
Chapter 14
Cellular Automata for Simultaneous Analysis
and Optimal Structural Topology Design

Zafer Gürdal and Ramzi Zakhama

14.1 Introduction

The Cellular Automata (CA) paradigm has been finding more and more applications
in engineering and sciences in the past decade, but nevertheless its use for engineer-
ing design has not been widely popular. The proposed chapter is a special and unique
implementation of the paradigm for combined analysis and design of continuum
structures made of isotropic and fiber reinforced orthotropic materials. In particular,
the use of a computational approach for topology design of the structural domain
together with its local field and design variables is discussed.

Topology design of load carrying engineering structures has been one of the areas
that have gaining popularity in the design engineering community. Current state of
the art design tools enable engineers to define the boundaries of solid domains, pro-
viding them with useful tools for preliminary design. However, such boundaries are
still rather course, even for two-dimensional domains let alone three-dimensional
parts, due to computational efficiency of such tools. Of course the need and the
drive for future development of these tools is to achieve a high level of resolution
in part details, and be able to address not only structural load carrying functionality
during design but also address other features, be it response to other non-mechanical
and multidisciplinary loads (wind loads and thermal, magnetic and electric fields)
or manufacturability.

The lack of computational efficiency mentioned above can be attributed to two
restrictive features of most currently used design tools. The first is the inherently
serial nature of both the analysis and the design algorithms. Most available topol-
ogy optimization algorithms do not benefit from the computational efficiency that
can be achieved from massively parallel implementations. This is primarily due to
the difficulties associated with parallelizing the analysis routines that need to be
executed after design changes. Developers of the optimization tools typically rely on
off-the-shelf finite element analyses that either cannot be parallelized due to restricts
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access to their solvers, or simply do not scale well in terms of parallelization. More-
over, the number of design variables increases as the domain is discretized into
smaller and smaller parts to achieve higher design resolution. The immediate out-
come of this restriction makes the design optimization extremely computationally
demanding due to what is commonly referred to as the curse of dimensionality. The
second limitations is the perceived notion that a design process is simply performing
repetitive analyses and monitoring the performance of the design while maintaining
constraint satisfaction during the process. Of course engineers currently have very
fast analysis tools that can evaluate the performance of a design to a large degree
of precision. Nevertheless, even though they are fast, it is probably not justified to
perform an engineering analysis of a part to such high precisions if one is going to
toss away the result as soon as the design is modified to improve it. It can be argued
that an efficient engineering design requires its own computational paradigm that
enables computation of topologies without the use of time consuming high precision
analyses.

The growing interest in solving complex problems using CA has recently found
its implementation in complex structural design problems. The paradigm appears to
address most of the limitations described above based on features well described
in the earlier chapters of this book. Kita and Toyoda [1] were among the first
to use the cellular automata paradigm for solving topology optimization prob-
lems. They constructed CA design rules to obtain two-dimensional topologies
based on an Evolutionary Structural Optimization (ESO) approach [2, 3]. In their
approach the analysis of the structure however is performed using the Finite Element
method.

Another pioneering work is attributed to Gürdal and Tatting [4] who used the
CA paradigm to perform an integrated analysis and design. They solved the topol-
ogy and sizing design of trusses that exhibit linear and geometrically nonlinear
responses. The analysis rules are derived from local neighborhood equilibrium,
while a simple design rule that is based on fully stressed design (a Stress Ratio
(SR) method) [5] is used to size the truss members, in which the cross sec-
tional areas of the members that connect the neighboring cells were the design
variables.

The concept was later extended to preliminary implementation of the design of
two-dimensional continuum structures by Tatting and Gürdal [6]. At the cell level
the two-dimensional continuum is modeled by a truss layout that is equivalent to the
continuum cell according to an energy criterion. The relationship between the thick-
ness of the continuum structure and the cross sectional areas of the truss members
is established by equating the strain energy of the continuum cell and that of the
truss cell for given nodal displacements. The local analysis rules are again derived
from the equilibrium condition of the cell, and a fully stressed material condition is
selected to construct the local design rule. Numerical examples are carried out and
results compared to an iterative Finite Element Analysis based design scheme that
used GENESIS software to demonstrate the efficiency of the combined CA analysis
and design.
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Encouraged by the success of applying the CA paradigm to structural design,
Abdalla and Gürdal [7] extended CA to the design of an Euler-Bernoulli column
for minimum weight under buckling constraint, which is an eigenvalue problem.
Global nature of eigenvalue problems, and its reduction to local analysis and design
rules were the principal contribution of the work. The analysis rule is derived by
minimization of the total potential energy in a cell neighborhood and the design rule
is formulated as a local mini-optimization problem involving force resultants. The
proposed CA algorithm is shown to converge correctly to an analytical optima for a
number of classical test cases.

