
Chapter 13
Lattice-Gas Cellular Automaton Modeling
of Emergent Behavior in Interacting Cell
Populations

Haralambos Hatzikirou and Andreas Deutsch

13.1 Introduction

Biological organisms are complex systems characterized by collective behavior
emerging out of the interaction of a large number of components (molecules and
cells). In complex systems, even if the basic and local interactions are perfectly
known, it is possible that the global (collective) behavior obeys new laws that are
not obviously extrapolated from the individual properties. Only an understanding
of the dynamics of collective effects at the molecular, and cellular scale allows
answers to biological key questions such as: what enables ensembles of molecules
to organize themselves into cells? How do ensembles of cells create tissues and
whole organisms? Key to solving these problems is the design and analysis of appro-
priate mathematical models for spatio-temporal pattern formation. Early models of
spatio-temporal pattern formation focused on the dynamics of diffusible morphogen
signals and have been formulated as partial differential equations (e.g. [25]). Today,
it is realized that, in addition to diffusible signals, the role of cells in morphogenesis
can not be neglected. Living cells possess migration strategies that go far beyond
the merely random displacements of non-living molecules (diffusion). More and
more evidence has been collected how populations of interacting and migrating cells
can in a self-organized manner contribute to the formation of order in a developing
organism. It has been realized, that both the particular type of cell interaction and
migration are crucial and suitable combinations allow for a wide range of patterns.
The question is: What are appropriate mathematical models for analyzing organiza-
tion principles of moving and interacting discrete cells? It has turned out that cellular
automata (CA), in particular lattice-gas cellular automata (LGCA) can model the
interplay of cells with themselves and their heterogeneous environment [15]. These
models describe interaction at a cell-based (microscopic) scale. Cell-based models
(for a review see [18]) are required if one is attempting to extract the organization
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principles of interacting cell systems down to length scales of the order of a cell
diameter in order to link the individual (microscopic) cell dynamics with a particular
collective (macroscopic) phenomenon.

Cellular automata (CA) are discrete dynamical systems. They were introduced
by J. von Neumann and S. Ulam in the 1950s in an attempt to model biological
self-reproduction [31]. Since then, it has become clear that CA have a much broader
potential as models for physical, chemical and biological self-organization. In par-
ticular, CA models have been proposed for a large number of biological applications
for studying the emergence of collective macroscopic behavior emerging from the
microscopic interaction of individual components, such as molecules, cells or organ-
isms [15]. However, currently there exists a huge jungle of different rules for often
the same or similar processes (e.g. for random walk or proliferation). Therefore,
there is need for a specification and classification of CA rules. Such a classification
approach has comprehensively been performed for one-dimensional automata [33].
Furthermore, examples of successful analysis of CA models beyond purely visual
inspection of simulation outcomes are still rare.

Here, we introduce lattice-gas cellular automata (LGCA) as models for collective
behavior emerging from microscopic migration and interaction processes [15, 20].
LGCA represent a class of CA whose structure facilitates mathematical analysis.
Implementing movement of individuals in traditional cellular automaton models is
not straightforward, as one site in a lattice can typically only contain one individual,
and consequently movement of individuals cause collisions when two individuals
move to the same empty site. In a lattice-gas model this problem is avoided by
having separate channels for each direction of movement and imposing an exclusion
principle. Furthermore, the update rule is split into two parts which are called inter-
action and propagation, respectively. The interaction rule of LGCA can be compared
with the update rule for CA in that it assigns new states to each particle based on
the states of the sites in a local neighborhood. After the interaction/collision step
the state of each node is propagated to a neighboring node. This split of the update
rule allows for transport of particles while keeping the rules simple. The emergent
collective behavior, e.g. spatio-temporal pattern formation in a LGCA shows up in
the macroscopic limit which can be derived from a theory of statistical mechanics
on a lattice. In place of discrete particles, Lattice Boltzmann (LB) models deal with
continuous distribution functions which interact locally and which propagate after
collision to the next neighbor node. LB models can be interpreted as mean-field
approximations of LGCA. LGCA and LB models have been originally introduced as
models of fluid flow [20]. Meanwhile, LGCA and LB models have found numerous
applications in physics, chemistry and more recently biology [13, 15, 17, 28, 32].

In particular, we present two examples for LGCA models. The first example
focuses on the collective behavior of moving and proliferating cells which is charac-
terized by the emergence of a traveling wavefront. We derive a macroscopic descrip-
tion and, by means of a cut-off mean-field analysis, we calculate the wavefront
speed. This analysis enables us to estimate (macroscopic) cell population spreading
based on established microscopic cell properties, such as cell motility and prolifer-
ation rate. The second example addresses the precise interplay of moving cells with
their typically heterogeneous environment which is crucial for central biological
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processes as embryonic morphogenesis, wound healing, immune reactions or tumor
growth. We introduce a LGCA model of cell migration in different biological envi-
ronments. Then we analyze the emergent migration features of the cell population
under specific environmental constraints.

13.2 Lattice-Gas Cellular Automata

We define a d-dimensional regular lattice L = L1 × · · · × Ld ⊂ Z
d , where

L1, ..., Ld are the numbers of nodes in each lattice dimension. Here, we will refer
to two-dimensional models (d = 2). Particles move on the discrete lattice with
discrete velocities, i.e. they hop at discrete time steps k ∈ N from a given node to a
neighboring one. A set of velocity channels (r, ci ), i = 1, . . . , b, is associated with
each node r ∈ L ⊂ Z

d of the lattice. The parameter b is the coordination number,
i.e. the number of velocity channels on a node which coincides with the number of
nearest neighbors on a given lattice. In particular, the set of velocity channels for
the square lattice as considered here, is represented by the two-dimensional channel

velocity vectors c1 =
(

1
0

)

, c2 =
(

0
1

)

, c3 =
(−1

0

)

, c4 =
(

0
−1

)

(see Fig. 13.1).

In addition, there is a variable number β ∈ N0 = N ∪ {0} of rest channels (zero-
velocity channels), (r, ci ), b < i ≤ b + β. Furthermore, an exclusion principle
is imposed. This requires, that not more than one particle can be at the same node
within the same channel. As a consequence, each node r can host up to b̃ = b + β

particles, which are distributed in different channels (r, ci ) with at most one particle
per channel. Accordingly, node state η(r) is given by

η(r) := (η1 (r), . . . , ηb̃ (r)
)
,

where η(r) is called node configuration and the quantities ηi (r) ∈ {0, 1}, i =
1, . . . , b̃ are called occupation numbers, which are Boolean variables that indicate
the presence (ηi (r) = 1) or absence (ηi (r) = 0) of a particle in the respective
channel (r, ci ). Therefore, the set of elementary states E of a single node is given by

E = {0, 1}b̃.

