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Abstract. A goal of human genetics is to discover genetic factors that
influence individuals’ susceptibility to common diseases. Most common
diseases are thought to result from the joint failure of two or more in-
teracting components instead of single component failures. This greatly
complicates both the task of selecting informative genetic variations and
the task of modeling interactions between them. We and others have
previously developed algorithms to detect and model the relationships
between these genetic factors and disease. Previously these methods have
been evaluated with datasets simulated according to pre-defined genetic
models. Here we develop and evaluate a model free evolution strategy
to generate datasets which display a complex relationship between indi-
vidual genotype and disease susceptibility. We show that this model free
approach is capable of generating a diverse array of datasets with distinct
gene-disease relationships for an arbitrary interaction order and sample
size. We specifically generate six-hundred pareto fronts; one for each in-
dependent run of our algorithm. In each run the predictiveness of single
genetic variation and pairs of genetic variations have been minimized,
while the predictiveness of third, fourth, or fifth order combinations is
maximized. This method and the resulting datasets will allow the ca-
pabilities of novel methods to be tested without pre-specified genetic
models. This could improve our ability to evaluate which methods will
succeed on human genetics problems where the model is not known in
advance. We further make freely available to the community the entire
pareto-optimal front of datasets from each run so that novel methods
may be rigorously evaluated. These 56,600 datasets are available from
http://discovery.dartmouth.edu/model_free_data/.

1 Introduction

Advances in genotyping technologies are changing the way geneticists measure
genetic variation. It is now technologically feasible to measure more than one
million variations from across the human genome. Here we focus on SNPs, or
single nucleotide polymorphisms. A SNP is a single point in a DNA sequence
that differs between individuals. A major goal in human genetics is to link the
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state of these SNPs to disease risk. The standard approach to this problem
is to measure the genotypes of people with and without a disease of interest
across hundreds of thousands to millions of SNPs. Each of these SNPs is then
tested individually for an association with the disease of interest. The goal is to
discover SNPs that reliably predict disease susceptibility across many samples
[1,2]. This approach has had limited success and the discovery of robust single
SNP associations has been difficult to attain [3,4,5]. Even in the cases where
single SNP associations have validated in independent samples, the SNPs often
cannot be combined into effective classifiers of disease risk [6]. These studies, by
only examining the association of single SNPs, ignore complex interactions that
may be critical to understanding disease susceptibility.

The term for complex gene-gene interactions that influence disease suscepti-
bility is epistasis. It is now recognized that studies which ignore epistasis may
neglect informative markers [7,8,9,10]. Furthermore, epistasis is thought to play
a critical role in the understanding of disease because of the complexity present
in cellular and biological systems [11] and because it has been well characterized
for other complex traits [7,12]. Detecting and characterizing epistasis in all but
small datasets is difficult. Examining gene-disease relationships in the context of
epistasis requires the consideration of the joint effect of SNPs and an exhaustive
analysis of all possible interactions requires the enumeration of every potential
set of SNPs [13]. When datasets contain many SNPs, combinatorial methods
which evaluate each such combination are not feasible [14].

In human genetics we have, therefore, been confronted by a chicken and egg
problem. We believe that it is likely that complex interactions occur, but without
methods to detect these interactions in large datasets, we lack the ability to find
them. Without found and validated interactions that lead to disease we lack the
ability to test new methods on actual genetic datasets. Thus far the problem
has been approached with datasets simulated according to hypothetical genetic
models as in Velez et al. [15] and Greene et al. [10] among many others. Methods
are tested for their ability to find a disease model placed in the datasets. This
approach is useful but limited by the diversity and representativeness of the
genetic models. The work we present here uses an evolution strategy to generate
datasets containing complex genetic interactions that lead to disease without
imposing a specific genetic model on the datasets.

