peaks benchmark and analyze our re-
sults using several metrics existing in the literature. We test our measure
for degradation on the same scenario, applying it over accuracy values
obtained for each period, and obtain results which help us to explain
changes in algorithm performances.

Keywords: Performancemeasures, dynamicoptimization,movingpeaks.

1 Introduction

The problem of finding good performance measures for dynamic optimization
problems (DOPs) is not a trivial one. A good measure should at least describe
what the researcher is actually perceiving. It should have also a lower set of
restrictions (in oder to be widely applicable) and allow a numerical (maybe sta-
tistical) treatment of its results. Some traditional metrics from non-stationary
problems, like offline performance [2] and accuracy [9], have been transferred to
DOPs, although they often need to be modified and adapted to dynamic envi-
ronments. Other metrics have been specially designed for DOPs, like collective
mean fitness [8]. Although there is a wide plethora of other measures available
(window accuracy [9], best known peak error [3], and peak cover [2]), most cur-
rent studies tend to use the three ones mentioned in the first place, as well as
visual analysis of the algorithm running performance.

However, at this moment there is no general consensus about which metric
to use. Furthermore, most metrics focus on one aspect of the optimization pro-
cess, namely the solution quality, while few metrics explore other aspects of the
problem dynamics. Among these other metrics we can cite the ones reporting

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 572–581, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Measuring Fitness Degradation in Dynamic Optimization Problems 573

the diversity (most typically entropy and inertia [7]), as well as stability and
ε-reactivity [9]. An important issue which is usually not taken into account in
existing studies is the ability of a certain algorithm to obtain good solutions for
a long time in a maintained manner while the search landscape changes, i.e. to
be able to track the moving optima for a big number of periods. A period is
an interval of time without changes in the problem definition. Based in existing
results and in our own experience, the performance of an algorithm over contigu-
ous and continuous changes in the problem degrades with time. Our objective in
this work is then to propose a new metric to measure how an algorithm degrades
as the search advances. For that purpose, we consider a scenario using the mov-
ing peaks benchmark and genetic algorithms. This is a fundamental issue since
it characterizes the ability of the algorithm in the long term, giving the actual
power of the algorithm for a real application or for its scalability in time.

The rest of the article is structured as follows: Section 2 explains the main
performance measures in the literature; Section 3 exposes the moving peaks
problem, which will be used as case study in this paper; Section 4 analyses how
existing measures perform for a given case study; Section 5 presents a way of
measuring fitness degradation; finally, the conclusions are drawn in Section 6.

2 Existing Performance Metrics for DOPs

The aim in dynamic optimization is not only to find the global optima, but to be
able to track the movement of these optima through the search time. Although it
is still quite common in existing works to use line charts to visually compare the
running fitness of algorithms, a number of numeric measures have been proposed.
In this article we discuss the most widely used metrics in the literature.

Offline performance. Its usage for DOPs was proposed in [2]. It is calculated as
the average of the best value found so far in the current period (see Eq. 1). It
requires that changes in the landscape are known beforehand for its computation.

x∗ = (1/N) ·
N∑

i=1

f(period besti) (1)

Collective mean fitness. It was introduced by Morrison in [8]. It is similar to
offline performance, but considers the best value in the current generation, and
thus does not require to know about changes in the search space (see Equation 2).

FC = (1/N) ·
N∑

i=1

f(generation besti) (2)

Accuracy, stability, and reactivity. This group of three measures were first pro-
posed for static optimization problems, and adapted for dynamic environments
in [9]. The accuracy measures how good the best solution in the current popu-
lation is with respect to the best (MaxF) and worst (MinF) known values in

574 E. Alba and B. Sarasola

the search space. It ranges between 0 and 1, where a value closer to 1 means
a higher accuracy level. The formula is often simplified with MinF = 0. This
measure is also known as relative error.

accuracyi =
f(generation besti)−MinF

MaxF −MinF
(3)

Stability is also viewed as an important issue in DOPs. An algorithm is stable if
the changes in the environment do not affect its accuracy severely (see Eq. 4).

stabilityi = max{0, accuracyi − accuracyi−1} , (4)

where stability ∈ [0, 1]. An algorithm is considered stable if stability is close to
0. Finally, another aspect to be taken into account is the ability of the algorithm
to react quickly to changes. This is measured by the ε-reactivity, which ranges
between 1 and the number of generations (maxgen) (a smaller value implies a
higher reactivity):

reactivityi = min{i′ − i|i < i′ ≤ maxgen, i ∈ N,
accuracyi′

accuracyi
≥ (1− ε)} (5)

However, all these metrics do not reflect a very important aspect in DOPs.
Algorithm performance can degrade after the landscape has changed several
times, resulting in a loss of fitness quality in the following optimization stages.
Fig. 1 shows an example for an algorithm over a general problem. On the left,
the running best fitness and the known optimum are represented. It can be easily
seen that the running best fitness is much closer to the known best fitness at
first periods (di), while the distance between them becomes bigger at the last
periods (dj). The same situation is illustrated in the graph on the right, but
this time we represent the accuracy for each period compared to the maximum
possible accuracy value (accuracy = 1.0).

(a) Best fitness (b) Accuracy

Fig. 1. An example to illustrate degradation in DOPs

Measuring Fitness Degradation in Dynamic Optimization Problems 575

3 The Moving Peaks Problem

There are several benchmark problems for DO, such as the dynamic bit-matching,
royal road, moving parabola, time varying knapsack problem, etc. In this pa-
per, we focus on one of the most widely used benchmark problem for DO: the
moving peaks problem [2]. The moving peaks idea is to have an artificial multi-
dimensional landscape consisting of several peaks where the height, width, and
position of each peak is altered every time a change in the environment occurs.
The cost function for N dimensions and m peaks has the following form:

F (x̄, t) = max{B(x̄), max
i=1...m

P (x̄, hi(t), wi(t), p̄i(t))} (6)

where B(x̄) is a time-invariant “base” landscape, and P is the function defining
a peak shape, where each of the m peaks has its own time-varying parameters
height (h), width (w), and location (p̄). Every certain number of evaluations,
the height and width of every peak are changed by adding a random Gaussian
variable. The location of every peak is changed by a vector v of fixed length s. A
parameter λ determines if a peak change depends on the previous move or not.

4 Solving the Moving Peaks Problem

This section is aimed at studying the behaviour of the metrics explained in
Section 2. For that purpose, we consider the moving peaks problem, using a
problem configuration which corresponds closely to the standard settings pro-
posed by Branke1. We use a plane defined in (0, 100)× (0, 100) with 10 dimen-
sions and 10 peaks. The peak heights are defined in the interval [30, 70] and
the widths in [0.001, 0.2]. The height change severity is set to 7.0 and the width
change severity to 0.01. Changes occur every 1000 evaluations and λ = 0.

We use an elitist generational genetic algorithm (genGA) as well as three
well-known strategies which adapt metaheuristics to dynamic environments: hy-
permutation (hm) [4], memory (me) [6], and random immigrants (ri) [5]. This
results in four algorithms: genGA, genGA+hm, genGA+me, genGA+ri. The
population size is 100 individuals, parent selection is done by binary tourna-
ment, single point crossover probability pc equals 1.0, and mutation probability
for each solution is pm = 0.1.

We start by comparing the graphs for a mean execution of each algorithm,
which is the most basic strategy (Section 4.1). Then we analyze the results
with Morrison’s collective mean fitness and Weicker’s measures (see sections 4.2
and 4.3 respectively). The offline performance results are excluded since they
are identical to those of collective mean fitness (due to the elitist genGA).

4.1 Studying the Graphical Representation of Mean Executions

The most immediate way of analyzing the performance of algorithms is com-
paring the graphs which show the running fitness. This is done in most existing
1 http://www.aifb.uni-karlsruhe.de/∼jbr/MovPeaks/

576 E. Alba and B. Sarasola

works. The advantage is a fast an intuitive way of comparing performances; how-
ever, the results can often be difficult to interpret, they might not always fit in
a figure of the desired size, and they can easily lead to confusion.

Fig. 2 shows an example of this procedure, where the mean of all 100 runs
for each algorithm is represented. The length of the run has been shortened
to 40k evaluations for the sake of clarity. From this graph we conclude that
genGA+ri gives usually better fitness values than the rest; genGA+me and
canonical genGA obtain similar results in the first half of the simulation, al-
though genGA+me comes closer to genGA+ri and outperforms genGA in the
second half. However, does this analysis reflect the real behaviour of the ana-
lyzed algorithms? We do not think so. The approach is insufficient, as it seems
impossible to draw a satisfactory conclusion from this data.

60

61

62

63

64

65

0.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fi
tn

es
s

Evaluations (×104)

genGA
genGA+hm
genGA+me

genGA+ri

Fig. 2. Mean trace of four algorithms on the moving peaks problem

4.2 Studying the Collective Mean Fitness

Collective mean fitness is a metric with several advantages. First, it does not
need to know when changes happen in the environment (as offline performance
and error measures need). Second, the value is obtained from the fitness func-
tion, which is directly related to the problem. However, Morrison states that FC

should collect information over a representative sample of the fitness landscape
dynamics, but there is no clue as what “a representative sample” means. To illus-
trate this, we will compare the FC considering three different total run lengths:
40k, 100k, and 400k evaluations. Numerical results in Table 1 show how much
the best FC values depend on the maximum number of evaluations (stopping
condition). We show with these results that even 100k evaluations is not useful
for a representative sample of the landscape dynamics. However, the main issue
here is how can we determine this number and whether a very large value (such
as 400k evaluations) would provide a representative sample or not.

In order to visually understand this difficulty, we show in Fig. 3 the running
FC for the three considered window spans. Fig. 3a shows that genGA+ri clearly

Measuring Fitness Degradation in Dynamic Optimization Problems 577

Table 1. FC for each algorithm over three different max eval values

Evaluations genGA genGA+hm genGA+me genGA+ri
40,000 60.9735 61.0878 61.9364 62.7696

100,000 60.6000 60.9026 62.4002 62.8713
400,000 60.5353 60.8690 63.2371 62.8385

obtains the best results in the 40k evaluations case, while genGA+me, genGA,
and genGA+hm (from best to worst) are not able to keep its pace. When we
extend the simulation to 100k evaluations (Fig. 3b), genGA+ri is still pointed as
the best algorithm, but genGA+me has significantly improved its performance
during the last evaluations. Another change with respect to the shorter exper-
iment is that canonical genGA performance has deteriorated with respect to
genGA+hm. To conclude, we show the simulation for the longest considered in-
terval, namely 400k evaluations (Fig. 3c). A changing of roles has taken place
here, as the trend now shows that genGA+me outperforms genGA+ri, while in
the two previous cases it was exactly the contrary conclusion. It seems the algo-
rithms have already been exposed to a significant part of the search landscape,
except for genGA+me, whose FC will improve if the simulation is extended.

In short, in this section we have proved that it is easy to get a given conclusion
and its contrary by just allowing the algorithms run a bit further.

4.3 Studying Weicker’s Metrics

This section studies the usage of accuracy, stability, and reactivity to measure
the performance of the analyzed algorithms. Among these three measures, ac-
curacy is the main one, while the other two provide complementary results. The
advantage of using accuracy is it provides a bounded range of values in [0, 1].
However, it is necessary to use a value as reference for the optimum in the present
landscape; this value may be unknown in real world problems, an although we
could use the current known optimum for such a search space, further research
could find new optima and make our results deprecated.

We have compared the results achieved by the three measures and verified
that several problems arise. First, accuracy is affected by the same problem as
the previously described measures (Table 2a). Second, stability does not directly
relate to the goodness of solutions (Table 2b). There, the canonical genGA is the
most stable algorithm after 40k evaluations, while genGA+me is the most stable
one for 100k and 400k evaluations. Interestingly, the least stable algorithm in all
cases is genGA+ri, although it achieves high quality solutions. This is due to high
fitness drops when the environment changes. Even if genGA+ri is able to recover
fast after changes happen, the severe descent in the accuracy affects the final
stability. Finally, as stated in [1], ε-reactivity results are usually unsignificant; in
our experiments, all four algorithms obtain the same average ε-reactivity = 1.

578 E. Alba and B. Sarasola

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

64.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

C
ol

le
ct

iv
e

fi
tn

es
s

Evaluations (×104)

genGA
genGA+hm
genGA+me

genGA+ri

(a) 40k evaluations

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

64.5

0.0 2.0 4.0 6.0 8.0 10.0

C
ol

le
ct

iv
e

fi
tn

es
s

Evaluations (×104)

40k

genGA
genGA+hm
genGA+me

genGA+ri

(b) 100k evaluations

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

64.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

C
ol

le
ct

iv
e

fi
tn

es
s

Evaluations (×104)

40k 100k genGA
genGA+hm
genGA+me

genGA+ri

(c) 400k evaluations

Fig. 3. Running collective mean fitness for three stopping criteria

Measuring Fitness Degradation in Dynamic Optimization Problems 579

Table 2. Weicker’s metrics results for 40k, 100k, and 400k evaluations

(a) Accuracy

Evals genGA genGA+hm genGA+me genGA+ri
40,000 9.170e-01 6.4e−03 9.171e-01 8.7e−03 9.338e-01 8.8e−03 9.465e-01 8.9e−03

100,000 9.133e-01 9.0e−03 9.159e-01 8.7e−03 9.396e-01 9.3e−03 9.486e-01 8.5e−03

400,000 9.127e-01 9.1e−03 9.167e-01 9.1e−03 9.544e-01 1.3e−02 9.473e-01 8.6e−03

(b) Stability

Evals genGA genGA+hm genGA+me genGA+ri
40,000 3.588e-04 1.3e−04 3.934e-04 1.2e−04 3.901e-04 2.5e−04 1.859e-03 1.5e−03

100,000 3.852e-04 1.1e−04 4.244e-04 1.3e−04 3.707e-04 2.2e−04 1.810e-03 1.3e−03

400,000 4.010e-04 1.2e−04 4.290e-04 1.1e−04 3.234e-04 2.4e−04 1.789e-03 1.3e−03

5 A Measure for Degradation: βdegradation

None of the previously mentioned metrics account for the progressive degrada-
tion suffered by the algorithm. We define degradation as the loss of fitness quality
which can affect the optimization process; this results in obtaining worse solu-
tions as time advances. This loss of fitness quality is more obvious and serious
when solving DOPs, because it is expected that the algorithm is able to achieve
good solutions for a number of different landscapes which follow one another in
time. This degradation is more evident as the execution runs for a longer time
and affects any of the mentioned existing metrics.

We propose then to measure degradation using linear regression over the con-
secutive accuracy values achieved at the end of each period. We have selected
the accuracy since it is consistently used as the most important error metric in
most studies. For that purpose we use Eq. 7, where the variable y is an approx-
imation to the overall accuracy, x̄ is a vector of size P , and βdegradation is the
slope of the regression line. P is the number of periods in the dynamic problem.
Each xi is the accuracy of the best solution found in period i averaged over all
independent runs N (see Eq. 8). A positive βdegradation value indicates the al-
gorithm keeps a good improvement and still provides good solutions: the bigger
the improvement, the higher the slope value will be. On the contrary, a negative
value implies a degradation in the solution quality, where a smaller value implies
a deeper loss of quality.

y = βdegradation x̄ + ε (7)

xi =
1
N

N∑
j=1

f(period bestji) (8)

The resulting slopes detected in our instances are shown in Table 3. Considering
the longest period length p = 400, algorithm genGA+me degrades the least; in
fact, it is able to improve the accuracy as the optimization process advances.

580 E. Alba and B. Sarasola

This trend is already detected with p = 40. Canonical genGA is the one most
affected by degradation through all experiments. Fig. 4 shows the regression
line obtained for the four algorithms. It is also visually evident that genGA+me
obtains the ascending line with the steepest slope, which indicates absence of
degradation and better improvement of solutions. Besides, genGA obtains the
steepest descendant line, which indicates a faster degradation. We can remark
that βdegradation values are of the order of 10−4 to 10−6. This is not only due to
the high number of periods, but also to accuracy ranging in [0, 1].

