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Abstract. A primary goal of human genetics is the discovery of genetic
factors that influence individual susceptibility to common human diseases.
This problem is difficult because common diseases are likely the result of
joint failure of two or more interacting components instead of single com-
ponent failures. Efficient algorithms that can detect interacting attributes
are needed. The Relief family of machine learning algorithms, which use
nearest neighbors to weight attributes, are a promising approach. Recently
an improved Relief algorithm called Spatially Uniform ReliefF (SURF)
has been developed that significantly increases the ability of these algo-
rithms to detect interacting attributes. Here we introduce an algorithm
called SURF* which uses distant instances along with the usual nearby
ones to weight attributes. The weighting depends on whether the instances
are are nearby or distant. We show this new algorithm significantly out-
performs both ReliefF and SURF for genetic analysis in the presence of
attribute interactions. We make SURF* freely available in the open source
MDR software package. MDR is a cross-platform Java application which
features a user friendly graphical interface.

1 Introduction

New genotyping technologies are allowing human geneticists to routinely mea-
sure individual genetic variation on a vast “genome-wide” scale [1,2,3]. It is now
feasible to measure more than one million variations from across the human
genome. Here we focus on a particular type of variation, the single nucleotide
polymorphism or SNP. Each SNP is a single point in a DNA sequence that dif-
fers between individuals. A major goal of human genetics is to link these genetic
variations to disease risk [4]. Currently this problem is approached as a set of
independent steps. The first step in the process is to discover SNPs that reliably
predict disease susceptibility across many samples [5], but discovery of these ro-
bust single predictors has proven difficult [6,7,8]. Furthermore even the reliable
and robust disease-associated SNPs that have been discovered often cannot be
combined into effective classifiers of disease risk [9]. These association studies, by
their nature, ignore complex interactions that may lead to disease susceptibility.
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The term for complex gene-gene interactions that influence a trait such as
disease susceptibility is epistasis. It is becoming apparent that studies ignoring
epistasis are also likely to be neglecting informative markers [10,11]. Because of
the complexity present in cellular and biological systems, epistasis is thought to
be fundamental to an individual’s risk for common human diseases [12]. This
knowledge, combined with the inability of single-marker approaches to offer pre-
dictive models of individual disease risk, suggests that researchers should also
carefully examine gene-gene interactions for associations with disease. Unfor-
tunately examining the joint effect of these polymorphisms is difficult because
commonly used methods are combinatorial.

Relief algorithms [13], which use nearest neighbors, have successfully detected
gene-gene interactions in genetic association studies [14]. Here we introduce a
novel Relief algorithm called SURF*. SURF* is better able than other Relief
algorithms to detect SNPs which participate in epistatic interactions that relate
to disease risk. The novel feature of SURF* is that it uses distant individuals,
as well as the usual near ones, to adjust the scores of SNPs. Using these distant
individuals has the effect of increasing sample size considerably.

This paper is organized as follows. Section 1.1 discusses approaches used in
genetic association studies. Section 2 discusses intuitively how Relief algorithms
can, in linear time with respect to the number of SNPs, detect epistatic in-
teractions. Section 2.1 examines how SURF specifically is able to detect these
interactions. This is important because we improve SURF with a novel approach,
SURF*. A theoretical assessment of the improvement provided by SURF* is de-
scribed in Section 3. We evaluate the new SURF* method empirically using a
study design described in Section 4. This framework allows us to directly assess
the success rate of the method. The results of the simulation are discussed in
Section 5 and we discuss their implications in Section 6.

1.1 Related Work

The state of the art in this field still relies on only the analysis of single SNPs
as in a recent large study of 17,000 individuals and seven common diseases from
the Wellcome Trust Case Control Consortium [15]. While some approaches do
consider complexity, these often condition on the effect of single SNPs or re-
quire combinatorial methods to exhaustively examine all potential interactions
[16,17]. In the first case, these have the potential to miss interactions without
main effects. In the second, the time to analyze large datasets becomes pro-
hibitive because this type of analysis requires the consideration of the joint effect
of attributes, here SNPs, a combinatorial challenge which has been previously
described [18,19,20]. When datasets contain many SNPs, such combinatorial
methods are infeasible.

2 Relief Algorithms

Cordell [21] provides a recent and thorough review of current analysis methods,
including Relief algorithms, for these studies as well as the potential benefits and
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drawbacks of each. To this point the use of Relief algorithms in this field has been
relatively limited [14,22,23], probably because previous small scale studies have
not required these types of algorithms, and large scale studies have, thus far,
often ignored epistasis. Given the difficulty of detecting predictive interacting
SNPs, our novel and more effective Relief algorithm could greatly enhance the
state of the field.

