
Chapter 3
Complex Automata: Multi-scale Modeling
with Coupled Cellular Automata

Alfons G. Hoekstra, Alfonso Caiazzo, Eric Lorenz, Jean-Luc Falcone,
and Bastien Chopard

3.1 Multi-scale Modeling

3.1.1 Introduction

Cellular Automata (CA) are generally acknowledged to be a powerful way to
describe and model natural phenomena [1–3]. There are even tempting claims that
nature itself is one big (quantum) information processing system, e.g. [4], and that
CA may actually be nature’s way to do this processing [5–7]. We will not embark
on this philosophical road, but ask ourselves a more mundane question. Can we use
CA to model the inherently multi-scale processes in nature and use these models for
efficient simulations on digital computers?

The ever increasing availability of experimental data on every scale, from “atom
to material” or from “gene to health”, in combination with the likewise ever increas-
ing computational power [8, 9], facilitate the modeling and simulation of natural
phenomena taking into account all the required spatial and temporal scales (see e.g.
[10]). Multi-scale modeling and simulation, as a paradigm in Computational Sci-
ence, is becoming more and more important, as witnessed by e.g. dedicated special
issues [11] and thematic journals [12, 13].

Consider for example the field of physiology. The sequence from the genome,
proteome, metabolome, physiome to health comprises multi-scale, multi-science
systems [14, 15]. Studying biological sub-systems, their organization, and their
mutual interactions, through an interplay between laboratory experiments and mod-
eling and simulation, should lead to an understanding of biological function and to
a prediction of the effects of perturbations (e.g. genetic mutations or presence of
drugs) [16]. The concept “from genes to health” is the vision of the Physiome [17]
and ViroLab [18] projects, where multi-scale modeling and simulation of aspects
of human physiology is the ultimate goal. Modeling such systems is a challenging

A.G. Hoekstra (B)
Computational Science, Faculty of Science, University of Amsterdam,
Science Park 107, 1098 XG, Amsterdam, The Netherlands
e-mail: a.g.hoekstra@uva.nl

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata,
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_3,
C© Springer-Verlag Berlin Heidelberg 2010

29

30 A.G. Hoekstra et al.

problem but has the potential to improve our understanding of key interactions.
The inherent complexity of biomedical systems is now beginning to be appreciated
fully; they are multi-scale, multi-science systems, covering a range of phenomena
from molecular and cellular biology, via physics and medicine, to engineering and
crossing many orders of magnitude with regard to temporal and spatial scales [19].

Despite the widely acknowledged need for multi-scale modeling and simulation,
there is a scarcity of underpinning literature on methodology and generic description
of the process. There are many excellent papers that present multi-scale models,
but few methodological papers on multi-scale modeling (such as [20, 21]) have
appeared.

When using Cellular Automata to model a natural process, the lattice spacing
and time step have a clear meaning in relation to the corresponding physical space
and time of the process. We denote by A(�x,�t, L , T) the spatio-temporal domain
of a CA, whose spatial domain is made of cells of size �x and it spans a region of
size L , while the quantity �t is the time step and T is the end of the simulated time
interval. Therefore, processes with time scales between�t and T can be represented
and spatial scales ranging from �x to L can be resolved. When executing such CA
on a digital computer we note that the execution time Tex scales as

Tex ∼ T

�t

(
L

�x

)D

, (3.1)

where D is the spatial dimension of the simulated domain. Trying to model a multi-
scale system with a single CA would require to choose �x and �t in such a way
that the smallest microscopic details and fastest dynamical response of the system
are captured, yet the overall system size (L) and slowest dynamical time scale (T)
need to be covered. For instance, in modeling human physiology the relevant range
of spatial scales is from nanometer to meter (i.e. a factor 109) whereas temporal
scale is from microseconds to human lifetime (i.e. a factor 1015). These numbers,
in combination with Eq. (3.1) immediately show that one will probably never be
able to simulate multi-scale systems with a single CA spanning such a wide range
of scales.

The literature on using Cellular Automata to model multi-scale phenomena is
relatively small, maybe with the exception of using CA to model land usage and
geographical systems (e.g. [22]). Furthermore, many papers exist that use CA in
multi-scale modeling, but there CA is typically coupled to other types of models
(e.g. [23]). The bulk of CA multi-scale attempts are grid refinement methods, also
termed multi-blocks. The idea is to adapt the local grid size to the local process scale,
i.e. using a fine grid in regions where small scale processes occur and a coarse grid
where larger scales are sufficient. A common approach is to couple grids of different
scales with an overlap region [24].

Other ways of coupling multi-scale CA come from two theoretical frameworks.
The first one is based on higher-order CA [25]. In this framework, the CA rules are
not only able to change the cell state, but also the rules themselves, the neighbor-
hood and the topology. Moreover, these models are also able to take into account

3 Complex Automata for Multi-scale Modeling 31

hierarchical CA where higher level cells are connected to one or more lower level
cells. The second one results from the work of Israeli and Goldenfeld [26] who
have shown that it is possible to coarse-grain 1D nearest-neighbor CA, by defining
a macroscopic CA whose behavior is similar to a microscopic CA. That is an impor-
tant result because the authors have achieved the coarse-graining of CA known to
be irreducible.

We developed a multi-scale, multi-science framework, coined Complex Automata
(CxA), for modeling and simulation of multi-scale complex systems [27–29]. The
key idea is that a multi-scale system can be decomposed into N single-scale CA that
mutually interact across the scales.1 Decomposition is facilitated by building a Scale
Separation Map (SSM) on which each single-scale system can be represented as an
area according to its spatial and temporal scales. Processes having well-separated
scales are easily identified as the components of the multi-scale model. We validate
the CxA approach by building a large set of exemplary applications, and applying
it to the challenging clinical problem of in-stent restenosis (ISR) [30]. The CxA
approach was developed within the context of the COAST project [31].

In this chapter we will review the current state of development of Complex
Automata and explore the possibilities that are offered by Cellular Automata (CA)
for multi-scale Modeling and Simulation.

3.2 Complex Automata

3.2.1 A Definition

Formally, we shall define a CA as a tuple

C = {A(�x, L ,�t, T),F, Φ, finit ∈ F,u,O}. (3.2)

A is the domain, made of spatial cells of size �x and spanning a region of size L ,
while the quantity �t is the time step and T/�t is the number of iterations during
which the CA will be run. Therefore, processes with time scales between �t and
T can be represented and spatial scales ranging from �x to L can be resolved. The
state of the CA is described by an element of F (space of states) and it evolves
according to the update rule Φ : F → F (note that formally both F and Φ depend
on the discretizations (�x,�t)). Additionally, we constrain the update rule to be
in the form of collision+propagation, such that the operator Φ can be decomposed
as a

Φ = PCB, (3.3)

1 Note that our approach is not limited to CA but also includes extensions such as lattice Boltz-
mann models and agent based models, because they can all be described by a generic update rule
discussed in Sect. 3.2.3.

32 A.G. Hoekstra et al.

i.e. into a boundary condition, a propagation, and a collision operator, each depend-
ing, possibly, on the field u (see also Sect. 3.2.3 for more details). The terminology
collision-propagation is borrowed from the lattice gas automata framework (see
e.g. [1]). This is equivalent to the more classical Gather-Update CA paradigm, as
was formally demonstrated recently [32]. The initial condition (finit) is a particular
element of the space of states. At the spatial boundaries of A, additional information
is needed (boundary conditions).

In definition 3.2, we introduced additional elements. The field u collects the
external information exchanged at each iteration between the CA and its environ-
ment. The functional O : F → R

d , the observable, specifies the quantity we are
interested in.

A CxA can be viewed as a collection of interacting CA. Definition 3.2 suggests
that a CxA can be represented as a graph X = (V, E) where V is the set of vertexes
and E the set of edges with the following properties

• Each vertex is a CA Ci = {Ai (�xi , Li ,�ti , Ti),Fi , Φi , finit,i ∈ Fi ,ui ,Oi }
• each edge Ei j is a coupling procedure describing the interaction between Ci and

C j . In practice, Ei j will define how and when information is exchanged between
the two subsystems.

During the initialization phase, this problem-dependent graph is built according to
the modeler’s specifications.