Fig. 13.1 Node configuration: channels of node r in a two-dimensional square lattice (b = 4) with
one rest channel (β = 1). Filled dots denote the presence of a particle in the respective channel
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The node density is the total number of particles present at a node r and time
k ∈ N denoted by

n(r, k) :=
b̃∑

i=1

ηi (r, k).

For any node r ∈ L, the nearest lattice neighborhood Nb(r) is a finite list of
neighboring nodes and is defined as

Nb(r) := {r + ci : ci ∈ Nb , i = 1, . . . , b} .
Figure 13.1 gives an example of the representation of a node on a two-dimensional

lattice with b = 4 and β = 1, i.e. b̃ = 5.

13.2.1 Dynamics in Lattice-Gas Cellular Automata

The dynamics of a LGCA arises from the application of superpositions of local
(probabilistic) interaction and deterministic propagation (transport) steps applied
simultaneously to all lattice nodes and at each discrete time step. The definitions of
these steps have to satisfy the exclusion principle, i.e. two or more particles are not
allowed to occupy the same channel.

According to a model-specific interaction rule (RC), particles can change chan-
nels (see Fig. 13.2) and/or are created or destroyed. The temporal evolution of a state
η(r, k) ∈ {0, 1}b̃ in a LGCA is determined by the temporal evolution of the occu-
pation numbers ηi (r, k) for each i ∈ {1, . . . , b̃} at node r and time k. Accordingly,
the pre-interaction state ηi (r, k) is replaced by the post-interaction state ηC

i (r, k)
determined by

ηC
i (r, k) = RC

i

({η(r, k)|r ∈ Nb(r)}
)
, (13.1)

ηC(r, k) = RC({η(r, k)|r ∈ Nb(r)}
) =
(
RC

i

({η(r, k)|r ∈ Nb(r)}
))b̃

i=1
,

realized with probability P
(
η → ηC

)
and ηC ∈ (0, 1)b̃, which is the time-

independent probability for transition from the pre-interaction to the post-interaction
node state.

In the deterministic propagation or streaming step (P), all particles are moved
simultaneously to nodes in the direction of their velocity, i.e. a particle residing
in channel (r, ci ) at time k is moved to another channel (r + mci , ci ) during one
time step (Fig. 13.3). Here, m ∈ N0 determines the single particle speed and mci

the translocation of the particle. Because all particles residing at the same veloc-
ity channel move the same number m of lattice units, the exclusion principle is
maintained. Particles occupying rest channels do not move since they have “zero



13 LGCA Modeling of Emergent Behavior in Interacting Cell Populations 305

Fig. 13.2 Example of a possible interaction of particles at a node r; filled dots denote the presence
of a particle in the respective channel. Arrows indicate channel directions

Fig. 13.3 Propagation in a two-dimensional square lattice with speed m = 1; lattice configurations
before and after the propagation step; filled dots denote the presence of a particle in the respective
channel

velocity”. In terms of occupation numbers, the state of channel (r + mci , ci ) after
propagation is given by

ηi (r + mci , k + τ) = ηP
i (r, k), (13.2)

where τ ∈ N is the automaton’s time-step. We note that the propagation operator is
mass and momentum conserving. Hence, if only the propagation step was applied
then particles would simply move along straight lines in directions corresponding to
particle velocities.

Combining interactive dynamics (C), Eq. (13.1) with propagation (P), Eq. (13.2)
implies that

ηi (r + mci , k + τ) = ηCP
i (r, k) . (13.3)

This can be rewritten as the microdynamical difference equations

ηi (r+mci , k + τ)−ηi (r, k) = ηCP
i (r, k)−ηi (r, k) =: Ci (ηN (r)(k)), i = 1, . . . , b̃,

(13.4)

where we define Ci as the change in the occupation number due to interaction. It is
given by
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Ci (ηN (r)(k)) =
⎧
⎨

⎩

1, creation of a particle in channel (r, ci )

0, no change in channel (r, ci )

−1, annihilation of a particle in channel (r, ci ).
(13.5)

13.3 A LGCA Model for Growing Cell Populations

Growth processes can be found in almost any scientific field, such as physics, ecol-
ogy, sociology, epidemiology, biology etc. In particular in biology, growth processes
play a central role in phenomena related to embryonic development or diseases such
as tumor growth. Here, we introduce a microscopic birth/death cell process which
results in a traveling front behavior at the macroscopic level.

13.3.1 Definition of the LGCA Model

Automaton dynamics arise from the repetition of three rules (operators): Propaga-
tion (P), reorientation (O) and growth (R). In particular, cell motion is defined by
the combination of the reorientation and the propagation operators while the growth
operator controls the change of the local number of cells at a node.

The reorientation operator is responsible for the redistribution of cells within
the velocity channels of a node, providing a new node velocity distribution (see
Fig. 13.4). Here, we assume that individual cells perform random walks. The corre-
sponding transition probabilities are

P(η → ηO)(r, ·) = 1

Z
δ
(
n(r, ·), nO(r, ·)), (13.6)

Fig. 13.4 Reorientation rule of random motion: The left column corresponds to the possible node
densities n(r, ·), with node capacity b̃ = 4. The central column provides all possible node config-
urations, while the right column indicates the respective transition probabilities (Eq. (13.6))
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where the normalization factor Z = ∑ηO(r,·) δ
(
n(r, ·), nO(r, ·)) corresponds to the

equivalence class defined by the value of the pre-interaction node density n(r, ·).

13.3.1.1 Growth (R)

We define a stochastic birth/death process for the cells as follows:

• Birth: We assume that the proliferation rule depends on the node capacity b̃,
which is interpreted as a microscopic volume exclusion. For the creation of a
new cell on a node, the existence of at least one cell and at least one free channel
are required, i.e.:

Ri (r, ·) = ξi (r, ·)(1 − ηi (r, ·)), (13.7)

where ξi (r, ·)’s are random Boolean variables, with
∑b̃

i=1 ξi (r, ·) = 1, and the
corresponding probabilities are:

P(ξi (r, ·) = 1) = rM

∑b̃
i=1 ηi (r, ·)

b̃
. (13.8)

Here, rM is the probability of occupying a channel, if at least one cell exists on
the node. The growth law, as defined above, is also known as carrying capacity-
limited or contact-inhibited growth.