A more formed treatment of the problem of topology optimization of an elastic
two-dimensional plate appeared first in Abdalla and Gürdal [8]. In their work, CA
design rule is formulated for the first time using rigorous optimality criteria based
on SIMP material [9–13] approach. The CA analysis rule was derived from the
principle of minimal total potential energy. An extension of this work was made by
Setoodeh et al. [14] to combine fiber angle and topology design of an anisotropic
fiber reinforced laminae. Fibre angles and density measures at each cell of a domain
are updated based on the optimality criteria for the minimum compliance. Topol-
ogy optimization of 2-D elastic continuum structures subject to in plane loads and
exhibiting geometric nonlinearities was performed by Zakhama et al. [15].

The cellular automata paradigm is also well known to be an inherently massively
parallel algorithm. Slotta et al. [16] have implemented Gürdal and Tatting’s [4] work
using standard programming languages and parallelization libraries. The domain is
decomposed into different groups of cells. Each group is assigned to a processor
and the same local rules are applied for all the processors. Results demonstrate that
the CA method is perfectly suited for parallel computation. Setoodeh et al. [17]
proposed solving topology optimization for a continuum structure using a pipeline
parallel implementation of cellular automata on distributed memory architecture.
Numerical results show that the pipeline implementation converges successfully and
generates optimal designs.

For the above mentioned structural analysis and design studies it has been
observed that the CA convergence rate deteriorates considerably as the cell density
is refined. This is due to the slow propagation of cell level field variables across the
structural domain governed by elliptic partial differential equations. Additionally
when a CA algorithm is implemented on a serial machine it looses its most attrac-
tive feature- parallelism [16, 17]. A methodology based on the Multigrid scheme
can be used to accelerate the CA convergence process on serial machines. It has
been demonstrated that the CA method takes advantage of the acceleration effect of
multigrid schemes [18, 19]. The main idea in the multigrid concept is to use different
discretization levels of cell grids, where the iterations of a classical iterative method
on the finer grid are coupled with the iterations for the correction of the solution on
the coarser grids. This concept is illustrated in depth by Wesseling [20].

Tovar et al. [21] have proposed another alternative to accelerate the CA conver-
gence. The authors proposed a scheme based on Finite Element method to accelerate
the analysis process followed by CA design rule. This type of strategy is often called
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Hybrid Cellular Automata (HCA). In their paper, the CA local design rules are based
on control theory, which minimizes the error between a local Strain Energy Density
(SED) and the averaged SED value. More recently, Tovar et al. [22] have derived
the CA local design rules based on optimality criteria interpreted as Kuhn-Tucker
conditions of a multi-objective problem in addition to the control theory defined
earlier in [21].

In the following basic elements of the definitions that are specific to topology
design optimization of structural domains is described. In particular, sections on
local rules that will ensure local equilibrium for analysis purposes and optimality for
design purposes are described. Numerical implementation for the cellular automata
paradigm for different type of structures are presented. Examples describing engi-
neering applications are provided starting with two- and three-dimensional isotropic
domains with local density design variables, followed by anisotropic medium in
which local design variables in the form of fiber orientation angles is used in addi-
tion to the density variables.

14.2 Modeling for Structural Analysis and Design

For structural analysis and design local cell state will include physical and geometric
properties of a solid domain. Principal response quantities (i.e., unknown field vari-
ables) of the analysis effort of a solid domain is typically the displacements. Local
geometry of the cell are typically cross-sectional areas, cell densities, fiber-angle
orientation, etc., which represent the design variables associated with the cell. In
addition, local tractions applied to the cell and material properties of the solid may
be needed for computations, and constitute part of the cell state, even if they may
not be changing during the calculations.

