
Chapter 11
Lattice Boltzmann Simulations of Wetting
and Drop Dynamics

Halim Kusumaatmaja and Julia M. Yeomans

11.1 Introduction

Recently there has been a huge effort in the scientific community to miniaturise
fluidic operations to micron and nanoscales [1]. This has changed the way scientists
think about fluids, and it potentially has far-reaching technological implications,
analogous to the miniaturization of electronics. The goal is to engineer “lab on a
chip” devices, where numerous biological and chemical experiments can be per-
formed rapidly, and in parallel, while consuming little reagent.

An important aspect of the physics of fluids at micron and nanoscales is the
increasing relevance of surface effects. Surface slip will dominate flow in nanochan-
nels, and the movement of small drops across a substrate will be strongly affected
by the interactions between the fluid and the surface. This has been exploited in
the functional adaptation of many biological systems, for example lotus leaves [2],
desert beetles [3] and butterfly wings [4]. Moreover, the wetting and spreading of
fluids over surfaces is key to numerous technological processes, for example in oil
recovery, painting, and inkjet printing.

Small liquid drops are spherical when they are in air, to minimise the surface
energy. When placed on a solid the degree to which a drop spreads depends on the
balance of interfacial energies between the solid, liquid, and gas phases. In equilib-
rium the liquid–gas interface maintains a spherical cap profile, and the liquid drop
joins the solid at a contact angle θe, where

cos θe = σGS − σLS

σLG
(11.1)

and σGS, σLS, and σLG are the gas–solid, liquid–solid and liquid–gas surface ten-
sions. Equation (11.1) is Young’s equation and the equilibrium contact angle is
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(b) neutral wetting: θe =  90°(a) hydrophilic: θe <  90°

θe θe θe

(c) hydrophobic: θe  >  90°

Fig. 11.1 Profile of a liquid drop on (a) a hydrophilic, (b) a neutrally wetting and (c) a hydrophobic
surface

often called the Young angle. A solid surface is termed hydrophilic1 when θe < 90◦,
neutrally wetting when θe = 90◦ and hydrophobic when θe > 90◦. This is illustrated
in Fig. 11.1. For reviews of wetting and spreading see [5–8].

Wetting phenomena are often further complicated by the fact that the solid sur-
faces are never perfectly homogeneous. For micron and nanometer drops, the typical
length scale of surface heterogeneities can be comparable to the size of the drop
itself. Random disorder on a surface is notoriously difficult to describe theoretically
or numerically. However, as a result of recent and rapid developments in microfab-
rication techniques, it is now possible to manufacture surfaces with well controlled
patterning on micron, and even nanometer, length scales. The patterning can be
either chemical, with the contact angle varying from place to place, or topographi-
cal, where the relief of the surface changes. Patterning surfaces leads to a rich range
of drop thermodynamics and hydrodynamics which, because the surfaces are well
characterised, can now be investigated experimentally.

Analytical solutions describing the behaviour of drops on surfaces are possible
in some special cases, but in general they are not tractable when the surface hetero-
geneities are taken into account. Therefore there is a need for powerful numerical
techniques that are able to both solve the hydrodynamic equations of motion of
the fluids, and to take into account the effect of surface patterning, with relative
ease. To this end, in this chapter, we introduce a mesoscale numerical algorithm, the
lattice Boltzmann method, and show how it may be used to investigate the physics
of wetting and spreading.

Writing down an algorithm which solves the Navier-Stokes equations is rather
easy. This is because these equations are based on local conservation of mass and
momentum and, as long as the conservation laws are represented correctly, (and
space is discretised in a sufficiently symmetric way) the hydrodynamic equations
will be recovered in the continuum limit. This was pointed out by Frisch et al. [9]
who wrote down the first mesoscale algorithm for the Navier-Stokes equation. This
was a lattice-gas cellular automaton: particles move on a lattice and collide at the
nodes according to rules which impose mass and momentum conservation. As long
as the lattice has sufficient symmetry it is possible to choose collision rules that
reproduce the Navier-Stokes equation in the continuum limit.

1 Strictly, the terms hydrophilic and hydrophobic are appropriate only when the liquid is water.
Nonetheless, they are often used more generally.
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Cellular automata models of hydrodynamics have proved important in many con-
texts but can be difficult to use because of large fluctuations in macroscopic quan-
tities such as the density and the velocity. The need to average over the fluctuations
can cancel out the advantage of an algorithm which is easy to parallelise. However
many other mesoscale methods have evolved from the ideas of cellular automata,
and one of these is the lattice Boltzmann approach [10–13]. The discrete variables
used in cellular automata are replaced by a set of distribution functions that represent
the average population of fluid particles. This removes the difficulty of fluctuations:
lattice Boltzmann can be viewed as a mean-field version of the cellular automata
models.

Lattice Boltzmann algorithms can be extended to multiphase and complex fluids
[14–16]. The algorithm solves the Navier-Stokes equations and, as we shall describe
below, the thermodynamic properties of a given fluid and its interactions with a
surface can be modelled rather easily by introducing a free energy functional that is
minimised in equilibrium. Moreover, lattice Boltzmann algorithms are well able to
handle flow in complex geometries and hence represent an efficient numerical way
of treating surfaces with topographic patterning.

The chapter comprises two parts. First, in Sects. 11.2, 11.3, and 11.4 we explain
the physical model and the lattice Boltzmann algorithm used to solve it. We intro-
duce a free energy functional for a binary fluid [17, 18] and explain how it handles
the essential ingredients needed to describe wetting phenomena; phase separation,
surface tension and contact angles. The generalisation of the Navier-Stokes equa-
tions appropriate for the two-phase system are summarised. We then describe lat-
tice Boltzmann algorithms that will solve the hydrodynamic equations, commenting
particularly on the thermodynamic and hydrodynamic boundary conditions needed
to model wetting. Next, in Sects. 11.5, 11.6, and 11.7, we illustrate the efficacy of
the algorithm by describing several applications to the physics of drops on smooth
and patterned surfaces. These include capillary filling, viscous fingering, control-
ling drop motion using chemical patterning, slip in patterned microchannels and
superhydrophobic surfaces.

11.2 The Binary Model

11.2.1 Thermodynamics of the Fluid

To model drops of fluid on a surface we need first to describe their equilibrium
properties, such as binary fluid coexistence, surface tension and contact angle. As we
are working on micron-length scales we can use a continuum, Landau free energy
[17], which is minimised in equilibrium,

� =
∫

V

(
ψb + κ

2
(∂αφ)

2
)

dV +
∫

S
ψs d S, (11.2)
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where the bulk free energy density ψb is taken to have the form

ψb = c2

3
n ln n + A

(
− 1

2φ
2 + 1

4φ
4
)
. (11.3)

n is the fluid density which is chosen to be 1 everywhere, φ is the order parameter
and c = �x/�t , where �x and �t represent the discretisation in space and time
respectively. This choice of ψb gives binary phase separation into two phases with
φα = 1 and φβ = −1, where α and β label the two coexisting bulk phases.

The second and third terms in Eq. (11.2) are needed to account for the fluid–fluid
and fluid–solid surface tensions. Let us first consider the fluid–fluid surface tension
and for simplicity, restrict ourselves to one dimension. Minimising the volume terms
in the free energy functional with respect to φ leads to the condition for equilibrium

μ ≡ −Aφ + Aφ3 − κ
d2

dx2
φ = 0 (11.4)

where μ is the chemical potential. Equation (11.4) allows an interface solution of
the form

φ = tanh

(
x√
2ξ

)

(11.5)

where ξ = √
κ/A is defined as the interface width. Since this must typically be

chosen of order a few lattice spacings in a simulation, models of this type are often
called diffuse interface models [19, 20].

