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Abstract. Recent advancement in the pattern recognition field has driven many 
classification algorithms being implemented to tackle protein fold prediction 
problem. In this paper, a newly introduced method called Rotation Forest for 
building ensemble of classifiers based on bootstrap sampling and feature 
extraction is implemented and applied to challenge this problem. The Rotation 
Forest is a straight forward extension of bagging algorithms which aims to 
promote diversity within the ensemble through feature extraction by using 
Principle Component Analysis (PCA). We compare the performance of the 
employed method with other Meta classifiers that are based on boosting and 
bagging algorithms, such as: AdaBoost.M1, LogitBoost, Bagging and Random 
Forest. Experimental results show that the Rotation Forest enhanced the protein 
folding prediction accuracy better than the other applied Meta classifiers, as 
well as the previous works found in the literature. 
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1   Background 

Prediction of the tertiary structure of a protein from its primary structure is a 
challenging task in bioinformatics and biological science. Recently, due to 
tremendous advancements in pattern recognition, many classifiers have been 
implemented and applied to challenge this task. In this paper, Rotation Forest, as a 
newly proposed method for building an ensemble of classifiers employed to tackle the 
protein fold prediction problem.  

The Rotation Forest, by Rodriguez and his co-workers [1], is based on bagging 
algorithm [2] that aims to build a more accurate and diverse classifier. Rotation Forest 
uses bootstrap samples of training dataset to train a group of decision trees as well as 
bagging, but dissimilar to bagging, to reinforce diversity within classifiers ensemble; 
it splits the feature set to randomly K  subset, then runs Principal Component 
Analysis (PCA) on each of them, and finally rebuilds the feature set of N  linear 
extracted features by combining all principle components. In this way it transforms 
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the feature set to the new )( NwhereMM ≤  dimensional feature spaces. This process 

is repeated to extract new set of features to train each of the base learners in parallel. 
At last, Rotation Forest combines the results of all base classifiers using majority 
voting.  

Rotation Forest has been widely applied for different benchmarks and in many 
cases outperformed other Meta Classifiers such as Adaboost.M1 [3], or other 
classifiers such as Support Vector Machine which is considered as the state-of-the-art 
in machine learning ([1], [4], and [5]). To the best of our knowledge, Rotation Forest 
has never been applied to deal with the protein folding task. Experimental results 
demonstrated that the Rotation Forest enhanced the prediction accuracy as well as 
reducing time consumption of the classification task better than the previous related 
works found in the literature. 

One of the most important factors that affect the performance of the Rotation 
Forest is the number of base classifiers. Therefore, in this paper, to study the 
sensitivity of the Rotation Forest to the number of base classifiers for the protein fold 
prediction problem, six different numbers of base classifiers in the range between 10 
and 200 were employed (10, 20, 50, 100, 150, and 200). Finally, the Rotation Forest 
compared with the best-of-the-shelf Meta classifiers that based on boosting and 
bagging methods, namely: Multi Class Adaptive Boosting (AdaBoost.M1), 
LogitBoost, Random Forest (RF) and Bagging which demonstrated better results 
compared to other similar methods ([1], [4], [6] and [7]).  

Recently, many efforts have been made to challenge the protein fold prediction 
problem ([8], [9], [10], [11], [12], and [13]). Most of the classification methods, used 
for this task were based on Artificial Neural Network (ANN) ([14], [15], [16], and 
[17]) and Support Vector Machine (SVM) ([18], [19], [20], and [21]). In 2001, Ding 
and Dubchak used three SVM based multi-class classification methods (one-versus-
others (OvO), unique one-versus others (uOvO), and all-versus-all (AvA)), with six 
feature groups named: Composition of amino acids (C), Predicted secondary 
structure (X), polarity (P), polarizability (V), hydrophobicity (H) and van der vaals 
volume (V) [23]. They reported 56% prediction accuracy using the AvA SVM.  