A structural domain can be 1-,2- or 3-Dimensional, In the present chapter the
trivial 1-D structures such as beams and columns [7, 18] are ignored, putting the
emphasis on 2- and 3-D domains. Such domains can be of discrete nature, such
as a truss type structure [4, 16, 23, 24], or a continuum type [6, 8, 14, 15, 17,
19, 25], such as plate and shell type structures. In the following basic descrip-
tion of the CA representation of these different kinds of structural domains are
provided.

14.2.1 Truss Domain

Following the basic elements of the CA methodology described in Chap. 1, the cell
representation of a simple 2-D discrete structural domain is a ground truss struc-
ture shown in Fig. 14.1a. In this representation, each cell is made up of eight truss
members extending from the cell center at every 45◦ orientation. The Moore neigh-
borhood with radius r = 1 is selected as shown in Fig. 14.1b. This neighborhood
is composed of the eight adjacent cells which are marked by NW, N, NE, W, E,
SW, S, and SE (see Fig. 14.1b) following the traditional compass representation
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Fig. 14.1 CA ground structure and Moore neighborhood for trusses

of directions. For 2-D structural analysis the primary field variables are the nodal
displacement components at truss junctions. The cell state also depends on the geo-
metric and material properties of the truss members as well as the applied external
loads at the truss nodes. Hence the cell state in the present application consists of two
displacement components in mutually orthogonal directions, cross sectional areas of
eight bars attached to the cell, and external loads in the two primary direction of the
domain. In the present example the material type of the members is assumed to be
fixed and kept outside the state of the cell that will change iteratively. Following
the notation introduced in Chap. 1, the definition of the cell state at a given time
iteration can be defined as

Σ(i) =
{
(ui , vi ),

(
f x
i , f y

i

)
,
(

ANW
i , AN

i , ANE
i , AW

i , AE
i , ASW

i , AS
i , ASE

i

)}
,

(14.1)

where ui and vi are the horizontal and vertical displacements, respectively. The
reaction forces are denoted by f x

i and f y
i in the x and y directions respectively, and

the member areas are represented by ANW
i , AN

i , . . . , ASE
i .

The boundary condition mentioned in Chap. 1 is chosen as fixed for this example.
To accomplish that, for cells at the boundary, cross sectional areas of the members
which lie outside the structural domain are set to zero, which removes those truss
members and provides a finite boundary for the truss ground structure. For the cell
locations where the structure is physically restrained to prevent rigid body motion
or restrained because of functional requirements, the appropriate displacement com-
ponents are set to be zero and unchanging.

14.2.2 Isotropic Continuum Domain

In this section, the CA discretization of two and three dimensional structural
domains is considered. The elastic continuum domain is discretized by a lattice of
regular cells which are equally spaced in the x and y directions (see Fig. 14.2a), or
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Fig. 14.2 CA lattices and Moore neighborhood for continuum structures

x , y and z for a three-dimensional structural domain (see Fig. 14.2b). Traditional
Moore neighborhood is used to define the connectivity of the lattice as shown in
Figs. 14.2c and 14.2d. In this case, the neighborhood includes the entire are, num-
bered by roman numerals, between the cell points again represented by the compass
directions.

Each center cell Ci communicates with its neighbors by a local rule and its state is
denoted asΣ(i)(t) where t is the iteration number. For isotropic continuum topology
structures in two and three dimensions, the state of the i th cell is defined by

Σ(i) =
{(

u(1...m)i

)
,
(

f (1...m)i

)
, ρi

}
, (14.2)

where m corresponds to the dimensionality of the domain, with m = 2 or 3 for two

or three dimensional domains, respectively. The components
(

u(1...m)i

)
are the cell

displacements in the directions (1...m), and
(

f (1...m)i

)
the external forces acting on

the i th cell in the respective (1...m) directions. Each cell of the discretized domain
has its own density measure ρi at the node point independently of the densities of
the elements numbered by roman numerals that define the neighborhood.
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14.2.3 Composite Lamina Continuum Domain

A special case of a 2-D continuum is orthotropic fiber reinforced composite lam-
inates in which the fibers provide stiffness and strength in preferred directions.
Hence, determining the fiber orientation angle is an important part of the design;
activity that is commonly referred to as tailoring. For combined topology and fiber-
angle design, the basic CA elements of the isotropic continuum domain remain
almost the same, however, the state of the i th cell is modified as follows:

Σ(i) =
{(

u(1...m)i

)
,
(

f (1...m)i

)
, (ρi , θi ),Qi

}
, (14.3)

where θi is the fiber angle of the i th cell and Qi is the reduced transformed stiffness
in which, due to symmetry, only the upper half diagonal of the matrix is stored.