Using Noether’s theorem, we find that

ψb − κ

2

(
dφ

dx

)2

= constant = ψb|φ=±1 . (11.6)

We can therefore define the excess bulk free energy density as

W = ψb − ψb|φ=±1 = A
2

(
φ2 − 1

)2 = κ

2

(
dφ

dx

)2

. (11.7)

The surface tension, γ , of the liquid–liquid interface can be calculated by integrating
the sum of the excess bulk free energy density and the second (κ) term in Eq. (11.2)

γ =
∫ φα

φβ

(

W + κ

2

(
dφ

dx

)2
)

dx =
∫ φα

φβ

κ

(
dφ

dx

)2

dx = √8κA/9. (11.8)

The second integral in Eq. (11.2) is over the system’s solid surface and is used to
describe the interactions between the fluid and the surface. Following Cahn [21], the
surface energy density is taken to be ψs = −hφs , where φs is the value of the order
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parameter at the surface. Minimisation of the free energy shows that the gradient in
φ at the solid boundary is

κ
dφ

dx
= −dψs

dφs
= −h . (11.9)

Equation (11.9) can be used together with Eq. (11.7) to determine φs .
The fluid–solid surface tensions can be calculated in a similar way to the fluid–

fluid surface tension, except that now we also have to take into account the contri-
butions from the surface energy term.

γsα = −hφsα +
∫ φα

φsα

κ

(
dφ

dx

)2

dx = γ

2
− γ

2
(1 +Ω)3/2 , (11.10)

γsβ = −hφsβ +
∫ φβ

φsβ

κ

(
dφ

dx

)2

dx = γ

2
− γ

2
(1 −Ω)3/2 , (11.11)

where Ω =
√

2
κA h. The notations φsα and φsβ stand for the values of the order

parameter at the surface for phases α and β respectively.
The contact angle follows from substituting the values of the surface tensions

into Young’s law, Eq. (11.1), to give (with θe defined as the contact angle of the
α-phase)

cos θe = γsβ − γsα

γ
= (1 +Ω)3/2 − (1 −Ω)3/2

2
. (11.12)

Equation (11.12) can be inverted to give a relation between the phenomenological
parameter h and the equilibrium contact angle θe [17]

h = √
2κA sign

(π

2
−θe

)√

cos
(α

3

) {
1−cos

(α

3

)}
, (11.13)

where α = cos−1
(
sin2 θe

)
and the function sign returns the sign of its argument.

Lattice Boltzmann simulation results for the equilibrium contact angle of a liquid
drop on a smooth solid surface are shown in Fig. 11.2. The exact result, given by
Eq. (11.13), is also shown for comparison. Deviation is only noticeable at small
contact angles. This discrepancy is mainly because the finite width of the interface,
which is neglected when assuming that the drop is a spherical cap, becomes compa-
rable to the height of the drop.
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Fig. 11.2 The equilibrium contact angle as a function of the gradient in φ at the boundary.
Crosses are lattice Boltzmann simulation results, while the solid curve is the theoretical expression,
Eq. (11.13). We have used A = 0.04 and κ = 0.04 Reprinted figure with permission from Pooley
et al. [18]. Copyright (2008) by the American Physical Society

11.3 Hydrodynamics of the Fluid

The hydrodynamic equations of motion for the binary fluid are the continuity equa-
tion (11.14), the Navier-Stokes equation (11.15) and the convection-diffusion equa-
tion (11.16)

∂t n + ∂α(nvα) = 0 , (11.14)

∂t (nvα)+ ∂β(nvαvβ) = −∂β Pαβ + ∂β [nν(∂βvα + ∂αvβ)

+ (nλδαβ∂γ vγ
)] + naα , (11.15)

∂tφ + ∂α (φvα) = M∇2μ (11.16)

where v, P, ν, a and M are the local velocity, pressure tensor, shear kinematic vis-
cosity, acceleration provided by the body force and mobility respectively. The bulk
kinematic viscosity is λ+ d

2 ν, where d is the dimension of the system.
The equilibrium properties of the fluid appear in the equations of motion through

the chemical potential defined in Eq. (11.4) while the pressure can be derived from
the free energy

∂β Pαβ = n∂α
(
δψb
δn

)
+ φ∂α

(
δψb
δφ

)
. (11.17)

Using the definition of ψb in Eq. (11.3), it follows that [17]

Pαβ =
(

pb − κ

2
(∂γ φ)

2 − κφ∂γγ φ
)
δαβ + κ(∂αφ)(∂βφ) , (11.18)

pb = c2

3 n + A
(
− 1

2φ
2 + 3

4φ
4
)
. (11.19)
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pb is the bulk pressure term which is related to the speed of sound in the model via

c2
s = dpb

dn = c2

3 . Equilibrium corresponds to ∂β Pαβ = 0.
It is also important to note that the finite interface width allows slip to be gen-

erated close to the contact line by diffusive transport across the interface [17–20].
Slip is needed to remove the stress singularity at the moving contact line (see e.g.
[22–24]). In this model it is controlled by the mobility parameter M .

11.4 The Lattice Boltzmann Algorithm

We now define a lattice Boltmann algorithm which solves Eqs. (11.14), (11.15),
and (11.16). The basic idea behind lattice Boltzmann algorithms is to associate
distribution functions, discrete in time and space, to a set of velocity directions ei .
For example, for a three-dimensional, 19-velocity model, the lattice velocities are
chosen to be

⎛

⎝
ex0-6
ey0-6
ez0-6

⎞

⎠ =
⎡

⎣
0 c −c 0 0 0 0
0 0 0 c −c 0 0
0 0 0 0 0 c −c

⎤

⎦ , (11.20)

⎛

⎝
ex7-18
ey7-18
ez7-18

⎞

⎠ =
⎡

⎣
c −c c −c 0 0 0 0 c −c c −c
c c −c −c c −c c −c 0 0 0 0
0 0 0 0 c c −c −c c c −c −c

⎤

⎦.

c, the lattice velocity, is defined by c = �x/�t . The directions of the velocity
vectors are shown in Fig. 11.3.

Fig. 11.3 The directions of the lattice velocity vectors in the 19-velocity lattice Boltzmann model
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We need to define two distribution functions, fi (r, t) and gi (r, t), to describe a
binary fluid. The physical variables are related to the distribution functions by

n =
∑

i

fi , nuα =
∑

i

fi eiα, φ =
∑

i

gi , (11.21)

where u is defined as u = v − a�t/2, and a is the acceleration associated with any
applied body force. (This distinction between u and v is required so that the lat-
tice Boltzmann equation recovers the continuity (11.14) and Navier-Stokes (11.15)
equations in the continuum limit in a system with an applied force. In practice, the
value of v is typically two to three order of magnitudes larger than a�t in most
simulations. Hence the distinction between u and v can usually be neglected.)