Motivated by the work of Ding and Dubchak [22], Bologna and Appel [14] used 
ensemble of four-layer Discretized Interpretable Mulri Layer Perceptron (DIMLP) 
trained with the dataset produced by Ding and Dubchak. Different to Ding and 
Dubchak, in their work, each classifier learned all folds simultaneously. To the best of 
our knowledge, they reported the highest prediction accuracy (61.1%) using same set 
of features introduced by Dubchak and her co-workers [23]. 

NNs and SVMs classifiers used again by Chung and his co-workers as basic 
building blocks of two-level classifier for the protein folding task. In their work, each 
NN or SVM was a multi-class classifier [24]; hence, the number of classifiers that 
they used compared to other works had been greatly reduced. In their work, the 
common and most popular NN based models with a single hidden layer name: Multi 
Layer Perceptron (MLP), Radial Basis Function Network (RBFN), and General 
Regression Neural Network (GRNN) were used. However, in Chung and his co-
workers and also in their previous works, it was observed that the model constructed 
by using neural networks and SVMs, perform badly due to the imbalanced proportion 
of the data which caused high rate of false positive error. 
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To address this problem, Nanni used non-density-based Fisher’s linear classifier 
(FLC) and an ensemble of Hyper-plane K-Nearest Neighbor classifier (HKNN) [12]. 
FLC were used to find the linear discrimination function between the classes in the 
dataset by minimizing the errors in the least-squares sense, and HKNN were used to 
find a decision surface, by separating different classes of the data, in input space. 
However, HKNN as a kind of K-Nearest Neighbor (KNN) (Instance Based Learner) 
based method, suffers from curse of dimensionality while dealing with small dataset 
contains high amount of features [25]. 

To conquer inefficiencies of the mentioned methods, and also to reduce 
computational complexity of the protein fold classification task, Krishnaraj and 
Reddy employed Boosting approaches as kind of Meta classifiers to tackle the protein 
fold prediction problem [26]. They employed the AdaBoost.M1 [3] and the 
LogitBoost [6] to tackle this task. Boosting approaches and generally bootstrap 
sampling based classifiers avoid false positive error and build robust prediction rules 
by combining weak learners [3]. They reported comparable prediction accuracy in 
dramatically lower time complexity (60.3% compared to 61.1% achieved by Bologna 
and Appel [14]) with other works have been conducted in the literature. Despite all 
the advantages of the boosting algorithms, they suffer from over-fitting problem while 
dealing with noisy and high dimensional datasets [27]. 

Inspired by Krishnaraj and Reddy and in order to exploit the merits of Meta 
classifiers, we employed the Rotation Forest which illustrated better performance for 
different benchmarks compared to the other Meta classifiers ([1], [4], and [28]). As 
like as the Random Forest [7], the Rotation Forest overcome the over-fitting problem 
by providing a proper method to approximate missing data when dealing with noisy 
data or in case which large numbers of data are missing ([1] and [7]).  Results showed 
that the Rotation Forest outperformed previous methods developed in the literature for 
the protein fold prediction problem. 

The rest of this paper is organized as follows: in section (2), we introduced the 
Rotation Forest, how it works and tools which were used in this experiment. In 
section (3), we introduced the dataset and the features that used in this study. Section 
(4), concerned about the results and discussion achieved and finally followed by 
section (5), where the conclusions and future works were explained. 

2   Rotation Forest 

The Rotation Forest is a recently proposed method based on bootstrap sampling and 
Principal Component Analysis (PCA) [29]. It builds a group of independent trained 
decision trees to build an ensemble of classifiers in a parallel manner [1]. Rotation 
Forest is formulated based on the Random Forest idea [7]. The base classifiers 
independently built decision trees, but instead of using decision trees for random set 
of features, each tree in the Rotation Forest is trained on the whole set of dataset in a 
rotated feature space. It splits feature set (total N  features) randomly into K  ( K  is 
the parameter of the algorithm) subsets and then applied principal component analysis 
separately to each subset. Finally, based on all principal components the data is 
transformed linearly into new feature space and make new set of ( NM ≤  in case 
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where some of Eigen Values are zero [1]) linear feature set by combining all K  
transformed feature subsets [4]. 

