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Abstract. In this paper, we consider the problem of representing graphs by poly-
gons whose sides touch. We show that at least six sides per polygon are necessary
by constructing a class of planar graphs that cannot be represented by pentagons.
We also show that the lower bound of six sides is matched by an upper bound of
six sides with a linear time algorithm for representing any planar graph by touch-
ing hexagons. Moreover, our algorithm produces convex polygons with edges
with slopes 0, 1, -1.

1 Introduction

For both theoretical and practical reasons, there is a large body of work considering
how to represent planar graphs as contact graphs, i.e., graphs whose vertices are rep-
resented by geometrical objects with edges corresponding to two objects touching in
some specified fashion. Typical classes of objects might be curves, line segments or
isothetic rectangles, and an early result is Koebe’s theorem [20], which shows that all
planar graphs can be represented by touching disks.

In this paper, we consider contact graphs whose objects are simple polygons, with
an edge occurring whenever two polygons have non-trivially overlapping sides. As with
treemaps [3], such representations are preferred in some contexts [4] over the standard
node-link representations for displaying relational information. Using adjacency to rep-
resent a connection can be much more compelling, and cleaner, than drawing a line
segment between two nodes. For ordinary users, this representation suggests the famil-
iar metaphor of a geographical map.

It is clear that any graph represented this way must be planar. As noted by de Frays-
seix et al. [7], it is also easy to see that all planar graphs have such representations for
sufficiently general polygons. Starting with a straight-line planar drawing of a graph,
we can create a polygon for each vertex by taking the midpoints of all adjacent edges
and the centers of all neighboring faces. Note that the number of sides in each such
polygon is proportional to the degree of its vertex. Moreover, these polygons are not
necessarily convex; see Figure 1.

It is desirable, for aesthetic, practical and cognitive reasons, to limit the complex-
ity of the polygons involved, where “complexity” here means the number of sides in
the polygon. Fewer sides, as well as wider angles in the polygons, make for simpler
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(a) (b)

(c)

Fig. 1. Given a drawing of a planar graph(a), we apportion the edges to the endpoints by cutting
each edge in half (b), and then apportion the faces to form polygons (c).

and cleaner drawings. In related applications such as floor-planning [24], physical con-
straints make undesirable polygons with very small angles or many sides. One is then
led to consider how simple can such representations be. How many sides do we really
need? Can we insist that the polygons be convex, perhaps with a lower bound on the size
of the angles or the edges? If limiting some of these parameters prevents the drawings
of all planar graphs, which ones can be drawn?

1.1 Our Contribution

This paper provides answers to some of these questions. Previously, it was known
[12,24] that triangulated planar graphs can be represented using non-convex octagons.
On the other hand, it is not hard to see that one cannot use triangles (e.g., K5 minus one
edge cannot be represented with triangles).

Our main result is showing that hexagons are necessary and sufficient for represent-
ing all planar graphs. For necessity we construct a class of graphs that cannot be rep-
resented using five or fewer sides. For sufficiency, we describe a linear-time algorithm
that produces a representation using convex hexagons all of whose sides have slopes 1,
0, or -1. Finally, we describe an alternative algorithm for generating convex hexagonal
representations for general planar graphs that leads to O(n) × O(n) drawing area. Note
that if the input graph is triangulated, our output corresponds to a tiling of the plane
with convex heagons; otherwise, there might be convex holes present.

1.2 Related Work

As remarked above, there is a rich literature related to various types of contact graphs.
There are many results considering curves and line segments as objects (cf. [13,14]). For
closed shapes such as polygons, results are rarer, except for axis-aligned (or isothetic)
rectangles. In a sense, results on representing planar graphs as “contact systems” can
be dated back to Koebe’s 1936 theorem [20] which states that any planar graph can be
represented as a contact graph of disks in the plane.
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The focus of this paper is side-to-side contact of polygons. The algorithms of He [12]
and Liao et al. [24] produce contact graphs of this type for triangulated graphs, with
nodes represented by the union of at most two isothetic rectangles, thus giving a polyg-
onal representation by non-convex octagons.

We now turn to contact graphs using isothetic rectangles, which are often referred to
as rectangular layouts. This is the most extensively studied class of contact graphs, due
in part to its relation to application areas such as VLSI floor-planning [22,31], archi-
tectural design [28] and geographic information systems [10], but also due to the math-
ematical ramifications and connections to other areas such as rectangle-of-influence
drawings [25] and proximity drawings [1,16].