The time evolution equations for the particle distribution functions, using the
standard BGK approximation [25], can be broken down into two steps

Collision step : f ′i (r, t) = fi (r, t)− 1
τ

[
fi (r, t)− f eq

i (r, t)
]+ Fi (r, t) ,

g′
i (r, t) = gi (r, t)− 1

τφ

[
gi (r, t)− geq

i (r, t)
]
,

Propagation step : fi (r + ei�t, t +�t) = f ′i (r, t) ,

gi (r + ei�t, t +�t) = g′
i (r, t) (11.22)

where f eq
i and geq

i are local equilibrium distribution functions, defined as a power
series in the velocity, τ and τφ are the relaxation times and Fi is a term that cor-
responds to an external body force. It can be shown, using a Taylor expansion,
that Eqs. (11.22) reproduce Eqs. (11.14), (11.15) and (11.16) in the continuum
limit if the correct thermodynamic and hydrodynamic information is input to the
simulation by a suitable choice of local equilibrium functions and forcing terms.
Details of the derivation can be found in e.g. [10–14]. The constraints that need to be
satisfied are

∑

i

f eq
i = n ,

∑

i

f eq
i eiα = nvα , (11.23)

∑

i

f eq
i eiαeiβ = Pαβ + nvαvβ , (11.24)

∑

i

f eq
i eiαeiβeiγ = nc2

3
[vαδβγ + vβδγα + vγ δαβ ] , (11.25)

∑

i

geq
i = φ ,

∑

i

geq
i eiα = φvα , (11.26)

∑

i

geq
i eiαeiβ =  μδαβ + φvαvβ . (11.27)

∑

i

Fi = 0 ,
∑

i

Fi eiα = �t

(

1 − 1

2τ

)

naα , (11.28)
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∑

i

Fi eiαeiβ = �t

(

1 − 1

2τ

)

(nvαaβ + nvβaα). (11.29)

Note that Eqs. (11.23) and the first equation in (11.26) correspond to conservation
of mass, momentum and concentration.

A possible choice for f eq
i , geq

i and Fi that satisfies the constraints (11.23),
(11.24), (11.25), (11.26), (11.27), (11.28) and (11.29) is a power series expansion
in the velocity [26, 27]

f eq
i = wi

c2

(
pb − κφ∇2φ + eiαnvα + 3

2c2

[
eiαeiβ − c2

3 δαβ

]

×
(

nvαvβ + λ
[
vα∂βn + vβ∂αn + δαβvγ ∂γ n

] ))

+ κ

c2

(
wxx

i ∂xφ∂xφ + w
yy
i ∂yφ∂yφ + wzz

i ∂zφ∂zφ)

+ κ

c2

(
w

xy
i ∂xφ∂yφ + w

yz
i ∂yφ∂zφ + wzx

i ∂zφ∂xφ
)
, (11.30)

geq
i = wi

c2

(
 μ+eiαφvα+ 3

2c2

[
eiαeiβ − c2

3 δαβ

]
φvαvβ

)
,

Fi = �t
wi

c2

(

1 − 1

2τ

) [

eiαnaα + 3

2c2

(

eiαeiβ − c2

3
δαβ

)

(nvαaβ + nvβaα)

]

.

where a choice for the wi aimed at minimising spurious velocities2 is [26]

w1-6 = 1
6 , w7-18 = 1

12 ,

wxx
1,2 = w

yy
3,4 = wzz

5,6 = 5
12 ,

wxx
3-6 = w

yy
1,2,5,6 = wzz

1-4 = − 1
3 ,

wxx
7-10 = wxx

15-18 = w
yy
7-14 = wzz

11-18 = − 1
24 ,

wxx
11-14 = w

yy
15-18 = wzz

7-10 = 1
12 ,

w
xy
1-6 = w

yz
1-6 = wzx

1-6 = 0,

w
xy
7,10 = w

yz
11,14 = wzx

15,18 = 1
4 ,

w
xy
8,9 = w

yz
12,13 = wzx

16,17 = − 1
4 ,

w
xy
11-18 = w

yz
7-10 = w

yz
15-18 = wzx

7-14 = 0

2 These are small velocities which remain in equilibrium. They are a consequence of discretisation
errors, see Sect. 4.1.
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The relaxation parameters τ and τφ in the lattice Boltzmann algorithm are related
to the parameters in the hydrodynamic equations ν, λ and M through

ν = (c2�t (τ − 1/2))/3 , (11.31)

λ = ν(1 − 3c2
s /c

2) , (11.32)

M = �t 
(
τφ − 1

2

)
, (11.33)

where  is a tunable parameter that appears in the equilibrium distribution. Since ν,
λ and M are positive quantities, the values of the relaxation times τ and τφ have to
be larger than 1/2.

In a typical binary lattice Boltzmann simulation, there are four important param-
eters controlling the physics: the length scale of the system L , the viscosity η, the
surface tension γ , and the body force na. To match these to physical values we can
choose only three quantities; a length scale Lo, a time scale To, and a mass scale
Mo which are further constrained by the stability of the simulations. Therefore the
simulation parameters cannot be arbitrarily matched to an experiment. In practice,
a useful approach can be to determine Lo, To, and Mo by matching L , η and γ

between simulations and experiments, and then to use these scales to determine the
appropriate value of na. (A simulation parameter with dimensions [L]n1[T ]n2[M]n3

is multiplied by Ln1
o T n2

o Mn3
o to give the physical value.)

11.4.1 The Multiple Relaxation Time Algorithm

Figure 11.2 shows that there is excellent agreement between the theoretical value
of the contact angle for a given surface field and that calculated numerically. How-
ever, these results were obtained using a relaxation time τ = 1. For values of τ
significantly different to unity the agreement is less good [18]. This discrepancy
is caused by strong spurious velocities near the contact point which continuously
push the system out of equilibrium and result in the deformation of the interface.
The spurious velocities, which are a result of discretisation errors, are common to
all lattice-based solutions of the Navier-Stokes equations, but are particularly pro-
nounced near interfaces and surfaces. Taking τ = 1 damps out many of the spurious
contributions [18].

Since, in wetting problems, the two fluids generally have different viscosities (for
example, the viscosities of water and air differ by a factor of 1000), restriction to
τ = 1 imposes a serious limitation. However the problem can be remedied by using
a multiple relaxation time lattice Boltzmann algorithm [18].

The idea behind the multiple relaxation time lattice Boltzmann method [28–30]
is that different relaxation parameters are used for different linear combinations of
the distribution functions. The relaxation term 1

τ

[
fi − f eq

i

]
on the right hand side

of the lattice Boltzmann equation for fi (11.22) is replaced by
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M−1SM
[
f − f eq] , (11.34)

where the particle distributions fi and f eq
i are written as column vectors and M is

the matrix [28]

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1

0 −4 4 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1

0 0 0 1 −1 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0

0 0 0 −4 4 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 2 2 −1 −1 −1 −1 1 1 1 1 −2 −2 −2 −2 1 1 1 1

0 −4 −4 2 2 2 2 1 1 1 1 −2 −2 −2 −2 1 1 1 1

0 0 0 1 1 −1 −1 1 1 1 1 0 0 0 0 −1 −1 −1 −1

0 0 0 −2 −2 2 2 1 1 1 1 0 0 0 0 −1 −1 −1 −1

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 −1 1 −1 1

0 0 0 0 0 0 0 −1 −1 1 1 1 −1 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 1 1 1 −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Each of the rows in M is mutually orthogonal so the inverse follows easily as

M−1
i j = 1

∑
k M2

jk

M j i . (11.35)

The matrix M performs a change of basis. The new basis is designed to con-
tain more physically relevant variables. For example the first row corresponds to
the density n. Similarly, the fourth, sixth and eighth lines calculate the momentum
densities nux , nuy and nuz respectively. These are the conserved moments. The
10th, 12th, 14th, 15th, 16th lines correspond to the components of the symmetric,
traceless, viscous stress tensor 3σxx , σyy − σzz , σxy , σyz and σxz . The other terms
do not contain any real physical meaning and they are often called the ghost modes.