3.2.2 The Scale Separation Map

A key idea behind CxA is that a multi-scale system can be decomposed into N
single-scale Cellular Automata that mutually interact across the scales. The decom-
position is achieved by building a Scale Separation Map (SSM) on which each
system can be represented as an area according to its spatial and temporal scales.
Processes having well separated scales are easily identified as the components of
the multi-scale model.

Figure 3.1 shows a SSM, where the horizontal axis represents the temporal scales
and the vertical axis the spatial scales. On the left a CA with spatio-temporal domain
A(�x,�t, L , T) is represented on the SSM. Assuming that the process to be sim-
ulated is really multi-scale in the sense that it contains relevant sub-processes on a
wide range of scales, simulations based on the finest discretizations are not really
feasible (recall Eq. (3.1)), the approach we propose in CxA modeling is to try to
split the original CA into a number of single-scale CA and let these CA exchange
information in such a way that the dynamical behavior of the multi-scale process
is mimicked as accurately as possible. This is shown schematically in the right part
in Fig. 3.1. The subsystem in the lower left part operates on small spatial scales,
and short time scales, the one at the upper right part operates at large scales, and
the other three at intermediate scales. This could e.g. be processes operating at the
micro-, meso-, and macro scale.

3 Complex Automata for Multi-scale Modeling 33

Fig. 3.1 The scale separation map with left a single CA and right a hypothetical CxA with 5 single
scale CA modeling the same process

After identifying all subsystems and placing them on the scale map, coupling
between subsystems is then represented by edges on the map. For instance, a pro-
cess can be coupled with another through a lumped parameter or through detailed
spatially and temporally resolved signals, in which case they would typically share
a boundary and synchronously exchange information. The distance between subsys-
tems on the map indicates which model embedding method to use to simulate the
overall system. In the worst case, one is forced to use the smallest scales everywhere,
probably resulting in intractable simulations. On the other hand, if the subsystems
are well separated and the smallest scale subsystems are in quasi-equilibrium, then
they can be solved separately, although infrequent (possibly event-driven) feedback
between the subsystems will still be required.

Consider two processes A and B with their own specific spatial – and temporal
scale, denoted by ξi and τi respectively (i ∈ {A, B}). Assume that A has the largest
spatial scale. In case the spatial scales are the same, A has the largest temporal scale.
In other words, (ξB < ξA) OR (ξB = ξA AND τB < τA). We can now place
A on the scale map and then investigate the different possibilities of placing B on the
map relative to A. This will lead to a classification of types of multi-scale coupling,
as in Fig. 3.2.

temporal scale

spatial Scale

A
01

23.1 3.2

Fig. 3.2 Interaction regions on the scale map

34 A.G. Hoekstra et al.

Depending on where B is, we find the following regions:

Region 0: A and B overlap, so we do not have a scale separation, we are dealing here with
a single-scale multi-science model.

Region 1: Here ξB = ξA AND τB < τA, so we observe a separation of time scales at
the same spatial scale.

Region 2: Here ξB < ξA AND τB = τA, so we observe a separation in spatial scales,
like coarse and fine structures on the same temporal scale.

Region 3: Separation in time – and spatial scales. Region 3.1 is the well-known micro ⇔
macro coupling, so fast processes on a small spatial scale coupled to slow processes on a
large spatial scale. This type of multi-scale model has received most attention in the liter-
ature. In region 3.2 we have the reversed situation, a slow process on small spatial scales
coupled to a fast process on large spatial scales. We believe that this region is very relevant
in for instance coupling of biological with physical processes, where the biological process
is e.g. the slow response of cells to a faster physical process on a larger scale (e.g. blood
flow in arteries).

Note that we do not have to consider other regions of the scale map, because then
the role of A and B just reverses, and we fall back to one of the five cases identified
above.

Next we address the question of the area that processes A and B occupy on the
SSM. As discussed earlier, a 1D CA is characterized by a spatial discretization �x
and a system size L . We assume that �x and L have been chosen such that the
spatial scale of the process is well represented on this CA, so at least we will have
�x < ξ < L . We define N (x) as the number of CA cells that extend the full domain,
i.e. N (x) = L/�x . Next assume that the discretization has been chosen such that
the spatial scale is represented by 10δ

(x)
cells (i.e. �x = ξ/10δ

(x)
) and the spatial

extension of the CA is 10η
(x)

times the spatial scale, i.e. L = ξ10η
(x)

, and therefore
N (x) = 10η

(x)+δ(x) . Likewise for the temporal domain, i.e. a single scale CA has a
time step�t and the CA is simulated over a time span T , and we have�t < τ < T .
The number of time steps N (t) = T/�t . The discretization has been chosen such
that the temporal scale is represented by 10δ

(t)
time steps (i.e. �t = τ/10δ

(t)
) and

that simulation time of the CA is 10η
(t)

times the temporal scale, i.e. T = τ10η
(t)

and
N (t) = 10η

(t)+δ(t) .
A process position on the scale map is now fully determined by the tuple

{ξ, δ(x), η(x); τ, δ(t), η(t)}, and is drawn in Fig. 3.3, where the axes are now on
a logarithmic scale. On such logarithmic SSM the process is rectangular with an
area (δ(t) + η(t)) × (δ(x) + η(x)) asymmetrically centered around the point
(log(τ), log(ξ)). In the special case that δ(x) = η(x) = δ(t) = η(t) = 1 (a reasonable
first order assumption) we see that the process is symmetrically centered around
(log(τ), log(ξ)) and that the size of the box extends 2 decades in each dimension.

In Fig. 3.3 we show the extension of Fig. 3.2, where regions 1− 3 now have well
defined positions and size. Depending on the location of process B, that is the point
(log(τB), log(ξB)) on the SSM, and with all information on the spatial and temporal
extensions of processes A and B, we can unambiguously find in which region of the
scale map they are located with respect to each other. The scale separation between

3 Complex Automata for Multi-scale Modeling 35

Log(T)

Log(xΑ)

Log(ξΑ)

Log(τΑ)

Process A

1 0

23.1 3.2

Log(spatialscale)

Log(temporal scale)Log(ΔtΑ)

Log(L)

(t)
Aη(t)

Aδ (t)
Bδ(t)

Bη

)(x
Aδ

)(x
Bη

Fig. 3.3 Position of a process A with parameters {ξ, δ(x), η(x); τ, δ(t), η(t)} and the interaction
regions on the logarithmic scale map

two processes can now clearly be defined in terms of a distance on the SSM, and
this can then become an important measure to determine errors that are induced by
scale splitting procedures. This is further elaborated in Sect. 3.3.

Consider once more region 3, where there is a separation in time and length
scales. In region 3.1 we find that L B < �xA and TB < �tA. As said earlier,
this is the classical micro ⇔ macro coupling, and in our language this means
the full spatio-temporal extend TB × L B of process B is smaller than one sin-
gle spatio-temporal step �tA × �xA of process A. A number of modeling and
simulation paradigms have been developed for this type of multi-scale systems
(see e.g. [21]).

Region 3.2 also exhibits separation of time and length scales, but now the situa-
tion is quite different. We find that, just like in region 3.1, L B < �xA. So, the spatial
extend of process B is smaller than the grid spacing of process A. However, now
we find that TA < �tB . In other words, the full time scale of process A is smaller
then the time step in process B. This will result in other modeling and simulation
paradigms than in region 3.1. Typically, the coupling between A and B will involve
time averages of the dynamics of the fast process A.

Let us now turn our attention to the regions where there is overlap on the tempo-
ral – or spatial scales, or both (regions 0, 1, and 2, in Fig. 3.3). In all these cases we
can argue that we have partial or full overlap of the scales, giving rise to different
types of (multi-scale) modeling and simulation. We say that the scales fully overlap
if the point (log(τB), log(ξB)) falls within (one of) the scales spanned by process A.
On the other hand, there is partial overlap if (log(τB), log(ξB)) falls outside (one of)
the scales spanned by process A, but the rectangular area of process B still overlaps
with (one of) the scales spanned by process A. The region of partial scale overlap
can also be considered as a region of gradual scale separation, a boundary region

36 A.G. Hoekstra et al.

between the scale separated regions 1, 2 and 3 and region 0. Simulations of this kind
of multi-scale system would typically involve CxA’s with local grid refinements, or
multiple time stepping approaches, or a combination of both.

