


Lecture Notes in Computer Science 6023
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Clara Pizzuti Marylyn D. Ritchie
Mario Giacobini (Eds.)

Evolutionary Computation,
Machine Learning and
Data Mining in Bioinformatics

8th European Conference, EvoBIO 2010
Istanbul, Turkey, April 7-9, 2010
Proceedings

13



Volume Editors

Clara Pizzuti
Institute for High-Performance Computing and Networking (ICAR)
Italian National Research Council (CNR)
Via P. Bucci 41C, 87036 Rende (CS), Italy
E-mail: pizzuti@icar.cnr.it

Marylyn D. Ritchie
Vanderbilt University, Center for Human Genetics Research
Department of Molecular Physiology and Biophysics
519 Light Hall, Nashville, TN 37232, USA
E-mail: ritchie@chgr.mc.vanderbilt.edu

Mario Giacobini
University of Torino, Molecular Biotechnology Center
Department of Animal Production Epidemiology and Ecology
Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy
E-mail: mario.giacobini@unito.it

Cover illustration:
"Pelegrina Galathea" by Stayko Chalakov (2009) Aston University, UK

Library of Congress Control Number: 2010922893

CR Subject Classification (1998): J.3, H.2.8, E.1, I.2, F.1, F.2.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-12210-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12210-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

The field of bioinformatics has two main objectives: the creation and mainte-
nance of biological databases, and the discovery of knowledge from life sciences
data in order to unravel the mysteries of biological function, leading to new drugs
and therapies for human disease. Life sciences data come in the form of biological
sequences, structures, pathways, or literature. One major aspect of discovering
biological knowledge is to search, predict, or model specific information in a
given dataset in order to generate new interesting knowledge. Computer science
methods such as evolutionary computation, machine learning, and data mining
all have a great deal to offer the field of bioinformatics. The goal of the 8th Eu-
ropean Conference on Evolutionary Computation, Machine Learning, and Data
Mining in Bioinformatics (EvoBIO 2010) was to bring together experts in these
fields in order to discuss new and novel methods for tackling complex biological
problems.

The 8th EvoBIO conference was held in Istanbul, Turkey during April 7–9,
2010 at the Istanbul Technical University. EvoBIO 2010 was held jointly with the
13th European Conference on Genetic Programming (EuroGP 2010), the 10th
European Conference on Evolutionary Computation in Combinatorial Optimi-
sation (EvoCOP 2010), and the conference on the applications of evolutionary
computation, EvoApplications. Collectively, the conferences are organized under
the name Evo* (www.evostar.org). EvoBIO, held annually as a workshop since
2003, became a conference in 2007 and it is now the premiere European event
for those interested in the interface between evolutionary computation, machine
learning, data mining, bioinformatics, and computational biology. All papers in
this book were presented at EvoBIO 2010 in oral or poster presentations and
responded to a call for papers that included topics of interest such as biomarker
discovery, cell simulation and modeling, ecological modeling, fluxomics, gene net-
works, biotechnology, metabolomics, microarray analysis, phylogenetics, protein
interactions, proteomics, sequence analysis and alignment, and systems biology.
A total of 40 papers were submitted to the conference for peer-review. Of those,
15 (37.5%) were accepted for oral presentation and 6 (15%) were accepted for
poster presentation. This result is in an overall acceptance rate of 21 (52.5%)
papers accepted for publication in the proceedings.

We would first and foremost like to thank all authors who have spent time
and effort to produce interesting contributions to this book. We would like to
acknowledge Mario Giacobini, of the University of Torino, for his thorough work
editing the EvoBIO 2010 volume. We would like to thank the members of the
Program Committee for their expert evaluation of the submitted papers, Jen-
nifer Willies from Edinburgh Napier University, for her unfaltering dedication
to the coordination of the event over the years, Stephen Dignum, University of
Essex, for his excellent work as the Publicity Chair, as well as Cecilia Di Chio,
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University of Strathclyde, who assisted Stephen. We would also like to extend
special thanks to Şima Uyar from Istanbul Technical University for her outstand-
ing work as the local organizer. Moreover, we would like to thank the following
persons and institutes: Computer Engineering Department of Istanbul Technical
University, Turkey for local support, Marc Schoenauer INRIA in France and the
MyReview team for providing the conference review management system and
efficient assistance.

Finally, we want to especially acknowledge the invited speakers who gave two
very interesting and inspirational talks: Luca Cavalli-Sforza, Professor Emeritus
at the Stanford School of Medicine, and Kevin Warwick, Professor at the Uni-
versity of Reading.

Finally, we hope that you will consider contributing to EvoBIO 2011.

April 2010 Clara Pizzuti
Marylyn D. Ritchie
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Variable Genetic Operator Search for the
Molecular Docking Problem

Salma Mesmoudi1, Jorge Tavares2, Laetitia Jourdan3, and El-Ghazali Talbi3

1 Laboratoire d’Informatique de Paris 6
104 avenue du Président Kennedy

75016 Paris, France
2 CISUC, Informatics Engineering Department, University of Coimbra

Polo II - Pinhal de Marrocos
3030-252 Coimbra, Portugal

3 INRIA Lille - Nord Europe Research Centre
40, Avenue Halley Bt.A, Park Plaza

59650 Villeneuve d’Ascq, France
salma.mesmoudi@lip6.fr, jorge.tavares@ieee.org,

{laetitia.jourdan,el-ghazali.talbi}@inria.fr

Abstract. The aim of this work is to present a new hybrid algorithm
for the Molecular Docking problem: Variable Genetic Operator Search
(VGOS). The proposed method combines an Evolutionary Algorithm
with Variable Neighborhood Search. Experimental results show that the
algorithm is able to achieve good results, in terms of energy optimization
and RMSD values for several molecules when compared with previous
approaches. In addition, when hybridized with the L-BFGS local search
method it attains very competitive results.

1 Introduction

The protein-ligand complex is the base of drug design. The in vivo and in vitro
development of a new drug is a long and costly process. Thus, docking algorithms
have been developed to provide an in silico approach to the problem. The aim of
protein-ligand docking research is to predict the conformation of a ligand relative
to a target protein. To correctly predict a good complex, a docking algorithm
must be able to generate several complexes, and recognize which one is the best
among these. Therefore, the molecular docking problem can be considered as
the optimization of structural and energetic criteria described by an objective
function. This function is based on the degrees of flexibility which represent the
position and the conformation of the ligand and the receptor (protein).

In the last few years, several docking approaches have been developped [1,2].
More recently, Evolutionary Algorithms (EA) have become a popular choice
in molecular docking applications since they usually perform better than other
algorithms [3]. The goal of this work is to improve the quality of molecular
docking solutions. To accomplish this objective, we propose the hybridization
of Variable Neighborhood Search (VNS) [4] with an EA. VNS is a relatively

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2010, LNCS 6023, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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recent algorithm which operates by changing the neighborhood of a current
solution to explore other regions of the search space. Variable Genetic Operator
Search (VGOS) operates in the same manner as the standard VNS with a main
difference: instead of using a single solution with works with a population of
solutions and each neighborhood is defined by a pair of genetic operators. Later,
we will also add a local search method to our approach, to better understand
and compare its performance with previous approaches. We apply to and test
with this new algorithm to the molecular docking problem.

The rest of the paper is structured as follows. Section 2 presents the VGOS
algorithm and related issues. In Section 3 we describe the results obtained with
VGOS and the respective analysis. Finally, the main conclusions are discussed
in Section 4.

2 Variable Genetic Operator Search

Evolutionary algorithms for the molecular docking problem can be found in the
literature since 1993 [5]. A review of these efforts can be found in [6,7].

The original idea of the VGOS is to change genetic operators every time the
algorithm starts to converge towards a local minimum. This variation of oper-
ators is inspired by the concept used in Variable Neighborhood Search. VNS
is a stochastic algorithm in which an ordered set of neighborhood structures
Nk(k = 1, . . . , n) are defined [4]. When a local optimum is obtained, in the neig-
borhood Ni(1 ≤ i ≤ n), that is better than the current solution, N1 becomes the
current neighborhood and the local optimum becomes the current solution. Oth-
erwise, if the local optima is worst than the current solution the neighborhood
Ni+1 becomes the current one. These steps are repeated until all neighborhoods
are explored without the improvement of the current solution.

2.1 Neighborhood Structures

The important part of the work is supported by the first neighborhood structure
(N1). Therefore, we must be aware that the neighborhood structures order is im-
portant and, specifically, the first structure has to be chosen carefully. The other
neighborhood structures play the role of checking the first neighborhood struc-
ture to escape from local minimum. The way to construct our neighborhoods is
very important. In our case, we will base our VGOS on a population of solu-
tions instead of a unique solution and every neighborhood is defined by different
crossover and mutation operators. Thus, we make a hybridization between VNS
and an EA. Generally, as we increase the number of visited neighborhoods, the
chance to escape local optima increases. However, to facilitate the order choice
of the neighborhoods, we only use standard genetic operators.

In our work, we adopt an experimental model which uses the main components
from [8,9]. The main reason is that AutoDock (the EA proposed in [9]) serves as
a basis for the large majority of evolutionary-inspired approaches, and thus, the
attained results here can be useful on a larger degree.
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2.2 Encoding and Evaluation

During the docking process the protein remains rigid whilst the ligand is flexible.
An individual represents only the ligand, as the encoding is an indirect repre-
sentation. A genotype of a candidate solution is encoded by a vector of real-
valued numbers which represent the ligand’s translation, orientation and torsion
angles. Cartesian coordinates represent the translation, three variables in the
vector, whereas four variables defining a quaternion represent the orientation. A
quaternion can be considered to be a vector (x, y, z) which specifies an axis of
rotation with an angle θ of rotation for this axis. For each flexible torsion angle
one variable is used. The phenotype of a candidate solution is composed of the
atomic coordinates that represent the three-dimensional structure of the ligand.
The atomic structure is built from the translation and orientation coordinates
in the ligand crystal structure with the application of the torsion angles.

We use the same evaluation function as established in [9]. To identify appro-
priate binding conformations, it uses an aproximate physical model to compute
the energy of a candidate conformation. It uses empirical free energy potentials
composed of four commonly used energy terms. The first three terms are pair-
wise interatomic potentials that account for weak long-range attractive forces
and short-range electrostatic repulsive forces. The overall docking energy of a
given ligand molecule is expressed as the sum of intramolecular interactions be-
tween the complex and the internal energy of the ligand:

Etotal = Evdw + EH−bond + Eelec + Einternal (1)

The first three terms are the intermolecular energies: van der Waals force (Evdw),
hydrogen bonding (EH−bond), and electronic potential (Eelec). The last term is
the internal energy of the ligand. Lower energy means better docking stability.
Thus, the aim of any docking method is to minimize the total energy (Etotal)
value.

2.3 Genetic Operators

In this work, genetic operators are important since they define the neighborhoods
of the algorithm. In[10,11], several types of mutation and crossover operators are
tested when applying them to the molecular docking problem according to their
influence in representation properties, such as locality, heritability and heuristic
bias. We use operators based on evolutionary strategies. They act in the following
way: when undergoing mutation, the new value for a gene x′ is obtained from
the old value x by adding a random real number sampled from a distribution
U(0, 1):

x′ = x + σ × U(0, 1) (2)

The common distribution used for U(0, 1) is the standard Uniform distribution.
However, we also replace this distributionwith the standardGaussiandistribution,
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N(0, 1) and, in the same way as the AutoDock approach, with a Cauchy distribu-
tion. The Cauchy distribution is:

C(x, α, β) =
β

πβ2 + (x − α)2
(3)

where α ≤ 0, β > 0,−∞ < x < +∞ (α and β are parameters that control the
mean and spread of the distribution). The two main mutation operators used
are Gaussian and Cauchy mutation like in previous works (see e.g., [10,12]). The
third operator used is Uniform mutation.

In terms of crossover, we also apply three operators. Several common crossover
operators, such as Whole Arithmetical crossover, Discrete crossover, and Blend-
α crossover are used. For a complete description of their operation, we refer the
reader to the following literature [13,14].

2.4 Algorithm

The order notion is very important in the VGOS algorithm. Because of its im-
portance, the exploration of the first neighborhood was performed by the best
operators, thus the choice of the mutation and crossover is a crucial step [11,10].
We use three kinds of mutation and crossover and each EANk

is based on a
specified pair of operators. Each pair is applied on a neighborhood. Thus, the
EAN1 is based on Discret crossover and Gaussian mutation, the second EAN2 is
constructed from Whole Arithmetic crossover and Cauchy mutation, and finally,
the third pair used in EAN3 is Blend-α crossover and Uniform mutation.

Algorithm 1. Variable Genetic Operator Search

Require: a set of different neighborhood structures Nk for k = 1, . . . , max

1: pop ⇐ initial population of random solutions
2: xbest ⇐ best element(pop)
3: k ⇐ 1
4: repeat
5: pop ⇐ EANk(pop)
6: x′

best ⇐ best element(pop)
7: if f(x′

best) > f(xbest) then
8: k ⇐ 1
9: else

10: k ⇐ k + 1
11: end if
12: until k = max + 1
13: return best element found

As described in algorithm 1, from the current population (pop), we identify the
best individual (xbest) and the current evolutionary algorithm EANk

is applied
to (pop), to obtain a new population. We put in x′best the best element from this
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new population. If and only if a better solution ‘better fitness (f)” has been found
(i.e., f(x′best) > f(xbest)), the search procedure EAN1 is restarted from (pop). If
no better solution is found (i.e., f(x′best) ≤ f(xbest)) the algorithm moves to the
next neighbood (next mutation/crossover) (EANk+1). These operations will be
repeated until all neighborhoods (operators) are visited and no improvement is
found or the maximum number of generations is reached.

3 Experimentation and Analysis

To perform our experimentation we used instances from the AutoDock test suite.
The suite is composed of eight protein-ligand complexes. Each complex contains
a macromolecule (the protein) and a small substrate or inhibitor molecule (the
ligand). The structures of these molecular complexes have been obtained from
the Protein Data Bank (PDB). The essential information about the complexes
in the test suite are included in Table 1.

Table 1. X-ray crystal structures used in the docking experiments

Protein-ligand complex PDB Resolution Torsion Size
Alcohol dehydrogenase 1adb 2.4 14 21
Alpha-Thrombin 1bmm 2.6 12 19
Beta-Trypsin 3ptb 1.7 0 7
Carbonic anydrase 1nnb 2.3 9 16
Trypsin 1tnh 1.80 2 9
IGG1-KAPPA DB3 FAB 2dbl 2.9 6 13
L-Arabinose-binding protein 7abp 1.67 4 11
HIV−1 Protease 1hvr 1.80 10 17

We evaluate a resulting ligand conformation by comparing it with the ex-
perimental structures using the standard Cartesian root-mean-square deviation
(RMSD):

RMSDlig =

√∑n
i=1 dx2

i + dy2
i + dz2

i

n
(4)

where n is the number of atoms in the comparison and dx2
i , dy2

i and dz2
i are the

deviations between the crystallographic structure and the corresponding coordi-
nates from the predicted structure lig on Cartesian coordinate i. RMSD values
below or near 2.0Å can be considered to be a success and the ligand is classified
as being docked. On the other hand, a structure with an RMSD just less than
3.0Å is classified as partially docked. Thus, lower values mean that the observed
and the predicted structures are similar.

For the first experiments, we consider two versions of a standard evolution-
ary algorithm. The only difference between them is the local search method
whereas the first variant does not include any type of local search, mimicking
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the algorithm presented in [15]. The second evolutionary algorithm includes the
Solis-Wets algorithm as local search, thus being equivalent to the algorithm
contained in the AutoDock package [16]. As for the rest of the evolutionary al-
gorithm components, the basic algorithm for our experiments follows what was
described in the previous sections in terms of representation, fitness function
and genetic operators. The representation and evaluation is the one used by
AutoDock. The genetic operators used are the Whole Arithmetic crossover and
the Gaussian-based mutation operator. Moreover, the evolutionary algorithm
is a standard generational algorithm with stochastic tournament selection and
weak elitism. Our proposed VGOS algorithm will be tested against these two
variants. To elaborate the different neighborhoods, we use three mutation and
crossover operators as explained in the previous section.

3.1 Settings

The parameter values were set heuristically, even though we did some additional
tests and verified that, within a moderate range, there was no significant differ-
ence in the outcomes. In any case, we did not perform a comprehensive study
on the influence of different parameter settings and it is possible that a careful
fine-tuning of some values could bring slight improvements to the achieved re-
sults. For all experiments, the settings of the tested algorithms are the following:
Population size: 150, Selection rate: 0.8; Crossover rate: 0.9; Mutation rate: 0.5;
Tournament selection rate: 0.95; Tournament replacement rate: 0.9; Number of
local search steps: 1000; Maximum number of fitness evalutions: 10 000 000. We
should note that, although the maximum number of fitness evaluations is high,
in the case that no improvement is found after 10 000 fitness evaluations, the
algorithm stops. A local search step counts as a single fitness evaluation. For all
experiments the number of runs is equal to 30.

3.2 Experiments

Table 2 shows us the comparison between VGOS and the standard evolution-
ary approaches, without local search and with the Solis-Wets method. For all
molecules the table contains columns with the best energy (Best), the average
(Avg) and standard deviation (Std) for the 30 runs. Bold values in the Best
and Avg columns indicate the best value for that instance. The most important
observation is that VGOS attains the best results for every single instance, in
terms of average and for seven instances for the best energy value found. The
exception was the complex 1nnb where the best energy was attained by the EA
with the Solis-Wets method. These results are encouraging since it shows that
VGOS is competitive against the EA that models the evolutionary algorithm
used in the AutoDock package. The efficiency of VGOS can also be considered
superior to the other approaches. For the instances 1adb and 1bmm, the larger
ones, VGOS is the only approach to be able to consistently find good solutions
since the average is negative in value, i.e., all the solutions found are closer to
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Table 2. Summary of optimization results for VGOS according to energy evaluation

Complex EA + No LS EA + Solis-Wets VGOS
Label Size Best Avg Std Best Avg Std Best Avg Std
1adb 21 -6.59 335.34 953.64 -3.85 192.36 559.51 -17.33 -15.76 1.32
1bmm 19 -3.94 5.00 11.68 -4.66 5.04 18.84 -10.32 -4.98 3.97
1hvr 17 -15.79 -8.67 9.39 -13.81 -10.13 4.07 -16.32 -15.86 0.27
1nnb 16 -4.53 -2.48 1.69 -5.18 -2.16 1.57 -5.17 -3.74 1.22
1tnh 9 -5.39 -2.73 1.36 -5.37 -2.49 1.14 -5.84 -4.41 1.38
2dbl 13 -10.03 -4.66 3.47 -11.43 -4.26 3.06 -11.74 -9.67 2.84
3ptb 7 -5.49 -3.66 1.02 -5.99 -4.16 1.18 -6.23 -6.05 0.23
7abp 11 -7.97 -6.78 0.90 -7.90 -6.84 1.14 -8.87 -7.42 2.64

Table 3. Summary of optimization results for VGOS according to RMSD values

Complex EA + No LS EA + Solis-Wets VGOS
Label Size Best Best-En Avg Best Best-En Avg Best Best-En Avg
1adb 21 1.47 1.53 2.78 1.34 1.50 2.79 0.06 0.33 0.41
1bmm 19 2.06 2.06 4.18 1.29 1.29 3.89 0.09 0.25 3.74
1hvr 17 0.29 0.29 0.96 0.53 0.65 0.90 0.24 0.54 0.42
1nnb 16 0.44 0.76 1.84 0.62 0.64 2.76 0.29 0.65 1.74
1tnh 9 0.70 0.73 2.94 0.34 0.34 3.38 0.07 0.16 1.32
2dbl 13 0.57 0.78 2.42 0.53 0.53 2.64 0.09 0.18 0.93
3ptb 7 0.42 0.54 2.07 0.31 0.31 1.45 0.04 0.14 0.23
7abp 11 0.22 0.61 0.65 0.26 0.45 0.86 0.21 0.79 0.56

the best energy value. This is confirmed by the low value of the standard devia-
tion. For the remaining instances, where all the approaches are able to find good
solutions, VGOS has an average efficiency of 20% while the EA+Solis-Wets is
around 41% and the simple EA is 67%. These values are obtained by calculating
the distance of the runs average to the best solution found by the approach.

The same trend is also found when we consider RMSD values. Looking at
table 3 we confirm the good performance of VGOS. The table contains for
the three approaches and the eight problem instances: the best RMSD value
found (Best), the RMSD value associated to the best energy value found con-
tained in the previous table (Best-En) and the average of the RMSD values.
The VGOS approach has the best values for the Best and Avg columns for ev-
ery instance. Only in three occasions VGOS did not attain the best results for
Best-En. The exceptions were 1hvr, 1nnb and 7abp. However, the important
aspect to consider in this table is, overall, the RMSD values presented are very
close zero. This indicates that solutions with a good structure are found. As
expected, the instances where this is not verified are the ones where VGOS did
not attain the best relationship between energy and RMSD (1hvr, 1nnb and
7abp).
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3.3 Experiments with Local Search

The Solis-Wets algorithm, used in Autodock [16], is a direct search method with
an adaptive step size, which performs a randomized local minimization of a
given candidate solution. In [12], it is shown that this method is inefficient
for the Molecular Docking problem in the context of evolutionary search. The
recommended Local Search algorithm is the Broyden-Fletcher-Goldfarb-Shanno
method (L-BFGS) [17].

L-BFGS is a powerful quasi-Newton conjugate gradient method, where both
the function to minimize and its gradient must be supplied, but no a priori
knowledge about the corresponding Hessian matrix is required. During local
search, the maximum number of iterations that can be performed is specified by
a parameter of the algorithm. However, the method stops as soon as it finds a
local optimum, so the real number of iterations may be smaller than the specified
value.

We will now hybridized VGOS with Solis-Wets and L-BFGS to see how the
algorithm performs with an additional component. Furthermore, we will compare
with the very efficient EA algorithm described in [12].

Table 4. Summary of optimization results for VGOS with LS according to energy
evaluation

Complex EA + L-BFGS VGOS + L-BFGS VGOS + Solis-Wets
Label Size Best Avg Std Best Avg Std Best Avg Std
1adb 21 -18.30 -14.00 4.80 -22.80 -21.35 1.50 -17.87 -16.28 3.43
1bmm 19 -11.99 -5.52 2.73 -11.91 -5.64 4.07 -10.39 -3.95 3.79
1hvr 17 -32.43 -32.13 0.28 -29.30 -28.80 0.35 -16.37 -16.01 0.52
1nnb 16 -6.25 -4.63 1.50 -6.09 -5.01 0.90 -5.23 -4.05 -10.39
1tnh 9 -6.06 -5.54 1.09 -5.83 -4.84 1.35 -5.84 -4.25 1.78
2dbl 13 -12.14 -10.04 2.99 -12.19 -9.71 3.70 -11.82 -10.23 2.74
3ptb 7 -6.33 -6.22 0.25 -6.22 -6.09 0.14 -6.23 -5.99 0.48
7abp 11 -9.12 -8.67 0.37 -8.69 -7.81 0.41 -8.81 -7.84 0.31

Table 4 compares the two variants of VGOS, with Solis-Wets and L-BFGS
methods, against the EA with L-BFGS. The columns follow the same structure
as table 2. Some important information can be drawn from the presented data.
Regarding the best energy values the VGOS approaches are not competitive
with the EA. With the exception of the problem instance 1adb, the EA attains
all the best results. Although for most of the instances, the VGOS+L-BFGS
approach stands close, it is unable to attain a better performance. VGOS with
the Solis-Wets performs worse.

However, if we compare the results between VGOS and VGOS hybridized with
the L-BFGS method, it is clear that the later performs better. This effect is not
observable with the other VGOS hybrid. When looking at the Avg we find a more
balanced situation. The EA attains four of the best averages, VGOS+L-BFGS
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Table 5. Summary of optimization results for VGOS with LS according to RMSD
values

Complex EA + L-BFGS VGOS + L-BFGS VGOS + Solis-Wets
Label Size Best Best-En Avg Best Best-En Avg Best Best-En Avg
1adb 21 0.30 0.51 1.64 0.05 0.29 0.42 0.07 0.35 0.46
1bmm 19 0.67 1.10 3.63 0.06 0.69 3.98 0.08 0.25 4.30
1hvr 17 0.50 0.71 0.61 0.25 0.49 0.46 0.21 0.64 0.44
1nnb 16 0.39 0.74 1.84 0.20 0.10 1.04 0.29 0.81 1.74
1tnh 9 0.20 0.94 1.16 0.10 0.67 1.12 0.03 0.17 2.21
2dbl 13 0.35 0.35 1.40 0.06 0.22 1.06 0.15 0.22 0.75
3ptb 7 0.24 0.51 0.93 0.02 0.24 0.23 0.01 0.14 0.36
7abp 11 0.35 0.82 0.76 0.18 0.90 0.51 0.25 0.90 0.51

attains three and VGOS+Solis-Wets one. This primarily reflects the effect of the
local search method used. The approaches using L-BFGS show a better perfor-
mance than the one with the Solis-Wets method. This extendes and supports
the findings of [12].

In the same way as before, table 5 displays the overview of the RMSD val-
ues, where each line displays the results for a complex. The differences between
the three approaches are now between the EA and the VGOS hybrids. Both
VGOS approaches attain among themselves the best results., in terms of Best,
Best-En and Avg. The EA with the L-BFGS method was unable to obtain
a single best result. The only exception was the average for the 1bmm com-
plex. This indicates how well the VGOS algorithm is able to perfom in terms of
RMSD, confirming the previous results (see table 3). However, there are no ma-
jor differences between the two VGOS variants. The influence of a local search
method is less visible. It was already shown that the L-BFGS method was more
efficient with regards to energy optimization [12]. Thus, it was expected that
VGOS with L-BFGS would not attain a significant difference from the other
variant.

This table reinforces the importance of the relation between the RMSD value
attained with the best energy. The lowest energy found is only good if it corre-
sponds to a low RMSD value. From the Best-En column it is possible to conclude
that the distribution of the best values is focused between the two approaches
with VGOS. The conclusion we can draw from this is that, although the EA+L-
BFGS is more capable to optimize in terms of energy minimization, the other
methods (although with higher energies) can reach solutions with a more similar
structure to the optimal case.

This is shown by the scatter plots in figures 1 and 2. The plots display for the
1adb and 1bmm complexes the position of the discovered solutions, the relation
between energy and RMSD for an optimization run. The closer to the origin
of the axis the better. Common patterns can be detected on both plots: there
is a clear approximation flow to the origin, whereas the VGOS approaches clearly
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Fig. 1. Scatter plot of an optimization run for the 1adb complex

Fig. 2. Scatter plot of an optimization run for the 1bmm complex

approximate more, with a higher concentration. The main differences between
the approaches are: 1) VGOS+L-BFGS is the only one that approximates the
origin in terms of energy and RMSD (especially for 1adb complex); 2) the ma-
jority of the initial solutions for the EA are more distant. The main information
from the these plots is that VGOS+L-BFGS drives more solutions with lower
energy and RMSD values closer to the desired point.
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4 Conclusions and Future Work

We proposed and investigated a new optimization method for the Molecular
Docking problem which hybridizes Variable Neighborhood Search with an Evo-
lutionary Algorithm. Variable Genetic Operator Search operates in the same
manner as standard VNS , i.e., by changing the neighborhood of a current so-
lution to explore other regions of the search space. The main difference is that
instead of working with a single solution, it operates with a population of solu-
tions. Later, we also add local search methods to our approach.

Results show that VGOS is able to attain consistently good results in terms of
energy and RMSD values. The method is superior to previous approaches when
considering the dual relationship between energy and structural optimization.
Moreover, this is achieved by adding the L-BFGS method as local search. In
spite of an EA with this local search method provides better results in terms
of energy optimization, the VGOS approach is able to discover solutions with
better RMSD values. For future work, we intend to study and understand the
relation between the molecules topology and operators. With this knowledge, it
is our aim to design more suitable operators adapted to each complex.
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Abstract. High-throughput molecular interaction data have been used effectively
to prioritize candidate genes that are linked to a disease, based on the notion that
the products of genes associated with similar diseases are likely to interact with
each other heavily in a network of protein-protein interactions (PPIs). An impor-
tant challenge for these applications, however, is the incomplete and noisy nature
of PPI data. Random walk and network propagation based methods alleviate these
problems to a certain extent, by considering indirect interactions and multiplic-
ity of paths. However, as we demonstrate in this paper, such methods are likely
to favor highly connected genes, making prioritization sensitive to the skewed
degree distribution of PPI networks, as well as ascertainment bias in available
interaction and disease association data. Here, we propose several statistical cor-
rection schemes that aim to account for the degree distribution of known disease
and candidate genes. We show that, while the proposed schemes are very effec-
tive in detecting loosely connected disease genes that are missed by existing ap-
proaches, this improvement might come at the price of more false negatives for
highly connected genes. Motivated by these results, we develop uniform prior-
itization methods that effectively integrate existing methods with the proposed
statistical correction schemes. Comprehensive experimental results on the Online
Mendelian Inheritance in Man (OMIM) database show that the resulting hybrid
schemes outperform existing methods in prioritizing candidate disease genes.

1 Introduction

Identification of disease-associated genes is an important step toward enhancing our
understanding of the cellular mechanisms that drive human diseases, with profound
applications in modeling, diagnosis, prognosis, and therapeutic intervention [1].
Genome-wide linkage and association studies in healthy and affected populations pro-
vide chromosomal regions containing up to 300 candidate genes possibly associated
with genetic diseases [2]. Investigation of these candidates based on sequencing is an
expensive task, thus not always a feasible option. Consequently, computational meth-
ods are primarily used to prioritize and identify the most likely disease-associated genes
by utilizing a variety of data sources such as gene expression [3], functional annota-
tions [4, 5], and protein-protein interactions (PPIs) [6, 7, 8, 9, 10, 3, 11]. However, the
scope of methods that rely on functional annotations is limited because only a small
fraction of genes in the genome are currently annotated.
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In recent years, several algorithms are proposed to incorporate topological properties
of PPI networks in understanding genetic diseases [3, 10, 6]. These algorithms mostly
focus on prioritization of candidate genes and mainly exploit the notion that the prod-
ucts of genes associated with similar diseases are likely to be close to each other and
interact heavily in a network of PPIs. However, an important challenge for these ap-
plications is the incomplete and noisy nature of the PPI data [12]. Vast amounts of
missing interactions and false positives effect the accuracy of methods based on lo-
cal network information such as direct interactions and shortest distances. Few global
methods based on simulation of random walks [10, 6] and network propagation [11]
get around this problem to a certain extent by considering multiple alternate paths and
whole topology of PPI networks. Nevertheless, as we demonstrate in this paper, these
methods favor genes whose products are highly connected in the network and perform
poorly in identifying loosely connected disease genes.

Motivated by this observation, we here propose novel statistical correction methods
for network-based disease gene prioritization. These methods aim to assess the signif-
icance of the connectivity of a candidate gene to known disease genes with respect to
a reference model that takes into account the degree distribution of the PPI network.
We show that the proposed correction schemes are very effective in detecting loosely
connected disease genes which are generally less studied, thus potentially more interest-
ing for many applications in terms of generating novel biological knowledge. However,
we observe that these schemes might perform less favorably in identifying highly con-
nected disease genes. Consequently, we develop several uniform prioritization methods
that effectively integrate existing algorithms with the proposed statistical adjustment
schemes, with a view to delivering high accuracy irrespective of the network central-
ity of target disease genes. Comprehensive experimental results show that the resulting
hybrid prioritization schemes outperform existing approaches in identifying disease-
associated genes.

2 Background and Motivation

There exists a wide range of methods based on the analysis of the topological properties
of PPI networks. These methods commonly rely on the expectation that the products of
genes that are associated with similar diseases interact heavily with each other. It is
important to note that the purpose here is to infer functional associations between genes
from functional and physical interactions between their products. For this reason, any
reference to interactions between genes in this paper refers to the interactions between
their products. Existing methods can be classified into two main categories; (i) localized
methods, i.e., methods based on direct interactions and shortest paths between known
disease genes and candidate genes [3,7,13], (ii) global methods, i.e., methods that model
the information flow in the cell to assess the proximity and connectivity between known
disease genes and candidate genes. Several studies show that global approaches, such
as random walk and network propagation, clearly outperform local approaches [11,10].
For this reason, we focus on global methods in this paper.

Network-based candidate disease gene prioritization. For a given disease of interest
D, the input to the candidate disease gene prioritization problem consists of two sets of
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genes, seed set S and candidate set C. The seed set S specifies prior knowledge on the
disease, i.e., it is the set of genes known to be associated with D and diseases similar
to D. Each gene v ∈ S is also associated with a similarity score σ(v, D), indicating
the known degree of association between v and D. The similarity score for gene v is
computed as the maximum similarity between D and any other disease associated with
v (a detailed discussion on computation of similarity scores can be found in [14]). The
candidate set C specifies the genes, one or more of which are potentially associated
with disease D (e.g., these genes might lie within a linkage interval that is identified by
association studies). The overall objective of network based disease prioritization is to
use a human PPI network G = (V , E), to compute a score α(v, D) for each gene v ∈ C
that represents the likelihood of v to be associated with D.

The PPI network G = (V , E) consists of a set of gene products V and a set of
undirected interactions E between these gene products where uv ∈ E represents an
interaction between u ∈ V and v ∈ V . In this network, the set of interacting partners of
a gene product v ∈ V is defined as N(v) = {u ∈ V : uv ∈ E}. Global prioritization
schemes use this network information to compute α by propagating σ overG. Candidate
proteins are then ranked according to α and novel genes that are potentially associated
with the disease of interest are identified based on this ranking.

Random walk with restarts. This method simulates a random walk on the network
to compute the proximity between two nodes by exploiting the global structure of the
network [15, 16]. It is used in a wide range of applications, including identification of
functional modules [17] and modeling the evolution of social networks [18]. Recently,
random walk with restarts has also been applied to candidate disease gene prioritiza-
tion [6, 10].

In the context of disease gene prioritization, random walk with restarts is applied as
follows. A random walk starts at one of the nodes in S. At each step, the random walk
either moves to a randomly chosen neighbor u ∈ N of the current gene v or it restarts at
one of the genes in the seed set S. The probability of restarting at a given time step is a
fixed parameter denoted by r. For each restart, the probability of restarting at v ∈ S is a
function of σ(v, D), i.e., the degree of association between v and the disease of interest.
After a sufficiently long time, the probability of being at node v at a random time step
provides a measure of the functional association between v and the genes known to be
associated with D [10, 6]. Algorithmically, random-walk based association scores can
be computed iteratively as follows:

xt+1 = (1 − r)PRWxt + rρ. (1)

Here, ρ denotes the restart vector with ρ(u) = σ(u, D)/
∑

v∈S σ(v, D) for u ∈ S
and 0 otherwise. PRW denotes the stochastic matrix derived from G, i.e., PRW(u, v) =
1/|N(v)| for vu ∈ E and 0 otherwise. For each v ∈ V , xt(v) denotes the probability
that the random walk will be at v at time t, where x0 = ρ. For each gene v, the resulting
random-walk based association score is defined as αRW(v, D) = limt→∞ xt(v).

Network propagation. Propagation based models have been previously shown to be ef-
fective in network based functional annotation of proteins [19]. In recent work, Vanunu
and Sharan [11] propose a network propagation algorithm to compute the association
between candidate proteins and known disease genes. They define a prioritization func-
tion which models simulation of an information pump that originates at the seed sets.
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This idea is very similar to that of random walk with restarts, with one key difference.
Namely, in network propagation, the flow of information is normalized by not only the
total outgoing flow from each node, but also the total incoming flow into each node. In
other words, the matrix PRW is replaced my a matrix PNP, in which each entry is nor-
malized with respect to row and column sums. The resulting propagation based model
can also be simulated iteratively as follows:

yt+1 = (1 − r)PNPyt + rρ. (2)
Here, the propagation matrix PNP is computed as PNP(u, v) = 1/

√
|N(u)||N(v)| for

uv ∈ E , 0 otherwise. For each v ∈ V , yt(v) denotes the amount of disease association
information at node v at step t, where y0 = ρ. For each gene v, the resulting network
propagation based association score is defined as αNP(v, D) = limt→∞ yt(v). In this
model, 0 ≤ r ≤ 1 is also a user-defined parameter that is used to adjust the relative
importance of prior knowledge and network topology.

Role of network centrality. In order to motivate our approach, we evaluate here the
performance of random walk with restarts and network propagation with respect to the
network degree (number of known interactions) of candidate genes. As shown in Fig-
ure 1(a), these methods are clearly biased toward scoring highly connected proteins
higher. In this figure, the performance measure is the average rank of the true candi-
date protein among other 99 proteins in the same linkage interval. As evident in the
figure, existing global methods work very well in predicting highly connected proteins,
whereas they perform quite poorly for loosely connected proteins, especially for those
with degree less than 6. Furthermore, as seen in Figure 1(b), the degree distribution of
known disease genes is slightly biased toward highly connected genes, however there
exist many disease genes that are loosely connected as well. For this reason, it is at least
as important to correctly identify loosely connected disease genes as to identify those
that are highly connected, in order to remove the effect of ascertainment bias in PPI
data and known disease associations.

The dependency of performance on network degree can be understood by carefully
inspecting the formulation of random walk and network propagation models. Random
walk with restarts is actually a generalization of Google’s well-known page-rank algo-
rithm [20], such that for r = 0, α is solely a measure of network centrality. Therefore,
for any r > 0 (in our experiments, we observe that r = 0.3 is optimal for the per-
formance of both algorithms after running the algorithms with small increments of r
values; this is also the setting used in Figure 1), α(v, D) contains a component that rep-
resents the network centrality of v, in addition to its association with D. Network prop-
agation alleviates this problem by normalizing the incoming flow into a gene, therefore
provides a slightly more balanced performance compared to random walk with restarts.
However, as evident in the figure, its performance is still influenced heavily by node
degrees. Motivated by these insights, we argue that the association scores computed by
these algorithms have to be statistically adjusted with respect to reference models that
take into account the degree distribution of the network.

3 Methods

In this section, we propose several reference models for assessing the significance of
network-based disease association scores. Subsequently, we discuss how these mod-
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Fig. 1. (a) The effect of degree to the performance of existing global approaches. x-axis is the
degree range while y-axis represents the average rank for the true disease genes. (b) Histogram
of the degrees of disease genes and all genes in the network.

els can be used in conjunction with existing methods to obtain uniform prioritization
schemes that can deliver high accuracy regardless of centrality of candidate genes.

3.1 Reference Models for Statistical Adjustment

Here, we consider three alternate reference models for assessing the significance of dis-
ease association scores obtained by random walk with restarts or network propagation:
(i) a model that generates a separate background population for each candidate gene
based on the degree distribution of the seed set, (ii) a model that generates a back-
ground population for each group of candidates with similar degree for a fixed seed set,
(iii) a model that assesses the log-likelihood of the association of a gene with the seed
set with respect to its network centrality. Here, for the sake of clarity, we describe each
model assuming that random walk based restarts is used to compute raw association
scores (we also drop the subscript RW from our notation for simplicity).

Reference model based on seed degrees. The objective here is to generate a reference
model that captures the degree distribution of seed proteins accurately. To this end, we
compare the association score α(v, D) for each protein with scores computed using
random seed sets (by preserving the degree distribution of the seed genes). The expec-
tation here is that false positives that correspond to centralized and highly connected
proteins will have high association scores even with respect to these randomly gener-
ated seed sets. Furthermore, this model aims to balance the effect of highly connected
known disease genes with that of loosely connected ones.

Given a disease D, seed set S, and candidate set C, this reference model is imple-
mented as follows:

– We first compute network-based association scores α(v, D) for the original seed
set S, using the procedure described in Equation 1.

– Then, based on the original seed set S, we generate a random instance S(i) that
represents S in terms of degree distribution. S(i) is generated as follows:
• First, a bucket B(u) is created for each protein u ∈ S.
• Then, each protein v ∈ V is assigned to bucket B(u) if |N(v) − N(u)| <
|N(v) − N(u′)| for all u′ ∈ S, where ties are broken randomly.
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• Subsequently, S(i) is generated by choosing a protein from each bucket uni-
formly at random. It can be observed that each protein in S is represented by
exactly one protein in S(i), thus the total degree of proteins in S(i) is expected
to be very close to that of S.

– For 1 ≤ i ≤ n, the association scores α(i) for seed set S(i) are computed using
Equation 1. Here, n is a sufficiently large number that is used to obtain a represen-
tative sampling {α(1), α(2), α(3), ..., α(n)} of the population of association scores
for seed sets that match the size and degree distribution of S (we use n = 1000 in
our experiments).

– We then estimate the mean of this distribution as μS =
∑

1≤i≤n α(i)/n and the

standard deviation as σ2
S =

∑
1≤i≤n((α(i) − μS)(α(i) − μS)T )/(n − 1).

– Finally, we compute the seed degree adjusted association score for each gene v as
αSD(v, D) = (α(v, D) − μS)/σS .

Note that, since the multiple hypotheses being tested here are compared and ranked
against each other (as opposed to accepting/rejecting individual hypotheses), it is not
necessary to perform correction for multiple hypothesis testing.

Reference model based on candidate degree. This reference model aims to assess the
statistical significance of the association score α(v, D) of a gene v ∈ V with respect to
seed set S based on a population of association scores that belong to genes with degree
similar to that of v. This reference model is generated as follows:

– First, we compute the network-based association vector α with respect to the given
seed set S, again using Equation 1.

– Then, for each candidate gene v ∈ C, we select the n genes in the network with
smallest |N(v) − N(u)| to create a representative set M(v) that contains the n
genes most similar to v in terms of their degree (n = 1000 in our experiments).

– Subsequently, for each gene v ∈ C, we estimate the mean association score of its
representative population as μ(v) =

∑
u∈M(v) α(u)/|M(v)| and the standard de-

viation of association scores as σ2(v)=
∑

u∈M(v) (αS(u) − μ(v))/(|M(v)| − 1).
– Finally, we compute the candidate degree adjusted association score of each candi-

date gene v as αCD(v, D) = (αS(v, D) − μ(v))/σ(v).

Likelihood-ratio test using eigenvector centrality. Here, we assess the association
of a gene with the seed set using a likelihood-ratio test. More precisely, considering
αRW(v, D) as the likelihood of v being associated with the seed set S for disease D, we
compare this likelihood with the likelihood of v being associated with any other gene
product in the network. To compute the likelihood of v’s association with any other
gene in the network, we use eigenvector centrality [20], which is precisely equal to the
random walk based association score of v for zero restart probability (r = 0). Indeed,
setting r = 0 corresponds to the case where the seed set is empty, thereby making the
resulting association score a function of the gene’s network centrality. For each v ∈ C,
the eigenvector centrality based log-likelihood score is computed as:

αEC(v, D) = log
α(r>0)(v, D)
α(r=0)(v, D)

. (3)
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3.2 Uniform Prioritization

As we demonstrate in the next section, the adjustment strategies presented improve
the performance of global prioritization algorithms in identifying loosely connected
disease genes. However, this comes at the price of increased number of false negatives
for highly connected disease genes. Motivated by this observation, we propose several
hybrid scoring schemes that aim to take advantage of both raw and statistically adjusted
association scores. The idea here is to derive a uniform prioritization method that uses
the adjusted scores for loosely connected candidate genes, while using the raw scores
for highly connected candidate genes.

For this purpose, we first sort the raw crosstalk scores (αRW or αNP ) of candidate
genes in descending order. Let RRAW(v) denote the rank of gene v ∈ C in this ordering.
Clearly, for u, v ∈ C, RRAW(v) < RRAW(u) indicates v is more likely to be associated
with the disease than u is. Similarly, we sort the statistically adjusted association scores
(αSD, αCD, or αEC) in descending order, to obtain a rank RADJ(v) for each gene v ∈
C. We propose three alternate strategies for merging these two rankings to obtain a
uniform ranking RUNI, where the objective is to have RUNI(v) < RUNI(u) if gene v is
associated with the disease, while gene u is not. Once RUNI(v) is obtained using one of
the following methods, we map it into the interval [1, |C|] in the obvious way.

Uniform prioritization based on the degree of candidate gene. This uniform prior-
itization scheme chooses the ranking of each candidate gene based on its own degree.
Namely, for a given user-defined threshold λ, we define R

(C)
UNI as:

R
(C)
UNI(v) =

{
RRAW(v) if |N(v)| > λ
RADJ(v) otherwise

(4)

for each v ∈ C. Thus the ranking of a highly-connected gene is based on its raw associa-
tion score, while that of a loosely-connected gene is based on the statistical significance
of its association score. Note that, with respect to this definition, the ranking of two
genes can be identical (but there cannot be more than two genes with identical rank-
ing). In this case, the tie is broken based on the unused ranking of each gene.

Optimistic uniform prioritization. This approach uses the best available ranking for
each candidate gene, based on the expectation that a true disease gene is more likely to
show itself in at least one of the rankings as compared to a candidate gene that is not
associated with the disease. Namely, we define R

(O)
UNI as:

R
(O)
UNI(v) =

{
RRAW(v) if RRAW(v) < RADJ(v)
RADJ(v) otherwise

(5)

for each v ∈ C. Again, ties are broken based on the unused rankings.

Uniform prioritization based on degree of known disease genes. Based on the notion
that some diseases are studied more in detail compared to other diseases, we expect
the degrees of genes associated with similar diseases to be somewhat close to each
other. Statistical tests on disease associations currently available in the OMIM (Online
Mendelian Inheritance in Man) database confirms this expectation (data not shown). We
take advantage of this observation to approximate the network degree of the unknown
disease gene in terms of the degrees of the known disease genes. This enables having a
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global criterion for choosing the preferred ranking for all genes, as opposed to the gene-
specific (or “local”) criteria described above. For a given seed set S, we first compute
d(S) = (

∑
u∈S |N(u)|)/|S|. Subsequently, if d(S) > λ (where λ is defined as above),

we set R
(S)
UNI(v) = RRAW(v) for all v ∈ C, otherwise, we set R

(S)
UNI(v) = RADJ(v).

4 Results

In this section, we comprehensively evaluate the performance of the methods presented
in the previous section.

4.1 Datasets

In our experiments, we use the human PPI data obtained from NCBI Entrez Gene
Database [21]. This database integrates interaction data from several other databases
available, such as HPRD, BioGrid and BIND. After the removal of nodes with no in-
teractions, the final PPI network contains 8959 proteins and 33528 distinct interactions
among these proteins.

We obtain disease information from Online Mendelian Inheritance in Man (OMIM)
database. OMIM provides a publicly accessible and comprehensive database of
genotype-phenotype relationship in humans. We map genes associated with diseases
to our PPI network and remove those diseases for which we are unable to map more
than two associated genes. After this step, we have a total of 206 diseases with at least
3 associated genes. Number of genes associated with these diseases ranges from 3 to
36, with the average number of associations for each disease being approximately 6.

4.2 Experimental Setting

In order to evaluate the performance of different methods in terms of accurately priori-
tizing disease-associated genes, we apply leave-one-out cross-validation. For each gene
that is associated with a disease, we conduct the following experiment:

– We remove a gene from the set of genes associated with a particular disease.
– We generate an artificial linkage interval, containing this removed gene with other

99 genes located nearest in terms of the genomic distance. Note that, according to
our experiments, the size of candidate set does not have a significant effect on the
performance gap between different methods as long as it is greater than 20 (data
not shown).

– Using each of the methods described in the previous section, we obtain a ranking
of candidate genes and use this ranking to predict disease genes. Note that, due to
space considerations, we only use random walk with restarts in conjunction with the
proposed statistical correction and uniform prioritization methods, however, these
methods can also be applied to network propagation straightforwardly.

In order to systematically compare the performance of different methods, we use the
following evaluation criteria:

Average rank. Average rank of the correct disease gene among all candidate genes,
computed across all disease. Clearly, a lower average rank indicates better performance.
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Fig. 2. ROC curves of proposed statistical adjustment schemes and existing methods for (a)
cases in which true disease gene has degree at most five, (b) all disease genes. All of the proposed
adjustment schemes outperform existing methods.

ROC curves. We also plot ROC curves, i.e., sensitivity vs. 1-specificity, by thresholding
the rank to be considered a “predicted disease gene” from 1 to 100. Sensitivity (recall)
is defined as the percentage of true disease genes that are ranked above the particular
threshold, whereas specificity is defined as the percentage of all genes that are ranked
below the threshold. The area under ROC curve (AUC) is used as another measure to
assess the performance of different methods.

Percentage of the disease genes ranked in top 1% and 5%. Percentages of true dis-
ease genes that are ranked as one of the genes in the top 1% (practically, the top gene)
and also in the top 5% among all candidates are listed separately.

4.3 Performance of Statistical Adjustment Schemes

As mentioned before, the performance of the global methods is highly biased with the
degree of the true candidate protein. The effect of the degree of true disease gene on the
performance of global methods is demonstrated in Figure 1. To investigate the effect of
the proposed statistical correction schemes on accurate ranking of low-degree proteins,
we first compare the ROC curves achieved by different methods by considering the true
disease genes with degree ≤ 5. These results are shown in Figure 2(a) and Table 1.
As seen in the figure, all of the three statistical adjustment schemes outperform existing

Table 1. The effect of statistical adjustment on performance. Average Rank of the true disease
genes and AUC values are listed. To demonstrate the effect of connectivity, we also provide
separate results for the cases in which the degree of true disease gene is ≤ 5 and > 5.

All Genes Degrees≤ 5 Degrees> 5
Method Avg. Rank AUROC Avg. Rank AUROC Avg. Rank AUROC

Network Propagation 26.32 0.74 33.12 0.61 18.29 0.83
Random walk w/ restarts 28.02 0.73 37.73 0.62 17.56 0.84

Based on seed degree 25.55 0.75 26.10 0.73 24.43 0.78
Based on candidate degree 24.62 0.76 26.46 0.72 23.66 0.79

Based on centrality 24.55 0.76 26.27 0.73 23.16 0.79
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Table 2. Performance of all combinations of uniform prioritization methods

Candidate deg. Seed deg. Centrality

R
(C)
UNI R

(O)
UNI R

(S)
UNI R

(C)
UNI R

(O)
UNI R

(S)
UNI R

(C)
UNI R

(O)
UNI R

(S)
UNI

Avg. Rank 23.22 24.33 23.30 25.01 25.29 25.42 24.95 24.92 24.02
AUROC 0.76 0.76 0.77 0.75 0.75 0.76 0.75 0.75 0.76

Perc. ranked in top 1% 21.7 19.4 14.7 18.4 18.5 19.3 20.0 20.5 21.3
Perc. ranked in top 5% 45.1 44.4 42.1 45.5 44.1 41.2 46.3 45.7 47.0

methods for these genes. Furthermore, as evident in Figure 2(b), when all genes are
considered, the statistical adjustment schemes still perform better than existing meth-
ods. However, as seen in the figure, the performance difference is minor because of the
relatively degraded performance of statistical adjustment schemes for highly connected
genes. Next, we investigate how the proposed uniform prioritization methods improve
the performance of these statistical adjustment schemes.

4.4 Performance of Uniform Prioritization

Here, we systematically investigate the performance of the proposed uniform prioriti-
zation methods, by considering the combination of each of these methods with each of
the three statistical adjustment methods (a total of nine combinations). In these exper-
iments, the degree threshold λ is set to 5. For convenience, we refer to each uniform
prioritization method using the corresponding ranking symbol introduced in the previ-
ous section (R(C)

UNI, R
(O)
UNI, or R

(S)
UNI).

The average rank and AUC for the performance of the nine combinations of pro-
posed methods are listed in Table 2. As seen in the table, while all methods improve
upon the performance of raw statistical adjustment schemes, it is difficult to choose
between the proposed methods. We suggest that the hybrid method based on candidate
degree (R(C)

UNI), combined with statistical adjustment based on candidate degree, can be
considered the “winner”, since this approach provides the best accuracy in correctly
predicting the disease protein as the top candidate (21.7%) and it provides the lowest
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Fig. 3. (a) ROC curves to compare the proposed method with existing global approaches. (b)The
effect of the degree of target gene on the performance of existing global approaches, adjusted
method based on candidate degrees as well as the our final uniform prioritization method.
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average rank of the true candidate gene (23.22). We compare this combination of pro-
posed algorithms with existing global methods in Table 3 and Figure 3(a). These results
clearly show that our final uniform prioritization scheme outperforms existing methods
with respect to all performance criteria. Furthermore, careful inspection of average rank
with respect to the degree of true disease gene in Figure 3(b) shows that, this method al-
most matches the performance of the best performing algorithm for each degree regime.
Namely, if the target gene has low degree, our uniform prioritization method performs
close to statistical adjusted random walk, while it performs close to raw random walk
for high-degree target genes.

4.5 Case Example

Here, we provide a real example to demonstrate the power of the proposed method in
identifying loosely connected disease genes. We focus on Microphthalmia which is a
disease that has 3 genes directly associated with it in our PPI network, namely SIX6,
CHX10 and BCOR. In our experiments, we remove SIX6 and try to predict this gene

Fig. 4. Case example for the Microphthalmia disease. Products of genes associated with Mi-
crophthalmia or a similar disease are shown by green circles, where the intensity of green is
proportional to the degree of similarity. The target disease gene that is left out in the experiment
and correctly ranked first by our algorithm is represented by a red circle. The gene that is in-
correctly ranked first for both of the existing global approaches is shown by a diamond. Other
candidate genes that are prioritized are shown by yellow circles.

Table 3. Comparison of the proposed method with existing global approaches. The proposed
method outperforms others with respect to all performance criteria.

METHOD Avg. Rank AUROC Perc. Ranked in top 1% Perc. Ranked in top 5%
Proposed Hybrid Method 23.22 0.76 21.7 45.1

Network propagation 26.32 0.74 18.2 43.2
Random walk w/ restarts 28.02 0.73 20.7 43.9
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using the other two genes, as well genes associated with diseases similar to Microph-
thalmia. This experiment is illustrated in Figure 4. The figure shows the 2-neighborhood
of proteins SIX6, CHX10 and BCOR. As seen in the figure, the global methods fail be-
cause the product of SIX6 is not a centralized protein with a degree of only 1. Thus,
random walk with restarts model ranks this true gene as 26th and network propagation
ranks it 16th among 100 candidates. On the other hand, our method is able to correctly
rank this gene as the 1st candidate. Both random walk and network propagation rank
the gene AKT1 top among all candidates, which, not surprisingly, is a high degree node
(78), also connected to other hub gene products.

5 Conclusion

In this paper, we have shown that approaches based on global network properties in
prioritizing disease-associated genes are highly biased by the degree of the candidate
gene, thus perform poorly in detecting loosely connected disease genes. We proposed
several statistical adjustment strategies that improve the performance, particularly in
identifying loosely connected disease genes. We have shown that, when these adjust-
ment schemes are used together with existing global methods, the resulting method
outperforms existing approaches significantly. These results clearly demonstrate that,
in order to avoid exacerbation of ascertainment bias and propagation of noise, network-
based biological inference methods have to be supported by statistical models that take
into account the degree distribution.

Acknowledgements

This work is supported in part by NSF CAREER Award CCF-0953195.

References

1. Brunner, H.G., van Driel, M.A.: From syndrome families to functional genomics. Nat. Rev.
Genet. 5(7), 545–551 (2004)

2. Glazier, A.M., Nadeau, J.H., Aitman, T.J.: Finding Genes That Underlie Complex Traits.
Science 298(5602), 2345–2349 (2002)

3. Lage, K., Karlberg, E., Storling, Z., Olason, P., Pedersen, A., Rigina, O., Hinsby, A., Tumer,
Z., Pociot, F., Tommerup, N., Moreau, Y., Brunak, S.: A human phenome-interactome net-
work of protein complexes implicated in genetic disorders. Nat. Bio. 25(3), 309–316 (2007)

4. Adie, E., Adams, R., Evans, K., Porteous, D., Pickard, B.: SUSPECTS: enabling fast and
effective prioritization of positional candidates. Bioinformatics 22(6), 773–774 (2006)

5. Turner, F., Clutterbuck, D., Semple, C.: Pocus: mining genomic sequence annotation to pre-
dict disease genes. Genome Biology 4(11), R75 (2003)

6. Chen, J., Aronow, B., Jegga, A.: Disease candidate gene identification and prioritization us-
ing protein interaction networks. BMC Bioinformatics 10(1), 73 (2009)

7. Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-
protein interactions. J. Med. Genet. (2006), jmg.2006.041376

8. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.A.A.: The human
disease network. PNAS 104(21), 8685–8690 (2007)



Role of Centrality in Network-Based Prioritization of Disease Genes 25

9. Ideker, T., Sharan, R.: Protein networks in disease. Genome research 18(4), 644–652 (2008)
10. Köhler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of

candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)
11. Vanunu, O., Sharan, R.: A propagation based algorithm for inferring gene-disease associa-

tions. In: Proceedings of German Conference on Bioinformatics (2008)
12. Edwards, A.M., Kus, B., Jansen, R., Greenbaum, D., Greenblatt, J., Gerstein, M.: Bridging

structural biology and genomics: assessing protein interaction data with known complexes.
Trends in Genetics 18(10), 529–536 (2002)

13. George, R.A., Liu, J.Y., Feng, L.L., Bryson-Richardson, R.J., Fatkin, D., Wouters, M.A.:
Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucl.
Acids Res. 34(19), e130 (2006)

14. van Driel, M.A., Bruggeman, J., Vriend, G., Brunner, H.G., Leunissen, J.A.: A text-mining
analysis of the human phenome. EJHG 14(5), 535–542 (2006)

15. Lovász, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty 2,
353–398 (1996)

16. Tong, H., Faloutsos, C., Pan, J.Y.: Random walk with restart: fast solutions and applications.
Knowledge and Information Systems 14(3), 327–346 (2008)

17. Macropol, K., Can, T., Singh, A.: Rrw: repeated random walks on genome-scale protein
networks for local cluster discovery. BMC Bioinformatics 10(1), 283 (2009)

18. Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solutions. In:
KDD 2006: Proceedings of the 12th ACM SIGKDD, pp. 404–413. ACM, New York (2006)

19. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction
of protein function via graph-theoretic analysis of interaction maps. Bioinf. 21, i302–i310
(2005)

20. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer
Networks and ISDN Systems 30, 107–117 (1998)

21. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at
NCBI. Nucl. Acids Res. 35(suppl. 1), D26–D31 (2007)



Parallel Multi-Objective Approaches for Inferring
Phylogenies

Waldo Cancino1, Laetitia Jourdan1, El-Ghazali Talbi1,
and Alexandre C.B. Delbem2

1 INRIA Lille Nord Europe
Villeneuve d’Ascq, France

{Waldo.Cancino,Laetitia.Jourdan,El-Ghazali.Talbi}@inria.fr
2 Institute of Mathematics and Computer Science

University of Sao Paulo, Brazil
acbd@icmc.usp.br

Abstract. The inference of the phylogenetic tree that best express the
evolutionary relationships concerning data is one of the central problem
of bioinformatics. Several single optimality criterion have been proposed
for the phylogenetic reconstruction problem. However, different criteria
may lead to conflicting phylogenies. In this scenario, a multi-objective ap-
proach can be useful since it could produce a set of optimal trees accord-
ing to multiple criteria. PhyloMOEA is a multi objective evolutionary
approach applied to phylogenetic inference using maximum parsimony
and maximum likelihood criteria. On the other hand, the computational
power required for phylogenetic inference of large alignments easily sur-
passes the capabilities of single machines. In this context, the paralleliza-
tion of the heuristic reconstruction methods can not only help to reduce
the inference execution time but also improve the results quality and
search robustness. On the other hand, The PhyloMOEA parallelization
represents the next development step in order to reduce the execution
time. In this paper, we present the PhyloMOEA parallel version devel-
oped using the ParadisEO framework. The experiments conducted show
significant speedup in the execution time for the employed datasets.