• Death: We assume that a certain nutrient availability implies a maximum node
occupancy C , i.e. the node nutrient supply cannot support more than C ≤ b̃ living
cells. Thus, we define a death rate for each cell that ensures the existence of at
most C cells per node:

rd = b̃ − C

b̃
rM , (13.9)

where the factor b̃−C
b̃

is a dimensionless quantity.

13.3.2 Microdynamical Equations

The above defined dynamics is fully specified by the following microdynamical
equations:

ηR
i (r, k) = ηi (r, k)+Ri (r, k), (13.10)

ηi (r + mci , k + τ) =
b̃∑

j=1

μ j (r, k)ηR
j (r, k). (13.11)

Equation (13.10) refers to the application of the growth operator (R), which assigns
a new occupation number for a given channel through a stochastic growth process.
The second equation (13.11) refers to the redistribution of cells on the velocity
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channels and the propagation to the neighboring nodes, corresponding to the ran-
dom walk as introduced in the previous chapter.

The μ j (r, k) ∈ {0, 1} are Boolean random variables which select only one of
the b̃ terms of the rhs of Eq. (13.11). Therefore, they should satisfy the relation
∑b̃

j=1 μ j (r, k) = 1. As stated above, we implement the random walk as a simple
reshuffling of the cells within the node channels that leads to the probability of
choosing a channel: 〈μ j 〉 = 1/b̃, for j = 1, ..., b̃. The terms Ri (r, k) ∈ {0, 1}, for
i = 0, . . . b̃ (Eq. (13.7)) represent birth/death processes, i.e. creation/annihilation
of cells in channel i defined by the growth rule, which are applied to each channel
independently.

13.3.3 Simulations

We have simulated our LGCA model on a two-dimensional 100×100 lattice for 150
time steps. In Fig. 13.5, we show simulations for different times, for fixed maximum
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Fig. 13.5 Typical simulations of the spatio-temporal evolution of the LGCA growth process start-
ing from an initial fully occupied cluster of nodes in the center of the lattice. The three figures
show snapshots of the same simulation at different times. The different grey levels encode the node
density
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occupancy C = b̃ and for fixed proliferation rate rM = 0.01. The initial condition
is just a small disc. From the simulations, we conclude the following:

(01) The pattern evolving in simulations from a localized initial occupation is
an isotropically growing disc.

(02) Furthermore, simulations indicate a moving front along which the occu-
pancy of the initially empty nodes is increasing from zero particles to the
maximum occupancy C .

In order to get further insight into the macroscopic behavior of the growth
process, we use a different simulation setup. We consider a “tube”, especially
a 2000×10 lattice with periodic boundary condition on the L2-axis, and a thin
stripe of cells as initial condition (Fig. 13.6). A typical simulation time lasts for
2000 time steps. The result of our simulations is a propagating 2D traveling front
along the L1-axis, mimicking a “growing tube”. This setting has the following
advantages:

• One can project the system to one dimension by averaging the concentration
profile along the L2-axis, i.e. n(rx , k) = 1

|L2|
∑

ry∈|L2| n(r, k).
• The front is well-defined as the mean position of the foremost cells.

1 
1.5
2 
2.5
3 
3.5
4 
4.5
5 

1400 1450 1500 1550 1600 1650

2
4
6
8

Fig. 13.6 Typical simulation on a “tubular” lattice, i.e. with periodic boundary condition along the
y-axis. The different grey levels denote the node density. In the central region of the figure, the
white part denotes nodes with maximum density
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Fig. 13.7 Left: Snapshot of the average concentration profile along the L1-axis, i.e. nx (k) =
n(rx , k) = 1

|L2|
∑

ry∈|L2| n(r, k). Here, the maximum occupancy is considered as C = 3. Right:
Linear growth of the front distance from its initial position, denoted as front position. The slope of
the line defines the speed of the invasion
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• The diffusive dynamics of the front relaxes faster than the discoidal 2D evolution.
• The front profile relaxes to an almost steady state shape, which moves almost

uniformly along the L1-axis.

The goal is to predict the front velocity. In the following section, we provide the
details of the front analysis. Finally, we observe that the front evolves linearly in
time, as shown in Fig. 13.7 (right).

13.4 Analysis

In this section, we analyze the behavior of our growth LGCA model. By means of
a mean-field approximation, we derive a partial differential equation that describes
the automaton’s macroscopic behavior. Subsequently, we introduce a cut-off in the
mean-field description and we calculate the speed of the invasive front.

13.4.1 Mean-Field Approximation

As seen above, our LGCA is governed by the microdynamical equations (13.10)
and (13.11). By averaging Eqs. (13.10) and (13.11) and by using the mean-field
approximation, we can obtain the lattice Boltzmann equation (LBE)

fi (r+mci , k+τ)− fi (r, k) =
b̃∑

j=1

�i j f j (r, k)+
b̃∑

j=1

(δi j +�i j )R̃ j (r, k), (13.12)

where the matrix�i j = 1/b̃−δi j is the transition matrix of the underlying shuffling
process. Moreover, we assume that the mean-field reaction term is independent of
the particle direction, i.e. R̃i = F(ρ)/b̃, where F(ρ) is the mean-field cell reaction
term for a single node. Using the mean-field approximation, we obtain the reaction
term R̃i :

R̃i (r, k) = rM fi (r, k)
(

1 − rD

rM
− fi (r, k)

)
. (13.13)

13.4.2 Macroscopic Dynamics

In order to derive a macroscopic description, we use the Chapman-Enskog method-
ology. Here, we assume diffusive scaling as

x = εr and t = ε2k, (13.14)
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where (x, t) are the continuous variables as ε → 0. Using the spatio-temporal scal-
ing relation Eq. (13.14) and replacing the first part of Eq. (13.12) by its Taylor
expansion leads to:

fi (r + mci , k + τ)− fi (r, k) = (ε2τ∂t + ε4 τ
2

2
∂t t + εm(ci · ∇) (13.15)

+ε2 m2

2
(ci · ∇)2 + ε3τm∂t (ci · ∇)

)
fi (r, k).

Furthermore, we assume an asymptotic expansion of fi :

fi = f (0)i + ε f (1)i + ε2 f (2)i +O(ε3). (13.16)

An important aspect is the scaling of the growth term. We argue that the birth
of cells is taking place at a much slower time scale than the motion. The idea is
that growth can be considered as a perturbation of cell motion. That means that the
dominant process is random cell motion (as it is shown below). The growth rate is
assumed to be scaled according to the macroscopic time scaling, i.e.

R̄i → ε2R̃i . (13.17)

Equation (13.17) implies that the macroscopic rate should be scaled as rM =
ε2r̃M � 1, where r̃M = O(1). Therefore, our approximation is valid only for very
low growth rates.

