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Problem Solving on One-Bit-Communication
Cellular Automata

Hiroshi Umeo

6.1 Introduction

In recent years, interest in cellular automata (CA) has been increasing in the field
of modeling real phenomena that occur in biology, chemistry, ecology, economy,
geology, mechanical engineering, medicine, physics, sociology, and public trans-
portation. Cellular automata are considered to provide a good model of complex
systems in which an infinite array of finite state machines (cells) updates itself in
a synchronous manner according to a uniform local rule. In the present paper, we
study a problem solving on a special subclass of cellular automata: one-bit inter-cell
communication cellular automaton. The problems dealt with are a firing squad syn-
chronization problem, an integer sequence generation problem, an early bird prob-
lem, and a connectivity recognition problem for two-dimensional binary images, all
of which are classical, fundamental problems that have been studied extensively on
O(1)-bit communication models of cellular automata. The O(1)-bit communication
model is a conventional CA in which the number of communication bits exchanged
in one step between neighboring cells is assumed to be O(1) bits. However, such bit
information exchanged between inter-cells is hidden behind the definition of con-
ventional automata-theoretic finite state descriptions. On the other hand, the 1-bit
inter-cell communication model studied in the present paper is a new subclass of
CAs, in which inter-cell communication is restricted to 1-bit communication. We
refer to this model as the 1-bit CA and denote the model as CA1-bit. The number
of internal states of the CA1-bit is assumed to be finite as in a usual sense. The next
state of each cell is determined based on the present state of the cell and two binary
1-bit inputs from its left and right neighbor cells. Thus, the CA1-bit is one of the
weakest and simplest models among the variants of the CAs. A main question in
this paper is whether the CA1-bit can solve problems solved by conventional cellular
automata without any overhead in time complexities.
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In Sect. 6.2, we define the 1-bit communication cellular automaton and review
a computational relation between the conventional O(1)-bit-communication CA
and the CA1-bit. In Sect. 6.3, a firing squad synchronization problem is studied
and several state-efficient 1-bit implementations of synchronization algorithms for
one-dimensional cellular arrays are presented. In Sect. 6.4 we consider an integer
sequence generation problem on the CA1-bit and present a real-time prime gener-
ator with 34 states. In Sect. 6.5, we study an early bird problem and its 37-state
implementation operating in twice real-time will be given. In Sects. 6.6 and 6.7, a
two-dimensional (2-D) version of the CA1-bit is introduced and the firing squad syn-
chronization problem is studied again on the 2-D CA1-bit. In Sect. 6.7, a connectivity
recognition algorithm for two-dimensional binary images will be presented.

6.2 One-Bit-Communication Cellular Automata

A one-dimensional 1-bit inter-cell communication cellular automaton (CA1-bit)
consists of a finite array of identical finite state automata, each located at a positive
integer point. Each automaton is referred to as a cell. The cell at point i is denoted
by Ci where i ≥ 1. Each Ci , except for C1 and Cn , is connected with its left and
right neighbor cells via a left or right one-way communication link, where those
communication links are indicated by right- and left-going arrows, respectively, as
shown in Fig. 6.1. Each one-way communication link can transmit only one bit at
each step in each direction.

A cellular automaton with 1-bit inter-cell communication (abbreviated as CA1-bit)
consists of a finite array of finite state automaton A = (Q, δ), where

1. Q is a finite set of internal states.
2. δ is a function that defines the next state of any cell and its binary outputs to its

left and right neighbor cells such that δ: Q×{0, 1}×{0, 1} → Q×{0, 1}×{0, 1}
where δ(p, x, y) = (q, x ′, y′), p, q ∈ Q, x, x ′, y, y′ ∈ {0, 1}, has the following
meaning: We assume that, at step t, the cell Ci is in state p and receives binary
inputs x and y from its left and right communication links, respectively. Then,
at the next step t+1, Ci takes a state q and outputs x ′ and y′ to its left and right
communication links, respectively. Note that binary inputs to Ci at step t are also
outputs of Ci−1 and Ci+1 at step t. A quiescent state q ∈ Q has a property such
that δ(q, 0, 0) = (q, 0, 0).

Thus, the CA1-bit is a special subclass of normal (i.e., conventional) cellular
automata. Let N be any normal cellular automaton with a set of states Q and a
transition function δ : Q3 → Q. The state of each cell on N depends on the

C1 C2 C3 C4 Cn

Fig. 6.1 One-dimensional cellular automaton connected with 1-bit inter-cell communication links
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cell’s previous state and states on its nearest neighbor cells. This means that the
total information exchanged per step between neighboring cells is O(1) bits. Each
state in Q can be encoded with a binary sequence of length #log2 |Q|$ and then
sending the binary sequences sequentially bit-by-bit in each direction via each one-
way communication link. The sequences are then received bit-by-bit and decoded
into their corresponding states in Q. Thus, the CA1-bit can simulate one step of
N in #log2 |Q|$ steps. This observation gives the following computational relation
between the normal CA and CA1-bit.

Theorem 1 (Mazoyer [21], Umeo and Kamikawa [37]) Let N be any normal cellu-
lar automaton operating in T (n) steps with internal state set Q. Then, there exists
a CA1-bit that can simulate N in kT (n) steps, where k is a positive constant integer
such that k = #log2 |Q|$.

A question is whether the CA1-bit can solve problems solved by conventional
cellular automata without any overhead in time complexities. In some cases, the
answer is yes.

6.3 Firing Squad Synchronization Problem

Section 6.3 studies the firing squad synchronization problem (FSSP) on CA1-bit, the
solution of which yields a finite-state protocol for large-scale synchronization of
cellular automata. This problem was originally proposed by J. Myhill in Moore [23]
to synchronize all parts of self-reproducing cellular automata. The firing squad syn-
chronization problem has been studied extensively for more than 50 years. Recent
developments in the FSSP algorithms are given in Umeo [33] and Umeo et al.
[35]. An optimum-time (i.e., (2n − 2)-step for n cells) synchronization algorithm
for one-dimensional array was devised first by Goto [10]. The algorithm needed
many thousands of internal states for its realization. Afterwards, Waksman [45],
Balzer [4], Gerken [9] and Mazoyer [19] developed an optimum-time algorithm and
reduced the number of states realizing the algorithm, each with 16, 8, 7 and 6 states
on the conventional O(1)-bit communication model.

The FSSP is defined as follows: At time t = 0, the left end cell C1 is in the
fire-when-ready state, which is the initiation signal for the array. The FSSP is to
determine a description (state set and next-state function) for cells that ensures all
cells enter the fire state at exactly the same time and for the first time. The set of
states and the next-state function must be independent of n.

6.3.1 FSSP with a General at One End

Here we briefly sketch the design scheme for the firing squad synchronization algo-
rithm according to Waksman [45] in which the first transition rule set was presented.
It is quoted from Waksman [45].
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The code book of the state transitions of machines is so arranged to cause the array to pro-
gressively divide itself into 2k equal parts, where k is an integer and an increasing function
of time. The end machines in each partition assume a special state so that when the last
partition occurs, all the machines have for both neighbors machines at this state. This is
made the only condition for any machine to assume terminal state.

Figure 6.2 (left) is a space-time diagram for the Waksman’s optimum-step firing
squad synchronization algorithm. The general at time t = 0 emits an infinite number
of signals which propagate at 1/(2k+1 −1) speed, where k is positive integer. These
signals meet with a reflected signal at half point, quarter points, . . . , etc., denoted
by % in Fig. 6.2 (left). It is noted that these cells indicated by % are synchronized.
By increasing the number of synchronized cells exponentially, eventually all of the
cells are synchronized.

Most of the implementations for the optimum-time synchronization algorithms
developed so far on CA1-bit are based on the space-time diagram shown in Fig. 6.2
(left). Mazoyer [21] developed an optimum-time synchronization algorithm for the
CA1-bit based on Balzer [4]. Each cell of the constructed CA1-bit had 58 internal
states. The original set of transition rules constructed in Mazoyer [21] included a
small error. Here we show a reconstructed version in Table 6.1. Figure 6.3 shows
some snapshots of the synchronization processes on 21 cells, each for Balzer’s
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Fig. 6.2 Space-time diagram for optimum-time synchronization algorithms with a general at the
left end (left) and a generalized case where a general at an arbitrary point (right)



6 Problem Solving on One-Bit-Communication Cellular Automata 121

Table 6.1 Reconstructed transition table for Mazoyer’s 1-bit implementation (Mazoyer [21])

1 R = 0 R  = 1

L = 0

L = 1

0

(0,0,0) --

(ir,0,1) --

2 R = 0 R  = 1

L = 0

L = 1

ir

(kr,1,0) (kr,1,0)

(2ar,0,0) (2ar,0,0)

3 R = 0 R  = 1

L = 0

L = 1

F

-- --

-- --

4 R = 0 R  = 1

L = 0

L = 1

kr

(Exl,0,1) (il,1,0)

(Oddr,0,0) (Ex!r,1,0)

5 R = 0 R  = 1

L = 0

L = 1

pF

(pF,0,0) (F,0,0)

(F,0,0) (F,0,0)

6 R = 0 R  = 1

L = 0

L = 1

2ar

(2b,0,1) (pF,1,1)

-- --

7 R = 0 R  = 1

L = 0

L = 1

2b

-- (2c,0,1)

(2c,1,0) --

8 R = 0 R  = 1

L = 0

L = 1

2c

(2c,0,0) (pF,1,1)

(pF,1,1) --

9 R = 0 R  = 1

L = 0

L = 1

Oddr

-- (Oor,1,0)

-- (3m,0,1)

10 R = 0 R  = 1

L = 0

L = 1

Oor

(Oo*r,0,0) (il,1,0)

-- --

11 R = 0 R  = 1

L = 0

L = 1

Oo*r

(Oor,0,0) (Oe,1,0)

(Op,0,0) (Orl,1,0)

12 R = 0 R  = 1

L = 0

L = 1

Oe

(Oe*,0,0) (Exr,1,0)

(Exl,0,1) --

13 R = 0 R  = 1

L = 0

L = 1

Oe*

(Oe,0,0) (Oor,1,0)

(Ool,0,1) --

14 R = 0 R  = 1

L = 0

L = 1

Op

(Op*,0,0) (il,1,0)

(ir,0,1) --

15 R = 0 R  = 1

L = 0

L = 1

Op*

(Op,0,0) (Orl,1,0)

(Orr,0,1) --

16 R = 0 R  = 1

L = 0

L = 1

Orr

(Or*r,0,0) (Rr,1,0)

(pLl,0,1) --

17 R = 0 R  = 1

L = 0

L = 1

Or*r

(Orr,0,0) (Oe,1,0)

(Om,1,1) --

18 R = 0 R  = 1

L = 0

L = 1

Om

(Om*,0,0) (M,1,1)

(M,1,1) --

19 R = 0 R  = 1

L = 0

L = 1

Om*

(Om,0,0) (Orr,0,0)

(Orl,0,0) --

20 R = 0 R  = 1

L = 0

L = 1

Exr

(il,0,0) (Ex!l,0,0)

(Ee,0,1) (Err,0,1)

21 R = 0 R  = 1

L = 0

L = 1

Ex!r

(2ar,0,0) (Ex!l,0,0)

-- (pF,1,1)

22 R = 0 R  = 1

L = 0

L = 1

3m

(3m*,0,0) (M,1,1)

(M,1,1) --

23 R = 0 R  = 1

L = 0

L = 1

3m*

(3m,0,0) (3r,0,0)

(3r,0,0) --

24 R = 0 R  = 1

L = 0

L = 1

3l

(3l*,0,0) (pLr,1,0)

(pLl,0,1) --

25 R = 0 R  = 1

L = 0

L = 1

3l*

(3l,0,0) (3m,0,1)

(3m,1,0) --

26 R = 0 R  = 1

L = 0

L = 1

Err

(Er*r,0,0) (Rr,1,0)

(pLl,0,1) --

27 R = 0 R  = 1

L = 0

L = 1

Er*r

(Err,0,0) (Eor,1,0)

(Em,1,1) --

28 R = 0 R  = 1

L = 0

L = 1

Ep

(Ep*,0,0) (il,1,0)

(ir,0,1) --

29 R = 0 R  = 1

L = 0

L = 1

Ep*

(Ep,0,0) (Erl,1,0)

(Err,0,1) --

30 R = 0 R  = 1

L = 0

L = 1

Eor

(Eo*r,0,0) (il,1,0)

-- --

31 R = 0 R  = 1

L = 0

L = 1

Eo*r

(Eor,0,0) (Ee,1,0)

(Ep,0,0) (Erl,1,0)

32 R = 0 R  = 1

L = 0

L = 1

Em

(Em*,0,0) (M,1,1)

(M,1,1) --

33 R = 0 R  = 1

L = 0

L = 1

Em*

(Em,0,0) (Err,0,0)

(Erl,0,0) --

34 R = 0 R  = 1

L = 0

L = 1

Rr

-- (pF,1,0)

-- --

35 R = 0 R  = 1

L = 0

L = 1

M

(pF,1,1) --

-- --

36 R = 0 R  = 1

L = 0

L = 1

pLr

(Lr,1,1) (Lr,1,1)

