
Chapter 5
Cellular Automata Composition Techniques
for Spatial Dynamics Simulation

Olga Bandman

5.1 Introduction

A Cellular Automaton (CA) is nowadays an object of growing interest as a mathe-
matical model for spatial dynamics simulation. Due to its ability to simulate nonlin-
ear and discontinuous processes, CA is expected [1, 2] to become a complement to
partial differential equations (PDE). Particularly, CA may be helpful when there is
no other mathematical model of a phenomenon which is to be investigated. By now,
a great variety of CA are known, whose evolution simulates certain kinds of spatial
dynamics. The most known are CA-models of physical processes, such as diffusion
[1, 3, 4], wave propagation [5], phase transition [2, 6], spatial self-organization [7],
etc. More complicated CA called Gas–Lattice models [8, 9] are used in hydrody-
namics, some of them [10, 11] dealing with a real alphabet. In chemistry and micro-
electronics asynchronous probabilistic CA are used, being sometimes called Kinetic
Monte-Carlo methods, they are helpful for studying surface reaction on catalysts
[12, 13] and processes of epitaxial growth of crystals [14]. Biology and medicine
also present a wide field of phenomena to be simulated by CA-models, genetics
[15], myxobacteria swarming [16], growth of tumor [17] being the examples. In
solving ecological problems, CA are used more and more frequently to simulate
the propagation of diseases [18] and of fire in the forests, evolution of populations,
etc. Moreover, CA-simulation has now gone beyond the scope of scientific research,
being used, for example, to simulate the process of cement hardening [19].

Among the above CA-models there are those, which have the PDE counter-
parts [4, 8], but computer implementation (especially on multiprocessors) occurs
to be more efficient when based on CA-models, soliton propagation model [5]
being a good illustration. However, a vast majority of natural phenomena cannot
be described in continuous terms due to their inherent discreteness. For them CA
are the only possible mathematical models.

O. Bandman (B)
Supercomputer Software Department, ICM&MG,
Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
e-mail: bandman@ssd.sscc.ru

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_5,
C© Springer-Verlag Berlin Heidelberg 2010

81

82 O. Bandman

The diversity of processes being simulated by CA caused the necessity to extend
the cellular automaton concept by allowing it to have any kind of alphabet (Boolean,
integer, real, symbolic), any kind of transition functions (deterministic, probabilis-
tic), and any mode of functioning (synchronous, asynchronous). Although, two
imperative properties of classical CA are preserved:

(1) CA consists of many identical simple processing units (cells).
(2) Interactions between cells are constrained by a small (relatively to the total

amount of cells) neighborhood.

Such an extended concept of CA is sometimes referred to as fine-grained paral-
lelism [20]. A wide class of CA exhibiting the properties of self-organization and
emergency are considered also as models of complex systems [21]. Nevertheless,
hereafter the term CA or CA-model is used as the most habitual one. In Fig. 5.1,
CA-models of natural processes are collected and allocated according to their prop-
erties. It is worth noting that Cellular Neural Networks (CNN) [22] and explicit form
of discrete representation of Partial Differential Equations (PDE) are also regarded
as special cases of CA-models because two above properties are inherent in them.

A fast increase of the variety of CA-models and the growing necessity of simu-
lating complicated processes require a general formal approach to CA composition,
which is to be valid for any type of CA and any type of their interaction. It is pre-
cisely the object of the chapter, which aims to present a theoretical foundation, and
based on it, the CA composition techniques in a generalized and systematic form.
The necessity of such a techniques is motivated by the fact, that there is no formal
procedure to construct a CA-model according to a given qualitative or quantitative
specification of a space-time process. All known CA-models are the result of a
trial and error work based on high level of experience in CA modeling, as well
as a sophisticated understanding of the phenomenon to be simulated. However now,
when a bank of CA-models is relatively large and advantages of CA simulation are

Fig. 5.1 Properties of CA simulation models: lines connecting the rectangles show the sets of
properties, characterizing certain types of CA-models

5 Cellular Automata Composition 83

known, methods for combining several simple CA into a single model for simulat-
ing complicated processes seem to be essential. The problem is similar to that in
mathematical physics where a PDE is represented as a set of interacting differential
operators and functions, each having its own physical meaning. But, as distinct from
continuous mathematics, composition of interacting CA meets some essential prob-
lems. The solution of these problems should result in creating methods and tools
for organizing common work of several CA in such a way that the evolution of a
composed CA represents the required spatial process.

Complications in developing such a techniques are associated with the Boolean
alphabet, because the overall impact of several Boolean CA may not be obtained
by means of conventional arithmetical summation. Even more difficult is to com-
pose CA-models having different alphabets and/or different modes of operation
which is the case in reaction–diffusion and prey–predatory processes, where dif-
fusion is given as a Boolean CA, and reaction – as a real function. For example, the
snowflakes formation is usually simulated by a Boolean CA, while if it proceeds
in active medium, a chemical component should be added, which may be given as
a nonlinear real function. The first prototype of such a composition is proposed in
[23], where a nonlinear reaction function is combined with a Boolean diffusion.
A more general probabilistic variant is given in [24]. The latter is developed here
in appropriate techniques for performing algebraic operations on CA configurations
with all admissible numerical alphabets (Boolean, real and integer) to make compat-
ible the CA-models with different alphabets. Based on such operations a special CA
configurations algebra is constructed, which allows us to combine the functioning
of several CA-models in a single complex process [25].

To capture all features of essential diversity of CA-models, the more general for-
malism for CA-algorithms representation, namely, Parallel Substitution Algorithm
(PSA) [26], is chosen as a mathematical tool.

Recently, CA-models have aroused considerable interest in simulating the crowds
behavior [27, 28]. The paper does not deal with this class of CA, concentrating on
CA composition for simulation only natural phenomena.

The chapter combines author’s results that are scattered about the papers. It
consists of the following sections. In the next section, main concepts and formal
definitions are given in terms of PSA, and operations on cellular arrays are defined.
The third section presents a sequential composition (superposition) of CA-models
on local and global levels. In the fourth section a parallel and a mixed composition
methods are given. The fifth section concerns computational properties of composed
CA, namely, accuracy, stability and complexity. All composition methods are illus-
trated by the original simulation results.

5.2 Main Concepts and Formal Problem Statement

For simulation of spatial dynamics, an extended concept of CA-model is further
considered, whose expressive power is sufficient for simulating natural phenomena
of several kinds. The concept is based on the PSA formalism [26], which seems to

84 O. Bandman

be the most suitable for modeling composite processes, because it is provided by
an effective means (context) for interactions with external agency. Moreover, due
to its flexibility, PSA allows the strict formulation of most important requirements
imposed on CA composition techniques: (1) provision of behavioral correctness,
and (2) compatibility of several CA with different alphabets.

5.2.1 Formal Definition of a CA-model

Simulation of a natural phenomenon comprises the determination of a suitable math-
ematical model, the development of an appropriate algorithm and a computer pro-
gram, using the latter for computing desirable functions of time and space. If CA
is chosen as a mathematical model, then time is a discrete sequence of nonnegative
integers, space is a discrete set referred to as a naming set, function values are from
an appropriate alphabet.

A finite naming set M = {mk : k = 0, . . . , |M |} is further taken for the space.
Its elements mk ∈ M in simulation tasks are usually represented by the integer
vectors of coordinates of a Cartesian space of finite size. For example, in 2D case
M = {(i, j) : i = 0, 1, . . . , I, j = 0, 1, . . . , J }. A notation m is used instead of
(i, j) for making the general expressions shorter and for indicating, that it is valid
for any other kind of discrete space points.

No constraint is imposed on the alphabet A. The following cases are further used:
AS = {a, b, ..., n} – a finite set of symbols, AB = {0, 1} – the Boolean alphabet,
AR = [0, 1] – a set of real numbers in a closed continuous interval. Symbols from
the second part of the Latin alphabet {v, u, x, y, . . . , z} are used to denote the vari-
ables defined on A. Appealing to the above extended concept of alphabet is dictated
by the aim of the study: to combine several CA of different types into a single one
for simulating composite phenomena. A pair (a,m) is called a cell, a ∈ A being a
cell–state and m ∈ M – a cell–name. To indicate the state of a cell named by m both
notations u(m) and um are further used.

The set of cells

� = {(u,m) : u ∈ A,m ∈ M}, (5.1)

such that there are no cells with identical names, is called a cellular array, or, some-
times, a global configuration of a CA.

On the naming set M, a mapping φ : M → M is defined, referred to as a naming
function. It determines a neighboring cell location φ(m) of a cell named m. In the
naming set of Cartesian coordinates M = {(i, j)}, the naming functions are usually
given in the form of shifts φk = (i+a, j+b), a, b being integers. The set of naming
functions determines a template

T (m) = {φ0(m), φ1(m), . . . , φn(m)}, (5.2)

5 Cellular Automata Composition 85

which associates a number of cell names to each name m ∈ M . The cell named as
φ0(m) is called an active cell of a template, where n � |M |, and φ0(m) = m by
condition.

A subset of cells

S(m) = {(u0,m), (u1, φ1(m)), . . . , (un, φn(m))}, (5.3)

with the names from T (m) is called a local configuration, T (m) being its underlying
template . The set

US(m) = (u0, u1, . . . , un)

forms a local configuration state vector .
A cell (uk,m) changes its state uk to the next-state u′

k under the action of a local
operator, which is expressed in the form of a substitution [26] as follows

θ(m) : S(m) � S′′(m)→ S′(m), (5.4)

where

S(m) = {(v0,m), (v1, φ1(m)), . . . , (vn, φn(m))},
S′(m) = {(u′

0,m), (u′
1, φ1(m)), . . . , (u

′
n, φn(m))},

S′′(m) = {(vn+1, φn+1(m), . . . , (vn+h, φn+h(m))}. (5.5)

In (5.5) S(m), S′(m) and S′′(m) are local configurations, the first two having the
same underlying template, and the third one comprises h additional cells. The next-
states u′

k , k = 0, 1, . . . , n, of the cells from S′(m) are values of the transition
functions fk of the cell states from S(m) ∪ S′′(m), i.e.

u′
k = fk(v0, . . . , vn, . . . , vn+h), ∀k = 0, 1, . . . n. (5.6)

A union of the left-hand side local configurations S(m)∪S′′(m) in (5.4) is called a
cell–neighborhood where S′′(m) is a context, S(m) is a base of θ(m). The right-hand
side S′(m) is the next-state base of the local operator.