Keywords: Phylogenetic Inference, Multi-Objective Optimization, Par-
allel Computing.

1 Introduction

Phylogenetic inference is one of the central problems in computational biology. It
consists of finding the best tree that explains the evolutionary history of species
from a given dataset. Various phylogenetic reconstruction methods have been
proposed in the literature [1]. Most of them use one optimality criterion (or ob-
jective function) to evaluate possible solutions in order to determine the best tree.
The number of possible solutions (trees) grows exponentially with the number
of species to be analyzed. Moreover, costly optimality criterion for the evalua-
tion of trees can be also employed. Thus, an exhaustive search is infeasible for
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moderate datasets containing a few hundreds of species. Several heuristic search
methods based mainly in hill-climbing [2], evolutionary algorithms (EAs) [3], [4]
and other techniques are able to find reasonable solutions in acceptable time.

Numerous studies [5], [6] have shown important differences in the results ob-
tained by applying distinct reconstruction methods to the same input data. In
this regard, a multi-objective approach can be a relevant contribution since it
can search for phylogenies using more than a single criterion.

One of the first studies that models phylogenetic inference as a multi-objective
optimization problem (MOOP) was developed by the author of this paper [7].
In this approach, the multi-objective approach used the maximum parsimony [8]
and maximum likelihood [9] as optimality criteria. The proposed multi-objective
evolutionary algorithm (MOEA), called PhyloMOEA, produces a set of distinct
solutions representing a trade-off between the considered objectives.

On the other hand, the search and evaluation of big datasets largely surpass
the memory and processing capability of a single machine. In this context, par-
allel and distributed computing can be used not only to speedup the search,
but also to improve the solution quality, search robustness and to solve larger
problem instances [10]. Several studies propose parallel fine-grained and coarse-
grained implementations for the tree search and for the evaluation of each solu-
tion [11]. In this paper, we present a new parallel PhyloMOEA version developed
using the ParadisEO metaheuristic framework [12]. New experiments from this
parallel approach are also discussed.

This paper is organized as follows. Section 2 provides relevant information
about phylogenetic inference. Section 3 presents key concepts of multi-objective
optimization (MOO) and summarizes the main MOO applications in phyloge-
netic inference. Section 4 describes the parallel PhyloMOEA version. Section 5
presents the experiments involving the new developed PhyloMOEA versions.
Finally, Section 6 discusses conclusions and proposes future work.

2 Phylogenetic Reconstruction

The main objective of phylogenetic inference is the determination of the best
tree that explains the evolutionary events of the species under analysis. The data
used in this analysis usually come from sequence data (nucleotide or aminoacid
sequences), morphological features, or other types of data [1]. Due to the absence
of information about past species, the phylogenetic reconstruction is only an
estimation process since it is based on incomplete information. The evolutionary
history of species under analysis is often represented as a leaf-labeled tree, called
phylogenetic tree. Taxons (actual species) are represented by the external nodes
of the tree while ancestors are referred by internal nodes of the tree. Nodes are
connected by branches which may have an associated length value, representing
the evolutionary distance between the nodes connected by the branch.

Several phylogenetic reconstruction methods have been proposed in the liter-
ature including clustering, optimality criterion and Bayesian methods [1]. Op-
timality criterion methods defines an objective function to score each possible



28 W. Cancino et al.

solution. A search mechanism, which walks through the tree search space, is
necessary to determine the best tree. Maximum parsimony [8] and maximum
likelihood [9] are two of the most employed inference criteria in practice. These
methods are briefly described bellow.

2.1 Maximum Parsimony

Parsimony methods search for a tree that minimizes the number of character
state changes (or evolutionary steps) required by its topology [1]. Let D be a
dataset containing n species. Each specie has N sites, where dij is the character
state of specie i at site j. Given tree T with node set V (T ) and branch set E(T ),
the parsimony score of T is defined as:

PS(T ) =
N∑

j=1

∑
(v,u)∈E(T )

wj · C(vj , uj), (1)

where wj refers to the weight of site j, vj and uj are, respectively, the character
states of nodes v and u at site j for each branch (u, v) in T and C is the cost
matrix, such that C(vj , uj) is the cost of changing from state vj to state uj .
The leaves of T are labeled by character states of species from D, i.e., a leaf
representing k -th species has a character state dkj for position j.

The simplest form of parsimony is the Fitch parsimony [8], which assumes
a unitary cost matrix such that Cxy = 1 if x �= y; otherwise Cxy = 0. The
problem of determining the maximum parsimony tree can be separated in two
sub-problems:

1. The small parsimony problem, which consists of finding the character states
of internal nodes of a given tree T such that PS(T ) is minimized.

2. The large parsimony problem, which aims to find the tree T ∗ such that
PS(T ∗) is the minimum for the tree search space.

The small parsimony problem can be solved in polynomial time using a divide-
and-conquer algorithm [8]. Conversely, the large parsimony problem was proven
to be NP-hard [1]. Thus, the search for the best tree topology, for moderate and
large datasets, is only feasible using heuristic techniques.

2.2 Maximum Likelihood

The likelihood of a phylogenetic tree, denoted by L = P (D|T, M), is the con-
ditional probability of the sequence data D given a tree T and an evolutionary
model M , which contains several parameters related to tree branch lengths and
a sequence substitution model [1]. Given a tree T , P (D|T, M) (referred as L(T )
henceforth), is calculated from the product of partial likelihoods from all sites:

L(T ) =
N∏

j=1

Lj(T ), (2)
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where Lj(T ) = P (Dj/T, M) is the likelihood at site j. The site likelihoods can
also be expressed as:

Lj(T ) =
∑
rj

Lr
j(rj) · πrj , (3)

where r is the root node of T , rj refers to any possible state of r at site j, πrj is
the frequency of state rj , and Lr

j(rj) is the conditional likelihood of the subtree
rooted by r. Specifically, Lr

j(rj) denotes the probability that everything that is
observed from node r to the leaves of T , at site j, given r has state rj .

A recursive method to calculate L was proposed by Felsenstein [9] using a
dynamic programming approach, where L is obtained by a post-order traversal
in T . Finding the maximum likelihood tree involves not only the search for the
best tree, but the optimization of the parameters of the model M . As in the case
of parsimony, the determination of the best tree for moderate or large datasets
is only feasible by applying heuristic search techniques.

3 Multi-Objective Approaches for Phylogenetic Inference

A multi-objective optimization problem (MOOP) deals with two or more ob-
jective functions that must be simultaneously optimized. When the involved
objective functions are conflicting, there is not a single solution but a solution
set, called as Pareto-optimal set, whose elements represent a trade-off among
objective functions.

In MOOPs, the Pareto dominance concept is commonly used to compare two
solutions. A solution x dominates a solution y if x is not worse than y in all
objectives and if it is better for at least one. Indeed, solutions in the Pareto
optimal set are not dominated by any other solution in the entire search space.
The curve formed by plotting these solutions in the objective function space is
entitled Pareto front. If there is no preference among the objectives, all Pareto
optimal solutions have the same importance. Deb [13] highlights two fundamental
goals in MOOP:

1. To find a set of solutions as close as possible to the Pareto optimal front;
2. To find a set of solutions as diverse as possible.

Evolutionary algorithms for multi-objective optimization (MOEAs) and other
meta-heuristics have been successfully applied to both theoretical and practical
MOOPs [13]. In general, elaborated meta-heuristics models are able to find a
distributed Pareto optimal set in a single run [10].

The phylogenetic reconstruction problem can produce conflicting trees in a
variety of situations. Rokas et al. [14] show how the selection of the inference
method, the employment of different data sources and the assumptions con-
cerning data can produce contradictory tree topologies. In this regard, MOO
approaches have been proposed in the literature in order to deal mainly with
conflicting datasets [15], [16] and diverse optimality criteria [7].
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Cancino and Delbem [7] propose a MOEA approach, called PhyloMOEA,
for phylogenetic reconstruction using maximum parsimony and maximum like-
lihood criteria. PhyloMOEA was tested using four nucleotide datasets and the
results indicates that some of the Pareto optimal solutions are not significantly
worse than the best trees resulting from a separate analysis. These solutions are,
in some cases, consistent with the best solutions obtained from the parsimony
and likelihood criteria. A detailed description of PhyloMOEA can be found in
previous studies [7].

PhyloMOEA execution consumes significant computational resources. Indeed,
the huge tree search space, the costly likelihood evaluation function and the
optimization of the model parameters are factors that require the parallelization
of the proposed approach. Further details of the parallel PhyloMOEA will be
discussed in Section 4.

4 Parallel Strategies for PhyloMOEA

Topological search and tree evaluations (for instance, using the maximum like-
lihood criterion) are the most expensive tasks of typical phylogenetic inference
programs. Bader et al. [11] classify parallel implementations of the aforemen-
tioned tasks into three levels: fine-grained, coarse-grained and job level.

Fine-grained strategies aim to parallelize the objective function. For instance,
parsimony and likelihood scores can be decomposed due to their site indepen-
dence assumption (see Equations 1 and 3). The site calculations can be dis-
tributed among several processors in SMP architectures.

Coarse-grained parallel approaches are coupled with the tree search mecha-
nism implemented in each algorithm. Typically, heuristic hill-climbing strate-
gies [2] perform evaluation, optimization and local rearrangements for a large
number of trees at each iteration. In this case the parallel implementations [11]
distribute the aforementioned tasks across several slave workers while a master
process dispatches the works and coordinates the search. On the other hand,
divide and conquer heuristics [17] decompose the phylogenetic inference prob-
lem in small sub-problems and ensemble the partial solutions in a single tree.
The corresponding parallel versions for these methods [18] follow a master/slave
approach where the master distributes the sub-problems to be solved by the
workers. Finally, EA-based phylogenetic strategies [3], [4] work with a set of
solutions (population) which are evolved according the genetic operators (selec-
tion, recombination, mutation). Parallel EA strategies reported in the literature
involve a distributed evaluation of the population solutions [19] and cooperative
models [4] with several EAs instances collaborating in the tree search.

Job-level parallelism involves multiple phylogenetic analyses that are per-
formed simultaneously. For instance, several phylogenetic search can be dis-
patched on several cluster nodes using different starting trees.

In order to describe the parallel approach implemented in PhyloMOEA, we
adopt here three levels of parallelism proposed for population-based metaheuris-
tics [10]:
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– Algorithmic-level: where independent or collaborative algorithms are run-
ning in parallel.

– Iteration-level: in this model, each iteration of metaheuristic is parallelized
in order to speedup the algorithm and reduce the search time.

– Solution-level: focused on the parallelization of a single solution.

The first step for parallelizing PhyloMOEA was carried out at iteration level
using a master/slave scheme. The master process is responsible for distributing
the evaluation of solutions from the population to the worker processes. The
slaves performs the likelihood and parsimony evaluations and return the results
to the master. Once all evaluations are collected by the master, it performs the
selection, recombination and generates the new population. The parallelization of
PhyloMOEA using ParadisEO was straightforward due to this component takes
into account all communications needed (using MPI) to distribute the function
evaluations. The branch length optimization of the solutions, performed at the
end of PhyloMOEA execution, was also distributed in a similar fashion.

A profile analysis of PhyloMOEA serial code reveals that around 90% of its ex-
ecution time is consumed evaluating the likelihood function. Similar results were
obtained from other maximum likelihood inference programs like RAxML [2].
The solution level parallelism implemented in PhyloMOEA addresses this prob-
lem by distributing the likelihood site calculations across several threads. Like-
lihood functions implementations collect the per site evaluations in a loop. As
OpenMP is well-suited for automatic loop parallelization, it was the natural
choice to develop the multi-threaded version of the likelihood function. It is im-
portant to remark that the parsimony function parallelization did not produce
significant speedup in preliminary experiments. The schema of the PhyloMOEA
parallel version is shown in Fig. 1.

MOEA Branch lenght
optimization

Parallel PhyloMOEA

Worker 1 Worker 2 Worker n
solutions

evaluation

Dataset
sites���������
������

worker
threads

Iteration level
parallelism

Solution level
parallelism

site
evaluation

Fig. 1. Iteration and solution level parallelization in PhyloMOEA

Solution and iteration levels can be hybridized to take advantage of multi-
core per node clusters. Then, for each node, it is possible to execute a pure MPI
worker or an hybrid MPI/OpenMP worker distributed on all processor cores.
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5 Results

The evaluation of parallel PhyloMOEA performance was carried out in two
stages. First, we evaluate the scalability of the multi-thread likelihood implemen-
tation. Finally, the overall performance of the MPI and hybrid MPI/OpenMP
configuration are compared.

5.1 Multi-Threaded Likelihood Function Scalability

The relative speedup of the OpenMP multi-threaded likelihood function was
evaluated using the following datasets taken from the literature [20]:

– d50_5000, d50_50000 and d50_500000: each dataset contains 50 taxa with
5000, 50000 and 500000 sites, respectively.

– d250_5000, d250_50000 comprising 250 taxa with 50000 and 500000 sites,
respectively.

– d500_5000 with 500 taxa and 5000 sites.

For each dataset, 20 randomly trees were generated and evaluated using the
single and multi-thread versions of the likelihood function. Each experiment was
repeated ten times. The average execution time for all runs was used to calculate
the speedup in each dataset. Note that in these experiments we only evaluate
trees and do not perform tree search.

The experiments were carried out in 64-bits quad-core (AMD Intel Xeon E530)
and eight-core (Intel Xeon E5420 QC) architectures running Debian Linux. We
tested 2 and 4 threads configuration for the quad-core and 2, 4 and 8 threads
configuration for the eight core architectures. The scalability of the multi-thread
likelihood function is measured by:

– Increasing the dataset size with larger number of sites for alignments com-
prising 50 and 250 species.

– Increasing the number of species (50, 250 and 500 taxa) for the datasets with
5.000 sites. In this case, an additional amount of computation is required
since deeper recursive calls in the likelihood function.

Figs. 2 and 3 show the speedup obtained when varying the number of sites and
species for each configuration tested. The increase of the dataset size (number
of sites) for the 50 and 250 species alignments does not produce a significant
gain in the quad-core architecture (see Figs. 2(a) and 2(c)). However, in the
eight-core architecture, an increase of the speedup for the 50 species datasets
is observed (see Fig. 2(b). Finally, the 250 species datasets does not show a
significant speedup improvement due the change of the number of sites.

The increase of the number of species has a negative effect on the speedup in
the quad-core architecture (see Figs. 3(a)). This can be caused by the overhead
involved due to the additional recursive calls for threads and their synchroniza-
tion at the end of each evaluation. Conversely, Fig. 3(a) suggests that the extra
computation results in speedup increases for the eight-core architecture.
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Fig. 2. Likelihood function speedup for 50 and 250 species datasets with increasing
number of sites for quad core (a),(c) and eight core (b),(d) architectures
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Fig. 3. Likelihood function speedup for datasets comprising 5.000 with increasing num-
ber of species for quad core (a) and eight core (b) architectures
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There are other studies [21] that measure the effects of the increased dataset
size in the multi-threaded likelihood functions. Relative speedup reported in
these works are similar with the results present here. It is important to note
that our results are not directly comparable with those published elsewhere. In
all the cases, the code, the compiler used, the target architectures and even the
datasets tested are different. However, it is suggested that the increase in the
number of sites produces speedup gain while the increase of number of species
have a negative effect in the scalability [21].

5.2 Parallel PhyloMOEA Scalability

Relative speedups of MPI (PhyloMOEA-MPI) and MPI/OpenMP (PhyloMOEA-
Hybrid) parallel versions of PhyloMOEA were tested with the following datasets:

1. The rbcL_55 dataset comprises 55 sequences (each sequence has 1314 sites)
of the rbcL chloroplast gene from green plants;

2. The mtDNA_186 dataset contains 186 human mitochondrial DNA sequen-
ces (each sequence has 16608 sites) obtained from The Human Mitochondrial
Genome Database (mtDB);

3. The RDPII_218 dataset comprises 218 prokaryotic sequences of RNA (each
sequence has 4182 sites) taken from the Ribosomal Database Project II;

4. Finally, the ZILLA_500 dataset includes 500 rbcL sequences (each sequence
has 1428 sites) from plant plastids.

We employed these 4 datasets for testing complete PhyloMOEA execution due
limited wall time in the Grid’5000 computer resources. The number of MOEA
iterations was restricted to 50 for each dataset. In all experiments, we use 5
nodes (quad-core AMD Opteron 2218) from the Grid’5000 Bordeaux cluster.
The following configurations were used for each dataset:

1. PhyloMOEA-MPI: 2, 4, 8, 12 and 16 workers (denoted by 2w, 4w, 8w and
16w, respectively).

2. PhyloMOEA-Hybrid: 1 worker (2 and 4 threads, denoted by 1w-2t and 1w-
4t) and 2, 3, 4 workers (4 threads each, denoted by 2w-8t, 3w-12t and 4w-16t)

These configurations use one node for the master tasks and the rest of the nodes
run the workers. Fig. 5.2 show the speedup values obtained by both PhyloMOEA
versions for rbcL_55, mtDNA_186, RDPII_218 and ZILLA_500.

For all datasets, the 2w, 4w and 12w variants have better speedup values
than the 1w-2t, 1w-4t and 3w-8t configurations. However, the 4w-16t configu-
ration is faster than the 4w variant for all datasets except the ZILLA_500.
A super-linear speedup is achieved for PhyloMOEA-MPI version for 2w and 4w
while PhyloMOEA-Hybrid version only reach similar results with the 2w variant.
The speedup increasing rate of the PhyloMOEA-MPI and PhyloMOEA-Hybrid
are severely affected with 16 workers (although PhyloMOEA-Hybrid speedup
decreases slowly).
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Fig. 4. PhyloMOEA-MPI and PhyloMOEA-Hybrid speedup for the rbcL_55 (a),
mtDNA_186 (b), RDPII_218 (c) and ZILLA_500 (d) datasets

There are two factors that penalize the scalability of both PhyloMOEA paral-
lel version: communication and thread synchronization. Former costs are notice-
able for PhyloMOEA-MPI version as workers send trees to the master (using the
Newick format, the data transmitted increases with the number of species). The
increasing communication costs become evident with 16 workers configuration
for the rbcL_55, mtDNA_186, RDPII_218 datasets (see Figs. 4(a), 4(b) and
4(c), respectively). Finally, Fig. 4(d) shows that the speedup is affected with
more than 8 workers for the ZILLA_500 dataset.

The overhead introduced by synchronizing threads in parallel likelihood cal-
culation affects the speedup of the PhyloMOEA-Hybrid version. This effect is
notorious for the ZILLA_500 dataset due to the reduced speedup for the 4w-
16t configuration (see Fig. 4(d)). Moreover, the PhyloMOEA-Hybrid version
does not show superlinear speedup as in the PhyloMOEA-MPI version. OpenMP
thread synchronization overhead could play an important role in this scenario.
Conversely, the speedup saturation point is early reached in the PhyloMOEA-
MPI than in PhyloMOEA-Hybrid versions for all datasets. The execution times
for the complete serial and parallel PhyloMOEA executions for the ZILLA_500
dataset was reduced from 50 to 6 hours.
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6 Final Remarks

Inferring phylogenetic trees using several optimality criteria is the main motiva-
tion for PhyloMOEA development. Indeed, several studies in the literature [5], [6]
point out that the use of various phylogenetic inference methods can lead to in-
consistent trees in some cases. Previous experiments using PhyloMOEA show
that maximum parsimony and maximum likelihood criteria yield to different
trees when they are applied separately [7].

The search for the optimal phylogenetic inference is a very complicated task
for moderate and large datasets. The huge tree search space, the evaluation of
the trees and the optimization of parameters of sequence model of evolution
represent the main bottleneck of current state-of-the-art heuristic phylogenetic
approaches [2]. In this regard, several parallel approaches focused on the par-
allelization of the optimality function and the search procedure have been pro-
posed [4], [18], [20].

The main objective of this paper is to describe the two PhyloMOEA parallel
version developed. The first version, called PhyloMOEA-MPI, distributes the
evaluation functions (parsimony likelihood) across the several workers. The sec-
ond version, called PhyloMOEA-Hybrid, is focused on parallelizing the objective
functions using a multi-thread approach provided by OpenMP.

Results from both parallel PhyloMOEA versions show sub-linear speedup in
most of the cases. However, the execution time reduction compared to the serial
version was significant. Similar multi-thread likelihood evaluation function have
been proposed elsewhere [18], [20]. In our study, we obtain comparable relative
speedup employing bigger alignments and study speedup penalties due to the
increase of number of species and sites. The hybrid MPI/OpenMP scheme has
also been previously reported [18]. To the best of our knowledge, this scheme
has not been proposed for EA-based phylogenetic reconstruction.
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Abstract. The prediction of a minimum-energy protein structure from
its amino-acid sequence represents one of the most important and chal-
lenging problems in computational biology. A new evolutionary model
based on hill-climbing genetic operators is proposed to address the hy-
drophobic - polar model of the protein folding problem. The introduced
model ensures an efficient exploration of the search space by implement-
ing a problem-specific crossover operator and enforcing an explicit di-
versification stage during the evolution. The mutation operator engaged
in the proposed model refers to the pull-move operation by which a
single residue is moved diagonally causing the potential transition of
connecting residues in the same direction in order to maintain a valid
protein configuration. Both crossover and mutation are applied using a
steepest-ascent hill-climbing approach. The resulting evolutionary algo-
rithm with hill-climbing operators is successfully applied to the protein
structure prediction problem for a set of difficult bidimensional instances
from lattice models.

1 Introduction

Proteins are complex structures composed of amino acid sequences playing key
roles in nature. The protein folding problem is of significant importance in many
fields including biochemistry, molecular biology and biophysics. Starting from an
initially unfolded chain of amino acids, protein folding simulations aim to find
a final protein structure having minimum energy. Detecting such a structure
represents an NP-hard problem [3,5] even in simplified lattice models which
abstract away many of the details of protein folding.

Simplified lattice models such as the hydrophobic-polar (HP) model [4] have
been extensively used as benchmarks for computational approaches to protein
structure prediction. These include evolutionary search [1,2,12,13], ant colony
optimization [11], memetic algorithms [8], tabu search [9] and Monte Carlo ap-
proximation algorithms [6].

In this paper, an evolutionary model based on hill-climbing search operators
is proposed to address the problem of protein structure prediction in the HP
model. The introduced model evolves a population of protein configurations for

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2010, LNCS 6023, pp. 38–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



An Evolutionary Model Based on Hill-Climbing Search Operators 39

a given HP sequence and relies on hill-climbing recombination and mutation to
sustain the search process. Hill-climbing crossover is applied in a dynamic way
and offspring are asynchronously inserted in the population during the same
generation. The mutation operator engaged in the proposed model is problem-
specific and is applied in a steepest-ascent hill-climbing manner. For this purpose,
the pull-move transformation [9] by which a single residue is moved diagonally,
causing the transition of connecting residues, is engaged. Hill-climbing mutation
aims to improve a configuration by applying pull-move transformations in all
possible positions. The hill-climbing approach taken in this model enhances the
exploitation capabilities of the search, vital for good results in protein folding
problems.

The proposed evolutionary model employs hill-climbing driven specialized
crossovers and mutations as the main stage of the search process. This is a
simpler scheme compared to memetic algorithms, which use a local search stage
(sometimes reinforced by hill-climbing) in addition to the standard evolution-
ary scheme of crossover, mutation and selection. In multimeme algorithms [8]
for protein structure prediction, a cycle of mating, mutation, local search (op-
timization based on memes being aplied to each individual) and replacement is
performed each generation. Here, the cycle of hill-climbing crossover and muta-
tion is engaged for a variable number of individuals each generation.

The experiments presented in the current paper focus on various bidimen-
sional HP lattice protein sequences. Numerical results indicate a competitive
performance of the evolutionary algorithm based on hill-climbing operators.

The paper is organised as follows: the protein structure prediction problem
in the HP model is briefly described, related work on computer-based methods
for addressing this problem is discussed, the proposed hill-climbing evolutionary
model is presented and numerical results and comparisons are given.

2 The Bidimensional HP Protein Folding Problem

Lattice protein models like the HP model are simplified instances of the generic
class of cooperative chain folding processes, which include the actual folding
of biological macromolecules. Although HP lattices cannot make actual predic-
tions about real biological macromolecules, their fitness landscape and process
dynamics share common traits with real-life processes and therefore may serve
to characterize generic features of protein folding. The HP model emphasizes
hydrophobicity as the most important difference between amino acids and rep-
resents the simplest - yet non-trivial - abstraction for the protein structure pre-
diction problem [14].

The HP model considers a protein structure with n amino acids as a sequence
S = s1...sn where each residue si, ∀i can be either H (hydrophobic or non-polar)
or P (hydrophilic or polar). A valid protein configuration forms a self-avoiding
path on a regular lattice with vertices labelled by amino acids (see Figure 1 for
an example).
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Fig. 1. A protein configuration for sequence SE = HHHPHPPPPPH in the square
lattice having the energy value of −2. Black squares represent H residues and white
squares are P residues.

Elements of a given pair of residues are considered topological neighbors if they
are adjacent (either horizontally or vertically) in the lattice and not consecutive
in the sequence.

In the HP model, the energy associated to a protein conformation takes into
account every pair of H residues which are topological neighbors. Every H-H
topological contact contributes -1 to the energy function. The aim is to find
the protein conformation with minimum energy E∗ = min{E(c)|c ∈ C(S)},
where C(S) contains all valid conformations for amino-acid sequence S (this
will correspond to the protein configuration with the maximal number of H-H
topological contacts).

3 Related Work

The protein structure prediction problem for the HP model has been shown to
be NP-hard [3,5] and many approximation methods and heuristics for addressing
it have been proposed [5,14].

Local search methods rely on the idea of iteratively improving a protein
conformation based on the exploration of its local neighborhood. However,
traditional Monte Carlo methods for protein folding simulations easily get
trapped in local optima due to the problem-specific characteristics of the search
landscape. Chain growth methods have been proposed to cope with this prob-
lem. The pruned-enriched Rosenbluth method (PERM) [6] grows a sequence
by sequentially adding one individual particle at a time. The growth is guided
towards configurations with lower energies generating good results for the HP
problem in 2D and 3D lattices. The main drawbacks refer to the need to in-
corporate heuristic knowledge and the usage of a significant number of weight
thresholds [14].

Lesh et al [9] introduce a local search strategy called pull move for the bidi-
mensional HP model. The pull move transformations are incorporated in a tabu
search algorithm able to detect new lowest energy configurations for large HP
sequences (having 85 and 100 amino-acids). A pull move operation starts by
moving a single residue diagonally to an available location. A valid configura-
tion is maintained by pulling the chain along the same direction (not necessarily
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until the end of the chain is reached - a valid conformation can potentially be
obtained sooner). The authors also prove that the class of pull moves introduced
is reversible and complete [9].

Genetic algorithms (GAs) for protein structure prediction have been initially
used by Unger and Moult [13] and proved to obtain better results than tradi-
tional Monte Carlo methods. Chromosomes are encoded using internal coordi-
nates with absolute moves and a population of valid conformations is evolved by
mutation and crossover. The performance of the ’simplest’ genetic algorithm is
investigated in [7] where the importance of high resolution building blocks (facil-
itated by multi-point crossovers) and of local dynamics operator is emphasized.
A hybridization between GA and a backtracking algorithm is investigated in [2].
The use of a backtracking-based repairing procedure and of evolutionary search
operators constraining the search to the space of valid conformations produces
good results for the 3D HP problem. In [12], some specialized genetic operators
(called symmetric and cornerchange operators) are introduced. The resulting
GA is applied for HP sequences having a length up to 50 residues. In [1], the
results of standard GA for protein structure prediction are improved by a GA
using pull moves [9] as a local search genetic operation in addition to standard
crossover and mutation.

Multimeme algorithms (MMAs) [8] combine GAs with a set of local search
heuristics enforcing various neighborhoods for memetic algorithm search. In
MMAs, each individual incorporates genetic and memetic material. Crossover,
mutation, local search and replacement are performed each generation. MMAs
further rely on a contact map memory of already visited solutions based on the
topological features of the conformations. The MMA was successfully applied to
both HP and functional model proteins.

The protein folding problem has also been tackled using nature-inspired meta-
heuristics which rely on the model of the search space (such as ant colony sys-
tems). Shmygelska et al [11] use Ant Colony Optimization (ACO) combined with
a local search mechanism to construct protein conformations. Artificial ants iter-
atively construct solutions based on the quality of already determined solutions
(through the indirect influence of pheromone updates in the search space).

Although evolutionary algorithms have been extensively engaged as robust
and efficient global optimization methods for this problem, their computing effi-
ciency needs further improving. Evolutionary approaches to the protein structure
prediction problem suffer from the limitations of the genetic operators for this
particular problem search space. Crossover and mutation can easily produce in-
valid configurations due to potential collisions generated by changing various
parts of a chromosome. This weak performance of standard genetic operators
has a direct impact on the effectiveness of the evolutionary search process.

4 An Evolutionary Model with Hill-Climbing Operators

An evolutionary model relying on hill-climbing genetic operators is proposed to
address the protein structure prediction problem. A chromosome represents a
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possible protein configuration for a given HP sequence. A population of config-
urations is evolved by hill-climbing crossover and mutation.

Offspring replace parents if they have a better fitness value. The search scheme
is asynchronous in the sense that a new chromosome created as a result of
crossover or mutation can potentially be exploited within the same generation
by the search operators. Premature convergence is addressed by a diversification
scheme in which similar individuals are identified and some of them are replaced
by new genetic material. Besides the hill-climbing operators and the diversifica-
tion scheme, the proposed evolutionary model does not require any other phase
such as explicit selection or standard mutation.

The distinct features of the introduced model can be summarized as follows:

1. The poulation size is fixed and offspring are asynchronously inserted in the
population replacing the worst parent within the same generation.

2. Crossover is applied to randomly selected pairs of individuals in a hill-
climbing mode. A number of k offspring are iteratively generated from the
same parents. The best-fitted offspring (or its random hill-climbing muta-
tion if better) replaces the worst parent within the same generation. If no
better offspring is identified, both parents are replaced by new randomly
selected chromosomes. The process continues until the maximum number of
hill-climbing iterations is reached.

3. Mutation implements a steepest ascent hill-climbing procedure using the pull
move operation [9]. This process is able to generate a variable number of new
individuals which replace parents within the same generation (if they have
a better fitness value).

4. Diversification ensures the existence of sufficiently heterogeneous genetic ma-
terial by periodically checking the similarity between individuals having the
same energy and replacing similar inidviduals with newly generated ones.

The general scheme of the proposed hill-climbing evolutionary model is given
below.

Main Scheme of Evolutionary Algorithm
based on Hill-Climbing Operators
Generate P (0) with pop size individuals randomly
while (maximum number of generations not reached) do

Hill-climbing crossover for k offspring and hc iterations
Hill-climbing mutation for hc iterations
Diversification every kd generations

end while

The evolutionary algorithm presented in this paper takes a standard approach
to problem representation and fitness function in order to keep the emphasis of
the obtained results on the hill-climbing genetic operators implemented.

A chromosome is encoded using an internal coordinates representation. For
a protein HP sequence with n residues S = s1...sn, the chromosome length is n−1
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and each position in the chromosome encodes the direction L(Left), U(Up),
R(Right) or D(Down) towards the location of the current residue relative to
the previous one.

The fitness function used corresponds to the energy value of the protein con-
figuration (as given in section 2).

4.1 Hill-Climbing Mutation

The pull move operation proposed in [9] is used as a specialized mutation oper-
ator. A pull move transformation can be applied at a given position i from the
considered HP sequence.

Let (xi, yi) be the coordinates in the square lattice of residue i at time t.
Let L denote a free location diagonally adjacent to (xi, yi) and adjacent (either
horizontally or vertically) to (xi+1, yi+1). Location C denotes the fourth cor-
ner of the square formed by the three locations: L, (xi, yi) and (xi+1, yi+1). A
pull move is possible if location C is free or equals (xi−1, yi−1). In the latter
case, the pull move transformation consists of moving the residue from location
(xi, yi) to location L. In the case that C is a free location, the first step is to
move residue from position i to location L and the residue from position (i− 1)
to location C. The pull move transformation continues by moving all residues
from (i − 2) down to 1 two locations up the chain until a valid configuration is
reached.

Figure 2 presents an example of a pull move transformation for HP sequence
SE = HHHPHPPPPPH having the chromosome value of RRUURURDDD.
The pull move is applied for residue H at position i = 3 for which a free location
L horizontally adjacent to residue i + 1 (between residues 4 and 10 in Figure
2.a) is identified. Location C (the location between residues 3 and 11 in Figure
2.a) is free in this example and therefore the pull move will cause moving the
residue 3 to location L and residue 2 to location C. The remaining residue 1
(only one in this example) is moved up the chain two positions producing the
new chromosome value of RULURURDDD (see Figure 2.b).

Fig. 2. Pull move transformation for HP sequence HHHPHPPPPPH represented
by the chromosome RRUURURDDD (a) at position 3. (b) represents the new chro-
mosome RULURURDDD obtained after the pull move transformation.
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In the proposed algorithm, pull moves are applied within a steepest ascent hill
climbing procedure each generation. Hill-climbing mutation starts by randomly
selecting one individual from the current population and setting it as the cur-
rent hilltop. Pull moves are applied at each position i, i = 1, ..., n (where n is the
length of the HP sequence) resulting in the generation of n new chromosomes. If
any of them has a better fitness value than the current hilltop it replaces the lat-
ter one. If no improvement is achieved and the maximum number of hill-climbing
iterations has not been reached, the current hilltop is reinitialized with a new
individual randomly selected from the population.

The procedure for hill-climbing mutation is given below.

Hill-Climbing Mutation Procedure
Set current hilltop to a randomly selected individual rand c
Set best c to current hilltop
while (maximum number of hc iterations not reached) do

for i=1 to n do
Generate new chromosome ci by applying a
pull move transformation at position i in current hilltop
if (ci has better fitness than best c) then

Set best c to ci

end if
end for
if (better chromosome best c found) then

Set current hilltop to best c
else

Replace rand c with best c in the current population
Set rand c to a new randomly selected individual
Set current hilltop and best c to rand c

end if
end while

It should be emphasized that the number of individuals that will undergo
hill-climbing mutation within one generation is dynamic. The hill-climbing mu-
tation procedure operates on the same individual by pull move mutation until
no further improvement is achieved. The mutated chromosome obtained in this
process replaces the original parent in the population during the current gen-
eration. The hill-climbing mutation procedure continues with a new individual
randomly selected. The process of improving a chromosome by pull moves can
last a variable number of hill-climbing iterations for each individual.

4.2 Hill-Climbing Crossover

For the recombination of genetic material, a one-point crossover operator is
specified. Given two parent chromosomes p1 and p2 and a randomly generated
cut point χ, two offspring are created as follows:
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1. The genes before the cut point χ are copied from one parent: coffspring
i = cp1

i ,
for i = 0, χ − 1;

2. For the second part of the offspring, coffspring
i = cp2

i , for i = χ, n− 1 unless
this move forces residue i to overlap with one of the i − 1 previous ones.
If a collision occurs then a random direction leading to a valid position is
selected.

Crossover is applied following a hill-climbing strategy. In every generation, a vari-
able number of chromosome pairs are selected for crossover and better generated
offspring replace individuals in the current population.

The hill-cllimbing crossover procedure is detailed below. This procedure is
inspired by the crossover-hill-climbing scheme proposed in [10].

Hill-Climbing Crossover Procedure
Set p1 and p2 to randomly selected individuals from current population
Set best o to best(p1, p2)
do

for i = 1 to k do
Generate a random cut point χ (from 1 to chromosome length n − 1)
Set o to the best of two offspring obtained from crossover(p1, p2, χ)
if (o has better fitness than best o) then

Set best o to o
end if

end for
if (new best o found) then

Set rhcm best to random hill climbing mutation(best o)
Replace worst(p1, p2) with best(best o, rhcm best)

else
Set p1 and p2 to new individuals randomly selected
from current population

end if
while (maximum number of hc iterations not reached)

For each pair of chromosomes selected for recombination, a number of k off-
spring is generated via crossover. The best offspring resulted from this process is
mutated using a pull move transformation within a random hill climbing (RHC)
procedure. This RHC mutation is similar to the hill-climbing mutation presented
in section 4.1 but it has the following distinctive features: (i) only one chromo-
some is being mutated and when no further improvement is obtained by pull
moves the procedure stops; and (ii) at each hill-climbing iteration, only one pull
move transformation is applied for a position randomly selected.

The parent having the highest energy is replaced with the best of the two
chromosomes generated (best offspring from crossover and its RHC mutated
version). This new individual is engaged as a parent in the next hill-climbing
iteration. When no better offspring is generated, a new pair of parent chromo-
somes is randomly selected from the current population and undergoes the same
steps until the maximum number of hill-climbing iterations is reached. Similar
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to the mutation procedure presented in section 4.1, the number of individuals
selected for recombination varies from one generation to another depending on
the improvements that can be generated by the same pair of chromosomes.

4.3 Diversification

In order to ensure the maintainance of sufficiently diverse genetic material, it
is proposed to explicitly reinforce diversity every kd generations, where kd is a
parameter of the algorithm. The diversification stage works as follows:

1. The individuals from the current population are grouped based on their
fitness (one group for each fitness value).

2. For each group identified, subgroups of similar individuals are constructed
based on the Hamming distance. Individuals are considered similar if the
Hamming distance (i.e. the number of different position values in the chro-
mosomes) is less than (n−1)/4, where (n−1) is the length of the chromosome.

3. For each subgroup of similar individuals, one of them is kept in the cur-
rent population and the rest of individuals are replaced by new randomly
generated chromosomes (improved by a hill-climbing mutation).

Diversification has the potential to avoid the search process to get trapped in
local optima by explicitly introducing new genetic material in the population.
The exploration of new search space regions is therefore facilitated in addition
to the efficient exploitation performed by the hill-climbing procedures.

5 Numerical Experiments

Experiments focus on 2D HP protein sequences (commonly used as benchmarks)
with lengths from 20 to 64.

The parameter setting for the proposed evolutionary algorithm with hill-
climbing operators is based on the results of several experiment sets:

1. The population size is 100 and the number of generations is 300;
2. The number of hill-climbing iterations for both crossover and mutation is

set to 100;
3. For hill-climbing crossover, a number of 50 offspring are generated for a pair

of chromosomes each hill-climbing iteration;
4. Diversification is engaged every 30 generations (generally calculated as 10%

of the number of generations).

The initial population contains randomly generated chromosomes representing
valid configurations (each chromosome is iteratively generated in a random man-
ner until a conformation free of collisions in the HP square lattice model is
found). For each HP sequence considered, the proposed algorithm was run 10
times and the results from one of the most efficient runs are reported.
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Table 1. Results obtained by the evolutionary algorithm based on hill-climbing search
operators (last column) for standard 2D HP instances

Inst. Length Sequence E∗ Energy

S1 20 1H 1P 1H 2P 2H 1P 1H 2P 1H 1P 2H 2P 1H 1P 1H -9 -9
S2 24 2H 2P 1H 2P 1H 2P 1H 2P 1H 2P 1H 2P 1H 2P 2H -9 -9
S3 25 2P 1H 2P 2H 4P 2H 4P 2H 4P 2H -8 -8
S4 36 3P 2H 2P 2H 5P 7H 2P 2H 4P 2H 2P 1H 2P -14 -14
S5 48 2P 1H 2P 2H 2P 2H 5P 10H 6P 2H 2P 2H 2P 1H 2P 5H -23 -23
S6 50 2H 1P 1H 1P 1H 1P 1H 1P 4H 1P 1H 3P 1H 3P 1H 4P 1H -21 -21

3P 1H 3P 1H 1P 4H 1P 1H 1P 1H 1P 1H 1P 1H 1H
S7 60 2P 3H 1P 8H 3P 10H 1P 1H 3P 12H 4P 6H 1P 2H 1P 1H 1P -36 -35
S8 64 12H 1P 1H 1P 1H 2P 2H 2P 2H 2P 1H 2P 2H 2P 2H -42 -39

2P 1H 2P 2H 2P 2H 2P 1H 1P 1H 1P 12H

Table 1 presents the energy values obtained for the 2D HP benchmarks con-
sidered. The HP sequence and the known optimum value (in the column labelled
E∗) for each instance are given. The last column in table 1 contains the energy
values detected by the proposed method.

The introduced model is able to identify the protein configurations having
the best known optimum energy for sequences S1 to S6. For the first three
HP instances considered, optimum energy conformations are found very early
in the evolution process (usually during the first 20 generations) and therefore,
a less computationally expensive implementation of the algorithm (with fewer
generations and probably less hill-climbing iterations) would have been able to
generate the optimum. The proposed algorithm fails to find the optimum for the
larger instances S7 and S8. Most of the runs of the algorithm for sequence S7
detect the suboptimal solution having the energy −35. We expect to improve the
performance of the proposed model for large instances by extending the diver-
sification stage to consider other metrics for calculating the similarity between
two chromosomes. For example, a fingerprint of the protein configuration (which
includes topological information) can potentially provide a more accurate com-
parison between same-energy individuals so that the diversification stage would
result in the replacement of meaningfully similar chromosomes.

The performance of the proposed model is compared to the best results ob-
tained by other evolutionary models and memetic algorithms for protein struc-
ture prediction. Table 2 presents the results as follows: the known optimum
for each HP instance, the energy found by the proposed method (in the third
column), the results of standard GA [13], Pull-Move GA (PMGA) [1] and multi-
meme algorithms (MMA) [8]. The results of GA [13] are based on a population
of 200 structures evolved over 300 generations. The Pull-Move GA (PMGA) pro-
posed in [1] is able to improve the results of standard GAs by using pull move
transformations in addition to the standard genetic operators but not in a hill-
climbing mode. MMAs represent an interesting approach to be compared with
the one proposed in this paper as both models use local search but according to
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Table 2. Comparison of results achieved by different evolutionary methods for the HP
problem

Inst. E∗ Proposed Genetic Pull Move- Multimeme
Method Algorithms GAs Algorithms

S1 -9 -9 -9 -9 -9
S2 -9 -9 -9 -9
S3 -8 -8 -8 -8 -8
S4 -14 -14 -14 -14 -14
S5 -23 -23 -22 -22 -22
S6 -21 -21 -21 -21 -21
S7 -36 -35 -34 -34
S8 -42 -39 -37 -38 -39

different strategies. For GA and MMA the best solution from 5 runs is selected
while the PMGA reports the best solution from 10 runs.

A direct comparison between energy values obtained by different evolution-
ary models emphasizes a good and competitive performance of the proposed
method. The results are better than those of GAs [13] and PMGAs [1]. The
effect of hill-climbing search based on pull moves is clearly benefic as opposed to
applying pull moves in addition to mutation as in PMGA (the proposed model
detects better energies for instances S5, S7 and S8 compared to PMGA). The
results are competitive with those of MMA (the proposed model obtains a better
solution for instance S5 when compared to MMA). This is a promising result
for the proposed method emphasizing the power of hill-climbing search proce-
dures based on specialized genetic operators. In MMAs, optimization is based on
the memes available individually (pivot moves, substructure stretching, random
macro-mutation of a substructure, reflection of a sub-structure, non local k-opt
and local k-opt) [8]. The proposed model uses a scheme by which a dynamic
number of individuals are affected each generation by hill-climbing search oper-
ators and is able to detect similar or better results compared to MMAs where
optimization (based on the six memes mentioned above) is applied for every
individual in the population in addition to standard evolutionary search.

6 Conclusions and Future Work

A new evolutionary model relying on a hill-climbing search scheme is presented
and engaged to address the protein structure prediction problem in the HP model.
The main feature of the proposed model refers to the application of crossover and
pull move transformations (as mutation) within hill-climbing search procedures.
Better ofsspring are inserted in the population within the same generation making
the selection process intrinsic to hill-climbing crossover and mutation. An explicit
diversificationprocess is engaged periodically to replace similar chromosomeswith
new genetic material. The results obtained for several bidimensional HP instances
are promising and competitive with the best results of other evolutionary models.
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It is planned to extend numerical experiments for other larger HP sequences to
further test the performance of the proposed model. More complex approaches
to the calculation of the fitness energy will be investigated. Furthermore, the
proposed evolutionary model can highly benefit from the improvement of diversi-
fication using other mechanisms for checking the similarities between individuals
(such as the fingerprint of protein conformations).
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Abstract. Identifying approximately repeated patterns, or motifs, in bi-
ological sequences from a set of co-regulated genes is an important step
towards deciphering the complex gene regulatory networks and under-
standing gene functions. In this work, we develop a novel motif finding
algorithm based on a population-based stochastic optimization technique
called Particle Swarm Optimization (PSO), which has been shown to be
effective in optimizing difficult multidimensional problems in continuous
domains. We propose a modification of the standard PSO algorithm to
handle discrete values, such as characters in DNA sequences. Our algo-
rithm also provides several unique features. First, we use both consen-
sus and position-specific weight matrix representations in our algorithm,
taking advantage of the efficiency of the former and the accuracy of
the later. Furthermore, many real motifs contain gaps, but the existing
methods usually ignore them or assume a user know their exact loca-
tions and lengths, which is usually impractical for real applications. In
comparison, our method models gaps explicitly, and provides an easy
solution to find gapped motifs without any detailed knowledge of gaps.
Our method also allows some input sequences to contain zero or multi-
ple binding sites. Experimental results on synthetic challenge problems
as well as real biological sequences show that our method is both more
efficient and more accurate than several existing algorithms, especially
when gaps are present in the motifs.

Keywords: DNA motif; optimization; PSO; evolutionary algorithm.

1 Introduction

Computational prediction of transcription factor binding sites (TFBS) from co-
expressed / co-regulated genes is an important step towards deciphering complex
gene regulatory networks and understanding gene functions. Given the promoter
sequences of a set of co-expressed / co-regulated genes, the goal is to find short
DNA sequences (“motifs”) whose occurrences (with allowed mismatches) in the
sequences cannot be explained by a background model. An accurate identification
of such motifs is computationally challenging, as they are typically very short
(8-15 bases) compared to the promoter sequences (hundreds to thousands bases).
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Furthermore, there is often a great variability among the binding sites of any
given TF, and the biological nature of the variability is not yet well understood.
Finally, in many cases, the TFBS may appear only in a subset of the putatively
co-regulated genes.

Despite the challenge, many computational methods have been developed and
have been proven useful in predicting real binding sites [1]. The existing algo-
rithms can be roughly classified into two broad categories according to the motif
representations: those based on position-specific weight matrices (PWMs), and
those based on consensus sequences. Examples of the former include well-known
programs such as MEME [2], AlignACE [3], GibbsSampler [4], and BioProspec-
tor [5]. The latter category includes Weeder [6], YMF [7], MultiProfiler [8], and
Projection [9]. In general, PWM offers a more accurate description of motifs
than consensus sequences, but is more difficult to optimize. On the other hand,
consensus-based algorithms often rely on enumerating short subsequences, which
may be impossible for longer motifs. For an excellent survey of the existing meth-
ods and an assessment of their relative performance, see [1,8].

Recently several consensus-based motif finding algorithms have been devel-
oped using evolutionary algorithms, because of their efficiency in searching over
multidimensional solution spaces. For example, GAME [10] and GALFP [11] are
based on genetic algorithms, and have been shown to outperform many PWM-
based algorithms. In a previous work, we proposed a motif finding algorithm
based on the classical Particle Swarm Optimization (PSO) strategy [12], where
we used the set of positions on each sequence together as a solution, and searched
the solution space by PSO algorithm. To keep the solution space continuous, we
restructured the original sequences using a sequence mapping. Although the
algorithm shows a good performance on small input size (for example 20 se-
quences and 1000 base for each sequence), the algorithm becomes slow for larger
data set, as the number of possible motif positions grows exponentially as the
number of sequences increases. Several other motif finding methods have also
been developed based on PSO, for example, Hybrid-PSO [13] and PSO-EM [14].
Hybrid-PSO uses a similar basic idea as our previous work [12], and therefore has
the same problem we mentioned above. PSO-EM simply uses PSO to find can-
didate motifs, which are then used as seeds by other expectation-maximization
based motif finding algorithms, such as MEME [2].

In this paper, we develop a novel algorithm, called PSO+, for finding motifs.
This new method has the following contributions. First and most importantly,
PSO+ differs from other motif finding algorithms by explicitly modeling gaps,
which provides an easy solution to find gapped motifs. Many real motifs contain
positions of low information (gaps), but the existing algorithms usually do not
allow gaps, or require a user to specify the exact location and length of gaps,
which is often impractical for real applications. Second, we use both consensus
and PWM representations in our algorithm, taking advantage of the efficiency
of consensus and the accuracy of PWMs. Finally, our method also allows some
input sequences to contain zero or multiple binding sites, which is common in real
biology data set, but ignored by some of the algorithms. Finally, we propose a
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Algorithm PSO Motif Plus
fitness(final consensus) = -infinity;
for i=1 to MAX RESET do {//loop 1}

Initialize a random solution (current) for each agent
fitness(pbest) = -infinity for all agents
fitness(gbest) = -infinity;
for j=1 to MAX ITERATION do {//loop 2}

for k=1 to NUM AGENTS do {//loop 3}
Scan each sequence to find a best match to currentk;
Use the matches to calculate fitness(currentk);
if fitness(currentk) > fitness(pbestk) then

pbestk = currentk;
end if
if fitness(currentk) > gbest then

gbest = currentk;
end if

end for
Check Shift;
Update current for each agent based on the update rule;
if j > MIN ITERATION and no update on gbest occurred in past N iterations
then

End Loop 2;
end if

end for
if fitness(gbest) > fitness(final consensus) then

final consensus = gbest;
end if

end for
Post-processing;

Fig. 1. Pseudo-code of our algorithm

novel modification to the PSO update rule to accommodate discrete values, such
as characters in DNA sequences, which may also be useful in other applications.

The remaining sections are organized as follows. In Section II, we present the
details of our algorithm. In Section III, we use both synthetic and real biological
sequences to show that our method is more efficient and more accurate than
several existing algorithms, especially when gaps are present in the motifs. We
conclude in Section IV.

2 Algorithm

2.1 Introduction to Particle Swarm Optimization

Particle Swarm Optimization (PSO), which has been shown to be effective in
optimizing difficult multidimensional problems in many fields, is a population-
based stochastic optimization technique for problem solving that is inspired by
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the social behaviors of organisms such as bird flocking [15]. The system is initial-
ized with a population of random solutions and searches for the optimal solution
by updating iteratively. Each potential solution, called particle (or agent), is rep-
resented by a point in the multiple-dimensional solution space. When searching
for the optimum solution, particles fly around the solution space with a certain
velocity (speed and direction). During flight, each particle adjusts its position
and velocity according to its own experience and the experience of its neighbors.
Specifically, each particle keeps track of the best solution it has encountered so
far. This solution is called pbest, which stands for personal best. The system also
keeps track of the global optimum of all the particles, hence called gbest. The
fundamental concept of PSO consists of changing the velocity of each particle at
each time step toward its pbest and gbest locations [15].

2.2 Method Overview

Fig. 1 shows the main structure of the algorithm, which contains three loops.
The most inside loop, loop3, evaluates the fitness value of each agent and update
information for the whole system. Using its current solution, an agent first finds
out a best match from each sequence, calculates the fitness value (see below),
and updates pbest, gbest if necessary. Loop2 is the main part of the PSO+ al-
gorithm. From a random initial solution, each agent continuously searches for
better solutions in the neighborhood, taking information from its own experi-
ence (pbest), and the experience of all agents (gbest). The actual movement of
each agent is determined by the update rule (see below). Finally, as a stochastic
algorithm, the final solution of PSO+ depends on its starting solutions. The pur-
pose of loop1 is therefore to restart the system several times, from independent
random solutions, to ensure a high overall success rate. At the final step, we
use post-processing to remove and/or add some binding sites, therefore allowing
zero or multiple binding sites on each sequence.

2.3 Solution Space and Fitness Function

To utilize the PSO+ algorithm, we need to represent a solution as a vector, and
determine a fitness function appropriate for the problem. As discussed in Intro-
duction, a motif of length l can be represented either as a position-specific weight
matrix (PWM), which is a 4xl matrix of real numbers specifying the probability
of each base at each position, or a consensus describing the most dominate base
at each position. The matrix can be converted into a vector of length 4l, although
some care needs to be exercised to ensure proper normalization. The consensus
representation is more efficient in searching for new instances, and may lead to
faster convergence, while the PWM is more powerful in representing weaker mo-
tifs and is more accurate in evaluating the motif quality. We decided to use both
representations in our algorithm, to take advantage of both forms. The solution
is initialized as a consensus. During the scanning stage, we use the consensus
representation. After the best matches to the consensus are found from all the
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sequences, we compute a PWM based on the set of matches, and compute the
fitness of the solution based on the PWM.

Given a solution, i.e., a consensus, it is first used to scan the input sequences
to find a best match on each sequence. Let X = (x1x2 . . .xl) be the consensus
sequence and Y = (y1y2 . . . yl) be a putative binding site. The matching score
between X and Y is computed using the following equations:

M(X, Y ) =
∑

i

σ(xi, yi), and

σ(a, b) =
{

1 + log4 (0.25/pa) if a = b
log4 (0.25/

√
papb) otherwise

where pa is the background frequency for base a in the input sequences or in
the whole genome. As most genomes contain more AT’s than CG’s, this formula
gives unequal weight to different types of match/mismatches. A match between
two bases with lower background frequency would have higher score than that
between two bases with higher background frequency. For uniform base frequency
pA = pC = pG = pT = 1/4, σ(a, b) = 1 if a = b and 0 otherwise, corresponding
to an intuitive match/mismatch score.

Given a set of matches of a consensus, W = w1, w2, . . . , wn where each wi is
a subsequence with length l , we compute the fitness of the consensus using the
information content (IC) score:

IC =
l∑

j=1

∑
b

fb(j) log2(fb(j)/pb),

where fb(j) is the normalized frequency of nucleotide b on the column j of all
instances in W and pb is the background frequency of b.

2.4 Initial Solutions and Number of Agents

Similar to all stochastic algorithms, the performance of PSO+ partially depends
on the initial solutions. The final solution of the algorithm can be significantly
improved if at least one of the agents has an initial solution near the optimal
solution. In this work we consider two strategies. The first strategy is to simply
generate a set of random consensus. The second strategy is to randomly choose
a subsequence from the input sequence as an initial solution. Although the first
strategy would allow the maximum coverage, the probability that any randomly
generated consensus is near the optimal solution is very low, as there are 4l

possible solutions for a motif of length l. For the second strategy, we assume that
the actual binding site is closer to the consensus than is some random sequence.
Since there is usually about one binding site per sequence, it is very likely that
some agents may select a binding site as an initial solution. More precisely,
assuming that the average sequence length is L and the motif length is l, the
probability that a randomly selected sequence is a binding site is 1/(L − l + 1).
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Also because of the Check Shift step in the algorithm, a random solution that
contains a large suffix or prefix of the binding site can often lead to the recovery of
the real motif quickly. We usually allow a binding site to be shifted by two bases
to its left and right, respectively. Therefore, each true binding site can provide
up to 5 initial solutions that are similar to the real motif. For this reason, we
suggest the minimum number of agents to be (L − l + 1)/5 to ensure a high
success rate. In our experiments on both synthetic and real sequences, we have
found that the second strategy usually leads to much faster convergence and
therefore is implemented as the default option.