-- --

37 R = 0 R  = 1

L = 0

L = 1

Lr

(pF,0,1) --

(F,0,0) --

38 R = 0 R  = 1

L = 0

L = 1

irW

(pF,0,1) --

-- --

39 R = 0 R  = 1

L = 0

L = 1

0W

(0W,0,0) --

(ilW,1,0) --

40 R = 0 R  = 1

L = 0

L = 1

3r

(3r*,0,0) (Rr,1,0)

(Rl,0,1) --

41 R = 0 R  = 1

L = 0

L = 1

3r*

(3r,0,0) (3l,0,0)

(3l,0,0) --

42 R = 0 R  = 1

L = 0

L = 1

Ee

(Ee*,0,0) (Exr,1,0)

(Exl,0,1) --

43 R = 0 R  = 1

L = 0

L = 1

Ee*

(Ee,0,0) (Eor,1,0)

(Eol,0,1) --

44 R = 0 R  = 1

L = 0

L = 1

ilW

(pF,1,0) --

(F,0,0) --

45 R = 0 R  = 1

L = 0

L = 1

2al

(2b,1,0) --

(pF,1,1) --

46 R = 0 R  = 1

L = 0

L = 1

Oddl

-- --

(Ool,0,1) (3m,1,0)

47 R = 0 R  = 1

L = 0

L = 1

Ool

(Oo*l,0,0) --

(ir,0,1) --

48 R = 0 R  = 1

L = 0

L = 1

Oo*l

(Ool,0,0) (Op,0,0)

(Oe,0,1) (Orr,0,1)

49 R = 0 R  = 1

L = 0

L = 1

Orl

(Or*l,0,0) (pLr,1,0)

(Rl,0,1) --

50 R = 0 R  = 1

L = 0

L = 1

Or*l

(Orl,0,0) (Om,1,1)

(Oe,0,1) --

51 R = 0 R  = 1

L = 0

L = 1

Exl

(ir,0,0) (Ee,1,0)

(Ex!r,0,0) (Erl,1,0)

52 R = 0 R  = 1

L = 0

L = 1

Ex!l

(2al,0,0) --

(Ex!r,0,0) (pF,1,1)

53 R = 0 R  = 1

L = 0

L = 1

Erl

(Er*l,0,0) (pLr,1,0)

(Rl,0,1) --

54 R = 0 R  = 1

L = 0

L = 1

Er*l

(Erl,0,0) (Em,1,1)

(Eol,0,1) --

55 R = 0 R  = 1

L = 0

L = 1

Eol

(Eo*l,0,0) --

(ir,0,1) --

56 R = 0 R  = 1

L = 0

L = 1

Eo*l

(Eol,0,0) (Ep,0,0)

(Ee,0,1) (Err,0,1)

57 R = 0 R  = 1

L = 0

L = 1

Rl

-- --

(pF,0,1) --

58 R = 0 R  = 1

L = 0

L = 1

pLl

(Ll,1,1) --

(Ll,1,1) --

59 R = 0 R  = 1

L = 0

L = 1

Ll

(pF,1,0) (F,0,0)

-- --

60 R = 0 R  = 1

L = 0

L = 1

il

(kl,0,1) (2al,0,0)

(kl,0,1) (2al,0,0)

61 R = 0 R  = 1

L = 0

L = 1

kl

(Exr,1,0) (Oddl,0,0)

(ir,0,1) (Ex!l,0,1)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 irW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

1 pF ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

2 pF 2ar ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

3 pF 2b kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

4 pF 2c Oddr kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

5 pF 2c 3m Exl kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

6 pF 2c 3m* Erl Oddr kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0 0W

7 pF 2c 3r Er*l Oor Exl kr ir 0 0 0 0 0 0 0 0 0 0 0 0 0W

8 pF 2c 3r* Em Oo*r Ee Oddr kr ir 0 0 0 0 0 0 0 0 0 0 0 0W

9 pF 2c 3l Em* Orl Ee* Oor Exl kr ir 0 0 0 0 0 0 0 0 0 0 0W

10 pF 2c 3l* Err Or*l Eor Oo*r Ee Oddr kr ir 0 0 0 0 0 0 0 0 0 0W

11 pF 2c 3l Er*r Om Eo*r Oe Ee* Oor Exl kr ir 0 0 0 0 0 0 0 0 0W

12 pF 2c 3l* Eor Om* Erl Oe* Eor Oo*r Ee Oddr kr ir 0 0 0 0 0 0 0 0W

13 pF 2c 3m Eo*r Orr Er*l Oor Eo*r Oe Ee* Oor Exl kr ir 0 0 0 0 0 0 0W

14 pF 2c 3m* Ep Or*r Em Oo*r Ee Oe* Eor Oo*r Ee Oddr kr ir 0 0 0 0 0 0W

15 pF 2c 3m Ep* Oe Em* Orl Ee* Oor Eo*r Oe Ee* Oor Exl kr ir 0 0 0 0 0W

16 pF 2c 3m* Erl Oe* Err Or*l Eor Oo*r Ee Oe* Eor Oo*r Ee Oddr kr ir 0 0 0 0W

17 pF 2c 3r Er*l Oe Er*r Om Eo*r Oe Ee* Oor Eo*r Oe Ee* Oor Exl kr ir 0 0 0W

18 pF 2c 3r* Erl Oe* Eor Om* Erl Oe* Eor Oo*r Ee Oe* Eor Oo*r Ee Oddr kr ir 0 0W

19 pF 2c 3r Er*l Oor Eo*r Orr Er*l Oor Eo*r Oe Ee* Oor Eo*r Oe Ee* Oor Exl kr ir 0W

20 pF 2c 3r* Em Oo*r Eor Or*r Em Oo*r Ee Oe* Eor Oo*r Ee Oe* Eor Oo*r Ee Oddr kr ilW

21 pF 2c 3l Em* Op Eo*r Oe Em* Orl Ee* Oor Eo*r Oe Ee* Oor Eo*r Oe Ee* Oor il pF

22 pF 2c 3l* Em Op* Ee Oe* Err Or*l Eor Oo*r Ee Oe* Eor Oo*r Ee Oe* Eor il 2al pF

23 pF 2c 3l Em* Orl Ee* Oe Er*r Om Eo*r Oe Ee* Oor Eo*r Oe Ee* Oor il kl 2b pF

24 pF 2c 3l* Err Or*l Ee Oe* Eor Om* Erl Oe* Eor Oo*r Ee Oe* Eor il kl Oddl 2c pF

25 pF 2c 3l Er*r Orl Ee* Oor Eo*r Orr Er*l Oor Eo*r Oe Ee* Oor il kl Exr 3m 2c pF

26 pF 2c 3l* Err Or*l Eor Oo*r Eor Or*r Em Oo*r Ee Oe* Eor il kl Oddl Err 3m* 2c pF

27 pF 2c 3l Er*r Om Eo*r Oor Eo*r Oe Em* Orl Ee* Oor il kl Exr Ool Er*r 3r 2c pF

28 pF 2c 3l* Eor Om* Ep Oo*r Ee Oe* Err Or*l Eor il kl Oddl Ee Oo*l Em 3r* 2c pF

29 pF 2c 3m Eo*r Om Ep* Oe Ee* Oe Er*r Om il kl Exr Ool Ee* Orr Em* 3l 2c pF

30 pF 2c 3m* Ep Om* Erl Oe* Ee Oe* Eor M kl Oddl Ee Oo*l Eol Or*r Erl 3l* 2c pF

31 pF 2c 3m Ep* Orr Er*l Oe Ee* Oor il pF ir Ool Ee* Oe Eo*l Om Er*l 3l 2c pF

32 pF 2c 3m* Ep Or*r Erl Oe* Eor il 2al pF 2ar ir Eol Oe* Err Om* Eol 3l* 2c pF

33 pF 2c 3m Ep* Orr Er*l Oor il kl 2b pF 2b kr ir Ool Er*r Orl Eo*l 3m 2c pF

34 pF 2c 3m* Ep Or*r Em il kl Oddl 2c pF 2c Oddr kr ir Em Or*l Ep 3m* 2c pF

35 pF 2c 3m Ep* Oe M kl Exr 3m 2c pF 2c 3m Exl kr M Oe Ep* 3m 2c pF

36 pF 2c 3m* Erl Exr pF Ex!l Err 3m* 2c pF 2c 3m* Erl Ex!r pF Exl Err 3m* 2c pF

37 pF 2c 3r pLr Ex!l pF Ex!r pLl 3r 2c pF 2c 3r pLr Ex!l pF Ex!r pLl 3r 2c pF

38 pF 2c Rr Lr 2al pF 2ar Ll Rl 2c pF 2c Rr Lr 2al pF 2ar Ll Rl 2c pF

39 pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF

40 F F F F F F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 M L L L L L L L L L L L L L L L L L L L L

1 M C L L L L L L L L L L L L L L L L L L L

2 M C C L L L L L L L L L L L L L L L L L L

3 M C R C L L L L L L L L L L L L L L L L L

4 M C R B C L L L L L L L L L L L L L L L L

5 M C C B R C L L L L L L L L L L L L L L L

6 M C C R R B C L L L L L L L L L L L L L L

7 M C C R B B R C L L L L L L L L L L L L L

8 M C C C B R R B C L L L L L L L L L L L L

9 M C R C R R B B R C L L L L L L L L L L L

10 M C R C R B B R R B C L L L L L L L L L L

11 M C R C C B R R B B R C L L L L L L L L L

12 M C R B C R R B B R R B C L L L L L L L L

13 M C C B C R B B R R B B R C L L L L L L L

14 M C C B C C B R R B B R R B C L L L L L L

15 M C C B R C R R B B R R B B R C L L L L L

16 M C C R R C R B B R R B B R R B C L L L L

17 M C C R R C C B R R B B R R B B R C L L L

18 M C C R R B C R R B B R R B B R R B C L L

19 M C C R B B C R B B R R B B R R B B R C L

20 M C C C B B C C B R R B B R R B B R R B M

21 M C R C B B R C R R B B R R B B R R B A M

22 M C R C B R R C R B B R R B B R R B Q R M

23 M C R C R R R C C B R R B B R R B Q R Q M

24 M C R C R R R B C R R B B R R B Q R L Q M

25 M C R C R R B B C R B B R R B Q R A Q Q M

26 M C R C R B B B C C B R R B Q R L L Q Q M

27 M C R C C B B B R C R R B Q R A A L Q Q M

28 M C R B C B B R R C R B Q R L L A Q Q Q M

29 M C C B C B R R R C C Q R A A L L Q L Q M

30 M C C B C R R R R B M R L L A A L Q L Q M

31 M C C B C R R R B A M B A L L A Q Q L Q M

32 M C C B C R R B Q R M L C A L L Q A L Q M

33 M C C B C R B Q R Q M C L C A L Q A Q Q M

34 M C C B C C Q R L Q M C R L C Q Q A Q Q M

35 M C C B R M R A Q Q M C C B L M L A Q Q M

36 M C C R Q M C L Q Q M C C R Q M C L Q Q M

37 M C C Q Q M C C Q Q M C C Q Q M C C Q Q M

38 M C M M Q M C M M Q M C M M Q M C M M Q M

39 M M M M M M M M M M M M M M M M M M M M M

40 F F F F F F F F F F F F F F F F F F F F F

Fig. 6.3 Snapshots for synchronization processes on 21 cells, each for Balzer’s algorithm [4] on
the O(1)-bit-communication model (left) and the reconstructed 1-bit implementation on the CA1-bit
(right)

algorithm [4] on the O(1)-bit-communication model (left) and the reconstructed
1-bit implementation on the CA1-bit (right). The small right- and left-facing black
triangles, � and �, in the figure, indicate a 1-bit signal transfer in the right or left
direction between neighbor cells. The symbol in each cell shows its internal state.
Nishimura et al. [25] also constructed an optimum-time synchronization algorithm
(NSU algorithm for short) based on Waksman’s algorithm [45]. Each cell had 78
internal states and 208 transition rules. Figure 6.4 shows snapshots for synchro-
nization processes on 21 cells, each for Waksman’s algorithm [45] on O(1)-bit-
communication model (left) and NSU algorithm [25] on CA1-bit (right).

Theorem 2 (Mazoyer [21], Nishimura, Sogabe and Umeo [25]) There exists a
CA1-bit that can synchronize n cells with the general at a left end in 2n − 2 steps.