In Rotation Forest as in the bagging algorithm, bootstrap samples are taken as the 
training set for the individual classifiers [30]. It performs transformation of feature set 
for each of the base classifiers, trains each classifier with a boot strap sample of train 
dataset and transformed feature set, and finally combines all independent base 
classifiers by using majority voting. In the Rotation Forest classifier, diversity within 
the classifier ensemble and individual prediction accuracy of the base learners are 
considered, simultaneously.  In this method, diversity is enhanced through feature 
extraction for each base classifier better than the Random Forest which just uses 
feature selection to encourage diversity within ensemble classifier [7]; and individual 
accuracy is also pursued by maintaining all principal components and also using 
whole dataset to train each base classifier [4].  

One of the useful characteristics of the Rotation Forest is that it can be used with 
almost any base classifier which makes it more flexible than the Random Forest 
which is capable to be used with Decision Trees as base classifier [7]. Therefore, a lot 
of possible improvements and modifications can be considered in the Rotation Forest 
[1]. However, in this paper, decision trees were chosen because of its sensitivity to the 
rotation of the feature axe. 

Data mining toolkit WEKA (Waikato Environment for Knowledge Analysis) 
version 3.6.0 is used for the classification. WEKA is an open source toolkit and it 
consists of a collection of machine learning algorithms for solving data mining 
problems [30]. In this experiment, J48 (WEKA’s own version of C4.5 [31]) decision 
tree algorithm is used as a base classifier. C4.5 is an algorithm used to generate a 
decision tree.  

C4.5 uses the fact that each attribute of the data can be used to make a decision that 
splits the data into smaller subsets. C4.5 examines the normalized information gain 
(difference in entropy) that results from choosing a feature for splitting the data [31].  
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Where TSplitInfox  represents the potential information provided by dividing 

dataset,T , into n  partition corresponding to the outputs of attributes x , and  

)(TGainx  is how much gain would achieve by branching on x . 

3   Dataset and Features 

To compare our results with the previous work have done by the literature, we used 
the dataset introduced by Ding and Dubchak [22]. This dataset contains a train and a 
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test dataset. The training dataset comprises of 313 protein belong to the 27 most 
populated protein folds in Structural Classification of Protein (SCOP) protein 
databank [32], [33]. Each fold contains seven or more proteins. The dataset 
represents all major structural classes (α, β, α/β, and α + β). The original test 
dataset is based on the Protein Data Bank (PDB) protein databank [34]; it is also 
developed by the authors of the SCOP database. This dataset contains 385 
proteins. Over 90% of our data in the test set has less than 20% sequential 
similarity with the proteins in test set. Among these proteins, two proteins 
(2SCMC and 2GPS) in the training dataset and two proteins (2YHX_1 and 
2YHX_2) in the testing dataset excluded due to insufficient sequence information. 
As a result, there are 311 and 383 proteins remain respectively in training and 
testing dataset. 

In this paper, six feature groups were introduced by Dubchak and her co-
workers were used [23]. These feature groups were extracted from the proteins 
amino acid-sequence based on physical, chemical and physiochemical properties 
of amino acids, named: amino acids composition (C), predicted secondary 
structure based on normalized frequency of a-helix residue (S), hydrophobicity 
(H), normalized Van Der Waals volume (V), polarity (P), and polarizability (Z). In 
particular, the first feature represents a vector of the percentage composition of the 
20 amino acids in the sequence. The other feature vectors properties are based on 
three descriptors: composition, percent composition of three constituents (polar, 
neutral and hydrophobic residues); transition, the transition frequencies (polar to 
neutral, neutral to hydrophobic, etc.): and distribution, the distribution pattern of 
constituents (where the first residue of a given constituent is located, and where 
25%, 50%, 75%, and 100% of that constituent are contained). Therefore, there are 
20 features in composition feature vector and 21 features for other feature vectors. 
More detail can be found in the literature ([11], [22], and [35]). The length  
of the amino acid plays an important role in the protein folding task ([14],  
[35], and [36]. Thus, it is included in every combination of feature groups for 
experiments. 