Relief algorithms, the first of which was developed by Kira and Rendell [13],
are a natural fit for large scale genetic association studies designed to detect epis-
tasis. They are fast and scale linearly with the number of SNPs and quadratically
with the number of individuals. Furthermore these algorithms are able to de-
tect interacting pairs of attributes that contribute to disease susceptibility. We
have previously discussed how Relief algorithms do this from a mathematical
point of view [24]. In summary, the Relief algorithm returns a weight for each
SNP. Higher scores indicate that a SNP is more likely to be predictive of disease
status. The adjustment of these scores is performed using the genetically most
similar individuals. Here the inter-individual distance is the number of SNPs
with differing genotypes between two individuals. Therefore, nearest individuals
share the greatest number of genotypes. Relief works on the assumption that the
SNPs of nearby individuals with different genotypes are most useful for assessing
the predictiveness of the SNP. The algorithm adjusts the scores of these SNPs–
upward if the two individuals have different disease status, and downward by the
same amount if they have the same status. More precisely, for each individual
Ii, SNP scores are adjusted using its nearest hit (the individual which is closest
to Ii and in the same class as Ii) and its nearest miss, (the individual which
is closest to Ii and in the other class from Ii). ReliefF [25] differs from Relief
largely because it uses multiple neighbors for weighting instead of only the single
nearest neighbor.

Table 1. Penetrance values for an example epistasis model with a heritability of 0.2.

SNP1

AA (0.36) Aa (0.48) aa (0.16)

SNP2

BB (0.36) 0.393 0.764 0.664
Bb (0.48) 0.850 0.398 0.733
bb (0.16) 0.406 0.927 0.147

2.1 Spatially Uniform ReliefF (SURF)

Spatially Uniform ReliefF (SURF), developed by Greene et al. [24], detects at-
tribute interactions in the same manner as Relief and ReliefF. SURF, like Re-
liefF, uses multiple nearest neighbors, but, instead of using a fixed number of
nearest neighbors, SURF uses all neighbors within a specific similarity threshold,
T . Instances may not be uniformly distributed in space and some instances may
have more informative neighbors than other instances. SURF uses all neighbors
more similar than the threshold, T , for weighting, while Relief and ReliefF may
use either more or fewer neighbors. This can cause ReliefF to potentially include
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uninformative neighbors or to neglect informative ones. This swaps the number-
of-neighbors used by Relief for the similarity-threshold used by SURF. For this
we use the mean of the distances between all pairs of individuals, which can be
easily computed from the data [24].

Here we will briefly outline how SURF is capable of detecting interacting pairs
of attributes. This is thoroughly discussed in the appendix to Greene et al. [24]
but here we highlight the parts necessary to understand how SURF* improves
on SURF and adjust the notation to accommodate both the nearest and furthest
individuals. To understand these algorithms, it is first necessary to understand
the problem. We illustrate the situation of interacting pairs of SNPs using the
penetrance table given in Table 1. According to this example, if an individual has
genotype BB, the probability she is sick is .36 · .393+ .48 · .764+ .16 · .664≈ .614.
If she has genotype Bb, this probability is the same, and likewise if she has
genotype bb. Thus just SNP 2’s genotype is not predictive of disease status.
Similarly if SNP 1’s genotype is known, but not SNP 2’s, the probability she is
sick is as before, .36·.764+.48·.398+.16·.927 ≈ .614. Thus the genotypes of SNPs
1 and 2 are together predictive of disease status, but neither is individually. This
is what makes SNPs 1 and 2 an epistatic pair of SNPs. In our study we employ
9000 datasets from 30 of these genetic models. In all models there are pairs of
SNPs which are jointly predictive but no singly informative SNPs. Detecting
these epistatic pairs is much more difficult then detecting SNPs which alone
have an effect.

A basic fact we will use about epistatic pairs is that

|H2Δ| − |M2Δ| =
1
2
(|M1Δ| − |H1Δ|) = |H0Δ| − |M0Δ|. (1)

This is discussed in sections 1 and 2 of the appendix in the paper first describing
SURF [24].