The matrix S in Eq. (11.34) is diagonal and contains the information about how
fast each variable relaxes at each time step. A useful choice is [28]

S = diag (0, 1, 1, 0, 1, 0, 1, 0, 1, ω, 1, ω, 1, ω, ω, ω, 1, 1, 1) , (11.36)
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where ω = 1/τ now determines the fluid viscosities ν and λ. Note that some of the
elements of S are zero. This choice is arbitrary as these modes correspond to the
conserved moments, for which M ji

[
fi − f eq

i

] = 0 ( j = 0, 3, 5, 7). Using unity for
the remaining, ghost, modes minimises the spurious velocities. This is an acceptable
choice because these modes do not correspond to physical variables.

For a system with variable viscosity it would seem necessary to recalculate the
collision matrix C = M−1SM at each lattice node and at each time-step. This is very
demanding computationally. One practical approach to overcome this difficulty is to
create a lookup table for various values of the viscosity.

11.4.2 Boundary Conditions

In a typical lattice Boltzmann simulation of a wetting problem there are two impor-
tant boundary conditions: the wetting boundary condition, given by Eq. (11.9), and
the no-slip boundary condition on the fluid velocity. While these boundary con-
ditions are simple conceptually, their implementation can be tricky for complex
geometries.

One way to implement the no-slip condition is a linear interpolation bounce back
rule proposed by Bouzidi et al. [31]. A schematic diagram illustrating this approach,
for the one dimensional case and the fi (r, t) distribution function, is shown in
Fig. 11.4a. In one dimension, there are two distribution functions, f1[k] and f2[k],
for a given lattice node k. When the node k is located to the right of a wall, as
shown in Fig. 11.4a, the function f ∗1 [k] is undetermined after the propagation step.
(To clarify notation we use ∗ to denotes distribution functions after propagation.)
To determine f ∗1 [k], Bouzidi et al. consider two cases. If the distance of the wall
from the fluid node, dwall, is less than half of a lattice spacing, f ∗1 [k] is chosen to be
a weighted average of f2[k] and f2[k+1]. If, however, dwall is more than half of a
lattice spacing f ∗1 [k] is interpolated from f2[k] and f1[k]:

dwall < 0.5 : f ∗1 [k] = f2[k] × 2dwall + f2[k + 1] × (1 − 2dwall) , (11.37)

dwall > 0.5 : f ∗1 [k] = f2[k]/(2dwall)+ f1[k] × (1 − 1/(2dwall)) .

The bounce back rules for the other lattice directions in higher dimensions, and for
the gi (r, t) distribution function, are applied in exactly the same way (with dwall
normalised to the lattice spacing in the relevant direction). This ensures that there
is no momentum flux parallel to the wall and that the no-slip boundary condition is
satisfied at the position of the wall. It was shown by Ginzburg and d’Humières [32]
that this no-slip boundary is accurate to the second order.

When the velocity of the wall is non-zero, for example when one wants to inves-
tigate a shear flow, the bounce back rule should be modified by adding the following
terms [31]:

dwall < 0.5 : � f = −2 nwi (ei · vwall)

�g = −2φ wi (ei · vwall)
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Fig. 11.4 Schematic diagram of the no-slip and wetting boundary conditions. (a) Link bounce
back rule. (b) Implementations of the wetting boundary condition

dwall > 0.5 :� f = −nwi/dwall (ei · vwall)

�g = −φ wi/dwall (ei · vwall)

where wi and ei are the weight coefficient and the lattice velocity direction of the
distribution functions before being bounced off the wall (e.g. in Eq. (11.37), this
would correspond to w2 and e2).

We next describe two ways to implement the wetting boundary condition. Equa-
tion (11.9) sets the value of the first derivative ∂φ/∂z |0 at the surface, but an esti-
mate of the second derivative is also required to calculate the equilibrium distri-
bution function (11.30). Our explanations refer to the labelling of lattice nodes in
Fig. 11.4b, for an interface perpendicular to the z-axis.
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In a first method, ∂φ/∂z is set to take the value given by Eq. (11.9) at the φ0
lattice node and ∂2φ/∂z2 is calculated by Taylor expanding φ5 with respect to φ0
and neglecting third and higher derivatives in φ,

∂2φ/∂z2|0= 2 × (φ5 − φ0 − ∂φ/∂z|0) . (11.38)

The main advantage of this implementation is it is not necessary to simulate any
solid nodes.

An alternative implentation of the wetting boundary condition is to assign appro-
priate density values to the solid nodes neighbouring the boundary, so that Eq. (11.9)
is satisfied. In the schematic diagram shown in Fig. 11.4c, this corresponds to assign-
ing3

φ6 = φ5 − 2 ∂φ/∂z|0 . (11.39)

The main advantage of this approach is that ∇2φ can be calculated in exactly the
same way at the surface as in the bulk. Furthermore, since all the nearest and next
nearest neighbour nodes of any surface site have appropriate density values, better
accuracy can be achieved by choosing the best stencil to calculate derivatives [26].

For more complex geometries, for example surfaces which do not follow a lattice
axis or corners, the wetting boundary conditions can be implemented in a similar
way. This typically gives a set of linear equations that must be solved simultane-
ously.

Finally we summarise an algorithm that we have found to work well for sim-
ulating the dynamics of the contact line in fluids where the two components have
different viscosities [18]:

Step 1: Calculate the density, concentration and velocity using the moments
described in Eqs. (11.21).

Step 2: Set the velocity of the boundary nodes to zero, or more generally to
the velocity of the wall. This reduces spurious velocities introduced by the
bounce-back boundary conditions.

Step 3: Implement the wetting boundary condition by setting the first and sec-
ond derivatives of the order parameter.

Step 4: Calculate the equilibrium distribution function and use the multiple
relaxation time lattice Boltzmann method to perform the collision step.

Step 5: Perform the streaming step with the bounce back rule at the boundaries
(Eq. (11.37)).

3 If the wall is located at the mid-link between φ5 and φ0, appropriate wetting boundary conditions
can be implemented by setting φ0 = φ5 − ∂φ/∂z|0.
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11.4.3 Other Lattice Boltzmann Algorithms

The lattice Boltzmann implementations we have described in this section are not
unique, and many authors have proposed alternative approaches to solve the equa-
tions of motion of multiphase fluids. For example:

1. Phase ordering can be imposed by using an effective interaction, rather than a
free energy [15, 33].

2. The thermodynamics leading to phase ordering can be included in the lattice
Boltzmann scheme as a forcing term, rather than as a correction to the pressure
in the second moment of the equilibrium distribution function [33, 34].

3. Different sets of velocity vectors can be defined [35, 36].
4. The forms of f eq, geq, and F that satisfy the hydrodynamic equations of motion

in the continuum limit are not unique [27, 35, 36]. It is useful to exploit this to
minimise spurious currents [26].

5. There are many ways of implementing the hydrodynamic boundary conditions
[32, 37–39].

11.5 Smooth Walls

In the next three sections, we shall describe a number of examples where lattice
Boltzmann simulations have proved successful in providing insights to wetting phe-
nomena. We start with two problems where the solid boundaries are assumed to
be flat and homogeneous. Firstly, we discuss the capillary penetration of a wetting
fluid [40], and secondly, we look at the classical problem of fingering instabilities
in narrow channels [41]. These are both relevant in many industrial and biolog-
ical systems, and they play an increasingly important role in many microfluidic
devices. We then explain, in Sects. 11.6 and 11.7 how chemical and topographical
heterogeneities on a surface may lead to complex drop morphologies that depend
sensitively on the details of the surface patterning, as well as the path by which the
system is prepared4.