14.3 Analysis Update Rule

14.3.1 Truss Structures

Local analysis rule is derived from the equilibrium condition of a cell with its neigh-
bors. Within a cell, each truss member of the neighborhood structure (k = 1, ..., 8)
has a Young modulus E , a length Lk

i before deformation, and a cross-sectional area
Ak

i . The total potential energy associated the cell is the sum of the strain energy in
each of the eight truss member of the neighborhood structure, as well as the potential
energy of the external forces applied to the cell:

'i =
8∑

k=1

E Ak
i Lk

i (ε
k
i )

2

2
− f x

i ui − f y
i vi , (14.4)

where εk
i is the truss member strain which depends on the relative displacements of

the neighboring cells. The strain is evaluated using the Green’s strain definition for
a truss members:

εk
i = (ui − uk

i )cosθk − (vi − vk
i )sinθk

Lk
i

, (14.5)

where (uk
i , v

k
i ) are the neighboring displacements, and θk is the orientation angle of

the kth truss element member from the cell center.
Thus, the equilibrium equations are obtained by minimizing the total potential

energy with respect to the cell displacements ui and vi :

∂'i

∂ui
= 0,

∂'i

∂vi
= 0. (14.6)
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14.3.2 Isotropic Continuum Structures

The equilibrium of the neighborhood structure (see Figs. 14.2c,d) is again used to
formulate the local analysis update rule. The total potential energy associated with a
cell is the sum of the strain energy in each element of the neighborhood structure and
the potential energy due to the external forces applied directly to the cell. Note that
in this discretization scheme there will only be a few cells in the domain at which
external forces are applied. Most cell equilibrium will only involve interaction of the
local cells through the solid domain between them, which following the terminology
of finite element analysis are referred to as the elements in this chapter:

'i =
Nelement∑

k=1

U k
i − fi · ui , (14.7)

where Nelement is the number of elements surrounding a cell represented by the
roman numerals in the figure, U k

i is the strain energy for the kth element, fi is the
applied force vector and ui is the displacement vector for all the cell’s neighborhood
including the cell itself.

The strain energy of an element is expressed in terms of the strain energy of the
base material as follows:

U k = ρ̄ pŨ , (14.8)

where

Ũ = 1

2

∫

element
 · Q ·  dxdydz, (14.9)

is the strain energy of the base material,  is the small-strain tensor, and Q is the
reduced in-plane stiffness matrix. The symbol p in the equation is called penaliza-
tion parameter and is used for design purposes, its role will be explained later in the
design rules.

The elements densities ρ̄ are obtained by an average density interpolation [8]
given by

1

ρ̄ p
= 1

Ncell

Ncell∑

i=1

1

ρ
p
i

, (14.10)

where ρi ’s are the density measures of the cells surrounding the element, and Ncell
is the number of cells defining the element. For the two-dimensional neighborhood
structure Ncell = 4 and for the three-dimensional neighborhood structure Ncell = 8.

The density interpolation scheme in the previous equation is chosen such that
any node with a density measure below a threshold value would turn off all four
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elements in which the node participates. Using this scheme checkerboard patterns
are suppressed automatically during the optimization process.

Equilibrium equations are obtained by minimizing the total potential energy with
respect to the cell displacements:

min
uC

'i . (14.11)

The resulting equilibrium equations for each cell are written in a residual form:

RC (uC ,uN ) =
{

GC (uC ,uN )

GN (uC ,uN )

}

+
{

fC

fN

}

= 0, (14.12)

where uC and uN are the displacement vectors of the cell and the neighborhood,
respectively, GC and GN are the vectors of the internal forces, fC and fN are the
vector of the applied forces relative to the cell and the vector of the internal forces
relative to the neighborhood, respectively.

Differentiating the vector RC with respect to the components of uC , the linear
stiffness matrix can be written as

K = −∂RC

∂uC
(uC ,uN ). (14.13)

The stiffness matrix K can also be expressed as the Hessian of the total potential
energy:

Kpq = ∂2'i

∂u p ∂uq
. (14.14)

Thus, the cell displacements are updated as follows:

ut+1
C = ut

C +.uC , (14.15)

.uC = (KC )
−1 ·
(

GC (u
t+1
N )+ fC

)
, (14.16)

where KC is a (2 × 2) or (3 × 3) cell stiffness matrix for two or three dimensional
cases, respectively.