Graphs allowing rectangular layouts have been fully characterized [26,30] with lin-
ear algorithms for deciding if a rectangular layout is possible and, if so, constructing
one. The simplest formulation [4] notes that a graph has a rectangular layout if and
only if it has a planar embedding with no filled triangles. Thus, K4 has no rectangular
layout. Buchsbaum et al. [4] also show, using results of Biedl et al. [2], that graphs that
admit rectangular layouts are precisely those that admit a weaker variation of planar
rectangle-of-influence drawings.

Rectangular layouts required to form a partition of a rectangle are known as rect-
angular duals. In a sense, these are “maximal” rectangular layouts; many of the results
concerning rectangular layouts are built on results concerning rectangular duals. Graphs
admitting rectangular duals have been characterized [11,21,23] and there are linear-time
algorithms [11,19] for constructing them.

Another view of rectangular layouts arises in VLSI floorplanning, where a rectangle
is partitioned into rectilinear regions so that region adjacencies correspond to a given
planar graph. It is natural to try to minimize the complexities of the resulting regions.
The best known results are due to He [12] and Liao et al. [24] who show that regions
need not have more than 8 sides. Both of these algorithms run in O(n) time and produce
layouts on an integer grid of size O(n) × O(n), where n is the number of vertices.

Rectilinear cartograms can be defined as rectilinear contact graphs for vertex-weighted
planar graphs, where the area of a rectilinear region must be proportional to the weight of
its corresponding node. Even with this extra condition, de Berg et al. [6] show that recti-
linear cartograms can always be constructed in O(n log n) time, using regions having at
most 40 sides. The resulting regions, however, are highly non-convex and can have poor
aspect ratio.

Although not considered by the authors, an upper bound of six for the minimum
number of sides in a touching polygon representation of planar graphs might be ob-
tained from the vertex-to-side triangle contact graphs of de Fraysseix et al. [7]. The top
edge of each triangle can be converted into a raised 3-segment polyline, clipping the tips
of the triangles touching it from above, thereby turning the triangles into side-touching
hexagons. It is likely to be difficult to use this approach for generating hexagonal repre-
sentations as it involves computing the amounts by which each triangle may be raised
so as to become a hexagon without changing any of the adjacencies. Moreover, by the
nature of such an algorithm, there would be many “holes,” potentially making such
drawings less appealing, or requiring further modifications to remove them.
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1.3 Preliminaries

Touching Hexagons Graph Representation: Throughout this paper, we assume we
are dealing with a connected planar graph G = (V, E). We would like to construct a
set of closed simple polygons R whose interiors are pairwise disjoint, along with an
isomorphism R : V → R, such that for any two vertices u, v ∈ V , the boundaries of
R(u) and R(v) overlap non-trivially if and only if {u, v} ∈ E. For simplicity, we adopt a
convention of the cartogram community and define the complexity of a polygonal region
as the number of sides it has. We call the set of all graphs having such a representation
where each polygon in R has complexity 6 touching hexagons graphs.

Canonical Labeling: Our algorithms begin by first computing a planar embedding of
the input graph G = (V, E) and using that to obtain a canonical labeling of the vertices.
A planar embedding of a graph is simply a clockwise order of the neighbors of each
vertex in the graph. Obtaining a planar embedding can be done in linear time using the
algorithm by Hopcroft and Tarjan [15]. The canonical labeling or order of the vertices
of a planar graph was defined by de Fraysseix et al. [9] in the context of straight-
line drawings of planar graphs on an integer grid of size O(n) × O(n). While the first
algorithm for computing canonical orders required O(n log n) time [8], Chrobak and
Payne [5] have shown that this can be done in O(n) time.

In this section we review the canonical labeling of a planar graph as defined by de
Fraysseix et al. [8]. Let G = (V, E) be a fully triangulated planar graph embedded in
the plane with exterior face u, v,w. A canonical labeling of the vertices v0 = u, v1 =

v, v2, . . . , vn−1 = w is one that meets the following criteria for every 2 < i < n:

1. The subgraph Gi−1 ⊆ G induced by v0, v1, . . . , vi−1 is 2-connected, and the boundary
of its outer face is a cycle Ci−1 containing the edge (u, v);

2. The vertex vi is in the exterior face of Gi−1, and its neighbors in Gi−1 form an (at
least 2-element) subinterval of the path Ci−1 − (u, v).

