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Preface

The papers contained in this volume were presented at the 9th Latin American
Theoretical Informatics Symposium held at the Benito Juárez University of Oax-
aca, Oaxaca City, México, April 19-23, 2010. The LATIN series of conferences
was launched in 1992 to foster the interaction between the Latin American the-
oretical computer science community and computer scientists around the world.
LATIN 2010 was the ninth of a series, after Sao Paulo, Brazil (1992); Valparaiso,
Chile (1995); Campinas, Brazil (1998); Punta del Este, Uruguay (2000); Can-
cun, Mexico (2002); Buenos Aires, Argentina (2004); Valdivia, Chile (2006) and
Búzios, Rio de Janeiro, Brazil (2008).

From the 155 submissions, the Program Committee selected 56 papers for
presentation at the conference. The selection of papers was based on originality,
quality, and relevance to theoretical computer science. It is expected that most
of these papers will appear in a more complete and polished form in scientific
journals in the future. In addition to the contributed papers, this volume contains
the abstracts of four invited plenary talks given at the conference by Cristopher
Moore, Piotr Indyk, Sergio Rajsbaum, and Leslie Valiant. A special session on
the life and work of the late Imre Simon was held. Prof. Simon played a key role
in the development of theoretical computer science in Latin American as well as
the LATIN conference. This session had contributions from Ricardo Baeza-Yates,
John Brzozowski, Volker Diekert, and Jacques Sakarovitch.

We would like to thank all members of the Program Committee for their thor-
ough work. The conference had a larger-than-usual Program Committee, which
contributed to a more detailed discussion on each of the submitted papers. In
addition, we thank all our sponsors, Microsoft Research, Yahoo! Research, Uni-
versity of Waterloo, and the Benito Juárez University of Oaxaca. Special thanks
to Dante Arias, who served as the liaison for local organization arrangements.

January 2010 Alejandro López-Ortiz
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Fabian Stehn
Ron Steinfeld
Nicolas Stier-Moses
Arne Storjohann
Karol Suchan
Maxim Sviridenko
Zoya Svitkina
Wojciech Szpankowski
Kenjiro Takazawa
Suguru Tamaki
Tami Tamir
Xuehou Tan
Tamir Tassa
Orestis Telelis
Alex Thomo

Alexander Tiskin
Ioan Todinca
Andrew Tomkins
Edgardo Ugalde
Johannes Uhlmann
Jorge Urrutia
Rossano Venturini
Paul Vitanyi
Jan Vondrak
Panagiotis Voulgaris
Tjark Vredeveld
Magnus Wahlström
Yoshiko Wakabayashi
Mark Ward
Mark Daniel Ward
Philipp Woelfel
Masaki Yamamoto
Amir Yehudayoff
Sheng Yu



Table of Contents

Continuous and Discrete Methods in Computer Science
(Invited Talk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Cristopher Moore

Colorful Strips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Greg Aloupis, Jean Cardinal, Sébastien Collette,
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Rank Selection in Multidimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
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Continuous and Discrete Methods in
Computer Science

Cristopher Moore

Department of Computer Science,
University of New Mexico

and
The Santa Fe Institute
moore@cs.unm.edu

Abstract. Culturally, computer scientists are generally trained in dis-
crete mathematics; but continuous methods can give us surprising in-
sights into many algorithms and combinatorial problems. In this ped-
agogical talk, I will describe two interesting places where continuous
mathematics makes an entrance into computer science: proving lower
bounds on the 3-colorability threshold in random graphs using differen-
tial equations, and a continuous-time version of Karmarkar’s algorithm
for Linear Programming, based on the so-called Newton Barrier Flow.

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Colorful Strips

Greg Aloupis1, Jean Cardinal1, Sébastien Collette1,�, Shinji Imahori2,
Matias Korman3, Stefan Langerman1,��, Oded Schwartz4,

Shakhar Smorodinsky5, and Perouz Taslakian1

1 Université Libre de Bruxelles, CP212, Bld. du Triomphe, 1050 Brussels, Belgium
{galoupis,jcardin,secollet,slanger,ptaslaki}@ulb.ac.be
Supported by the Communauté française de Belgique - ARC.

2 Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
imahori@na.cse.nagoya-u.ac.jp

3 Graduate School of Information Sciences (GSIS), Tohoku University, Japan
mati@dais.is.tohoku.ac.jp

Partially supported by 21st Century Global CoE program
4 Departments of Mathematics, Technische Universität Berlin,

10623 Berlin, Germany
odedsc@math.tu-berlin.de

5 Ben-Gurion University, Be’er Sheva 84105, Israel
shakhar@math.bgu.ac.il

Abstract. We study the following geometric hypergraph coloring prob-
lem: given a planar point set and an integer k, we wish to color the points
with k colors so that any axis-aligned strip containing sufficiently many
points contains all colors. We show that if the strip contains at least 2k−1
points, such a coloring can always be found. In dimension d, we show that
the same holds provided the strip contains at least k(4 ln k+ln d) points.

We also consider the dual problem of coloring a given set of axis-
aligned strips so that any sufficiently covered point in the plane is covered
by k colors. We show that in dimension d the required coverage is at most
d(k−1) + 1. Lower bounds are also given for all of the above problems.
This complements recent impossibility results on decomposition of strip
coverings with arbitrary orientations.

From the computational point of view, we show that deciding whether
a three-dimensional point set can be 2-colored so that any strip containing
at least three points contains both colors is NP-complete. This shows a big
contrast with the planar case, for which this decision problem is easy.

1 Introduction

There is a currently renewed interest in coloring problems on geometric hy-
pergraphs, that is, set systems defined by geometric objects. This interest is

� Chargé de Recherches du FRS-FNRS.
�� Mâıtre de Recherches du FRS-FNRS.

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 2–13, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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motivated by applications to wireless and sensor networks [6]; conflict-free col-
orings [8], chromatic numbers [18], covering decompositions [17,3], or polychro-
matic (colorful) colorings of geometric hypergraphs [4] have been extensively
studied in this context.

In this paper, we are interested in k-coloring finite point sets in Rd so that
any region bounded by two parallel axis-aligned hyperplanes, that contains at
least some fixed number of points, also contains a point of each color.

An axis-aligned strip, or simply a strip (unless otherwise specified), is the area
enclosed between two parallel axis-aligned hyperplanes. A k-coloring of a finite
set assigns one of k colors to each element in the set. Let S be a k-colored set of
points in Rd. A strip is said to be polychromatic with respect to S if it contains
at least one element of each color class. We define the function p(k, d) as the
minimum number for which there always exists a k-coloring of any point set in
Rd such that every strip containing at least p(k, d) points is polychromatic. This
is a particular case of the general framework proposed by Aloupis, Cardinal,
Collette, Langerman, and Smorodinsky in [4].

Note that the problem does not depend on whether the strips are open or
closed, since the problem can be seen in a purely combinatorial fashion: an axis-
aligned strip isolates a subsequence of the points in sorted order with respect to
one of the axes. Therefore, the only thing that matters is the order in which the
points appear along each axis. We can thus rephrase our problem, considering
d-dimensional points sets, as finding the minimum value p(k, d) such that the
following holds: For d permutations of a set of items S, it is always possible to
color the items with k colors, so that in all d permutations every sequence of at
least p(k, d) contiguous items contains one item of each color.

We also study circular permutations, in which the first and the last elements
are contiguous. We consider the problem of finding a minimum value p′(k, d) such
that, for any d circular permutations of a set of items S, it is possible to k-color
the items so that in every permutation, every sequence of p′(k, d) contiguous
items contains all colors.

A restricted geometric version of this problem in R2 consists of coloring a point
set S with respect to wedges. For our purposes, a wedge is any area delimited
by two half-lines with common endpoint at one of d given apices. Each apex
induces a circular ordering of the points in S. This is illustrated in Figure 1.
We aim at coloring S so that any wedge containing at least p′(k, d) points is
polychromatic. In R2, the non-circular case corresponds to wedges with apices
at infinity. In that sense, the wedge coloring problem is more difficult than the
strip coloring problem.

We then study a dual version of the problem, in which a set of axis-aligned
strips is to be colored so that sufficiently covered points are contained in strips
from all color classes. For instance, in the planar case we study the following
function p(k, d). Let H be a k-colored set of strips in Rd. A point is said to be
polychromatic with respect to H if it is contained in strips of all k color classes.
The function p(k, d) is the minimum number for which there always exists a
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k = 2, d = 2, 3 points suffice
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Ordering with respect to B: 4 3 5 6 8 7 9 10 11 12 2 1

Fig. 1. Illustration of the definitions of p(k, 2) and p′(k, 2). On the left, points are 2-
colored so that any axis-aligned strip containing at least three points is bichromatic. On
the right, two points A and B define two circular permutations of the point set. In this
case, we wish to color the points so that there is no long monochromatic subsequence
in either of the two circular orderings.

k-coloring of any set of strips in Rd such that every point of Rd contained in at
least p(k, d) strips is polychromatic.

Note that the functions p(k, d), p′(k, d) and p(k, d) are monotone and non-
decreasing. Since we are interested in arbitrarily large pointsets, we always con-
sider the set that we color to be “large enough” (that is, unbounded in terms of k).

Previous results. A hypergraph (S, R) is defined by a set S (called the ground
set) and a set R of subsets of S. The main problem studied here is the coloring
of geometric hypergraphs where the ground set S is a finite set of points, and
the set of ranges R consists of all subsets of S that can be isolated by a single
strip. In the dual case the ground set S is a finite set of geometric shapes and
the ranges are points contained in the common intersection of a subset of S. In
some places in the literature, finite geometric hypergraphs are also referred to
as geometric range spaces.

Several similar problems have been studied in this context [13,20,4], where the
range space is not defined by strips, but rather by halfplanes, triangles, disks,
pseudo-disks or translates of a centrally symmetric convex polygon. The problem
was originally stated in terms of decomposition of c-covers (or f -fold coverings)
in the plane: A c-cover of the plane by a convex body Q ensures that every point
in the plane is covered by at least c translated copies of Q. In 1980, Pach [13]
asked if, given Q, there exists a function f(Q) such that every f(Q)-cover of the
plane can be decomposed into 2 disjoint 1-covers. A natural extension is to ask if
given Q, there exists a function f(k, Q) such that every f(k, Q)-cover of the plane
can be decomposed into k disjoint 1-covers. This corresponds to a k-coloring of
the f(k, Q)-cover, such that every point of the plane is polychromatic.
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Partial answers to this problem are known: Pach [14] referenced an unpub-
lished manuscript by Mani and Pach [11] showing that any 33-cover of the plane
by unit disks can be decomposed into two 1-covers. This could imply that the
function f exists for unit disks, but could still be exponential in k. Recently,
Tardos and Tóth [20] proved that any 43-cover by translated copies of a triangle
can be decomposed into two 1-covers. For the case of centrally symmetric con-
vex polygons, Pach [15] proved that f is at most exponential in k. More than 20
years later, Pach and Tóth [17] improved this by showing that f(k, Q) = O(k2),
and recently Aloupis et al. [3] proved that f(k, Q) = O(k).

On the other hand, for the range space induced by arbitrary disks, Mani
and Pach [11] (see also [16]) proved that f(2, Q) is unbounded: for any con-
stant c, there exists a set of points that cannot be 2-colored so that all open
disks containing at least c points are polychromatic. Pach, Tardos and Tóth [16]
obtained a similar result for the range spaces induced by the family of either
non-axis-aligned strips, or axis-aligned rectangles. Specifically, for any integer c
there exist c-fold coverings with non-aligned strips that cannot be decomposed
into two coverings (i.e., cannot be 2-colored). The previous impossibilities consti-
tute our main motivation for introducing the problem of k-coloring axis-aligned
strips, and strips with a bounded number of orientations.

Paper Organization. In Section 2 we give constructive upper bounds on the
functions p and p′ for d = 2. In Section 3 we consider higher-dimensional cases,
as well as the computational complexity of finding a valid coloring. Section 4
concerns the dual problem of coloring strips with respect to points. Our lower
and upper bounds are summarized in Table 1.

Table 1. Bounds on p, p′ and p

p(k, d) p′(k, d) p(k, d)

upper bound k(4 ln k + ln d) k(4 ln k + ln d) d(k−1) + 1

(2k−1 for d=2) (2k for d=2)

lower bound 2 · � (2d−1)k
2d

� − 1 2 · � (2d−1)k
2d

� − 1 �k/2�d + 1

2 Axis-Aligned Strips and Circular Permutations for
d = 2

We first consider upper bounds for the functions p(k, 2) and p′(k, 2).

2.1 Axis-Aligned Strips: Upper Bound on p(k, 2)

We refer to a strip containing at least i points as an i-strip. Our goal is to show
that for any integer k there is a constant p(k, 2) such that any finite planar point
set can be k-colored so that all p(k, 2)-strips are polychromatic.
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For d = 2, there is a reduction to the recently studied problem of 2-coloring
graphs so that monochromatic components are small. Haxell et al. [10] proved
that the vertices of any graph with maximum degree 4 can be 2-colored so that
every monochromatic connected component has size at most 6. For a given finite
point set S in the plane, let E be the set of all pairs of points u, v ∈ S such that
there is a strip containing only u and v. The graph G = (S, E) has maximum
degree 4, as it is the union of two paths. By the results of [10], G can be 2-
colored so that every monochromatic connected component has size at most 6.
In particular every path of size at least 7 contains points from both color classes.
To finish the reduction argument one may observe that every strip containing
at least 7 points corresponds to a path (of size at least 7) in G. We improve and
generalize this first bound in the following.

Theorem 1. For any finite planar set S and any integer k, S can be k-colored
so that any (2k−1)-strip is polychromatic. That is,

p(k, 2) ≤ 2k − 1.

Proof. Let s1, . . . , sn be the points of S sorted by (increasing) x-coordinates
and let sπ1 , . . . , sπn be the sorting by y-coordinates. We first assume that k
divides n, and later show how to remove the need for this assumption. Let
Vx be the set of n/k disjoint contiguous k-tuples in s1, . . . , sn. Namely, Vx =
{{s1, . . . , sk}, {sk+1, . . . , s2k}, . . . , {sn−k+1, . . . , sn}}. Similarly, let Vy be the k-
tuples defined by sπ1 , . . . , sπn .

We define a bipartite multigraph G = (Vx, Vy, E) as follows: For every pair of
k-tuples A ∈ Vx, B ∈ Vy , we include an edge es = {A, B} ∈ E if there exists a
point s in both A and B. Note that an edge {A, B} has multiplicity |A ∩ B| and
that the number of edges |E| is n. The multigraph G is k-regular because every
k-tuple A contains exactly k points and every point s ∈ A determines exactly
one incident edge labeled es. It is well known that the chromatic index of any
bipartite k-regular multigraph is k (and can be efficiently computed, see e.g.,
[1,7]). Namely, the edges of such a multigraph can be partitioned into k perfect
matchings. Let E1, . . . , Ek be such a partition and Si ⊂ S be the set of labels of
the edges of Ei. The sets S1, . . . , Sk form a partition (i.e., a coloring) of S. We
assign color i to the points of Si.

We claim that this coloring ensures that any (2k−1)-strip is polychromatic.
Let h be a (2k−1)-strip and assume without loss of generality that h is parallel
to the y-axis. Then h contains at least one k-tuple A ∈ Vx. By the properties
of the above coloring, the edges incident to A in G are colored with k distinct
colors. Thus, the points that correspond to the labels of these edges are colored
with k distinct colors, and h is polychromatic.

To complete the proof, we must handle the case where k does not divide n.
Let i = n (mod k). Let Q = {q1, . . . , qk−i} be an additional set of k−i points,
all located to the right and above the points of S. We repeat our preceding
construction on S ∪ Q. Now, any (2k−1)-strip which is, say, parallel to the y-
axis will also contain a k-tuple A ∈ Vx disjoint from Q. Thus our arguments
follow as before. ��
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The proof of Theorem 1 is constructive and leads directly to an O(n log n)-
time algorithm to k-color n points in the plane so that every (2k−1)-strip is
polychromatic. The algorithm is simple: we sort S, construct G = (Vx, Vy, E),
and color the edges of G with k colors. The time analysis is as follows: sorting
takes O(n log n) time. Constructing G takes O(n + |E|) time. As G has 2n

k
vertices and is k-regular, it has n edges; so this step takes O(n) time. Finding the
edge-coloring of G takes O(n log n) time [1]. The total running time is therefore
O(n log n).

2.2 Circular Permutations: Upper Bound on p′(k, 2)

We now consider the value of p′(k, d). Given d circular permutations of a set
S, we color S so that every sufficiently long subsequence in any of the circular
permutations is polychromatic. The previous proof for p(k, d) ≤ 2k−1 (Theo-
rem 1) does not hold when we consider circular permutations. However, a slight
modification provides the same upper bound, up to a constant term.

Theorem 2. p′(k, 2) ≤ 2k

Proof. If k divides n, we separate each circular permutation into n/k sets of size
k. We define a multigraph, where the vertices represent the sets of k items, and
there is an edge between two vertices if two sets share the same item. Trivially,
this graph is k-regular and bipartite, and can thus be edge-colored with k colors.
Each edge in this graph corresponds to one item in the permutation, thus each
set of k items contains points of all k colors.

If k does not divide n, let a = 	n/k
, and b = n (mod k). If a divides b, we
separate each of the two circular permutations into 2a sets, of alternating sizes
k and b/a. Otherwise, the even sets will also alternate between size �b/a� and
	b/a
, instead of b/a. We extend both permutations by adding dummy items to
each set of size less than k, so that we finally have only sets of size k. Dummy
items appear in the same order in both permutations. We can now define the
multigraph just as before.

If we remove the dummy nodes, we deduce a coloring for our original set.
As each color appears in every set of size k, the length of any subsequence
between two items of the same color is at most 2(k − 1) + �b/a�. Therefore,
p′(k, 2) ≤ 2(k − 1) + �b/a�+ 1.

Finally, if n ≥ k(k − 1), then a ≥ k − 1, and b ≤ a, we know that �b/a� ≤ 1,
and thus p′(k, 2) ≤ 2k. ��

3 Higher Dimensional Strips

In this section we study the same problem for strips in higher dimensions. We
provide upper and lower bounds on p(k, d). We then analyze the coloring prob-
lem from a computational viewpoint, and show that deciding whether a given
instance S ⊂ Rd can be 2-colored such that every 3-strip is polychromatic is
NP-complete.
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3.1 Upper Bound on Strip Size, p(k, d)

Theorem 3. Any finite set of points S ⊂ Rd can be k-colored so that every
axis-aligned strip containing k(4 ln k + ln d) points is polychromatic, that is,

p(k, d) ≤ k(4 lnk + ln d).

Proof. The proof uses the probabilistic method. Let {1, . . . , k} denote the set
of k colors. We randomly color every point in S independently so that a point
s gets color i with probability 1

k for i = 1, . . . , k. For a t-strip h, let Bh be
the “bad” event where h is not polychromatic. It is easily seen that Pr[Bh] ≤
k(1 − 1

k )t. Moreover, Bh depends on at most (d − 1)t2 + 2t − 2 other events.
Indeed, Bh depends only on t-strips that share points with h. Assume without
loss of generality that h is orthogonal to the x1 axis. Then Bh has a non-empty
intersection with at most 2(t − 1) other t-strips which are orthogonal to the x1
axis. For each of the other d−1 axes, h can intersect at most t2 t-strips since
every point in h can belong to at most t other t-strips.

By the Lovász Local Lemma, (see, e.g., [2]) we have that if t satisfies

e · ((d − 1) · t2 + 2t − 1
) · k(1 − 1

k

)t

< 1

(where e is the basis of the natural logarithm), then

Pr

⎡⎣ ∧
|h|=t

Bh

⎤⎦ > 0.

In particular, this means that there exists a k-coloring for which every t-strip is
polychromatic. It can be verified that t = k(4 lnk + ln d) satisfies the condition.

��

The proof of Theorem 3 is non-constructive. We can use known algorithmic
versions of the Local Lemma (see for instance [12]) to obtain a constructive
proof, although this yields a weaker bound. Theorem 3 holds in the more general
case where the strips are not necessarily axis-aligned. In fact, one can have a
total of d arbitrary strip orientations in some fixed arbitrary dimension and the
proof will hold verbatim.

Finally, the same proof yields the same upper bound for the case of circular
permutations:

Theorem 4. p′(k, d) ≤ k(4 ln k + ln d)

3.2 Lower Bound on p(k, d)

We first introduce a well-known result on the decomposition of complete graphs:
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Lemma 1. The edges of K2h can be decomposed into h pairwise edge-disjoint
Hamiltonian paths.

This result follows from a special case of the Oberwolfach problem[5]1. An ex-
plicit proof of this lemma can also be found in [19].

Note that if the vertices of K2h are labeled V = {1, . . . , 2h}, each path can
be seen as a permutation of 2h elements. Using Lemma 1 we obtain:

Theorem 5. For any fixed dimension d and number of colors k, let s =⌈
(2d−1)k

2d

⌉
− 1. Then,

p′(k, d) ≥ p(k, d) ≥ 2s + 1.

Proof. The first inequality comes from the fact that any polychromatic coloring
with respect to circular permutations is also polychromatic with respect to strips.
We now focus on showing the second inequality: let σ1, . . . , σd be any decom-
position of K2d into d paths: we construct the set P = {pi|0 ≤ i ≤ 2d}, where
pi = (σ1(i), . . . , σd(i)). Note that the ordering of P , when projected to the i-th
axis, gives permutation σi. Since the elements σ decompose K2d, in particular
for any i, j ≤ 2d there exists a permutation in which i and j are adjacent.

We replace each point pi by a set Ai of s points arbitrarily close to pi. By
construction, for any i, j ≤ 2d, there exists a 2s-strip containing exactly Ai∪Aj .
Consider any possible coloring of the sets Ai: since |Ai| = s and we are using k
colors, there are at least k − s colors not present in any set Ai.

Since
⌈

(2d−1)k
2d

⌉
− 1 < (2d−1)k

2d , we conclude that k − s > k − (2d−1)k
2d = k/2d.

That is, each set is missing strictly more than k/2d colors. By the pigeonhole
principle, there exist i and j such that the set Ai∪Aj is missing a color (otherwise
there would be more than k colors). In particular, the strip that contains set
Ai ∪ Aj is not polychromatic, thus the theorem is shown.

We gave a set of bounded size n = 2d reaching the lower bound, but we can
easily create larger sets reaching the same bound: we can add as many dummy
points as needed at the end of every permutation, which does not decrease the
value of p(k, d). ��
Note that, asymptitotically speaking, the lower bound does not depend on d.
However, by the negative result of [16], we know that p(k, d) → ∞ when d → ∞.

3.3 Computational Complexity

In Section 2, we provided an algorithm that finds a k-coloring such that every
planar (2k−1)-strip is polychromatic. Thus for d=2 and k=2, this yields a 2-
coloring such that every 3-strip is polychromatic.

Note that in this case p(2, 2) = 3, but the minimum required size of a strip
for a given instance can be either 2 or 3. Testing if it is equal to 2 is easy: we
can simply alternate the colors in the first permutation, and check if they also
1 The authors would like to thank the anonymous referees for pointing out useful

references.
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alternate in the other. Hence the problem of minimizing the size of the largest
monochromatic strip on a given instance is polynomial for d = 2 and k = 2. We
now show that it becomes NP-hard for d > 2 and k = 2. The same problem for
k > 2 is left open.

Theorem 6. The following problem is NP -complete:

Input: 3 permutations π1, π2, π3 of an n-element set S.
Question: Is there a 2-coloring of S, such that every 3 elements of S that are
consecutive according to one of the permutations are not monochromatic?

Proof. We show a reduction from NAE 3SAT (not-all-equal 3SAT) which is the
following NP -complete problem [9]:

Input: A 3-CNF Boolean formula Φ.
Question: Is there a NAE assignment to Φ? An assignment is called NAE if
every clause has at least one literal assigned True and at least one literal assigned
False.

We first transform Φ into another instance Φ′ in which all variables are non-
negated (i.e., we make the instance monotone). We then show how to realize Φ′

using three permutations π1, π2, π3.
To transform Φ into Φ′, for each variable x, we first replace the ith occurrence

of x in its positive form by a variable xi, and the ith occurrence of x in its negative
form by x′

i. The index i varies between 1 and the number of occurrences of each
form (the maximum of the two). We also add the following consistency-clauses,
for each variable x and for all i:

(Zx
i , xi, x

′
i) ,
(
xi, x

′
i, Z

x
i+1
)
, (xi, Z

′x
i , x′

i) ,
(
Zx

i , Z ′x
i , Zx

i+1
)(

x′
i, Z

x
i+1, xi+1,

)
, (Z ′x

i , x′
i, xi+1) ,

(
x′

i, xi+1, Z
′x
i+1,

)
,
(
Z ′x

i , Zx
i+1, Z

′x
i+1
)

where Zx
i and Z ′x

i are new variables. This completes the construction of Φ′. Note
that Φ′ is monotone, as every negated variable has been replaced.

Moreover, Φ′ has a NAE assignment if and only if Φ has a NAE assignment.
To see this, note that a NAE assignment for Φ can be translated to a NAE
assignment to Φ′ as follows: for every variable x of Φ and every i, set xi ≡ x,
x′

i ≡ x, Zx
i ≡ True, Z ′x

i ≡ False.
On the other hand, if Φ′ has a NAE assignment, then, by the consistency

clauses, the variables in Φ′ corresponding to any variable x of Φ are assigned
a consistent value. Namely, for every i, j we have xi = xj and xi �= x′

i. This
assignment naturally translates to a NAE assignment for Φ, by setting x ≡ x1.

We next show how to realize Φ′ by a set S and three permutations π1, π2, π3.
The elements of the set S are the variables of Φ′, together with some additional
elements that are described below. Permutation π1 realizes the clauses of Φ′

corresponding to the original clauses of Φ, while π2 and π3 realize the consistency
clauses of Φ′.

The additional elements in S are clause elements (two elements c2j−1 and c2j

for every clause j of Φ) and dummy elements � (the dummy elements are not
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indexed for the ease of presentation, but they appear in the same order in all
three permutations).

Permutation π1 encodes the clauses of Φ′ corresponding to original clauses
of Φ as follows (note that all these clauses involve different variables). For each
such clause (u, v, w), permutation π1 contains the following sequence:

c2j−1, u, v, w, c2j , �, �

At the end of π1, for every variable x of Φ′ we have the sequence:

Zx
1 , Z ′x

1 , Zx
2 , Z ′x

2 Zx
3 , Z ′x

3 , . . . , �, �

Permutation π2 contains, for every variable x of Φ, the sequences:

Zx
1 , x1, x

′
1, Z

x
2 , x2, x

′
2, Z

x
3 , x3, x

′
3, Z

x
4 , . . . and �, �, Z ′x

1 , �, �, Z ′x
2 , �, �, Z ′x

3 , . . . �, �

At the end of π2 we have the clause-elements and remaining dummy elements:

�, �, c1, �, �, c2, �, �, c3 . . .

Similarly, permutation π3 contains, for every variable x of Φ, the sequences:

x1, Z
′x
1 , x′

1, x2, Z
′x
2 , x′

2, x3, Z
′x
3 , x′

3, . . . and �, �, Zx
1 , �, �, Zx

2 , �, �, Zx
3 , . . . �, �

and at the end of π3 we have the clause-elements and remaining dummy elements:

�, �, c1, �, �, c2, �, �, c3, . . .

This completes the construction of S and π1, π2, π3. Note that for every clause
of Φ′ (whether it is derived from Φ or is a consistency clause), the elements cor-
responding to its three variables appear in sequence in one of the three permuta-
tions. Therefore, if there is a 2-coloring of S, such that every 3 elements of S that
are consecutive according to one of the permutations are not monochromatic,
then there is a NAE assignment to Φ′: each variable of Φ′ is assigned True if its
corresponding element is colored ‘1’, and False otherwise.

For the other direction, consider a NAE assignment for Φ′. Observe that there
is always a solution where Zx

i and Z ′x
i are assigned opposite values. Then assign

color ‘1’ to elements corresponding to variables assigned with True, and assign
color ‘0’ to elements corresponding to variables assigned with False. For the
clause elements c2j−1 and c2j appearing in the subsequence c2j−1, u, v, w, c2j ,
assign to c2j−1 the color opposite to u, and to c2j the color opposite to w.
Finally, assign colors ‘0’ and ‘1’ to each pair of consecutive dummy elements,
respectively. It can be verified that there is no monochromatic consecutive triple
in any permutation. ��
Approximability. Note that the minimization problem (find a k-coloring that
minimizes the number of required points) can be approximated within a con-
stant factor: it suffices to use a constructive version of the Lovász Local Lemma
(see [2]), yielding an actual coloring. The number of points that this coloring will
require is bounded by a constant, provided the values of k and d are fixed. The
approximation factor is therefore bounded by the ratio between that constant
and k.
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4 Coloring Strips

In this section we prove that any finite set of strips in Rd can be k-colored so
that every ”deep” point is polychromatic. For a given set of strips (or intervals,
if d = 1), we say that a point is i-deep if it is contained in at least i of the strips.
We begin with the following easy lemma:

Lemma 2. Let I be a finite set of intervals. Then for every k, I can be k-
colored so that every k-deep point is polychromatic, while any point covered by
fewer than k intervals will be covered by distinct colors.

Proof. We use induction on |I|. Let I be the interval with the leftmost right
endpoint. By induction, the intervals in I \{I} can be k-colored with the desired
property. Sort the intervals intersecting I according to their left endpoints and
let I1, . . . , Ik−1 be the first k−1 intervals in this order. It is easily seen that
coloring I with a color distinct from the colors of those k−1 intervals produces
a coloring with the desired property, and hence a valid coloring. ��
Theorem 7. For any d and k, one can k-color any set of axis-aligned strips in
Rd so that every d(k−1)+1-deep point is polychromatic. That is,

p(k, d) ≤ d(k−1) + 1.

Proof. We start by coloring the strips parallel to any given axis xi (i = 1, . . . , d)
separately using the coloring described in Lemma 2. We claim that this procedure
produces a valid polychromatic coloring for all d(k−1)+1-deep points. Indeed
assume that a given point s is d(k−1)+1-deep and let H(s) be the set of strips
covering s. Since there are d possible orientations for the strips in H(s), by the
pigeonhole principle at least k of the strips in H(s) are parallel to the same axis.
Assume without loss of generality that this is the x1-axis. Then by property of
the coloring of Lemma 2, H(s) is polychromatic. ��
The above proof is constructive. By sorting the intervals that correspond to any
of the given directions, one can easily find a coloring in O(n log n) time.

We now give a lower bound on p(k, d):

Theorem 8. For any fixed dimension d and integer k, it holds that

p(k, d) > 	k/2
d + 1

Proof of this claim is omitted due to space limitation.
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The Mono- and Bichromatic Empty Rectangle
and Square Problems in All Dimensions�

(Extended Abstract)

Jonathan Backer and J. Mark Keil

Department of Computer Science, University of Saskatchewan, Canada

Abstract. The maximum empty rectangle problem is as follows: Given
a set of red points in Rd and an axis-aligned hyperrectangle B, find
an axis-aligned hyperrectangle R of greatest volume that is contained
in B and contains no red points. In addition to this problem, we also
consider three natural variants: where we find a hypercube instead of a
hyperrectangle, where we try to contain as many blue points as possible
instead of maximising volume, and where we do both. Combining the
results of this paper with previous results, we now know that all four of
these problems (a) are NP-complete if d is part of the input, (b) have
polynomial-time sweep-plane solutions for any fixed d ≥ 3, and (c) have
near linear time solutions in two dimensions.

1 Introduction

We use d to denote the number of dimensions and n to denote the total number
of red and blue points. Throughout this paper, we assume that all hypercubes
and hyperrectangles are axis aligned.

The maximum empty rectangle (MER) problem, defined in the abstract, was
extensively studied in two and three dimensions [1,2,3,4,5,6]. Our contributions
to the MER problem are in high dimensions: we show that it is NP-complete if
d is part of the input, and we present an algorithm that takes O(nd logd−2 n)
time in the worst case for any fixed dimension d ≥ 3 (the expected run time of
O(n log2d−3 n) is much better than the worst case).

We explore the closely related maximum empty square (MES) problem: Given
a set of red points in Rd and a hyperrectangle B, find the hypercube of greatest
volume that is contained in B and contains no red points. We show that the
MES problem is NP-complete if d is part of the input, and we provide a solution
that takes O(nd/2 log2 n) time, for any fixed dimension d ≥ 3.

We also investigate instances of the bichromatic shape problem: Given a set
of red points and blue points in Rd, find a figure of a certain shape that contains
no red points and as many blue points as possible. Specifically, we examine the
bichromatic hyperrectangle (BR) problem and the bichromatic hypercube (BS)
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problem. It was previously shown that the BR problem is NP-complete if d
is part of the input [7]. This reduction can be modified to show that the BS
problem is also NP-complete. Our contributions to the BR and BS problems are
polynomial time solutions for any fixed dimension d ≥ 3 and near linear time
solutions for d = 2.