Table 3. βdegradation for each algorithm and number of periods

Periods genGA genGA+hm genGA+me genGA+ri
40 -4.4835e-04 -1.9975e-04 8.5789e-05 -1.9254e-05
100 -2.8144e-05 -1.1124e-04 1.5504e-04 3.0762e-05
400 -3.4919e-06 1.5469e-06 7.3754e-05 -2.0230e-06

In summary, in this section we have shown that our degradation measure
provides representative results for different period lengths, and more important,
detects trends in early optimization stages which are later confirmed after longer
simulation times.

0 5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Periods

A
cc

ur
ac

y

β degradation = −0.00044835

0 5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Periods

A
cc

ur
ac

y

β degradation = −0.00019975

0 5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Periods

A
cc

ur
ac

y

β degradation = 0.00008579

0 5 10 15 20 25 30 35 40
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Periods

A
cc

ur
ac

y

β degradation = −0.00001925

Fig. 4. Linear regression after 40 periods for genGA (top left), genGA+hm (top right),
genGA+me (bottom left), and genGA+ri (bottom right)

Measuring Fitness Degradation in Dynamic Optimization Problems 581

6 Conclusions

In this article, most popular measures for DOPs have been studied and analyzed
on the moving peaks benchmark. We have proposed a new measure for fitness
degradation, which we call βdegradation. This measure provides a suitable way of
quantifying the loss of solution quality as changes in the landscape occur. It is
quantitative, not a mere inspection of a graph, and it is also informative about
the behaviour of the algorithm throughout time, unlike accuracy and offline
performance. The trend in the performance can be detected earlier than using
any of the other measures described in the literature and independently of the
simulation time window defined by the researcher.

Future work includes further studies on how fitness degradation affects other
DOPs, as well as an extensive study on similar degradation techniques. The
normalisation of βdegradation values in [0, 1] will also be considered.

Acknowledgments

Authors acknowledge funds from the Spanish Ministry of Sciences and Innovation
and FEDER under contract TIN2008-06491-C04-01 (M* project) and CICE,
Junta de Andalućıa under contract P07-TIC-03044 (DIRICOM project).

References

1. Alba, E., Saucedo Bad́ıa, J.F., Luque, G.: A study of canonical GAs for NSOPs. In:
MIC 2005 Post Conference, ch. 13, pp. 245–260. Springer, Heidelberg (2007)

2. Branke, J.: Evolutionary optimization in dynamic environments. Kluwer, Dordrecht
(2001)

3. Bird, S., Li, X.: Informative performance metrics for dynamic optimization prob-
lems. In: 9th Conf. on Genetic and Evolutionary Computation, pp. 18–25 (2007)

4. Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environ-
ments. In: 5th Int. Conf. on GAs, pp. 523–530. Morgan Kaufmann, San Francisco
(1993)

5. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Parallel Prob-
lem Solving from Nature, pp. 137–144. Elsevier, Amsterdam (1992)

6. Mori, N., Kita, H., Nishikawa, Y.: Adaptation to changing environments by means of
the memory based thermodynamical genetic algorithm. In: 7th International Confer-
ence on Genetic Algorithms, pp. 299–306. Morgan Kaufmann, San Francisco (1997)

7. Morrison, R., De Jong, K.: Measurement of population diversity. In: Collet, P.,
Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310,
pp. 31–41. Springer, Heidelberg (2002)

8. Morrison, R.: Performance measurement in dynamic environments. In: GECCO
Workshop on Evolutionary Algorithms for DOPs, pp. 5–8 (2003)

9. Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.)
PPSN 2002. LNCS, vol. 2439, pp. 64–76. Springer, Heidelberg (2002)

Handling Undefined Vectors in Expensive Optimization
Problems

Yoel Tenne, Kazuhiro Izui, and Shinji Nishiwaki

Department of Mechanical Engineering and Science-Faculty of Engineering,
Kyoto University, Japan

yoel.tenne@ky3.ecs.kyoto-u.ac.jp,
izui@prec.kyoto-u.ac.jp,
shinji@prec.kyoto-u.ac.jp

Abstract. When using computer simulations in engineering design optimization
one often encounters vectors which ‘crash’ the simulation and so no fitness is as-
sociated with them. In this paper we refer to these as undefined vectors since
the objective function is undefined there. Since each simulation run (a func-
tion evaluation) is expensive (anywhere from minutes to weeks of CPU time)
only a small number of evaluations are allowed during the entire search and so
such undefined vectors pose a risk of consuming a large portion of the optimiza-
tion ‘budget’ thus stalling the search. To manage this open issue we propose a
classification-assisted framework for expensive optimization problems, that is,
where candidate vectors are classified in a pre-evaluation stage whether they are
defined or not. We describe: a) a baseline single-classifier framework (no unde-
fined vectors in the model) b) a non-classification assisted framework (undefined
vectors in the model) and c) an extension of the classifier-assisted framework
to a multi-classifier setup. Performance analysis using a test problem of airfoil
shape optimization shows: a) the classifier-assisted framework obtains a better
solution compared to the non-classification assisted one and b) the classifier can
data-mine the accumulated information to provide new insights into the problem
being solved.

1 Introduction

Engineering design optimization is a sequential process of improving a system by
evaluating and refining candidate designs. Traditionally done in the lab, nowadays re-
searchers use computer experiments, that is, simulations which accurately model real-
world physics. This setup has two distinct features: a) objective values are obtained
from the simulation which is often a legacy software available only as an executable
(a ‘black-box’) and this requires gradient-free optimizers and b) each simulation run is
expensive (requiring anywhere from minutes to weeks of CPU time) and so only a small
number of evaluations can be made.

These difficulties are well known and a range of algorithms have been proposed for
these optimization problems [9, 13, 14]. However, such optimization problems introduce
another difficulty, which has received little attention to date: the simulation may ‘crash’
and fail to return an objective value (fitness) for some vectors (candidate designs). This

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 582–591, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Handling Undefined Vectors in Expensive Optimization Problems 583

has two main implications: a) the objective function is now discontinuous which is
problematic for optimizers requiring continuous functions (such as SQP) and b) such
vectors can consume a large portion of the optimization budget without improving the
fitness landscape and so the optimization search may stall. To the best of our knowl-
edge, no studies have proposed a systematic treatment to handle such undefined vectors
in expensive optimization problems, but several studies have acknowledged their exis-
tence and the difficulties they introduce, for example [8] mentions ‘inputs combinations
which are likely to crash the simulator’, [10] studies a multidisciplinary problem with
‘unevaluable points’ which ‘cause the simulator to crash’, [1] mentions ‘virtual con-
straints’ where ‘function evaluations fail at certain points’.

In [10] a simple near-neighbour classifier was used to predict which vectors are un-
defined and assign them a severely penalized fitness (a ‘death penalty’) with a real-
coded evolutionary algorithm but model-assisted optimization was not considered. In
a similar penalty-approach [5] re-introduced such vectors into a model but did not use
a classifier. We argue such approaches (and similar) are problematic in model-assisted
optimization since they: a) discard valuable information on the fitness landscape and
b) introduce artificial multimodality to the model (resulting in false optima). In an ear-
lier paper we have proposed handling undefined vectors with a radial basis function
model (acting as a classifier) to penalize vectors predicted to be undefined [14]. To the
best of our knowledge, this was the first study to consider a classification-assisted opti-
mization framework with models. Later studies have explored the use of classifiers for
constrained non-linear programming (but did not focus on handling undefined vectors)
[7] (and references therein).

Significantly expanding on [14], the current paper further develops the idea and
compares three options for incorporating the ‘knowledge’ on undefined vectors into
the optimization search: a) classifying candidate vectors, using a high penalty and not
incorporating undefined vectors in the model b) as above but undefined vectors are as-
signed a moderate penalty (the mean response of the initial sample) and c) no classifi-
cation and incorporating undefined vectors directly into the model. We then extend the
idea and describe a possible multi-classifier setup. The classification-assisted frame-
works we describe have two strong merits: a) no restrictions are made either on the
optimization algorithm nor the type or number of the classifiers and b) classification
acts as a form of data-mining and can provide problem insights valuable to end-uses
such as engineers and scientists. We analyze the efficacy of the different frameworks
using a test problem of airfoil shape optimization where objective values are obtained
from a computational aerodynamics simulator.

1.1 The Baseline Algorithm for Expensive Optimization

We first describe the underlying optimization algorithm used in our study, though the pro-
posed framework can be coupled with any other algorithm. Based on our experience and
other studies, we use a model-assisted memetic algorithm [9, 13, 14]. The algorithm con-
sists of two main components: a) a model (an interpolant) which approximates the expen-
sive objective function but which is much cheaper to evaluate and b) a memetic algorithm
which combines an evolutionary algorithm (EA) and a derivative-free trust-region algo-
rithm, a combination which results in an efficient global–local optimization search.

584 Y. Tenne, K. Izui, and S. Nishiwaki

Due to space constraints we provide only an outline of the algorithm and full details
are in [13]. The algorithm begins by generating an initial set of vectors based on a Latin
hypercube design of experiments (LHD) [11]. The objective function is evaluated at
these vectors and the algorithm then trains an initial model of the objective function. We
use a Kriging model which is a statistical approach to interpolation from discrete data
[2]. The Kriging model treats the black-box function as a combination of a deterministic
function (drift) and a Gaussian random process and model parameters are calibrated
using statistical model selection methods such as maximum likelihood.

Next, the optimization algorithm uses an EA to search for an optimum of the model.
To improve on the predicted optimum the algorithm then invokes a trust-region
derivative-free local-search from the predicted optimum [1]. In contrast to the single
model in the global search the local search uses a series of local models (we used lo-
cal Kriging models but any other model type can be used) to better approximate the
function in the trust-region, while the trust-region framework manages the models and
ensures the progress of the optimization search. After each optimization iteration (EA
search followed by a local search) all new vectors evaluated with the expensive simula-
tion and their corresponding fitness are cached and the process repeats until the number
of expensive function evaluations has been exhausted. Algorithm 1 gives a pseudocode
of the optimization algorithm.

Algorithm 1. The optimization algorithm
generate an initial sample (Latin hypercube design–LHD);
evaluate design vectors and cache;
while f e � f emax do

train a model using the cache;
use an EA to find an optimum of the model;
use a trust-region local search from the predicted optimum;
cache all vectors evaluated with the expensive simulation (and corresponding fitness);

Output: best solution and response found

2 Handling Undefined Vectors

This section describes two complementary approaches for handling undefined vectors:
classification-assisted and penalty-based.

2.1 Classification-Assisted Optimization

To handle undefined vectors (and as mentioned in Section 1) we introduce a pre-
evaluation stage into the optimization process, where candidate solutions are first clas-
sified as either defined or not by a classifier, that is, a function which maps vectors into
discrete sets [4].

A wide range of classifiers exist and are discussed in length in various texts [4]. Due to
space constraints we can only provide a brief description of the two classifiers which we
have experimented with in this study. The first is the simple and robust nearest-neighbour

Handling Undefined Vectors in Expensive Optimization Problems 585

classifier, which works as follows: given a set of training vectors (xi, i = 1 . . . k) and their
respective classes (yi = ±1), the classifier checks the distance d (for example l2) between
the new vector (xnew) to each vector from the training set and assigns the new vector the
same class as the closest training vector, namely:

ynew = yI : d(xnew, xI) = min d
(
xnew, xi

)
, i = 1 . . . k . (1)

A more recent class, the support vector machines (SVM), uses more sophisticated map-
pings In a two-class problem an SVM tries to find the best classification function for
the training data. For a linearly separable training set a linear classification function
is the separating hyperplane passing through the middle of the two classes. Once the
classifier (hyperplane) is fixed new vectors are classified based on the sign of classifier
output (±1). There are many such hyperplanes so an SVM adds the condition that the
function (hyperplane) maximizes the margin between the two classes, geometrically,
the distance between the hyperplane and the nearest vectors to it from each class, by
maximizing the following Lagrangian:

LP =
1
2
‖w‖ −

K∑

i=1

αiyi(w · xi + b) +
K∑

i=1

αi (2)

where yi = ±1 is the class of each training vector, αi � 0 and the derivatives of Lp with
respect to αi are zero. The vector w and scalar b define the hyperplane.

2.2 Technique 1–The ‘Explicit’ Approach

In this approach the optimization algorithm explicitly classifies candidate vectors as
defined or not (hence the name) in a pre-evaluation stage. Vectors classified as defined
are assigned the model response, that is, the optimization algorithm receives the same
response as if no classifier was present. However, if the vector is classified as undefined
then the vector is assigned a penalized (fictitious) response and is returned to the opti-
mizer. In any case, true undefined vectors (those which have crashed the simulator) are
not incorporated into the model and so the model (Kriging in our study) is trained using
only the defined vectors in the cache. In this setup the pre-evaluation stage is transparent
to the underlying optimization algorithm.

An open question is what penalty (fictitious response) should be assigned to vectors
classified as undefined. Two apparent options are: a) high penalty (for example, the
worst objective value observed in the initial LHD sample) which will cause the the op-
timizer to quickly discard such vectors and move away from them and b) mean penalty
(as above, but the vectors are assigned the mean fitness observed in the initial LHD
sample) where the optimizer won’t move as quickly from such vectors and will explore
their region. In both cases, selecting the penalty based on the objective values from the
initial LHD sample ensures the algorithm assigns the same penalty during all stages of
the search.

In summary the main features of the explicit technique are: a) uses a classifier to
determine what fitness to assign to candidate vectors b) assigns vectors classified as
undefined a fixed fictitious fitness (worst or mean response from initial LHD sample)
and c) does not incorporate undefined vectors into the model. Algorithm 2 gives a pseu-
docode of the an optimization framework using the explicit technique.

586 Y. Tenne, K. Izui, and S. Nishiwaki

Algorithm 2. The Explicit Technique
generate an initial LHD;
evaluate and cache sites;
find worst or mean sample fitness;
while f e � f emax do

train a model using only the defined vectors in the cache;
train classifier using all vectors evaluated with the simulation;
use a classifier to set the predicted response during optimization:

use and EA to find an optimum of the model;
evaluate predicted optimum with expensive (true) objective function;
initiate a local search from the predicted optimum;
evaluate predicted optimum with expensive (true) objective function;

Output: best solution and response found

2.3 Technique 2–The ‘Implicit’ Approach
As mentioned, a complementary approach is that of assigning undefined vectors a ficti-
tious high penalty and incorporating them into the model, without using any classifier.
As such we term the approach ‘Implicit’ since it does not directly classify candidate
vectors but modifies the model response by incorporating highly penalized undefined
vectors. Algorithm 3 gives a pseudocode of the an optimization framework using this
technique.

Algorithm 3. The Implicit Technique
generate an initial LHD;
evaluate and cache sites;
find worst sample fitness (m);
while f e � f emax do

train a model using all vectors in the cache (assign undefined vectors a penalized
response);

use and EA to find an optimum of the model
evaluate predicted optimum with expensive (true) objective function
initiate a local search from the predicted optimum
evaluate predicted optimum with expensive (true) objective function

Output: best solution and response found

An open question is how effective is this approach since incorporating the highly-
penalized undefined vectors will result in an oscillatory landscape which: a) will likely
degrade the model accuracy and b) may even introduce false optima into the model
landscape. To avoid over-deformation of the model, and for consistency with the Ex-
plicit method described in the previous section, we assign undefined vectors the worst
fitness observed in the initial LHD sample.