4    Results and Discussion 

The proposed method was evaluated for eleven different combinations of feature 
groups compared to six combinations of the feature groups used by Ding and 
Dubchak [22], and Krishnaraj and Reddy [26]. New combinations of the feature 
groups were applied to find proper combination of features and also investigate the 
effectiveness of each feature group to the achieved prediction accuracy. In addition, 
the length of proteins was also added to the all combinations of the feature groups due 
to its discriminatory information ([11], and [14]). 

To study the sensitivity of the Rotation Forest to the number of base classifiers, the 
employed method with six different numbers of base classifiers in range between 10 
and 200 were used for the applied dataset (10, 20, 50, 100, 150, and 200). As shown 
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in Table.1, the best result was achieved by applying the Rotation Forest with 100 base 
classifiers to the combination of the all feature groups, and the lowest prediction 
accuracy was obtained by using 10 base classifiers. As we can see in Table.1, by 
raising the number of base classifiers from 10 to 100, the prediction accuracy of the 
Rotation Forest also increased significantly, but differences in prediction accuracy 
between 100, 150 and 200 was nontrivial. Therefore, using 100 base classifiers can be 
addressed to the future works as an appropriate number of the base classifiers for the 
applied dataset or more generally for the protein fold prediction task (in similar 
cases). 

According to the results, by using the Rotation Forest with 100 base classifiers, we 
achieved a 62.4% prediction accuracy which is 1.3% higher than the result reported 
by Bologna and Appel [14] and 2.1% higher than Nanni [12] and Krishnaraj and 
Reddy [26] (Table.2). We also achieved a 56.9% prediction accuracy, using the 
Rotation Forest with 50 base classifiers by employing the composition of amino acid 
feature group (20-dimensional feature group) which is slightly better than the result 
achieved by Ding and Dubchak [22] using the AvA SVM and the combination of four 
feature groups (Amino Acids Composition, Predicted Secondary Structure, 
Hydrophobicity, Polarity).   

As shown in Table.1, the Rotation Forest classifier was capable of achieving to the 
high prediction accuracy depends on the using the appropriate number of base 
classifiers. The computational complexity of this method was also crucially depended 
on the number of base classifiers. Therefore, using the Rotation Forest classifier with 
appropriate number of the base classifiers can achieve to the high prediction accuracy 
as well as reducing the computational complexity compared to the SVM or ANN 
based classifiers ([1] and [4]). Despite using PCA algorithms as a feature extraction 
approach, having parallel structure and using simple and fast base learner (C4.5); 
made the Rotation Forest classifier as fast as the other Meta classifiers that were 
based on boosting algorithm (AdaBoos.M1 and LogitBoost). In this paper, the highest 
result achieved by using 100 base classifiers for Rotation Forest in a comparable 
computational complexity to the AdaBoost.M1 using the same number of base 
classifiers ([26]). 

Table 1. Comparison of the results achieved (in percentage) by using the Rotation Forest with 
six different numbers of base classifiers for eleven combinations of the feature groups 

Number of 
Base Classifiers C CS CSV CSZ CSP CSH CSH

V 
CSH

P 
CSH
PV 

CSH
PZ 

CSHP
ZV 

10 50.1 54.3 54.8 55.9 53.5 54.0 53.0 54.8 52.0 54.3 50.1 

20 54.3 57.2 55.1 55.4 56.9 56.9 57.2 55.9 56.9 59.0 58.0 

50 56.9 59.3 60.1 60.1 59.5 60.1 60.6 60.6 60.0 60.6 60.0 

100 56.7 58.0 60.8 60.3 59.3 60.6 58.8 60.8 58.7 61.4 62.4 

150 56.7 60.1 61.1 60.3 62.1 60.6 59.5 61.4 61.4 60.3 59.8 

200 56.7 60.6 59.8 57.4 61.6 60.8 59.8 60.3 60.8 61.1 62.3 
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The other remarkable result achieved by applying the Rotation Forest for the 
combination of three feature groups (Composition of Amino Acid, Predicted 
Secondary Structure and Polarity feature groups in addition to the length feature). 
We achieved 62.1% prediction accuracy, which was 1% higher than the result 
reported by Bologna and Appel [14] for the independent test dataset.  