Our interest in bichromatic problems was instigated by a recent paper that
posed them for a variety of shapes, including squares and rectangles [8]. In that
paper, Aronov and Har-Peled present an (1 + ε)-approximation algorithm for
the bichromatic ball problem that takes O(n�d/2�(ε−2 logn)�d/2+1�) time for any
fixed dimension d ≥ 3. They conjecture that the bichromatic circle problem in
R2 is 3sum-hard. This contrasts with our solution to the BS problem in R2,
which takes O(n log n) time.

Motivated by data-analysis, Eckstein et al. explore the BR problem in high
dimensions [7]. As mentioned above, they show that the BR problem is NP-hard
if d is part of the input. This intractability motivates the heuristic approach that
they develop. In a subsequent paper, Liu and Nediak propose a O(n2 logn) time
and O(n) space algorithm for the two-dimensional bichromatic rectangle problem
[9]. We solve the BR problem in O(nd logd−2 n) time for any fixed dimension
d ≥ 3 and in O(n log3 n) time for d = 2.

All known exact solutions for the MER, MES, BS, and BR problems require at
least linear storage. Motivated by potential data-mining applications, Edmonds
et al. describe a heuristic solution to the MER problem that typically requires
much less space [10].

For completeness, we also mention the maximum discrepancy problem, which
is similar to the bichromatic shape problem: Find a figure of a certain shape
that maximises the difference between the number of contained blue points and
contained red points. Dobkin et al. solve the maximum discrepancy problem for
rectangles in O(n2 logn) time [11]. In their paper, they relate various discrepancy
problems to problems in machine learning and computer graphics.

2 Preliminaries

We use P− to denote the set of red points, P+ to denote the set of blue points,
and R to denote the shape for which we are searching (a hyperrectangle or hy-
percube). We look for a shape R that is open so that red points can lie on R’s
boundary without being contained in R. As R is axis-aligned, it can be expressed
as the Cartesian product of open intervals

∏d
i=1(ai, bi). We define the ith projec-

tion of R as (ai, bi) and the ith extent of R as bi−ai. The boundary of R, denoted
∂R, is the difference between

∏d
i=1[ai, bi] and

∏d
i=1(ai, bi). A side of R is a subset

of ∂R that is most extreme in some coordinate axis. Specifically, there are two
sides orthogonal to the ith dimension: {x ∈ ∂R : the ith coordinate of x is ai}
and {x ∈ ∂R : the ith coordinate of x is bi}.

We will use B to denote a hyperrectangle that bounds P− ∪ P+. The hy-
perrectangle B is given as input in the MER and MES but not in the BR and
BS problems. For the BR and BS problems, we choose a sufficiently large B so
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that there that some desired R is contained in B: for the BR problem, any box
containing P−∪P+ suffices; for the BS problem, we can take any box containing
P− ∪ P+ and triple its extent in each dimension. By choosing B, we can more
directly apply techniques developed for the MER and MES problems to the BR
and BS problems.

We say that R is feasible, if it is contained in B and disjoint from P−. We
say that R is relevant, if R is feasible and no other feasible shape is properly
contained within R. All four problems that we are considering have a relevant
solution. We say that a side S of R is supported, if the interior of S intersects
P− or B. In the MER and BR problems, every side of a relevant hyperrectangle
(RHR) is supported; in the MES and BS problems, the following statement holds
for each relevant hypercube (RHC).

Lemma 1. Two opposite sides of each RHC are supported.

Proof. For contradiction, consider an RHC R such that no two opposite sides
are both supported. Let Si and Ti denote the sides of R that are orthogonal to
the ith dimension. Assume without loss of generality that Si is unsupported. Let
the vertices u and v of R be the points

⋂d
i=1 Si and

⋂d
i=1 Ti respectively. Note

that R is uniquely determined by u and v. We can slide u away from v while
keeping R feasible, which contradicts that R is relevant. ��

3 Unbounded Dimension

Eckstein et al. show that the BR problem is NP-complete [7]. With slight modi-
fication, their construction also shows that the BS problem is NP-complete. We
now prove that the MER and MES problems are NP-complete.

We first rephrase the MER and MES problems as decision problems: Given
the number of dimensions d, a set of red points P−, an enclosing hyperrectangle
B, and a threshold τ , is there a hyperrectangle (or hypercube) R contained in
B such that R ∩ P− = ∅ and the volume of R is at least τ? These decision
problems are in NP because it is easy to verify that a given hyperrectangle R
has the desired properties.

3.1 Maximum Empty Square

To demonstrate that the MES problem is NP-hard, we give a polynomial-time
reduction from satisfiability to MES. In our reduction, each variable maps to a
dimension, each clause maps to a red point, and the given formula is satisfiable
if and only if there exists a sufficiently large empty hypercube.

Let λ be the formula to be satisfied in conjunctive normal form. We denote
the variables and clauses of λ as x1, x2, . . . , xn and c1, c2, . . . , cm respectively. We
assume without loss of generality that a variable xi and its negation xi never
occur in the same clause. For each clause cj , we define a red point pj as follows:
if xi occurs in cj , pj is set to 1

4 in the ith dimension; if xi occurs in cj , pj is set
to 3

4 in the ith dimension; otherwise, pj is set to 1
2 in the ith dimension.
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Theorem 1. The formula λ is satisfiable if and only if there exists a feasible
hypercube R contained in [0, 1]n of volume at least (3

4 )n.

Proof. Suppose that λ is satisfiable. Given satisfying variable assignment of λ,
we construct a hypercube centre t as follows: if xi is assigned true, t is set to 5

8 in
the ith dimension and 3

8 otherwise. Let R be the hypercube of width 3
4 centred

at t. It remains to show that each point pj does not lie in R. At least one of the
literals of cj evaluates to true. Let xi be such a literal (the case where a negation
xi is satisfied is similar). Then t is equal to 5

8 in the ith dimension and pj is
equal to 1

4 in the ith dimension. Hence pj lies on ∂R. Therefore R is an empty
hypercube of volume (3

4 )n.
Suppose that there exists an empty hypercube R of volume at least (3

4 )n. Let
t be the centre of R. We derive a variable assignment of λ as follows: if t is at
least 1

2 in the ithdimension, xi is set to true and false otherwise. It remains to
show that each clause cj is satisfied. As R does not contain pj, there exists a
dimension i such that the ith coordinate of pj is not in the ith projection of R.
As 1

2 lies inside the ith projection of R, the ith coordinate of pj must be either 1
4

or 3
4 . Suppose the former (the latter case is similar). Then the ith coordinate of

t must be 5
8 . Hence, xi is set to true. Moreover, xi is a literal of cj because the

ith coordinate of pj is 1
4 . Thus, cj evaluates true. Therefore λ is satisfied. ��

3.2 Maximum Empty Rectangle

To prove that the MER problem is NP-hard, we provide a reduction from inde-
pendent set to MER. In our reduction, each vertex maps to a dimension, each
edge maps to a point, and the given graph has an independent set of size k if
and only if there exists an sufficiently large empty hyperrectangle.

Let G = (V,E) be a simple undirected graph. We denote the vertices and
edges of G as v1, v2, . . . , vn and e1, e2, . . . , em respectively. Let w ∈ (1

2 , 1) be
some constant such that wn > 1

2 . For each edge ej , we define a red point pj

as follows: if vi is an endpoint of ej , the ith coordinate of pj is set to w and 1
2

otherwise.

Lemma 2. Let R ⊆ [0, 1]n be a maximum-volume feasible hyperrectangle. Then
∂R contains the origin and ith extent of R is either w or 1.

Proof. We first prove a weaker statement: the extent of R in the ith dimension
is either 0, 1

2 , w, 1, w − 1
2 , or 1 − w. To see this, note that the ith coordinate

of pj is either 1
2 or w. If ai �∈ {0, 1

2 , w}, we can increase the volume of R while
keeping R feasible by decreasing ai, which contradicts the maximality of R. A
similar argument holds for bi. Hence, ai and bi belong to {0, 1

2 , w, 1}.
The volume of R is at least wn because

∏n
i=1(0, w) is empty. Suppose for

contradiction that the ith extent of R is neither w nor 1. Then the ith extent is
at most 1

2 by the previous paragraph. Hence, the volume of R is at most 1
2 , a

contradiction because wn > 1
2 . Thus, the ith extent of R is w or 1. This implies

that ai = 0 for each dimension i. Therefore, ∂R contains the origin. ��
Using this lemma, we now prove the main result.
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Theorem 2. Let R be a maximum-volume feasible hyperrectangle. The graph G
has an independent set of size k if and only if the volume of R is at least wn−k.

Proof. Suppose that G has an independent set S = {vd1, vd2 , . . . , vdk
} of k in-

dependent vertices. If i ∈ {d1, d2, . . . , dk}, set bi to 1 and w otherwise. Then
R =

∏n
i=1(0, bi) is a hyperrectangle with volume wn−k. It remains to show that

R is empty. Recall that pj corresponds to an edge ej between two vertices. One
of these vertices vi is not a member of S. The ith coordinate of pj is w, which is
not contained in the ith projection (0, w) of R. Thus, pj is not contained in R.
Therefore, R is an empty rectangle with volume wn−k.

Let R be a maximum empty hyperrectangle with volume at least wn−k. By the
previous lemma, the volume of R is equal to 1i×wn−i for some integer i between
0 and n. Hence, the extent of R equals 1 in at least k different dimensions. Let
D = {d1, d2, . . . , dk} be a set of k such dimensions. Choose as a vertex set
S = {vd1 , vd2 , . . . , vdk

}. It remains to show that S is independent. Suppose for
contradiction that there exists an edge ej between two vertices vx, vy of S. Then
the xth and yth projections of R contains the xth and yth coordinates of pj. All
other coordinates of pj are 1

2 , which are contained in their respective projections
of R because w > 1

2 . Hence, pj is contained in R, which contradictions that R
is empty. Therefore, S is independent. ��

4 Fixed Dimension

In this section, we describe algorithms that take polynomial time for any fixed
dimension d ≥ 3. The run-time of our algorithms grows exponentially with d,
which is consistent with the NP-completeness of these problems. Our approach
to the MES and BS problems is substantially different from our approach to the
MER and BR problems. However, our approaches to the MES and BS problems
are similar, as are our approaches to the MER and BR problems.

4.1 MES and BS Problems

Finding the desired hypercube is substantially easier if we know its width w∗.
The next lemma states that there are only O(n2) possibilities for w∗ for any
fixed dimension d.

Lemma 3. Let R be a relevant hypercube. Its width w is one of O(dn2) values
and we can select the ith order statistic of this set in O(dn) time and space.

Proof. By Lemma 1, there exists two opposite supported sides of R. Let i be the
dimension orthogonal to these two sides. Let Xi = {xi : xi is the ith coordinate
of some red point} ∪ {ai, bi : (ai, bi) is the ith projection of B}. Then the ith

projection of R is (a, b) where a and b belong to Xi. So given i, there are O(n2)
possible widths. Hence, there are at most O(dn2) possible widths of R. Selecting
the ith possible width is a result of Frederickson and Johnson [12]. ��
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Given the width w∗ of the desired hypercube R, all that remains is to position
R. We rely on an elementary observation to do this: let C(p, w∗) denote the
hypercube with width w∗ centred at p; then p ∈ C(q, w∗) if and only if q ∈
C(p, w∗) for any two points p and q. This observation allows us to rephrase our
problem. Rather than look for a hypercube amid points, we look for the centre
of R amid hypercubes centred at red points.

This different perspective allows us to apply particular solution to the follow-
ing problem: Given a set S of axis-aligned hyperrectangles in Rd, compute the
volume of the union of S. To solve this problem, Overmars and Yap sweep a
hyperplane H perpendicular to the dth dimension [13]. As they sweep H , they
maintain a compact representation of the intersection of H with each hyperplane
of S in a tree structure. This structure allows them to quickly update the inter-
section as H sweeps the dth dimension. Moreover, their structure allows efficient
queries of two forms: “What is the total area of the intersection?” and “What
point of H is contained in the greatest (or least) number of hyperrectangles
of S?”.

Theorem 3. The MES problem can be solved in O(nd/2 logn) time and O(n)
space for any fixed dimension d ≥ 3.

Proof. Let U(S,w) denote the union
⋃

s∈S C(s, w), for an arbitrary subset S of
Rd. Let R be an arbitrary hypercube of width w. If R is contained in B, its
centre belongs to B \U(∂B,w). Moreover, if R contains no red points, its centre
does not belong to U(P−, w). Hence, an empty hypercube of width w exists
if and only if U(P−, w) does not cover B \ U(∂B,w). To test this condition,
we compare the volume of B ∩ (U(P−, w) ∪ U(∂B,w)) to the volume of B.
The former increases with w while the later remains constant, we can binary
search for the smallest width w∗ such that the two volumes are equal. This takes
O(nd/2 logn) × O(log n) time, for any fixed d ≥ 3. To find the centre of R with
width w∗, we perform another plane sweep to find a point of the hyperplane H
that is not contained in U(P−, w∗ − ε), for a suitably small ε > 0. ��
We approach to the BS problem in a similar manner.

Theorem 4. The BS problem can be solved in O(nd/2+2 logn) time and O(n)
space for any fixed dimension d ≥ 3.

Proof. A minor modification to the datastructure of Overmars and Yap allows it
to answer the following query quickly: “What is the point of H contained in the
greatest number of hyperrectangles of S but not contained in any hyperrectangle
of T ?” We can find the centre of a hypercube R of width w that contains as much
of P+ as possible but avoids P− as follows: let C(S,w) = {C(s, w) : s ∈ S}; as
we sweep H , we look for the point of H contained in as many hyperrectangles of
C(P+, w) as possible but not contained in any hyperrectangle of C(P−, w). Each
sweep takes O(nd/2 logn) time and there are O(n2) possibilities for w. ��
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4.2 MER and BR Problems

To solve the MER and BR problems, we enumerate all RHRs. In the MER
problem, we compute the volume of each RHR. In the BR problem, we perform
an orthogonal range query to count the number of blue points in each RHR. This
enumeration approach was previously applied to the MER problem in two and
three dimensions [1,5,4,6]. Using a charging scheme inspired by [14,15], one can
show that are at Θ(nd) RHRs in the worst case. This complements a prior bound
of O(n logd−1 n) RHRs on average under modest assumptions on the input [6].

In three dimensions, our enumeration is asymptotically slower than the algo-
rithm by Datta and Soundaralakshmi by a factor of logn in the worst case [6].
However, our enumeration is much simpler, it has the same asymptotic average-
case run time, and it generalises to higher dimensions. Our result is summarised
in the following theorem.

Theorem 5. The MER and BR problems can be solved in O(k logd−2 n) time
and O(k + n logd−2 n) space where k is the number of RHRs.

The details of our enumeration are simplified by assuming that the coordinates
of the red points in each dimension are unique. This can be imposed with a
symbolic perturbation of the point set.

To find RHRs, we sweep Rd from −∞ to ∞ with a hyperplane H that is
orthogonal to the dth dimension. The hyperplane H splits Rd into two halves
that extend towards ∞ and −∞ in the dth dimension that we refer to as above
and below respectively. Similarly, we refer to the sides of a hyperrectangle R that
are parallel to H and closest to ∞ and −∞ as top and bottom respectively.

Let B′ be the region of the bounding hyperrectangle B that lies below H . As
we sweep, we ensure that we have discovered all of the RHRs with respect to B′

(i.e. the RHRs that result from taking B′ as the bounding hyperrectangle and
restricting our attention to the red points inside of B′). To do this, we maintain
a list L of all of the RHRs with respect to B′ that touch H . We represent each
such RHR by how each of its sides is supported (i.e. by which red point or side
of B′). Occasionally, we must add to and delete from L. Such events occur when
H passes through a red point.

Let p1, p2, . . . denote the red points sorted in increasing order of dth coordinate.
We now describe how to update L as H passes through pi. Let H+ and H− be
sweep planes lying just above and below ri respectively (see Figure 1). Let L+

and L− be the lists associated with P+ and P− respectively. The RHRs common
to both L− and L+ are not supported by pi on any boundary.

Let Di be the set of RHRs in L− such that ri lies directly above the top of each
one. By our assumption of coordinate uniqueness, pi supports the top of each
RHR in Di when the sweep plane reaches pi. So Di is the set of RHRs deleted
from L+. To compute Di, we perform an orthogonal range query whenever a new
RHR R is discovered. Specifically, we add R to Dj, where pj is the red point
with the lowest index that lies directly above the bottom of R. If there is no
such pj , we add R to a special set D∞. We can locate pj in O(logd−1 n) time by
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using a range tree with fractional cascading. Such a tree requires O(n logd−1 n)
time and space to construct.

Let Ai be the set of RHRs in L+ that are supported on some side by pi.
Clearly, Ai is the set of RHRs added to L+. Let Ra be a RHR of Ai. Then pi

does not support the top of Ra, which is supported by P+. If pi supports the
bottom of Ra, then Ra is the region of B above pi and below H+. Otherwise, Ra

corresponds to some RHR of Di as follows (see Figure 1): Let R′ be the result
of pushing the top of Ra down so that it coincides with H−. When the sweep
plane is at H−, the top of R′ is supported by the plane, but one other side is not.
There is at most one such unsupported side because the co-ordinates of the red
points are unique. Push this one side out until it hits an obstacle. This results
in a RHR Rd that belongs to Di.

Ra

Rd

ri

H+

H−

R′

Fig. 1. Ha corresponds to a deleted hyperrectangle Hd (illustrated in 2D)

This correspondence between RHRs of Ai and RHRs of Di suggests a pro-
cedure for generating Ai from Di. Let Rd be a RHR of Di. Let S be one of
the (d− 1) axis-aligned hyperplanes through pi that is perpendicular to H . For
each such S, split Rd along S, which results in two pieces. For each piece, check
if it is properly supported on all all but two sides: the side coincident with S
(which will be supported by pi) and the side coincident with H− (which will
be supported by H+). If a piece is properly supported add it to Ai. Otherwise,
discard it. This process can be executed in O(|Di|) time, for any fixed d.

The set of all RHRs are
⋃n

i=1 Di. We can count the number of blue points
contained in each one using a range tree with fractional cascading. Note that we
do not need to compute L explicitly (it can be constructed from the Di). We
only used it to simplify the description of our algorithm. Let k be the number
of RHRs. Clearly, n ∈ O(k) because each red point supports the bottom of at
least one RHR. It is straightforward to verify that this sweep-plane algorithm
takes O(k logd−1 n) time and O(k + n logd−1 n) space.

This algorithm is similar to one that finds maximal negative orthants [15].

Saving a Logarithmic Factor. A simple observation allows us to shave a dimen-
sion off of our red-point range tree: When we query the red-point range tree for
a point lying above the bottom of a RHR, we know that the desired point pj

lies above the sweep plane. Hence, the height of the bottom is irrelevant, if we
remove red points from the range tree as the sweep plane passes over them.



22 J. Backer and J.M. Keil

Likewise, a simple observation allows us to shave a dimension off of our blue-
point range tree: The number of points in a RHR is the number of blue points
directly above the bottom minus the number of blue points directly above the
top. This allows us to perform a separate sweep to count the number of blue
points in each RHR. Similarly, we remove points from the blue-point range tree
as the sweep plane passes over them.

5 Two Dimensions

In this section, we outline efficient approaches to the two-dimensional BS and BR
problems. The two-dimensional MER problem was extensively studied [1,2,3,5].
In stark contrast, the only solution to the two-dimension MES problem in the
literature is described in a single line [2]: “The special case in which a largest
empty square is desired has been solved ... using Voronoi diagrams.”

5.1 Bichromatic Square Problem

We first elaborate on the above solution to the MES problem because it is the
basis of our approach to the BS problem. Lemma 1 states that two opposite
sides of a relevant square are supported. Let p and q be two points that support
opposite sides of a relevant square R centred at c (see Figure 2a). The L∞
distance between two points (x1, y1) and (x2, y2) is max(|x1 − x2|, |y1 − y2|).
Hence, the L∞ distance between p and c is exactly the L∞ distance between q
to c. Therefore, c lies on the non-diagonal portion of the L∞ bisector of p and q.
We denote this bisector E(p, q) because every point of E(p, q) is equidistant to p
and q. As R is relevant, its centre c lies on an edge of the L∞-Voronoi diagram
(VD) of the obstacles.

p

q

c

E(p, q)

R

(a) Centred on horizontal segment. (b) Centred on a Voronoi point.

Fig. 2. Relevant squares are centred on the edges of the Voronoi diagram, which is
illustrated with dotted lines

Remark 1. The centre of a relevant square lies on a non-diagonal segment of the
VD except for some degenerate cases (see Figure 2b).

Roughly speaking, the MES problem can be solved by (a) constructing the VD
of the red points and (b) examining each non-diagonal segment of the VD. Step
(a) can be executed in O(n log n) time and O(n) space [16]. Step (b) can be
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l

(a) Range of relevant squares.

l

(b) Red and blue points are marked •
and × respectively.

Fig. 3. Relevant squares centred on the segment l

executed in O(n) time because the VD has O(n) complexity [16]. Therefore, the
MES problem can be solved in O(n logn) time and O(n) space.

To solve the BS problem, we enumerate all O(n) exceptions to Remark 1 and
count the number of blue points in each one in O(n log n) time and O(n) space.
All other relevant squares are centred on non-diagonal segments of the VD. As
Figure 3a illustrates, there is a continuum of relevant squares centred on a non-
diagonal segment l. As Figure 3b illustrates, different squares centred on l may
contain a different number of blue points. To find a relevant square R∗ centred
on l that contains the most blue points, we sweep a square R along l and update
the count of points contained in R as blue points enter and leave it. We call
the squares where a blue point either just enters or just leaves R interesting.
Clearly, we can restrict our attention to interesting squares in our search for R∗.
To efficiently solve this problem, we rely on the following observation.

Lemma 4. Each blue point enters a sweep square at most once over all hori-
zontal segments of the VD, not just any one horizontal segment.

This lemma implies that there are are a total of O(n) interesting squares. We
can enumerate all interesting squares and count the number of blue points in
each one in O(n logn) time and O(n) space.

Theorem 6. The two-dimensional BS problem can be solved in O(n logn) time
and O(n) space.

5.2 Bichromatic Rectangle Problem

The asymptotically fastest algorithm for the MER problem takes O(n log2 n)
time and O(n) space [3]. This approach works by first considering all rectangles
that are supported by the bounding box B. There are only O(n) such boxes and
they can be enumerated via a plane sweep in O(n log n) time and O(n) space. The
remaining relevant rectangles are only supported by red points. Via divide-and-
conquer, this problem is reduced to a subproblem where all relevant rectangles
contain a common point. This special case can be solved in O(n) time and O(n)
space with a sophisticated matrix searching technique [17]. The observation that
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permits this technique to be used is called McKenna’s Lemma [18]. McKenna’s
Lemma still holds in the BR problem. The BR algorithm requires a factor of
logn more space and time than the MER algorithm because we must count the
number of blue points in a rectangle as opposed to just computing its area.

Theorem 7. The two-dimensional BR problem can be solved in O(n log3 n) time
and O(n log n) space.

6 Conclusion

We have filled many gaps in what is known about the MER, MES, BR, and BS
problems. It is now known that these problems are NP-complete when the di-
mension d is part of the input, these problems have polynomial-time solutions for
any fixed d, and these problems have very efficient solutions in two dimensions.
The hardness of these problems strongly suggests that any general solution for
high dimensions will have an exponential dependence in d. An open problem is
to prove a lower bound on this dependence. This exponential dependence moti-
vates the search for approximation algorithms. We are aware of an interesting
new approximate result for the MER problem that requires O((8edε−2)dn logd n)
time in the worst case, which is still a strong exponential dependence in d [19].

We solved the MES problem in high dimensions via several plane sweeps
that essentially computed the volume of a union of hypercubes. We know of an
algorithm for computing the volume of the union of cubes in three dimensions
that takes O(n4/3 logn) time [20]. Generalising this to higher dimensions remains
an interesting open problem. Moreover, this algorithm for the union of cubes does
not solve the depth problem, which is used in our BS algorithm.

Our solutions to the MER and BR problems have almost linear average case
run times for any fixed dimension. We doubt that this is true of our solutions to
the MES and BS problems. An open problem problem is to remedy this.

Our solution to the BS problem in high-dimensions is a factor of n2 times
slower than our solution to the MES problem. There is no such gap in two
dimensions and our MER and BR problems demonstrate no such difference in
run time. This suggests that the BS algorithm can be improved.
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Abstract. We prove a small linear-size kernel for the connected domi-
nating set problem in planar graphs through data reduction. Our set of
rules efficiently reduce a planar graph G with n vertices and connected
dominating number γc(G) to a kernel of size at most 413γc(G) in O(n3)
time answering the question of whether the connectivity criteria hinders
the construction of small kernels, negatively (in case of the planar con-
nected dominating set). Our result gives a fixed-parameter algorithm of

time (2O(
√

γc(G)) · γc(G) + n3) using the standard branch-decomposition
based approach.

1 Introduction

To find an optimal solution of an NP-hard problem, one may not hope for any-
thing better than exponential running time in the worst case. In the classical
complexity theory, the size of an input instance is usually considered as the only
factor for its hardness. However, many input instances consist of some parts that
are relatively easy to deal with and other parts that form the real hard core of
the problem. A fixed-parameter algorithm computes an optimal solution for a
hard problem by restricting the combinatorial explosion that characterizes the
exponential growth in the running time to a certain parameter. It is hoped that
these parameters might take only relatively small values, resulting in an afford-
able exponential growth in which case, the fixed-parameter algorithm efficiently
solves the given parameterized problem [22].

An efficient approach in the fixed-parameter algorithms is that before starting
a cost-intensive optimal algorithm to solve a hard problem, a polynomial-time
pre-processing phase is executed to shrink the input data to the hard core ker-
nel. This is known as data reduction to a problem kernel. Pre-processing hard
problems is not a new concept and it can be traced back to the very beginning
of algorithm research. The concept of data reduction to a problem kernel was
introduced by Downey and Fellows [11] for the first time to formalize reductions
for parameterized complexity purposes. The vertex cover problem is probably
one of the earliest problems studied in this line [21,5]. Cai et al. [6] proved that
every fixed-parameter tractable problem is kernelizable. The research on finding
kernels of small size for fixed-parameter tractable problems has been receiving

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 26–37, 2010.
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much attention [20,8,14,15,2,16,1]. A representative work in this line is that the
dominating set problem on planar graphs is shown to have a linear size kernel
[1,7,13].

Given a graph G with vertex set V (G), the dominating set problem asks for
a minimum subset D ⊆ V (G) of vertices such that every vertex in V (G)\D has
a neighbor in D. The cardinality of a minimum dominating set of G is known as
the dominating number of G, denoted by γ(G). The dominating set problem is a
core NP-complete graph problem which belongs to a broader class of domination
and covering problems. From applications’ point of view, domination problems
appear in numerous practical settings, ranging from strategic decisions such as
locating radar stations or emergency services through computational biology
to voting systems. The algorithmic complexity of the domination and related
problems are discussed in details in the book of Haynes et al. [17]. It is known that
the dominating set problem on arbitrary graphs is not fixed-parameter tractable
unless W [2] = FPT but when restricted to planar graphs it becomes fixed-
parameter tractable [11]. The best known parameterized time complexity for the
planar dominating set problem is O(211.98

√
γ(G)nO(1)) [9]. Data reduction for the

dominating set problem has received much attention [23,24,1,7]. Alber et al. [1]
give data reduction rules which always reduce a planar graph of n vertices to a
problem kernel of size O(γ(G)) in O(n3) time. Recently, Guo and Niedermeier
developed a generalized data reduction framework for deriving linear-size kernel
on a variety of NP-hard problems on planar graphs, including the domination
problems [13].

Apart from the original setting, variations of domination problems have found
numerous applications and significant theoretical interests, out of which con-
nected dominating set problem has probably received the most attention. The
connected dominating set problem is to find a minimum dominating set D of
a graph G such that the induced graph by D is connected. Denoted by γc(G)
is the connected dominating number of G which is calculated as the cardinality
of D. In addition to its theoretical significance, the connected dominating set
problem lies at the heart of many practical settings. An important application
of this problem appears in wireless ad hoc networks [3]. It is known that the
connected dominating set problem is not fixed-parameter tractable in arbitrary
graphs but becomes tractable when restricted to planar graphs [10]. It has yet
been open whether the planar version of the problem has a small kernel. Here
we answer this question by proving that the planar connected dominating set
problem admits a linear kernel of size 413γc(G). A recent unpublished work that
implies a linear-size kernel for this problem is [4]. Although this seminal work
presents meta-theorems that prove the existence of such kernels for a class of
problems including planar connected dominating set, no small upperbounds on
the size of the actual kernel is presented there. We also got to know about a very
recent result by Lokshtanov et al. showing a linear kernel of size 3968187γc(G)
for this problem [19] where the constant is large comparing to the best known
kernelization of planar dominating set, 67γ(G) [7]. This could expose connect-
edness as a natural limit to deriving smaller kernels considering the difficulty
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of designing reduction rules to deal with the connectivity inherent in the prob-
lem. Our work falsifies this claim by obtaining an independent linear-size kernel
of much smaller size for this problem1 and positively answers the conjecture
of [19] that the planar connected dominating set problem has a kernel smaller
than 1000γc(G). Our result is achieved by developing a set of data reduction
rules which reduce a planar graph G of n vertices to a problem kernel of size
O(γc(G)) in O(n3) time. Considering the paramount importance of the problem
in theory and practice, this brings us one step closer to efficient computation
of many real life problems. From an algorithmic point of view, our linear-size
kernel can be coupled with any of the previous algorithmic results to obtain
an efficient fixed-parameter algorithm for the planar connected dominating set
problem. In particular, using the branch-decomposition based approach of [10],
our work implies a fixed-parameter algorithm of time (2O(

√
γc(G)) · γc(G) + n3).

The organization of this paper is as follows: In Section 2, we define the ter-
minology and notation that will be used throughout this paper. In Section 3,
we design a set of data reduction rules for the planar connected dominating
set problem. Section 4 deals with analysis of the size of kernel obtained after
applying the reduction rules. Finally, we conclude the paper in section 5.

2 Preliminaries

We first introduce some definitions on fixed-parameter algorithms. Readers may
refer to [22] for more details on this topic. A fixed-parameter algorithm solves a
problem with an input instance of size n and a parameter k in f(k) · nO(1) time
for some computable function f depending solely on k. Let L be a parameterized
problem consisting of input pairs (I, k), where I is the input instance and k is the
parameter for I. Then kernelization or reduction to a problem kernel is to replace
instance (I, k) by a minimal reduced instance (I ′, k′) called problem kernel such
that k′ ≤ k and |I ′| ≤ g(k) for some function g only depending on k, (I, k) ∈ L
if and only if (I ′, k′) ∈ L, and this reduction must be computable in polynomial
time in |I|. Here, g(k) is called the kernel size.

We use graphs for simple undirected graphs unless otherwise stated. We de-
note by V (G) the vertex set and E(G) the edge set of a graph G. Readers
may refer to a textbook on graph theory for basic definitions. For a vertex
v ∈ V (G), let N(v) = {u|{u, v} ∈ E(G)} and N [v] = N(v)∪{v}. Given a subset
U ⊆ V (G), let N(U) = {u|v ∈ U, {u, v} ∈ E(G)}, N [U ] = N(U) ∪ U , and G[U ]
denote the subgraph induced by the vertices of U . The length of a path in G
is the number of edges in the path. We denote by v1 − v2 − · · · − vl the path
{v1, v2}, {v2, v3}, ..., {vl−1, vl}. The distance between two vertices v and w in G,
denoted by dG(v, w) is the length of the shortest path between v and w in G.

A vertex u is dominated by a vertex v in a graph G if either u = v or {u, v} ∈
E(G). A vertex v is dominated by a vertex set U if v is incident to at least one
vertex from U . A vertex set U ′ is dominated by a vertex set U if every vertex

1 The result has been obtained independently from [19] and appeared in [18].
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from U ′ is dominated by U . A subset D ⊆ V (G) is a dominating set of G if
V (G) is dominated by D. A connected dominating set (CDS) of G is a subset
D ⊆ V (G) such that D is a dominating set of G and the subgraph G[D] is
connected. The CDS problem is to find a minimum CDS D of G. The decision
version of the CDS problem is to decide, given a graph G and a positive integer
k, whether γc(G) ≤ k.

Alber et al. [1] show that the planar dominating set problem has a linear size
kernel. Later, Guo et al. [13] generalize this approach to a framework for tackling
a class of NP-hard problems on planar graphs. We use these works as a starting
point for designing data reduction rules for the planar connected dominating set
problem. The definitions in the rest of this section are adopted from [1]. For a
vertex v ∈ V (G), N(v) is partitioned into:

N1(v) = {u|u ∈ N(v), N(u) \N [v] �= ∅},
N2(v) = {u|u ∈ N(v) \N1(v), N(u) ∩N1(v) �= ∅},
N3(v) = N(v) \ (N1(v) ∪N2(v)).

For a pair of vertices v, w ∈ V (G), let N(v, w) = N(v) ∪ N(w) \ {v, w} and
N [v, w] = N [v] ∪N [w]. The neighborhood N(v, w) is partitioned into:

N1(v, w) = {u|u ∈ N(v, w), N(u) \N [v, w] �= ∅},
N2(v, w) = {u|u ∈ N(v, w) \N1(v, w), N(u) ∩N1(v, w) �= ∅},
N3(v, w) = N(v, w) \ (N1(v, w) ∪N2(v, w)).