3.2.3 The Sub-Model Execution Loop

A second important ingredient of the CxA formalism is the observation that each
CA (i.e. vertex of the CxA) can be expressed with a common instruction flow. This
gives a way to identify generic coupling templates and achieve a precise execu-
tion model (see also Sect. 3.2.6). Using the specific collision+propagation form
of the update rule, as introduced in Sect. 3.2.1, we represent the workflow with a
pseudo-code abstraction, termed the Sub-model Execution Loop (SEL), as shown
below.

D := Dinit /* initialization of the domain */
f := finit /* initialization of state variables */
t := 0 /* initialization of time */

While Not EC
t += �t /* increase time with one timestep t */
D := U(D) /* update the domain */
f := B(f) /* apply boundary conditions */
f := C(f) /* collision, update state of cells */
f := P(f) /* propagation, send information to neighbors */
Oi(f) /* compute observables from new state */

End
O f (f) /* compute observables from final state */

Note that in the SEL, operators are written in bold and (state) variables as plain
characters. The CA operates on a computing domain D, being the lattice of cells and
the boundaries. Each cell in a CA has a set of state variables f. At the start of the
SEL the domain and the state variables are initialized by the operators Dinit and finit
respectively. The simulation time t is set to an initial value (0 in this case). After
initialization the CA enters into an iteration loop, whose termination is controlled by
an end condition computed by EC. The end condition can simply be a fixed number
of iterations, but could also be some convergence criterion depending upon the state
variables. Within the main iteration loop, the time is first increased with a time step
�t. Next the domain is updated by the operator U. If the domain is static, this oper-
ator is just the identity operator I. However, in many models the domain is dynamic.
For instance, new cells can be created or existing cells removed (e.g. due to the
movement of the boundary). In all these cases U will execute these domain updates.
Next, the sequence PCB(f) is executed. First, the operator B applies the boundary
conditions. This means that missing information is constructed that is needed for the

3 Complex Automata for Multi-scale Modeling 37

actual state updates by C (see below) of the cells lying at the boundary of the domain
D. For instance, if the state variables represent a concentration of some species,
the boundary condition could specify a flux of those species into the domain, and
from that missing information on the domain boundary cells is computed. Next the
actual state change of all cells is computed by the Collision operator C. Finally,
information is sent to neighboring cells or agents by the Propagation operator P.
The CA is now updated for the current time step, and the simulation can proceed
to the next iteration. However, before doing so an intermediate observation operator
Oi computes observables from the state variables f. After termination of the main
iteration loop a final observation is done of the state variables with the O f operator.

3.2.4 CxA Multi-scale Coupling

Despite the growing literature there is not a well accepted generic methodology, nor
a well-defined nomenclature of multi-scale modeling. A few authors have proposed
different typologies of multi-scale models. Weinan E et al. [21] have proposed 4
types of multi-scale problems and 4 general strategies. Despite the many examples
given by them the relevance of their classification is not always clear, because they
single out, in all their examples, one specific item from their classification, and
do not further discuss the relevance or completeness of the other classes. Another
proposition for a multi-scale modeling methodology is that of Ingram. Working
on chemical engineering simulations, Ingram et al. [20] have defined five types of
macro-micro scale coupling. Ingram et al. present simulation examples for three
types of coupling, showing that different strategies may be used to solve the same
problem. The choice of coupling has an influence on both computational efficiency
and accuracy. The fact that it is not always easy or possible to make the correspon-
dence between the approaches by Ingram et al. and Weinan et al. indicates that the
topic of multi-scale modeling lacks consensus. This lack of consensus on terminol-
ogy and methodology can be attributed to the fact that actual coupling methodolo-
gies were mixed with classifications of the computational domain and/or with the
type of scale separation (temporal, spatial, or both).

In the following discussion we try to clarify the situation, in the framework of
the CxA formalism. However, we believe that this is also relevant to multi-scale
modeling in general. Based on the discussion on the SSM in Sect. 3.2.2, we identi-
fied 5 different types of scale separation. We call them Interaction Regions on the
SSM, and they are shown in Fig. 3.4. Another important parameter to distinguish
multi-scale models is the Domain type. We distinguish between single Domain (sD)
and multi-Domain (mD) types. In case of sD processes A and B can access the whole
simulated domain and communication can occur everywhere, whereas in case of mD
each process is restricted to a different physical region and communication can only
occur across an interface or small overlap region.

For each combination of interaction region and domain type we can now try to
identify a multi-scale coupling. We will base our approach on the SEL discussed
in Sect. 3.2.3, and show which operators from the SEL are coupled to each other.

38 A.G. Hoekstra et al.

Time Overlap Time Separation

Sp
ac

e
O

ve
rl

ap
Sp

ac
e

Se
pa

ra
ti

on

Fig. 3.4 Interaction regions on the SSM

We call this Coupling Templates. As an example consider Weinan E’s Heteroge-
neous Multi-scale Method [21]. On close inspection we must conclude that this
is a Coupling Template for single Domain processes in interaction region 3.1. In
terms of the SEL of the macroscopic process A and the microscopic process B we
find as Coupling Template OB

f → CA; OA
i → fB

init (see also Fig. 3.8). At each
time step of the macroscopic process B a microscopic process A is initialized using
macroscopic information. The microscopic model then runs to completion and sends
final information to the collision operator of the macroscopic process.

We are currently investigating many examples of multi-scale models, their map-
ping to a CxA model, and resulting coupling templates. A detailed discussion of
the results will be reported later. As a summary, some of the examples are indicated
in Fig. 3.5. At this stage we can extract two observations:

� In the case of time scale overlap, the coupling will occur inside the inner iteration
loop. In contrast, in the case of time scale separation, coupling is realized out-
side the inner loop through the initialization operators and the final observation
operator.

� Single-domain models are coupled through the collision operator. Multi-domain
models are coupled through the domain update or the boundary operators.

Based on our current set of examples, we hypothesize that for each type of multi-
scale model, classified in terms of domain type and interaction region, only a very
small set of coupling templates exists. If this is true, this would lead the way to a
powerful CxA multi-scale modeling and simulation strategy, including a multi-scale
modeling language, generic simulation software and a mathematical framework to
analyze errors involved in CxA modeling. In what follows we will further elaborate
on these ideas, sketching the contours of such a generic CxA based multi-scale
modeling approach.

3 Complex Automata for Multi-scale Modeling 39

Fig. 3.5 Our classification of multiscale problems, for systems that can be reduced to two single-
scale processes. This classification is based on the five interaction regions given by the SSM, and
the domain type (sD or mD). For each class, the generic coupling template is indicated, in terms
of the CxA operators. Examples of specific applications belonging to the given categories are
indicated in italic

3.2.5 Multiscale Modeling Strategies

A key question when dealing with a multiscale system is how to decompose it in sev-
eral coupled single-scale sub-processes. This decomposition is certainly not unique
and a good knowledge of the system may be required. Once the sub-processes are
chosen, this specifies the relation between the computational domains and the inter-
action regions on the SSM. Then, our classification scheme indicates the expected
coupling templates.

We have observed several strategies that can be used to deal with systems having
a broad range of scales and to reduce their area on the scale separation map. They
are briefly discussed below.

3.2.5.1 Time Splitting

This approach is appropriate when two processes act at different time scales. Let
us assume we have a sD problem described with a propagation operator P and a
collision operator C that is the product of two operators

P�t C�t = P�t C
(1)
�t C (2)

�t

where �t specifies the finer scale of the process. Then, if C (1)
�t acts at a longer time

scale than C (2)
�t we can approximate M iterations of the dynamics as

40 A.G. Hoekstra et al.

[P�t C�t]M ≈ PM�t C
(1)
M�t [C (2)

�t]M

We will illustrate this time-splitting strategy in detail in Sect. 3.3.

3.2.5.2 Coarse Graining

The goal of coarse graining is to express the dynamic of a given system at a larger
temporal and/or spatial scale in some part of the computational domain where less
accuracy is needed. After coarse graining we obtain a new process, specified by
new collision and propagation operators and occupying a reduced area on the SSM.
Within our formalism, a space-time coarse graining of a factor 2 can be expressed as

[P�x C�x]n ≈ Γ −1[P2�x C2�x]n/2Γ
where Γ is a projection operator,�x the fine scale, and n is the number of iterations
needed to simulate the problem.

3.2.5.3 Amplification

This strategy can be used to reduce the larger time scale of a process. For instance,
we can consider a process acting with low intensity but for a long time, in a time
periodic environment, such as a growth process in a pulsatile flow.