The canonical labeling of a planar graph G allows for the incremental placement of
the vertices of G on a grid of size O(n) × O(n) so that when the edges are drawn as
straight-line segments there are no crossings in the drawing. The two criteria that define
a canonical labeling are crucial for the region creation step of our algorithm.

Kant generalized the definition for triconnected graphs. In this case, the vertices
are partitioned into sets V1 to VK which can be either singleton vertices or chains of
vertices [18].

2 Lower Bound of Six Sides

Here we show that at least six sides per polygon are needed in touching polygon
representations of planar graphs. We begin by constructing a class of planar graphs
that cannot be represented by four-sided polygons and then extend the argument to
show that there exists a class of planar graphs that cannot be represented by five-sided
regions.
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Fig. 2. (a) The graph that provides the counterexample. (b) A pair of subsequent fair quadrilaterals
adjacent to the same sides of QA and QB. (c) Illustration for Lemma 2 shows one of three possible
cases for two touching regions.

2.1 Four Sides Are Not Enough

Consider the fully triangulated graph G in Figure 2(a). G has three nodes on the outer
face A, B and C, and contains a chain of nodes 1, ..., k which are all adjacent to A and B.
Consecutive nodes in the chain, i and i + 1, are also adjacent. The remaining nodes of
G are degree-3 nodes li and ri inside the triangles Δ(A, i, i + 1) and Δ(B, i, i + 1).

Theorem 1. For k sufficiently large, there does not exist a touching polygon represen-
tation for G in which all regions have complexity 4 or less.

Proof: Assume, for the sake of contradiction, that we are given a touching polygon
drawing for G in which all regions have complexity 4 or less. Without loss of generality,
we assume that the drawing has an embedding that corresponds to the one shown in
Figure 2(a). Let QA and QB denote the quadrilaterals representing nodes A and B, and
Qi denotes the quadrilateral representing node i. Once again, without loss of generality,
let QA lie in the left corner, QB in the right corner and QC at the top of the drawing.

We start with a couple of observations:

Observation 1: For simplicity, assume that the three quadrilaterals QA,QB,QC that are
adjacent to the outer face are convex. Then a complete side of each quadrilateral must
be adjacent to the outer face.

From this observation, we conclude that at most three sides of each of the outer
quadrilaterals are inside of the drawing. We consider the three sides A1, A2, A3 and
B1, B2, B3 of QA and QB, respectively, numbered from top to bottom; see Figure 2(b).
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The quadrilaterals of the chain are adjacent to the three sides in this order, such that if
Qi is adjacent to A j (resp. B j), then Qi+1 is adjacent to Ak (resp. Bk) with k ≥ j. The
adjacency of each Qi defines two intervals, one on the polygonal chain A1, A2, A3 and
another one on B1, B2, B3.

Observation 2: Consider the c(= 4) corners of QA and QB, where the sides A1 and A2,
A2 and A3, B1 and B2, B2 and B3 coincide. Clearly, at most 2 of the intervals that are
defined by the adjacencies of the Qi’s are adjacent to each of the c corners. In total,
this makes at most 2c = 8 intervals, that are adjacent to any of the corners of QA or
QB. Hence, at most 8 quadrilaterals of the chain Q1, ...,Qk are adjacent to corners of QA

and/or QB.
We now consider the quadrilaterals that do not define any of those intervals.
Let Qi be a quadrilateral that is not adjacent to any of the corners of the polygonal

chains A1, A2, A3 and B1, B2, B3. Two of its corners are adjacent to the same side Ak and
to the same side Bl, 1 ≤ k, l ≤ 3 of QB. We call such a quadrilateral a fair quadrilateral.

Lemma 1. If we choose k large enough, there exists a pair of fair quadrilaterals Qi

and Qi+1 that are adjacent to the same sides of QA and QB.

Proof: We use a counting argument. We know that at most 8 quadrangles are not fair.
Hence, for k ≥ 2 · 2c + 2 = 18, there must be a pair of subsequent fair quadrilaterals.
The worst case happens for k = 17 if Q2,Q4,Q6, . . .Q16 are not fair. We can state even
more precisely that there are at least k − 17 pairs of subsequent fair quadrilaterals. Note
that the pair (Qi,Qi+1) of fair quadrilaterals where Qi is adjacent to the sides A1 and B1,
but Qi+1 is not adjacent to A1 and B1 does not have the property claimed in the lemma.
We call such a pair transition pair.