2.4 The Explicit Technique–Extension to Multi-classifier Setups

In this section we describe an extension of the explicit technique to a multi-classifier
setup. Specifically, given a user-selected set of classifiers (for example nearest-
neighbour, SVM etc.) the technique selects a ‘winning’ classification output based on

Handling Undefined Vectors in Expensive Optimization Problems 587

each classifier’s past performance. The idea is to record the number of correct classi-
fications each classifier had in a previous ‘time-window’ of say 10 expensive function
evaluations. For a new candidate vector we perform 3 steps: 1) sum the number of cor-
rect classifications (in the previous time-window) for all classifiers currently classifying
the vector as defined, giving a merit value D 2) as above but for classifiers currently clas-
sifying the vector as undefined, giving a merit value U 3) classify the vector as defined
if D > U, undefined is D < U or select at random if D = U .

We can also adjust the fitness assigned to the vector to reflect uncertainty in the cor-
rectness of the classification (given by inconsistencies between the classifiers output).
Specifically, if all classifiers give the same output (either D or U is zero) we can assume
a high degree of certainty than if classifiers give different outputs. To do so we use the
above indicators (D and U) in a linear interpolation between the predicted (model) re-
sponse S(x) and the penalized fitness (worse or mean response of the initial sample) p
such that the adjusted fitness of a candidate vector is

S a(x) =
D

D + U
S(x) +

U
D + U

p , (3)

and denoting α = D/(D + U)

S a(x) = αS(x) + (1 − α)p . (4)

Thus the assigned fitness will be closer to the model prediction if the better-performing
classifiers predict the vector is defined but else it will approach the penalized fitness
(worst or mean in initial LHD sample). In summary the main features of this extension
are: a) uses multiple classifiers and b) assigns a variable fictitious fitness.

3 Performance Analysis

We test the efficacy of three candidate techniques (‘explicit’ with mean/high penalty
and ‘implicit’) on a test problem of airfoil shape optimization. It is an efficient and ef-
fective problem since it captures many of the features of real-world design optimization
problems while the simulator run is not prohibitively expensive. The goal is to find an
airfoil shape which maximizes the lift coefficient cL and minimizes the drag coefficient
(aerodynamic friction) cD at the prescribed flight conditions. Also, the airfoil maximum
thickness must be equal to or larger than a critical value (t� = 0.1, normalized by the
airfoil chord) to ensure the airfoil does not break during flight. Figure 1 shows an ex-
ample. In this study we optimize the airfoil of an aircraft cruising at 30, 000 ft , a Mach
number M = 0.7 (that is, 70% of the speed of sound) and an angle of attack α = 10◦
(chosen over lower angles since this increases the simulator crash rate). We used the
objective function (a minimization problem)

f = − cL

cD
+ | cL

cD
| · max{t� − t , 0}

t�
(5)

which penalizes airfoils violating the minimum thickness constraint.

588 Y. Tenne, K. Izui, and S. Nishiwaki

To generate candidate airfoils we used the PARSEC parametrization which uses 11
design variables representing geometrical features [12], as Figure 2 shows. We set the
bounds on the variables based on our experience as well as previous studies [13]. To
obtain the lift and drag coefficients of each candidate airfoil we used XFoil, a computa-
tional fluid dynamics simulation which uses the panel method for analysis of subsonic
isolated airfoils [3]. Each airfoil evaluation required approximately 30 seconds on a
desktop computer. The optimization algorithm considered a simulation run as ‘crashed’
if: a) it terminated before the 30 seconds limit without producing the lift and drag data
(an empty output file) or b) the simulator was still running after 30 seconds (divergence
of the numerical solution). We set the limit of expensive function evaluations (simula-
tor calls) to f emax = 100 . For the explicit method we used a support vector machine
classifier with Gaussian kernels.

Lift (cL)

Weight

Drag (cD)

Thrust Velocity (U)

Angle of
Attack (α)

Airfoil

Fig. 1. Lift, Drag, and angle-of-attack (α)

rLE

xUP

zUP ,z′′UP

xLO

zLO ,z′′LO

zTE
ΔzTE

z

x
tan(αTE)
tan(βTE)

Fig. 2. PARSEC design variables

Table 1. PARSEC design variables and their
bounds

Variable Meaning1 min. max.
rLE LE radius 0.002 0.030
xup upper thickness (x) 0.2 0.7
zup upper thickness (z) 0.08 0.18
z′′up upper curvature −0.6 0.0
xlo lower thickness (x) 0.2 0.6
zlo upper thickness (z)−0.09 0.02
z′′lo lower curvature 0.2 0.9
zTE TE (z) −0.01 0.01
ΔzTE TE gap 0 0
αTE

2 upper TE angle◦ 165 180
βTE

2,3 lower TE angle◦ 165 190
1 LE: Leading Edge, TE: Trailing Edge
2 anti-clockwise from the x-axis.
3 βTE � αTE to avoid intersecting curves.

Figure 3 shows an airfoil found by using the ‘explicit technique’ with high penalty
(Section 2.2) and the variation of the pressure coefficient (cP) along the upper and lower
airfoil curves. The airfoil yields a lift coefficient of cL = 0.998 and a drag coefficient
cD = 0.033 and satisfies the thickness requirement (maximum thickness is t = 0.168).

We have also benchmarked the ‘explicit’ technique (with penalty set as either the
worst or mean response from the initial LHD sample) against the ‘implicit’ technique.
We repeated tests for 30 times with each algorithm and compared the results using
the non-parametric Mann–Whitney test to check if performance gains are statistically-
significant (that is, we can reject the null-hypothesis H0 that the algorithms have per-
formed equivalently) [11]. Table 2 shows the test results from which it follows that the
explicit method with higher penalty (worst response) performed best, followed by the
explicit with mean penalty. The Mann-Whitney test shows the former’s performance

Handling Undefined Vectors in Expensive Optimization Problems 589

(a) Airfoil geometry (b) Pressure coefficient distribution

Fig. 3. An airfoil obtained by the proposed ‘explicit technique’ with high penalty: (a) airfoil
geometry (b) pressure coefficient distribution along the upper and lower airfoil surfaces

gains are statistically-significant at the α = 0.05 level but not at the 0.01 level, and the
latter’s gains are not statistically-significant. The extent of performance improvement
gained by using a classifier will likely depend on how the undefined vectors are dis-
tributed with respect to the defined ones in the specific problem being solved. In any
case, the classification-assisted framework (explicit technique) performed equally or
better than the non-classification assisted one (Implicit technique).

Table 2. Results for the airfoil shape optimization

Explicit

Statistic 1,2 Worst Mean Implicit
max −1.942e+ 01 −1.744e+ 01 −1.170e+ 01
min −2.966e+ 01 −3.294e+ 01 −2.704e+ 01
mean −2.390e+ 01 −2.358e+ 01 −1.979e+ 01
SD 2.804e+ 00 3.533e+ 00 8.331e+ 00
median −2.401e+ 01 −2.385e+ 01 −2.346e+ 01
U (M-W) 1.863e+ 00 1.478e+ 00
1 S.D. :standard deviation
2 Reject H0 at α = 0.05 if U � 1.644 .

Reject H0 at α = 0.01 if U � 2.326 .

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0 0.5 1

x1

x 2

defined
undefined

Fig. 4. A Sammon mapping of 500
LHD vectors classified by an SVM
classifier. The mapping projects the
11-dimensional vectors onto a two-
dimensional map (scatter plot).

As mentioned in Section 1 classification also acts as a form of data-mining and can
allow greater insight into the optimization problem. To demonstrate this we used the
vectors evaluated during the optimization search to train an SVM classifier (Gaussian
kernels) and to predict where undefined vectors exist in the search space. In this exam-
ple we are interested in: a) approximating how ‘dense’ is the search space with unde-
fined vectors and b) understanding what causes some vectors to crash the simulation.
We trained the classifier using the vectors evaluated during the optimization search and

590 Y. Tenne, K. Izui, and S. Nishiwaki

then used it to classify a LHD sample of 500 vectors. To visualize the distribution of
defined and undefined vectors we projected the 11-dimensional vectors (Table 1) into
a two dimensional scatter plot using the dimensionality-reduction Sammon mapping
[6]. Figure 4 shows the resultant map. Examining the vectors classified as undefined
shows they mainly correspond to irregularly shaped airfoils such as those having two
or more peaks (‘camel humps’) unveiling the simulation code (Xfoil) cannot handle
such geometries. As such, the classification-based data-mining allows us to recover a
‘virtual-constraint’ (using the terminology from [1]), that is, a constraint induced by
the simulation code and which is not part of the original physical problem. Using this
insight we can now refine the optimization problem by adjusting the variable bounds
to minimize the occurrence of such ‘camel humps’ airfoils. Overall, both the bench-
mark tests and the data-mining example show the efficacy and merit of the proposed
classification-assisted frameworks.

4 Summary

Real-world expensive optimization problems using computer simulations often stumble
upon ‘undefined’ vectors (candidate solutions) which ‘crash’ the simulation and can
stall the optimization search. To address this we have proposed a classification-assisted
framework which assigns a response (fitness) to candidate vectors based on a classifier
prediction if they are ‘defined’ or not (without incorporating undefined vectors into
the model), an approach we termed ‘Explicit’. A complementary approach (which we
termed ‘Implicit’) assigns undefined vectors a penalized fitness and incorporates them
into the model but does not use a classifier during the search. Performance analysis
using a test problem of airfoil shape optimization shows that: a) using a classifier can
improve the search and result in a better final solution and b) classifiers can data-mine
information accumulated during the search thus serving as an additional analysis tool.

References

[1] Conn, A.R., Scheinberg, K., Toint, P.L.: A derivative free optimization algorithm in prac-
tice. In: Proceedings of the Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization. American Institute of Aeronautics and Astronautics,
Reston, Virginia (1998); AIAA Paper AIAA-1998-4718

[2] Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)
[3] Drela, M., Youngren, H.: XFOIL 6.9 User Primer. Department of Aeronautics and Astro-

nautics, Massachusetts Institute of Technology, Cambridge, MA (2001)
[4] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester

(2001)
[5] Emmerich, M., Giotis, A., Özedmir, M., Bäck, T., Giannakoglou, K.C.: Metamodel-

assisted evolution strategies. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 361–370.
Springer, Heidelberg (2002)

[6] Flexer, A.: On the use of self-organizing maps for clustering and visualization. Intelligent
Data Analysis 5(5), 373–384 (2001)

Handling Undefined Vectors in Expensive Optimization Problems 591

[7] Handoko, S., Kwoh, C.K., Ong, Y.S.: Feasibility structure modeling: An effective chaperon
for constrained memetic algorithms. IEEE Transactions on Evolutionary Computation (In
Print)

[8] Koehler, J.R., Owen, A.B.: Computer experiments. In: Ghosh, S., Rao, C.R., Krishnaiah,
P.R. (eds.) Handbook of Statistics, pp. 261–308. Elsevier, Amsterdam (1996)

[9] Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive
problems via surrogate modeling. AIAA Journal 41(4), 687–696 (2003)

[10] Rasheed, K., Hirsh, H., Gelsey, A.: A genetic algorithm for continuous design space search.
Artificial Intelligence in Engineering 11, 295–305 (1997)

[11] Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn.
Chapman and Hall, Boca Raton (2007)

[12] Sobieckzy, H.: Parametric airfoils and wings. In: Fujii, K., Dulikravich, G.S., Takanashi,
S. (eds.) Recent Development of Aerodynamic Design Methodologies: Inverse Design and
Optimization, Vieweg, Braunschweig, Wiesbaden. Notes on Numerical Fluid Mechanics,
vol. 68, pp. 71–88 (1999)

[13] Tenne, Y.: A model-assisted memetic algorithm for expensive optimization problems. In:
Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation. Studies in Computational
Intelligence, vol. 193. Springer, Heidelberg (2009)

[14] Tenne, Y., Armfield, S.W.: A versatile surrogate-assisted memetic algorithm for optimiza-
tion of computationally expensive functions and its engineering applications. In: Yang, A.,
Shan, Y., Thu Bui, L. (eds.) Success in Evolutionary Computation. Studies in Computa-
tional Intelligence, vol. 92, pp. 43–72. Springer, Heidelberg (2008)

Adaptive Noisy Optimization

Philippe Rolet and Olivier Teytaud

TAO (Inria), Lri, Cnrs Umr 8623, Univ. Paris-Sud, F-91405 Orsay, France

Abstract. In this paper, adaptive noisy optimization on variants of the
noisy sphere model is considered, i.e. optimization in which the same
algorithm is able to adapt to several frameworks, including some for
which no bound has never been derived. Incidentally, bounds derived
by [16] for noise quickly decreasing to zero around the optimum are
extended to the more general case of a positively lower-bounded noise
thanks to a careful use of Bernstein bounds (using empirical estimates
of the variance) instead of Chernoff-like variants.

1 Introduction

Noisy optimization is a critical part of optimization since many real-world appli-
cations are noisy. It is sometimes called “stochastic optimization” [17,13,6,14],
but “stochastic optimization” now often refers to the optimization of determin-
istic fitness functions by stochastic algorithms. Therefore we will here use “noisy
optimization”. Noisy optimization often distinguishes between (i) cases in which
the variance of the noise quickly decreases to zero around the optimum and (ii)
cases in which the variance of the noise is lower bounded. In the literature, var-
ious theoretical analyses of complexity bounds can be found for (i), while works
covering (ii) are scarce. This paper is concerned with an algorithm covering both
frameworks. Various works [8,9,1] have investigated noisy optimization from a
theoretical point of view, often with a rough mathematical analysis and some-
times with rigorous arguments (as e.g. [12,16]). In particular, some recent pa-
pers investigated the use of bandit algorithms [10], inspired from the multi-armed
bandit framework (see e.g. [2]), that rely on concentration inequalities such as
Hoeffding confidence bounds. The following work proposes a rigorous runtime
analysis of noisy expensive optimization based on such a bandit algorithm, in
frameworks that are not covered by previously published papers. Specifically, it
is shown that the same algorithm can be optimal (within logarithmic factors)
for several families of fitness functions simultaneously, extending results of [16]
to a quite broader class of noisy fitnesses. The paper is organized as follows.
Section 2 defines the framework and introduces some notations. Section 3 states
lower bounds that have been derived for this framework in the extant literature,
and briefly discusses possible expectations. Section 4 presents races, a central
tool for our subsequent results. Section 5 introduces the algorithm and proves
an upper bound on its runtime. Section 6 provides straightforward extensions of
this analysis and pinpoints possible further work.

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 592–601, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Adaptive Noisy Optimization 593

2 Framework

The black-box optimization framework is described in Algorithm 1 (similar to
[16], but for wider families of fitness functions): the algorithm can request fitness
values at any point of the domain, and no other information on the fitness
function is available. The paper is interested in expensive optimization: it is
assumed that obtaining a fitness value is much more costly than running the
optimization algorithm. Therefore, the complexity is measured by the number
of requests to the fitness. Let X be a domain, and f : X×X → [0,∞[such that
∀(x, x∗) ∈ X2, f(x, x∗) > f(x∗, x∗). The class of fitness functions we consider is
{x �→ f(x, t)|t ∈ X}, thus each fitness f(., t) is parameterized by the (unknown)
location of its optimum, t. The goal is to find the optimum t (also referred
to as x∗ in the sequel) of f(., t), by observing noisy measurements of f(., t) at
requested points xi. In the following, t is not handled stochastically, i.e. the lower
bounds are not computed in expectation w.r.t. all the possible fitness functions
yielded by different values of t. Rather, the worst case on t will be considered. For
simplicity, we only deal with deterministic algorithms; the extension to stochastic
algorithms is straightforward by including a random seed in the algorithm.