Umeo et al. [42] developed a non-optimum-step synchronization algorithm for
CA1-bit based on Mazoyer’s 6-state algorithm [19] for the O(1)-bit model. The
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 PW Q Q Q Q Q Q Q Q Q Q Q Q Q QW

1 PW AR’ Q Q Q Q Q Q Q Q Q Q Q Q QW

2 PW AR’ Q Q Q Q Q Q Q Q Q Q Q QW

3 PW sub AR’ Q Q Q Q Q Q Q Q Q Q QW

4 PW odd sub AR’ Q Q Q Q Q Q Q Q Q QW

5 PW QR0S QRB sub AR’ Q Q Q Q Q Q Q Q QW

6 PW QRC odd sub AR’ Q Q Q Q Q Q Q QW

7 PW QRD QRC QRB sub AR’ Q Q Q Q Q Q QW

8 PW QR10 QRD QRC odd sub AR’ Q Q Q Q Q QW

9 PW QR11 QRA QRD QRC QRB sub AR’ Q Q Q Q QW

10 PW QR10 QRB QRA QRD QRC odd sub AR’ Q Q Q QW

11 PW RL1 QR00 QRB QRA QRD QRC QRB sub AR’ Q Q QW

12 PW QR1S QR01 QRC QRB QRA QRD QRC odd sub AR’ Q QW

13 PW QR0S QR00 QRD QRC QRB QRA QRD QRC QRB sub AR’ QW

14 PW RL0 QR10 QRD QRC QRB QRA QRD QRC odd sub PW

15 PW QR0S QR11 QRA QRD QRC QRB QRA QRD QRC AL0 PW

16 PW QR01 QR10 QRB QRA QRD QRC QRB QRA AL PW

17 PW QR00 RL1 QR00 QRB QRA QRD QRC AL QLA PW

18 PW RL0 QR1S QR01 QRC QRB QRA AL QLA QLB PW

19 PW QR0S QR11 QR00 QRD QRC AL QLA QLB QL0S PW

20 PW QR10 QR10 RL0 QR10 AL QLA QLB QLC PW

21 PW QR11 RL1 QR0S QR11 P1s QLA QLB QLC QLD PW

22 PW QR10 QR1S QR01 AL P1 AR QLC QLD QL10 PW

23 PW QR11 QR11 AL QLA P1 QRA AR QLA QL11 PW

24 PW QR10 AL QLA P1 QRA AR QL10 PW

25 PW QR11 P1d PA QLB P1 QRB PA P1d RR1 PW

26 PW AL P1 P1 AR P1 AL P1 P1 AR PW

27 PW P1 PA P1 P1 PA P1 P1 P1 PA P1 P1 PA P1 PW

28 T T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 P0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 P0A010Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 P0 B0A011Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 P0 B0 Q A010Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 P0 B0 R0 Q A011Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 P0 R0 B1 Q Q A010Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 P0 B0 B1 Q R0 Q A011Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 P0 B0 B1 R0 Q Q Q A010Q Q Q Q Q Q Q Q Q Q Q Q Q

8 P0 B0 Q B0 Q Q R0 Q A011Q Q Q Q Q Q Q Q Q Q Q Q

9 P0 B0 Q B0 Q R0 Q Q Q A010Q Q Q Q Q Q Q Q Q Q Q

10 P0 B0 Q B0 R0 Q Q Q R0 Q A011Q Q Q Q Q Q Q Q Q Q

11 P0 B0 Q R0 B1 Q Q R0 Q Q Q A010Q Q Q Q Q Q Q Q Q

12 P0 B0 R0 Q B1 Q R0 Q Q Q R0 Q A011Q Q Q Q Q Q Q Q

13 P0 R0 B1 Q B1 R0 Q Q Q R0 Q Q Q A010Q Q Q Q Q Q Q

14 P0 B0 B1 Q Q B0 Q Q R0 Q Q Q R0 Q A011Q Q Q Q Q Q

15 P0 B0 B1 Q Q B0 Q R0 Q Q Q R0 Q Q Q A010Q Q Q Q Q

16 P0 B0 B1 Q Q B0 R0 Q Q Q R0 Q Q Q R0 Q A011Q Q Q Q

17 P0 B0 B1 Q Q R0 B1 Q Q R0 Q Q Q R0 Q Q Q A010Q Q Q

18 P0 B0 B1 Q R0 Q B1 Q R0 Q Q Q R0 Q Q Q R0 Q A011Q Q

19 P0 B0 B1 R0 Q Q B1 R0 Q Q Q R0 Q Q Q R0 Q Q Q A010Q

20 P0 B0 Q B0 Q Q Q B0 Q Q R0 Q Q Q R0 Q Q Q R0 Q P0

21 P0 B0 Q B0 Q Q Q B0 Q R0 Q Q Q R0 Q Q Q R0 Q A000P0

22 P0 B0 Q B0 Q Q Q B0 R0 Q Q Q R0 Q Q Q R0 Q A001B0 P0

23 P0 B0 Q B0 Q Q Q R0 B1 Q Q R0 Q Q Q R0 Q A000Q B0 P0

24 P0 B0 Q B0 Q Q R0 Q B1 Q R0 Q Q Q R0 Q A001Q R1 B0 P0

25 P0 B0 Q B0 Q R0 Q Q B1 R0 Q Q Q R0 Q A000Q Q B1 R1 P0

26 P0 B0 Q B0 R0 Q Q Q Q B0 Q Q R0 Q A001Q R1 Q B1 B0 P0

27 P0 B0 Q R0 B1 Q Q Q Q B0 Q R0 Q A000Q Q Q R1 B1 B0 P0

28 P0 B0 R0 Q B1 Q Q Q Q B0 R0 Q A001Q R1 Q Q B0 Q B0 P0

29 P0 R0 B1 Q B1 Q Q Q Q R0 B1A000Q Q Q R1 Q B0 Q B0 P0

30 P0 B0 B1 Q B1 Q Q Q R0 Q P0 Q R1 Q Q Q R1 B0 Q B0 P0

31 P0 B0 B1 Q B1 Q Q R0 Q A000P0A010Q R1 Q Q B1 R1 Q B0 P0

32 P0 B0 B1 Q B1 Q R0 Q A001B0 P0 B0A011Q R1 Q B1 Q R1 B0 P0

33 P0 B0 B1 Q B1 R0 Q A000Q B0 P0 B0 Q A010Q R1 B1 Q B1 R1 P0

34 P0 B0 B1 Q Q B0A001Q R1 B0 P0 B0 R0 Q A011B0 Q Q B1 B0 P0

35 P0 B0 B1 Q Q P1 Q Q B1 R1 P0 R0 B1 Q Q P1 Q Q B1 B0 P0

36 P0 B0 B1 Q A100P1A110Q B1 B0 P0 B0 B1 Q A100P1A110Q B1 B0 P0

37 P0 B0 B1A101R1 P1 R0A111B1 B0 P0 B0 B1A101R1 P1 R0A111B1 B0 P0

38 P0 B0 P0 P0 B0 P1 B0 P0 P0 B0 P0 B0 P0 P0 B0 P1 B0 P0 P0 B0 P0

39 P0 P0 P0 P0 P0 P1 P0 P0 P0 P0 P0 P0 P0 P0 P0 P1 P0 P0 P0 P0 P0

40 T T T T T T T T T T T T T T T T T T T T T

Fig. 6.4 Snapshots for synchronization processes on 21 cells, each for Waksman’s algorithm [45]
on O(1)-bit-communication model (left) and NSU implementation [25] on CA1-bit (right)

constructed CA1-bit synchronizes n cell in 2n − 1 steps and each cell has 54 states
and 207 transition rules.

Theorem 3 (Umeo, Yanagihara and Kanazawa [42]) There exists a 54-state CA1-bit
that can synchronize any n cells in 2n − 1 non-optimum-step.

Umeo and Yanagihara [41] also constructed a smaller optimum-time implemen-
tation based on Gerken’s synchronization algorithm [9] on the O(1)-bit-
communication model. The constructed CA1-bit has 35 internal states and 114 tran-
sition rules. Table 6.2 presents its transition rule set for the 35-state synchronization
protocol and Figure 6.5 shows snapshots for synchronization processes on 17 cells,
each for Gerken’s algorithm [9] on O(1)-bit-communication model (left) and our
35-state algorithm [41] on the CA1-bit (right).

Theorem 4 (Umeo and Yanagihara [41]) There exists a 35-state CA1-bit that can
synchronize n cells with the general on the left end in 2n − 2 steps.
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Table 6.2 Transition table for a 35-state implementation of the optimum-time synchronization
algorithm (Umeo and Yanagihara [41])

1 R = 0 R = 1

L = 0

L = 1

Q

(Q,0,0) (Q,0,0)

(RA,0,1) (LGW,1,1)

2 R = 0 R = 1

L = 0

L = 1

RGW

(RGW,0,1) (F,0,0)

(RGW,1,1) (F,0,0)

3 R = 0 R = 1

L = 0

L = 1

RPW

(RPW,0,1) (LGW,1,1)

-- --

4 R = 0 R = 1

L = 0

L = 1

RA

(RQoS,0,0) --

(RP,0,0) --

5 R = 0 R = 1

L = 0

L = 1

RQoS

(RQ0A,0,1) (LP’,1,0)

(RQeS,0,0) (LP,1,0)

6 R = 0 R = 1

L = 0

L = 1

RQeS

(RQ1B,1,0) --

(RG1,0,1) --

7 R = 0 R = 1

L = 0

L = 1

RQ1A

(RQ0A,0,0) (LG,1,0)

-- --

8 R = 0 R = 1

L = 0

L = 1

RQ0A

(RQ1A,0,0) (RQ1A,1,0)

(RQ1A,0,0) (RP1,1,1)

9 R = 0 R = 1

L = 0

L = 1

RQ1B

(RQ0B,0,0) (LP,1,0)

-- --

10 R = 0 R = 1

L = 0

L = 1

RQ0B

(RQ1B,0,0) (RQ1B,1,0)

(RQ1B,0,0) (RG1,1,1)

11 R = 0 R = 1

L = 0

L = 1

RQ1C

(LQ1B,0,0) (LQ1C,0,0)

(RQ0C,0,0) (LP,1,0)

12 R = 0 R = 1

L = 0

L = 1

RQ0C

(LQ1A,0,1) --

(RQ1C,0,0) (RG1,0,1)

13 R = 0 R = 1

L = 0

L = 1

RG1

(RG0,0,0) (LPW,1,0)

(RG0,0,0) (LPW,1,0)

14 R = 0 R = 1

L = 0

L = 1

RG0

(RG1,0,1) (RQ1B,0,0)

(RG1,0,1) (RQ1C,0,0)

15 R = 0 R = 1

L = 0

L = 1

RP1

(RP0,0,0) (LGW,1,1)

-- --

16 R = 0 R = 1

L = 0

L = 1

RP0

(RP1,0,1) (RQ1A,1,0)

-- --

17 R = 0 R = 1

L = 0

L = 1

RG

(LQ1C,0,0) (LPW,1,0)

(LQ1C,0,0) (LPW,1,0)

18 R = 0 R = 1

L = 0

L = 1

RP

(LQ0C,0,0) (LGW,1,1)

(RP,0,1) (LGW,1,1)

19 R = 0 R = 1

L = 0

L = 1

LGW

(LGW,1,0) (LGW,1,1)

(F,0,0) (F,0,0)

20 R = 0 R = 1

L = 0

L = 1

LPW

(LPW,1,0) --

(RGW,1,1) --

21 R = 0 R = 1

L = 0

L = 1

LQ1A

(LQ0A,0,0) (LQ1B,0,0)

(RG,0,1) (LP1,1,0)

22 R = 0 R = 1

L = 0

L = 1

LQ1B

(LQ0B,0,0) (LQ1A,0,0)

(RP,0,1) (RP,0,0)

23 R = 0 R = 1

L = 0

L = 1

LQ0A

(LQ1A,0,0) (LQ1A,0,0)

(LQ1A,0,1) (LP1,1,1)

24 R = 0 R = 1

L = 0

L = 1

LQ0B

(LQ1B,0,0) (LQ1B,0,0)

(LQ1B,0,1) (LG1,1,1)

25 R = 0 R  = 1

L = 0

L = 1

LQ1C

(RQ1B,0,0) (LQ0C,0,0)

(RQ1C,0,0) (RP,0,1)

26 R = 0 R  = 1

L = 0

L = 1

LQ0C

(RQ1A,1,0) (LQ1C,0,0)

-- (LG1,1,0)

27 R = 0 R  = 1

L = 0

L = 1

LG1

(LG0,0,0) (LG0,0,0)

(RPW,0,1) (RPW,0,1)

28 R = 0 R  = 1

L = 0

L = 1

LG0

(LG1,1,0) (LG1,1,0)

(LQ1B,0,0) (LQ1C,0,0)

29 R = 0 R  = 1

L = 0

L = 1

LP1

(LP0,0,0) (LP0,0,0)

(RGW,1,1) (RPW,0,0)

30 R = 0 R  = 1

L = 0

L = 1

LP0

(LP1,1,0) (LP1,1,0)

(LQ1A,0,1) (LQ1B,0,0)

31 R = 0 R  = 1

L = 0

L = 1

LG

(RQ1C,0,0) (RQ1C,0,0)

(RPW,0,1) (RPW,0,1)

32 R = 0 R  = 1

L = 0

L = 1

LP

(RQ0C,0,0) (LP,1,0)

(RGW,1,1) (RGW,1,1)

33 R = 0 R  = 1

L = 0

L = 1

LP’

-- (LQ1A,0,0)

-- (RPW,0,0)

34 R = 0 R  = 1

L = 0

L = 1

F

-- --

-- --

35 R = 0 R  = 1

L = 0

L = 1

QW

(QW,0,0) --

(LGW,1,0) --

6.3.2 Generalized FSSP with a General at an Arbitrary Point

Section 6.3.2 considers a generalized firing squad synchronization problem which
allows the initial general to be located anywhere on the array. It has been shown to be
impossible to synchronize any array of length n less than n − 2+max(k, n − k + 1)
steps, where the general is located on Ck , 1 ≤ k ≤ n. Moore and Langdon [24],
Szwerinski [30] and Varshavsky et al. [43] developed a generalized optimum-time
synchronization algorithm for O(1)-bit cellular automaton each with 17, 10 and 10
internal states, respectively, that can synchronize any array of length n at exactly
n − 2+max(k, n − k + 1) steps. Recently, Settle and Simon [28] and Umeo et al.
[34] have also proposed a 9-state generalized synchronization algorithm operating
in optimum-step for the O(1)-bit model.

