Chapter 15
Parallel Cellular Programming
for Emergent Computation

Domenico Talia and Lev Naumov

15.1 Introduction

In complex systems, global and collective properties cannot be deduced from its
simpler components. In fact, global or collective behavior in a complex system
emerges from evolution and interaction of many elements. Therefore programming
emergent systems needs models, paradigms, and operations that allow for express-
ing the behavior and interaction of a very large number of single elements.

Because of their inherent parallelism, cellular automata (CA) can be exploited
to model large scale emergent systems on parallel computers. In this scenario par-
allel cellular models and languages provide useful tools for programming emergent
computations that model complex phenomena in many application domains from
science and engineering to economics and social sciences.

The programming of emergent phenomena and systems based on traditional pro-
gramming tools and languages is hard and it results in long and complex code.
This occurs because these programming approaches are based on the design of a
system as a whole. Design and programming do not start from basic elements or
system components, but represent a system by modeling its general features. On the
contrary, it is better to design emergent and complex systems by means of paradigms
that allow for expressing the behavior of the single basic elements and their inter-
actions. The global behavior of these systems then emerges from the evolution and
interaction of a massive number of simple elements; hence it does not need to be
explicitly coded.

Parallel architectures such as multicore, clusters, and multicomputers are well
suited for implementing inherently parallel computing abstract models such as cellu-
lar automata, neural networks, and genetic algorithms that represent new mathemati-
cal models for describing complex scientific phenomena and systems with emergent
properties. All cells of a cellular automaton are updated in parallel. Thus the state
of the entire automaton advances in discrete time-steps and the global behavior of

D. Talia (=)
DEIS, University of Calabria, Rende, Italy
e-mail: talia@deis.unical.it

A.G. Hoekstra et al. (eds.), Simulating Complex Systems by Cellular Automata, 357
Understanding Complex Systems, DOI 10.1007/978-3-642-12203-3_15,
© Springer-Verlag Berlin Heidelberg 2010

358 D. Talia and L. Naumov

the system is determined by the evolution of the states of each cell as a result of
multiple local interactions. Cellular automata provide a global framework for the
implementation of parallel applications that represent natural solvers of dynamic
complex phenomena and systems based on the use of discrete time and discrete
space.

CA are intrinsically parallel and they can be efficiently mapped onto parallel
machines because the communication flow between processors can be kept low,
communication patterns are regular and involve only neighbor cells. Inherent paral-
lelism and restricted communication are two key points for the efficient use of CA
for high performance simulation [36].

The cellular automata theory was invented half a century ago. The exact author of
this area cannot be named definitely. In 1948 John von Neumann [1] gave a lecture
entitled “The General and Logical Theory of Automata”, where he presented his
ideas of universal and self-reproducing machines. According to his own statement,
his work was inspired by Stanislaw Ulam [2]. Konrad Zuse [3] also suggested that
the universe could be a cellular automaton. Zuse used this idea for developing com-
puting machines. At the same time, some members of the scientific society regard
the paper by Wiener and Rosenblueth [4], or the mathematical work that was done
in early 1930s in Russia as the start of the field [5].

However more recently CA emerged as a significant tool for modeling and sim-
ulation of complex systems. This occurred thanks to the implementation of cellular
automata on high-performance parallel computers. Parallel cellular automata mod-
els are successfully used in fluid dynamics, molecular dynamics, biology, genetics,
chemistry, road traffic flow, cryptography, image processing, environment model-
ing, and finance. To explain this approach, we discuss the main features of cellular
automata parallel software environments and how those features can support the
solution of large-scale problems.

To describe in detail how the marriage of the cellular automata theory with par-
allel computing is very fruitful, we will discuss some leading examples of high-
performance cellular programming tools and environments such as CAMELot and
CAMEg L. Moreover we will discuss programming of complex systems in CA lan-
guages such as CARPET. Those parallel cellular automata environments have been
used to solve complex problems in several areas of science, engineering, computer
science, and economy. They offer a well structured way to facilitate the development
of cellular automata applications, providing transparent parallelism and reducing
duplication of effort by implementing a programming environment once and making
it available to developers. We discuss the basic principles of parallel CA languages
and describe some practical programming examples in different areas designed by
means of those parallel CA systems.

15.2 Cellular Automata Systems

In the past decade, several cellular automata environments have been implemented
on current desktop computers. For large size two or three dimensional cellular

15 Parallel Cellular Programming for Emergent Computation 359

automata the computational load can be enormous. There are two main alternatives
that allow to achieve high performance in the implementation of CA. The first one is
the design of special hardware devoted to the execution of CA. The second alterna-
tive is based on the use of commercially-available parallel computers for developing
parallel CA software tools and environments.

CA software and hardware systems belong to the class of problem-solving envi-
ronments (PSE). The community has formulated the following common recommen-
dations for a general PSE:

It should reduce the difficulty of the simulation [6].
It should reduce costs and time of complex solutions development [6].
It should allow to perform experiments reliably [6].
It should have a long lifetime without getting obsolete [6].
It should support the plug-and-play paradigm [6].
It should exploit the paradigm of the multilevel abstractions and complex
properties of science [6].
7. User should be able to use the environment without any specialized knowl-
edge of the underlying computer hardware or software [7].
8. It should be pointed at the wide scope of problems [7].
9. It should be able to coordinate mighty computational power to solve a
problem [7].
10. It should be complete, containing and providing all computational facilities for
solving a problem in a target domain [8].
11. Extensibility of the environment will provide the ability to enlarge the target
problem domain, to enrich the set of supported tools and provided features.
This can be achieved with the help of a component-based design. A component
approach also complies with the trend that modern distributed problem-solving
facilities should be based on web and grid services [6] or Common Object
Request Broker Architecture (CORBA) objects [9].

A

Basing on common considerations, the software or hardware facility, which
allows to perform experiments using CA should have the following attributes:

1. It should hide the complexity of used computational architecture, operating sys-
tem or networking mechanism. The language which a researcher should use to
control the environment has to be related to basic cellular automata concepts and
to the target problem domain.

2. It should allow to setup and tune a cellular automaton for the computational
experiment. The degree of freedom which is granted to a user here may play the
key role.

3. It should give an opportunity to run and control a computational experiment. A
good solver should use all the benefits provided by the computational architec-
ture and utilize as much parallelizable aspects of the experiment’s iteration as it
is possible to improve the throughput.

4. It should support visualization, because this feature plays one of the key roles
in understanding the phenomenon, especially, when modeling spatial-distributed
systems.

360 D. Talia and L. Naumov

5. It should provide a set of tools to analyze the computational experiment’s intrin-
sic characteristics and their tendencies, current state of the automaton’s grid or
any other data, which is possible to obtain.

6. It should provide the reproducibility and allow to share the description of the
way one have done the certain computational experiment. Donald Knuth have
declared this feature as a required one for a scientific method [10].

The following list unites two previous ones and consists of concrete required
features for a CA-based PSE. At the end of each statement there are references
to attributes stated above, given in italics. References to the first list are preceded
by “PSE:”, whereas references to the second one are preceded by “CA.”. Moreover,
the “Workshop on Research Directions in Integrating Numerical Analysis, Symbolic
Computing, Computational Geometry, and Artificial Intelligence for Computational
Science” [7, 11] have produced “Findings” and “Recommendations” for PSEs. They
will not be listed here, but will be referenced in the “PSE.” section as “F,,” or “R,,”
respectively, where n is the number of distinct finding or recommendation stated
in [7].

1. The environment should be as universal and customizable as possible. The
support of miscellaneous grids, types of neighborhoods and boundary conditions
is desirable or even necessary. Environment should allow to choose the type of
the automaton to be modeled and the parameters of the experiment from the
widest possible spectrum of variants (PSE: 2, 8, 10; CA: 2).

2. Extensibility is a contemporary and actively used property of software and hard-
ware systems. The ability to incorporate novel functionalities and algorithms
may be one of the most advantageous for the PSE (PSE: 2, 4, 5,6, 8, 9, 10, 11,
Fs, Ry; CA: 1).

3. The environment should support modern parallel or distributed computa-
tional technologies. For software CA system this means that it should involve
cluster or Grid computing, Message Passing Interface (MPI), Parallel Virtual
Machine (PVM), OpenMP or other technologies. Hence the software has to emu-
late homogeneous parallel architecture of cellular automaton, but not counterfeit
it. Nevertheless without the use of high-performance parallel hardware the CA
model would be of no practical use for solving real world problems (PSE: 1, 2,
3,9, 10, F1, F», F3; CA: 1, 3).