2 Evolution Strategies

Evolution Strategies are algorithms modeled after natural evolution. The combi-
nation of several key evolutionary concepts, such as natural selection, population
sizes, and mutation rates, produces algorithms capable of finding sought after
members of a solution space [16]. Multiple generations allow evolution strategies
to direct their results towards an ideal solution by preserving beneficial muta-
tions. One key difference between mutation driven strategies, like the one imple-
mented in our method, and genetic algorithms is the absence of recombination
[17]. Recombination, the computational equivalent of genetic crossover, consists
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of creating new individuals in a population by combining the characteristics of
multiple members of the previous generation. Since recombination relies on the
exchange of discrete blocks of information, crossover is only appropriate when
clear building blocks can be defined [18]. Here it is unclear whether a building
block would be a set of individuals or a set of SNPs. Therefore, because it is
unclear what the proper building blocks would be, we do not use recombination.
Evolutionary algorithms that lack recombination have proven themselves equally
as powerful in certain instances and remain able to solve complex problems [19].
For the purpose of our study, we are faced with the challenge of evolving a
difficult problem to solve, namely, datasets that have a high-order interaction
with no main or two-way effects. Previously, others have used evolutionary algo-
rithms to create problems that are hard for a specific heuristic to solve [20,21,22].
One novelty of the present study is our use of evolutionary algorithms to find
problems without assuming a specific search algorithm or model.

3 Multi-objective Optimization and Pareto Optimality

Multiobjective problems are those for which practitioners wish to maximize or
minimize two or more, often competing, characteristics of solutions. Evolution-
ary algorithms have been used to solve multi-objective optimization problems
for more than twenty years [23,24,25]. These strategies are thought to be well
suited to multi-objective problems because the population can carry out a search
with solutions that succeed for different objectives [26]. The drawback of this
approach is that assigning a single fitness score that encompasses every objective
is difficult. Effectively using linear combinations of the objective scores for each
objective requires knowledge about the problem and the fitness landscape which
is unlikely to be available before a thorough analysis is performed. It is possible,
however, to optimize many objectives without a priori knowledge by consider-
ing non-dominated (i.e. Pareto optimal) solutions as highly fit individuals. A
non-dominated solution is one for which there is no solution that is better in all
objectives. Here we use an approach focused on Pareto optimal solutions similar
to one described by Goldberg [25]. In our approach, we use all Pareto optimal
solutions as parents for the next generation, which would be equivalent to using
only rank 1 individuals from Goldberg’s approach. With this strategy we can
explore the Pareto front of solutions which optimize each of our many objectives.
We can then provide a number of model free datasets which are optimal with
respect to our distinct objectives from a single run of the algorithm.

4 Multifactor Dimensionality Reduction (MDR)

Multifactor Dimensionality Reduction (MDR) is a widely used and a powerful
model free method to detect and model gene-gene interactions associated with
disease [27,28]. At the core of the MDR approach is an attribute construction al-
gorithm that creates a new attribute by pooling genotypes from multiple SNPs.
Constructive induction using the MDR kernel is accomplished in the following
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way. Given a threshold T, a multilocus genotype combination is considered high-
risk if the ratio of cases (subjects with disease) to controls (healthy subjects)
exceeds or equals T, otherwise it is considered low-risk. Genotype combinations
considered to be high-risk are labeled G1 while those considered low-risk are
labeled G0. This process constructs a new one-dimensional attribute with lev-
els G0 and G1. Here we use MDR to evaluate both high order and low order
interactions. Our goal is to minimize the accuracy of this new variable for low-
order combinations and maximize the accuracy of this variable for high-order
combinations. Because MDR assumes no specific model, our dataset generation
method is also model free.

5 A Model Free Dataset Generation Method

The first step in our process of generating datasets is to create random datasets.
For each, we initialize a specified number of people (our sample) and provide
them with random genotypes at three, four, or five SNPs. This number of SNPs
can be arbitrarily assigned and is the order of the predictive interaction we wish
to generate. We randomly assign these a case-control status. Current genotyping
platforms are targeted towards measuring bi-allelic SNPs, i.e. those with two
alleles. These SNPs can exist in one of three states. Here we indicate the states
as 0, 1, and 2.