11.5.1 Capillary Filling

When a liquid is brought into contact with a small capillary tube, it will penetrate
the capillary provided that this lowers its surface energy i.e. when the capillary is
hydrophilic with respect to the liquid. The classical analysis of the dynamics of

4 Some of the results in Sects. 11.5, 11.6, and 11.7 were obtained using a lattice Boltzmann algo-
rithm for a one-component, liquid–gas system rather than a two-component fluid. Details of this
algorithm are given in [39, 42]. In the one-component model contact line slip occurs because of
evaporation and condensation, which is rapid because of the unphysically wide interface. This can
lead to unphysical dynamics [43–45].



256 H. Kusumaatmaja and J.M. Yeomans

capillary filling is due to Lucas [46] and Washburn [47]. Consider a capillary of
height h with an infinite reservoir of liquid of dynamic viscosity η = nν at one
end. Assuming that the penetrating liquid adopts a parabolic profile, it will fill the
capillary with a mean velocity

v̄ = − h2

12η

dp

dx
(11.40)

where dp
dx is the pressure gradient that sets up the flow. The driving force for the

filling is provided by the decrease in free energy as the fluid wets the walls or,
equivalently, by the Laplace pressure across the curved liquid–gas interface. Hence

dp

dx
= − γ

Rl
(11.41)

where R = h/2 cos θa is the radius of curvature of the interface and l is the length
of liquid in the tube. Eliminating dp

dx from Eqs. (11.40) and (11.41) and identifying
v̄ = dl/dt gives the Lucas-Washburn law

l = (σLGh cos θa/3η
)1/2

(t + t0)
1/2 (11.42)

where t0 is an integration constant.
In Eq. (11.42) it is appropriate to use, not the static, but the advancing contact

angle θa , as this controls the curvature of the interface and hence the Laplace pres-
sure. The Lucas-Washburn law assumes that there is no resistance to motion from
any fluid already in the capillary. Therefore it applies only if the dynamic viscosity
of the invading phase ηA is large compared to that of the displaced fluid ηB . If the
dissipation in the displaced fluid is taken into account the modified Lucas-Washburn
law becomes

ηA
l2

2
+ ηB

(

Ll − l2

2

)

= σLGh cos θa

6
(t + t0) (11.43)

where L is the total length of the capillary.
Numerical results showing capillary filling of a smooth channel are presented in

Fig. 11.5. The plot is for a channel of length L = 640, infinite width and height
h = 50. Reservoirs (480 × 200) of components A and B are attached at each end
of the capillary. The two reservoirs are connected to ensure that they have the same
pressure. The parameters of the model are chosen so that θe = 60◦, γ = 0.0188,
ηA = 0.83, ηB = 0.03 and M = 0.05. The solid line in Fig. 11.5a is a fit to the
Lucas-Washburn law using the measured value of the advancing contact angle and
correcting for the small viscosity of the displaced B-component. The fit is excellent,
except very close to the beginning of the simulation, where deviations due to inertial
effects and a non-Poiseuille flow profile are expected.
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Fig. 11.5 (a) Distance a fluid–fluid interface moves along a capillary as a function of time. Circles
are the lattice Boltzmann simulation results. The solid line is a fit to the Lucas-Washburn law
using the measured advancing contact angle and correcting for the small viscosity of the displaced
component. (b) The advancing contact angle of the liquid–liquid interface as a function of the
capillary number. The crosses are simulation results and the solid lines are linear fits of cos θa to
the capillary number [48]. Reprinted figures with permission from Kusumaatmaja, [40] and Pooley,
[18]. Copyright (2008) by the American Physical Society

To lowest order in the capillary number, Ca= v I ν/γLG where v I is the interface
velocity, the advancing contact angle is related to the equilibrium angle and the
capillary number by [48]

cos θa = cos θeq − Ca log(K L/ ls) (11.44)

where K is a constant, L is the length scale of the system and ls is the effective slip
length at the three phase contact line. Figure 11.5b shows the expected linear depen-
dence, and that the advancing contact angle tends to the correct value as Ca → 0;
We obtain θa |Ca→0 = 58◦, 60◦ and 60◦ for M = 0.05, 0.1 and 0.5 respectively.
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Note that the slope of the graph, and hence the slip length, depend on the mobility
M . This occurs because in diffuse interface models of binary fluids the contact line
singularity is relieved by inter-diffusion of the two fluid components [17].

11.5.2 Viscous Fingering

We have just considered the rate at which a viscous fluid displaces a liquid of low
viscosity when the driving force is the hydrophilic nature of the channel walls.
In such a case, the fluid–fluid interface is stable and has the form of a meniscus.
The situation is, however, more complicated when a less viscous fluid is driven
to displace a more viscous one, as the interface can now be unstable. If the fluids
are moving in the narrow gap between two parallel plates this instability gives rise
to the well-known Saffman-Taylor [49] fingers. A typical experiment showing the
development of a finger is shown in Fig. 11.6 [50].

Usually the Saffman-Taylor instability is treated as a two dimensional problem,
taking an average over the distance between the bounding plates. However the third
dimension can affect the way in which the finger forms. Ledesma-Aguilar et al. [41]
studied the three dimensional motion, using binary lattice Boltzmann simulations,
and found that there are two distinct regimes. If the contact line is able to keep up
with the leading interface of the finger (which will happen, at higher Peclet numbers,
if the diffusion is sufficiently strong [51]), the fluid-fluid interface retains the form
of a meniscus in the direction, z say, between the plates and it is possible to treat

Fig. 11.6 Time evolution of a Saffman-Taylor finger. Reprinted with permission from Tabeling
et al. [50, pp. 67–82]. Copyright 1987 Cambridge University Press
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Fig. 11.7 Saffman-Taylor instabilities in the (a) meniscus and (b) surface film regimes. (a) When
diffusion is sufficiently strong (high Peclet number), the fluid–fluid interface retains the form of a
meniscus in the direction between the plates and the problem is essentially two-dimensional. (b) At
low Peclet number, the contact line falls behind and a layer of the displaced phase is formed close
to the plates. This means that the advancing fluid forms a finger-like structure in both the x-y and
the x-z planes (We thank Ioannis Zacharoudiou for these figures.)

the problem two-dimensionally. At low Peclet numbers the contact line falls behind
and a layer of the displaced phase is formed close to the plates. This means that
the advancing fluid forms a finger-like structure in both the x-y and the x-z planes.
Simulation results showing the shape of the interface in the meniscus and surface
film regime are shown in Fig. 11.7.

11.6 Chemical Patterning

We now describe examples where a lattice Boltzmann approach has been used to
model drops spreading on chemically patterned surfaces. This is particularly excit-
ing at present because it is becoming increasingly feasible to fabricate surfaces with
heterogeneities in a controlled and reproducible manner, allowing surface patterning
to be used as a part of a designer toolbox to control the shapes and dynamics of
small liquid drops [8, 52, 53]. Variation in the surface wettability can be imple-
mented easily in the lattice Boltzmann simulations by applying different values of
the phenomenological parameter h in Eq. (11.13) at different surface lattice sites.
However, it is important to note that the typical length scale of the variation in h has
to be larger than the interface width of the model.

We first look at a drop spreading on a chemically patterned surface. For a homo-
geneous surface, the final state is a spherical cap with a contact angle equals to the
Young angle. This is not the case for heterogeneous surfaces. Depending on the
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initial conditions of the system, the drop can take several metastable states, with
shapes that may vary considerably from spherical [8, 52–54].