2.5 Modified PSO+ Update Rule for Discrete Problems

After each iteration, each agent needs to update its current solution based on
the old current, its own pbest, and gbest of the system, each of which is a
vector. The standard PSO algorithm is designed for optimization problems in
the continuous domain; therefore, a new solution can be easily obtained by a sum
of the three solution vectors multiplied by some random weights. In our case,
however, each solution is a vector of ACGT’s and they cannot be manipulated
by simple algebra such as multiplication and summation. In order to generate a
new solution, we use the following rule, which is applied independently to each
position of the motif:

i∗ = argmaxi(ciriweight(xi)) and x′ = xi∗ ,

where x′ is the new character being generated, x1, x2, x3 are the characters in
current, pbest, and gbest, respectively, x4 is a random character from ACGT,
ci is a scaling factor to determine the relative importance of the four terms, ri

is a uniform random number, and the function weight gives a higher weight to
characters having lower background frequency. This strategy effectively suppress
characters with lower occurrence, when compared to an alternative strategy that
randomly pick a character proportional to its number of occurrence in x1, x2, x3
and x4. For example, assuming ci = 1 and the weight function returns a constant,
if x1 = x2 = x3 = A and x4 = C, the alternative strategy would select A with
3/4 probability and C with 1/4 probability; with our strategy, we would select
A with 7/8 probability and C with 1/8 probability. This reduces the probability
of drifting away when a solution is near the optimal solution.

All agents stop their movements if the number of iterations exceeds an upper
limit, or if there has been no update for a certain number of iterations and a
minimum number of iterations has passed.

2.6 Check Shift

Similar to many motif finding algorithms, the output of PSO+ algorithm may
have a shift issue: the start positions of the binding sites may be one or two
positions away from the real positions, and it is difficult for the algorithm to
escape from such local optima. To circumvent this problem, we periodically check
whether shifting the binding sites by a small number (up to 3 bases) can improve
the quality of the solution. This is done in the CHECK SHIFT step.
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2.7 Gapped Motifs

Many real motifs contain do-not-care positions in their consensus. Furthermore,
these do-not-care positions are often consecutive, forming a motif with two short
conserved regions with some fixed distance in between. We call these do-not-care
positions gaps and the motifs gapped motifs. Most motif finding algorithms do
not consider gaps explicitly. For consensus-based algorithms, ignoring gaps can
lead to serious mistakes when a consensus is forced to be selected for a gap
position, which has no dominant characters.

We solve this problem by asking the users to provide two parameters, motif
length l, and gap length k. Importantly, when we search for gapped motifs, we
allow gaps to appear as the suffix or prefix of a motif. This is very useful if the
actual gap is shorter than k, or if the non-gap region of the motif is shorter
than l − k. Furthermore, if a real motif contains no gaps, our algorithm will
automatically put all gaps in the flank regions. Therefore, although it seems that
by asking a user to provide an addition parameter, gap length, our algorithm may
increases the guesswork from the user, it actually gives the user more flexibility
in determining the appropriate motif and gap lengths.

To find gapped motifs, we introduce a bit vector of length l. The bit vector
contains exactly k 0’s and l − k 1’s, where a 0 means the position falls in a
gap. This vector is initialized randomly and later updated by masking out the
columns in the PWM with low IC values. Given this vector, when calculating the
match score between a consensus and a potential binding site, we only consider
the columns with 1’s. When we compute the fitness (IC score) of a motif given
all the binding sites, we consider all columns, because in this case we have all
the information to derive a PWM.

We consider two types of gaps. The first type of gaps can be anywhere in the
motif and do not need to be consecutive. To find this type of gapped motifs,
we simply mark the columns with the lowest IC value as gaps. The second type
of gaps are consecutive and are located in the center of a motif. For this type
of gapped motifs, we require a motif to contain at most two consecutive non-
gapped regions, while gaps can appear either as a prefix, a suffix, or in the
center of the motif. An algorithm using the second type of gaps is less efficient,
but can often obtain better results for real motifs. This is the default option of
our algorithm.

Although it seems that asking a user to provide an addition parameter, gap
length, increases the guesswork from the user, this actually gives the user more
flexibility in determining the appropriate motif/gap length. If the actual gap is
shorter than the given number, or if the motif is shorter than expected, gaps
can appear as suffix and/or prefix of the motif. Furthermore, the algorithm will
automatically put all gaps in the flank regions if the real motif contains no
gaps.

By default, we use 8-base motif with 0 gap for short motifs, 12-base motif with
2 gaps for medium-length motifs, and 16-base motif with 4 gaps for long motifs.
This strategy works well for the unknown length motif finding problems in this
paper. The program allows a user to change the parameters by themselves.
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Table 1. Running time (seconds) on (l,d)-motif challenge problems

Sequence length 400 500 600 800 1000 600 600 600 600
(l,d) (15,4) (15,4) (15,4) (15,4) (15,4) (11,2) (13,3) (17,5) (19,6)
Weeder 60 125 200 450 900 - - - -
Projection 9 23 42 162 418 4 13 94 174
MotifEnumerator - - - - - 5 119 - -
PSO 18 34 57 137 288 72 58 61 54
GALFP 100 123 161 212 286 127 137 162 172
GAME 27 30 32 36 41 23 28 34 42
PSO+ 1.1 3.1 3.4 7.3 19.4 4.9 10.6 2.3 3.8
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Fig. 2. Running time distribution of PSO+ on (15,4)-motif challenge problem (se-
quence length = 600). Results are based on 100 runs on independent sequences.

2.8 Post-processing

The basic algorithm described above assumes that there is one and only one
binding site on each sequence, which is certainly not always true. To address this
problem, we use a statistically-inspired strategy to refine the binding sites. We
assume that at least a good fraction of the sequences contain at least one binding
site. We calculate the match score for each putative binding site returned from
the basic algorithm. Let Q1, Q2, and Q3 represent the lower quartile, median,
and upper quartile of the match scores. The inter-quartile range (IQR) of the
match scores is then computed by Q3 - Q1. All binding sites with a match score
below Q1 - IQR are dropped as false binding sites. We also rescan the input
sequences using the consensus for additional putative binding sites. A binding
site with match score higher than Q2 is considered a true binding site. A PWM
is constructed using the final set of binding sites.

3 Experimental Results

To evaluate the performance of our algorithm, we tested it on two types of
sequences. The first type of test data consists of synthetic DNA sequences, also
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known as the (l, d)-motif challenging problem [16]. The second type of data
contains real promoter sequences. The algorithm is implemented in C.

3.1 Evaluation Using Synthetic Data Sets

We tested our algorithm on the (l, d)-motif challenge problem. Each challenge
problem includes n sequences of length L, each of which contains a variant of
a pre-defined consensus of length l. The variant were generated by choosing d
positions randomly from the consensus and changing them to random bases.

In our first experiment, we focused on the (15, 4)-motif challenge problem,
which is one of the most popular benchmarks for motif finding programs. We
chose n = 20, and varied L from 400 to 1000. Table 1 (left half) shows the
running time of our current algorithm (PSO+), another PSO-based algorithm
we developed recently (PSO) [12], two evolutionary algorithms (GAME [10] and
GALFP [11]), and three well-known combinatorial-search algorithms (Projec-
tion [9], Weeder [6], and MotifEnumerator [17]). We were not able to test Weeder
by ourselves because the currently available implementation of the algorithm can
only handle motifs of even lengths up to 12. Its running time was taken from
the original publication and was based on an 89% success probability [6]. The
results of the other algorithms were obtained by downloading the programs from
the original authors’ websites and running with parameters that can recover the
embedded motifs with 100% accuracy. Running time was based on the average
of 10 runs on 5 sets of sequences.

As shown in Table 1, PSO+ is significantly more efficient than the other
algorithms. Our previous PSO algorithm was based on a very different problem
formulation and is considerably slower than PSO+. It is worth noting that the
running time of the evolutionary algorithms, GAME and GALFP, are much
slower than PSO+ in general, but their running time only increases slightly with
sequence lengths. This might be because these two algorithms spend a significant
amount of time in initialization, independent of sequence lengths.

Next, we compared these algorithms on their performance on challenge prob-
lems with varying motif lengths and number of errors. Sequence lengths were
fixed at 600. The current algorithm outperforms the existing algorithms again
on these test sequences (Table 1, right half). Similar to our previous PSO-based
algorithm, the running time of PSO+ is relatively independent of motif lengths.

Finally, we run PSO+ 100 times on independent sequences, and plotted the
running time in Fig. 2. As shown, the running time has a long-tail distribution,
meaning in some rare cases the algorithm may need extremely long time to
converge. Because of this, the algorithm runs faster than the average running
time in most cases. A better strategy for detecting local optima may eliminate
some of these rare cases and improve the overall efficiency.

3.2 Experiments on Real Biological Sequences

To test the performance of our algorithm on real biological sequences, we used
the same eight representative test cases used in [11], which covered different
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Fig. 3. Motif Logos. Left: real motifs; right: motifs found by our algorithm. The motifs
are listed in the same order as in Table 2.

lengths of motifs and both gapped and non-gapped motifs. In these data sets,
some sequences may contain zero or more binding sites. Details of the data
sets are available in [11]. Based on these data sets, it has been reported that two
genetic algorithms, GALFP [11] and GAME [10], are significantly more accurate
than five popular algorithms: MEME [2], Bioprospector (BP) [5], BioOptimizers
based on MEME (BOM) and BioOptimizers based on Bioprospector (BOB) [18].
Therefore, we only compared PSO+ with GALFP and GAME directly.

As in [11], we measure accuracy by precision, recall, and F-score. Precision
is defined as c/p and recall is defined as c/t, where c, p and t are the number of
correctly predicted binding sites, the number of predicted binding sites and the
number of true binding sites in the sequences, respectively. The F-score combin-
ing both precision and recall is defined as F = 2∗Precision∗Recall/(Precision+
Recall). Table 2 shows the average results of PSO+, GALFP [11] and GAME [10]
on 20 runs (the bolded entries are the winners). As shown, PSO+ and GALFP
have about the same accuracy. PSO+ has the best F-scores on 4 of 8 test cases
while GALFP has the best F-scores on 3 test cases. More in-depth investigation
reveals that PSO+ generally has the highest precision (5 out of 8), while GALFP
has the highest recall (3 out of 8). This indicates that PSO+ reported less but
more accurate binding sites than GALFP.

Interestingly, two of the eight cases (CRP, ERE) are clearly gapped motifs, as
shown in Fig. 3. PSO+ won in both cases, especially in ERE (average F-score:
0.92, 0.79, and 0.62, for PSO+, GALFP and GAME, respectively), indicating
that the gap model in our algorithm is effective. On the other hand, even though
our algorithm has a much larger search space by allowing gaps, its performance
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Table 2. Comparisons of average performance on the 8 real datasets

GAME GALFP PSO+
Precision Recall F-score Precision Recall F-score Precision Recall F-score

CREB 0.43 0.42 0.42 0.70 0.84 0.76 0.76 0.68 0.72
CRP 0.79 0.78 0.78 0.99 0.73 0.84 1 0.78 0.88
ERE 0.52 0.78 0.62 0.82 0.76 0.79 0.92 0.92 0.92
E2F 0.79 0.87 0.83 0.77 0.85 0.81 0.68 0.7 0.69
MEF2 0.52 0.55 0.53 0.91 0.98 0.95 1 1 1
MYOD 0.14 0.14 0.14 0.57 1 0.72 0.20 0.43 0.27
SRF 0.71 0.86 0.78 0.75 0.89 0.82 0.80 0.56 0.66
TBP 0.81 0.74 0.77 0.87 0.87 0.87 0.86 0.91 0.88

Fig. 4. Logos for the ERE motif. Left: real motif; middle: motif found by PSO+ with
the gap option turned off; right: motif found by PSO+ with the gap option turned on.

on the other six motifs that do not have gaps is still among the best. Fig. 4
shows the results of PSO+ on the ERE motif, with or without the gap option.
Without the gap option, our algorithm attempts to maximize the total infor-
mation content of all positions, which results in a motif with relatively uniform
information content across all positions. In contrast, with the gap option, our al-
gorithm automatically determines the low-information positions and treats them
as gaps, and therefore improves the accuracy of the final result. With the gap
option turned on, the Pearson correlation coefficient between the predicted and
true motif PWMs is improved from 0.92 ( p = 10−22) to 0.97 (p = 10−33).

Finally, it takes our algorithm 20 to 60 seconds for each of the 8 test cases. In
comparison, the average running time is about 62 seconds for GALFP, and 291
seconds for GAME.

4 Conclusions and Discussion

In this work, we have proposed a novel algorithm for finding DNA motifs based
on Particle Swarm Optimization (PSO). Our contributions include a novel mod-
ification of the PSO update rule to allow discrete variables, a model to allow
gapped motifs, and a simple method to fine-tune the motif when some sequences
contain zero or multiple binding sites. Experimental results on synthetic chal-
lenge problems as well as real biological sequences show that our method is both
more efficient and more accurate than several existing algorithms, especially
when gaps are present in the motifs. We are working to finalize our program,
which will be freely available to the research community soon.
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Abstract. We propose a novel distance based method for phylogenetic
tree reconstruction. Our method is based on a conceptual clustering
method that extends the well-known decision tree learning approach. It
starts from a single cluster and repeatedly splits it into subclusters un-
til all sequences form a different cluster. We assume that a split can be
described by referring to particular polymorphic locations, which makes
such a divisive method computationally feasible. To define the best split,
we use a criterion that is close to Neighbor Joining’s optimization crite-
rion, namely, minimizing total branch length. A thorough experimental
evaluation shows that our method yields phylogenetic trees with an accu-
racy comparable to that of existing methods. Moreover, it has a number
of important advantages. First, by listing the polymorphic locations at
the internal nodes, it provides an explanation for the resulting tree topol-
ogy. Second, the top-down tree growing process can be stopped before
a complete tree is generated, yielding an efficient gene or protein sub-
family identification approach. Third, the resulting trees can be used as
classification trees to classify new sequences into subfamilies.

1 Introduction

We consider the problem of deriving from a set of aligned DNA or protein se-
quences the most likely phylogenetic tree. Many methods have been proposed
for this. One popular approach consists of computing a dissimilarity measure
between each pair of sequences, and then using the resulting matrix to infer the
tree. Methods that use this approach are called distance based methods, and are
represented by the well-known Neighbor Joining (NJ) [1,2] algorithm.

NJ is essentially a so-called agglomerative hierarchical clustering algorithm:
starting from one cluster per sequence, it iteratively merges clusters of sequences
until a single cluster is obtained. While agglomerative clustering algorithms are
among the most popular ones for clustering, many other clustering algorithms
exist. Among these algorithms, one can distinguish extensional and conceptual
clustering algorithms. In extensional clustering, a cluster is described by enu-
merating its elements, whereas in conceptual clustering, a cluster is described

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2010, LNCS 6023, pp. 62–73, 2010.
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by listing properties of the cluster’s elements, using a particular description
language. In the context of phylogenetic analysis, a natural conceptual language
would be one that refers to polymorphic locations; for instance, one cluster might
be described as “all sequences having a C at position 72 and A at position 31”.

If we assume that it must be possible to describe clusters using a particular
language, the space of all possible clusterings is greatly reduced. This enables us
to use a so-called divisive clustering method, which starts from a single cluster
and repeatedly divides it into subclusters until all sequences form a different
cluster. Normally, given a set of N sequences, there are 2N ways to split it into
two subsets. But if we assume that the split can be described by referring to a
particular polymorphic location, the number of splits is linear in the length of
the sequences, and constant in the size of the set, making such a divisive method
computationally feasible, and potentially faster than agglomerative methods. A
similar observation was made by [3], who were the first to propose a top-down
clustering method for phylogenetic tree reconstruction. Differences between their
algorithm and our work are described in the related work section.

Blockeel et al. [4] discuss how a simple extension of decision tree learning leads
to a (general-purpose) divisive conceptual clustering algorithm. In this paper we
address the question to what extent this approach lends itself to phylogenetic
tree reconstruction. If it works well, that is, if it yields phylogenetic trees with
an accuracy comparable to that of existing methods, such an approach would
have a number of important advantages over existing methods. First, as just
argued, it may be faster than methods based on agglomerative clustering. Sec-
ond, as each division into subclusters is defined by polymorphic locations, the
resulting tree immediately gives an evolutionary trace, which can be useful for
recognizing functional sites [5]; current methods for this typically involve a two-
step process. Third, by using different stopping criteria, the divisive method can
be used not only to reconstruct complete phylogenetic trees, but also to identify
subfamilies of genes or proteins, without having to grow a complete tree and
cutting it afterwards [6]. Finally, since the phylogenetic tree has the form of a
classification tree, it can be used directly to classify newly available sequences
into such subfamilies, by simply sorting them down the tree into the leaf nodes.

In order to study the top-down conceptual clustering approach in the context
of phylogenetic tree reconstruction, we propose a method that is strongly based
on an existing decision tree learner; the only change made to it is the heuristic
used for splitting nodes. We thoroughly evaluate this new method with respect to
accuracy and efficiency. The conclusion is that the method achieves comparable
accuracy as existing state-of-the-art methods, with a tendency to perform better
for highly symmetric trees, and somewhat worse for highly asymmetric trees.

2 Background and Related Work

The Neighbor Joining (NJ) algorithm [1] is one of the most widely used methods
for phylogenetic tree reconstruction. It is a heuristic estimation of the minimum
evolution tree, which is the tree with minimal sum of branch lengths, and assumes
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a distance matrix with pairwise distances between all sequences is given. It uses
a hierarchical clustering approach, at each stage of the clustering grouping two
OTUs (Operational Taxonomic Units) together. The original Neighbor Joining
algorithm has a complexity O(N5) [7]. However, Studier and Keppler [2] have
presented an alternative version, which is O(N3). This makes NJ one of the most
efficient algorithms for phylogenetic tree reconstruction [8].

Another efficient method, and among all methods the one that most closely re-
sembles ours, is the PTDC (Phylogeny by Top Down Clustering) algorithm [3].
This algorithm shares with our proposal the idea of recursively partitioning clus-
ters. The main differences are: (1) our approach makes the link to the decision tree
learning framework, which allows us to exploit the highly developed state of the
art in that area; (2) PTDC’s heuristic maximizes the average of all pairwise dis-
tances between sequences of different clusters, making it similar to the UPGMA
algorithm, from which it inherits some undesirable characteristics such as sensi-
tivity to unequal substitution rates in different lineages [9], whereas our method
uses a heuristic that approximates the Neighbor Joining criterion; (3) while PTDC
splits clusters based on equality of subsequences, our approach creates splits based
on a single, most informative, position; this gives it an efficiency advantage.

3 Method

As said, we build on the state of the art in decision tree learning. Decision trees
are typicallybuilt top-downusing a recursivepartitioningmethod. Given a dataset
and a set of tests (where a test gives one of several possible outcomes when applied
to a single data element), they find the test that optimally partitions the dataset
into subsets (for some definition of optimal), and keep repeating this procedure
on the subsets until subsets of size one are obtained, or another stopping criterion
is fulfilled. The procedure is best known in the context of classification trees [10],
but it can equally be applied for conceptual clustering [4], in which case tests are
considered better if the similarity within the created subsets is higher.

In the context of phylogenetic tree construction, data elements are sequences.
A test can for instance check for the occurrence of a particular nucleotide or
amino acid at a particular location; this is the kind of tests we use in our method.
More specifically, we allow tests of the form “p(x) = y” or “p(x) ∈ Y ”, where p(x)
returns the nucleotide or amino acid at position x, and where y is a nucleotide or
amino acid, and Y a set of them. The test “p(5) ∈ {A, T }”, for instance, creates
two subsets, one containing all sequences with an A or T at position 5 and one
containing all other sequences.

Decision tree learners typically stop partitioning sets when all elements of the
set are sufficiently similar, e.g., for classification trees, when all elements belong
to the same class. For phylogenetic trees, one could do something similar, if the
tree need only be built up to the level of subfamilies; here, however, we will focus
on building complete trees, i.e., we keep splitting until all subsets are singletons.

The only question that remains, then, is how to determine the quality of a split.
Intuitively, one could argue that an “old” mutation, i.e., one that occurred a long
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Fig. 1. Split topologies. Left: NJ, center: Clus-ϕ (root), right: Clus-ϕ (non-root).

time ago in evolutionaryhistory, is more likely to have led to two different branches
that by now have grown far apart, than a more recent mutation. As we are building
a rooted tree, where we hope to find older mutations nearer to the root, we should
prefer tests that create subsets that are far apart. A natural heuristic for selecting
tests is then simply: compute the average distance between elements from different
subsets induced by the test; choose the test that maximizes that average distance.
This is the heuristic that Arslan et al. use [3]. Alternatively, one could use an exten-
sion of the information gain heuristic that is commonly used for classification trees;
Clare et al. [11] define such an extension for multilabel classification trees, and this
heuristic is available in the decision tree learner on which our system is based.

These standard heuristics, however, do not take into account the particu-
lar requirements of phylogenetic tree reconstruction. Using the average distance
heuristic, one essentially gets the top-down counterpart of the UPGMA algo-
rithm, which is known to have some undesirable behavior [8]. NJ works in essen-
tially the same way as UPGMA, but uses a more advanced distance metric for
deciding which two clusters to merge, and this yields better results. This raises
the question whether a top-down counterpart of NJ’s heuristic can be developed.

Such a heuristic would have to estimate the total branch length of the tree that
will finally be constructed, using the pairwise distances provided in a distance
matrix D. Using the same reasoning as in the derivation of NJ’s heuristic [1], we
can define an equivalent heuristic function for splitting the root node:

H(Tl, Tr) =
1

|Tl||Tr|
∑

xi∈Tl
xj∈Tr

Dxixj +
1
|Tl|

∑
xi,xj∈Tl

i<j

Dxixj +
1

|Tr|
∑

xi,xj∈Tr
i<j

Dxixj , (1)

where Tl and Tr denote the set of sequences in the left and right subtrees of the
split, respectively. This formula computes the total branch length of a “double
star”-shaped topology (see Fig 1, center), which is an upper bound for the actual
total branch length of the final tree. It is a generalization of the NJ heuristic,
which has |Tl| = 2 and |Tr| = N−2, with N the total number of sequences (Fig 1,
left). The previous equation can be rewritten into a more efficient formulation,

H(Tl, Tr) =
1

|Tl||Tr| (
∑

xi,xj∈Tl∪Tr
i<j

Dxixj + (|Tr| − 1)
∑

xi,xj∈Tl
i<j

Dxixj +

(|Tl| − 1)
∑

xi,xj∈Tr
i<j

Dxixj ), (2)

where the first term is constant for the node to be split.
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For splitting the other internal nodes, a more complex heuristic function is
needed, since the particular split influences the length of other branches in the
tree, and hence, the total branch length (Fig 1, right). Again, using a similar
reasoning as applied by Saitou and Nei [1], it can be verified that the function
to minimize is given by

H(Tl, Tr, To) =
1

|Tl||Tr| (
∑

xi,xj∈Tl∪Tr
i<j

Dxixj + (2|Tr| − 1)
∑

xi,xj∈Tl
i<j

Dxixj +

(2|Tl| − 1)
∑

xi,xj∈Tr
i<j

Dxixj +
|Tr|
|To|

∑
xi∈To
xj∈Tl

Dxixj +
|Tl|
|To|

∑
xi∈To
xj∈Tr

Dxixj ), (3)

with To denoting the set of other sequences in the tree (i.e., not in Tl ∪ Tr).
The computational complexity of a decision tree learning method is roughly

O(aN log N) with a the number of tests and N the number of elements in the
original dataset, under the assumption that a reasonably symmetric tree is built
(the depth of which is logarithmic in the number of leaves) and the evaluation of
a single test takes linear time in the size of the dataset. This scales much better
in N than agglomerative methods, which have complexity O(N3) [2]. As such,
such a divisive method may be much more efficient when analyzing large sets of
sequences. The NJ-based heuristic, however, is more expensive to compute than
the average distance or information gain heuristics; it is quadratic, rather than
linear, in the size of the dataset being subdivided, which increases the overall
complexity of the method to O(aN2 log N).

Our algorithm is called Clus-ϕ and is implemented in the Clus system
(http://www.cs.kuleuven.be/~dtai/clus).

4 Experiments

We have tested our alternative method for phylogenetic tree construction on
a number of datasets. In all experiments, we used the Jukes-Cantor correction
formula [12] to compute the genetic distance between two DNA sequences, and
the Jones-Taylor-Thornton matrix [13] for protein sequences. We measure dif-
ferences between trees using the quartet distance [14]. This distance gives the
number of quartets, i.e. subtrees induced by four leaves, that differ between the
two trees being compared.

4.1 Real Datasets

In a first set of experiments, we check how much Clus-ϕ trees differ from the
ones returned by Neighbor Joining (NJ). As a reference point, we include the
difference between parsimony methods and NJ1. To construct the NJ and par-
simony trees we used the programs neighbor and dnapars/protpars from the
Phylip software package [15], respectively.
1 When parsimony analysis returns multiple trees, we report the average difference.

http://www.cs.kuleuven.be/~dtai/clus
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Table 1. Quartet distance for real datasets

Dataset Type Size Length NJ vs. Clus-ϕ NJ vs. Pars

Chimp DNA 5 896 0 2
cynmix DNA 32 3080 11680 16543
Primates DNA 21 1500 184 632
SIV DNA 41 6042 21350 10608
hivALN DNA 14 2352 0 156
InvertebrateEF DNA 16 1050 200 152
mtDNA DNA 17 1998 218 26
VertebrateMtCOI DNA 8 1509 178 31
g3pdh Protein 14 313 180 65.33
gpd Protein 12 234 52 18
gdpAA Protein 12 422 73 97.50

Table 1 reports the quartet distance for 11 datasets used in [8]. While the
trees generated by Clus-ϕ are very similar to those generated by NJ for some
datasets (for datasets Chimp and hivALN, Clus-ϕ and NJ generated identical
phylogenetic trees), there are larger differences for other datasets. However, this
variation is comparable to the variation between the parsimony method and NJ.

The question is then whether, in those cases where NJ and Clus-ϕ differ, any
of them is more likely to be correct than the other one. To check this, we tested
Clus-ϕ on a number of synthetic datasets, where the correct tree is known.
These experiments are discussed in the next section.

4.2 Synthetic Datasets

The synthetic datasets were generated by simulating an evolutionary process,
using the coding sequence simulation program EvolveAGene3 [16], with a ran-
domly generated DNA sequence as input. By default, this software produces
symmetric trees, i.e., binary trees that have all leaves at the same depth. How-
ever, also random tree topologies can be produced. The average branch length is
set to 0.05 in all experiments, meaning that each branch has an average mutation
rate of 5%. All other parameters are set to their default value.

First, we evaluate our proposed heuristic (see Section 3). Second, we compare
the trees obtained by Clus-ϕ to those obtained by NJ in terms of similarity with
the true tree topology. Finally, we investigate the influence of the number of se-
quences on quartet distance and computational cost for both NJ and Clus-ϕ.

Analysis of the Heuristic

To evaluate our proposed heuristic, we compare trees constructed using our
heuristic to trees constructed with two other heuristics for decision trees. The
first heuristic is an extension of the standard information gain heuristic towards
multilabel classification [11]; we call this implementation Clus-IG. The second
heuristic is similar2 to the one used in the PTDC algorithm [3]. It recursively
2 The only difference between our implementation and the one discussed in [3] is that

we create splits based on a single position instead of based on subsequences.
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Table 2. Number of wins/losses of Clus-ϕ’s heuristic compared to information gain
(Clus-IG) and inter-cluster distance (Clus-PTDC)

Clus-ϕ vs Clus-IG Clus-ϕ vs Clus-PTDC

Symmetric 113/78 (9 ties) 200/0
Random 113/87 200/0

splits the data by looking, in each step, for the two subclusters with the largest
average inter-cluster distance. We call this implementation Clus-PTDC.

In order to perform this experiment, we generated 400 synthetic datasets:
200 based on symmetric topologies and 200 based on random topologies, with
an input sequence length of 250 (200 datasets) and 900 (200 datasets)3, each
dataset containing 128 sequences. Table 2 presents a summary of the results, in
terms of the number of wins/losses of Clus-ϕ in the comparison with Clus-IG
and Clus-PTDC, according to the quartet distance from the inferred trees to
the true tree. As can be seen from the results, Clus-ϕ presents a higher number
of wins than Clus-IG, and is better than Clus-PTDC for all datasets. It shows
that, in the context of phylogenetic tree reconstruction, the new heuristic yields
better results than standard heuristics for decision trees.

Comparison between Clus-ϕ and NJ in terms of similarity to the
true tree topology

In this experiment we compare the similarity with the true tree for NJ and Clus-
ϕ. We generated 100 synthetic datasets based on symmetric topologies and 100
datasets based on random topologies, containing 128 sequences and using an
input sequence of length 900. A summary of the results, in terms of the number
of datasets for which each method presents the best performance, is shown in
Table 3. On average, NJ performs slightly better than Clus-ϕ; however the table
shows a large difference in the results for symmetric and random tree topologies.
For symmetric trees, the Clus-ϕ tree is in general closer to the true tree than
the tree produced by NJ. For the random tree topologies, on the other hand,
Clus-ϕ is closer to the true tree in only 5 cases. The reason for this difference
in behavior is currently unclear.

Interestingly, we noted that in a few cases, the trees produced by Clus-ϕ
are identical to the true topologies; this occurred for 5 out of 100 cases for the
datasets generated from symmetric topologies. For NJ, that is never the case.
The probability of observing at most 0 correct predictions for NJ and at least
5 for Clus-ϕ, under the null hypothesis that both have the same probability p
of making a correct prediction, depends on p but is always less than 0.01; this
implies that the hypothesis that Clus-ϕ does not have a higher probability of
predicting the correct tree than NJ is rejected at the 1% significance level.
3 As insertions and deletions are allowed in EvolveAGene3, the final sequence length

is usually larger than the input sequence length, e.g. for an input sequence of length
900, the length of the final sequences is around 1000.
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Table 3. Number of wins of NJ and Clus-ϕ for synthetic datasets

NJ Clus-ϕ

Symmetric 32 68
Random 95 5
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Fig. 2. Quartet distance to real tree, for symmetric (left) and random (right) trees.
Graphs: absolute values; Tables: quartet distance of Clus-ϕ relative to that of NJ.

In Figure 2 we show the quartet distance for 12 datasets of each kind, in
order to analyze the results in more detail. We can see that for random trees the
differences between the two methods are larger. The graphs also show the strong
variation of tree quality with the dataset: the dataset has a larger influence on
the overall performance than the choice of method.

From the results shown in Table 3 and Fig. 2 we can conclude that Clus-ϕ
tends to perform better for symmetric tree topologies, while NJ tends to perform
better for random topologies. In a sense, these settings are at both ends of a
spectrum. The question is then how the results differ for datasets based on trees
that are neither perfectly symmetric nor completely random, which is what we
expect to occur in nature.

To investigate this question, we have generated datasets based on a series of
tree topologies, starting from a perfectly symmetric tree, and gradually adding
more random tree structure. More precisely, we considered a tree operation that
takes two subtrees, one consisting of a single leaf, and another one consisting of
one internal node and two leaves, and switches them. Table 4 reports the results
for an experiment that counts the number of wins for NJ and Clus-ϕ on 100
datasets with an increasing number of operations. Each dataset again has 128
sequences generated from a DNA input sequence of 900 positions.

As can be seen from the results, the performance of Clus-ϕ, compared to
NJ, decreases with the increase of the number of modifications in the symmetric
tree. However, it is important to notice that this decrease of the performance of
Clus-ϕ occurs gradually, which means that it presents good results not only for
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Table 4. Analysis of the effect of the symmetry of the tree on the performance of NJ
and Clus-ϕ. The numbers in bold represent the largest number of wins for each line.

Dataset NJ Clus-ϕ Dataset NJ Clus-ϕ

Symmetric 32 68 35 steps 65 35
5 steps 56 44 40 steps 66 34
10 steps 56 44 45 steps 77 23
15 steps 53 47 50 steps 76 24
20 steps 68 32 55 steps 77 23
25 steps 65 35 60 steps 81 19
30 steps 63 37 Random 95 5
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Fig. 3. Tree topology with 40 steps from symmetry

completely symmetric trees, but also for almost symmetric trees: up till 40 steps,
Clus-ϕ finds a better approximation of the true tree in one out of three datasets.
As an illustration, Fig. 3 shows a topology with 40 steps from symmetry.

Analysis of the Influence of the Number of Sequences on Quartet
Distance and Computational Cost

In this section, we analyze the effect of the number of sequences on the perfor-
mance of the algorithms, both in terms of tree reconstruction, and computational
cost. For this analysis, we use datasets based on symmetric tree topologies.

To analyze how NJ and Clus-ϕ scale in the number of sequences, a number
of synthetic datasets that contain sequences of the same length4, but with an
increasing number of sequences were generated.

Figure 4 (left) shows run times for datasets with 300 nucleotides. Each point
in the curve shows the average run times over 20 datasets of the specified size. As
we can see, between 1000 and 2000 sequences, the run times of Clus-ϕ become
smaller than those of NJ. For 8000 sequences, Clus-ϕ is about 5 times faster
(the exact values are 1517 seconds for Clus-ϕ and 7990 seconds for NJ).

4 To ensure an equal dataset length, we disabled insertions and deletions here.
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Fig. 4. Running times for Clus-ϕ and NJ (logarithmic scale). Sequence length: 300
(left) and 900 (right) nucleotides.

Table 5. Number of wins of NJ and Clus-ϕ for synthetic datasets with sequences of
length 900 according to the quartet distance.

Nb Sequences NJ Clus-ϕ Ties

8 0 1 19
16 2 7 11
32 2 9 9
64 5 13 2
128 6 14 0
256 11 9 0
512 13 7 0
1024 13 7 0
2048 18 2 0
4096 15 5 0

Since our method scales linearly in the sequence length (as each split requires
inspecting all positions; see Sect. 3), while NJ is constant in the length, we also
show the run times for datasets with longer sequences. Figure 4 (right) shows
that NJ is more efficient than Clus-ϕ for datasets with 900 nucleotides. However,
as the relative run time difference between both methods decreases, we expect
that Clus-ϕ will be faster than NJ for datasets with more than 4000 sequences5.

We also computed the quartet distance of the trees produced by NJ and
Clus-ϕ to the true tree for the datasets with 900 nucleotides (see Table 5). It
can be noted that Clus-ϕ obtains better results than NJ for datasets with few
sequences. However, between 128 and 256 sequences, the results change, making
NJ the best method for a large number of sequences. The reason for this is related
to the relatively small sequence length: in order to generate 256 sequences or
more with only 900 nucleotides, each branch having on average 45 mutations,
a lot of nucleotide positions are likely to have many mutations. This negatively
influences Clus-ϕ, because it can not find the right splits anymore. How this
can be dealt with (e.g. by post-processing the trees using local rearrangements)
will be investigated in future work.

5 It is infeasible to generate datasets with more than 4000 sequences of length 900
with the EvolveAGene3 program.
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4.3 Comparison to PTDC

As a last experiment, we compare Clus-ϕ to PTDC [3]. The authors have used
a single dataset to evaluate their method and report the resulting tree in their
article. The dataset was prepared by Rennert et al. [17], who also report a
maximum likelihood tree for the alignment, which we use as reference tree. For
this experiment, both PTDC and Clus-ϕ calculate pairwise protein distances
using the PAM1 substitution matrix [18]. Given that the reference tree in [17]
is not binary (it contains a node with six branches), it is impossible to calculate
the quartet distance. Therefore, for this experiment, we compare the trees using
the symmetric difference measure. The symmetric difference between two trees
is the number of binary node partitions that are found in one tree and not in
the other. The symmetric difference to the reference tree is 11 for PTDC, and
10 for Clus-ϕ. We conclude that our method finds a slightly better tree.

5 Conclusion

We have proposed Clus-ϕ, a novel method for reconstruction of phylogenetic
trees. The method differs strongly from state-of-the-art methods, both from an
algorithmic point of view and from the point of view of the information it uses.

It is based on a conceptual clustering method that extends the well-known
decision tree learning approach. Starting from a single cluster, it repeatedly splits
the sequences into subclusters until all sequences form a different cluster, or until
a sufficient level of detail is obtained to study gene or protein families. To define
the best split, our method uses a criterion that is close to Neighbor Joining’s
optimization criterion, namely, constructing a phylogenetic tree with minimal
total branch length.

Our method assumes that a split can be described by referring to particular
polymorphic locations, which makes such a divisive method computationally
feasible, and at the same time provides an evolutionary trace for the resulting
tree topology. Moreover, by checking the polymorphic locations listed in the
internal nodes, new sequences can easily be classified into subfamilies.

We have shown that the performance of Clus-ϕ is close to that of Neighbor
Joining w.r.t. quality of the produced trees, while having a larger tendency to
produce the correct tree.

We propose Clus-ϕ not as a substitute for Neighbor Joining or other standard
methods for phylogeny reconstruction, but as a method to be used complemen-
tarily to these methods. The fact that Clus-ϕ behaves differently than Neighbor
Joining, in terms of performance and computational cost, shows that their results
can be used to complement one another.
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Abstract. A goal of human genetics is to discover genetic factors that
influence individuals’ susceptibility to common diseases. Most common
diseases are thought to result from the joint failure of two or more in-
teracting components instead of single component failures. This greatly
complicates both the task of selecting informative genetic variations and
the task of modeling interactions between them. We and others have
previously developed algorithms to detect and model the relationships
between these genetic factors and disease. Previously these methods have
been evaluated with datasets simulated according to pre-defined genetic
models. Here we develop and evaluate a model free evolution strategy
to generate datasets which display a complex relationship between indi-
vidual genotype and disease susceptibility. We show that this model free
approach is capable of generating a diverse array of datasets with distinct
gene-disease relationships for an arbitrary interaction order and sample
size. We specifically generate six-hundred pareto fronts; one for each in-
dependent run of our algorithm. In each run the predictiveness of single
genetic variation and pairs of genetic variations have been minimized,
while the predictiveness of third, fourth, or fifth order combinations is
maximized. This method and the resulting datasets will allow the ca-
pabilities of novel methods to be tested without pre-specified genetic
models. This could improve our ability to evaluate which methods will
succeed on human genetics problems where the model is not known in
advance. We further make freely available to the community the entire
pareto-optimal front of datasets from each run so that novel methods
may be rigorously evaluated. These 56,600 datasets are available from
http://discovery.dartmouth.edu/model_free_data/.

1 Introduction

Advances in genotyping technologies are changing the way geneticists measure
genetic variation. It is now technologically feasible to measure more than one
million variations from across the human genome. Here we focus on SNPs, or
single nucleotide polymorphisms. A SNP is a single point in a DNA sequence
that differs between individuals. A major goal in human genetics is to link the
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state of these SNPs to disease risk. The standard approach to this problem
is to measure the genotypes of people with and without a disease of interest
across hundreds of thousands to millions of SNPs. Each of these SNPs is then
tested individually for an association with the disease of interest. The goal is to
discover SNPs that reliably predict disease susceptibility across many samples
[1,2]. This approach has had limited success and the discovery of robust single
SNP associations has been difficult to attain [3,4,5]. Even in the cases where
single SNP associations have validated in independent samples, the SNPs often
cannot be combined into effective classifiers of disease risk [6]. These studies, by
only examining the association of single SNPs, ignore complex interactions that
may be critical to understanding disease susceptibility.

The term for complex gene-gene interactions that influence disease suscepti-
bility is epistasis. It is now recognized that studies which ignore epistasis may
neglect informative markers [7,8,9,10]. Furthermore, epistasis is thought to play
a critical role in the understanding of disease because of the complexity present
in cellular and biological systems [11] and because it has been well characterized
for other complex traits [7,12]. Detecting and characterizing epistasis in all but
small datasets is difficult. Examining gene-disease relationships in the context of
epistasis requires the consideration of the joint effect of SNPs and an exhaustive
analysis of all possible interactions requires the enumeration of every potential
set of SNPs [13]. When datasets contain many SNPs, combinatorial methods
which evaluate each such combination are not feasible [14].

In human genetics we have, therefore, been confronted by a chicken and egg
problem. We believe that it is likely that complex interactions occur, but without
methods to detect these interactions in large datasets, we lack the ability to find
them. Without found and validated interactions that lead to disease we lack the
ability to test new methods on actual genetic datasets. Thus far the problem
has been approached with datasets simulated according to hypothetical genetic
models as in Velez et al. [15] and Greene et al. [10] among many others. Methods
are tested for their ability to find a disease model placed in the datasets. This
approach is useful but limited by the diversity and representativeness of the
genetic models. The work we present here uses an evolution strategy to generate
datasets containing complex genetic interactions that lead to disease without
imposing a specific genetic model on the datasets.

2 Evolution Strategies

Evolution Strategies are algorithms modeled after natural evolution. The combi-
nation of several key evolutionary concepts, such as natural selection, population
sizes, and mutation rates, produces algorithms capable of finding sought after
members of a solution space [16]. Multiple generations allow evolution strategies
to direct their results towards an ideal solution by preserving beneficial muta-
tions. One key difference between mutation driven strategies, like the one imple-
mented in our method, and genetic algorithms is the absence of recombination
[17]. Recombination, the computational equivalent of genetic crossover, consists
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of creating new individuals in a population by combining the characteristics of
multiple members of the previous generation. Since recombination relies on the
exchange of discrete blocks of information, crossover is only appropriate when
clear building blocks can be defined [18]. Here it is unclear whether a building
block would be a set of individuals or a set of SNPs. Therefore, because it is
unclear what the proper building blocks would be, we do not use recombination.
Evolutionary algorithms that lack recombination have proven themselves equally
as powerful in certain instances and remain able to solve complex problems [19].
For the purpose of our study, we are faced with the challenge of evolving a
difficult problem to solve, namely, datasets that have a high-order interaction
with no main or two-way effects. Previously, others have used evolutionary algo-
rithms to create problems that are hard for a specific heuristic to solve [20,21,22].
One novelty of the present study is our use of evolutionary algorithms to find
problems without assuming a specific search algorithm or model.

3 Multi-objective Optimization and Pareto Optimality

Multiobjective problems are those for which practitioners wish to maximize or
minimize two or more, often competing, characteristics of solutions. Evolution-
ary algorithms have been used to solve multi-objective optimization problems
for more than twenty years [23,24,25]. These strategies are thought to be well
suited to multi-objective problems because the population can carry out a search
with solutions that succeed for different objectives [26]. The drawback of this
approach is that assigning a single fitness score that encompasses every objective
is difficult. Effectively using linear combinations of the objective scores for each
objective requires knowledge about the problem and the fitness landscape which
is unlikely to be available before a thorough analysis is performed. It is possible,
however, to optimize many objectives without a priori knowledge by consider-
ing non-dominated (i.e. Pareto optimal) solutions as highly fit individuals. A
non-dominated solution is one for which there is no solution that is better in all
objectives. Here we use an approach focused on Pareto optimal solutions similar
to one described by Goldberg [25]. In our approach, we use all Pareto optimal
solutions as parents for the next generation, which would be equivalent to using
only rank 1 individuals from Goldberg’s approach. With this strategy we can
explore the Pareto front of solutions which optimize each of our many objectives.
We can then provide a number of model free datasets which are optimal with
respect to our distinct objectives from a single run of the algorithm.

4 Multifactor Dimensionality Reduction (MDR)

Multifactor Dimensionality Reduction (MDR) is a widely used and a powerful
model free method to detect and model gene-gene interactions associated with
disease [27,28]. At the core of the MDR approach is an attribute construction al-
gorithm that creates a new attribute by pooling genotypes from multiple SNPs.
Constructive induction using the MDR kernel is accomplished in the following
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way. Given a threshold T, a multilocus genotype combination is considered high-
risk if the ratio of cases (subjects with disease) to controls (healthy subjects)
exceeds or equals T, otherwise it is considered low-risk. Genotype combinations
considered to be high-risk are labeled G1 while those considered low-risk are
labeled G0. This process constructs a new one-dimensional attribute with lev-
els G0 and G1. Here we use MDR to evaluate both high order and low order
interactions. Our goal is to minimize the accuracy of this new variable for low-
order combinations and maximize the accuracy of this variable for high-order
combinations. Because MDR assumes no specific model, our dataset generation
method is also model free.

5 A Model Free Dataset Generation Method

The first step in our process of generating datasets is to create random datasets.
For each, we initialize a specified number of people (our sample) and provide
them with random genotypes at three, four, or five SNPs. This number of SNPs
can be arbitrarily assigned and is the order of the predictive interaction we wish
to generate. We randomly assign these a case-control status. Current genotyping
platforms are targeted towards measuring bi-allelic SNPs, i.e. those with two
alleles. These SNPs can exist in one of three states. Here we indicate the states
as 0, 1, and 2.

Because we wish to generate datasets with high concept difficulty, one of our
goals is to minimize simple genetic effects. To do this, we use MDR to evaluate
the best possible low-order predictors. We then, under a Pareto strategy, select
those datasets which minimize the low-order predictiveness. In the case of our
work here we focus on minimizing the predictiveness of all single SNPs and all
two SNP combinations. Our next goal is to maximize the predictiveness of higher
order combinations. To do this we evaluate the predictiveness of all the SNPs
for every individual using MDR. Because we are maximizing the predictiveness
of all the SNPs in the data, we only need to test a single attribute combination
(i.e. that of all SNPs) and this task is computationally simple. Using MDR in
this way gives us an accuracy, which we then use a Pareto strategy to maximize.
Thus in this specific case our evolution strategy exploits Pareto optimization
to minimize the single locus and two-locus predictiveness while maximizing the
three, four, or five locus predictiveness. Specifically we use all Pareto optimal
solutions as parents for the next generation. To generate offspring these parents
are duplicated and, at each SNP for each individual, the value can be changed
according to the mutation rate.

For SNPs not under selective pressure in humans, these states exhibit what is
called Hardy-Weinberg equilibrium (HWE). Hartl and Clark provide an excel-
lent overview of the Hardy Weinberg principle [29]. Because most SNPs are not
under selection, deviations from HWE have historically been used as a marker
of genotyping error [30]. The implicit assumption is that a SNP which is not
in HWE is more likely to be a genotyping error than a SNP under selection.
Examinations of early genetic association studies suggested that these concerns
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may be well founded [31]. As genotyping methods improve and genotyping error
is reduced, it becomes more likely that these SNPs are under selective pressure
and less likely that deviations from HWE are due to genotyping error, and thus
it becomes less likely that geneticists will filter SNPs which deviate from HWE.
Indeed new methods have been developed which use the principles of Hardy-
Weinberg equilibrium to detect an association between a genotype and disease
[32]. Because the field is currently in transition we provide two sets of datasets,
one set where we optimize for non-significant HWE genotype frequencies and
one where we do not. In both cases we have initialized the frequencies of the
genotype states as under HWE but selection can alter these frequencies.

By using a test of HWE as an additional Pareto criterion we can generate
datasets containing SNPs that would not be filtered by currently used quality con-
trol measures. In this way we develop datasets where there is a model free but
complex relationship between genotype and disease. With a wide array of datasets
we can then test the ability of novel methods to detect and characterize complex
epistatic relationships without making assumptions about the underlying genetic
model. Because the result of each run is a set of Pareto optimal solutions, users
can pick solutions with a wide array of difficulties to use while evaluating novel
methods. For the set of results where we attempted to preserve Hardy-Weinberg
equilibrium we actually minimize disequilibrium. Specifically we minimize the chi-
square statistic which measures deviation from HWE. Because this expands our
pareto front from three dimensions to four it dramatically increases the size of the
pareto front. To insure that each parent has an opportunity to generate a reason-
able number of offspring, we limit the number of parents taken to the next genera-
tion to one hundred when we are also optimizing for Hardy-Weinberg equilibrium.
When there are more than one hundred individuals on the front, we choose the in-
dividuals in the “elbow” of the pareto front (i.e. non-extreme individuals). This
tie-breaker keeps individuals which are good in regards to more than one dimen-
sion at the cost of those which excel in a single dimension.

At the conclusion of each run we have a front of pareto optimal datasets.
Because comparing entire pareto fronts is difficult we wish to provide, in addition
to the front, a single member of the pareto-optimal group which can represent
the run. We have done this by picking the individual dataset with the smallest
euclidean distance from the best values obtained for each measure.

6 Experimental Design and Analysis

Our first task was to determine a useful mutation rate. Because this system
is driven by mutation, we need to employ an effective mutation rate to evolve
good solutions. We examined mutation rate by evaluating rates of 0.05, 0.04,
0.03, 0.02, 0.01, 0.008, 0.006, 0.004 and 0.002 for sample sizes of 500 and 1000
using a fixed number of generations (750) and a fixed population size (1000). We
then used the four-way testing accuracy to evaluate how far the evolution had
progressed. We used these results to pick an appropriate mutation rate for the
number of generations and population size we use here.
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Our second task was to evaluate whether our Pareto evolution strategy out-
performed a random search. We generated two million random datasets and
compared the resulting Pareto front to the pareto fronts generated at the end of
evolution in our system. We tested the significance of the differences observed for
the accuracies from the fronts from evolved runs and those from the randomly
generated runs. We statistically tested these differences with Hotelling’s T-test
and considered the differences significant when the p-value was less than or equal
to 0.05. This means that we would consider results significant only one time out
of twenty when there was no significant effect.

Our final task was to generate sets of Pareto optimal datasets each exhibit-
ing three-way interactions, four-way interactions and five-way interactions. In
each case we maximized three, four, and five-way MDR accuracies respectively
while minimizing one and two way accuracies. We further generated datasets
both under pressure to maintain Hardy-Weinberg equilibrium and irrespective
of HWE. For each parameter setting (three, four, and five-way interactions with
and without HWE) we generated 100 sets of datasets for a total of 600 sets of
pareto optimal datasets. In total we have generated more than 50,000 datasets
with a complex gene-disease relationship and made these datasets available to
researchers as described in section 8.

7 Results

Our parameter sweep of mutation rates showed that, for this problem, a mutation
rate of 0.004 led to the greatest success for datasets of five hundred people and
0.002 led to the greatest success for datasets of one thousand people. Large
scale parameter sweeping with the sample sizes that we wished to generate was
infeasible, but because the optimal mutation rate was related to the sample size
we estimated that for the situation where we wish to evolve datasets containing
3000 individuals with a complex gene-disease relationship, a mutation rate of
0.001 would work, although because of the indirectness required to perform the
parameter sweep it is not necessarily optimal.

We compared the results from our evolution strategy to a random search.
The results are presented in Figure 1 and Table 1. Figure 1 shows the pareto
front generated during a single evolved run and the pareto front generated by a
random search over the same number of datasets. It is clear that solutions from
the pareto front from the evolved run are generally much better than the ran-
domly generated datasets. As Table 1 shows, the evolution strategy consistently
outperforms the random search. Furthermore, as Table 1 shows, we were able
to consistently generate datasets with a complex gene-disease relationship that
lack low order predictors in a model free manner. In each case the differences
between the pareto front from two million random datasets and that obtained
at the end of our evolution strategy was highly significantly different (p < 0.001)
indicating that these differences are not likely to be due to chance.

Figure 2 provides some insight into the difficulty of the problem. Minimizing
the one-way accuracies and two way accuracies happens relatively quickly and



80 C.S. Greene, D.S. Himmelstein, and J.H. Moore

0.50 0.52 0.54

0.
9

0.
7

0.
5

One−way Accuracy

T
hr

ee
−

w
ay

 A
cc

ur
ac

y

*
Random Front
Evolved Front

0.50 0.53 0.56

0.
9

0.
7

0.
5

Two−way Accuracy

T
hr

ee
−

w
ay

 A
cc

ur
ac

y

*

Fig. 1. This figure shows two dimensional projections of the three dimensional pareto
front obtained at the end of one run of the evolution strategy and the pareto front
obtained by randomly generating two million datasets. The three-way accuracy, which
is maximized, is plotted against the one and two-way accuracies, which are minimized.
The pareto front from the evolved run is clearly better than the pareto front from
random initialization of two million datasets. The star shows the single dataset from
the front chosen as the result of the run, which is used to compare across all runs in
Table 1.

Table 1. A summary of the accuracies obtained for the evolution strategies and ran-
dom search. HWE indicates whether or not the datasets were selected based on their
conformance to Hardy-Weinberg equilibrium. The one-way and two-way accuracies are
always minimized and the n-way accuracy is maximized. The accuracies are presented
as mean and (standard deviation).

Parameters Results

n-way Gen. Pop. HWE One-way (sd) Two-way (sd) n-way (sd)

Three-way
2000 1000 No 0.502 (0.001) 0.511 (0.007) 0.886 (0.023)
2000 1000 Yes 0.504 (0.002) 0.509 (0.003) 0.680 (0.024)
1 2000000 No 0.506 (0.006) 0.518 (0.009) 0.543 (0.012)

Four-way
2000 1000 No 0.502 (0.001) 0.510 (0.003) 0.897 (0.018)
2000 1000 Yes 0.507 (0.003) 0.513 (0.003) 0.673 (0.009)
1 2000000 No 0.507 (0.004) 0.519 (0.006) 0.571 (0.011)

Five-way
2000 1000 No 0.502 (0.001) 0.510 (0.002) 0.895 (0.009)
2000 1000 Yes 0.511 (0.003) 0.518 (0.003) 0.693 (0.008)
1 2000000 No 0.507 (0.004) 0.520 (0.005) 0.612 (0.011)
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Fig. 2. The pareto front from a single run improves as the run proceeds. The pareto
fronts are shown for each pairwise combination of objectives in each box at every 200
generations as shown by color. The star indicates the final solution used to evaluate
the run.

within the first few hundred generations. Maximizing the higher order accuracies
continues throughout the entire run and progress is still being made and the two-
thousandth generation. The star indicates the dataset that was chosen from the
front to represent the run. It is this one dataset that is taken from each run
according to the euclidean distance strategy discussed in section 5 that is used
to calculate the summary statistics in Table 1.
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8 Dataset Availability

All pareto optimal datasets generated during these experiments are available
from the website http://discovery.dartmouth.edu/model_free_data/. We
provide a number of means of obtaining datasets. First, we provide archive files
of “best of runs” obtained with and without Hardy-Weinberg equilibrium con-
straints. These representative datasets are obtained by choosing the dataset with
the smallest euclidean distance between its own values and the optimum values
obtained by all datasets on the pareto front as described in section 5. In addi-
tion to these representative datasets, for each run we provide all datasets that,
at the end of the run, make up the complete Pareto front. To assist with the use
of these datasets we further provide an information file for each run containing
the characteristics of every dataset in the pareto-optimal front. From these files
it is possible for investigators to develop suites of datasets that display certain
characteristics (e.g. one and two way accuracies less than 52% and four-way
accuracies of approximately 70%). Using datasets generated from our provided
results, investigators can test novel methods across data exhibiting gene-disease
relationships unconstrained by specific genetic models. The SNPs we provide
can be combined with other noisy SNPs to represent a three, four, or five-way
genetic interaction in a sea of noisy SNPs.

9 Discussion and Conclusions

Evolutionary computing has previously been used to generate epistatic (i.e. in-
teraction based) models of a gene-disease relationship for both two-way [33]
and higher order [34] interactions. Here we generate epistatic datasets in a
model free manner. We also describe a novel evolution strategy for creating
model free datasets and use this strategy to create 56,600 datasets with com-
plex gene-disease relationships which we make publicly available. These datasets
provide test beds for novel genetic analysis methods. By providing human ge-
netics datasets with complex interactions that do not assume a model we hope
to bypass the chicken and egg problem that has previously confronted the field.
Methods tested on datasets generated in this manner may better generalize to
true genetic association datasets.

Future work should focus on evaluating potential building blocks, so that
crossover can improve the efficiency of the search. Potential building blocks in-
clude subsets of the individuals in each dataset, subsets of the SNPs in each
dataset, or subsets of both individuals and SNPs in each dataset. It is not intu-
itive which approach is most useful, so these options should be fully explored. It
may be that customized crossover operators are required to obtain useful genetic
mixing for this problem.

Future work should also focus on making these datasets and others generated
in this manner widely available. By dividing the resulting datasets into standard-
ized testing and training datasets, it would be feasible to compare algorithms in
a straightforward and objective manner. This comparison of algorithms would

http://discovery.dartmouth.edu/model_free_data/
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provide a great deal of information about these methods to human geneticists at-
tempting to understand the basis of common human disease. By providing open
and publicly available datasets which do not assume a model but which con-
tain a complex relationship between individual and disease, we hope to improve
our understanding of commonly used methods in human genetics. We also hope
to provide a framework for objectively testing future methods. Only when we
can effectively judge methods across a comprehensive test suite of datasets can
we develop methods likely to discover the underlying basis of common human
diseases.
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Abstract. Growing interest and burgeoning technology for discovering genetic 
mechanisms that influence disease processes have ushered in a flood of genetic 
association studies over the last decade, yet little heritability in highly studied 
complex traits has been explained by genetic variation. Non-additive gene-gene 
interactions, which are not often explored, are thought to be one source of this 
“missing” heritability. Here we present our assessment of the performance of 
grammatical evolution to evolve neural networks (GENN) for discovering gene-
gene interactions which contribute to a quantitative heritable trait.  We present 
several modifications to the GENN procedure which result in modest improve-
ments in performance. 

Keywords: Neural networks, grammatical evolution, gene-gene interaction, 
quantitative traits. 

1   Introduction 

1.1   Genome-Wide Association Studies and Epistasis 

Technological advances over the previous decade have allowed researchers in the field 
of human genetics to progress from coarse genomic coverage with linkage maps and 
candidate gene association studies, to very high resolution association analyses using 
single nucleotide polymorphisms (SNPs)[1]. The initial completion and ongoing 
development of the International HapMap Project [2;3] catalogs common human 
genetic variation at millions of polymorphic sites in several populations, allowing for 
more powerful and strategic study design of both targeted and genome wide scans.  
Several technologies are currently available that allow for rapid, highly accurate 
genotyping of >1 million common SNPs at low cost per genotype. 