Because we wish to generate datasets with high concept difficulty, one of our
goals is to minimize simple genetic effects. To do this, we use MDR to evaluate
the best possible low-order predictors. We then, under a Pareto strategy, select
those datasets which minimize the low-order predictiveness. In the case of our
work here we focus on minimizing the predictiveness of all single SNPs and all
two SNP combinations. Our next goal is to maximize the predictiveness of higher
order combinations. To do this we evaluate the predictiveness of all the SNPs
for every individual using MDR. Because we are maximizing the predictiveness
of all the SNPs in the data, we only need to test a single attribute combination
(i.e. that of all SNPs) and this task is computationally simple. Using MDR in
this way gives us an accuracy, which we then use a Pareto strategy to maximize.
Thus in this specific case our evolution strategy exploits Pareto optimization
to minimize the single locus and two-locus predictiveness while maximizing the
three, four, or five locus predictiveness. Specifically we use all Pareto optimal
solutions as parents for the next generation. To generate offspring these parents
are duplicated and, at each SNP for each individual, the value can be changed
according to the mutation rate.

For SNPs not under selective pressure in humans, these states exhibit what is
called Hardy-Weinberg equilibrium (HWE). Hartl and Clark provide an excel-
lent overview of the Hardy Weinberg principle [29]. Because most SNPs are not
under selection, deviations from HWE have historically been used as a marker
of genotyping error [30]. The implicit assumption is that a SNP which is not
in HWE is more likely to be a genotyping error than a SNP under selection.
Examinations of early genetic association studies suggested that these concerns
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may be well founded [31]. As genotyping methods improve and genotyping error
is reduced, it becomes more likely that these SNPs are under selective pressure
and less likely that deviations from HWE are due to genotyping error, and thus
it becomes less likely that geneticists will filter SNPs which deviate from HWE.
Indeed new methods have been developed which use the principles of Hardy-
Weinberg equilibrium to detect an association between a genotype and disease
[32]. Because the field is currently in transition we provide two sets of datasets,
one set where we optimize for non-significant HWE genotype frequencies and
one where we do not. In both cases we have initialized the frequencies of the
genotype states as under HWE but selection can alter these frequencies.

By using a test of HWE as an additional Pareto criterion we can generate
datasets containing SNPs that would not be filtered by currently used quality con-
trol measures. In this way we develop datasets where there is a model free but
complex relationship between genotype and disease. With a wide array of datasets
we can then test the ability of novel methods to detect and characterize complex
epistatic relationships without making assumptions about the underlying genetic
model. Because the result of each run is a set of Pareto optimal solutions, users
can pick solutions with a wide array of difficulties to use while evaluating novel
methods. For the set of results where we attempted to preserve Hardy-Weinberg
equilibrium we actually minimize disequilibrium. Specifically we minimize the chi-
square statistic which measures deviation from HWE. Because this expands our
pareto front from three dimensions to four it dramatically increases the size of the
pareto front. To insure that each parent has an opportunity to generate a reason-
able number of offspring, we limit the number of parents taken to the next genera-
tion to one hundred when we are also optimizing for Hardy-Weinberg equilibrium.
When there are more than one hundred individuals on the front, we choose the in-
dividuals in the “elbow” of the pareto front (i.e. non-extreme individuals). This
tie-breaker keeps individuals which are good in regards to more than one dimen-
sion at the cost of those which excel in a single dimension.

At the conclusion of each run we have a front of pareto optimal datasets.
Because comparing entire pareto fronts is difficult we wish to provide, in addition
to the front, a single member of the pareto-optimal group which can represent
the run. We have done this by picking the individual dataset with the smallest
euclidean distance from the best values obtained for each measure.