Umeo et al. [34] developed a generalized synchronization algorithm on the
CA1-bit model operating in non-optimum steps. The implementation for the CA1-bit
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 RGW Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 RGW RA Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 RGW RP RA Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 RGW RP RQoSRA Q Q Q Q Q Q Q Q Q Q Q Q Q

4 RGW RP RQeSRQoSRA Q Q Q Q Q Q Q Q Q Q Q Q

5 RGW RP RG1RQ0ARQoSRA Q Q Q Q Q Q Q Q Q Q Q

6 RGW RP RG0RQ1ARQeSRQoSRA Q Q Q Q Q Q Q Q Q Q

7 RGW RP RG1RQ0ARQ1BRQ0ARQoSRA Q Q Q Q Q Q Q Q Q

8 RGW RP RG0 RP1RQ0BRQ1ARQeSRQoSRA Q Q Q Q Q Q Q Q

9 RGW RP RQ1CRP0RQ1BRQ0ARQ1BRQ0ARQoSRA Q Q Q Q Q Q Q

10 RGW RP RQ0CRP1RQ0BRQ1ARQ0BRQ1ARQeSRQoSRA Q Q Q Q Q Q

11 RGW RP RQ1CRP0 RG1RQ0ARQ1BRQ0ARQ1BRQ0ARQoSRA Q Q Q Q Q

12 RGW RP RQ0CRQ1ARG0RQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoSRA Q Q Q Q

13 RGW RP RG1RQ0ARG1RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQoSRA Q Q Q

14 RGW RP RG0RQ1ARG0 RP1RQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoSRA Q Q

15 RGW RP RG1RQ0ARQ1BRP0RQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQoSRA Q

16 RGW RP RG0RQ1ARQ0BRP1RQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoSLGW

17 RGW RP RG1RQ0ARQ1BRP0 RG1RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRA LGW

18 RGW RP RG0RQ1ARQ0BRQ1ARG0RQ1ARQ0BRQ1ARQ0BRQ1ARQ0BRQ1A LP LQ1ALGW

19 RGW RP RG1RQ0ARQ1BRQ0ARG1RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BLG LQ1CLQ1BLGW

20 RGW RP RG0 RP1RQ0BRQ1ARG0 RP1RQ0BRQ1ARQ0BRQ1A LP LQ0CLQ1ALQ1ALGW

21 RGW RP RQ1CRP0RQ1BRQ0ARQ1BRP0RQ1BRQ0ARQ1BLG LQ1CLQ1BLQ0ALP1 LGW

22 RGW RP RQ0CRP1RQ0BRQ1ARQ0BRP1RQ0BRQ1A LP LQ0CLQ1ALQ0BLQ1ALP0 LGW

23 RGW RP RQ1CRP0RQ1BRQ0ARQ1BRP0 RG1 LG LQ1CLQ1BLQ0ALQ1BLQ0ALP1 LGW

24 RGW RP RQ0CRP1RQ0BRQ1ARQ0BRQ1ALGWRGWLQ1ALQ0BLQ1ALQ0BLP1 LP0 LGW

25 RGW RP RQ1CRP0RQ1BRQ0ARQ1BLG LGWRGW RG LQ1BLQ0ALQ1BLP0LQ1BLGW

26 RGW RP RQ0CRP1RQ0BRQ1A LP LQ0CLGWRGWRQ0CRP LQ1ALQ0BLP1LQ1ALGW

27 RGW RP RQ1CRP0 RG1 LG LQ1CLQ1CLGWRGWRQ1CRQ1CRG LG1 LP0LQ1BLGW

28 RGW RP RQ0CRQ1ALGWRGWLQ1ALQ0CLGWRGWRQ0CRQ1ALGWRGWLQ1ALQ1ALGW

29 RGW RP RG1 LG LGWRGW RG LG1 LGWRGWRG1 LG LGWRGW RG LP1 LGW

30 RGW RP LGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGW

31 RGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWRGWLGWLGW

32 F F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 > / / / / / / / / / / / / / / / /
1 > ] / / / / / / / / / / / / / / /
2 > ] > / / / / / / / / / / / / / /
3 > ] ^ ] / / / / / / / / / / / / /
4 > ] ^ / > / / / / / / / / / / / /
5 > ] > ^ ^ ] / / / / / / / / / / /
6 > ] > ^ ^ / > / / / / / / / / / /
7 > ] > ^ / ^ ^ ] / / / / / / / / /
8 > ] > ] ^ ^ ^ / > / / / / / / / /
9 > ] ^ ] ^ ^ / ^ ^ ] / / / / / / /

10 > ] ^ ] ^ / ^ ^ ^ / > / / / / / /
11 > ] ^ ] > ^ ^ ^ / ^ ^ ] / / / / /
12 > ] ^ / > ^ ^ / ^ ^ ^ / > / / / /
13 > ] > ^ > ^ / ^ ^ ^ / ^ ^ ] / / /
14 > ] > ^ > ] ^ ^ ^ / ^ ^ ^ / > / /
15 > ] > ^ ^ ] ^ ^ / ^ ^ ^ / ^ ^ ] /
16 > ] > ^ ^ ] ^ / ^ ^ ^ / ^ ^ ^ / [
17 > ] > ^ ^ ] > ^ ^ ^ / ^ ^ ^ / < [
18 > ] > ^ ^ / > ^ ^ / ^ ^ ^ / [ < [
19 > ] > ^ / ^ > ^ / ^ ^ ^ / < [ / [
20 > ] > ] ^ ^ > ] ^ ^ ^ / [ < ^ / [
21 > ] ^ ] ^ ^ ^ ] ^ ^ / < [ / / < [
22 > ] ^ ] ^ ^ ^ ] ^ / [ < ^ / / < [
23 > ] ^ ] ^ ^ ^ ] > < [ / / ^ / < [
24 > ] ^ ] ^ ^ ^ / [ ] ^ / / / [ < [
25 > ] ^ ] ^ ^ / < [ ] > ^ / / [ / [
26 > ] ^ ] ^ / [ < [ ] > ] ^ / [ / [
27 > ] ^ ] > < [ / [ ] ^ ] > < [ / [
28 > ] ^ / [ ] ^ / [ ] ^ / [ ] ^ / [
29 > ] > < [ ] > < [ ] > < [ ] > < [
30 > ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [
31 > < > < > < > < > < > < > < > < >
32 F F F F F F F F F F F F F F F F F

Fig. 6.5 Snapshots for synchronization processes on 17 cells, each for Gerken’s algorithm [9] on
O(1)-bit-communication model (left) and the 35-state implementation (Umeo and Yanagihara [41])
on CA1-bit (right)

has 282-state and 721 transition rules. Kamikawa and Umeo [12] also devel-
oped a generalized synchronization algorithm on the CA1-bit model operating in
n+max(k, n − k + 1) steps, which is one-step larger than optimum-step. The total
numbers of internal states and transition rules of the constructed CA1-bit are 219 and
488, respectively. Figure 6.2 (right) shows a space-time diagram for the optimum-
time generalized firing squad synchronization algorithm. We also show some snap-
shots for the synchronization processes on 21 cells with a general at C7 on CA1-bit
in Fig. 6.6. We present Table 6.3 that shows a quantitative comparison of synchro-
nization algorithms and their implementations proposed so far with respect to the
number of internal states of each finite state automaton, the number of transition
rules realizing the synchronization and time complexity.

Theorem 5 (Kamikawa and Umeo [12]) There exists a 219-state, 488-transition-
rule CA1-bit that can synchronize n cells in n − 1+max(k, n − k + 1) steps, where k
is any integer such that 1 ≤ k ≤ n and a general is located on the kth cell from the
left end of the array.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 SW S S S S S M S S S S S S S S S S S S S SW

1 SW S S S S AL Mp1 AR S S S S S S S S S S S S SW

2 SW S S S AL RL Mp2 RR AR S S S S S S S S S S S SW

3 SW S S AL RL QLC Mp3 QRC RR AR S S S S S S S S S S SW

4 SW S AL RL QLa BLo Ms1 BRo QRa RR AR S S S S S S S S S SW

5 SW AL RL QLC QLb QLA Ms2 QRA QRb QRC RR AR S S S S S S S S SW

6 MW RL QLa BLo QLc QLB Ms3 QRB QRc BRo QRa RR AR S S S S S S S SW

7 MW ECo QLb QLA BLe QLC Ms1 QRC BRe QRA QRb QRC RR AR S S S S S S SW

8 MW Cp0 ECe QLB QLa BLo Ms1 BRo QRa QRB QRc BRo QRa RR AR S S S S S SW

9 MW Cp1 pRE0 ECo QLb QLA Ms2 QRA QRb QRC BRe QRA QRb QRC RR AR S S S S SW

10 MW Cp2 pRE1 pBO0 ECe QLB Ms3 QRB QRc BRo QRa QRB QRc BRo QRa RR AR S S S SW

11 MW Cp1 pRE2 pBO1 pRE0 ECo Ms1 QRC BRe QRA QRb QRC BRe QRA QRb QRC RR AR S S SW

12 MW Cp2 Ct1 pBO2 pRE1 pBO0 sFL1 BRo QRa QRB QRc BRo QRa QRB QRc BRo QRa RR AR S SW

13 MW Cp1 Ct2 RO1 pRE2 BO1 sFL2 QRAx QRb QRC BRe QRA QRb QRC BRe QRA QRb QRC RR AR SW

14 MW Cp2 Ct1 RO2 BE1 BO2 sFLx Fl1 QRc BRo QRa QRB QRc BRo QRa QRB QRc BRo QRa RR MW

15 MW Cp1 Ct2 CO1 BE2 RO1 sFLx Fl2 BRe QRA QRb QRC BRe QRA QRb QRC BRe QRA QRb EQo MW

16 MW Cp2 Rt1 CO2 RE1 RO2 RE1 Fl3 QRa QRB QRc BRo QRa QRB QRc BRo QRa QRB EQe Qp0 MW

17 MW Cp1 Rt2 CO1 RE2 RO1 RE2 RO1 FL1 QRC BRe QRA QRb QRC BRe QRA QRb EQo pLE0 Qp1 MW

18 MW Cp2 Rt1 CO2 RE1 RO2 RE1 RO2 FL2 BRo QRa QRB QRc BRo QRa QRB EQe pAO0 pLE1 Qp2 MW

19 MW Cp1 Rt2 CO1 RE2 RO1 RE2 BO1 FL3 QRAx QRb QRC BRe QRA QRb EQo pLE0 pAO1 pLE2 Qp1 MW

20 MW Cp2 Rt1 CO2 RE1 RO2 BE1 BO2 BE1 Fl1 QRc BRo QRa QRB EQe pAO0 pLE1 pAO2 Qt1 Qp2 MW

21 MW Cp1 Rt2 CO1 RE2 BO1 BE2 BO1 BE2 Fl2 BRe QRA QRb EQo pLE0 pAO1 pLE2 LO1 Qt2 Qp1 MW

22 MW Cp2 Rt1 CO2 CE1 BO2 BE1 BO2 RE1 Fl3 QRa QRB EQe pAO0 pLE1 pAO2 AE1 LO2 Qt1 Qp2 MW

23 MW Cp1 Rt2 BO1 CE2 BO1 BE2 RO1 RE2 RO1 FL1 EQo pLE0 pAO1 pLE2 LO1 AE2 QO1 Qt2 Qp1 MW

24 MW Cp2 Ct1 BO2 CE1 BO2 RE1 RO2 RE1 RO2 MC pAO0 pLE1 pAO2 AE1 LO2 LE1 QO2 Lt1 Qp2 MW

25 MW Cp1 Ct2 BO1 CE2 RO1 RE2 RO1 RE2 BO1 MC pAO1 pLE2 LO1 AE2 AO1 LE2 QO1 Lt2 Qp1 MW

26 MW Cp2 Ct1 BO2 CE1 RO2 RE1 RO2 BE1 eQo MC eCo AE1 LO2 LE1 AO2 QE1 QO2 Lt1 Qp2 MW

27 MW Cp1 Ct2 BO1 CE2 RO1 RE2 BO1 eQe Qp1 MC Cp1 eCe AO1 LE2 LO1 QE2 AO1 Lt2 Qp1 MW

28 MW Cp2 Ct1 BO2 CE1 RO2 BE1 eQo pLE1 Qp2 MC Cp2 pRE1 eCo AE1 LO2 QE1 AO2 Qt1 Qp2 MW

29 MW Cp1 Ct2 BO1 CE2 CO1 eQe pAO1 pLE2 Qp1 MC Cp1 pRE2 pBO1 eCe QO1 QE2 AO1 Qt2 Qp1 MW

30 MW Cp2 Ct1 BO2 RE1 MC pLE1 pAO2 Qt1 Qp2 MC Cp2 Ct1 pBO2 pRE1 MC LE1 AO2 Qt1 Qp2 MW

31 MW Cp1 Ct2 RO1 OQe MC OCe LO1 Qt2 Qp1 MC Cp1 Ct2 RO1 OQe MC OCe LO1 Qt2 Qp1 MW

32 MW Cp2 Ct1 OQo Qp0 MC Cp0 OCo Qt1 Qp2 MC Cp2 Ct1 OQo Qp0 MC Cp0 OCo Qt1 Qp2 MW

33 MW Cp1 pMC MC Qp1 MC Cp1 MC pMC Qp1 MC Cp1 pMC MC Qp1 MC Cp1 MC pMC Qp1 MW

34 MW MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MW

35 F F F F F F F F F F F F F F F F F F F F F

Fig. 6.6 Snapshots for the generalized synchronization processes on 21 cells with a general at C7
on CA1-bit
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Table 6.3 A list of firing squad synchronization algorithms for CA1-bit. A symbol “∗” indicates
the reconstructed rule set given in Table 6.1