Notice that the vertices of N3(v, w) can only be dominated by vertices of {v, w}∪
N2(v, w)∪N3(v, w). A plane graph is a planar graph drawn in the plane without
an edge crossing. Let G be a plane graph. For two vertices v, w of V (G) with
dG(v, w) ≤ 3, a region R(v, w) between v and w is a closed subset of the plane
such that

– the boundary of R(v, w) denoted by ∂R is formed by two simple paths P1
and P2 that connect v and w, and the length of each path is at most three;

– all vertices that are strictly inside the region R(v, w) are from N(v, w).

For a region R = R(v, w), V (R) = {u ∈ V (G)|u is inside R or on ∂R} is the set
of vertices belonging to R. Figure 1 (a) gives an example of a region R(v, w). A
region R = R(v, w) is called simple if all vertices of V (R) \ {v, w} are common
neighbors of v and w (see Figure 1 (b)). A simple region R(v, w) is of type i
(i = 1, 2) if i of the vertices on its boundary except for v, w have at least a
neighbor outside the region. Examples of regions of types 2 and 1 are depicted
in Figure 1 (b) and (c), respectively.

Given the definition of the region, for a plane graph G, one can envision a
decomposition of G into a set of non-overlapping regions. This notion is formal-
ized as follows: Given a plane graph G and a subset D ⊆ V (G), a D-region
decomposition of G is a set R of regions between pairs of vertices of D such that
(1) for R = R(v, w) ∈ R, no vertex from D \ {v, w} is in V (R) and (2) for two
regions R1, R2 ∈ R, (R1 ∩R2) ⊆ (∂R1 ∪ ∂R2).
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Fig. 1. (a) A region, (b) a simple region of type 2, and (c) a simple region of type 1

For a region decomposition R, V (R) =
⋃

R∈R V (R) is the set of vertices in or
on the boundary of a region in R. Given a subset D ⊆ V (G), D-region decom-
position of G is not necessarily unique. A D-region decomposition R is called
maximal if no region R can be added to R such that the resulting decomposition
stays valid and more vertices are covered. In other words for a maximal R and
∀R /∈ R, if V (R) ⊂ V (R ∪ R) then R ∪ R is not a valid region decomposition
of G.

3 Reduction Rules for Connected Domination

In this section, using the inherent properties of the connected domination, we
introduce five simple rules for reducing the graph. Furthermore, in order to assure
the validity of our fixed-parameter reduction, for each presented rule we prove
correctness and polynomial time complexity. Our first two reduction rules are
similar to the two reduction rules of [1]. The intuition behind the first reduction
rule is that if N3(v) �= ∅ then vertex v is a good candidate for dominating N3(v)
and the vertices in N2(v) and N3(v) can be removed.

Rule 1: For v ∈ V (G), if N3(v) �= ∅ then remove N2(v) ∪ N3(v) from G and
add a new gadget vertex v′ with edge {v, v′} to G.

Our second reduction rule is applied to the end vertices of an edge {v, w} of G.
The intuition behind this rule is that vertices of {v, w} are good candidates for
dominating N3(v, w) and some vertices of N2(v, w) and N3(v, w) can be removed.

Rule 2: For {v, w} ∈ E(G), assume that |N3(v, w)| ≥ 2 and N3(v, w) can not
be dominated by a single vertex from N2(v, w) ∪N3(v, w).
Case 1: N3(v, w) can be dominated by a single vertex of {v, w}.
– (1.1) If N3(v, w) ⊆ N(v) and N3(v, w) ⊆ N(w) then remove N3(v, w)

and N2(v, w)∩N(v)∩N(w) from G and add a new gadget vertex z with
edges {v, z} and {w, z} to G.

– (1.2) If N3(v, w) ⊆ N(v) but N3(v, w) �⊆ N(w) then remove N3(v, w)
and N2(v, w) ∩N(v) from G and add a new gadget vertex v′ with edge
{v, v′} to G.
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– (1.3) If N3(v, w) ⊆ N(w) but N3(v, w) �⊆ N(v) then remove N3(v, w)
and N2(v, w)∩N(w) from G and add a new gadget vertex w′ with edge
{w,w′} to G.

Case 2: If N3(v, w) can not be dominated by a single vertex from {v, w}
then remove N2(v, w) and N3(v, w) from G and add new gadget vertices v′

and w′ with edges {v, v′} and {w,w′} to G.

Our next two rules are designed to be applied to a pair of vertices v and w of
G with 2 ≤ dG(v, w) ≤ 3. The intuition behind these rules is similar to that
for Rule 2 but to remove some vertices from N2(v, w) and N3(v, w), we may
need to keep some vertices which form a path between v and w to guarantee the
connectivity of the graph induced by the dominating set while we also need to
assure that there cannot be any other shorter connected path in N2(v, w) and
N3(v, w) dominating N3(v, w). This makes the rules more complex than Rule
2 because there are different cases for keeping such vertices. We first introduce
some notation.

A vertex x ∈ N3(v, w) is called a bridge if x is dominated by a vertex from
N2(v, w), v, and w, that is, x ∈ N(N2(v, w)) ∩ N(v) ∩ N(w). We denote by
B(v, w) the set of bridges for v and w. Intuitively, a bridge is a good candidate
for forming a path between v and w.

Rule 3: For v, w ∈ V (G) with dG(v, w) = 2, assume that |N3(v, w)| ≥ 3. We
remove some vertices from N3(v, w) but keep a path v − p− w in G.
Case 1: N3(v, w) can be dominated by a single vertex of {v, w}.
– (1.1) N3(v, w) ⊆ N(v) and N3(v, w) ⊆ N(w). If N3(v, w) can not be

dominated by at most two vertices of N2(v, w) ∪N3(v, w) then:
• If B(v, w) �= ∅ then select a vertex from B(v, w), otherwise a vertex

from N(v) ∩N(w), as p.
• If N3(v, w)\(B(v, w)∪{p}) �= ∅ then remove N3(v, w)\(B(v, w)∪{p})

and add a gadget vertex z with edges {v, z} and {z, w} to G.
– (1.2) N3(v, w) ⊆ N(v) but N3(v, w) �⊆ N(w). If N3(v, w) can not be

dominated by at most two vertices of {w} ∪N2(v, w) ∪N3(v, w) then:
• If B(v, w) �= ∅ then select a vertex from B(v, w), otherwise a vertex

from N(v) ∩N(w), as p.
• If N3(v, w)\(B(v, w)∪{p}) �= ∅ then remove N3(v, w)\(B(v, w)∪{p})

and add a gadget vertex v′ with edge {v, v′} to G.
– (1.3) N3(v, w) ⊆ N(w) but N3(v, w) �⊆ N(v). If N3(v, w) can not be

dominated by at most two vertices of {v} ∪N2(v, w) ∪N3(v, w) then:
• If B(v, w) �= ∅ then select a vertex from B(v, w), otherwise a vertex

from N(v) ∩N(w), as p.
• If N3(v, w)\(B(v, w)∪{p}) �= ∅ then remove N3(v, w)\(B(v, w)∪{p})

and add a gadget vertex w′ with edge {w,w′} to G.
Case 2: N3(v, w) can not be dominated by a single vertex from {v, w}.

If N3(v, w) can not be dominated by at most two vertices of {v} ∪
N2(v, w)∪N3(v, w) or at most two vertices of {w}∪N2(v, w)∪N3(v, w) then:
select a vertex from N(v) ∩N(w) as p, remove (N2(v, w) ∪N3(v, w)) \ {p},
and add gadget vertices v′ and w′ with edges {v, v′}, {w,w′} to G.
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To introduce Rule 4, we need an additional definition. For a pair of vertices
v and w with dG(v, w) = 3, a vertex y ∈ N2(v, w) ∩ N(w) is called a key-
neighbor of w if y is dominated by a vertex z of N3(v, w) ∩ N(v), that is, y ∈
N(w)∩N2(v, w)∩N(N3(v, w)∩N(v)). We call z a companion of the key-neighbor
y. We define similarly a key-neighbor of v and a companion of the key-neighbor
y. Intuitively, a key-neighbor y and a companion z of y are good candidates
for a shorter connected path dominating N3(v, w). As shown later, there are at
most two key-neighbors of w in each region R(v, w) between v and w due to
the planarity of G. Therefore, a companion z can dominate at most two key-
neighbors of w and there is at most one companion which can dominate two
key-neighbors of w in R(v, w). Similarly, a companion z can dominate at most
two key-neighbors of v and there is at most one companion which can dominate
two key-neighbors of v in R(v, w).

Rule 4: For v, w ∈ V (G) with dG(v, w) = 3, assume that |N3(v, w)| ≥ 4. We
remove some vertices from N3(v, w) but keep a path v − p− q − w in G.
Case 1: N3(v, w) can be dominated by a single vertex of {v, w}.
– (1.1) N3(v, w) ⊆ N(v). If N3(v, w) can not be dominated by at most

three vertices of {w} ∪N2(v, w) ∪N3(v, w) then:
• Find a minimum subset Z of companions such that Z dominates

every key-neighbor of w. If Z �= ∅ then select a z ∈ Z as p and a
key-neighbor y of w dominated by z as q, otherwise select any two
vertices p and q such that v − p− q − w is a path of G.

• If N3(v, w) \ (Z ∪{p, q}) �= ∅ then remove N3(v, w) \ (Z ∪{p, q}) and
add a gadget vertex v′ with edge {v, v′} to G.

– (1.2) N3(v, w) ⊆ N(w). If N3(v, w) can not be dominated by at most
three vertices of {v} ∪N2(v, w) ∪N3(v, w) then
• Find a minimum subset Z of companions such that Z dominates

every key-neighbor of v. If Z �= ∅ then select a z ∈ Z as p and a
key-neighbor y of v dominated by z as q, otherwise select any two
vertices p and q such that w − p− q − p is a path of G.

• If N3(v, w)\ (Y ∪{p, q}) �= ∅ then remove N3(v, w)\ (Y ∪{p, q}) and
add a gadget vertex v′ with edge {v, v′} to G.

Case 2: N3(v, w) can not be dominated by a single vertex of {v, w}. If
N3(v, w) can not be dominated by at most three vertices of {v}∪N2(v, w)∪
N3(v, w) or at most three vertices of {w} ∪N2(v, w) ∪N3(v, w) then select
any two vertices p and q such that v− p− q−w is path of G. If (N2(v, w)∪
N3(v, w)) \ {p, q} �= ∅ then remove (N2(v, w) ∪ N3(v, w)) \ {p, q} and add
gadget vertices v′ and w′ with edges {v, v′} and {w,w′} to G.

Finally, we introduce a rule which is applied to simple regions. For v, w ∈ V (G)
with dG(v, w) ≤ 2, let R = R(v, w) be the union of all maximal simple regions
R(v, w).

Rule 5: For v, w ∈ V (G), assume that (V (R) ∩ N3(v, w)) \ B(v, w) �= ∅. If
B(v, w) �= ∅ then select a vertex from B(v, w) as p, otherwise select a vertex
from V (R) ∩N3(v, w) as p. Remove (V (R) ∩N3(v, w)) \ (B(v, w) ∪ {p}). If
B(v, w) �= ∅ then add a gadget vertex z with edges {v, z}, {z, w} to G.
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Lemma 1. Given a graph G, let G′ be the graph obtained after applying any of
the Rules 1-5 to G. Then a minimum CDS of G′ which does not contain any
gadget vertices is a minimum CDS of G.

Lemma 2. Given a planar graph G, Rule 1 can be performed in O(n) time for
all vertices of G. Also Rules 2-5 can be performed in O(n2) time, for all pairs
of vertices v, w ∈ V (G).

The sketch of the proof is almost the same as in [12], except that in order to
obtain the running time of O(n2) for rules 3 and 4 ( as opposed to O(n3) and
O(n4) respectively in [12]) we use a simple counting argument for checking the
domination of a joint neighborhood by a path as required by rules 3 and 4.

A graph G is called reduced if the graph obtained after applying any of Rules
1-5 to G is isomorphic to G.

Theorem 1. Rules 1-5 convert a plane graph G to a reduced plane graph G′ in
O(n3) time such that a minimum CDS of G′ which does not contain any gadget
vertices is a CDS of G as well.

For the proofs of the above lemmata and theorem please refer to [12].

4 Linear-Size Kernel

In this section, we show that the reduced graph G′, obtained after repetitive
application of reduction Rules 1-5, has O(γc(G)) vertices. The proof consists
of three major parts. First, by the result of [1], there is a maximal D-region
decomposition R of O(γc(G)) regions for a plane graph G. Next, we prove that
having applied the reduction rules repetitively to the graph, each region in R
can have O(1) vertices only. Finally, by the result of [1] we show that the number
of vertices of G that do not belong to any of the regions in R is O(γc(G)).

Lemma 3. (Alber et al. [1]) Given a plane graph G and a dominating set D of
G, a maximal D-decomposition R of at most 3|D| regions can be constructed.

By this result, choosing D a minimum CDS of G, we get a maximal D-region
decomposition R of at most 3γc(G) regions. Next, we calculate an upperbound
on the number of vertices in a region of R.

Proposition 1. Let G′ be the reduced graph obtained after repetitive application
of Rules 1-5 to G. Then G′ has the following properties.

1. For every v ∈ V (G′), N3(v) does not contain any vertex of G.
2. For every pair v, w ∈ V (G′) with dG′(v, w) ≤ 3, either

(a) there is a U ⊆ (N2(v, w)∪N3(v, w)) such that |U | ≤ 3 and U dominates
all vertices of N3(u, v) or

(b) for every region R(v, w), N3(v, w)∩ V (R) has at most two vertices from
V (G).
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Proof. (1) follows from Rule 1. For (2), if no vertex is removed from G by any of
Rules 2-5 then by the definition of the rules, (a) holds, otherwise we show (b). If
Rule 2 successfully applied, then N3(v, w) = ∅. If Rule 3 or Rule 5 is successfully
applied, then N3(v, w) contains either bridges of B(v, w) or a single vertex p. If
Rule 4 is successfully applied, then N3(v, w) contains either some companions
of Z which dominate all key neighbors of w (Case 1.1), or some companions of
Z which dominate all key neighbors of v (Case 1.2), or two vertices p and q (all
cases). Notice that the number of companions of Z in a region R(v, w) is at most
the number of key neighbors of v or w. Therefore, to show (b) of (2), it suffices
to prove that in a region R(v, w), there are at most two bridges for dG(v, w) = 2,
at most two key neighbors of v for Case (1.2) of Rule 4, and at most two key
neighbors of w for Case (1.1) of Rule 4.

For dG(v, w) = 2, assume that there are at least three bridges x1, x2, x3 in
R(v, w). Then one bridge, say x3, must be strictly inside the region R′ = R′(v, w)
formed by the paths v − x1 − w and v − x2 − w. Since R′ is inside R and
x1, x2 ∈ N3(v, w), each vertex strictly inside R′ is not connected to any vertex
in N2(v, w), a contradiction to the fact that x3 is a bridge. Thus, there are at
most two bridges in R(v, w).

For dG(v, w) = 3, assume that there are at least three key-neighbors x1, x2, x3
of v. Let yi ∈ N(w) ∩N3(v, w), i = 1, 2, 3 be the companions of xi, respectively.
Then one of the three key neighbors, x3, must be strictly inside the region
R′ = R′(v, w) formed by the paths v − x1 − y1 − w and v − x2 − y2 − w. Since
R′ is inside R and x1, x2 ∈ N2(v, w) and y1, y2 ∈ N3(v, w), each vertex strictly
inside R′ is not connected to any vertex in N1(v, w), a contradiction to the fact
that x3 is a vertex from N2(v, w). Thus, there are at most two key-neighbors
of v in R(v, w) for Case (1.2) of Rule 4. Similarly, there are at most two key-
neighbors of w in R(v, w) for Case (1.1) of Rule 4. ��
Next, we use Proposition 1 to upperbound the size of simple regions. We recall
that for i = 1, 2, a simple region R(v, w) is called a type-i region if V (R) has i
vertices from N1(v, w).

Proposition 2. Given a reduced plane graph G and a maximal D-region de-
composition R for a CDS D of G, a type-i region R(v, w) of R has at most i
vertices from N1(v, w), i vertices from N2(v, w), and i+1 vertices from N3(v, w).

Proof. For a simple region R = R(v, w) in R, only the vertices on the boundary
can have a neighbor outside R. By the definition of simple region, |N1(v, w) ∩
V (R)| ≤ 2. But since G is planar, every vertex in N1(v, w)∩V (R) can contribute
at most one vertex to N2(v, w) ∩ V (R). Hence, we get |N2(v, w) ∩ V (R)| ≤
|N1(v, w) ∩ V (R)|. As shown in the proof of Proposition 1, N3(v, w) ∩ V (R) has
at most |N2(v, w) ∩ V (R)| ≤ 2 bridges and one gadget vertex. ��
Now we are ready to upperbound the number of vertices in a region R(v, w) of
R. A key step in the proof is to upperbound the number of simple regions in a
region R(v, w) by Proposition 1. From this bound and Proposition 2, we can get
an upper bound on the number of vertices in R(v, w).



Connectivity Is Not a Limit for Kernelization 35

Lemma 4. Given a reduced plane graph G and a maximal D-region decompo-
sition R for a CDS D of G, every region R = R(v, w) of R has at most 81
vertices.

Proof. Let P and Q be the paths which form the boundary of R. Without loss
of generality, we assume that both P = v− p1 − p2 −w and Q = v− q1 − q2 −w
have length three (a shorter path will give a smaller number of vertices in R).
Since only the vertices on P and Q can be connected to vertices outside R,
|N1(v, w) ∩ V (R)| ≤ 4.

Since each vertex in N2(v, w) is dominated by a vertex from N1(v, w) and
a vertex from {v, w}, the vertices in N2(v, w) are included in simple regions
between a vertex from N1(v, w) and one from {v, w}. From the planarity of G,
we conclude that there are at most six such regions. In the worst case, four of
the simple regions are type-1 and two of them are type-2. From Proposition 2,
we get |N2(v, w) ∩ V (R)| ≤ 4 · 4 + 2 · 7 = 30.

There are several cases for the size of N3(v, w) ∩ V (R): (1) the condition for
applying Rule 4 is not satisfied; (2) the condition for applying Rule 3 is not
satisfied; (3) the condition for applying Rule 2 is not satisfied; and (4) one of
Rules 2-4 has been successfully applied. For Case (1), By Proposition 1 and
the definition of Rule 4, there is a subset U ⊆ N3(v, w) such that |U | ≤ 3 and
every vertex in N3(v, w) is dominated by U . Since each vertex in N3(v, w) is also
dominated by a vertex from {v, w}, the vertices in N3(v, w) are in simple regions
between a vertex from U and a vertex from {v, w}. There are at most six such
simple regions. Now, by Proposition 2, we know |N3(v, w)∩V (R)| ≤ 6·7+3 = 45.
By a similar argument, we can show that |N3(v, w) ∩R(V )| < 45 for Cases (2)-
(4). Summarizing the above, |V (R)| ≤ |N1(v, w) ∩ V (R)| + |N2(v, w) ∩ V (R)| +
|N3(v, w) ∩ V (R)| + |{v, w}| ≤ 81. ��
Finally, we use the result of [1] to bound the number of vertices not in V (R).

Lemma 5. Given a plane graph G and a CDS D of G, if R is a maximal
D-region decomposition of G, then |V (G) \ V (R)| ≤ 2|D| + 56|R|.
Proof. Alber et al. in [1] proved that given a plane graph G and a dominating
set D of G, if R is a maximal D-region decomposition, then |V (G) \ V (R)| ≤
2|D| + 56|R|. We follow the same proof as that of Proposition 2 in [1] with the
only exception that we use a separate argument for describing the simple regions
in our specific reduced graph. By Proposition 2, each simple region R(v, w) has
at most nine vertices which is also an upper bound on the number of vertices of
simple regions in [1]. Therefore, the lemma holds. ��
Theorem 2. For a planar graph G which is reduced with respect to Rules 1 to
5, |V (G)| ≤ 413γc(G).

Proof. From Lemma 3, we know that there are at most 3γc(G) regions in R.
By Lemma 4, each region has at most 81 vertices. From Lemma 5, we conclude
|V \V (R)| ≤ 2|D| + 56|R|. Therefore, |V (G)| ≤ 2γc(G) + 56 × 3γc(G) + 81 ×
3γc(G) = 413γc(G). ��



36 Q. Gu and N. Imani

5 Concluding Remarks

This work addresses the question of finding a small linear-size kernel for the
connected dominating set problem on planar graphs. Having proposed a set
of simple and easy to implement reduction rules for the connected dominating
set, we proved that for planar graphs, a small linear-size problem kernel can
be efficiently constructed. The reduction phase has a low time complexity of
only O(n3). In particular, combining our result with the branch-decomposition
based approach of [10], our work implies a fixed-parameter algorithm of time
(2O(

√
γc(G)) · γc(G) + n3), for planar connected dominating set. From a method-

ological point of view, our constructed kernel does not deviate significantly in
size from the best known kernels for the planar dominating set while the re-
duction time stays the same, showing that data reduction is still an efficient
approach for designing small kernels even when connectivity of solution set is
important. In particular, we answer the conjecture of [19] by proving that ker-
nels of smaller than 1000γc(G) can be constructed for connected dominating set
on planar graphs. It can be worthwhile to consider designing more sophisticated
data reduction rules for further shrinking the kernel size say using the tech-
niques in [7] and through a more detailed analysis. Developing a new framework
for kernelization of a broader class of fixed-parameter tractable problems can be
an important step in characterizing the hardness of FPT problems.
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Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

14. Gramm, J., Hirsch, E.A., Niedermeier, R., Rossmanith, P.: Worst-case upper
bounds for MAX-2-SAT with an application to MAX-CUT. Discrete Applied Math-
ematics 130(2), 139–155 (2003)

15. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data via
perfect path phylogenies. Discrete Applied Mathematics 155(6-7), 788–805 (2007)

16. Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for mul-
ticut in trees. Networks 46(3), 124–135 (2005)

17. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208.
Marcel Dekker, New York (1998)

18. Imani, N.: Data Reduction for Connected Dominating Set. Master Thesis, Simon
Fraser University, BC, Canada (August 2008)

19. Lokshtanov, D., Mnich, M., Saurabh, S.: Linear kernel for planar connected dom-
inating set. To appear in Proceedings of TAMC (May 2009)

20. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. Journal of Algorithms 31(2), 335–354 (1999)

21. Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties and
algorithms. Mathematical Programming 8, 232–248 (1975)

22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford
(2006)

23. Weihe, K.: Covering trains by stations or the power of data reduction. In: Proceed-
ings of Algorithms and Experiments, ALEX, pp. 1–8 (1998)

24. Weihe, K.: On the differences between “practical” and “applied”. In: Näher, S.,
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Abstract. We study the problem of designing truthful algorithms for
scheduling a set of tasks, each one owned by a selfish agent, to a set
of parallel (identical or unrelated) machines in order to minimize the
makespan. We consider the following process: at first the agents declare
the length of their tasks, then given these bids the protocol schedules
the tasks on the machines. The aim of the protocol is to minimize the
makespan, i.e. the maximal completion time of the tasks, while the objec-
tive of each agent is to minimize the completion time of its task and thus
an agent may lie if by doing so, his task may finish earlier. In this paper,
we show the existence of randomized truthful (non-polynomial-time) al-
gorithms with expected approximation ratio equal to 3/2 for different
scheduling settings (identical machines with and without release dates
and unrelated machines) and models of execution (strong or weak). Our
result improves the best previously known result [1] for the problem
with identical machines (P ||Cmax) in the strong model of execution and
reaches, asymptotically, the lower bound of [5]. In addition, this result
can be transformed to a polynomial-time truthful randomized algorithm
with expected approximation ratio 3/2+ ε (resp. 11

6
− 1

3m
) for Pm||Cmax

(resp. P ||Cmax).

1 Introduction

Nowadays, there are many systems involving autonomous entities (agents). These
systems are organized by protocols, trying to maximize the social welfare in the
presence of private information held by the agents. In some settings the agents
may try to manipulate the protocol by reporting false information in order to
maximize their own profit. With false information, even the most efficient pro-
tocol may lead to unreasonable solutions if it is not designed to cope with the
selfish behavior of the agents. In such a context, it is natural to study the ef-
ficiency of truthful protocols, i.e. protocols that are able to guarantee that no
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agent has incentive to lie. This approach has been considered in many papers
these last few years (see [4] for a recent survey).

In this paper, we study the problem of designing truthful algorithms for
scheduling a set of tasks, each one owned by a selfish agent, to a set of par-
allel (identical or unrelated) machines in order to minimize the makespan. We
consider the following process: before the start of the execution, the agents de-
clare the length of their tasks, then given these bids the protocol schedules the
tasks on the machines. The aim of the protocol is to minimize the makespan, i.e.
the maximal completion time of the tasks, while the objective of each agent is to
minimize the completion time of its task and thus an agent may lie if by doing
so, his task may finish earlier. We focus on protocols without side payments that
simultaneously offer a guarantee on the quality of the schedule (its makespan is
not arbitrarily far from the optimum) and guarantee that the solution is truthful
(no agent can lie and improve his own completion time).

1.1 Formal Definition

There are n agents, represented by the set {1, 2, · · · , n} and m parallel machines.

Variants of the problem. Depending on the type of the machines and the
jobs characteristics, we consider three different variants of the problem:

- Identical parallel machines (P ||Cmax). All the machines are identical
and every task i has a private value ti that represents its length. We assume
that an agent cannot shrink the length of her task (otherwise he will not get
his result), but if he can decrease his completion time by bidding a value
larger than the real one (bi ≥ ti), then he will do so.

- Identical parallel machines with release dates (P |ri|Cmax). All the
machines are identical and every task i has now a private pair (ti, ri), where
ti is the length of task i and ri its release date. Every task i may bid any pair
(bi, r

b
i ) such that bi ≥ ti and rb

i ≥ ri. A task i may not bid a release date
smaller than its real release date i.e. rb

i < ri, because otherwise, the task
may be scheduled before ri and thus the final schedule may be infeasible.

- Unrelated parallel machines (R||Cmax). The machines are here unre-
lated. Every task i has a private vector (t1i , . . . , t

m
i ), where tji , 1 ≤ j ≤ m,

is the processing time of task i if it is executed on machine j. Every task i
bids any vector (b1i , . . . , b

m
i ) with b1i ≥ t1i , . . . , b

m
i ≥ tmi .

Models of execution. We consider two models of execution:

– The strong model of execution: task i bids any value bi ≥ ti and its execution
time is ti (i.e. task i is completed ti units of time after it starts even if i bids
bi �= ti).

– The weak model of execution: i bids any value bi ≥ ti and its execution time
is bi (i.e. task i is completed bi units of time after it starts).

Notation. By Ci, we denote the completion time of task i. The objective of
the protocol is to determine a schedule of the tasks minimizing the maximal
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completion time of the tasks or makespan, denoted in what follows by Cmax.
We say that an algorithm is truthful, if and only if, for every task i, 1 ≤ i ≤ n
and for every bid bj , j �= i, the completion time of task i is minimum when i
bids bi = ti. In other, words, an algorithm is truthful if truth-telling is the best
strategy for a player i regardless of the strategy adopted by the other players.

1.2 Related Works

The works that are more closely related to our are those of [2], [1], [3] and
[5]. In the paper by Auletta et al. [3], the authors consider the variant of the
problem of m related machines in which the individual function of each task is
the completion time of the machine on which it is executed, while the global
objective function is the makespan. They consider the strong model of execution
by assuming that each task may declare an arbitrary length (smaller or greater
than its real length) while the load of each machine is the sum of the true
lengths of the tasks assigned to it. They provide equilibria-truthful mechanisms
that use payments in order to retain truthfulness. In [1], the authors consider
a different variant with m identical machines in which the individual objective
function of each task is its completion time and they consider the strong model
of execution (but here the tasks may only report values that are greater than
or equal to their real lengths). Given that for this variant the SPT (Shortest
Processing Time) algorithm1 is truthful, they focus on the design of algorithms
with better approximation ratio than that of the SPT algorithm. The rough
idea of their approach is a randomized algorithm in which they combine the
LPT (Longest Processing Time) algorithm2, which has a better approximation
ratio than SPT but is not truthful, with a schedule (DSPT) based on the SPT
algorithm where some “unnecessary” idle times are introduced between the tasks.
These unnecessary idle times are introduced in the SPT schedule in order to
penalize more the tasks that report false information. Indeed, in the DSPT
schedule such a task is doubly penalized, since not only is its execution delayed
by the other tasks but also by the introduced idle times. In such a way, it is
possible to find a probability distribution over the deterministic algorithms, LPT
and DSPT which produces a randomized algorithm that is proved to be truthful
and with an (expected) approximation ratio of 2 − 1

m+1 (5
3 + 1

3m ), i.e. better
than the one of SPT which is equal to 2 − 1

m . An optimal truthful randomized
algorithm and a truthful randomized PTAS for identical parallel machines in
the weak model of execution appeared in [2]. The idea of these algorithms is
to introduce fake tasks in order to have the same completion time in all the
machines and then to use a random order in each machine for scheduling the
tasks allocated to it (including the eventual fake one). These results have been
also generalized in the case of related machines and the on-line case with release

1 Where the tasks are scheduled greedily following the increasing order of their lengths
(its approximation ratio is 2 − 1/m).

2 Where the tasks are scheduled greedily following the decreasing order of their lengths
(its approximation ratio is 4/3 − 1/(3m)).
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dates. Another related work, presented in [5], gives some new lower and upper
bounds. More precisely, the authors proved that there is no truthful deterministic
(resp. randomized) algorithm with an approximation ratio smaller than 2−1/m
(resp. 3/2− 1/2m) for the strong model of execution. They also provide a lower
bound of 1.1 for the deterministic case in the weak model (for m ≥ 3) and a
deterministic 4

3 − 1
3m truthful algorithm based the idea of bloc schedule where

after inserting fake tasks in order to have the same completion time in all the
machines, instead of using a random order on the tasks of each machine, the
authors proposed to take the mirror of the LPT schedule.

1.3 Our Contribution

In the first part of the paper we consider the strong model of execution. Our
contribution is a new truthful randomized non-polynomial algorithm that we call
Starting Time Equalizer (STE), presented in Section 2, whose approximation
ratio for the makespan is 3

2 for P ||Cmax. This new upper bound asymptotically
closes the gap between the lower bound 3

2 − 1
2m of [5] and the previously best

known upper bound of 2− 1
m+1

( 5
3 + 1

3m

)
for this problem [1]. We also give two

polynomial-time variants of Algorithm STE, respectively with approximation
ratio 3

2 + ε for Pm||Cmax and 11
6 + 1

3m for P ||Cmax (we underline that both 3
2 + ε

and 11
6 + 1

3m are better than the previous upper bound of 2 − 1
m+1

( 5
3 + 1

3m

)
).

In the second part of the paper, we consider the weak model of execution. We
give in Section 3.1, a new truthful randomized non-polynomial algorithm, called
Mid-Time Equalizer (MTE) for the off-line problem with release dates, where
the private information of each task is not only each length, but also its release
date (P |ri|Cmax). Finally, we consider the case of scheduling a set of selfish
tasks on a set of unrelated parallel machines (R||Cmax) for the weak model
of execution (Section 3.2) where we propose a new truthful randomized non-
polynomial algorithm that we call Completion Time Equalizer (CTE). Table 1
gives a summary of the upper and lower bounds on the approximation ratio
of truthful algorithms for the considered problems (with † we give the results
obtained in this paper).

Table 1. Bounds for m parallel machines

Deterministic Randomized
Lower bound Upper bound Lower bound Upper bound

P ||Cmax

strong model
2 − 1

m
[5] 2 − 1

m
[6] 3

2
− 1

2m
[5] 3

2
†

P ||Cmax

weak model if m = 2 then
1 +

√
105−9
12

> 1.1
if m ≥ 3 then
7
6

> 1.16 [5]

4
3
− 1

3m
[5] 1 [2] 1 [2]

R||Cmax

weak model unknown
unknown

3
2
†

P |ri|Cmax

weak model 2 − 1
m

[7] 3
2
†
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The lower bounds for truthful deterministic algorithms in the weak model for
P |ri|Cmax and R||Cmax are simple implications of the lower bound for truthful
deterministic algorithms solving P ||Cmax. Up to our knowledge, there is no inter-
esting lower bounds for truthful randomized algorithms (resp. upper bound for
truthful deterministic algorithms) for R||Cmax and P |ri|Cmax (resp. R||Cmax).
The upper bound 2 − 1

m for P |ri|Cmax in the weak model holds only if we con-
sider that each task can identified by an identification number (ID). With this
assumption, we just have to consider the on-line algorithm which schedules the
tasks when they become available with (for instance) the smallest ID first. This
algorithm is then trivially truthful, because task i will not have incentive of bid-
ding (bi > ti, r

b
i > ri) (bi has no effect on the way in which tasks are scheduled

and bidding rb
i > ri can only increase Ci). Moreover, as this algorithm is a par-

ticular case of Graham’s list scheduling (LS) algorithm with release dates, it is
(2− 1

m )-competitive (because Graham’s LS algorithm is (2− 1
m )-competitive for

P |on-line-list |Cmax, [7]).