4. The environment should provide a visually attractive, handy and clear user inter-
face. It has to preserve the interactivity even when performing long experiments,
preserving the reliable control (PSE: 1, 2, 7, F», F4, F7, R7; CA: 1, 2, 3).

5. The experiment’s description language has to be close to the language of the
target problem domain and as far from the implementation as possible. Descrip-
tion should be independent of the computational architecture, level of resources,
and operating system. The ability to involve such dependencies is definitely con-
sidered as a powerful option (PSE: 1, 2, 6, 7, 10, Fy, F4, R7; CA: 1, 2).

6. Grid state visualization is a most straightforward way of experiment’s represen-
tation. Nowadays the scientific visualization seems to be a separate industry [12].
So there is no need for the CA-based PSE to be concurrent with top-level tools in

15 Parallel Cellular Programming for Emergent Computation 361

this area. Nevertheless the environment should contain the basic set of features
and preferably be compatible with the specialized visualization software on the
level of data-files (PSE: 2, 10, R7; CA: 4).

7. The environment should support analysis functionality to monitor the quality of
the experiment, study the progress and the final results for making conclusions
and producing new scientific knowledge (PSE: 2, 6, 10, R7; CA: 5).

8. The environment should allow to reproduce experiment made once on the same
or another computational system. This will give an opportunity to share the
knowledge and the experience between researchers, eliminate ambiguous com-
putations, postpone the simulation, reanalyze, and revisualize or generally reuse
the data. This can be achieved by providing the ability to store/restore full com-
putational experiment setup and automaton’s grid state to/from a file (PSE: 1, 2,
4, 10, F1, F4, Re; CA: 6).

Such tight connection of properties listed above with general recommendations
for the PSEs design and features list for CA modeling facilities allows to con-
clude that these eight properties are close to be common requirements for cellular
automata based modeling environments.

The number of the software created for cellular automata modeling is impressive
[13, 14]. The apogee of this boom was at the 1990s. Many projects have been already
outdated, but some new successful prototypes appeared.

The comparative survey of the existing software and hardware facilities is sum-
marized in Table 15.1. The first column contains the name of the project with ref-
erences. The second one presents the target platform and the third — the year of the
latest known release or of the last publication devoted to the instrument. Further
eight columns contain pluses if project satisfies the requirement with corresponding
number (see the previous list) and minuses otherwise.

It is impossible and useless to overview all the existing projects, which were
created ever. Those of them which last known version had been released in the

Table 15.1 The comparative survey of existing cellular automata modeling environments. The
first raw contains project’s name with references, the second is used for the information about the
target platform, the third stores the year of current release. The rest raws contain pluses or minuses
depending on the conformance to the corresponding requirements (see the previous list)

Name Platform Release 1 2 3 4 5 6 7 8
CAGE [15] Windows 2004 + - — 4+ + 4+ - +
CAM [16, 17] iX86 or Sun 1994 + 4+ 4+ + 4+ 4+ - 4+
CAMEL [18-20] UNIX/Linux 1996 + - 4+ + 4+ 4+ - +
CAMEgL [14,21,23] Windows 2010 + 4+ 4+ + 4+ 4+ + +
CAMELot [24] UNIX/Linux 2001 + - 4+ 4+ 4+ + + +
Cellular [25] UNIX/Linux, CygWin 1999 + 4+ - 4+ + + - +
JCASim [26] Java 2001 + 4+ 4+ 4+ + + + +
MCell [27] Windows 2001 + + - 4+ 4+ + - +
ParCeL-6 [28, 29] UNIX/Linux, Windows 2004 + 4+ 4+ - 4+ - + +
SIMP/STEP [30, 31] UNIX/Linux, Windows 2003 + 4+ 4+ 4+ + + + +
Trend [32] UNIX/Linux, Java 2002 + - — 4+ + + - +

362 D. Talia and L. Naumov

twentieth century were mostly excluded from the study. Only several of them are
listed, because of their significant historical value. Also some relatively new projects
are deliberately not presented if they are deemed to be unsuitable for the research
and scientific modeling.

Projects are listed in the alphabetical order. In the following there are short, one-
paragraph reviews, which briefly describe each project in more detail. The name of
the project which is subjected to the review is shown with bold when it appears for
the first time.

The name CAGE stands for “Cellular Automata General Environment”. The tool
does not support any parallel or distributed computational technology, but this is
compensated by the universality. Authors have generalized the notion of the “cellu-
lar automaton” and used their vision of it for the software design. The environment
supports multilayered grids, rich means for the neighborhoods’ formation (includ-
ing the query-based one) and an ability to use irregular grids. The spectrum of the
functionality is extremely rich. Transition rules are to be defined using the C-like
language with the help of built-in visual programming means. Written rules are
being translated to C++ sources and compiled into the executable code for better
computational throughput. Despite of the functional richness, all grid’s layers seem
to be 2D only.

CAM means “Cellular Automata Machine” and represents a single instruc-
tion multiple data (SIMD) hardware implementation of the modeling environment.
CAM-6 [16] is a PCI-device which should be plugged into i X86 workstation gov-
erned by PC-DOS operating system. It supports 256x256 2D grids with Moore,
von Neumann and Margolus neighborhoods. CAM-8 [17] is a device which works
in tandem with Sun workstations via CBus and should be controlled by the accom-
panying STEP software (a predecessor of SIMP/STEP project which is also present
in this survey). Eighth version of the machine supports 3D grids. There is an ability
to extend the grid by using multiple device specimens. Visualization is performed
by the XCAM utility. Transition rules are to be programmed using a dialect of Forth
language supplemented with necessary routines. For each transitions function the
machine compiles the full lookup table. However, multiple instruction multiple data
(MIMD) architectures are more flexible than SIMD machines for implementing CA,
as they allow to deal with irregularities on a microscopic level of the algorithm
asynchronously and to efficiently simulate also heterogeneous systems. On a higher
level of abstraction it is possible to synchronize the parallel components of a MIMD
system explicitly as this is the only way to maintain global invariance of CA.

The project’s name CAMEL stands for “Cellular Automata environMent for
systEms modeLing”. This software was designed to perform computations on the
net of transputers or using MPIL. It supports grids of up to three dimensions and
complex neighborhoods. The cell’s state can be represented by the instance of a
data structure composed of basic types. For the CA definition it uses a specialized
language CARPET (“CellulAR Programming EnvironmenT”) [19] which will be
discussed in Sects. 15.3 and 15.4. The program written using this language tradi-
tionally consists of the declarative part and the statements. The language is clear
and successfully hides implementation issues coming from a parallel computer’s

15 Parallel Cellular Programming for Emergent Computation 363

architecture complexity, allowing to describe automata and rules in general terms.
The additional program IVT (comes from “Interactive Visualization Tool”’) has been
added to CAMEL software to improve the data visualization. In twenty-first century
the same group has switched to the development of CAMELot project [24].

By coincidence the name of the project CAMEgL is very similar to the previous
one. Nevertheless in this case it stands for “Cellular Automata Modeling Environ-
ment & Library”. The ampersand in the abbreviation appeared exactly for it to be
distinguishable from the CAMEL. This project will be discussed in more detail in
Sect. 15.5, but will be reviewed briefly. The key idea was to create a universal and
extensible facility, which supports parallel and distributed computing without any
target problem domain specialization. This was achieved by usage of the CA based
computational experiment decomposition (see Sect. 15.5.1). The software allows
synchronous, asynchronous, probabilistic, inhomogeneous, and any other kind of
CA with arbitrary grids, neighborhoods or type of cells’ state. Even if the particular
functionality or distinct automata type implementation is not included into the stan-
dard software package, one may add it and make new solution immediately available
for the community. So CAME,L users can be divided into two interconnected and
mixed groups: researchers who are just building solutions from the bricks they have,
and developers who enhance the set of bricks for themselves and everyone. Ideal sit-
uation will be reached when anyone will get the ability to perform arbitrary cellular
automata based experiments without the need to create new bricks.

As a descendant of CAMEL, CAMELot (“CAMEL Open Technology”) also
uses CARPET language [19] for the experiment description and MPI for the sim-
ulation execution. This project will be discussed in Sect. 15.4 and here it will be
overviewed briefly. The software represents the environment for programming and
seamlessly parallel execution of cellular automata. It has a graphical user interface
for experiment setup, control and visualization. It also includes the customizable
tool to produce traces of the simulation in a specified format thus allowing to post-
process the output of the experiment by means of the external utilities. Moreover it
supports profiling capabilities. The simulator is flexible with regard to cellular space
size and dimension (form 1D to 3D), cell’s state structure, neighborhood and rules.
The program, written using CARPET is translated and compiled into UNIX/Linux
executable file. The experiment setup preparation consists of editing of a text file.