Despite the dizzying pace of advances in genotyping technologies that have made 
high-resolution genetic association studies possible, we have yet to fully explore the 
wealth of data generated by these studies in part because maturation of our analytical 
strategies for data of this scale have not kept pace. The most commonly used 
analytical procedures for analyzing genetic data are tests of association one SNP 
(single nucleotide polymorphism) at a time. This approach has been somewhat 
successful in identifying genetic variants associated with complex traits, but these 
SNPs collectively explain little of the genetic contribution (heritability) expected 
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based on family and twin studies [4]. Many investigators have speculated that a 
portion of the missing genetic component lies in gene-gene and gene-environment 
interactions [4;5].  Indeed, it is well accepted that common traits are complex, and are 
influenced by an elaborate interplay of multiple genetic and environmental factors [6-
8]. It is thought that gene-gene and gene-environment interactions are ubiquitous 
given the complex biomolecular interactions that are essential for regulation of gene 
expression and complex metabolic networks, and are likely to play a role in 
influencing human traits [9]. Furthermore, while recent perspectives have emphasized 
the fact that most true single locus genetic associations to complex traits carry a 
vanishingly small effect size [10;11], others have shown experimentally in model 
organisms that gene-gene interaction is pervasive and often carries surprisingly large 
effects [12]. 

Compelling evidence makes it clear that gene-gene interaction exists in humans 
and model organisms and influences human traits, yet there is no consensus on how to 
best investigate gene-gene interaction in genetic association data. One approach is to 
evaluate multi-marker combinations for potential interactive effects based on 
biological criteria [13]. This may include, for instance, testing for interactions 
between genes that share a similar structure or function, or genes in the same pathway 
or biological process, such as a receptor and its ligand. Using this strategy would bias 
the statistical analysis in favor of models with a well-established biological 
foundation in the literature, and novel interactions between genetic variants would be 
missed. Furthermore, the entire analysis depends upon the quality of the biological 
information used. Another approach is to select SNPs based on the strength of their 
independent main effects, evaluating interactions only between SNPs that meet a 
certain effect size or significance threshold [14]. This strategy assumes that relevant 
interactions may only occur between variants that independently have some major 
effect on the phenotype alone.   

Another strategy to search for influential gene-gene or gene-environment 
interaction is to exhaustively evaluate the relationship between the outcome of interest 
and every possible combination of genetic and environmental exposures. While one 
may wish to fit standard regression models to every possible 2-, 3-, or n-way 
combination SNPs, this approach becomes problematic for several reasons. First, 
when interactions among multiple genetic and/or environmental components are 
considered, there are many combinations that are present in only a few individuals or 
perhaps none at all. This is known as the curse of dimensionality [15], and results in 
unstable estimates of population parameters from large-sample based methods. 
Furthermore, while the interpretation of the statistical significance of models fit using 
traditional methods is fairly straightforward, correction must be made for multiple 
testing. Tests of interactions are large in number, and are not independent, each 
making multiple testing corrections difficult. 

Because of these limitations of using traditional statistical approaches to search for 
interactions in large datasets, several data-mining and machine learning approaches 
have been developed to search for combinations of genetic variants that influence a 
phenotypic outcome. A commonly used procedure is Multifactor Dimensionality 
Reduction (MDR) [8]. MDR evaluates all possible combinations of genotypes for a 
given dimensionality and tests for association to a case-control outcome by collapsing 
every high-dimensional multilocus genotype combination into a single risk variable, 
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which can then be tested for association with the case-control outcome. More recently 
the MDR framework was extended to allow for continuous variable exposures and 
outcomes [16] and for analyzing large datasets using parallel processing [17]. Other 
similar approaches are the subject of an extensive review in [5].   

Exhaustive approaches such as the ones mentioned above are ideally suited for 
exploring interactions in small datasets comprised of only a few variables, such as in a 
candidate gene study. However, the computational resources required to exhaustively 
search for interactions in large genomic scale data often renders these methods 
impractical. For example, the number of two-way interactions that can be evaluated in 
a genome-wide association study (GWAS) with 500k SNPs is 1.2×1011. Memory 
issues aside, it would take many years on a desktop computer to run this analysis.  As 
the number of three-way interactions in such a dataset is over 2×1016, searching 
exhaustively for higher order interactions would be infeasible even on multiprocessor 
computing clusters. This limitation is the motivation for developing techniques that 
still utilize the full dimensionality of the data without exhaustively searching all 
possible combinations of variables with the goal of discovering a well-fitting model 
that explains variance in a phenotypic outcome of interest. 

1.2   Grammatical Evolution Neural Networks (GENN) 

Neural networks (NNs) are a robust and flexible modeling technique that attempt to 
mimic the basic structure and function of biological neurons to solve complex prob-
lems.  NNs have been applied to a plethora of research fields, including robotics, 
speech recognition, optical character recognition, task scheduling, and industrial 
processing among many others.  NNs have also been widely applied to various prob-
lems in biological science, including microarray data analysis [18], human linkage 
analysis [19], genetic association studies [20], medical expert systems [21], survival 
analysis [22], and protein folding [23].  The traditional approach for applying NNs to 
a classification problem is to specify a network architecture, select which variables 
are included as inputs to the network, and fit network weights using a gradient-
descent based approach such as backpropagation [24].  Recently, numerous evolu-
tionary search strategies have been applied to NN classification problems to reduce 
the issues associated with the traditional NN approach [25].  Genetic Programming 
Neural Networks [26] and Grammatical Evolution Neural Networks (GENN) [27] use 
genetic programming [28] or grammatical evolution [29] to evolve populations of 
neural networks for human genetics classification problems.  These populations are a 
heterogeneous mix of architectures, weights, and input variables which undergo mat-
ing, crossover, and recombination to ultimately identify an optimum NN solution.  
Recent work has shown that certain features characteristic of human genetic data may 
provide advantages to methods that evolve NNs to detect gene-gene interactions by 
transforming the fitness landscape from a “needle in a haystack” to a broader, 
smoother surface [30]. 

In many of its previous applications, however, GENN was used as a classification 
tool for a case-control outcome [27;31].  While case-control designs in disease gene 
studies have many advantages, genetic analysis of a quantitative trait that varies con-
tinuously over a range of possible values may be more optimal in many scenarios 
[32]. The outcome of interest in many genetic studies naturally varies on a continuous 
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scale. While ordinally encoding or discretizing a continuous trait can simplify analy-
sis of the data, it can also be counterproductive as it generally comes with the cost of 
a substantial decrease in statistical power. Furthermore, the ability to study a continu-
ously varying trait rather than a dichotomy will allow for the examination of genetic 
factors that influence the overall distribution of a phenotypic measurement in the 
general population rather than restricting genetic analysis to the extremes of a pheno-
type. With this as our motivation, we extended our implementation of GENN to allow 
for continuous outcomes, making it capable of modeling quantitative traits on multi-
ple exposure variables in large datasets in a computationally feasible matter. Here we 
present results of a simulation study showing that our GENN algorithm has high sen-
sitivity to detect gene-gene interactions contributing to a heritable quantitative trait 
with low effect sizes against a background of many unassociated variables. We then 
present several modifications to the GENN procedure and assess their effects on 
GENN’s performance under different genetic models described below. 

2   Methods 

2.1   Genetic Data Simulation with genomeSIMLA 

Simulated data where the true identity and size of the genetic or environmental effect 
in the population is known is a critical necessity for developing and testing novel 
methodology. It is also important that these true effects are embedded in a complex 
dataset containing many other nonfunctional polymorphisms and environmental  
factors, mimicking a real dataset as closely as possible. We recently developed  
GenomeSIMLA[33] for simulating realistic genome-wide scale data in population 
based case-control samples. GenomeSIMLA is capable of simulating missing data, 
genetic heterogeneity, phenocopy, genotyping error, and realistic patterns of linkage 
disequilibrium. Here we use an extension of GenomeSIMLA capable of simulating 
gene-gene interactions in the presence of main effects which influence a quantitative 
trait at a desired effect size. 

The effect size of a genetic variant on a quantitative trait outcome is often ex-
pressed in terms of heritability – the proportion of variance in the trait explained by 
genetic variation. The narrow-sense heritability, here defined as the proportion of 
variance explained uniquely by a single source of genetic variation (e.g. the main 
effect of one member of an interacting pair of variants) is given by the semi-partial 
squared correlation coefficient [34]:  

2 2 2
.1,2,... ... .1,2,...( )... 'i Y i k Y i ksr R R= −   (1)

Datasets are simulated using a linear regression equation where the genetic model can 
take a range of generally additive models, similar to the method implemented in [35] 
for a discrete outcome. Here we simulated a quantitative trait under additive and 
dominant interaction models as shown in Figure 1. In the additive model, the mean 
value of the simulated quantitative trait increases as a function of the number of cop-
ies of the less common allele an individual inherits both within and between the two 
functional genetic variants. In the dominant model, the mean value of the simulated 
trait is increased if individuals contain at least one or more copies of the minor allele.  
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    Additive       Dominant 
    AA    Aa    aa    AA    Aa    aa 

BB       

Bb       

bb       
 

Fig. 1. Genetic model types simulated. The less common allele (“a” or “b”) increases the value 
of a simulated quantitative trait by an amount based on type of genetic model (additive or 
dominant) and the number of copies of the less common allele an individual possesses.  Darker 
cells indicate a higher mean value for the simulated trait. The genetic model type applies to 
both main effects and interactive effects within and between the two functional variants. 

 

Individuals are drawn from a homoscedastic normal distribution with the mean being 
determined by the genotypes at the corresponding functional genetic variants. 

We simulated 500 SNPs in 2000 individuals, where only two SNPs were functional 
and the other 498 SNPs were unassociated “noise” variables.  We simulated a gene-
gene interaction between these two SNPs that carried a narrow-sense heritability (h²) 
of 0.05, meaning that only 5% of the variation in the quantitative trait could be ex-
plained by this gene-gene interaction.  This low effect size is typical of most findings 
in human genetic epidemiology [10;11]. We simulated this interaction in the context 
of very minimal main effects at each locus (h²=0.01).  A scenario such as this where 
main effects explain little of the overall outcome variance represents a very difficult 
problem [36] for an evolutionary search procedure to model. 

2.2   Grammatical Evolution Neural Networks 

GENN has been implemented as previously described [27;37]. Briefly, Grammatical 
evolution (GE) is a variation of genetic programming (GP), an evolutionary algorithm 
originally proposed by Koza as a procedure to optimize NN architecture [28]. In GE, 
randomly initialized binary strings are transcribed into an ordered list of integers 
which are used to select from production rules in a Backus-Naur form grammar. Our 
grammar applies GE to construct neural networks, and can simultaneously select 
important predictor variables and optimize network weights and architecture.   

Here we implemented several modifications to the GENN procedure described 
above. First, because the outcome of interest is now a continuously varying quantita-
tive trait, the fitness function now being used is minimization of mean square error 
(MSE) rather than maximization of classification accuracy. Second, we have modified 
the grammar to optionally restrict the choice of arithmetic function at the activation 
node to addition only. Both versions of the GENN grammar are available online  
at http://chgr.mc.vanderbilt.edu/ritchielab/projects/ATHENA/grammars.zip. As origi-
nally implemented, production rules for the arithmetic function consisted of addition, 
subtraction, multiplication, and protected division. Restricting the selection of this 
activation function to addition only would ease subsequent local fitting of network 
weights by allowing use of a method such as backpropagation, which requires  
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addition of weighted inputs, after a global search is conducted with GE. However, it 
was necessary to assess any impact this reduction in variability may have on the abil-
ity of GENN to find functional variables and construct a well-fitting model. Finally, 
we have implemented an alternative tree-based GE crossover strategy as previously  
described [38]. A potential weakness of GE is the destructive single-point binary 
crossover (SPBXO) operator [29]. Tree-based crossover (TBXO) instead swaps func-
tionally analogous branches by first translating the grammar into functional neural 
network trees, identifying branches with identical root nodes, then initializing a cross-
over back at the genome level which would correspond to the crossover between the 
whole branches. This renders GE to be much more like genetic programming (GP), 
while still maintaining some of the key advantages of GE. 

For the simulation study presented below, performance was evaluated based on 
sensitivity to detect both SNPs in the gene-gene interaction that influences the out-
come out of the 124,750 possible SNP-pairs in each dataset. As shown in Figure 2, 
GENN was run for 100, 200, and 400 generations, in runs consisting of population 
sizes 100, 200 and 400, in each of 20 demes (for a total population size of 2000, 4000, 
and 8000 respectively), using each of the two grammars on 100 datasets simulated 
using either an additive or dominant model. Further, we varied the number of genera-
tions where tree-based crossover was used. This could range from using single-point 
binary crossover for every generation (i.e. no TBXO), TBXO for the first half of the 
total number of generations before switching back to SPBXO, or TBXO for all gen-
erations run. This resulted in trials using 144 different combinations of GENN pa-
rameters, comprising 144,000 simulated datasets. The mean runtime per dataset was 
approximately 11 minutes spread across ten 1.8 GHz Opteron PCs. The respective 
probability of a crossover and mutation were 0.9 and 0.01, typical values for these 
parameters in many genetic algorithms [39].   

3   Results 

For the simulation study described above sensitivity was measured as the proportion of 
datasets out of 100 simulated datasets, where the best performing neural network 
model contained the two functional SNPs, with no other SNPs in the model, i.e. a 
perfect match. The best neural network model for each dataset was chosen using the 
following algorithm. First, 5-fold cross-validation (CV) was implemented, and a model 
was selected from each CV interval based on reducing mean square error. The fit of 
this model to unseen data was tested on the CV interval initially left out using the 
standard coefficient of determination, R². This process was repeated for each CV 
interval.  At this point there are 5 models - one best model from each CV interval. The 
model that consistently appears most often across CV intervals is chosen as the best 
overall model for the entire dataset [8;40]. In case of a tie (e.g. two different models 
replicated across two CV intervals), the model with the higher R² is chosen as the 
overall best model. The results are summarized in Figure 2. Separate panels show the 
total number of generations and the size of the population in each deme. Different line 
and point types show different sets of activation node functions that were available and 
the results on different genetic models, respectively. The horizontal axis on each panel 
shows the proportion of the total number of generations in which TBXO was used. 
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Fig. 2. Sensitivity to detect both functional loci as the best GENN model. Each individual panel 
shows sensitivity over the proportion of total generations (none, half, all) where tree-based 
crossover was used instead of binary crossover. Dotted lines show where production rules at the 
activation node was restricted to addition only, whereas the solid line shows sensitivity when 
all four functions were available. Individual panels show combinations of the total number of 
generations GENN was run and the population size per deme. 

4   Discussion 

Our results show, as expected, that sensitivity to detect and model both functional 
variables increases as the population size and the total number of generations increases. 
Rather unexpectedly, however, our results show that restricting production rules in the  
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grammar to allow only addition as the activation function caused an increase in sensi-
tivity across all combinations of other parameters. It is also important to note that this 
was observed even when the trait was simulated based on the dominant genetic model 
rather than additive inheritance. This result was initially surprising because reducing 
the flexibility of GENN would at first thought seem to impair GENN’s ability to dis-
cover complex genetic models that contribute to quantitative traits. However, it may be 
the case that restricting this production rule to a single choice allows for more of each 
individual network’s genetic variability to be applied toward variable selection. When 
using addition as the only activation function it should be the case that the grammatical 
evolution of weights and architecture should be able to semantically reproduce any 
adaptation that the other arithmetic functions syntactically allow for.   

These results also show that our implementation of TBXO yields a modest yet no-
table increase in sensitivity, but only when used exclusively in the early generations 
of training (see the center point in the line in each panel in Figure 2). This is in con-
trast to previous work where TBXO showed little improvement when the simulated 
model was an interaction contributing to a discrete trait in the complete absence of 
main effects [38]. This result may indicate that GE with TBXO is more efficient at 
variable selection, while GE with normal crossover allows more variation in building 
architecture and fitting weights. We postulate that TBXO is preserving “building 
blocks” which are functionally useful to the resultant neural network models. Our 
simulations contained a modest interaction effect (h²=0.05) in the presence of very 
small main effects (h²=0.01) at each of the interacting genetic variants. These small 
main effects may provide the building blocks upon which TBXO can capitalize. Syn-
tactic preservation of NN genomes coding for the inclusion of these variables in NN 
models while allowing the full variability and broader search capability of SPBXO in 
the latter generations of evolution appears to be more powerful than using SPBXO or 
TBXO exclusively. Furthermore, recent work has shown that linkage disequilibrium 
(correlation between genetic variants) may provide building blocks to an evolutionary 
algorithm which builds neural networks when the true underlying model is an interac-
tive effect in the complete absence of any main effect at each of the two functional 
variables [30]. It is expected that the crossover strategy discussed here may be opti-
mal in this situation as well. Because our TBXO procedure mimics the function of 
genetic programming (GP), further studies should compare this against running GP or 
any hybrid GP-GE NN training algorithm. 

Our results also demonstrate that sensitivity is higher to detect the two functional 
variables when the underlying genetic model is dominant (triangle points, ▲, in Fig-
ure 2), as compared to additive polygenic inheritance (circle points, ●, in Figure 2). 
This is likely due to the fact that there are more training samples with higher values 
for the simulated trait when the underlying model is dominant, which provides more 
“useful” variance in the outcome for GENN to utilize in developing a causative 
model. This conclusion is further supported by the observation that GENN has ex-
tremely low sensitivity to detect the functional genetic variants when the underlying 
model is recessive (data not shown). In the recessive model, two copies of the less 
common allele are required to have an increased mean value of the simulated trait. If  
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the frequency of each minor allele is 0.25 in the population, the probability of any one 
individual having two copies of the minor allele at both variants is 0.254=0.0039. 
Such individuals with these exposures will be extremely rare in the population, and 
even with the same effect size, such a model will be very difficult to detect in a popu-
lation-based genetic association study, which assumes genetic variation contributing 
to a complex trait is common in the population [1]. This is the case regardless of 
whether one is using parametric statistics or evolutionary programming to search for 
gene-gene interactions. 

One limitation in the current study is that these experiments make the assumption 
that loci involved in a gene-gene interactions contributing to a heritable trait will  
carry with them some small main effect at either variant. This is a reasonable assump-
tion to make, in that there are few, if any, examples of a consistently replicating, ex-
perimentally verified gene-gene interaction in the complete absence of main effects 
contributing to a complex quantitative trait in humans. Perhaps the reason for this, 
however, is the inadequacy of our methods for finding gene-gene interactions in the 
absence of main effects rather than the absence of such effects altogether. Biologi-
cally, redundancy and compensatory mechanisms at other loci can mitigate the effects 
of a devastating mutation or polymorphism at another locus, thus rendering its effect 
undetectable. This is evident in the many gene knockout mouse lines that show no 
apparent phenotype [41-46]. Statistically, main effect components and interactions 
between them are mathematically independent effects [47]. Furthermore, theoretical 
studies have shown that traits can be influenced exclusively through the interaction of 
two or more genetic variants [48;49]. Finally, one group has shown that main effects 
at variants involved in an epistatic interaction are highly dependent on the allele fre-
quency in different populations at each locus, which may explain the lack of replica-
tion of many gene-gene interaction studies which rely on main effects [50]. Future 
studies should aim to assess these and other extensions of GENN in their ability to 
detect and model epistatic interactions contributing to a quantitative trait in the  
absence of main effects. 

Separately, each of the modifications here result in only modest (partial TBXO) to 
moderate (addition only) improvements to the ability of GENN to perform variable 
selection. However, combining partial TBXO with restricting the activation node 
function to addition only can lead to drastic increases in sensitivity (for instance, see 
the middle panel in Figure 2, 200 generations, population size 200 – when using 
TBXO for 100 generations with addition only sensitivity is increased to 76%, a nearly 
threefold increase over the 26% sensitivity when using all four arithmetic functions 
without TBXO). Future studies should aim to statistically quantify this improvement, 
as well as assess these and other improvements on models simulated under different 
genetic architectures. 
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Abstract. A fundamental goal of human genetics is the discovery of polymor-
phisms that predict common, complex diseases. It is hypothesized that complex 
diseases are due to a myriad of factors including environmental exposures and 
complex genetic risk models, including gene-gene interactions. Such interactive 
models present an important analytical challenge, requiring that methods per-
form both variable selection and statistical modeling to generate testable genetic 
model hypotheses. Decision trees are a highly successful, easily interpretable 
data-mining method that are typically optimized with a hierarchical model 
building approach, which limits their potential to identify interactive effects. To 
overcome this limitation, we utilize evolutionary computation, specifically 
grammatical evolution, to build decision trees to detect and model gene-gene 
interactions. Currently, we introduce the Grammatical Evolution Decision Trees 
(GEDT) method, and demonstrate that GEDT has power to detect interactive 
models in a range of simulated data, revealing GEDT to be a promising new 
approach for human genetics. 

Keywords: Epistasis, gene-gene interactions, machine learning, decision trees, 
grammatical evolution, genetic epidemiology. 

1   Introduction 

In the last decade, the field of human genetics has experienced an unprecedented burst 
in technological advancement, allowing for exciting opportunities to unravel the ge-
netic etiology of common, complex diseases [1]. As genotyping has become more 
reliable and cost-effective, genome-wide association studies (GWAS) have become 
more commonplace tools for gene mapping, where hundreds of thousands or millions 
of genetic variants are tested for association with disease outcomes [1]. Typically, 
traditional statistical approaches (i.e. χ2 tests of association, regression analysis, etc) 
are used to test for univariate associations, and then those associations are evaluated 
for replication and validation in independent patient cohorts [2]. This traditional ap-
proach has been very successful in identifying strong single gene effects in many 
common diseases [3], but limitations of this traditional approach have become a focus 
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as the variation explained by these singly loci do not come close to the estimates of 
variance explained by genetics (heritability) known for many diseases [4]. 

This unexplained variation is hypothesized to be due to more complex etiologies 
underlying complex diseases [5]. These complex mechanisms include rare variants 
with high penetrance, locus heterogeneity, and epistasis. In particular, the ubiquitous 
nature of epistasis, or gene-gene and gene-environment interactions, in the etiology of 
human diseases presents a difficult analytical challenge [5] . Traditional statistical 
approaches are limited in their ability to detect interaction models due to their reliance 
on hierarchical model building strategies, and concerns with high dimensional data 
(including the curse of dimensionality) [6]. These limitations have been previously 
described in detail [7]. In response to these limitations, many novel data-mining ap-
proached have been developed [8]. The majority of these methods rely on either a 
combinatorial search approach (such at Multifactor Dimensionality Reduction [9], 
Combinatorial Partitioning Method [10]) or on a hierarchical model building strategy 
(such as with Random Forests™[11]). The combinatorial approached are ideal for 
detecting purely interactive effects (with no single-locus main effects), but are too 
computationally intensive to detect higher order interactions in large datasets (such as 
GWAS). The hierarchical approaches are often computationally efficient, but are 
unable to detect purely epistatic effects [8]. Methods are needed that can detect pure 
epistatic models in the absence of main effects with realistic computation time. Addi-
tionally, as the goal of such data-mining analysis is best described as “hypothesis 
generation” as opposed to traditional “hypothesis testing” such methodologies need to 
generate understandable, interpretable models that can be evaluated in follow-up 
studies [12].  Both replication and functional studies are crucial for the translation of 
such bioinformatics models. 

The use of evolutionary computation (EC) algorithms is one potential solution to 
these concerns, and has previously shown success in genetic association studies[8]. 
Several EC algorithms (including genetic algorithms (GA), genetic programming 
(GP), and grammatical evolution (GE)) have been used to optimize a range of classi-
fiers (neural networks, naïve Bayes classifiers, etc.) to detect complex geno-
type/phenotype associations. While the success of these methods has been promising, 
there have been limitations in the interpretability of these models. Specifically, GE 
optimized neural networks (GENN) has been highly successful in a range of real and 
simulated data [13], but the resulting neural network models are “black box” models 
that are difficult to interpret, and are often passed to post hoc “white box” modeling 
for evaluation [13]. In overcome this problem, we propose using grammatical  
evolution to build “white box” models that are readily, immediately understandable. 
Similar approaches have been successful in other fields [14-16], strengthening the 
hypothesis that this approach would be successful in human genetics. Specifically, we 
use grammatical evolution to optimize decision trees for analysis of genetic associa-
tion studies. In the current manuscript, we introduce our Grammatical Evolution De-
cision Tree (GEDT) approach and software. We then demonstrate the method on a 
range of simulated gene-gene interaction models, and show that it has high power to 
detect interactions in a range of effect sizes.  
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2   Methods 

2.1   Grammatical Evolution (GE) 

Grammatical Evolution (GE) is a form of evolutionary computing that allows the 
generation of computer programs using grammars [17]. The modularity of GE makes 
it flexible and easy to use. GE uses linear genomes and grammars to define popula-
tions. In GE, each individual consists of a binary string divided into codons. Mutation 
takes place on individual bits along this string (or chromosome) and crossover only 
takes place between codons. An individual phenotype is produced by translating the 
codons according to the grammar. The resulting individual can then be tested for 
fitness in the population and evolutionary operators can be applied [18].  

GE is inspired by the biological process of generating a protein (phenotype) from 
the genetic material (DNA genotype) through the processes of transcription and 
translation. By using a grammar to define the phenotype, GE separates genotype from 
phenotype and allows greater genetic diversity within the population than other evolu-
tionary algorithms [17]. [Analogous to the biological process, a variable-length binary 
string is generated as the “DNA” of the GE process, where a consecutive group of 
typically 8 bits is considered to be a single codon. This binary string is then tran-
scribed into an integer string using the binary code with each codon representing an 
integer value. These integer values are then translated by a mapping function into an 
appropriate production rule from the grammar definition. An appropriate production 
rule is selected by the following mapping function: 

rule = (codon integer value) MOD (Number of alternatives 
for the current non-terminal) 

These production rules are then applied to a set of terminals to generate the terminals 
of the executable program. In the case that after transcribing the entire genome the 
production rule is not complete, wrapping is used where the genome is wrapped 
around like a circular list and codons reused. The grammar used for the current appli-
cation is described below. Details have been previously described [18]. 

2.2   Decision Trees 

A decision tree is a hierarchical decision-making model that consists of internal deci-
sion nodes and terminal leaf nodes [19]. Internal decision nodes represent attributes of 
an individual whereas leaf nodes represent the class the individual belongs to. The 
root node either corresponds to an initial criterion or an attribute of an individual. 
Root and other internal nodes are connected via directed edges so that a hierarchical 
structure is formed. Each outgoing edge from an internal node corresponds to the 
value of the attribute that the node represents.  

Decision trees have been widely used in a variety of applications, such as image 
classification [20], and pattern recognition [21]. As a learning tool, they offer many 
advantages that make them ideal for application in human association studies. First, 
they can model data that has non-linear relationships between variables and can also 
handle interactions between variables. Second, they can handle large quantities of 
data in reasonable computation time. Thirdly, they are very easy to understand and 
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communicate, which is crucial in such a collaborative, interdisciplinary field such as 
human genetics [12]. From the output model, it is possible to determine what attrib-
utes of individuals play an important role in dividing the data in smaller parts and 
what decisions were made at each internal node. Finally, they are very easy to inter-
pret. Any decision tree can be translated to IF-THEN statements or SWITCH-CASE 
statements, making it readily human-readable. All these characteristics of decision 
trees make them a “white-box” model in the sense that the way the output is derived 
from input variables, going through internal decision nodes, is extremely transparent. 
This makes them ideal for the “hypothesis generation” motivation of data-mining 
analysis. An example decision tree is presented in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. An example of a decision tree generated by GEDT. It also shows the corresponding 
parse string for this tree, which is obtained by using the mapping process. Here, decision nodes 
V1, V2 and V3 correspond to the SNP attributes of the data. Case and control values are repre-
sented as classes ‘+’ and ‘-’, respectively. 
 

2.3   Grammatical Evolution Decision Trees 

For the current study, GE has been implemented to optimize decision trees (DTs) to 
detect gene-gene interactions in genetic association studies. The first step of this im-
plementation was the construction of an appropriate grammar for the mapping of DTs 
that conform to the problem at hand. For genetic association data, the input vari-
ables/attributes represent genotypes at specific loci, where a genotype can take one of 
three genotype values for a bi-allelic SNP (AA, Aa, aa), encoded as 0, 1, and 2. This 
encoding makes no genetic model assumptions, so this analysis is both statistically 
and genetically nonparametric. Additionally, while in the current study we evaluate 
only genetic input variable, any categorical input variables could also be evaluated to 
detect gene-environment interactions. The output variable (class variable) can take 
one of two values, either positive (for cases) or negative (control) states.  

The GE process begins with the generation of a large number of randomly gener-
ated binary strings that are transcribed into integer strings, and then are translated into 
DTs using the following grammar. 

Parse string: (V1 0 (V2 0 + 1 – 2 -) 1 + 2 (V3 0 + 1 – 2)) 
))

V1

+

0

V2 

+ - - +

V3 

- + 

1 2

0 1 2 210
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The grammar can be represented by the tuple {N, T, P, S}, where N is the set of 
non-terminals, T is the set of terminals, P is a set of productions rules that maps the 
elements of N to T, and S is a start symbol which is a member of N. The following 
non-terminals were identified: 

 
N = {S, pseudoV, v, val0, val1, val2, class} 
 

Here, S represents the start codon in the genome. The non-terminal ‘pseudoV’ is used 
to represent the tertiary structure of the tree and to keep the recursion going. Non-
terminals ‘val0’, ‘val1’ and ‘val2’ represent the possible values a genetic attrib-
ute/variable can have and finally, non-terminal ‘class’ represents the class an individ-
ual belongs to. The following terminals were identified: 

 
T = {0, 1, 2, +, -, V1-n} 
 

where the set {V1, V2, …, Vn} represents the variable set which correspond to SNPs 
in the dataset. Terminals ‘0’, ‘1’ and ‘2’ represent possible values these variables can 
hold, whereas terminals ‘+’ and ‘-‘ represent the class values, which correspond the 
case/control values an individual belongs to. 

The following production rules were used to define BNF grammar for GEDT:  
 

(1) S := <pseudoV> 
(2) pseudoV := <v> <val0> <pseudoV> <val1>  

<pseudoV> <val2> <pseudoV> 
  | <class> 
(3) val0 := 0 
(4) val1 := 1 
(5) val2 := 2 
(6) class := +  
  |  - 
(7) v := V1 
  | Vn 
 

where n is equal to the total number of potentially predictive variables/attributes in the 
dataset. As integer codons are read from the variable-length binary strings, these pro-
duction rules are used in the mapping function to generate decision trees. The process 
of generating decision trees can be understood by studying the third production rule of 
this grammar. The ‘pseudoV’ non-terminal can be substituted by either a string of 
seven other non-terminals or ‘class’, where the latter represents the terminating condi-
tion (it also takes care of the cases where all individuals belong to only one class). 
The first alternative starts with a variable, which is the root of the tree (or sub-tree). It 
is followed by three values for that variable and each value corresponds to the ‘pseu-
doV’ non-terminal. This represents the recursive condition. Now, each of these ‘pseu-
doV’ terminals are again substituted in two ways and the process continues until all 
non-terminals are substituted. 

After a tree is built using this grammar, the fitness of the DT model is measured, 
based on how accurately the model classifies all the individuals in the dataset. In 
order the make our methodology robust to class imbalance (when there is an unequal 
number of cases and controls in the dataset), we implemented balanced accuracy as 
the fitness metric [22]. Using this function, poor performance in either class will lead 
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to a poor overall fitness and the evolutionary process will be directed towards a solu-
tion that performs well in classifying both the sample classes correctly. The fitness 
function is calculated as the addition of ratio of the correctly classified case samples 
to the total number of case samples and ratio of correctly classified control samples to 
the total number of control samples. In other words, the fitness measure is equivalent 
to the arithmetic average of sensitivity and specificity [22]. In the case of balanced 
data, balanced accuracy is same as classification accuracy. The formula used is shown 
below: 

 

Balanced accuracy = (sensitivity + specificity) / 2 
 = ½ {[TP / (TP+FN)] + [TN / (TN+FP)]} 
 

where TP represents true positives, TN represents true negative, FP represents false 
positives, and FN represents false negatives. 

This fitness metric is then used in a genetic algorithm (GA) to automatically evolve 
the optimal DT for the data at hand. In this GA, individuals with the highest fitness 
values are more likely to pass on their on their “genetic material” to the next genera-
tion. For GEDT, we use the EC process to evolve every aspect of a decision tree 
model – including variable selection (which attributes/variables should be included in 
the model) and the recursive structure of the DT. The steps of GEDT are outlined in 
Figure 2, and are similar to those previously described for a grammatical evolution 
optimized neural network strategy [13]. 

First, GEDT parameters must be initialized in the configuration file, including  
mutation rate, crossover rate, duplication rate, population size, type of selection, 
wrapping count, minimum and maximum chromosome size, sensible initialization 
depth, and number of generations. Second, the data are divided into 10 equal parts for 
10-fold cross-validation. 9/10 of the data is used for training, and later the other 1/10 
of the data is used to evaluate the predictive ability of the model developed during 
training [23]. Third, an initial population of random solutions is generated to begin the 
training process. Sensible initialization is used to guarantee the initial population 
contains only functioning DTs [17, 18]. In the sensible initialization step an expres-
sion tree is created using the grammar described above. The software assigns a  
minimum depth to each rule that describes the depth required for the rule to be com-
pleted. As each tree is built, the algorithm randomly selects only rules that can fit 
within the remaining depth of the tree. Half of the individual DTs are built to the 
maximum depth by only selecting recursive rules until a non-recursive rule must be 
chosen to complete the tree and half are generated to a random depth no greater than 
the maximum by selecting any rule that can fit in the remaining depth of the tree [16, 
24]. The final step in initialization is to convert nodes of the tree into corresponding 
codons. Fourth, each individual genome is translated into a DT according to the rules 
of the grammar described above. Each DT is evaluated on the training set and its 
fitness (balanced accuracy) is recorded. Fifth, the best solutions (those with the  
highest balanced accuracy) are selected for crossover and reproduction using user-
specified proportions. The selection can be performed in a number of ways such as 
rank, roulette, tournament and uniform. We have used tournament selection as it is 
efficient for parallel architectures and it is easy to adjust its selection pressure to  
fine-tune its performance [25]. During duplication, a part of the best solutions is 
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Fig. 2. An overview of the GEDT process that shows the six-step process of initialization, 
cross-validation, training, fitness evaluation using balanced error, natural selection (tourna-
ment) and testing – evaluating prediction error 

 

directly duplicated (i.e. reproduced) into the new generation. During mutation, some 
other part of the best solutions is selected to apply mutation operator. Mutation is 
performed on individual bits and involves flipping of the binary value along the ge-
nome. During cross-over, some another part is selected for cross-over with other best 
solutions. It is performed at chromosomal level. We have used one-point cross-over 
operator. After these operators are applied, the new generation is formed, which is 
equal in size to the original population. The new generation created by a selection 
technique specified in the configuration file begins the cycle again. This continues 
until some criterion, a balanced accuracy of 100% or a user-specified limit on the 
number of generations, is met. An optimal solution is identified after each generation. 
At the end of GEDT evolution, the overall best solution is selected as the optimal DT.  
Sixth, this best GENN model is tested on the 1/10 of the data left out to estimate the 
prediction error of the model. Steps two through six are performed ten times using a 
different 9/10 of the data for training and 1/10 of the data for testing.  

The goal of GEDT is to find a model that not only fits the data at hand, but will 
predict on future, unseen data. Cross validation is used in GEDT to prevent overfitting 
[23]. Overfitting refers to the phenomenon in which a predictive model may well 
describe the relationship between predictors and outcome in the sample used to  
develop the model, but may subsequently fail to provide valid predictions in new 
samples. The use of both classification balanced accuracy and prediction balanced 
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accuracy error within the GEDT algorithm emphasizes generalizability of the final 
model.  As described above, for each cross-validation interval, a best model is chosen 
based on highest accuracy of all models evaluated for that interval – resulting in a 
total of 10 models (one best model for each interval). A classification accuracy and 
prediction accuracy are recorded for each of the models and a cross-validation consis-
tency can be measured to determine those variables that have a strong signal in the 
gene-gene interaction model. Cross-validation consistency summarizes the number of 
times a particular variable(s) are present in the GEDT model out of the best models 
from the ten cross-validation data splits. The higher the cross-validation consistency, 
the stronger the support for the model is. The locus/loci with the highest cross-
validation consistency are chosen as the final model of the GEDT analysis. 

2.4   Data Simulation 

For the purposes of the current study, purely epistatic genetic models were generated 
with varying effect sizes. These models emulate the situation where the phenotype 
under study cannot be predicted from the independent effects of any single gene, but 
is the result of combined effects of two or more genes [26].  As discussed above, such 
epistatic (gene-gene interaction) models are increasingly assumed to play an  
important role in the underlying etiology of common genetic diseases [5]. We used 
penetrance functions to represent epistatic genetic models, where penetrance defines 
the probability of disease given a particular genotype combination by modeling the 
relationship between genetic variations and disease risk. The genetic variations mod-
eled are single-nucleotide polymorphisms (SNPs). For each individual, a total of 100 
SNPs were simulated, where two of the SNPs are associated with the outcome, and 98 
are noise SNPs. Case-control data was simulated with 250 cases and 250 controls 
generated for each dataset, and 100 datasets were generated for each genetic model 
and effect size combination (described below). 

We used two well-described epistasis models exhibiting interaction effects in the 
absence of main effects. Models that lack main effects challenge the method to find 
interactions in a complex dataset. The first model, based on the nonlinear XOR func-
tion, was initially described by Li and Reich [27], and later by Moore [29]. This 
model generates an interaction effect in which high risk of disease is dependent on 
inheriting a heterozygous genotype (Aa) from one locus or a heterozygous genotype 
(Bb) from a second locus, but not both. The second model, called the ZZ model, was 
initially described by Frankel and Schork [28] and Moore [29]. In this second model, 
high risk of disease is dependent on inheriting exactly two high-risk alleles (A and/or 
B) from two different loci.  

For each of the two genetic models (XOR and ZZ), three different effect sizes  
were used (resulting in a total of six sets of data simulations). Effect size was meas-
ured as the proportion of the trait variance that is due to genetics, or broad sense 
heritability. As calculated according to Culverhouse et al [30], heritabilities for the 
simulated models ranged from 5-100%, capturing a broad range of potential models. 
Table 1 shows the penetrance functions used for the simulations. Genotypes were 
generated according to Hardy-Weinberg proportions (in both models, p (the major 
allele frequency)=q (the minor allele frequency)=0.5). These models exhibit interac-
tion effects in the absence of any main effects. GenomeSim software described by  
 



106 S. Deodhar and A. Motsinger-Reif 

Table 1. Multilocus penetrance functions used to simulate case-control data exhibiting gene-
gene interactions in the absence of main effects. Penetrance is calculated as 
P(Disease|Genotype).  

XOR Model I, Heritability=5.26%
BB Bb bb

AA 0 0.1 0

Aa 0.1 0 0.1

aa 0 0.1 0

XOR Model II, Heritability=33%
BB Bb bb

AA 0 0.5 0

Aa 0.5 0 0.5

aa 0 0.5 0

XOR Model III, Heritability=100%
BB Bb bb

AA 0 1.0 0

Aa 1.0 0 1.0

aa 0 1.0 0

ZZ Model I, Heritability=5.13%
BB Bb bb

AA 0 0 0.1

Aa 0 0.05 0

aa 0.1 0 0

ZZ Model II, Heritability=28.6%
BB Bb bb

AA 0 0 0.5

Aa 0 0.25 0

aa 0.5 0 0

ZZ Model II, Heritability=100%
BB Bb bb

AA 0 0 1.0

Aa 0 0.5 0

aa 1.0 0 0
 

Dudek et al [31] was used to simulate the data. Although the biological likelihood of 
these models is unknown, they represent the worst-case scenario for the detection 
method because they have minimal main effects. If a method works well with mini-
mal main effects, seemingly the method will also work well in the presence of main 
effects.  

2.5   Data Analysis 

GEDT was used to analyze each of the 600 simulated datasets described above. The 
configuration parameters used for analysis were as follows: 400 generations, popula-
tion size of 200 individuals, migration after every 25 generations, cross-over rate of 
0.9, mutation rate of 0.1, chromosome size bounded by lower limit of 50 and upper 
limit of 1000, tournament type of selection, standard i.e. single-point cross-over, bal-
anced accuracy for fitness evaluation and sensible initialization. These parameters are 
all defined in the configuration file. To prevent stalling in local minima in the fitness 
landscape, parallelization is used. The parallelization uses the island model where the 
best individual is passed to each of the other processes after every 25 generations[32]. 
GEDT is implemented in C++ and Perl, and run on quad-core Core2 Xeon processors 
(8 processors, each at 3 GHz and with 4GB of memory).  Software and user instruc-
tions are available from the authors upon request, or linked from the following web-
site: www4.stat.ncsu.edu/~motsinger. 

Power for all analyses was estimated under each epistasis model as the number of 
times the algorithm correctly identified the functional loci out of each set of 100 data-
sets, without any false positive loci.  
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3   Results 

The power results for each model are as shown in the Table 2. There are a few general 
trends that are expected for all association methods. GEDT has a minimum of 24% 
power to detect the lowest effect size models, and as expected, the effect size (herita-
bility) of the models increase, the power also increases. GEDT has over 70% power to 
detect the higher heritability models. When the number of generations and population 
size were increased to 600 and 300, respectively, the highest power demonstrated by 
GEDT increased to 86%. When these two parameters were further increased to 1000 
and 500, respectively, power as high as 98% power was achieved. 

The GEDT method is also computationally efficient, making it a reasonable ap-
proach for larger scale data analysis. In the current evaluations on quad-core Core2 
Xeon processors (8 processors, each at 3 GHz with 4GB of memory,) for a total of 
400 generations, GEDT analysis of a single dataset consisting of 500 individuals took 
5 minutes on average to complete. 

Table 2. Results of GEDT analysis, No. of generations = 400 

Model XOR-I XOR-II XOR-III ZZ-I ZZ-II ZZ-III 

Power (%) 24 33 72 36 38 56 

4   Discussion 

In the current study, we have presented a detailed description of a new methodology 
to detect gene-gene interactions in genetic association studies. We propose the use of 
grammatical evolution to evolve every aspect of decision tree models to detect gene-
gene and gene-environment interactions. We demonstrate the potential of the method 
on a range of simulated two-locus gene-gene interaction models. GEDT has reasona-
bly high power to detect models of moderate to high effect sizes. 

While these results are encouraging, the GEDT methodology is still in its infancy, 
and there are many aspects of its implementation and application that are currently 
under investigation. First, the parameters implemented in the configuration file are 
currently undergoing sweeps for a wide range of values to determine optimal settings 
for data analysis. For example, preliminary data (not shown) shows that as expected, 
as the number of generations that GEDT is run is increased, the power to detect  
models also increases. This trend should be further evaluated and potentially more 
sophisticated stopping rules should be evaluated. Other types of selection, different 
crossover and mutation rates, etc. should also be evaluated to maximize the power of 
the method.  The scalability of GEDT to data with much larger number of input vari-
ables will also be crucial, as genotyping technology allows the evaluation of SNPs 
orders of magnitude larger than the current simulations. 

Additionally, the performance of GEDT must be compared to other methods in the 
field. GEDT should be compared to other evolutionary computation strategies, such 
as Grammatical Evolution Neural Networks (GENN) to compare their relative per-
formance in a range of genetic models. The performance of GEDT should also be 
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compared to other methods used in genetic epidemiology designed to detect epistasis 
– such as Multifactor Dimensionality Reduction [9], Grammatical Evolution Neural 
Networks [13], etc. Also, the performance of GEDT should be compared to other 
decision tree algorithms like ID3 and C4.5 [19]. No method can be considered in a 
vacuum – and empirical comparisons will play an important role in understanding the 
niche of the GEDT methodology.  These comparisons should consider a variety of 
genetic models, including heterogeneity, the presence of phenocopy, etc. 

The current results indicate the potential of this exciting new approach, but as the 
end goal of any methodological development is the application to real data, GEDT 
should be applied to real datasets in human genetics to really evaluate its potential. 
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Abstract. The ability to accurately classify cancer patients into risk classes, i.e.
to predict the outcome of the pathology on an individual basis, is a key ingredient
in making therapeutic decisions. In recent years gene expression data have been
successfully used to complement the clinical and histological criteria traditionally
used in such prediction. Many “gene expression signatures” have been developed,
i.e. sets of genes whose expression values in a tumor can be used to predict the
outcome of the pathology. Here we investigate the use of several machine learn-
ing techniques to classify breast cancer patients using one of such signatures,
the well established 70-gene signature. We show that Genetic Programming per-
forms significantly better than Support Vector Machines, Multilayered Perceptron
and Random Forest in classifying patients from the NKI breast cancer dataset,
and slightly better than the scoring-based method originally proposed by the au-
thors of the seventy-gene signature. Furthermore, Genetic Programming is able
to perform an automatic feature selection. Since the performance of Genetic Pro-
gramming is likely to be improvable compared to the out-of-the-box approach
used here, and given the biological insight potentially provided by the Genetic
Programming solutions, we conclude that Genetic Programming methods are
worth further investigation as a tool for cancer patient classification based on gene
expression data.

1 Introduction

Current cancer therapies have serious side effects: ideally type and dosage of the therapy
should be matched to each individual patient based on his/her risk of relapse. Therefore
the classification of cancer patients into risk classes is a very active field of research,
with direct clinical applications. Until recently patient classification was based on a
series of clinical and histological parameters. The advent of high-throughput techniques
to measure gene expression led in the last decade to a large body of research on gene
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expression in cancer, and in particular on the possibility of using gene expression data
to improve patient classification. A gene signature is a set of genes whose levels of
expression can be used to predict a biological state (see [25]): in the case of cancer,
gene signatures have been developed both to distinguish cancerous from non-cancerous
conditions and to classify cancer patients based on the aggressiveness of the tumor, as
measured for example by the probability of relapsing within a given time.

While many studies have been devoted to the identification of gene signatures in
various types of cancer, the question of the algorithms to be used to maximize the pre-
dictive power of a gene signature has received less attention. To investigate this issue
systematically, we considered one of the best established gene signatures, the 70-gene
signature for breast cancer [33], and we compared the performance of four different
machine learning algorithms in using this signature to predict the survival of a cohort
of breast cancer patients. The 70-gene signature is a set of microarray features selected
in [33] based on correlation with survival, on which the molecular prognostic test for
breast cancer “MammaPrint”TMis based. While several machine learning algorithms
have been used to classify cancer samples based on gene expression data (see the dis-
cussion in Section 2 and also references [8,10,11,20,26,37]), in this work we performed
a systematic comparison of the performance of four machine learning algorithms us-
ing the same features to predict the same classes. In our comparison, feature selection
is thus not explicitly performed as a pre-processing phase before executing the ma-
chine learning algorithms1. We considered GP, Support Vector Machines, Multilayered
Perceptron and Random Forests, and we applied them to the problem of using the 70-
gene signature to predict the survival of the breast cancer patients included in the NKI
dataset [32]. This is considered one of the gold-standard datasets in the field, and the
predictive power of the 70-gene signature on these patients was already shown in [32].
In this preliminary study we tried to use all the methods in an “out-of-the-box” version
so as to obtain a preliminary evaluation as unbiased as possible of the performance of
the methods.

This paper is structured as follows: Section 2 contains a review of some previous and
related contributions; in Section 3 we describe the machine learning methods that we
have used; Section 4 contains a description of the employed dataset; in Section 5 we
report and discuss the experimental results; finally, Section 6 concludes this work.

2 Previous and Related Work

Many different machine learning methods [22] have already been applied for microar-
ray data analysis, like k-nearest neighbors [23], hierarchical clustering [1], self-
organizing maps [18], Support Vector Machines [14,15] or Bayesian networks [12].
Furthermore, in the last few years Evolutionary Algorithms (EA) [16] have been used
for solving both problems of feature selection and classification in gene expression data
analysis. Genetic Algorithms (GAs) [13] have been employed for building selectors
where each allele of the representation corresponds to one gene and its state denotes

1 As we will discuss later, Genetic Programming (GP) is the only method, among the ones
studied in this paper, that is able to perform an automatic feature selection during the learning
phase.
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whether the gene is selected or not [21]. GP on the other hand has been shown to work
well for recognition of structures in large data sets [24]. GP was applied to microarray
data to generate programs that reliably predict the health/malignancy states of tissue,
or classify different types of tissues. An intrinsic advantage of GP is that it automati-
cally selects a small number of feature genes during the evolution [29]. The evolution
of classifiers from the initial population seamlessly integrates the process of gene se-
lection and classifier construction. In fact, in [37] GP was used on cancer expression
profiling data to select potentially informative feature genes, build molecular classifiers
by mathematical integration of these genes and classify tumour samples. Furthermore,
GP has been shown a promising approach for discovering comprehensible rule-based
classifiers from medical data [5] as well as gene expression profiling data [17]. The
results presented in those contributions are encouraging and pave the way to a further
investigation of GP for this kind of datasets, which is the goal of this paper.

3 Computational Methods

3.1 Genetic Programming

Genetic Programming (GP) [19,28,34] is an evolutionary approach which extends Ge-
netic Algorithms (GAs) [16,13] to the space of programs. Like any other evolutionary
algorithm, GP works by defining a goal in the form of a quality criterion (or fitness)
and then using this criterion to evolve a set (also called population) of solution can-
didates (also called individuals) by mimic the basic principles of Darwin’s theory of
evolution [9]. The most common version of GP, and also the one used here, consid-
ers individuals as abstract syntax tree structures2 that can be built recursively from a
set of function symbols F = {f1, f2, . . . , fn} (used to label internal tree nodes) and
a set of terminal symbols T = {t1, t2, . . . , tm} (used to label tree leaves). GP breeds
these solutions to solve problems by executing an iterative process involving the prob-
abilistic selection of the fittest solutions and their variation by means of a set of genetic
operators, usually crossover and mutation.

We used a tree-based GP configuration inspired by boolean problems introduced
in [19]: each feature in the dataset was represented as a boolean value and thus our
set of terminals T was composed by 70 boolean variables (i.e. one for each feature of
our dataset). Potential solutions (GP individuals) were built using the set of boolean
functions F = {AND, OR, NOT }. The fitness function is the number of incorrectly
classified instances, which turns the problem into a minimization one (lower values are
better)3.

Finally no explicit feature selection strategy was employed, since we want to point
out GP’s ability to automatically perform an implicit feature selection. The mechanism
allowing GP to perform feature selection, already pointed out for instance in [2,3,4,29],
is simple: GP searches over the space of all boolean expressions of 70 variables. This

2 Traditionally represented in Lisp notation.
3 We are aware that, in case of minimization problems, the term “fitness” might be inappropriate,

given that a fitness is usually a measure that has to be maximized. Nevertheless, we chose to
use this term for simplicity.
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search space includes the expressions that use all the 70 variables, but also the ones that
use a smaller number of variables. In principle there is no reason why an expression
using a smaller number of variables could not have a better fitness value than an expres-
sion using all the 70 variables. If expressions using smaller number of variables have
a better fitness, they survive into the population, given that fitness is the only principle
used by GP for selecting genes.

The parameters used in our GP experiments are reported in Table 1, together with
the parameters used by the other machine learning methods we studied. There is no
particular justification for the choice of those parameter values, if not the fact that they
are standard for the computational tool we used, i.e. GPLab: a public domain GP system
implemented in MatLab (for the GPLab software and documentation, see [31]).

3.2 Support Vector Machines

Support Vector Machines (SVM) are a set of related supervised learning methods used
for classification and regression. They were originally introduced in [35]. Their aim
is to devise a computationally efficient way of identifying separating hyperplanes in a
high dimensional feature space. In particular, the method seeks separating hyperplanes
maximizing the margin between sets of data. This should ensure a good generalization
ability of the method, under the hypothesis of consistent target function between train-
ing and testing data. To calculate the margin between data belonging to two different
classes, two parallel hyperplanes are constructed, one on each side of the separating
hyperplane, which are “pushed up against” the two data sets. Intuitively, a good separa-
tion is achieved by the hyperplane that has the largest distance to the neighboring data
points of both classes, since in general the larger the margin the lower the generalization
error of the classifier. The parameters of the maximum-margin hyperplane are derived
by solving large quadratic programming (QP) optimization problems. There exist sev-
eral specialized algorithms for quickly solving these problems that arise from SVMs,
mostly reliant on heuristics for breaking the problem down into smaller, more manage-
able chunks. In this work we used the implementation of John Platt’s [27] sequential
minimal optimization (SMO) algorithm for training the support vector classifier. SMO
works by breaking the large QP problem into a series of smaller 2-dimensional sub-
problems that may be solved analytically, eliminating the need for numerical optimiza-
tion algorithms such as conjugate gradient methods. The implementation we used is the
one contained in the Weka public domain software [36]. This implementation globally
replaces all missing values and transforms nominal attributes into binary ones. It also
normalizes all attributes by default (in that case the coefficients in the output are based
on the normalized data, not the original data and this is important for interpreting the
classifier).

The main parameter values used in this work are reported in Table 1. All these pa-
rameter values correspond to the standard values offered by the Weka software [36] and
they are defined for instance in [27]. We are aware that in several application domains,
SVM have been shown to outperform competing techniques by using nonlinear kernels,
which implicitly map the instances to very high (even infinite) dimensional spaces. Un-
fortunately, the implementation of SVM in Weka sets as default the polynomial kernel
with degree 1. This means that we evaluate the accuracy of linear SVM (SVM in the
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original feature space). Possible improvements, using more sophisticated kernel func-
tions, are included in our future work.

3.3 Multilayered Perceptron

Multilayered Perceptron is a feed-forward artificial neural network model [30]. It is a
modification of the standard linear perceptron in that it uses three or more layers of
neurons (nodes) with nonlinear activation functions, and is more powerful than simple
perceptron in that it can distinguish data that are not linearly separable, or separable by
a hyperplane. It consists of an input and an output layer with one or more hidden layers
of nonlinearly-activating nodes. Each node in one layer connects with a certain weight
to every other node in the following layer. The implementation we have adopted is the
one included in the Weka software distribution [36]. We used the Back-propagation
learning algorithm [30] and the values used for all the parameters are reported in Ta-
ble 1. As for the previously discussed machine learning methods, also in the case of
Multilayered Perceptron it is important to point out that we used a parameter setting as
standard as possible, without doing any fine parameter tuning for this particular appli-
cation. Our goal is, in fact, to compare different computational methods under standard
conditions and not to solve in the best possible way the application itself. In particular,
all the values reported in Table 1 correspond to the default ones adopted by the Weka
software.

3.4 Random Forests

Random Forests denotes an improved Classification and Regression Trees method [7].
It works by creating a large number of classification trees or regression trees. Every
tree is built using a deterministic algorithm and the trees are different owing to two
factors. First, at each node, a best split is chosen from a random subset of the predictors
rather than from all of them. Secondly, every tree is built using a bootstrap sample of
the observations. The out-of-bag data, approximately one-third of the observations, are
then used to estimate the prediction accuracy. Unlike other tree algorithms, no pruning
or trimming of the fully grown tree is involved. In this work we use the Breiman model
presented in [6] and implemented in the Weka software [36]. As it can be seen from
Table 1, this method, compared to the other ones, has the advantage of a smaller amount
of parameter setting required. In order to allow a fair comparison with GP, we have
considered random forests composed by 2500 trees (given that the GP population is
composed by 500 trees and it runs for 5 generations, 2500 trees are globally inspected
by GP too) and such that each node corresponds to exactly one feature (as it is for GP).
All the other parameters were set to the standard values offered by the Weka software.

4 Validation Dataset

We used the NKI breast cancer dataset [32], providing gene expression and survival
data for 295 consecutive breast carcinoma patients. We considered only the expression
data for the genes included in the “seventy gene” signature [33].
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Table 1. Parameters used in the experiments

GP Parameters
population size 500 individuals

population initialization ramped half and half [19]
selection method tournament (tournament size = 10)

crossover rate 0.9
mutation rate 0.1

maximum number of generations 5
algorithm generational tree based GP with no elitism

SVM Parameters
complexity parameter 0.1

size of the kernel cache 107

epsilon value for the round-off error 10−12

exponent for the polynomial kernel 1.0
tolerance parameter 0.001

Multilayered Perceptron Parameters
learning algorithm Back-propagation

learning rate 0.03
activation function for all the neurons in the net sigmoid

momentum 0.2 progressively decreasing until 0.0001
hidden layers (number of attributes + number of classes) / 2

number of epochs of training 500
Random Forest Parameters

number of trees 2500
number of attributes per node 1

Both survival and gene expression data were transformed into binary form. For the
survival data, we defined the outcome as the survival status of the patient at time
tend = 10.3 years. By choosing this particular endpoint we balanced the number of
dead and alive patients: out of 148 patients for which the status at tend is known, 74
were dead and 74 were alive. Binary expression data were obtained by replacing all
positive logarithmic fold changes in the original dataset with 1 and all negative and
missing ones with 0.

Our dataset is a matrix H = [H(i,j)] of binary values composed by 148 rows (in-
stances) and 71 columns (features), where each line i represents the gene signature of a
patient whose binary target (0 = survived after tend years, 1 = dead for breast cancer
before tend years) has been placed at position H(i,71). In this way, the last column of
matrix H represents all the known target values. Our task is now to generate a mapping
F such that F (H(i,1), H(i,2), ..., H(i,70)) = H(i,71) for each line i in the dataset. Of
course, we also want F to have a good generalization ability, i.e. to be able to assess
the target value for new patients, that have not been used in the training phase. For this
reason, we use a set of machine learning techniques, as discussed in Section 3.