We can partition the set of fair quadrilaterals into at most 5 equivalence classes
C1, ...,C5 that denote the sets of fair quadrilaterals, which are adjacent to the same
sides of QA and QB. When we sweep through the chain of middle quadrilaterals, we si-
multaneously proceed through the equivalence classes. Hence there exist at most t = 4
transition pairs, namely pairs of subsequent fair quadrilaterals that are in different equiv-
alence classes.

These equivalence classes denote the pairs of sides (Ai, B j) that are used, beginning
from the top with, say, (A1, B1), then (A1, B2), (A2, B2), (A3, B2) and finally (A3, B3). Note
that this is not the only possible set of equivalence classes, but by planarity, it is not
possible to have (A2, B3) and (A3, B1) simultaneously. Hence, there are at most 5 classes.

We repeat our counting argument from above and argue that for k ≥ 23 there are at
least 5 or more pairs of subsequent fair quadrilaterals, so at least one has the property
claimed in the lemma. �

Before we continue with the proof of the theorem, we include the following Lemma,
partially illustrated in Figure 2(c):

Lemma 2. If there are two regions R, S touching in some nontrivial interval I = (a, b)
then at a, there is a corner of R or S . The same holds for corner b.

Now, let (Qi,Qi+1) be a pair of fair same-sided quadrilaterals, touching sides Ap and
Bq. Since Qi and Qi+1 have to be adjacent, the two sides next to each other touch. We
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can use the above Lemma 2 to show that each interval that is shared by two polygons
ends at two of the corners of the two polygons. Since there exist the polygonal regions
representing ri and li, it is clear that the interval where Qi and Qi+1 touch is disjoint from
the regions QA and QB. Hence the corners derived from Lemma 2 are not the corners of
Qi or Qi+1 that are incident to sides Ap and Bq. This is a contradiction, since then both
Qi and Qi+1 must have at least 5 corners, or one of them has even 6 corners. �

2.2 Five Sides Are Not Enough

If we allow the regions to be pentagons, we have to sharpen the argument a little more.

Lemma 3. If we choose k large enough, there exists a triple of fair pentagons Pi, Pi+1,
Pi+2 that is adjacent to the same sides of PA and PB.

Proof: We prove this along the same lines as before. Now we have four sides with
c = 6 inner corners of the pentagons PA and PB. As before, we can see that at most 12
pentagons of the inner chain are not fair. Since we aim now for triples and not just for
pairs, we get a worst case where every third pentagon is not fair. Hence for k ≥ 3 ·2c+3,
we get at least k − 38 fair subsequent pentagons. Next, we estimate the number of
transition triples. The number of equivalence classes of pentagons with sides solely on
the same side of PA and PB is seven. As we deal with triples, this makes a bound of at
most 14 transition triples, since we can differentiate transition points between the first
two and the last two pentagons of the triple.

Hence, we have to grow k to 38 + 14 = 52 to ensure that a triple of fair same-sided
pentagons exists. �

Theorem 2. For k sufficiently large, there does not exist a touching polygon represen-
tation for G in which all regions have complexity five or less.

Proof: We choose k to be at least 52. Now, let (Pi, Pi+1, Pi+2) be a triple of fair same-
sided pentagons, touching sides Ap and Bq. Since Pi and Pi+1 have to be adjacent, the
two sides next to each other touch. We can use Lemma 2 that each interval that is
shared by two polygons ends at two of the corners of the two polygons. Since there
exist the polygonal regions representing ri and li, it is clear that the interval where Qi

and Qi+1 touch is disjoint from the regions PA and PB. Hence the corners derived from
Lemma 2 are not the corners of Pi or Pi+1 that are incident to sides Ap and Bq. This
is a contradiction, since both Pi and Pi+1 have at least 5 corners, or one of them has
even 6 corners. In the case, that Pi and Pi+1 have exactly 5 corners, we repeat the same
argument for Pi+1 and Pi+2. From the second application, we prove the existence of
a second additional corner at Pi+1 or that Pi+2 has two additional corners at the side
opposite to Pi+1. In both cases, we get a contradiction. There exists a region with at
least 6 corners. �

Note that six-sided polygons are indeed sufficient to represent the graph in Figure 2(a).
In particular, for subsequent fair polygons Pi and Pi+1, we can use three segments on
the lower side of Pi, while the upper side of Pi+1 consists of only one segment which
completely overlaps the middle of the three segments from the lower side of Pi.
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3 Touching Hexagons Representation

In this section, we present a linear time algorithm that takes as input a planar graph G =
(V, E) and which produces a representation of G in which all regions are convex hexagons,
thus proving that planar graphs belong to the class of touching hexagons graphs.