Implementations
No. of
states

No. of
rules Time complexity

Prototype
algorithms

Mazoyer [21] 61∗(58) 167∗ 2n − 2 Balzer [4]
Nishimura et al. [25] 78 208 2n − 2 Waksmann [45]
Umeo et al. [42] 54 207 2n − 1 Mazoyer [19]
Umeo and Yanagihara [41] 35 114 2n − 2 Gerken [9]
Umeo et al. [34] 282 721 n + max(k, n − k + 1) –
Kamikawa and Umeo [12] 219 488 n − 1 + max(k, n − k + 1) –

6.4 Prime Sequence Generation Problem

Sequence generation is an important, fundamental problem in cellular automata.
Arisawa [3], Fischer [8], Korec [4] and Mazoyer and Terrier [20] have considered
the sequence generation problem on the conventional O(1)-bit cellular automata
model. Fischer [8] showed that the prime sequence can be generated in real-time
on the O(1)-bit cellular automata with 11 states for C1 and 37 states for Ci (i ≥ 2).
Arisawa [3] also developed a real-time prime generator and decreased the number
of states of each cell to 22. Korec [14] reported a real-time prime generator having
11 states on the same model.

Here we study a real-time prime generator on CA1-bit. The sequence generation
problem on CA1-bit can be defined as follows: Let M be a CA1-bit, and {tn| n =
1, 2, 3, . . .} be an infinite monotonically increasing positive integer sequence defined
on natural numbers such that tn ≥ n for any n ≥ 1. We then have a semi-infinite
array of cells, and all cells, except for C1, are in the quiescent state at time t = 0.
The communication cell C1 assumes a special state r in Q and outputs 1 to its right
communication link at time t = 0 for initiation of the sequence generator. We say
that M generates a sequence {tn| n = 1, 2, 3, . . .} in k linear-time if and only if
the leftmost end cell of M falls into a special state in F ⊆ Q and outputs 1 to its
leftmost communication link at time t = ktn , where k is a positive integer. We call
M a real-time generator when k = 1.

In this section, we present a real-time prime generation algorithm on CA1-bit.
The algorithm is implemented on a CA1-bit using 34 internal states and 71 transition
rules. Our real-time prime generation algorithm is based on the well-known sieve
of Eratosthenes. Details can be found in Umeo and Kamikawa [37]. Figure 6.7 is a
space-time diagram for the real-time prime generation algorithm. We have imple-
mented the algorithm on a computer. Each cell has 34 internal states and 71 transi-
tion rules. The transition rule set is given in Table 6.4. We have tested the validity
of the rule set from t = 0 to t = 20000 steps. In Fig. 6.8, we show a number of
snapshots of the configuration from t = 0 to 40. The readers can see that the first 11
primes can be generated in real-time by the left end cell. Now we have:

Theorem 6 (Umeo and Kamikawa [37]) Prime sequence can be generated by a
CA1-bit in real-time.

Table 6.5 is a list of typical non-regular sequences generated by CA1-bit in real-
time.
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Cell Space
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Fig. 6.7 Space-time diagram for real-time prime generation
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 P0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 P1 A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 P2 A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 So R A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 dd R A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 So B R A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 N0 U2 B A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 So U3 P WV A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 N0 C Z WT Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 N1 Z Z WT A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 N0 C Z WT A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

11 So Z C WT R A0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

12 N0 Z Z WX R A1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

13 So Z C wx R R A0 Q Q Q Q Q Q Q Q Q Q Q Q Q

14 N0 C Z J0 R R A1 Q Q Q Q Q Q Q Q Q Q Q Q Q

15 N1 Z Z J1 B R R A0 Q Q Q Q Q Q Q Q Q Q Q Q

16 N0 C Z WZ S C R A1 Q Q Q Q Q Q Q Q Q Q Q Q

17 So Z C WZ U0 Z B R A0 Q Q Q Q Q Q Q Q Q Q Q

18 N0 Z Z WC U1 C P B A1 Q Q Q Q Q Q Q Q Q Q Q

19 So Z C WZ U2 Z D1 S WV A0 Q Q Q Q Q Q Q Q Q Q

20 N0 C Z WZ U3 Z D2 U0 WY Q Q Q Q Q Q Q Q Q Q Q

21 N1 Z Z WZ C Z Z Z WT Q Q Q Q Q Q Q Q Q Q Q

22 N0 C Z WC Z Z Z Z WT A0 Q Q Q Q Q Q Q Q Q Q

23 So Z H0 WZ C Z Z Z WT A1 Q Q Q Q Q Q Q Q Q Q

24 N0 C H1 WC Z C Z Z WT R A0 Q Q Q Q Q Q Q Q Q

25 N1 H1 C WZ Z Z C Z WT R A1 Q Q Q Q Q Q Q Q Q

26 N0 C Z WZ Z Z Z C WT R R A0 Q Q Q Q Q Q Q Q

27 N1 Z Z WZ Z Z Z Z WX R R A1 Q Q Q Q Q Q Q Q

28 N0 C Z WZ Z Z Z C wx R R R A0 Q Q Q Q Q Q Q

29 So Z C WZ Z Z C Z J0 R R R A1 Q Q Q Q Q Q Q

30 N0 Z Z WC Z C Z Z J1 B R R R A0 Q Q Q Q Q Q

31 So Z C WZ C Z Z Z WZ S B R R A1 Q Q Q Q Q Q

32 N0 C Z WC Z Z Z Z WZ D0 S B R R A0 Q Q Q Q Q

33 N1 Z C WZ C Z Z Z WZ D1 S S C R A1 Q Q Q Q Q

34 N0 H0 Z WZ Z C Z Z WZ D2 S C Z B R A0 Q Q Q Q

35 N1 H1 C WZ Z Z C Z WZ Z U0 Z Z P B A1 Q Q Q Q

36 N0 Z Z WC Z Z Z C WZ Z U1 C Z P S WV A0 Q Q Q

37 So Z C WZ Z Z Z Z WC Z U2 Z C P C WY Q Q Q Q

38 N0 C Z WZ Z Z Z C WZ Z U3 Z Z C Z WY Q Q Q Q

39 N1 Z Z WZ Z Z C Z WZ Z C Z Z Z C WY Q Q Q Q

40 N0 C Z WZ Z C Z Z WZ C Z Z Z Z Z WT Q Q Q Q

Fig. 6.8 A configuration of real-time generation of prime sequences on the CA1-bit with 34 states
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Table 6.4 Transition rule set for real-time prime generator

Internal states : {Q, P0, P1, P2, R, S, Z,
So, N0, N1, A0, A1, B, C, D0, D1, D2,
U0, U1, U2, U3, WV, WY, WX, wx, WT,
WZ, WC, dd, P, J0, J1, H0, H1}

Current
state Input from right lin k

Input
from

left link

(next state ,
left output ,

right output )

1
R = 0 R = 1

L = 0

L = 1

Q

(Q,0,0) --

(A0,0,0) --

2
R = 0 R = 1

L = 0

L = 1

P0

(P1,0,0) --

-- --

3
R = 0 R = 1

L = 0

L = 1

P1

(P2,1,0) --

-- --

4
R = 0 R = 1

L = 0

L = 1

P2

(So,1,0) --

-- --

5
R = 0 R = 1

L = 0

L = 1

R

(R,0,0) (R,0,0)

(B,0,1) (C,1,1)

6
R = 0 R = 1

L = 0

L = 1

S

(S,0,0) (C,1,0)

(D0,0,0) (U0,0,1)

7
R = 0 R = 1

L = 0

L = 1

Z

(Z,0,0) (C,1,0)

(C,0,1) (H0,1,1)

8
R = 0 R = 1

L = 0

L = 1

So

(N0,0,0) (dd,0,1)

-- --

9
R = 0 R = 1

L = 0

L = 1

N0

(So,1,0) (N1,0,1)

-- --

10
R = 0 R = 1

L = 0

L = 1

N1

(N0,0,0) (N0,0,0)

-- --

11
R = 0 R = 1

L = 0

L = 1

A0

(A1,0,1) --

(Q,0,0) --

12
R = 0 R = 1

L = 0

L = 1

A1

(R,1,0) --

(WV,1,1) --

13
R = 0 R = 1

L = 0

L = 1

B

(S,0,0) (P,0,0)

(P,0,1) (U2,0,1)

14
R = 0 R = 1

L = 0

L = 1

C

(Z,0,0) (H1,1,0)

-- --

15
R = 0 R = 1

L = 0

L = 1

D0

(D1,0,0) --

-- --

16
R = 0 R = 1

L = 0

L = 1

D1

(D2,0,1) --

-- --

17
R = 0 R = 1

L = 0

L = 1

D2

(Z,0,0) --

-- --

18
R = 0 R = 1

L = 0

L = 1

U0

(U1,0,0) --

(Z,0,0) --

19
R = 0 R = 1

L = 0

L = 1

U1

(U2,0,0) --

-- --

20
R = 0 R = 1

L = 0

L = 1

U2

(U3,0,0) --

-- --

21
R = 0 R = 1

L = 0

L = 1

U3

(C,1,0) --

-- --

22
R = 0 R = 1

L = 0

L = 1

WV

(WY,0,0) --

(WT,0,1) --

23
R = 0 R = 1

L = 0

L = 1

WY

(WY,0,0) (WY,0,0)

(WT,0,1) (WX,0,0)

24
R = 0 R = 1

L = 0

L = 1

WX

(wx,0,0) --

-- --

25
R = 0 R = 1

L = 0

L = 1

wx

(J0,0,1) --

-- --

26
R = 0 R = 1

L = 0

L = 1

WT

(WT,0,0) (WT,0,0)

(WX,1,0) (WX,1,0)

27
R = 0 R = 1

L = 0

L = 1

WZ

(WZ,0,0) (WC,1,1)

(WC,1,0) (WC,1,1)

28
R = 0 R = 1

L = 0

L = 1

WC

(WZ,0,0) (WZ,0,0)

-- --

29
R = 0 R = 1

L = 0

L = 1

dd

(So,1,1) --

-- --

30
R = 0 R = 1

L = 0

L = 1

P

(P,0,0) (Z,0,0)

(D1,0,1) (C,0,1)

31
R = 0 R = 1

L = 0

L = 1

J0

(J1,0,0) --

-- --

32
R = 0 R = 1

L = 0

L = 1

J1

(WZ,0,1) --

-- --

33
R = 0 R = 1

L = 0

L = 1

H0

(H1,1,0) --

-- --

34
R = 0 R = 1

L = 0

L = 1

H1

(Z,0,0) (C,1,0)

(Z,0,0) (C,1,0)

Table 6.5 A list of non-regular sequences generated by CA1-bit in real-time

Sequences No. of states No. of rules Time complexity References

{2n | n = 1, 2, 3, . . .} 4 12 Real-time Umeo and Kamikawa [36]
{n2| n = 1, 2, 3, . . .} 3 7 Real-time Umeo and Kamikawa [36]
Fibonacci 9 26 Real-time Umeo and Kamikawa [36]
Prime 34 71 Real-time Umeo and Kamikawa [37]

6.5 Early Bird Problem

In this section, we study an early bird problem on CA1-bit. Consider a one-
dimensional CA1-bit consisting of n cells in which any cell initially in a quiescent
state may be excited from outside world. The problem is to describe the automata
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(state set and next state function) so that the first excitation(s) can be distinguished
from the later excitations. This problem was originally devised by Rosenstiehl et al.
[27] to design some graph-theoretic algorithms operating on networks of finite state
automata with O(1)-bit communication. Rosenstiehl et al. [27] presented a 2n-step
solution on a condition that at most one excitation occurs at each step. Vollmar [44]
extended the problem allowing more than one cell to be excited at a given step.
Legendi and Katona [16] gave a 5-state solution with multiple excitations operating
in 3n+O(1) steps on a conventional CA of length n. Kleine-Büning [13] showed that
the 5-state solution developed by Legendi and Katona [16] is the optimal solution
with regard to the number of internal states of each cell on the O(1)-bit communi-
cation model.