Cellular software consists of the programming language (Cellang 2.0), associ-
ated compiler (cellc), virtual machine for the execution (pe-scam) and the viewer
(cellview). A program written with Cellang 2.0 consists of two parts: the descrip-
tion and the set of statements. The description determines dimensionality of a grid,
data-fields, which are contained in each cell, and ranges of acceptable values for
each field. There are two possible statements: an assignment and a conditional test.
The only possible data type is integer. The viewer is independent of the Cellang 2.0
language and the compiler. The input format for the viewer is identical to the output
format of Cellang 2.0 programs. The software supports different grids of arbitrary
dimensionality, non-trivial neighborhoods, several kinds of boundary conditions.

JCASim represents a general-purpose system for simulating CA on Java plat-
form. It includes the standalone application and the applet for web presentations.

364 D. Talia and L. Naumov

The cellular automaton can be specified in Java, CDL [33] or using the interactive
dialogue. It supports 1D, 2D (square, hexagonal, or triangular) and 3D grids, differ-
ent neighborhoods, boundary conditions (periodic, reflective or constant), and can
display cells using colors, text, or icons. Initially CDL was designed to describe
the hardware, which simulates homogeneous structures, but it can also be applied
in software as a powerful and expressive tool. JCASim allows any constructions
acceptable in CDL. For example, like in CDL, cell’s state can be represented with
theoretically unlimited amount of integer and floating-point variables. With the
package CAComb the software allows to simulate CA on several machines in parallel.
CAAnalysis package incorporates automatic analysis (the mean-fields and similar
approximations will be calculated automatically).

MCell or “Mirek’s Cellebration” is a very small and simple Windows application
which supports 2D grids and no parallel or distributed computing. But despite of this
its effort is great, because it can easily show the simplicity, beauty and power of a
cellular automata to people who are far from this field of science. This is possible
due to successful graphical user interface which is clear for non-specialists and a
wide library of examples. Transition rules can be defined using the interface means
or by creation of external dynamic-link library.

Project ParCeL-6 represents the multi-layer cellular computing library for mul-
tiprocessor computers, clusters and Grids. The goal of its creation was to decrease
the development time for the fine-grained applications. It is implemented in C lan-
guage and can be linked to C and C+4-+ programs. There are two subversions of the
software: ParCelL-6.1 for architectures supporting the memory sharing paradigm
and ParCeL-6.2 for architectures supporting the message passing approach. The
cluster version of ParCeL-6 was developed in the framework of the Grid-eXplorer
project. High level generic and parallel neural model of computations allows smart
programming for numerous computing units. ParCeL offers the extended cellular
programming model and maps “small” computing units on the “big” processors of
parallel machines. When a cell is created, host processor is pointed out and unique
registration number is associated with the cell. This number allows to identify it in
a cellular network. Finally the cell is created directly on its host processor and exe-
cutes the computing cycle on it. The software is also able to perform the automatic
parallelization of the source code for the multiprocessor machines.

SIMP/STEP is a general-purpose software platform, which includes the lan-
guage for cellular automata, lattice gases, and a “programmable matter” definitions.
It is based on the Python programming language and suites for the wide range of
problems. The software consists of two parts: SIMP is the user environment built on
STEP, the applications programming interface, which separates conceptual compo-
nents from implementation details, optimization routines etc. The software supports
parallel computing technologies, has visualization and analysis capabilities. SIMP
supports 2D rendering, but there are some experimental hooks for the 3D rendering,
using VTK [12].

Trend is the 2D cellular automata programming environment with the integrated
simulator and the compiler, which produces the virtual machine code for the evalu-
ation module (under UNIX/Linux only) or Java machine. It has several interesting

15 Parallel Cellular Programming for Emergent Computation 365

features: the simulation backtracking, conflicts catching, flexible template design
and others. The Trend language allows user-defined terms, symmetrically rotatable
statements and other constructions specific for the cellular automata programming.
The software supports arbitrary neighborhoods within 11 x 11 region around the cen-
ter cell. Each cell can be in the state which is coded by unsigned integer variable.
The project does not support any parallel computing technologies.

15.3 Parallel CA Languages

For developing cellular automata on parallel computers two main approaches can
be used. One is to write programs that encode the CA rules in a general-purpose
parallel programming language such as HPF, Erlang, Java, Linda or CILK or still
using a high-level sequential language like C+4-4-, Fortran or Phyton with one of the
low-level toolkits/libraries currently used to implement parallel applications such as
MPI, PVM, or OpenMP. This approach does not require a parallel programmer to
learn a new language syntax and programming techniques for cellular programming.
However, it is not simple to be used by programmers that are not experts in parallel
programming and code consists of a large number of instructions even if simple
cellular models must be implemented.

The other possibility is to use a high-level language specifically designed for
CA, in which it is possible to directly express the features and the rules of CA,
and then use a compiler to translate the CA code into a program executable on
parallel computers. This second approach has the advantage that it offers a program-
ming paradigm that is very close to the CA abstract model and that the same CA
description could possibly also be compiled into different code for various parallel
machines. Furthermore, in this approach parallelism is transparent from the user, so
programmers can concentrate on the specification of the model without worrying
about architecture related issues. In summary, it leads to the writing of software that
does express in a natural manner the cellular paradigm, and thus programs are sim-
pler to read, change, and maintain. On the other hand, the regularity of computation
and locality of communication allow CA programs to achieve good performance
and scalability on parallel architectures.

In recent years, several cellular automata environments have been implemented
on current desktop computers as well (see Sect. 15.2). Sequential CA-based systems
can be used for educational purposes and very simple simulations, but real world
phenomena simulations generally take very long time, or in some cases cannot be
executed, on this class of systems because of memory or computing power limits.
Therefore, massively parallel computers are the appropriate computing platform for
the execution of CA models when real life problems must be solved. In fact, for
two and three dimensional cellular automata of large size the computational load
can be enormous. Thus, if CA are to be used for investigating large complex phe-
nomena, their implementation on high performance computers composed of several
processors is a must.

366 D. Talia and L. Naumov

In particular, general-purpose distributed-memory parallel computers offer a very
useful architecture for a scalable CA machine both in terms speed-up, programma-
bility, and portability. These systems are based on a large number of intercon-
nected processing elements (PE) which perform a task in parallel. According to this
approach, in the recent years several parallel cellular software environments have
been developed.

The main issues that influence the way in which CA languages support the design
of applications on high performance architectures are

e The programming approach: the unit of programming is the single cell of the
automaton.

e The cellular lattice declaration: it is based on definition of the lattice dimension
and the lattice size.

e The cell state definition and operations: cell state is defined as single variable or
a record of typed variables; cell state access and update operations are needed.

e The neighborhood declaration and use: neighborhood concept is used to define
interaction among cells in the lattice.

e The parallelism exploitation: the unit of parallelism is the cell and parallelism,
like communication, is implicit.

e The cellular automata mapping: data partitioning and process-to-processor map-
ping is implicit at the language level.

e The output visualization: automaton global state, as the collection of the cell
states, is showed as it evolves.

By addressing these issues we illustrate how this class of languages can be effec-
tively used to implement high-performance applications in science and engineering
using the massively parallel cellular approach.

15.3.1 Programming Approach

When a programmer starts to design a parallel cellular program she/he must define
the structure of the lattice that represents the abstract model of a computation in
terms of cell-to-cell interaction patterns. Then she/he must concentrate on the unit
of computation that is a single cell of the automaton. The computation that is to
be performed must be specified as the transition function of the cells that compose
the lattice. Therefore, differently form other approaches, a user does not specify a
global algorithm that contains the program structure in an explicit form.

The global algorithm consists of all the transition functions of all cells that are
executed in parallel for a certain number of iterations (steps). It is worth to notice
that in some CA languages it is possible to define transition functions that change in
time and space to implement inhomogeneous CA computations. Thus, after defining
the dimension (e.g., 1D, 2D, 3D) and the size of the CA lattice, she/he needs to spec-
ify, by the conventional and the CA statements, the transition function of the CA that
will be executed by all the cells. Then the global execution of the cellular program

15 Parallel Cellular Programming for Emergent Computation 367

is performed as a massively parallel computation in which implicit communication
occurs only among neighbor cells that access each other state.