Now let Ii be a random, but fixed, individual and let T be the threshold
distance. Then each miss with distance less than T from Ii is in one of the three
sets M0Δ, M1Δ or M2Δ. For k = 0, 1 and 2, let CMkΔ be the subset of MkΔ

consisting of those individuals with distance < T from Ii. The notation CMkΔ

might be read as “close misses involving k changes of the relevant SNPs”. Using
analogous notation for hits with H in place of M , the contribution of individual
Ii to the (SURF) score of a relevant SNP is

SC
i =

1
2
(|CM1Δ| − |CH1Δ|) + (|CM2Δ| − |CH2Δ|)

=
1
2
(|CM1Δ| − |CH1Δ|) − (|CH2Δ| − |CM2Δ|). (2)

The 1
2 is here since each individual in CM1Δ and CH1Δ changes the score of a

relevant SNP by 1
2 , on the average. The total SURF score of a relevant SNP is

the sum of the SC
i over all individuals.
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It follows from equation (1) that if arbitrary neighbors are used, rather than
nearest ones, the expected score of a relevant SNP would be 0 since

1
2
(|M1Δ| − |H1Δ|) = |H2Δ| − |M2Δ|.

The score SC
i tends to be positive though because close neighbors are more apt

to lie in the sets M1Δ and H1Δ rather than in M2Δ and H2Δ, making

1
2
(|CM1Δ| − |CH1Δ|) > |CH2Δ| − |CM2Δ|.

The reason close neighbors are more apt to lie in the 1Δ-sets than in the 2Δ
ones is that relevant SNPs of individuals in the 1Δ-sets contribute one to the
distance from Ii, while those in the 2Δ-sets contribute two.

3 The Value of Both Nearest and Farthest

It is clear that the assumption made by Relief algorithms such as SURF, that
the SNPs of nearby individuals with different genotypes are useful for assessing
the predictiveness of the SNP, is correct as these algorithms are successful. It
is not clear that distant individuals are not also useful. Our analysis suggests
that using the states of genotypes for these most distant individuals can sub-
stantially improve the success rates of these algorithms. Using this information
effectively increases the sample size available to SURF greatly improving its
ability to detect epistatic SNPs when sample sizes are limited. We call the al-
gorithm SURF* because using distant individuals is the opposite of SURF and
because, in mathematics, ∗ indicates opposite. Strictly speaking, the SURF* that
we discuss includes both SURF and this additional opposite component.

We outline how this approach using both closest and farthest individuals out-
performs the nearest neighbor approaches. The SURF* algorithm we introduce
uses nearby neighbors in the same way the SURF algorithm does. The new part
of the SURF* algorithm using distant individuals identifies those SNPs of distant
individuals in different states and adjusts their scores–downward by one if the
two individuals have different disease status, and upward by the same amount
if they have the same status. (This is the same as with Relief algorithms, but
upward and downward have been interchanged.) Specifically, we define subsets
DMkΔ made up of distant misses of MkΔ consisting of those misses with distance
> T from Ii. Subsets DHkΔ made up of distant hits of HkΔ consist of those hits
with distance > T from Ii Then the contribution of individual Ii to the (distant
individuals) score of a relevant SNP is

SD
i = −1

2
(|DM1Δ| − |DH1Δ|) − (|DM2Δ| − |DH2Δ|)

= −1
2
(|DM1Δ| − |DH1Δ|) + (|DH2Δ| − |DM2Δ|). (3)
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The mean of this is positive for essentially the same reason that the mean of
SC

i is. Namely, individuals in the 2Δ-group tend to be one farther from Ii than
those in the 1Δ-group.

The means of SC
i and SD

i are the same, or nearly so. So the mean of the
overall score ΣiS

C
i + ΣiS

D
i of a relevant SNP is doubled by using distant indi-

viduals along with the usual close ones. We suspect that ΣiS
C
i and ΣiS

D
i are

not independent. If so, with V denoting variance, we have

V (ΣiS
C
i + ΣiS

D
i ) > V (ΣiS

C
i ) + V (ΣiS

D
i ).

Thus using distant individuals does not quite have the effect of doubling the
sample size, but it does substantially increase the success rate. This improvement
in success rate indicates that these methods are more likely to detect interacting
relevant SNPs in these genetic association studies.

4 Experimental Design

Here we evaluate these methods in the context of a simulation study. The goal of
our simulation study is to generate artificial datasets with high concept difficulty
to evaluate these methods in the domain of human genetics. Our dataset charac-
teristics were chosen to closely match common genetic association study designs
from human genetics. We first develop 30 different penetrance functions (i.e.
genetic models) which determine the relationship between genotype and pheno-
type in our simulated data. These functions determine the probability that an
individual has the studied disease given his or her genotype. This probability
depends only on the genotypes of the two interacting SNPs, not on the genotype
of any one SNP. This case where there are no single SNP effects is thought to
be the most difficult. Single SNP effects are easily found with other methods.
The 30 penetrance functions consist of six groups of five with heritabilities of
0.025, 0.05, 0.1, 0.2, 0.3, or 0.4. Each of the six heritabilities is realized by all five
models in one group. These heritabilities range from very small to large genetic
effect sizes and thus test the algorithms across a broad swathe of scenarios.