Noisy measurements of the fitness at point x are modeled by a random variable
Rand(x) satisfying

Rand(x) ∈ [0, 1], E[Rand(x)] = f(x, x∗) (1)

This noise model fits, among others, the goal of finding for a given algorithm
a set of parameters minimizing the probability of failure. It notably raises two
issues: (i) since few assumptions on the distribution law are made, one cannot
use the fact that the probability mass of Rand(x) is centered on f(x, x∗) (it
would be the case in i.e. a gaussian noise model). (ii) it is not limited to values
worse than those at the optimum as in previous analyses[12]. Importantly, while
[1] emphasized that for many algorithms a residual error remains, ours is truly
consistent (i.e. ‖xn − x∗‖→∞ 0) as shown in Theorem 1 of section 5.

Note that the second equation implies:

V ar[Rand(x)] ≤ E[Rand(x)]. (2)

A simple example (from [16]) is Rand(x) = 1 with probability f(x, x∗) and 0
otherwise. It is worth noticing that the algorithm considered for proving conver-
gence and upper bound on convergence rates is invariant by addition of a constant.
Therefore, our analysis is not restricted to Rand(x) ∈ [0, 1] since Eq. 2 could be
adapted to V ar[Rand(x)] ≤ f(x)−infu inf Rand(u) (inf here stands for “essential
infimum”). [16] were interested in the sphere function (f(x, x∗) = ||x− x∗||), a
special case in which the variance promptly decreases to 0 around the optimum.
In the sequel, wider classes of fitness functions will be studied:

Scaled sphere function. f(x, x∗) = λ||x − x∗|| (case that might be handled
similarly to [16]).

594 P. Rolet and O. Teytaud

Algorithm 1. Noisy optimization framework. Opt is a deterministic optimiza-
tion algorithm; it takes as input a sequence of visited points and their measured
fitness values, and outputs a new point to be visited. Noisy fitness values are
noted yt

n since they depend on the fitness f(., t)’s optimum t . The goal is to
find points x of the domain such that f(x, t) is as small as possible. Algorithm
Opt is successful on target function f(., t) if Loss(t, Opt) is small.

Parameter: N , number of fitness evaluations
for n ∈ [[0, N − 1]] do

xn+1 = Opt(x1, . . . , xn, yt
1, . . . , y

t
n)

yt
n+1 is a draw of random variable Rand(xn+1) (see Eqs 1-2)

end for
Loss(t,Opt) = f(xN , t)

Scaled and translated sphere function: (noted S-T sphere from here
on). f(x, x∗) = λ||x − x∗|| + c (not covered by [16], and fundamentally harder
since the variances does not decrease to 0 around the optimum).

Transformed sphere. f(x, x∗) = g(||x − x∗||) for some increasing mapping g
from [0,∞[onto a subset of [0, 1].

We consider, in all these cases, a domain X whose diameter satisfies
sup(x,y)∈X2 ||x − y|| ≤ 1, and x∗ ∈ X , so that these settings are well defined.
Straightforward extensions are discussed in section 6. In the paper, [[a, b]] =
[a, b]

⋂
N. If (a, b) ∈ (RD)2, then [a, b] = {x ∈ RD, ∀i ∈ [[1, D]], ai ≤ xi ≤ bi}.

3 Lower Bounds

In this section we discuss the lower bounds for each of the three models described
above. The goal of the rest of the paper will be to show that these bounds are
reached within logarithmic factors. Sections 4 and 5 will describe an algorithm
which has these guaranteed results on the models discussed above. Interestingly,
the algorithm is the same for all models.

Scaled sphere function. In this setting, a direct consequence of [16] is that
the distance between the optimum and its approximation is at best O(1/n) after
n iterations (for any algorithm). Theorem 3 (sec. 5) shows that this rate can be
reached within logarithmic factors.

S-T sphere. Nothing has been poved in this case, to the best of our knowl-
edge. No formal proofs on the matter will be given here; however, here are
some intuitive ideas on the behavior of the lower bound. With the S-T sphere
function, the variance can be lower bounded by some positive constant c:
infx V ar[Rand(x)] > c > 0. Therefore, evaluating a point n times leads to a
confidence interval on its mean whose length is roughly

√
c/n. As a consequence,

the precision for an estimate of fitness with n evaluations cannot be less than
Θ(1/

√
n). Since the precision on the fitness space is linear as a function of the pre-

cision in the search space, it is reasonable to believe that ‖x+
n −x−

n ‖ = Θ(1/
√

n)

Adaptive Noisy Optimization 595

is the best achievable rate. This rate can be reached by our algorithm, as shown
in section 5 (Theorem 2).

Monotonically transformed sphere. If the transformation function g is an
arbitrary monotonically increasing function, the problem can be made arbitrarily
difficult. Therefore, we will only have to show that we guarantee convergence.
This consistency will be proved in next section (Theorem 1).

4 Hoeffding/Bernstein Bounds; Their Application to
Races

This section recalls some concentration inequalities necessary to analyze the com-
plexity of the algorithm that will be used to prove upper bounds on convergence
rates. These inequalities are aimed at quantifying the discrepancy between an
average and an expectation. Here, we focus on bounded random variables. The
well-known Hoeffding bounds [11] were the first to generalize bounds on bino-
mial random variables to bounded random variables. For some of our purposes,
an improved versions of these bounds accounting for the variance[5,3,4], known
as Bernstein’s bound, will be required. Writing a detailed survey of Hoeffding,
Chernoff and Bernstein’s bounds is beyond the scope of this paper. We will only
present the Bernstein bound, within its application to races. A race between two
or more random variables aims at distinguishing with high confidence random
variables with better expectation from those with worse expectation.

Algorithm 2 presents a Berstein race for 3 random variables—it is called a
Bernstein race because it makes use of the Bernstein confidence bound. The
Bernstein race in this paper will be used to distinguish between points xi of the
domain X , based on random variables Rand(xi). At the end of the race, 3T

Algorithm 2. Bernstein race between 3 points. Eq. 3 is Bernstein’s inequal-
ity for estimating the precision for empirical estimates (see e.g. [7, p124]). σ̂i

is the empirical estimate of the standard deviation of point xi’s associated ran-
dom variable Rand(xi) (it is 0 in the first iteration, which does not alter the
algorithm’s correctness). f̂(x) is the average of the fitness measurements at x.

Bernstein(a1, a2, a3, δ
′)

T = 0
repeat

T ← T + 1
Evaluate the fitness of points x1, x2, x3 once, i.e. evaluate the noisy fitness at each
of these points.
Evaluate the precision:

ε(T) = 3 log
(

3π2T 2

6δ′

)
/T + max

i
σ̂i

√
2 log

(
3π2T 2

6δ′

)
/T . (3)

until Two points (good ,bad) satisfy f̂(bad) − f̂(good) ≥ 2ε — return (good, bad)

596 P. Rolet and O. Teytaud

evaluations have been performed, therefore T is referred to as the halting time
in the sequel. The reason why δ′ is used in Alg. 2 as the confidence parameter
instead of δ will appear later on. Let us define Δ as

Δ = sup{ERand(x1), ERand(x2), ERand(x3)}
− inf{ERand(x1), ERand(x2), ERand(x3)}.

It is known[15] that if Δ > 0,

– with probability 1− δ′, the Bernstein race is consistent:

ERand(good) < ERand(bad). (4)

– the Bernstein race halts almost surely, and with probability at least 1 − δ′,
the the halting time T verifies

T ≤ K log
(

1
δ′Δ

)
/Δ2 where K is a universal constant. (5)

– if, in addition,

Δ ≥ C sup{ERand(x1), ERand(x2), ERand(x3)}, (6)

then the Bernstein race halts almost surely, and with probability at least
1− δ′, the halting time T verifies

T ≤ K ′ log
(

1
δ′Δ

)
/Δ where K ′ depends on C only. (7)

The interested reader is referred to [15] and references therein for more.

5 Upper Bounds for Noisy Optimization

Algorithm 3 (based on the Bernstein race discussed above) will be used for
proving our upper bounds. This algorithm was proposed in [16], with a weaker
version of races. In the present work, the race was improved so that it can
deal with more general settings than those of [16]. Informally, the algorithm
(adapted from [16] for the case of variance not decreasing to zero around the
optimum) is as follows. The domain is a hyper-rectangle [x−

0 , x+
0] of RD. Define

the axes of a hyper-rectangle as the lines parallel to any edge of the hyper-
rectangle, and containing the center of the hyper-rectangle. At iteration n, the
algorithm considers the axis on which the hyper-rectangle is the largest (any
rule for breaking ties is allowed). Three points are placed along this axis, one
at the center of the hyper-rectangle, and the two others at the two intersections
between the axis and the hyper-rectangle’s frontier.

Then, the algorithm uses the Bernstein race for selecting a point goodn and
a point badn among these three points, such that the goodn point is closer to

Adaptive Noisy Optimization 597

Algorithm 3. Algorithm for optimizing noisy fitness functions. Bernstein
denotes a Bernstein race, as defined in Algorithm 2. The initial domain is
[x−

0 , x+
0] ∈ Rd. δ is the confidence parameter.

n ← 0
while True do

c = arg maxi(x+
n)i − (x−

n)i // Pick the coordinate with highest uncertainty
δmax

n = (x+
n)c − (x−

n)c

for i ∈ [[1, 3]] do
x′i

n ← 1
2
(x−

n + x+
n). // Consider the middle point

(x′i
n)c ← (x−

n)c + i−1
2

(x+
n − x−

n)c. //except that the cth coordinate may take
// 3 different values

end for
(goodn, badn) = Bernstein(x′1

n, x′2
n, x′3

n, 6δ
π2(n+1)2

). // a good and a bad point
Let Hn be the halfspace {x ∈ RD; ||x − goodn|| ≤ ||x − badn||}.
Split the domain: [x−

n+1, x
+
n+1] = Hn ∩ [x−

n , x+
n].

n ← n + 1
end while

the optimum than the badn point. The Bernstein race described in section 4 by
algorithm 2 guarantees this with confidence 1− δ′.1

In the transformed sphere models under analysis, E Rand(x) is increasing as
a function of ‖x − x∗‖, thus the optimum is in the hyper-rectangle H = {x ∈
RD; ‖x − goodn‖ ≤ ‖x − badn‖ with probability 1 − δ. The first lemma for our
proofs is given below:

Lemma 1. Let δ > 0, and let fitness f be an increasing transformation of the
sphere function x �→ ‖x−x∗‖.2 Let Rand(x) be the noisy answer to an evaluation
of f as defined above. If, in algorithm 3, the Bernstein race halts at all steps until
iteration n, then:(

3
4

)n

||x+
0 − x−

0 || ≤ ||x+
n − x−

n || ≤
(

3
4

)�n/D�
||x+

0 − x−
0 ||, (8)

and (∀i < n, ERand(goodi) ≤ ERand(badi)) ⇒ x∗ ∈ [x−
n , x+

n], (9)

and for some constant K depending on the dimension only,

x∗ ∈ [x−
n , x+

n] ⇒ ∃(goodn, badn) ∈ {x′1
n, x′2

n, x′3
n}2, (10)

‖x∗ − badn‖ ≥ ‖x∗ − goodn‖+ K||x+
n − x−

n || (11)

1 Note that this particular kind of race is not interested in knowing how good remain-
ing points (other than goodn and badn) are. It might be that in our case the third
point is even closer to the optimum, but the point of this race is not to determine
the closest point, it is to provide two points such that one is closer than the other.

2 The transformed sphere covers models of the S-T sphere, and of the scaled sphere.

598 P. Rolet and O. Teytaud

Due to length constraints, the proof of this lemma is not given here. A very
similar lemma is used for the case of a variance decreasing to zero around the
optimum, in [16]. �
A consequence of this lemma is the following convergence guarantee:

Theorem 1 (Consistency of Algo. 3 for the transformed sphere). In
the transformed sphere model, Algo. 3 ensures x−

n → x∗ and x+
n → x∗ with

probability at least 1− δ.

Proof
Eq. 9 of the previous lemma implies that ‖x+

n − x−
n ‖ → 0. We will now show

that with probability 1 − δ, x∗ ∈ [x−
n , x+

n] by establishing the left-hand side of
Eq. 4 by induction. This will be sufficient to prove theorem 1.

– The induction hypothesis H(n) is as follows:

With probability at least 1−
n+1∑
k=1

6δ

π2k2 , ∀i < n, ERand(goodi) ≤ ERand(badi).

– H(0) : x∗ ∈ [x−
0 , x+

0] by definition.
– Let us assume H(n − 1) for n > 0. For clarity, the statement ∀i <

n, ERand(goodi) ≤ ERand(badi) is written G(n).

P (G(n)) = P (G(n− 1), ERand(goodn) ≤ ERand(badn))
= P (ERand(goodn) ≤ ERand(badn) | G(n− 1))P (G(n− 1))

= (1 −
n∑

k=1

6δ

π2k2)(1− 6δ

π2(n + 1)2
) (12)

≥ 1−
n+1∑
k=1

6δ

π2k2

which proves H(n). The first term of eq. 12 is the application of H(n − 1).
The second term is a property of the Bernstein race described in Algo. 2,
and used in Algo. 3.

It only remains to observe that
∑∞

i=1(6δ/(πi)2) = δ to conclude. �
The number of iterations is of course log-linear (log(‖x−

n − x∗‖)/n is upper
bounded by a negative constant), but the number of evaluations per iteration
might be arbitrary large. More precise (faster) results, for the other (simpler)
models will now be considered.

Theorem 2 (Hoeffding rates for the S-T sphere model). Consider the S-
T sphere model, and a fixed dimension D. The number of evaluations requested by
Algo. 3 for reaching precision ε with probability at least 1−δ is O(log(log(1/ε)/δ)

ε2).

Adaptive Noisy Optimization 599

Proof. Eq. 11 ensures that

Δn = sup{ERand(x′1
n), ERand(x′2

n), ERand(x′3
n)}

− inf{ERand(x′1
n), ERand(x′2

n), ERand(x′3
n)}

≥ ‖x∗ − badn‖ − ‖x∗ − goodn‖

verifies Δn = Ω(‖x+
n − x−

n ‖). Therefore, applying the concentration inequality
5, the number of evaluations in the nth iteration is at most

O

(
log
(

6δ

π2(n + 1)2

)
/‖x−

n − x+
n ‖2
)

. (13)

Now, let us consider the number N(ε) of iterations before a precision ε is reached.
Eq. 8 shows that there is a constant k < 1 such that

ε ≤ ‖x+
n − x−

n ‖ ≤ CkN(ε) (14)

Injecting Eq. 14 in Eq. 13 shows that the cost (the number of evaluations) in
the last call to the Bernstein race is

Boundlast(ε) = O

(
− log

(
6δ

π2(N(ε) + 1)2

)
/ε2
)

. (15)

Since N(ε) = O(log(1/ε)), Boundlast = O(log(log(1/ε′)/δ)). For a fixed dimen-
sion D, there exists k′ > 1 such that the cost of the (N(ε) − i)th iteration is at
most

O(�Boundlast/(k′)i�) (16)

because the algorithm ensures that after D iterations, ‖x+
n − x−

n ‖ decreases by
at least 3/4.

The sum of the costs for N(ε) iterations is therefore the sum of
O(Boundlast/(k′)i) for i ∈ [[0, N(ε) − 1]], that is O(Boundlast/(1 − k′)) =
O(Boundlast) (plus O(N(ε)) for the rounding associated to the �...� in Eq. 16).

The overall cost is therefore O(Boundlast +log(1/ε)). This yields the expected
result. �

Theorem 3 (Bernstein rates for the scaled sphere model). Consider the
scaled sphere model, and a fixed dimension D. Then, the number of evaluations
requested for reaching precision ε with probability at least 1−δ is O(log(log(1/ε)/δ)

ε).