15.3.2 Cellular Lattice Declaration

As was mentioned above, the lattice declaration defines the lattice dimension and the
lattice size. Most languages support two-dimensional rectangular lattices only (e.g.,
CANL and CDL). However, some of them, such as CARPET and Cellang, allow
the definition of 1D, 2D, and 3D lattices. Some languages allow also the explicit
definition of boundary conditions such as CANL that allows adiabatic boundary
conditions where absent neighbor cells are assumed to have the same state as the
center cell. Others implement reflecting conditions that are based on mirroring
the lattice at its borders. Most languages use standard boundary conditions such as
fixed and toroidal conditions.

15.3.3 Cell State

The cell state contains the values of data on which the cellular program works. Thus
the global state of an automaton is defined by the collection of the state values of all
the cells. While low-level implementations of CA allow to define the cell state as a
small number of bits (typically 8 or 16 bits), cellular languages such as CARPET,
CANL, DEVS-C++ and CDL allows a user to define cell states as a record of typed
variables as follows:

cell = (direction :int ;
mass : float;
speed : float);

where three substates are declared for the cell state. According to this approach, the
cell state can be composed of a set of sub-states that are of integer, real, char or
boolean type and in some case (e.g., CARPET) arrays of those basic types can also
be used. Together with the constructs for cell state definition, CA languages define
statements for state addressing and updating that address the sub-states by using
their identifiers, e.g. cell. speed.

15.3.4 Neighborhood

An important feature of CA languages that differentiate them from array-based lan-
guages and standard data-parallel languages is that they do not use explicit array
indexing. Thus, cells are addressed with a name or the name of the cells belonging
to the neighborhood. In fact, the neighborhood concept is used in the CA setting to
define interaction among cells in the lattice.

368 D. Talia and L. Naumov

In CA languages the neighborhood defines the set of cells whose state can be
used in the evolution rules of the central one. For example, if we use a simple
neighborhood composed of four cells we can declare it as follows

neigh cross = (up, down, left, right);

and address the neighbor cell states by the identifiers used in the above declaration
(e.g., down.speed, left.direction). The neighborhood abstraction is used to
define the communication pattern among cells. It means that at each time step, a cell
send to and receive from the neighbor cells the state values. In this way implicit com-
munication and synchronization are realized in cellular computing. The neighbor
mechanism is a concept similar to the region construct that is used in the ZPL lan-
guage [37] where regions replace explicit array indexing making the programming
of vector- or matrix-based computations simpler and more concise. Furthermore,
this way of addressing the lattice elements (cells) does not require compile-time
sophisticated analysis and complex run-time checks to detect communication pat-
terns among elements.

15.3.5 Parallelism Exploitation

CA languages do not provide statements to express parallelism at the language
level. It turns out that a user does not need to specify what portion of code must
be executed in parallel. In fact, in parallel CA languages the unit of parallelism is
a single cell and parallelism, like communication and synchronization, is implicit.
This means that in principle the transaction function of every cell is executed in
parallel with the transaction functions of the other cells.

In practice, when coarse grained parallel machines, like clusters or multi-core,
are used, the number of cells N is greater than the number of available processors
P, so each processor executes a block of N/ P cells that can be assigned to it using
a domain decomposition approach.

15.3.6 CA Mapping

Like parallelism and communication, also data partitioning and process-to-processor
mapping is implicit in CA languages. The mapping of cells (or blocks of them)
onto the physical processors that compose a parallel machine is generally done by
the run-time system of each particular language and the user usually intervenes in
selecting the number of processors or some other simple parameter.

Some systems that run on multicomputers (MIMD machines) use load balanc-
ing techniques that assign at run-time the execution of cell transition functions to
processors that are unloaded or use greedy mapping techniques that avoid some
processor to become unloaded or free during the CA execution for a long period.

15 Parallel Cellular Programming for Emergent Computation 369
15.3.7 Output Visualization and Monitoring

A computational science application is not just an algorithm. Therefore it is not suf-
ficient to have a programming paradigm for implementing a complete application. It
is also as much significant to dispose of environments and tools that help a user in all
the phases of the application development and execution. Most of the CA languages
we are discussing here provide a development environment that allows a user not
only to edit and compile the CA programs. They also allow to monitor the program
behavior during its execution on a parallel machine, by visualizing the output as
composed of the states of all cells. This is done by displaying the numerical values
or by associating colors to those values. Examples of these parallel environments
are CAMEL for CARPET, PECANS for CANL, and DEVS for DEVS-C++.

Some of these environments provide dynamical visualization of simulations
together with monitoring and tuning facilities. Users can interact with the CA envi-
ronment to change values of cell states, simulation parameters and output visualiza-
tion features. These facilities are very helpful in the development of complex scien-
tific applications and make possible to use those CA environments as real problem
solving environments (PSEs).

Many of these issues are taken into account in parallel CA systems and simi-
lar or different solutions are provided by parallel CA languages. In Sect. 15.4 we
outline some of the listed issues by discussing the main features of CAMELot, a
general-purpose system that can be easily used for programming emergent systems
using the CARPET cellular programming language according to a massively paral-
lel paradigm and some related parallel CA environments and/or languages.

15.4 Cellular Automata Based Problem-Solving Environment
Case Study: CAMELot and CARPET

CAMELot (CAMEL open technology) is a parallel software system designed to
support the parallel execution of cellular algorithms, the visualization of the results,
and the monitoring of cellular program execution [38]. CAMELot is an MPI-based
portable version of the CAMEL system based on the CARPET language. CARPET
offers a high-level cellular paradigm that offers to a user the main CA features to
assist her/him in the design of parallel cellular algorithms without apparent paral-
lelism [20].

A CARPET programmer can develop cellular programs describing the actions of
many simple active elements (implemented by cells) interacting locally. Then, the
CAMELot system executes in parallel cells evolution and allows a user to observe
the global complex evolution that arises from all the local interactions. CARPET
uses a C-based grammar with additional constructs to describe the rules of the tran-
sition function of a single cell. In a CARPET program, a user can define the basic
rules of the system to be simulated (by the cell transition function), but she/he does
not need to specify details about the parallel execution. The language includes

370 D. Talia and L. Naumov

a declaration part (cadef) that allows to specify:

the dimension of the automaton (dimension);

the radius of the neighborhood (radius);

the type of the neighborhood (neighbor);

the state of a cell as a record of substates (state);

a set of global parameters to describe the global characteristics of the system
(parameter).

e aset of constructs for addressing and updating the cell states (e.g., update, GetX,
GetY, GetZ).

In a two-dimensional automaton, a very simple neighborhood composed of four
cells can be defined as follows:

neighbor Stencil[2] ([-1,0]Left, [1,0]Right, [0,1]Up,
[0,-1]Down) ;

As mentioned before, the state (state) of a cell is defined as a set of typed
substates that can be shorts, integers, floats, char, and doubles or arrays of these
basic types. In the following example, the state consists of three substates.

state(float speedx, speedy, energy);

The mass substate of the current cell can be referenced by the predefined variable
cell_mass. The neighbor declaration assigns a name to specified neighboring cells
of the current cell and allows such to refer to the value of the substates of these
identified cells by their name (e.g., Left _mass). Furthermore, the name of a vector
that has as dimension the number of elements composing the logic neighborhood it
must be associated to neighbor (e.g., Stencil). The name of the vector can be used
as an alias in referring to the neighbor cell. Through the vector, a substate can be
referred as Stencil[i] _mass.

To guarantee the semantics of cell updating in cellular automata the value of one
substate of a cell can be modified only by the update operation, for example

update(cell_speedx, 12.9);.

After an update statement, the value of the substate, in the current iteration,
is unchangeable. The new value takes effect at the beginning of the next iteration.
Furthermore, a set of global parameters (parameter) describes the global character-
istics of the system (e.g., the permeability of a soil). CARPET allows to define cells
with different transition functions (inhomogeneous CA) by means of the GetX,
GetY, GetZ functions that return the value of the coordinate X, Y, and Z of the
cell in the automaton. Varying only a coordinate it is possible to associate the same
transition function to all cells belonging to a plane in a three dimensional automaton.