Based on the 5-state solution given by Legendi and Katona [16], Umeo et al. [40]
have given a 37-state implementation on CA1-bit of size n operating in 6n+O(1)
steps. In our implementation, multiple birds are allowed to appear at only even
steps. Two steps are required for the simulation of each one step of Legendi and
Katona’s solution. Thus the time complexity for the implemented algorithm is twice.
An improvement in the time complexity seems to be difficult. Figure 6.9 shows some
snapshots of the 37-state implementation. An appearance of the early bird is repre-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 QW Q B Q Q Q Q Q Q Q Q B Q Q Q Q B Q Q QW

1 QW q B_ q Q Q Q Q Q Q q B_ q Q Q q B_ q Q QW

2 QW La B_ Ra Q Q Q Q B Q La B_ Ra Q Q La B_ Ra Q QW

3 QW_ Lb B_ Rb q Q Q q B_ q Lb B_ Rb q q Lb B_ Rb q QW

4 QW_ L3a B_ R3a Ra B Q La B_ q L3a B_ R3a Ra La L3a B_ R3a Ra QW

5 LRW L3b B_ R3b Rb’ B10 q Lb B_ N L3b B_ R3b Rb’ Lb’ L3b B_ R3b Rb QW_

6 Nl L3a B_ R3a Nr R4a q L3a B01 L2a Nl B_ R3a Nr Nl L3a B_ R3a R2aQW_

7 Nlb L3b B_ R3b Nrb R3b N L3b B01 L2b Nlb B_ R3b Nrb Nlb L3b B_ R3b R2b LRW

8 L2a Nl B_ Nr R4a Nr N Nl L4a Nla N B10 Nr R2a L2a Nl B_ R3a R2a Nr

9 L2b Nlb B_ Nrb R3b Nrb N Nlb L3b Nlb N B10 Nrb R2b L2b Nlb B_ R3b R2b Nrb

10 Nla N B11 Nr2 Nr R2a N L2a Nl Nl2 N B11 N Nra Nla N B10 R3a Nr R2a

11 Nlb N B11 Nr2 Nrb R2b N L2b Nlb Nl2 N B11 N Nrb Nlb N B10 R3b Nrb R2b

12 N N B11 N N Nra N Nla N N N B11 N N N N B10 Nr R2a Nra

13 N N B11 N N Nrb N Nlb N N N B11 N N N N B10 Nrb R2b Nrb

14 N N B11 N N N N N N N N B11 N N N N B11 N Nra R2a

15 N N B11 N N N N N N N N B11 N N N N B11 N Nrb R2b

16 N N B11 N N N N N N N N B11 N N N N B11 N N Nra

17 N N B11 N N N N N N N N B11 N N N N B11 N N Nrb

18 N N B11 N N N N N N N N B11 N N N N B11 N N N

Fig. 6.9 Snapshots of a 37-state implementation of the early bird problem on CA1-bit
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sented by an internal state “B” with output signal “1” to both neighbors. In Fig. 6.9,
three birds appear on C3, C12 and C17 at time t = 0 and one bird appear on C9 at
time t = 2 and on C6 at time t = 4, respectively. The first three birds can survive
and the last two birds will be killed. The transition rule set is given in Table 6.6.

Theorem 7 (Umeo, Michisaka, Kamikawa, and Kanazawa [40]) There exists a
37-state CA1-bit that can solve the early bird problem in 6n+O(1) steps under
an assumption such that multiple excitations are allowed to appear at only even
steps.

Table 6.6 Transition rule set for early bird generator

Internal state : {Q, q, QW, QW, B, B_, BW, BW, B01, B10, B11, Ra, Rb, R2a,
                                         R2b, R3a, R3b, R4a, La, Lb, L2a, L2b, L3a, L3b, L4a, LRW, Nr, 
                                         Nra, Nrb, Nr2, Nl, Nla, Nlb, Nl2, N, Lb’, Rb’}

Current
state Input from right lin k

Input
from

left link

(next state ,
left output ,

right output )

1
R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 1

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0

R = 0 R = 1

L = 0

L = 1

Q

(Q,0,0) (q,0,0)

(q,0,0) (q,0,0)

2

L = 0

L = 1

q

(N,1,1) (La,1,0)

(Ra,0,1) (q,0,0)

3

L = 0

L = 1

QW

(QW,0,0) (QW_,0,0)

(QW_,0,0) --

4

L = 0

L = 1

QW_

(LRW,0,0) (QW_,0,0)

(QW_,0,0) --

5

L = 0

L = 1

B

(B_,1,1) (B01,1,0)

(B10,0,1) (B11,0,0)

6

L = 0

L = 1

B_

(B_,0,0) (B01,0,0)

(B10,0,0) (B11,0,0)

7

L = 0

L = 1

BW

(BW_,1,1) (B11,0,0)

(B11,0,0) --

8

L = 0

L = 1

BW_

(BW_,0,0) (B11,0,0)

(B11,0,0) --

9

L = 0

L = 1

B01

(B01,0,0) (L4a,0,0)

(B11,0,0) (L2a,0,0)

10

L = 0

L = 1

B10

(B10,0,0) (B11,0,0)

(R4a,0,0) (R2a,0,0)

11

L = 0

L = 1

B11

(B11,0,0) (L2a,0,0)

(R2a,0,0) (N,0,0)

12

L = 0

L = 1

Ra

(Rb,0,1) (Rb’,0,1)

-- --

13

L = 0

L = 1

Rb

(R3a,0,0) (Nr,0,0)

(R2a,0,0) (Nr,0,0)

(R3a,0,0) (Nr,0,0)

(R2a,0,0) (Nr,0,0)

14

L = 0

L = 1

R2a

(R2b,0,1) --

-- --

15

L = 0

L = 1

R2b

(Nra,0,0) (Nra,0,0)

(R2a,0,0) (Nr,0,0)

16

L = 0

L = 1

R3a

(R3b,0,1) --

-- --

17

L = 0

L = 1

R3b
18

L = 0

L = 1

R4a

(R3b,1,1) --

-- --

19

L = 0

L = 1

La

(Lb,1,0) --

(Lb’,1,0) --

20

L = 0

L = 1

Lb

(L3a,0,0) (L2a,0,0)

(Nl,0,0) (Nl,0,0)

21

L = 0

L = 1

L2a

(L2b,1,0) --

-- --

22

L = 0

L = 1

L2b

(Nla,0,0) (L2a,0,0)

(Nla,0,0) (Nl,0,0)

23

L = 0

L = 1

L3a

(L3b,1,0) --

-- --

24

L = 0

L = 1

L3b

(L3a,0,0) (L3a,0,0)

(Nl,0,0) (Nl,0,0)

25

L = 0

L = 1

L4a

(L3b,1,1) --

-- --

26

L = 0

L = 1

LRW

(q,0,0) (Nl,0,0)

(Nr,0,0) --

27

L = 0

L = 1

Nr

(Nrb,1,0) --

-- --

28

L = 0

L = 1

Nra

(Nrb,0,0) --

-- --

29

L = 0

L = 1

Nrb

(N,0,0) (Nr2,0,0)

(R2a,0,0) (R4a,0,0)

30

L = 0

L = 1

Nr2

(Nr2,0,0) (N,0,0)

(R4a,0,0) (R2a,0,0)

31

L = 0

L = 1

Nl

(Nlb,0,1) --

-- --

32

L = 0

L = 1

Nla

(Nlb,0,0) --

-- --

33

L = 0

L = 1

Nlb

(N,0,0) (L2a,0,0)

(Nl2,0,0) (L4a,0,0)

34

L = 0

L = 1

Nl2

(Nl2,0,0) (L4a,0,0)

(N,0,0) (L2a,0,0)

35

L = 0

L = 1

N

(N,0,0) (L2a,0,0)

(R2a,0,0) (N,0,0)

36

L = 0

L = 1

Lb'

(Nl,0,0) (Nl,0,0)

(Nl,0,0) (Nl,0,0)

37

L = 0

L = 1

Rb'

(Nr,0,0) (Nr,0,0)

(Nr,0,0) (Nr,0,0)
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6.6 Firing Squad Synchronization Problem on 2-D CA1-bit

Here we consider the FSSP again on two-dimensional arrays. The FSSP on 2-D
arrays for O(1)-bit communication model is studied in Umeo et al. [38]. Figure 6.10
shows a finite two-dimensional (2-D) cellular array consisting of m × n cells. A
cell on (i, j) is denoted by Ci, j . Each cell is an identical (except the border cells)
finite state automaton. The array operates in lock-step mode in such a way that the
next state of each cell (except border cells) is determined by both its own present
state and the present binary inputs from its north, south, east and west neighbors.
The cell also outputs four binary values to its north, west, south and east neighbors,
depending on both its own present state and the present binary inputs from its north,
south, east and west neighbors. Thus we assume a von Neumann-like neighborhood
with the 1-bit communication. All cells except for the general cell are initially in the
quiescent state and have a property such that the next state of a quiescent cell with
four 0 inputs is the quiescent state and outputs 0 to its four neighbors.

The FSSP on 2-D CA1-bit is defined as follows: Given an array of m×n identical
cells, including a General on C1,1 cell that is activated at time t = 0, we want to
describe (state set and next-state function) the automata such that, at some future
time, all of the cells will simultaneously and for the first time enter a special firing
state. The set of states and transition rules must be independent of m and n. The
difficult part of this problem is that the same types of cells with a fixed number of
states must be synchronized, regardless of the size m and n of the array. The firing
squad synchronization problem on 2-D 1-bit communication cellular automata has
been studied by Torre et al. [31], Gruska et al. [11], and Umeo et al. [40]. This
section presents two 1-bit implementations for square and rectangular arrays.

1 2 n43

1

2

m

C11 C12 C13 C14 C1n

C21 C22 C23 C24 C2n

Cm1 Cm2 Cm3 Cm4 Cmn

Fig. 6.10 Two-dimensional cellular automaton

6.6.1 Synchronization Algorithm on Square Arrays

The first one is for square arrays given in Umeo et al. [40]. It runs in (2n − 1)
steps on n × n square arrays. The proposed implementation is one step slower than
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1 2 3 4 5 6 7 8

P W LT Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

Q Q Q Q Q Q Q Q W

1

2

3

4

5

6

7

8 Q W Q W Q W Q W Q W Q W Q W Q W

step 0
1 2 3 4 5 6 7 8

PWLT xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 1
1 2 3 4 5 6 7 8

PWLT AR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 2
1 2 3 4 5 6 7 8

PWLT BR01 AR’ xPWLT Q Q Q QW

bR01 PWLT xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 3

1 2 3 4 5 6 7 8

PWLT BR00 subH AR’ xPWLT Q Q QW

bR00 PWLT AR’ xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 4
1 2 3 4 5 6 7 8