Collecting the equal O(ε) terms, we can formally derive a spatio-temporal mean-
field macroscopic approximation (for detail see [13]):

∂tρ = m2

b̃τ
∇2ρ + 1

τ
F(ρ), (13.18)

where the term F(ρ(r, k)) = ∑b̃
i R̃i (r, k) is the macroscopic reaction law and

using the definitions (13.7) and (13.9) we obtain:

F(ρ) = rMρ(C − ρ), (13.19)

Accordingly, Eq. (13.19) is a kind of Fisher-Kolmogorov equation.

13.4.2.1 Cut-off Mean-Field Approximation

The spatio-temporal mean-field approximation (13.18) agrees qualitatively with the
system’s linearized macroscopic dynamics. However, it fails to provide satisfactory
quantitative predictions because it neglects the correlations arising from the local
fluctuating dynamics. Studies on chemical fronts have shown that these fluctuations
may significantly affect the propagation velocity of the wave front [7, 30].
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In order to improve the mean-field approximation (here we characterize it as
“naive”), we introduce the cut-off mean-field approach [9, 14]. The idea is that the
mean-field continuous equation (13.18) fails to describe the behavior of individual
cells due to their strong fluctuations at the tip of the front [7]. Therefore, we intro-
duce the cut-off continuous approach which describes the system up to a threshold
density δ of the order of magnitude of one cell, i.e. δ ∼ O(1/b̃). Let’s assume that
the full non-linear reactive dynamics can be described by a term F(ρ). Then, the
fully non-linear cut-off MF equation reads

∂tρ = D∇2ρ + F(ρ)%(ρ − δ), (13.20)

where %(·) is a Heaviside function. Obviously, if we set δ = 0 then the cut-off PDE
will coincide with the naive mean-field approximation.

The cut-off macroscopic description (13.20) adds an extra fixed point, i.e. ρ(xi ) =
{0, δ,C}, i = 0, δ,C which breaks the front into three well-defined regions (see
Fig. 13.8).

In order to characterize the linearized growth dynamics at the front, we modify
the LBE for the cells:

fi (r + ci , k + 1)− fi (r, k) =
b̃∑

j=1

(
1

b̃
− δi j

)

f j (r, k) (13.21)

+1

b̃

b̃∑

j=1

[〈ηR
j (r, k)〉 − f j (r, k)

]
%(ρ − δ),

Fig. 13.8 A sketch of the wavefront as shown in Fig. 13.7 (left). We distinguish three regions: (i)
x ∈ [xδ, x0], where 0 < ρ(x) < δ: this region represents a highly fluctuating zone, where the
cells perform a random walk with almost no proliferation, (ii) x ∈ [xC , xδ], where δ < ρ(x) < C :
this region is a result of non-linear proliferation and cell diffusion and (iii) x ∈ [0, xC ], where
ρ(x) 3 C : this regime represents the bulk of the front (saturated lattice) where no significant
changes are observed
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where the first summation of the rhs accounts for the reorientation dynamics and
the second term is the reactive term of the LBE. Intuitively, the % function “cuts
off” the reaction term for local densities lower than the threshold δ. Therefore, for
ρ < δ the cells are influenced only by the random walk dynamics. Moreover from
Eq. (13.21), we can easily deduce the nonlinear reaction term of Eq. (13.20):

F(ρ) =
b̃∑

j=1

[〈ηR
j (r, k)〉 − f j (r, k)

]
. (13.22)

13.4.3 Traveling Front Analysis

In this subsection our goal is to analyze and characterize analytically the observed
traveling front behavior. We assume that our system evolves in a “tube”, as in
Fig. 13.6. Moreover, we make the following assumptions:

(A1) the isotropic evolution of the system allows for the dimension reduction of
the analysis to one dimension,

(A2) the system evolves for asymptotically long times, and
(A3) the initial front is sufficiently steep.

Under the assumptions (A1)–(A3), we can conclude that the front relaxes to a time
invariant profile. Thus, assuming the translational invariance of the system along the
front propagation axis L1, we investigate the steady-state front solutions. The main
observable is the average density profile along the axis L1, i.e.

ρ(x, t) = 1

|L2|
∫ |L2|

0
ρ(x, y, t) dy ∈ [0, b̃]. (13.23)

Plugging the traveling front solution, ρ(x, t) = U (x − vt), where x ∈ L1 and v the
front velocity into Eq. (13.18), we obtain:

DU ′′ + vU ′ + d F̃

dU

∣
∣
∣
U=0

= 0, lim
ξ→−∞ u = U max, lim

ξ→+∞U = 0,U ′ < 0, (13.24)

in terms of the comoving coordinate ξ = x−vt and the prime denotes the derivative
with respect to the variable ξ . The term F̃ represents the reaction terms in the naive
MF approximation expressed in terms of U . The front speed for the naive MF can
be calculated following the classical methodology [5, 26], i.e.

vn = 2
√

Drm . (13.25)
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Fig. 13.9 Comparison of the calculated front speed for the naive and the cut-off MF, i.e. vn and vc
respectively, against simulations. We observe that the cut-off MF predicts closely the front speed
calculated from the simulations for K 3 0.85

The above speed estimation overestimates the actual front speed found in the sim-
ulations. In particular, it is the maximum asymptotic value that the discrete front
speed can acquire [9] (see also Fig. 13.9).

The calculation of the front speed under the cut-off MF approximation is more
challenging. Following the results proposed by Brunet et al. [9], we can obtain an
estimate for the cut-off front speed

vc = 2
√

DrM

(
1 − K

ln2(δ)

)
. (13.26)

The cut-off front speed estimation includes a correction factor 1 − K
ln2(δ)

, which

allows for a better approximation of the actual front speed calculated from the
LGCA simulations. The above equation provides a satisfactory description of the
system up to the resolution of δ, i.e. to the order of one cell. A reasonable choice of
the cut-off would be δ = 1/b̃. The parameter K is fitted to match quantitatively the
simulation results. Several studies have attempted to find an analytical estimate of
K but till now this remains an open problem [10]. The cut-off mean-field approx-
imation is a heuristic-phenomenological approach which mimics the leading-order
effect of finite population number fluctuations by introducing a cut-off in the MF
equation. In Fig. 13.9, we show a comparison of the front speed for varying pro-
liferation rates rM calculated by the naive MF and the cut-off MF against the front
speed obtained from simulations. We observe that for an appropriate choice of K
the cut-off MF predicts quantitatively the simulated front speed for all parameter
values.
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13.5 Modelling the Influence of the Microenvironment
on Cell Migration

Active migration of tissue cells is essential for a number of biological processes
such as inflammation, wound healing, embryogenesis and tumor cell metastasis [6].
Both in natural tissues and artificial environments, such as in vitro tissue cultures,
cells can exhibit migratory behavior. In particular, the cellular microenvironment
provides the substrate for cell migration. In the following, we provide more details
about different cell migration strategies in various environments. Environmental
heterogeneity contributes to the complexity of the resulting cellular behaviors. In
particular, the cellular microenvironment can either enhance collective motion of
cells or direct cell dispersion. Subsequently, we show how a suitable microscopical
mathematical model (a LGCA) can contribute to understand the interplay of moving
cells with their heterogeneous environment.