 
Table 2. Results achieved by using the Rotation Forest (in percentage) compared to the results 
achieved by the related works found in the literature for the protein fold prediction problem 

[22] OvO (SVM) C+S+H 45.2 
[22] Unique OvO (SVM) C+S+H 51.1 
[22] AvA(SVM) C+S+H+P+Z+V 56.4 
[24] MLP-Based HLA C+S 48.6 
[24] RBFN-Based HLA C+S+H+P+Z+V 56.4 
[24] SVM-Based HLA C+S+H+P+Z+V 53.2 
[26] AdaBoost.M1 C+S+H 58.2 

This Paper Rotation Forest (150 Decision Trees) C+S+H 62.1 
[26] LogitBoost C+S+H+P+V 60.3 
[14] DIMLP C+S+H+P+Z+V 61.1 
[10] HKNN C+R+H+P+Z+V 57.4 
[12] RS1_HKNN_K125 C+S+H+P+Z+V 60.0 
[12] RS1_KHNN_K25 C+S+H+P+Z+V 60.3 
[11] BAYESPROT C+S+H+P+Z+V 58.8 
[9] MOFASA C+S+H+P+Z+V 60.0 
[8] ALH C+S+H+P+Z+V 60.8 

[38] RBF Majority voting Fuse C+S+H+P+Z+V 49.7 
[38] RBF Bayesian Fuse C+S+H+P+Z+V 59.0 

This Paper Rotation Forest (100 Decision Trees) C+S+H+P+Z+V 62.4 

 
In a different task, the employed method compared to the other Meta classifiers, 

such as the AdaBoost.M1 that is declared to be the best-of-the-shelf Meta classifier 
[1], [27], the Logitboost that has been successfully applied for different tasks [6], the 
Bagging as one of the most popular Meta classifiers has been applied for different 
machine learning tasks, and the Random Forest, recent modified version of the 
bagging that showed remarkable results compared to the other meta classifiers ([7], 
and [37]). Each Meta classifier was tested with the combination of the all feature 
groups.  

For all of Meta classifiers default parameters applied except for the base classifiers 
and the number of base classifiers. In this paper, the J4.8 and the Decision Stump 
were respectively employed as the base learners for the AdaBoost.M1 and the 
LogitBoost based on the experiment were conducted by Krishnaraj and Ready [26]. 
The J4.8 was also used as the base classifier for the bagging to compare how the 
modifications made in the Rotation Forest would affect its performance compared to 
bagging by using the same base learner. The numbers of base learners for all cases 
were set to 100 as well as the Rotation Forest. 

 



224 A. Dehzangi et al. 

 

Table 3. Results achieved by using the Rotation Forest with 100 base classifiers for each 
individual fold, compared to the AdaBoost.M1, LogitBoost, Bagging and the Random Forest as 
best-of-the-shelf Meta classifiers based on boosting and bagging approaches. For most of the 
fold, the Rotation Forest demonstrated better results compared to the other Meta classifiers 

Inde
x Fold N-test Rotation 

Forest
AdaBoost

.M1
LogitBoo

st Bagging Random
Forest

1 Globin-like 6 83.3% 83.3% 83.3% 83.3% 83.3%
3 Cytochrome c 9 100.0% 77.8% 55.6% 77.8% 88.9%
4 DNA-Binding 3-Helical 20 85.0% 70.0% 55.0% 55.0% 60.0%
7 4-helical up-and-down 

bundle
8 25.0% 75.0% 37.5% 62.5% 25.0%

9 4-helical cytokines 9 100.0% 88.9% 77.8% 88.9% 100.0%
11 Alpha; EF-hand 9 33.3% 22.2% 22.2% 11.1% 33.3%