Each computational method was run 50 independent times. For each run a random
splitting of the dataset was performed before model construction, by partitioning it into
a training and a test set: 70% of the patients are randomly selected with uniform proba-
bility and inserted into the training set, while the remaining 30% form the test set.
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5 Experimental Results

Table 2 summarizes the results returned by each machine learning method on the 50
runs. The first line indicates the different methods, the second line shows the best (i.e.
lowest) value of the incorrectly classified instances obtained on the test set over the 50
runs, and the third line reports the mean performances of each group of 50 runs on their
test sets, together with the corresponding standard error of mean (SEM from now on).

Table 2. Experimental comparison between the number of incorrectly classified instances found
on the test sets by the different machine learning methods. Each method was independently run
50 times using each time a different training/test partition of the validation dataset (see text for
details). The first line indicates the method: Genetic Programming (GP), Support Vector Machine
(SVM), Multilayer Perceptrons (MP), and Random Forest (RF). The second line shows the best
value of the incorrectly classified instances obtained on the test set over the 50 runs, and the third
line reports the average performances of each group of 50 runs on their test sets (standard error
of mean is shown in parentheses).

GP SVM MP RF

best 10 13 10 12
average (SEM) 16.40 (0.30) 18.08 (0.37) 18.32 (0.39) 17.60 (0.35)

As Table 2 clearly shows, the best solutions were found by GP and Multilayered
Perceptron and the best average result was found by GP. Moreover, statistical analysis
indicates that GP consistently outperforms the other three methods. In fact, as it can
be seen in Table 3, the difference between the various average results is statistically
significant (P-value 0.0008 for ANOVA test on the 4 samples of solutions found by
each method). Finally, pairwise 2-tailed Student t-tests comparing GP with each other
method demonstrate its better performance. These statistical tests were performed since
there was no evidence of deviation from normality or unequal variances.

Table 3. Statistical significance of the different performances of the methods. First line shows
ANOVA test on the 4 samples of solutions found by each method, while second line depicts
pairwise 2-tailed Student t-tests comparing GP with each other method.

ANOVA
P = 0.0008

Student t-test GP vs. SVM Student t-test GP vs. MP Student t-test GP vs. RF
P = 0.0001 P = 0.0009 P = 0.0052

When using gene signatures to predict the survival of a cohort of breast cancer pa-
tients, one of the main goal in clinical applications is to minimize the number of false
negative predictions. Table 4 summarizes the false negative predictions returned by each
machine learning method on the 50 runs. The first line indicates the different methods,
while the second and the third lines show the best (i.e. lowest) and mean performances
(together with the corresponding SEM)values of incorrectly classified instances.
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Table 4. Experimental comparison between the number of false negatives found on the test sets
by the different machine learning methods. Each method was independently run 50 times using
each time a different training/test partition of the validation dataset (see text for details). The
first line indicates the method: Genetic Programming (GP), Support Vector Machine (SVM),
Multilayer Perceptrons (MP), and Random Forest (RF). The second line shows the best value of
the incorrectly classified instances obtained on the test set over the 50 runs, and the third line
reports the average performances of each group of 50 runs on their test sets (standard error of
mean is shown in parentheses).

GP SVM MP RF

best 2 6 5 6
average (SEM) 9.82 (0.44) 13.56 (0.53 12.88 (0.51) 13.38 (0.49)

The best solutions were found by GP, and statistical analysis indicates that GP con-
sistently outperforms the other three methods as it can be seen in Table 5. The difference
between the various average results is statistically significant (P-value 4.57 × 10−7 for
ANOVA test on the 4 samples of solutions found by each method). Finally, pairwise
2-tailed Student t-tests comparing GP with each other method demonstrate its better
performance.

Table 5. False negative prediction: statistical significance of the different performances of the
methods. First line shows ANOVA test on the 4 samples of solutions found by each method,
while second line depicts pairwise 2-tailed Student t-tests comparing GP with each other method.

ANOVA
P = 4.57 × 10−7

Student t-test GP vs. SVM Student t-test GP vs. MP Student t-test GP vs. RF
P = 1.36 × 10−6 P = 8.53 × 10−6 P = 2.32 × 10−7

The solutions found by GP typically use a rather small number of features (i.e. ter-
minals). In fact, the solutions of the 50 GP runs are functions of a number of terminal
that ranges from 1 to 23, with a median value of 4, and first and third quartiles of 2 and
7 respectively. Few of these features tend to recur in several solution as it can be seen
in Table 6, where the gene symbol, the gene name of each feature, together with the
number of solutions where the feature occurs are shown.

The authors of Refs. [33,32] used the seventy-gene signature by assigning a coeffi-
cient to each of the features and computing a score for each patient as the scalar product
of these coefficients and the patient gene expression. To compare the performance of the
various machine learning algorithms with this scoring system we proceeded as follows:

– We obtained the prognostic score s of the patients (excluding the ones used to train
the signature in [33]) from the Supplementary Material of [32], and classified as
good prognosis the patients with s > 0.4 and as bad prognosis the ones with s≤
0.4. This is the cutoff used in [32].

– We generated 50 random lists of 50 patients from this set, to match the statistic
used for machine learning techniques, and computed for each list the number of
false predictions given by the scoring method.
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Table 6. The 10 most recurring features in the solutions found by GP. The four columns show:
accession ID, gene symbol, gene description, and number of solutions where that feature occurs.

Accession ID Gene symbol Gene description Solutions
NM_003981 PRC1 protein regulator of cytokinesis 1 48
NM_002916 RFC4 replication factor C (activator 1) 4, 37kDa 23
AI992158 - - 16
AI554061 - - 10
NM_006101 NDC80 NDC80 homolog, kinetochore complex

component (S. cerevisiae)
9

NM_015984 UCHL5 ubiquitin carboxyl-terminal hydrolase L5 7
NM_020188 C16orf61 chromosome 16 open reading frame 61 6
NM_016448 DTL denticleless homolog (Drosophila) 6
NM_014791 MELK maternal embryonic leucine zipper kinase 6
NM_004702 - - 6

The mean number of false predictions was 16.7, with a SEM of 0.3. Therefore the
scoring method appears to be superior to all machine learning algorithm other than GP,
and slightly inferior to GP. The difference between the performances of GP and the
scoring method are not statistically significant (P = 0.49, 2-tailed Student t-test).

The original scoring method of [33,32], and in particular the suggested cutoff of 0.4,
was chosen in such a way as to minimize the number of false negatives. Therefore it
is not surprising that in this respect the scoring method is far superior to all machine
learning methods, including GP. Indeed the average number of false negatives given
by the scoring method is 1.7, to be compared to the numbers reported in Table 5. The
implications of these results are discussed in the next section.

6 Discussion

The goal of our investigation was to refine the set of criteria that could lead to an indi-
vidualized diagnosis of variations of Breast Cancer. To reach this goal we started from
the well known “70-genes signature” and proceeded with the application of several ma-
chine learning schemes, in order to perform a comparison. We made some simplifying
assumptions, preprocessed the data accordingly and ran several evaluation experiments.

Our results showed that while all the machine learning algorithms we used do have
predictive power in classifying breast cancer patients into risk classes, GP clearly out-
performs all other methods. Of course there is no way to do such a comparison in a
completely unbiased way, as one could always argue that the levels of optimization are
uneven. To minimize the possible bias, we tried to use default implementation of all
the methods. The fact that all methods other than GP had very similar performances
suggests that GP is indeed the most promising method.

The improvement in performance shown by GP compared to the original scoring
method was rather small and not statistically significant. As expected, the scoring method
was superior to all machine learning algorithms in minimizing false negatives. Neverthe-
less we believe our results warrant further investigation into the use of GP in this context
for at least three reasons:
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– As stated above, our implementation of GP was purposely not optimized, and we
can expect substantial improvements in performance from further work aimed at
tuning the various GP parameters.

– Maybe more importantly, GP can potentially offer biological insight and generate
hypotheses for experimental work (see also [37]). Indeed an important result of
our analysis is that the trees produced by GP tend to contain a limited number of
features, and therefore are easily interpretable in biological terms. For example, the
best-performing tree is shown in Figure 1 and includes 7 genes (features).

– Finally within the context of GP there is a natural way to tune the algorithm towards
better sensitivity (specificity), simply by defining a fitness function in which false
negatives (positives) are penalized more than errors of the other type.

(or (and (or ORC6L RFC4) (or UCHL5 PRC1))
(and (or PRC1 AI554061) (or ESM1 AW014921)))

Fig. 1. Tree representation and the traditional Lisp representation of the model with the best
fitness found by GP over the studied 50 independent runs

Future work along these lines should therefore focus on both improving the per-
formance of GP and interpreting the results from the biological point of view. An
obvious first step towards optimization would be to abandon the binariziation of the
data (which here was used to produce trees that are easier to interpret) and build a
GP based on continuous expression values. The biological interpretation might benefit
from a statistical and functional analysis of the most recurring subtrees in optimal GP
solutions.

In conclusion we have shown that Genetic Programming outperforms other machine
learning methods as a tool to extract predictions from an established breast cancer gene
signature. Given the possibility of generating biological insight and hypotheses that
is intrinsic to the method, it deserves deeper investigation along the lines described
above. Finally, it will be our task to test the GP approach on other features/gene sets
that account for other cancers or other diseases, always with the objective of providing
clinitians with more precise and individualized diagnosis criteria.
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Abstract. Scatter Search is an evolutionary method that combines ex-
isting solutions to create new offspring as the well–known genetic algo-
rithms. This paper presents a Scatter Search with the aim of finding
biclusters from gene expression data. However, biclusters with certain
patterns are more interesting from a biological point of view. Therefore,
the proposed Scatter Search uses a measure based on linear correlations
among genes to evaluate the quality of biclusters. As it is usual in Scatter
Search methodology an improvement method is included which avoids
to find biclusters with negatively correlated genes. Experimental results
from yeast cell cycle and human B-cell lymphoma datasets are reported
showing a remarkable performance of the proposed method and measure.

Keywords: Gene Expression Data, Biclustering, Scatter Search,
Evolutionary Computation.

1 Introduction

Nowadays, the study of the process of how proteins are coded by genes is one of
the most important research topics in Biology. This codification process is known
as Gene Expression. DNA microarrays technology enables us to mesure the gene
expression level under a specific group of conditions. Data mining techniques are
needed to analyze the huge volume of all this biological information [1]. The goal
of Biclustering techniques is to discover transcription factors which determine
that a group of genes is co-expressed under a set of conditions.

Several biclustering methods have been proposed in the last few years [2]. For
example, in [3] an iterative hierarchical clustering is separately applied to each
dimension and biclusters are built by the combination of the obtained results
for each dimension. The Cheng and Church algorithm [4] builds biclusters by
adding or removing genes or conditions in order to improve the measure of
quality called Mean Squared Residue (MSR). In [5], it is proposed an exhaustive
biclusters enumeration by means of a bipartite graph-based model, in which
nodes were added o removed in order to find subgraphs with maximum weights.
The FLOC algorithm [6] improved the method presented in [4] by obtaining a
set of biclusters simultaneously and by adding missing values techniques. In [7], a
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simple linear model, in which normally distributed expression level for each gene
or condition was supposed, for gene expression data was applied. Evolutionary
computation techniques based on the MSR measure are used in [8,9] or Simulated
Annealing in [10]. But, although MSR is used in many algorithms as merit
function, it is not the most appropriate measure as the MSR measure can not
find scaling patterns when the variance of gene values is high in the bicluster [11].
Recently, the study of the nature of different patterns in biclusters has motivated
new techniques based on the search of hyperplanes in high–dimensional data
space as interesting patterns share the geometry of linear manifolds [12,13,14].
Other measures to evaluate biclusters have been proposed as fitness function for
optimization methods [15].

The gene expression level under a set of conditions can be seen as the values
of a discrete random variable. Thus, the linear dependency between two genes
can be studied by using the correlation coefficient between two random vari-
ables. This fact has motivated the use of the proposed measure in this paper.
This measure based on correlations among genes is the main term of the fitness
function proposed to evaluate the quality of biclusters in the Scatter Search.
Scatter Search is a population-based method that emphasizes systematic pro-
cesses against random procedures. Thus, the generation of the initial population
is not random but a generation method based on diversification [16] is used to
generate a set of diverse initial solutions. Moreover, Scatter Search includes an
improvement method with the aim of exploiting the diversity provided by the
generation and combination method.

This paper is organized as follows. The proposed Scatter Search is presented
and different steps such as the improvement method and the fitness function
are explained in details in Section 2. Some experimental results from two real
datasets are reported in Section 3. Finally, Section 4 outlines the main conclu-
sions of the paper and future works.

2 Description of the Algorithm

Scatter Search [16] is a population-based optimization metaheuristic which has
recently been applied to combinatorial and nonlinear optimization problems.
Optimization algorithms based on populations are search procedures where a
set of individuals that represent trial solutions evolves in order to find optimum
solutions of the problem. On the opposite to other evolutionary heuristics, Scat-
ter Search emphasizes systematic processes against random procedures. Scatter
Search uses strategies to diversify and to intensify the search in order to avoid
local minima and to find quality solutions.

Basically, the optimization process consists in the evolution of a set called
Reference Set. This set is initially built with the best solutions from the popula-
tion, according to the value of their fitness function, and the most scattered ones
from the population regarding the previous best solutions. This set is updated
by using the Combination Method and the Improvement Method until it does
not change. When the Reference Set is stable, it is rebuilt again. That is, the
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building of the Reference Set is based on quality and diversity, but its updat-
ing is only guided by quality. Thus, diversity is introduced in the evolutionary
process when the initial population is generated and, mainly, when the reference
set is rebuilt in each step. The search intensification is due to the improvement
method where the solutions are improved by exploiting the knowledge of the
problem.

The pseudocode of the proposed Scatter Search for biclustering is presented in
Algorithm 1. The Scatter Search process is repeated numBi times where numBi
is the number of biclusters to be found and the best solution of the reference
set is stored in a set called Results for each iteration. Thus, the Results set is
formed by numBi biclusters and it is the output of the Algorithm 1.

2.1 Initialization Phase

Formally, a microarray is a real matrix M composed of N genes and L conditions.
The element (i, j) of the matrix means the level of expression of gene i under the
condition j. A bicluster B is a submatrix of the matrix M composed of n ≤ N
rows or genes and l ≤ L columns or conditions. Biclusters are encoded by binary
strings of length N + L. Each of the first N bits of the binary string is related
to the genes and the remaining L bits to the conditions from microarray as it
can be be seen in Fig. 1.

 C1 C2 C3 C4 C5 
G1 2.2 3.6 5.3 -2.6 0.3 
G2 1.3 1.5 -3.1 -2.1 2-2 
G3 4.7 1.0 1.0 7.9 0.4 
G4 -3.8 -0.3 2.2 3.1 1.4 
G5 7.5 1.0 1.0 2.1 -2.3 
G6 0.4 1.0 1.0 0.4 0.3 
G7 3.2 8.3 -2.5 -2.5 3.1 
G8 2.5 3.1 4.1 0.3 0.1 
G9 3.1 0.4 6.9 9.2 0.2 
G10 0.3 0.5 0.3 0.3 -0.1 

 

1.0 1.0 

1.0 1.0 

1.0 1.0 

 
bicluster

 

0010110000|01100

codification

microarray

Fig. 1. Microarray and bicluster {G3,G5,G6|C2,C3} with its codification

The initial population is generated with solutions as diverse as possible. Thus,
the diversification generation method [16] takes a binary string, xi with i =
1, . . . , n where n is the number of bits, as a seed solution and generates solutions
x′

i by the following rule:

x′
1+kh = 1 − x1+kh for k = 0, 1, 2, 3, . . . , �n/h� (1)

where �n/h� is the largest integer less or equal than n/h and h is an integer less
than n/5. All remaining bits of x′ are equal to that of x.
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Algorithm 1. Scatter Search Algorithm for Biclustering
INPUT microarray M , number of biclusters to be found numBi, penalization factors

M1 and M2, maximum number of iterations numIter, size of the initial population
and size S of the reference set.

OUTPUT Set Results with numBi biclusters.
begin

num ← 0, Results ← ∅
while (num < numBi) do

Initialize population P
P ← Improvement Method (P )
//Building Reference Set
R1 ← S/2 best biclusters from P (according to the fitness function)
R2 ← S/2 most scattered biclusters, regarding R1, from P � R1 (according to a
distance).
RefSet ← (R1 ∪ R2)
P ← P � RefSet
//Initialization
stable ← FALSE, i ← 0
while (i < numIter) do

while (NOT stable) do
A ← RefSet
B ← Combination Method(RefSet)
B ← Improvement Method(B)
RefSet ← S best biclusters from RefSet ∪ B
if (A = RefSet) then

stable ← TRUE
end if

end while
//Rebuilding Reference Set
R1 ← S/2 best biclusters from RefSet
R2 ← S/2 most scattered biclusters from P � R1

RefSet ← (R1 ∪ R2)
P ← P � RefSet
i ← i + 1

end while
//Storage in Results
Results ← the best one from RefSet
num ← num + 1

end while
end

After generating all posible solutions with that seed, if more solutions are
necessary, the diversification generation method is applied again by using the
last solution as new seed.

2.2 Biclusters Evaluation: Fitness Function

In this work, biclusters with shifting and scaling patterns are desired. A group
of genes has a shifting pattern when the expression values vary in the addition
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of a fixed value for all the genes. A group of genes has a scaling pattern when
the expression values vary in the multiplication of a fixed value for all the genes.
Two genes show a shifting and scaling pattern if they are described from (2).

gY = αgX + β α, β ∈ R (2)

Consequently, two genes with shifting and scaling patterns are linearly depen-
dent.

The correlation coefficient between two variables X and Y measures the grade
of linear dependence between them. It is defined by:

ρ(X, Y ) =
cov(X, Y )

σXσY
=

∑n
i (xi − x)(yi − y)

nσXσY
(3)

where cov(X, Y ) is the covariance of the variables X and Y , x and y are the
average of the values of the variables X and Y and σX and σY are the standard
deviations of X and Y , respectively. The values for the correlation coefficient
vary between −1 and 1. If ρ(X, Y ) = 0, the variables X and Y are linearly
independent, and if ρ(X, Y ) = ±1 the variables are linearly dependent. When
the correlation value is equal to −1, the variables X and Y are dependent with
negative correlation, that is, when the values of the variable X increase the
values of the variable Y decrease linearly.

Given a bicluster B composed of N genes, B = [g1, . . . , gN ], the average
correlation of B, ρ(B), is defined as follows,

ρ(B) =
1(
N
2

) N∑
i=1

N∑
j=i+1

ρgigj (4)

where ρgigj is the correlation coefficient between the gene i and the gene j. Note
that ρgigj = ρgjgi , therefore, only

(
N
2

)
= N(N−1)

2 elements have been considered
in the aforementioned sum.
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Fig. 2. Biclusters with lowly–correlated and highly–correlated genes
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Fig. 2 presents two biclusters along with their average correlations. It can
be observed that the bicluster with perfect shifting and scaling patterns has an
average correlation of 1 while that the bicluster without patterns has an average
correlation close to 0.

In this work, biclusters with highly–correlated genes and high volume are
preferred. Therefore, the fitness function used to evaluate the quality of biclusters
is defined by:

f(B) = (1 − ρ(B)) + σρ + M1

(
1

nG

)
+ M2

(
1

nC

)
(5)

where nG and nC are the number of genes and conditions of the bicluster B, re-
spectively, M1 and M2 are penalization factors to control the volume of the biclus-
ter B and σρ is the standard deviation of the values ρgi,gj from (4). The standard
deviation is included in order to avoid that the value of the average correlation
can be high for a bicluster and this bicluster can contain several non–correlated
genes with the remaining ones of the bicluster. Best biclusters are the ones with
the lowest value for the fitness function. Thus, it has been considered (1 − ρ(B))
to evaluate biclusters with highly–correlated genes as good biclusters.

2.3 Improvement Method

Scatter Search uses improvement methods when the solutions have to fulfill some
constraints or simply to improve them in order to intensify the search process.
This method depends on the problem under study and usually it consists in
classical local searches for continuous optimization problems.

The goal of this work is to find biclusters with shifting and scaling patterns.
Thus, biclusters with positively–correlated genes are only searched for. There-
fore, the proposed improvement method aims at extracting positively–correlated
genes either from biclusters of the initial population or from biclusters obtained
by the combination method. The pseudocode of the improvement method is
presented in the Algorithm 2.

2.4 Building and Rebuilding Method of the Reference Set

Reference set is initially built with the best solutions, according to the value of
their fitness function, and the most scattered ones from the population regard-
ing the previous best solutions. The Hamming distance is used to measure the
distance among biclusters in this work. After getting the stability of reference
set in the updating process, it is rebuilt to introduce diversity in the search pro-
cess. Thus, the reference set is rebuilt with the best biclusters from the updated
reference set, according to the fitness function, and the most distant from the
population regarding the previously chosen best solutions.

The initial population has to be updated too in the evolutionary process
by removing solutions which have already been considered in the building or
rebuilding of the reference set. When the initial population is empty, a new
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Algorithm 2. Improvement Method
INPUT Bicluster B = [g1, . . . , gN ]
OUTPUT Bicluster B′ ⊆ B such that ρgi,gj ≥ 0 ∀gi, gj ∈ B′

begin
i ← 1, B′ ← {gi}, R ← {}
while (i ≤ N) do

j ← i + 1
while (j ≤ N) do

if (ρgi,gj > 0) then
if (gj �∈ R) then

B′ ← B′ ∪ {gj}
end if

else
R ← R ∪ {gj}
B′ ← B′ \ {gj}

end if
j ← j + 1

end while
i ← i + 1

end while
end

population is created by using the diversification generation method previously
explained.

2.5 Combination Method and Reference Set Updating

New solutions are introduced in the search process by the combination method.
Two solutions are combined by using a uniform crossover operator and a new one
is generated. All pairs of biclusters in the reference set are combined, generating
thus, S ∗ (S − 1)/2 new biclusters where S is the size of the reference set. This
crossover operator generates randomly a mask and the child is composed of
values from the first parent when there is a 1 in the mask, and from the second
parent when there is a 0.

After combining all pairs of biclusters, the best solutions from the joining of
the previous reference set and the new solutions are chosen. Hence, best solutions
according to the value of their fitness function remain in the reference set.

3 Experimental Results

Two well known data sets have been used to show the performance of the pro-
posed algorithm. The first data set is the human B-cells lymphoma expression
data with 4026 genes and 96 conditions [17]. The second one is the yeast Sac-
charomyces cerevisiae cell cycle expression with 2884 genes and 17 experimental
conditions [18]. Both data sets were used in [4] where original data were processed
by replacing missing values with random values.
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Fig. 3. Biclusters found by Algorithm 1 from lymphoma data set

The main parameters of the Algorithm 1 are as follows: 20 for the maximum
number of iterations of the Scatter Search, 10 for the size of the reference set,
200 for the number of solutions of the initial population and 10 for the number
of biclusters to be found in each execution. M1 and M2 are weights in order
to drive the search depending on the required size of biclusters. High values of
M1 and M2 may be used when biclusters with a lot of genes and conditions are
desired.

Fig. 3 presents several biclusters obtained by the application of the Scatter
Search to the Lymphoma dataset. These biclusters have been obtained with
different values for the weights M1 and M2 in order to test their influence. The
biclusters bi#1, bi#2 and bi#3 have been found with M1 = 1 and M2 = 1,
bi#4, bi#5 and bi#6 with M1 = 1 and M2 = 10 and bi#7, bi#8 and bi#9 with
M1 = 10 and M2 = 10. It can be observed how these weights determine the
number of genes and conditions of the biclusters. Note that shifting and scaling
patterns can clearly be appreciated in all biclusters.

Table 1 shows the information about the biclusters represented in Fig. 3. For
each bicluster an identifier of the bicluster, the number of genes, the number
of conditions, the volume, the average correlation, the standard deviation, the
MSR measure and the variance of gene values are presented. The variance of gene
values measures how different the values for the gene expression level are and if
this value is high then the MSR measure is high too [11]. It can be observed that
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Table 1. Information about biclusters found by Algorithm 1 from lymphoma dataset

id. Genes Conditions Volume ρ(B) σρ(B) MSR Genes Variance
bi#1 8 9 72 0.92 0.5 2124.6 9742.3
bi#2 14 14 196 0.85 0.4 1657.4 6468.9
bi#3 12 12 144 0.84 0.4 1608.7 8184.2
bi#4 8 31 248 0.82 0.5 3337.4 20042.2
bi#5 10 24 240 0.77 0.4 1963.3 8007.5
bi#6 15 25 375 0.70 0.4 2389.5 7620.4
bi#7 44 26 1144 0.62 0.4 4800.0 11558.8
bi#8 47 27 1269 0.60 0.3 2779.3 6219.8
bi#9 58 20 1160 0.59 0.3 2878.0 6157.4

the higher volume for biclusters, the smaller value for the average correlation.
However, all biclusters present a high value for the average correlation which
indicates that such biclusters present shifting and scaling patterns. Moreover,
the standard deviation is low, that is, the correlation coefficients of each pair
of genes have similar values and they are close to the average correlation of the
bicluster. Therefore, all biclusters with a high average correlation do not contain
non–correlated genes as it can be observed in Fig. 3. Most of papers published
in the literature present algorithms based on the MSR measure and a bicluster
is considered a high—quality bicluster for the Lymphoma dataset if the value
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Fig. 4. Biclusters found by Algorithm 1 from yeast dataset
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of its MSR is less than 1200 [4,8]. It can be noticed that the bicluster bi#4
has a value of MSR much greater than 1200 since its variance of gene values is
high. However, it can be considered a high–quality bicluster because it presents
shifting and scaling patterns as its average correlation is 0.82.

In Fig. 4 several biclusters found by the proposed Scatter Search from Yeast
dataset are shown. These biclusters have been obtained with values M1 = 1 and
M2 = 10 in order to obtain biclusters with a moderate volume. From a geometrical
point of view, it can be noticed that the genes present a similar behavior under a
set of conditions. Information about these biclusters is presented in Table 2. In the
literature, a bicluster is considered a high—quality bicluster for the Yeast dataset
if the value of its MSR is less than 300 [4,8]. However, it can be appreciated how
several biclusters that have values of MSR greater than 300 present high average
correlations, and therefore, shifting and scaling patterns.

Table 2. Information about biclusters found by Algorithm 1 from yeast dataset

id. Genes Conditions Volume ρ(B) σρ(B) MSR Genes variance
bi#1 8 15 120 0.83 0.3 273.4 1028.5
bi#2 9 17 153 0.74 0.4 306.6 1230.9
bi#3 9 14 126 0.84 0.4 367.8 1740.7
bi#4 14 15 210 0.76 0.4 257.7 854.0
bi#5 20 15 300 0.75 0.3 437.9 1367.5
bi#6 19 15 285 0.75 0.4 342.9 1119.4
bi#7 11 16 176 0.70 0.4 245.7 842.2
bi#8 23 15 345 0.68 0.4 369.4 991.7
bi#9 27 14 378 0.72 0.3 332.2 1038.0

Figs. 5 and 6 show the performance of the Scatter Search with and without
improvement method from Lymphoma dataset (Figures. 5a) and 5b), respec-
tively) and Yeast dataset (Figures. 6a) and 6b), respectively). The evolution
of the average fitness function, average correlation and average volume for all
biclusters of the reference set throughout the iterations is presented. It can be
observed how the average correlation increases when the fitness function de-
creases during the evolutionary process. When the improvement method is not
included in the Scatter Search scheme, the convergence of the fitness function to
an optimum solution is very slow and it is necessary more iterations. Obviously,
the improvement method leads to lower volumes for both datasets due to this
method just selects the positively–correlated genes by removing the negatively–
correlated genes.

Table 3 presents the average correlation and average volume for ten biclusters
obtained by the Algorithm 1, ignoring the improvement method and considering
it in order to show the importance of such method in the proposed Scatter Search.
Notice that the average correlation is lower when the improvement method is
not included due to the negatively–correlated genes can be considered.



132 J.A. Nepomuceno, A. Troncoso, and J.S. Aguilar–Ruiz

0

0.25

0.5

0.75

1

1.25

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of iterations

A
ve

ra
g

e 
fit

n
es

s 
fu

n
ct

io
n

0

100

200

300

400

500

600

700

800

A
ve

ra
g

e 
vo

lu
m

e

Volume

Avg. Correlation

Fitness Function

a)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

1 10 19 28 37 46 55 64 73 82 91 100

Number of iterations

A
ve

ra
g

e 
fit

n
es

s 
fu

n
ct

io
n

0

1000

2000

3000

4000

5000

6000

A
ve

ra
g

e 
vo

lu
m

e

Volume
Fitness Function
Avg. Correlation

c)

Fig. 5. Evolutionary process for Lymphoma dataset: a)improvement method consid-
ered; b) no improvement method considered
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Fig. 6. Evolutionary process for Yeast dataset: a)improvement method considered; b)
no improvement method considered

Table 3. Optimal solution with and without improvement method

With Improvement Method Without Improvement Method
Correlation Volume Correlation Volume

lymphoma 0.74 600 0.02 14110
yeast 0.80 154 0.16 7065

4 Conclusions

In this paper, a Scatter Search for finding biclusters from gene expression data
has been presented. The proposed Scatter Search has used as merit function
to evaluate biclusters a new measure based on correlations among genes with
the aim of obtaining biclusters with shifting and scaling patterns. Moreover
an improvement method, which consist in removing negatively–correlated genes
from biclusters, has been incorporated to intensify the search. Experimental
results from human B-cell lymphoma data set and yeast cell cycle data set have
been reported revealing the good convergence and remarkable performance of
the proposed method and measure.

Future works will focused on some improvements for the proposed algorithm
with regard to the overlapping among genes and the comparison with other
biclustering techniques using Gene Ontology Database [14].
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Abstract. Discriminating between secreted and membrane proteins is
a challenging task. This is particularly true for discriminating between
transmembrane segments and signal peptides because they have com-
mon biochemical properties. In this paper, we introduce a new predictive
method called LSTranslocon (Local Search Translocon) based on a Local
Search methodology. The method takes advantage of the latest knowl-
edge in the field to model the biological behaviors of proteins with the
aim of ensuring good prediction. The LS Prediction approach is assessed
on a constructed data set from Swiss-Prot database and compared with
one of the best methods from the literature.

Keywords: Subcellular localization, amino acid position, transmem-
brane segment insertion, local search.

1 Introduction

Subcellular localization of proteins is important for the understanding of gene/
protein function. Most eukaryotic protein cells are synthesized in the cytosol and
are translocated to various subcellular compartments. Recent studies have led
to a better understanding of the transport mechanisms of protein entering the
secretory pathway and a complete review can be found in [1]. During biosyn-
thesis, newly synthesized proteins that contain a targeting signal are directed
towards the endoplasmic reticulum (ER). The targeting signals are either N-
terminal signal sequences called signal peptides (SP) or, in the case of many
membrane proteins that lack discrete signal peptides, the first transmembrane
sequence called a signal anchor (SA). Then, proteins are translocated across the
ER through the translocon channel. If the segment of amino acids inside the
channel contains the ”right key”, the translocon opens sideways and the pro-
tein fits in the membrane. Otherwise, the protein is fully translocated across
the ER membrane and released into the ER lumen. This phenomena induces an
additional difficulty for discrimination between SP and SA and requires special
techniques in order to obtain reliable predictive results.

Many prediction methods for this difficult protein subcellular localization
problem have been developed over the years to localize proteins with signal

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2010, LNCS 6023, pp. 134–145, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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peptides ([2,3]), or to localize protein with transmembrane segments ([4,5]). How-
ever, in spite of their high prediction performance, in certain cases they still yield
false predictions. Discrimination between secreted and transmembrane proteins
thus remains a challenging task [6]. The frequent false classifications are mainly
a consequence of the fact that these proteins contain both a hydrophobic stretch
that can be interpreted either as the hydrophobic core region of a signal peptide
- the targeting N-terminal signal of secreted proteins - or as a transmembrane
segment (TM segment).

Based on an analysis of known soluble and transmembrane sequences, the
purpose of the present study was to design a predictive method to define the
rules for membrane insertion during the crossing of the translocon. We looked
for the code that enables the opening of the translocon knowing that it has
to distinguish peptides that share certain biochemical properties: signal pep-
tides, signal anchors and helical transmembrane segments. By sliding a window
of about 19 amino acids along the sequence of a protein - the width of the
ER membrane -, if we know the code for opening the translocon, we will be
able to predict if the protein is a soluble protein or if it is integrated in the
membrane.

The method presented in this paper is based on a local search approach and
takes advantage of the latest biological knowledge. For this purpose, we con-
sider subcellular localization prediction as a combinatorial search problem and
devise a local search based procedure to determine near-optimal solutions. One
notices that this is the first time that such an approach is applied to this difficult
prediction problem.

The paper is organized as follows: in Section 2, we present some state-of-the-
art prediction methods. In Section 3, we describe our approach for membrane
protein recognition. In Section 4, we show computational results and comparisons
with one best performing method. Finally, in Section 5, we conclude the paper
by giving a summary and the future work.

2 Prediction Methods

Many predictive algorithms dedicated to signal peptide or transmembrane seg-
ments are available. The first prediction methods were based on the evaluation of
the hydrophobicity of each amino acid. The method used a ”sliding window” with
fixed width (19 residues) to identify transmembrane segments along the protein
sequence and the hydrophobicity average was calculated for amino acids within
the window [10]. At the moment, the most popular predictors implemented as
web servers for both signal peptide or transmembrane predictions, are usually
built upon learning systems such as neural networks (NN) [11], Hidden Markov
Model (HMM) [16] and Support Vector Machines (SVM) ([17,18]).

Programs dedicated to signal peptide prediction try to localize precisely the
N-terminal signal sequence, the signal sequence cleavage site, or a combination
of both features. The current most widely used methods are PrediSi [12] and
SignalP3.0 [13].
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Membrane topology1 prediction programs evaluate if a protein is likely to
be a membrane protein or not and how many membrane protein domains it
has. Sometimes, more precise information is added with the orientation and
the boundaries of the TM domains. Some popular transmembrane predictors
are TOPPred [15] and HMMTOP [14]. Description and evaluation of the main
methods can be found in ([19,20]).

However, few methods focus on the difficulty of a correct discrimination be-
tween transmembrane segments and signal peptides. One of the best methods
dedicated to this difficult prediction problem is Phobius [7] published in 2004.
The Phobius method is based on a HMM model which combines a TM helix sub-
model with a SP submodel. Transition between states are arranged such that
the position of SP is located at the N-terminal of the sequence -the hydrophobic
region of a SP is seldom located after the first 30 amino acids- whereas TM
segments can be found at any position in the sequence. An evolution of the Pho-
bius method is proposed with Philius [8] which implements a topology prediction
by dynamic Bayesian networks. The state transition topology of Philius exactly
mimics that of Phobius, and performances of Philius are close to those obtained
with Phobius. The last method, SPOCTOPUS [9] combines a neural network
method with a hidden Markov model. SPOCTOPUS first performs a homology
search to create a sequence profile. This method reports a very high accuracy,
but it is difficult to link these results with a biological interpretation.

3 A New Approach for Recognition of TM Proteins

3.1 New Biological Knowledge

Recent studies expand understanding of the recognition and the insertion of
TM segments by the translocon ([21,22]). Briefly, the experiments describe the
insertion of the membrane proteins into the ER membrane by the evaluation of
the amino acid contribution during the insertion process. These studies suggest
that insertion or not of helical transmembrane segment depends mainly on the
local contribution of each amino acid.

First, in their experiments Hessa et al. assess the contribution of each amino
acid in different positions along the membrane. The key observation is that the
amino acid position plays a determining role during targeting by the translocon.
The insertion would be mainly related to an interaction energy between the
sequence of amino acids committed in the translocon and the membrane. To
calculate this energy of interaction, Hessa et al. suggest a hydrophobic scale
called ”biological hydrophobicity scale”. For each amino acid a curve determines
its influence according to its position in the translocon.

The experimental studies show that (1) each amino acid has a different hy-
drophobic index for different sequence positions [21] and (2) the scales are sym-
metric across sequence positions [23]. For example, Figure 1 displays the curves
for two amino acids.
1 Membrane topology describes which regions of the polypeptide chain span the mem-

brane.
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Fig. 1. Contribution scales of two amino acids Methionine and Leucine. The curves
describe the contribution according to the position on a 19-residue segment.

Unfortunately, the experiments leading to these curves are very complex to
realize, expensive and time-consuming and predictive systems issued from this
work such as SCAMPI [24] do not allow a good distinction between SP and TM
segments.

3.2 Our Proposal: In Silico Fine-Tuning of the Curves

Considering the difficulty of biological experiments that determine the scale of
position-specific amino-acid contributions, we propose in this work, to determine
in silico the scale curves. Our goal is to determine curves that enable a good
discrimination between SP and TM segments.

Prediction System. We shall denote in the following by a one of the 20 amino
acids that will be represented by a one-letter abbreviation, i.e. a ∈ {A, C, D, E,
F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}.

For each amino acid a, we have to determine a curve noted C[a], defined on
the interval [1, 19] that represents the 19 positions in a segment that we consider
as relevant for membrane insertion. Let us note that this position parameter may
vary and for more generality we denote it by l = 19 in the following. Therefore,
we use C[a, j] = C[a](j) to denote the value of curve C[a] for an integer j where
j represents a position, j ∈ [1, 19].

When we consider a sequence Seq of amino acids of length l = 19, we use the
notation Seq = < a(1)a(2) . . .a(l) >, where a(j) is the index of the amino acid
in position j in the segment a(j) is therefore a letter in {A, C, D, E, F, G, H, I,
K, L, M, N, P, Q, R, S, T, V, W, Y}). The hydrophobicity of sequence Seq is
defined as follows as the average of C[a(j), j] for j varying from 1 to l:

E(Seq) =

∑l
j=1 C[a(j), j]

l

Now given a longer sequence Seq = < a(1)a(2) . . . a(n) > of size n > l, a sliding
window of fixed length l is scanned on the sequence and we define the hydropho-
bicity of the sequence as the maximum hydrophobicity value of a sub-sequence
of length l denoted by:
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E(Seq) = max
1≤k≤n−l+1

{E(Seqk)}

where Seqk = < a(k)a(k+1) . . . a(k+l−1) >.
The distinction between a SP and a TM segment is given by the value of

E(Seq) and a threshold τ . Seq is classified as a signal peptide when E(Seq) < τ ,
and Seq is classified as a transmembrane segment when E(Seq) > τ . So a set
of curves

(
C[ai]

)i=Y

i=A
determines a classification system for discrimination of SP

and TM segments. Our goal is to optimize the 20 curves in order to obtain a
good classification accuracy of SP and TM segments.

The quality of such a classification system can be evaluated by the Area
Under the ROC Curve (AUC) [27]. A ROC2 curve is obtained by selecting a
series of thresholds τ and plotting sensitivity on the Y axis versus specificity on
the X axis. The AUC gives the probability that a classifier will rank a randomly
selected positive example higher than a randomly selected negative example.

Our problem is therefore an original and difficult optimization problem that
can be solved by local search.

3.3 Local Search for Determination of the Curves C[a]

Local search approach is a metaheuristic method which is known to be an effec-
tive technique for solving computationally hard optimization problems [25]. Our
local search algorithm moves in the space of candidate solutions to optimize the
AUC of the associated classification system until a solution deemed optimal is
found.

Representation of a Solution. In our problem, a candidate solution S is a set
of 20 curves

(
C[ai]

)i=Y

i=A
where each curve C[a] is defined on [1, 19]. We suppose

that each curve is symmetric, so for each amino acid a, C[a, j] = C[a, 20− j] and
we decide to approximate each curve by an amino acid contribution function of
the following polynomial form:

Y = αx2 + β (1)

This contribution function is defined by two parameters: Hmiddle, the Y ex-
tremum of the function obtained for j = 10, and Hextremity the value of the
function for j = 1 and j = 19. So a curve is entirely fixed by a pair of values
(Hextremity , Hmiddle). Figure 2 displays an example of a curve of the amino acid
contribution function.

Initialization. To start the local search process, we consider curves based on
the hydrophobic values given by the Kyte & Doolittle scales [10], which are
known to be one of the best hydrophobic indexes [26]. Each scale considers that
the index is independent of the position of the amino acid in the sequence and
so in our formalization a constant curve hi is associated to each amino acid a,
so our initial solution is S0 = (C[ai])i=Y

i=A such that ∀j ∈ [1, 19], C[ai, j] = hi.
2 The term ROC comes from signal detection theory and means Receiver Operating

Characteristic.
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Fig. 2. Curve of contribution function defined by two parameters

Neighborhood. The local search process moves from solution S to an improv-
ing neighboring solution S′ of the current solution S. To obtain a neighboring
solution, a curve from S is randomly selected and then modified to generate a
new curve. More precisely, let C denote our selected curve. As explained previ-
ously, C is entirely defined by a couple (Hextremity , Hmiddle). A new curve C′

is generated by a new couple (Hextremity + ε, Hmiddle + δ), with the constraints
that (ε, δ) ∈ {−0.5, 0, 0.5}2 or (ε, δ) ∈ {−0.3, 0, 0.3}2. This leads to a total of
18 combinations. Removing the two trivial cases with (ε, δ) = (0, 0), one can
generate 16 new curves from an existing curve. In other words, each solution S
has 16 neighboring solutions (for a chosen curve). These neighbor solutions are
examined by the local search procedure at each iteration.

Evaluation Function. At each local search iteration, all candidate neighbors
of the current solution S are evaluated. According to the principle of steepest
descent, the best solution is chosen to replace the current solution S and the
local search process is iterated from this new solution. The quality of a neighbor
solution S′ is assessed by the evaluation function AUC(S′) that estimates the
ability of the solution to obtain a suitable discrimination between SP and TM
segments, using the classification system based on the curves of S′. Let us note
that it is sufficient to compute the AUC of the classification system associated to
a set of curves to evaluate a solution. The determination of a specific threshold
τ is not necessary at this moment.

LSTranslocon Procedure. The general LSTranslocon procedure is composed
of two main phases: the modeling phase and τ -calibration phase. The modeling
phase consists in the determination of the best curves for the discrimination
between signal peptide and transmembrane segments, as just explained. The
stopping condition of this phase is obtained by evaluation of the proposed solu-
tions on a validation dataset (see next Section). When the classification between
SP and TM segments becomes stable - the AUC value remains unchanged - the
search process ends and returns the best solution.

After the modeling phase, the τ -calibration phase is performed to determine
the most appropriate threshold τ that permits to classify the protein sequences
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as transmembrane sequences or signal peptides. This threshold corresponds to
the best classifier of the ROC curve.

4 Experimentations and Discussion

4.1 Benchmark

The literature does not offer suitable ready-to-use dataset for our protein lo-
calization problem. Consequently, to assess the performance of our proposed
method, we built a high quality benchmark database where the desired con-
stituent sequences were extracted from the most recent version of Swiss-Prot
database 57.8 (released on 22 September 2009) according to the following four
steps: (1) The selected proteins are only those that are marked in the OC (or-
ganism classification) line as ”eukaryota or eukaryotic”, the eukaryotic proteins
differ from prokaryotic proteins in particular in the addressing in the cell. (2)
For the proteins obtained from the above step, we extract those which were
marked as ”signal peptide” and ”transmen” in the FT (Feature Table) line, (3)
We removed those which were annotated with uncertain terms for their signal
peptide or transmem, such as ”potential”, ”probable”, or ”by similarity” (4) For
the resulting data set, the sequence identity is checked and analyzed by using
the program CD-HIT [28], which produces a non-redundant dataset at the 50%
sequence identity level.

By strictly following the above steps, we finally obtained a benchmark databa-
se for eukaryotic proteins. The database contains 5469 sequences with signal
peptide and 798 transmembrane protein segments.

In order to equalize the sizes of the database between SP and TM segments,
we randomly selected 6% from the dataset with SP. Thus, the final benchmark
database contains 900 SP and 798 TM segments.

Now, from the selected data with signal peptide, we extracted the first 55
amino acids (because the maximum length of SP is 55 amino acids). Note that
in our study we consider a SA as TM segment, for this reason we selected only
the first TM or SA segment according to its annotations in Swiss-Prot. In the
case where the selected segment has a length inferior to 19, we expanded the
selected window to obtain a segment superior or equal to 19 amino acids.

The statistical distribution of amino acids in the benchmark database is pre-
sented in Figure 3. The figure shows that some amino acids are less represented
than others in the data sequences.

This benchmark database is used to evaluate our approach by a process of
cross-validation that involves 10 experiments. For each experiment, we build
from the initial benchmark database three types of datasets: a training set, a
validation set and a test set. The training set is used for the modeling phase
(optimization of the curves) and the determination of the threshold τ . The val-
idation set is used to determine the stopping condition and to avoid overfitting.
And the test set is used to evaluate the classification accuracy of our prediction
model. Each of these sets is constituted by randomly selecting from our initial
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Fig. 3. Statistical distribution of each amino-acid in the dataset. The Y axis gives the
frequency of each amino acid. The dark bars indicate the distribution for the data with
SP segments while the grey bars show the distribution with TM segments (or SA).

database according to the following proportions: 60% for training data, 10% for
validation data and 30% for test data.

The classification accuracy reported in the next Section is the averaged value
calculated only on the test sets of the ten experiments.

4.2 Results and Discussion

This section reports the experimental results that assess our approach. The main
focus of our approach is to determine a new hydrophobic scale that enables bio-
logical understanding of the insertion phenomena inside the translocon. There-
fore, we first present a set of curves obtained by LSTranslocon and discuss them.
Then, we demonstrate that our approach can lead to an effective predictor for
the discrimination between SP and TM segments.

Figure 4 shows the 20 curves (one curve per amino acid) obtained when we
apply our method to the benchmark database described in 4.1. We can remark
that the shapes of the curves are quite different. These shapes suggest that
some amino acids like Proline (P) or Methionine (M) facilitate more the inser-
tion when they are embedded inside the membrane in the middle of the curve
whereas other amino acids like Leucine (L) or Serine (S) prefer the interface po-
sitions at the extremities of the curves. The experimental curves given by Hessa
et al [23] were obtained in vitro. The procedure is complex and time consum-
ing. Our computational approach allows us to obtain similar curves much more
rapidly. However, we observe that for some amino acids and especially those
which are less frequent in our database, our curves have a different shape with
respect to those suggested before. One possible explanation of this observation
is that these amino acids do not have a great influence in the insertion process,
which explains their lack of representation in the benchmark database and the
difficulty to properly adjust their insertion curve. Now we turn our attention to
the predictor system that results from our local search approach. We compare
our prediction rates with those obtained by Phobius, one of the best performing
prediction tools (see section 2). As these two programs do not completely share
the same objectives, a fair comparison is difficult. For all that, we performed two
experiments to evaluate the capabilities of these programs.
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Fig. 4. Curves of insertion for each amino acid arbitrarily selected from one experiment.
The curves describe the contribution according to the position on a 19-residue segment.
The X axis shows the positions and the Y axis indicates the insertion index.

In the two experiments, LSTranslocon is trained according to the experimental
protocol described in Section 4.1 and the Phobius predictor available on the web
is used. The two programs are evaluated 10 times on the same test sets and the
results are summarized in Table 1.

In the first experiment, the 10 test sets are generated as explained in Section
4.1. On these datasets, Phobius achieves about 84% average accuracy whereas
LSTranslocon is limited to 80% (see results ”Experiment 1” in Table 1). The
Phobius web server accepts the whole protein sequence as input data whereas
LSTranslocon requires only the TM or SP segments (see Section 4.1). The Pho-
bius model takes advantage of the supplementary information. In fact, in its
model, the transition between states are arranged such that the position of SP
are located at the N-terminal region whereas TM segments are more often found
later in the sequence.

To confirm this observation, we conduct a second experiment. This time,
Phobius and LSTranslocon are tested on 10 restricted test sets : we only keep
the TM segments located in the N-terminal regions from the previous 10 test
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Table 1. Results of two experiments that compare our method LSTranslocon and
Phobius. Each cell of the table indicates the best classification accuracy achieved by
the corresponding classifier on the given test set.

Experiment 1 Experiment 2
Data set LSTranslocon Phobius Data set LSTranslocon Phobius
Test 1 0.79 0.85 Test 1’ 0.80 0.82
Test 2 0.81 0.86 Test 2’ 0.83 0.81
Test 3 0.82 0.84 Test 3’ 0.81 0.81
Test 4 0.81 0.87 Test 4’ 0.81 0.83
Test 5 0.79 0.85 Test 5’ 0.81 0.81
Test 6 0.81 0.84 Test 6’ 0.80 0.81
Test 7 0.81 0.87 Test 7’ 0.82 0.84
Test 8 0.80 0.85 Test 8’ 0.82 0.82
Test 9 0.80 0.84 Test 9’ 0.81 0.81
Test 10 0.79 0.82 Test 10’ 0.80 0.79
Average 0.80 0.84 Average 0.81 0.81

sets. We consider that a TM segment is not in the N-terminal region, if the
start position of the TM segment is beyond the 30th amino acid. The results
”Experiment 2” show that the accuracy of Phobius decreases and is equal to the
accuracy obtained with LSTranslocon. As we look for the curves which explain
the insertion phenomena inside the translocon, we do not want to exploit the
statistical bias concerning the TM and SP positions inside the protein sequence.
Under this strong constraint, we observe that the results reported in this paper
are as good as those obtained by Phobius. This demonstrates that our approach,
which is quite new, has an interesting potential that we hope to improve in the
near future.

5 Conclusion

In this paper, we have presented a new method based on the Local Search Ap-
proach for the discrimination of transmembrane segments and signal peptides.
The method integrates the latest knowledge acquired in the biological field and
presents the insertion curves in the membrane for each amino acid. LSTranslocon
is evaluated with the ability to maximize the distinction between TM segments
and SPs. These two characteristics ensure that our method constitutes a com-
plete approach and gives a good explanation of insertion machinery.

The main advantage of such a predictive method is the chemically inter-
pretable rules that will enable experts to understand biological phenomena. Fur-
thermore, the proposed method can be applied to very large data, even whole
proteome datasets.

Several improvements to the proposed method can be envisaged. One imme-
diate possibility would be to study alternative functions to optimize the curves
and to introduce more biological knowledge to provide more effective guidance
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of the local search process. Another natural extension would be to reinforce the
basic local search procedure by more powerful metaheuristics. Moreover, a next
step will be to apply our approach on full sequences with the aim to localize the
TM segment positions.
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Abstract. We approach the problem of packing secondary structure fragments
into low energy conformations with a local search optimization algorithm. Pro-
tein conformations are represented in a simplified off-lattice model. In that model
we propose a move set that transforms a protein conformation into another in or-
der to enable the use of local search algorithms for protein folding simulations and
conformational search. The energy minimization problem behind protein folding
is adapted to our model. Special care has been taken so that amino acids in a
conformation do not overlap. The constraint of producing an overlap-free con-
formation can be seen as a objective that conflicts with the energy minimization.
Thus, we approach protein folding as a two-objective problem. We employ a
replica exchange Monte Carlo algorithm in combination to the proposed move
set. The algorithm deals with the energy minimization problem while maintain-
ing overlap-free conformations. Initial conformations incorporate experimentally
determined secondary structure, which is preserved throughout the execution of
local search. Our method produced conformations with a minimum RMSD of
alpha-carbon atoms in the range of 4.71Å to 6.82Å for all benchmarks apart from
one for which the value was 9.68Å.

1 Introduction

Research on protein structure and folding has a history of over fifty years [19,23], but
the problem of how proteins fold to their native state still remains unsolved. There is a
continuous stream of both new theories and experimental work aiming at a final answer
to this fundamental question, see [25,22,27], and [21] for a recent overview.

The research on structural proteomics goes along with attempts to solve the tertiary
structure prediction problem through protein folding simulations. In accordance with
Anfinsen’s thermodynamic hypothesis that proteins settle into conformations of mini-
mum energy, protein folding simulations aim at sampling the space of protein confor-
mations in search of the global minimum. In order to speed up simulations, a variety
of coarse-grained models has been introduced. In one of the most simplified models,
namely the HP (Hydrophobic-Polar) model [9], the amino acid chain of a protein is
embedded into a two- or three-dimensional rectangular lattice. In the HP model, the
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quality of an embedding is measured by the number of neighboring pairs (contacts) of
hydrophobic amino acids in the lattice.

Simplified lattice models for protein folding, such as the HP model, have several
disadvantages due to the prescribed positions of atoms in a lattice. Specifically, it is not
possible to represent proteins accurately. Moreover, the energetic interactions are highly
dictated by the geometry of the lattice. Subsequently, the energy functions employed
in lattice models, can only consider a limited set of interactions. Off-lattice models
overcome these limitations, since the atoms can be placed at points in a continuous
space. Nevertheless, the extra degrees of freedom result in an enormous space of protein
conformations, thus motivating the study of efficient ways to sample it.

Stochastic local search methods have been successfully applied to lattice protein
folding simulations in order to sample the space of conformations in search of the en-
ergy minimum. Examples include tabu search [15,4], simulated annealing [1], replica
exchange Monte Carlo [26] and population-based local search [14]. In order to employ
a local search method, it is necessary to devise a neighborhood relation or a move set,
namely a set of rules that transform a conformation into another. There are various kinds
of move sets in off-lattice models. A move set usually alters the torsion angles of a pro-
tein’s backbone. In [24], for instance, the authors employ a move set which performs
a concurrent rotation of dihedral pair angles φ/ψ of two, four or six successive amino
acids, while the rest of the angles remain unchanged. The latter move set is also used
in [5] along with a knowledge-based move set which favors the sampling of specific
dihedral pair values, observed in real proteins. Another move set operating on the tor-
sion angles of a protein’s backbone consists of the biased Gaussian steps in [11]. More
complex move sets aim at rearranging a section of a molecular chain and then trying to
bridge it back to the remainder of the chain. Such a move set is the ConRot algorithm
[10] and its variants [17] as well as algorithms dealing with the loop-closure problem
like in [6].

Solving protein folding based on the assembly of secondary structure fragments has
been proposed in [7], where the authors employ constraint logic programming strate-
gies. A similar idea has been proposed in [12], where the authors employ a simulated
annealing-based local search algorithm. Exploiting secondary structure in practice is
useful, provided that it can be predicted accurately and efficiently from the sequence
information. The state-of-the-art methods for secondary structure prediction using se-
quence information, achieve an accuracy between 70% and 80%. For a comparative
analysis of various prediction methods, the reader is refered to [20].

In this paper we first describe a coarse-grained off-lattice model which we then use
to predict the tertiary structure of proteins starting from conformations with fixed sec-
ondary structure fragments. The fixed secondary structure fragments in our approach
consist of α-helices and/or β-sheets only. The aim is to optimize the packing of those
fixed secondary structure fragments via an energy minimization procedure. Towards
this aim, we employ a replica exchange Monte Carlo sampling algorithm in combi-
nation to a move set especially developed for our off-lattice model. The moves are
applicable only in the non-secondary structure parts of the conformation. Moreover,
in order to avoid overlaps between the amino acids we introduce a penalty function,
which prevents them from collapsing into each other such that the conformation remains
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self-avoiding. In this way, one can realize protein folding as a multiobjective problem,
since maintaining overlap-free conformations is a goal opposite to the energy optimiza-
tion that leads to compact conformations as a result of the attractive nature of energetic
interactions. Given the nature of energy function employed in our approach, we adapt
our optimization strategy so as to handle two objectives. Our methods are tested for a
set of α/β proteins and the results are presented in terms of RMSD (Root Mean Square
Deviation) to the native structure.

Although the secondary structure remains unaffected throughout the local search, in
a similar fashion to [7], our optimization strategy and model are fundamentally different
from those in [7]. Also, our method differs from the one in [12], where moves are
allowed in the secondary structure part and moreover the energy function is optimized
for their specific off-lattice model. The aim of our paper is to demonstrate the idea
of secondary structure assembly in a simplified model as a two-objective optimization
problem.

2 The Off-Lattice Model

We consider a coarse-grained off-lattice model in which the backbone of a protein is
represented as a trace of alpha-carbon atoms. The side chain groups are omitted. Specif-
ically, each amino acid of the protein is represented as a sphere of radius b, that cor-
responds to the alpha-carbon atom. The centers of those spheres are connected into a
chain with bonds of fixed length l = 3.8Å. Let three successive amino acids i− 1, i
and i + 1, defining a plane A . The angle formed by those amino acids on the plane A ,
can take any value in the interval [ 74∗π

180 , . . . ,2π− 74∗π
180 ]. This implies that i−1 and i+ 1

cannot come closer than c = 2∗ l ∗ sin( 37∗π
180 ) = 4.57Å. We consider half of this value as

the radius b = 2.28Å, mentioned above. The rotation angle of the plane A around the
axis crossing the i− 1-th and the i-th amino acid (or the i-th and the i + 1-th) can take
any value in the interval [0, . . . ,2π]. We should note that this model could be extended
to include side chains as separate spheres connected to the backbone with a flexible
bond. Bond lengths have been normalized to a unit length, in order to simplify numer-
ical calculations in the experiments (i.e. smaller numbers yield more stable numerical
calculations). Thus, l = 3.8Å→ l = 1 and c = 4.57Å→ c = 4.57

3.8 = 1.2. Secondary struc-
ture is represented in the same fashion as the remainder of the chain, namely as a trace
of alpha-carbon atoms. In Section 4, we further explain how to produce initial confor-
mations which incorporate secondary structure from PDB (Protein Data Bank) files.

i−1

i

i+1

i+2

Fig. 1. A conformation without side chains
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2.1 Problem Formulation

In this section we formulate the protein structure prediction problem in the off-lattice
model introduced above. The aim of our approach is to fold the secondary structure
fragments of a protein into structures of minimum energy, while preserving the connec-
tivity of the chain in an overlap-free conformation. Let us now explain how those two
constraints are expressed and how the energy function works in our off-lattice model.