Proof. The proof follows the lines of the proof of Theorem 2, except for one
point. As well as for Theorem 2, we use the fact that for the scaled sphere model
(and in fact also for the S-T sphere model), Eq. 11 holds, which implies (with
Δn = supi ERand(x′i

n)− infi ERand(x′i
n))

Δn = Ω(‖x+
n − x−

n ‖). (17)

However, for the scaled sphere model, we can also claim

sup
i

ERand(x′i
n) = O(‖x+

n − x−
n ‖). (18)

600 P. Rolet and O. Teytaud

Eqs. 17 and 18 lead to Eq. 6.
Furthermore, Eq. 6 implies that Eq. 15 can be replaced by

Boundlast(ε) = O

(
− log

(
6δ

π2(N(ε) + 1)2

)
/ε

)
. (19)

The summation as in the proof of Theorem 2 now leads to an overall cost
O(log(log(1/ε)/δ)

ε). �

6 Discussion

We considered the optimization of noisy fitness functions, where the fitness in x
is randomized, with values in [0, 1], and expected value f(x, x∗) where x∗ is the
optimum. The following models were studied: (i) Sphere function: f(x, x∗) =
‖x − x∗‖; (ii) Scaled sphere function: f(x, x∗) = λ‖x − x∗‖; (iii) S-T sphere
function: f(x, x∗) = λ‖x− x∗‖+ c; (iv) Transformed sphere: f(x, x∗) = g(‖x−
x∗‖). The first case only was in the state of the art. The same algorithm (using
Bernstein’s inequality) ensures that with probability 1 − δ, the optimum x∗ is
in a set of diameter δn (after n fitness evaluations), which provably decreases as
shown in Table 1. There are some straightforward extensions, the main one being
that convergence rates only depends on f(x, x∗) for x close to x∗: all f such that
f(x, x∗) = Θ(||x − x∗||) lead to the same asymptotic rate as the scaled sphere;
and all f such that f(x, x∗) − c = Θ(||x − x∗||) lead to the same asymptotic
rate as the scaled and translated sphere function. Therefore, it is likely that the
proposed approach is much more general than variants of the sphere model as
formally considered here. It has been shown in [16] that some links exist between
the rates for f(x, x∗) = ||x−x∗|| and f(x, x∗) = ||x−x∗||p; these links will not be
developed here. The main further works are: (i) formalizing the lower bound for
the case of the scaled and translated sphere function; (ii) experiment real-world
algorithms or adapted version of real-world algorithms (as e.g. [10]) on these
fitness functions.

Table 1. Precision δn (diameter of the region in which might be the optimum) as
a function of the number n of fitness evaluations. The Õ(.) means that logarithmic
factors are present. Dependencies in δ can be found in detailed results; the dependency
in the dimension can be computed from the proofs, but we guess they are not optimal.
The constants depend on λ and on the dimension; c has no impact on the constant for
the scaled and translated sphere function.

Model Precision ‖x−
n − x+

n ‖
Sphere function Õ(1/n)
Scaled sphere function Õ(1/n)
Scaled and translated sphere function Õ(1/

√
n)

Transformed sphere o(1)

Adaptive Noisy Optimization 601

References

1. Arnold, D.V., Beyer, H.-G.: Efficiency and mutation strength adaptation of the
(mu/mui,lambda)-es in a noisy environment. In: Deb, K., Rudolph, G., Lutton, E.,
Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS,
vol. 1917, pp. 39–48. Springer, Heidelberg (2000)

2. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. The Jour-
nal of Machine Learning Research 3, 397–422 (2003)

3. Bernstein, S.: On a modification of chebyshev’s inequality and of the error formula
of laplace. Original publication: Ann. Sci. Inst. Sav. Ukraine, Sect. Math. 1 3(1),
38–49 (1924)

4. Bernstein, S.: The Theory of Probabilities. Gastehizdat Publishing House, Moscow
(1946)

5. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Math. Stat. 23, 493–509 (1952)

6. Denton, B.: Review of “stochastic optimization: Algorithms and applications” by
stanislav uryasev and panos m. Interfaces 33(1), 100–102 (2003)

7. Devroye, L., Györfi, L., Lugosi, G.: A probabilistic Theory of Pattern Recognition.
Springer, Heidelberg (1997)

8. Fitzpatrick, J.M., Grefenstette, J.J.: Genetic algorithms in noisy environments.
Machine Learning 3, 101–120 (1988)

9. Hammel, U., Bäck, T.: Evolution strategies on noisy functions: How to improve
convergence properties. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN
1994. LNCS, vol. 866, pp. 159–168. Springer, Heidelberg (1994)

10. Heidrich-Meisner, V., Igel, C.: Hoeffding and bernstein races for selecting policies
in evolutionary direct policy search. In: ICML 2009: Proceedings of the 26th An-
nual International Conference on Machine Learning, pp. 401–408. ACM, New York
(2009)

11. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58, 13–30 (1963)

12. Jebalia, M., Auger, A.: On multiplicative noise models for stochastic search. In:
Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS,
vol. 5199, pp. 52–61. Springer, Heidelberg (2008)

13. Kall, P.: Stochastic Linear Programming. Springer, Berlin (1976)
14. Marti, K.: Stochastic Optimization Methods. Springer, Heidelberg (2005)
15. Mnih, V., Szepesvári, C., Audibert, J.-Y.: Empirical Bernstein stopping. In: ICML

2008: Proceedings of the 25th international conference on Machine learning, pp.
672–679. ACM, New York (2008)

16. Rolet, P., Teytaud, O.: Bandit-based estimation of distribution algorithms for noisy
optimization: Rigorous runtime analysis. Submitted to Lion4; presented in TRSH
2009 in Birmingham (2009)

17. Sengupta, J.K.: Stochastic Programming. Methods and Applications. North-
Holland, Amsterdam (1972)

Noise Analysis Compact Genetic Algorithm�

Ferrante Neri, Ernesto Mininno, and Tommi Kärkkäinen

Department of Mathematical Information Technology P.O. Box 35 (Agora) 40014
University of Jyväskylä, Finland

{ferrante.neri,ernesto.mininno,tommi.karkkainen}@jyu.fi

Abstract. This paper proposes the Noise Analysis compact Genetic Al-
gorithm (NAcGA). This algorithm integrates a noise analysis component
within a compact structure. This fact makes the proposed algorithm ap-
pealing for those real-world applications characterized by the necessity of
a high performance optimizer despite severe hardware limitations. The
noise analysis component adaptively assigns the amount of fitness evalu-
ations to be performed in order to distinguish two candidate solutions. In
this way, it is assured that computational resources are not wasted and
the selection of the most promising solution is correctly performed. The
noise analysis employed in this algorithm spouses very well the pair-wise
comparison logic typical of compact evolutionary algorithms. Numerical
results show that the proposed algorithm significantly improves upon the
performance, in noisy environments, of the standard compact genetic al-
gorithm. Two implementation variants based on the elitist strategy have
been tested in this studies. It is shown that the nonpersistent strategy
is more robust to the noise than the persistent one and therefore its
implementation seems to be advisable in noisy environments.

1 Introduction

In several real-world applications, an optimization problem must be solved de-
spite the fact that a full power computing device may be unavailable due to cost
and/or space limitations. This situation is typical of robotics and control prob-
lems. For example, in order to obtain a portable electric device, the optimization
of the control system must be encoded within the memory of the control card
since a computer cannot be plugged to the system. In order to overcome this
class of problems compact Evolutionary Algorithms (cEAs) have been designed.
A cEA is an Evolutionary Algorithm (EA) belonging to the class of Estimation
of Distribution Algorithms (EDAs), see [13]. The algorithms belonging to this
class do not store and process an entire population and all its individuals therein
but on the contrary make use of a statistic representation of the population in
order to perform the optimization process. In this way, a much smaller amount
of parameters must be stored in the memory. Thus, a run of these algorithms
requires much less capacious memory devices compared to their correspondent
� This research is supported by the Academy of Finland, Akatemiatutkija 130600, Al-

gorithmic Design Issues in Memetic Computing and by Tekes - the Finnish Funding
Agency for Technology and Innovation, grant 40214/08 (Dynergia).

C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 602–611, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Noise Analysis Compact Genetic Algorithm 603

standard EAs. The first cEA was the compact Genetic Algorithm (cGA) intro-
duced in [11]. The cGA simulates the behavior of a standard binary encoded
standard Genetic Algorithm (GA). Paper [1] analyzes analogies and differences
between cGAs and (1 + 1)-ES and extends a mathematical model of ES [18]
to cGA obtaining useful information on the performance. Moreover, [1] intro-
duces the concept of elitism, and proposes two new variants, with strong and
weak elitism respectively, that significantly outperform both the original cGA
and (1 + 1)-ES. A real-encoded cGA (rcGA) has been introduced in [14]. Some
examples of rcGA applications to control engineering are given in [7] and [8].

Due to the presence of approximation models, neural networks, and mea-
surement systems the optimization cost function is likely to be noisy. Under
these conditions, some countermeasure must be designed in order to perform
the optimization despite the presence of noise. Due to their inner structure and
population based setup, Evolutionary Algorithms (EAs) are considered to be
very promising with noisy problems and manage to improve upon initial fit-
ness values, see [3], and [2]. However, the noise still represents a challenge that
needs to be addressed, and standard EAs often do not manage to detect sat-
isfactory solutions. In particular, the most critical operation is, as highlighted
in [4], selection of the most promising solutions for subsequent phases of the
optimization algorithms. In order to overcome this difficulty, as highlighted in
[12], an averaging operation must be implemented to filter the noise and allow a
correct selection of the most promising solution. This fact leads to an unavoid-
able increase of the computational cost due to extra samplings and thus fitness
evaluations. Thus, several papers propose methods for handling the noise with-
out an excessive increase in the computational cost. Some examples of adaptive
sampling strategies are given in [20] and [16]. In other papers, e.g. [5], sequential
approaches which aim at reducing the sample size during the tournament se-
lection and performing a massive re-sampling only when strictly necessary have
been proposed. Recently, several heuristics for improving the robustness to noise
have been introduced in the context of multi-objective optimization, see [10]. In
[17] and [15] a memetic approach is proposed to handle the uncertainties due to
the presence of noise. In [6], a noise analysis component has been proposed for
the survivor selection scheme of Differential Evolution.

If the application requires the solution of an optimization problem despite both
limited hardware conditions and the presence of noise, a population based ap-
proach is not applicable and the employment of classical compact algorithms (as
well as classical population based algorithms) might lead to unsatisfactory results
due to the pernicious effect of noise. In this paper, we propose the first (to our
knowledge) implementation of compact algorithm integrating a noise handling
component, see [12]. This algorithm employs a compact genetic algorithm based
on the study in [14] and a noise analysis structure for efficiently selecting the elite
individuals. The remainder of this paper is organized in the following way. Sec-
tion 2 describes the features of the problem under consideration and describes the
proposed algorithm. Section 3 gives the experimental setup and numerical results
of the present study. Section 4 gives the conclusions of this paper.

604 F. Neri, E. Mininno, and T. Kärkkäinen

2 Noise Analysis Compact Genetic Algorithm

A stationary optimization problem must be reformulated in the case of a noisy
problem. As shown in [12], a noisy fitness function f̃ (x) (affected by Gaussian
noise) can mathematically be expressed as:

∞∫
−∞

[f(x) + z] p (z) dz = f(x), z ∼ N(0, σ2) (1)

where x is the design vector, f (x) is a time-invariant function, z is an addi-
tive noise normally distributed with 0 mean and variance σ2, and p (z) is the
distribution function of the noise.

In principle, search of the optimum consists of optimizing f (x); however since
only the fitness values related to the f̃ (x) are available, the noisy optimization
problem consists of optimizing f̃ (x) in a decision space D where x is defined.
Without a loss in generality, this paper will refer to minimization problems.

In order to minimize the fitness function in formula (1) for those applications
which do not allow a full power computational device, the Noise Analysis com-
pact Genetic Algorithm (NAcGA) has been designed. The NAcGA consists of
the following steps. At the beginning of the optimization process, a Probability
Vector (PV) is initialized. The PV is a n× 2 matrix, see [14]:

PV t =
[
μt, Σt

]
(2)

where n is the amount of design variable of the problem, μ and Σ are, respec-
tively, vectors containing, for each design variable, mean and standard deviation
values of a Gaussian Probability Distribution Function (PDF) truncated within
the interval [−1, 1]. The height of the PDF has been normalized in order to keep
its area equal to 1. The apex t indicates the generation (number of performed
comparison number).

During the initialization, for each design variable i, μ1 [i] = 0 and Σ1[i] =
λ where λ is a large positive constant (e.g. λ = 10). This initialization of Σ
values is done in order to simulate a uniform distribution. Subsequently, one
individual is sampled as elite. A new individual is generated and compared with
the elite. In order to efficiently perform the fitness comparison despite the noise,
the noise analysis component proposed in [6] has been adapted and integrated
into the compact structure. In order to explain its working principle, let us
indicate with x1 the elite and x2 the newly generated individual. In order to
compare their fitness scores the the value δ =

∣∣f̄ (x1)− f̄ (x2)
∣∣ is computed.

With f̄ we mean the average fitness calculated over ns samples. If δ > 2σ the
candidate solution displaying the best performance value is simply chosen for
the subsequent generation. This choice can be justified considering that, for a
given Gaussian distribution, 95.4% of the samples fall in an interval whose width
is 4σ and has at its center the mean value of the distribution, see [19]. In this
case, if the difference between two fitness values is greater than 2σ, it is likely

Noise Analysis Compact Genetic Algorithm 605

that the point which seems to have a better fitness is truly the best performing
of the two candidate solutions.

On the other hand, if δ < 2σ, the noise bands related to the two candidate
solutions do overlap, and determining a ranking based on only one fitness eval-
uation is impossible. In this case, indicating with α = min

{
f̄ (x1) , f̄ (x2)

}
and

β = max
{
f̄(x1), f̄ (x2)

}
, the following index is calculated:

υ = α+ 2σ − (β − 2σ)
β + 2σ − (α− 2σ)

. (3)

The index υ represents the intersection of two intervals, characterized by a center
in the fitness value and semi-width 2σ, with respect to their union. In other
words, υ is a normalized measure of the noise band overlap. This index can vary
between 0 and 1. The limit condition υ ≈ 0 means that overlap is limited and thus
the pairwise ranking given by the single sample estimations is most likely correct.
The complementary limit condition, υ ≈ 1 means that the interval overlap is
almost complete and the two fitness values are too close to be distinguished in
the noisy environment. In other words, υ can be seen as a reliability measure of
a pairwise solution ranking in the presence of noisy fitness.

On the basis of the calculated value of υ a set of additional samples ns is
performed for both the solutions x1 and x2; their respective fitness values f̄i
are then updated by averaging over the performed samples. These samples are
determined by calculating:

ns =

⌈(
1.96

2 · (1− υ)
)2
⌉
, (4)

where 1.96 is the upper critical value of a normal distribution associated to a
confidence level equal to 0.95, see [19].

Thus, ns represents the minimum amount of samples which ensure a re-
liable characterization of the noise distribution, i.e., the amount of samples
which allows consideration of the average fitness values as the mean value of a
distribution.

To better understand how formula (4) has been derived, let us consider a set
of normally distributed samples (a1, a2, . . . , an). The theoretical average μ of the
stochastic process associated to the samples is the center of a confidence interval

ā− γ ≤ μ ≤ ā+ γ, (5)

where ā is the average of the given samples and γ is the semi-amplitude of the
confidence interval. In order to be sure that 95% of the samples fall within the
confidence interval in inequalities (5), the semi-amplitude γ should be:

γ = σ√
ns
z, (6)

where σ is the standard deviation of the stochastic process, ns is the amount of
samples, and z is the upper critical value from the normal distribution. For a

606 F. Neri, E. Mininno, and T. Kärkkäinen

confidence level equal to 0.95, the upper critical value is 1.96. Thus, the minimum
amount of samples for characterizing a Gaussian process with a confidence level
of 0.95 is:

ns =
(

1.96
γ

)2

σ2. (7)

Then ns fitness evaluations are performed on both x1 and x2 and their corre-
sponding average fitness values f̄ are computed. It is clear that for γ ≈ 2σ one
sample is enough to estimate the center of the distribution. Since the problem
of the ranking of two fitness values corresponds to the correct estimation of the
centers of two distributions, then if the fitness estimations are more distant than
4σ (υ ≈ 0) one sample is enough to distinguish two solutions. On the contrary, it
has been imposed that the amount of samples to be performed for each solution
hyperbolically increases with the overlapping of the two distribution estimations.