The underlying templates T (m), T ′(m), and T ′′(m) of the local configuration in
(5.5) are in the following relation:

T ′(m) = T (m),

T (m) ∩ T ′′(m) = ∅, (5.7)

T (m) being referred to as a basic template of θ .
A local operator θ(m) is said to be applicable to a cell named m ∈ M if S(m) ∪

S′′(m) ⊆ �. Otherwise, it is not applicable. Application of θ(m) to a certain cell

86 O. Bandman

(v,m) (a single-shot application) means execution of the following actions. For all
k = 0, . . . , n

(1) the next-states u′
k are computed according to (5.6),

(2) the cells (vk, φk(m)) ∈ S(m) are updated by replacing the cell states uk by u′
k .

The cells (vn+l , φn+l(m)), l = 0, . . . , h, from the context remain unchanged.
They play a role of an application condition, the states being used as variables in the
transition functions (Fig. 5.2).

A subset M̂ ⊆ M , referred to as the active naming set is defined, such that it com-
prises the names of active cells, i.e., the cells to which the local operator is applied.
Application of θ to all active cells m ∈ M̂ comprises an iteration performing a
global transition,

�(M̂) : �(t)→ �(t + 1), (5.8)

A sequence of global transition results

Σ(�) = (�,�(1), . . . , �(t),�(t + 1), . . . , �(t̂)) (5.9)

is called a CA evolution.
The CA evolution is the result of a simulation task, representing the process under

simulation. If the process converges to a stable global state, then CA evolution has
a termination, i.e., there exists such a t = t̂ , that

�(t̂) = �(t̂ + 1) = �(t̂ + 2) = · · · = �(t̂ + ξ), (5.10)

where ξ is an a priori given number. If it not so, then the evolution is infinite, i.e.,
exhibits an oscillatory or chaotic behavior [2].

There are different modes of ordering local operator application in space and
time to perform a global transition from �(t) to �(t + 1). The following are the
most important ones.

Synchronous mode provides for transition functions (5.6) being computed using
the current state values of all their variables, i.e.

S(m) ∪ S′′(m) ∈ �(t). (5.11)

Fig. 5.2 Graphical
representation of a local
operator

5 Cellular Automata Composition 87

The transition to the next cell–state values occurs after all the transition functions
in cells from S(m) for all m ∈ M̂ are computed. Theoretically, it may be done in
all cells simultaneously or in any order, which manifests the cellular parallelism. In
fact, when a conventional sequential computer is used, such a cellular parallelism is
imitated by delaying cell updating until all next states are obtained. So, the cellular
parallelism is a virtual parallelism, which cannot be for the benefit when CA-model
is run on conventional computers.

Asynchronous mode of operation suggests no simultaneous operations (neither
real nor virtual). Intrinsic parallelism of CA-models is exhibited by the arbitrary
order of cells to be chosen for application of θ(m), the updating of cell states of
S′(m) being done immediately after θ(m) is applied. The time of such an application
is referred to as a time-step and denoted as τ . So, each global transition �(t) →
�(t +1) consists of |M̂ | sequential time steps, forming a sequence of cellular arrays

γα(�(t)) = �(t),�(t + τ), . . . , �(t + |M̂ |τ), (5.12)

which is referred to as global state transition sequence. The important property of
asynchronous mode of operation is that the state values used by transition functions
(5.4) may belong both to �(t) and to �(t + 1), i.e.,

S(m) ∪ S′′(m) ⊂ �(t) ∪�(t + 1). (5.13)

It is the reason why two CA-models with equal 〈A, M, M̂, θ〉 starting from the same
�may have quite different evolutions when operating in different modes. Although,
some exotic “very good” CA-models are known, whose evolutions and attractors are
invariant whatever mode of operation is used [26].

Multi-stage synchronous mode is also frequently used. It is a mixed mode of
operation, which may be regarded both as a synchronised asynchronous mode, and
as an asynchronised synchronous one. The mode suggests the whole cellular array
of the CA to be partitioned into nonintersecting blocks each containing b cells. The
block partition induces a dual of partition {M ′

1, . . . , M ′
b}, whose subsets are further

called stage naming subsets . They contain representative names of all blocks (one
out of each block), so that M̂ = M ′

1 ∪ . . . ∪ M ′
b. Respectively, the iteration is

divided into b stages. At each kth stage the local operator is applied to the cells of
Mk synchronously, the stages being processed in asynchronous manner. Naturally,
cellular parallelism is here limited by the subset cardinality.

No matter what is the mode of operation, a global operator is the result of appli-
cation of θ(m) to all cells m ∈ M̂ .

From the above it follows that a CA-model, denoted as ℵ is identified by five
notions:

ℵ = 〈A, M, M̂, θ, ρ〉

where ρ indicates the mode of operation, ρ = σ stands for the synchronous mode,
ρ = β – for multistage synchronous mode, and ρ = α – for asynchronous mode

88 O. Bandman

of local operator application. When the indication of operation mode is essential,
the corresponding symbol is placed as an subindex, e.g., ℵα denotes an asyn-
chronous CA.

5.2.2 Correctness of CA Simulation Process

A CA-model ℵ = 〈A, M, M̂, θ, ρ〉 is said to be correct (in computational sense) if
its operation satisfies the following correctness conditions.

1. Non-contradictoriness. At any moment of time, a cell is allowed to be updated
by only one local operator application. Non-contradictoriness provides absence of
conflicts, which are such a situations when a local operator being applied to the cells
m and φk(m) simultaneously is attempting to update one and the same cell by writ-
ing in it different state values. Formally, non-contradictoriness sufficient condition
is formulated as follows [26]: simultaneous application of a local operator to mk and
ml is allowed only if

T ′(mk) ∩ T ′(ml) = ∅ ∀(mk,ml) ∈ M. (5.14)

It is quite clear, that the non-contradictoriness condition is always satisfied
for classical synchronous CA whose local operator has a single–cell base, i.e.,
|S′(m)| = 1. It is not so if |S′(m)| > 1, because the local operator has to change
several cells simultaneously. To avoid the above conflict situation, one has to sac-
rifice a bit of cellular parallelism to non-contradictoriness. It may be done either
by constructing an asynchronous CA, simulating the same process, or by replac-
ing the synchronous CA ℵσ = 〈A, M, M̂, θ, σ 〉 by an equivalent multi-stage CA
ℵβ = 〈A, M, M̂1, . . . , M̂b, θ, β〉. Such a sequalisation is done according to the
following algorithm.

1. The naming set M is partitioned into |M |/b blocks, a block being defined by the
underlying template B(m) = {ψ0(m), ψ1(m), . . . , ψl(m), . . . , ψb(m)} in such a
way, that

B(m j) ⊇ T ′(m j), ∀ j = 1, . . . , |M |/b.
|M|/b⋃

j=1

B(m j) = M, ∀ j = 1, . . . , |M |/b.

B(mh)
⋂

B(mg) = ∅, ∀mh,mg ∈ M̂k, ∀k = 1, . . . , b, (5.15)

where T ′(m) is the basic template in θ .
2. On the active naming set M̂ a stage partition {M̂1, . . . , M̂k, . . . , M̂b} is defined,

i.e.,

M̂k = {ψk(m j) : k = 1, . . . , b; j = 1, . . . , |M |/b.} (5.16)

m j = ψ0(m j) being the active cell of a block B(m j) ∈ M .

5 Cellular Automata Composition 89

3. Each iteration�(t)→ �(t+1) is divided into b sequential stages (t1, t2, . . . , tb),
tb = t + 1, the resulting arrays forming a sequence:

γβ(t) = �(t), . . . , �(t + tk),�(t + tk+1), . . . , �(t + 1), tk = τk

b
, (5.17)

referred to as a stage transition sequence. On the k-th stage, k = 1, . . . , b, θ(m)
is applied synchronously to all cells from M̂k .

4. The subsets M̂k , k = 1, . . . , b, are processed sequentially in arbitrary order,
hence, the total number of possible stage transition sequences is |{γβ}| = b!
The CA-model obtained by the above algorithm satisfies the non-contradictoryness

condition (5.14). Moreover, its evolution although differing from the incorrect initial
one, should simulate the wanted process. As for asynchronous CA, they always
satisfy non-contradictoriness conditions, because at each step only one application
of θ(m) is allowed.

Fairness. At each iteration, θ(m) should be applied to all cells m ∈ M̂, being
applied to each cell m ∈ M̂ only once. Fairness ensures that all cells have equal
rights to participate in the CA operation process, therefore, it is sometimes referred
to as equality in rights of cells activity [29]. Synchronous classical CA satisfy this
property according to the definition of synchronicity. When multi-stage synchronous
mode is used, fairness is provided by conditions (5.14) and (5.15). In asynchronous
CA-models the property is the consequence of binomial probability distribution of
cells chosen for local operator application.

5.2.3 Operations on Cellular Arrays

When a phenomenon under simulation consists of several interacting processes, its
CA-model should be composed of a number of CA which have to interact, executing
some operations on the intermediate results both on the local and global level. The
problem in performing such an operation emerges when it turns to be incompatible
with the alphabet of the CA-models under composition. For example, Boolean cellu-
lar arrays are incompatible with arithmetic addition. To provide such a compatibility
a number of transformations on cellular arrays should be introduced, allowing to
construct a kind of algebra on CA configurations [25]. Like in any algebraic system,
unary and binary operations are defined in this algebra.

5.2.3.1 Unary Operators on Cellular Arrays

Two unary operators are defined: (1) averaging which transforms Boolean cellular
arrays into the equivalent real ones, and (2) state discretisation which performs the
inverse operation.

Averaging of the Boolean cellular array Av(�B) is a unary global operator which
comprises the application of a local operator Av(m) to all cells of the cellular array,

90 O. Bandman

i.e., Av(�B) ∈ AR × M, where �B = {(v,m) : v ∈ {0, 1},m ∈ M} , �R =
{(u,m) : u ∈ [0, 1],m ∈ M}.

The local operator Av(m) computes the average value of a cell state in the aver-
aging area,

SAv(m) = {(u0,m), (u1, ϕ1(m)), . . . , (uq , ϕq(m))}, (5.18)

In case of 2D Cartesian cellular array, its underlying template is TAv(i, j) = {(i, j),
(i + k, j + l) : k, l = −r, . . . , r}, r being referred to as averaging radius Averaging
may be regarded as a local operator

Av(m) : (v, (i, j)) � SAv(m)→ (u,m), u(m) = 〈v〉 = 1

q

q∑

k=0

vk, (5.19)

where SAv(m) is the averaging context. Angle brackets in (5.19) and further denote
the averaged state values.