The energy function we employ is a matrix M of all pairwise interactions among the 20
amino acids. The choice for matrix M is the empirical contact potential in [2]. According
to [18] the cut-off threshold d to form a non bonded contact between the centers of two
amino acids is 6.5Å. For a conformation φ, the following function has to be minimized:

E(φ) =
n

∑
i=0

n

∑
j=i

M (φ(i),φ( j)) ·Δ(i, j), (1)

where n is the length of the protein, φ(i) returns a number from 1 to 20 according
to the type of the i-th amino acid and Δ(i, j) = 1 if ||ri − r j|| ≤ d meaning that the
euclidean distance between the centers of the i-th and the j-th amino acid is less than or
equal to d and Δ(i, j) = 0 otherwise. The minimization is subjected to the constraint of
connectivity, thus ||ri − ri+1|| = l , i = 0, . . . ,n−2. It is also subjected to the constraint
of an overlap-free conformation, which prevents the chain from crossing itself as well
as any overlaps among the spheres representing the amino acids, thus we have ||ri −
r j|| ≥ c for any pair i, j where |i− j| ≥ 2. These means that no overlaps are considered
between two successive amino acids i and i + 1 since a choice for radius c > l

2 would
always violate the constraint. We should stress the fact that the assigned secondary
structure fragments are also a set of constraints that could be expressed as a series of
torsion angles. In our case, those constraints are met by excluding secondary structure
fragments from being modified by the move set, as we explain in Section 3.1.

3 Methods

In this section we outline the optimization method we used to tackle the problem de-
scribed in Section 2.1. Our method is based on a Monte Carlo simulation which has
been adapted so as to satisfy the constraints we described. In order to facilitate the ap-
plication of a Monte Carlo algorithm or any other local search method, we devised a
move set for our off-lattice model.

3.1 The Move Set

The move set consists of two types of moves, namely the single and the double rota-
tion. In both types of moves, an amino acid i is chosen uniformly randomly among all
candidate amino acids. Then, an axis is chosen such that it crosses the conformation
at the center of amino acid i. The direction of the axis is calculated as follows: Two
angles θ and φ are uniformly randomly picked in the interval [0, · · · ,2π]. The choice of
one angle is independent from the choice of the other angle. The direction of the axis is
determined by the vector α = (x,y,z)

x = sin(θ)∗ cos(φ) y = sin(θ)∗ sin(φ) z = cos(θ), (2)

namely the translation of polar into cartesian coordinates.
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i−1

i

i+1

i+1

i+2

i+2

(a) The single rotation move.

i−1

i

i+1

i+1 i+2

i+2

(b) The double rotation move.

Fig. 2. The solid line represents the initial conformation. The dotted line represents the final one.

The single rotation consists of a rigid rotation by an angle ρ around vector α. The
rigid rotation affects the position of amino acids (i + 1, · · · ,n), while the rest of the
conformation remains the same. See Figure 2(a) for an illustration. The angle ρ is drawn
from a Gaussian distribution of zero mean and variance equal to β ∗ π/180 radians,
β = 10 for our experiments. Positive values of the angle ρ denote a clockwise rotation
around α, while negative values an anti-clockwise one.

The double rotation consists of two successive single rotations on the i-th and the
i+1-th amino acid respectively and aims at improving the locality of the move set. The
first rotation works in the same fashion as shown in Figure 2(a). The second rotation
operates on the next amino acid, namely i+ 1, and performs a rigid rotation around the
same vector α by an angle −ρ/2. The direction of the second rotation is opposite to
the direction of the first one, namely if the first rotation is clockwise, then the second is
anti-clockwise and vice-versa. See Figure 2(b) for an illustration.

It is evident that both types of rotation preserve the connectivity of the conformation.
In Section 3.2 we will examine our strategy of handling the constraint of an overlap-free
conformation. Secondary structure constraints are imposed by restricting the available
choices of amino acids where moves can be applied.

Let F = f1, . . . . fk be a set of k secondary structure fragments. For each fragment fr

consisting of amino acids [ir, . . . , jr], a single or a double rotation can only be applied
at either the ir-th or the jr-th amino acid. In case a double rotation is applied at the ir-th
amino acid, then the first rotation is applied at the ir-th and the second rotation at the
jr-th amino acid. All other amino acids outside set F can be chosen for either a single
or a double rotation.

3.2 The Monte Carlo-Based Optimization Strategy

The pairwise energy functions we employ in our approach consist mostly of attractive
and rather few repulsive interactions. Therefore, low energy conformations will be com-
pact. On the other hand the constraint of an overlap-free conformation, as described in
Section 2.1, prevents the centers of amino acids from being packed closer than a certain
threshold. Thus, this constraint can be viewed as a separate objective which conflicts
with the energy minimization.
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We have examined two conventional Monte Carlo-based approaches for this prob-
lem. The first approach optimizes the energy and only allows transitions to conforma-
tions which meet the constraints. Every time a move is applied, the algorithm checks
the amino acid overlap constraints and rejects the resulting conformation in case the
constraints are not met. However, this results in the algorithm getting trapped in con-
formations, for which few transitions are possible to other overlap-free conformations.
Thus, only a limited amount of conformations is sampled and a lot of computational
effort is spent on searching for transitions to overlap-free conformations, rather than
lower energy ones.

The second approach optimizes a combined fitness function H(φ) = w∗E(φ)+(1−
w) ∗Z(φ), i.e. a weighted sum of a penalty function Z(φ) for overlaps and the energy
function E(φ). The energy function is taken from Equation 1. The penalty function is
defined in Equation 3.

Z(φ) =
n

∑
i=0

n

∑
j=i

[(D(i, j)− c) ·Δ′(i, j)]2, (3)

In Equation 3 we consider Δ′(i, j) = 1 if ||ri − r j|| ≤ c and |i − j| ≥ 2. Otherwise
Δ′(i, j) = 0. Also, D(i, j) is the euclidean distance ||ri−r j|| between the i-th and the j-th
amino acid. Intuitively, the penalty function Z(φ) expresses the square error of a confor-
mation with overlaps from a slightly modified overlap-free conformation. The optimal
value of penalty is zero. We observed that the second Monte Carlo approach minimizes
only one of the objectives, depending on the value of weight w, while the other objec-
tive increases arbitrarily. Moreover, it is hard to accurately express the interdependence
of the energy and the penalty as a linear combination of the two objectives. Therefore,
we devised a Monte Carlo-based optimization strategy to optimize each objective sep-
arately. The interplay of repulsive and attractive interactions in a single objective could
be expressed with a more elaborate function, such as a force-field.

Our optimization strategy is outlined in Algorithm 1. This strategy performs a Monte
Carlo simulation in order to sample minimum energy conformations for which the
penalty function is bounded by a threshold Pthres. Transitions to conformations with
a penalty value above this threshold are rejected. Consequently, the penalty function is
treated as a constraint. Setting Pthres = 0 is equivalent to checking the overlapping con-
straints and rejecting the resulting conformation, i.e. the first Monte Carlo approach we
described above. Setting Pthres to a non-zero value, allows the Monte Carlo algorithm
to sample a larger portion of the search space. Relaxing the penalty constraint, though,
results in sampling conformations that are not overlap-free anymore. We deal with this
problem by replacing the overlap threshold distance c in the penalty function (Equation
3) with c′ > c, thus increasing the contribution of overlaps to the penalty.

To sum up, in our optimization strategy the constraint of an overlap-free conforma-
tion is realized as a separate penalty objective. The penalty objective is then treated as a
constraint. This constraint is relaxed and on the same time penalty values are assigned in
a more strict fashion. From the viewpoint point of fitness landscapes, allowing Pthres > 0
results in a smoother fitness landscape, since a transition between two overlap-free con-
formation is interpolated by transitions to overlapping conformations.
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Algorithm 1. Monte Carlo-based Optimization
Start with the initial conformation φ and i=1
while i = 1 ≤ MaxIter do

Generate a random real number r ∈ [0, . . . ,1]
if r ≥ 0.5 then

Apply a single rotation to obtain a neighbor φ′ of φ
else

Apply a double rotation to obtain a neighbor φ′ of φ
end if
Calculate the penalty Z(φ′)
if Z(φ′) ≤ Pthres then

i=i+1
Calculate the contact energy E(φ′)
if E(φ′) ≤ E(φ) then

Accept the transition from to φ to φ′ and set φ = φ′
Update the best conformation seen in case E(φ′) ≤ E(φbest)

else
Generate a random number q ∈ [0, . . . ,1]

if q < min(1,e
E(φ′)−E(φ)

T ) then
Accept the transition from to φ to φ′ and set φ = φ′

else
Reject the transition from to φ to φ′

end if
end if

end if
end while

3.3 Replica Exchange Monte Carlo

Replica exchange Monte Carlo has been proposed by various researchers as an exten-
sion to the conventional Monte Carlo approach (see [13] for a review). The replica
exchange Monte Carlo algorithm maintains an array of K conformations (replicas)
and a range of temperatures T1 ≤ T2 ≤, . . .TK , where Ti corresponds to the i-th po-
sition of the array. For each conformation φi, a separate Monte Carlo simulation is
performed at temperature Ti and is terminated after a number of steps, MCsteps. The
Monte Carlo simulation consists of Algorithm 1. At the end of MCsteps, neighbor-
ing conformations φi and φi+1 exchange positions in the array with a probability Pex =
min{1,exp((1/Ti − 1/Ti+1) ∗ (E(φi)−E(φi+1)))}. The replica exchange algorithm is
terminated after REMCsteps rounds of Monte Carlo simulations each of which is fol-
lowed by an exchange of conformations.

4 Experiments

In our experiments with the Monte Carlo-based optimization algorithm we have se-
lected the following benchmarks: 1CTF and 1R69 from [12], 1ENH, 1YPA and 2IGD
from [7] and 1RHX and 1S12 from the CASP6 experiment.
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Fig. 3. Initial conformation for 1CTF

The aim of the experiments is to show that the move set described in Section 3.1
combined with the replica exchange Monte Carlo optimization algorithm is able to ef-
ficiently sample the conformational space and produce conformations of sufficiently
low RMSD values. The experimental protocol involves 10 independent runs of replica
exchange Monte Carlo for each benchmark, starting from an unfolded conformation.
An unfolded conformation for each benchmark is produced by arranging the secondary
structure fragments in a chain that closely resembles a straight line conformation. The
secondary structures are extracted from the PDB file that contains the native confor-
mation for a particular benchmark. The assigned secondary structure fragments include
only α-helices and β-sheets. Note that the non-secondary fragments of a conformation
are unfolded but not arranged in a perfect straight line. See Figure 3 for an example of an
initial conformation. The number of Monte Carlo steps was set to MCsteps = 1000 for
all benchmarks. The number of rounds REMCsteps along with the number of replicas
vary for a particular benchmark and they are presented in Table 1.

The maximum temperature Tmax is the same for all benchmarks. The rest of the
temperatures are exponentially distributed according to the following formula Ti =
Tmax ∗ exp(i/K−1), such that TK = Tmax where K is the number of replicas.

The choice of Pthres value is calibrated through long experiments of 1,000,000 iter-
ations of Algorithm 1 for a benchmark of 68 amino acids (1CTF). Since the length l
and the overlap threshold c are normalized, the values of Pthres in the experiments are
normalized as well. As mentioned in Section 3.2 we use a larger overlap threshold c′ in
Equation 3; that was set to c′ = 1.42. Starting from a relatively high value for Pthres, we
monitor the average distance between overlapping amino acids dav in the energetically
best conformation at the end of an experiment. Then, we decrease Pthres and perform
another experiment. We stop at a Pthres value where dav ≈ c. The normalized value
found by this procedure was Pthres = 3.

Long experiments of a 68 amino acid benchmark, showed that in the folded confor-
mation with penalty value Z = 3 for c′ = 1.42, there are 82 overlaps but the average
distance between overlapping amino acids is dav = 1.28. Only 20 of these overlaps cor-
respond to distances smaller than the desired c = 1.2 which yields a total penalty value
of 0.5. Although the penalty threshold should be adapted according to the length of the
protein, we used Pthres = 3 for our set of benchmarks.

4.1 Results

In Table 1 we summarize the replica exchange Monte Carlo based results without an op-
timization of the penalty function, i.e. the penalty value of the resulting conformations
is 3. The energetically best conformation is collected from each of the 10 independent
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Table 1. Summary of the Monte Carlo-based optimization results

PDB id. Length
Best conformation RMSD Number of

REMCsteps
Atoms RMSD(Å) Total RMSD(Å) replicas

1CTF 68 62 4.71 7.2 8 200

1R69 63
59 6.82

7.72 8 200
58 6.63

1ENH 54 54 5.11 5.115 8 150
1YPA 64 59 6.73 8.14 8 200
2IGD 61 56 5.77 7.38 8 200
1RHX 87 85 9.31 9.68 10 250

1S12 94
81 6.06

14.66 10 250
80 5.89

*Atoms stands for the number of C-alpha carbon atoms in the alignment.

runs. For a particular benchmark and a specific energy function, all 10 conformations
produced, are structurally aligned to the native conformation, such that their RMSD is
minimized. The RMSD, namely the root mean square deviation, is a measure of simi-
larity between the predicted and the native conformation and it is given by the following

formula:

√
1
N

N
∑

i=0
δ2

i , where δi is the distance between the corresponding alpha-carbons

in the two conformations. The alignment is performed by using the PyMOL software
[8]. We should note that PyMOL allows the exclusion of some amino acids from be-
ing aligned, in case they contribute to an increased RMSD. Thus, in Table 1 we also
present the alignment for subset of amino acids, that yield a better RMSD value than
the alignment of the whole conformation.

The results show that, apart from 1RHX, for every other benchmark at least one out
of 10 conformations produced, has a similarity between 4.71Å and 6.82Å. Although
the total similarity score for that particular conformation is outside that range, only a
small portion of alpha-carbon atoms is excluded from the low RMSD alignments. Thus,
the subset of atoms having low RMSD values, define a conformation which captures the
correct packing of secondary structure. See Figures 4(a) and 4(b). Instead of performing
an alignment, more complex energy functions can be employed to evaluate the confor-
mations produced and to rule out the ones which do not capture the correct packing of
secondary structure fragments.

In Table 2 we present a comparison of our method to the methods in [7] and [12]. Our
method produces better conformations for all benchmarks, compared to the best confor-
mations presented in [7]. A comparison to the method in [12] is not directly possible,
since the conformations produced in the latter approach include all backbone atoms,
while our conformations include only the alpha-carbon atoms. Hence, the alignment
scores to the native conformation are not entirely compatible. It is evident though, that
the method in [12] produced better conformations than our method.

Better accuracy in the results from [12] is due to a more elaborate model of rep-
resentating conformations, where all backbone atoms are taken into account. Another
reason is that the energy function used in [12] has been optimized through a perceptron
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(a) 1CTF (b) 1ENH

Fig. 4. The transparent is the native and the solid is the superimposition of the predicted confor-
mation with the best RMSD

Table 2. Comparison of our method to the method in Dal Palu et al. [7] in terms of the best
conformations obtained with respect to RMSD.

1ENH 1YPA 2IGD

Our Method
6.73 (59 atoms) 5.77 (56 atoms)

5.11 (all alpha-carbons) 8.14 (all alpha-carbons) 7.38 (all alpha-carbons)

Dal Palu et al.
8.6 (45 atoms) 9.8 (41 atoms) 15.0 (54 atoms)

9.9 (all alpha-carbons) 12.9 (all alpha-carbons) 16.9 (all alpha-carbons)

1CTF 1R69

Our Method
4.71 (62 atoms) 6.63 (58 atoms)

7.2 (all alpha-carbons) 7.72 (all alpha-carbons)
Hoang et al. 2.94 (all backbone atoms) 4.21 (all backbone atoms)

*Atoms stands for the number of C-alpha carbon atoms in the alignment.

learning procedure. Benchmark 1CTF happens to be in the training set for perceptron
and this might favour the quality of prediction. Finally, our method generated 10 candi-
tate conformations (decoys) for each benchmark, while the authors in [12] generated 50.
The advantage of our method over the method in [12] is that the simplicity of our model
for representating protein conformations, allows cheaper calculations of the move set’s
operations and steric clashes.

A single run of our method with the parameters given in Section 4 requires around
1.2h for benchmarks of length 54-68 and 1.8 h for the two longest benchmarks on an
Intel c© Xeon E5440 machine and a GNU Octave c© ver. 3.0.5 implementation. The
method in [7] requires 10h for each of the following 1ENH, 1YPA and 2IGD compared
to around 12h for our method. The runtime of the method in [12] is not provided.



156 L. Kapsokalivas and K. Steinhöfel

5 Conclusions

In this paper we approach the problem of optimizing the packing of secondary structure
fragments in proteins. We showed how this problem can be realized as a two-objective
optimization problem and we have devised a stochastic local search method to deal
with it. Our method combines a novel move set and a replica exchange Monte Carlo
algorithm. Experimental results show that our method produces conformations which
capture the topology of secondary structure in the native conformation. Those con-
formations can be used to reconstruct the backbone of a protein, using tools such as
SABBAC [16]. Subsequently, conformations can be extended to all atom representa-
tions by placing side chains with a tool such as [28]. All atom conformations can be
further refined to increase the similarity to the native conformation. Hence, our method
can serve as the first part of a hierarchical approach to protein folding, that starts from
a coarse-grain model and progresses to more elaborate models.

Future research will focus on applying the current method to an extended version of
the current off-lattice model that incorporates side chains. Another extension could con-
sider the packing of other structural fragments, such as elements of a structural alphabet
(see [3]). Extending the method to longer proteins is another challenging task, since the
number of possible topology packings would increase drastically with an increasing
number of fragments. In that case, we need to limit the number of different topologies
explored or employ a population-based search algorithm, such as a genetic algorithm.
The current model and move set could be a testing ground for heuristic search methods
in general.
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Abstract. A challenging problem in bioinformatics is the detection of
residues that account for protein function specificity, not only in order to
gain deeper insight in the nature of functional specificity but also to guide
protein engineering experiments aimed at switching the specificity of an
enzyme, regulator or transporter. The majority of the state-of-the art al-
gorithms for this task use multiple sequence alignments (MSA’s) to iden-
tify residue positions conserved within- and divergent between- protein
subfamilies. In this study, we focus on a recent method based on this ap-
proach called multi-RELIEF. We analyze and modify the two core parts
of the method in order to improve its predictive performance. A paramet-
ric generalization of the popular RELIEF machine learning algorithm for
weighting residues is introduced and incorporated in multi-RELIEF. The
ensemble criterion of multi-RELIEF for merging the weights of multiple
runs is simplified. Finally, the method used by multi-RELIEF for ex-
ploiting tertiary structure information is modified by incorporating prior
information describing the confidence of the original scores assigned to
residues. Extensive computational experiments on six real-life datasets
show improvement of both robustness and detection capability of the
new multi-RELIEF over the original method.

1 Introduction

Many homologous protein families have a common biological function but dif-
ferent specificity towards substrates, ligands, effectors, proteins and other inter-
acting molecules. All these interactions require a certain specificity. Identifying
crucial residues for this specificity is important for understanding the nature of
functional specificity, for planning experiments on functional analysis or protein
redesign, and for guiding point mutations aimed at switching the specificity of
an enzyme, regulator or transporter.

In order to detect specificity residues, advanced computational techniques are
used, because of a great variety of functional specificities observed in nature and
the vast amount of protein sequence data.

Many algorithms have been proposed in recent years for this task (e.g.,
[1,2,4,5,6,8,10,13,22,23]). Most of them employ information-entropy related scor-
ing functions [18] to rank residue positions according to the association with the
subfamilies (see for instance the overview contained in [21]). Many methods
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require either a predefined subdivision of the MSA into classes, while unsuper-
vised methods induce also a grouping during execution. The SDPpred method
[10] uses mutual information to identify residue positions in which amino acid
distributions correlate with the sub-family grouping [14]. In [9] the authors ex-
tended this approach to the problem of predicting protein functional sites. The
Two-entropies analysis algorithm (TEA) [23] creates a 2-dimensional plot of
residue conservation in terms of Shannon entropy at both superfamily and sub-
family level. Recently, another method based on correlated mutation analysis
[12] has been introduced to determine networks of functionally related residues
in enzymes that upon mutation influence enzyme specificity and/or activity.
The TreeDet approach [4] contains three algorithms for detecting so-called tree-
determinant residues from an un-partitioned MSA. The Sequence Harmony (SH)
method [5,16] scores compositional overlap between two user-specified groups.
In a recent work [3], state-of-the-art methods for specificity residue detection,
including MR, have been experimentally compared. An ensemble approach that
combines predictions of the three best performing methods was used to identify
new potential specificity determining sites.

In this paper we focus on a recent method for this task is multi-RELIEF
(MR) [22], which identifies specificity residues from a given MSA and predefined
multiple classes using ’local’ conservation properties. MR employs an ensemble
approach based on a machine learning algorithm for feature weighting, called
RELIEF [11], that it applied multiple times to pairs of classes. Weights resulting
from multiple runs are then merged.

The merging criterion assigns equal (best) score to those residues yielding per-
fect discrimination of at least two classes, that is, having complete within-class
conservation and between-class divergence. This is undesirable, because residues
discriminating well many pairs of classes should be considered more relevant
than those discriminating only one pair of classes. Furthermore, RELIEF assigns
equal (zero) score to residues that are either fully conserved or fully divergent.
However, fully conserved residues are more relevant than fully divergent ones
with respect to protein functionality. We tackle these two drawbacks of multi-
RELIEF by introducing a parametric generalization RELIEF, that incorporates
multiplicative factors in the formula used by RELIEF to weight residues. These
factors are used to bias the weight of each residue, depending on its conservation
composition in the protein sub-families considered when computing its weight.
Furthermore, we replace the criterion used for merging weights with the sim-
pler one that ensembles weights by means of their average. We call the resulting
method new-MR.

Next, we refine the criterion used in MR, here called 3D, for boosting the scores
assigned to residues using information on tertiary structure, when available.
Specifically, we incorporate prior information, in the form of a scaling factor
associated to the original scores, describing the confidence assigned by the user
to these scores. Then the new score is computed as the mean of the scaled
original score and the average of the original scores of the 3D neighbors. We call
the resulting criterion new-3D.
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To assess the effectiveness of the resulting method thoroughly, six experimen-
tally determined benchmark sets are considered, taken from five widely stud-
ied protein families: G protein-coupled receptors (GPCRs), the LacI family of
bacterial transcription factor, the Ras-superfamily of small GTP-ases, the MIP-
family of integral membrane transporters and the Smad family of transcrip-
tion factors. We compare experimentally MR, and its modifications obtained
by using either new-MR or new-3D, or both. Using ROC curves we show that
new-MR identifies specificity residues as good as or better than MR. Moreover,
when using new-3D overall robustness and improved predictive performance is
achieved.

The rest of the paper is organized as follows. Section 2 describes the multi-
RELIEF approach. In Section 3 we introduce the new methods. Section 4 con-
tains the experimental analysis. Finally, in Section 5 we briefly summarize the
results and point to future work.

2 Setting the Stage: The Multi-RELIEF Approach

Multi-RELIEF uses as core procedure RELIEF [11], a successful two-class feature
weighting algorithm, and an ensemble approach for handling multiple classes,
based on random sub-sampling pairs of classes. Random sampling of pairs of
classes is mainly employed for efficiency reasons, while random sub-sampling
of sequences is applied for handling unbalanced classes as well as for gaining
efficiency.

Multi-RELIEF [22] is illustrated below in pseudo-code, where nr positions
denotes the total number of positions in the considered MSA. The algorithm
works as follows. Multiple runs (nr iter) of RELIEF are performed. At each
run i, first two classes are randomly selected. Next, nr sample sequences from
each class are randomly selected. Finally, RELIEF is applied to the resulting
two classes, yielding an output vector Wi.

Multi-RELIEF
input: X1,..,Xm (m classes of an MSA), nr_iter, nr_sample
output: multi_W (weights assigned to residues)
for i=1: nr_iter

select randomly two classes Xj, Xk
X = select randomly nr_sample sequences from Xj and from Xk
W_i = apply RELIEF to X

end;
for s=1: nr_positions
multi_W(s) = (see formula below);
end;
return multi_W

When the multiple runs are completed, the weight multi W (s) of a residue
s is computed using the formula below, where N+ = |{Wi(s) > 0 ∀ i}| and
N− = |{Wi(s) < 0 ∀ i}|.
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multi W (s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
N+

∑
i

{Wi(s) > 0 ∀ i} for N+ > 0

1
N−

∑
i

{Wi(s) < 0 ∀ i} for N+ = 0 ∧ N− > 0

0 for N+ = 0 ∧ N− = 0

When computing multi W(s), all runs yielding zero weight for s are discarded. If
this results in an empty set, then s is assigned weight equal to zero. Otherwise,
multi W (s) is set to the average over only the positive weights assigned to s. If
there are only zero or negative weights, then multi W (s) is the average of the
negative weights assigned to s.

The core part of multi-RELIEF is RELIEF, considered one of the most suc-
cessful multivariate feature weighting algorithms [7], due to its simplicity and
effectiveness [11]. Recent bioinformatics applications employing (modifications
of) RELIEF include, for instance, genome-wide genetic analysis [15] and gene
selection [24]. RELIEF constructs a vector of weights, one for each position, by
means of an iterative procedure, illustrated in pseudo-code below for two classes
having the same number of sequences.

RELIEF
input: X (samples of aligned proteins from two classes)
output: W (weights assigned to residues)
W = zero vector of size nr_positions
for each seq in X

W = W + (seq - miss(seq)) - (seq - hit(seq))
end;
return W

The weights vector W is initialized to zero. At each iteration, one sequence seq
is selected. The weights vector is updated by adding the ‘difference’ between seq
and its nearest neighbor computed across sequences of the other class, called by
miss(seq), and subtracting the difference between seq and its nearest neighbor
computed across sequences of the same class, called hit(seq). This procedure
is iterated over all sequences of the dataset X . The difference between two se-
quences seq1 − seq2 is a vector representing matches (0) and mismatches (1)
between residues. For instance, ALM− VLM = 100.

2.1 Exploiting Structural Information: 3D

Multi-RELIEF can optionally include tertiary structure information, if available.
It does this by employing the following heuristic based on the assumption that
a specificity residue does not evolve in isolation, but within a functional cluster
in the protein structure [22]. This means that a residue would be more likely to
be a specificity residue if its neighboring residues are also specific.

We use 3D neighbors, that is, residues that share surface with a given residue
as calculated by the web server at http://ligin.weizmann.ac.il/cma/ [19].

http://ligin.weizmann.ac.il/cma/
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Alternatively, the tools available at http://www.infobiotics.org/ could be used.
For instance, the PSP server could be used to either calculate, if the structure is
known, or predict when the structure is unknown, many topological and geometri-
cal 3D features. Moreover, the ProCKSI server could be used to calculate multiple
versions of contact maps, and compare contact maps of the structures of the MSA
sequences.

The weight of a residue is adjusted by adding the average weight of its 3D
neighbors. In this way the score of a residue is boosted if its neighbors have a
high average score.

3 Improving Multi-RELIEF

In multi-RELIEF, multi W (s) assigns a high score to position s discriminating
at least two classes. In particular, a maximum weight is assigned if s fully dis-
criminates two specific classes but does not differentiate (i.e. weight less than
or equal to zero) any other pair of classes. Furthermore, RELIEF assigns equal
(zero) score to residues that are either fully conserved or fully divergent. How-
ever, fully conserved residues are more relevant than fully divergent ones with
respect to protein functionality. Example of these two cases is shown in Table
1, where residues b and c have equal maximum score, and a and d have both
score equal to zero. We propose the following approach for overcoming these two
drawbacks of multi-RELIEF.

3.1 New-Multi-RELIEF

We introduce a parametric formula for computing weights assigned to position
s. Let cl(seq) denotes the class label (protein sub-family) of seq, and c1, c2 the
labels of the two classes. Denote the element of a sequence seq in position s by
seqs. Let

Wmiss(s) =
∑

seq∈X(seqs − miss(seq)s),
Whit,min(s) = min(Wc1(s), Wc2(s)),
Whit,max(s) = max(Wc1(s), Wc2(s))

and

Wc1(s) =
∑

seq∈X,cl(seq)=c1(seqs − hit(seq)s,

Wc2(s) =
∑

seq∈X,cl(seq)=c2(seqs − hit(seq)s).

Then we define

Wnew(s) = α0Wmiss(s) − α1Whit,min(s) − α2Whit,max(s),

with α0, α1, α2 in (0, 1] We call Whit,min and Whit,max within-one-class weights,
and the parameters α factors, which can be viewed as multiplicative factors
measuring the relevance given by the user to each term of the sum. Their values
can be chosen depending on the specific type of application.

http://www.infobiotics.org/
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One can easily check that, for α0 = α1 = α2 = 1 one obtains the formula used
in RELIEF to compute weights.

For each residue s, we assign more relevance (that is, high α1) to the highest
within-one-class conservation, that is, to the minimum within-one-class weight of
s. Moreover, we account for uncertainty stemming, for instance, from the incom-
pleteness of the considered protein sub-families, the quality of the alignments,
and the possible presence of class noise (that is, proteins assigned to incorrect
sub-families). We address uncertainty by choosing α1 smaller than 1 (in our
experimental analysis, the value 0.8 is selected). The remaining two terms of
Wnew(s) are considered to have half the relevance of the minimum within-one-
class weight (in our experiments α0 = α2 = 0.4).

Using Wnew instead of W in Multi-RELIEF and by averaging the resulting
weights for computing multi W(s), we obtain the new-RELIEF algorithm shown
below in pseudo-code.

new-Multi-RELIEF

input: X1,..,Xm (m classes of an MSA), nr_iter, nr_sample

output: multi_W (weights assigned to positions)

for i=1: nr_iter

select randomly two classes

X = select randomly nr_sample sequences from each selected class

W_i = W_new computed using X

end;

for s=1: nr_positions

new_multi_W(s) = average of W_i(s);

end;

return new_multi_W

The example given in Table 1, slightly adapted from [22], shows the (normalized)
weights generated by multi-RELIEF and by new-multi-RELIEF. The MSA of
four sub-families, C1, . . . , C4, is considered, where each protein sequence has six
positions a, . . . , f .

The two feature weighting methods induce different rankings of the residues.
Indeed, multi-RELIEF ranks both b and c as most relevant positions, followed
by f , then both a and d which are considered equally relevant, followed by e.
Instead new-multi-RELIEF generates a different ranking, namely c, b, a, f , d, e.
In particular, new-multi-RELIEF considers residue c more relevant than b and
the fully conserved residue a more relevant than d.

3.2 New-3D

In the boosting procedure of multi-RELIEF multi W (s) is adjusted by adding
the average weight of its 3D neighbors. Here we use 3D neighbors to change the
weight of position s by associating the scaling factor β for the original weights,
which can be viewed as prior confidence of these weights. Then the new weights
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Table 1. Weights computed by multi-RELIEF applied to a toy example

a b c d e f

C1 R F T I T T
R F T Q F F
R F T N V V
R F T A D D

C2 R F Y S T N
R F Y F F N
R F Y D V N
R F Y V D N

C3 R Y D E T T
R Y D V F F
R Y D W V V
R Y D G D D

C4 R Y H H T T
R Y H P F F
R Y H Y V V
R Y H C D D

Multi-RELIEF weights 0 1 1 0 -1 0.5

new Multi-RELIEF weights 0 0.3 0.4 -0.8 -1.2 -0.6

are obtained by computing the mean of the original weight scaled by its prior
importance, and the average of the original weights of its 3D neighbors:

new 3D W (s) =
1
2
(βmulti W (s) +

∑
s′∈3Dnn(s) multi W (s′)

|3Dnn(s)| ),

where 3Dnn(s) are the positions of the 3D neighbors of s.
In the experimental analysis conducted in the sequel we use β = 3, that is,

we assign high confidence to the original weights. (In general, higher values of β
lead to similar results.)

4 Experimental Analysis

To assess the performance of the proposed modifications of the multi-RELIEF
method, we considered the following six algorithms:

1. MR: the original multi-RELIEF algorithm from [22];
2. new-MR: the new multi-RELIEF algorithm;
3. MR 3D: multi-RELIEF with 3D weight boosting procedure;
4. MR new-3D: multi-RELIEF with the new 3D weight boosting procedure;
5. new-MR 3D: new multi-RELIEF with the 3D weight boosting procedure;
6. new-MR new-3D: new multi-RELIEF with the new 3D weight boosting

procedure.
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Fig. 1. ROC curves of the algorithms. From top to bottom: dataset Smad, Ras/Ral
and Rab5/Rab6.

We conducted experiments datasets previously used in [22], containing dif-
ferent protein families with various associated functional specificity properties.
Properties of these datasets are summarized in Table 2; they are thoroughly
described in [22].

The following parameter values were used: α1 = 0.8, α2 = α0 = 0.4, β = 3,
nr iter = 2000 and nr samples = 5. In general, a high value of nr iter and a
reasonably small value of nr samples can be used. Ties were broken by sorting
residue positions with equal score in increasing sequence position.

The Receiver-operator characteristic (ROC) curve is used for testing the ca-
pability of an algorithm to separate true and false positives [20,17]. Known func-
tional specificity residues are considered true positives, the other ones true neg-
atives. The weight values are used as threshold for generating the ROC curve.
For each weight value v the set of residues with weight higher than or equal to v
is considered: the true positive percentage is reported on the y-axis (sensitivity,
or coverage), and the false positive percentage (1−specificity, or error) on the
x-axis. The ROC curve thus describes the goodness of a method in giving higher
ranking to known functionally specific residues.
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Table 2. Properties of the datasets used for testing the algorithms

dataset nr of avg standard max min sequence formation
classes class size deviation class size class size length

GPCR 77 26.8 34 189 3 214 ligand
LacI 15 3.6 2.5 12 2 339 ligand and DNA
Ras/Ral 2 44.5 24.5 69 20 218 protein
Rab5/Rab6 2 5.0 1 4 6 163 protein
MIP 2 30.0 18 48 12 430 protein
Smad 2 10.0 2 12 8 211 protein

Results of experiments are given in Figures 1, 2. They can be summarized as
follows:

– Significant improvement of new-MR is achieved on the GPCR dataset, which
contains many classes, and on the MIP one. On the other datasets results of
new-MR and MR do not differ significantly (see left column of Figures 1,
2).

– When also tertiary structure information is used, results improve on all
datasets except LacI (see right column of Figures 1, 2). Specifically, on
Smad, Ras/Ral and Rab5/Rab6 new-3D new-MR outperforms significantly
all other MR variants employing 3D information. On the other three datasets
performances of the MR variants do not significantly differ from each other,
except for GPCR, where both 3D new-MRand new-3D new-MR ROC curves
significantly dominate the other ones. On the LacI dataset, new-3D new-
MR show slightly worse performance than 3D MR. However, classes in this
dataset are rather small, with one class containing 12 elements and all other
classes having very few elements (≤ 4). We can take into account this charac-
teristic of the dataset and set the parameter values in such a way that impor-
tance of the maximum within-one-class conservation is strengthen (smaller
values for α0, α2), and the confidence of the original weights is decreased
(smaller value for β). For instance, improvement is achieved by choosing
α1 = 0.8, α0 = α2 = 0.2, β = 0.5 (see Figure 2, bottom plots).

– new-3D new-MR shows best overall results across all datasets. Performance
of 3D new-MR is also very good on the GPCR, MIP and LaCI datasets (see
Figure 1), but is significantly worse than the one of the other algorithms on
the Smad, Ras/Ral and Rab5/Rab6 datasets (see Figure 2).

In general, the results substantiate the effectiveness of the proposed new method
for detecting of specificity residues from multiple sequence alignment. Indeed,
new-3D new-MR achieves best overall performance, in particular significantly
improving robustness and performance of the state-of-the-art method multi-
RELIEF when tertiary structure information is used.
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Fig. 2. ROC curves of the algorithms. From top to bottom: dataset GPCR, MIP, LacI,
and LacI with α1 = 0.8, α0 = α2 = 0.2, β = 0.5.
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5 Conclusion

We proposed a new algorithm for detecting specificity residues from multiple
sequence alignments, which is obtained by modifying the core parts of the re-
cent state-of-the-art method for this task multi-RELIEF. Results of extensive
experiments showed improved overall performance and robustness of the new
method, especially when tertiary structure information is used. In future work,
we want to extend the proposed method to predict functional sites.
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Abstract. Conductance-based compartmental neuron models are tradi-
tionally used to investigate the electrophysiological properties of neurons.
These models require a number of parameters to be adjusted to biologi-
cal experimental data and this question can be posed as an optimization
problem. In this paper we investigate the behavior of different estima-
tion of distribution algorithms (EDAs) for this problem. We focus on
studying the influence that the interactions between the neuron model
conductances have in the complexity of the optimization problem. We
support evidence that the use of these interactions during the optimiza-
tion process can improve the EDA behavior.

Keywords: Conductance-based compartmental neuron models, estima-
tion of distribution algorithm, probabilistic models.

1 Introduction

The intrinsic electrophysiological properties of neurons condition the activity
of neuronal circuits and ultimately determine biological responses to multiple
stimuli. Conductance-based compartmental neuron models [6,7] have been very
useful to study different aspects of neuronal dynamics. The electrical activity of
this type of neuron model is mostly influenced by its ionic current conductances.
Single compartmental models are particularly suitable for investigating the way
in which different ionic currents act on the neuronal subthreshold behavior and
spike generation.

A common method used in the creation of conductance-based compartmen-
tal neuron models is to record the in vitro response of the neuron to a set of
simple current stimuli and then attempt to replicate the response on a detailed
compartmental model of that cell [2]. Usually, the general form of the model
(determined by a set of differential equations) is known but it is necessary to
find a choice of the model parameters that guarantees a good match between the
model behavior and the experimental data. This identification process can be
posed as the problem of finding the optimal (given a predefined measure) values
for the set of parameters.

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2010, LNCS 6023, pp. 170–181, 2010.
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However, the parameter optimization problem is not straightforward. Dis-
parate parameter combinations can lead to similar neuron electrophysiological
properties, interactions between the parameters can be highly nonlinear and the
simulation of the models can be very costly. Therefore, it is an important issue to
conceive optimization algorithms than can deal with this type of problems. We
use EDAs, [9,10], a class of evolutionary algorithms that construct probabilistic
models of the set of selected solutions. Our analysis focuses on the influence that
the interactions between the neuron model parameters have in the behavior of
the different EDAs. We support evidence that the use of these interactions during
the optimization process can help to obtain better sets of neuron parameters.

As a case study we use a database of about 1.7 million model neurons that were
generated by independently varying the 8 maximal conductances of a realistic
conductance-based model [13]. This information allows us to know the function
landscape and optima, permitting us to accurately evaluate the performance
of different variants of the optimization algorithms. It has already been shown
[5,13,19] that databases of model neurons are particularly convenient to study
the way in which the coordinated regulations (corregulations) of ionic currents
influence different aspects of the neurons dynamics. We speculate that corregu-
lations are translated into interactions between the variables of the optimization
problem. Therefore, the databases can also be useful to investigate the way the
search is affected by the strong interactions between the conductance parameters
and to design more appropriate optimization methods for these problems.

2 Neurons and Models of Neurons

Neurons can display different types of spontaneous electrical activity. A neuron
is silent when no electrical activity is displayed. On the contrary, tonically active
neurons display different patterns of electrical activity and can be classified ac-
cordingly based on these patterns. Spiking neurons are those that display narrow
spikes while bursting neurons have a broad shoulder after each spike. Neuron can
also show an irregular activity, where none of the previous classifications can be
given. The same classification is used to describe the behavior of neurons under
electrical stimulation, i.e. when a current is input to the neurons. In general,
different input current stimuli may determine changes in the electrical activity
of the neuron.

To characterize the electrophysiological activity of neurons, measures that
describe their electrical behavior have been defined. The burst duration is the
interval in which there are a significantly higher number of spikes as compared
to other intervals in the spike train. The burst period is the burst duration plus
the largest interspike interval. The number of maxima per period is the number
of maxima comprised in a bursting period. The after-hyperpolarization (AHP)
potential is the trough voltage between bursts.

For tonically active and bursting neurons, the spike amplitude is the difference
between the maximum value of the membrane potential and the value at the
onset of the action potential. The average inter-maximum interval (IMI) is the
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Fig. 1. Different measures that characterize the electrophysiological activity of neurons

average of the distances between two subsequent voltage maxima. The discharge
frequency is the inverse of the IMI. Figure 1 illustrates some of these measures.

Neuron models are indispensable tools for understanding the neuron structural
organization and testing different hypotheses about their behavior. A neuron
model should display an appropriate balance between its accuracy to reproduce
the neuron behavior and its computational complexity and tractability. We use
a single compartmental model. This type of model neglects the neuron’s spatial
structure and focuses on how its various ionic currents contribute to subthreshold
behavior and spike generation.

3 Model Description

The model was constructed based on experimental data obtained from lob-
ster stomatogastric neurons [13,21]. The 8 currents in the single-compartmental
model are based on those of the lobster stomatogastric ganglion neurons (STG)
[21,14] and include a Na+ current, INa; two Ca2+ currents, ICaT and ICaS ; a
transient K+ current, IA; a Ca2+ dependent K+ current, IKCa; a delayed rec-
tifier K+ current, IKd; a hyperpolarization-activated inward current, IH ; and a
leak current, Ileak. In what follows we present the basic details about the model.
More details can be found in [14].

Each of the model membrane currents is described by

Ii = ḡi(mi)phi(V − Ei)A (1)

where Ei is the reversal potential, A = 0.628× 10−3 cm2 is the membrane area
and ḡi is the maximal conductance. The database of models was constructed
varying the maximal conductances of all 8 currents independently. Information
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about the way in which the reversal potentials Ei where computed, as well the
equations for the activation and inactivation variables mi and hi can be obtained
from [14].

Iinput, being a given input current, the neuron potential V is modeled by

C
dV

dt
= −

∑
i

Ii − Iinput (2)

where C = 0.628 nF is the membrane capacity. In [14], some experiments were
conducted to observe the model electrical activity with different input currents.
For current step simulations, the input current was stepped from zero to a de-
polarizing DC current of 3 or 6 nA.

Different assignments of the model maximal conductance parameters will in-
fluence the model electrical activity. Therefore, it is possible to investigate which
are the particular characteristics of a set of models determined by different pa-
rameter combinations. In [14], the database of 1, 679, 626 models was generated
by varying the 8 parameters of the model previously described over 6 equidistant
values.

Let Xi and xi respectively represent a discrete random variable and a pos-
sible assignment to Xi. Similarly, we use X = (X1, . . . , Xn) to represent an
n-dimensional random variable and x = (x1, . . . , xn) to represent one of its pos-
sible values. In our problem representation, each variable will represent one of
the neuron model parameters, n = 8 and xi ∈ {0, . . . , 5}. Table 1 shows the vari-
able codification of the neuron model parameters and the conductance values
assigned to each of the membrane currents which were used in the construction
of the database.

Each set of conductances represented by a vector x = (X1, . . . , X8) defines a
“model neuron” or simply a neuron. The spontaneous activity of each neuron
was simulated and classified into 4 categories: silent, tonically active, bursting,
and non-periodic. Several features were extracted from the neurons. Different
descriptors of the electrical activity were computed.

Table 1. Parameter representation and Conductance values assigned to each of the
membrane currents and used in the construction of the database

V ar Current 0 1 2 3 4 5
X1 INa 0 100 200 300 400 500
X2 ICaT 0 2.5 5.0 7.5 10.0 12.5
X3 ICaS 0 2.0 4.0 6.0 8.0 10.0
X4 IA 0 10.0 20.0 30.0 40.0 50.0
X5 IKCa 0 5.0 10.0 15.0 20.0 25.0
X6 IKd 0 25.0 50.0 75.0 100.0 125.0
X7 IH 0 0.01 0.02 0.03 0.04 0.05
X8 Ileak 0 0.01 0.02 0.03 0.04 0.05
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4 Optimization Approach

Our goal is to find, from a large set of candidates, a neuron model that resembles
the electrical activity of a given target neuron as described by recorded experi-
mental data. One simplification is to use a search of candidate solutions amenable
for tractable exhaustive enumeration (neuron database). Since the neuron model
database provides a description of all the neurons, we can carefully design a fit-
ness function based on this information and know a priori the function values
for all the solutions of the search space.

For each optimization problem, we will use as a target neuron, one neuron
model selected from the database according to some predefined criterion related
to its electrophysiological activity. This choice of the target neuron guarantees
that there is at least a solution of the search space that optimizes the fitness
function. However, the question of how to measure the similarity between the
dynamics of the target neuron and any other neuron has to be solved.

There are three main types of functions used to find optimal neuron model
parameters [22]: feature-based functions, point-by-point comparison of voltage
traces, and multi-objective functions. In this paper we use the first approach
and the frequency of voltage maxima as the feature that will characterize the
dynamics of the neuron models. The spontaneous frequency of voltage maxima
contains information about the neurons dynamics but this information does not
support much details about the neuron behavior. Therefore, in addition to the
spontaneous frequency we use the steady state maximal frequencies as computed
during 3 nA and 6 nA current injections.

Let x∗ and x respectively be the target neuron and any other neuron of the
search space. The fitness function f(x) is defined as:

f(x) = −
(
(fqs(x) − fqs(x∗))2 + (fq3(x) − fq3(x∗)

)2
+ (fq6(x) − fq6(x∗))2)

1
2

(3)
where fqs, fq3 and fq6 respectively represent the spontaneous frequency and
the steady state maximal frequencies as computed during during 3 nA and 6
nA current injections. When x∗ = x, f(x) = 0 which is the maximum of the
function. Therefore, we transform the search for a neuron model with similar
electrical activity to the target neuron in the maximization of function f(x).
Notice that the fitness landscape of this function will depend on the choice
of x∗.

5 Estimation of Distribution Algorithms

EDAs [9,10] are optimization algorithms that can learn and exploit the search
space regularities in the form of probabilistic dependencies. They are very similar
to genetic algorithms, but instead of using genetic operators, they construct an
explicit probability model of a set of selected solutions. The model is used to
generate new promising solutions. One characteristic that serves to distinguish
different types of EDAs is the probabilistic model used by the algorithm. The
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models may differ in the order and number of the probabilistic dependencies
that they represent.

Let p(x) denote a positive probability distribution. In this paper, we use
three different types of models: A univariate marginal model, a tree model and a
Bayesian network model. In a univariate model, the joint probability distribution
can be factorized as the product of the univariate probabilities of the variables,
i.e. p(x) =

∏
i p(xi). This is the model used by the univariate marginal distribu-

tion algorithms (UMDA) [10].
A probability distribution pTree(x) that conforms to a tree is defined as

pTree(x) =
∏n

i=1 p(xi|pa(xi)) where Pa(Xi) is the parent of Xi in the tree,
and p(xi|pa(xi)) = p(xi) when Pa(Xi) = ∅, i.e. Xi is the root of the tree. Prob-
abilistic trees are represented by acyclic connected graphs. In this paper we use
the Tree-EDA [18], an EDA that uses trees to represent the probability distri-
butions. A Bayesian network can be seen as a generalization of a tree where
each variable can have multiple parents. In this paper we use the estimation of
Bayesian networks algorithm (EBNA) [3], one of the EDAs based on the use of
Bayesian networks.

Pseudocode for EBNA is shown in Algorithm 1. The algorithm was imple-
mented in Matlab using the MATEDA-2.0 software [15]. The implementations
of the UMDA and Tree-EDA follow the same scheme but the learning and sam-
pling steps are modified accordingly. These were implemented using the Matlab
Bayes Net (BNT) toolbox [11]. The scoring metric used for the Bayesian network
was the Bayesian metric with uniform priors, and each node was allowed to have
a maximum number of 5 parents. The truncation parameter was T = 0.5. Best
elitism, in which the selected population is passed to the next population, was
used.

Algorithm 1. EBNA

1 Generate an initial population D0 of individuals and evaluate them
2 t ← 1
3 do {
4 DSe

t−1 ← Select N individuals from Dt−1 using truncation selection

5 Using DSe
t−1 as the data set, apply local search to find one BN structure

that optimizes the scoring metric

6 Calculate the parameters of the BN using DSe
t−1 as the data set

7 Dt ← Sample M individuals from the BN and evaluate them
8 } until Stopping criterion is met

6 Related Work

There is considerable work on the application of optimization methods to neuron
model parameter optimization. Usually, single objective functions that measure
a particular aspect of the model performance given the parameters are used.
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Among the most commonly employed optimization methods are [12,22]: hand
tuning, gradient descent, evolutionary algorithms, bifurcation analysis and hy-
brid methods.

We review some of the work that seems to corroborate the convenience of
modeling the interactions between the conductances in the search of neuron
models that exhibit a desired electrophysiological behavior pattern. In the next
section we present empirical results that show that this is indeed the case.

Achard and De Schutter [1] use an evolutionary strategy to obtain a set of
different good models of the cerebellar Purkinje cells. The authors investigate
different hypotheses that could explain the large diversity models with similar
good conductance density values. Although probabilistic models of the neuron
model parameter space are not constructed, the correlations between pairs of
parameters are computed and used to investigate the relationship between the
parameters.

In [4], Golowasch et al. generated a set of neuron models by randomly sam-
pling the maximal conductance of the STG neuron [21]. The models were used
to identify sets of maximal conductances that generate one-spike bursters. A
model using the means of the maximal conductance of this set was constructed.
It turned out that the model was not itself a one-spike burster. The authors
concluded that averages over multiple samples can fail to characterize a system
whose behavior depends on interactions involving a number of highly variable
components.

In [5], a neuron database is used to investigate spiking variability in Globus
pallidus neurons. The authors acknowledge that the effect of each conductance
in the neuron electrophysiological properties was highly dependent on the back-
ground context of other present conductances. The fact that every conductance
in the model could show opposite effects on spike rate when it was increased
depending on the background of other present conductances [5] suggests that
fitness functions that use the spike rate as a feature may have malign inter-
actions between the variables [8]. Malign interactions can deceive evolutionary
algorithms that do not take interactions into account.

In [19], Smolinski and Prinz analyze a different database of neuron models.
From the analysis of the subset of models that resemble the electrophysiological
behavior of natural neurons the authors identify three types of corregulations:
1) No significant interactions. 2) Expression of co-preference for specific ranges
of values and 3) Corregulation, expressed by a characteristic “ridge” in the plot
of pair-by-pair co-occurrence of specific parameter values. We could expect that
variables with no significant interactions are less likely to appear together in the
graphical model structures learned by EDAs.

7 Experiments

The main objective of our experiments is to investigate whether the use of in-
teractions, represented by the graphical models used by EDAs, improves the
results achieved when no interactions are taken into account. We assume that,
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Table 2. Target neuron models selected from the database and a number of properties
and measures determined from their simulation

Index INa ICaT ICaS IA IKCa IKd IH Ileak Ts T3 T6 fqs fq3 fq6
720973 100 7.5 4 40 5 125 0 0.01 2 1 1 1.1632 54.6364 60.1949
1522117 500 5.0 6 40 10 125 0 0.01 2 1 1 1.1559 37.7609 42.2354
833389 100 12.5 10 10 0 25 0.04 0.01 2 0 0 215.0538 0 0
965338 300 5.0 8 0 25 0 0.05 0.04 2 1 1 4.5382 5.8246 7.8225
436821 100 7.5 4 10 0 25 0.05 0.03 2 0 0 68.2173 0 0
1071411 300 10.0 10 40 20 25 0.02 0.03 2 2 2 3.9518 23.1826 27.9265
83317 0 2.5 8 40 5 100 0.02 0.01 2 0 0 2.4422 0 0
882103 300 0 10 20 15 100 0.05 0.01 2 1 1 18.0810 37.0142 42.6758
300566 100 0 4 30 25 75 0 0.02 2 1 1 4.8984 26.9808 35.5637
1374808 400 12.5 4 40 20 125 0 0.04 2 2 2 8.0523 35.9712 47.1328

if EDAs that represent probabilistic dependencies, i.e. Tree-EDA and EBNA,
outperform those that do not represent such dependencies, i.e. UMDA, then the
problem exhibits interactions between the variables and these interactions are
important to solve the problems.

To test the algorithms, we select 10 functions defined by selecting different
target neuron models from the data sets. The target neurons, shown in Table 2,
are all bursting neurons during the spontaneous activity and have been selected
trying to cover different patterns of electrical activity of the neurons. Under
spontaneous activity, the first five neurons have the following relevant character-
istics: for 720973: a high burst period and small burst duration; for 1522117: a
high burst period and high burst duration; for 833389: the smallest burst period;
for 965338: one of the smallest burst durations; for 436821: one of the highest
number of maxima. The rest of the target neurons have been randomly selected
from the set of bursting neurons.

In the table, Index is the index of the neuron in the database, Ts, T3 and T6 are
the types of electrical activity under the different experimental conditions, coded
as silent neuron (0), spiking neuron (1), bursting neuron (2). Similarly fqs, fq3
and fq6 represent the frequencies under the different experimental conditions.

We conducted 30 experiments of UMDA, Tree-EDA and EBNA for each of
the 10 functions and with two different settings: I) Population size is 500 and 30
generations; II) Population size is 1000 and 60 generations are conducted. These
settings were determined aiming to keep the number of function evaluations
relatively small, and after preliminary experiments were conducted. The number
of times each algorithm found the optimum for all the functions are shown in
Table 3. It can be seen in the table that only one of the problems is relatively
easier to solve by the methods. Instance 1071411 is particularly complex for
all the methods. However, the best results are clearly achieved by EBNA that
outperforms both the Tree-EDA and UMDA.

To determine whether differences between the algorithms are statistically
significant, we have used the Kruskal-Wallis test to accept or reject the null
hypothesis that the samples have been generated from the same probability dis-
tribution. The test significance level was 0.01. For all instances, except instances
833389 and 436821, significant statistical differences have been found between
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Table 3. Number of times each algorithm found the optimum for each of the 10
functions

Alg. 720973 1522117 833389 965338 436821 1071411 83317 882103 300566 1374808 Tot.
Setting I II I II I II I II I II I II I II I II I II I II
UMDA 0 0 0 0 6 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33

TREE − EDA 0 0 0 0 13 19 0 0 0 4 0 0 0 0 0 0 0 0 0 0 36
EBNA 0 2 1 0 30 30 2 4 6 12 0 0 0 1 2 1 3 8 18 25 129
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Fig. 2. Distance of the solutions found by the different EDAs to the best solutions for:
a) EDA setting (500 − 30). b) EDA setting (1000, 60).

the EBNA and the other two EDAs for the two settings. There were not signif-
icant statistical differences between EBNA and Tree-EDA for instance 436821
for both EDA settings, and between EBNA and the other two EDAs for instance
833389, setting II.

It is interesting to note that the use of bivariate dependencies are not sufficient
to improve the EDA results. To investigate the quality of the average solutions
found by the algorithms, we also compute the average fitness distance of the best
solutions found by the different EDAs to the optimal solutions. This information
is shown in Figure 2. It can be appreciated that the increment in the number of
allowed function evaluations, due to more individuals in the population and more
generations, does not significantly improve the results of UMDA and Tree-EDA.

Finally, we investigate the structure of the dependencies learned by EBNA.
For each problem, we computed the frequency of the arcs learned by the Bayesian
network. The arc frequencies were calculated from the set of 900 Bayesian net-
works learned using the first EDA experimental setting. Figure 3 a) shows the
frequency matrix learned for instance 1071411. Lighter colors represent stronger
dependencies between the variables. Note that not all the dependencies appear
with the same frequency.

For each problem, frequency matrices were thresholded to leave those arcs
that were in at least 550 of the 900 Bayesian networks. We then computed
the thresholded dependencies that were present in at least 5 of the 10 instances.
These dependencies are shown in Figure 3 b). We hypothesize that some of them
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Fig. 3. Structure of the interactions captured by the Bayesian networks learned by
EDAs. Lighter colors represent stronger dependencies between the variables. a) Most
frequent structures learned for instance 1071411. b) Dependencies that were frequent
for at least five of the 10 functions.

are due to the existence of important corregulations between the conductances
of bursting neurons. To validate this hypothesis, we investigate previous studies
of the conductance structure [20].

In [20], the construction of a dimensional stack image that visualizes the re-
lationship between the spontaneous neuron activity and the conductance values
allowed to make some conclusions about the structure of the conductance space.
Of the four statements made about the “layout” of neuron models in the conduc-
tance space, only two refer to the interactions between conductances: 1) Many
one-maxima bursters that have nonzero ḡNa have zero delayed-rectifier potas-
sium conductance ḡKd. 2) There seems to be a regular gradation of bursters
from few maxima per burst to many maxima per burst as one increases ḡKd and
decreases ḡCaT . The interactions between the conductances pairs (ḡNa, ḡKd)
and (ḡKd, ḡCaT ) are both captured in the matrix shown in Figure 3 b). Further
analysis, for instance the inspection of the corresponding marginal tables, should
reveal the type of relationship between these pairs of parameter conductances as
captured by the Bayesian networks. This remains as a subject of further work.

8 Conclusions

In this paper we have shown that interaction should be taken into account in
the search of neuron models that have a predefined physiological activity. This
is the first time, to our knowledge, that EDAs have been applied in the context
of neuron modeling1. In contrast with previous EDA applications to problems
from the biological domain [17], where bivariate interactions are sufficient to

1 This is not the case in the field of artificial neural networks where several applications
of EDAs have been reported.
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remarkably improve the results achieved by univariate models, for the problems
addressed in this paper, higher order interactions are needed.