6 Experimental Design and Analysis

Our first task was to determine a useful mutation rate. Because this system
is driven by mutation, we need to employ an effective mutation rate to evolve
good solutions. We examined mutation rate by evaluating rates of 0.05, 0.04,
0.03, 0.02, 0.01, 0.008, 0.006, 0.004 and 0.002 for sample sizes of 500 and 1000
using a fixed number of generations (750) and a fixed population size (1000). We
then used the four-way testing accuracy to evaluate how far the evolution had
progressed. We used these results to pick an appropriate mutation rate for the
number of generations and population size we use here.
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Our second task was to evaluate whether our Pareto evolution strategy out-
performed a random search. We generated two million random datasets and
compared the resulting Pareto front to the pareto fronts generated at the end of
evolution in our system. We tested the significance of the differences observed for
the accuracies from the fronts from evolved runs and those from the randomly
generated runs. We statistically tested these differences with Hotelling’s T-test
and considered the differences significant when the p-value was less than or equal
to 0.05. This means that we would consider results significant only one time out
of twenty when there was no significant effect.

Our final task was to generate sets of Pareto optimal datasets each exhibit-
ing three-way interactions, four-way interactions and five-way interactions. In
each case we maximized three, four, and five-way MDR accuracies respectively
while minimizing one and two way accuracies. We further generated datasets
both under pressure to maintain Hardy-Weinberg equilibrium and irrespective
of HWE. For each parameter setting (three, four, and five-way interactions with
and without HWE) we generated 100 sets of datasets for a total of 600 sets of
pareto optimal datasets. In total we have generated more than 50,000 datasets
with a complex gene-disease relationship and made these datasets available to
researchers as described in section 8.

7 Results

Our parameter sweep of mutation rates showed that, for this problem, a mutation
rate of 0.004 led to the greatest success for datasets of five hundred people and
0.002 led to the greatest success for datasets of one thousand people. Large
scale parameter sweeping with the sample sizes that we wished to generate was
infeasible, but because the optimal mutation rate was related to the sample size
we estimated that for the situation where we wish to evolve datasets containing
3000 individuals with a complex gene-disease relationship, a mutation rate of
0.001 would work, although because of the indirectness required to perform the
parameter sweep it is not necessarily optimal.

We compared the results from our evolution strategy to a random search.
The results are presented in Figure 1 and Table 1. Figure 1 shows the pareto
front generated during a single evolved run and the pareto front generated by a
random search over the same number of datasets. It is clear that solutions from
the pareto front from the evolved run are generally much better than the ran-
domly generated datasets. As Table 1 shows, the evolution strategy consistently
outperforms the random search. Furthermore, as Table 1 shows, we were able
to consistently generate datasets with a complex gene-disease relationship that
lack low order predictors in a model free manner. In each case the differences
between the pareto front from two million random datasets and that obtained
at the end of our evolution strategy was highly significantly different (p < 0.001)
indicating that these differences are not likely to be due to chance.

Figure 2 provides some insight into the difficulty of the problem. Minimizing
the one-way accuracies and two way accuracies happens relatively quickly and
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Fig. 1. This figure shows two dimensional projections of the three dimensional pareto
front obtained at the end of one run of the evolution strategy and the pareto front
obtained by randomly generating two million datasets. The three-way accuracy, which
is maximized, is plotted against the one and two-way accuracies, which are minimized.
The pareto front from the evolved run is clearly better than the pareto front from
random initialization of two million datasets. The star shows the single dataset from
the front chosen as the result of the run, which is used to compare across all runs in
Table 1.

Table 1. A summary of the accuracies obtained for the evolution strategies and ran-
dom search. HWE indicates whether or not the datasets were selected based on their
conformance to Hardy-Weinberg equilibrium. The one-way and two-way accuracies are
always minimized and the n-way accuracy is maximized. The accuracies are presented
as mean and (standard deviation).