14.3.3 Composite Lamina Continuum Structures

When considering fiber-angle in the topology optimization problem the same formu-
lation described above is used, with the only exception that now the fiber orientation
is allowed to change from cell to cell. This changes the computation of the reduced
in-plane stiffness, which is obtained as follows:



342 Z. Gürdal and R. Zakhama

Q = 1

Ncell

Ncell∑

i=1

Qi , (14.17)

where Qi is the in-plane transformed reduced stiffness of the four nodes of the
element.

Thus, the analysis update rule is performed as described earlier using (14.15).

14.4 Design Update Rule

Structural analysis is based on a fairly well established principles and mathemati-
cal formulation that results in well know partial differential equations. Hence, the
analysis rules described above are derived using the same principles. The design
world on the other hand is much less restrictive, and there are variety of possibilities
that one can implement design changes during an iterative scheme. The possibilities
range from purely heuristic changes to, simple pattern matching, or to formal math-
ematical formulation. In the following, implementation of the design rules for the
the three cases that we are discussing are presented.

14.4.1 Truss Structures

The design update rule in this case is derived from resizing the truss element mem-
bers of the neighborhood structure based on full utilization of load carrying capabil-
ity of the material. The cross sectional update formula is commonly referred to as the
fully stressed design or stress ratio approach [5]. This scheme consists on computing
a new cross sectional area (Ak

i )
(t+1) which is based on the previous cross sectional

area (Ak
i )
(t) and the allowable stress σall chosen by the user as the maximum stress

that the material can carry:

(Ak
i )
(t+1) = (Ak

i )
(t) E |εk

i |
σall

. (14.18)

14.4.2 Continuum Structures

The structural topology design problem is posed according to the minimal compli-
ance formulation. Its aim is to minimize the elastic strain energy of the structure,
or equivalently maximize its total potential energy ' at equilibrium, subject to a
limitation on the material volume. Thus, the design problem is written as

min
ρ

Wc(ρ,u∗) or max
ρ
'(ρ,u∗), (14.19)
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under the constraints:

g(ρ) ≤ 0, (14.20)

and the volume constraint:
∫

�

ρ d� ≤ η · V�, (14.21)

where ρ is the local density distribution of material which is chosen as the design
variable, � is the prescribed design domain, u∗ is the displacement vector at equi-
librium, and g is a vector of local constraints which set bounds on the density dis-
tribution. The volume V of the structure is limited to an available fraction η of
the total volume of the design material domain V�. From the optimality conditions
of the system level design problem (14.19), (14.20), and (14.21), local optimality
conditions are derived which are associated with the cell level optimization prob-
lem. According to the specialization of the SIMP method, the local stiffness of the
structure is expressed as a function of a fictitious local density distribution ρ. The
local optimization problem takes on the form [8, 14]:

min
ρ

�∗

ρ p
+ μ ρ, (14.22)

ε ≤ ρ ≤ 1, (14.23)

where

• ε > 0 is a very small number, set as a lower bound on ρ to avoid numerical
instability that may result from structural discontinuities when zero density is
allowed,

• p ≥ 1 is a penalization parameter that is introduced in order to lead the design
to a black or white topology, by assigning sufficiently high values to p, typically
p = 3,

• �∗ = ρ p �̂, is an approximately invariant local quantity, and �̂ is the comple-
mentary energy density,

• μ is the Lagrange multiplier associated with the global volume constraint (14.21).
It is the only global quantity that is involved in this local problem. It serves in
updating the material densities in the domain. It is updated at the global level by
satisfying the total volume constraint [8, 14].

The update of each cell density of the continuum structure is obtained from the
solution of this one-dimensional convex problem. The analytically solution [8, 14]
of this local optimization problem is as follows:

⎧
⎨

⎩

ρ̂ for ε < ρ̂ < 1
ε for ρ̂ ≤ ε,

1 for ρ̂ ≥ 1
(14.24)
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where

ρ̂ =
(
�∗

μ̄

) 1
1+p

, μ̄ = μ

p
. (14.25)

The energy density �∗ for each cell of the domain can be written as an average
among the Nelement elements of the Moore neighborhood structure:

�∗ = 1

n v

Nelement∑

i=1

ρ̄
2 p
i Ũi , (14.26)

where n is the number of non-shadow elements with nonzero density, v is the vol-
ume of a cell, which is v = h2 or h3 for two or three dimensional cases, respectively,
and h is the distance between two immediate neighbor cells.