2 Strong Model of Execution

2.1 Identical Machines

Algorithm STE

We consider in this section the problem with identical machines (P ||Cmax) in
the strong model. Every task i has a private value ti that represents its length
and it has to bid any value bi ≥ ti.

Algorithm: Starting Time Equalizer (STE)

1. Let COPT
max be the makespan of an optimal schedule OPT for P ||Cmax.

Let OPTj be the sub-schedule of OPT on machine j.
Let bj1 ≤ · · · ≤ bjk

be the bids (sorted by increasing order)
of the k tasks in OPTj .

2. Construct schedule S1 as follows: for every machine j (1 ≤ j ≤ m),
every task i (j1 ≤ i ≤ jk) in OPTj is executed on machine j by
starting at time

∑k
l=i+1 bjl

.

3. Construct schedule S2 as follows: for every machine j (1 ≤ j ≤ m),
every task i (j1 ≤ i ≤ jk) in OPTj is executed on machine j by
starting at time COPT

max −∑k
l=i+1 bjl

.

4. Choose schedule S1 or S2 each with probability 1/2.

Figure 1 illustrates the construction of schedules S1 and S2 in algorithm STE
on machine machine j.
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Fig. 1. An illustration of execution of Algorithm STE on machine j. We give an ex-
ample of schedules S1 and S2 with four tasks in OPTj such that bj1 = 1, bj2 = 1.5,
bj3 = 3, bj4 = 4 and COPT

max = 11.

The main idea of the algorithm STE is to make equal the expected starting
times of all the tasks. More precisely, we prove below that the expected starting
time of every task in the final schedule constructed by STE, which is the average
between its starting time in S1 and its starting time in S2, will be equal to COP T

max
2

(i.e. the same value for every task). This property will be used in the proof of
Theorem 1 to show that STE is truthful. In the example given in Figure 1, the
expected starting time of the four tasks is COP T

max
2 and it is equal to 5.5.

Theorem 1. STE is a randomized, truthful and 3
2 -approximate algorithm in the

strong model of execution for P ||Cmax.

Proof. As STE is a randomized algorithm, to prove it is truthful, we have to
show that the expected completion time of each task is minimum when it tells
the truth. By definition of STE, the expected completion time Ci of any task
i is the average between its completion time in schedule S1 and its completion
time in schedule S2. In the strong model of execution, every task i is completed
ti units of time after its starting time. Thus,

Ci =
1
2

((
ti +

k∑
l=i+1

bjl

)
+

(
ti + COPT

max −
k∑

l=i+1

bjl

))
= ti +

COPT
max

2

For every task i, the completion time of task i is Ci = ti + COP T
max
2 and it reaches

its minimum value when i tells the truth because ti does not depend on the bid
bi and because COPT

max obviously does not decrease if i bids bi > ti instead of
bi = ti. Thus, STE is truthful in the strong model of execution. Given that STE
is truthful, we may consider in the following that for every i, we have bi = ti.
Given also that STE is a randomized algorithm choosing with probability 1/2
schedule S1 and with probability 1/2 schedule S2, its approximation ratio will
be the average between the approximation ratios of schedules S1 and S2. In S1,
all tasks end before or at time COPT

max . Thus, as for every i, bi = ti, COPT
max is the

makespan of an optimal solution computed with the true types of the agents,
S1 is optimal. In S2, on every machine j, all tasks end before or at time COPT

max



44 E. Angel, E. Bampis, and N. Thibault

except task jk, which finishes at time COPT
max + tjk

. Given that tjk
≤ COPT

max , all
tasks in S2 end before or at time 2COPT

max . Thus, S2 is 2-approximate. Hence, the
expected approximation ratio of STE is 1

2 (1 + 2) = 3
2 . ��

2.2 Polynomial-Time Variants of Algorithm STE

Given that Algorithm STE requires the computation of an optimal solution for
P ||Cmax and as this problem is NP-hard, it is clear that STE cannot be exe-
cuted in polynomial time. Nevertheless, it is interesting for two reasons. First, it
asymptotically closes the gap between the lower bound 3

2 − 1
2m of any truthful

algorithm and the previously best known upper bound of 2 − 1
m+1

( 5
3 + 1

3m

)
.

Secondly, by using approximated solutions instead of the optimal one, we can
obtain polynomial-time variants of STE. To precise these variants, we first need
to define what we call an increasing algorithm.

Definition (Increasing algorithm). Let H and H ′ be two sets of tasks
{T1, T2, . . . , Tn} and {T ′

1, T
′
2, . . . , T

′
n} respectively. We denote by H ≤ H ′ the

fact that for every 1 ≤ i ≤ n, we have l(Ti) ≤ l(T ′
i ) (where l(T ) is the length of

task T ). An algorithm A is increasing if for every pair of sets of tasks H and
H ′ such that H ≤ H ′, it constructs schedules such that Cmax(H) ≤ Cmax(H ′)
(where Cmax(X) is the makespan of the solution constructed by Algorithm A for
the set of tasks X).

As LPT (Longest Processing Time) is an increasing algorithm (See [2]) and as
there exists an increasing PTAS for Pm||Cmax (See [2]), we get the following
two theorems.

Theorem 2. By using LPT instead of an optimal algorithm, we obtain a
polynomial-time, randomized, truthful and (11

6 − 1
3m )-approximate variant of STE

in the strong model of execution for P ||Cmax.

Theorem 3. By using the increasing PTAS in [2] instead of an optimal algo-
rithm, we obtain a polynomial-time, randomized, truthful and (3

2+ε)-approximate
variant of STE in the strong model of execution for Pm||Cmax.

Theorem 2 (resp. Theorem 3) can be proved in a similar way as in Theorem 1.
Indeed, as the completion time of each task will be Ci = ti + CLPT

max
2 (resp.

Ci = ti + CPT AS
max

2 ) instead of Ci = ti + COP T
max
2 and as LPT (resp. the PTAS

in [2]) is increasing, the variant of STE in Theorem 2 (resp. Theorem 3) is
truthful. Moreover, as LPT is (4

3 − 1
3m )-approximate for P ||Cmax (resp. the

PTAS in [2] is (1 + ε)-approximate for Pm||Cmax), we obtain that the expected
approximation ratio of the variant of STE in Theorem 2 (resp. Theorem 3) is
1
2 (4

3 − 1
3m + 4

3 − 1
3m + 1) = 11

6 − 1
3m (resp. 1

2 (1 + ε + 1 + ε + 1) = 3
2 + ε).
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3 Weak Model of Execution

3.1 Identical Machines with Release Dates

We consider in this section P |ri|Cmax in the weak model. Every task i has now
a private pair (ti, ri) (its type), where ti is the length of task i and ri its release
date. Each task i may bid any pair (bi, r

b
i ) such that bi ≥ ti and rb

i ≥ ri. Notice
here that we consider that task i may not bid a release date smaller than its real
release date i.e. rb

i < ri, because otherwise, the task may be scheduled before ri

in the final schedule and thus, the final schedule may be infeasible.

Algorithm: Mid-Time Equalizer (MTE)

1. Let COPT
max be the makespan of an optimal schedule OPT for P |ri|Cmax.

Let mi be the machine where Task i is executed in OPT .
Let Ci(OPT ) be the completion time of Task i in OPT .

2. Construct Schedule OPTmirror in which every task i is executed on
machine mi and start at Time max1≤j≤n{rb

j} + COPT
max − Ci(OPT ).

3. Choose Schedule OPT or OPTmirror each with probability 1/2.

Figure 2 illustrates the construction of Schedules OPT and OPTmirror in
algorithm MTE on any machine mi.
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Fig. 2. An illustration of execution of algorithm MTE on machine mi. We give an
example of schedules OPT and OPT mirror with four tasks on machine mi such that
(b1 = 1, r1 = 0), (b2 = 1.5, r2 = 5), (b3 = 3, r3 = 7), (b4 = 4, r4 = 2), max1≤j≤n{rb

j} =
8 and COPT

max = 11.

The main idea of algorithm Mid-Time Equalizer (MTE) is make equal the
expected time at which every task has executed half of its total length. More
precisely, we prove below that the expected mid-time of every task in the final
schedule constructed by MTE is the average between its mid-time in OPT and in
OPTmirror and it is equal to 1

2

(
max1≤j≤n{rb

j} + COPT
max

)
(i.e. the same value for

every task). This property will be used in the proof of Theorem 4 in order to show
that MTE is truthful in the weak model of execution. In the example given in
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Figure 2, the expected mid-time of the four tasks is 1
2

(
max1≤j≤n{rb

j} + COPT
max

)
and it is equal to 8+11

2 = 9.5.
Note that as we consider that for every i, we have rb

i ≥ri, we get max1≤j≤n{rb
i}

≥ max1≤j≤n{rj}. Moreover, as Ci(OPT ) ≤ COPT
max , every task i starts in schedule

OPTmirror at time max1≤j≤n{rb
j} + COPT

max − Ci(OPT ) ≥ max1≤j≤n{rj} ≥ ri.
Thus, schedule OPTmirror respects all the constraints of the release dates.

Theorem 4. MTE is a randomized, truthful and 3
2 -approximate algorithm in

the weak model of execution for P |ri|Cmax.

Proof. Let us prove that the expected completion time of every task is minimum
when it tells the truth. By definition of MTE, the expected completion time Ci

of any task i is the average between its completion time Ci(OPT ) in schedule
OPT and its completion time Ci(OPTmirror) in schedule OPTmirror. In the
weak model of execution, every task i is completed bi units of time after its
starting time. Thus, we have

Ci =
1
2
(
Ci(OPT ) + max1≤j≤n{rb

j} + COPT
max − Ci(OPT ) + bi

)
=

1
2
(
max1≤j≤n{rb

j} + COPT
max + bi

)
For every task i, its completion time Ci = 1

2

(
max1≤j≤n{rb

j} + COPT
max + bi

)
reaches its minimum value when i tells the truth (i.e. when i bids simultane-
ously bi = ti and rb

i = ri), because

– for every rb
i ≥ ri, both COPT

max and bi obviously do not decrease if i bids
(bi > ti, r

b
i ) instead of (bi = ti, r

b
i ), and

– for every bi ≥ ti, both max1≤j≤n{rb
j} and COPT

max obviously do not decrease
if i bids (bi, r

b
i > ri) instead of (bi, r

b
i = ri).

It is then clear that MTE is truthful and thus we may consider in what follow
that for every i, we have bi = ti and rb

i = ri. The expected approximation
ratio of MTE will be the average between the approximation ratios of OPT
and OPTmirror. In OPT , all tasks end before or at time COPT

max . Thus, as for
every i, bi = ti, COPT

max is the makespan of an optimal solution computed with
the types of the agents, and thus, OPT is optimal. In OPTmirror, all tasks
end before or at time max1≤j≤n{rj} + COPT

max (because for every i, rb
i = ri by

definition of MTE). Given that max1≤j≤n{rj} ≤ COPT
max , all tasks in OPTmirror

terminate before or at time 2COPT
max . Thus, OPTmirror is 2-approximate. Hence

the expected approximation ratio of Algorithm MTE is 1
2 (1 + 2) = 3

2 . ��

3.2 Unrelated Machines

We consider in this section the case with unrelated machines (R||Cmax) in the
weak model of execution. Here, every task i has a private vector (t1i , . . . , t

m
i )

(his type), where tji (1 ≤ j ≤ m) is the processing time of i if it is executed on
machine j. Every task i bids any vector (b1i , . . . , b

m
i ) with b1i ≥ t1i , . . . , b

m
i ≥ tmi .
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Algorithm: Completion Time Equalizer (CTE)

1. Let COPT
max be the makespan of an optimal schedule OPT for R||Cmax.

Let OPTj be the sub-schedule of OPT on Machine j.
Let bj

j1
≤ · · · ≤ bj

jk
be the bids (sorted by increasing order)

of the k tasks in OPTj .

2. Construct schedule S1 as follows: for every machine j (i ≤ j ≤ m),
every task i (j1 ≤ i ≤ jk) in OPTj is executed on machine j by
starting at time COPT

max −∑k
l=i b

j
jl

.

3. Construct schedule S2 as follows: for every machine j (i ≤ j ≤ m),
every task i (j1 ≤ i ≤ jk) in OPTj is executed on machine j by
starting at time COPT

max − bj
i +

∑k
l=i+1 b

j
jl
.

4. Choose schedule S1 or S2 each one with probability 1/2.

Figure 3 illustrates the construction of schedules S1 and S2 in algorithm CTE
on machine j.
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Fig. 3. An illustration of execution of algorithm CTE on machine j. An example of
schedules S1 and S2 is given with four tasks in OPTj such that bj

j1
= 1, bj

j2
= 1.5,

bj
j3

= 3, bj
j4

= 4 and COPT
max = 11.

The intuitive idea of algorithm Completion Time Equalizer is to make equal
the expected completion times of the tasks. More precisely, the expected comple-
tion time of every task in the final schedule constructed by CTE is the average
between its starting time in S1 and its starting time in S2 and it is equal to
COPT

max (i.e. the same for all the tasks). This property will be used in the proof
of Theorem 1 to show that CTE is truthful in the weak model of execution. For
instance, in the example given in Figure 1, the expected completion time of the
four tasks is COPT

max and it is equal to 11.

Theorem 5. CTE is a randomized, truthful and 3
2 -approximate algorithm in

the weak model of execution for R||Cmax.

Proof. We first show that the expected completion time of each task is minimum
when it tells the truth. By definition of CTE, the expected completion time Ci
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of any task i is the average between its completion time in Schedule S1 and its
completion time in Schedule S2. In the weak model of execution, each task i is
completed bi units of time after its starting time on machine j. Thus, we have

Ci =
1
2

((
bj
i + COPT

max −
k∑

l=i

bj
jl

)
+

(
bj
i + COPT

max − bj
i +

k∑
l=i+1

bj
jl

))
= COPT

max

For every task i, Ci = COPT
max reaches its minimum value when i tells the truth

because COPT
max obviously does not decrease if for any i, j, task i bids bj

i > tji
instead of bj

i = tji . Hence, CTE is truthful and so we can consider in the following
that for every i, j, we have bj

i = tji . In schedule S1, all tasks finish before or at
time COPT

max . Thus, as for every i, j, bj
i = tji , C

OPT
max is the makespan of an optimal

solution computed with the types of the agents, S1 is optimal. In S2, on each
machine j, all tasks end before or at time COPT

max +
∑k

l=2 b
j
jl
. As

∑k
l=2 b

j
jl
≤ COPT

max ,
all tasks in S2 end before or at time 2COPT

max . Thus, S2 is 2-approximate. Finally,
the expected approximation ratio of algorithm CTE is 1

2 (1 + 2) = 3
2 . ��
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Abstract. An O(n log2 n) algorithm is presented to compute all coef-
ficients of the chromatic polynomial of an n vertex graph of bounded
tree-width. Previously, it has been known how to evaluate the chromatic
polynomial for such graphs in linear time, implying a computation of all
coefficients of the chromatic polynomial in quadratic time.

Keywords: chromatic polynomial, counting colorings, bounded tree-
width, efficient algorithms.

1 Introduction

The chromatic polynomial introduced by Birkhoff [1] is a well studied object in
algebraic graph theory. It is a graph invariant, i.e., isomorphic graphs have the
same chromatic polynomial. The value of the chromatic polynomial at a positive
integer s is the number of colorings with at most s colors. It is not immediately
obvious that such a polynomial exists, i.e., that the function with these values
is a polynomial.

All graphs considered here are undirected, without multiple edges, and loop-
free. Let

t(r) = t(t− 1)(t− 2) . . . (t− r + 1).

The chromatic polynomial (see [2]) of a graph G = (V,E) with n = |V | vertices
is defined as

P (G, t) =
n∑

r=1

pr(G) t(r)

where pr(G) is the number of color-partitions of V into r blocks, i.e., the number
of partitions of V into r non-empty independent sets.

It is not hard to see that for any positive integer s, the value P (G, s) is indeed
the number of distinct proper colorings of G with colors chosen from a set of
� Research supported in part by NSF Grant CCF-0728921.

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 49–59, 2010.
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size s. This implies immediately, that the chromatic polynomial of a disconnected
graph is the product of the chromatic polynomials of its connected components.

Two other cases are known to lead to a significant reduction in the time to
compute the chromatic polynomial [2, pp. 66–68]. If a graph decomposes into
different pieces that are either completely coupled or basically independent of
each other, then it is easy to compute the chromatic polynomial of the graph
from the chromatic polynomials of its pieces.

The first case occurs when G is obtained from the disjoint graphs G1 and G2
by connecting every vertex of G1 to every vertex of G2 by an edge. Then every
color partition of G with 	 color classes is composed of a color partition of G1
with some number i of color classes and a color partition of G2 with 	− i color
classes.

A trivial example of this first case is the complete graph Kn. There is just
one color partition, and the chromatic polynomial is t(n).

In the second case, the intersection of two graphs G1 and G2 is a clique K�,
then

P (G, t) =
1
t(�)

P (G1, t)P (G2, t).

A trivial example allowing the repeated application of this rule is a tree. But
for a tree it is anyway easy to see that the chromatic polynomial has the simple
form

P (T, t) = t(t− 1)n−1.

We will study a much more general situation, where the intersection of G1
and G2 is not restricted to be a clique, but is allowed to be any small graph.

If we are willing to move slowly and deal with an exponential explosion in
the number of subgraphs to handle, there is an elegant and interesting method
available. For G = (V,E) and e = {u, v} ∈ E, define

G \ e = (V,E \ {e})

and

G/e = (V \ {v}, E ∪ {{u,w} : {v, w} ∈ E} \ {{v, w} : {v, w} ∈ E},

i.e., G \ e is obtained from G by deleting the edge e, while G/e is obtained from
G by identifying u and v. Then the chromatic polynomial satisfies the simple
recurrence equation

P (G, t) = P (G \ e, t) − P (G/e, t). (1)

This is obvious from the two cases of u and v either having the same or different
colors.

The recurrence equation immediately produces an exponential time algorithm
to compute the chromatic polynomial by observing that

P ((V, ∅), t) = tn. (2)
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For graphs of bounded tree-width, we suggest not to use this algorithm. Its
running time is at most of order φ|V |+|E| up to polynomial factors, with φ being
the golden ratio. In general, we might not expect a much better running time,
because P (G, t) is #P-hard for all integers t ≥ 3. But even in the trivial case of a
tree, this algorithm uses exponential time, unless the selected edges are incident
or close to leaves, and the product rule for disconnected graphs is used.

Many graph polynomials have linear time algorithms for graphs of bounded
tree-width. Examples are the interlace polynomials [3,4,5], as well as the MSOL-
Farrell (monadic second-order logic) polynomials over a ring of unit cost [6]. For
an overview of graph polynomials and polynomial time evaluation methods for
graphs of bounded tree-width resulting from definability in second order logic,
see the unifying article of [4].

The chromatic polynomial can be viewed as a special case of the famous Tutte
polynomial, because

P (G, t) = (−1)r(E)T (G, 1 − t, 0),

where the rank r(E) is the difference between the number of vertices and the
number of connected components.

Based on this connection, the algorithms of Andrzejak [7] and Noble [8] for
computing the Tutte polynomial also provide algorithms for the chromatic poly-
nomial. Andrzejak’s algorithm runs in polynomial time for graphs of bounded
tree-width k, with the exponent being a function of k. Noble’s algorithm runs
in time f(k)n for computing one value of the polynomial. Thus the algorithm is
linear in n and shows the problem to be fixed parameter tractable (FPT). The
dependence of k is double exponential. Makowsky et al. [9] have a polynomial
time algorithm for the chromatic polynomial for the more general case of fixed
clique-width.

Using the method described below in this paper, also a simple dynamic pro-
gramming approach can be used to evaluate the chromatic polynomial in linear
time for graphs of bounded tree-width. As an immediate application of any lin-
ear time evaluation algorithm, all coefficients of the chromatic polynomial can
be computed in quadratic time for graphs of bounded tree-width. One way to
obtain this corollary is to evaluate the polynomial at n + 1 locations and inter-
polate, in particular, one could evaluate at roots of unity and interpolate with
an inverse FFT (fast Fourier transform). Another more direct way is to mimic
the computation of a value of the chromatic polynomial. Noticing that each in-
termediate value is a value of some polynomial, one could always compute all
coefficients of such a polynomial instead of just one value.

Until recently, no method has been known to improve the worst case com-
plexity of such a computation below quadratic in general. Nevertheless, if a tree
decomposition of a graph is nicely balanced, then the dynamic programming
algorithm (which handles the subtrees of the children before the subtree of the
parent) can actually be made significantly faster.

The situation is much simpler, but similar, in the case of computing the char-
acteristic polynomial of a tree. Naturally, unlike the chromatic polynomial, the
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characteristic polynomial is always computable in polynomial time. On the other
hand, even the characteristic polynomial of a tree is non-trivial. Traditional
methods allow for the evaluation of the characteristic polynomial in linear time,
and thus the computation of all its coefficients in quadratic time. A balanced
tree is handled by a standard dynamic programming algorithm with fast mul-
tiplication in time O(n log2 n). Only recently has a method been developed to
compute the characteristic polynomial of any tree in time O(n log2 n) [10].

We will apply this method for the more difficult situation of the chromatic
polynomial for graphs of bounded tree-width. The method combines the ad-
vantages of the top-down recursive decomposition and the bottom-up dynamic
programming. Dynamic programming fails to be efficient when the tree is not
balanced. Recursive decomposition has more shortcomings. It has the advantage
of being able to pick a central node as the root, implying a nice splitting of the
tree. But in its traditional application, it makes many recursive calls resulting
in an exponential time algorithm.

We overcome this problem, by grouping together several similar recursive calls.
Each recursive call has to handle not just one, but a finite number of similar
smaller subproblems. When the subproblems are split again in a balanced way
by choosing a central root in each subtree, we have to deal with the difficulty of
obtaining (after some recursive calls) some subtrees with an unbounded number
of cases.

The problem has a surprisingly simple solution. It suffices to alternate between
splitting to evenly partition the tree and splitting to bound the number of cases
associated with any recursive call on a subtree.

2 Preliminaries

Definition 1. A tree decomposition of a graph G = (V,E) is a pair ({Xi : i ∈
I}, T ), where T = (I, F ) is a tree and each node i ∈ I has a subset Xi ⊆ V of
vertices (called the bag of i) associated to it with the following properties.

1.
⋃

i∈I Xi = V , i.e., each vertex belongs to at least one bag.
2. For all edges e = {u, v} ∈ E there is at least one i ∈ I with {u, v} ⊆ Xi,

i.e., each edge is represented by at least one bag.
3. For every vertex v ∈ V , the set of indices i of bags containing v induces a

subtree of T (i.e., a connected subgraph).

If G has a tree decomposition with largest bag size k + 1, then G is said to have
tree-width at most k.

For every fixed k, there is a linear time algorithm deciding whether the tree-
width is at most k, and if that is the case, producing a corresponding tree
decomposition [11].

An [s]-coloring is a proper coloring (i.e., the endpoints of each edge have
different colors) with the colors [s] = {1, 2, . . . , s}.

We assume the vertices of our graph G = (V,E) are enumerated. This defines a
standard enumeration of the blocks of any partition of V by the lowest numbered
vertex in each block.
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Definition 2. The standard coloring corresponding to a partition of the vertex
set U ⊆ V into independent sets U1, U2, . . . is the coloring where the jth block
Vj obtains color j.

2.1 Notation

For a partition p, we denote the number of blocks by |p|. For a coloring γ, we
denote the number of colors by |γ|.

We use the notation t(r) = t(t − 1) . . . (t− r + 1) and more general p(t)(r) =
p(t)(p(t) − 1) . . . (p(t) − r + 1) for any polynomial p(t).

3 The Restricted Chromatic Polynomial

Besides the chromatic polynomial P (G, t) whose value for any positive integer
s is the number of colorings of G with at most s given colors, we define the
restricted chromatic polynomial counting the number of colorings of G with at
most s given colors agreeing with a given coloring γ on some subset U of V .

Definition 3. For a graph G = (V,E), a vertex set U ⊆ V and a standard
coloring γ of U , let pr(G,U, γ) be the number of those partitions of V into
r independent sets of G which agree with the color partition of U produced
by γ. Then the γ-restricted chromatic polynomial P (G,U, γ, t) is defined by
P (G,U, γ, s) being (for all positive integers s) the number of colorings with colors
from [s] = {1, . . . , s} agreeing with γ on U .

The following characterization of P (G,U, γ, t) is an immediate consequence.

Proposition 1. P (G,U, γ, t) is a polynomial and

P (G,U, γ, t) =
1

t(|γ|)

n∑
r=1

pr(G,U, γ)t(r)

=
n∑

r=1

pr(G,U, γ)t(r−|γ|).

Proof.
∑n

r=1 pr(G,U, γ)s(r) is the number of [s]-colorings of G agreeing with the
partition produced by the coloring γ on U . Requiring the colors to agree with
the standard coloring γ on U (and not just with the partition it causes on U)
reduces the number of colorings by a factor of s|γ|. ��
P (G,U, γ, t) is a polynomial, i.e., the denominator (|γ|) in the Proposition always
cancels. This division should always be done before any evaluations to avoid zero
division.

Naturally, for U being the empty set and γ the empty coloring of U , we obtain
the usual chromatic polynomial

P (G, t) = P (G, ∅, ∅, t).
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4 The Algorithm

The essence of our algorithm is the recursive procedure Restricted-Coloring,
which is called from the algorithm Chromatic-Polynomial. The auxiliary proce-
dure Select-Root selects the tree node where the next split occurs.

An obvious initial idea to obtain an efficient algorithm is to evenly split the
tree which defines the tree decomposition. A natural choice is to pick a center,
i.e., the single node or one of the two nodes splitting the tree into a collection of
subtrees with each subtree of the collection having at most one more than half
the number of nodes of the given tree. We include the center itself in all of the
subtrees.

This idea is not sufficient for our purposes, because we also have a distin-
guished subset J of the leaves where we did previous splits. In our case, the set
J defines an exponential (in |J |) number of task to be accomplished in each of
the subtrees split off. In order to bound the size of J with which the procedure
Restricted-Colorings is called (by the constant 3), we sometimes split not with
the objective of splitting the set of all nodes evenly, but of splitting its subset
J evenly. For |J | = 3, let Splitter(T, J) be the unique node of T splitting the
set J into 3 parts. During the procedure Restricted-Colorings, |J | can reach its
maximum of 4 temporarily.

Procedure Select-Root:
Input: A tree T = (I, F ) and a subset J ⊆ I of at most 3 leaves.
Output: A node i of T , which will be viewed as the root of T .
Comment: The first objective is to keep the intersection of J small with each of the

subtrees obtained by splitting the tree T at i, even as i is added to J . The second
objective is to split the tree T evenly.

if |J | = 3 then
Return Splitter(T, J)

else
Return Center(T )

Fig. 1. The procedure Select-Root

Algorithm Chromatic-Polynomial:
Input: A graph G = (V, E) with |V | = n together with

a tree decomposition ({Xi : i ∈ I}, T = (I, F ) of tree-width k.
Output: The coefficients c0, c1, . . . , cn

of the chromatic polynomial P (G, t) =
∑n

r=1 crt
r.

J = ∅
(c0, . . . , cn) = Coefficients of Restricted-Colorings(G, T, J)
Return (c0, . . . , cn)

Fig. 2. The algorithm Chromatic-Polynomial
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5 Time Complexity

As usual for such computations, we use the algebraic computation model. Each
arithmetic operation is counted as one step. All binary numbers involved are
at most of linear length in the number of vertices n. Alternatively, one could
count bit operations. Then the improvement obtained by our new method are
even more significant, as we would not only do more work with smaller degree
polynomials, but also with smaller coefficients. We only analyze the dependence
on n, assuming the tree-width k is a constant.

Analyzing the procedure Restricted-Colorings, the first thing to note is that
the sizes of J and U are under control. Initially J and U are empty. The size of
U is always bounded by the number of vertices in the bags of J , which is at most
(k + 1)|J |. The size of J is at most 3 when the procedure Restricted-Colorings
is called. The size of J increases by 1 during the call to at most 4. All recursive
calls are made with at most the current value of J . But if this value is 4, then
three recursive calls are made with |J | = 2 and possibly some more with |J | = 1.
The number of recursive calls is determined by the degree d of the splitting node
Splitter(T, J).

It is important to notice that if an instantiation of the procedure Restricted-
Colorings starts with |J | = 3, then the tree is typically not split at a center,
but |J | < 3 for all the recursive calls. Thus every uneven split is immediately
followed by even splits. J never reaches size 4 twice in a row.

Let m be the number of edges in the tree T (not in the graph G). Assume
m ≥ 1, as the one vertex case is trivial and does not show up during recursive
calls.

Lemma 1. For m ≥ 1 and suitable constants c, c′, and c′′, the running time of
the procedure Restricted-Colorings is at most cm lg2 m+ c′′m for |J | < 3 and at
most cm lg2 m + c′ m lgm + c′′m for |J | = 3.

Proof. The lemma trivially holds for m = 1. Let m ≥ 2 and assume the lemma
is true for all trees with less than m edges.

Recall that the procedure Restricted-Colorings partitions the tree T edge-wise
into trees T1, . . . , Td with Ti = (I(i), F (i)). Let |F (i)| = mi, and for |J | < 3, the
sizes mi are bounded by m/2+1 for all i. After the recursive calls for these trees
Ti with common root v, the procedure repeatedly merges pairs of approximately
smallest trees into single trees until there is just one tree left, i.e., T has been
reassembled. Obviously, there is at most one tree T ′ among the trees Ti with
three nodes contributing to its set of special vertices Ui. Let m′ be the number
of edges of T ′. Let mmin = mini mi.

Claim: If after some sequence of merges of pairs of trees, we have the trees
T1, . . . , Td′ , then the time spent for the recursive calls and the merges together
has been at most

t(d′) = c

d′∑
i=1

mi lg2 mi + c′ mmin lgmmin + bm′ lgm′ + c′′m (3)
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Procedure Restricted-Colorings:
Input: A graph G = (V, E) with one of its tree decompositions T = (I, F ) and a subset

J ⊆ I of size at most 3. Let U be the set of vertices in the bags of the nodes of J .
Let n = |V | and n′ = |V \ U |.

Output: The function f from the set of standard colorings of U into the polynomials
Z[t] where for every standard coloring γ, f(γ) is the polynomial P (G, U, γ, t) of degree
n′ with P (G, U, γ, s) being the number of [s]-colorings of G agreeing with γ on the
subset U of vertices for every positive integer s.

Comment: This procedure is only called for sets J of size at most 3. Thus the size of
U is initially bounded by 3(k + 1), where k is the width of the tree decomoposition.
During the procedure |J | increases by 1 and thus |U | is always bounded by the constant
4(k + 1).

if U = V , i.e., all nodes of the tree T are already selected then
f is the function with the constant value 1 for every standard coloring γ.
Return f

v = Select-Root(T, J)
Consider v to be the root of T , and let d be the degree of v.
Let v1, . . . , vd be the neighbors of the root v.
for i = 1, . . . , d, let Ti = (I(i), F (i)) be the subtree of T induced by all the nodes

reachable from vi without going through v as an intermediate node.
Let V (I ′) be the vertices associated with the nodes in I ′ ⊆ I .
// Thus the sets V (I(i)) \ V({v}) form a partition of V \ V({v})
// and V ({v}) ⊆ V (I(i)) for all i.

J = J ∪ {v}
U = V (J)
for i = 1 to d do

fi = Restricted-Colorings(G[V (I(i))], Ti, J ∩ V (I(i))
S = {T1, . . . , Td}
while |S| > 1 do

Let Ti and Tj be two approximately smallest trees in S of sizes ni and nj

respectively.
// “Approximately smallest” means at most a constant factor bigger than the
// smallest. Thus sorting can be avoided.
T� = Ti ∪ Tj

n� = ni + nj − 1
S = S \ {Ti, Tj} ∪ {T�} // I.e., replace Ti and Tj by their union.
for all standard colorings γ of U do

f�(γ) = fi(γ)fj(γ)
// This multiplication is done by FFT.

Now S is a singleton {T�} with T� = T .
Return f�

Fig. 3. The procedure Restricted-Colorings
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where c, c′ and c′′ are from the lemma and b is defined by b = c′ if the tree T ′

(with |Ji| = J ∩ V (I(i)) = 3) exists and b = 0 otherwise.
In equation (3), the first term (the sum) is viewed as the main term covering

the typical cost. The second term (c′ mmin lgmmin) has been introduced to pay
for the extra cost of occasional uneven merges, i.e., merges of trees of very
different sizes. The third term covers the extra cost of the subtree (if any) with
|J | = 3. Finally, the forth term is provided to cover the base case (where all tree
nodes are in J).

For the total time, until all merges have been done, i.e., for d′ = 1, we will
show a better bound t′ later.