Discretisation of a real cellular array Dis(�R) is a unary global operator Dis(�R)

∈ AB × M, resulting from the application of a local operator Dis(m) to all cells of
the cellular array. Dis(m) is a single-cell local operator which replaces a real state
value u ∈ [0, 1] by 1 with probability p = u.

Dis(m) : (u,m)→ (v,m), v = Bool(u) =
{

1, if u < rand,
0 otherwise,

(5.20)

where rand is a random number in the interval [0, 1], Bool(u) means a discre-
tised value of u ∈ [0, 1]. The above two unary operations are in the following
relationship:

Dis(�B) = �B,

Av(�R) = �R,

Dis(Av(�B)) = �B,

Av(Dis(�R)) = �R .
(5.21)

5.2.3.2 Binary Operators on Cellular Arrays

Binary operators are defined on cellular arrays� ∈ AB ×M1∪ AR ×M2, if between
M1 = {(mi)1}, and M2 = {(mi)2} there exists an one-to-one correspondence ξ :
M1 → M2,

(mi)2 = ξ((mi)1), ∀(mi)2 ∈ M2,

(mi)1 = ξ−1((mi)2), ∀(mi)1 ∈ M1.
(5.22)

The cells (v, ((mi)1)) ∈ �1 and (u, ((mi)2)) ∈ �2 are further denoted as (vi ,m1)

and (ui ,m2), respectively, which means that vi and ui are states in the corresponding
cells of �1 and �2.

Binary operations are based on the following principle: ordinary arithmetic rules
should be valid for the averaged forms of the operands, i.e.,

5 Cellular Automata Composition 91

�1♦�2 ⇔ Av(�1) � Av(�2), (5.23)

where ♦ stands for cellular array addition ⊕, cellular array subtraction � or cellular
array multiplication ⊗, and � stands for arithmetical +, −, and ×, respectively.

Condition (5.23) may also be given for the cell states as follows.

vi ((mi)1)♦ui ((mi)2)⇔ 〈vi ((mi)1)〉 � 〈ui ((mi)2)〉 ∀i ∈ 1, . . . , |M |. (5.24)

The reason for taking averaged state values as a generalized alphabet is twofold:
(1) to allow ordinary arithmetics to be used for modeling spatial functions interac-
tions, and (2) to make the results more comprehensive from the physical point of
view.

From (5.23) and (5.24) it follows that when all operands have real alphabets, the
cellular array arithmetic coincides with the corresponding real cell-by-cell arith-
metical rules. Otherwise, the rules depend on the operands alphabets.

Let �1 = {(vi ,m1) : vi ∈ A1,m1 ∈ M1} and �2 = {(ui ,m2) : ui ∈ A2,m2 ∈
M2} be the operands and �3 = {(wi ,m3) : wi ∈ A3,m3 ∈ M3} be a result, then
binary operations are as follows.

Cellular array addition: �1 ⊕�2 = �3. For different alphabets of the operands
the cellular addition looks somewhat different. The following cases are of main
importance.

1. Both operands �1 and �2 are Boolean cellular arrays, and the resulting �3
should have a real alphabet. Then according to (5.23)�3 is computed as follows:

�3 = Av(�1)
⊕

Av(�2),

wi = 〈vi 〉 + 〈ui 〉 ∀i = 1 . . . , |M |.
2. Both operands are Boolean and the resulting cellular array is wanted to have

Boolean alphabet. Then

�3 = Dis(Av(�1)⊕ Av(�2)),

wi =
{

1 if rand < (〈ui 〉 + 〈vi 〉)
0 otherwise

∀i = 1, . . . , |M |. (5.25)

3. Both operands and their sum are Boolean, the latter being used as an intermediate
result. Then, it is convenient to update one of the operands, say �2, so, that it be
equal to the resulting array, i.e.,

�2(t + 1) = �1(t)⊕�2(t).

In that case it suffices to invert a number of zero-states in the cells (0,m2) ∈ �2.
It should be done in such a way, that in every cell of �2 its averaged state value
be increased by 〈vi 〉. According to (5.20) the probability of such an inversion is
the relation of the averaged amount of “ones” to be added to the averaged amount
of “zeros” in the averaging area of each cell of �2.

92 O. Bandman

u′
i =
⎧
⎨

⎩

1, if ui = 0 & rand <
〈vi 〉

1 − 〈ui 〉
ui otherwise,

∀i = 1, . . . , |M |. (5.26)

4. The operands have different alphabets. Let �1 be a Boolean cellular array, �2 –
a real one, and �3 is wanted to have the real alphabet. Then

�3 = Av(�1)⊕�2,

wi = 〈vi 〉 + ui ,
∀i = 1, . . . , |M |.

5. �1 has Boolean alphabet, �2 has a real one, and �3 is wanted to be a Boolean
cellular array. Two ways are possible: (1) to discretise �3, obtained by (5.28),
and (2) to update �1 by using the following operation

wi =
{

1 if vi = 0 & rand <
ui

1 − 〈vi 〉 ,
vi otherwise,

∀i = 1, . . . , |M |. (5.27)

Cellular array subtraction �3 = �1 � �2. The following cases are of main
importance.

1. Both operands are Boolean, the result is wanted to be real or Boolean. The oper-
ations are similar to those of the cellular addition. It is merely needed to replace
“+” by “−” in (5.25) or (5.26).

2. Both operands are Boolean, and �2 is to be updated to obtain �2 = �1 � �2.
In that case some cell states (1,m2) ∈ �2 should be inverted with probability
equal to the relation of the amount of “ones” to be removed, to the total amount
of “ones” in the averaging area.

u′
i =
⎧
⎨

⎩

0 if ui = 1 & rand <
〈ui 〉
〈vi 〉

ui otherwise
∀i = 1, . . . , |M |. (5.28)

3. �1 has Boolean alphabet, �2 has a real one, and �3 is wanted to be a Boolean
cellular array. Two ways are possible: (1) to discretise�3, obtained by arithmetic
subtraction, i.e.,

�3 = Dis(Av(�1)−�2), (5.29)

or (2) to update �1 as follows

v′i =
{

0 if ui = 1 & rand <
ui

〈vi 〉
ui otherwise,

∀i = 1, . . . , |M |. (5.30)

Cellular array multiplication�3 = �1⊗�2. The operation is defined on real cel-
lular arrays. The cell states are computed according (5.25) with “×” instead of “+”.
If any or both of the operands are Boolean, they should be averaged beforehand. The

5 Cellular Automata Composition 93

operation is used in those cases when one of the two operands is a constant cellular
array, i.e., such one where all cell states have the same value. This is helpful when
subsets of cells have to be masked or scaled.

Since addition and subtraction are defined on cellular arrays with the alphabet
restricted by the interval [0,1], the same condition should be satisfied for all cells in
the resulting cellular arrays. If it is not so, the alphabet is to be renormalised.

Having the set of operation on cellular arrays in hands, it is possible to formulate
CA composition techniques. General composition principles prescribe to distinguish
sequential, parallel, and intermixed cases. Sequential composition represents several
CA processing one and the same cellular array by alternating their application at
each iteration. Parallel composition suggests each CA to process its own cellular
array, albeit having neighborhoods in the others.

5.3 The Sequential Composition Techniques

Sequential composition, further referred to as superposition, represents a common
functioning of several CA, referred to as components. Their local operators are
applied in a certain order to one and the same cellular array. It comprises a number
of techniques differing in ordering component operators application forming two
groups: global and local superposition techniques.

Global superposition suggests the synchronous alternation of global operators
application to the component CA. When those operators use different alphabets,
their compatibility should be provided by transforming a Boolean cellular array into
a real one or vice versa. Apart of the general case of global superposition, two par-
ticular cases are distinguished: (1) self-superposition, which is in fact a multistage
mode of a CA operation, and (2) a so-called trivial CA superposition [20].

Local superposition is the composition when at each iteration the local opera-
tors of all components involved in the composition, are applied in any order or in
random. Naturally, the components should be asynchronous CA.

5.3.1 Global Superposition

A number of CA form a global superposition ℵ = �Gl(ℵ1, . . . ,ℵn), ℵ = 〈Ak, M,

M̂k, θk, ρk〉, if its global operator �(�) is the result of sequential application of the
global operators �k to �k = �k−1(�k−1), k = 1, . . . , n, providing compatibility
of Ak and Ak−1, i.e.,

�(�) = �′
n(�

′
n−1(. . . �

′
1(�1))), (5.31)

each �′
k being itself a superposition of �k and a unary operator, i.e.,

�′
k = �k(Un(�k)), (5.32)

94 O. Bandman

where

Un(�k) =
{

Av(�k), if Ak = [0, 1] & Ak−1 = {0, 1},
Dis(�k), if Ak = {0, 1} & Ak−1 = [0, 1].

Components of the superposition may differ in alphabets, local operators and modes
of operating, but the same naming set should be used.

The following particular cases of global superposition are of especial importance:
self-superposition, trivial superposition, and the general type of superposition of CA
with different types of alphabets.

5.3.1.1 Global Self-Superposition

This type of composition is the most simple one, being defined only for synchronous
CA. A CA ℵ = 〈A, M, M̂, θ, σ 〉 is a self-superposition ℵ = �SS(ℵ1, . . . ,ℵn),
ℵk = 〈A, M, M̂k, θ, σ 〉, if its components differ only in active subsets M̂k . Since
the same local operator is applied at all stages of the superposition, there is no need
to take care about their compatibility, so, �(�) = �n(�n−1(. . . (�1(�)))).

Self-superposition is usually obtained by modifying a synchronous CA-model of
a process which requires several neighboring cells to be updated at once. In that case
non-contradictoryness condition (5.14) may be violated, hence, conflicts and data
loss are possible. To avoid such a situations some amount of cellular parallelism
should be sacrificed by performing the global transition in several stages. It is done
as follows.