However, as shown in eq. (4), since for υ → 1 it would result in ns → ∞, a
saturation value for ns (i.e., the maximum amount of samples for each solution)
has been set in order to avoid infinite loops. It must be remarked that this
saturation value is the only extra parameter to be set, with respect to a standard
DE. In addition, setting of this parameter can be intuitively carried out on the
basis of the global computational budget available and the precision requirement
in the specific application.

It must be noticed that the noise analysis procedure proposed in [6] can be ap-
plied only when the noise is supposed to be Gaussian and the standard deviation
value (or its estimation) is known in advance. However, many noisy optimiza-
tion problems are actually characterized by Gaussian noise, due to the presence
of measurement errors. In addition, if the noise cannot be approximated by a
Gaussian distribution but by a different known distribution, the procedure can
still be modified and adapted to the specific case. Finally, the standard deviation
in many cases can be easily estimated by performing a preliminary analysis of
noise. In the case of noise due to measurement errors, the standard deviation
can be derived from the data plate of the measurement devices.

On the basis of the average fitness values, the old elite is retained or replaced by
the newly generated solution. When this operation is performed thePV is updated
following the rules given in [14]. The update rule for μ values is given by:

μt+1 = μt + 1
Np

(winner − loser) , (8)

where Np is virtual population size. The update rule for σ values is given by:(
Σt+1)2 =

(
Σt
)2 +
(
μt
)2 − (μt+1)2 +

1
Np

(
winner2 − loser2) . (9)

With the terms winner and looser we refer to the individuals with higher and
lower fitness performance, respectively. Details for constructing formulas (8) and
(9) are given in [14].

In addition to this algorithmic structure, two elitist schemes have been tested
in this paper in the fashion of persistent and nonpersistent elitism, proposed in
[1]. Thus, two implementations of NAcGA are proposed in this paper. In the

Noise Analysis Compact Genetic Algorithm 607

counter t = 0 and θ = 0
initialize PV
generate elite x1 by means of PV
while budget condition do

generate 1 individual x2 of by means of PV
{** Noise Analysis **}
calculate υ = α+2σ−(β−2σ)

β+2σ−(α−2σ)

calculate ns =
⌈(

1.96
2·(1−υ)

)2⌉
calculate fitness values of x1 and x2 ns times and their average fitness values f̄
{** Elite Selection **}
[winner, loser] = compete (a, elite)
if x2 == winner OR θ ≥ η then
elite = x2
θ = 0

end if
{** PV Update **}
μt+1 = μt + 1

Np
(winner − loser)(

Σt+1
)2

=
(
Σt
)2

+
(
μt
)2 − (μt+1

)2
+ 1
Np

(
winner2 − loser2

)
counter update t = t + 1

end while

Fig. 1. ne-NAcGA pseudo-code

persistent elitism Noise Analysis compact Genetic Algorithm (pe-NAcGA) the
newly generated solution replaces the elite only when it outperforms it. In the
nonpersistent elitism Noise Analysis compact Genetic Algorithm (ne-NAcGA),
the replacement occurs either when the newly generated solution outperforms
the elite or when the elite has not been replaced after η comparisons. Several
comparisons about which elitist scheme is preferable have been carried out. In
general, whether the persistent or nonpersistent scheme is preferable seems to
be a problem dependent issue, see [1]. For the sake of clarity, the pseudo-code
displaying the working principles of ne-NAcGA is given in Fig. 1. The persistent
elitist version has a very similar pseudo-code but there is not the “IF” condition
on η. With the function compete we simply mean (average) fitness comparison
in order to detect the individual with the best performance.

3 Experimental Results

The following test problems have been considered in this paper in order to verify
the viability of the proposed approach.
1. Michalewicz’s function: f1(x) = −∑ni=0 sin(xi)

(
sin
(
ix2
i

π

))2n
, with n = 10.

Decision space D = [0, π]n.
2. Rastrigin’s function: f2 (x) = 10n +

∑n
i=1
(
z2i − 10 cos 2πzi

)
, with n = 10.

Decision space D = [−5, 5]n.
3. Schwefel’s function: f3 (x) = 418.9829n+

∑n
i=1

(
−xi sin

√|xi|), with n = 10.
Decision space D = [−500, 500]n.
4. Sphere function: f4 (x) =

∑n
i=1 z

2
i , with n = 10. Decision space

D = [−100, 100]n.

608 F. Neri, E. Mininno, and T. Kärkkäinen

The test problems f5-f8 have been obtained from f1-f4, by setting n = 20. In
addition, two test problems here indicated with f9 and f10 have been generated
from test problems f1 and f3 by applying a rotation operation. More specifically,
these rotated problems have been generated through the multiplication of the
vector of variables by a randomly generated orthogonal rotation matrix. For each
test problem, codomain range C has been estimated as the difference between
the fitness value in the global optimum (when analytically known, otherwise the
best fitness value detected in literature) and the average fitness value computed
over 100 points pseudo-randomly generated within the decision space. Then, for
all the test problems, the noisy test cases have been generated by adding to the
time invariant function a zero-mean Gaussian noise characterized by a standard
deviation equal to 10% of C, see [6].

For the noisy problems the real-encoded compact GAs, pe-cGA and ne-cGA
respectively have been run, according to the description in [14]. Then the proposed
versions including noise analysis component, i.e. pe-NAcGA and ne-NAcGA, have
also been run for comparisons. All the algorithms have been run with a virtual
population size Np = 5 × n. The nonpersistent elitist algorithms have been run
with η = 5. For all the algorithms 50 independent runs have been performed. Each
run consists of 5000× n fitness evaluations.

Experimental results in terms of average final fitness and related standard
deviation are given in Table 1. The best results are highlighted in bold face. In
order to estimate the actual improvements carried out by the algorithms under
analysis, the following Tables refer to the “true” fitness values. By true fitness
values we mean values of the fitness functions corresponding to the solution
detected without the noise perturbation. Although in real world problems the
true fitness values are not available, we decided to present the results in this
form in order to highlight the capability of the algorithms in handling the noise
conditions that we imposed.

In order to carry out a numerical comparison of the convergence speed perfor-
mance, for each test problem, the average final fitness value returned by the best
performing algorithm G has been considered. Subsequently, the average fitness
value at the beginning of the optimization process J has also been computed.
The threshold value THR = J−0.95(J−G) has then been calculated. If an algo-
rithm succeeds during a certain run to reach the value THR, the run is said to be
successful. For each test problem, the average amount of fitness evaluations n̄e

Table 1. True Fitness ± standard deviation

Test Problem pe-cGA ne-cGA pe-NAcGA ne-NAcGA
f1 -5.314e+00 ± 9.51e-01 -7.730e+00 ± 8.40e-01 -5.115e+00 ± 7.19e-01 -7.880e+00 ± 7.71e-01

f2 8.048e+01 ± 1.60e+01 2.792e+01 ± 9.48e+00 6.610e+01 ± 1.02e+01 2.424e+01 ± 9.76e+00

f3 1.385e+03 ± 5.13e+02 3.183e+02 ± 1.62e+02 1.662e+03 ± 3.70e+02 1.682e+02 ± 9.00e+01

f4 8.189e+03 ± 3.19e+03 2.322e+03 ± 1.07e+03 4.146e+03 ± 1.66e+03 1.560e+03 ± 7.07e+02

f5 -7.086e+00 ± 1.05e+00 -1.059e+01 ± 1.52e+00 -6.559e+00 ± 8.48e-01 -1.083e+01 ± 1.25e+00

f6 2.130e+02 ± 2.31e+01 1.121e+02 ± 2.61e+01 1.881e+02 ± 2.14e+01 8.501e+01 ± 2.08e+01

f7 4.269e+03 ± 6.57e+02 1.278e+03 ± 4.24e+02 4.738e+03 ± 6.70e+02 1.118e+03 ± 3.88e+02

f8 2.806e+04 ± 4.38e+03 1.094e+04 ± 4.31e+03 2.006e+04 ± 5.20e+03 8.164e+03 ± 3.12e+03

f9 -2.652e+00 ± 6.77e-01 -2.948e+00 ± 6.88e-01 -2.526e+00 ± 7.07e-01 -2.994e+00 ± 7.45e-01

f10 7.431e+01 ± 1.50e+01 4.146e+01 ± 1.34e+01 7.168e+01 ± 1.06e+01 3.271e+01 ± 1.02e+01

Noise Analysis Compact Genetic Algorithm 609

required, for each algorithm, to reach THR has been computed. Subsequently,
the Q-test (Q stands for Quality) described in [9] has been applied. For each
test problem and each algorithm, the Q measure is computed as Q = n̄e

R where
the robustness R is the percentage of successful runs. For each test problem, the
smallest value equals the best performance in terms of convergence speed. The
value “∞” means that R = 0, i.e., the algorithm never reached the THR. Re-
sults of the Q-test are given in Table 2. In order to prove statistical significance
of the results, the Wilcoxon Rank-sum test has been applied for a confidence
level of 0.95. Table 2 shows results of the test. A “+” indicates the case in which
the noise analysis algorithm statistically outperforms its corresponding standard
variant; a “=” indicates that the two algorithms have the same performance; a
“-” indicates that the noise analysis algorithm is outperformed.

Table 2. Q-test and Wilcoxon Rank-Sum test (based on the true fitness)

Test Problem pe-cGA ne-cGA pe-NAcGA ne-NAcGA pe ne
f1 8705 1373.5778 ∞ 2519.5408 = =
f2 ∞ 1160.125 ∞ 2237.5463 + =
f3 ∞ 1310.5976 ∞ 1429.0017 - +
f4 ∞ 792.8906 17602 1281.3081 + +
f5 ∞ 1836.5459 ∞ 3377.7511 = =
f6 ∞ 3663.6944 ∞ 2865.929 + +
f7 ∞ 1299.6505 ∞ 2677.9025 - =
f8 ∞ 1152.051 33071.5 1938.245 + +
f9 391.9136 384.4198 2095.2857 583.46 = =
f10 ∞ 1995.9506 ∞ 2416.564 = +

For the sake of clarity an example of performance trend is shown in Fig. 2. Nu-
merical results show that the nonpersistent schemes lead to much better results
than the persistent ones. The update, on a regular basis, of the elite individ-
ual seems to be very beneficial to the algorithmic performance due to the fact
that the selection of an overestimated elite can mislead the search. Since the
persistent elitist scheme does not employ a replacement, the search could turn
out to be jeopardized for a large portion of the evolution. In other words, the
nonpersistent logic increasing the algorithmic randomization seems beneficial in
the presence of noisy fitness landscapes. In order to better comprehend the role
of the randomization in the presence of noise, we may considered the effect of
generational vs steady-state survivor selection in EAs, see [12] and references
therein, or the employment of a randomized scale factor in differential evolu-
tion, see e.g. [6]. Numerical results show also that the noise analysis component
seems to have a beneficial effect on compact algorithms, especially to the non-
persistent elitist version. Table 1 shows that the proposed ne-NAcGA obtains
the best results for all the test problems considered in this study and that either
outperforms significantly ne-cGA or obtains similar results to ne-cGA. Due to
the extra fitness evaluations (within the noise analysis), the ne-NAcGA often
displays worse convergence speed performance than the ne-cGA in the scope of
prematurely stopped tests like in Table 2, eventually outperforming the standard
variant, see Fig. 2.

610 F. Neri, E. Mininno, and T. Kärkkäinen

0 1 2 3 4 5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

Fitness evaluation

T
ru

e
Fi

tn
es

s
va

lu
e

pe−rcGA
ne−rcGA
NA−ne−rcGA
NA−pe−rcGA

Fig. 2. Performance trend on problem f3

4 Conclusion

This paper proposes a real-encoded compact genetic algorithm integrating a
noise analysis system. The proposed algorithm can be useful for those systems
engineering system characterized by a limited memory and the presence of mea-
surement systems which affect the fitness landscape and make it noisy. The
resulting algorithm integrates an adaptive system for performing the minimum
amount of fitness evaluations and still reliably selecting the elite individual for
the subsequent algorithmic comparison. Numerical results show that the noise
analysis system efficiently enhances the performance of a standard compact ge-
netic algorithm. The experiments have been repeated for both persistent and
nonpersistent elitist schemes. Results show that the nonpersistent scheme al-
lows a more robust behavior with respect to the persistent elitism. This fact can
be interpreted in consideration that if a persistent scheme might retain as an
elite an overestimated solution a persistent scheme performs a periodical update
of the elite thus refurbishing the search and mitigating the effect of a possible
overestimation. Future developments will consider novel possible compact struc-
tures involving other evolutionary and swarm intelligence algorithms which also
employ noise analysis and compensation systems.

References

1. Ahn, C.W., Ramakrishna, R.S.: Elitism based compact genetic algorithms. IEEE
Transactions on Evolutionary Computation 7(4), 367–385 (2003)

2. Arnold, D.V., Beyer, H.G.: A general noise model and its effects on evolution strat-
egy performance. IEEE Transactions on Evolutionary Computation 10(4), 380–391
(2006)

3. Beyer, H.G., Sendhoff, B.: Functions with noise-induced multimodality: a test
for evolutionary robust optimization-properties and performance analysis. IEEE
Transactions on Evolutionary Computation 10(5), 507–526 (2006)

Noise Analysis Compact Genetic Algorithm 611

4. Branke, J., Schmidt, C.: Selection in the presence of noise. In: Cantú-Paz, E.,
Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall,
G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz,
A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003.
LNCS, vol. 2723, pp. 766–777. Springer, Heidelberg (2003)

5. Cantú-Paz, E.: Adaptive sampling for noisy problems. In: Deb, K., et al. (eds.)
GECCO 2004. LNCS, vol. 3102, pp. 947–958. Springer, Heidelberg (2004)

6. Caponio, A., Neri, F.: Differential evolution with noise analysis. In: Giacobini, M.,
Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekart, A., Esparcia-Alcazar, A.I., Fa-
rooq, M., Fink, A., Machado, P., McCormack, J., O’Neill, M., Neri, F., Preuss, M.,
Rothlauf, F., Tarantino, E., Yang, S. (eds.) EvoWorkshops 2009. LNCS, vol. 5484,
pp. 715–724. Springer, Heidelberg (2009)

7. Cupertino, F., Mininno, E., Naso, D.: Elitist compact genetic algorithms for in-
duction motor self-tuning control. In: Proceedings of the IEEE Congress on Evo-
lutionary Computation (2006)

8. Cupertino, F., Mininno, E., Naso, D.: Compact genetic algorithms for the optimiza-
tion of induction motor cascaded control. In: Proceedings of the IEEE International
Conference on Electric Machines and Drives, vol. 1, pp. 82–87 (2007)

9. Feoktistov, V.: Differential Evolution. Springer, Heidelberg (2006)
10. Goh, C.K., Tan, K.C.: An investigation on noisy environments in evolutionary mul-

tiobjective optimization. IEEE Transactions on Evolutionary Computation 11(3),
354–381 (2007)

11. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Transactions on Evolutionary Computation 3(4), 287–297 (1999)

12. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

13. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation. Kluwer, Dordrecht (2001)

14. Mininno, E., Cupertino, F., Naso, D.: Real-valued compact genetic algorithms for
embedded microcontroller optimization. IEEE Transactions on Evolutionary Com-
putation 12(2), 203–219 (2008)

15. Mininno, E., Neri, F.: A memetic differential evolution approach in noisy optimiza-
tion. Memetic Computing (to appear, 2010)