14.4.3 Composite Lamina Continuum Structures

By considering θ and ρ to be the design variables, we can convert the problem of
combined topology and fibre-angle design to a local optimization problem through
the general formulation (14.19), (14.20), and (14.21) as

min
ρ,θ

�(θ)

ρ p
+ μ ρ, (14.27)

ε ≤ ρ ≤ 1. (14.28)

The value of �(θ) is evaluated based on the current value of the cell density ρ
and the strain vector  , and then used to update the local density through the solution
of (14.27) and (14.28). Due to its special mathematical form, this local optimization
problem can be easily split into two subproblems:
one for fibre-angle design,

�∗ = min
θ
�(θ), (14.29)

�∗ = 1

n v

Nelement∑

i=1

ρ̄
2 p
i Ũi (θ), (14.30)

and the second one for topology,

min
ρ

�∗

ρ p
+ μ ρ, (14.31)

ε ≤ ρ ≤ 1. (14.32)
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It is well known that the optimal fiber-angle orientation for “shear weak” materi-
als coincides with the principal stress direction [26, 27]. For “shear strong” materials
there exists a closed form solution for which, depending on the principal strain ratio
and material properties, the orientation might again coincide with principal stress
direction or be different from the principal stress direction [26, 27].

In addition to the mathematical formulation of the fiber orientation angle update,
it is also possible to use schemes that are less formal. For example, it is known
that more than often incorporation of manufacturing requirements into mathematical
formulations is not possible or will result in computationally expensive schemes that
will be unaffordable. One such consideration is the continuity of the fiber orientation
angle from one cell to another. In real life, fibers are continuous strands and abrupt
change in orientation angle from one cell to another is not feasible. To account for
such a requirement Setoodeh et al. [25] implemented a pattern matching technique,
which re-updated the fiber orientation computed using the mathematical expressions
with orientation angle patterns of the neighboring cells forming uniform orientation
angle in the neighborhoods, with only well defined boundaries in the domain with
different fiber orientation angles.

14.5 Cellular Automata Implementation Schemes

The update of the cells for trusses and continuum structures can be done simultane-
ously, which corresponds to the Jacobi scheme, as follows:

Σ(i)(t+1) = φ
(
�(i)(t), Σ(N M)(t)

)
, (14.33)

or sequentially, which corresponds to Gauss-Seidel scheme:

Σ(i)(t+1) = φ
(
Σ(i)(t), Σ(M)(t+1), Σ(N M)(t)

)
, (14.34)

where M is the set of neighboring cells whose states have been modified in the
current iteration and N M is the set of remaining cells, which have not yet been
modified.

The Gauss-Seidel method is used for the analysis update. For the design update,
the Jacobi method is found to be the appropriate one to use to preserve the symmetry
of the solution [8].

14.5.1 Truss Structures

The ground truss structure algorithm is based on the repeats of the analysis and
design update rules for each cell of a domain. The algorithm starts from updat-
ing the displacement for a given structure until the norm of the force imbalance
(residual) reaches a pre-specified tolerance εr . Then, the cross sectional areas are
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updated using the design update rule. The algorithm has deemed to converge when
the structural design no longer changes.

14.5.2 Continuum Structures

For the topology of continuum structures, the analysis and design iterations are
nested. A flowchart of the CA design algorithm is presented in Fig. 14.3. Starting
from a structure with zero displacements and from densities set to volume fraction η,
analysis updates are performed repeatedly until the norm of the force imbalance
(residual) reaches a pre-specified tolerance εr . Next, the design is updated over the
whole domain, then the volume constraint is checked. If the volume constraint is
not satisfied, the Lagrange multipliers are updated and so is the design. The process
continues until the relative difference between five successive compliance values is
less than a pre-specified tolerance εc and the variation in cell densities is less than a
tolerance εd .