13.5.1 Cell Migration Strategies

The cellular microenvironment is a highly heterogeneous medium including the
extracellular matrix (ECM) composed of fibrillar structures, collagen matrices, dif-
fusible chemical signals as well as other mobile and immobile cells. Cells move
within their environment by responding to their surrounding’s stimuli. In addition,
cells change their environment locally by producing or absorbing chemicals and/or
by degrading the neighboring tissue. This feedback establishes a dynamic relation-
ship between individual cells and the surrounding substrate.

One can distinguish two distinct strategies of cells responding to environmental
stimuli: either the cells are following a certain direction and/or the environment
imposes only an orientational preference. For example the graded spatial distribu-
tion of adhesion ligands along the ECM is thought to influence the direction of cell
migration [24], a phenomenon known as haptotaxis [12]. Chemotaxis mediated by
diffusible chemotactic signals provides a further example of directed cell motion in a
dynamically changing environment. On the other hand, amoeboid and mesenchymal
strategies imply an alignment of cells to fibrillar structures. Mesenchymal cells use
additionally proteolysis to facilitate their movement and remodel the neighboring
tissue (dynamic environment). Table 13.1 summarizes the different cell migration
strategies.

Table 13.1 In this table, we relate the environmental effects to different cell migration strategies.
One can distinguish static and dynamic environments. In addition, we identify environments that
impart directional or only orientational information for migrating cells (see text for explanations)

Static Dynamic

Direction Haptotaxis Chemotaxis
Orientation Amoeboid Mesenchymal
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13.5.2 LGCA Models of Cell Motion in a Static Environment

In this subsection, we define two LGCA models that describe cell motion in different
environments. The mathematical entity that allows for the modeling of such envi-
ronments is a tensor field, which is a collection of different tensors distributed over
a spatial domain (for details see [22]). To model cell motion in a given tensor field
(environment), we use a special kind of interaction rule for the LGCA dynamics,
firstly introduced by Alexander et al. [1]. We consider biological cells as random
walkers that are reoriented by maximizing a potential-like term. Assuming that the
cell motion is affected by cell–cell and cell–environment interactions, we can define
the potential as the sum of these two interactions.:

G(r, ·) =
∑

j

G j (r, ·) = Gcc(r, ·)+ Gce(r, ·), (13.27)

where Gj (r, ·), j = cc, ce is the sub-potential that is related to cell–cell and cell–
environment interactions, respectively.

Interaction rules are formulated in such a way that cells preferably reorient into
directions which maximize (or minimize) the potential, that is according to the gra-
dients of the potential G′(r, ·) = ∇G(r, ·).

Consider a lattice-gas cellular automaton defined on a two-dimensional lattice
with b velocity channels (b = 4 or b = 6). Let the flux be denoted by

J(η(r, ·)) =
b∑

i=1

ciηi (r, ·).

The probability that ηC is the outcome of an interaction at node r is defined by

P(η → ηC|G(r, ·)) = 1

Z
exp
[
αF
(
G′(r, ·), J(ηC(r, ·)))

]
δ
(
n(r, ·), nC(r, ·)),

(13.28)
where η is the pre-interaction state at r and the Kronecker’s δ assumes the mass

conservation of this operator. The sensitivity is tuned by the positive, real parameter
α. The normalization factor is given by

Z = Z(η(r, ·)) =
∑

ηC∈E
exp
[
αF
(
G′(r, ·), J(ηC)

)]
δ
(
n(r, ·), nC(r, ·)).

F(·) is a functional that defines the effect of the G′ gradients on the new config-
uration. A common choice of F(·) is the inner product < ·, · >, which favors
(or penalizes) the configurations that tend to have the same (or inverse) direction
of the gradient G′. Accordingly, the dynamics is fully specified by the following
microdynamical equation (for more details see the previous section)
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ηi (r + ci , k + 1) = ηC
i (r, k).

In the following, we present two stochastic potential-based interaction rules that
correspond to the motion of cells in a vector field (i.e. rank 1 tensor field) and a
rank 2 tensor field, respectively. We exclude any other cell-cell interactions and
we consider that the population consists of a fixed number of cells (mass break
conservation).

13.5.3 Model I

This model describes cell motion in a static environment that carries directional
information expressed by a vector field E. Biologically relevant examples are the
motion of cells that respond to fixed integrin1 concentrations along the ECM (hapto-
taxis). The spatial concentration differences of integrin proteins constitute a gradient
field that creates a kind of “drift” E [16]. We choose a two dimensional LGCA
without rest channels and the stochastic interaction rule of the automaton follows
the definition of the potential-based rules (Eq. (13.27) with α = 1):

P(η → ηC)(r, ·) = 1

Z
exp
(〈E(r), J(ηC(r, ·))〉)δ(n(r, ·), nC(r, ·)), (13.29)

where the vector field G′(r) = E(r) is independent of time, and the functional F is
defined as:

F
(
G′(r), J(ηC(r, ·))) = 〈E(r), J(ηC(r, ·))〉. (13.30)

We simulate our LGCA for spatially homogeneous E for various intensities and
directions. In Fig. 13.10, we observe the time evolution of a cell cluster under the
influence of a given field. We see that the cells collectively move towards the gradi-
ent direction and they roughly keep the shape of the initial cluster. The simulations
in Fig. 13.11 show the evolution of the system for different fields. It is evident that
the “cells” follow the direction of the field and their speed responds positively to an
increase of the field intensity.

13.5.4 Model II

We now focus on cell migration in environments that promote alignment (orienta-
tional changes). Examples of such motion are provided by neutrophil or leukocyte
movement through the pores of the ECM, the motion of cells along fibrillar tissues

1 Integrins are receptors that mediate attachment between a cell and the tissues surrounding it,
which may be other cells or the extracellular matrix (ECM).