1. Each t th iteration is divided into n stages t1(t), . . . , tn(t), the results of kth stage
being �(tk).

2. At the tk(t)th stage, θ(m) is applied to all cells named mk ∈ M̂k of �(tk(t)).

Example 1 Diffusion is a random wandering of particles aiming to even distribution.
The process may be simulated by the exchange of cell states in any pair of adjacent
cells. Since synchronous simulation of such a process is contradictory, as it is shown
in Sect. 5.2.2, self–superposition of two CA [1, 3, 4]: ℵ1 = 〈A, M, M̂1, θ, σ 〉
and ℵ2 = 〈A, M, M̂2, θ, σ 〉, is used, where A = {0, 1}, M = {(i, j) : i, j =
0, 1, . . . , N },

M̂1 = {(i, j) : imod2 = 0, jmod2 = 0},
M̂2 = {(i, j) : imod2 = 1, jmod2 = 1}, (5.33)

M̂1 and M̂2 being referred to as even active subset and odd active subset, respec-
tively. The local operator is as follows:

θ(i, j) : {(v0, (i, j)), (v1, (i, j + 1)), (v2, (i, j + 1)), (v3, (i, j + 1))} (5.34)

→ {(u0, (i, j)), (u1, (i, j + 1)), (u2, (i, j + 1)), (u3, (i, j + 1))},

5 Cellular Automata Composition 95

t = 0 t = 4 t = 8

Fig. 5.3 Three snapshots of diffusion process, simulated by the CA-model with a local operator
(5.34). Black pixels stand for 〈v〉 = 1, white pixels – for 〈u〉 = 0

uk =
{
v(k+1)(mod4) if rand < p,
v(k−1)(mod4) if rand > (1 − p),

k = 0, 1, 2, 3,

the probability p depending on the diffusion coefficient.
Each iteration of a composed CA is divided into two stages: even stage and odd

stage. At the odd stage θ(m) is applied to all cells from M̂1, at the even stage θ(m)
is applied to all cells from M̂2.

In Fig. 5.3 three snapshots are shown of the CA evolution simulating the diffusion
of a black dye slopped onto the water surface.

5.3.1.2 Global Trivial Superposition

Trivial superposition ℵ = �T r (ℵ1, . . . ,ℵn), where ℵk = 〈Ak, M, M̂k, θk, ρk〉, sug-
gests the evolution of ℵ be a sequential composition of the evolutions �ℵk (�

′
k(t̂k))

of its components, �′
k(t̂k) being a result of a unary operator (5.34) application to

�k(t̂k), if Ak and Ak+1 are incompatible. The alphabets, local operators, modes of
operation, and active naming subsets in the components may be different. But the
order of component application is essential.

Example 2 Pattern formation process starts in the cellular array which has been
obtained by a short-time application of a diffusion CA to a cellular array with two
areas of high concentration (black bands along vertical borders) and empty (white)
background (Fig. 5.4a). Diffusion is simulated by an asynchronous probabilistic
CA, called in [1] a naive diffusion ℵ1 = 〈A, M, M̂, θ1, α〉. Pattern formation is
simulated by synchronous CA ℵ2 = 〈A, M, M̂, θ2, σ 〉. Both CA have a Boolean
alphabet A = {0, 1}, their naming sets are identical as well as active naming subsets,
M = M̂ = {(i, j) : i, j = 0, . . . , 300}. The local operators θ1(m) and θ2(m) are as
follows:

θ1(m) : {(v0, (i, j)), (v1, (i−1, j)), (v2, (i, j+1)), (v3, (i+1, j)), (v4, (i−1, j))}→
{(u0, (i, j)), (u1, (i−1, j)), (u2, (i, j+1)), (u3, (i+1, j)), (u4, (i−1, j))}

(5.35)

96 O. Bandman

a) b) c)

Fig. 5.4 Three snapshots of the process, simulated by trivial superposition of an asynchronous
diffusion CA and a synchronous pattern formation CA: (a) initial array, (b) t̂1 = 10, (c) t̂2 = 12

with the transition functions

u0 = vk, if 0.25k < rand < 0.25(k + 1),

uk =
{
v0 if 0.25k < rand < 0.25(k + 1),
vk otherwise.

k = 1, . . . , 4. (5.36)

θ2(m) : (u0, (i, j)) � {(ugh, φgh(i, j)) : g, h = −3,−2,−1, 1, 2, 3} → (v0, (i, j)),
(5.37)

has a transition function

v0 =
{

1, if Sw > 0,
0, otherwise,

(5.38)

where the weighted sum

Sw =
3∑

g=−3

3∑

h=−3

(wgh · v(i+g, j+h)) with wgh =
{

1, if g ≤ 1 & h ≤ 1
−0.2, otherwise.

In Fig. 5.4 three snapshots of trivial composition of two CA (ℵ1 simulating diffusion
and ℵ2 simulating pattern formation) are shown. Cellular array size is 300 × 300,
t̂1 = 10, t̂2 = 12. The obtained pattern is a stable one, further application of θ2 to
�2(t̂2) implies no change in it.

5.3.1.3 Global Superposition of Arbitrary CA

Global superposition of arbitrary CA is a technique for obtaining a CA ℵGl = �Gl

(ℵ1, . . . ,ℵn), which combines operation of several CA ℵk = 〈Ak, M, M̂k, θk, ρ〉,
k = 1, .., n, whose alphabets and local operators are allowed to be incompatible,
and modes of operation may be different. The operation of the composed CA is as
follows.

5 Cellular Automata Composition 97

1. Each t th iteration of the composed CA consists of n stages t1(t), . . . , tn(t), the
results of tk th stage being �(tk(t)) = �k−1(tk−1(t)).

2. At the tk(t)th stage θk is applied to all cells m ∈ M̂k of �′(tk(t)). The latter
should be obtained by transforming �(tk(t)) according to (5.34), if needed.

Example 3 Simulation of the alga spreading over the water is considered to com-
bine three elementary processes: (1) agglomeration of randomly distributed alga,
(2) diffusion of alga into water, and (3) procreation of alga.

The first process is represented by a Boolean CA ℵ1 sometimes called a phase-
separation CA [20, 30], the second – by the two-stage diffusion CA ℵ2 given in
Sect. 5.3.1(Example 1), the third – by ℵ3 computing a nonlinear logistic function
[31]. Accordingly, each t th iteration of the composed CA has three stages. At the
first stage t1, the transition �(t)→ �(t1) is performed by a synchronous CA ℵ1 =
〈A1, M, M̂1, θ1, σ 〉 with A1 = {0, 1}, M = {(i, j) : i, j = 0, . . . , N }, M̂ = M , and
a single-cell updating local operator

θ1(i, j)) : (v, (i, j)) � S′′(i, j)→ {(v′, (i, j))} ∀(i, j) ∈ M, (5.39)

where

S′′(i, j) = {(vk, φk(i, j)) : φk(i, j) = (i + g, j + h)},
g, h ∈ {−3,−2,−1, 1, 2, 3},

v′ =
{

1, if s < 24 or s = 25,
0, if s > 25 or s = 24.

where s =
2∑

g=−2

2∑

h=−2

vi+g, j+h .

At the second stage ℵ2 given in Sect. 5.3.1(Example 1) performs a transition
�(t1) → �(t2) by application θ2 (5.36) to all cells of �(t1)), the value of the
probability in (5.36) being p = 0.5. As the alphabet A2 is compatible with A1, θ2 is
applied directly to the cells of �1 resulting in a Boolean array �(t2) = {(u, (i, j))}.

At the third stage alga procreation CA ℵ3 = 〈A3, M, M̂k, θ3, σ 〉 is applied to
�(t2). But since A3 = [0, 1] and, hence, θ3 is incompatible with �2, the latter is
transformed into �(t2)′ by averaging, i.e. the operator Av(i, j) is applied to �(t2)
replacing each cell state u(i, j) by 〈u(i, j)〉. The latter is computed according to
(5.19) with the averaging template TAv(i, j) = {(i + k, j + l) : k, l = −8, . . . , 8}.
The local operator

θ3(i, j) : (〈u(i, j)〉, (i, j))→ (F(〈u(i, j)〉), (i, j)) (5.40)

is applied to�(t2)′ replacing a cell state 〈u(i, j)〉 by the value of a nonlinear logistic
function F(〈u(i, j)〉) = 0.5〈u(i, j)〉(1−〈u(i, j)〉). The resulting cellular array hav-
ing real states should be discretized according to (20) to obtain �(t3)′ = �(t + 1).

The composition has been applied to an initial Boolean cellular array �(0) with
v = 1 randomly distributed with probability p = 0.5, so that 〈v(i, j)〉 ≈ 0.5 for all
(i, j) ∈ M , the border conditions being periodic.

98 O. Bandman

t = 5 t = 25 t = 70

Fig. 5.5 Three snapshots of alga spreading in water, simulated by synchronous global superposi-
tion of ℵ1 with θ1 (5.39), ℵ2 with θ2 (5.34) and ℵ3 with θ3 (5.40). Black pixels stand for maximal
concentration of alga, white pixels – for clear water

In Fig. 5.5, three snapshots of the simulation process are shown, cellular arrays
being averaged for making the observation more comprehensive. Black pixels stand
for maximum concentration of alga, white ones represent clear water. It is seen that
on the first iterations, the total amount of alga decreases, but if some compact spots
remain large enough, the procreation activeness enhances their growth up to the
saturation.

5.3.2 Local Superposition

Asynchronous local superposition is mainly used in simulating biological pro-
cesses and nano-kinetics, i.e., the processes on micro- or nano-levels, which are
considered to be completely stochastic by nature [13]. This technique aims at
obtaining a CA-model ℵ = �Loc(ℵ1, . . . ,ℵn} composed of n asynchronous CA
ℵk = 〈A, M, M̂k, θk, α〉, k = 1, . . . , n, which differ only in local operators and
(perhaps) in active subsets. The way of their common functioning is as follows. An
iteration �(t) → �(t + 1) consists of |M | cycles, a cycle being a sequence of
single-shot applications of θk(m), k = 1, . . . , n, to a randomly chosen cell from
�(t). Each θk(m) is executed immediately after the application. There is no con-
straints neither on the order of choosing a cell during an iteration, nor on the order
of choosing θk(m) for application during a cycle.

Example 4 A chemical reaction of CO oxidation over platinum catalysts, well
known in surface chemistry as Ziff-Guilari-Barshod model [32], is represented by a
local superposition of four simple local operators, mimicking elementary actions of
adsorption, reaction, oxidation, and diffusion. The cellular array � corresponds to a
catalysts plate, each site on it being named as (i, j) ∈ M , |M | = N × N , M̂ = M .
The alphabet contains three symbols A = {a, b, 0}, so that (a, (i, j)), (b, (i, j)),
and (0, (i, j)) are cells corresponding to the sites occupied by the molecules of CO,
O, or being empty, respectively. In the initial array, all cells are empty. The CO
oxidation process consists of the following four elementary molecular actions in
any cell named (i, j) (Fig. 5.6).