Within our formalism, let us consider two coupled (mD) processes which are
iterated n >> 1 times

[P(1)C (1)]n and [P(2)C (2)(k)]n

where k expresses the intensity of the coupling of process 1 to process 2.
If the C (1) is periodic with period m << n, we can approximate the above

evolution as

[P(1)C (1)]m and [P(2)C (2)(k′)]m

with k′ the new effective intensity of the coupling. For a linear coupling we would
have k′ = (n/m)k.

3.2.6 Execution Model

Coupling several sub-models, using coupling templates raises implementation issues.
A typical situation is shown in Fig. 3.6 for the problem of coral growth. The growth
of branching corals is modeled with the aim to understand the influence of abiotic
factors (transport of nutrients by flow and diffusion) on the morphology. This is
work performed under the supervision of Dr. Jaap Kaandorp, and for biological
context and background we refer to his recent book [33] and to [34, 35]. In short, this
model works as follows: the fluid flow is transporting nutrients that are needed by
the coral to grow. There is a clear time scale separation that can be exploited. Fluid
flow establishes at a few seconds whereas the coral grows at a much slower pace.

3 Complex Automata for Multi-scale Modeling 41

Fig. 3.6 Coupling template for the so-called coral growth model. Numbers corresponds to the
communication operation described in Fig. 3.7

According to the coupling template shown in Fig. 3.6, the fluid solver is run until
steady state and the resulting flow field is passed to the coral solver for calculating
the growth rate. The new geometry of the coral is then used to build a new initial
condition for the flow solver. The process stops when enough iterations of the coral
solver have been performed.

Using this example we will explain the main concepts of our proposed execution
model for CxA, which is compatible with the asynchronous channel actor-model
framework [36]. A computer implementation for a CxA simulation environment,
implementing this execution model, has been realized [37] and a public domain
release is available.2

3.2.6.1 CxA Components

For the sake of the present discussion, CxA can be described as directed bipartite
graphs whose edges represent a single direction communication channel and the ver-
texes are either kernels or conduits. The kernels are the main computational units of
a CxA. Generally, kernels are the single-scale sub-model solvers as described above.
However, when needed, they can also execute other tasks such as measurements
or complex data mappings. The conduits are s̈mart c̈ommunication channels. Each
conduit connects a pair of kernels together in an oriented fashion and, in principle,
only one quantity is transported per conduit. These conduits are composed of three
parts:

(1) an incoming buffer (the entrance)
(2) an outgoing buffer (the exit)
(3) (optional) one or several data filters between different scales (to perform inter-

polation, restriction, discretization, etc.)

2 see http://www.complex-automata.org

42 A.G. Hoekstra et al.

Conduits work in a purely reactive way: when data is copied at the entrance, the
conduit applies the filters and moves the resulting data into the outgoing buffer. Each
conduit is connected to only two kernels, but kernels can be connected to an arbitrary
number of conduits. Each component is either a full process or a thread depending
on the implementation. They can reside in the same machine or be distributed across
a network.

3.2.6.2 CxA Communication

In CxA, kernels communicate exclusively via conduits, using a message passing
paradigm. Only two communication primitives are defined to interact with con-
duits:

1. send(data): this primitive sends a data vector from a kernel to a conduit
entrance. It is non-blocking, since it returns as soon as the data is sent to the con-
duit, whether or not the destination process has read the data. This corresponds
to a push communication.

2. receive(): this primitive allows a kernel to receive data from a conduit exit.
This primitive is blocking, it will return only when the desired data exist in
the conduit. The receiving kernel will then simply wait until the data is avail-
able before resuming its computations. This corresponds to a pull communica-
tion.

Conduits entrances and exits are supposed to have large buffers, able to store
several large data structures. These buffers act as FIFO (“first in, first out”) where
each entry is a reference to a date-structure. So, if the sending kernel is faster than
the receiving one, several data vectors will be stored in the exit buffer, waiting for
a receive() call from the destination kernel. The FIFO nature of the buffer ensures
that the data are always read in the correct time order. The actual communication
can be either a memory copy if the kernel and conduit reside in the same processor,
or a network communication if both components reside on different machines. Note
that the conduit could also be used to implement a mutex coordination primitive in
case of shared memory execution.

Let us consider again the example of the coral growth. The coral SEL represented
in Fig. 3.6, can be rewritten as follows, to include the two communication primitives
explicitly:

While Not EC
D := U(D)
DomainConduit.send(D)
f := B(f)
velocityMap := VelocityConduit.receive()
f := C(f,velocityMap)
f := P(f)

End

3 Complex Automata for Multi-scale Modeling 43

3.2.6.3 CxA Initialization and Start

CxA initialization occurs in a semi-decentralized way. First, each conduit and kernel
is spawned (possibly on several machines). Then a special process, termed plumber,
is responsible for connecting each kernel with the entrances and exits of the relevant
conduits. The plumber terminates as soon as this basic task is finished. The rest of
the initialization process is then fully decentralized:

1. As soon as a kernel is fully connected with the required conduits, it starts its
computations. If it is sending data to a yet unconnected kernel, the data will be
kept in the conduit until the receiver is active and reading. On the other hand, if a
conduit tries to receive data originating from an unconnected kernel, it will hang
on until the sending kernel connects and transmits data.

2. For conduits the situation is even simpler. Since they are purely reactive
components, nothing will happen in an unconnected conduit. Similarly, if only
the conduit exit is connected, the conduit will do nothing. In contrast, if only
the conduit entrance is connected, the conduit will simply process incoming
data which will be accumulated in the exit buffer. Therefore, the conduit is
always in a valid state (assuming it has enough internal memory).

3.2.6.4 CxA Synchronization

CxA graphs are usually cyclic. Even the basic examples with just two single-scale
models (see Fig. 3.6) will display a communication cycle if both models can influ-
ence one another. Moreover CxA are multiscale systems and kernels can thus func-
tion at different time scales, maybe in an adaptive way. These properties make a
central scheduler approach impractical. However, the fact that the receive primitive
is blocking and the send is non-blocking, allows a data-driven synchronization to
occur naturally. Indeed, kernels will just wait until information is available before
continuing their computation. An example of such synchronization is shown in
Fig. 3.7 for the coral model.

The main problem with this method are possible deadlock situations. However,
such issues can be easily prevented with the CxA execution model. In the coral
example, deadlock is avoided by having a model (the coral) which sends before
receiving. This allows the flow model to continue its computations to produce the
data that will unlock the coral, etc. In contrast, the situation presented in Fig. 3.8
will produce a deadlock because both models try to receive before sending any-
thing. This problem is easily solved by moving the observation Oi at the beginning
to the inner loop, or adding initial send instructions before entering the submodel
execution loop.

Furthermore, the fact that communication is pairwise and that the conduits use
buffers, makes race conditions impossible. Data are meant to be read by only one
process, data sent in a conduit entrance will be processed only by that conduit and
data moved to conduit exits will concern only a single kernel.

44 A.G. Hoekstra et al.

Fig. 3.7 UML sequence diagram of the CxA shown in Fig. 3.6. The vertical lines represent the
“life-line” of the process: the kernels are represented by rectangles and the conduits by ovals. When
a process is active, the gray life line is replaced by a vertical white rectangle. The arrows represent
interaction. Solid arrows with triangular heads are blocking interactions and solid arrows with
thin heads represent non-blocking interactions. The return values are indicated by dashed arrows.
The circled numbers correspond to Fig. 3.6

Fig. 3.8 Micro-macro coupling example. Left: SSM. Right: coupling template

3.2.6.5 CxA Termination

The termination of the whole CxA is also designed to be fully decentralized: when a
kernel finishes its computations (because of e.g. a preset maximum time or a steady
state condition), it first notifies all its conduits and then it terminates itself. Similarly,
when a conduit receives termination notifications from all connected kernels, it can
terminate itself. While the conduit termination rule is always safe (a conduit stops
when no kernel is connected anymore), the kernel termination rule needs an extra
mechanism. Otherwise, a problem occurs if a kernel is waiting for information from
an already terminated kernel.

3 Complex Automata for Multi-scale Modeling 45

For instance, in the coral example (Fig. 3.6) the flow model will hang on for
the domain update, even after the coral model termination. To solve this issue a
stop signal is introduced which is able to release a kernel blocked in the receive
primitive. This signal is propagated by a kernel through the existing conduits, using
a third primitive: stop(): this primitive sends the stop signal through a conduit. The
receive primitive is then modified slightly. It works exactly as seen above but can
return either the expected data or the stop signal.