318 H. Hatzikirou and A. Deutsch

Time = 0

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

Time = 20

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

Time = 60

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

140

150

Time = 80

Fig. 13.10 Time evolution of a cell population under the effect of a field E = (1,0). One can observe
that the environmental drive moves all the cells of the cluster into the direction of the vector field.
Different grey levels represent different cell densities

or the motion of glioma cells along fiber tracts. Such an environment can be modeled
by a second rank tensor field representing a spatial anisotropy along the tissue. In
each point, a tensor (i.e. a matrix) informs the cells about the local orientation and
strength of the anisotropy and proposes a principle (local) axis of movement. For
instance, the brain’s fibre tracts impose a spatial anisotropy and their strength of
alignment affects the strength of anisotropy.

Here, we use the information of the principal eigenvector of the tensor (that
encodes the environmental influence) which defines the local principle axis of cell
movement. Thus, we end up again with a vector field but in this case we exploit
only the orientational information of the vector. The new rule for cell movement in
an “oriented environment” is:

P(η → ηC)(r, ·) = 1

Z
exp
(∣
∣〈E(r), J(ηC(r, ·))〉∣∣)δ(n(r, ·), nC(r, ·)). (13.31)
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Fig. 13.11 Time evolution of the cell population under the influence of different fields (after 100
time steps). Increasing the strength of the field, we observe that the cell cluster is moving faster in
the direction of the field. This behavior is characteristic of a haptotactically moving cell population.
The initial condition is a small cluster of cells in the center of the lattice. Different grey levels
indicate different cell densities (as in Fig. 13.10)

where the vector field G′(r) = E(r), is independent of time, and the functional F is
defined as:

F
(
G′(r), J(ηC(r, ·))) = ∣∣〈E(r), J(ηC(r, ·))〉∣∣. (13.32)

In Fig. 13.12, we show the time evolution of a simulation of model II for a given
field. Figure 13.13 displays the typical resulting patterns for different choices of
tensor fields. We observe that the anisotropy leads to the creation of an ellipsoidal
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Fig. 13.12 Time evolution of a cell population under the effect of a tensor field with principal
eigenvector (principal orientation axis) E= (2,2). We observe cell alignment along the orientation
of the axis defined by E, as time evolves. Moreover, the initial rectangular shape of the cell cluster
is transformed into an ellipsoidal pattern with principal axis along the field E. Different grey levels
indicate different cell densities (as in Fig. 13.10)

pattern, where the length of the main ellipsoid’s axis correlates positively with the
anisotropy strength.

This rule can be used to model the migration of glioma cells within the brain.
Glioma cells tend to spread faster along fiber tracts. Diffusion Tensor Imaging
(DTI) is a Magnetic Resonance Imaging (MRI) based method that provides the local
anisotropy information in terms of diffusion tensors. High anisotropy points belong
to the brain’s white matter, which consists of fiber tracks. A preprocessing of the dif-
fusion tensor field allows the extraction of the principle eigenvectors of the diffusion
tensors, that provides us with the local principle axis of motion. By considering a
proliferative cell population, as in [21], and using the resulting eigenvector field we
can model and simulate glioma cell invasion. In Fig. 13.14, we simulate an example
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Fig. 13.13 Time evolution of the pattern for four different tensor fields (after 100 time steps). We
observe the elongation of the ellipsoidal cell cluster when the field strength is increased. Above
each figure the principal eigenvector of the tensor field is denoted. The initial conditions consist
always of a small cluster of cells in the center of the lattice. Different grey levels indicate different
cell densities (as in Fig. 13.10)

of brain tumor growth and show the effect of fiber tracts on tumor growth using the
DTI information.

13.6 Analysis of the LGCA Models for Motion
in Static Environments

In this section, we provide a theoretical analysis of the proposed LGCA models. Our
aim is to calculate the equilibrium cell distribution and to estimate the speed of cell
dispersion under different environments. Finally, we compare our theoretical results
with the computer simulations.
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Fig. 13.14 The effect of the brain’s fiber tracts on brain tumor growth: We use a LGCA model of a
proliferating (glioma) cancer cell population (for definition see [21]) moving in a tensor field pro-
vided by clinical DTI (Diffusion Tensor Imaging) data, representing the brain’s fiber tracts. Top: the
left figure shows a simulation without any environmental bias of the cell motion (i.e. cells perform
random walks). In the top right figure, DTI information is incorporated; the simulation exhibits the
anisotropy of a brain tumor due to the effect of the fiber tracts. Bottom: Magnifications of the tumor
region in the simulations above. Simulations indicate how environmental heterogeneities can affect
cell migration and invasion

13.6.1 Model I

In this subsection, we analyze model I and we derive an estimate of the cell spread-
ing speed in dependence of the environmental field strength. The first idea is to
choose a macroscopically accessible observable that can be measured experimen-
tally. A reasonable choice is the mean lattice flux 〈J(ηC)〉E, which characterizes the
mean motion of the cells, with respect to changes of the field’s strength |E|:

〈J(ηC)〉E =
∑

i

ci f eq
i , (13.33)
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where f eq
i , i = 1, ..., b is the equilibrium density distribution of each channel

which, in this case, depends on E. Mathematically, this is the mean flux response to
changes of the external vector field E. The quantity that measures the linear response
of the system to the environmental stimuli is called susceptibility:

χ = ∂〈J〉E

∂E
. (13.34)

We expand the mean flux in terms of small fields as:

〈J〉E = 〈J〉E=0 + ∂〈J〉E

∂E
E + O(E2). (13.35)

For the zero-field case, the mean flux is zero since the cells are moving randomly

within the medium (diffusion). Accordingly, for small fields E =
(

e1
e2

)

the linear

approximation reads

〈J〉E = ∂〈J〉E

∂E
E.

The general linear response relation is

〈J(ηC)〉E = χαβeβ = χeα, (13.36)

where the second rank tensor χαβ is assumed to be isotropic, i.e. χαβ = χδαβ .
Note that we have used Einstein’s notation for the sums (summation is implied for
repetitive indices) and tensors.