We then consider two examples where simulations suggest how chemical pat-
terning might be applied to solve industrial problems. In the first [55], we show
how a (relatively) hydrophobic grid can be used to alleviate mottle [56] in ink-jet
printing. In the second example, we demonstrate that chemical patterning can be
used to control drop size and polydispersity [57].

11.6.1 Spreading on a Chemically Striped Surface

Figure 11.8 compares experiments and simulations of drops on a chemically pat-
terned substrate. The surface is lined with relatively hydrophilic and hydropho-
bic stripes with contact angles 5◦ and 64◦ and widths 26 and 47 µm respectively.
Figure 11.8a shows the final state of drops jetted onto the surface. The drops’
volumes were chosen so that their final diameters were comparable to the stripe
width. It is apparent from the figure that the drops can take two final configurations,
“diamond”-like and “butterfly”-like.

Figure 11.8b shows simulations of the same system, with parameters chosen so
that length scales, surface tension, contact angles, fluid viscosity and liquid density
correspond to those of the experiment. Again the diamond and butterfly configura-
tions are observed at long times. The simulations allowed us to follow the dynamics
of the liquid drops’ motion in detail. In particular, we found that the final drop
shape is selected by the initial impact position and velocity. If the drop can touch
two neighbouring hydrophilic stripes as it spreads, it will reach the butterfly config-
uration; if not it will retract back to the diamond pattern, spanning a single stripe.

(a)
(b)

Fig. 11.8 Drops spreading on a chemically striped surface. (a) Scanning electron micrographs of
ink-jetted drops. (b) Numerical simulations of drops hitting the surface at various impact points,
indicated by encircled crosses. For each drop the faint lines represent the extent of the base of the
drop as it evolves and the bold line depicts its final shape. Relatively hydrophilic and hydrophobic
stripes appear dark and pale, respectively. Reprinted with permission from Léopoldès et al. [54,
pp. 9818–9822]. Copyright 2003 American Chemical Society
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This can be seen in Fig. 11.8b, where the faint lines show the time evolution of
the base of the drop and the solid lines its final shape. Both states are free energy
minima but one of the two is a metastable minimum: which one is sensitive to the
exact choice of the physical parameters.

11.6.2 Using Chemical Patterning to Control Drop Positioning

An inkjet printed image is produced by jetting an array of micron-scale liquid drops
onto a surface. To achieve a solid colour the aim is that the drops, which are jetted
at a distance apart comparable to their diameter, should coalesce to form a uniform
covering of ink. However, in practice, irregular coalescence due to surface imperfec-
tions and randomness in the positions of the jetted drops can dominate. This leads
to the formation of large, irregular drops with areas of bare substrate between them
as shown in the upper part of Fig. 11.9b. Such configurations lead to poor image
quality, called mottle [56].

Figure 11.9a shows that irregular coalescence can be overcome by using a grid
of (relatively) hydrophobic chemical stripes. Here the drop has an initial radius of
15 µm and the substrate has contact angle 5◦. The hydrophobic grid has stripes of
width 6 µm, separated by 66 µm, and contact angle 65◦. The simulation shows that
the drop is confined even when its initial point of impact is close to the corner of a
square.

Results from an experiment demonstrating a similar effect are shown in Fig. 11.9b.
The ink drops have a radius R = 30 µm and they are jetted in a 50 µm × 50 µm
array. In the upper part of the figure there is no hydrophobic grid and a mottled final
configuration is observed. The lower part of Fig. 11.9b carries hydrophobic stripes
of 5 µm width forming squares of side 40 µm. The drops now form a more regular
pattern determined by the grid.

(a)
(b)

Fig. 11.9 Control of drop position using chemical patterning. (a) Time evolution of a drop jetted
onto a substrate patterned by a grid. Relatively hydrophobic and hydrophilic areas are light grey
stripes (65◦) and dark grey areas (5◦) respectively. (b) Inkjet drops jetted onto a substrate and
cured: (top) homogeneous surface and (bottom) surface patterned by a relatively hydrophobic grid.
Reprinted with permission from Dupuis et al. [55]. Copyright 2005 American Institute of Physics



262 H. Kusumaatmaja and J.M. Yeomans

11.6.3 Using Chemical Patterning to Sort Drop by Size

It is often desirable in microfluidic devices to be able to manipulate and control the
motion of liquid drops (see [1] and the references therein). Here we demonstrate a
particular example where chemical patterning may be used to sort drops according
to their size. The schematic diagram of the system is shown in Fig. 11.10. The sur-
face is patterned with a rectangular grid of hydrophilic (relative to the background)
stripes, and a drop is input to the device at A and subject to a body force at an
angle < 45◦ to the x-axis.

The path taken by the drop through the device depends on the drop contact angles
with the substrate and on the strength of the body force. It also, of particular rele-
vance to us here, depends on the width of the stripes relative to the drop radius.
Figure 11.11a–c show simulations of the paths of drops of initial radius R = 25, 26
and 29 moving through such a device. In cases where the drops are confined in the
δ1 stripe, they will move in the x-direction from A to the cross-junction B, where
their paths may diverge. In order for a drop to move in the y-direction, the capillary
force in this direction must be large enough to overcome the sum of the capillary
force and the excess external body force in the x-direction (recall ax > ay). This is
where the asymmetry of the drop shape comes into play. As the volume of the drop
is increased, a larger fraction of it overhangs the stripes and hence a larger fraction
will interact with the hydrophilic stripe along the y-direction at the junction. This
increases the capillary force along y and means that larger drops (e.g. R > 26)
will move in the y-direction to point C , whereas smaller drops (e.g. R = 25) will
continue to move along x . By choosing the stripes along the y direction to be of
equal widths, but those along x to increase in width with increasing y, it is possible
to move the larger drops further along y. As one can see from Fig. 11.11, the drops

Fig. 11.10 Schematic diagram of a drop sorter. The grey stripes on the surface are hydrophilic
with respect to the background. δ labels the widths of the stripes and a the imposed acceleration.
The arrows show possible paths of a drop through the device. Reprinted with permission from
Kusumaatmaja and Yeomans [57, pp. 956–959]. Copyright 2007 American Chemical Society
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Fig. 11.11 Paths taken by drops of radius (a) R = 25, (b) R = 26, and (c) R = 29 through the drop
sorter. δ1 = 20, δ2 = 30, δ3 = 40, and δV = 20. Reprinted with permission from Kusumaatmaja
and Yeomans [57, pp. 956–959]. Copyright 2007 American Chemical Society

of initial radius R = 26 and R = 29 are finally confined in the second and third
stripe respectively.

These simulations suggest that by increasing the number of stripes and carefully
controlling their widths it may be possible to sort polydisperse drops into collec-
tions of monodisperse drops. Two other parameters, the wettability contrast and the
external body force, could also be adjusted to fine-tune the device.