Therefore a kernel waiting for data can be released by a stop signal. Kernels
are then responsible to send, process and propagate stop signals. Generally a kernel
receiving a stop signal should:

1. Abort the submodel execution loop.
2. Send some final data, if required.
3. Propagate the stop signal to each connected conduit entrances.
4. Notify each connected entrance and exit.
5. Terminate itself gracefully.

With this termination scheme, all kernels which need data from the rest of the CxA
will thus stop. The stop signal can originate from any kernel, and this approach also
works if two (or more) kernels reach a stop condition at the same time.

As an illustration we can add a stop mechanism to the example of Fig. 3.6, as
follows:

1. Coral submodel

While Not EC
D := U(D)
DomainConduit.send(D)
f := B(f)
velocityMap :=

VelocityConduit.receive()
f := C(f,velocityMap)
f := P(f)

End
DomainConduit.stop()
myStop()

2. Flow submodel

While True
domain :=

DomainConduit.receive()
If domain == STOP_SIGNAL

myStop()
D := domain
f := finit
While Not Steady_State

[SEL]
End

End

where myStop() is a user-defined function which terminates the kernel. But, before,
if needed, it: (i) saves results, (ii) propagates the stop signal, (iii) notifies the con-
nected conduits.

3.2.6.6 Parallelization

With the execution model described above, our framework is compatible with a
distributed or GRID computing approach, in which each submodel could run on a
different core or, alternatively, as a different threads on the same core. The actual
support for parallelization depends on the chosen implementation of our framework.

46 A.G. Hoekstra et al.

For instance, the MUSCLE library3 offers an easy but manual parallelization. On the
other hand the CxA-lite library4 only allows a multithread execution in which all the
submodels share the same memory space.

So far, we did not address the question of load balancing. This is clearly a sepa-
rate issue and no tools have been yet developed to assist the user in distributing the
computation in equal pieces over several processor.

3.2.7 Formalism

The concept of a CxA as a set of coupled CA’s, where the coupling is expressed in
terms of input–output relations between operators of the SEL of the coupled CA’s
is not just a concept that allows us to classify multi-scale models, as discussed in
Sect. 3.2.4, or a powerful concept to built CxA simulation software, see Sect. 3.2.6,
but it is also amenable to mathematical formalism and analysis. This section will
introduce some of the formalism, which will be further used in one of the examples
of Sect. 3.3.

Recalling (3.2), the state of a CA at a certain time t is described by a f t ∈ F,
denoting the numerical solution at the time step t , which evolves according to

f 0 = finit[u0], initialcondition

f t+�t = Φ[u; f t] (3.4)

where u0 is an external field connected to the initial condition. As previously dis-
cussed, we constrain the update rule Φ to the form

Φ[u; f] = (B[uB] ◦ P ◦ C[uC]) [f], (3.5)

i.e. written as a composition of three operators: collision C[uC], depending on exter-
nal parameters uC , propagation P, depending on the topology of the domain, and
boundary condition B[uB], depending on external parameters denoted by uB .

More precisely, the space of the states F and the update rule Φ depend in general
on the discretization parameters �x and �t . For simplicity, in what follows, we
let the definition of CA depend also on a (small) parameter h, related to spatial
and temporal discretizations (for example �xh = h, �th = αh). Accordingly,
considering the CA Ch , the evolution space and the update rule can be denoted as:
Φh : Fh → Fh . Shortly, we will call fh the numerical outcome of the CA Ch .

To begin with, as in the left diagram in Fig. 3.1, we consider a multi-scale system
represented as a single Ch defined as in (3.2). Building a CxA, instead of describing
the system with a single fh , we lower the dimension of the problem and the compu-
tational complexity, introducing coarser temporal and/or spatial discretizations

H = (h1, . . . , hM) (3.6)

3 http://developer.berlios.de/projects/muscle
4 http://github.com/paradigmatic/CxALite/

3 Complex Automata for Multi-scale Modeling 47

and building a corresponding Complex Automaton

CxAH = (Ch1, . . . , ChM), (3.7)

where each Chm is an object as in (3.2).
Formally, the definition of a CxA can be summarized in two steps. First, a pro-

jection of the space of states F on a product of spaces is considered

ΠHh : Fh → Fh1 × · · · × FhM , (3.8)

each describing the evolution of a single scale model (on different discretizations).
Second, a rescaling of the update rule is performed, according to the new discretiza-
tions hi , on each space Fhi , for i = 1, . . . , M , depending on the multiscale tech-
nique used. Due to the form of the execution model of each CA, the rescaling can be
easily expressed in terms of operations on the operators P, C, B. Note that the spaces
Fhi are not necessarily disjoint, i.e. part of a single scale evolution space could be
shared by several CA, in case of space overlap and single domain coupling.

Let us denote with fCxA the numerical outcome of the complex automata simula-
tion and with fhm (or fm) the state variable of the single CAs. To be able to compare
the results of the CxA versus the original multiscale algorithm, we associate an
observable OCxA to the Complex Automata, which projects the result fH on the
space of O(fh). A sketch of the relevant spaces and operators is drawn below.

fh ∈ Fh fCxA ∈ Fh1 × . . .× FhM

fh ∈ Fh fCxA ∈ Fh1 × . . .× FhM

R
D

�

Φh

�

ΦCxA=
(
Φh1 ,...,ΦhM

)

�ΠHh

�
�

�
�

���

OCA
�

�
�

�
���

OCxA

For the sake of simplicity, in what follows we describe the formalism restricting
ourselves to the evolution of two coupled single scale models. From Eqs. (3.4) and
(3.5), we have the following general representation

f t0
1 = finit,1[f2]

f
t+�th1
1 = (Bh1 [f2] ◦ Ph1 ◦ Ch1 [f2]

) [f t
1],

f t0
2 = finit,2[f1]

f
t+�th2
2 = (Bh2 [f1] ◦ Ph2 ◦ Ch2 [f1]

) [f t
2],

(3.9)

48 A.G. Hoekstra et al.

where two CAs are fully coupled in all the components. In detail,

• finit,1[f2] denotes a coupling through initial conditions (i.e. the initial condition
of 1 depends on the results of 2)

• Bi [f j] expresses coupling through boundary conditions,
• Ci [f j] expresses the coupling through collision operator.

In general, for different situations (multidomain/singledomain, time/space sep-
aration/overlap) we can restrict the set of possible couplings to a well-specified
coupling template. Consider the example of a microscopic fast process coupled
to a macroscopic slow process (micro-macro coupling), as introduced earlier in
Sect. 3.2.4. The macroscopic process takes input from explicit simulations of micro-
scopic processes at each time step and on each lattice site of the macroscopic pro-
cess. The microscopic processes run to completion, assuming that they are much
faster than the macroscopic process and therefore are in quasi-equilibrium on the
macroscopic time scales (this approach is known in the literature as the Heteroge-
neous Multi-scale Method, see [21]). The macroscopic process could e.g. be a fluid
flow with takes its viscosity from an underlying microscopic process (e.g. explicit
suspension model).

In Fig. 3.8 we show for this example of micro-macro coupling the SSM (left)
and the coupling template (right). The later is defined in [27] and shows how the
operators as defined in (3.5) are coupled to each other. A close inspection of this
coupling template shows indeed that, upon each iteration of the macroscopic pro-
cess, the microscopic process executes a complete simulation, taking input from the
macroscopic process. In turn, the output from the microscopic process is fed into
the collision operator of the macroscopic process.

We can formulate the CxA dynamics as follows (based on Eq. (3.9))

f t0
1 = finit,1[f2]

f t1+�t1
1 = (B1 ◦ P1 ◦ C1) [f t1

1],
f t0
2 = finit,2

f t2+�t2
2 = (B2 ◦ P2 ◦ C2[f1]) [f t2

2] ,

(3.10)

where 1 refers to the micro-scale and 2 to the macro-scale. The micro-scale model
1 is run until completion (i.e. until the final time T1), then a single time step �th2 is
performed for the macro-scale model.