The aim is to estimate the stationary mean flux for fields E. At first, we have
to calculate the equilibrium distribution that depends on the external field. The
external drive destroys the detailed balance (DB) conditions2 that would lead to a
Gibbs equilibrium distribution. In the case of non-zero external field, the system
is out of equilibrium. The external field (environment) induces a breakdown of
the spatial symmetry which leads to non-trivial equilibrium distributions depend-
ing on the details of the transition probabilities. The (Fermi) exclusion principle
allows us to assume that the equilibrium distribution follows a kind of Fermi-Dirac
distribution [20]:

2 The detailed balance (DB) and the semi-detailed balance (SDB) impose the following condition
for the microscopic transition probabilities: P(η → ηC) = P(ηC → η) and ∀ηC ∈ E :∑η P(η →
ηC) = 1. Intuitively, the DB condition means that the system jumps to a new micro-configuration
and comes back to the old one with the same probability (micro-reversibility). The relaxed SDB
does not imply this symmetry. However, the SDB guarantees the existence of steady states and the
sole dependence of the Gibbs steady state distribution on the invariants of the system (conserved
quantities).
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f eq
i = 1

1 + ex(E) , (13.37)

where x(E) is a quantity that depends on the field E and the mass of the system
(if the DB conditions were fulfilled, the argument of the exponential would depend
only on the invariants of the system). Moreover, the sigmoidal form of Eq. (13.37)
ensures the positivity of the probabilities f eq

i ≥ 0, ∀x(E) ∈ R. Thus, one can write
the following ansatz:

x(E) = h0 + h1ci E + h2E2. (13.38)

After some algebra (the details can be found in [22]), for small fields E, one finds
that the equilibrium distribution looks like:

f eq
i = d+d(d−1)h1ci E+ 1

2
d(d−1)(2d−1)h2

1

∑

α

c2
iαe2

α+d(d−1)h2E2, (13.39)

where d = ρ/b and ρ = ∑b
i=1 f eq

i is the mean node density (which coincides
with the macroscopic cell density) and the parameters h1, h2 have to be deter-
mined. Using the mass conservation condition, we find a relation between the two
parameters:

h2 = 1 − 2d

4
h2

1. (13.40)

Finally, the equilibrium distribution can be explicitly calculated for small driving
fields:

f eq
i = d + d(d − 1)h1ci E + 1

2
d(d − 1)(2d − 1)h2

1 Qαβeαeβ, (13.41)

where Qαβ = ciαciβ − 1
2δαβ is a second order tensor.

If we calculate the mean flux, using the equilibrium distribution up to first order
terms of E, we obtain from Eq. (13.33) the linear response relation:

〈J(ηC )〉 =
∑

i

ciα f eq
i = b

2
d(d − 1)h1E. (13.42)

Thus, the susceptibility reads:

χ = 1

2
bd(d − 1)h1 = −1

2
bgeqh1, (13.43)

where geq = f eq
i (1 − f eq

i ) is the equilibrium single particle fluctuation. In [11], the
equilibrium distribution is directly calculated from the non-linear lattice Boltzmann
equation corresponding to a LGCA with the same rule for small external fields. In
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Fig. 13.15 This figure shows the variation of the normalized measure of the total lattice flux |J|
against the field intensity |E|, where E = (e1, e2). We compare the simulated values with the
theoretical calculations (for the linear and non-linear theory). We observe that the linear theory
predicts the flux strength for low field intensities. Using the full distribution, the theoretical flux is
close to the simulated values also for larger field strengths

the same work, the corresponding susceptibility is determined and this result coin-
cides with ours for h1 = −1. Accordingly, we consider h1 = −1 in the following.

Our method allows us to proceed beyond the linear case, since we have explicitly
calculated the equilibrium distribution of our LGCA:

f eq
i = 1

1 + exp (ln( 1−d
d )− ci E + 1−2d

4 E2)
. (13.44)

Using the definition of the mean lattice flux Eq. (13.33), we can obtain a good
theoretical estimation for larger values of the field. Figure 13.15 shows the behavior
of the system’s normalized flux obtained by simulations and a comparison with our
theoretical findings. For small values of the field intensity |E| the linear approxi-
mation performs rather well and for larger values the agreement of our non-linear
estimate with the simulated values is more than satisfactory. One observes that the
flux response to large fields saturates. This is a biologically plausible result, since
the cell speed is finite and an infinite increase of the field intensity cannot lead to
infinite fluxes (the mean flux is proportional to the mean velocity). Experimental
findings in systems of cell migration mediated by adhesion receptors, such as ECM
integrins, support the model’s behavior [27, 34].

13.6.2 Model II

In the following section, our analysis characterizes cell motion by a different mea-
surable macroscopic variable and provides an estimate of the cell dispersion for
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model II. In this case, it is obvious that the average flux, defined in Eq. (13.33),
is zero (due to the symmetry of the interaction rule). In order to measure the
anisotropy, we introduce the flux difference between v1 and v2, where the vi ’s are
eigenvectors of the anisotropy matrix (they are linear combinations of the ci ’s). For
simplicity of the calculations, we consider b = 4 and X-Y anisotropy. We define:

|〈Jv1〉 − 〈Jv2〉| = |〈Jx+〉 − 〈Jy+〉| = |c11 f eq
1 − c22 f eq

2 |. (13.45)

As before, we expand the equilibrium distribution around the field E = 0 and we
obtain equation

fi = fi (E = 0)+ (∇E) fi E + 1

2
ET (∇2

E) fi E. (13.46)

With similar arguments as for the previous model I, we can assume that the
equilibrium distribution follows a kind of Fermi-Dirac distribution (compare with
Eq. (13.37)). This time our ansatz has the following form,

x(E) = h0 + h1|ci E| + h2E2, (13.47)

because the rule is symmetric under the inversion ci → −ci . Conducting similar
calculations as in the previous subsection, one can derive the following expression
for the equilibrium distribution:

f eq
i = d + d(d − 1)h1|ci E|

+1

2
d(d − 1)(2d − 1)h2

1

∑

α

c2
iαe2

α

+d(d − 1)(2d − 1)h2
1|ciαciβ |eαeβ

+d(d − 1)h2E2. (13.48)

Here, we identify a relation between h1 and h2 using the microscopic mass
conservation law. To simplify the calculations we assume a square lattice (simi-
lar calculations can also be carried out for the hexagonal lattice case) and using
c11 = c22 = 1, we derive the difference of fluxes along the X-Y axes (we restrict
ourselves here to the linear approximation):

| f eq
1 − f eq

2 | = d(d−1)h1

∣
∣
∣
∑

α

|c1α|eα−
∑

α

|c2α|eα
∣
∣
∣ = d(d−1)h1|e1−e2|. (13.49)

We observe that the parameter h1 is still free and we should find a way to calculate it.
Using a method similar to the work of [11] and we find that h1 = −1/2. Substituting
this value into the last relation and comparing with simulations (Fig. 13.16), we
observe again a very good agreement between the linear approximation and the
simulations.
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Fig. 13.16 The figure shows the variation of the X-Y flux difference against the anisotropy strength
(according to Model II). We compare the simulated values with the linear theory and observe a good
agreement for low anisotropy strength (|e1 − e2| ≤ 3). We observe that the range of agreement, in
the linear theory, is larger than in the case of model I

13.7 Discussion

In this chapter, we focus on the collective behavior emerging in interacting cell pop-
ulations. The analysis of collective behavior of interacting cell systems is important
for the understanding of phenomena such as morphogenesis, wound healing, tissue
growth, tumor invasion etc. We are interested in finding appropriate mathematical
models that allow for the description and the analysis of populations composed
of discrete, interacting cells. Cellular automata, and particularly LGCA, provide
a discrete modeling approach, where a micro-scale investigation is allowed through
a stochastic description of the dynamics at the cellular level [15]. In this chapter,
we have provided two examples of LGCA models: (i) the collective dynamics of
a growing cell population and (ii) the macroscopic behavior of a cell population
interacting with its microenvironment.