16. Neri, F., Cascella, G.L., Salvatore, N., Kononova, A.V., Acciani, G.: Prudent-daring
vs tolerant survivor selection schemes in control design of electric drives. In: Roth-
lauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E.,
Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.)
EvoWorkshops 2006. LNCS, vol. 3907, pp. 805–809. Springer, Heidelberg (2006)

17. Ong, Y.S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algo-
rithm for robust design. IEEE Transactions on Evolutionary Computation 10(4),
392–404 (2006)

18. Rudolph, G.: Self-adaptive mutations may lead to premature convergence. IEEE
Transactions on Evolutionary Computation 5(4), 410–414 (2001)

19. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures
(2000)

20. Stagge, P.: Averaging efficiently in the presence of noise. In: Eiben, A.E., Bäck, T.,
Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 188–200.
Springer, Heidelberg (1998)

Author Index

Agon, Carlos II-371
Ahmed, Jamal M. II-11
Akyazı, Uğur II-1
Alba, Enrique I-572, II-21
Al-Bajari, Muamar II-11
Aldridge, Ben I-312
Alexander, Jason I-1
Antony, Mathis I-151
Auger, Anne I-402
Aviles, Carlos I-344
Ayoob, Mustafa B. II-11
Aziz, Nor Azlina Ab. II-51
Azzini, Antonia II-161

Ballerini, Lucia I-312, I-328
Banzhaf, Wolfgang II-31
Basiri, Mohammad Ehsan I-371
Battaglia, Francesco I-191
Baumes, Laurent I-501
Baumgarten, Robin I-100
Berberoğlu, Argun II-121
Berlanga, Antonio I-512
Bernardino, Anabela Moreira II-61
Bernardino, Eugénia Moreira II-61
Bertini, Ilaria II-151
Bertoli, Giorgio II-41
Bevilacqua, Vitoantonio I-320
Bianco, Simone I-282
Bilotta, Eleonora I-211
Blasco, Xavier I-532
Bocchi, Leonardo I-328
Borschbach, Markus I-80
Bouzarkouna, Zyed I-402
Brabazon, Anthony I-161, II-192,

II-251, II-341
Bradley, Robert Gregory II-251
Browne, Cameron I-111, I-141

Carpentier, Grégoire II-371
Caserta, Marco II-462
Castelli, Mauro I-282
Castillo, Pedro Ángel I-171
Cerasa, Antonio I-211
Chan, Ching-Yuen I-302
Chandra, Arjun I-61

Cheng, Hui I-562, II-111
Chen, Yuanzhu Peter II-31
Chen, Zeng-Qiang I-302
Ciesielski, Vic II-281
Çınar, Volkan II-431
Codognet, Philippe II-391
Collet, Pierre I-501
Colton, Simon I-100, I-111
Conner, Michael II-41
Corne, David I-461, II-171
Cotta, Carlos I-90
Cui, Wei II-192

Davismoon, Stephen II-361
De Felice, Matteo II-151, II-161
De Prisco, Roberto II-351
De Stefano, Claudio I-221
de Vega, Francisco Fernandez I-90
den Heijer, E. II-311
Di Carlo, Stefano I-412
di Freca, Alessandra Scotto I-221
Ding, Didier Yu I-402
Dong, Na I-302
D’Souza, Daryl II-281
Dubbin, Greg A. II-331
Dumitrescu, Dumitru I-71

Ebner, Marc I-1, I-231
Eccles, John II-361
Eiben, A.E. I-542, II-311
Eletto, Antonio II-351
El-Sourani, Nail I-80
Epitropakis, Michael G. II-411
Esling, Philippe II-371
Espacia, Anna I-171

Falasconi, Matteo I-412
Ferreyra, Andres I-344
Fey, Dietmar I-31
Fisher, Robert B. I-312
Fontanella, Francesco I-221
Frade, Miguel I-90

Gabbouj, Moncef I-336
Gadomska-Kudelska, Malgorzata II-71

614 Author Index

Galanter, Philip II-321
Galván-López, Edgar I-161
Gámez, José Antonio I-261
Garćıa, Jesús I-512
Garćıa-Nieto, José II-21
Garćıa-Varea, Ismael I-261
Geiger, Martin Josef II-441
Gilli, Manfred II-242
Gómez-Pulido, Juan Antonio II-61
Greenfield, Gary II-291
Gundry, Stephen II-41
Günther, Maik II-451
Guo, Lei II-111

Hart, Emma II-141, II-421
Hauke, Sascha I-80
Heywood, Malcolm I. I-51, II-101
Hochreiter, Ronald II-182
Hu, Chang-Jun II-301
Hu, Ting II-31
Huang, Min II-111
Hyun, Soohwan I-352

Ince, Turker I-336
Ip, Wai-Hung I-302
Ivekovic, Spela I-241
Izui, Kazuhiro I-582

Jaros, Jiri I-442
Jiménez, Santiago I-501
John, Vijay I-241

Kaliakatsos-Papakostas, Maximos A.
II-411

Kärkkäinen, Tommi I-602
Kaufmann, Benoit I-251
Keleş, Ali II-81
Kim, Youngkyun I-381
Kiranyaz, Serkan I-336
Komann, Marcus I-31
Korejo, Imtiaz I-491
Kosmatopoulos, Elias B. I-191
Krüger, Frédéric I-501
Kudelski, Michal II-91

Lapi, Sara I-328
Laredo, Juan Lúıs Jiménez I-171
Larkin, Fiacc II-202
LaRoche, Patrick II-101
LaTorre, Antonio I-422

Leung, Kwong-Sak I-481
Li, Changhe I-491
Li, Xiang I-312
Li, Yang II-301
Lichodzijewski, Peter I-51
Lim, Andrew I-111
Lim, Chong-U I-100
Lohpetch, Dome II-171
López, Oscar Javier Romero I-392
Lotz, Marco II-131
Louchet, Jean I-251, I-292
Lung, Rodica Ioana I-71
Lutton, Evelyne I-251, I-292

Machado, Penousal II-271
Maitre, Ogier I-501
Manzolli, Jônatas II-401
Maringer, Dietmar II-212
Marrocco, Cristina I-221
Mart́ı, Luis I-512
Martin, Andrew I-111
Mart́ınez, Ana Isabel I-171
Mart́ınez, Miguel I-532
Mart́ınez-Gómez, Jesús I-261
Mastronardi, Giuseppe I-320
Mat Sah, Shahrul Badariah II-281
McDermott, James II-341
Melnik, Roderick II-232
Melo, Joana B. I-272
Merelo-Guervós, Juan J. I-121
Merelo, Juan Julián I-171
Mihoc, Tudor Dan I-71
Mininno, Ernesto I-522, I-602
Miranda, Eduardo R. II-381
Mohemmed, Ammar W. II-51
Molina, José M. I-512
Montoya, Ramón I-171
Moore, Jason H. I-41
Mora, Antonio Miguel I-171
Moretti, Fabio II-151
Moroni, Artemis II-401
Muelas, Santiago I-422
Müller, Christian L. I-432

Nagy, Reka I-71
Nemati, Shahla I-371
Neri, Ferrante I-471, I-522, I-602
Nishiwaki, Shinji I-582
Nissen, Volker II-451
Nunes, Henrique II-271

Author Index 615

Oh, Jae C. II-261
Olague, Gustavo I-344
Oliveto, Pietro Simone I-61
Öncan, Temel II-431
O’Neill, Michael I-161, II-192,

II-251, II-341
Oranchak, David I-181

Pacut, Andrzej II-71, II-91
Pantano, Pietro I-211
Pasquet, Olivier II-391
Pasquier, Philippe I-131
Payne, Joshua L. I-41
Peña, José-Maŕıa I-422
Pizzo, Christian II-41
Piazzolla, Alessandro I-320
Pizzuti, Stefano II-151
Pospichal, Petr I-442
Protopapas, Mattheos K. I-191

Qin, Peiyu II-111
Quattrone, Aldo I-211

Ramirez, Adriana II-462
Ramtohul, Tikesh II-212
Rees, Jonathan I-312
Reynoso-Meza, Gilberto I-532
Richter, Hendrik I-552
Rimmel, Arpad I-201
Rocchisani, Jean-Marie I-292
Rolet, Philippe I-592
Romero, Juan II-271
Runarsson, Thomas Philip I-121
Ryan, Conor II-202

Şahin, Cem Şafak II-41
Sánchez, Ernesto I-11, I-412
Sánchez, Pablo Garćıa I-171
Sánchez-Pérez, Juan Manuel II-61
Sanchis, Javier I-532
Sarasola, Briseida I-572
Sbalzarini, Ivo F. I-432
Schettini, Raimondo I-282
Schumann, Enrico II-242
Schwarz, Josef I-442
Scionti, Alberto I-412
Scott, Cathy II-141, II-421
Seo, Kisung I-352, I-381
Serquera, Jaime II-381

Shao, Jianhua II-341
Sharabati, Anas I-361
Shukla, Pradyumn Kumar I-21
Silva, Sara I-272, II-131
Şima Uyar, A. II-1, II-81, II-121
Smit, S.K. I-542
Sorenson, Nathan I-131
Sossa, Humberto I-344
Squillero, Giovanni I-11, I-412
Staino, Andrea I-211
Stanley, Kenneth O. I-141, II-331
Stramandinoli, Francesca I-211
Süral, Haldun II-431
Swafford, John Mark I-161
Szeto, K.Y. I-151

Tamimi, Hashem I-361
Tenne, Yoel I-582
Tettamanzi, Andrea G.B. II-161
Teytaud, Fabien I-201, I-452
Teytaud, Olivier I-592
Thomaidis, Nikos S. II-222
Tirronen, Ville I-471
Togelius, Julian I-141
Tonda, Alberto I-11, I-412
Torre, Antonio II-351
Trucco, Emanuele I-241
Tsviliuk, Olena II-232

Urquhart, Neil II-141, II-421
Urrea, Elkin II-41
Uyar, M. Ümit II-41

Vanneschi, Leonardo I-282
Vasconcelos, Maria J. I-272
Vega-Rodŕıguez, Miguel Angel II-61
Vidal, Franck Patrick I-292
Villegas-Cortez, Juan I-344
Voß, Stefan II-462
Vrahatis, Michael N. II-411

Waldock, Antony I-461
Wang, Xingwei II-111
Watson, Richard A. I-1
Weber, Matthieu I-471
Wong, Ka-Chun I-481
Wong, Man-Hon I-481
Wu, Chun-Ho I-302
Wu, Degang I-151

616 Author Index

Yang, Shengxiang I-491, I-562
Yannakakis, Georgios N. I-141
Yao, Xin I-61
Yayımlı, Ayşegül II-81
Yung, Kei-Leung I-302

Zaccagnino, Rocco II-351
Zajec, Edward II-261
Zhang, Di II-232
Zhang, Mengjie II-51
Zincir-Heywood, Nur II-101

	Title
	Preface
	Organization
	Table of Contents
	EvoCOMPLEX Contributions
	Coevolutionary Dynamics of Interacting Species
	Introduction
	Coevolutionary Dynamics on a Deformable Landscape
	Experimental Results
	Conclusion
	References

	Evolving Individual Behavior in a Multi-agent Traffic Simulator
	Introduction
	Model Specifications
	Agents
	Agents Structure
	Evolution
	Agents Evolution

	Experimental Evaluation
	Complete Knowledge
	Partial Knowledge
	Mixed Agents

	Conclusions
	References

	On Modeling and Evolutionary Optimization of Nonlinearly Coupled Pedestrian Interactions
	Introduction
	Existing Models
	Limitations of Previous Approaches and a New Microscopic Model
	Evolutionary Parameter Optimization of the New Model
	The Problem
	The Algorithm
	Results

	Conclusions
	References

	Revising the Trade-off between the Number of Agents and Agent Intelligence
	Introduction
	The Creatures' Exploration Problem
	Increasing Agent Capabilities
	Experimental Setup and Evolutionary Parameters
	Results
	Visit Rates
	Speed of the Agents

	Summary and Outlook
	References

	Sexual Recombination in Self-Organizing Interaction Networks
	Introduction
	Methods
	Self-Organizing Interaction Networks
	Sexual Recombination
	Benchmark Problems
	Experimental Design

	Results
	Massively Multimodal Deceptive Problems
	NK Landscapes

	Discussion
	References

	Symbiogenesis as a Mechanism for Building Complex Adaptive Systems: A Review
	Introduction
	Biological Context
	Summary of EC Models Supporting Symbiogenesis
	Learning Classifier Systems (LCS)
	Symbiogenesis and Genetic Linkage Learning
	Pairwise Symbiogenesis and Coevolution of Symbiont Behaviors
	Models with Dissimilar Representations and Multiple Populations

	Discussion
	References

	EvoGAMES Contributions
	Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game
	Introduction
	Preliminaries
	Alternating Offers Multiple Issue Bargaining Game
	The Co-evolutionary Algorithm

	Analysis of the Previous Methodology
	An Improved Methodology
	Selection of Incompatible Opponents and Local Evaluation

	Conclusion
	References

	Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection
	Introduction
	Fuzzy Nash/Pareto-Biased Players
	Fuzzy Nash Equilibrium
	Generative Relation for Nash Equilibrium
	Generative Relation for Fuzzy Nash Equilibrium

	Fuzzy Pareto Equilibrium
	Fuzzy Nash-Pareto Equilibrium
	Numerical Experiments
	Evolutionary Computing of Fuzzy Equilibria
	Cournot Model
	Fuzzy Nash Equilibrium Detection
	Fuzzy Nash-Pareto Equilibrium Detection

	Conclusions
	References

	An Evolutionary Approach for Solving the Rubik’s Cube Incorporating Exact Methods
	Introduction
	Notation and Basic Concepts
	Rubik's Cube
	Applied Group Theory

	Related Work
	Non-evolutionary Approaches
	Evolutionary Approaches

	Thistlethwaite's Algorithm
	The Thistlethwaite ES - An Evolution Strategy Based on the Thistlethwaite's Algorithm
	Basic Workflow
	Rubik's Cube as an Individual
	Fitness Function
	Mutation Operators
	Selection Method

	Benchmarks
	Conclusion
	References

	Evolution of Artificial Terrains for Video Games Based on Accessibility
	Introduction
	Background
	Accessibility Score Fitness Function
	Tests and Results
	Conclusions
	References

	Evolving Behaviour Trees for the Commercial Game DEFCON
	Introduction
	Background
	DEFCON
	Behaviour Trees

	Evolving Behaviour Trees
	Randomly Generating Behaviour Trees
	Applying Genetic Operators

	Fitness Functions
	Experiments and Results
	Experimental Setup
	Distribution
	Results

	Conclusions and Future Work
	References

	Evolving 3D Buildings for the Prototype Video Game Subversion
	Introduction
	Building Generation
	Command Language
	An Illustrative Example

	Evolving Buildings
	Crossover
	Mutation
	User Interface

	Experimental Survey and Results
	Results

	Conclusions and Future Work
	References

	Finding Better Solutions to the Mastermind Puzzle Using Evolutionary Algorithms
	Introduction
	State of the Art
	Description of the Method
	Experimental Results
	Conclusion and Future Work
	References

	Towards a Generic Framework for Automated Video Game Level Creation
	Introduction
	Previous Work
	Implementation
	Feasible-Infeasible Two-Population Genetic Algorithm
	Genetic Representation
	Fitness Function

	Validation Results
	Super Mario Bros.
	2D Adventure Game

	Discussion
	Future Work and Conclusion
	References

	Search-Based Procedural Content Generation
	Introduction
	Dissecting Procedural Content Generation
	Online versus Offline
	Necessary versus Optional Content
	Random Seeds versus Parameter Vectors
	Stochastic versus Deterministic Generation
	Constructive versus Generate-and-Test

	Search-Based Procedural Content Generation
	Content Representation and Search Space
	Fitness Functions
	Situating Search-Based PCG