We can now compare an estimation of the execution time of the CxA model of
Fig. 3.8 with that of using a single CA for the same system, as in the left part of

Fig. 3.1. For the single CA the execution time would be TC A = kC A
T2
�t1

(
L2
�x1

)D
,

which is (3.1) using the subscripts as introduced in Fig. 3.8. For the CxA, the exe-
cution time becomes

TCxA = T2

�t2

(
L2

�x2

)D
(

k2 + k1
T1

�t1

(
L1

�x1

)D
)

. (3.11)

3 Complex Automata for Multi-scale Modeling 49

where kC A, k1 and k2 are the CPU times to update one spatial cell for one time step,
respectively for the full scale CA, the micro and the macro submodels.

Next one can compute a speedup, comparing the single scale CA formulation
and the CxA formulation as S = TCA/TCxA. After some algebra we find

S =
(

kC A
�t2
�t1

(
�x2

�x1

)D
)/(

k2 + k1
T1

�t1

(
L1

�x1

)D
)

. (3.12)

Under the reasonable assumption that the execution time for a full micro scale sim-
ulation needs much more time than a single iteration of the macro scale model,

i.e. when k1
T1
�t1

(
L1
�x1

)D
>> k2, Eq. (3.12) reduces to S = kC A

k1

�t2
T1

(
�x2
L1

)D
. Note

that �t2
T1

> 1 and �x2
L1

> 1, and can be interpreted as the distance on the SSM
(Fig. 3.8). So, if the scale separation is large enough, the obtained speedups can be
huge, principally rendering a CxA simulation feasible.

3.2.8 Scale-Splitting Error

The above arguments demonstrate the improvements in computational efficiency
offered by the CxA formulation. On the other hand, replacing the original multi-
scale model with many coupled single-scale algorithms, we face a partial loss of
precision. A possible measure of this lowering in accuracy can be obtained con-
sidering the difference in the numerical results of the original Ch and the Complex
Automaton CxAH , which we call scale-splitting error.

This error is measured according to the observables, i.e. the quantity of interest,
formally resulting from the observable operators:

ECh→CxA = ‖OCA(fh)− OCxA(fH)‖ (3.13)

in an opportune norm. The scale-splitting error has a direct interpretation in terms of
accuracy. In fact, calling ECxA,EX the absolute error of the CxA model with respect
to an exact reference solution, and ECh ,EX the error of the model itself, we have

∥
∥ECxA,EX

∥
∥ ≤ ∥∥ECh ,EX

∥
∥+ ∥∥ECh→CxA

∥
∥. (3.14)

If we heuristically assume that the original fine-scale algorithm has a high accuracy,
the scale splitting error is a measure of the error of the CxA model.

In general, a detailed and rigorous investigation of the scale-splitting error
requires a good base knowledge of the single scale CA and of the full multiscale
algorithm. Case by case, error estimates can be derived using the properties of the
algorithms, the operators involved in the update rule and in the coarse-graining pro-
cedure. An example of error investigation using the formalism for a simple CxA
model can be found in Sect. 3.3.

50 A.G. Hoekstra et al.

3.3 Examples

3.3.1 Reaction Diffusion

Let us consider a reaction-diffusion process for a concentration field ρ = ρ(t, x)
described by the equation

∂tρ = d∂xxρ + κ(ρλ − ρ), t ∈ (0, Tend], x ∈ (0, L]
ρ(0, x) = ρ0(x)

(3.15)

with periodic boundary conditions in x , ρ0 being the initial condition and ρλ(x)
a given function. To consider a multiscale model, we assume the reaction to be
characterized by a typical time scale faster than the diffusion., i.e. ‖k‖ ‖d‖.

Numerically, problem (3.15) can be solved employing a lattice Boltzmann method
(LBM) (see for example [1, 10, 38, 39] and the references therein, as well as the
chapter by Kusumaatmaja and Yeomans of the present book), discretizing the space
interval with a regular grid Gh = {0, . . . , Nx − 1} of step size �xh = h and asso-
ciating each node j ∈ Gh with two variables, f1 and f−1 representing the density
of probabilities of populations traveling with discrete velocities ci ∈ {−1, 1}. The
collision+propagation update has the form

f tn+�t
i (j + ci) = f tn

i (j)+ 1

τ

(
ρ̂tn

2
− f tn

i (j)

)

+�th
1

2
R(ρ̂tn (j)). (3.16)

here R(ρ̂(j)) = κ(ρλ(j)− ρ̂(j)), and ρ̂ = ρ(f) = f1 + f−1 is the numerical solu-
tion for the concentration field. The time step is related to the grid size according to

�th
�x2

h

= const. ∀h, (3.17)

and the parameter τ is chosen according to the diffusion constant in (3.15)
(see [39, 1])

τ = 1

2
+ d

�th
�x2

h

. (3.18)

Observe that τ is independent from h in virtue of (3.17). It can be shown that the
above described algorithm leads a second order accurate approximation of the solu-
tion of (3.15) [39]. Equivalently, we can rewrite (3.16) in the form [40]

f tn+1
h = Ph(Ih +ΩDh (τ))(Ih +ΩRh) f tn

h = Φh f tn
h , (3.19)

highlighting the scale h and omitting the subscript i . The update Φh = Ph(Ih +
ΩDh (τ))(Ih +ΩRh), has been decomposed into a diffusion part and a reaction part.

3 Complex Automata for Multi-scale Modeling 51

The space of states is the set Fh = {
φ : Gh → IR2Nx

}
, of the real functions

defined on the grid Gh . The subscript h for the operators denotes functions acting
from Fh to itself. In detail, Ih is simply the identity on Fh , Ph acts on a grid function
shifting the value on the grid according to ci

(Ph fh)i (j) = fi,h(j − ci),

while ΩDh and ΩRh are the operations defined in the right hand side of (3.16):

(
ΩDh fh

)
i =

1

τ
(f eq

i (ρ(fh))− fi,h),
(
ΩRh fh

)
i (j) = h2 1

2
R(ρ(fh))

The SSM for this example is shown in Fig. 3.9. To define the CxA, we set�tR =
�th = h2 for the reaction and �tD = Mh2 for the diffusion. Focusing on the
case shown in Fig. 3.9b, the reaction is run up to a time TR , then re-initialized
after a diffusion time step. If TR = �tD , the two processes are not completely
separated. Figure 3.9c sketches the case when reaction leads very quickly to an
equilibrium state in a typical time which is even smaller than the discrete time step
of the diffusion.

We focus on the case of time-coarsening, i.e. choosing

�xD = �xR = h, �tD = M�tR = Mh2 . (3.20)

Introducing reaction and diffusion operators Rs , Ds , where s = R, D specifies
the dependence of the discrete operators on the space-time discretization of reaction
and (resp.) diffusion, the evolution of the system can be described with the state
variable fH = (fR, fD), whose components are updated according to

(CAR) (CAD)

fR |t0=tD = f tD
D ,

f tR+�tR
R = RR f tR

R

f 0
D = f init

D (ρ0),

f tD+�tD
D = DD f tD+M�tR

D .

(3.21)

(a) (b) (c)

Δth

(RD)

Tend
Δth Tend

(R) (D)

ΔtD=TR Δth Tend

(R) (D)

ΔtDTR

Fig. 3.9 SSM for the reaction-diffusion LBM. In (a) reaction (dashed line) and diffusion (solid
line) are considered as a single multiscale algorithm. In (b) we assume to use different schemes,
where the diffusion time step�tD is larger than the original�th . (c) Represents the situation where
the two processes are time separated, with a very fast reaction yielding an equilibrium state in a
time TR � �tD

52 A.G. Hoekstra et al.

Equation (3.21) expresses that the algorithm CAR , which is coupled to CAD

through the initial condition (by setting at the initial time t0 = tD (equal to a certain
time of CAD) the initial condition equal to the one obtained from CAD , and evolves
for M steps according to an update rule depending only on the reaction process.
On the right, the diffusion part CAD is coupled to the reaction through the collision
operator, since the new state of fD is locally computed starting from the output
state of CAR . With f init

D (ρ0) we denoted the original initial condition, function of
the initial concentration in (3.15).

In this case, the observable is represented by the concentration ρ, obtained from
the numerical solution by a simple average over the particle distributions.