From a computational perspective, the attractive feature of CA is its inherent par-
allelism. This feature appears to be particulary effective with regard to the analysis
update. When it is not fully exploited, CA algorithms can be quite slow to converge.
This is because communication between cells is limited only to immediate neigh-
bors. The information from the cells where the loads are applied has to travel by
neighbor-to-neighbor interaction throughout the domain. As the lattice is refined,
the number of lattice updates needed to reach equilibrium significantly increases
manifesting the deterioration in the rate of convergence alluded to above. Thus,

Fig. 14.3 CA continuum design algorithm
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when CA is implemented on a serial machine it loses its most attractive feature as
far as the analysis update is concerned. The design features of CA, though, remain
effective.

An alternative methodology based on multigrid scheme [18–20] is used to accel-
erate the CA design algorithm on a serial machine. The multigrid acceleration
scheme uses different discretization levels of grids. The CA iterations on the finest
grid are coupled with the iterations of the correction solution on the coarse grids.
The multigrid accelerated CA algorithm is demonstrated to be a powerful tool for
solving topology optimization problems compared to other algorithms based on tra-
ditional finite element analysis [19]. The computational cost using this scheme is
numerically found to be proportional to the number of cells.

14.6 Numerical Examples

In this section, some examples of topology optimization of continuum structures
are considered to illustrate the robustness of the CA based combined analysis and
design algorithm. As mentioned earlier the CA-based analysis is computationally
expensive compared to an analysis using modern tools on a serial machine. There-
fore, it is essential to implement CA in a parallel environment to exploit the true
merits of a CA-based structural analysis and design. However, massively parallel
computing machines that are most suited to this kind of computations are not as
easily accessible as serial ones. To accelerate the convergence of CA iterations, two
schemes are used in the present chapter. The first scheme is based on multigrid
accelerated CA [19]. The second scheme is based on HCA, which uses a global
finite element analysis instead of iterative updates of cell displacements followed
by local update rules used for the design.

14.6.1 Example 1: 2-D Plate Topology Design

To demonstrate the performance and efficiency of the multigrid accelerated CA
algorithm in solving the topology optimization problem, its results are compared
with an existing method that is based on iterative finite element analysis solutions.
Since the same CA design update rule is used in all tested algorithms, the compar-
ison concerns design algorithms based on different analysis processes, namely the
multigrid scheme and the commercial NASTRAN finite element code. The example
studied is a symmetric cantilever (see Fig. 14.4) plate which is 1,000 mm long,
250 mm high, and 1 mm thick. The penalization parameter p is set to 3, the volume
fraction is set to 0.5, the Poisson ratio is 0.4 and the Young modulus E is 1,000
N/mm2. The tip load considered is P = 100 N acting at the center point of the free
end of the cantilever.

Different discretization levels are used for the comparison; the results are gen-
erated for 11 grid levels, starting from the coarsest grid level of 9 × 3 cells, up to
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Fig. 14.4 Geometry and loading

the finest grid level of 4,097 × 1,025 cells. Convergence time for the HCA solu-
tion using the commercial NASTRAN code and for the multigrid accelerated CA
algorithm are illustrated in Fig. 14.5. The vertical and horizontal axes represent the
convergence time and the number of cells, respectively, on a log-log scale. First, it is
observed that the commercial NASTRAN code showed a higher convergence time
than the other algorithm. Moreover, the commercial NASTRAN code suffers lack
of memory while running the grid level of 2,049 × 513 cells. On the contrary, the
cellular automata paradigm can handle large problems because of its local nature
which makes the storage of the global stiffness matrix unnecessary. The run time
to convergence relative to the multigrid algorithm appears to be nearly proportional
to the number of cells, which reveals a computational effort in the order of O(N ).
As for the optimal topologies, it can be seen from Table 14.1 that those obtained
by the multigrid algorithm and by the use of NASTRAN for analysis are practically
the same with a slightly (0.005%–0.03%) but persistently lower compliance in the
multigrid results.
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Fig. 14.5 Convergence time using NASTRAN and Multigrid accelerated CA
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Table 14.1 Optimal
topologies and compliances Cell number

Optimal topology
using NASTRAN

Optimal topology
using Multigrid

129 × 33
4,273.6 4,258.7

257 × 65
4,064.1 4,062.7

513 × 129
3,985.7 3,984.2

1,025 × 257
3,983 3,980.9

2,049 × 513
3,994 3,992

4,097 × 1,025 Lack of memory
3,998.4

14.6.2 Example 2: 2- and 3-D Compression Bridge

In this example, the objective is to find an optimal topology for a bridge which
crosses a river and supports a uniformly distributed traffic loading. The design
domain, the loading and the boundary conditions of the bridge problem are rep-
resented in Fig. 14.6. Requirements of waterway traffic underneath and road traffic
on the bridge translate into the definition of imposed zones: empty (void) zones for
the waterway and vehicle traffic through the bridge, and a dense (black) one for the
deck and supports, as represented in Fig. 14.6. The design domain is discretized
with 257 × 65 cells for the two-dimensional case and with 257 × 65 × 33 for the
three-dimensional case including the empty zone. The penalization parameter p is
set to 3, the volume fraction is set to 0.1 and the Poisson ratio to 0.3.