	Case Studies of Search-Based PCG
	Rulesets for Pac-Man-like Games
	Rulesets for Board Games
	Tracks for a Racing Game
	Weapons for a Space Shooter Game
	Levels and Mechanics for Super Mario Bros

	Outlook
	References

	Evolution of Grim Trigger in Prisoner Dilemma Game with Partial Imitation
	Introduction
	Memory Encoding
	Imitation Rule
	Results of Monte Carlo Simulation
	Conclusion
	References

	Evolving a Ms. PacMan Controller Using Grammatical Evolution
	Introduction
	Grammatical Evolution
	Our GE Approach to Ms. Pac-Man
	Hand-Coded Example

	Experimental Setup
	Results and Discussion
	The Best Evolved Controller
	Benchmarking Performance

	Conclusions
	References

	Evolving Bot AI in UnrealTM
	Introduction and Problem to Solve
	State of the Art
	Genetic Bots
	Experiments and Results
	Conclusions and Future Work
	References

	Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles
	Introduction
	Methodology
	Entertainment Value

	Evolutionary Algorithm
	Genome Encoding
	Initialization
	Genetic Operators
	Fitness Function

	Results and Conclusions
	References

	Social Learning Algorithms Reaching Nash Equilibrium in Symmetric Cournot Games
	Introduction
	The Models
	The Algorithms
	Simulation Settings
	Synopsis of Results
	Conclusions
	References

	Multiple Overlapping Tiles for Contextual Monte Carlo Tree Search
	Introduction
	Value-Based Reinforcement Learning
	Monte Carlo Tree Search
	Bandits
	Monte Carlo Tree Search
	Monte Carlo Tree Search as a Reinforcement Learning Algorithm

	Tile Coding
	Contextual Monte Carlo
	A New Tiling on the Space of Monte Carlo Simulations
	Improving Monte Carlo Simulations

	Experiments
	Havannah
	Results

	Conclusion
	References

	EvoIASP Contributions
	A CNN Based Algorithm for the Automated Segmentation of Multiple Sclerosis Lesions
	Introduction
	GA Methods for Evolving CNN
	Experiments on the CNN Performance
	Results
	Conclusions
	References

	A Hybrid Evolutionary Algorithm for Bayesian Networks Learning: An Application to Classifier Combination
	Introduction
	The Architecture of the Combiner
	Bayesian Networks Properties
	Learning Bayesian Network

	Evolutionary Bayesian Network Learning
	DAG Encoding and Genetic Operators
	The Hybrid Evolutionary Algorithm

	Experimental Results and Discussion
	Conclusions
	References

	Towards Automated Learning of Object Detectors
	Motivation
	Evolutionary Computer Vision
	Fast Detection of Moving Objects in Image Sequences
	A GPU Accelerated Evolutionary Vision System
	Experiments
	Conclusions
	References

	Markerless Multi-view Articulated Pose EstimationUsing Adaptive Hierarchical Particle Swarm Optimisation
	Introduction
	Related Work
	Particle Swarm Optimisation
	PSO Algorithm with Inertia Weight Parameter

	Body Model, PSO Parametrisation and Fitness Function
	Body Model
	PSO Parametrisation
	Fitness Function

	The Hierarchical PSO
	The Adaptive PSO
	APSO Algorithm
	Setting 0 and 1

	Experiments
	Comparison of APSO vs. HPSO

	Discussion
	References

	Hand Posture RecognitionUsing Real-Time Artificial Evolution
	Introduction
	The Augmented Reality Device
	The Gestural Interface

	EvHough, Evolutionary Exploration of a Parameter Space
	Detection of Hand Models
	Preliminary Processing
	Genome and Similarity Criterion
	Genetic Engine

	Additional Improvements
	Results
	Conclusion
	References

	Comparing Cellular and Panmictic Genetic Algorithms for Real-Time Object Detection
	Introduction
	Vision System
	Individual Representation
	Fitness Function
	General Processing Scheme
	Population Initialization

	Genetic Algorithm Structure
	Algorithm Evolution

	Experiments and Results
	Experiment 1 - Adding Restart Scheduling
	Experiment 2 - Testing the Cellular Structure

	Conclusions and Future Work
	References

	Bloat Free Genetic Programming versus Classification Trees for Identification of Burned Areas in Satellite Imagery
	Introduction
	Operator Equalisation
	Data
	Methods
	Results and Discussion
	Accuracy
	Reliability
	Complexity
	Robustness

	Conclusions and Future Work
	References

	Genetic Algorithms for Training Data and Polynomial Optimization in Colorimetric Characterization of Scanners
	Introduction
	Scanner Characterization
	State of the Art Methods for Training Samples Selection
	The Proposed GA System
	Experimental Results
	Conclusions and Future Work
	References

	New Genetic Operators in the Fly Algorithm: Application to Medical PET Image Reconstruction
	Introduction
	Material and Methods
	Main Principles
	Fitness Metrics
	Thresholded Selection
	Mitosis

	Results
	2D-Mode
	3D-Mode

	Conclusion
	References

	Chaotic Hybrid Algorithm and Its Application in Circle Detection
	Introduction
	Feature Extraction
	Evolutionary Feature Synthesis
	Similarity Matching
	Results and Evaluation
	Conclusions
	References

	An Evolutionary Method for Model-Based Automatic Segmentation of Lower Abdomen CT Images for Radiotherapy Planning
	Introduction
	Analysis of the Problem
	Workflow of Our Method
	The Training Phase
	The Research Phase

	Experimental Results
	Conclusions
	References

	Evolution of Communicating Individuals
	Introduction
	Methods
	Voice Production Model
	Acoustic Model
	Interpretation Model
	Genotype
	Learning Phase
	Fitness Evaluation
	Reproduction and Selection

	Results
	Conclusions
	References

	Dynamic Data Clustering Using Stochastic Approximation Driven Multi-Dimensional Particle Swarm Optimization
	Introduction
	Proposed Technique: SAD MD-PSO
	SPSA Overview
	SAD MD-PSO

	Experimental Results
	Conclusions
	References

	Automatic Synthesis of Associative Memories through Genetic Programming: A First Co-evolutionary Approach
	Introduction
	Automatic Synthesis of AMs through GP
	The Design of AMs Using a Co-evolutionary Model
	GP Setup

	Results and Analysis
	Conclusions
	References

	EvoINTELLIGENCE Contributions
	A Comparative Study between Genetic Algorithm and Genetic Programming Based Gait Generation Methods for Quadruped Robots
	Introduction
	GA-Based Gait Generation in Cartesian Space
	GP-Based Gait Control in Joint Space
	Experiments and Analysis
	Simulation Environments
	Fitness Function and GA, GP Parameters
	Simulation Results
	Bioloid Real Robot Results
	Analysis of Two Methods for Gait Evolution

	Conclusions
	References

	Markerless Localization for Blind Users Using Computer Vision and Particle Swarm Optimization
	Introduction
	The Establishment of the System
	Phase 1
	Phase 2

	Color Histogram
	Particle Swarm Optimization
	Robust Localization
	Ambiguous Locations
	Lost Cases

	Experiments and Results
	Conclusion
	References

	Particle Swarm Optimization for Feature Selection in Speaker Verification
	Introduction
	An Overview of ASV Systems
	Feature Extraction
	Feature Selection
	Speaker Modeling

	ProposedSystem
	Representation of Position
	Representation of Velocity
	Position Update Strategies
	Fitness Function
	Proposed Feature Selection Algorithm

	Experimental Results
	TIMIT Dataset
	Evaluation Measure
	Experimental Setup
	Results
	Discussion

	Conclusion and Future Research
	References

	Scale- and Rotation-Robust Genetic Programming-Based Corner Detectors
	Introduction
	Problem and Proposed Method
	Problem Statements
	Genetic Programming
	GP Function and Terminal Set
	Fitness Function

	Experiments and Analysis
	Experimental Environments
	Experiments with Various Terminal Sets
	Experiments Using Various Population Size and Tree Depths
	Experimental Comparison with Existing Methods

	Conclusions
	References

	Self-organized and Evolvable Cognitive Architecture for Intelligent Agents and Multi-Agent Systems
	Introduction
	Proposed Hybrid Cognitive Architecture
	Epigenetic Approach: Implicit Learning at Emergent Level
	Vertical Integration: Specialist Behaviors

	Ontogenetic Approach: Behavior Orchestration
	Phylogenetic Approach: C-evolutionary Mechanism
	Experimentation
	Analysis of Eligibility Rules Evolved by GEP
	Learning Convergence of the Co-evolutionary Mechanism

	Conclusions
	References

	EvoNUM Contributions
	Investigating the Local-Meta-Model CMA-ES for Large Population Sizes
	Introduction
	CMA-ES with Local Meta-Models
	The Covariance Matrix Adaptation ES.
	Locally weighted regression.
	Approximate Ranking Procedure.

	Evaluating lmm-CMA on Increasing Population Size
	Experimental Procedure
	Performances of lmm-CMA with Increasing Population Size

	A New Variant of lmm-CMA
	A New Meta-Model Acceptance Criteria
	Evaluation of nlmm-CMA
	Impact of the Recombination Type
	Impact of Initial Parameters

	Summary
	References

	Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing
	Introduction
	Background
	Pattern Classification
	Drift Compensation Approaches for Chemical Sensing

	Proposed Architecture
	Experimental Results and Discussion
	Conclusions
	References

	Automatically Modeling Hybrid Evolutionary Algorithms from Past Executions
	Introduction
	Related Work
	Contribution
	Experimentation
	Analysis of the Results
	Conclusions
	References

	Gaussian Adaptation Revisited – An Entropic View on Covariance Matrix Adaptation
	Introduction
	Covariance Matrix Adaptation and Gaussian Adaptation
	Evolution Strategies with Covariance Matrix Adaptation
	Gaussian Adaptation
	The GaA Algorithm.
	Strategy Parameters in GaA.
	Constrained Handling and Initialization.

	Numerical Examples
	Gaussian Adaptation on the Sphere Function
	Gaussian Adaptation on Rosenbrock's Function
	Gaussian Adaptation on Kjellström's Function

	Conclusions and Discussion
	References

	Parallel Genetic Algorithm on the CUDA Architecture
	Introduction
	General Purpose Computation on GPU
	GPU-Based Genetic Algorithm
	Implementation of Genetic Operators
	Migration between Islands

	Results
	Achieved Performance
	Solutions Quality

	Conclusions
	References

	A New Selection Ratio for Large Population Sizes
	Introduction
	Discrepancy between Theory and Practice, and the Tuning of the Selection Ratio of the Self-Adaptation Evolution Strategy
	Solving the Discrepancy between Theory and Practice by a Good Tuning of SA
	Experiments on the Covariance Matrix Self-Adaptation Evolution Strategy
	Test Functions
	Results

	Conclusion
	References

	Multi-Objective Probability Collectives
	Introduction
	Multi-Objective Optimisation

	Probability Collectives
	Multi-Objective Probability Collectives
	Experiments and Results
	Investigating MOPC on the DEB2 Problem
	MOPC Performance on the CEC 2009 Problems

	Conclusions, Discussion and Future Work
	References

	Parallel Random Injection Differential Evolution
	Introduction
	Parallel Random Injection Differential Evolution
	Experimental Results
	Conclusion
	References

	Effect of Spatial Locality on an Evolutionary Algorithm for Multimodal Optimization
	Introduction
	Background
	CrowdingDE
	Locality of Reference

	Proposed Method
	Motivation
	CrowdingDE-L

	Experiments
	Performance Measurements
	Parameter Setting
	Results
	Effect of Spatial Locality

	Real World Application
	Varied-Line-Spacing Holographic Grating Design
	Performance Measurements
	Parameter Setting
	Results

	Conclusion
	References

	A Directed Mutation Operator for Real Coded Genetic Algorithms
	Introduction
	Related Work
	Directed Mutation for Genetic Algorithms
	Experimental Study
	Experimental Setting
	Experimental Results and Analysis

	Conclusions
	References

	Speedups between ×70 and ×120 for a Generic Local Search (Memetic) Algorithm on a Single GPGPU Chip
	Introduction
	What Are GPGPUs and How Have They Been Designed?
	GPU Chips and the Gaming Industry
	GPU Chips and Evolutionary Computation

	Programming GPGPU Cards
	Software Architecture

	Running a Memetic Algorithm on GPGPU
	Implementation of a Parallelized Memetic Algorithm
	Standard EASEA Evolutionary Algorithm
	Implementation
	Local Search Algorithm

	Experiments
	Tests on the Rosenbrock Benchmark
	Speedups on Evaluation Time Only
	Speedups on the Complete Memetic Evolutionary Algorithm
	Influence of Population Transfer Time and Genome Size
	Real World Experiment

	Conclusion and Future Work
	References

	Advancing Model–Building for Many–Objective Optimization Estimation of Distribution Algorithms
	Introduction
	Theoretical Background
	Estimation of Distribution Algorithms

	Error–Based Learning in Model–Building Algorithms
	Randomized Leader Algorithm
	Model–Building Growing Neural Gas
	Gaussian Adaptive Resonance Theory Network

	Experimental Analysis
	Shared EDA Framework
	Results

	Conclusions
	References

	Estimation Distribution Differential Evolution
	Introduction
	EDDE Algorithm
	Experimental Results
	Conclusion
	References

	Design of Continuous Controllers Using a Multiobjective Differential Evolution Algorithm with Spherical Pruning
	Introduction
	Multiobjective Optimization Statement
	Multiobjective Optimization Tool: sp-MODE
	Multiobjective Optimization Algorithm Design
	Multiobjective sp-MODE Algorithm

	Application Example: Helicopter Pitch Angle Control
	Benchmark Description
	Controller Design
	Search and Objective Space Definition.

	Conclusions
	Acknowledgments.

	References

	Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist
	Background and Objectives
	Parameters, Tuners, and Utility Landscapes
	Generalist EAs vs. Specialist EAs
	Experimental Setup and System Description
	Human Expert
	Performance Measures
	System Description

	Results
	Performance
	Estimated Utility vs. Validated Utility:

	Best Parameter Values

	Conclusions and Outlook
	References

	EvoSTOC Contributions
	Memory Design for Constrained Dynamic Optimization Problems
	Introduction
	Related Work
	Dynamic Fitness Landscapes with Constraints
	Memory Design
	Numerical Experiments
	Conclusions and Future Work
	References

	Multi-population Genetic Algorithms with Immigrants Scheme for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc Networks
	Introduction
	Model
	Design of GA for SP Problem
	Genetic Representation
	Population Initialization
	Fitness Function
	Crossover and Mutation

	iMPGA: Multi-population GAs with Immigrants Scheme
	Experimental Study
	Experimental Design
	Experimental Results and Analysis

	Conclusions
	References

	Measuring Fitness Degradation in Dynamic Optimization Problems
	Introduction
	Existing Performance Metrics for DOPs
	The Moving Peaks Problem
	Solving the Moving Peaks Problem
	Studying the Graphical Representation of Mean Executions
	Studying the Collective Mean Fitness
	Studying Weicker's Metrics

	A Measure for Degradation: degradation
	Conclusions
	References

	Handling Undefined Vectors in Expensive Optimization Problems
	Introduction
	The Baseline Algorithm for Expensive Optimization

	Handling Undefined Vectors
	Classification-Assisted Optimization
	Technique 1–The ‘Explicit’ Approach
	Technique 2–The ‘Implicit’ Approach
	The Explicit Technique–Extension to Multi-classifier Setups

	Performance Analysis
	Summary
	References

	Adaptive Noisy Optimization
	Introduction
	Framework
	Lower Bounds
	Hoeffding/Bernstein Bounds; Their Application to Races
	Upper Bounds for Noisy Optimization
	Discussion
	References

	Noise Analysis Compact Genetic Algorithm
	Introduction
	Noise Analysis Compact Genetic Algorithm
	Experimental Results
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