PWLT BR0S odd subH AR’ xPWLT Q QW

bR0S PWLT BR01 AR’ xPWLT Q Q QW

odd bR01 PWLT xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

Q Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 5
1 2 3 4 5 6 7 8

PWLT QR0S BR11 QRB subH AR’ xPWLT QW

QR0S PWLT BR00 subH AR’ xPWLT Q QW

bR11 bR00 PWLT AR’ xPWLT Q Q QW

QRB subV aR’ xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

xPWLT Q Q Q Q Q Q QW

1

2

3

4

5

6

7

8 QW QW QW QW QW QW QW QW

step 6
1 2 3 4 5 6 7 8

PWLT BR0u1 BR10 QRC odd subH AR’ xPWRB

bR0u1 PWLT BR0S odd subH AR’ xPWLT QW

bR10 bR0S PWLT BR01 AR’ xPWLT Q QW

QRC odd bR01 PWLT xPWLT Q Q QW

odd subV aR’ xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

aR’ xPWLT Q Q Q Q Q QW

1

2

3

4

5

6

7

8 xPWRB QW QW QW QW QW QW QW

step 7

1 2 3 4 5 6 7 8

PWLT BR0u0 BR1S QRD QRC QRB subH PWRB

bR0u0 PWLT QR0S BR11 QRB subH AR’ xPWRB

bR1S QR0S PWLT BR00 subH AR’ xPWLT QW

QRD bR11 bR00 PWLT AR’ xPWLT Q QW

QRC QRB subV aR’ xPWLT Q Q QW

QRB subV aR’ xPWLT Q Q Q QW

subV aR’ xPWLT Q Q Q Q QW

1

2

3

4

5

6

7

8 PWRB xPWRB QW QW QW QW QW QW

step 8
1 2 3 4 5 6 7 8

PWLT BR0uS QR10 BR01 QRD QRC AL1 PWRB

bR0uS PWLT BR0u1 BR10 QRC odd subH PWRB

QR10 bR0u1 PWLT BR0S odd subH AR’ xPWRB

bR01 bR10 bR0S PWLT BR01 AR’ xPWLT QW

QRD QRC odd bR01 PWLT xPWLT Q QW

QRC odd subV aR’ xPWLT Q Q QW

AL1 subV aR’ xPWLT Q Q Q QW

1

2

3

4

5

6

7

8 PWRB PWRB xPWRB QW QW QW QW QW

step 9
1 2 3 4 5 6 7 8

PWLT BR0v0 QR11 BR00 QRA AL QLA PWRB

bR0v0 PWLT BR0u0 BR1S QRD QRC AL0 PWRB

QR11 bR0u0 PWLT QR0S BR11 QRB subH PWRB

bR00 bR1S QR0S PWLT BR00 subH AR’ xPWRB

QRA QRD bR11 bR00 PWLT AR’ xPWLT QW

AL QRC QRB subV aR’ xPWLT Q QW

QLA AL0 subV aR’ xPWLT Q Q QW

1

2

3

4

5

6

7

8 PWRB PWRB PWRB xPWRB QW QW QW QW

step 10
1 2 3 4 5 6 7 8

PWLT BR0v1 QR10 BR0S AL QLA BL01 PWRB

bR0v1 PWLT BR0uS QR10 BR01 AL BL01 PWRB

QR10 bR0uS PWLT BR0u1 BR10 QRC AL1 PWRB

bR0S QR10 bR0u1 PWLT BR0S odd subH PWRB

AL bR01 bR10 bR0S PWLT BR01 AR’ xPWRB

QLA AL QRC odd bR01 PWLT xPWLT QW

bL01 bL01 AL1 subV aR’ xPWLT Q QW

1

2

3

4

5

6

7

8 PWRB PWRB PWRB PWRB xPWRB QW QW QW

step 11

1 2 3 4 5 6 7 8

PWLT BR0v0 RL1 P1d PA QLB BL00 PWRB

bR0v0 PWLT BR0v0 QR11 P1s QLA BL00 PWRB

RL1 bR0v0 PWLT BR0u0 BR1S AL QLA PWRB

p1d QR11 bR0u0 PWLT QR0S BR11 AL0 PWRB

pA p1s bR1S QR0S PWLT BR00 subH PWRB

QLB QLA AL bR11 bR00 PWLT AR’ xPWRB

bL00 bL00 QLA AL0 subV aR’ xPWLT QW

1

2

3

4

5

6

7

8 PWRB PWRB PWRB PWRB PWRB xPWRB QW QW

step 12
1 2 3 4 5 6 7 8

PWLT BR0vS AL P1 P1 AR BL0S PWRB

bR0vS PWLT BR0v1 AL P1 AR BL0S PWRB

AL bR0v1 PWLT BR0uS P0d PA BL01 PWRB

p1 AL bR0uS PWLT BR0u1 P0s BL01 PWRB

p1 p1 p0d bR0u1 PWLT BR0S AL1 PWRB

AR AR pA p0s bR0S PWLT BR01 PWRB

bL0S bL0S bL01 bL01 AL1 bR01 PWLT xPWRB

1

2

3

4

5

6

7

8 PWRB PWRB PWRB PWRB PWRB PWRB xPWRB QW

step 13
1 2 3 4 5 6 7 8

PWLT P1 PA P1 P1 PA P1 PWRB

p1 PWLT P1 PA P1 PA P1 PWRB

pA p1 PWLT P0 P0 P0 P0 PWRB

p1 pA p0 PWLT P0 P0 P0 PWRB

p1 p1 p0 p0 PWLT P1 P1 PWRB

pA pA p0 p0 p1 PWLT P0 PWRB

p1 p1 p0 p0 p1 p0 PWLT PWRB

1

2

3

4

5

6

7

8 PWRB PWRB PWRB PWRB PWRB PWRB PWRB xPWRB

step 14
1 2 3 4 5 6 7 8

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

1

2

3

4

5

6

7

8 T T T T T T T T

step 15

Fig. 6.11 Snapshots of the (2n − 1)-step square synchronization algorithm with the general on the
northwest corner

optimum-time for the O(1)-bit communication model. The total numbers of internal
states and transition rules of the CA1-bit are 127 and 405, respectively. Figure 6.11
shows snapshots of configurations of the 127-state implementation running on a
square of size 8 × 8. Gruska, Torre, and Parente [11] presented an optimum-time
algorithm.

Theorem 8 (Gruska, Torre, and Parente [11]) There exists a 2-D CA1-bit that can
synchronize any n × n square arrays in 2n − 2 steps.

6.6.2 Synchronization Algorithm on Rectangle Arrays

The generalized firing squad synchronization algorithm for 1-D arrays presented in
Sect. 6.3.2 can be applied to the problem of synchronizing rectangular arrays with
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the general at the northwest corner. The rectangular array is regarded as min(m, n)
L-shaped 1-D arrays that are synchronized independently using the generalized fir-
ing squad synchronization algorithm. Configurations of the generalized synchro-
nization on 1-D CA1-bit can be embedded on 2-D array. The original embedding
scheme for O(1)-bit communication model was presented in Beyer [5] and Shinahr
[29] in order to synchronize any m × n arrays in optimum m + n + max(m, n)− 3
steps. Umeo et al. [40] have implemented the rectangular synchronization algorithm
for 2-D CA1-bit. The total numbers of internal states and transition rules of the
CA1-bit are 862 and 2217, respectively. Figure 6.12 shows snapshots of the syn-
chronization process on a 5 × 8 rectangular array. Thus we have:

Theorem 9 (Umeo, Michisaka, Kamikawa, and Kanazawa [40]) There exists a 2-D
CA1-bit that can synchronize any m × n rectangular arrays in m + n + max(m, n)
steps.

1 2 3 4 5 6 7 8

JK0 HK1 HK1 HK0 HK0 HK0 HK0 HKX

VK0 JK0 HK0 HK0 HK0 HK0 HK0 HKX

VK0 VK0 JKA HK1 HK1 HKA HK1 HKX

VK0 VK0 VK1 JK0 HK0 HK0 HK0 HKX

1

2

3

4

5 VKX VKX VKX VKX HKX HK1 HKA HKX

step 20
1 2 3 4 5 6 7 8

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

1

2

3

4

5 T T T T T T T T

step 21

1 2 3 4 5 6 7 8

JQLa HK1 HK1 HQRa HI HBl3 HALb HKX

VG JG HK0 HK0 HI HBl1 HQLe0 HKX

VBRf VBRc JRo HK1d HKA HQLb HAl2 HKX

VARb VARb VARe JARb HBr3 HG HQLa HKX

1

2

3

4

5 VKX VKX VKX VKX HKX HAr2 Hsubr HKX

step 18
1 2 3 4 5 6 7 8

JAl1 HK1 HK1 HAr1 HKA HK0d HALc HKX

VKA JAl1 HK0 HK0 HAr1 HK0s HALa HKX

VK0d VK0s JG HK1 HK1 HI HAl3 HKX

VARc VARa VARf JARc HK0d HKA HAl1 HKX

1

2

3

4

5 VKX VKX VKX VKX HKX HAr3 HGOx HKX

step 19

1 2 3 4 5 6 7 8

JBr3 HQRd HFW HGW HQLA HQLB HAL3 HKX

VQRe1 JAr2 HFW HW HQR1 HG0 HAL1 HKX

VBRa VQRo2 JFXB HW HQR1 HQR2 HQRS HKXs

VfARAVSARDVSARA JX HQRS HS xH xHQX1

1

2

3

4

5 VKX VKX VKX VKX xH xVQX1 xVQX1 JQX

step 12
1 2 3 4 5 6 7 8

JQRo1 HAr1 HQRd HFGW HB> HBL1 HQLE0 HKX

VRe JAr3 HQRb HFW HGW HQLA HAL2 HKX

VBRb VQRo1 JBr2 HFW HW HQR1 HGX HKX

VARa VARd VARa JFXA HW HQRS HS xCQX

1

2

3

4

5 VKX VKX VKX VKX HPX xH xVQX1 JQX

step 13

1 2 3 4 5 6 7 8

JRo HK1d HKA HQLb HQLc HBl1 HFALA HKX

VQRe1 JQRe1 HBr3 HG HQLa HQLb HFAL3 HKX

VBRd VBRa JQRo2 HAr2 HQRa HG HFAL1 HKX

VARb VQRe0 VARe JQRe0 HBr1 HQRb HFGOX HKX

1

2

3

4

5 VKX VKX VKX VKX HKX HTSX HtSX HKXs

step 16
1 2 3 4 5 6 7 8

1

2

3

4

5

JG HK1 HK1 HI HQLd HBl2 HALa HKX

VRe JR e HK0d HKA HQLb HQLc HAl3 HKX

VBRe VBRb JQRo 1 HAr3 HG HQLa HAl1 HKX

VARa VARa VARd JARa HBr2 HQRc HGOx HKX

VKX VKX VKX VKX HKX HAr1 HTSX HKX

step 17

1 2 3 4 5 6 7 8

JQRo2 HAr2 HQRa HG HFB> HfBL1 HALA HKX

VQRe0 JQRe1 HBr1 HQRb HFGW HB> HAL3 HKX

VBRc VRo JBr3 HQRd HFW HGW HAL1 HKX

VARb VARe VARb JAr2 HFW HW HQRS HKXs

1

2

3

4

5 VKX VKX VKX VKX HfPX HS xH JQX

step 14
1 2 3 4 5 6 7 8

JQRo1 HAr3 HG HQLa HQLb HFBL1 HfALA HKX

VQRe2 JQRe2 HBr2 HQRc HG HFB> HfAL3 HKX

VBRe VQRo0 JQRo1 HAr1 HQRd HFGW HfAL1 HKX

VARa VARf VARc JAr3 HQRb HFW HGXX HKX

1

2

3

4

5 VKX VKX VKX VKX HFPX HtSX HS xJQX

step 15

1 2 3 4 5 6 7 8

JD1 HQR2 HQR1 HQR2 HQR1 HQR2 HQRS HKXs

VI0 JD2 HQR1 HQR2 HQRS HS xH xHQX1

VQRA VQL1 JD1 HS xH xJ2 xJ2 HQX

VAR2 VIX VL xJ2 xJ2 xJ2 Q HQX

1

2

3

4

5 VKX VKX xCQX xVQX1 xVQX1 VQX VQX JQX

step 8
1 2 3 4 5 6 7 8

JX HQR1 HQR2 HQR1 HQR2 HQR1 HGX HKX

V<S JD1 HQR2 HQR1 HQR2 HQRS HS xCQX

VQRB VI0 JD2 HQRS HS xH xJ2 xHQX1

VAR3 VAR1 VQLS xJ xJ2 xJ2 xJ2 HQX

1

2

3

4

5 VKX VKX VKXs xVQX1 xVQX1 xVQX1 VQX JQX

step 9
1 2 3 4 5 6 7 8

JFXB HW HQR1 HQR2 HQR1 HG0 HAL1 HKX

V<FS JX HQR1 HQR2 HQR1 HQR2 HQRS HKXs

VsBRA V<S JD1 HQR2 HQRS HS xH xHQX1

VQRE0 VAR2 VIX JP xH xJ2 xJ2 xHQX1

1

2

3

4

5 VKX VKX VKX xCQX xVQX1 xVQX1 xVQX1 JQX

step 10
1 2 3 4 5 6 7 8

JBr2 HFW HW HQR1 HG0 HQLA HAL2 HKX

VQRe2 JFXA HW HQR1 HQR2 HQR1 HGX HKX

VSBRA V<FS JX HQR1 HQR2 HQRS HS xCQX

VARA VsARD VsARA JD1 HS xH xJ2 xHQX1

1

2

3

4

5 VKX VKX VKX VKXs xVQX1 xVQX1 xVQX1 JQX

step 11

1 2 3 4 5 6 7 8

JD1 HQR2 HQRS HS xH Q Q CQX

VQL2 JP xH xJ2 Q Q Q HQX

VQLS xV xJ2 Q Q Q Q HQX

VL xJ2 Q Q Q Q Q HQX

1

2

3

4

5 xCQX VQX VQX VQX VQX VQX VQX JQX

step 4
1 2 3 4 5 6 7 8

JD2 HQR1 HQR2 HQRS HS xH Q CQX

VQL1 JD1 HS xH xJ2 Q Q HQX

VQL2 VL xJ2 xJ2 Q Q Q HQX

VQLS xV xJ2 Q Q Q Q HQX

1

2

3

4

5 VKXs xVQX1 VQX VQX VQX VQX VQX JQX

step 5 1 2 3 4 5 6 7 8

JD1 HQR2 HQR1 HQR2 HQRS HS xH CQX

VQL2 JD2 HQRS HS xH xJ2 Q HQX

VQL1 VQLS xJ xJ2 xJ2 Q Q HQX

VIX VL xJ2 xJ2 Q Q Q HQX

1

2

3

4

5 VKX xCQX xVQX1 VQX VQX VQX VQX JQX

step 6
1 2 3 4 5 6 7 8

JD2 HQR1 HQR2 HQR1 HQR2 HQRS HS xCQX

VQL1 JD1 HQR2 HQRS HS xH xJ2 HQX

VI0 VQL2 JP xH xJ2 xJ2 Q HQX

VAR1 VQLS xV xJ2 xJ2 Q Q HQX

1

2

3

4

5 VKX VKXs xVQX1 xVQX1 VQX VQX VQX JQX

step 7

1 2 3 4 5 6 7 8

xJ Q Q Q Q Q Q CQX

Q Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

1

2

3

4

5 CQX VQX VQX VQX VQX VQX VQX JQX

step 0
1 2 3 4 5 6 7 8

JP xH Q Q Q Q Q CQX

xV Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

1

2

3

4

5 CQX VQX VQX VQX VQX VQX VQX JQX

step 1
1 2 3 4 5 6 7 8

JD1 HS xH Q Q Q Q CQX

VL xJ2 Q Q Q Q Q HQX

xV Q Q Q Q Q Q HQX

Q Q Q Q Q Q Q HQX

1

2

3

4

5 CQX VQX VQX VQX VQX VQX VQX JQX

step 2
1 2 3 4 5 6 7 8

JD2 HQRS HS xH Q Q Q CQX

VQLS xJ xJ2 Q Q Q Q HQX

VL xJ2 Q Q Q Q Q HQX

xV Q Q Q Q Q Q HQX

1

2

3

4

5 CQX VQX VQX VQX VQX VQX VQX JQX

step 3

Fig. 6.12 Snapshots of the proposed rectangular firing squad synchronization algorithm with the
general at the northwest corner
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6.7 Connectivity Recognition Problem

Recognizing and labeling connected regions of images are important problems
in image processing and machine vision, and many parallel algorithms for them
have been developed on a rich variety of parallel architectures. See Alnuweiri and
Prasanna [1, 2], Cypher et al. [6], Cypher and Sanz [7], Leighton [15], Manohar
and Ramapriyan [18], and Miller and Stout [22]. In this section, we consider a
connectivity recognition problem on a 2-D CA1-bit. The connectivity recognition
problem of binary images on cellular automata has been investigated by Beyer [5]
and Levialdi [17]. We present a linear-time connectivity recognition algorithm for
two-dimensional binary images. Precisely, it is shown that a set of two-dimensional
connected binary images of size m × n can be recognized in 2(m + n)+ O(1) steps
by a 2-D CA1-bit.