Following Sect. 3.2.8 we now consider the scale-splitting error E(M) resulting
from using a diffusion time step �tD M times larger than the reaction time step
�tR . The reference solution is here the solution obtained when both reaction and
diffusion act at the smallest time scale, i.e. when M = 1. To estimate E(M) we
consider M reaction steps at scale h (defined by �tR) followed by one diffusion
step at the coarser scale h′ (defined by �tD = M�tR) and we compare the results
with M reaction-diffusion steps both at the fine scale h. In terms of the reaction and
diffusion operators, E(M) can be expressed as

E(M) = ∥∥(DhRh)
M −D′

hRM
h

∥
∥

≤ ∥∥(DhRh)
M −DM

h RM
h

∥
∥+ ∥∥[DM

h −D′
h]RM

h

∥
∥

= E1(M)+ E2(M) (3.22)

Contribution E1 can be computed from the commutator [DhRh − RhDh] and E2
follows from the time coarse-graining of the original LB model. After some calcu-
lations we obtain (see [41])

E(M) ≤ O(M2κ)+O(M2 D3) (3.23)

3.3.1.1 Numerical Validation

We consider the problem

∂tρ = d∂xxρ − κ(ρ − sin (λx)), t ∈ (0, Tend], x ∈ (0, 1]
ρ(0, x) = ρ0(x)

(3.24)

with λ
2π ∈ Z, and periodic boundary conditions in x-direction.

By selecting different values of the parameters regulating (3.24) we can tune the
relevance of different time scales. Additionally, we introduce the non dimensional
parameter

σ = κ

λ2d

3 Complex Automata for Multi-scale Modeling 53

(c)(b)(a)

1 10 25 50 75 100
0

0.1

0.2

0.3

0.4

0.5

M

E
(M

)

E
(M

)

σ = 1
σ = 2

100 150 200 250 300 400
0

0.5

1

1.5

M

0.5 1 1.5 2 2.5
−3

−2.5

−2

–1.5

−1

−0.5

0

0.5

logM

lo
gE

(M
)

σ = 0.4
σ = 0.2

Fig. 3.10 Scale-splitting error as a function of M for a time-coarsened CxA. The different
curves represent different values of σ . Simulation parameters: h = 0.02, λ = 4π , κ = 10,
d ∈ {0.05, 0.1, 0.25, 0.5}. (a): 1 < M < 100. (b): M > 100. The size of the scale-splitting
error becomes relatively large, except for the case σ = 0.2. (c): Order plot (Fig. (a)-(b) in double
logarithmic scale) of maximum scale-splitting error versus M . The dashed lines of slope 1 (bottom)
and 2 (top) indicate that E ∼ Mα , with 1 < α < 2

to “measure” the scale separation of the simulation. In the numerical tests, we run
both the original fine scale LBM and the CxA model, measuring explicitly the scale-
splitting error as the difference in the resulting concentrations. Figure 3.10 shows the
results of scale-splitting error for different values of M . The order plot in Fig. 3.10c
confirms estimate in Eq. (3.23).

Results of a further test to link together scale separation and scale-splitting error
are shown in Fig. 3.11. Namely, for each simulation drawn in Fig. 3.10, we select
the first M such that the scale splitting error lies below a certain prefixed threshold
error Ē(h, H). These values Mth are plotted then as function of σ , validating the
idea that better scale separation allows more efficient CxA formulations.

(a)

11025 50 75 100 125 150 175
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M

E
(M

)

σ = 0.04

Ē(h,H)

−1.5 −1 −0.5 0 0.5
1

1.5

2

2.5

3

lo
gM

th

logσ

slope∼0.6

(b)

Fig. 3.11 (a) Zoom of the previous Fig. 3.10a, including a threshold error Ē(h, H) = 0.05 (results
with σ = 0.04 are also shown). (b) Values of Mth such that the scale-splitting error equates

a threshold error Ē(h, H), versus the measure of scale separation σ = κ
(
λ2 D
)−1

(in double
logarithmic scale)

54 A.G. Hoekstra et al.

Detailed analysis and investigation of this example can be found in [41].
We can also compute the speedup resulting from the above time-splitting. Let

us call a and b the CPU times of one iteration of respectively the reaction and the
diffusion processes. If we run the full system at the finer scale �tR for a time T ,
the total CPU time will be proportional to (a + b)(T/δtR). With the time-splitting
method, the CPU time reduces to (Ma + b)T/(M�tR) and the speedup is (a +
b)/(a + b/M). For large M , the speedup tends to 1+ b/a. This might not be a very
big gain, unless a << b. However, if we would have coarse grained the spatial scale
for the diffusion processes, we would get a more interesting speedup value.

3.3.2 In Stent Restenosis

A challenging application to validate the CxA methodology is represented by the
in-stent restenosis, a coronary artery disease appearing when an arterial occlusion
(stenosis), cured by deploying a small metal mesh (stent), reappears later in time,
due to the maladaptive biological response of the organism. This process involves a
wide range of spatial and temporal scales, spanning from micrometers to millime-
ters and from seconds (typical time of the cardiac cycle) to weeks (typical time
of appearance of a restenosis). Details on in-stent restenosis and a formulation in
terms of Complex Automata can be found in [30]. In this section, we briefly outline
the methodology to construct a CxA model for the in-stent restenosis. All details
of single scale models, coupling templates and simulation results will be presented
elsewhere.

3.3.2.1 Single Scale Models

The SSM for a simplified in-stent restenosis model is shown in Fig. 3.12. We include
the following subprocesses:

Fig. 3.12 Left: simplified SSM for the in-stent restenosis, including three single scale models
separated in time. Right: the connection scheme. Respect to the SSM, it shows also the initial
condition agents, and mapper agents, used when combination of multiple input or multiple output
is needed

3 Complex Automata for Multi-scale Modeling 55

• Bulk Flow (BF): a lattice Boltzmann model for the hemodynamics, simulated on
a spatial grid fine enough to resolve the flow lines near to the stent

• Smooth Muscle Cells (SMC) Hyperplasia: an Agent Based Model, where each
agent represents an SMC, reacting, structurally and biologically according to the
state of the neighboring cells and the flow

• Drug Diffusion (DD): a Finite Difference scheme to simulate drug eluting stents,
which approximates the drug concentrations within the tissue, assuming the stent
to be a source and the vessel to be a sink (since drugs are constantly flushed away
by the flow).

Additionally, the computational model makes use of an initial condition (INIT)
agent, which creates the cell configuration after the stent deployment, and two geo-
metrical mappers, which convert the output of BF and DD (based on a lattice) into
input for SMC (based on an off-grid domain). The graph driving the CxA model
(connection scheme) is shown in Fig. 3.12.

3.3.2.2 Coupling Templates

The interaction between the single scale models can be described in the following
way:

• BF to SMC: after a cardiac cycle has been completed, averaged wall shear
stresses (WSS) are computed along the boundary, and distributed to the SMC
in direct contact with the flow

• SMC to BF: the cells configurations (described, in case of spherical cells, by
positions and radii) is filtered, generating the domain for the flow simulation

• SMC to DD: similarly, the space occupied by SMC is converted in domain for
the DD model

• DD to SMC: after the drug concentration relaxes to steady state, the values are
distributed to the cells.

Fig. 3.13 Two-dimensional benchmark geometry (left), sketching a vessel of length 1.55 mm,
width 1 mm, where two square struts of side 90 µm have been deployed into the cellular tissue.
Smooth Muscle Cells, are depicted as circles with (mean) radius of 15 µm. Resulting restenosis
after 16 days, with a bare metal stent (middle) and a drug eluting stent (right)

56 A.G. Hoekstra et al.

This model has been implemented using the CxA simulation software as devel-
oped in the Coast project [31] and described in detail in [37].

Figure 3.13 shows an example of a two-dimensional version of the model, show-
ing the initial conditions after stent deployment, as well as the resulting restenosis
for bare metal stents and drug eluting stents. The inhibitory effect of the drugs on
the restenosis is clearly visible. Currently we are working on validating these simu-
lations against detailed experimental data, which will be reported elsewhere [42].

3.4 Concluding Remarks

This chapter briefly described a possible approach towards multi-scale modeling
and simulation using Cellular Automata. The concept of Complex Automata should
allow the modeling of a large range of multi-scale systems, and the related Complex
Automata simulation software provides a framework to quickly develop Complex
Automata simulations. The ideas behind Complex Automata have a broader sig-
nificance than Cellular Automata modeling alone and, in the near future, we will
explore the possibility to enlarge the CxA idea to other modeling paradigms. More-
over, we are developing a growing set of CxA models and simulations, and we invite
our readers to start doing the same.