SNPs are chosen for genotyping such that each SNP has two alleles due to
technological constraints and such that these alleles are both common in the pop-
ulation. Here each model contains SNPs with two alleles which have frequencies
of 0.4 and 0.6. Each of the models is used to generate 100 datasets with sample
sizes of 800, 1600, and 3200. Studies with 800 individuals would be considered
small relative to other genetic association studies while studies with 3200 indi-
viduals would be considered large. Each consists of an equal number of case and
control subjects because genetic association studies are frequently designed to be
balanced. Each pair of relevant SNPs is added to a set of 998 irrelevant SNPs for
a total of 1000 attributes. This is similar to the size seen in association studies
using custom SNP arrays to perform genotyping. A total of 9,000 datasets are
generated and analyzed. This large number of datasets and study design allows
us to rigorously evaluate and compare these methods across situations likely to
be encountered. Due to the difficulty of detecting and characterizing epistasis,
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well studied real datasets of these sizes where epistatic interactions have been
validated are not widely available.

By performing a simulation study it is possible to determine the success rate
of a method. This is possible because the relevant SNPs are known before the
algorithm is applied to the data. The success rate is the percentage of time that
a method scores both relevant SNPs above a given threshold. To estimate it,
we use all 100 datasets for each of the 30 models. Specifically, the percentage of
datasets in which a method ranks the two relevant SNPs above the N th percentile
of all SNPs is the estimate of the method’s success rate. We examine the 95th

percentile because this is likely to be useful in practice and because ReliefF has
been used in the genetic analysis of complex diseases in this fashion [14]. This
represents the situation where the method filters a dataset with 1000 SNPs to 50
SNPs before a combinatorial analysis is performed on this manageable subset.

It is also important to understand whether differences observed between the
estimates of success rates for the various methods are due to chance or are due to
a true performance difference. To determine whether differences between success
rates at these thresholds are likely due to chance, we apply Fisher’s exact test to
assess the significance of these differences. Fisher’s exact test is a significance test
appropriate for categorical count data such as success rate [26]. The resulting p-
value for this test can be interpreted as the likelihood of seeing a difference of the
size observed among success rates when the methods do not differ. We consider
results statistically significant when p ≤ 0.05. Additionally, we graphically show
results for filtering to each percentile from the 99th to the 50th. Highly significant
results indicate that the observed differences are unlikely to be due to chance.

We test each method using parameter settings from Greene et al. [24]. ReliefF
requires that a number of neighbors be specified. In 2003 Robnik-Sikonja and
Kononenko [27] performed a comprehensive analysis and determined that ten
neighbors was an appropriate number for ReliefF, so we use ten neighbors here.
Similarly, SURF requires a distance threshold. Greene et al. [24] suggest that the
mean distance can be used as an acceptable threshold and thus we use the mean
distance in this situation. To facilitate comparison between these methods we
do not use a distance decay, although in future studies altering this parameter
could allow for further improvement in success rate because the distance decay
increases the influence of the most extreme individuals.

5 Empirical Results

The novel method, SURF*, which uses both near and far individuals for weight-
ing, significantly outperforms both the SURF and ReliefF methods that use
only nearby individuals. Figure 1 shows an example plot for a specific sample
size (1600) and heritability (0.2) combination. This figure summarizes the suc-
cess rate estimated from analysis of 500 simulated independent datasets with this
heritability and sample size. The arrows on the right side of the graph indicate
whether the methods varied significantly in their abilities to successfully filter a
dataset to the 95th percentile (i.e. filter a dataset of 1000 SNPs to 50 SNPs with-
out removing either relevant SNP). In this case the differences between all three
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Fig. 1. This figure shows success rate analysis results for an example heritability (0.2)
and sample size (1600). The arrows on the right side of the graph indicate whether
the methods varied significantly in their abilities to successfully filter a dataset to the
95th percentile (shown by the tick mark above the x-axis between the 100th and 90th

percentiles). The caps of the arrows illustrate which two methods are being compared,
and the line connecting these caps indicates the level of significance of the differences
between this pair of methods (no line represents p ≥ 0.05, a dotted line represents
0.01 ≤ p < 0.05, a dashed line represents 0.001 ≤ p < 0.01, and a solid line represents
p < 0.001. In this case the differences between all three methods were highly significant.

methods were highly significant. These results indicate clear differences between
these methods for this heritability and sample size. Furthermore the differences
observed were highly significant (p ≤ 0.001) indicating that differences of this
magnitude are likely to be observed by chance less than one time out of 1000.
While this figure shows clear differences in success rate at this heritability and
sample size, it is most informative to consider an algorithm’s performance a wide
range of potential use cases.