Elucidating the relationship between the distribution of their intrinsic prop-
erties and dynamic activity of neurons is a crucial step in understanding larger-
scale phenomena such as network oscillations and inter-nuclei synchronization.
We speculate that further application of intelligent data analysis techniques
[15,16] to the data generated by the EDAs can unveil additional information
about the structure of the conductance space.
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Abstract. A primary goal of human genetics is the discovery of genetic
factors that influence individual susceptibility to common human diseases.
This problem is difficult because common diseases are likely the result of
joint failure of two or more interacting components instead of single com-
ponent failures. Efficient algorithms that can detect interacting attributes
are needed. The Relief family of machine learning algorithms, which use
nearest neighbors to weight attributes, are a promising approach. Recently
an improved Relief algorithm called Spatially Uniform ReliefF (SURF)
has been developed that significantly increases the ability of these algo-
rithms to detect interacting attributes. Here we introduce an algorithm
called SURF* which uses distant instances along with the usual nearby
ones to weight attributes. The weighting depends on whether the instances
are are nearby or distant. We show this new algorithm significantly out-
performs both ReliefF and SURF for genetic analysis in the presence of
attribute interactions. We make SURF* freely available in the open source
MDR software package. MDR is a cross-platform Java application which
features a user friendly graphical interface.

1 Introduction

New genotyping technologies are allowing human geneticists to routinely mea-
sure individual genetic variation on a vast “genome-wide” scale [1,2,3]. It is now
feasible to measure more than one million variations from across the human
genome. Here we focus on a particular type of variation, the single nucleotide
polymorphism or SNP. Each SNP is a single point in a DNA sequence that dif-
fers between individuals. A major goal of human genetics is to link these genetic
variations to disease risk [4]. Currently this problem is approached as a set of
independent steps. The first step in the process is to discover SNPs that reliably
predict disease susceptibility across many samples [5], but discovery of these ro-
bust single predictors has proven difficult [6,7,8]. Furthermore even the reliable
and robust disease-associated SNPs that have been discovered often cannot be
combined into effective classifiers of disease risk [9]. These association studies, by
their nature, ignore complex interactions that may lead to disease susceptibility.
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The term for complex gene-gene interactions that influence a trait such as
disease susceptibility is epistasis. It is becoming apparent that studies ignoring
epistasis are also likely to be neglecting informative markers [10,11]. Because of
the complexity present in cellular and biological systems, epistasis is thought to
be fundamental to an individual’s risk for common human diseases [12]. This
knowledge, combined with the inability of single-marker approaches to offer pre-
dictive models of individual disease risk, suggests that researchers should also
carefully examine gene-gene interactions for associations with disease. Unfor-
tunately examining the joint effect of these polymorphisms is difficult because
commonly used methods are combinatorial.

Relief algorithms [13], which use nearest neighbors, have successfully detected
gene-gene interactions in genetic association studies [14]. Here we introduce a
novel Relief algorithm called SURF*. SURF* is better able than other Relief
algorithms to detect SNPs which participate in epistatic interactions that relate
to disease risk. The novel feature of SURF* is that it uses distant individuals,
as well as the usual near ones, to adjust the scores of SNPs. Using these distant
individuals has the effect of increasing sample size considerably.

This paper is organized as follows. Section 1.1 discusses approaches used in
genetic association studies. Section 2 discusses intuitively how Relief algorithms
can, in linear time with respect to the number of SNPs, detect epistatic in-
teractions. Section 2.1 examines how SURF specifically is able to detect these
interactions. This is important because we improve SURF with a novel approach,
SURF*. A theoretical assessment of the improvement provided by SURF* is de-
scribed in Section 3. We evaluate the new SURF* method empirically using a
study design described in Section 4. This framework allows us to directly assess
the success rate of the method. The results of the simulation are discussed in
Section 5 and we discuss their implications in Section 6.

1.1 Related Work

The state of the art in this field still relies on only the analysis of single SNPs
as in a recent large study of 17,000 individuals and seven common diseases from
the Wellcome Trust Case Control Consortium [15]. While some approaches do
consider complexity, these often condition on the effect of single SNPs or re-
quire combinatorial methods to exhaustively examine all potential interactions
[16,17]. In the first case, these have the potential to miss interactions without
main effects. In the second, the time to analyze large datasets becomes pro-
hibitive because this type of analysis requires the consideration of the joint effect
of attributes, here SNPs, a combinatorial challenge which has been previously
described [18,19,20]. When datasets contain many SNPs, such combinatorial
methods are infeasible.

2 Relief Algorithms

Cordell [21] provides a recent and thorough review of current analysis methods,
including Relief algorithms, for these studies as well as the potential benefits and
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drawbacks of each. To this point the use of Relief algorithms in this field has been
relatively limited [14,22,23], probably because previous small scale studies have
not required these types of algorithms, and large scale studies have, thus far,
often ignored epistasis. Given the difficulty of detecting predictive interacting
SNPs, our novel and more effective Relief algorithm could greatly enhance the
state of the field.

Relief algorithms, the first of which was developed by Kira and Rendell [13],
are a natural fit for large scale genetic association studies designed to detect epis-
tasis. They are fast and scale linearly with the number of SNPs and quadratically
with the number of individuals. Furthermore these algorithms are able to de-
tect interacting pairs of attributes that contribute to disease susceptibility. We
have previously discussed how Relief algorithms do this from a mathematical
point of view [24]. In summary, the Relief algorithm returns a weight for each
SNP. Higher scores indicate that a SNP is more likely to be predictive of disease
status. The adjustment of these scores is performed using the genetically most
similar individuals. Here the inter-individual distance is the number of SNPs
with differing genotypes between two individuals. Therefore, nearest individuals
share the greatest number of genotypes. Relief works on the assumption that the
SNPs of nearby individuals with different genotypes are most useful for assessing
the predictiveness of the SNP. The algorithm adjusts the scores of these SNPs–
upward if the two individuals have different disease status, and downward by the
same amount if they have the same status. More precisely, for each individual
Ii, SNP scores are adjusted using its nearest hit (the individual which is closest
to Ii and in the same class as Ii) and its nearest miss, (the individual which
is closest to Ii and in the other class from Ii). ReliefF [25] differs from Relief
largely because it uses multiple neighbors for weighting instead of only the single
nearest neighbor.

Table 1. Penetrance values for an example epistasis model with a heritability of 0.2.

SNP1

AA (0.36) Aa (0.48) aa (0.16)

SNP2

BB (0.36) 0.393 0.764 0.664
Bb (0.48) 0.850 0.398 0.733
bb (0.16) 0.406 0.927 0.147

2.1 Spatially Uniform ReliefF (SURF)

Spatially Uniform ReliefF (SURF), developed by Greene et al. [24], detects at-
tribute interactions in the same manner as Relief and ReliefF. SURF, like Re-
liefF, uses multiple nearest neighbors, but, instead of using a fixed number of
nearest neighbors, SURF uses all neighbors within a specific similarity threshold,
T . Instances may not be uniformly distributed in space and some instances may
have more informative neighbors than other instances. SURF uses all neighbors
more similar than the threshold, T , for weighting, while Relief and ReliefF may
use either more or fewer neighbors. This can cause ReliefF to potentially include
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uninformative neighbors or to neglect informative ones. This swaps the number-
of-neighbors used by Relief for the similarity-threshold used by SURF. For this
we use the mean of the distances between all pairs of individuals, which can be
easily computed from the data [24].

Here we will briefly outline how SURF is capable of detecting interacting pairs
of attributes. This is thoroughly discussed in the appendix to Greene et al. [24]
but here we highlight the parts necessary to understand how SURF* improves
on SURF and adjust the notation to accommodate both the nearest and furthest
individuals. To understand these algorithms, it is first necessary to understand
the problem. We illustrate the situation of interacting pairs of SNPs using the
penetrance table given in Table 1. According to this example, if an individual has
genotype BB, the probability she is sick is .36 · .393+ .48 · .764+ .16 · .664≈ .614.
If she has genotype Bb, this probability is the same, and likewise if she has
genotype bb. Thus just SNP 2’s genotype is not predictive of disease status.
Similarly if SNP 1’s genotype is known, but not SNP 2’s, the probability she is
sick is as before, .36·.764+.48·.398+.16·.927 ≈ .614. Thus the genotypes of SNPs
1 and 2 are together predictive of disease status, but neither is individually. This
is what makes SNPs 1 and 2 an epistatic pair of SNPs. In our study we employ
9000 datasets from 30 of these genetic models. In all models there are pairs of
SNPs which are jointly predictive but no singly informative SNPs. Detecting
these epistatic pairs is much more difficult then detecting SNPs which alone
have an effect.

A basic fact we will use about epistatic pairs is that

|H2Δ| − |M2Δ| =
1
2
(|M1Δ| − |H1Δ|) = |H0Δ| − |M0Δ|. (1)

This is discussed in sections 1 and 2 of the appendix in the paper first describing
SURF [24].

Now let Ii be a random, but fixed, individual and let T be the threshold
distance. Then each miss with distance less than T from Ii is in one of the three
sets M0Δ, M1Δ or M2Δ. For k = 0, 1 and 2, let CMkΔ be the subset of MkΔ

consisting of those individuals with distance < T from Ii. The notation CMkΔ

might be read as “close misses involving k changes of the relevant SNPs”. Using
analogous notation for hits with H in place of M , the contribution of individual
Ii to the (SURF) score of a relevant SNP is

SC
i =

1
2
(|CM1Δ| − |CH1Δ|) + (|CM2Δ| − |CH2Δ|)

=
1
2
(|CM1Δ| − |CH1Δ|) − (|CH2Δ| − |CM2Δ|). (2)

The 1
2 is here since each individual in CM1Δ and CH1Δ changes the score of a

relevant SNP by 1
2 , on the average. The total SURF score of a relevant SNP is

the sum of the SC
i over all individuals.
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It follows from equation (1) that if arbitrary neighbors are used, rather than
nearest ones, the expected score of a relevant SNP would be 0 since

1
2
(|M1Δ| − |H1Δ|) = |H2Δ| − |M2Δ|.

The score SC
i tends to be positive though because close neighbors are more apt

to lie in the sets M1Δ and H1Δ rather than in M2Δ and H2Δ, making

1
2
(|CM1Δ| − |CH1Δ|) > |CH2Δ| − |CM2Δ|.

The reason close neighbors are more apt to lie in the 1Δ-sets than in the 2Δ
ones is that relevant SNPs of individuals in the 1Δ-sets contribute one to the
distance from Ii, while those in the 2Δ-sets contribute two.

3 The Value of Both Nearest and Farthest

It is clear that the assumption made by Relief algorithms such as SURF, that
the SNPs of nearby individuals with different genotypes are useful for assessing
the predictiveness of the SNP, is correct as these algorithms are successful. It
is not clear that distant individuals are not also useful. Our analysis suggests
that using the states of genotypes for these most distant individuals can sub-
stantially improve the success rates of these algorithms. Using this information
effectively increases the sample size available to SURF greatly improving its
ability to detect epistatic SNPs when sample sizes are limited. We call the al-
gorithm SURF* because using distant individuals is the opposite of SURF and
because, in mathematics, ∗ indicates opposite. Strictly speaking, the SURF* that
we discuss includes both SURF and this additional opposite component.

We outline how this approach using both closest and farthest individuals out-
performs the nearest neighbor approaches. The SURF* algorithm we introduce
uses nearby neighbors in the same way the SURF algorithm does. The new part
of the SURF* algorithm using distant individuals identifies those SNPs of distant
individuals in different states and adjusts their scores–downward by one if the
two individuals have different disease status, and upward by the same amount
if they have the same status. (This is the same as with Relief algorithms, but
upward and downward have been interchanged.) Specifically, we define subsets
DMkΔ made up of distant misses of MkΔ consisting of those misses with distance
> T from Ii. Subsets DHkΔ made up of distant hits of HkΔ consist of those hits
with distance > T from Ii Then the contribution of individual Ii to the (distant
individuals) score of a relevant SNP is

SD
i = −1

2
(|DM1Δ| − |DH1Δ|) − (|DM2Δ| − |DH2Δ|)

= −1
2
(|DM1Δ| − |DH1Δ|) + (|DH2Δ| − |DM2Δ|). (3)
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The mean of this is positive for essentially the same reason that the mean of
SC

i is. Namely, individuals in the 2Δ-group tend to be one farther from Ii than
those in the 1Δ-group.

The means of SC
i and SD

i are the same, or nearly so. So the mean of the
overall score ΣiS

C
i + ΣiS

D
i of a relevant SNP is doubled by using distant indi-

viduals along with the usual close ones. We suspect that ΣiS
C
i and ΣiS

D
i are

not independent. If so, with V denoting variance, we have

V (ΣiS
C
i + ΣiS

D
i ) > V (ΣiS

C
i ) + V (ΣiS

D
i ).

Thus using distant individuals does not quite have the effect of doubling the
sample size, but it does substantially increase the success rate. This improvement
in success rate indicates that these methods are more likely to detect interacting
relevant SNPs in these genetic association studies.

4 Experimental Design

Here we evaluate these methods in the context of a simulation study. The goal of
our simulation study is to generate artificial datasets with high concept difficulty
to evaluate these methods in the domain of human genetics. Our dataset charac-
teristics were chosen to closely match common genetic association study designs
from human genetics. We first develop 30 different penetrance functions (i.e.
genetic models) which determine the relationship between genotype and pheno-
type in our simulated data. These functions determine the probability that an
individual has the studied disease given his or her genotype. This probability
depends only on the genotypes of the two interacting SNPs, not on the genotype
of any one SNP. This case where there are no single SNP effects is thought to
be the most difficult. Single SNP effects are easily found with other methods.
The 30 penetrance functions consist of six groups of five with heritabilities of
0.025, 0.05, 0.1, 0.2, 0.3, or 0.4. Each of the six heritabilities is realized by all five
models in one group. These heritabilities range from very small to large genetic
effect sizes and thus test the algorithms across a broad swathe of scenarios.

SNPs are chosen for genotyping such that each SNP has two alleles due to
technological constraints and such that these alleles are both common in the pop-
ulation. Here each model contains SNPs with two alleles which have frequencies
of 0.4 and 0.6. Each of the models is used to generate 100 datasets with sample
sizes of 800, 1600, and 3200. Studies with 800 individuals would be considered
small relative to other genetic association studies while studies with 3200 indi-
viduals would be considered large. Each consists of an equal number of case and
control subjects because genetic association studies are frequently designed to be
balanced. Each pair of relevant SNPs is added to a set of 998 irrelevant SNPs for
a total of 1000 attributes. This is similar to the size seen in association studies
using custom SNP arrays to perform genotyping. A total of 9,000 datasets are
generated and analyzed. This large number of datasets and study design allows
us to rigorously evaluate and compare these methods across situations likely to
be encountered. Due to the difficulty of detecting and characterizing epistasis,
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well studied real datasets of these sizes where epistatic interactions have been
validated are not widely available.

By performing a simulation study it is possible to determine the success rate
of a method. This is possible because the relevant SNPs are known before the
algorithm is applied to the data. The success rate is the percentage of time that
a method scores both relevant SNPs above a given threshold. To estimate it,
we use all 100 datasets for each of the 30 models. Specifically, the percentage of
datasets in which a method ranks the two relevant SNPs above the N th percentile
of all SNPs is the estimate of the method’s success rate. We examine the 95th

percentile because this is likely to be useful in practice and because ReliefF has
been used in the genetic analysis of complex diseases in this fashion [14]. This
represents the situation where the method filters a dataset with 1000 SNPs to 50
SNPs before a combinatorial analysis is performed on this manageable subset.

It is also important to understand whether differences observed between the
estimates of success rates for the various methods are due to chance or are due to
a true performance difference. To determine whether differences between success
rates at these thresholds are likely due to chance, we apply Fisher’s exact test to
assess the significance of these differences. Fisher’s exact test is a significance test
appropriate for categorical count data such as success rate [26]. The resulting p-
value for this test can be interpreted as the likelihood of seeing a difference of the
size observed among success rates when the methods do not differ. We consider
results statistically significant when p ≤ 0.05. Additionally, we graphically show
results for filtering to each percentile from the 99th to the 50th. Highly significant
results indicate that the observed differences are unlikely to be due to chance.

We test each method using parameter settings from Greene et al. [24]. ReliefF
requires that a number of neighbors be specified. In 2003 Robnik-Sikonja and
Kononenko [27] performed a comprehensive analysis and determined that ten
neighbors was an appropriate number for ReliefF, so we use ten neighbors here.
Similarly, SURF requires a distance threshold. Greene et al. [24] suggest that the
mean distance can be used as an acceptable threshold and thus we use the mean
distance in this situation. To facilitate comparison between these methods we
do not use a distance decay, although in future studies altering this parameter
could allow for further improvement in success rate because the distance decay
increases the influence of the most extreme individuals.

5 Empirical Results

The novel method, SURF*, which uses both near and far individuals for weight-
ing, significantly outperforms both the SURF and ReliefF methods that use
only nearby individuals. Figure 1 shows an example plot for a specific sample
size (1600) and heritability (0.2) combination. This figure summarizes the suc-
cess rate estimated from analysis of 500 simulated independent datasets with this
heritability and sample size. The arrows on the right side of the graph indicate
whether the methods varied significantly in their abilities to successfully filter a
dataset to the 95th percentile (i.e. filter a dataset of 1000 SNPs to 50 SNPs with-
out removing either relevant SNP). In this case the differences between all three
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Fig. 1. This figure shows success rate analysis results for an example heritability (0.2)
and sample size (1600). The arrows on the right side of the graph indicate whether
the methods varied significantly in their abilities to successfully filter a dataset to the
95th percentile (shown by the tick mark above the x-axis between the 100th and 90th

percentiles). The caps of the arrows illustrate which two methods are being compared,
and the line connecting these caps indicates the level of significance of the differences
between this pair of methods (no line represents p ≥ 0.05, a dotted line represents
0.01 ≤ p < 0.05, a dashed line represents 0.001 ≤ p < 0.01, and a solid line represents
p < 0.001. In this case the differences between all three methods were highly significant.

methods were highly significant. These results indicate clear differences between
these methods for this heritability and sample size. Furthermore the differences
observed were highly significant (p ≤ 0.001) indicating that differences of this
magnitude are likely to be observed by chance less than one time out of 1000.
While this figure shows clear differences in success rate at this heritability and
sample size, it is most informative to consider an algorithm’s performance a wide
range of potential use cases.

Figure 2 shows results as small multiples of the example shown in Figure 1
across all tested sample sizes and heritabilities. Each plot represents results for
500 datasets with the specified sample size and heritability. None of the methods
perform particularly well at the lowest sample sizes and heritabilities. That is,
when the genetic effect is smallest, a larger study would be needed to discover the
relevant SNPs. This is well known in genetics and, fortunately, studies aiming to
detect smaller effects are designed to contain more individuals. Also as expected,
at the highest sample sizes and heritabilties all of the methods perform well.

The range where results are most similar to what would be seen in practice,
the simulations with 1600 individuals and modest heritabilities, 800 individuals
and high heritabilities, and 3200 individuals with lower heritabilities are also the
areas where SURF* outperforms other methods by the widest margin. In these
bands the differences between SURF* and the other methods are highly statisti-
cally significant. These results indicate that SURF* greatly improves upon cur-
rently used approaches. SURF*’s consistently high performance indicates that
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Fig. 2. This is a summary of success rates as shown in Figure 1 across a wide range of
sample sizes and heritabilities. The x-axis for each plot corresponds to the percentiles
as in Figure 1. The y-axis corresponds to the success rate. Significance is shown with
arrows as described in Figure 1. Across these situations, SURF* outperforms both
existing methods.

it should be used in place of SURF when the goal is to detect SNPs predictive
of disease through epistatic interactions. While here we are most interested in
the ability to filter a dataset of 1000 SNPs to a smaller dataset of 50 SNPs
which can be combinatorially analyzed, it is important to note that across the
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entire range of percentiles examined, SURF* outperforms currently used meth-
ods. This indicates that when used for more or less stringent filtering, SURF* is
still more effective than currently existing methods. Using both the nearest and
farthest individuals greatly and significantly improves SURF’s ability to detect
SNPs which interact to predict disease.

6 Discussion and Conclusions

Epistatic interactions have often been shown to affect complex traits in model
organisms, and thus it would be prudent to consider the potential role of epis-
tasis on the complex traits of common human disease susceptibilities [28,29].
Unfortunately epistasis is not often considered because an exhaustive analysis
is computationally intractable [20]. Machine learning methods such as SURF
offer promise but these approaches must be modified to cope with the small
sample sizes and large number of attributes present in high throughput genetic
datasets. Our theoretical work in Section 3 suggests that SURF*, which uses a
greater number of individuals for attribute weighting than SURF, will be a more
powerful way to approach this problem. We observe this effect in our empirical
results (Section 5). Using the farthest individuals in addition to the nearest ones
greatly increases the success rates of these methods at moderate sample sizes and
heritabilities. Additionally, these improvements may generalize to other Relief
algorithms and could increase their ability to detect interactions.

Here we examine the role of these Relief algorithms in isolation, but it is
important to note that these can be used in conjunction with other informa-
tion sources as well during a genetic analysis [23]. Improved Relief algorithms
should offer an immediate increase in success rate to detect interactions when
they are used in place of current algorithms as information sources for these
methods. SURF* does perform more weighting due to the increased number
of individuals that are used, but with SURF* it is no longer necessary to find
the nearest individuals so the computational costs remain relatively similar. A
method which provides a significant increase in success rate is likely to improve
our understanding of common human diseases.

Future work should focus on effective and efficient methods to assess the sig-
nificance of discovered SNPs. Relief methods return scores which are a measure
of SNP quality but which are not easily converted to statistical significance. Ad-
ditionally, work should be done to develop powerful Relief methods capable of
detecting interactions between discrete and continuous variables and endpoints.
Genetic association studies often include SNPs, which are discrete, in addition
to measures of the environment, which are continuous. Methods capable of de-
tecting gene-gene, gene-environment, and environment-environment interactions
will therefore be useful. Relief methods capable of examining continuous data
exist [30,27], but they should be rigorously evaluated for their ability to detect
interactions between discrete and continuous attributes. The impact of including
farthest individuals on the success of those algorithms should also be examined.
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7 Method Availability

SURF* is freely available in the open source MDR software package from http://
sourceforge.net/projects/mdr/. MDR is a cross-platform Java application
which features a user friendly graphical interface.
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Abstract. Modern genotyping techniques have allowed the field of hu-
man genetics to generate vast amounts of data, but analysis methodolo-
gies have not been able to keep pace with this increase. In order to allow
personal genomics to play a vital role in modern health care, analysis
methods capable of discovering high order interactions that contribute
to an individual’s risk of disease must be developed. An artificial immune
system (AIS) is a method which maps well to this problem and has a
number of appealing properties. By considering many attributes simul-
taneously, it may be able to effectively and efficiently detect epistasis,
that is non-additive gene-gene interactions. This situation of interact-
ing genes is currently very difficult to detect without biological insight
or statistical heuristics. Even with these approaches, at low heritability
(i.e. where there is only a small genetic signal), these approaches have
trouble distinguishing genetic signal from noise. The AIS also has a com-
pact solution representation which can be rapidly evaluated. Finally the
AIS approach, by iteratively developing an antibody which ignores ir-
relevant genotypes, may be better able to differentiate signal from noise
than machine learning approaches like ReliefF which struggle at small
heritabilities. Here we develop a basic AIS and evaluate it on very low
heritability datasets. We find that the basic AIS is not robust to pa-
rameter settings but that, at some parameter settings, it performs very
effectively. We use the settings where the strategy succeeds to suggest a
path towards a robust AIS for human genetics. Developing an AIS which
succeeds across many parameter settings will be critical to prepare this
method for widespread use.

1 Introduction

Personal genomics is expected to play a central role in the realization of person-
alized medicine. The definition of personal genomics includes not only the unbi-
ased collection of genetic information from individuals but also the bioinformatic
analyses used to extract meaningful knowledge regarding disease status or risk
from this genetic information. The common approach is to design genome-wide
association studies which use statistics to correlate genetic variation, in the form
of single nucleotide polymorphisms (SNPs), with disease. While this method has
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produced some promising results the majority of genetic markers detected make
only minor contributions to an individual’s disease risk. One explanation is that
underlying most common diseases is a complex genetic architecture defined by
non-linear gene-gene interactions (epistasis) that complicate genotype to phe-
notype mapping [1]. In order to capture a more accurate picture of the health
implications stored within the genome we need to develop algorithms capable of
finding these non-linear interactions in genome-wide data.

The term epistasis has been used to describe a variety of genetic phenomena
from biological interactions at the molecular level to statistical interactions at
the population level [2,3]. Here we focus on statistical epistasis meaning the de-
tection of patterns, of genetic variation, that collectively give rise to a phenotype.
We are interested in developing algorithms capable of mining large case-control
data sets to uncover combinations of SNPs that best differentiate the disease
status of individuals. Our view of a complex genetic architecture, based on gene-
gene interactions, has been substantiated in the recent literature across many
common disease models including Crohn’s Disease, bipolar disorder, hyperten-
sion and rheumatoid arthritis [4]. These reports describe two-way interactions,
however, with appropriate methods and enough computational power it is likely
that higher-order interactions can be found. We have begun working with an
artificial immune system (AIS) algorithm as a means of finding these high-order
interactions which may serve as SNP signatures of disease.

AIS algorithms are adaptive systems metaphorically based on the vertebrate
immune system [5]. AISs mimic the biological functions of learning and mem-
ory from the adaptive immune response displaying many features desirable for
problem solving including pattern recognition, noise tolerance and robustness
making them applicable across a variety of problem domains. This work assesses
the potential of taking an AIS approach to finding high-order epistatic patterns
in simulated genome-wide data. In this paper, we show that the most basic AIS
method cannot outperform a random search for this problem. However, our re-
sults clearly indicate that with the appropriate modifications, the AIS approach
has the potential to detect epistasis.

We discuss related work in human genetics in Section 1.1. The implementation
and evaluation of the AIS is outlined in Section 2. Specifically Section 2.1 dis-
cusses the AIS. Section 2.2 discusses the random search algorithm that was used
for comparison. Sections 2.3 and 2.4 lay out the experimental design and the
statistical analysis performed. Experimental results are presented in Section 3.
The discussion and concluding remarks are imparted in Section 4.

1.1 Related Work

From a methodological standpoint the AIS approach is probably best compared
and contrasted with two previous evolutionary computing approaches. One pre-
vious approach, Genetic Programming Neural Networks (GPNN), was initially
introduced by Ritchie et al. [6]. In GPNN the initial solutions include many at-
tributes representing genetic variation and can include all attributes as inputs.
This allows the algorithm to effectively sift through attribute combinations
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to find epistatic relationships between genes that associate with disease.
Motsinger-Reif and Ritchie provide a recent review of GPNN [7]. The other pre-
vious approach we compare to is ant colony optimization with multifactor dimen-
sionality reduction [8]. In this approach singleSNPs are combined via an ant colony
metaheuristic. This approach uses single-SNP weights to probabilistically link
SNPs. This type of approach is unable to outperform random search without
heuristic information, although with the addition of heuristic information it does
succeed.

Like GPNN, the AIS strategy can consider all attributes concurrently. The
expectation is that this property will allow the algorithm to effectively discover
accurate models of individual disease risk. Like the ant colony approach, the solu-
tion representation is relatively simple. By potentially considering all attributes
while preserving a simple but flexible solution representation, the AIS strat-
egy has the potential to effectively discover interpretable models of disease risk
without requiring expert knowledge. Here we are comparing these approaches
qualitatively. Once a robust AIS is developed for this problem, a quantitative
comparison should be performed and the results rigorously analyzed.

Finally, the AIS should be compared to the ReliefF algorithm [9] which has
proven useful in addressing questions in human genetics [10,11,12]. The affinity
measure of the AIS approach is somewhat similar to the distance measure used
in Relief algorithms [13]. We are not the first to draw this parallel between Re-
lief algorithms and the AIS strategy. Bereta and Burczynski [14] have previously
acknowledged the similarity and point out that the hybridization of the classifi-
cation strategy of the AIS with the feature selection strategy of ReliefF may be
advantageous. The benefit of combining these strategies may be most apparent
when the genetic effect size is small. Additional improvements may be made to
increase the power of the AIS algorithm by incorporating some of the character-
istics that allow Relief to succeed. This could include steps such as training on
neighborhoods of individuals.

2 Artificial Immune Systems

Artificial immune systems are a class of nature-inspired algorithms modeled
after known biological phenomena. One goal of the physical immune system is
to eliminate non-self molecules from the body through a sophisticated recogition
and proliferation process known as adaptive immunity. These non-self molecules
are called antigens. Molecules produced by the immune system, called antibodies,
are able to bind antigens based on complementary matching. To produce an
effective response, antibodies are activated upon antigen recognition and enter
a period of clonal expansion with hypermutation, a process that increases the
affinity of the antibodies to the corresponding antigen. Through an iterative
process these antibodies go through selection based on their evolving affinity to
the antigen. It is on these general principles that AIS algorithms are built.
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2.1 Basic AIS Implementation

To establish the baseline performance of a traditional AIS for detecting epista-
sis we have implemented a basic version of the algorithm. The antibodies are
generated to represent three genotype coding schemes, 0 indicates homozygous
for the minor allele, 1 indicates heterozygous and 2 indicates homozygous for
the major allele. The antibodies may also include neutral match (∗) characters.
The algorithm uses affinity scores, calculated for each antibody, by counting the
number of positional matches relative to the antigen and subtracting the number
of positional mismatches. Neutral matches do not affect the affinity score. Affin-
ity maturation is done by clonal selection. The antibodies scoring at or above a
set threshold survive and may be chosen for proliferation with mutation. Upon
repeated exposure the to same antigens the surviving antibodies, over a number
of generations, evolve to increase their affinity scores. The following steps outline
this process:

1. Data simulation to generate the antigen population, Ag (vectors comprised
of 0,1,2; each antigen vector represents an individual with a case or control
classification).

2. Randomly generate the initial population of N antibodies, Ab (vectors com-
prised of 0,1,2,∗).

3. Calculate affinity between each antibody Abi and each antigen Agi classified
as a control.

4. Remove a percentage, determined by (1 − survival rate), of the highest
ranked antibody vectors.

5. Calculate affinity between remaining antibodies and each antigen classified
as a case.

6. Remove a percentage, determined by (1 − survival rate), of the lowest
ranked antibody vectors.

7. Calculate the number of antibodies, n, necessary to restore the initial pop-
ulation size (n = N · survival rate2).

8. From remaining antibody population select 1 antibody at random and clone
n
2 times with mutation and add to antibody pool.

9. Randomly generate n
2 new antibodies and add to antibody pool.

10. Repeat steps 3-9 to set number of generations.

The user defined parameters are number of antibodies, neutral match percentage,
survival rate, mutation rate and number of generations. The rank is calculated
as the average affinity over all tested antigens regardless of case-control status.
Point mutations are used. Examples of an antibody vector and an affinity score
calculation are included in Figure 1.

2.2 Random Search

To perform a random search a population of antibodies was generated at N =
number of antibodies · number of generations where number of antibodies
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...!=1 ==2 ==0 * ==0 * !=0 * ==2Antibody
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Fig. 1. A representation of an antibody vector in our system showing the affinity
scoring method

and generations are taken from the basic AIS parameters to which it is being
compared. It is of note that this affords the random search more power than the
AIS. The only time AIS would have this much power is when the survival rate =
0, and the actual number of new random antibodies considered by the AIS is
N = number of antibodies·number of generations·(1−survival rate). This
is reasonable because the AIS gains power through the evolution process which
is absent in the random search. This initial population of antibodies is then
scored by the same affinity measures as the basic AIS following steps 3-6 as
outlined above. The pool of antibodies that remain are subjected to the same
statistical analyses as the pool of antibodies in the last generation of the basic
AIS. This preserves the solution representation and initialization of the AIS while
eliminating the selection and mutation components of an AIS.

2.3 Data Simulation

We evaluate the AIS and compare its performance to random search using a
simulation study. The goal of this study is to gauge the performance of these
methods. We obtained the datasets from http://discovery.dartmouth.edu/
epistatic_data/. We wanted to use data characteristic of candidate-gene type
study designs. We chose the 20 attribute datasets with the lowest heritability
generated by Velez et al. [?]. These datasets cover five different penetrance func-
tions. It is these penetrance functions that determine the relationship between an
individuals genes (genotype) and whether or not they have a disease (phenotype).
In these penetrance functions, an individual’s probability of disease depends only
on the genotypes at two interacting SNPs but not on the genotypes at any sin-
gle SNP. The case where there are no single SNP effects is considered the most
difficult to solve. The heritability for these penetrance functions is 0.01, which
is extremely low, and difficult to detect with existing methods. In each dataset
there are only 400 individuals evenly divided into cases and controls. These low
heritability datasets with few individuals provide the most challenging cases of
all the datasets available from our repository.

The evaluation process for gauging the performance of these methods is power.
It is possible to determine the power of each method because we are using sim-
ulated data which allows tracking of the success rate. We can do this because,

http://discovery.dartmouth.edu/epistatic_data/
http://discovery.dartmouth.edu/epistatic_data/
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in simulated datasets, the relevants SNPs are known before the algorithm is ap-
plied. We then calculate the power as the percentage of datasets that produced
a best antibody comprised exclusively of the two relevant attributes. Using this
power metric it is possible to directly compare between the ability of the AIS
and random search to find the true answer. Furthermore it is possible to compare
between AIS parameter settings to provide guidance about parameter settings
for future studies.

2.4 Statistical Analysis

We used logistic regression to examine the significance of each parameter in our
basic AIS and the random search method. The significance level was set to p =
0.05. Performance of the basic AIS was directly compared in a power analysis
to the random search. Power was calculated by tracking the number of times
the correct genetic model was found over 500 data sets and is displayed as a
percentage.

3 Results

We were first interested in assessing the impact of various parameters on the
ability of both the random search and the basic AIS to solve the genetic model
in our simulated data. The results of a logistic regression analysis are presented
in Table 1. The number of antibodies and the neutral match percentage were
statistically significant for success of a random search. Because there is not an
evolution step in the random search method we would not expect the survival
rate or the mutation rate to impact the performance of the algorithm. In compar-
ison, the basic AIS shows that each parameter is statistically significant. Owing
to the selection and evolutionary processes, it follows that all of the individual
parameters should influence the performance of the algorithm, as expected, this
is what we observe.

To establish the baseline performance of a basic AIS we used power analyses
to evaluate the competency of the algorithm in detecting epistatic interactions
in our simulated data. For comparison we did corresponding power analyses
for the random search method. Power analysis results are presented as boxplots
representing the aggregate findings over 500 data sets. Each plot shows the power
at various settings of the parameter on the x-axis while all other parameters are
kept constant.

The basic AIS has minimal power for solving the genetic model in our sim-
ulated data as shown in Figure 2. Interestingly, these plots consistently show
variable dispersion between parameter settings and include many outliers at in-
creasingly higher powers. This indicates that there are a number of instances
where the algorithm performs satisfactorily in this task.

In contrast Figure 3 shows the results for the random search method.
The number of antibodies in random search reflect 50, 100 or 500 antibodies
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Table 1. The significance of each parameter was tested using logistic regression

Algorithm Parameter p-value

Random Search

Number of Antibodies 
 .0001
Number of Generations NA
Survival Rate 0.928
Neutral Match Percentage 
 .0001
Mutation Rate 0.096

Basic AIS

Number of Antibodies 
 .0001
Number of Generations 
 .0001
Survival Rate 
 .0001
Neutral Match Percentage 
 .0001
Mutation Rate 
 .0001

multiplied by 50, 100 or 500 representing generations to get antibody pools
comparable to those in the AIS. While we see less variability in powers, the
spread of the data is smaller and we do not see the same pattern of outliers. This
indicates that we have reached the ability limit of the random search algorithm
for this task without attaining adequate power.

We show that the median powers across the parameters are very similar be-
tween the two methods. The median powers of the AIS show slight increases
with a lower survival rate, a higher number of generations, a higher mutation
rate and a higher neutral match percentage. The powers of the AIS also show
a slight decrease with the population size. This seems to be related to the very
strict definition of power which requires the best antibody to retain only the
two relevant attributes. The median powers of the random search are slightly
elevated at a higher number of antibodies and a lower neutral match percentage.
This is consistent with the results of the logistic regression analysis.

If we examine the parameter set that leads to the observed high power outliers,
we can gain some insight into what guides the success of the algorithm. The
optimum setting for survival rate is 0.2. The optimum percentage of neutral
matches was 0.8. The optimum mutation rate was 0.8. The optimum population
size was 50 which, as discussed earlier, seems to be a side effect of the stringent
selection strategy and strict definition of power. When we look at the powers of
an AIS over 50, 100 and 500 generations using these parameters, it is apparent
that the AIS strategy can be very successful as it approaches 100% power. The
highest value for the mutation rate was optimum and the lowest value for the
survival rate was optimum. This pair of parameters leads to the broadest possible
search. In light of this observation, it might be expected that the random search
approach, which covers an even more expansive search space, is better able to
discover the relevant SNPs. As our results show, the random search strategy
never approaches these powers.
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Fig. 2. Summary results for basic AIS. Boxplots showing the power of each pa-
rameter to successfully detect the interacting pair of SNPs in simulated data by the
basic AIS.



202 N.M. Penrod et al.

2500 5000 10000 25000 50000 250000

0
20

40
60

80
10

0

Number of Antibodies

P
ow

er

0.2 0.5 0.8
0

20
40

60
80

10
0

Neutral Match Percentage

P
ow

er

0.2 0.5 0.8

0
20

40
60

80
10

0

Survival Rate

P
ow

er

0.2 0.5 0.8

0
20

40
60

80
10

0

Mutation Rate

P
ow

er

Fig. 3. Summary results for random search. Boxplots showing the power of
relevant parameters to successfully detect the interacting pair of SNPs in simulated
data by the random search. Number of antibodies reflects the number of antibodies ·
number of generations of the basic AIS.

4 Discussion and Conclusions

We believe that a complex genetic architecture, built on non-linear, gene-gene
interactions, underlies most common diseases. In order to use genetic variation
to create disease specific signatures it is necessary to develop methods that are
able to detect such interactions. AIS algorithms provide a means of identifying
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patterns of genetic variation on a large scale. Here we have taken a basic version
of the algorithm and tested it against a random search strategy to establish the
baseline performance of an AIS for finding epistatic interactions in case-control
data.

Evaluation of the AIS was done by power analysis and comparison to ran-
dom search (Figures 2 and 3). The median powers are very similar between the
two methods across all parameters. This suggests that the basic AIS does not
provide an obvious advantage, however, the potential of this algorithm is clearly
illustrated by the number of outliers we observe corresponding with adequate
statistical power. Each power calculated represents a specific parameter combi-
nation. This means that some parameter combinations, i.e. these outliers, are
able to dramatically outperform random search and obtain powers competitive
with exhaustive methods.

Under conditions of parameter optimization, we see powers approaching 100%
for the AIS method. These powers are unmatched by the random search method.
It seems likely, then, that the stringent selection strategy heavily exploits good
solutions while requiring a permissive search strategy to effectively explore the
search space. While it is encouraging that the algorithm can succeed with a
specific set of parameters, it is telling that the performance drops dramatically
at sub-optimal parameters. For real datasets the correct answer is not known and
thus a parameter sweep to determine the optimal parameter set is more difficult.
For this reason modifications to the algorithm itself and to the selection function
should be explored to determine if a more robust AIS can be developed for this
problem.

The slight decrease in power observed for increasing population sizes in the
AIS was unexpected. It appears that these larger antibody populations, com-
bined with the selection against antibodies which incorrectly recognize control
individuals, may be leading the algorithm to overfit. It is possible that the tradi-
tional AIS’s selection function is not optimal for this problem where the genetic
effect size is small because some individuals with a high risk genotype do not
have disease. A more tolerant selection strategy may prevent this over-fitting
and make the algorithm more robust.

We have shown that the basic AIS approach can outperform random search
on this problem but that detailed parameter tuning is currently required. This
suggests that if the correct adjustments are made to the algorithm we may be
able to increase the power of this method to detect gene-gene interactions. Fu-
ture work should focus on developing a robust AIS which is much less parameter
dependent. This may require a re-evaluation of the objective function. It is pos-
sible that the selection function used in the traditional AIS setting is ineffective
in the case of human genetics where the environment plays a critical role and
genetic factors cannot entirely explain an individual’s disease state. The indi-
viduals whose disease states are not explained by genetics may confound the
algorithm and lead to the removal of reasonable antibodies. The AIS representa-
tion can be advantageous for this problem, but the selection function may need
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to be dramatically altered to cope with the inherent noise in human genetics
data if we are to develop an AIS which is more robust to parameter settings.

In conclusion, the AIS is a promising approach with a desireable solution
representation but it will require more development and evaluation to improve
the robustness of the algorithm before it becomes a common tool used by modern
human geneticists.
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Abstract. The identification of a set of genetic manipulations that re-
sult in a microbial strain with improved production capabilities of a
metabolite with industrial interest is a big challenge in Metabolic En-
gineering. Evolutionary Algorithms and Simulated Annealing have been
used in this task to identify sets of reaction deletions, towards the maxi-
mization of a desired objective function. To simulate the cell phenotype
for each mutant strain, the Flux Balance Analysis approach is used,
assuming organisms have maximized their growth along evolution.

In this work, transcriptional information is added to the models using
gene-reaction rules. The aim is to find the (near-)optimal set of gene
knockouts necessary to reach a given productivity goal. The results ob-
tained are compared with the ones reached using the deletion of reactions,
showing that we obtain solutions with similar quality levels and number
of knockouts, but biologically more feasible. Indeed, we show that several
of the previous solutions are not viable using the provided rules.

Keywords: Metabolic Engineering, Strain Optimization, Flux-Balance
Analysis, Transcriptional Models, Set based representations.

1 Introduction

Over the last few years, the combined efforts of Metabolic Engineering and
Systems Biology have allowed the development of some genome-scale metabolic
models for several microorganisms, with an industrial interest in Biotechnology.
These have been used to predict cellular phenotypes under some simplifying
assumptions, aiding in the effort of finding appropriate genetic modifications to
make the microorganism fit to comply with industrial purposes, i.e. to be able to
synthesize some desired compounds in significant amounts, rather then to follow
their natural aims (e.g. the maximization of growth) [14][8].

The most popular approach considers the cell to be in a steady-state, i.e.,
the concentrations of all intracellular compounds are assumed to remain con-
stant throughout time. Together with the known stoichiometry and reversibility
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or irreversebility of the reactions, this assumption is used in a constraint-based
framework to restrict the set of possible values for the fluxes of the reactions
contained in the metabolic model. Therefore, cellular behavior can be predicted
by addressing the underlying optimization problems, given a biologically plausi-
ble objective function. The Flux Balance Analysis approach [6] follows this path,
maximizing a particular flux, typically for biomass production, using linear pro-
gramming [5]. Solving this problem allows to reach the values for all the reaction
fluxes.

Using this approach or others recently proposed for the same purpose (e.g.
MOMA [12], ROOM [13]), it is possible to predict the behavior of a microorgan-
ism under distinct environmental and genetic conditions (such as gene deletions).
Indeed, both can be represented by adding/ changing constraints under the pre-
vious framework. Therefore, both wild type and mutant strains can be simulated.
This has allowed the definition of a bi-level strain optimization problem, adding
a layer that searches for the best mutant that can be obtained by applying a set
of selected genetic modifications. In previous work, this has been restricted to
the possibility of removing reactions from the original model. The idea is to force
the microorganisms to synthesize a desired product, while keeping it viable. The
optimization task consists in reaching an optimal subset of reaction deletions to
optimize an objective function related with the production of a given compound.

A first approach to this problem was the OptKnock algorithm [1], where mixed
integer linear programming methods are used to reach a guaranteed optimum
solution. However, this algorithm does not allow to consider nonlinear objec-
tive functions and a considerable computation time is required. An alternative
was proposed by the OptGene algorithm [9], that uses Evolutionary Algorithms
(EAs). EAs are capable of providing near optimal solutions in a reasonable
amount of time and also allow the optimization of nonlinear objective functions.
Extending this work, the authors [11] proposed a new encoding scheme for the
problem, consisting in variable-sized sets, allowing the automatic determination
of the ideal number of reactions to eliminate, since solutions with distinct car-
dinalities compete within the search space. Also, a Simulated Annealing (SA)
based algorithm was put forward for the same task. Both algorithms were tested
with four case studies and the SA presented some advantage over the EA.

A common limitation of these approaches is the fact that they rely on deter-
mining sets of reactions to be eliminated from the metabolic model, while the
real purpose is to determine a set of genes to knockout. Therefore, to create the
desired mutants in the lab there is the need to determine which set of genes can
lead to the elimination of a given set of reactions. This would not be a problem
if the rule 1 gene - 1 enzyme - 1 reaction was universal. However, this is not the
case, since there are many exceptions, due to iso-enzymes, protein complexes,
enzymes that catalyze several reactions or reactions that can be catalyzed by
several enzymes.

The solution is, therefore, to use transcriptional information in association
with the genome-scale metabolic model. This approach is mostly limited by
the lack of information available, since in most cases there is no comprehensive
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model of transcriptional information available. However, this situation is grad-
ually changing and some metabolic models with transcriptional information of
well known microorganisms are appearing [10].

In this work, we propose phenotype simulation and strain optimization meth-
ods that are able to take advantage on this transcriptional information. The
optimization methods will be able to suggest sets of genes to knockout replacing
the reaction list usually provided. Two case studies related to the production of
succinate and lactate using the bacterium Escherichia coli will be presented to
evaluate the approach. We will also study in detail the major differences between
the reaction and gene based approaches and compare the results obtained.

2 Simulation Algorithms for the Prediction of Metabolic
Behavior

2.1 Flux Balance Analysis

The Flux Balance Analysis (FBA) [6] approach is based on a steady state ap-
proximation to the concentrations of internal metabolites, which reduces the
corresponding mass balances to a set of linear homogeneous equations. For a
network of M metabolites and N reactions, this is expressed as:

N∑
j=1

Sijvj = 0 (1)

where Sij is the stoichiometric coefficient for metabolite i in reaction j and vj

is the flux over the reaction j. The maximum/minimum values of the fluxes
can be set by additional constraints in the form αj ≤ vj ≤ βj , usually used to
specify both thermodynamic and environmental conditions (e.g. availability of
nutrients).

For most metabolic networks, since the number of fluxes is greater than the
number of metabolites, the set of linear equations obtained from the application
of Eq. 1 to the M metabolites usually leads to an under-determined system, for
which there exists an infinite number of feasible flux distributions that satisfy
the constraints. However, if a given linear function over the fluxes is chosen to
be maximized, it is possible to obtain a single solution by applying standard
algorithms (e.g. simplex) for linear programming problems.

The combination of this technique with the existence of validated genome-
scale stoichiometric models [2] allows to simulate the phenotypic behavior of
a microorganism, under defined environmental conditions, without performing
any experiments. The most common flux chosen for maximization is the biomass,
based on the premise that microorganisms have maximized their growth along
natural evolution, a premise that has been validated experimentally for some
situations[5].
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2.2 Integrating Transcriptional Information

Recently, some studies attempted to improve the characterization of organ-
isms by inserting a transcriptional layer into the metabolic models [10,3,15].
Thus, adding this level of information about the behavior of biological systems,
raises the metabolic models into the genetic level, where the metabolic processes
depend on the genes that encode enzymes which catalyse metabolic reactions.

To create this transcriptional layer it is necessary to define the cascade of
interactions between genes, proteins, peptides and reactions of a given sys-
tem. These are not easy to find due to the complexity of the different types of
interactions between biological entities:

– the genes encode the information that leads to the creation of peptides
through the processes of transcription and translation;

– proteins can be constructed from one or more peptides;
– proteins can bind to create protein complexes;
– the reactions are catalyzed by enzymes (proteins or protein complexes);
– more than one protein can catalyze the same reaction (iso-enzymes);
– a single protein can catalyze more than one reaction.

In this work, all available transcriptional information will be transformed into
gene-reaction rules. Gene-reaction rules are based on boolean logic representa-
tion. For each reaction (dependent variable), there is a boolean expression, where
the independent variables are the encoding genes; their interactions are defined
using logical operations (AND, OR). In Figure 1, some examples of different
associations between genes, peptides, proteins and reactions are shown, as well
as their simplification for gene-reaction rules.

3 Strain Optimization

3.1 Problem Definition, Solution Encoding and Evaluation

The problem addressed in this work consists in selecting, from a set of genes
in a microbe’s genome-scale model, a subset to be deleted to maximize a given
objective function. The encoding of a solution is achieved by a variable size set-
based representation, where only gene deletions are represented. Each solution
consists of a set of integer values representing the genes that will be deleted.
Therefore, if the value i is in the set, this means the i-th gene in the model is
removed. Each value in the set is an integer with a value between 1 and G, where
G is the number of genes in the model.

The first step is to take the genes indexed by the solution and then calculate
which reactions will be removed as a consequence of knocking out these genes,
using the transcriptional information. For all reactions involved, the flux will be
constrained to 0, therefore disabling that reaction in the metabolic model. The
process proceeds with the simulation of the mutant using FBA. The output is
the set of values for the fluxes of all reactions, that are then used to compute
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Fig. 1. Schematic representation of the transcriptional information included in the
metabolic models

the fitness value, given by an appropriate objective function. The used objective
function is the Biomass-Product Coupled Yield (BPCY) [9], given by:

BPCY =
PG

S
(2)

where P stands for the flux representing the excretion of the desired product;
G for the organism’s growth rate (biomass flux) and S for the substrate intake
flux. Besides optimizing for the production of the desired product, this function
also allows to select for mutants that exhibit high growth rates. The complete
process of decoding and evaluation is depicted in Figure 2.

3.2 Evolutionary Algorithms

To address the previous task, we will use Evolutionary Algorithms (EAs) with a
set-based representation, previously proposed in [11]. This EA uses four repro-
duction operators: one crossover and three mutation operators. The crossover
operator is inspired on traditional uniform crossover operators and works as fol-
lows: the genes that are present in both parent sets are kept in both offspring; the
genes that are present in only one of the parents are sent to one of the offspring,
selected randomly with equal probabilities.

A random mutation operator is used that replaces a gene by a random value
in the allowed range, avoiding duplicates in the set. Two additional mutation
operators are defined to be able to create solutions with a distinct size:
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Fig. 2. Scheme of the phenotypic simulation methods using transcriptional information
and their transformation into gene-reaction rules

– Grow: consists in the introduction of a new gene into the solution, whose
value is randomly generated in the available range (avoiding duplicates in
the set).

– Shrink: a randomly selected gene is removed from the genome.

The Grow and Shrink mutation operators are each used with a probability of 5%
each. The remaining operators are used with equal probabilities. The EA uses
a selection procedure that consists in converting the fitness value into a linear
ranking of the individuals in the population, and then applying a roulette wheel
scheme. In each generation, 50% of the individuals are kept from the previous
generation, and 50% are bred by the application of the reproduction operators.
An initial population is randomly created and the termination criterion is based
on a fixed number of solution evaluations.

3.3 Simulated Annealing

Also, Simulated Annealing (SA) was used to address the optimization task and
compare the results. As before, the SA is also similar to the one proposed by the
authors in [11]. The SA makes use of the same set-based representation used in
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Fig. 3. Illustration of the structure of the strain optimization algorithms

the EA, also keeping the mutation operators presented before. An illustration of
the structure of both algorithms is given in Figure 3.

The cooling schedule used is exponential, decreasing the temperature T ac-
cording to: Tn+1 = α Tn, where 0 < α ≤ 1. As the choice of initial (T0) and final
temperatures (Tf ) is problem dependent, it was decided to use the following
configuration parameters:

ΔE0 – The difference in energy that corresponds to an acceptance probability
of 50% of worse solutions at the beginning of the run;

ΔEf – The difference in energy that corresponds to an acceptance probability
of 50% of worse solutions at the end of the run;

trials – The number of iterations per temperature;
NFEs – The number of function evaluations.

Using these parameters, the initial temperature, the final temperature and
the scale parameter were computed using the following equations:

T0 = − ΔE0

log 0.5
(3)

Tf = − ΔEf

log 0.5
(4)

α = exp

⎛
⎝ log Tf − log T0[

NFEs
trials

]
⎞
⎠ (5)
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The advantage of using ΔE0 and ΔEf is that it allows the user who knows
the fitness landscape of the optimization problem to automatically define the
temperatures by reasoning over the values of the objective function. Supplying
the number of function evaluations instead of the scale parameter α allows the
user to accurately define the number of function evaluations the optimization
algorithm will use, enabling a simpler comparison with other approaches.

In the SA, the Grow and Shrink mutations are each used with a probability
of 25% each, meaning that half of the new individuals are created in this way.
The remaining are created by the aforementioned random mutation operator.

3.4 Pre-processing and Post-processing

In genome-scale models the number of variables (genes/ reactions) is in the order
of hundreds or a few thousands and therefore the search space is very hard to
address. Thus, every operation that gives a contribution to reduce this number,
greatly improves the convergence of the algorithms. In this work, two operations
were implemented to reduce the search space:

– Removal of reactions that, given the constraints of the linear programming
problem, cannot exhibit flux values different from 0. All genes only encoding
those reactions are also removed.

– Discovery of essential genes that can not be deleted from the model since
their removal leads to non growth (biomass flux value of zero). As these
genes should not be considered as targets for deletion, the search space for
optimization is reduced.

Also, the best solution in each run goes through a simplification process, by
identifying all gene deletions that contribute to the fitness of the solution, and
removing all deletions that keep the objective function unaltered. The aim is to
keep only the necessary knockouts.

3.5 Implementation Issues

The implementation of the proposed algorithms was performed by the authors
in the Java programming language. In the implementation of FBA, the GNU
linear programming package (GLPK)1 was used to run the simplex algorithm.
An user interface was also built within the OptFlux framework2, a Metabolic
Engineering open-source software platform.

4 Experiments

4.1 Experimental Setup

Two case studies were used to test the algorithms, both considering the mi-
croorganism Escherichia coli. The aim is to produce succinate and lactate with
1 http://www.gnu.org/software/glpk/
2 http://www.optflux.org
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glucose as the limiting substrate. The genome-scale model used in the simu-
lations was developed by Reed et al [10]. This model considers the metabolic
network of E. coli, including a total of N = 1075 fluxes, M = 761 metabolites,
G = 904 genes and 873 gene-reaction rules. After the pre-processing stages, the
simplified model remains with N = 610, M = 383 metabolites, 617 genes and
562 gene-reaction rules. Furthermore, 115 essential genes are identified, which
leaves 502 variables to be considered by the optimization algorithms.

In the EA the population size was set to 100. The SA used ΔE0 = 0.005,
ΔEf = 5E−5 and trials = 50. In both cases, the termination criterion was
defined based on 50000 fitness evaluations. For each configuration, the process
was repeated for 30 runs and the mean and standard deviation were calculated.

4.2 Case Studies

Succinate is one of the key intermediates in cellular metabolism and therefore an
important case study for metabolic engineering [7]. The knockout solutions that
lead to an improved phenotype regarding its production are not straightforward
to identify since they involve a large number of interacting reactions. Succini-
cate and its derivatives have been used to synthesize polymers, as additives
and flavoring agents in foods, supplements for pharmaceuticals, or surfactants.
Currently, it is mostly produced through petrochemical processes that can be
expensive and have significant environmental impacts.

Lactate and its derivatives have been used in a wide range of food-processing
and industrial applications like meat preservation, cosmetics, oral and health care
products. Additionally, and because lactate can be easily converted to readily
biodegradable polyesters, it is emerging as a potential material for producing
environmentally friendly plastics from sugars [4]. Several microorganisms have
been used to produce lactate, such as Lactobacillus strains. However, those bac-
teria have undesirable traits, such as a requirement for complex nutrients which
complicates acid recovery. E. coli has many advantageous characteristics, such
as rapid growth and simple nutritional requirements.

4.3 Results

In Tables 1 and 2 we show the results for both case studies, taking the BPCY
as the objective function. In both cases, we show the results for our current
approach using transcriptional information, compared to the results using the
previous method based on reaction deletions [11]. It should be emphasized that
all the setup is the same for both cases. The first two columns show the opti-
mization target (genes or reactions) and the algorithm used (EA or SA). In the
third and fourth columns, we show the mean of the BPCY and of the number
of knockouts over the 30 runs, also showing the standard deviation (surrounded
by parentheses). Finally, the last column shows the BPCY and the number of
knockouts of the best solution obtained over the 30 runs.

Also, we investigated how the solutions obtained for reaction based optimiza-
tion can be converted into a gene knockout set. So, we analyzed the best solution
obtained in each of the 30 runs according to the following: (i) we took the set
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Table 1. Results for the succinate case study

Optimization Algorithm Fitness Number Best
Type (BPCY) Knockouts Solution

Reactions EA 0.35345 (0.01405) 11.7 (2.6) 0.35785 (15)
Reactions SA 0.35766 (0.00015) 9.7 (1.0) 0.35781 (11)

Genes EA 0.23188 (0.09945) 10.6 (1.9) 0.34429 (7)
Genes SA 0.30636 (0.07713) 10.4 (4.0) 0.34429 (10)

Table 2. Results for the lactate case study

Optimization Algorithm Fitness Number Best
Type (BPCY) Knockouts Solution

Reactions EA 0.21387 (0.09180) 9.7 (7.3) 0.34786 (5)
Reactions SA 0.27654 (0.05713) 16.8 (8.9) 0.34843 (26)

Genes EA 0.25447 (0.05215) 10.3 (2.9) 0.34786 (5)
Genes SA 0.25428 (0.05039) 12.1 (4.3) 0.29328 (8)

of reactions to delete and calculated the minimum set of genes that had to be
removed in order to inactivate those reactions; (ii) we checked if there were
other reactions that would be inactivated as a result of those gene deletions; (iii)
finally, we simulated the resulting mutant strain and calculated the BPCY.