5 Cellular Automata Composition 99

Fig. 5.6 Graphical representation of local operators involved in an asynchronous local superposi-
tion simulating chemical oxidation of CO on platinum

(1) Adsorption of CO from the gas: if the cell (i, j) is empty, it becomes occupied
by a CO molecule with probability p1.

(2) Adsorption of the oxygen O2 from the gas: if the cell (i, j) is empty and has an
empty adjacent cell, both become occupied by an atom of oxygen with prob-
ability p2. One out of h < 4 adjacent cells of the cell (i, j) is chosen with
probability pn = 1/h.

(3) Reaction of oxidation of CO (CO+O → CO2): if the cell (i, j) occurs to be in
a CO state and its adjacent cell is in O state, then the molecule CO2, formed by
the reaction, transits to the gas and both cells become empty. One out of h < 4
adjacent cells occupied by oxygen is chosen with probability pn = 1/h.

(4) Diffusion of CO over the plate: if the cell (i, j) occurs to be in a CO state
when one of its adjacent cells is empty, the cell (i, j) becomes empty, and the
empty cell gets the state CO. This occurs with probability p3. One out of h < 4
adjacent cells of the cell (i, j) is chosen with probability pn = 1/h.

Formally, local operators of the above actions are represented as follows.

θ1(i, j) : {(0, (i, j))} → {(a, (i, j))}, if p1 > rand,
θ2(i, j) : {(0, (i, j))(0, φk(i, j))} → {(b, (i, j)), (b, φk(i, j))},

if (k − 1)pn < rand < kpn & p2 > rand
θ3(i, j) : {(a, (i, j))(b, φk(i, j))} → {(0, (i, j)), (0, φk(i, j))},

if (k − 1)pn < rand < kpn

θ4(i, j) : {(a, (i, j))(0, φk(i, j))} → {(0, (i, j)), (a, φk(i, j))},
if (k − 1)pn < rand < kpn) & p3 > rand,

for k = 1, . . . , 4.
In Fig. 5.7 three snapshots of the simulation process are shown, the initial cellular

array �(0) = {(0, (i, j)) : ∀(i, j) ∈ M}, |M | = 200 × 200.
In the general case local superposition is not a commutative operation, i.e., if

θ1 = θ2, then

θ1(θ2(m)) = θ2(θ1(m)). (5.41)

100 O. Bandman

t = 2 t = 40 t = 80

Fig. 5.7 Three snapshots of the oxidation reaction simulation by an asynchronous superposition of
local operators shown in Fig. 5.6. Black pixels stand for CO, gray pixels – for O, and white pixels –
for empty sites

The above property is very important, because the results of the simulation may
differ essentially if the order of superpositions is changed. Although in case of
long evolution, the repetitive sequence of superpositions, for example, such as
θ1(θ2(θ1(θ2(m) . . .))), makes the composition insensitive of the substitution being
the first. If it is not the case, the only way to make the result independent of the order
of substitutions in the composition is their random choice at any step of application
(the Monte-Carlo method).

5.4 The Parallel Composition Techniques

Parallel composition suggests functioning of n interacting CA, each processing its
own cellular array. Taking into account that the number of possible interactions in
the composition exponentially increases with n, and for clearness of presentation,
the composition ℵ = ϒ(ℵ1,ℵ2) of not more than two CA is further considered.
The components ℵk = 〈Ak, Mk, M̂k, θk, ρk〉, k = 1, 2, are allowed to have differ-
ent alphabets, different modes of operation, different local operators, and between
M1 = {(mi)1}, and M2 = {(mi)2}, i = 1, 2 . . . , |M |, the condition (5.22) is satis-
fied.

Since θ1((m)1) and θ2((m)2) are to be executed simultaneously, the computation
is dangerous from the point of view of non-contradictoryness condition (5.14), and
at the same time the transition function in θ1((m)1) and θ2((m)2) should interact.
Hence, with respect to (5.11) and (5.13), the left-hand sides of the operators should
have nonempty intersection, i.e.

(S1((mi)1) ∪ S′′
1 ((mi)1)) ∩ (S2((mi)2) ∪ S′′

2 ((mi)2)) = ∅.

Combining this statement with (5.14) the correctness condition yields:

Tk((mi)k) ⊆ Mk, (5.42)

T ′′
k ((mi)k) ⊆ (M1 ∪ M2) ∀k ∈ {1, 2}. (5.43)

5 Cellular Automata Composition 101

From (5.45) it follows that θ1((mi)1) and θ2((mi)2)may update cells only from their
own cellular arrays, whereas from (5.46) they are allowed to use cell states of the
both. It means, that the neighborhoods of cells (mi)1 and (mi)2, may intersect only
by their contexts.

The above conditions are valid both for local and global composition techniques,
as well as both for CA with synchronous and asynchronous modes of operation.

5.4.1 Global Parallel Composition

5.4.1.1 Trivial Parallel Composition

Trivial parallel composition ℵ = ϒT r (ℵ1,ℵ2), ℵk = 〈Ak, Mk, M̂k, θk, ρk〉, k =
1, 2, is a degenerate particular case of parallel composition, when the components
are completely independent, i.e.,

(S1((mi)1) ∪ S′′
1 ((mi)1)) ∩ (S2((mi)2) ∪ S′′

2 ((mi)2)) = ∅. (5.44)

Nonetheless, after both components have terminated, a binary operation on the
resulting cellular arrays may be performed. So,

�(t̂) = �1(t̂1) ♦ �2(t̂2), (5.45)

where ♦ is any binary operator given in Sect. 5.2.3.2.

Example 5 Two phase separation models are to be compared by computing the dif-
ference of two resulting cellular arrays:

(1) �1(t̂1) obtained by the evolution of a totalistic CA ℵ1 = 〈A1, M1, M̂1, σ 〉,
which is described in Sect. 5.3.1(Example 1) with θ1(i, j), given as (5.41), and

(2) �2(t̂2) obtained by solving a PDE proposed in [33] which describes the same
process,

ut ′ = 0.2(uxx + uyy − 0.2(u − 1)(u − 0.5)(u − 0.9). (5.46)

Let us consider the finite-difference representation of (5.49) as a synchronous
CA ℵ2 = 〈A2, M2, M̂2, θ2, σ 〉, where A2 = [0, 1], M2 = M̂2 = {(i, j)2 : i =
x/h; j = y/h; i, j = 0, . . . , N }, h being a space step, t = t ′/(�t),

θ2(i, j) : (u0, (i, j)2) � {(u1, (i − 1, j)2), (u2, (i, j + 1)2), (u3, (i + 1, j)2),
(u4, i, j − 1)2)} → (u′

0, (i, j)2),
u′

0 = (u1 + u2 + u3 + u4 − 4u0)/h2.

(5.47)

The initial cellular arrays �1(0) and �2(0) for ℵ1 and ℵ2 are identical, so that
〈v(i, j)1〉 = u(i, j)2 = 0.5 for all (i, j)1 ∈ M1 and all (i, j)2 ∈ M2.

102 O. Bandman

a b c

Fig. 5.8 Three snapshots of parallel trivial composition of two CA simulating phase separation:
(a) resulting cellular array obtained by a totalistic CA (5.39), (b) resulting cellular array obtained
by a CA based on PDE (5.46), and (c) their difference. Black pixels stand for 1, white for 0, gray
scale intensity corresponds to values from [0, 1]

The comparison of the results of both components evolutions �1(t̂1) and �2(t̂2),
is done by computing the absolute value of their cellular arrays subtraction
(Sect. 5.2.3). Since �1(t̂1) and �2(t̂2) are incompatible the first is to be averaged
according to (5.19). The final result is obtained as �′

2(t̂) = {(u′
2, (i, j)2)}, where

u′
2((i, j)2) = |〈v1((i, j)1)〉 − u((i, j)2)|. (5.48)

The three resulting cellular arrays: �1(t̂1), �2(t̂2), and �′
2(t̂) are shown in Fig. 5.8.

5.4.1.2 Nontrivial Parallel Composition

Nontrivial parallel composition ℵ = �(ℵ1,ℵ2) suggests that both components ℵ1
and ℵ2 interact at each iteration. Two types of interaction between them determine
two types of parallel composition techniques: unidirectional parallel composition
and bidirectional parallel composition [20].

In unidirectional parallel composition, one of the components, say ℵ1, functions
independently. But, the transition functions of ℵ2 depend on states of both cellular
arrays. Hence, condition (5.43) takes the following form.

T ′′
1 ((mi)1) ⊆ M1, ∀(mi)1 ∈ M1, (5.49)

T ′′
2 ((mi)2) ⊆ (M1 ∪ M2) ∀(mi)2 ∈ M2. (5.50)

Such a kind of composition is frequently used when simulating a certain process
by ℵ1, and using auxiliary CA ℵ2 for transforming simulation results of ℵ1 into a
proper form for analyzing or visualizing its evolution. For example, ℵ1 is a Boolean
CA, and observation of its evolution requires it to be real numbers. Then, ℵ1 works
independently, and ℵ2 performs the averaging of �1(t) at each iteration using cell
states of �1 in its transition functions.

In bidirectional parallel composition transition functions of both components
depend on states of cells from both cellular arrays, i.e.

5 Cellular Automata Composition 103

T ′′
1 ((mi)1) ⊆ (M1 ∪ M2) ∀(mi)1 ∈ M1,

T ′′
2 ((mi)2) ⊆ (M1 ∪ M2) ∀(mi)2 ∈ M2, (5.51)

(5.42) being preserved as well. If the alphabets of ℵ1 and ℵ2 are incompatible, then a
suitable unary transformations of�1(t) or�2(t) should be done after each iteration.

Example 6 A 2D reaction–diffusion process of autocatalytic reaction propagation
in a domain with obstacles is simulated by bidirectional parallel composition of
two CA: (1) a two-stage synchronous diffusion CA ℵ1 = 〈A1, M1, M̂1, θ1, σ 〉
given in Sect. 5.3.1(Example 1), and (2) a single cell synchronous CA ℵ2 =
〈A2, M2, M̂2, θ2, σ 〉 which computes a real nonlinear function of the cell state.