3.1 Algorithm Overview

We assume that the input graph G = (V, E) is a fully triangulated planar graph with
|V | = n vertices. If the graph is planar but not fully triangulated, we can augment it
to a fully triangulated graph with the help of dummy vertices and edges, run the algo-
rithm below and remove the polygons that correspond to dummy vertices. Traditionally,
planar graphs are augmented to fully triangulated graphs by adding edges to each non-
triangular face. Were we to take this approach, however, when we remove the dummy
edges we have to perturb the resulting space partition to remove polygonal adjacencies.
As this is difficult to do, we convert our input graph to a fully triangulated one by adding
one additional vertex to each face and connecting it to all vertices in that face. The above
approach works if the input graph is biconnected. Singly-connected graphs must first be
augmented to biconnected graphs as follows. Consider any articulation vertex v, and let
u and w be consecutive neighbors of v in separate biconnected components. Add new
vertex z and edges (z, u) and (z,w). Iterating for every articulation point biconnects G
and results in an embedding in which each face is bounded by a simple cycle.

The algorithm has two main phases. The first phase computes the canonical labeling.
In the second phase we create regions with slopes 0, 1, -1 out of an initial isosceles right-
angle triangle, by processing vertices in the canonical order. Each time a new vertex is
processed, a new region is carved out of one or more already existing regions. At the
end of the second phase of the algorithm we have a right-angle isosceles triangle which
has been partitioned into exactly n = |V | convex regions, each with at most 6 sides. We
will show that creating and maintaining the regions requires linear time in the size of
the input graph. We illustrate the algorithm with an example; see Figure 3.

(a) (b) (c) (d)

Fig. 3. Incremental construction of the touching hexagons representation of a graph. Shaded ver-
tices on the bottom row and shaded regions on the top row are processed at this step. In general,
the region defined at step i is carved at distance 1/2i from the active front on the top. Note that
the top row forms a horizontal line at all times.
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3.2 Region Creation

In this section we describe the n-step incremental process of inserting new regions in
the order given by the canonical labeling, where n = |V |. The regions will be carved
out of an initial triangle with coordinates (0, 0), (−1, 1), (1, 1). The process begins by
the creation of R0, R1, and R2, which correspond to the first three vertices, v0, v1, v2; see
Figure 3(a). Note that the first three vertices in the canonical order form a triangular
face in G and hence must be represented as mutually touching regions.

At step i of this process, where 2 < i < n, region Ri will be carved out from the
current set of regions. Define a region as “active” at step i if it corresponds to a vertex
that has not yet been connected to all its neighbors. An invariant of the algorithm is that
all active regions are non-trivially tangent to the top side of the initial triangle, which
we refer to as the “active front.”

New vertices are created in one of two ways, depending on the degree of the current
node, vi, in the graph induced by the first i vertices, Gi. By the property of the canon-
ical ordering and the active regions invariant, vi is connected to 2 or more consecutive
vertices on the outer face of Gi−1:

1. If dGi (vi) > 2 then Ri, the region corresponding to vi, is a quadrilateral carved out
of all but the leftmost and rightmost regions, by a horizontal line segment that is at
distance 1/2i from the active front; see Figure 3(d). Note that all but the leftmost
and rightmost neighbors of vi are removed from the set of active regions as their
corresponding vertices have been connected to all their neighbors. Region Ri is
added to the new set of active regions. Call this a “type 1 carving.”

2. If dGi (vi) = 2, let Ra and Rb be its neighbors on the frontier. Region Ri is then carved
out as a triangle from either Ra or Rb.

Lemma 4. The regions produced by the above algorithm are convex and have at most
6 sides.

Proof: First note that the above algorithm leads to the creation of at most fifteen differ-
ent types of regions; see Figure 4. Each region has a horizontal top segment, a horizontal
bottom segment (possibly of length 0), and sides with slopes -1 or 1. Moreover, each
region can be characterized as either opening (the first two), static (the next six), or
closing (the last 7), depending on the angles of the two sides connecting it to the top
horizontal segment. Opening and static regions give rise to new regions via type 1 carv-
ings (dashed arrows) and type 2 carvings (solid arrows). Closing regions only give rise
to type 1 carvings.