Parameters Results

n-way Gen. Pop. HWE One-way (sd) Two-way (sd) n-way (sd)

Three-way
2000 1000 No 0.502 (0.001) 0.511 (0.007) 0.886 (0.023)
2000 1000 Yes 0.504 (0.002) 0.509 (0.003) 0.680 (0.024)
1 2000000 No 0.506 (0.006) 0.518 (0.009) 0.543 (0.012)

Four-way
2000 1000 No 0.502 (0.001) 0.510 (0.003) 0.897 (0.018)
2000 1000 Yes 0.507 (0.003) 0.513 (0.003) 0.673 (0.009)
1 2000000 No 0.507 (0.004) 0.519 (0.006) 0.571 (0.011)

Five-way
2000 1000 No 0.502 (0.001) 0.510 (0.002) 0.895 (0.009)
2000 1000 Yes 0.511 (0.003) 0.518 (0.003) 0.693 (0.008)
1 2000000 No 0.507 (0.004) 0.520 (0.005) 0.612 (0.011)
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Fig. 2. The pareto front from a single run improves as the run proceeds. The pareto
fronts are shown for each pairwise combination of objectives in each box at every 200
generations as shown by color. The star indicates the final solution used to evaluate
the run.

within the first few hundred generations. Maximizing the higher order accuracies
continues throughout the entire run and progress is still being made and the two-
thousandth generation. The star indicates the dataset that was chosen from the
front to represent the run. It is this one dataset that is taken from each run
according to the euclidean distance strategy discussed in section 5 that is used
to calculate the summary statistics in Table 1.
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8 Dataset Availability

All pareto optimal datasets generated during these experiments are available
from the website http://discovery.dartmouth.edu/model_free_data/. We
provide a number of means of obtaining datasets. First, we provide archive files
of “best of runs” obtained with and without Hardy-Weinberg equilibrium con-
straints. These representative datasets are obtained by choosing the dataset with
the smallest euclidean distance between its own values and the optimum values
obtained by all datasets on the pareto front as described in section 5. In addi-
tion to these representative datasets, for each run we provide all datasets that,
at the end of the run, make up the complete Pareto front. To assist with the use
of these datasets we further provide an information file for each run containing
the characteristics of every dataset in the pareto-optimal front. From these files
it is possible for investigators to develop suites of datasets that display certain
characteristics (e.g. one and two way accuracies less than 52% and four-way
accuracies of approximately 70%). Using datasets generated from our provided
results, investigators can test novel methods across data exhibiting gene-disease
relationships unconstrained by specific genetic models. The SNPs we provide
can be combined with other noisy SNPs to represent a three, four, or five-way
genetic interaction in a sea of noisy SNPs.

9 Discussion and Conclusions

Evolutionary computing has previously been used to generate epistatic (i.e. in-
teraction based) models of a gene-disease relationship for both two-way [33]
and higher order [34] interactions. Here we generate epistatic datasets in a
model free manner. We also describe a novel evolution strategy for creating
model free datasets and use this strategy to create 56,600 datasets with com-
plex gene-disease relationships which we make publicly available. These datasets
provide test beds for novel genetic analysis methods. By providing human ge-
netics datasets with complex interactions that do not assume a model we hope
to bypass the chicken and egg problem that has previously confronted the field.
Methods tested on datasets generated in this manner may better generalize to
true genetic association datasets.

Future work should focus on evaluating potential building blocks, so that
crossover can improve the efficiency of the search. Potential building blocks in-
clude subsets of the individuals in each dataset, subsets of the SNPs in each
dataset, or subsets of both individuals and SNPs in each dataset. It is not intu-
itive which approach is most useful, so these options should be fully explored. It
may be that customized crossover operators are required to obtain useful genetic
mixing for this problem.

Future work should also focus on making these datasets and others generated
in this manner widely available. By dividing the resulting datasets into standard-
ized testing and training datasets, it would be feasible to compare algorithms in
a straightforward and objective manner. This comparison of algorithms would

http://discovery.dartmouth.edu/model_free_data/
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provide a great deal of information about these methods to human geneticists at-
tempting to understand the basis of common human disease. By providing open
and publicly available datasets which do not assume a model but which con-
tain a complex relationship between individual and disease, we hope to improve
our understanding of commonly used methods in human genetics. We also hope
to provide a framework for objectively testing future methods. Only when we
can effectively judge methods across a comprehensive test suite of datasets can
we develop methods likely to discover the underlying basis of common human
diseases.
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