Since A1 and A2 are incompatible, unary operators Dis(i, j) and Av(i, j) should
be added, which is done by means of incorporating them into the local operators
θ1((i, j)1) and θ2((i, j)2), respectively. In θ1((i, j)1) the operator Dis(u(i, j)1) is
included in the transition function as follows:

θ1((i, j)1) : {(v0, (i, j)1), (v1, (i, j + 1)1), (v2, (i + 1, j)1), (v3, (i, j − 1)1)}
� {(u0, (i, j)2), (u1, (i, j + 1)2), (u2, (i + 1, j)2), (u3, (i, j − 1)2)}

→ {(v′0, (i, j)1), (v′1, (i, j + 1)1), (v′2, (i + 1, j)1), (v′3, (i, j − 1)1)},
v′k =

{
Bool(u(k+1)mod4) if rand < p,
Bool(u(k−1)mod4) if rand > (1 − p),

(5.52)

The local operator θ2((i, j)2) is combined with Av((i, j)1) which results in the
following.

θ2((i, j)2) : (u, (i, j)2) � {SAv((i, j)1)} → f (〈v((i, j)1)〉, (i, j)2), (5.53)

f (〈v((i, j)1)〉) = 0.5〈v((i, j)1)〉(1 − 〈v((i, j)1)〉),

〈v((i, j)1)〉 being obtained according to (5.19).
The process is simulated on a square area 300 × 300 cells with a number of

rectangular obstacles (Fig. 5.9).

5.4.2 Local Parallel Composition

Like in sequential case this type of composition aims at obtaining an asynchronous
CA-model ℵα = ϒLoc(ℵ1,ℵ2) composed of two asynchronous CA ℵk = {Ak, Mk,

M̂k, θk, α}, k = 1, 2. The components may differ in alphabets and in local operators,
naming sets M1 and M2 being in the relation (5.22). The way of the composed
CA functioning is as follows. Both components operate in parallel in asynchronous
mode: at each t th iteration the local operator θk(m) is applied to all cells of M̂k , the
cells being selected in any order and updated immediately after selection.

104 O. Bandman

t = 0 t = 10 t = 26

t = 40 t = 55 t = 75

Fig. 5.9 Six snapshots of ℵ2 evolution of a parallel bidirectional composition simulating the front
propagation of autocatalytic reaction. Black pixels stand for obstacles, grey pixels – for maximal
concentration of the reactant, white – for reactant absence

Example 7 A soliton-like 1D process is simulated by a parity totalistic CA [5]
ℵ1 = {A1, M1, M̂1, θ1, α}. Since A1 is a Boolean alphabet the process is difficult to
recognize as two moving waves passing one through the other. So, to make the
process observable in a habitual form, ℵ1 is combined with another CA ℵ2 =
{A2, M2, M̂2, θ2, α} which performs averaging of any cell state in �1 just after its
updating. The naming sets M1 = M̂1 = {i1 : i = 0, . . . , N }, and M2 = M̂2 = {i2 :
i = 0, . . . , N }, are in one-to one correspondence (5.22).

θ1(i1) : (v0, i1) � {(v j , i1 + j) : j = −r, . . . ,−1, 1, . . . , r} → (v′0, i1), (5.54)

v′0(i1) =
{

1, if w = 0 & w = 0mod2
0, otherwise,

, w =
r∑

j=−r

v j . (5.55)

The mode of ℵ1 operation is an ordered asynchronous one: θ1(i1) is applied sequen-
tially according to the cell numbers i1 = 0, 1, . . . N , each cell (v, i1) being imme-
diately updated, so, that the cell states situated leftwards of i1, are already in the
next state, while the rightward cells are yet in the current state. Border conditions
are periodic. The initial global cellular state �1(0) has certain patterns referred
to as “particles” [5]. Here, the two following particles are used: P1 = 1101, and
P2 = 10001001 with r = 4. All others cells are in zero states. The evolution of ℵ1
shows that P1 appears in �1(t) any 2 iterations being displaced by d1 = 7 cells to
the left. And P2 appears in �1(t) any 6 iteration being displaced by d2 = 12 cells
also to the left. So, each 6 iterations the distance between the particles diminishes
by 9 cells. After the start (t = 0) during the period from t = 12 till t = 24 the
particles are superimposed, and after t = 30 the first particle is ahead, as it is shown
in the following global states.

5 Cellular Automata Composition 105

t = 5 t = 25 t = 70

Fig. 5.10 Three snapshots of the soliton propagation obtained by simulating the process using
local parallel composition of two CA with local operators given by (5.54) and (5.55)

t = 0 : 0000 . . . 000000000000010001001000000000000000000000001101100
t = 6 : 0000 . . . 001000100100000000000000110110000000000000000000000
t = 30 : 000000000000000000000001101100001000100100 . . . 0000000000000
t = 36 : 001101100000000000000001000100100000 . . . 0000000000000000000

The second CA ℵ2 performs an asynchronous averaging of �1, in order to trans-
form patterns displacement into waves propagation. The steps of ℵ2 are synchro-
nized with those of ℵ1 and the order of cell selection is the same (Fig. 5.10).

θ2(i2) : (v0, i2) � {(v j , i1 + j) : j = −r, . . . ,−1, 1, . . . , r} → (〈v0〉, i2), (5.56)

〈v0〉 = 1

(2r + 1)

r∑

j=−r

v j .

5.4.3 Mixed Composition

In practice, complex phenomena simulation requires a number of CA-models to be
included in a composition forming a complicated scheme of different composition
techniques. The main principle for constructing such a mixed composition is that
any component may be itself a composed CA. Hence, mixed composition is a hier-
archical structure, any level of hierarchy being a composed CA.

Example 8 A simplified process of vapor nucleation in binary system (vapor, gas–
carrier) is simulated using a mixed CA composition. The process has been studied
in a number of investigations on self-organizing reaction–diffusion systems. For
example, in [34] an attempt is made to solve the PDE system which describes the
process as follows.

vt = 0.025(vxx + vyy)+ 0.2v − v3 − 1.5u,

ut = 0.0025(vxx + vyy)+ v − u. (5.57)

Since two species are involved in the process, a bidirectional parallel compo-
sition should be used. The resulting CA ℵ = ϒ(ℵ1,ℵ2) has two components,

106 O. Bandman

each simulating a reaction–diffusion process in �1 = {(v, (i j)1)} (vapor) and in
�2 = {(u, (i j)2)} (gas), respectively. Each component ℵk = �Gl(ℵDk,ℵRk), in its
turn, is a sequential composition of ℵDk = 〈AD, Mk, M̂k, θDk, β〉 which represents
the diffusion, and ℵRk = 〈AR, Mk, M̂k, θRk, σ 〉, which represents the reaction. The
two diffusion CA, ℵD1 and ℵD2, operate each in its own cellular array indepen-
dently. Their results are used by the reaction CA ℵR1 or ℵR2, which are in the
bidirectional parallel composition with each other. Since the alphabets AD and AR

are incompatible, the diffusion global operator result �Dk(�Dk (t)) is averaged, and
that of the reaction �Rk(�Rk (t)) is discretized, which yields the following superpo-
sition of global operations.

�k(�k(t)) = Dis(�Rk(Av(�Dk(�k(t − 1))))), k = 1, 2. (5.58)

Diffusion is simulated by the two-stage synchronous CA given in Sect. 5.3.1
(Example 1) with θDk(i j)1 given as (5.34). The difference between ℵD1 and ℵD2
is in the values of probabilities used in the transition function. They are: pv = 0.5,
pu = 0.05, which corresponds to the diffusion coefficients in (5.57), provided the
time step �t = 0.6 s and space step h = 0.1 cm.

Reaction is simulated by a single cell context-free CA with the following local
operators.

θR1(i, j)1) : (〈v〉, (i, j)1)→ (fv(〈v((i, j)1)〉, 〈u((i, j)2)〉), (i, j)1),

θR2(i, j)2) : (〈u〉, (i, j)2)→ (fu(〈v((i, j)1)〉, 〈u((i, j)2)〉), (i, j)2), (5.59)

where

fv = 0.2〈v((i, j)1)〉 − 〈v((i, j)1)〉3 − 1.5〈u(i, j)2)〉,
fu = 〈v((i, j)1)〉 − 〈u((i, j)2)〉,

The size of both cellular arrays is 300 × 300 cells with periodic border conditions.
The initial conditions are Boolean cellular arrays with the following evenly dis-
tributed concentrations of vapor and gas: 〈v(i, j)1〉 = 0.1, 〈v(i, j)2〉 = 0.9.

Ω1 (0) Ω1 (12) Ω1 (40)

Fig. 5.11 Three snapshots of vapor nucleation process obtained by simulating it as a parallel com-
position of two superpositions or diffusion and reaction. Black pixels stand for vapor particles

5 Cellular Automata Composition 107

The evolutions of ℵ1 and ℵ2 show the processes of vapor and gas space-time dis-
tribution, respectively. In Fig. 5.11 three snapshots are shown for vapor nucleation
process. Emergency of small vapor bubbles from a fog is observed. The bubbles
grow in size exhibiting oscillations of vapor density inside them.

5.5 Computational Properties of Composed CA

In real simulation tasks when dealing with large CA size and large amount of iter-
ations, the computational properties, such as accuracy, stability, and complexity are
of main importance. Hence, the impact of above composition techniques on these
properties should be assessed. As for the accuracy, the study of this property is
focused on the procedures which are beyond the conventional cellular automata
theory, namely, cellular array transformations for providing compatibility, since it
is precisely these operations that may contribute some errors. Stability assessment
of the composition directly depends on the stability of its components, which may
exhibit different kind of behavior [2], their evolutions tending to a stable state or
never reaching it, or being chaotic. So, the attention is focused on stability con-
servation, provided the components of CA composition are stable. The property
of complexity is concerned with the additional operations inserted for eliminating
incompatibility between the interacting components.

It should be noticed that contemporary mathematics has no well-established con-
cepts of CA computational properties, as well as no methods for their quantitative
assessment. So, the subsections below may be regarded as some considerations for
the problem, indicating the points for further investigation.

5.5.1 Accuracy of the Composed CA

One of Boolean CA advantages is that they are absolutely accurate from the compu-
tational standpoint, i.e. no errors are incorporated by rounding off. But, once averag-
ing Av(�) or discretisation Dis(�) is used and, hence, real numbers are processed,
the errors may be brought in.