The proof of the claim is by induction on the number of merges. The base
case (just before any merges) follows directly from the inductive hypothesis of the
lemma, without any need for the second term c′ mmin lgmmin. For the inductive
step, we look at the difference t(d′) − t(d′ + 1) of the allowed time after and
before the merge of two trees Ti and Tj into T�. We show in each case that time
t(d′)l− t(d′ +1) is enough to perform the merge, i.e., to compute the polynomial
for T� from the polynomials for Ti and Tj .

First note that none of the four terms in t(d′) decreases during a merge (i.e.,
as d′ decreases by 1). The first term always increases by

c (mi + mj) lg2(mi + mj) − cmi lg2 mi − cmj lg2 mj > 0

The second term increases when mmin increases. The last two terms clearly don’t
decrease.

We analyze the merges in two possible ways depending on whether the merged
trees are of similar size or not. W.l.o.g., we assume mi ≤ mj .

Case “not similar”: Assume Ti and Tj are merged with 1 ≤ mmin = mi <
mj/4, and {Ti, Tj} are approximately minimal, i.e., mh > mj/2 for all h �= i.
Here we do not assume mj ≤ m/2. For |J | = 3, it is possible to have a large tree
with mj very close to m. Now the second term, c′ mmin lgmmin, increases from
t(d′) to t(d′ + 1) by at least

c′
mj

2
lg

mj

2
− c′ mmin lgmmin

> c′
mj

2
lg

mj

2
− c′

mj

4
lg

mj

4
> c′

mj

4
lg

mj

2
> c′

mj

8
lgmj (as mj > 4)

Now c′ is chosen large enough to make it possible to do the last merge in time
(c′/8)mj lgmj , i.e., to do the multiplications of O(1) pairs of polynomials of
degree mi and mj respectively using the fast Fourier transformation (FFT).
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Case “similar”: Assume Ti and Tj are merged with mi ≤ mj ≤ 4mi. Now the
first term increases from t(d′) to t(d′ + 1) by

c (mi + mj) lg2(mi + mj) − cmi lg2 mi − cmj lg2 mj

≥ c (mi + mj) lg2(5
4mj) − cmi lg2 mj − cmj lg2 mj

= c (mi + mj)((lg 5
4 + lgmj)2 − lg2 mj)

= c (mi + mj)(2 lg 5
4 lgmj + lg2 5

4 )
> Cmj lgmj

Here C is first chosen large enough to make it possible to do the last merge
in time Cmj lgmj , i.e., to do the multiplications of O(1) pairs of polynomials
of degree mi and mj respectively using FFT. Then we make sure c is chosen
sufficiently large that the last inequality holds. This proves the claim.

At this point, we should notice that Claim (3) is not always strong enough to
show the inductive step in the induction proof of the lemma. Indeed we can do
better during the last merge. We claim a different bound t′ instead of just t(1)
to hold after the last merge, when we have just one tree T� = T . Let

t′ = cm lg2 m + am lgm + c′′m, (4)

where a = c′ if |J | = 3 (for the set associated with the tree T ), and a = 0
otherwise.

The case with |J | = 3 and therefore |Ji| < 3 for all i causes no problem. Then
b = 0, mmin = m, and the first time bound (3) implies the second (4).

In the case |J | < 3, the last merge has to be handled separately. We show that
this merge is always balanced and therefore significantly cheaper. We consider
the stage where we are left with two trees with mi and mj edges to be merged
into a tree of m = m� = mi+mj edges. We assume mi ≤ mj and claim mj < 4

5m.
Otherwise, the large tree with more than 4

5m edges would have been produced
by a merge involving a tree of size at least 2

5m, omitting a tree of size at most
1
5m, contradicting the rule of always merging approximately smallest trees.

Now the difference between the new modified bound t′ and the previous bound
t(2) is

t′ − t(2) = cm lg2 m− c(mi lg2 mi + mj lg2 mj) − c′ mmin lgmmin − bm′ lgm′

> cmi(lg2 m− lg2 mi) + cmj(lg2 m− lg2 mj) − 2c′m lgm
≥ cm(lg2 m− lg2 mj) − 2c′m lgm
> cm(lgm + lgmj)(lgm− lgmj) − 2c′m lgm
= cm lg(mmi) lg(m/mj) − 2c′m lgm
> cm lgm lg 5

4 − 2c′m lgm
> Cm lgm.

Once more, C is chosen large enough to make it possible to do the last merge
in time Cm lgm, i.e., to do the multiplications of O(1) pairs of polynomials of
degree mi and mj respectively. Then we make sure c is chosen sufficiently large
for the last inequality to hold. ��
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Note that m = |F | (m is the number of edges in the tree T ) and |V | = n = Θ(m).
Lemma 1 immediately implies the desired complexity result for the procedure
Restricted-Colorings and therefore also for the algorithm Chromatic-Polynomial.

Theorem 1. For a graph G with a given tree decomposition of bounded tree-
width, the running time of the algorithm Chromatic-Polynomial is O(n log2 n).

6 Conclusion

We have presented a very efficient algorithm to compute all coefficients of the
chromatic polynomial for a graph of bounded tree-width. It runs in almost linear
time and is substantially simpler than previous algorithms, which use at least
quadratic time. Also the dependence on the tree-width k is as good as one could
hope, namely singly exponential, whereas many other algorithms are doubly
exponential in k.

The method is combining the advantages of recursive decomposition and dy-
namic programming. It has been used before for computing the characteristic
polynomial of a tree [10]. It is hoped that this method has many applications for
efficient computations on trees based on a clever choice of tree decompositions.

In particular, it is hoped that the method can be applied to compute several
other graph polynomial efficiently. Of special interest is the Tutte polynomial.
There, the situation is somewhat different, as this is a polynomial in two variables.
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Abstract. We propose an effective polynomial-time preprocessing strat-
egy for intractable median problems. Developing a new methodological
framework, we show that if the input instances of generally intractable
problems exhibit a sufficiently high degree of similarity between each
other on average, then there are efficient exact solving algorithms. In
other words, we show that the median problems Swap Median Per-

mutation, Consensus Clustering, Kemeny Score, and Kemeny

Tie Score all are fixed-parameter tractable with respect to the pa-
rameter “average distance between input objects”. To this end, we de-
velop the new concept of “partial kernelization” and identify interesting
polynomial-time solvable special cases for the considered problems.

1 Introduction

In median problems one is given a set of objects and the task is to find a “consen-
sus object” that minimizes the sum of distances to the given input objects. Our
new approach to solve in general intractable (mostly NP-hard) median prob-
lems considers an average measure for the similarity between the input objects
by summing over all pairwise object distances divided by the number of these
pairs. Based on this, we develop an algorithmic framework for showing that if the
input objects are sufficiently “similar on average”, then there are provably ef-
fective data reduction rules. In terms of parameterized algorithmics [10, 12, 18],
this means that we show that the four median problems we study are fixed-
parameter tractable with respect to the parameter “average distance between
input objects”. To the best of our knowledge, this parameter has only been stud-
ied for the Kemeny Score problem [5, 20] by using exponential-time dynamic
programming and search tree methods. This work complements these results
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by polynomial-time preprocessing through data reduction. Marx [16] studies av-
erage parameterization for the Consensus Patterns problem. He also shows
fixed-parameter tractability; however in his case the parameter relates to the
solution quality whereas our parameters relate to the input structure.

Let us briefly discuss the naturalness of average parameterization for two
prominent median problems tackled in this paper. First, we show the fixed-
parameter tractability of the NP-hard Consensus Clustering problem (see,
e.g., [2, 6, 17]). Roughly speaking, the goal here is to find a median partition
for a given set of partitions all over the same base set; this is motivated by the
often occurring task to reconcile clustering information [4, 13, 17]. It is plausible
that this reconciliation is only meaningful when the given input partitions have
a sufficiently high degree of average similarity, because otherwise the median
partition found may be meaningless since it tries to fit the demands of strongly
opposing clustering proposals. Our algorithms are tailored for being efficient
when there is “enough” consensus in the input.1 Second, we also deal with the
computation of Kemeny rankings (also known as rank aggregation), an NP-hard
problem from the area of voting (see, e.g., [1, 2, 9, 11, 14]). As Conitzer and Sand-
holm [8] pointed out, one potential view of voting is that there exists a “correct”
outcome (ranking), and each voter’s vote corresponds to a noisy perception of
this correct outcome (see [7, 9] for practical studies in this direction). Studying
an average parameterization with respect to the pairwise distance between in-
put votes reflects the view on voting proposed by Conitzer and Sandholm [8].
We develop efficient algorithms for computing Kemeny rankings in case of a
reasonably small average distance between votes, again developing an effective
preprocessing technique.

Within our framework, two points deserve particular attention. First, the iden-
tification of interesting polynomial-time solvable special cases of the underlying
problems. Second, a novel concept of kernelization based on polynomial-time
data reduction that does not yield problem kernels in the classical sense of pa-
rameterized algorithmics but only “partial problem kernels”. Roughly speaking,
in (at least) “two-dimensional” problems as we study here (for instance, one
“dimension” being the size of the base set and the other being the number of
input subsets over this base set), this means that at least one dimension can be
reduced such that its size only depends on the parameter value. This somewhat
“weaker” concept of kernelization promises to be of wider practical use.

Due to the lack of space, most proofs are deferred to a full version of the
paper.

2 Framework and Swap Median Permutation

In this work, we are concerned with consensus problems. Roughly speaking, the
common feature of all these problems is that, given a number of combinatorial
1 Indeed, a standard way of coping with too heterogeneous input partitions is to

cluster the partitions and then to use Consensus Clustering in each “cluster of
partitions”, where high average similarity is to be expected [13].
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objects (such as permutations, partitions etc.) over a base set U , to find a median
object over U that minimizes the sum of “distances” to all input objects.

The general outline of our framework reads as follows.

Step 1. Identify a polynomial-time solvable special case. This is done by defining
a “dirtiness” concept for elements from the base set U and proving that an
instance of the underlying consensus problem can easily be solved when the
input objects do not induce any dirty elements.
Step 2. Show that the number of dirty elements from U is upper-bounded by a
(typically polynomial) function only depending on the average distance between
the given combinatorial objects.
Step 3. Show that the number of non-dirty elements from U can be upper-
bounded by a (typically polynomial) function only depending on the number
of dirty elements (and, thus, also the average distance). This is achieved by
developing polynomial-time data reduction rules which shrink the number of
non-dirty elements (and thus U), generating an equivalent problem instance of
smaller size.
Step 4. Make use of the fact that the desired median combinatorial object can
be found in a running time only depending on the number of elements in U , and
not depending on the number of combinatorial objects.

When applicable, this framework yields fixed-parameter tractability with re-
spect to the parameter average distance. Note that a special feature of our frame-
work is that in Step 3 we actually perform some sort of partial kernelization2,
a concept that may be of general interest. To illustrate our framework for effi-
ciently solving “similar-on-average” median problems, we use the Swap Median

Permutation problem (SMP for short) as a running example.3 Herein, the com-
binatorial objects are permutations over the set {e1, . . . , em}, and the distance
between two permutations is the swap distance defined as follows: A swap op-
eration interchanges two elements of a permutation. For instance, swapping ei

and ej in the identity permutation e1· · · ei−1eiei+1· · · ej−1ejej+1· · · em leads
to e1· · · ei−1ejei+1· · · ej−1eiej+1· · · em. The minimum number of swaps needed
to transform a permutation π1 into a permutation π2 (or vice versa) is called the
swap distance between π1 and π2, denoted by d(π1, π2). Concerning notation,
we follow the recent paper of Popov [19]. The formal problem definition of SMP
reads as follows:

Input: A set of permutations {π1, π2, . . . , πn} over {e1, e2, . . . , em}.
Output: A median permutation π with minimum distance

∑n
i=1 d(π, πi).

Now, the average swap distance d for an input instance of SMP is defined
as d :=

(∑
i
=j d(πi, πj)

)
/(n · (n − 1)). We present a first application of our

framework using SMP as the concrete running example. After that, in the next
two sections, we will provide our main results.

2 The term “partial” refers to the fact that only the size of the base set is reduced,
but not the number of input objects.

3 We remark that the question of the NP-hardness of SMP seems unsettled, cf. [19].
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The computation of the swap distance between two permutations can be car-
ried out in O(nm) time [3] by exploiting the tight relation between swap distances
and permutation cycles of permutations. Given two permutations π1 and π2 of
a set U , a permutation cycle of π1 with respect to π2 is a subset of π1 whose
elements, compared to π2, trade positions in a circular fashion. In particular, an
element e having the same position in both π1 and π2 builds a cycle by itself. For
example, with respect to permutation e1e2e3e4e5e6, permutation e3e5e1e4e6e2
has three permutation cycles (e1, e3), (e4), and (e2, e5, e6). With respect to π2,
the cycle representation of π1 as a product of disjoint permutation cycles is
unique (up to the ordering of the cycles). The central observation behind the
swap distance computation made by Amir et al. [3] is as follows: The swap dis-
tance between π1 and π2 is m− c(π1), where c(π1) is the number of permutation
cycles in π1 with respect to π2.

First, according to Step 1, we need to define “dirty” elements. A dominat-
ing position of an element e is a position, such that e occurs at this position
in more than n/2 input permutations. An element is called dirty if it has no
dominating position; otherwise, it is called non-dirty. Lemma 1 not only shows
the polynomial-time solvability of the special case but also the correctness of a
data reduction rule used in Step 3.

Lemma 1. Every median permutation places the non-dirty elements according
to their dominating positions.

Lemma 2. SMP without dirty elements can be solved in O(nm) time.

Next, according to Step 2, we have to bound the number of dirty elements.

Lemma 3. Given an SMP-instance with average swap distance d, there are less
than 4d dirty elements.

According to Step 3, the number of non-dirty elements needs to be bounded. To
this end, we present the following data reduction rule.

Reduction Rule. In each of the input permutations, swap all non-dirty el-
ements to their dominating positions. Remove all non-dirty elements. Record
the number of the employed swap operations, which needs to be added to the
distance of the median permutation of the resulting instance.

Lemma 4. The above data reduction rule yields an equivalent SMP-instance
with at most 4d elements, and it can be executed in O(nm) time.

Finally, according to Step 4, it remains to observe that for the median permu-
tation we clearly have O((�4d�)!) possibilities. Hence, simply testing all of them
and taking a best one, we obtain the following theorem.

Theorem 1. Swap Median Permutation is fixed-parameter tractable with
respect to the parameter average swap distance.
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3 Consensus Clustering

Our second application of the framework deals with the NP-hard Consensus

Clustering problem. It arises in attempts to reconcile clustering information.
The goal is to find a median partition for a given set of partitions, which all are
over the same base set. Due to its practical relevance, Consensus Clustering

has been intensively studied in terms of the usefulness of various heuristics and
accompanying experiments [4, 13]. The problem is defined as follows.

Input: A set C = {C1, . . . , Cn} of partitions over a base set S.
Output: A partition C of S with minimum distance

∑
Ci∈C d(C,Ci).

Consensus Clustering finds applications for example in the field of bioinfor-
matics. Bonizzoni et al. [6] showed that Consensus Clustering is APX-hard
even if the input consists of only three partitions. So far, the best approximation
factor achievable in polynomial time is 4/3 [2].

Following Goder and Filkov [13], we call two elements a, b ∈ S co-clustered
with respect to a partition C if a and b occur together in a subset of C and
anti-clustered if a and b occur in different subsets of C. Given a set C of par-
titions, we denote with co(a, b) the number of partitions in C in which a and b
are co-clustered and with anti(a, b) we denote the number of partitions in C in
which a and b are anti-clustered. Define the distance d(Ci, Cj) between two
input partitions Ci and Cj as the number of unordered pairs {a, b} of ele-
ments from the base set S such that a and b are co-clustered in one of Ci

and Cj and anti-clustered in the other. Thus, our parameter d denoting the
average distance of a given Consensus Clustering instance is defined as
d :=

(∑
Ci,Cj∈C d(Ci, Cj)

)
/
(
n · (n− 1)

)
.

Our overall goal is to show that Consensus Clustering is fixed-parameter
tractable with respect to the average parameter d. To this end, we follow the
approach presented in Section 2. Recall that Step 1 was to identify a polynomial-
time solvable special case using a dirtiness concept.

Definition 1. A pair of elements a, b ∈ S is called a dirty pair a#b of a set C
of n partitions if co(a, b) ≥ n/3 and anti(a, b) ≥ n/3. Moreover, the predicate (ab)
is true iff co(a, b) > 2n/3, and the predicate a ↔ b is true iff anti(a, b) > 2n/3.

To show that an input instance of Consensus Clustering without dirty pairs
is polynomial-time solvable, we need the following.

Lemma 5. Let {a, b, c} be a set of elements where a and c do not form a dirty
pair. Then, (ab) ∧ (bc) ⇒ (ac) and a ↔ b ∧ (bc) ⇒ a ↔ c.

Theorem 2. Consensus Clustering without dirty pairs is solvable in poly-
nomial time.

Proof. Let C be an optimal solution, that is, C is a partition of S with minimum
distance to the input partitions. It suffices to show that in C the following two
statements are true.
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1. If (ab), then a and b are co-clustered in C.
2. If a ↔ b, then a and b are anti-clustered in C.

Clearly, since there are no dirty pairs, any pair a, b ∈ S must fulfill either (ab)
or a ↔ b. Hence, the two statements directly specify for each element from S in
which subset in C it will end up.

To prove the first statement, suppose that there is an optimal solution C not
fulfilling the claim. Then, there must exist two subsets Si and Sj in C with a ∈ Si

and b ∈ Sj. One can further partition both Si and Sj into each time two subsets.
More specifically, let S1

i := {x ∈ Si | (ax)} and S2
i := Si\S1

i . The sets S1
j and S2

j

are defined analogously with respect to b. In this way, by replacing Si and Sj

with S1
i ∪ S1

j , S2
i , and S2

j , one obtains a modified partition C′. Consider any
x ∈ S1

i and any y ∈ S2
i . Then, x ↔ y follows from (ax), a ↔ y, and Lemma 5.

The same is true with respect to S1
j and S2

j . Moreover, if x ∈ S1
i and y ∈ S2

j , this
means that (ax) and b ↔ y, implying by Lemma 5 and using (ab) that x ↔ y. It
remains to consider x ∈ S1

i and y ∈ S1
j . Then, again the application of Lemma 5

yields (xy). Thus, C′ is a better partition than C is because in C′ now (ab) holds
for all elements a, b ∈ S1

i ∪ S1
j (without causing any increased cost elsewhere).

This contradicts the optimality of C, proving the first statement. The second
statement is proved analogously. ��
As required by Step 2 of the framework in Section 2, the next lemma upper-
bounds the number of dirty pairs with the help of the average distance d.

Lemma 6. An input instance of Consensus Clustering with average dis-
tance d contains less than 9d/4 dirty pairs.

Step 3 of our framework now calls for a polynomial-time data reduction that
reduces the number of elements that do not appear in any dirty pair. We call
these elements non-dirty elements. To this end, we analyze the structure of an
input instance. The idea is to find subsets of S that contain many non-dirty
elements that are all pairwisely co-clustered in more than 2n/3 input partitions.
First, we partition the input base set S into two subsets S1, which contains the
non-dirty elements, and S2, which contains the elements that appear in dirty
pairs. In the following, we describe a partition of S1 into equivalence classes
according to the non-dirty pairs in S1. Moreover, these equivalence classes also
induce a partition of S2. First we describe the partition P1 = {S1

1 , . . . , S
l
1} of S1.

For each equivalence class Si
1 ∈ P1, we demand ∀a ∈ Si

1 ∀b ∈ Si
1 : (ab) and

∀a ∈ Si
1 ∀b ∈ S \ Si

1 : a ↔ b. Observe that, by Lemma 5, the partition P1 of S1
that fulfills these requirements is well-defined, since the predicate (ab) describes
a transitive relation over S1. Using P1, we define subsets Si

2 of S2. Each Si
2 is

defined as the set of elements a ∈ S2 that have at least one element b ∈ Si
1

such that (ab) holds. We also define one additional set S0
2 that contains all

elements a ∈ S2 such that there is no b ∈ S1 for which (ab) holds.
Finally, we obtain a set of subsets P = {S0, S1, . . . , Sl} of S by setting Si =

Si
1 ∪ Si

2 for 1 ≤ i ≤ l and S0 = S0
2 . The following lemma shows that P is indeed

a partition of S, and also gives some further structural property of P .
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Lemma 7. Let P = {S0, S1, . . . , Sl} be a set of subsets of S constructed as
described above. Then, P is a partition of S, and for each Si ∈ P it holds that

– ∀a ∈ Si ∀b ∈ S : (ab) ⇒ b ∈ Si and
– ∀a, b ∈ Si, 1 ≤ i ≤ l : (ab) ∨ a#b.

Informally, Lemma 7 says that inside any Si ∈ P we have only pairs that are
co-clustered in more than 2n/3 input partitions or dirty pairs; between two
subsets Si ∈ P and Sj ∈ P we have only dirty pairs or pairs that are anti-
clustered in more than 2n/3 input partitions. Clearly, the elements in Si

1 then
are co-clustered in more than 2n/3 partitions with all elements in Si and are
anti-clustered in more than 2n/3 partitions with all elements in S \ Si. This
means that an Si with too many elements in Si

1 is forced to become a set of
an optimal partition. With the subsequent data reduction rule, we remove these
sets from the input.

We introduce the following notation for subsets of S. For some set E ⊆ S,
we denote with dp(E) the dirty pairs among the elements of E, that is, for a
dirty pair a#b we have a#b ∈ dp(E) if a ∈ E and b ∈ E. Analogously, for two
sets E ⊆ S and F ⊆ S, we define dp(E,F ) as the set of dirty pairs between E
and F , that is, for a dirty pair a#b we have a#b ∈ dp(E,F ) if a ∈ E and b ∈ F
or vice versa.
Reduction Rule. Let P be a partition of S according to Lemma 7. If there
is some Si ∈ P such that |Si

1| > | dp(Si)| + | dp(Si, S \ Si)|, then output Si

as one of the sets of the solution and remove the elements of Si from all input
partitions.

Lemma 8. The above reduction rule is correct.

In the following theorem, we combine Steps 3 and 4 of our framework: we show
that exhaustively applying the reduction rule yields an equivalent instance whose
number of elements is less than 9d, and that this implies the fixed-parameter
tractability of Consensus Clustering.

Theorem 3. Consensus Clustering is fixed-parameter tractable with respect
to the average distance d between the input partitions. Each instance of Con-

sensus Clustering can be reduced in polynomial time to an equivalent instance
with less than 9d elements in the base set.

4 Kemeny Rankings

In the third application of our framework, we investigate the problem of finding a
“consensus ranking”, that is, a so-called Kemeny ranking [11]. We first consider
the NP-hard Kemeny Score problem and, second, the somewhat harder to
attack generalization Kemeny Tie Score.
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Kemeny Score. Kemeny’s voting scheme can be described as follows. An elec-
tion (V,C) consists of a set V of n votes and a set C of m candidates. A vote
is a preference list of the candidates, that is, a permutation on C. For instance,
in the case of three candidates a, b, c, the order c > b > a would mean that
candidate c is the best-liked and candidate a is the least-liked for this voter.
A “Kemeny consensus” is a preference list that is “closest” with respect to the
so-called Kendall-Tau distance to the preference lists of the voters. For each
pair of votes v, w, the Kendall-Tau distance (KT-distance for short) between v
and w, also known as the inversion distance between two permutations, is defined
as dist(v, w) =

∑
{a,b}⊆C dv,w(a, b), where the sum is taken over all unordered

pairs {a, b} of candidates, and dv,w(a, b) is 0 if v and w rank a and b in the same
order, and 1 otherwise. The score of a preference list l with respect to an elec-
tion (V,C) is defined as

∑
v∈V dist(l, v). A preference list l with the minimum

score is called a Kemeny consensus of (V,C) and its score
∑

v∈V dist(l, v) is the
Kemeny score of (V,C). The Kemeny Score problem is defined as follows:

Input: An election (V,C).
Output: A Kemeny consensus l with minimum score

∑
v∈V dist(l, v).

Kemeny Score is NP-complete even when restricted to instances with only
four votes [11]. The Kemeny score can be approximated to a factor of 8/5 by a de-
terministic algorithm [21] and to a factor of 11/7 by a randomized algorithm [2].
Recently, a polynomial-time approximation scheme (PTAS) for Kemeny Score

has been developed [15]. However, its running time is impractical.
For an election (V,C), the average KT-distance d, the parameter of this work,

is defined as d :=
(∑

u,v∈V,u
=v dist(u, v)
)
/(n(n− 1)). The Kemeny Score

problem is known to be in FPT with respect to the parameter d [5, 20]. There is
a branching algorithm for Kemeny Score which runs in (5.823)d · poly(n,m)
time [20]. We extend these results by showing that the approach presented in
Section 2 can be applied to Kemeny Score.

To identify a polynomial-time solvable special case as described in Step 1
of our framework, it is crucial to develop a concept of dirtiness. For Kemeny

Score this is realized as follows. Let (V,C) denote an election. An (unordered)
pair of candidates {a, b} ⊆ C with neither a > b nor a < b in more than 2/3 of
the votes is called a dirty pair and a and b are called dirty candidates. All other
pairs of candidates are called non-dirty pairs, and candidates that appear only in
non-dirty pairs are called non-dirty candidates. Note that with this definition a
non-dirty pair can also be formed by two dirty candidates. Let D denote the set
of dirty candidates and nd denote the number of dirty pairs in (V,C). For two
candidates a, b, we write a >2/3 b if a > b in more than 2/3 of the votes. Further,
we say that a and b are ordered according to the 2/3-majority in a preference
list l if a >2/3 b and a > b in l. To show the following results, it will be useful
to decompose the Kemeny score of a preference list into “partial scores”. More
precisely, for a preference list l and a candidate pair {a, b}, the partial score of l
with respect to {a, b} is sl({a, b}) :=

∑
v∈V dv,l(a, b). The partial score of l with

respect to a subset P of candidate pairs is sl(P ) :=
∑

p∈P sl(p).
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Theorem 4. Kemeny Score without dirty pairs is solvable in polynomial time.

Proof. For an input instance (V,C) of Kemeny Score without dirty pairs, we
show that the preference list “induced” by the 2/3-majority of the candidate
pairs is optimal.

First, we show by contradiction that there is a preference list l2/3 where for
all candidate pairs {a, b} with a, b ∈ C and a >2/3 b, one has a > b. Assume
that such a preference list does not exist. Then, there must be three candi-
dates a, b, c ∈ C that violate transitivity, that is, a >2/3 b, b >2/3 c, and c >2/3 a.
Since a >2/3 b and b >2/3 c, there must be at least n/3 votes with a > b > c.
Since a and c do not form a dirty pair, it follows that a >2/3 c, a contradiction.

Second, we show by contradiction that l2/3 is optimal. Assume that there is a
Kemeny consensus l with a non-empty set P of candidate pairs that are not or-
dered according to the 2/3-majority; that is, P := {{c, c′} | c > c′ in l and c′ >2/3
c}. All candidate pairs that are not in P are ordered equally in l and l2/3. Thus,
the partial score with respect to them is the same for l and l2/3. For every candi-
date pair {c, c′} ∈ P , the partial score sl({c, c′}) is more than 2n/3 and the partial
score sl2/3({c, c′}) is less than n/3. Thus, the score of l2/3 is smaller than the score
of l, a contradiction to the optimality of l. ��
Following Step 2 of our framework, the next lemma shows how the number of
dirty pairs and, thus, also the number of dirty candidates, is upper-bounded by
a function linear in the average KT-distance d.

Lemma 9. Given an instance of Kemeny Score with average KT-distance d,
there are at most 9d/2 dirty pairs.

The following three lemmas establish the basis for a polynomial-time data re-
duction rule as required in Step 3 of our framework. The basic idea is to consider
the order that is induced by the 2/3-majorities of the non-dirty pairs and then
to show that a dirty candidate can only “influence” the order of candidates that
are not “too far away” from it in this order. Then, it is safe to remove non-dirty
candidates that can be influenced by no dirty candidate.

Lemma 10. For an election containing nd dirty pairs, in every Kemeny consen-
sus at most nd non-dirty pairs are not ordered according to their 2/3-majorities.

In the following, we show that the bound on the number of “incorrectly” or-
dered non-dirty pairs from Lemma 10 can be used to fix the relative order of
two candidates forming a non-dirty pair. For this, it will be useful to have a
concept of distance of candidates with respect to the order induced by the 2/3-
majority. For (V,C) and a non-dirty pair {c, c′}, define dist(c, c′) := |{b ∈ C :
b is non-dirty and c >2/3 b >2/3 c′}| if c >2/3 c′ and dist(c, c′) := |{b ∈ C :
b is non-dirty and c′ >2/3 b >2/3 c}| if c′ >2/3 c.

Lemma 11. Let (V,C) be an election and let {c, c′} be a non-dirty pair. If
dist(c, c′) ≥ nd, then in every Kemeny consensus c > c′ iff c >2/3 c′.

Finally, the next lemma enables us to fix the position in a Kemeny consensus
for a non-dirty candidate that has a large distance to all dirty candidates.
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Lemma 12. If for a non-dirty candidate c it holds that dist(c, cd) > 2nd for all
dirty candidates cd ∈ D, then in every Kemeny consensus c is ordered according
to the 2/3-majority with respect to all candidates from C.

The correctness of the following data reduction rule follows directly from
Lemma 12. It is not hard to verify that it can be carried out in O(n ·m2) time.

Reduction Rule. Let c be a non-dirty candidate. If for all cd ∈ D one has
dist(c, cd) > 2nd, then delete c and record the partial score with respect to all
candidate pairs that contain c and are ordered according to the 2/3-majority.
This score will be added to the Kemeny score of the resulting instance.

In the following, we show that after exhaustively applying the reduction rule,
the number of non-dirty candidates is bounded by a function of d.

Theorem 5. Each instance of Kemeny score with average KT-distance d can
be reduced in polynomial time to an equivalent instance with at most 9d+162 ·d2

candidates.

Kemeny Tie Score. A practically relevant extension of Kemeny Score is Ke-

meny Tie Score [1, 14]. Here, one additionally allows the voters to classify
sets of equally liked candidates, that is, a preference list is no longer defined as
a permutation of the candidates, but for two (or more) candidates a, b one can
have a = b. The term dvw(a, b) that denotes the contribution of the candidate
pair {a, b} to the KT-distance between two votes v and w is modified as fol-
lows [14]. One has dv,w(a, b) = 2 if a > b in v and b > a in w, dv,w(a, b) = 0 if a
and b are ordered in the same way in v and w, and dv,w(a, b) = 1, otherwise.
Note that in the literature there are different demands for the consensus itself.
For example, Hemaspaandra et al. [14] allow that the consensus list can contain
ties as well whereas Ailon [1] requires the consensus list to be a “full ranking”,
that is, a permutation of the candidates. We consider here the more general set-
ting used in [14]. Further, note that Kemeny Tie Score not only generalizes
Kemeny Score but also includes other interesting special cases like p-ratings
and top-m lists [1].

Previous approaches [5, 20] only provide fixed-parameter tractability with
respect to the average KT-distance for Kemeny Score. In contrast, the ques-
tion of fixed-parameter tractability of Kemeny Tie Score with respect to the
average KT-distance has been open so far. Here, we can answer this question
positively by showing that the new method for partial kernelization introduced
in Section 2 also applies to Kemeny Tie Score. This indicates that the new
method can be more powerful than the dynamic programming approach in [5].

For an instance with ties, we say a =2/3 b if a = b in more than 2n/3 votes.
Then, the concept of dirtiness is adapted such that a pair of candidates a, b is
dirty if neither a >2/3 b nor a =2/3 b nor a <2/3 b. Further, we use a ≥2/3 b to
denote (a >2/3 b) ∨ (a =2/3 b).
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Theorem 6. Kemeny Tie Score without dirty pairs is solvable in polynomial
time.

For Kemeny Tie Score we can bound the number of candidates by a function
only depending on the average KT-distance by proving lemmas analogous to
Lemmas 9-12. For this, it is crucial to adapt the distance function between two
candidates appropriately. More precisely, for two candidates a, b with a ≥2/3 b,
one defines dist(a, b) := |{c ∈ C : a ≥2/3 c ≥2/3 b and c is non-dirty}|.

Moreover, due to the definition of the KT-distance for the case with ties, the
bound on the number of non-dirty candidates is twice as high as in the case
without ties.

Theorem 7. Kemeny Tie Score is fixed-parameter tractable with respect to
the average KT-distance d. Each instance of Kemeny Tie Score with average
KT-distance d can be reduced in polynomial time to an equivalent instance with
at most O(d2) candidates.

5 Conclusion

In applications one can easily determine the average distance parameter of
the considered median problem and then decide whether the developed fixed-
parameter algorithm should replace the otherwise used algorithm. Other related
parameterizations which can not be computed “in advance” refer to distance
measures from the input rankings to the solution. Among these, our results di-
rectly extend to the parameter “maximum distance of the input rankings from
the solution” since this parameter is an upper bound for the average distance. In
contrast, the “average distance of the input rankings from the solution” is clearly
a lower bound for the “average distance between the input rankings”. Hence, it
is an interesting open question to investigate the parameterized complexity with
respect to this parameter.