We show that the regions produced as a result of type 1 and type 2 carvings from the
initial triangle are convex polygons with at most 6 sides with slopes 0, 1, -1 by induction
on the number of steps. Assume that the claim is true until right before step i; we will
show that the claim is true after step i.

If dGi (vi) > 2 then the new region Ri is created by a type 1 carving. Recall that Ri is
created by the addition of the horizontal line segment at distance 1/2i from the top of the
triangle, cutting through all but the leftmost and rightmost neighbors of vi. It remains
to show that the resulting region Ri has exactly four sides and that the complexity of
the all other regions is unchanged. By construction, Ri has a top and bottom horizontal
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Fig. 4. There are a fifteen possible region shapes, falling into three categories: 2 opening, 6 static,
and 7 closing. Solid arrows indicate type 2 (triangular) carving and dashed arrows indicate type 1
carving (a horizontal strip from the top of the current region). The four filled quadrilateral regions
are the only types created due to type 1 carving.

segments and exactly one line segment on the left and one line segment on the right.
The construction of Ri resulted in modifications in the regions representing all but the
leftmost and rightmost neighbors of vi in Gi, and there is at least one such neighbor. The
changes in these regions are the same: each such region had its top carved off by the
bottom horizontal side of the new region Ri. These changes do not affect the number of
sides defining the regions. Regions corresponding to nodes that are not adjacent to vi in
Gi are unchanged.

Otherwise, if d(vi) = 2 we must create a new region Ri between two adjacent regions
Ra and Rb. By construction, the complexity of the new region Ri is 3, as we carve off a
new triangle between regions Ra and Rb with a horizontal top side and apex at distance
1/2i from the active front. As a result of this operation either the Ra or Rb was modified
and all other regions remain unchanged. Specifically, the complexity of either Ra or Rb

must increase by exactly one. Without loss of generality, let Ra be the region from which
Ri will be carved; see Figure 5. It is easy to see that if Ra had complexity 6 then it must
have been a “closing” region (one of the rightmost two in the last row on Fig. 4. Then
the new region Ri would have been carved out of Rb which must have complexity 5 or
less as it is impossible to have Ra and Rb both “closing” and adjacent. Therefore, at the
end of step i the complexity of Ra has increased by one but is still no greater than 6. �
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3.3 Running Time

The above algorithm can be implemented in linear time. The linear time algorithm for
computing a canonical labeling of a planar graph [5] requires a planar embedding as
an input. Recall that planar embedding of a graph is simply a clockwise order of the
neighbors of each vertex in the graph. Obtaining a planar embedding can be done in
linear time using the algorithm by Hopcroft and Tarjan [15].

Creating and maintaining the regions in the second phase of our algorithm can also
be done in linear time. We next prove this by showing that each region requires O(1)
time to create and requires O(1) number of modifications.

Consider the creation of new regions. By the properties of canonical labeling, when
we process the current vertex vi, it is adjacent to at least two consecutive vertices on the
outer face of Gi−1. By construction of our algorithm the vertices in the outer face of Gi−1

correspond to active regions and so have a common horizontal tangent. If dGi (vi) = 2,
then a new region Ri is carved out of one of the neighboring regions Ra or Rb. Determin-
ing the coordinates of Ri takes constant time, given the coordinates of Ra and Rb and the
fact that Ri will have height 1/2i and will be tangent to the active frontier. If dGi (vi) > 2,
then all but the leftmost and rightmost neighbors of vi have their corresponding regions
carved, in order to create the new region Ri. In this case the coordinates of the Ri can
also be determined in constant time given the coordinates of the leftmost and rightmost
neighbors and the fact that Ri will have height 1/2i and will be tangent to the active
frontier. Note that the updates of the regions between the leftmost and rightmost are
considered in the modification step.

Consider the modifications of existing regions. As can be seen from the hierarchy
of regions on Figure 4, there are exactly 15 different kinds of regions and each region
begins as a triangle and undergoes at most 4 modifications (e.g., from triangle, to quadri-
lateral, to pentagon, to hexagon, to quadrilateral). Moreover, once a region goes from
one type to the next, it can never change back to the same type (i.e., all the arrows point
downward). Finally note that the total number of region modifications is proportional
to |E| and since G is planar, |E| = O(|V |) Thus, each region needs at most a constant
number of modifications from the time it is created to the end of the algorithm.