The language does not provide statements to configure the automata, to visualize
the cell values or to define data channels that can connect the cells according to

15 Parallel Cellular Programming for Emergent Computation 371

different topologies. The configuration of a cellular automaton is defined by the
graphical user interface (UI) of the CAMELot environment. The Ul allows, by menu
pops, to define the size of the cellular automata, the number of the processors onto
which the automata must be executed, and to choose the colors to be assigned to
the cell substates to support the graphical visualization of their values. The exclu-
sion from the language of constructs for configuration and visualization of the data
allows executing the same CARPET program with different configurations. Further,
it is possible to change from time to time the size of the automaton and/or the num-
ber of the nodes onto which the automaton must be executed. Finally, this approach
allows selecting the more suitable range of the colors for the visualization of data.

15.4.1 Examples of Cellular Programming

In this section we describe two examples of emergent systems expressed through
cellular programming using the CARPET language. The first example is a typical
CA application that simulates excitable systems. The second program is the clas-
sical Jacobi relaxation that shows how it is possible to use CA languages not only
for simulate complex systems and artificial life models, but that they can be used
to implement parallel programs in the area of fine grained applications such as
finite elements methods, partial differential equations and systolic algorithms that
are traditionally developed using array or data-parallel languages.

15.4.1.1 The Greenberg-Hastings Model

A classical model of excitable media was introduced 1978 by Greenberg and Hast-
ings [39]. This model considers a two-dimensional square grid. The cells are in one
of a resting (0), refractory (1), or excited (2) state. Neighbors are the eight nearest
cells. A cell in the resting state with at least s excited neighbors (in the program we
use s = 1) becomes excited itself, runs through all excited and resting states and
returns finally to the resting state. A resting cell with less than s excited neighbors
stays in the resting state.

Excitable media appear in several different situations. One example is nerve or
muscle tissue, which can be in a resting state or in an excited state followed by
a refractory (or recovering) state. This sequence appears for example in the heart
muscle, where a wave of excitation travels through the heart at each heartbeat.
Another example is a forest fire or an epidemic model where one looks at the cells
as infectious, immune, or susceptible.

Figure 15.1 shows the CARPET program that implements the two-dimensional
Greenberg-Hastings model. It appears concise and simple because the programming
level is very close to the model specification. If a Fortran+MPI or C+MPI solution
is adopted the source code is extremely longer with respect to this one and, although
it might be a little more efficient, it is very difficult to program, read and debug.

372 D. Talia and L. Naumov

#define resting O
#define refractory 1
#define excited 2

cadef
{
dimension 2;
radius 1;
state (short value);
neighbor Moore[8] ([0,-1]North, [1,-1]NorthEast,[1,0]East,
[1,1]SouthEast, [0,1]South, [-1,1]SouthWest,
[-1,0]West, [-1,-1]NorthWest);
}
int i, exc_neigh=0;
{
for (i=0; (i<8) && (exc_neigh==0); i++)
if (Moore[i] _value == excited) exc_neigh = 1;
switch (cell_value)
{
case excited : update(cell_value, recovering); break;
case recovering : update(cell_value, resting); break;
default : /* cell is in the resting state */
if (exc_neigh == 1)
update(cell_value, excited);
}
}

Fig. 15.1 The Greenberg-Hastings model written in CARPET

15.4.1.2 The Jacobi Relaxation

As a second example, we describe the four-point Jacobi relaxation on a n xn lattice
in which the value of each element is to be replaced by the average value of its
four neighbor elements. The Jacobi relaxation is an iterative algorithm that is used
to solve differential equation systems. It can be used, for example, to compute the
heat transfer in a metallic plate on which boundaries there is a given temperature. At
each step of the relaxation the heat of each plate point (cell) is updated by comput-
ing the average of its four nearest neighbor points. Figure 15.2 shows a CARPET
implementation. The initial if statement is used to set the initial values of cells that
are taken to be 0.0 except for the western edge where boundary values are 1.0.

The Jacobi program, although it is a simple algorithm, is another example of how
a CA language can be effectively used to implement scientific programs that are
not properly in the original area of cellular automata. This simple case illustrates
the high-level features of the CA languages that can be also used for implement
applications that are based on the manipulation of arrays such as systolic algorithms
and finite elements methods.

For the Jacobi algorithm we present some performance benchmarks that have
been obtained by executing the CARPET program using different grid sizes and
processor numbers. Table 15.2 shows the execution times for 100 relaxation steps
for three different grid sizes (100x200, 200x200 and 200x400) on 1, 2, 4, 8 and

15 Parallel Cellular Programming for Emergent Computation 373

cadef
{
dimension 2;
radius 1;
state (float elem);
neighbor Neum[4] ([0,-1]North, [-1,0]West, [0,1]South, [1,0]East);
}
int sum;
{
if (step == 1)
if (GetY == 1)
update (cell_elem, 1.0);
else
update (cell_elem, 0.0);
else
{
sum = North_elemt+South_elem+East_elem+West_elem;
update (cell_elem, sum/4);
}
}

Fig. 15.2 The Jacobi iteration program written in CARPET

Table 15.2 Execution time (in) of 100 iterations for the Jacobi algorithm

Grid sizes 1 Proc 2 Procs 4 Procs 8 Procs 10 Procs
100x200 1.21 0.65 0.37 0.25
200x200 3.62 1.25 0.67 0.42 0.37
200x400 8.22 3.65 1.26 0.74 0.62

10 processors of a multicomputer. From the figure we can see that as the number of
used processors increases, there is a corresponding decrease of the execution time.
This trend is more evident when larger grids are used; while smaller CA do not
use efficiently the processors. This means that, because of the algorithm simplicity,
when we run an automaton with a small number of cells we do not need to use
several processing elements. On the contrary, when the number of cells in the lat-
tice is high, the algorithm benefits from the use of a higher number of computing
resources. This can be also deduced from Table 15.3 that shows the relative speed
up results for the three different grids. In particular, we can observe that when a
200x400 lattice of cells is used we obtain a superlinear speed up in comparison
to the sequential execution mainly because of memory allocation and management
problems that occur when all the 80,000 cells are allocated on one single processing
element.

Table 15.3 Relative speed up of the Jacobi algorithm

Grid Sizes 1 Proc 2 Procs 4 Procs 8 Procs 10 Procs
100x200 1 1.86 3.27 4.84
200x200 1 2.89 5.40 8.62 9.78
200x400 1 2.25 6.52 11.10 13.25

374 D. Talia and L. Naumov

15.5 Cellular Automata Based Problem-Solving Environment
Case Study: CAMEg L

The environment CAMEgL [14, 21, 23] resulted from a collaboration between
the Saint-Petersburg State University of Information Technologies, Mechanics and
Optics (Russian Federation) and the Section Computational Science of the Univer-
sity of Amsterdam (The Netherlands).

15.5.1 Cellular Automata Based Computational Experiment
Decomposition

The initial idea of “CAMEgL” was to distribute the implementation of a computa-
tional experiment among the functional parts. Any simulation should be assembled
as a set of interacting components of definite types. A researcher will be able to use
them in miscellaneous combinations to add arbitrary functionality to the experiment.
Components could be taken from the standard set or created by a user to fulfil the
target problem requirements.

Consequently the CA based computational experiment decomposition [14, 21]
was offered. It was decided to distinguish five types of components. Names of these
types are shown with bold in the following list.

e The grid implements the visualization of automaton’s state and the navigation
among cells. It does not actually store cells states. This component’s main task
should be drawing and interacting with user.

e The datum provides cells states storage, exchange and some aspects of the data
visualization. Namely it can define

— the association of cells’ states with colors, which will be used for their dis-

playing;
— the custom single cell drawing routine.

e The metrics provides the relationship of neighborhood, coordinates for each cell
and distance measurement functions. Implementation of metrics as a separate
component instead of entrusting its functions to the grid or the datum allows, for
example, to use non-standard coordinate systems, like generalized coordinates
[34].

e The rules describes computations and controls the iteration. In the introduced
ideology terms “rules” and “transition function” are not synonyms. Components
of this type define much more: the method of parallelization, methods of com-
putations’ optimization (if any are used), many other aspects and the transition
function among the rest. This component also should allow

— to handle experiment’s start up (proceed the initialization);
— to determine and check the criteria of experiment’s completion;
— to handle experiments finish (proceed the finalization);

15 Parallel Cellular Programming for Emergent Computation 375

— to define special tools for checking, changing, pre- and postprocessing;
— to define important experiment’s properties for further studying with the help
of analyzer components (see below).

e The analyzer allows to keep an eye on definite properties of the experiment, draw
graphs, create reports, monitor values and all of this kind.