References

[1] Ailon, N.: Aggregation of partial rankings, p-ratings, and top-m lists. Algorithmica
(2008) (Available electronically)

[2] Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. Journal of the ACM 55(5), 27 pages (2008)

[3] Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S.,
Vishne, U.: Pattern matching with address errors: rearrangement distances. Jour-
nal of Computer and System Sciences 75(6), 359–370 (2009)

[4] Bertolacci, M., Wirth, A.: Are approximation algorithms for consensus clustering
worthwhile? In: Proc. 7th SDM, pp. 437–442. SIAM, Philadelphia (2007)

[5] Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-
parameter algorithms for Kemeny rankings. Theoretical Computer Science 410(45),
4554–4570 (2009)



Average Parameterization and Partial Kernelization for Computing Medians 71

[6] Bonizzoni, P., Vedova, G.D., Dondi, R., Jiang, T.: On the approximation of cor-
relation clustering and consensus clustering. Journal of Computer and System
Sciences 74(5), 671–696 (2008)

[7] Conitzer, V.: Computing Slater rankings using similarities among candidates. In:
Proc. 21st AAAI, pp. 613–619. AAAI Press, Menlo Park (2006)

[8] Conitzer, V., Sandholm, T.: Common voting rules as maximum likelihood estima-
tors. In: Proc. 21st UAI, pp. 145–152. AUAI Press (2005)

[9] Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for computing
Kemeny rankings. In: Proc. 21st AAAI, pp. 620–626. AAAI Press, Menlo Park
(2006)

[10] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

[11] Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the Web. In: Proc. 10th WWW, pp. 613–622 (2001)

[12] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

[13] Goder, A., Filkov, V.: Consensus clustering algorithms: Comparison and refine-
ment. In: Proc. 10th ALENEX, pp. 109–117. SIAM, Philadelphia (2008)

[14] Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections.
Theoretical Computer Science 349, 382–391 (2005)

[15] Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proc. 39th
STOC, pp. 95–103. ACM, New York (2007)

[16] Marx, D.: Closest substring problems with small distances. SIAM Journal on Com-
puting 38(4), 1382–1410 (2008)

[17] Monti, S., Tamayo, P., Mesirov, J.P., Golub, T.R.: Consensus clustering: A
resampling-based method for class discovery and visualization of gene expression
microarray data. Machine Learning 52(1-2), 91–118 (2003)

[18] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

[19] Popov, V.Y.: Multiple genome rearrangement by swaps and by element duplica-
tions. Theoretical Computer Science 385(1-3), 115–126 (2007)

[20] Simjour, N.: Improved parameterized algorithms for the Kemeny aggregation
problem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp.
312–323. Springer, Heidelberg (2009)

[21] van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Mathematics of Operations Research 34,
594–620 (2009)



Sharp Separation and Applications to Exact and
Parameterized Algorithms

Fedor V. Fomin1, Daniel Lokshtanov1, Fabrizio Grandoni2, and Saket Saurabh3

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{fedor.fomin,daniello}@ii.uib.no

2 Dipartimento di Informatica, Sistemi e Produzione,
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Abstract. Many divide-and-conquer algorithms employ the fact that
the vertex set of a graph of bounded treewidth can be separated in two
roughly balanced subsets by removing a small subset of vertices, referred
to as a separator. In this paper we prove a trade-off between the size of
the separator and the sharpness with which we can fix the size of the
two sides of the partition. Our result appears to be a handy and powerful
tool for the design of exact and parameterized algorithms for NP-hard
problems. We illustrate that by presenting two applications.

Our first application is a parameterized algorithm with running time
O(16k+o(k) + nO(1)) for the Maximum Internal Subtree problem in
directed graphs. This is a significant improvement over the best pre-
viously known parameterized algorithm for the problem by [Cohen et
al.’09], running in time O(49.4k + nO(1)).

The second application is a O(2n+o(n)) time and space algorithm for
the Degree Constrained Spanning Tree problem: find a spanning
tree of a graph with the maximum number of nodes satisfying given
degree constraints. This problem generalizes some well-studied prob-
lems, among them Hamiltonian Path, Full Degree Spanning Tree,
Bounded Degree Spanning Tree, Maximum Internal Spanning

Tree and their edge weighted variants.

1 Introduction

The aim of parameterized and exact algorithms is solving NP-hard problems
exactly, with the smallest possible (exponential) worst-case running time. While
exact algorithms are designed to minimize the running time as a function of the
input size, parameterized algorithms seek to perform better when the instance
considered has more structure than a general instance to the problem. Exact
and parameterized algorithms have an old history [14,18], but they have been at
the forefront in the last decade. In the last few years, many new techniques have
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been developed to design and analyze exact algorithms, among them Inclusion-
Exclusion, Möbius Transformation, Subset Convolution, Measure & Conquer
and Iterative Compression to name a few [2,3,9,17,24].

A classical approach to solve combinatorial problems is divide-and-conquer :
decompose the problem in two or more sub-problems, solve them independently
and merge the solutions obtained. Several divide-and-conquer algorithms rely
on the existence of a small separator, which is defined as follows. Let G be an
n-vertex graph with vertex set V = V (G) and edge set E = E(G). A set of
vertices S is called an α-separator of G, 0 < α ≤ 1, if the vertex set V \ S can
be partitioned into sets VL and VR of size at most αn such that no vertex of VL

is adjacent to any vertex of VR. For example, the classical result of Lipton and
Tarjan that every planar graph has a 2

3 -separator of size O(
√
n) can be used to

solve many NP-hard problems in planar graphs in time O(2O(
√

n)) [19].

1.1 Our Results

In this paper (see Section 2) we prove a trade-off between the size of the separator
S and the sharpness with which we can fix the size of VL and VR in the partition,
for graphs of treewidth t. Given a function w : X → R, we define w(Y ) =∑

y∈Y w(y) for any Y ⊆ X .

Theorem 1 (Sharp Separation). Let G = (V,E) be a graph of treewidth t and
w : V → {0, 1}. Then for any integer p ≥ 0 and 0 ≤ x ≤ w(V ) there is a partition
(VL, S, VR) of V such that |S| ≤ t p, w(VL) ≤ x+ w(V )

2p+1 , w(VR) ≤ w(V )−x+ w(V )
2p+1 ,

and there is no edge in G with one endpoint in VL and the other endpoint in VR,
that is, S separates VL from VR. Given a tree-decomposition of G of width t, S
can be computed in polynomial time.

Here w is used to model a subset W ⊆ V of vertices that we wish to separate.
Theorem 1 implies for example that, with a separator of logarithmic size (for
bounded treewidth graphs), we can obtain a perfectly balanced partition with
max{|VL|, |VR|} ≤ n/2. In this paper we will always set p ≥ logw(V ), which
makes the additive term w(V )/2p+1 disappear.

Our Sharp Separation Theorem is a handy tool in the design of parameterized
and exact algorithms based on the divide-and-conquer paradigm. We illustrate
that by presenting two applications.

k-Internal Spanning Tree. Our first result is a parameterized algorithm for
the following problem.

k-Internal Out-Branching: Given a digraph D = (N,A) and a pos-
itive integer k, check whether there exists an out-branching with at least
k internal vertices.

The undirected counterpart to this problem, k-Internal Subtree was first
studied by Prieto and Sloper [22], who gave an algorithm with running time
24k log knO(1) and a kernel of size O(k2) for the problem. Recently, Fomin
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et al. [10] gave an improved algorithm with running time 8knO(1) and a ker-
nel with at most 3k vertices. For k-Internal Out-Branching, Gutin et al.
[13] obtained an algorithm of running time 2O(k log k)nO(1) for and gave a kernel
of size of O(k2). A faster algorithm, running in time 49.4knO(1) was subsequently
improved by Cohen et al. [6]. In this paper we use the Sharp Separation Theorem
to obtain an algorithm with running time O(16k+o(k) + nO(1)).

Theorem 2. There is a one-sided-error Monte-Carlo algorithm for k-
Internal Out-Branching. The algorithm runs in polynomial-space and in
time O(16k+o(k) + nO(1)), where n is the size of the input digraph D. When an
out-branching with at least k internal nodes exists the algorithm fails to find one
with probability at most 1/4. This algorithm can be derandomized at the cost of
an exponential O(4kkO(log k)) space complexity.

Degree constrained spanning tree. The second application of the Sharp Sep-
aration Theorem is an algorithm for Degree Constrained Spanning Tree

defined below. For a given graph G = (V,E), let dG(v) denote the degree of
v ∈ V in G.

Degree Constrained Spanning Tree (DCST). Given a graph G =
(V,E) and a function D : V → 2{1,...,n}. Find a spanning tree T of G
maximizing |{v ∈ V : dT (v) ∈ D(v)}|.

Intuitively, D(v) can be seen as a set of desirable degrees for a vertex v in the
spanning tree. We have a hit each time dT (v) ∈ D(v) for some v. The goal is
maximizing the number of hits.

DCST naturally generalizes many NP-hard spanning tree and path problems
studied in the literature. For instance we can code the famous Hamiltonian

Path problem, find a spanning path of a given graph, by letting D(v) = {1, 2}
for all vertices; A spanning tree with n hits is a Hamiltonian path. By carefully
choosing the functions D(v) one can code many other problems as well, such as
Full Degree Spanning Tree [16], Bounded Degree Spanning Tree [12]
or Maximum Internal Spanning Tree [8].

For most special cases of DCST, no algorithm with running time O(2nnO(1))
was known until recently, and for Maximum Internal Spanning Tree Fernau
et al. [8] give a O(3nnO(1)) time algorithm, leaving the existence of a O(2nnO(1))
time algorithm open.

This year Nederlof [21] was able to give Inclusion-Exclusion based algorithm
running in time O(2nnO(1)) for DCST. We use the Sharp Separation Theorem
to give an alternate algorithm for the DCST problem, in particular we prove the
following result.

Theorem 3. [] 1 The Degree Constrained Spanning Tree problem can
be solved in time and space O(2n+o(n)), where n is the number of nodes in the
graph.
1 Proof of results labelled by � have been wholly or partially omitted due to space

constraints.
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Our algorithm differs from the work of Nederlof in the following ways. On one
hand, his algorithm takes polynomial space and works in 2nnO(1) time. On the
other hand, our approach is more robust. In particular our algorithm can be
easily extended to find subgraphs of constant treewidth instead of trees, and also
works for edge weighted variants of Degree Constrained Spanning Tree.

1.2 Preliminaries

For basic graph terminology we refer the reader, e.g., to [7]. We just recall the
definition of treewidth, and also the less standard digraph notions needed in this
paper.

A tree decomposition of a (undirected) graph G = (V,E) is a pair (X,U)
where U = (W,F ) is a tree, and X = ({Xi | i ∈ W}) is a collection of subsets of
V such that

1.
⋃

i∈W Xi = V ,
2. For each edge vw ∈ E, there is an i ∈ W such that v, w ∈ Xi, and
3. For each v ∈ V the set of vertices {i | v ∈ Xi} forms a subtree of U .

The width of (X,U) is maxi∈W {|Xi| − 1}. The treewidth tw(G) of G is the
minimum width over all the tree decompositions of G. By a classical result of
Arnborg, Corneil and Proskurowski [1], a tree-decomposition of G of width t, if
any, can be computed in O(nt+2) time. When this running time is dominated by
other steps of the algorithm considered, we will just consider this decomposition
as given. An r-out-tree in a digraph D = (N,A) is a subtree T of D rooted at
r, such that all arcs of T are oriented away from r. If T contains all vertices of
D, T is said to be an r-out-branching. For a vertex set R, an R-out-forest is a
collection of |R| vertex-disjoint r-out-trees, one out-tree for each r ∈ R.

2 Sharp Separation in Graphs of Bounded Treewidth

In this section we prove our Sharp Separation Theorem, which is at the heart
of the algorithms described in the following sections. In order to prove that, we
need the following well-known result.

Lemma 1 ([4]). Given a n-vertex graph G = (V,E) of treewidth t and w : V →
R+∪{0}. There is a set T of vertices of size at most t such that for any connected
component G[C] of G \ T , w(C) ≤ w(V )/2. Given a tree-decomposition of G of
width t, T can be computed in polynomial time.

Proof. (Theorem 1) We construct VL, VR and S iteratively, starting from empty
sets, as follows. By Lemma 1 there is a set T of size at most t such that for
any connected component G[C] of G \ T , w(C) ≤ w(V )/2. We add T to S and
for each component G[C] of G \ T , add C to VL or VR if this does not violate
w(VL) ≤ x or w(VR) ≤ w(V ) − x, respectively.

Let us show that at the end of the process there is at most one component
G[C] left. Suppose by contradiction that there are at least 2 such components,
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say G[C1] and G[C2]. W.l.o.g. assume w(C1) ≤ w(C2). This implies that w(VL)+
w(C1) > x and w(VR) + w(C1) > w(V ) − x. Consequently,

w(VL) + w(VR) + 2w(C1) > w(V ).

However, this contradicts the fact that

w(VL) + w(VR) + 2w(C1) ≤ w(VL) + w(VR) + w(C1) + w(C2) ≤ w(V ).

Now we iteratively reapply the construction above for p− 1 times, each time
considering the component G[C] left from previous step. Eventually we add C
to either VL or VR.

Each time the weight of C halves, so at the end of the process w(C) ≤
w(V )/2p+1. The upper bound on the weight of VL and VR follows. Since at each
step we add to S a set of size t, we eventually obtain |S| ≤ p t. The running time
claim follows immediately from Lemma 1. This concludes the proof. ��

3 k-Internal Out-Branching

In this section we use Theorem 1 to give a parameterized algorithm with run-
ning time O(16k+o(k) + no(1)) for the k-Internal Out-Branching problem.
Our approach combines the Sharp Separation Theorem with the divide-and-
color paradigm in [5,15] and a polynomial-sized kernel for the problem [13].
First we present a (polynomial-space) one-sided-error Monte-Carlo algorithm
for k-Internal Out-Branching with the claimed running time. We then de-
randomize the algorithm at the cost of an exponential space complexity.

3.1 A Monte-Carlo Algorithm

The first step of our algorithm is to apply the kernelization algorithm of Gutin et
al. [13]. Given an instance (D, k) of k-Internal Out-Branching the algorithm
of Gutin et al. produces a new instance (D′, k′) with |D′| = O(k2) and k′ ≤ k
such that D′ has an out-branching with at least k′ internal vertices if and only if
D has an out-branching with at least k internal vertices. After this step we can
assume that the number n of vertices in the input digraph D is at most O(k2).

Now, the algorithm guesses the root r of the out-branching, and verifies that
there indeed is some out-branching of D rooted at r. This guessing step, together
with the following observation, allows us to search for out-trees rooted at r
instead of out-branchings of D.

Lemma 2 ([6]). Let D be a digraph and r be a node of D such that there is an
r-out-branching of D. Then, for any r-out-tree T with at least k internal nodes
there is an r-out-branching T ′ with at least k internal nodes containing T as a
subtree.

When looking for r-out-trees with at least k internal nodes, it is sufficient to
restrict ourselves to r-out-trees with at most 2k nodes. The reason for this is
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that if some internal node sees at least two leaves of the r-out-tree, then one of
the leaves can be removed without changing any internal nodes into leaves. We
formalize this as an observation.

Lemma 3 ([6]). Let D be a digraph and r be a node of D. If there is an r-out-
tree T with at least k internal nodes then there is an r-out-tree T ′ on at most 2k
nodes with at least k internal nodes.

With the described preliminary steps, we have arrived at the following problem,
which we call Rooted Directed k-Internal Out-Tree (k-RDIOT). Input
is a digraph D, node r and integer k. The digraph D has n = O(k2) nodes and
the objective is to decide whether there is an r-out-tree with at least k internal
nodes and at most 2k nodes in total.

Our algorithm splits the original problem into two smaller sub-problems by
means of a proper separator, guesses the “shape” of the intersection of the out-
branching with each side of the separator and solves each subproblem recursively.
There are two aspects of sub-problems which do not show up in the original
problem. First of all, the solution to a subproblem is not necessarily an out-tree:
it is an out-forest in general. Still, the union of such forests must induce an
r-out-tree. In order to take this fact into account, we introduce the notion of
signatures.

Definition 1. Let T = (NT , AT ) be an R-out-forest, and Z ⊆ NT be a set of
nodes such that R ⊆ Z. The signature ζZ(T ) of T with respect to Z is the R-
out-forest C = (Z,Q) where there is an arc from a vertex u ∈ R to a vertex
v ∈ Z \ R if and only if there is a path from u to v in T . All vertices of Z \ R
are leaves of C.

Notice that the signature of an out-forest is always a set of stars and singletons.
In our recursive steps we will guess the signature of the out-forest we are looking
for with respect to Z, where the set Z includes r and all the separators guessed
from the original problem down to the current subproblem.

Second, in order to obtain two independent sub-problems, we need to make
sure that separator nodes that are internal on both sides of the separator only
get counted once. To achieve this we guess a subset Y of the separator nodes, and
do not count the internal nodes of the out-forest in Y . Altogether, a subproblem
can be defined as follows.

Directed Rooted Out-Forest (DROF). Input is a tuple (D,R,
C, Y, k∗, t) where D = (N,A) is a digraph, C = (Z,Q) is an R-out-
forest with node set Z for R ⊆ Z ⊆ N , Y ⊆ Z is a node set and k∗ and
t are integers. The objective is to find an R-out-forest T in D with at
least k∗ internal nodes outside Y and at most t nodes outside Z such
that T contains Z and ζZ(T ) = C.

The input instance (D, k) of k-RDIOT is equivalent to an DROF instance
(D,R,C, Y, k, 2k), where t = 2k, C is the single node r and Y = ∅. Our algo-
rithm for k-RDIOT initially constructs a DROF instance equivalent to the input
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k-RDIOT instance as described above. That k-RDIOT instance is solved recur-
sively in the following way. Consider a given subproblem (D,R,C, Y, k∗, t). If
t ≤ log k, that is the number of vertices outside Z in the out-forest sought for is
small enough, we solve the problem by brute force. In particular, we enumerate
all the possible R-out-forests in D on at most |Z| + t nodes and check whether
they satisfy the conditions of DROF.

Suppose now t > log k, and that (D,R,C, Y, k∗, t) is a “yes”-instance. Then
there is an R-out-forest T = (NT , AT ) that satisfies the conditions of DROF. By
the Sharp Separation Theorem there is a partitioning of NT into (NT

L , S,NT
R )

such that |S| = log k, |NT
L \ Z| ≤ t/2, |NT

R \ Z| ≤ t/2 and there are no arcs
between NT

L and NT
R in T . Define Z ′ = Z ∪ S and AZ′ to be the arcs of T [Z ′].

The algorithm guesses the separator S ⊆ N and for each of the
(
O(k2)
log k

)
guesses

for the separator it generates a random family of 3 · 2t · |Z ′|O(|Z′|) pairs of sub-
problems, that is instances of DROF PL and PR, which are solved recursively.

If for some pair PL and PR, the algorithm returns that both PL and PR

are “yes” instances, then the algorithm returns that (D,C, Y, k∗, t) is a “yes”-
instance as well. If the algorithm loops through all guesses of S and all the
3 · 2t · |Z ′|O(|Z′|) pairs and for each pair the algorithm returns that at least one
sub-problem is a “no”-instance, the algorithm returns that (D,C, Y, k∗, t) is a
“no”-instance. To conclude the description of the algorithm we need to describe
how the pairs (PL,PR) are generated.

Before describing how the pairs are generated, define the out-forests TL =
T [Z ′ ∪NT

L ] and TR = T [Z ′ ∪NT
R ] \AZ′ . Also, let YR be Y plus all the internal

nodes of TL in Z ′ and YL = (Z ′ \ YR) ∪ Y . Now, tL and tR are the number of
nodes outside Z ′ in TL and TR respectively. Finally k∗L and k∗R are the number of
internal nodes in TL outside YL and the number of internal nodes in TR outside
YR respectively.

We next describe how a random pair (PL,PR) is generated. The algorithm
generates the pairs in 3 · 2t groups, each group with |Z ′|O(|Z′|) pairs. For each
group the algorithm partitions the node set N \ Z ′ into two parts (NL, NR)
uniformly at random. For each partitioning, the algorithm guesses CL = ζZ′(TL),
CR = ζZ′(TR), YL, YR, k∗L, k∗R, tL and tR. Each set of guesses makes one pair
(PL,PR) of instances, where PL = (D[NL ∪ Z ′], RL, CL, YL, k

∗
L, tL) and PR =

(D[NR ∪ Z ′], RR, CR, YR, k
∗
R, tR). It is easy to see that the number of possible

guesses is at most |Z ′|O(|Z′|).
The algorithm makes the guesses in a special way, making sure that if both

PL and PR are “yes”-instances then (D,C, Y, k∗, t) is a “yes”-instance as well.
In particular, it makes sure that the arc sets of CL and CR are disjoint, that
CL ∪ CR is an out-forest and that ζ(CL ∪ CR) = C. Also, the algorithm makes
sure that YL ∪ YR = Z ′ and that Y ⊆ YL and Y ⊆ YR. Finally, it makes sure
that t∗L + t∗R − |Z ′| = t∗ and that k∗L + k∗R = k∗. This concludes the description
of the algorithm.

Lemma 4. There is a one-sided-error Monte-Carlo algorithm for k-Internal

Out-Branching running in time O(16k+o(k) + nO(1)). When the instance is a
“yes”-instance, the algorithm incorrectly returns “no” with probability at most 1/4.
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Proof. Consider the algorithm above. It is enough to prove correctness and an-
alyze the running time for the part of the algorithm that solves DROF. We first
prove that when the algorithm answers yes, the answer is correct. We prove this
by induction on t. If t < log k then the algorithm resolves the problem in a brute
force manner and hence correctness follows. Suppose now that t ≥ log k. Since
the algorithm returned yes it made a guess for S, a random partitioning of N \Z ′

(where Z ′ = Z ∪ S) and guessed a pair PL = (D[NL ∪ Z ′], RL, CL, YL, k
∗
L, tL)

and PR = (D[NR ∪ Z ′], RR, CR, YR, k
∗
R, tR) such that the algorithm returned

that both PL and PR are “yes”-instances of DROF. By the induction hypothe-
sis there are out-forests TL = (NT

L , AT
L) of D[NL] and TR = (NT

R , AT
R) of D[NR]

with at least k∗L and k∗R inner nodes outside YL and YR respectively, such that
CZ′(TL) = CL and CZ′(TR) = CR. We prove that T = TL ∪ TR is an out-forest
that satisfies the conditions of DROF.

Since the arc sets of CL and CR are disjoint, CL ∪ CR is an out-forest and
CZ′(TL) = CL and CZ′(TR) = CR, T = TL ∪ TR is an out-forest. Since ζZ(CL ∪
CR) = C it follows that ζZ(T ) = ζZ(TL ∪ TR) = C. The number of nodes in T
is tL + tR − Z ≤ t and since Y ⊆ YL, Y ⊆ YR and YL ∪ YR = Z ′ the number of
inner nodes of T avoiding Y is at most k∗L + k∗R ≥ k∗. Hence the input instance
is indeed a “yes”-instance.

Now, we prove that if a given subproblem (D,R,C, Y, k∗, t) is a “yes”-instance,
then the probability that the algorithm returns “no” is pt ≤ 1/4. We prove this
by induction on t, and if t < log k the algorithm solves the problem by brute
force and correctness follows. If t ≥ log k, consider an out-forest T that satisfies
the conditions of DROF. Consider the run of the algorithm where the separator
S is guessed correctly.

Now, there are two possible reasons why the algorithm fails to answer “yes”.
Reason (a) is that the random partition (NL, NR) of N ∪ Z ′ could be done in
the wrong way, that is NT

L �⊆ NL or NT
R �⊆ NR. Reason (b) is that even though

NL and NR are guessed correctly, in the iteration of the algorithm where the
guesses for CL = ζZ′(TL), CR = ζZ′ (TR), YL, YR, k∗L, k∗R, tL and tR are correct,
the algorithm could fail to recognize either PL or PR as “yes” instances.

The probability of the first event is at most 1− 2−t. Recall that tL, tR ≤ t/2,
since the algorithm uses a perfectly balanced separator to split NT \Z ′. Hence,
by the union bound, the probability of event (b) is at most 2−t 2pt/2. Altogether
pt satisfies

pt ≤
(
1 − 2−t + 2−t+1pt/2

)3·2t

.

Therefore, by the inductive hypothesis,

pt ≤
(
1 − 2−t + 2−t+1/4

)3·2t

=
((

1 − 1/2t+1)2t+1
)1.5

≤ e−1.5 ≤ 1
4
.

Consider now the running time of the algorithm. Observe that in the beginning
t = 2k and that t always drops by a factor of one half in the recursive steps.
Furthermore the algorithm stops when t drops below log k. Hence the recursion
depth is at most log(2k). For each new level of the recursion the size of Z ′
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increases by log 2k. Hence |Z ′| never grows over log2(2k). In the base case we try
all possible subsets of A of size |Z|′+ t. Since D has at most O(k2) vertices it has
at most O(k4) arcs and hence in the base we need to try at most O(

(
k4

log2 2k

)
) =

O(2o(k)) different possibilities, each of which can be checked in O(kO(1)) time.
Consider now the recursive step. There are

(
O(k2)
log 2k

)
choices for the separator.

For each choice of the separator the number of random partitions tried is 3 · 2k.
For each random partition, |Z ′|O(|Z′|) = O(2log3 k) pairs (PL,PR) of instances
are generated. Let T (n, t) be the running time of the DROF algorithm on an
instance where D has n nodes and the number of nodes in the tree searched for
that are not in Z ′ is t. Then the following recurrence holds.

T (n, t) ≤ nO(log3 2k) · 3 · 2t · (2T (n, t/2) + nO(1))

≤ nO(t log3 2k)2k · T (n, t/2)

= O((nO(t log3 2k))log k · 2(∑ log t
i=0

t

2i )) = O(4t · nO(log4 k)).

Since we first run the kernelization algorithm from [13], the k-RDIOT instance
we solve recursively has O(k2) nodes. Since t = 2k in the instance of DROF we
construct from this k-RDIOT instance, the total running time for the algorithm
is bounded from above by O(42k ·(k2)O(log4 k)+nO(1)) = O(16k+o(k)+nO(1)). ��
Our algorithm for k-Internal Out-Branching can be derandomized using
the method presented by Chen et al. [5], which is based on the construction of
(n, k)-universal sets [20]. The main idea is to replace the random partitioning
of the host graph H by a partitioning that uses universal sets. Lemmas 4 and 5
together imply Theorem 2.

Lemma 5. [] There is a deterministic algorithm for k-Internal Out-

Branching running in time O(16k+o(k) + nO(1)) and requiring O(4kkO(log k))
space.

4 Degree Constrained Spanning Tree

In this section we present our O(2n+o(n))-time algorithm for the Degree Con-

strained Spanning Tree problem (DCSS). We recall that in this problem we
are given an undirected graph G = (V,E), and a list of desirable degrees D(v)
for each vertex v. The aim is finding a spanning tree T of G which maximizes
the number of hits, i.e. the number of vertices v with dT (v) ∈ D(v).

Our algorithm is based on the divide-and-conquer approach, and has several
similarities with the algorithm for k-Internal Spanning Tree. The main differ-
ences are that the random partitioning and kernelization parts are no longer
required, and that the Sharp Separation theorem is used to divide the prob-
lem into very unbalanced subproblems. Consider a subproblem on the graph
H = (V,E). In the divide step we guess a proper (logarithmic-size) separator
S of the optimum solution, and the corresponding two sides VL and VR of the
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partition. Set S is chosen such that VL is sufficiently small to make the guessing
of S, VL and VR cheap enough. The existence of S is guaranteed by our Sharp
Separation Theorem. The two sub-problems induced by VL ∪ S and VR ∪ S are
then solved recursively.

Just as for the case of k-Internal Spanning Tree there are two aspects of sub-
problems which do not show up in the original problem. First of all, the solution
to a subproblem is not necessarily a spanning tree: it is a spanning forest in
general. Still, the union of such forests must induce a tree. In order to take this
fact into account, we introduce a constraint forest C = (Z,Q), defined over a
proper subset of nodes Z ⊆ V . The set Z includes all the separators guessed
from the original problem down to the current subproblem. The components of
C describe which pairs of nodes of Z must and must not be connected in the
desired forest.

Second, in order to obtain two independent maximization sub-problems, we
need to guess the degree of the separator nodes in the optimum solution, and
force the solution to have that degree on those nodes. This is modeled via an
auxiliary function A : V → 2{1,...,n}. For z ∈ Z, A(z) is a singleton set containing
the mentioned guessed degree, while A coincides with D on the remaining nodes.
We remark that it might be that A(z) �⊆ D(z) for some z ∈ Z, since not all the
nodes of Z need to be hits in the optimum solution. Altogether, a subproblem
(H,C,A) can be defined as follows.

Degree-Constrained Cut & Connect (DCCC). Given a graph H =
(V,E), a forest C = (Z,Q), Z ⊆ V , and a function A : V → 2{1,...,n},
|A(z)| = 1 for z ∈ Z. Find a spanning forest F of H maximizing the
number of hits, i.e. |{v ∈ V : dF (v) ∈ A(v)}|, such that: (i) every
connected component of F contains at least one vertex of Z; (ii) for any
u, v ∈ Z, u and v are connected in C if and only if they are connected
in F ; (iii) dF (z) ∈ A(z) for all z ∈ Z.

Observe that the original Degree Constrained Spanning Tree instance
(G,D) is equivalent to aDegree-ConstrainedCut&Connect instancewhere
H = G, C = ({z}, ∅) for an arbitrary vertex z of G, A(z) = {dOPT (z)} where
dOPT (z) is the degree of z in an optimum solution OPT , and A(v) = D(v) for any
vertex v �= z. We remark that we can guess dOPT (z) by trying all the possibilities.

We give a memoization based algorithm for DCST. Initially the algorithm
encodes the input problem into a DCCC problem as described above. The latter
problem is then solved recursively. The solution to each subproblem generated
is stored in a memoization table, which is used to avoid to solve the same sub-
problem twice.

Let us describe the recursive algorithm for DCCC. Consider a given subprob-
lem P = (H,C,A), with H = (V,E) and C = (Z,Q). If |V | ≤ n/ log2 n, the
problem is solved in a brute force manner by enumerating all the spanning forests
F of H . Otherwise, the algorithm splits the problem in two smaller independent
sub-problems PL = (HL, CL,AL) and PR = (HR, CR,AR), which are solved
recursively. The desired solution F is obtained by merging the two solutions
obtained for the two sub-problems.
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We next describe how PL and PR are obtained. Consider the optimum solution
OPT = OPT (H,C,A) to (H,C,A). For x = n/ log2 n, by the Sharp Separation
Theorem there is a separator S of OPT , |S| ≤ t logn = logn, which splits V \S
in two subsets VL and VR, with |VL| ≤ x and |VR| ≤ |V |−x. Let Z ′ = S∪Z. The
algorithm guesses S, VL and VR, and sets HL = H [VL∪Z ′] and HR = H [VR∪Z ′].

Consider the forest C′ obtained from OPT by iteratively contracting the edges
with one endpoint not in Z ′. Note that, if we further contract C′ on vertices S\Z,
we must obtain the forest C. Each edge of C′ corresponds to a path in H whose
vertices belong entirely either to VL ∪Z ′ or to VR ∪Z ′. (In order to simplify the
algorithm, we assume that edges between adjacent nodes of Z ′ belong to the first
class). Let QL and QR be the edges of the first and second type, respectively. The
algorithm guesses C′, QL and QR, and sets CL = (Z ′, QL) and CR = (Z ′, QR).

It remains to specify AL and AR. Consider the two forests OPTL and OPTR,
on vertex set VL ∪Z ′ and VR ∪Z ′, respectively, obtained from OPT by inserting
every edge of OPT with both endpoints in VL∪Z ′ in OPTL, and all the remaining
edges in OPTR. Note that dOPT (z′) = dOPTL(z′) + dOPTR(z′) for all z′ ∈ Z ′.
The algorithm guesses dOPTL(z′) (resp., dOPTR(z′)) for all z′ ∈ Z ′, and sets
AL(z′) = {dOPTL(z′)} (resp., AR(z′) = {dOPTR(z′)}). Moreover, it sets AL(v) =
A(v) (resp, AR(v) = A(v)) for all the remaining nodes v.

Summarizing the discussion above, the following recurrence holds, where the
maximum, computed with respect to the number of hits, is taken over all the
possible choices of (HL, CL,AL) and (HR, CR,AR) such that the pair of feasible
solutions to the smaller instances can be combined to a feasible solution for the
original instance (H,C,A).

OPT (H,C,A) = arg max{OPT (HL, CL,AL) ∪OPT (HR, CR,AR)}. (1)

In particular, the maximum considers all the possible choices of the separator
S and of the partition (VL, VR), of the forest C′ and of the partition (QL, QR)
of its edges, and of the degrees dOPTL(z′) and dOPTR(z′).

Due to correctness of Recurrence (1) the algorithm described above solves
Degree Constrained Spanning Tree. What remains for a complete proof
of Theorem 3 is a running time analysis, which has been omitted due to space
restrictions.