6.7.1 Connectivity

Before describing the connectivity recognition algorithm, we need some definitions
of the connectivity for binary images. We assume that the given image is of size
m × n where a pixel (i, j) denotes the pixel in row i and column j of the image for
every 1 ≤ i ≤ m and 1 ≤ j ≤ n. We put an input of size m × n on the 2-D CA1-bit
of the same size in such a way that the cell (i, j) receives the pixel (i, j) as its initial
input. We are concerned with black and white binary images where the black pixel
has 1-value and white one has 0-value, respectively. We regard black components
as objects and white ones as a background of the objects. Due to technical reasons,
we attach a boundary consisting of white pixels to the input image. Note that those
boundary pixels are not counted as the size of the image. Connectivity among pixels
can be defined in terms of adjacency. Two black pixels (i1, j1) and (i2, j2) are 4-
adjacent and they are said to be in 4-neighbor, if | i1 − i2 | + | j1 − j2 |≤ 1.
Two black pixels (i1, j1) and (ik, jk) are said to be 4-connected, if there exists a
sequence of black pixels (i p, jp), 2 ≤ p ≤ k such that each pair of (i p−1, jp−1) and
(i p, jp) are in 4-neighbor. A maximum connected region of black pixels is called a
4-connected component. A 4-connected component is isolated if it consists of only
one black pixel. A pattern is said to be 4-connected if it has exactly one 4-connected
component. Thus we employ the 4-connectivity for black pixels. The readers can
define 8-connectivity, similarly. See Rosenfeld [26] and Umeo and Mauri [39] for
details.

6.7.2 Parallel Shrinking Transformation

Beyer [5] proposed an interesting parallel shrinking transformation which trims all
4-connected components of binary images simultaneously, preserving the connec-
tivity of binary images. The transformation was implemented on a conventional
O(1)-bit communication model of cellular automaton. The recognition algorithm
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we develop here is based on the parallel shrinking algorithm proposed by Beyer [5].
We first review the Beyer’s algorithm. The algorithm is based on a connectivity-
preserving operation which trims all connected components simultaneously in the
diagonal (from south-east to north-west) direction of each component. Figure 6.13
shows the Beyer’s connectivity-preserving operation consisting of two rules R1 for
black pixels and R2 for white pixels. If a black pixel has a white pixel in its south and
east neighbors, then the rule R1 is applied to the black pixel and the pixel becomes
white at the next step. If a white pixel has three black pixels in its south, east, and
south-east (diagonal) neighbors, respectively, then the rule R2 is applied to the white
pixel and it becomes black at the next step. The symbols x and y denote any value
in {white, black}. When we apply the above operations repeatedly to all pixels of
an image simultaneously, we observe that each connected component of the image
is reduced to one isolated black pixel and then vanishes after one application of the
rule R1. What is important is that, all the while, every distinct connected compo-
nent remains distinct and either vanishes at each different position or in the same
position at different time. This is the reason why the Beyer’s shrinking rule is called
connectivity preserving operation.

Precisely, the above statement is described as follows: Let c be a non-isolated
connected component and n(c), w(c), and se(c) be positive integers defined as fol-
lows:

n(c) = min{i | cell Ci,k is in c for some k},
w(c) = min{k | cell Ci,k is in c for some i},
se(c) = max{i + k | cell Ci,k is in c}.

The connected component c is within the triangle consisting of the row n(c),
column w(c), and the 45◦ diagonal line containing the farthest cells from the cell
Cn(c),w(c), shown in Fig. 6.14. Let ψ denote the Beyer’s transformation and c be an

wx

y

w

w wRule R1

Rule R2

y

x

Fig. 6.13 Beyer’s 4-connectivity preserving operation
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Cn(c), w(c)

Row  n(c)

Column w(c)

Diagonal line se(c)

Connected component

Fig. 6.14 Beyer’s parallel shrinking transformation

image. A function ψ t+1(c) is defined as follows:

ψ0(c) = c,

ψ t+1(c) = ψ(ψ t (c)), t ≥ 0.

Then, the following lemmas are given in Beyer [5].

Lemma 10 (Beyer [5]) For any non-isolated component c, we have n(ψ(c)) =
N (c), w(ψ(c)) = w(c), and se(ψ(c)) = se(c)− 1.

Lemma 11 (Beyer [5]) For any non-isolated component c, let k be an integer such
that k = se(c) − n(c) − w(c). Then, ψk(c) is an isolated component located at
Cn(c),w(c).

Lemma 10 assures the exact shrinking to the north-west corner of the connected
component. From Lemma 11, we can know the number of applications of the ψ
operation necessary to shrink the original connected component to an isolated black
pixel. It is shown that, for any image of size m ×n, all of the connected components
will vanish within (m+n−1)-time applications of ψ . In Fig. 6.15, we show several
snapshots obtained after consecutive applications of ψ to a binary image. Note that
T means the application times.

6.7.3 One-Bit Implementation of Connectivity-Preserving
Transformation

Here we show that the Beyer’s connectivity-preserving transformation can be imple-
mented on 2-D CA1-bit. We construct a two-dimensional CA1-bit M that can simu-
late the Beyer’s transformation in 2(m + n)− 1 steps for any given binary image x
of size m × n. Each cell has two auxiliary registers X and Y . The register X holds a
binary pixel value during the transformation and Y acts as a temporary register for
storing a pixel value in the south neighbor cell. Any operation of each cell at step
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Fig. 6.15 Beyer’s connectivity-preserving transformation on O(1)-bit communication model

t (≥ 1) is classified into two categories according to the parity of global clock step
t such that t ≡ 1 (mod 2) or t ≡ 0 (mod 2). We refer to the former operation as
A-phase operation and the latter B-phase operation, respectively. Each cell repeats
an A- and B-phase operation alternatively, that is, it repeats two operations, one in
A-phase followed by the other in B-phase.
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The 1-bit implementation is as follows: At time t = 1, each register X in Ci, j

holds an initial pixel value (i, j) of x and the register Y has been set empty. At
the beginning of the A-phase, each cell outputs a 0 or 1 signal to its north and
west output communication links depending on the pixel value 0 or 1 in the X
register, and the signals are received at that step by its north and west neighbor cells
through their input communication links. In the shrinking transformation shown
in Fig. 6.13, one step is sufficient for the execution of the Rule R1, however, it
takes two steps for the execution of the Rule R2. To get the pixel value in the east
and south neighbor cells, each cell uses its east and south input communication
links in the A-phase operation. In order to get south-east (diagonal) pixel value,
which is necessary for the execution of the rule R2, each cell uses its east input
communication link in the B-phase operation. For this purpose, the diagonal pixel
value has been stored in the Y register in its east neighbor cell in the latest A-phase.
Thus, with those two steps of the A- and B-phases, each cell can get all pixel values
that are necessary to perform one application of the transformation. At odd step t
of M where t = 2k + 1, for any k such that 0 ≤ k ≤ m + n − 1, we can see the
values of ψ0(x), ψ1(x), .., ψk(x), .., ψm+n−1(x) in the X registers of each cell on
the array. It is observed that, in the construction above, both east-to-west horizontal

Table 6.7 Transition rule set for 1-bit shrinking transformation

Internal State : {B, W, B/B, R, BR, W/B-B}

Current
State Input from Right and Left Link

( Next State,
Left Output, Right Output,

Upper Output, Lower Output)

1

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

B

(R,1,0,1,0) (BR,1,1,0,0) -- --

(R,1,0,1,0) (BR,1,1,0,0) -- --

(B/B,0,1,1,1) (B/B,0,1,1,1) -- --

(B/B,0,1,1,1) (B/B,0,1,0,1) -- --

2

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

W

(W,0,0,0,0) (W,0,0,0,0) (W,0,0,0,0) (W,0,0,0,0)

(W,0,0,0,0) - - -- --

(W,0,0,0,0) (W/B-B,0,0,0,0) (W,0,0,0,0) --

-- (W/B-B,0,0,0,0) -- --

3

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

B/B

(B,1,0,1,0) -- (B,1,0,1,0) --

(B,1,0,1,0) -- (B,1,0,1,0) --

(B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0)

(B,1,0,1,0) (B,1,0,1,0 ) (B,1,0,1,0) (B,1,0,1,0)

4

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

R

(W,0,0,0,0) -- (W,0,0,0,0) --

(W,0,0,0,0) -- (W,0,0,0,0) --

-- -- -- --

-- -- -- --

5

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

BR

(B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0)

(B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0) (B,1,0,1,0)

-- -- -- --

-- -- -- --

6

R=0,L=0 R=1,L=0 R=0,L=1 R=1,L=1

U=0,D=0

U=1,D=0

U=0,D=1

U=1,D=1

W/B-B

(B,1,0,1,0) -- (B,1,0,1,0) --

-- -- -- --

(B,1,0,1,0) (W,0,0,0,0) (B,1,0,1,0) (W,0,0,0,0)

-- -- -- --

Input
from
Upper
and
Lower
Link
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and south-to-north vertical one-way communication links are utilized in the A-phase
operation, however, in the B-phase operation, only an east-to-west horizontal link is
used in each cell. Thus we have:

Theorem 12 (Umeo [32]) For any binary image of size m × n, the Beyer’s
connectivity-preserving transformation can be performed on a 2-D CA1-bit in
2(m + n)− 1 steps.

We have implemented the 1-bit shrinking transformation algorithm on a 2-D
CA1-bit with 6 internal states. Table 6.7 gives the transition rule set for the shrinking
operation and Fig. 6.16 shows some snapshots of the shrinking process on a binary
image of size 14 × 14.

B B B B B B B B B B B B B B

W W W W W W W W W W W W W B

B B B B B B B B B B B B W B

B W W W W W W W W W W B W B
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B W B B B B B B B B B B W B
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t = 0
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t = 1
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B/B W B/B W W W W W W W/B-B B/B R W B/B
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Fig. 6.16 Snapshots for connectivity-preserving shrinking transformation on 1-bit communication
model
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It is shown that the connectivity of any binary images can be also detected in
linear-time by a 2-D CA1-bit. The algorithm is based on our previous 1-bit imple-
mentation of the shrinking transformation. The detection of the connectivity of
binary images can be done by counting up the number of vanished isolated black
pixels by the accept cell located in the north-west corner of the array. The array
accepts the input if and only if the count is exactly one. Every cell works not only for
the transformation of images into isolated black pixels but also for the transmission
of the vanished isolated black pixels toward the accept cell. Both of the operations
can be simultaneously implemented on a CA1-bit. See Umeo [32] for details.

Thus it has been shown that the CA1-bit can recognize the connectivity of any
binary images of size m × n in 2(m + n) + O(1) steps. We have implemented
our algorithm on a computer program, which simulates a CA1-bit with 61 states,
recognizing 2-D connectivity. For typical binary images of size from 4×4 to 45×47,
the program recognizes them correctly. Thus we have:

Theorem 13 (Umeo [32]) There exists a 2-D CA1-bit that can recognize a set of 2-D
4-connected binary images of size m × n in 2(m + n)+ O(1) steps.

6.8 Summary and Further Works

A 1-bit inter-cell communication cellular automaton model (CA1-bit) studied in this
paper is a subclass of cellular automata (CA) whose inter-cell communication at one
step is restricted to 1-bit. We have investigated a problem solving on the CA1-bit. The
problems treated are a firing squad synchronization problem, an integer sequence
generation problem, a connectivity recognition problem for two-dimensional binary
images, an early bird problem, and a connectivity recognition problem for two-
dimensional binary images, all of which are known as the classical, fundamental
problems in cellular automata. We presented several state-efficient implementations
on the 1-bit inter-cell communication cellular automata for those classical cellular
automata problems. Those implementations presented are not optimum ones in the
number of states required. The class of CA1-bit is confirmed to be an interesting
computational subclass of CAs that merits further study.
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