11.7 Topographical Patterning: Superhydrophobic Surfaces

Superhydrophobic surfaces are a prime example of how heterogeneities can alter the
wettability of a surface. On a smooth hydrophobic surface, the highest contact angle
that can be achieved is of order 120–130◦ [6, 58] attainable for, for example, a water
drop spreading on fluorinated solids. When the hydrophobic surface is made rough,
however, higher contact angles are possible. Several natural materials exhibit this,
so-called, superhydrophobicity. Examples include the leaves of the lotus plant [2],
butterfly wings [4], water strider legs [59] and duck feathers [60]. Many research
groups have now fabricated superhydrophobic surfaces by patterning hydrophobic
surfaces with regular posts [58, 61, 62] or with nano-hairs [63]. Indeed superhy-
drophobicity is a surprisingly robust phenomenon, which requires neither careful
patterning nor intrinsic hydrophobicity of the surface material [64, 65].
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It is possible to distinguish two ways in which a drop can behave on a super-
hydrophobic surface. When the drop is suspended on top of the surface roughness,
as shown in Fig. 11.12b, the substrate is effectively a composite of liquid–solid
and liquid–gas areas. We shall use Φ to denote the area fraction of the liquid–solid
contact. If the length scale of the patterning is much smaller than the drop size, the
effective liquid–solid surface tension is then Φ γL S + (1−Φ) γLG , while the effec-
tive gas–solid surface tension is Φ γGS . Substituting these into the Young equation
(11.1), gives the Cassie-Baxter formula [60]

cos θCB = Φ cos θe − (1 −Φ) . (11.45)

This configuration is called the suspended or Cassie-Baxter state.
If, on the other hand, the liquid drop fills the space between the posts, as shown

in Fig. 11.12b, the drop is said to lie in the collapsed or Wenzel state. Both the

Fig. 11.12 Final states of a spreading drop on (a) a hydrophobic surface (b) a superhydrophobic
surface with the drop suspended (c) a superhydrophobic surface with the drop collapsed. Reprinted
with permission from Dupuis and Yeomans [39, pp. 2624–2629]. Copyright 2005 American Chem-
ical Society
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liquid–solid and gas–solid contact areas are increased by a roughness factor r and
the macroscopic contact angle is therefore given by the Wenzel equation [66]

cos θW = r cos θe . (11.46)

Figure 11.12 shows simulation results for the final state of a drop of radius
R = 30 which has spread on a smooth (Fig. 11.12a) and a superhydrophobic surface
(Fig. 11.12b and c). A contact angle θe = 110◦ is set on every surface site. The
resultant macroscopic contact angles in the simulations are 110◦, 156◦ and 130◦
for the flat surface, suspended drop and collapsed drop respectively. The values
for the suspended and collapsed drop are compatible with the ones obtained from
the Cassie-Baxter and Wenzel formulae, but they are not exactly the same. There
are two reasons for this. Firstly, the drop only covers a small number of posts in
the simulations. Secondly, the surface inhomogeneities result in the existence of
multiple local free energy minima, not just that prescribed by the Cassie-Baxter or
Wenzel formulae. This can cause pinning of the contact line and lead to values of
contact angles which depend not only on the thermodynamic variables describing
the state of the drop, but also on the path by which that state was achieved. This
phenomenon, contact angle hysteresis, is well known [5, 67–70], but has suprising
consequence for drops on superhydrophobic substrates. We now describe these in
more detail.

11.7.1 Contact Line Pinning and Contact Angle Hysteresis

Both chemical and topographical surface patterning may pin the contact line. This
can results in variation in the value of the contact angle around a drop. It can also
lead to hysteresis, a dependence of the drop shape on its dynamical history. A useful
approach to quantify contact angle hysteresis is to slowly increase the volume of
a drop until it starts to spread. The contact angle at this moment is termed the
advancing angle. Similarly, if the drop volume is slowly reduced, it will start to
retreat across the surface at the receding contact angle. The difference between the
advancing and receding angles is termed the contact angle hysteresis. However, it
should be cautioned that this is not a unique definition; the advancing and receding
angles will depend on the direction, relative to the surface patterning, in which they
are measured. Moreover the difference in contact angles between the advancing
and receding edge of a moving drop will not necessarily be the same as the value
measured quasistatically.

This concept of pinning, and of the resulting advancing and receding contact
angles, is illustrated in Fig. 11.13 for a drop crossing a ridge. For the contact line
to advance, it has to wet the sides of the grooves (Fig. 11.13a) which, according
to the Gibb’s criterion [71], occurs when the contact angle is locally equal to the
Young angle. Therefore the advancing angle (measured with respect to the surface)
is θa = θe + 90◦ for rectangular ridges and, more generally θa = θe + α [70–72]
for a surface of maximum inclination α. Similarly, for the contact line to recede,
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Fig. 11.13 Graphical illustration of the pinning of an (a) advancing and (b) receding contact line
on a surface patterned with square ridges

the drop has to dewet the sides of the posts (Fig. 11.13b). This is possible when
θr = θe − 90◦ for rectangular ridges and θr = θe − α [70–72] in general.

Applying these criteria in the context of a two-dimensional drop on a super-
hydrophobic surface patterned with square posts gives surprising results. For the
suspended state θa = 180◦, the upper limit for the value of the contact angle, and
θr = θe. For the collapsed drop θa = 180◦ and θr = θe − 90◦. In three dimensions
we obtain the same qualitative behaviour, though there may be a decrease in the
value for the advancing angle and an increase in that for the receding angle because
of curvature contributions to the free energy [73].

We now consider Boltzmann simulations [73], showing that they are able to cap-
ture contact line pinning and hysteresis. Figure 11.14a and b show the simulation
results for a cylindrical (two-dimensional) suspended drop on a superhydrophobic
surface comprising regularly spaced posts. In this set of simulations, we used post
width = 7, post separation = 13, and an equilibrium contact angle θe = 120◦. Even
after the drop volume was increased quasistatically by a factor ∼ 4, and the drop
contact angle had reached 162◦, no interface depinning transition was observed.
After this point, it was no longer possible to continue running the simulations, as
the drop filled the simulation box. As the drop volume was slowly decreased, how-
ever, the contact line depinned and jumped back across the posts at θr = 120◦ as
predicted analytically.

We now discuss hysteresis for a cylindrical collapsed drop, where the gaps
between the posts are filled with liquid. When the drop volume is increased, the
drop behaves in the same way as for the suspended state and no contact line motion
between posts is observed during the simulation. This is because locally, in the
vicinity of the contact line, the drop has no information as to whether it is in the
collapsed or suspended state. Typical behavior as the drop volume is decreased is
shown in Fig. 11.14c. As for the suspended drop, the contact line is pinned at the
outer edge of a post until θ = θe. It then retreats smoothly across the post. However,
unlike the suspended case, the contact line is pinned again, at the inner edge of the
posts. At this point, the drop is found to recede at 32◦, consistent with the expected
analytical result θe − 90◦ = 30◦.

Even in this simple two-dimensional model, the contact angle hysteresis is much
larger for the collapsed state than for the suspended state. This result has an impor-
tant consequence that, although the static contact angle is increased in both the
Wenzel and the Cassie-Baxter states, their dynamical behaviors are very different.
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Fig. 11.14 Drop shape as a function of time from lattice Boltzmann simulations of a cylindrical
drop (a-b) suspended and (c) collapsed on a topographically patterned surface. (a) The advancing
contact line remains pinned during the simulation. (b) The receding contact line is pinned until
θr ∼ 120◦. (c) In the collapsed state, the receding contact line is pinned strongly at the inner edge
of the posts. The position of the contact lines can be seen more clearly in the insets. Reprinted with
permission from Kusumaatmaja and Yeomans [73, pp. 6019–6032]. Copyright 2007 American
Chemical Society

A liquid drop in the suspended state is very mobile, while that in the collapsed state
is very immobile [6, 58].

11.7.2 The Slip Length of Superhydrophobic Surfaces

Another aspect where the dynamics of fluids moving across superhydrophobic sur-
faces differs between the suspended and the collapsed states is in the value of the slip
length. Consider a single phase moving across a solid surface: the slip length, which
is defined as the ratio of slip velocity to shear rate at the wall, is a measure of the
drag of the surface on the fluid. Slip lengths are typically of order a few nanometers
and therefore can be taken as zero in a macroscopic channel (the no-slip boundary
condition). However the degree of slip becomes increasingly important as chan-
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nels are miniaturised. Recall that the average velocity of a liquid flowing through a
channel v ∝ h2∇P , where h is the height of the channel and ∇P is the pressure
gradient that sets up the flow. As channel sizes are reduced an increasingly large
pressure gradient is needed for a given throughput velocity. This can be alleviated
by increasing the slip length at the channel walls.