References

1. B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge Univer-
sity Press, Cambridge, 1998)

2. A. Deutsch, S. Dormann, Cellular Automaton Modeling of Biological Pattern Formation:
Characterization, Applications, and Analysis (Birkhäuser, Basel, 2005)

3. P. Sloot, A. Hoekstra, Modeling dynamic systems with cellular automata, ed. by P. Fishwick
Handbook of Dynamic System Modeling, Chapter 21 (Chapman & Hall/CRC, London/Boca
Rabin, FL, 2007)

4. S. Lloyd, Phys. Rev. Lett. 23, 237901 (2002)
5. K. Zuse, Int. J. Theor. Phys. 21, 580–600 (1982)
6. K. Zuse, Rechnender Raum, http://www.idsia.ch/∼juergen/digitalphysics.html
7. S. Wolfram, A New Kind of Science (Wolfram Media, Inc., Champaign, IL, 2002)
8. D. Bader, Petascale Computing: Algorithms and Applications (Chapman & Hall/CRC, Lon-

don/Boca Rabin, FL, 2008)
9. A. Hoekstra, S. Portegies Zwart, M. Bubak, P. Sloot, Towards distributed petascale computing,

ed. by D. Bader, Petascale Computing: Algorithms and Applications, Chapter 8 (Chapman &
Hall/CRC, London/Boca Rabin, FL, 2008)

10. P. Sloot, D. Frenkel, H. van der Vorst et al., White paper on computational e-science, studying
complex systems in silico, a national research invitiative (2007), http://www.science.uva.nl/
research/pscs/papers/archive/Sloot2007a.pdf

11. Special Issue on Multiphysics modeling, IEEE Comput. Sci. Eng. 7 14–53, (2005)
12. SIAM Multiscale Model Simul, http://epubs.siam.org/sam-bin/dbq/toclist/MMS
13. Int J Multiscale Comput Eng, http://www.edata-center.com/journals/61fd1b191cf7e96f.html
14. A. Finkelstein, J. Hetherington, O. Margoninski, P. Saffrey, R. Seymour, A. Warner, IEEE

Comput. 37, 26–33 (2004)
15. D. Noble, Science 295, 1678–1682 (2002)
16. B. Di Ventura, C. Lemerle, K. Michalodimitrakis, L. Serrano, Nature 443, 527–533 (2006)

3 Complex Automata for Multi-scale Modeling 57

17. P. Hunter, W. Li, A. McCulloch, D. Noble, IEEE Comput. 39, 48–54 (2006)
18. P. Sloot, A. Tirado-Ramos, I. Altintas, M. Bubak, C. Boucher, IEEE Comput. 39, 40–46 (2006)
19. S. Smye, R. Clayton, Med. Eng. Phys. 24, 565–574 (2002)
20. G. Ingram, I. Cameron, K. Hangos, Chem. Eng. Sci., 59, 2171–2187 (2004)
21. E. Weinan, X. Li, W. Ren, E. Vanden-Eijnden, Commun. Comput. Phys. 2, 367–450 (2007)
22. R. White, Modeling multi-scale processes in a cellular automata framework, ed. by

J. Portugali, Complex Artificial Environments, Simulation, Cognition and VR in the Study and
Planning of Cities, (Springer, New York, NY, 2006) pp. 165–177

23. B. Ribba, T. Alarcón, K. Marron, P. Maini, Z. Agur, The use of hybrid cellular automata mod-
els for improving cancer therapy, ed. by P. Sloot, B. Chopard, A. Hoekstra: Cellular Automata,
6th International Conference on Cellular Automata, ACRI 2004, LNCS, vol. 3305 (Springer,
Heidelberg, 2004), pp. 444–453

24. C. Lin, Y. Lai, Phys. Rev. E. 62, 2219–2225 (2000)
25. N. Baas, T. Helvik, Adv. Compl. Syst. 8, 169–192 (2005)
26. N. Israeli, N. Goldenfeld, Phys. Rev. Let. 92, 074105 (2004)
27. A. Hoekstra, E. Lorenz, J.L. Falcone, B. Chopard, Towards a complex automata framework for

multi-scale modeling: Formalism and the scale separation map, ed. by Y. Shi, D. van Albada,
J. Dongarra, P. Sloot, ICCS 2007, Part I, Lecture Notes in Computer Science, vol. 4487
(Springer, Heidelberg, 2007), pp. 922–930

28. A. Hoekstra, E. Lorenz, J. Falcone, B. Chopard, Int. J. Multiscale Comp. Eng. 5, 491–502
(2007)

29. A.G. Hoekstra, J-L. Falcone, A. Caiazzo, B. Chopard, Multi-scale modeling with cel-
lular automata: The complex automata approach, ed. by H. Umeo et al., ACRI 2008,
Lecture Notes in Computer Science, vol. 5191, (Springer, Berlin-Heidelberg, 2008),
pp. 192–199

30. D. Evans, P. Lawford, J. Gunn, D. Walker, R. Hose, R. Smallwood, B. Chopard, M. Krafczyk,
J. Bernsdorf, A. Hoekstra, Phil. Trans. Roy. Soc. A 366, 3343–3360 (2008)

31. The Coast project, http://www.complex-automata.org
32. B. Chopard, J-L. Falcone, R. Razakanirina, A.G. Hoekstra, A. Caiazzo, On the collision-

propagation and gather-update formulations of a cellular automata rule, ed. by H. Umeo
et al., ACRI 2008, Lecture Notes in Computer Science vol. 5191, (Springer, Berlin Heidelberg,
2008), pp. 144–251

33. J.A. Kaandorp, J.E. Kübler, The Algorithmic Beauty of Seaweeds, Sponges and Corals
(Springer, Heidelberg, New York, 2001)

34. R.M.H. Merks, A.G. Hoekstra, J.A. Kaandorp, P.M.A. Sloot, J. Theor. Biol. 224, 153–166
(2003)

35. R.M.H. Merks, A.G. Hoekstra, J.A. Kaandorp, P.M.A. Sloot, J. Theor. Biol. 228, 559–576
(2004)

36. G. Agha Actors: A Model of Concurrent Computation in Distributed Systems (MIT Press,
Cambridge, MA, 1986)

37. J. Hegewald, M. Krafczyk, J. Tölke, A. Hoekstra, B. Chopard, An agent-based coupling
platform for complex automata ICCS 2008, Krakow. Lecture Notes in Computer Science,
vol. 5102, doi:10.1007/978-3-540-69387-1 (Springer, Berlin Heidelberg, 2008), pp. 227–233

38. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University
Press, Oxford, 2001)

39. D. Alemani, B. Chopard, J. Galceran, J. Buffle, Phys. Chem. Chem. Phys. 7, 1–11 (2005)
40. A. Caiazzo, J-L. Falcone, B. Chopard, A.G. Hoekstra, Error investigations in complex

automata models for reaction-diffusion systems, ed. by H. Umeo et al., ACRI 2008, Lecture
Notes in Computer Science, vol. 5191, (Springer, Berlin Heidelberg, 2008), pp. 260–267

41. A. Caiazzo, J-L. Falcone, B. Chopard, A.G. Hoekstra, Asymptotic analysis of complex
automata models for reaction-diffusion systems. Appl. Num. Maths 59, 2023–2034 (2009)

42. A. Caiazzo, D. Evans, J.L. Falcone, J. Hegewald, E. Lorenz, B. Stahl, D. Wang, J. Bernsdorff,
B. Chopard, J. Gunn, R. Hose, M. Krafczyk, P. Lawford, R. Smallwood, D. Walker, A.G.
Hoekstra, Towards a complex automata multiscale model of in-stent restenosis, submitted to
J. Comput. Sci.

	to 3 Complex Automata: Multi-scale Modeling with CoupledCellular Automata
	Alfons G. Hoekstra, Alfonso Caiazzo, Eric Lorenz, Jean-Luc Falcone, and Bastien Chopard
	3.1 Multi-scale Modeling
	3.1.1 Introduction

	3.2 Complex Automata
	3.2.1 A Definition
	3.2.2 The Scale Separation Map
	3.2.3 The Sub-Model Execution Loop
	3.2.4 CxA Multi-scale Coupling
	3.2.5 Multiscale Modeling Strategies
	3.2.6 Execution Model
	3.2.7 Formalism
	3.2.8 Scale-Splitting Error

	3.3 Examples
	3.3.1 Reaction Diffusion
	3.3.2 In Stent Restenosis

	3.4 Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