20 Immunoglobulin-like 44 72.7% 70.5% 77.3% 63.6% 84.1%
23 Cuperdoxins 12 16.7% 41.7% 16.7% 16.7% 25.0%
26 Viral coat and capsid 13 69.2% 76.9% 76.9% 76.9% 76.9%
30 ConA-like 

lectins/glucanases
6 33.3% 33.3% 33.3% 33.3% 33.3%

31 SH3-like barrel 8 75.0% 75.0% 62.5% 75.0% 62.5%
32 OB-fold 19 26.3% 21.1% 36.8% 21.1% 31.6%
33 Trefoil 4 50.0% 75.0% 50.0% 75.0% 50.0%
35 Trypsin-like serine proteases 4 25.0% 25.0% 50.0% 25.0% 25.0%
39 Lipocalins 7 42.9% 28.6% 57.1% 28.6% 57.1%

46 (TIM)-barrel 48 87.5% 81.3% 81.3% 75.0% 91.7%
47 FAD (also NAD) 12 58.3% 58.3% 41.7% 50.0% 58.3%
48 Flavodoxin-like 13 61.5% 46.2% 46.2% 46.2% 46.2%
51 NAD(P)-binding Rossmann 

fold
27 40.7% 33.3% 51.9% 33.3% 25.9%

54 P-loop containing nucleotide 12 58.3% 33.3% 33.3% 41.7% 33.3%
57 Thioredoxin-like 8 62.5% 37.5% 50.0% 50.0% 50.0%
59 Ribonuclease H-like motif 12 66.7% 50.0% 58.3% 66.7% 58.3%
62 Hydrolases 7 71.4% 28.6% 57.1% 57.1% 28.6%
69 Periplasmic binding 4 25.0% 0.0% 25.0% 0.0% 25.0%

72 -grasp 8 37.5% 25.0% 37.5% 25.0% 25.0%
87 Ferredoxin-like 27 29.6% 48.1% 55.6% 37.0% 37.0%
110 small inhibitors 27 100.0% 100.0% 85.2% 100.0% 96.3%

TOTAL 383 62.4% 58.5% 59.0% 55.4% 59.8%
 

The overall results were shown in Table.3. Based on the results (Table.3), the 
Rotation Forest achieved at least, more than 2% higher prediction accuracy compared 
to other Meta classifiers based on boosting and bagging. It also achieved to the 
highest prediction accuracy for 16 folds compared to the other employed classifiers, 
which shows the ability to enhance the prediction accuracy of the Rotation Forest for 
each fold separately (Table.3). It outperformed Random Forest, the other modification 
of the bagging classifier by more than 2% of the prediction accuracy, as well as the 
AdaBoost.M1 classifier by more than 3% of prediction accuracy. Our experimental 
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results showed that the Rotation Forest outperformed the methods which have been 
used for the protein fold prediction task as well as other Meta classifiers based on 
boosting and bagging algorithms (AdaBoost.M1, LogitBoost, Bagging, and Random 
Forest).  

5   Conclusion and Future Works 

In this paper, an empirical study on the performance and advantages of using the 
Rotation Forest to solve the protein fold recognition problem were conducted. We 
also studied the sensitivity of the Rotation Forest to the number of base classifiers by 
using six different numbers of base classifiers in range between 10 and 200. Finally, 
employed method compared to the other Meta classifiers based on boosting and 
bagging approaches which have showed remarkable results on different benchmarks 
([1], [2], [3], [6], and [7]).  

The ensemble classifier built using the Rotation Forest with 100 base classifiers 
achieved better results compared to the previous works found in the literature as well 
as the other best-of-the-shelf Meta classifiers, namely: the AdaBoost.M1, LogitBoost, 
Bagging and the Random Forest. The proposed method achieved a 62.4% prediction 
accuracy which is 1.3% higher than the result achieved by Bologna and Appel [14] 
who used an ensemble of DIMLP, more than 2% better than Nanni [12] who used 
ensemble of HKNN with FCA and Krishnaraj and Reddy [26] who used the 
AdaBoost.M1 and the LogitBoost with the same number of base classifiers.  

High prediction performance as well as low computational complexity and time 
consumption of the Rotation Forest shows the potential of this method for further 
researches. The Rotation Forest is capable to be used by any classifier as a base 
classifier, being used in hierarchical structure or as part of an ensemble of 
heterogeneous classifiers to achieve better results for the protein fold prediction 
problem and other classification tasks. 
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