The union of compatible components of first three types totally define a “func-
tionless” cellular automaton. Addition of a component of the fourth type will form
a cellular automaton that can perform the computational experiment. Only single
instances of the grid, the datum, the metrics and the rules are able to participate in
the simulation, but it can involve arbitrary amount of analyzers (even none).

Components are continuously interacting during the whole computational exper-
iment to do the work together. Obviously, each component cannot cooperate with
arbitrary another component, but only with one, which is suitable for this. Such
compatibility conditions for analyzers are trivially based on the examination of the
analyzable parameter’s variable data type. For the rest four types there should be
a special language of logical expressions to describe their properties and require-
ments. In this case requirements should represent conditions imposed on properties.

Each component should have specific user interface: the declared set of available
parameters, which allow to setup the component for the particular problem and for
the accordance to user’s needs and preferences.

15.5.2 Software Design

Taking everything, said in Sect. 15.5.1 into account it was decided to implement the
software using C++ language. All basic statements, listed above, can be provided
with the help of the object-oriented programming paradigm. Windows was chosen
as a target operating system. Consequently each component should be represented as
a dynamic-link library, developed in the framework of the predefined programming
interface. The component’s library have to contain the class, which implements the
functionality corresponding to one of five types, listed in Sect. 15.5.1.

As a result, CAMEgL software consists of three conceptually and functionally
interconnected parts:

e CADLIib or “Cellular Automata Development Library” is the C++- class library,
which is designed to present an easy-to-use and rich set of instruments for imple-
menting computational experiments according to given regulations and using
definite abstractions. It provides basic classes for all types of components, param-
eters and for other concepts.

e Standard components are most common building blocks of computational
experiments, which can be considered as both: ready-made solutions and exam-
ples for studying when one is going to create his own component. They also can
be reused and extended to fulfil the needs of the researcher.

376 D. Talia and L. Naumov

e The environment is the application with rich user interface for simulations and
research with the help of cellular automata. It provides the access to tools for
the simulation control, studying and analysis, cluster arrangement, workstations
management and many other purposes. Important note is that the environment
itself contains no computational functionality, but allows to execute components’
libraries in the definite software surrounding.

One may say that the ability to use C++ is a too complicated skill to demand
it from the researcher. This is true, but at the same time this is totally in the ideol-
ogy of the extensible environment: the scope of the rules basic class is much wider
than just the transition function definition. So one can create a rules component,
which represents the parser for the automaton’s iteration description from the spe-
cific language. This means that one rules component is able to implement not just
the single transition function, but the class of such functions. This ideology allows
to incorporate arbitrary amount of specific computations description languages into
one software and provide specialists from distinct field of the research with the
component, which supports necessary abstractions from the given subject field. The
code snippets, the rich set examples, scripts and the CADLIb itself are provided to
make the components creation simpler.

15.5.3 Usage Example. Tumor Growth Modeling

Now CAMEgL is intensively used for the 3D tumor growth modeling. In this sec-
tion a very schematic example will illustrate the common approach to using this
software for a simulation. The example is related to the tumor growth simulation,
but is free of plunging into the biological background. Computational Oncology
is an active area of research with many promosing results. For instance, Sottoriva
et al. [22] report on extensive simulations to reveal Cancer’s stem cell driven tumor
growth using such models.

To implement the cellular automaton, which will perform modeling, one should
select the set of at least four components (grid, datum, metrics and rules), which
will arrange the experiment. If particular component is not presented in the set of
standard components then it should be created.

Usually, there is no need to create user analyzers, because they are much less
problem domain dependant than any others. That is why only grid, datum, metrics
and rules components are considered in the list below. The component type’s name
is shown with bold.

e For performing the computational experiment of 3D tumor growth, the standard
grid component “Basic 3D Grid” will be suitable. It supports many functions,
which are extremely useful for the model of such solid clot: drawing sections,
stubs and slices to take a look inside the tumor.

e In the experiment, each automaton’s cell is to represent single biological cell,
which should be described with distinct user developed data structure. Let’s

15 Parallel Cellular Programming for Emergent Computation 377

assume that it is called BioCell (there is no need to discuss what it consists
of). There is no standard datum component implementing 3D storage for cells
which contains instances of the BioCell structure. This component should be
created with the help of CADLIb as a descendant of the CADatum class. Library
makes it extremely easy, providing CABasicCrts3DDatum class template, which
automatically implements the majority of needed functions. Primitive, but func-
tional class declaration should look like shown of Fig. 15.3. Numbers, given in
brackets at the left, are used for further referring to appropriate lines or sections
(sets of lines from one number to another) of the code and have no attitude to the
source.

On line (1) and following one the parent class template is used with the spe-
cific values of parameters: first one is the data type to be stored in each cell,
second — the class of the user interface dialog (may be none), used to edit the
values of a stored data type, third — the resource identifier of the dialog template.
Section, started from line (2) contains constructor and destructor declarations.
The main task, which is entrusted to the constructor, is the initialization of com-
ponent’s parameters. Section, started from line (3) presents component’s self-
introduction functions, treating macrodefinitions, provided by CADLib. These
declarations contains (in the same order) components short name, longer descrip-
tion, resource identifier of the corresponding icon, requirements for the properties
of other components to be compliant to this one and properties, implemented by
this components.

Last two statements worth special discussion. Attributes and requirements
specifications are formulated using the trivial language of consequently adjustable
properties. The self-characteristics, given on the last line of section (3) should
be understood as the declaration of the fact that the component implements the
property “Data”. Then it is refined: data is “composite”. Moreover, compos-
ite data is attributed as “biocell”. In the same manner requirements represent

class CACrtsCell3DDatum:public

(1) CABasicCrts3DDatum
<BioCell, CBioCellDlg, IDD_BIOCELL> {
public:
(2) CACrtsCell3DDatum() ;

virtual ~CACrtsCell3DDatum() ;

(3) COMPONENT_NAME (BioCells for Cartesians 3D)
COMPONENT_INFO(3D storage for cellular (biological)
data for cartesian metrics)
COMPONENT_ICON(IDI_ICON)
COMPONENT_REQUIRES (Metrics.3D.cartesian.*)
COMPONENT_REALIZES (Data.composite.biocell)

(4) virtual inline COLORREF GetCellColor(CACell c); (5)
(5) virtual inline void SetDefValue(CACell c);
};

Fig. 15.3 The declaration of the datum component for the tumor growth modeling in CAMEg, L

378 D. Talia and L. Naumov

the conditions over properties, allowing wildcards and logical operations. This
component needs to collaborate with another one, which should implement the
property ‘“Metrics”. The property should be attributed as “3D” and, moreover,
“cartesian”. The asterisk means that any amount of deeper refining subproperties
will fit. There is no strict rule for properties naming. The properties conformance
checkup is case-insensitive. The union of components will not form a proper
cellular automaton if at least one component has unsatisfied requirements.

There is no need to overload any additional members of the CADatum
class, because all the required functionality is basically implemented by the
CABasicCrts3DDatum class template. Nevertheless most likely one will decide
to overload two functions, shown on lines (4) and (5).

First of all, note that CACell class represents the universal cell identifier,
which allows to refer any given cell in the arbitrary metrics. From the technical
point of view, it represents the 64 bits integer value. For example, when dealing
with standard 2D cartesian metrics the universal cell identifier stores cell’s absciss
in first 32 bits and the ordinate in rest 32 bits. For standard 3D cartesian metrics
the universal cell identifier is divided into three unequal parts: 22 bits for absciss,
21 for ordinate and 21 for applicate. When using generalized coordinates [34]
as, for example, Peano-curve-based metrics [35], the universal cell identifier is
interpretted as a solid unsigned integer number. So, CAMEgL can govern the
cellular automaton of up to 2 cells.

The function, overloaded on line (4), is to return the color, which should be
used to visualize the value, stored in the cell c. The function on line (5) should put
the “default value” to the cell c. This value will be used for the grid initialization
and as the out-of-bounds value for constant boundary conditions.