Ra Rb
Ri

Ra Rb
Ri

Ra Rb
Ri

Ra Rb
Ri

Ra Rb
Ri

Fig. 5. Introducing region Ri between Ra and Rb, assuming Ri is carved out of Ra. All the possible
cases are shown, assuming that Ra and Rb were convex, at most 6-sided regions with slopes 0,
1, -1. (There are five more symmetric cases when Ri is carved out of Rb.) Note that these five
regions correspond to the non-filled regions from the region-creating hierarchy in Fig. 4 with two
static regions in the first row and the three closing regions in the second row.
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The algorithm described in this section, yields the following theorem:

Theorem 3. A planar graph can be converted into a set of touching convex polygons
with complexity at most six, in linear time in the number of vertices of the graph.

As defined, the above algorithm requires exponential area, if polygonal endpoints
are to be placed at integer grid points. We show in the Appendix how to compact the
initial exponential area drawings. However, the compaction approach is not guaranteed
to always find a small area drawing. Therefore, we next show with a different algorithm
that, in fact, O(n) × O(n) area suffices.

4 Hexagonal Representation of Planar Graphs Using O(n) × O(n)
Area

One drawback to the algorithms described in Sections 3 is it is not easy to obtain a
good bound on the drawing area. Using a different approach, we can show that any
general n-vertex planar graph can be represented by touching convex hexagons, drawn
on the O(n) × O(n) grid. This approach is based on Kant’s algorithm for hexagonal
grid drawing of 3-connected, 3-planar graphs [17]. In Kant’s algorithm the drawing is
obtained by looking at the dual graph, and processing its vertices in the canonical order.
In the final drawing, however, there are two non-convex faces, separated by an edge
which is not drawn as a straight-line segment. These problems can be addressed by
adding several extra vertices in a pre-processing step. When the dual of this augmented
graph is embedded, the faces corresponding to the extra vertices can be removed to
yield the desired grid drawing on area O(n) × O(n).

Let H = (V, E) be a 3-connected, 3-planar graph. Note that the dual D(H) is fully
triangulated, as each face in the dual corresponds to exactly one vertex in H. So, for f
faces in H, we have f vertices in D(H). We first compute a canonical ordering on the
vertices of D(H) as defined by de Fraysseix et al. [7]. Let v1, ..., v f be the vertices in
D(H) in this canonical order.

Kant’s algorithm now constructs a drawing for H such that all edges but one have
slopes 0◦, 60◦, or −60◦, with the one edge with bends lying on the outer face. The
typical structure of those drawings is shown in Figure 6(a).

The algorithm incrementally constructs the drawing by adding the faces of H in
reverse order of the canonical order of the corresponding vertices in D(H). We let wi be
the vertices of H. Let face Fi correspond to vertex vi in D(H). The algorithm starts with
a triangular region for the face F f that corresponds to vertex v f . The vertex wx which is
adjacent to F f , F1 and F2 is placed at the bottom. Let wy and wz be the neighbors of wx

in F f . These three vertices form the corners of the first face F f . (wx,wz) and (wx,wy)
are drawn upward with equal lengths and slopes -1 and 1, respectively. All the edges on
the path between wy and wz along F f are drawn horizontally between the two vertices.
From this first triangle, all other faces are added in reverse canonical order to the upper
boundary of the drawing region. If a face is completed by only one vertex wi, this vertex
is placed appropriately above the upper boundary such that it can be connected by two
edges with slopes -1 and 1, respectively. If the face is completed by a path, then the
two end segments of the path have slopes -1 and 1, while the other edges are horizontal.
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Fig. 6. (a) Polygonal structure obtain from Kant’s algorithm. (b) Graph G augmented by vertices
z, y and x together with its dual which serves as input graph for Kant’s algorithm.

The construction ends when w1 is inserted, corresponding to the outer face F1. Note
that there is an edge between w1 and wx, which is drawn using some bends. This edge
is adjacent to the faces F1 (the outer face) and F2.

From this construction, we can observe that the angles at faces F f , ..., F3 have size
≤ π as the first two edges do not enter the vertex from above, and the last edge leaves
the vertex upwards. Hence, we have the following result.

Lemma 5. The faces F f , ..., F3 are convex, and as the slopes of the edges are -1,0 or 1,
they are drawn with at most 6 sides.

This property is exactly what we are aiming for, as the vertices of our input graph
G should be represented by convex regions of at most 6 sides. Unfortunately, Kant’s
algorithm creates two non-convex faces F1 and F2 separated by an edge which is not
drawn as a line segment. Furthermore, the face F f is drawn as large as all the remaining
faces F3, ...F f−1 together.