In trivial compositions, both sequential and parallel ones, the two above opera-
tions are performed only once at the start and at the end of the simulation process,
bringing in inessential approximation error. But in nontrivial compositions, when
Av(�) and Dis(�) are used at each iteration, their impact on the result may be
significant. So, just this pair of operations are further considered from the point of
view of the accuracy problem.

Let �B be the t th iteration result of a composed CA, and �R = Av(�B) should
be obtained to make next operation compatible. Then according to (5.19) Boolean
states (v,m) ∈ �B are replaced by real ones from the finite set of numbers Q =
{0, 1/q, . . . , 1} , where q = |Av(m)|. Hence, the error EAv(m) incorporated by
approximating a Boolean representation of a spatial function by discrete values from
a finite set Q is constrained by

108 O. Bandman

EAv ≤ 1

|Av(m)| =
1

q
. (5.60)

Boolean discretisation of �R = {(u,m)} performed according to (5.20) and
resulting in �B = {(v,m)} also brings in some errors. Probabilistic formula (5.20)
provides that the obtained �B in its averaged form is equal to the averaged state
value 〈v(m)〉 ∈ Av(�B), which yields the following condition of the discretisation
accuracy.

�R = Av(�B), u(m) = 〈v(m)〉 ∀m ∈ M, (5.61)

discretisation error EDis(m) being the difference

EDis(m) = |u(m)− 〈v(m)〉|. (5.62)

The error vanishes in those cells where

u(m) = 〈v(m)〉 = 1

q

q−1∑

k=0

v(φk(m)), (5.63)

which happens very rarely, for example, when a fragments of a linear function or
a parabola of odd degree is discretised. The error is most serious at the cells where
u(m) has extremes.

The most correct representation of discretisation error is a function EDis(m, t),
which shows possible deviations of u(m, t) in all cells during the evolution. But,
sometimes in the particular cases error values in a certain part of �, or maximal
error in extremes of the spatial function at a certain time is of interest. For a general
assessment of CA composition the mean discretisation error at a given t = t̂

EDis(t̂) = 1

|M |
∑

m∈M

|u(m, t̂)− 〈v(m, t̂, 〉|, (5.64)

is also used.
From (5.65) and (5.64) it follows that discretisation errors depend on the aver-

aging area size q = |Av(m)| and on the smoothness of u(m) on TAv(m). Both
these parameters are conditioned by the discretisation step h, which should be taken
small, allowing q to be chosen large enough to smooth the extremes. The following
experiment gives a quantitative insight to the accuracy problem.

Example 9 A half-wave of a sinusoid u = sin x , 0 < x < π , is chosen for exper-
imental assessment of discretisation error dependence of EDis(t̂) on |M | and on
Av(m). The cellular array representation of a given continuous function is as follows

� = {(u(m),m)}, u(m) = sin

(
π

|M |m
)

, m = 0, 1, 2, . . . , |M |. (5.65)

5 Cellular Automata Composition 109

Fig. 5.12 Mean discretisation
error dependence on the
naming set size |M | with
|Av(m)| = 0.2|M | for
cellular array (5.64)

Fig. 5.13 Mean discretisation
error dependence on the
naming set size of averaging
area |Av(m)| with |M | = 360
for cellular array (5.64)

To obtain the dependence EDis(|M |), 30 discretisations {Disk(�) : k = 1, 2, . . . ,
30} of the function given as (5.65) have been obtained with |Mk | = 60 × k, that
corresponds to the argument domain of the cellular array equal to 60 < |Mk | <
1800, or to the sinus’ argument domain in angular form equal to 2◦ > h > 0.1◦.
Each Disk(�) has been averaged with |Avk(m)| = 0.2|Mk |, and the mean errors
EDis(|Mk |) have been computed according to (5.67) (Fig. 5.12).

To obtain the dependence EDis(q), for the same � given as (5.65) 30 discretisa-
tions {Dis j (�) : j = 1, 2, . . . , 30} have been obtained with fixed |M | = 360 but
different q j = |Av j |, where q j = 5 × j . Each Dis j (�) has been averaged with
Av j (m), and the mean errors EDis(q j) have been computed according to (5.64)
(Fig. 5.13).

From Figs. 5.12 and 5.13 it may be concluded that

(1) the mean error EDis(|m|) decreases with the increase of |M | and does not exceed
1% with |M | > 360 which correspond to h < 0.5◦;

(2) the mean error E2(|Av(m)|) has a minimum when |Av(m)| ≈ 36◦, i.e.
|Av(m)|EDis=min = 0.2|M |.

From this example it follows, that regulating the smoothness of the extremes by
appropriate choice of the CA size, the needed accuracy of CA composition may
be achieved. Of course, the complexity of simulation increases linearly with the
increase of |M |.

5.5.2 CA Composition Stability

There are two aspects of stability regarding CA composition. The first aspect con-
cerns behavioral stability, which determines whether the CA evolution tends to a
stable state or to a periodic cycling. The property is studied for simple Boolean

110 O. Bandman

CA-models in [2], but no method is known to check behavioral stability for an arbi-
trary CA. As for CA with real alphabets and nonlinear functions, their behavioral
stability is a subject of nonlinear dynamic system theory and may be checked using
its methods, as it is usually done in continuous mathematics (see for example, [35]).
The second stability aspect is computational stability. This property is associated
with the round-off errors, which are inevitable when float point arithmetics is used.
This aspect of stability is more effectual for study because there are at least two
particular cases of composition methods for which computational stability may be
quantitatively assessed.

The first case comprises local and global sequential composition of Boolean CA-
models. Since all alphabets are Boolean, there is no round-off errors, and since
cellular arrays under processing have finite size, the resulting averaged values are
bounded and stable.

The second case includes sequential or parallel global composition techniques
of Boolean and real CA-models, where cellular array transformations Av(�R) and
Dis(�B) are used at each iteration. In this case the following assertion is true: if ℵR

is stable, and, hence, its state values may be made bounded by the real closed interval
[0, 1], then the composition is computationally stable. This assertion is evident, at
the same time it is of considerable importance for widely used diffusion–reaction
processes, because it asserts, that composition of Boolean diffusion and real reaction
is free of the so called Courant constraint imposed on the PDE counterpart of the
process. The Courant constraint in PDE explicit solution is associated with second
order partial derivatives of spatial coordinates (Laplace operator), representing a
diffusive part in the PDE. For example, for 2D case, it forbids the value CPDE = τd

h2

to exceed 0.25, where h is a space step, d is a diffusion coefficient. From the above

it follows that the time step τ < 1
2

h2

d , should be small enough, which results in
significant increase of computation time. Meanwhile, simulating the diffusion part
by a CA, no care should be taken about the stability, the constraint being imposed by
the dimensionless diffusion coefficient, which is the characteristic of a CA-model.

Example 10 A diffusion–reaction process called a propagating front is simulated by
two models: (1) explicit finite-difference method of PDE solution and (2) composi-
tion of a Boolean diffusion CA and a real reaction CA. The PDE is as follows. The
process is initiated by a dense square 80×80 of propagating substance in the center
of an area 639 × 639. The border conditions are periodic.

ut = d(uxx + uyy)+ 0.5u(1 − u), (5.66)

where d = 0.33 cm2/s. The discretized 2D space is M = {(i, j) : i, j =
0, 1, . . . , i, . . . , 639}. Initial state for PDE solution is

u(0)(i, j) =
{

1, if 280 < i, j < 360,
0, otherwise,

5 Cellular Automata Composition 111

The finite difference representation of the diffusion part of (5.69) is as follows

u(t+1)(i, j) = u(t)(i, j)+ 0.33(u(t)(i − 1, j)+ u(t)(i + 1, j)+ u(t)(i, j + 1)
+u(t)(i, j − 1)− 4u(t)(i, j)).

(5.67)

With the time-step τ = 1 s and the space step h = 1 cm, the Courant value
CPDE = td/h2 = 0.33, which is out of Courant constraint. So, the function
u(t)(i, j) obtained by (5.70) is not stable.

The same process may be simulated by a superposition ℵ = �(ℵdiff,ℵreac).
The first component ℵdiff = 〈A, M, M̂, θdiff, σ 〉 is in its turn a superposition of
the two-stage synchronous CA from Sect. 5.3.1(Example 1) with θdiff(i, j) given as
(5.34), and the operator of averaging, i.e.

θdiff(i, j) = Av(θ(i, j)), (5.68)

resulting in a global configuration �diff(t) = {(u, (i, j)) : u ∈ [0, 1]}
The second component ℵreac = 〈A, M, M̂, θreac, σ 〉 is a context-free CA com-

puting in each cell a reaction function f (u) = 0.5u(1 − u) with subsequent
discretisation, where A, M, M̂, σ are equal to those of ℵdiff, the local operator
being

θreac : (u, (i, j))→ (v, (i, j)), v = Dis(f (u), (i, j)). (5.69)

Snapshots of both processes (PDE solution) and (CA superposition) after 20
iterations are shown in Fig. 5.14. It is seen, that evolution of CA superposition is
absolutely stable, while finite-difference solution of (5.67) exhibits a divergence.

Fig. 5.14 Simulation of 2D propagation front initiated by a dense square in the central part of
cellular space, a profile u(i, 319) is given obtained by : (a) CA superposition of ℵdiff with θ1 (5.71)
and ℵreac with θ2 (5.72), (b) solution of finite-difference equation (5.70)

112 O. Bandman

5.5.3 Composition Complexity

Here, an attempt is made to assess how much of additional work a composed CA
has to do, as compared with the total complexity of the components. Such an
assessment cannot be precisely done. There are many reasons for that. The most
significant are the following: (1) complexity relations between different arithmetic
operations strongly depend on hardware architecture; (2) the same is true for com-
paring Boolean and real operations; (3) complexity of performing CA transition
functions range from O(n) to O(2n), n being the cardinality of the neighborhood in
the local operator. Nonetheless, an insight may be given on the relation between the
complexity of transition function computation and that of transformations needed
for providing compatibility.

In case when sequential local asynchronous composition and global synchronous
composition techniques contain no averaging and discretisation operations, no addi-
tional time is needed and the total number of elementary operations is equal to the
sum of those of the component CA.