Finally, the component’s library should contain the class declaration, the
implementation (in the case of this component, four functions should be imple-
mented: constructor, destructor and two, declared on lines (4) and (5)) and com-
ponent’s library access functions, which can be easily created with following two
lines of code:

COMPATIBLE_DATUM(1.1)
DATUM_COMPONENT (CACrtsCell3DDatum)

First one implements the authentication function for the library, which says that
the component was built to be compatible with CADLIb version 1.1. Second one
adds the creation and the destruction functions for the component, implemented
by the CACrtsCell3DDatum class.

e It is logical to perform modeling in Cartesian metrics, which is implemented by
one of the standard components. The name of this component is “Cartesians 3D”.

e Each rules component should be implemented by the descendant of the CARules
class. This type of components was designed to allow the full control over the
simulation and to support a lot of features. Nevertheless for the plain imple-
mentation of algorithm in most cases it’s enough to overload its SubCompute
function only. This function represents the transitions’ laws, which are applied
to some zone of the grid. The description of the zone is given by the object of

15 Parallel Cellular Programming for Emergent Computation 379

bool CATG3DRules: :SubCompute (Zone& z)

{
(1) *x* Prestep ***
(2) int i,j,k;
for(i=(int)z.al; i<=(int)z.bl; i++) {
3) pEnv->SetProgress(((double)i-z.al)/(z.bl-z.al+1))

for(j=(int)z.a2; j<=(int)z.b2; j++)
for (k=(int)z.a3; k<=(int)z.b3; k++) {
(4) *x* Transition for the cell (i;j;k) **x
*x% Compute the analyzable values **x*

}
}
(5) *x*x Poststep **x
(6) *%% Compute the analyzable values **¥x*

*** Assign the values to the analyzable parameters **x
(n pEnv->SetProgress(1.0);

(8) return (x** Criteria of the completion **x); }

Fig. 15.4 The schematic representation of the tumor growth modeling algorithm implemented
in CAMEgL

CADLIDb’s Zone class passed as the parameter to the function. If a variable z
describes the zone, then z.al and z. b1 are the lower and the higher boundaries
of the zone along a first axis, z.a2 and z.b2 — along a second one and z. a3 and
z.b3 — along a third one. All boundaries should be included. Axes are just enu-
merated, but not named here as the “absciss”, the “ordinate” and the “applicate”,
because zonal mechanism is to be metrics independent and in general situation
the meaning of the particular axis is unknown. So, it would be wrong to conclude
that the object of the Zone class always describes the parallelepiped.

The environment will call the SubCompute function with the correct value of the
zone description. In most cases, and in the case of tumor growth modeling also,
the main structure of the implementation of this function should look like shown
in Fig. 15.4 (verbal descriptions of the functionality which replace the code are
given between three asterisks, bracketed numbers are used for referencing, as
above).

This function will be called once for each timestep. So its beginning (line (1))
is the appropriate place for the prestep routines (initialization of variables, pre-
computing values, which will be used later, etc.). On the line (2) three variables,
which will run over three Cartesian coordinated are declared. The running is
provided by the following loop operators. Inside the loop (line (4) and the next
one) the main part of an algorithm should be placed: for each cell its new state
should be determined. Moreover, values of the analyzable parameters, which can
be influenced by each single cell, should be updated. It is strongly recommended

380 D. Talia and L. Naumov

not to reassign the values to such parameters many times, but to deal with the
temporary variables until step will be finished. Line (5) is the appropriate place
for postprocessing step results. On line (6), after the analyzable values, which are
influenced by the simulation step in general (not by any single cell) were calcu-
lated, the parameters can get their values for the current iteration (line after (6)).

Member variable pEnv allows the rules component to exchange the informa-
tion with the environment. Its member function SetProgress is used to declare
which part of the time-consuming process have been accomplished (from 0.0
(nothing have been done) to 1.0 (the process is finished)). The line (3) is the
suitable place to report about the progress not excessively often, but adequately.
Before finishing the iteration progress should be set to 100% (line (7)).

The value returned by SubCompute function (line (8)) plays the role of the
computational experiment’s completion criterium. Simulation will go on while
function returns true.

In all the rest a rules component’s library should contain the same principal
parts as a datum component’s library, considered above. Necessary component’s
library access functions can be also created by two lines of the code.

The situation, which has been considered is quite typical: in the overwhelming
majority of cases, excluding purely educational purposes, a user has to create the
rules component. In some cases, but not so often she/he has to implement the datum
component also. The chance that one will need the non-standard metrics is very low
and most likely attitudes to the special metrics-related research. A necessity of new
grids or analyzers creation may rise even more rare. Standard analyzers can treat
all basic types (boolean, integer and floating-point variables) and standard grids are
suitable for 1D, 2D and 3D modeling. Moreover, the visualization can be slightly
influenced or customized on the level of datum components (see the description
of the DrawCell, GetCellColor, and GetPlaceColor member functions of the
CADatum class [14, 23]).

From the opposite side, lets sort types of components in the order from the most
simple to the most complicated one from the developers point of view. In this case
the creation of new datum components will be the simplest. Then rules components
follow. It looks not so simple, but in most cases the only thing, which researcher
has to do is overloading the SubCompute member function. The rest three types
are to be created form scratch and number of functions have to be overloaded. The
next from the simplicity point of view are analyzer components. Their idea is quite
clear and general, it contains less specifics and can be implemented easier than the
next type — grid components. Metrics components are the most complex and hard to
debug, because they make no visual output, but with the help of CADLIib even this
can be done without getting stuck.

To run the tumor growth simulation a researcher has to install two created com-
ponents with the help of the “components manager” built into the environment
(“Tools” | “Components Manager...” in the main menu). Then new document should
be created (“File” | “New” in the main menu) and four components mentioned above

15 Parallel Cellular Programming for Emergent Computation 381

I CAML - [Astomatsn3091352) - =%
fi Ee Edt Yew Badeing ook (sbug findoe b " x
Ded & - AAA

w2 1
+ 33 70 baperimental Grd
+ L Memagenal Bask 20 Grad

o [l e Bavic 20 Goid
+ §§ Trianghe Basic 70 Grid

- B

- Turmor gramth]

Fig. 15.5 Screenshot of CAMEg L, running tumor growth computational experiment, being stud-
ied with the help of two analyzers

(two standard and two created) should be chosen. After this the simulation can be
executed with the help of “Go” button (“Modeling” | “Go” in the main menu). The
screenshot of the environment, running the tumor growth computational experiment
is shown on Fig. 15.5.

The experiment’s window is divided into two parts. The left one displays the
components tree. All components except analyzers are presented there and grouped
by types. Tree’s leaves of the first level are types’ names, on the second level there
are the components, and their parameters are on the third one. This tree is handy for
fast switching between the components. Those of them, which were selected, are
marked out with the small circle in the beginning of the name. Components, which
are compatible with the currently chosen instances, are shown with bold font.

In the right part of the experiment’s window the grid component is visualizing
the simulation. In the shown case the multicellular tumor spheroid is represented as
a “stub”. This means that cells with positive values of all three coordinates are not
drawn, to allow looking inside the formation.

At the bottom and at the upper-right corner there are two analyzer graphs: the
performance one and the plot of key tumor growth characteristics (volume, amounts
of proliferating, quiescent and dead cells).

382 D. Talia and L. Naumov
15.6 Conclusions

The main goal of programming languages and tools has always been to make the
programmer more productive and the programming task more effective. Appropriate
programming languages and tools may drastically reduce the costs for building new
applications as well as for maintaining existing ones.

It is well known that programming languages can greatly increase programmer’s
productivity by allowing the programmer to write high-scalable, generic, readable
and maintainable code. Also, new domain specific languages, such as CA languages,
can be used to enhance different aspects of software engineering.

The development of these languages is itself a significant software engineering
task, requiring a considerable investment of time and resources. Domain-specific
languages have been used in various domains and the outcomes have clearly illus-
trated the advantages of domain specific-languages over general purpose languages
in areas such as productivity, reliability, and flexibility.

The main goal of the paper is answering the following question: How does one
program emergent systems through cellular automata on parallel computers? We
think that it is very important for an effective use of cellular automata for compu-
tational science on parallel machines to develop and use high-level programming
languages and tools that are based on the cellular computation paradigm. These
languages may provide a powerful tool for researchers and engineers that need to
implement real-life applications on parallel machines using a fine-grain approach.
This approach allows designers to concentrate on “how to model a problem” rather
than on architectural details as occurs when people use low-level languages that have
not been specifically designed to express fine-grained parallel cellular computations.

In a sense, parallel cellular languages provide a high-level paradigm for fine-
grain computer modeling and simulation. While efforts in sequential computer lan-
guages design focused on how to express sequential data, objects and operations,
here the focus is on finding out what parallel cellular objects and operations are the
ones we should want to define. Parallel cellular programming emerged as a response
to these needs.

References

1. J. von Neumann, Theory of Self-Reproducing Automata, ed. by A. W. Burks (University of
Illinois Press, Urbana, IL, 1966)

2. S. Ulam, Random Processes and Transformations / Proceedings of the International Congress
of Mathematicians, vol. 2 (American Mathematical Society Providence, RI 1952).