Kant also gave an area estimate for the result of his algorithm. A corollary of Kant’s
algorithm is the following.

Corollary 1. For a given 3-connected, 3-planar graph H of n vertices, H − wx can be
drawn within an area of n/2 − 1 × n/2 − 1.
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4.1 From Hexagonal Grid Drawing to Touching Hexagons

To apply Kant’s result to the problem of constructing touching hexagons representation,
we enlarge the embedded input graph G so that the dual of the resulting graph G′ can be
drawn using Kant’s algorithm in such a way that the original vertices of G correspond
to the faces F3, ..., F f−1.

We have to add 3 vertices which will correspond to the faces F1, F2 and F f in Kant’s
algorithm. Since G is fully triangulated, let a, b and c be the vertices at the outer face of
G in clockwise order. We add the vertices x, y and z in the outer face and connect toG
appropriately. We want z to correspond to the outer face F1, y correspond to F2 and x
to F f . First, we add x and connect it to a, b and c such that b and c are still in the outer
face. Then we add y and connect it to x, b and c such that b is still in the outer face.
Finally, we add z and connect it to x, b and c such that z, y and x are now in outer face,
as shown in the Figure 6(b).

Since the vertices x, y, z are on the outer face, we can choose which one is first,
second and last in the canonical order. We can then apply Kant’s algorithm with the
canonical order v1 = z, v2 = y and v f = x. After constructing the final drawing, we
remove the regions corresponding to vertices z, y and x, leaving us with a hexagonal
representation of G. Since Kant’s algorithm runs in linear time, and our emendations
can be done in constant time, we can summarize:

Theorem 4. For a fully triangulated planar graph G on n vertices, we can construct a
contact graph of convex hexagons in time O(n). The sides of the hexagons have slope 1,
0, or -1.

Given any planar graph G, if it is not biconnected, we can make it biconnected using
a procedure attributed to Read [27], adding a vertex and two edges at each articulation
point. Once biconnected, we can fully triangulate the graph by adding a vertex inside
each non-triangular face and connecting that vertex to each vertex on the face. We can
then apply Theorem 4, to get a hexagonal representation of the extended graph. Finally,
removing the added vertices and their edges, we obtain a hexagonal representation of
G. This gives us:

Theorem 5. For any planar graph G on n vertices, we can construct a contact graph
of convex hexagons in time O(n). The sides of the hexagons have slope 1, 0, or -1.

4.2 Area Estimation

For a triangulated input graph G = (V, E), we have n vertices and, by Euler’s formula,
2n − 4 faces. Since we enhanced our graph to n + 3 vertices, we have f = 2n + 2 faces.
Those faces are the vertices in the dual D(G) which is the input to Kant’s algorithm.
His area estimation gives an area of n/2 − 1 × n/2 − 1 for f = n vertices when we
coalesce the faces F1, F2 and F f into a single outer face by removing the corresponding
vertices and edges. Thus, we get an area bound of n×n using exactly the same argument
as he did.

Theorem 6. For a fully triangulated planar graph G of n vertices, we can achieve a
contact representation of convex hexagons with area n × n.
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5 Conclusion and Future Work

Thomassen [29] had shown that not all planar graphs can be represented by touching
pentagons, where the external boundary of the figure is also a pentagon and there are
no holes. Our results in this paper are more general, as we do not insist on the external
boundary being a pentagon or on there being no holes between pentagons. Finally, it is
possible to derive algorithms for convex hexagonal representations for general planar
graphs from several earlier papers, e.g., de Fraysseix et al. [7], Thomassen [29], and
Kant [17]. However, these do not immediately lead to algorithmic solutions to the prob-
lem of graph representation with convex low-complexity touching polygons. To the best
of our knowledge, this problem has never been formally considered.

In this paper we presented several results about touching n-sided graphs. We showed
that for general planar graph six sides are necessary. Then we presented an algorithm
for representing general planar graphs with convex hexagons. Finally, we discussed
a different algorithm for general planar graphs which also yields an O(n) × O(n)
drawing area.

Several interesting related problems are open. What is the complexity of the deciding
whether a given planar graph can be represented by touching triangles, quadrilaterals,
or pentagons? In the context of rectilinear catrograms the vertex-weighted problem has
been carefully studied. However, the same problem without the rectilinear constraint has
received less attention. Finally, it would be interesting to characterize the subclasses of
planar graphs that allow for touching triangles, touching quadrilaterals, and touching
pentagons representations.
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