Remark: The algorothm for Degree Constrained Spanning Tree can be
applied to find spanning subgraphs of treewidth t satisfying degree constraints in
time O(2n+o(n)) for every fixed constant t. In addition to the degree constraints
one could require the spanning subgraph to belong to a minor-closed graph
family. Our approach is also easily generalizable to handle super-polynomial
edge weights.
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Abstract. Consider a dark polygonal region in which intruders move
freely, trying to avoid detection. A robot, which is equipped with a flash-
light, moves along the polygon boundary to illuminate all intruders. We
want to minimize the total distance traveled by the robot until all in-
truders are detected in the worst case. We present an O(n log n) time and
O(n) space algorithm for optimizing this metric, where n is the number
of vertices of the given polygon. This improves upon the best known time
and space complexities of O(n2) and O(n2), respectively. The distance
graph plays a critical role in our analysis and algorithm design.

1 Introduction

In this paper we study path planning for a special kind of mobile robot. In the
polygon search problem, first formulated by Suzuki and Yamashita [11], mobile
searchers and intruders are represented by moving points in a polygonal area.
We consider a special case, where a single searcher can move around on the
polygon boundary with bounded speed, carrying a flashlight which he can direct
in any direction with bounded rotational speed. In other words, it is a boundary
1-searcher in the terminology defined in [11]. The intruders try to evade detection
by dodging the light beam, and can move faster than the angular movement of
the flashlight beam. Tan [12] characterized the class of polygons searchable by
a boundary searcher, by identifying a set of “forbidden patterns.”

Our objective in this paper is to minimize the distance that needs to be trav-
eled by the searcher to illuminate all intruders in the worst case. Our motivation
is that the energy expended by the searching robot is an increasing function
of the distance it travels. It is known that the minimum range of travel is less
than twice the perimeter of the polygon [8]. Recently, Fukami et al. designed an
algorithm for finding the minimum distance schedule, which runs in O(n2) time
and uses O(n2) space [2]. Since the data structure they use to represent relevant
information is of size O(n2), it is not possible to improve the time complexity
beyond O(n2), using their approach. Our algorithm is based on a totally differ-
ent approach, and runs in O(n log n) time and uses O(n) space. The concepts of
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the landmark, skeleton visibility diagram and distance graph play central roles in
our analysis and algorithm design. Due to lack of space, we omit the proofs of
some lemmas and theorems. The interested reader is referred to [7].

2 Preliminaries

2.1 Notation and Definitions

A (simple) polygon P is defined by a sequence of vertices and the edges that
connect adjacent vertices. The edge between vertices u and v is denoted by
(u, v). The boundary of P , denoted by ∂P , consists of all its edges and vertices.
The vertices immediately preceding (resp. succeeding) vertex v in the clockwise1

direction are denoted by Pred(v) (resp. Succ(v)). For any two points a, b ∈ ∂P ,
the closed (resp. open) cw section of ∂P from a to b is denoted by ∂P [a, b]
(resp. ∂P (a, b)). For three points a, b, c ∈ ∂P we sometimes write a ≺ b ≺ c if
b ∈ ∂P (a, c).

A point p in P is visible from another point q if the line segment pq is totally
contained in P [8].2 The role of the light beam is to separate the clear part of
polygon that is free of intruders from the contaminated part that may contain
intruders. The contiguous section of polygon boundary that is in contact with
the cleared part of the polygon starts at the searcher position, s, extends cw,
and ends at a point p ∈ ∂P , where the beam touches the polygon boundary. This
point may not coincide with the beam head, where the beam leaves the polygon
for the first time. The pair (p, s) is called a configuration, and we sometimes
denote it by sp.

A vertex whose interior angle between its two incident edges is more than
180◦ is called a reflex vertex. For a reflex vertex r, extend the edge (Succ(r), r)
(resp. (Pred(r), r)) in the direction Succ(r) → r (resp. Pred(r) → r), and let
B(r) ∈ ∂P (resp. F (r) ∈ ∂P ) denote the point where it hits ∂P for the first
time. We call B(r) (resp. F (r)) the backward (resp. forward) extension point
associated with r. We call the closed polygonal area enclosed by ∂P [r,B(r)]
(resp. ∂P [F (r), r]) and line segment B(r)r (resp. rF (r)) vertex r’s cw (resp.
ccw) component, denoted by Ccw(r) (resp. Cccw(r)).

Lemma 1. [1] Given a polygon with n vertices, all its extension points can be
computed in O(n logn) time and O(n) space. ��

2.2 Searchability and Performance Metric

Let a continuous function I : [0,∞) → P represent the unpredictable moves
of an intruder. The value I(t) at time t ≥ 0 is not known to the searcher. Let
γ : [0, T ] → ∂P be a continuous function such that γ(t) is the position of the

1 From now on, we use cw (resp. ccw) as an abbreviation for clockwise (resp. counter-
clockwise).

2 Another definition of visibility is adopted in [4], which requires that pq ∈ P − ∂P .



86 T. Kameda, I. Suzuki, and J.Z. Zhang

searcher at time t ≥ 0, where T is a positive constant. Finally, let θ(t) ∈ ∂P
denote a point on ∂P that the beam touches at time t, so that γ(t)θ(t) ⊆ P . Thus
θ : [0, T ] → ∂P is a piecewise continuous function. The function pair (γ, θ) is a
search schedule, or just schedule, if for every continuous function I : [0,∞) → P ,
there exists a time t ∈ [0, T ] such that I(t) ∈ γ(t)θ(t) [10]. The polygon P is
searchable if there exists a schedule (γ, θ) for it.

The distance of a schedule is the cumulative distance along the polygon bound-
ary traversed by the searcher. A search schedule that minimizes the distance is
called an optimal schedule.

2.3 Visibility Diagram

Let x, y ∈ IR, where IR is the set of all real numbers. The visibility space, denoted
by V , consists of the infinite area between and including the lines Y = X (start
line S) and Y = X − |∂P | (goal line G), as shown in Fig. 1, where |∂P | denotes
the perimeter of P [8]. We have (x, y) ∈ V if and only if x − |∂P | ≤ y ≤ x.
We assume that an arbitrary point on ∂P has been chosen as the origin. Let
0 ≤ x′ < |∂P |. Then x′ and x = x′ + k|∂P | represent the same point on ∂P that
is at distance x′ cw from the origin for any integer k. The visibility diagram,
V-diagram or just VD for short, for a given polygon is drawn in V by shading
some areas in it gray as follows: point (x, y) ∈ V is gray if points x, y ∈ ∂P
are not mutually visible [8]. Thus, the VD has a period |∂P |, and each reflex
vertex r gives rise to two shaded areas in each period, as shown in an idealized
form in Fig. 1. The V-diagram is a generalization of the “visibility obstruction
diagram” [4], which essentially represents one period of the VD.

0

(b)

(a)

(d)

(c)

|∂P |
|∂P | + r

Y = X − |∂P |

S

G

|∂P | + F (r)

Y = XY

X

B(r)

F (r)

|∂P | + r

r

Fig. 1. SE and NW barriers due to reflex vertex r

For convenience, we refer to the directions in the VD, up, down, left and east
as north, south, west and east, respectively. We call each gray area in Fig. 1 a
barrier and a barrier whose corner is touching line S (resp. G) is called a southeast
(SE) (resp. northwest (NW)) barrier [8]. The SE (resp. NW) barrier due to reflex
vertex r is denoted by SE (r) (resp. NW (r)). There are infinitely many copies of
an SE (resp. NW) barrier touching line S (resp. G) at (k|∂P |+ |r|, k|∂P |+ |r|) for
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any integer k, where |r| denotes the distance of vertex r from the origin. We call
some corner points of barriers landmarks. See points (a), (b), (c) and (d) in Fig. 1,
which represent configurations rF (r)


, B(r)r


, F (r)r


and rB(r)


, respectively.

A maximal white area in the VD is called a cell. Note that a finite cell is a closed
area, since the barriers are open. If sp is a configuration, then point (p, s) in
the VD is called a configuration point. A landmark to (resp. from) which there
is a straight horizontal path from line S (resp. to line G) within a cell in the VD
is called an initial landmark (resp. terminal landmark). Figure 2(b) shows the
VD for the polygon in Fig. 2(a). Configuration points C and C′ represent the
corresponding configurations in Fig. 2(a).
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Fig. 2. (a) A polygon; (b) Its VD and SVD

2.4 Skeleton Visibility Diagram (SVD)

We replace the SE (resp. NW) barrier caused by reflex vertex r by two line
segments, the horizontal line segment from landmark (a) to line S (resp. (d) to
line G) in Fig. 1 and the vertical line segment from landmark (b) to S (resp.
(c) to line G). These line segments are called the backbones of the barrier. A
backbone does not include the landmark, i.e., it is open at that end. We assume
that the two backbones of a barrier touch each other. The skeleton visibility
diagram, or SVD for short, is obtained from a VD by replacing the barriers by
their backbones. For example, the black line segments on the barrier faces in
Fig. 2(b) constitute an SVD.

2.5 Other Relevant Facts

Reflex vertex v cw-excludes (resp. ccw-excludes) point p ∈ ∂P if p /∈ Ccw(v)
(resp. p /∈ Cccw(v)). Two reflex vertices u and v form
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1. a cw exclusion pair, EXPcw for short, if u and v cw-exclude each other.
2. a ccw exclusion pair, EXPccw for short, if u and v ccw-exclude each other.
3. a symmetric exclusion pair, EXPsym for short, if one of them cw-excludes

the other and is ccw-excluded by the other. If u cw-excludes v and v ccw-
excludes u, then ∂P (v, u) is called a trap, and any point p ∈ ∂P (v, u) is said
to be trapped. ��

The SVDs for the three types of EXPs are shown in Fig. 3.
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Fig. 3. SVDs for: (a) EXPcw; (b) EXPccw; (c) EXPsym

Lemma 2. [9] The barriers caused by two reflex vertices u and v in the VD
intersect if and only if they form an EXPccw, EXPcw or EXPsym. ��
Lemma 3. [9] The backbones due to two reflex vertices u and v in the SVD
intersect if and only if u and v form an EXPccw, EXPcw or EXPsym. ��

3 Canonical Search Path

In what follows, a path shall mean a simple (i.e., non-self-intersecting), directed
path. A legal path is a path in the VD (or SVD) that stays within cells, except
that it may cross a gray area (or a vertical backbone) horizontally from east to
west any number of times [8]. A search path is a legal path from S to G. For
example, the dotted path in Fig. 2(b) from A to B is a search path. It crosses a
barrier from point C to C′.

Theorem 1. [8,10] A given polygon is searchable by a boundary 1-searcher if
and only if there is a search path in its VD. ��
From Theorem 1 and Lemmas 2 and 3, we get

Theorem 2. A given polygon is searchable by a boundary 1-searcher if and only
if there is a search path in its SVD. ��
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A path in the VD is said to be canonical if it satisfies the following conditions:

1. It moves along barrier faces (i.e., cell boundaries) with two exceptions: It
may contain horizontal eastward line segments through the interiors of cells,
and it may contain horizontal westward line segments across gray areas.

2. It does not move along the curved face or east face of any SE barrier. When
it moves along some other (straight) face of an SE barrier, it moves away
from S.

3. It does not move along the east face any NW barrier, and when it moves
along the north face of an NW barrier it moves towards G. ��

The search path from A to B in Fig. 2(b) is canonical. All landmarks on it, as
well as points C and C′, are indicated by black dots. Whenever a canonical path
reverses its vertical direction, it goes through a landmark. We thus have

Proposition 1. The Y coordinate of a canonical path between two successive
landmarks is either non-increasing or non-decreasing. ��
Lemma 4. If there is a canonical path from a landmark L to another landmark
L′ such that there is no other landmark on it, then the path is unique.

Proof. This lemma is trivially true if the eastward line from L hits L′. If this
line hits the curved face or the west face of a barrier, then by Proposition 1,
the canonical path may make a southward or northward3 turn there, but the
location of L′ uniquely determines which turn should be made. The rest of the
path is clearly unique. ��
Theorem 3. [7] There is a canonical search path representing an optimal
schedule. ��

4 Distance Graph

A canonical search path may go through a number of landmarks. We will first
construct canonical paths between pairs of landmarks, and then synthesize a
canonical search path by connecting some of them. Distance graph G(N,A) for
polygon P is a directed graph whose node set N consists of the landmarks. For
a pair of nodes, L1, L2 ∈ N we have arc (L1, L2) ∈ A if there is a canonical
path from L1 to L2 in the VD of P such that there is no other landmark on this
path. This arc has a weight that equals the difference in the Y coordinates of L1
and L2. By Proposition 1, the arc weight is the distance that the searcher must
travel to move from the position given by the Y coordinate of L1 to that given
by the Y coordinate of L2. Clearly, any path from an initial landmark to a final
landmark in graph G(N,A) unique specifies a canonical search path.

To find the arcs from each non-terminal landmark L ∈ N , we look for at
most two landmarks to which there are canonical paths from L. One is the first
landmark L′, if any, encountered when we trace a canonical path in a cell from
3 From now on southward (resp. northward) will be abbreviated as sw (resp. nw).



90 T. Kameda, I. Suzuki, and J.Z. Zhang

1st backbone

r

SE(   )u NW(   )v None

SE(   )r’

SE(   )u NW(   )v None SE(   )u NW(   )v None
(d)(b) (e) (f) (g) (i)(h)

Next backbone
Case ID (a) (c)

nwsw sw

1st backbone encountered

Turn direction at

NW(   )

Fig. 4. Canonical paths from a landmark to next

3
1

2

(a)

5

4

6

(b)

Fig. 5. (a) Approaching backbones from the curved side of a barrier; (b) Approaching
backbones from the straight side of a barrier

L such that when we first hit a barrier, we turn southward (sw) there. The other
landmark L′′, if any, is the first landmark encountered when we turn northward
(nw) instead. We will show below how to find L′ and L′′ using the SVD, instead
of the VD. All the possible cases are illustrated by the two trees in Fig. 4. The left
(resp. right) tree shows the case where the first vertical backbone encountered
in the SVD belongs to NW (r) (resp. SE (r′)). This is shown in Fig. 5 by arrows
1 and 4, respectively. The second level of the trees indicates the direction of the
canonical path once it hits NW (r) or SE(r′). If the first backbone encountered
is due to SE (r′) (right tree), then there is no nw branch under SE (r′), since
no canonical search path goes in the nw direction from there. If the first level
is NW (r) (left tree) and the second level is nw, as a special case of the arrow
1 in Fig. 5, the nw path moves nw immediately from L for a landmark L of
type (d) in Fig. 1. In the third level, we show the horizontal backbones that are
encountered next. If it is “None”, then the next landmark is at a tip of NW (r)
or SE (r′). If it is SE (u) (i.e., cases (a), (d), and (g)), there is no next landmark.
Finally, if it is NW (v), then the next landmark is at the southwestern (in cases
(b), (h)) or northeastern (in case (e)) tip of NW (v). Cases (a), (b), (d), (e), (g),
and (h) at the bottom level of Fig. 4 are illustrated by arrows 5, 2, 3, 6, 5, and
2 in Fig. 5, respectively. The conditions leading to different cases, (a), (b), etc.,
will be given in Lemma 5 below (and Lemma 6 in [7]). Let L = (lx, ly), and let
us find the first landmark L′ to which there is a canonical eastward (ew) then
sw path from L. (Direction = sw in the second level of Fig. 4.) We discuss two
cases, depending on which of reflex vertices r, r′ ∈ ∂P (lx, ly) defined below is
first encountered as we move cw from lx on ∂P .

ly /∈ Cccw(r) (r ccw-excludes ly) (1)
ly /∈ Ccw(r′) (r′ cw-excludes ly) (2)
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Note that (1) (resp. (2)) holds if, as we move eastward horizontally from L in
the SVD, we first hit the vertical backbone of NW (r) (resp. SE (r′)), as shown
by the left (resp. right) tree in Fig. 4.

Lemma 5. Suppose that lx ≺ r ≺ r′ ≺ ly holds, where r and r′ are defined by
(1) and (2), respectively. We assume that r exists, but r′ may not. (See the left
tree in Fig. 4.)

– Let u be the first reflex vertex encountered, if any, moving ccw from ly on
∂P (r, ly), such that r ≺ F (u) ≺ u (r and u form an EXPccw as in Fig. 3(b)).

– Let v be the first reflex vertex encountered, if any, moving ccw from ly on
∂P (r, ly), such that v ≺ B(v) ≺ r (r and v form an EXPsym as in Fig. 3(c).)

(a) If neither u nor v exists, then L′ = (B(r), r). (Case (c) in Fig. 4.)
(b) If we have lx ≺ u ≺ v ≺ ly, where u may not exist, then we have L′ =

(B(v), v).(Case (b) in Fig. 4.)
(c) If we have lx ≺ v ≺ u ≺ ly, where v may not exist, then L′ does not exist.

(Case (a) in Fig. 4.)

Proof. Vertex r is the first vertex such that the vertical backbone of NW (r) is
hit by a horizontal line extending east from L in the SVD. (a) In this case, there
is no SE barrier or NW barrier that intersects NW (r) to the south of line Y = ly,
and the canonical sw path from L eventually reaches the southwest landmark of
NW (r). (b) Vertex v is the first vertex on ∂P ccw from ly such that NW (r) and
NW (v) intersect. As we move sw on reaching an NW barrier, we may encounter
NW (v) such that r ≺ v ≺ u ≺ ly, but the southwest landmark of NW (v) is
eventually reached, i.e., L′ = (B(v), v). Note that the sw search path along the
west face of NW (v) can simply move across any SE barrier from east to west.
(c) u is the first vertex ccw from ly that forms an EXPccw with r. The vertical
backbone of NW (r) and the horizontal backbone of SE (u) meet. Any potential
canonical path is blocked by SE (u). ��
For example, in Fig. 6, we have case (b) with L = (F (10), 10), r = 3, v = 7,
and L′ = (B(7), 7). Note that the canonical path from L to L′ may not first hit
NW (r) in the VD. In fact, in this example, it first hits NW (5) at A and moves
along L → A → B → L′, reaching landmark L′ given by case (b) in Lemma 5.4

5 Finding Arcs of G(N, A) Efficiently

For i = 1, 2, . . . , we give two aliases, qi and pi, to reflex vertex ri. For convenience,
we consider that qi and B(qi) (resp. pi and F (pi)) are the end points of Ccw(ri)
(resp. Cccw(ri)). We say that qi (resp. pi) is an item of type q (resp. p).

Let L denote the set of all landmarks, except for the terminal landmarks. As
we discussed in the previous section, for each L ∈ L we want to find the barrier
NW (r) or SE (r′) whose vertical backbone is first encountered by the eastward

4 Lemma 6 in [7] deals with the cases represented by the right tree in Fig. 4.
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line from L in the SVD. For a particular L ∈ L, we need to identify the first
backbone of an NW barrier and that of an SE barrier, and then select the one that
is the nearer from L. We want to do this collectively for all landmarks in L in an
efficient manner. Let us first consider the backbones of NW barriers encountered
by the eastward lines from them. In this case, only the ccw components caused by
items of type p are relevant. We construct a circular linked list Kp that initially
lists all items of type p, {pj | j = 1, 2, . . .}, and their forward extension points,
{F (pj) | j = 1, 2, . . .}, in the cw order. List Kp also contains xl’s and yl’s of a
set of configurations of interest, C = {ylxl

 | l = 1, 2, . . .}, where xl, yl ∈ ∂P for
each l. In the current setting, we have C = L.

Each item in Kp has links to its predecessor and successor so that if any item
is deleted, the affected links can be updated in O(1) time. Each item of type p on
Kp is considered to be the root of a tree, which initially consists of just the root.
We start scanning Kp at an arbitrary item of type p, and as we examine each
item, we mark it. We maintain a pointer I to the first marked item of type p,
which is updated when the item it points to is deleted. We also maintain set S,
which is initially empty. When point xl is scanned, we detach it from Kp, mark
it, and put it in S. When an item pj is then scanned, we mark it, and make each
point xl in S a child node of the tree root at pj . With this arrangement, it is
easy to find the next marked item of type p clockwise from xl in the future, as
we will explain shortly.

We will need a family of algorithms, NxtTouch(C, t, d), where t ∈ {p, q}
denotes the type and d ∈ {ew(eastward),nw(northward), sw(southward)} de-
notes the direction. (See the arrows in Fig. 5.) For concreteness we present
NxtTouch(C, p, ew).
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Algorithm NxtTouch(C, p, ew)
Construct Kp in the cw order, using C and {pj, F (pj) | j = 1, 2, . . .}. Start

at an arbitrary item of type p in Kp, and set pointer I to it. Scan Kp, carrying
out the following operations, depending on the item scanned, until Kp becomes
empty:

1. Unmarked xl: Delete it from Kp, mark it, and put it in set S.
2. Unmarked pj: Mark it, and attach the items in S to it as its child nodes and

empty S.
3. F (pj): If pj is marked, then delete both F (pj) and pj from Kp, and attach

the tree at pj to the root of the tree at the next item of type p from pj, if it
exists.

4. yl: If xl is marked, identify the root, pk, if any, of the tree that xl belongs
to, delete both yl and xl. If xl is not marked, let pk be the item pointed to
by I. If pk exists, output it as the vertex causing the nearest backbone from
(xl, yl) such that yl /∈ Cccw(pk) holds. (See Eq. (1).) ��

In performing operation 4 above, if xl is marked and belongs to a tree, then pk

can be found by a FIND operation of the UNION-FIND algorithm of Hopcroft
and Ullman [5]. An example for the above algorithm can be found in [7].

Lemma 6. Given the initialized Kp as input, Algorithm NxtTouch(C, p, ew) out-
puts, for each pair (xl, yl) ∈ C, the reflex vertex pk, if any, closest cw from xl

such that yl /∈ Cccw(pk). It runs in O(n log∗ n) time.

Proof. First suppose that pk is output by operation 4 of NxtTouch(C, p, ew)
when xl is already marked. Then all (pj , F (pj)) pairs such that ∂P (pj , F (pj)) ⊂
∂P (xl, yl) have already been deleted. Therefore, we have yl /∈ Cccw(pk). More-
over, pk is the first vertex satisfying this condition clockwise from xl. Next sup-
pose that pk was reported when xl was not marked, but no vertex is reported
when xl is marked.5 This implies that there is no pj ∈ ∂P (xl, pk) that ccw-
excludes yl. If no pk is output, it implies that there is no pj ∈ ∂P (xl, yl) that
ccw-excludes yl. Clearly, the algorithm stops before the entire Kp is scanned
twice, and the number of UNIONs and FINDs is O(n). Therefore, it runs in
O(n log∗ n) total time [5]. ��
We had C = L above. However, in case (b) in Fig. 4, for example, we need to use a
different C to identify vertex v defined in Lemma 5. Algorithm NxtTouch(C, p, ew)
was tailer-made for the case shown by arrow 1 in Fig. 5(a). With minor modifi-
cations, it can also deal with the cases shown by arrows 2 and 3. To find vertex
v in case (b), for example, let C be the set of configurations on the backbones
of NW(r) reached from the landmarks in L. Then for each member of C, v can
be computed by NxtTouch(C, q, sw) with the following changes: (i) Kp → Kq

(Kq contains items of type q in the ccw order), and (ii) xl ↔ yl. To see this
intuitively, note that if we flip the diagram in Fig. 5(a) relative to line Y = X ,
arrow 1 becomes arrow 3. This implies that we are interchanging xl and yl, and
5 For example, this would be the case with x2 in Fig. 11 in [7] if p5 were absent.
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this can be reflected in operations 1 and 4 of NxtTouch(C, p, ew). If we flip the
diagram relative to line Y = 0 and then relative to line X = 0, arrow 3 turns
into arrow 2. This implies that we are changing the direction of movement from
cw to ccw, as well as changing the type from p to q. If we reflect these flipping
operations in NxtTouch, we obtain algorithms that can find the next backbones
in all the cases shown in Fig. 5(a).

However, NxtTouch cannot handle the cases shown in Fig. 5(b). In [7], we
present Algorithm NxtReach to deal with them. We need to invoke both Al-
gorithm NxtTouch(C, t, d) and NxtReach(C, t, d) and for each member of C, to
identify the vertex of type p or q, whichever is encountered first, where if
t = p (resp. q) then t = q (resp. p). Minor changes are needed to stop look-
ing for NW(v) or SE(u) in cases (d) and (e) in Fig. 4, for example, when the
north tip of NW(r) is reached.

6 Optimal Search Path

This section presents our main result, namely an O(n log n) time and O(n) space
algorithm for finding an optimal search path by a 1-searcher that minimizes the
distance traveled by the searcher. Now that we have constructed distance graph
G(N,A), the remaining task is straightforward and can be carried out as follows:

1. Modify G(N,A) by adding the source node and the sink node. Introduce
an arc with weight 0 to (resp. from) each node representing an initial (resp.
terminal) landmark from (resp. to) the source (resp. sink) node.

2. Apply Dijkstra’s algorithm to find the shortest path from the source node
to the sink node. ��

We now show that the distance graph is planar, so that the shortest path in
it can be found in linear time. To see this let us look at subdiagram D of the
V-diagram, consisting of one period between the lines Y = c and Y = c + |∂P |
for some c. The distance graph is “almost planar”, except that some arcs may
wrap vertically around D. Now map line S in D onto a circle, and map line G
in D onto a larger concentric circle. Then the top line of D and the bottom line
of D naturally meet, and the resulting diagram, hence the distance graph, is
planar.

By Lemma 1 we can compute all extension points in O(n log n) time. This
implies that we can construct graph G(N,A) in O(n logn) time. Graph G(N,A)
contains O(n) arcs, since there are at most two arcs out of each node. Since it
is a planar graph, the shortest path can be computed in O(n) time.

Theorem 4. Given a polygon of n vertices, an optimal search path can be con-
structed in O(n logn) time and O(n) space, where n is the number of vertices in
the given polygon. ��
Since our output schedule is given at a higher level than “instructions” used in
[6], their bound of Ω(n2) on the schedule length does not apply. Each step of
our schedule is of the form “Move from landmark L to landmark L′.”
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7 Conclusion and Discussion

The main contribution of this paper is to present an O(n log n) time and O(n)
space algorithm for minimizing the distance traveled by a searcher moving on
the boundary. The time is dominated by O(n log n) that is required for finding
all extension points. Once they are known, the remaining task can be carried out
in O(n log∗ n) time. If the more sophisticated UNITE-FIND algorithm of Gabor
and Tarjan [3] is used, then this can be improved to O(n). We made an extensive
use of the VD and SVD throughout the paper, demonstrating their usefulness.
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Abstract. Concurrent compositions of recursive programs with finite
data are a natural abstraction model for concurrent programs. Since
reachability is undecidable for this class, a restricted form of reachabil-
ity has become popular in the formal verification literature, where the
set of states reached within k context-switches, for a fixed small con-
stant k, is explored. In this paper, we consider the language theory of
these models: concurrent recursive programs with finite data domains
that communicate using shared memory and work within k round-robin
rounds of context-switches, and where further the stack operations are
made visible (as in visibly pushdown automata). We show that the cor-
responding class of languages, for any fixed k, forms a robust subclass
of context-sensitive languages, closed under all the Boolean operations.
Our main technical contribution is to show that these automata are de-
terminizable as well. This is the first class we are aware of that includes
non-context-free languages, and yet has the above properties.

1 Introduction

Concurrent threads with recursive procedures that communicate using shared
memory is a natural and attractive model, as it models concurrent imperative
programs naturally. While message-passing is more common in the distributed
computing world where processes run on different machines, the advent of multi-
core computing has led to an increased interest in shared-memory programs.

In the methodology of model-checking for program verification, a common
paradigm is to analyze a program by verifying a model of it, where the model is
obtained by abstracting or simplifying the data-domain used by a program, but
preserving control flows accurately. Many program analysis frameworks, such
as data-flow analysis or predicate abstraction, fall under this category. Hence
concurrent recursive programs where variables range over a finite data-domain
are an attractive model of study.

The automata-theoretic model of a concurrent program with recursion and
shared-memory communication is simply an automaton with multiple stacks.
(Note that in such a model, the shared memory, and hence the communication
between processes, resides in the control state of the automaton.) Since Turing
machines can be simulated by an automaton with two stacks, the emptiness prob-
lem for these automata, and hence the model-checking problem, is undecidable.
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In order to overcome this barrier, a recent proposal is to search only the space
reached by these automata using a bounded number of context-switches. In other
words, we view the computation as occurring in k consecutive stages (for a fixed
constant k), where in each stage only one of the concurrent threads is active. This
restriction in the automaton model translates to restricting the computation to
k stages, where in each stage, only one of the stacks is manipulated. It turns out
that in this model the reachability problem is decidable (for any fixed k) [16].

The idea of checking and testing concurrent programs under a context-
switching bound has gained attention in recent years for several reasons. First,
there is an intuitive appeal that one expects most concurrency errors to manifest
themselves within a few context-switches. This has been argued fairly effectively
in recent experimental studies (see [14]). Second, the model-checking problem
for bounded context-switching is decidable [16], thus yielding exact algorithmic
methods to solve the reachability problem. And third, checking concurrent pro-
grams under a context-bound can be done compositionally— we can search the
state space by avoiding to build explicitly the product of local states of all au-
tomata, and instead work with only the space defined by a single thread and k
copies of shared variables. The last aspect is in fact a very appealing (and the
least articulated) aspect of bounded context-switching that has been exploited
in recent work: model-checking tools for concurrent Boolean programs have been
developed [8,12,17], and translations of concurrent programs to sequential pro-
grams have been developed that reduce bounded context-switching reachability
to sequential reachability, even for general C-programs [9,12]. In recent work,
the above translation has even been used to verify concurrent programs under a
context-bound using deductive verification tools for sequential software [11].

In this paper, we undertake a language and automata-theoretic study of the
concurrent programs with recursion under a context-switching bound. While
research has so far concentrated on the computation of reachable states, we
instead look at the class of languages accepted by these automata. In doing so,
we make the calls and returns to procedures in the concurrent program visible—
for sequential programs this yields the class of visibly pushdown automata [1],
which has been shown to define a robust class of context-free languages, and has
led to a flurry of research (see [19] for a list of papers in this area).

We consider automata with n stacks, where an execution goes through k
round-robin schedules of computation, i.e., a round is a fixed sequence of exactly
n contexts, one for each stack. In a context for a stack i, for i = 1, . . . , n, the
automaton can only read letters pertaining to stack i and manipulate stack i.

The visibility of actions on the stack immediately implies that the class of
languages is closed under union and intersection. Surprisingly, we show that the
nondeterministic and deterministic versions of these automata are equivalent.
The determinization construction is the key technical theorem in this paper,
and crucially uses the compositional reasoning of the automata using interfaces
of tuples of global states that we alluded to earlier. Determinizability gives us
closure under complement as well, and hence shows that the class of automata
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with k-rounds of round-robin scheduling is a robust class closed under all Boolean
operations.

The class of languages accepted by visibly multi-stack pushdown automata
with a bounded number of context-switching rounds is the only class we are
aware of that includes non-context-free languages, has a decidable emptiness
(and membership) problem, is closed under all Boolean operations, and is fur-
ther determinizable. (It is easy to see that this class is a subclass of context-
sensitive languages, i.e. languages accepted by nondeterministic Turing machines
with linear space). Note that standard complexity classes defined using resource
constraints seldom have a decidable emptiness problem (one can prove undecid-
ability by padding input).

We make several other observations regarding these automata. First, when
the automata are generalized to have no bound on the number of round-robins
of schedule, they are not determinizable. Second, it is well-known now that the
emptiness problem restricted to only the words that can be accepted up to a
bounded number of round-robins is decidable for these automata and in fact is
NP-complete [13,16]. Thus, from the closure under boolean operations, it follows
that universality and inclusion are decidable. Third, since these automata define
a subclass of bounded-phase multi-stack pushdown automata [10], it follows
that the Parikh theorem holds for the bounded context-switching class as well.
Further, we show that the monadic second-order logic on n-nested words with
k rounds, where the logic has n binary relations corresponding to the n nesting
relations on the word, corresponds exactly to the class of languages introduced
in this paper.

Notice that our results show that the k-round-robin executions of multi-stack
automata, which define a subclass of context-sensitive languages is determiniz-
able. In [10], we show that even if there is one phase where a 2-stack automaton
can push onto both stacks, followed by two phases where the automaton can pop
from one stack only in each phase, is non-determinizable. This one example of
non-determinizability rules out most natural extensions of multi-stack automata
(where restrictions are based only on the patterns of pushes and pops) from being
determinizable, and leads us to conjecture that considerably larger and deter-
minizable sub-classes of context-sensitive languages defined using multi-stack
nondeterministic automata are unlikely to exist.

In conclusion, the contribution of this paper is to exhibit a class of lan-
guages (those accepted by multi-stack automata with bounded rounds of context-
switches), the first that we are aware of, that includes certain non-context-free
languages, and has all the desirable properties that regular languages possess:
closure under Boolean operations, decidable problems of membership, emptiness,
and inclusion, determinizability and an MSO characterization.