The final topology for the two-dimensional case performed by the multigrid
design algorithm is represented in Fig. 14.7. It corresponds to a compression arch
which holds a three span deck. The first and the third spans are cantilevers which

Fig. 14.6 Compression bridge domain
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Fig. 14.7 Optimal 2-D topology of compression bridge
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(a) XZ view.
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(b) YZ view

Z

Y

X

(c) XYZ view.

Fig. 14.8 Optimal 3-D topology of compression bridge

are supported each by a compression member, whereas the central span is suspended
via a series of tension members. Different views for the three-dimensional version
of the topology of the bridge are shown in Fig. 14.8. The topology obtained with the
three-dimensional model presents some similarly, in the XZ plane, with the topology
generated by the two-dimensional model (see Figs. 14.8(a) and 14.7) and with the
design of the compression arch bridge reported in [28].

14.6.3 Example 3: Fiber Reinforce Cantilever Plate

To demonstrate the inclusion of the fibre-angle orientation in combined topology
optimization environment, the in-plane design of cantilever plates with different
material volume fractions is studied. The continuation method [29] is used in this
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Fig. 14.9 Optimal topology
of symmetric cantilever plate
(325 × 82 cells) from [14]

(a) 100% Volume fraction.

(b) 70% Volume fraction.

(c) 50% Volume fraction.

(d) 30% Volume fraction.

–90° 90°Fiber angle

study, with the penalization parameter p increasing gradually from 1.0 to 3.0 to
avoid local minima. The following material are used:

E1 = 135.2 GPa, E2 = 9.241 GPa,
G12 = 6.276 GPa, ν12 = 0.318.

The symmetric cantilever plate in Fig. 14.4 with an aspect ratio of 4 is mod-
eled with a regular lattice of 325 × 82 cells. The topology optimization problem
is solved using HCA scheme. Figures 14.9a through 14.9d show the topology of
the optimal designs along with the color-coded fiber orientation angles for different
volume fractions (for color version of this figure refer to [14]). These designs, as
expected, are quite similar to classical optimal topologies of isotropic material (see
example 1).

Corresponding to the designs shown in the figure, normalized compliances with
respect to a 0◦ fiber design are tabulated in Table 14.2. These figures show that with
the present choice of density interpolation scheme checkerboards are readily sup-
pressed. Besides, for lower volume fractions, fibers are aligned with thin members
similar to Mitchell type of structures.
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Table 14.2 Normalized
compliance of the symmetric
cantilever for different
volume fractions

Volume
fraction

Normalized
compliance

100% 0.74
70% 0.88
50% 1.14
30% 2.22

14.7 Concluding Remarks

Topology optimization of structures has matured enough to be often applied in
industry, and continues to attract the attention of researchers and software com-
panies in various engineering fields. Traditionally, most available algorithms for
solving topology optimization problems are based on the global solution approach
and require a large number of costly analyses. The CA paradigm offers a highly
novel computational environment not only solving the topology design optimiza-
tion problem efficiently, but also in terms of providing a flexible platform for design
implementation of various practical constraints easily, which would otherwise ren-
der the traditional design approaches computationally infeasible. The main advan-
tages of using the CA paradigm in structural design are the local analysis and design
resolutions, and their massively parallel nature. The CA methodology can also take
advantage of modern computational tools such as the multigrid acceleration method
to improve their efficiency.

In this chapter, some applications of CA paradigm for structural design have been
presented. The CA methodology was successfully applied to truss type and contin-
uum structures. Some examples have been treated that illustrate the successes of the
CA technique in solving topology optimization problems. Moreover, the multigrid
accelerated CA scheme was shown to be an interesting candidate for solving topol-
ogy optimization for continuum structures in a computationally efficient manner.
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