For a smooth solid surface, the slip length increases as the wettability of the
surface decreases [74]. However, its magnitude remains of order nanometers and
therefore is of no real significance except for tiny channels. In this subsection, we

Fig. 11.15 (a) The geometry used to simulate flow over a superhydrophobic surface. The simula-
tion parameters were: h = 14, L y = 45, Lx = 90, and θe = 160◦. (b) Mass flow rate (normalised
to the collapsed state) as a function of the effective roughness a/(Lx − a). inset: Momentum
profile for a suspended and a collapsed state. Both momentum profiles are shown for x/Lx = 0.1
and normalised to their center channel values. The straight lines correspond to extrapolations of
the profiles to beyond the boundaries. Adapted figures with permission from Sbragaglia, et al. [77].
Copyright (2006) by the American Physical Society
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will present results that show that a slip length of the order of microns might be
induced by trapping the flowing fluid in the suspended state [75, 76]. The crucial
idea is that the substrate acts as a composite of liquid–gas (perfect slip) and liquid–
solid (no slip) areas and hence, the larger the liquid–gas section, the larger the slip
length.

Results from simulations by Sbragaglia et al. [77] are shown in Fig. 11.15. They
found that there is a critical roughness above which the mass flow rate through a
microchannel increases significantly. This is because the fluid is in the suspended
or collapsed state, above or below the critical roughness. The inset in Fig. 11.15
depicts the typical velocity profiles in the two states.

Further research [78, 79], however, has found that the shape of the liquid–gas
interface plays an important role in determining the value of the slip length. The
curvature of this interface leads to extra viscous dissipation which negates any
advantage it might provide in the first place. Designing surface geometries where
the slip length can be increased remains a major challenge.

11.7.3 The Transition from the Suspended to the Collapsed
State on Superhydrophobic Surfaces

Given that the suspended and collapsed states have different dynamical behaviours,
it is important to understand how and when the collapsed and suspended states are
metastable or stable and to describe mechanisms for transitions between them.

For a given drop volume, the drop free energy increases with contact angle. This
implies that the Cassie-Baxter state has the lowest energy when θCB < θW and,
similarly, that the Wenzel state is the ground state for θW < θCB. However, in many
cases, both states are local minima of the free energy and there is a finite energy
barrier opposing the transition between them. The origin of the energy barrier is
pinning of the contact line, similar to that discussed in Sect. 11.7.1. For a transition
from the suspended to the collapsed state to occur, the contact angle formed by the
liquid drop on the sides of the posts has to become equal to the advancing contact
angle.

There are several ways in which the collapse transition can be induced. Firstly,
one can apply an external pressure or force [39]. Alternatively, the work required to
overcome the energy barrier may be provided by a finite impact velocity of the drop
[80, 81].

The collapse transition can also be initiated by reducing the volume of the drop
by, for example, evaporation. This increases the Laplace pressure inside the drop
(recall that ΔP ∝ 1/R where R is the drop radius) and hence the curvature of the
interface beneath it. For short posts the interface then touches the surface beneath
the posts and the transition can take place. For longer posts collapse occurs when
the interface curvature becomes sufficiently large that the interface reaches the equi-
librium contact angle on the post sides, and hence depins [82, 83].
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Fig. 11.16 Evolution of a cylindrical drop on a square array of posts of width a = 3, spacing b = 9
and height l = 15. (a–c) Evolution before collapse showing depinning of the receding contact line
(note the scale change between (b) and (c)). (d–f) Motion of the collapsing drop: (d) cross sections
in the plane bisecting the posts. (e) Same times as (d), but in the plane bisecting the gap between
the posts. (f) Cross sections in the plane bisecting the gap, but with l = 45 to enable the collapse
to be followed to later times. Adapted figures with permission from Kusumaatmaja et al. [82]
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Figure 11.16 shows simulations indicating how the collapse transition proceeds
for long posts as the liquid evaporates slowly. As the drop volume decreases it pen-
etrates further into the gaps between the posts. However, movement down the posts
is preempted by movement across the surface. The drop depins to lie on less posts,
and the penetration is reduced. This continues until the drop lies on only three posts,
when it eventually collapses.

It is useful to note that, to obtain the results in Fig. 11.16, we simulated a cylin-
drical drop on a square array of posts rather than a full, three dimensional, spherical
drop. This allowed us to exploit the translational symmetry to reduce the system
size to the repeat distance of the lattice in the third dimension, while preserving
the important physics, in particular a two dimensional curvature of the interface
between the posts.

11.8 Discussion

In this chapter we have concentrated on the use of lattice Boltzmann algorithms to
study wetting and spreading. There are many other applications and areas for future
research. We give some examples, inevitably selective, of interesting problems:

1. Different choices for the free energy can allow for new physics. A fruitful exten-
sions is to include curvature terms which give lamellar phases [84] and vesicles5

[85, 86].
2. Algorithmic advances, in particular those aimed at greater stability and the reduc-

tion of spurious velocities, will improve the ease of implementation of lattice
Boltzmann codes. For example, hybrid algorithms, where the Navier-Stokes
equation for the velocity field is solved using a lattice Boltzmann approach,
but the convection-diffusion equation is treated using conventional finite differ-
ence techniques, are being developed. There has been work to develop the use
of non-uniform grids [87, 88]. Entropic lattice Boltzmann models, which are
unconditionally stable, are also possible [89, 90].

3. The lattice Boltzmann evolution equation can be viewed as the discretisation of
a simplified Boltzmann equation and there is discussion as to whether it includes
physics beyond that of the Navier Stokes equations [91–93]. Recent work has
been successful in matching lattice Boltzmann and molecular dynamics simula-
tions of simple fluids [94].

4. Including thermal fluctuations in a multiphase lattice Boltzmann method is still a
major challenge [95, 96]. A simple approach is to include momentum-conserving
random noise in the stress tensor. However, it was recently pointed out [95] that
this method breaks down on small length scales.

5 This work is in the context of phase field models, but the same free energy could be used within
a binary lattice Boltzmann simulation.
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5. The wetting and bounce back boundary conditions can be extended to cases
where the solid surfaces themselves are mobile [31, 37]. The algorithm can
then be used to study the dynamics of colloids in single- and multi-phase fluids
[37, 97, 98].

6. A recent algorithm, coupling a lattice Boltzmann solvent to a molecular dynam-
ics simulation of polymers is proving an exciting new tool for polymer hydrody-
namics [99, 100]. Lattice Boltzmann has also been coupled to elastic filaments
and membranes [101, 102]

7. Because lattice Boltzmann can handle tortuous boundaries it is particularly
suited to simulating flow in porous materials [103–105] and to solving realistic
models of blood flow [106, 107].

8. Lattice Boltzmann algorithms can be used to solve the equations of motion of
more complex fluids, such as liquid crystals [108] and biologically active mate-
rials [109]. They provide a natural way of incorporating viscoelasticity.

The hydrodynamic equations of motion, together with an equilibrium corre-
sponding to the minimum of a free energy, provide a realistic and elegant model
of the wetting and spreading properties of multiphase fluids. Lattice Boltzmann
algorithms are an effective tool to solve the continuum equations, helping us to
understand wetting problems too complicated to be tractable analytically, and to
motivate and interpret experiments.
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