The results are given in Table 3 where we show, for each case, the number
of solutions (over the best solutions in each run) where the BPCY is still larger
than zero (third column), the number of solutions that keep the same BPCY
(fourth column) and also the mean number of knockouts that were added in step
(ii) of the previous process.

Table 3. Conversion of reaction deletion based solutions to gene deletion based solu-
tions

Case study Algorithm BPCY > 0 same BPCY Additional Knockouts

Succinate EA 0/30 0/30 12.5
Succinate SA 0/30 0/30 6.8
Lactate EA 8/30 5/30 8.0
Lactate SA 8/30 3/30 15.7

4.4 Discussion

The first conclusion to retain is that the overall objective function results, when
optimizing gene deletions, are quite near the ones obtained before by deleting
reactions. Although in most cases the BPCY is slightly lower, the differences are
generally not statistically significant. Also, the number of knockouts does not
increase, even decreasing in most cases (again differences are not significant).

The differences in performance, when they exist, are small when compared
to the gains obtained considering that models with transcriptional information
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characterize better the behavior of the organism and the simulation using this
level of information is closer to the biological reality and thus more reliable. Also,
the implementation of the solutions in the lab will be based on a gene list, which
makes these results easier to implement.

Studying the results in more depth we see that the succinate case study seems
to have larger differences between the two approaches. Looking at Table 3 we
can understand the reasons, since we see that all the best solutions obtained
are unfeasible at the level of genes (reporting a value of 0 for the BPCY) and
therefore impossible to implement in the lab. From that table, we also conclude
that in the lactate case study most of the solutions (around 70%) also have
a BPCY of 0 and some of the others deteriorate the fitness value. This shows
that, in general, it seems unlikely that solutions reached with reaction deletion
based optimization are biologically feasible (i.e. can be implemented through
gene knockouts). Comparing both meta-heuristics for optimization, we observe
that the SA and EA shown very similar performances, but the SA confirms a
slight advantage, already reported in [11].

5 Conclusions and Further Work

In this work, we have studied the effects of using transcriptional information
to complement the knowledge contained in metabolic models, on the results
of strain optimization algorithms such as EA and SA. The main conclusion
of this analysis indicates that most solutions obtained previously, considering
reaction deletion optimization, are impossible to translate to gene knockouts
and therefore to implement in the lab.

We proposed improved algorithms for the tasks of phenotype simulation and
strain optimization that can take advantage on the transcriptional information.
The results obtained by those methods reveal an overall solution quality very
similar to the previous methods and the number of suggested knockouts does
not increase, also an important result considering the feasibility of the solutions.

Since these solutions are biologically more feasible, we believe that an impor-
tant step has been made towards the use of these methods in Biotechnology.
Also with this aim, we have implemented these methods under OptFlux, an
open-source software platform. This allows the methods to be used freely by the
Metabolic Engineering community.

As future work, we aim to apply these methods to other relevant case studies
in Metabolic Engineering, considering other target compounds, as well as other
organisms and models. Also, the integration of regulatory information with these
models, in the form of new constraints, is a promising path.
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Abstract. Recent advancement in the pattern recognition field has driven many 
classification algorithms being implemented to tackle protein fold prediction 
problem. In this paper, a newly introduced method called Rotation Forest for 
building ensemble of classifiers based on bootstrap sampling and feature 
extraction is implemented and applied to challenge this problem. The Rotation 
Forest is a straight forward extension of bagging algorithms which aims to 
promote diversity within the ensemble through feature extraction by using 
Principle Component Analysis (PCA). We compare the performance of the 
employed method with other Meta classifiers that are based on boosting and 
bagging algorithms, such as: AdaBoost.M1, LogitBoost, Bagging and Random 
Forest. Experimental results show that the Rotation Forest enhanced the protein 
folding prediction accuracy better than the other applied Meta classifiers, as 
well as the previous works found in the literature. 

Keywords: Protein Fold Prediction Problem, Ensemble Classifier, Rotation 
Forest, Feature Extraction, Principal Component Analysis, Decision Tree, C4.5, 
Random Forest, AdaBoost.M1, LogotBoost, Bagging. 

1   Background 

Prediction of the tertiary structure of a protein from its primary structure is a 
challenging task in bioinformatics and biological science. Recently, due to 
tremendous advancements in pattern recognition, many classifiers have been 
implemented and applied to challenge this task. In this paper, Rotation Forest, as a 
newly proposed method for building an ensemble of classifiers employed to tackle the 
protein fold prediction problem.  

The Rotation Forest, by Rodriguez and his co-workers [1], is based on bagging 
algorithm [2] that aims to build a more accurate and diverse classifier. Rotation Forest 
uses bootstrap samples of training dataset to train a group of decision trees as well as 
bagging, but dissimilar to bagging, to reinforce diversity within classifiers ensemble; 
it splits the feature set to randomly K  subset, then runs Principal Component 
Analysis (PCA) on each of them, and finally rebuilds the feature set of N  linear 
extracted features by combining all principle components. In this way it transforms 
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the feature set to the new )( NwhereMM ≤  dimensional feature spaces. This process 

is repeated to extract new set of features to train each of the base learners in parallel. 
At last, Rotation Forest combines the results of all base classifiers using majority 
voting.  

Rotation Forest has been widely applied for different benchmarks and in many 
cases outperformed other Meta Classifiers such as Adaboost.M1 [3], or other 
classifiers such as Support Vector Machine which is considered as the state-of-the-art 
in machine learning ([1], [4], and [5]). To the best of our knowledge, Rotation Forest 
has never been applied to deal with the protein folding task. Experimental results 
demonstrated that the Rotation Forest enhanced the prediction accuracy as well as 
reducing time consumption of the classification task better than the previous related 
works found in the literature. 

One of the most important factors that affect the performance of the Rotation 
Forest is the number of base classifiers. Therefore, in this paper, to study the 
sensitivity of the Rotation Forest to the number of base classifiers for the protein fold 
prediction problem, six different numbers of base classifiers in the range between 10 
and 200 were employed (10, 20, 50, 100, 150, and 200). Finally, the Rotation Forest 
compared with the best-of-the-shelf Meta classifiers that based on boosting and 
bagging methods, namely: Multi Class Adaptive Boosting (AdaBoost.M1), 
LogitBoost, Random Forest (RF) and Bagging which demonstrated better results 
compared to other similar methods ([1], [4], [6] and [7]).  

Recently, many efforts have been made to challenge the protein fold prediction 
problem ([8], [9], [10], [11], [12], and [13]). Most of the classification methods, used 
for this task were based on Artificial Neural Network (ANN) ([14], [15], [16], and 
[17]) and Support Vector Machine (SVM) ([18], [19], [20], and [21]). In 2001, Ding 
and Dubchak used three SVM based multi-class classification methods (one-versus-
others (OvO), unique one-versus others (uOvO), and all-versus-all (AvA)), with six 
feature groups named: Composition of amino acids (C), Predicted secondary 
structure (X), polarity (P), polarizability (V), hydrophobicity (H) and van der vaals 
volume (V) [23]. They reported 56% prediction accuracy using the AvA SVM.  

Motivated by the work of Ding and Dubchak [22], Bologna and Appel [14] used 
ensemble of four-layer Discretized Interpretable Mulri Layer Perceptron (DIMLP) 
trained with the dataset produced by Ding and Dubchak. Different to Ding and 
Dubchak, in their work, each classifier learned all folds simultaneously. To the best of 
our knowledge, they reported the highest prediction accuracy (61.1%) using same set 
of features introduced by Dubchak and her co-workers [23]. 

NNs and SVMs classifiers used again by Chung and his co-workers as basic 
building blocks of two-level classifier for the protein folding task. In their work, each 
NN or SVM was a multi-class classifier [24]; hence, the number of classifiers that 
they used compared to other works had been greatly reduced. In their work, the 
common and most popular NN based models with a single hidden layer name: Multi 
Layer Perceptron (MLP), Radial Basis Function Network (RBFN), and General 
Regression Neural Network (GRNN) were used. However, in Chung and his co-
workers and also in their previous works, it was observed that the model constructed 
by using neural networks and SVMs, perform badly due to the imbalanced proportion 
of the data which caused high rate of false positive error. 
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To address this problem, Nanni used non-density-based Fisher’s linear classifier 
(FLC) and an ensemble of Hyper-plane K-Nearest Neighbor classifier (HKNN) [12]. 
FLC were used to find the linear discrimination function between the classes in the 
dataset by minimizing the errors in the least-squares sense, and HKNN were used to 
find a decision surface, by separating different classes of the data, in input space. 
However, HKNN as a kind of K-Nearest Neighbor (KNN) (Instance Based Learner) 
based method, suffers from curse of dimensionality while dealing with small dataset 
contains high amount of features [25]. 

To conquer inefficiencies of the mentioned methods, and also to reduce 
computational complexity of the protein fold classification task, Krishnaraj and 
Reddy employed Boosting approaches as kind of Meta classifiers to tackle the protein 
fold prediction problem [26]. They employed the AdaBoost.M1 [3] and the 
LogitBoost [6] to tackle this task. Boosting approaches and generally bootstrap 
sampling based classifiers avoid false positive error and build robust prediction rules 
by combining weak learners [3]. They reported comparable prediction accuracy in 
dramatically lower time complexity (60.3% compared to 61.1% achieved by Bologna 
and Appel [14]) with other works have been conducted in the literature. Despite all 
the advantages of the boosting algorithms, they suffer from over-fitting problem while 
dealing with noisy and high dimensional datasets [27]. 

Inspired by Krishnaraj and Reddy and in order to exploit the merits of Meta 
classifiers, we employed the Rotation Forest which illustrated better performance for 
different benchmarks compared to the other Meta classifiers ([1], [4], and [28]). As 
like as the Random Forest [7], the Rotation Forest overcome the over-fitting problem 
by providing a proper method to approximate missing data when dealing with noisy 
data or in case which large numbers of data are missing ([1] and [7]).  Results showed 
that the Rotation Forest outperformed previous methods developed in the literature for 
the protein fold prediction problem. 

The rest of this paper is organized as follows: in section (2), we introduced the 
Rotation Forest, how it works and tools which were used in this experiment. In 
section (3), we introduced the dataset and the features that used in this study. Section 
(4), concerned about the results and discussion achieved and finally followed by 
section (5), where the conclusions and future works were explained. 

2   Rotation Forest 

The Rotation Forest is a recently proposed method based on bootstrap sampling and 
Principal Component Analysis (PCA) [29]. It builds a group of independent trained 
decision trees to build an ensemble of classifiers in a parallel manner [1]. Rotation 
Forest is formulated based on the Random Forest idea [7]. The base classifiers 
independently built decision trees, but instead of using decision trees for random set 
of features, each tree in the Rotation Forest is trained on the whole set of dataset in a 
rotated feature space. It splits feature set (total N  features) randomly into K  ( K  is 
the parameter of the algorithm) subsets and then applied principal component analysis 
separately to each subset. Finally, based on all principal components the data is 
transformed linearly into new feature space and make new set of ( NM ≤  in case 
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where some of Eigen Values are zero [1]) linear feature set by combining all K  
transformed feature subsets [4]. 

In Rotation Forest as in the bagging algorithm, bootstrap samples are taken as the 
training set for the individual classifiers [30]. It performs transformation of feature set 
for each of the base classifiers, trains each classifier with a boot strap sample of train 
dataset and transformed feature set, and finally combines all independent base 
classifiers by using majority voting. In the Rotation Forest classifier, diversity within 
the classifier ensemble and individual prediction accuracy of the base learners are 
considered, simultaneously.  In this method, diversity is enhanced through feature 
extraction for each base classifier better than the Random Forest which just uses 
feature selection to encourage diversity within ensemble classifier [7]; and individual 
accuracy is also pursued by maintaining all principal components and also using 
whole dataset to train each base classifier [4].  

One of the useful characteristics of the Rotation Forest is that it can be used with 
almost any base classifier which makes it more flexible than the Random Forest 
which is capable to be used with Decision Trees as base classifier [7]. Therefore, a lot 
of possible improvements and modifications can be considered in the Rotation Forest 
[1]. However, in this paper, decision trees were chosen because of its sensitivity to the 
rotation of the feature axe. 

Data mining toolkit WEKA (Waikato Environment for Knowledge Analysis) 
version 3.6.0 is used for the classification. WEKA is an open source toolkit and it 
consists of a collection of machine learning algorithms for solving data mining 
problems [30]. In this experiment, J48 (WEKA’s own version of C4.5 [31]) decision 
tree algorithm is used as a base classifier. C4.5 is an algorithm used to generate a 
decision tree.  

C4.5 uses the fact that each attribute of the data can be used to make a decision that 
splits the data into smaller subsets. C4.5 examines the normalized information gain 
(difference in entropy) that results from choosing a feature for splitting the data [31].  
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Where TSplitInfox  represents the potential information provided by dividing 

dataset,T , into n  partition corresponding to the outputs of attributes x , and  

)(TGainx  is how much gain would achieve by branching on x . 

3   Dataset and Features 

To compare our results with the previous work have done by the literature, we used 
the dataset introduced by Ding and Dubchak [22]. This dataset contains a train and a 
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test dataset. The training dataset comprises of 313 protein belong to the 27 most 
populated protein folds in Structural Classification of Protein (SCOP) protein 
databank [32], [33]. Each fold contains seven or more proteins. The dataset 
represents all major structural classes (α, β, α/β, and α + β). The original test 
dataset is based on the Protein Data Bank (PDB) protein databank [34]; it is also 
developed by the authors of the SCOP database. This dataset contains 385 
proteins. Over 90% of our data in the test set has less than 20% sequential 
similarity with the proteins in test set. Among these proteins, two proteins 
(2SCMC and 2GPS) in the training dataset and two proteins (2YHX_1 and 
2YHX_2) in the testing dataset excluded due to insufficient sequence information. 
As a result, there are 311 and 383 proteins remain respectively in training and 
testing dataset. 

In this paper, six feature groups were introduced by Dubchak and her co-
workers were used [23]. These feature groups were extracted from the proteins 
amino acid-sequence based on physical, chemical and physiochemical properties 
of amino acids, named: amino acids composition (C), predicted secondary 
structure based on normalized frequency of a-helix residue (S), hydrophobicity 
(H), normalized Van Der Waals volume (V), polarity (P), and polarizability (Z). In 
particular, the first feature represents a vector of the percentage composition of the 
20 amino acids in the sequence. The other feature vectors properties are based on 
three descriptors: composition, percent composition of three constituents (polar, 
neutral and hydrophobic residues); transition, the transition frequencies (polar to 
neutral, neutral to hydrophobic, etc.): and distribution, the distribution pattern of 
constituents (where the first residue of a given constituent is located, and where 
25%, 50%, 75%, and 100% of that constituent are contained). Therefore, there are 
20 features in composition feature vector and 21 features for other feature vectors. 
More detail can be found in the literature ([11], [22], and [35]). The length  
of the amino acid plays an important role in the protein folding task ([14],  
[35], and [36]. Thus, it is included in every combination of feature groups for 
experiments. 

4    Results and Discussion 

The proposed method was evaluated for eleven different combinations of feature 
groups compared to six combinations of the feature groups used by Ding and 
Dubchak [22], and Krishnaraj and Reddy [26]. New combinations of the feature 
groups were applied to find proper combination of features and also investigate the 
effectiveness of each feature group to the achieved prediction accuracy. In addition, 
the length of proteins was also added to the all combinations of the feature groups due 
to its discriminatory information ([11], and [14]). 

To study the sensitivity of the Rotation Forest to the number of base classifiers, the 
employed method with six different numbers of base classifiers in range between 10 
and 200 were used for the applied dataset (10, 20, 50, 100, 150, and 200). As shown 
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in Table.1, the best result was achieved by applying the Rotation Forest with 100 base 
classifiers to the combination of the all feature groups, and the lowest prediction 
accuracy was obtained by using 10 base classifiers. As we can see in Table.1, by 
raising the number of base classifiers from 10 to 100, the prediction accuracy of the 
Rotation Forest also increased significantly, but differences in prediction accuracy 
between 100, 150 and 200 was nontrivial. Therefore, using 100 base classifiers can be 
addressed to the future works as an appropriate number of the base classifiers for the 
applied dataset or more generally for the protein fold prediction task (in similar 
cases). 

According to the results, by using the Rotation Forest with 100 base classifiers, we 
achieved a 62.4% prediction accuracy which is 1.3% higher than the result reported 
by Bologna and Appel [14] and 2.1% higher than Nanni [12] and Krishnaraj and 
Reddy [26] (Table.2). We also achieved a 56.9% prediction accuracy, using the 
Rotation Forest with 50 base classifiers by employing the composition of amino acid 
feature group (20-dimensional feature group) which is slightly better than the result 
achieved by Ding and Dubchak [22] using the AvA SVM and the combination of four 
feature groups (Amino Acids Composition, Predicted Secondary Structure, 
Hydrophobicity, Polarity).   

As shown in Table.1, the Rotation Forest classifier was capable of achieving to the 
high prediction accuracy depends on the using the appropriate number of base 
classifiers. The computational complexity of this method was also crucially depended 
on the number of base classifiers. Therefore, using the Rotation Forest classifier with 
appropriate number of the base classifiers can achieve to the high prediction accuracy 
as well as reducing the computational complexity compared to the SVM or ANN 
based classifiers ([1] and [4]). Despite using PCA algorithms as a feature extraction 
approach, having parallel structure and using simple and fast base learner (C4.5); 
made the Rotation Forest classifier as fast as the other Meta classifiers that were 
based on boosting algorithm (AdaBoos.M1 and LogitBoost). In this paper, the highest 
result achieved by using 100 base classifiers for Rotation Forest in a comparable 
computational complexity to the AdaBoost.M1 using the same number of base 
classifiers ([26]). 

Table 1. Comparison of the results achieved (in percentage) by using the Rotation Forest with 
six different numbers of base classifiers for eleven combinations of the feature groups 

Number of 
Base Classifiers C CS CSV CSZ CSP CSH CSH

V 
CSH

P 
CSH
PV 

CSH
PZ 

CSHP
ZV 

10 50.1 54.3 54.8 55.9 53.5 54.0 53.0 54.8 52.0 54.3 50.1 

20 54.3 57.2 55.1 55.4 56.9 56.9 57.2 55.9 56.9 59.0 58.0 

50 56.9 59.3 60.1 60.1 59.5 60.1 60.6 60.6 60.0 60.6 60.0 

100 56.7 58.0 60.8 60.3 59.3 60.6 58.8 60.8 58.7 61.4 62.4 

150 56.7 60.1 61.1 60.3 62.1 60.6 59.5 61.4 61.4 60.3 59.8 

200 56.7 60.6 59.8 57.4 61.6 60.8 59.8 60.3 60.8 61.1 62.3 
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The other remarkable result achieved by applying the Rotation Forest for the 
combination of three feature groups (Composition of Amino Acid, Predicted 
Secondary Structure and Polarity feature groups in addition to the length feature). 
We achieved 62.1% prediction accuracy, which was 1% higher than the result 
reported by Bologna and Appel [14] for the independent test dataset.  

 
Table 2. Results achieved by using the Rotation Forest (in percentage) compared to the results 
achieved by the related works found in the literature for the protein fold prediction problem 

[22] OvO (SVM) C+S+H 45.2 
[22] Unique OvO (SVM) C+S+H 51.1 
[22] AvA(SVM) C+S+H+P+Z+V 56.4 
[24] MLP-Based HLA C+S 48.6 
[24] RBFN-Based HLA C+S+H+P+Z+V 56.4 
[24] SVM-Based HLA C+S+H+P+Z+V 53.2 
[26] AdaBoost.M1 C+S+H 58.2 

This Paper Rotation Forest (150 Decision Trees) C+S+H 62.1 
[26] LogitBoost C+S+H+P+V 60.3 
[14] DIMLP C+S+H+P+Z+V 61.1 
[10] HKNN C+R+H+P+Z+V 57.4 
[12] RS1_HKNN_K125 C+S+H+P+Z+V 60.0 
[12] RS1_KHNN_K25 C+S+H+P+Z+V 60.3 
[11] BAYESPROT C+S+H+P+Z+V 58.8 
[9] MOFASA C+S+H+P+Z+V 60.0 
[8] ALH C+S+H+P+Z+V 60.8 

[38] RBF Majority voting Fuse C+S+H+P+Z+V 49.7 
[38] RBF Bayesian Fuse C+S+H+P+Z+V 59.0 

This Paper Rotation Forest (100 Decision Trees) C+S+H+P+Z+V 62.4 

 
In a different task, the employed method compared to the other Meta classifiers, 

such as the AdaBoost.M1 that is declared to be the best-of-the-shelf Meta classifier 
[1], [27], the Logitboost that has been successfully applied for different tasks [6], the 
Bagging as one of the most popular Meta classifiers has been applied for different 
machine learning tasks, and the Random Forest, recent modified version of the 
bagging that showed remarkable results compared to the other meta classifiers ([7], 
and [37]). Each Meta classifier was tested with the combination of the all feature 
groups.  

For all of Meta classifiers default parameters applied except for the base classifiers 
and the number of base classifiers. In this paper, the J4.8 and the Decision Stump 
were respectively employed as the base learners for the AdaBoost.M1 and the 
LogitBoost based on the experiment were conducted by Krishnaraj and Ready [26]. 
The J4.8 was also used as the base classifier for the bagging to compare how the 
modifications made in the Rotation Forest would affect its performance compared to 
bagging by using the same base learner. The numbers of base learners for all cases 
were set to 100 as well as the Rotation Forest. 
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Table 3. Results achieved by using the Rotation Forest with 100 base classifiers for each 
individual fold, compared to the AdaBoost.M1, LogitBoost, Bagging and the Random Forest as 
best-of-the-shelf Meta classifiers based on boosting and bagging approaches. For most of the 
fold, the Rotation Forest demonstrated better results compared to the other Meta classifiers 

Inde
x Fold N-test Rotation 

Forest
AdaBoost

.M1
LogitBoo

st Bagging Random
Forest

1 Globin-like 6 83.3% 83.3% 83.3% 83.3% 83.3%
3 Cytochrome c 9 100.0% 77.8% 55.6% 77.8% 88.9%
4 DNA-Binding 3-Helical 20 85.0% 70.0% 55.0% 55.0% 60.0%
7 4-helical up-and-down 

bundle
8 25.0% 75.0% 37.5% 62.5% 25.0%

9 4-helical cytokines 9 100.0% 88.9% 77.8% 88.9% 100.0%
11 Alpha; EF-hand 9 33.3% 22.2% 22.2% 11.1% 33.3%

20 Immunoglobulin-like 44 72.7% 70.5% 77.3% 63.6% 84.1%
23 Cuperdoxins 12 16.7% 41.7% 16.7% 16.7% 25.0%
26 Viral coat and capsid 13 69.2% 76.9% 76.9% 76.9% 76.9%
30 ConA-like 

lectins/glucanases
6 33.3% 33.3% 33.3% 33.3% 33.3%

31 SH3-like barrel 8 75.0% 75.0% 62.5% 75.0% 62.5%
32 OB-fold 19 26.3% 21.1% 36.8% 21.1% 31.6%
33 Trefoil 4 50.0% 75.0% 50.0% 75.0% 50.0%
35 Trypsin-like serine proteases 4 25.0% 25.0% 50.0% 25.0% 25.0%
39 Lipocalins 7 42.9% 28.6% 57.1% 28.6% 57.1%

46 (TIM)-barrel 48 87.5% 81.3% 81.3% 75.0% 91.7%
47 FAD (also NAD) 12 58.3% 58.3% 41.7% 50.0% 58.3%
48 Flavodoxin-like 13 61.5% 46.2% 46.2% 46.2% 46.2%
51 NAD(P)-binding Rossmann 

fold
27 40.7% 33.3% 51.9% 33.3% 25.9%

54 P-loop containing nucleotide 12 58.3% 33.3% 33.3% 41.7% 33.3%
57 Thioredoxin-like 8 62.5% 37.5% 50.0% 50.0% 50.0%
59 Ribonuclease H-like motif 12 66.7% 50.0% 58.3% 66.7% 58.3%
62 Hydrolases 7 71.4% 28.6% 57.1% 57.1% 28.6%
69 Periplasmic binding 4 25.0% 0.0% 25.0% 0.0% 25.0%

72 -grasp 8 37.5% 25.0% 37.5% 25.0% 25.0%
87 Ferredoxin-like 27 29.6% 48.1% 55.6% 37.0% 37.0%
110 small inhibitors 27 100.0% 100.0% 85.2% 100.0% 96.3%

TOTAL 383 62.4% 58.5% 59.0% 55.4% 59.8%
 

The overall results were shown in Table.3. Based on the results (Table.3), the 
Rotation Forest achieved at least, more than 2% higher prediction accuracy compared 
to other Meta classifiers based on boosting and bagging. It also achieved to the 
highest prediction accuracy for 16 folds compared to the other employed classifiers, 
which shows the ability to enhance the prediction accuracy of the Rotation Forest for 
each fold separately (Table.3). It outperformed Random Forest, the other modification 
of the bagging classifier by more than 2% of the prediction accuracy, as well as the 
AdaBoost.M1 classifier by more than 3% of prediction accuracy. Our experimental 
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results showed that the Rotation Forest outperformed the methods which have been 
used for the protein fold prediction task as well as other Meta classifiers based on 
boosting and bagging algorithms (AdaBoost.M1, LogitBoost, Bagging, and Random 
Forest).  

5   Conclusion and Future Works 

In this paper, an empirical study on the performance and advantages of using the 
Rotation Forest to solve the protein fold recognition problem were conducted. We 
also studied the sensitivity of the Rotation Forest to the number of base classifiers by 
using six different numbers of base classifiers in range between 10 and 200. Finally, 
employed method compared to the other Meta classifiers based on boosting and 
bagging approaches which have showed remarkable results on different benchmarks 
([1], [2], [3], [6], and [7]).  

The ensemble classifier built using the Rotation Forest with 100 base classifiers 
achieved better results compared to the previous works found in the literature as well 
as the other best-of-the-shelf Meta classifiers, namely: the AdaBoost.M1, LogitBoost, 
Bagging and the Random Forest. The proposed method achieved a 62.4% prediction 
accuracy which is 1.3% higher than the result achieved by Bologna and Appel [14] 
who used an ensemble of DIMLP, more than 2% better than Nanni [12] who used 
ensemble of HKNN with FCA and Krishnaraj and Reddy [26] who used the 
AdaBoost.M1 and the LogitBoost with the same number of base classifiers.  

High prediction performance as well as low computational complexity and time 
consumption of the Rotation Forest shows the potential of this method for further 
researches. The Rotation Forest is capable to be used by any classifier as a base 
classifier, being used in hierarchical structure or as part of an ensemble of 
heterogeneous classifiers to achieve better results for the protein fold prediction 
problem and other classification tasks. 
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Abstract. Overlapping genes (encoded on the same DNA locus but
in different frames) are thought to be rare and, therefore, were largely
neglected in the past. In a test set of 800 viruses we found more than 350
potential overlapping open reading frames of >500 bp which generate
BLAST hits, indicating a possible biological function. Interestingly,
five overlaps with more than 2000 bp were found, the largest may
even contain triple overlaps. In order to perform the vast amount of
BLAST searches required to test all detected open reading frames, we
compared two clustering strategies (BLASTCLUST and k-means) and
queried the database with one representative only. Our results show
that this approach achieves a significant speed-up while retaining a
high quality of the results (>99% precision compared to single queries)
for both clustering methods. Future wet lab experiments are needed to
show whether the detected overlapping reading frames are biologically
functional.

Keywords: overlapping genes, clustering, BLAST analysis.

1 Introduction

1.1 Overlapping Reading Frames and Overlapping Genes

DNA consists of two complementary strands, uses a triplet code and, conse-
quently, open reading frames (ORFs), which may code for proteins, are possible
in six reading frames overlapping in different phases. A protein coding reading
frame on a given DNA sequence is, by convention, phase +1, the next frames are
+2 and +3, and, on the other strand -1, -2, and -3 (Fig. 1). This construction
results in a considerable theoretical coding density.

The term “overlapping gene” has been used in the literature for several related
biological phenomena. In order to avoid confusion, we introduce a distinction
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Fig. 1. A double strand of DNA with the different possible reading frames. Encoded
amino acids are shown in the single letter code according to the standard genetic code.
Stop codons, which do not code for an amino acid, are depicted by a star.

between trivial and embedded overlaps. In case of short, trivial overlaps, the
overlapping sequence has no important function at the protein level, but may
play a role in the regulation of gene expression, e.g., in transitional coupling
[1,2]. The process of gain and loss of trivial overlapping genes has been modeled
by mutational events, which displace the start or stop codons [3,4,5,6,7,8,9].
The focus of this project, however, is on embedded genes which encode two
completely different functional amino acid chains (proteins) in different phases of
the same DNA locus. Here, a protein coding reading frame is largely or entirely
superposed on an annotated reading frame (Fig. 2), and is therefore termed
“embedded ORF” or, if a function of the encoded protein has been demonstrated,
“embedded gene”.

Fig. 2. Types of ORFs to be investigated. A: sense strand ORFs, either partially or
completely overlapping. They can be in phase +2 or +3, since the annotated gene is
by definition in phase +1. B: antisense strand ORFs, either partially or completely
overlapping. They can be in phase -1, -2 or -3.

Usually, genome annotation programs consider embedded ORFs as being non-
functional. The rationale may be an intuitive one: It rests on the presumed
improbability of embedded genes to originate by chance [10,11]. Furthermore,
overlaps pose severe restrictions on the evolution of both ORFs involved [7] since
many mutations in one phase directly affect the amino acid sequence encoded in
the other phase [12,13]. Nevertheless, the first fully sequenced organism, bacte-
riophage ΦX174, contains several embedded genes [14]. Subsequently, a number
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of embedded genes have been discovered in viruses [15,16,17,18] and only re-
cently, the existence of several overlapping genes in other organisms has been
acknowledged [19,20]. Okamura et al. [21] suggested that amino acid chains en-
coded in alternative reading frames are a hidden coding reserve serving as novelty
pool. Once a frame shift mutation occurs, such formerly hidden ORFs become
exposed, which means that they are translated. Along those lines we wanted
to examine how many of the (overlapping) reading frames currently not anno-
tated have sufficient similarity to annotated genes to generate a BLAST hit in
GenBank.

1.2 Detection of Embedded Genes by Computational Methods

An ORF, by definition, starts with a start codon and ends with a stop codon.
Clearly, not all ORFs are genes. To identify the genes among the many ORFs
in a genome during the annotation process is one of the central tasks of bioin-
formatics. Numerous algorithms have been developed by many bioinformatic
groups, such as GeneMark, Glimmer, ZCURVE, BLASTX, FASTA, ORPHEUS
or EasyGene (for an overview see [22]). After identification, such ORFs which
are likely to be true genes are labeled “annotated” and recorded in genome
databases. The aim of this work is to examine genomes by using the implicit
state-of-the-art knowledge recorded in databases in terms of annotated genes to
see, if “hidden” overlapping reading frames can be discovered. In this feasibil-
ity study, we restricted ourselves to viral genomes sequenced until May 2008.
However, the main problem is that the number of ORFs encoded in genomes
is huge and, therefore, even searches which use a locally installed copy of these
databases would take months to complete. An efficient strategy to perform these
searches is therefore imperative. One important method to reduce the number
of database queries is to use clustering algorithms to meaningfully group the
ORFs (see [23,24] for a review of common clustering algorithms) and then only
perform one query per cluster. This allows to query databases such as GenBank
using BLAST with only a fraction of the ORFs and to transfer the query results
to the rest of the cluster without risking that the introduced error is too large. In
later stages, received hits will be analyzed with further bioinformatic methods,
e. g. promoter predictions and alike.

2 Computational Methods for the Detection of
Overlapping Genes

2.1 The Data

For our analysis, we downloaded all available viral nucleotide sequences from [25]
on May 26, 2008 (nearly 3,000 viruses). All open reading frames (ORFs in six
reading frames) were extracted from the viral sequences using getorf [26]. ORFs
with less than 150 base pairs have not been considered, since smaller ORFs rarely
encode for a functional protein [27]. In total, about 229,000 ORFs with at least
150 base pairs were extracted. To find out if the ORFs extracted eventually
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encode functional proteins a comparison with the NCBI-Protein-Database nr
[28] is conducted. At the day of the download (May 26, 2008) the database
contained 6,544,368 protein sequences, totalling 5.33 GB of data. To query the
database the ORFs are translated to the corresponding amino acid sequence.
This poses a lesser constraint in finding potentially functional sequences in the
ORFs not originally annotated [22].

2.2 Querying the Database

For querying the database we use the Basic Local Alignment Search Tool
(BLAST) that comprises a set of similarity search programs that were designed
to find regions of similarity between biological sequences [29]. BLAST allows
searching large databases for optimal local alignments. A list of the sequences
with the best local alignments is returned including similarity scores for each
sequence. In order to efficiently access the database, the collection of BLAST
algorithms was installed locally instead of using the web based version located
on the NCBI server.

For an arbitrarily chosen subset of 76,928 ORFs the above mentioned NCBI-
Protein-Database nr was queried using BLASTP, the algorithm of the BLAST
suite for querying protein databases. We used default BLASTP parameters ex-
cept the cut-off for the e-value has been set to ≤0.1. About 43% of the sequences
generated a hit which includes the already annotated genes. In average, it took
about 47.5 seconds per query. In total, we needed more than 42 days to process
the test dataset. Processing all 229,000 ORFs would have taken about 4 month.
Thus, the approach is clearly not efficient for future studies comprising more
sequence data.

2.3 Clustering for Speed-Up

To cut runtime, we first cluster the sequences according to their similarity and
subsequently query the database with only one representative.

We compared the results of two different clustering algorithms: BLAST-
CLUST [30] from NCBI [25] and k-means [24]. BLASTCLUST provides hierar-
chical clustering based on the single linkage approach. Basically, it implements
the BLAST-algorithms, which take evolutionary relatedness into account. The
advantages are to use end-to-end the same algorithm, and that two sequences can
be directly compared without transforming them into an information reduced
vector. In contrast to this, applying k-means as a partitioning-based clustering
algorithm requires to transform each sequence into a point in Euclidean space. A
histogram is formed by counting the occurrence of each amino acid in an ORF.
The result is expressed as a 20-dimensional feature vector and similar sequences
are assumed to locate at a similar position in this feature space.

Running BLASTCLUST with the default settings resulted in a set of 181,015
clusters. By subsequently relaxing the similarity requirements for sequences
that are placed in the same cluster, the number of clusters was reduced to
164,593 (score density threshold S=1.0), 160,915 (S=0.5), 156,009 (S=0.001),
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and 121,774 (S=5, length covered L=0.1)1. The least stringent clustering re-
duced the dataset approximately half to the starting number. In order to get
comparable results the exact same amount of clusters were generated using k-
means. Our analysis for both methods showed that there are many clusters that
contain only a single sequence and only few containing 20 or more sequences.
The reason for this is that the applied thresholds using BLASTCLUST are quite
strict to ensure that the whole data set is represented well. Regarding the speed
of the clustering process the k-means algorithm turned out to be about five times
faster than BLASTCLUST (approximately 7.5h compared to 38h, respectively).
However, this difference becomes insignificant if we look at the time required for
the total analysis. Figure 3 shows the total runtimes for clustering and data base
queries. For the smallest number of clusters, the approach saved up to 45% of
the runtime compared to querying each single sequence which in case of about
229,000 candidate sequences accounts for a saving of 58 days. Since BLAST is a
computationally demanding algorithm, this achievement is significant. Further
runtime reductions using BLAST necessitates special computer hardware [31].
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Fig. 3. Comparison of the total runtimes needed as a function of the number of clusters.
For comparison the time that would be needed when querying each single sequence is
given as well.

2.4 Effectiveness of the Approach

Our experiments presented in the former section clearly show that the process
can be significantly accelerated by applying clustering techniques before the
database is queried. However, this approach can only be considered as useful if
the quality of the results remains acceptable.

In order to evaluate this, a measure for effectiveness has to be found. Key for
the effectiveness of our approach is to get clusters with a high purity. A cluster is
considered as “pure” if it contains only sequences that generate the same BLAST
1 The S -value denotes the score density which is calculated by dividing the BLAST

score by the length of the alignment. The L value specifies the percentage of the
length of the sequence that must be covered. If not specified, L is set to 1.0 (=100%)
in our experiments.
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hit (or none) if tested one by one. If this is the case, then our assumption holds
that the result that we get for one sequence can be transferred to all the other
sequences in the same cluster. We measure this purity by calculating a precision
score for each cluster. The precision is thereby defined as:

Precision(C) = max{Precisionf(C), P recisionnf (C)} (1)

where
Precisionf(C) =

Of

Oa
,

P recisionnf(C) =
Onf

Oa
.

with
Of = number of functional ORFs
Onf = number of non-functional ORFs
Oa = number of all analyzed ORFs

In the experiment that is described in section 2.2, we queried the database using a
subset of 76,928 sequences. This dataset serves now as basis for evaluation. Since
we could not include all sequences in the experiment due to time constraints,
the calculated numbers can only be considered as an approximation of the
precision.

While equation 1 gives us a precision value for a single cluster, we would
need a value that measures the quality of the complete clustering. To take the
significant differences in cluster sizes into account, we use a weighted average to
calculate the cluster precision (equation 2; k = number of clusters, ti = number
of sequences in cluster Ci).

Precision =
∑k

i=1(Precision(Ci) · ti)∑k
i=1 ti

(2)

Both clustering algorithms, BLASTCLUST and k-means, were evaluated by
calculating the precision values for the clustering structure which we retrieved
from section 2.3. Figure 4 shows the results. Less cluster lower the precision,
which is expected since a smaller number of clusters corresponds to a lesser
stringency. Despite the fact that the k-means clustering places the sequences in
a 20-dimensional Euclidean space without any consideration of biological signif-
icance, the average performance of both clustering algorithms is approximately,
and quite surprisingly, the same. It somehow appears that the proteins composi-
tion is quite able to circumscribe a cluster. The precision values are convincingly
high which confirms our assumption that the speed-up that we gain from using
clustering algorithms does not significantly decrease the quality of the results.
Using our method, with a loss of at most 0.1% of the precision (for k-means 0.5
percent) we were able to get a speed-up of approximately 33%. If we are willing
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to accept a loss in the precision of about 1% (2.5% for BLASTCLUST), the
acceleration was even higher with savings of about 45%.

Despite the fact that many “cluster” contain only one sequence, the precision
drops faster for BLASTCLUST when relaxing stringency (Fig. 4). This is due to
the fact that BLASTCLUST tends to cluster different (in the sense of gaining
different BLAST hits) sequences in larger clusters, resulting in a dramatic drop
in precision for cluster ≥12 sequences of around 90%.
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Fig. 4. Comparison of the precision of the clustering BLASTCLUST and k-means for
different numbers of clusters

2.5 Detection of Presumed Overlapping Genes

After recording all ORFs with BLAST hits we determined those which over-
lap. The analysis of occurring overlaps was conducted on 800 arbitrarily chosen
viruses. Their genomes were sequentially examined to find ORFs which overlap
in different reading frames. To distinguish between trivial (short) and non-trivial
cases, lengths of overlap were recorded and are shown in Figure 5.

3 New Overlapping Genes in Viruses

In total, about 800 viruses were analyzed for overlapping gene sequences which
generated a BLAST hit. From those, 62% of the genomes contained at least
trivial overlaps, whereas in 44% of the viral genomes overlaps of 100% could
be observed. Since non-trivially overlapping genes are considered to be unlikely,
one reading frame is usually dismissed in favor of the other one. For instance,
Yooseph et al. [10] dismiss overlapping encoded genes if their orthologous cluster
is smaller than the cluster of the corresponding gene. However, current genome
databases implicitly reflect our state-of-the-art knowledge about which ORF
might be (or is) a gene and which one is not. Therefore, a BLAST hit can be
used as first approximation for a possible biological function.



Towards Automatic Detecting of Overlapping Genes 235

1

10

100

1000

10000

100000

150-499 500-999 1000-1499 1500-1999 >2000

N
um

be
r o

f o
ve

rl
ap

s 
(lo

g 
10

)

Length of the overlap (number of base pairs)

Fig. 5. Histogram of the recorded lengths of the overlaps

Especially, longer overlaps are of biological interest. Figure 5 shows a his-
togram of the length of the detected overlapping open reading frames which
generated a BLAST hit. As expected, there are many short ORFs with less than
500 base pairs. However, there is a considerable number of longer overlapping
open reading frames (>350 cases for 500 and more bp) and even five presumed
genes with ORFs of more than 2000 base pairs. Since only 800 viruses have
been examined, we expect further 1000 of such cases in the rest of the 2200
viral genomes. Indeed, several recent publications about viral genome analysis
revealed new overlapping genes. However, those searches included evidence of
positive selection (see [32] and references therein).

In the past, viral overlapping genes have been considered to be a “specialty” of
these organisms. Most often, viruses have only a limited genome size due to cap-
sid size constraints, with some notable exceptions like Acanthamoeba polyphaga
mimivirus (genome length ≈1.2Mbp). Indeed, in viruses the number of overlap-
ping genes is inversely correlated with genome length [33]. However, in bacteria,
the number of overlapping genes corresponds with genome size and as a rough
approximation it can be said that 10-30% of genes overlap [34,7]. But most of
those overlaps are trivial, which means the overlapping encoded amino acid chain
is not functional at the protein’s level. Biologically more interesting are nested
genes in which both protein chains assume a function. A recent textbook like
example might be the gene pair dmdR1 and adm from Streptomyces. Both genes
are antiparallel to each other. DmdR1 regulates iron metabolism and Adm is a
regulator for antibiotic production. Quite interestingly, both ORFs were recorded
in databases with at that time unknown functions [35].

The longest overlapping ORFs we could find in our analysis is from Mycobac-
terium phage PBI1 and is a very interesting case (Figure 6). The largest ORF,
per definition +1, has been annotated as protein g27 (accession no. YP 655223),
but no function has been assigned to it [36]. This reading frame encodes 1590
amino acids and starts according to the GenBank entry with an unusual GTG
start codon. However, this start might be questionable, since another CTG start
codon can be found upstream and an ATG start codon downstream of the
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gp27, 1590aa, GTG start codon, +1

unknown, 947aa, -1
vtAfusion

int

unknown, 
134aa, +3

unknown, 
225aa, -2

T5S

pm1 tape1 tape2 pm2tape3

Fig. 6. The genetic locus of the Mycobacterium phage PBI1 in which the protein gp27
is encoded (longest arrow; locus tag PBI1p27). This ORF contains three further em-
bedded genes, shown above or below (smaller arrows). For each ORF the length in
amino acids (aa), as well as the phase of the reading frame is given. Marked with boxes
in different colors are areas generating BLAST hits. int, integron integrase; pm1-2,
putative membrane protein of phage origin; T5S, type V secretory pathway protein;
tape1-3, tape measure protein; vtAfusion, viral A-type inclusion protein. For further
details see text.

annotated GTG. This reading frame contains two annotated conserved domain
fragments, flhB from the flagellar biosynthesis protein FlhB and tra, which en-
codes a transglycosylase-like domain. If BLASTed, this ORF will generate three
hits with identical ORFs from very similar phages. The e-value of those hits is
0. The next four hits are from different but still related Mycobacterium phages,
the e-values are in a range of 6 · 10−61 to 1 · 10−51 [36]. The next BLAST hit
reveals a putative membrane protein of phage origin in Mycobacterium marinum
strain M; the e-value being 9 · 10−51 (indicated in Figure 6 with pm1 and pm2).
The next hit further down the list, with an e-value of 9 · 10−30, has similarity
to a tape measure protein. Interestingly, several more hits of such tape measure
proteins can be found within the first 50 BLAST hits. Areas in which the phage
g27 gene generates hits with such tape measure proteins are indicated with tape
1 to 3 in Figure 6. The multiple occurrences of similar hits in a BLAST search
indicates that this protein may be indeed a tape measure protein. Interestingly,
the sequence of such proteins is under minimal constraints only. It determines
the length of a phage tail very much like a ruler. A shorter tape measure protein
means a shorter tail and vice versa. Therefore, other protein chains in over-
lapping reading frames may be easily encoded. Indeed, several additional ORFs
can be found embedded in the tape measure protein gene. The largest embedded
ORF in frame -1 comprises a protein of 947 amino acids. Amino acid positions
623 to 844 generate a BLAST hit to a viral A-type inclusion protein with an
e-value of 0.081 (vtAfusion in Figure 6). Such proteins form inclusion bodies in
the host cell during infection [37]. Surprisingly, two more ORFs with BLAST hits
are encoded on the same locus of DNA, resulting in triple overlaps. One ORF
with 225 amino acids in frame -2 generates a BLAST hit with a type V secretory
pathway protein (ZP 04858685, e-value 0.035, T5S in Figure 6). Those proteins
are autotransporters, which transport a protein domain across the membrane
of a bacterium [38]. Finally, the last ORF generating a hit encodes 134 amino
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acids in frame +3. The protein seems to be an integron integrase (e-value 0.031;
int in Figure 6). Integrases belong to the large group of mobile genetic elements
[38]. It is conceivable that at one point in time such a mobile element jumped
into the tape measure protein gene and became incorporated in this DNA locus.
Triple overlaps have only rarely been reported [14,39].

4 Conclusions and Future Prospects

We could demonstrate that in viral genomes several overlapping open reading
frames can be found which generate a BLAST hit, which is usually considered as
first evidence for a presumed biological function. To speed up BLAST searches
for large datasets we implemented clustering strategies. By applying clustering
methods previous to querying the database with one representative of each clus-
ter a significant acceleration is possible (in our experiments up to 45%) while
retaining a high quality of the results. Our initial results are promising and sug-
gest that further research in this area might be fruitful. For reasons mentioned
in the introduction it is comprehensible that embedded ORFs have been almost
completely out of focus of experimental and bioinformatic research. Neverthe-
less, the lack of attention is about to change. Several databases with the aim to
aid in the area of overlapping genes have been set up recently [19,40,27]. Molec-
ular studies reveal overlapping genes in a diversity of organisms (e. g., see [27]).
Therefore, given the availability of many completely sequenced genomes at the
beginning of 2010, a number of which will increase steeply in the future [41,42],
we expect the discovery of many yet unknown, but functional overlapping read-
ing frames in natural DNA. Such genes must be tested in wet lab experiments
whether they indeed have a biological function.
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Abstract. In a typical “left-to-right” phylogenetic tree, the vertical or-
der of taxa is meaningless, and the degree of similarity between taxa is
only reflected by the branch path between them. We applied an Evo-
lutionary Algorithm (EA) to improve the graphical representation of
phylogenies, adding interpretability to the vertical order of taxa. We in-
vestigated the influence of different populations in the heuristic method
to evaluate their influence on a (λ + μ)-EA. In our example, the order
of taxa linked to polytomic nodes is optimized using data from genetic
distance matrices. However the vertical order of taxa on a phylogenetic
tree can also be used to represent non-genetic features of interest.

1 Introduction

Phylogenetic trees are the most commonly used representations of relationships
among living organisms. They consist of a combination of nodes connected by
branches. Extant individuals are represented by terminal nodes (branch tips),
linked together through an internal node, which represents a common ancestor.
The trees, usually called additive, whose branches contain information about the
degree of difference between nodes, are often used to show evolutionary features.
Such trees are commonly based on genetic information and models of molecular
evolution. In this case, information in the tree is contained only in the root-node
direction, in the pattern of linkages between branches and nodes; or, in other
words, in its topology. Indeed in a typical “left-to-right” phylogram, like the
one shown in Fig. 1, the vertical order of taxa is meaningless, and the degree of
similarity between taxa is only reflected by the branch path between them [1].

In a fully resolved tree, all internal nodes have a degree equal to three, but,
because of simultaneous divergences of sequences or, more likely, because of insuf-
ficient resolution, nodes can be a polytomous, joining more than three branches.

C. Pizzuti, M.D. Ritchie, and M. Giacobini (Eds.): EvoBIO 2010, LNCS 6023, pp. 240–247, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. West Nile virus phylogenetic topology obtained by the Bayesian approach using
MrBayes software and proposed in [6]
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In this latter case, trees are hard to interpret. Indeed, trees are often misin-
terpreted, with meaning mistakenly ascribed to the vertical proximity of taxa
or clades. In cases where the vertical ordering of taxa on phylogenetic trees is
flexible, the opportunity exists to ascribe biological meaning to this dimension
[2]. In order to make unresolved trees more informative, we recently proposed
a (1+1)-Evolutionary Algorithm (EA) to find the best graphical tree represen-
tation that includes vertical information [3]. The heuristic procedure is used to
find trees that group samples with similar features in the vertical direction, and,
starting from a given tree topology, it generates at each time step a new ten-
tative solution by rotating internal nodes. Taxon order was searched in order
to minimize relative distances according to their genetic distances, but this ap-
proach could be implemented using distance matrices created from other taxon
features, such as temporal or geographical data, or any numerical data whose
meaning is significant to build a distance matrix.

In this paper we investigate the influence of the use of populations in a (λ+μ)-
EA to solve this problem, both looking at accuracy and computational effort.
In the next section, we introduce and discuss the proposed heuristic search ap-
proach, and the method is experimentally validated using a West Nile virus
phylogenetic tree. Finally, in section 3 we present our conclusions and discuss
possible future work.

2 Heuristic Search for West Nile Virus Phylogenetics

In a phylogenetic tree, given that each internal node can be freely rotated with-
out changing tree’s topology, it should be possible to find the best graphical
representation that includes vertical information. This can be seen as an opti-
mization problem, whose search space contains all the trees that can be obtained
by node rotations from a topology previously obtained using other heuristic
methods based on prior or posterior probability estimations. In this framework,
the search problem would be to find the graphical representation that minimizes
the distance between adjacent taxa, such distances being defined in matrices
created from different sample features than were used to construct the tree, such
as genetic, temporal or geographical data.

For phylogenetic trees containing large numbers of taxa, this optimization
problem can not be solved by exhaustive searching, mainly because of the size
of the search space. In fact, for a phylogenetic tree with 64 taxa, this dimen-
sion would range from |S| = 263 in the case of a completely resolved tree (thus
containing 63 internal nodes all with degree 2), to |S| = 64! for a completely un-
resolved tree. Heuristic search method is therefore needed to solve this problem.
The simplest approach would be to use a hill-climbing algorithm starting from
the topology obtained by the tree-building method. Most such methods output
a tree in which taxon order in polytomic nodes is often alphabetical or is taken
from the order of input of sequences. A simple hill-climber would, however, be
computationally unfeasible in most cases, since for each tentative solution s the
number of neighbors |neighs| to be generated and evaluated would be too large.



Populational EAs to Add Vertical Meaning in Phylogenetic Trees 243

As previously described [3], we initially applied a (1 + 1)-EA to explore the
search space consisting of all phylogenetic trees with the same topology but
with different permutations of the branches in internal polytomous nodes. The
fitness of the original tree, considered as current tree at the first generation, was
evaluated as sum of the distances between the considered tip to the r closest
tips, based on a genetic distance matrix. Then, every generation, the current tree
underwent a random swap between two branches connected to the same internal
node. The fitness of the new tree was re-evaluated. Whenever the fitness of the
new tree was better than the fitness of the current tree, the new tree replaces
the current tree, and the search procedure continues. This process is iterated
for 200000 generations, resulting in the creation and evaluation of 200000 new
tentative solutions.

A key decision in the process described above is the choice of the fitness func-
tion. The most straightforward method would be to sum up, for all taxa in the
tree, the distance between the taxon under consideration and the two taxa next
to them, i.e. those taxa at radius r = 1. However, it is not obvious that such
a choice would be optimal since, when reading a tree in the vertical dimension,
one would also be inclined to consider as ‘close’ also taxa at distances greater
than 1. To calculate the fitness of each tentative solution, we used the matrix
of genetic distances among samples, corrected with the best fit molecular sub-
stitution model (GTR+Γ+I) [1,4]. In our preliminary work [3] we investigated
the influence that different radii have on the search procedure. The radius r = 8
resulted in an acceptable balance between computational intensity and accuracy,
and it was used for this study.

In order to investigate the influence of population size on the process of im-
proving the interpretation of unresolved trees adding a vertical meaning, we
explored different combinations of the λ and μ parameters in a classical (λ+μ)-
EA. First, we studied the algorithms when only the offspring population was
augmented, evolving (1 + 5) and (1 + 10) – EAs, where λ = 1 is the start-
ing tree to improve. Then, we evaluated the performances of the EAs when
λ = μ ∈ {5, 10, 50, 1000}. When λ > 1, in the initial generation λ − 1 randomly
generated trees are added to the tree obtained by the Bayesian approach using
MrBayes software. The next generation of λ parents is selected by performing μ
tournaments between couples chosen by random sampling with reintroduction
among the λ + μ individuals, selecting the best μ ones. In this way the best
individual can potentially be selected more than once, without excluding the
other tentative solutions. To have a fair comparison between algorithms with
different population sizes, we set a maximum generation limit so that the num-
ber of new tentative solutions that each EA evaluates (i.e. its computational
effort) is 200000. For μ = 5, 10, 50, 1000 this results in 40000, 20000, 4000, and
200 generations, respectively. For each parameter combination, 50 independent
runs each were performed.

The phylogenetic tree presented by Bertolotti et al. [6], represented in Fig. 1,
has been used as a test case. West Nile virus (WNV; Flaviviridae; Flavivirus) is
a single stranded, positive-sense RNA virus member of the Japanese encephalitis
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serocomplex, transmitted by infected mosquitoes. Occasionally mosquitoes can
transmit the virus to humans, horses and other mammals. Due to its recent in-
troduction into North America, WNV phylogenies have tended to report highly
unresolved trees [6,5,7]. In these cases, information on genetic, spatial or temporal
clustering was not apparent, so that population substructure was investigated us-
ing different approaches. The original tree has a total of 132 taxa and 28 internal
nodes. Up to 62 out of 76 branches from the root node are directly connected to
terminal taxa. This portion of the tree, as shown magnified in Fig. 1, is therefore
highly unresolved.

The tree obtained by the Bayesian approach within the MrBayes software has
a fitness at r = 8 equal to 5.136. This value was used as reference in order to
express the best final fitnesses of the EAs as relative fitness improvement (final-
tree/original-tree fitnesses). The best tree was obtained in a (1+5)-EA run, but
the fitness performances of the different parameters’ combinations do not show a
statistically significant difference among the groups, except for the (1000+1000)-
EA that have p-values << 0.01 in Wilcoxon Rank Sum tests (Shapiro-Wilk test
p << 0.01 in every group) with all other groups. In the box plots shown in
Fig. 2(a) all the values of the final fitness are depicted. The performance differ-
ence among (1000+ 1000)-EA and the other EAs is easily observable in the box
plot of Fig. 2(b). In this case, the distribution of final fitness values is the only
one in which all runs cross the threshold (see next paragraph).

(a) All final fitness values (b) Final fitness in the 0.745 - 0.76 range

Fig. 2. Boxplot of all the relative final fitness values (2(a)) and those in the range
0.745 - 0.76 (2(b)).The dotted line is the threshold used to evaluate the computational
effort.

In order to compare the computational effort for the EAs to find “interesting”
trees a threshold fitness value corresponding to a relative improvement of 0.78
was chosen (the same observation could be drawn if this threshold is set to
any value in the [0.757, 0.78] interval). The only algorithm able to always find
solutions below this threshold is the (1000 + 1000)-EA, while all other λ and μ
combinations succeed in between 90% and 94% of the runs. The computational
effort of the (1000 + 1000)-EA is statistically lower than the other (p-values
<< 0.01 in Wilcoxon Rank Sum tests), resulting in the best computational
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Fig. 3. The best West Nile virus phylogenetic tree obtained by the (1 + 5)-EA

performances but the worse solution by one order of magnitude (Fig. 2(a) and
2(b)). Additionally the (50 + 50)-EA computational effort is statistically better
than (1 + 1), (5 + 10) and (10 + 10) - EAs.

From a biological point of view, the best obtained tree, shown in Fig. 3, has
undergone some improvement. At first sight, the most notable change is the
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long branch containing the European strains of WNV moved to the bottom of
the tree from its previous middle position (Fig. 3a). Moreover, many samples
collected in the same state are now close to each other (Fig. 3b). The algorithm
has also moved closer those tips representing samples collected in the same year
(Fig. 3b). Finally, as shown in [8], the strain of the first WNV epidemic in USA,
in New York in 1999, is next to the strain associated with an epidemic in Israel
in 1998, which arrived in the new world and likely sparked the North American
WNV epidemic. In our final tree this relationship is highlighted, as shown in
Fig. 3c.

3 Discussion and Future Works

We investigated the influence of population sizes in (λ+μ)-EAs used to find the
best graphical tree representation that includes vertical information in phyloge-
netic trees. To validate the proposed approach we applied it to the West Nile
virus tree presented by Bertolotti and colleagues in 2007. This tree is highly
unresolved, with a large number of samples belonged to highly polytomic in-
ternal nodes. To calculate the fitness value of each tentative solution we have
employed the matrix of genetic distances among samples, corrected with the best
fit molecular substitution model.

All different EAs result in interesting solutions, and this allow researchers to
extend the readability of phylogenetic trees by enhancing the meaning of their
vertical dimension. The use of populational EAs does not seem to improve the
performance of the algorithms with respect to the initially proposed (1+1)-EAs
[3]. However, our experiments showed a significant gain in computational effort
of one order of magnitude by the largest population EA, leading to a worse
fitness of the trees obtained by the (1000 + 1000) one.

Generally, our results demonstrate that a heuristic search approach applied to
tree graphical representation can improve the readability of phylogenetic trees,
helping in their interpretation. This being a preliminary study to validate a
novel analytical method, several issues need to be further investigated. This
method will need to be validated and applied to other case studies, and using
other types of data to generate distance matrices, such as temporal or spacial
distances.
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