Figure 2 shows results as small multiples of the example shown in Figure 1
across all tested sample sizes and heritabilities. Each plot represents results for
500 datasets with the specified sample size and heritability. None of the methods
perform particularly well at the lowest sample sizes and heritabilities. That is,
when the genetic effect is smallest, a larger study would be needed to discover the
relevant SNPs. This is well known in genetics and, fortunately, studies aiming to
detect smaller effects are designed to contain more individuals. Also as expected,
at the highest sample sizes and heritabilties all of the methods perform well.

The range where results are most similar to what would be seen in practice,
the simulations with 1600 individuals and modest heritabilities, 800 individuals
and high heritabilities, and 3200 individuals with lower heritabilities are also the
areas where SURF* outperforms other methods by the widest margin. In these
bands the differences between SURF* and the other methods are highly statisti-
cally significant. These results indicate that SURF* greatly improves upon cur-
rently used approaches. SURF*’s consistently high performance indicates that
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Fig. 2. This is a summary of success rates as shown in Figure 1 across a wide range of
sample sizes and heritabilities. The x-axis for each plot corresponds to the percentiles
as in Figure 1. The y-axis corresponds to the success rate. Significance is shown with
arrows as described in Figure 1. Across these situations, SURF* outperforms both
existing methods.

it should be used in place of SURF when the goal is to detect SNPs predictive
of disease through epistatic interactions. While here we are most interested in
the ability to filter a dataset of 1000 SNPs to a smaller dataset of 50 SNPs
which can be combinatorially analyzed, it is important to note that across the
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entire range of percentiles examined, SURF* outperforms currently used meth-
ods. This indicates that when used for more or less stringent filtering, SURF* is
still more effective than currently existing methods. Using both the nearest and
farthest individuals greatly and significantly improves SURF’s ability to detect
SNPs which interact to predict disease.

6 Discussion and Conclusions

Epistatic interactions have often been shown to affect complex traits in model
organisms, and thus it would be prudent to consider the potential role of epis-
tasis on the complex traits of common human disease susceptibilities [28,29].
Unfortunately epistasis is not often considered because an exhaustive analysis
is computationally intractable [20]. Machine learning methods such as SURF
offer promise but these approaches must be modified to cope with the small
sample sizes and large number of attributes present in high throughput genetic
datasets. Our theoretical work in Section 3 suggests that SURF*, which uses a
greater number of individuals for attribute weighting than SURF, will be a more
powerful way to approach this problem. We observe this effect in our empirical
results (Section 5). Using the farthest individuals in addition to the nearest ones
greatly increases the success rates of these methods at moderate sample sizes and
heritabilities. Additionally, these improvements may generalize to other Relief
algorithms and could increase their ability to detect interactions.

Here we examine the role of these Relief algorithms in isolation, but it is
important to note that these can be used in conjunction with other informa-
tion sources as well during a genetic analysis [23]. Improved Relief algorithms
should offer an immediate increase in success rate to detect interactions when
they are used in place of current algorithms as information sources for these
methods. SURF* does perform more weighting due to the increased number
of individuals that are used, but with SURF* it is no longer necessary to find
the nearest individuals so the computational costs remain relatively similar. A
method which provides a significant increase in success rate is likely to improve
our understanding of common human diseases.

Future work should focus on effective and efficient methods to assess the sig-
nificance of discovered SNPs. Relief methods return scores which are a measure
of SNP quality but which are not easily converted to statistical significance. Ad-
ditionally, work should be done to develop powerful Relief methods capable of
detecting interactions between discrete and continuous variables and endpoints.
Genetic association studies often include SNPs, which are discrete, in addition
to measures of the environment, which are continuous. Methods capable of de-
tecting gene-gene, gene-environment, and environment-environment interactions
will therefore be useful. Relief methods capable of examining continuous data
exist [30,27], but they should be rigorously evaluated for their ability to detect
interactions between discrete and continuous attributes. The impact of including
farthest individuals on the success of those algorithms should also be examined.
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7 Method Availability

SURF* is freely available in the open source MDR software package from http://
sourceforge.net/projects/mdr/. MDR is a cross-platform Java application
which features a user friendly graphical interface.
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