The first example addresses the collective behavior of a proliferating cell popu-
lation. Simulations show that growing populations trigger a traveling invasion front,
i.e. the growing cell population can be viewed as a wavefront that propagates into its
surrounding environment. Via the cut-off mean-field analysis of the discrete LBE,
we derive a reaction-diffusion equation that describes our system macroscopically.
This cut-off reaction-diffusion equation enables us to calculate accurately the speed
of the wavefront. We predict the front velocity to scale with the square root of the
product of rates for mitosis and migration. This means that we are able to derive
the expansion speed of growing cell populations by incorporating experimentally
accessible parameters, as the mitotic and cell motility rates, respectively.
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To study and analyze the effects of the microenvironment on cell migration, we
have introduced a further LGCA model. We have identified and modeled the two
main effects of static environments on cell migration:

• Model I addresses motion in an environment providing directional information.
Such environments can be mediated by integrin (adhesive ECM molecules) den-
sity gradient fields or diffusible chemical signals leading to haptotactical or
chemotactical movement, respectively. We have carried out simulations for dif-
ferent static fields, in order to understand the environmental effect on pattern
formation. The main conclusion is that such an environment favors the collective
motion of the cells in the direction of the gradients. Interestingly, we observe in
Fig. 13.10 that the cell population approximately keeps the shape of the initial
cluster and moves in the same direction. This suggests that collective motion is
not necessary an alternative cell migration strategy, as described in [19]. Collec-
tive motion can be interpreted as emergent behavior in a population of amoe-
boidly moving cells in a directed environment. Finally, we have calculated theo-
retically an estimator of the cell spreading speed, i.e. the mean flux for variations
of the gradient field strength. The results exhibit a positive response of the cell
flux to an increasing field strength. The saturation of the response for large stimuli
emphasizes the biological relevance of the model.

• Model II describes cell migration in an environment that influences the orienta-
tion of the cells (e.g. alignment). Fibrillar ECMs induce cell alignment and can
be considered as an example of an environment that affects cell orientation. Sim-
ulations show that such motion produces alignment along a principal orientation
(i.e. fiber) and the cells tend to disperse along it (Fig. 13.12). We have calculated
the cell response to variations of the field strength, in terms of the flux difference
between the principal axis of motion and its perpendicular axis. This difference
gives us an estimate of the speed and the direction of cell dispersion. Finally, we
observe a similar saturation plateau for large fields, as in model I. Moreover, we
gave an application of the second model for the case of brain tumor growth using
DTI data (Fig. 13.14).

• The microenvironment plays also a crucial role in the evolutionary dynamics (as
a kind of selective pressure) of evolving cellular systems, in particular cancer
[2–4].

In the above examples we have seen that LGCA provide an appropriate modeling
framework for the analysis of emergent behavior since they allow for:

• The LGCA rules can mimic the microscopic processes at the cellular level
(coarse-grained sub-cellular dynamics). Here we focused on the analysis of two
selected microscopic interaction rules. Moreover, we showed that with the help
of methods motivated by statistical mechanics, we can estimate the macroscopic
behavior of the whole population (e.g. mean flux).

• Cell motion through heterogeneous media involves phenomena at various spatial
and temporal scales. These cannot be captured in a purely macroscopic modeling
approach. In macroscopic models of heterogeneous media diffusion is treated by
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using powerful methods that homogenize the environment by the definition of
an effective diffusion coefficient (the homogenization process can be perceived
as an intelligent averaging of the environment in terms of diffusion coefficients).
Continuous limits and effective descriptions require characteristic scales to be
bounded and their validity lies far above these bounds [23]. In particular, it is
found that in motion through heterogeneous media, anomalous diffusion (sub-
diffusion) describes the particles’ movement over relevant experimental time
scales, particularly if the environment is fractal [29]; existing macroscopic con-
tinuum equations can not describe such phenomena. On the other hand, discrete
microscopic models, like LGCA, can capture different spatio-temporal scales and
they are well-suited for simulating such phenomena.

• Moreover, the discrete structure of the LGCA facilitates the implementation of
complicated environments (in the form of tensor fields) without any of the com-
putational problems characterizing continuous models.

• LGCA are examples of parallel algorithms. This fact makes them computation-
ally very efficient.

The mean-field (Boltzmann) equation characterizing a given LGCA model arises
under the assumption that the probability of finding two cells at specific positions
is given by the product of corresponding single particle distribution functions, i.e.
any correlations are neglected and distributions fully factorize. It is a challenge to
include two-, three-, etc. particle distribution functions which will allow a system-
atic study of correlation effects. This analysis could particularly improve our under-
standing of short and long time behavior. In particular, in the case of a traveling
front expansion (see above) we have indicated the importance of such correlations
at the tip of the front.

The need for discrete models, especially cellular automata, goes beyond the anal-
ysis of collective behavior in interacting cell populations. A discrete cell-oriented
approach is also required if the dynamic system behavior depends on fluctuations at
the individual cell level. This is, for example, the case at the front of invading tumors
and crucial for the formation of metastases. Lately, experimental findings of Bru
et al. [8] indicate that many tumors share the same surface dynamics. This finding
motivated the analysis of the tumor interface by means of a fractal scaling analysis.
Obviously, corresponding cancer models have also to be of a discrete nature and
CA models are promising candidates to identify growth mechanisms that lead to a
particular scaling.

Based on the variability in the local dynamics, an “interaction-module oriented”
cellular automaton modeling provides an intuitive and powerful approach to cap-
ture essential aspects of complex phenomena at various scales [15]. In conclusion,
there are both challenging future perspectives with regards to interesting biological
applications of the lattice-gas cellular automaton idea and possible refinements of
analytical tools for the investigation of lattice-gas cellular automata. The potential
of cellular automata for modeling essential aspects of biological systems will be
further exploited in the future.
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