When global synchronous composition, no matter sequential or parallel, is used,
transformations of Boolean cellular array into a real one and vice versa are to be per-
formed at each iteration. In such a case, iteration time is increased by tadd additional
elementary operations.

tadd = |M | × (tAv + tDis), (5.70)

where tAv and tDis are numbers of elementary operations which have to be executed
by a cell while performing averaging according to (5.19), or discretisation according
to (5.20), respectively. As for tAv, it is clearly seen from (5.19), that the time needed
to compute Av(vm) may be assessed as tAv = CAv × |Av(m)| × τ where CAv ≈ 1
is a constant, τ – the time of elementary function execution. The discrertisation
time tDis = Crand, so, according to (5.20) it depends only on the random number
generator time, which may be taken Crand < 5. Since the transformation is used in
the composition techniques where both Boolean and real components are included,
the time tadd should be compared with Boolean and real transition functions com-
putation time tcomp = tB + tR , where tB = CB × τ and tR = CR × τ . The
coefficients CB and CR essentially depend on the character of the transition func-
tions but, usually, both functions require to execute not more than 100 elementary
operations.

Comparison of tadd with tcomp yields:

tadd

tcomp
= CAv + CDis

CB + CR
,

which enables us to conclude that tadd and tcomp have identical order of com-
plexity, hence, Boolean–real transformations increase the computation time about
twice.

5 Cellular Automata Composition 113

5.6 Conclusion

Till now, no mathematical method and no promising approach is known to CA
synthesis from a given description of its evolution. Nevertheless, some way out
should be found. A simple one is to follow a well known approach used in PDE
theory which implies composing PDE systems out of a set of differential oper-
ators and functions. Such an approach seems to be expedient when considering
the following similarities between CA composition and PDE system construction.
For example, first order and second order differential operators in PDEs over the
space have their CA counterparts in the form of shift and diffusion local operators,
respectively. And in both cases for obtaining a mathematical model of reaction–
diffusion process those operators are composed with nonlinear reaction functions.
Unfortunately, the above similarities are only particular cases. In general, there is
no formal procedure to obtain a CA simulating space-time nonlinear behavior. It is
just the fact that has provoked the development of compatible algebraic operations
on cellular arrays, allowing to integrate continuous functions into a CA composition
techniques.

But the most important destination of CA composition is not in presenting
another way of simulating processes which may be described in terms of PDE, but
in obtaining capability of constructing mathematical models for those phenomena,
for whom no other mathematical description is known. Such a processes are mostly
associated with the fields of science which are in the initial stage of development.
For example, plant growth mechanisms, embryo fetation, cellular division, mor-
phogenesis – from biology; surface oxidation, chemical reaction on catalyst, dis-
sociation, adsorption – from chemistry; epitaxial growth, crack formation, rubber
deformation, robotics – from engineering; tumor growth – from medicine, etc. Of
course, the available experience in science and engineering is not sufficient to fore-
cast the future of CA simulation methodology. Anyway, now it is clear that only a
small part of the huge amount of CA-models have evolutions which resemble natural
phenomena, and, hence, may be used for simulation. Moreover, those, which occur
to be helpful, ought to be enriched by some additional properties, such as probability
in transition functions, complicated modes of operations, composite alphabet, non-
homogeneous cellular space, etc. All these, being oriented to obtain CA-models
of complex phenomena, require a unique formalism for composing complex CA-
models from a number of more simple ones. The above considerations allow to hope
that the presented attempt to construct a systematic approach to CA composition is
not futile.

References

1. T. Toffolli, N. Margolus, Cellular Automata Machines (MIT Press, Cambridge, MA, 1987)
2. S. Wolfram, A New Kind of Science (Wolfram Media Inc., Champaign, IL, 2002)
3. O. Bandman, Comparative study of cellular automata diffusion models, ed. by V. Malyshkin,

PaCT-1999, LNCS vol. 1662 (Springer, Berlin, 1999), pp. 395–404

114 O. Bandman

4. G.G. Malinetski, M.E. Stepantsov, Modeling diffusive processes by cellular automata with
Margolus neighborhood. Zhurnal Vychislitelnoy Matematiki i Mathematicheskoy Phisiki
36(6), 1017–1021 (1998)

5. J.K. Park, K. Steiglitz, W.P. Thurston, Soliton-like behavior in automata. Physica D 19,
423–432 (1986)

6. C. Vannozzi, D. Fiorentino, M. D’Amore et al., Cellular automata model of phase transition
in binary mixtures. Ind. Eng. Chem. Res. 45(4), 2892–2896 (2006)

7. M. Creutz, Celllular automata and self-organized criticality, ed. by G. Bannot, P. Seiden, Some
New Directions in Science on Computers (World Scientific, Singapore), pp. 147–169

8. U. Frish, D. d’Humieres, B. Hasslacher et al., Lattice-gas hydrodynamics in two and three
dimensions. Compl. Syst. 1, 649–707 (1987)

9. D.H. Rothman, S. Zalesky, Lattice-Gas Cellular Automata. Simple Model of Complex Hydro-
dynamics (Cambridge University Press, Cambridge, UK, 1997)

10. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University
Press, New York, NY, 2001)

11. L. Axner, A.G. Hoekstra, P.M.A. Sloot, Simulating time harmonic flows with the lattice Boltz-
mann method. Phys. Rev. E 75, 036709 (2007)

12. V.I. Elokhin, E.I. Latkin, A.V. Matveev, V.V. Gorodetskii, Application of statistical lattice
models to the analysis of oscillatory and autowave processes in the reaction of carbon monox-
ide oxidation over platinum and palladium surfaces. Kinet. Catal. 44(5), 672–700 (2003)

13. A.P.J. Jansen, An Introduction to Monte-Carlo Simulation of Surface Reactions. ArXiv:
cond-mat/0303028 v1 (2003)

14. I.G. Neizvestny, N.L. Shwartz, Z.Sh. Yanovitskaya, A.V. Zverev, 3D-model of epitaxial
growth on porous 111 and 100 Si Surfacex. Comput. Phys. Commun. 147, 272–275 (2002)

15. M.A. Saum, S. Gavrilets, CA simulation of biological evolution in genetic hyperspace, ed. by
S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006. LNCS vol. 4176 (Springer, Berlin, 2006),
pp. 3–13

16. Y. Wu, N. Chen, M. Rissler, Y. Jiang et al., CA models of myxobacteria sworming ed. by
S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006, LNSC vol. 4176 (Springer, Berlin, 2006),
pp. 192–203

17. M. Ghaemi, A. Shahrokhi, Combination of the cellular potts model and lattice gas cellu-
lar automata for simulating the avascular cancer growth, ed. by S. El Yacoubi, B. Chopard,
S. Bandini, ACRI-2006, LNSC vol. 4176 (Springer, Berlin, 2006), pp. 297–303

18. R. Slimi, S. El Yacoubi, Spreadable probabilistic cellular automata models, ed. by
S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006, LNSC vol. 4176 (Springer, Berlin, 2006),
pp. 330–336

19. F. Biondini, F. Bontempi, D.M. Frangopol, P.G. Malerba, Cellular automata approach to
durability analysis of concrete structures in aggressive environments. J. Struct. Eng. 130(11),
1724–1737

20. O. Bandman, Composing fine-grained parallel algorithms for spatial dynamics simulation, ed.
by V. Malyshkin, PaCT-2005, LNCS Vol. 3606 (Springer, Berlin, 2005), pp. 99–113

21. S. Wolfram, Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)
22. L.O. Chua, CNN: A Paradigm for Complexity (World Scientific, Singapore, 2002)
23. L.R. Weimar, J.P. Boon, Class of cellular automata for reaction-diffusion systems. Phys Rev

E 49, 1749–1752 (1994)
24. O. Bandman, Simulating spatial dynamics by probabilistic cellular automata, ed. by

S. Bandini, B. Chopard, M. Tomassini, ACRI-2002, LNCS vol. 2493 (Springer, Berlin, 2002),
pp. 10–20

25. O. Bandman, Spatial functions approximation by boolean arrays. Bulletin of Novosibirsk
Computer Center, series Computer Science 19. ICMMG, Novosibirsk:10–19 (2003)

26. S. Achasova, O. Bandman, V. Markova, S. Piskunov, Parallel Substitution Algorithm. Theory
and Application (World Scientific, Singapore, 1994)

5 Cellular Automata Composition 115

27. S. Bandini, S. Manzoni, G. Vizzari, SCA: A model to simulate crowding dynamics. IEICE
Trans. Inf. Syst. E87-D, 669–676 (2004)

28. A. Adamatsky, Dynamics of Crowd-Minds. in Series on Nonlinear Science, vol. 54 (World
Scientific, Singapore, 2005)

29. O. Bandman, Coarse-grained parallelisation of cellular-automata simulation algorithms, ed.
by V. Malyshkin, PaCT-2007 LNCS vol. 4671 (Springer, Berlin, 2007), pp. 370–384

30. G. Vichniac, Simulating physics by cellular automata. Physica D 10, 86–112 (1984)
31. Y. Svirezhev, Nonlinear Waves, Dissipative Structures and Catastrophes in Ecology (Nauka,

Moscow, 1987)
32. R.M. Ziff, E. Gulari, Y. Barshad, Kinetic phase transitions in an irreversible surface-reaction

model. Phys. Rev. Lett. 56, 2553 (1986)
33. F. Schlogl, Chemical reaction models for non-equilibrium phase transitions. Z. Physik 253

147–161 (1972)
34. C.P. Schrenk, P. Schutz, M. Bode, H.-G. Purwins, Interaction of selforganised quaziparticles

in two-dimensional reaction diffusion system: the formation of molecules. Phys. Rev. E 5 (6),
6481–5486 (1918)

35. A.N. Michel, K. Wang, B. Hu, Qualitative Theory of Dynamics Systems: The Role of Stability
Preserving. (CRC Press, New York, NY, 2001).

	to 5 Cellular Automata Composition Techniques for SpatialDynamics Simulation
	Olga Bandman
	5.1 Introduction
	5.2 Main Concepts and Formal Problem Statement
	5.2.1 Formal Definition of a CA-model
	5.2.2 Correctness of CA Simulation Process
	5.2.3 Operations on Cellular Arrays

	5.3 The Sequential Composition Techniques
	5.3.1 Global Superposition
	5.3.2 Local Superposition

	5.4 The Parallel Composition Techniques
	5.4.1 Global Parallel Composition
	5.4.2 Local Parallel Composition
	5.4.3 Mixed Composition

	5.5 Computational Properties of Composed CA
	5.5.1 Accuracy of the Composed CA
	5.5.2 CA Composition Stability
	5.5.3 Composition Complexity

	5.6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