3. K. Zuse, Calculating Space. (Massachusetts Institute of Technology Technical Translation
AZT-70-164-GEMIT (Project MAC)). (MIT Cambridge, MA, 1970)

4. N. Wiener, A. Rosenbleuth, The mathematical formulation of the problem of conduction of
impulses in a network of connected excitable elements, specifically in cardiac muscle. Archi.
Insti. Cardiol. Mex. 16, 202-265 (1946)

5. PM.A. Sloot, A.G. Hoekstra, Modeling Dynamic Systems with Cellular Automata, Chapter
21. ed. by P.A. Fishwick, Handbook of Dynamic System Modeling. (Chapman & Hall/CRC,
London/Boca Raton, FL, 2007)

12.

13.

15.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Parallel Cellular Programming for Emergent Computation 383

. E. Houstis, E. Gallopoulos, J. Bramley, J.R. Rice, Problem-solving environments for compu-
tational science. IEEE Comput. Sci. Eng. 4, 18-21 (1997)

. E. Gallopoulos, E. Houstis, J.R. Rice, Computer as Thinker/Doer: Problem-solving environ-
ments for computational science. IEEE Comput. Sci. Eng. 1, 11-23 (1994)

. M. Abrams, D. Allison, D. Kafura, C. Ribbens, M.B. Rosson, C. Shaffer, L. Watson, PSE
Research at Virginia Tech: An Overview. Technical Report: TR-98-21. (Virginia Polytechnic
Institute & State University, Blacksburg, VA, 1998)

. D.W. Walker, M. Li, O.F. Rana, M.S. Shields, Y. Huang, The software architecture of a dis-
tributed problem-solving environment. Concur. Pract. Exp. 12, 1455-1480 (2000)

. D.E. Knuth, Literate programming. Center of the Study of Language and Information.
(Stanford, CA 1992)

. E. Gallopoulos, E.N. Houstis, J.R. Rice, Future Research Directions in Problem Solving Envi-

ronments for Computational Science: Report of a Workshop on Research Directions in Inte-

grating Numerical Analysis, Symbolic Computing, Computational Geometry, and Artificial

Intelligence for Computational Science. Technical Report 1259. Center for Supercomputing

Research and Development. (University of Illinois, Urbana-Champaign, IL, 1992)

W. Schroeder, K. Martin, B. Lorensen, Visualization Toolkit: An Object-Oriented Approach to

3D Graphics, 4th edn. (Kitware, New York, NY, 2006)

T. Worsch, Programming Environments for Cellular Automata. Proceedings of 2nd Confer-

ence on CA in Research and Industry (ACRI 96) (Springer, Heidelberg, 1996)

. L. Naumov, Generalized coordinates introduction method and a tool for computational exper-

iments software design automation, based on cellular automata. PhD Thesis, SPbSU ITMO,

Saint-Petersburg, 2007

I. Blecic, A. Cecchini, G. Trunfio, A generalized rapid development environment for cellular

automata based simulations. Cellular Automata: 6th International Conference on Cellular

Automata for Research and Industry (ACRI-2004). (Springer, Heidelberg, 2004) pp. 851-860

. T. Toffoli, N. Margolus, Cellular Automata Machines: A New Environment For Modeling.
(MIT Press, Cambridge, MA, 1987)

. N. Margolus, CAM-8: A Computer Architecture Based on Celluar Automata. Physics of Com-
putation Seminar (MIT, Cambridge, MA, 1993)

. M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, D. Talia, A parallel cellular

automata environment on multicomputers for computational science. Parallel Comput. 21,

803-823 (1995)

G. Spezzano, D. Talia, CARPET: a programming language for parallel cellular processing.

Proceedings 2nd European School on PPE for HPC. (Alpe d’Huez, France, 1996) pp. 71-74

G. Spezzano, D. Talia, A high-level cellular programming model for massively parallel pro-

cessing. 2nd International Workshop on High-Level Programming Models and Supportive

Environments (HIPS97). IEEE Computer Society Press, LOS Alamitos, CA, pp. 55-63

L. Naumov, CAMEgL — Cellular Automata Modeling Environment & Library. Cellular

Automata: 6th International Conference on Cellular Automata for Research and Industry

(ACRI-2004). (Springer, Heidelberg, 2004) pp. 735-744

A. Sottoriva, J.J.C. Verhoeff, T. Borowski, S.K. McWeeney, PM.A. Sloot, L. Vermeulen,

Modelling cancer stem cell driven tumor growth reveals invasive morphology and increased

phenotypical heterogeneity. Cancer Res. 70, 46-56

CAMEL Laboratory — http://camellab.spb.ru/. Accessed date 23 Feb 2005

G. Spezzano, D. Talia CAMELot: A parallel cellular environment for modelling complexity.

AT*IA Notizie 2, 9—-15 (2001)

J.D. Eckart, A cellular automata simulation system: Version 2.0. ACM SIGPLAN Notices

27(8), 99-106 (1992)

U. Freiwald, J.R. Weimar, JCASim a Java system for simulating cellular automata. Theoret-

ical and Proctical Issues on Cellular Automata (ACRI 2000). (Springer, Heidelberg, 2001)

pp. 47-54

Mirek’s Cellebration — http://www.mirekw.com/ca/. Accessed date 27 Apr 2010

M. Ifrim, Contribution to ParCeL-6 Project: Design of Algorithms Mixing Memory Sharing

and Message Passing Paradigms for DSM and Cluster Programming, 2005

384 D. Talia and L. Naumov

29. O. Menard, S. Vialle, H. Frezza-Buet, Making cortically-inspired sensorimotor control realis-
tic for robotics: Design of an extended parallel cellular programming model. In International
Conference on Advances in Intelligent Systems - Theory and Applications. (IEEE Computer
Society, Luxembourg, 2004)

30. T. Bach, T. Toffoli, SIMP, a laboratory for cellular automata and lattice gas experiments. Inter-
national Conference on Complex Systems, (Boston, MA, 2004)

31. T. Toffoli, T. Bach, A common language for “Programmable Matter” (Cellular Automata and
All That). Bull. Ital. Assoc. Artif. Intell., 2, 23-31 (2001)

32. H. Chou, W. Huang, J.A. Reggia, The trend cellular automata programming environment.
Simulation 78(2), 59-75 (2002)

33. C. Hochberger, R. Hoffmann, CDL — a language for cellular processing. Proceedings of
the 2nd International Conference on Massively Parallel Computing Systems, IEEE, Ischia.
pp- 41-46 (1996)

34. L. Naumov, Generalized Coordinates for Cellular Automata Grids. Computational Science —
ICCS 2003. Part 2. (Springer, Heidelberg, 2003) pp. 869-878

35. H. Sagan, Space-Filling Curves. (Springer, Heidelberg, 1994)

36. D. Talia, Cellular processing tools for high-performance simulation. Computer 33(9), 44-52
(2000)

37. B.L. Chamberlain, S-E. Choi, S.J. Deitz, L. Snyder, The high-level parallel language ZPL
improves productivity and performance. In: Proceedings of the IEEE International Workshop
on Productivity and Performance in High-End Computing (2004), Madrid

38. G. Spezzano, D. Talia, Programming cellular automata for computational science on parallel
computers. Future Gen. Comput. Syst. 16(2-3), 203-216 (1999)

39. J.M. Greenberg, S.P. Hastings, Spatial patterns for discrete models of diffusion in excitable
media. SIAM J. Appl. Math. 34, 515-523 (1978)

	to 15 Parallel Cellular Programming for Emergent Computation
	Domenico Talia and Lev Naumov
	15.1 Introduction
	15.2 Cellular Automata Systems
	15.3 Parallel CA Languages
	15.3.1 Programming Approach
	15.3.2 Cellular Lattice Declaration
	15.3.3 Cell State
	15.3.4 Neighborhood
	15.3.5 Parallelism Exploitation
	15.3.6 CA Mapping
	15.3.7 Output Visualization and Monitoring

	15.4 Cellular Automata Based Problem-Solving Environment Case Study: CAMELot and CARPET
	15.4.1 Examples of Cellular Programming

	15.5 Cellular Automata Based Problem-Solving Environment Case Study: CAME&L
	15.5.1 Cellular Automata Based Computational Experiment Decomposition
	15.5.2 Software Design
	15.5.3 Usage Example. Tumor Growth Modeling

	15.6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