Related Work: The classes of multi-stack automata studied in this paper are
proper subclasses of the multi-stack automata which work in a bounded number
of phases, where in each phase, symbols can be pushed into all stacks but popped
only from one stack [10]. Though the class of languages accepted by bounded
phase multi-stack automata is closed under all Boolean operations as well, such
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automata are not determinizable, while the class of automata we consider here
are. To the best of our knowledge, the class of automata we have introduced
in this paper is the first extension of visibly pushdown automata with multiple
stacks which is determinizable. [4] gives a wrong determinization construction for
2-stack visibly pushdown automata, which are indeed not determinizable (even if
the stacks usage is constrained such that pop operations on the second stack are
allowed only if the first stack is empty) as shown in [6]. Also, the class of 2-stack
visibly pushdown automata is in general not closed under complement [2], while
the answer is not known when such automata are constrained with an ordering
on the usage of stacks (the proof of such closure property given in [4] relied
on the determinizability of the model). Our determinization construction uses
tuples of global states to capture the points at which context-switching occurs,
similar to earlier papers [12,9] that reduce reachability in concurrent programs to
reachability in sequential programs. However, the determinizability result does
not follow from such conversions as the latter only preserve reachability, and not
language equivalence (after all, sequential programs with finite data domains
define only context-free languages). Besides the papers we have already cited,
bounded context-switching has also been exploited for systems with heaps [3],
systems communicating using queues [7], and weighted pushdown systems [13].

2 Multi-Stack Pushdown Automata

In this section we give the notation and definitions to introduce the model of
automata we will use in the rest of the paper.

Given two positive integers i and j, i ≤ j, we denote with [i, j] the set of
integers k with i ≤ k ≤ j, and with [j] the set [1, j].

An n-stack call-return alphabet is a tuple Σ̃n = 〈Σi
c, Σ

i
r, Σ

i
int〉ni=1 of pairwise

disjoint finite alphabets. For any i ∈ [n], Σi
c is a finite set of calls of stack i, Σi

r

is a finite set of returns of stack i, and Σi
int is a finite set of internal actions of

stack i. For any such Σ̃n, let

– Σi = Σi
c ∪Σi

r ∪Σi
int , for every i ∈ [n];

– Σc =
⋃n

i=1 Σ
i
c, Σr =

⋃n
i=1 Σ

i
r, and Σint =

⋃n
i=1 Σ

i
int ;

– Σ = Σc ∪Σr ∪Σint .

A multi-stack visibly pushdown automaton over such an alphabet must push
on stack i exactly one symbol when it reads a call of the i-th alphabet, and pop
exactly one symbol from stack i when it reads a return of the i-th alphabet.
Also, it cannot touch any stack when reading an internal symbol.

Definition 1. (Multi-stack visibly pushdown automaton) A multi-stack
visibly pushdown automaton (Mvpa) over the n-stack call-return alphabet Σ̃n =
〈Σi

c, Σ
i
r, Σ

i
int〉ni=1, is a tuple M = (Q,QI , Γ, δ,QF ) where Q is a finite set of

states, QI ⊆ Q is the set of initial states, Γ is a finite stack alphabet that
contains a special bottom-of-stack symbol ⊥, δ ⊆ (Q × Σc × Q × (Γ\ {⊥})) ∪
(Q × Σr × Γ × Q) ∪ (Q × Σint × Q), and QF ⊆ Q is the set of final states.



100 S. La Torre, P. Madhusudan, and G. Parlato

Moreover, M is deterministic if |QI | = 1, and |{(q, a, q′) ∈ δ} ∪ {(q, a, q′, γ) ∈
δ} ∪ {(q, a, γ′, q′) ∈ δ}| ≤ 1, for every given q ∈ Q, a ∈ Σ and γ′ ∈ Γ .

Let us fix an n-stack alphabet Σ̃n for the rest of the paper.
A transition (q, a, q′, γ), for a ∈ Σi

c and γ 	=⊥, is a push-transition where on
input a, γ is pushed onto stack i and the control changes from q to q′. Similarly,
(q, a, γ, q′) for a ∈ Σi

r is a pop-transition where on input a, γ is read from the
top of stack i and popped (except for γ =⊥, which is never popped), and the
control changes from q to q′. A transition (q, a, q′), for a ∈ Σint , is an internal
transition where on input a the control changes from q to q′.

A stack content σ is a nonempty finite sequence over Γ where the bottom-of-
stack symbol ⊥ appears always in the end, i.e., σ ∈ (Γ \ {⊥})∗.{⊥}. A configu-
ration of an Mvpa M over Σ̃n is a tuple C = 〈q, σ1, . . . , σn〉, where q ∈ Q and
each σi is a stack content. Moreover, C is initial if q ∈ QI and σi =⊥ for every
i ∈ [n], and accepting if q ∈ QF . Transitions between configurations are defined
as follows: 〈q, σ1, . . . , σn〉 a−→M 〈q′, σ′

1, . . . , σ
′
n〉 if one of the following holds (M is

omitted whenever it is clear from the context):

[Push] If a ∈ Σi
c (i.e., a is a call of stack i), then ∃γ ∈ Γ \ {⊥} such that

(q, a, q′, γ) ∈ δ, σ′
i = γ · σi, and σ′

h = σh for every h ∈ ([n] \ {i}).
[Pop] If a ∈ Σi

r (i.e., a is a return of stack i), then ∃γ ∈ Γ such that (q, a, γ, q′) ∈
δ, σ′

h = σh for every h ∈ ([n] \ {i}), and either γ 	=⊥ and σi = γ · σ′
i, or

γ = σi = σ′
i =⊥.

[Internal] If a ∈ Σint, then (q, a, q′) ∈ δ, and σ′
h = σh for every h ∈ [n].

For a word w = a1 . . . am in Σ∗, a run of M on w from C0 to Cm, denoted
C0

w−→M Cm, is a sequence of transitions Ci−1
ai−→ Ci for i ∈ [m] where each Ci

is a configuration. A word w ∈ Σ∗ is accepted by an Mvpa M if there is an
initial configuration C and an accepting configuration C′ such that C

w−→M C′.
The language accepted by M is denoted with L(M).

A visibly pushdown automaton [1] is an Mvpa with just one stack.

Definition 2. (Visibly pushdown automaton) A visibly pushdown automa-
ton, denoted Vpa, is an Mvpa over Σ̃n with n = 1. A language over Σ accepted
by a Vpa is a visibly pushdown language. With Vpl we denote the class of
visibly pushdown languages.

2.1 Restricting to a Bounded Number of Rounds

A context over Σi, with i ∈ [n], is a word in (Σi)∗. A round over Σ̃n is a word w
of Σ∗ of the form w1w2 . . . wn where for each i ∈ [n], wi is a context over Σi. A
k-round word over Σ̃n is a word of Σ∗ that can be obtained as the concatenation
of k rounds over Σ̃n. Let Round(Σ̃n, k) denote the set of all the k-round words
over Σ̃n.
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Σ1
c = {a}, Σ1

r = {b}, Σ1
int = ∅, Σ2

c = {x}, Σ2
r = {y}, Σ2

int = ∅

A = ( 2, {qi|i ∈ [0, 5]}, {q0}, {#, $}, δ, {q5} )

δ = { (q0, a, q1, $), (q1, a, q1, #), (q1, x, q2, $), (q2, x, q2, #), (q2, b, #, q3),

(q3, b, #, q3), (q3, b, $, q4), (q2, b, $, q4), (q4, y, #, q4), (q4, y, $, q5) }

q0 q1 q2 q3 q4 q5
push(a, $) push(x, $) pop(b, #) pop(b, $) pop(y, $)

push(a, #) push(x, #) pop(b, #) pop(y, #)

pop(b, $)

Fig. 1. A 2–round Mvpa recognizing the language { at xs bt ys | t, s ≥ 1 }

Definition 3. (Multi-stackVisiblypushdownlanguageswithk-rounds)

For any k, a k-round multi-stack visibly pushdown automaton (k-round Mvpa)
over Σ̃n is a tupleA = (k,Q,QI , Γ, δ,QF )whereM = (Q,QI , Γ, δ,QF ) is anMvpa

over Σ̃n.Moreover,A is deterministic iffM is deterministic. The language accepted
by A is L(A) = L(M) ∩ Round(Σ̃n, k) and is called a k-round multi-stack visibly
pushdown language. The class of k-round multi-stack visibly pushdown languages
is denoted with k-Rvpl. The set

⋃
k≥1 k-Rvpl is denoted with Rvpl (the class of

multi-stack visibly pushdown languages with a bounded number of rounds).

Example 1. Figure 1 gives a formal definition of a 2–round Mvpa A over Σ̃2
that accepts the language {atxsbtys |t, s ≥ 1}. (Note that this language is not
context-free and A is deterministic.) The automaton A checks whether the input
word has the form a+x+b+y+ using its control states. A starts in the control
state q0. When it reads the first call symbol a it pushes the symbol $ onto the
stack S1; for all the remaining a’s A pushes the symbol # onto S1. Stack S1 will
contain as many symbols as the number of read a’s. When the first call symbol
x of stack 2 is read a $ symbol is pushed onto stack S2, for the remaining x’s
the symbol # is pushed onto stack S2. As in the previous case, stack S2 will
contain as many symbols as the x’s which are read. Stack S1 is then popped for
each return symbol b until S1 is empty (read the symbol $). Then only return
symbols y can be read. Stack S2 is popped for each read y until it gets empty
(popping the symbol $). After that A moves into the accepting state q5. ��
The main result on Mvpas with a bounded number of rounds, that we show in
this paper, is that the class of languages accepted by the deterministic and the
nondeterministic models coincide. Notice that the boundedness of the number
of rounds is crucial in our proof. In fact, determinizability does not hold in gen-
eral for Mvpas. To see this consider the language L = {(ab)icjdi−jxjyi−j |i ∈
N, j ∈ [i]} over Σ̃2 = (Σ1

c , Σ
1
r , ∅, Σ2

c , Σ
2
r , ∅), with Σ1

c = {a}, Σ1
r = {c, d}, Σ2

c =
{b}, Σ2

r = {x, y}. First, observe that since the number of occurrences of ab is
unbounded in L and a and b are from different stacks, this language contains
words with an unbounded number of rounds and thus cannot be accepted by a
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k-round Mvpa for any fixed k. Further, this language is accepted by a nonde-
terministic Mvpa which guesses nondeterministically the index j when pushing
symbols on reading a and b. However, it is not accepted by any deterministic
Mvpa, since a deterministic Mvpa would need an unbounded number of control
states to store the index j (see [10]). Nondeterminizability of Mvpa also follows
from the non-complementability of Mvpa [2]. Therefore, we have:

Theorem 1. The class of Mvpa is not closed under determinization.

3 Determinization of k-Round Mvpas

In this section we prove the main result of this paper: if A is a k-round Mvpa

over Σ̃n, then there exists a deterministic k-round Mvpa AD over Σ̃n such that
L(A) = L(AD).

Fix a k-round Mvpa A = (k,Q,QI , Γ, δ,QF ) over Σ̃n = 〈Σj
c , Σ

j
r , Σ

j
int〉nj=1

and a word w ∈ Round(Σ̃n, k).
For ease of presentation, in the rest of this section we assume that each context

of w is not empty. Also, we denote with w[i, j] the j-th context of the i-th round
in w, and with Aj , j ∈ [n], the Vpa (Q,QI , Γ, δ

′, QF ) over 〈Σj
c , Σ

j
r , Σ

j
int〉 where

δ′ ⊆ δ is the set of all moves of δ on symbols of Σj (i.e., the Vpa which equals
A on the j-th stack).

The main idea behind our construction of AD is to look at the executions of A
on w as shown in Fig. 2. The automaton A is seen as a composition of the Aj ’s.
Initially A is in control state q〈1,1〉. Then, it starts the computation by passing
q〈1,1〉 to A1. A1 reads w[1, 1] and reaches a control state q′〈1,1〉 with stack content
σ〈1,1〉. At this point, A stops A1 and passes q〈1,2〉 = q′〈1,1〉 to A2. A2 reads w[1, 2]
and reaches a state q′〈1,2〉 with stack content σ〈1,2〉. And so on, from A3 through
An, until q′〈1,n〉 is reached. Now, A passes q〈2,1〉 = q′〈1,n〉 to A1. Since this is the
first time A1 is re-activated after reading w[1, 1], its stack (i.e., the first one) has
not changed in the meantime. Thus A1 starts now from control state q〈2,1〉 and
stack content σ〈1,1〉. Then, again by reading w[2, 1], A1 reaches a control state
q′〈2,1〉 and A2 is started from control state q〈2,2〉 = q′〈2,1〉 and stack content σ〈1,2〉,
and so on, until completion of the whole run.

The salient aspect in the above description is that each run of A on w can be
computed by running each Aj individually on w[1, j], . . . , w[k, j], provided that
q〈1,j〉, . . . , q〈k,j〉 are fed. Also, note that Aj computes a relation of state pairs
〈q〈i,j〉, q′〈i,j〉〉 which are connected by a run of Aj over words w[i, j] for i ∈ [k],
and thus, a relation of tuples 〈q〈i,j〉, q′〈i,j〉〉ki=1 corresponding to words 〈w[i, j]〉ki=1.
We call such tuples switching vectors. Note that the switching vectors store all
the information we need to stitch together the local runs of all Aj ’s in order to
build a global run of A.

This suggests the following scheme to construct AD. First, for each Aj , con-
struct a Vpa A′

j that computes the switching vectors corresponding to 〈w[i, j]〉ki=1
when reading w[1, j]# . . .#w[k, j]#, where # is a fresh internal symbol (com-
puted switching vectors are stored in the final states). Construct for each A′

j an
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q〈1,1〉

q〈2,1〉

q′〈1,1〉

q′〈2,1〉

q〈k,1〉 q′〈k,1〉

A1

q〈3,1〉

w[k, 1]

q〈1,2〉

q〈2,2〉

q′〈1,2〉

q′〈2,2〉

q〈k,2〉 q′〈k,2〉

A2

w[1, 2]

w[2, 2]

w[k, 2]

q〈1,n〉

q〈2,n〉

q′〈1,n〉

q′〈2,n〉

q〈k,n〉 q′〈k,n〉

An

w[1, n]

w[2, n]

w[k, n]

w[1, 1]

w[2, 1]

q〈1,3〉

q〈2,3〉

q′〈1,3〉

q′〈2,3〉

q〈k,3〉 q′〈k,3〉

A3

w[1, 3]

w[2, 3]

w[k, 3]

q′〈k−1,n〉

Fig. 2. Decomposition of a k-round Mvpa

equivalent deterministic Vpa AD
j , and then, AD by composing them such that:

(1) the states of AD are the cross product of the states of the AD
j ’s; (2) in each

context over Σj , except for the first symbol, only AD
j is executed, and on reading

the first symbol a of a context j+1 of a round i, AD
j is executed on input # and

AD
j+1 is executed on input a; (3) a word w is accepted if the computed switching

vectors for each AD
j can be composed according to a scheme such as in Fig. 2,

i.e., they form a sequence of compatible tuples.
The above sketched construction is formally addressed in the rest of this

section (more details are available in the Appendix). We start by defining the
switching vectors, and then construct the Vpa computing the switching vectors
for a given Vpa. We then define the concept of compatible tuples and prove that
acceptance of A can be checked by verifying the existence of a sequence of com-
patible switching vectors of A1, . . . , An. Finally, we construct AD by composing
the Vpas computing the switching vectors of A1, . . . , An and argue its soundness
and completeness.

3.1 Visibly Pushdown Automata Computing Switching-Vectors

Definition 4. (Switching Vectors) Let M be a Vpa over Σ̃1 with set of
control states Q, and u = 〈ui〉ki=1 be a tuple of k words in Σ∗. The tuple V =
〈 (qi, q

′
i) 〉ki=1 ∈ (Q × Q)k, is a switching-vector of M with respect to u if there

exist k pairs of M configurations 〈(Ci, C
′
i)〉ki=1, with Ci = 〈qi, σi〉 and C′

i =
〈q′i, σ′

i〉, such that (1) σ1 =⊥, (2) σ′
i = σi+1, for every i ∈ [k−1] (3) Ci

ui−→M C′
i,

for every i ∈ [k].

In the next lemma we prove the existence of a Vpa T , called switching automaton,
that computes switching-vectors of a given Vpa.

Lemma 1. (Switching Automata) Let M be a Vpa over 〈Σc, Σr, Σint 〉, and
let # be a fresh symbol not in Σ. Then, there exists a nondeterministic Vpa T
over 〈Σc, Σr, Σint ∪ {#}〉 such that V is a switching-vector of M with respect
to 〈ui〉ki=1 ∈ Σk iff while reading the word u1#u2# . . .#uk#, T enters a state
which contains V (denoted as 〈V 〉).
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Sketch of the Proof. The idea behind the construction of the Vpa T is the
following. T nondeterministically guesses, in its initial state, a switching-vector
V = 〈 (qi, q

′
i) 〉ki=1 ∈ (Q×Q)k and then simulates M on all the non-# symbols.

In doing this, besides the current control state of M , T also keeps track of the
index i of the current word ui which it is reading. Whenever T reads the symbol
#, it changes the control state of M according to the guessed V : if T reads the
i-th #, and q′i is the state of M before reading #, then T changes the state
of M from q′i to qi+1, with an internal move on #, thus matching the guessed
switching-vector. In the end, when T reads the last # (the k-th one) and the
control state of M is q′k, then T moves into a final state 〈V 〉. ��

3.2 Compatible Tuples

Definition 5. (Compatible Tuples) Let Vj = 〈 (q〈i,j〉, q′〈i,j〉) 〉ki=1 for j ∈ [n],
a sequence of compatible tuples V1, V2, . . . , Vn is such that

– q′〈i,j〉 = q〈i,j+1〉, for every i ∈ [k], j ∈ [n− 1], and
– q′〈i,n〉 = q〈i+1,1〉, for every i ∈ [k − 1].

The following lemma is used in the next section to argue soundness and complete-
ness of the determinization construction. It relates the acceptance of a word by
a k-round Mvpa to the existence of a sequence of compatible switching-vectors.

Lemma 2. Let w ∈ Round(Σ̃n, k), A = (k,Q,QI , Γ, δ,QF ) be a k-round Mvpa

over Σ̃n, and wj = 〈w[i, j]〉ki=1, for j ∈ [n]. The word w ∈ L(A) iff for each
j ∈ [n], there exists a switching-vector Vj = 〈 (q〈i,j〉, q′〈i,j〉) 〉ki=1 of the Vpa Aj

with respect to wj such that V1, V2, . . . , Vn is a sequence of compatible tuples,
q〈1,1〉 ∈ QI , and q〈k,n〉 ∈ QF .

3.3 Determinization of k-Round Mvpas

Theorem 2. (Determinizability) If A is a k-round Mvpa over Σ̃n, then
there exists a deterministic k-round Mvpa AD over Σ̃n such that L(A) = L(AD).
Moreover, the size of AD is doubly exponential in the number of rounds, and
singly exponential in the number of stacks and the number of states of A.

Proof. For j ∈ [n], let Tj be a switching automaton which accepts the same
language as Aj and is constructed according to Lemma 1, and Sj be the deter-
ministic Vpa such that L(Sj) = L(Tj) which is obtained via the construction
given in [1]. Thus, a state of Sj contains the set of reachable control states of
Tj. From the definition of Tj, it is easy to see that the Sj state reached on input
u1#u2# . . .#uk# is the set of all the switching-vectors of Aj with respect to
〈ui〉ki=1 ∈ Σk.

The idea behind the construction of AD is the following. AD simulates each Sj ,
by keeping track of the control state of every Sj . The entire simulation mimics
the schema shown in Fig. 2. After the input word w is completely read, AD
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reaches a state storing the set of all switching-vectors of each Aj . The states of
AD which contain a sequence of compatible tuples are defined final. Thus, from
Lemma 2, AD accepts the input word w if and only if A also does.

An issue that has to be addressed in the simulation of all Sj is the following.
Let w be the input word of A. Sj needs to read a symbol # when a context-
switch happens, i.e., at the end of each context j of each round. Thus, the idea
is to simulate the move on # meanwhile AD processes the first symbol of the
next context. This solves the problem for all the occurrences of # but the last
one (no other context follows). Thus, for the simulation of Sn in the last round,
we keep a pair (q, q#) where q is the current state of Sn in the simulation, and
q# is the state computed from q by applying the transition on #. Thus, q is used
to simulate the moves of Sn, and q# is considered only for acceptance. ��

4 Discussion

The class of languages studied in this paper is closely related to the class of
bounded-phase MVPAs studied in [10]; using this relationship, we can derive
many properties for Rvpls. Intuitively, a phase is a stage of computation of a
multi-stack automaton where push actions are allowed on all stacks while pop
actions are allowed only on one (hence phases generalize contexts).

Mvpa with a bounded number of phases. Given a word w ∈ Σ∗, we denote
with Ret(w) the set of all returns in w. A word w is a phase if Ret(w) ⊆ Σi

r,
for some i ∈ [n]. For any k, a k-phase word is a word w ∈ Σ∗ such that w can
be factorized as w = w1w2 . . . wk′ where k′ ≤ k and wh is a phase, for every
h ∈ [k′]. With Phases(Σ̃n, k) we denote the set of all k-phase words over Σ̃n.

For any k, a k-phase multi-stack visibly pushdown automaton (k-phase Mvpa)
over Σ̃n is a tuple A = (k,Q,QI , Γ, δ,QF ) where M = (Q,QI , Γ, δ,QF ) is an
Mvpa over Σ̃n. The language accepted by A is L(A) = L(M) ∩ Phases(Σ̃n, k).
The class of languages accepted by k-phase Mvpas is denoted with k-Pvpl, and
the set

⋃
k>0 k-Pvpl is denoted with Pvpl (the class of all languages accepted

by a k-phase Mvpa for some k).

Theorem 3 ([10]). Let k be any positive integer. k-Pvpls are closed under
union, intersection, and complement. The membership, emptiness, inclusion,
equivalence, and universality problems are decidable for k-Pvpls. k-Pvpls are
not determinizable.

The notion of phase is less restrictive than the notion of context, i.e., a context
is a phase, and hence a round of context-switching can be simulated using a
bounded number of phases. Hence:

Lemma 3. Let the number of stacks be n. Then k-Rvpl ⊂ (k · n)-Pvpl and
Rvpl ⊂ Pvpl.

Closure properties and decision problems. Closure under union and inter-
section of k-Rvpl can be shown with standard constructions, and decidability
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Closure properties Decision Problems
∪ ∩ Compl. Determ. Emptiness Univ./ Equiv./Incl.

Reg. Yes Yes Yes Yes Nlog-c Pspace-c

Vpl Yes Yes Yes Yes Ptime-c Exptime-c

CFL Yes No No No Ptime-c Undecidable
Rvpl Yes Yes Yes Yes NP-c 2Exptime
Pvpl Yes Yes Yes No 2Etime-c 3Exptime

2Exptime-hard

CSL Yes Yes Yes Unknown Undecidable Undecidable

Fig. 3. Summary of main closure properties and decision problems

of decision problems such as membership and emptiness can be inherited from
k-Pvpl. Notice that since complementation of k-Rvpl is defined with respect
to words with bounded rounds of context-switching, closure under complement
does not immediately follow from closure under complement for k-Pvpl. How-
ever, closure under complement for k-Rvpl follows from determinizability of the
corresponding class of automata. Therefore, we get the following results:

Theorem 4. Let k be any positive integer. k-Rvpls are closed under union, in-
tersection, and complement. The membership, emptiness, inclusion, equivalence,
and universality problems are decidable for k-Rvpls.

The table in Figure 3 summarizes the closure properties and decision problems
for CSLs, CFLs, Vpls, Pvpls, Rvpls, and regular languages (see [1] for Vpls,
and [5] for CSLs,CFLs and regular languages). In the table, Nlog-c stands for
Nlog-complete, and so on.
Parikh Theorem. The Parikh mapping Φ(w), introduced by Parikh [15], as-
sociates a word with the vector of natural numbers that reflect the number of
occurrences of the symbols in the word. This mapping extends to languages in
the natural way. Since a Parikh theorem holds for k-phase Mvpas [10], from
Lemma 3 we get:

Corollary 1. For every Rvpl L over Σ̃n, there exists a regular language L′

over Σ such that Φ(L′) = Φ(L). Moreover, L′ can be effectively computed.

ALogicalCharacterization. Consider the monadic second-order logic (MSOμ)
over Σ̃n defined by:

ϕ := Pa(x)|x ∈ X |x ≤ y|μj(x, y)|¬ϕ|ϕ ∨ ϕ|∃xϕ|∃Xϕ

where j ∈ [n], a ∈ Σ, x, y are a first-order variables and X is a set variable [10].
The models are words over Σ. Each of the n binary relations μj (j ∈ [n]) is

interpreted as the nested matching relation of calls and returns of Σj . We denote
with Rk(ϕ) the set of all words of Round(Σ̃n, k) that satisfy a sentence ϕ. By
standard techniques that convert MSO to automata (given that the automata
are closed under boolean operations and projection), we get (see [18]):

Theorem 5. A language L is a k-Rvpl over Σ̃n iff there is an MSOμ sentence
ϕ over Σ̃n with Rk(ϕ) = L.
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Abstract. We consider the problem of minimizing the makespan on re-
stricted related parallel machines. In restricted machine scheduling each
job is only allowed to be scheduled on a subset of machines. We study the
worst-case behavior of local search algorithms. In particular, we analyze
the quality of local optima with respect to the jump, swap, push and
lexicographical jump neighborhood.

Keywords: Local Search, Performance Guarantee, Restricted Machines,
Eligibility Constraints.

1 Introduction

We consider the problem of minimizing the makespan in restricted related paral-
lel machine scheduling. In this setting, each job is only allowed to be scheduled on
a subset of machines. The problem is also known as the related parallel machine
scheduling problem with eligibility constraints [15,16,24] or as the restricted as-
signment model for related parallel links [1,7,8]. It has applications in, among
others, operating systems, communication networks [13], semiconductor manu-
facturing [3], and the throughput management of hospital operating rooms [25].

The problem is defined as follows. Given is a set J = {1, ..., n} of n jobs and a
set M = {1, ...,m} of m machines. Each job j needs to be scheduled on one of its
eligible machines Mj ⊆ M . We will refer to the family {Mj} as eligibility sets.
We also say that job j is allowable on machine i if i ∈ Mj. A machine i ∈ M can
process at most one job at a time, and all jobs and machines are available at time
0. Each machine i ∈ M is characterized by a processing speed si > 0. Similarly,
each job has a processing requirement pj > 0. If a job j is allowable on a machine
i, then the processing time of job j on machine i, pij , equals pj/si. If job j is
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A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 108–119, 2010.
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not allowable on machine i, then pij is set to infinity. We refer to the setting as
stated above as restricted related parallel machines. The term “restricted” refers
to jobs being restricted in the sense that they are only allowed to be processed
on a subset of machines. The objective is to schedule the jobs in such a way that
the makespan is minimized, i. e., we seek the last job to be completed as early
as possible. The latency of a machine is the ratio of the processing requirements
of all jobs assigned to the machine over its speed. Then, the makespan equals
the maximum latency over machines. In absence of the eligibility constraints,
that is Mj = M for all jobs j, the model is known as the (uniform) related
parallel machine scheduling model. In the special case of restricted identical par-
allel machines the processing speed of each machine equals one. Furthermore,
we refer to the special case wherein the processing requirements of all jobs equal
one as the restricted related parallel machines with identical (unit-length) jobs.
Adapting the standard notation introduced by [11], the problems of minimizing
the makespan on restricted identical parallel machines, restricted related par-
allel machines with identical jobs and restricted related parallel machines are
denoted by P |Mj|Cmax, Q|Mj , pj = 1|Cmax and Q|Mj |Cmax, respectively, see
e. g., [14,21]. Standard scheduling problems which minimize the makespan on
identical or related parallel machines are both known to be strongly NP-hard
[9]. Hence, the problems with eligibility constraints are strongly NP-hard as well.
One way to deal with NP-hard problems is to find approximative solutions. If
an algorithm is guaranteed to deliver a solution that has a value at most ρ times
the optimal solution value, we call it a ρ-approximation algorithm. ρ is called
the performance guarantee.

A way to find approximate solutions is through local search. Local search
methods iteratively search through the set of feasible solutions. Starting from
an initial solution, a local search procedure moves from a feasible solution to
a neighboring solution until some stopping criteria are met. A neighborhood
function defines for each feasible solution a set of solutions which are in some
sense close to it. This set is called a neighborhood. The choice of a suitable
neighborhood function has an important influence on the performance of local
search. The simplest form of local search is iterative improvement, also called
local improvement algorithms. This method iteratively chooses a better solution
in the neighborhood of the current solution and it terminates when no better
solution is found; we say that the final solution is a local optimum.

Neighborhoods. In this paper, we investigate the performance guarantees of
four different neighborhoods for various restricted related parallel machines set-
tings, namely the jump, swap, push and lexicographical jump (lexjump) neigh-
borhood.

Before discussing the neighborhoods, we first describe our representation of a
schedule. Since the order in which the jobs are processed on a machine does not
influence the latency of the corresponding machine, we will represent a schedule
by an assignment. An assignment A is uniquely determined by a partition of the
set of jobs J into m disjoint subsets JA

1 , JA
2 , . . . , JA

m where JA
i denotes the set

of jobs assigned to machine i ∈ M in assignment A. Let A(j) ∈ Mj denote the
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machine to which job j is assigned in assignment A, that is, A(j) = i implies
j ∈ JA

i and vice versa. The load of a machine is the total processing requirement
assigned to the machine for some assignment A, i. e.,LA

i =
∑

j∈JA
i
pj , for all

i ∈ M . The latency of a machine is the total processing time needed by a machine
to process all jobs which are assigned to it, i. e.,ΛA

i =
∑

j∈JA
i
pij = LA

i /si.
Obviously, for identical parallel machines, ΛA

i = LA
i for all machines i ∈ M . A

critical machine is a machine with maximum latency. The makespan of some
given assignment A, CA

max , i. e., the latest completion time of a job, equals the
latency of the critical machine(s). Thus, CA

max = maxi∈M ΛA
i .

The first neighborhood we consider is the jump neighborhood, also known as
the move neighborhood. A jump is defined as jumping or moving a job from the
machine to which it is currently assigned to another machine (on which it is
allowed). In the jump neighborhood, jobs are iteratively jumped from a critical
machine to a non-critical machine. We say that an assignment is a jump optimal
assignment if no jump decreases the makespan or the number of critical machines
without increasing the makespan.

The second neighborhood we consider is the swap neighborhood. Select two
jobs, j and k, assigned to different machines, i. e., j ∈ JA

i , k ∈ JA
h and i 	= h, such

that h ∈ Mj and i ∈ Mk. A swap is performed by interchanging the machine
allocations of the jobs. If all jobs are assigned on the same machine, then no swap
neighbor exists. Therefore, we define the swap neighborhood as one that consists
of all possible jumps which jump a job from a critical machine to a non-critical
machine and all possible swaps which swap a job from a critical machine with
another job from a non-critical machine. We say that an assignment is a swap
optimal assignment if no jump or swap decreases the makespan or the number
of critical machines without increasing the makespan.

Next, we consider the push neighborhood introduced by Schuurman and Vre-
develd [23]. A push consists of a sequence of jumps. Starting with an assignment
A with makespan CA

max , a push is initiated by selecting a job k on a criti-
cal machine and a machine i ∈ Mk to move it. We say that k fits on i if
pik +

∑
j∈JA

i :pij≥pik
pij < CA

max . If a job k fits on some machine i, then we move
j to i and iteratively remove the smallest job from i until the latency of i is less
than CA

max . The removed jobs are gathered in a queue. We now have a queue of
pending jobs and a partial assignment that has lower makespan or fewer critical
machines. If the queue is non-empty, then the largest job in the queue is removed
and moved to one of its eligible machine on which it fits, in the same way as
the first job was pushed. Thus, if necessary, we allow some smaller jobs to be
removed. If the largest job in the queue does not fit on any eligible machine,
then we say that the push is unsuccessful. We repeat the procedure of moving
the largest job in the queue to a machine until the queue is empty or until we
have determined that the push is unsuccessful. If none of the jobs on any of
the critical machines can succesfully be pushed, then we are in a push optimal
assignment. The push neighborhood is explained in more detail in [23].

The last neighborhood we consider is the lexicographical jump (lexjump) neigh-
borhood. Define the experienced latency of a job as the latency of the machine
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to which the job is currently assigned. An assignment A is lexjump optimal if
no jump exists which decreases the latency of a machine i without increasing
the latency of another machine h 	= i to a value exceeding the original latency
of machine i. In other words, no job can decrease its experienced latency by
jumping to another machine. That is, A is lexjump optimal if phj + ΛA

h ≥ ΛA
i

for all i ∈ M, j ∈ JA
i , h ∈ Mj . Notice that the notion of a lexjump optimal

assignment corresponds to the notion of pure Nash equilibrium in the context
of load balancing games, see e. g., [26].

Related Work. Worst case analysis of local search has become increasingly
popular in the last decade. A summary of the best known upperbounds on the
performance guarantees for the jump, swap, push and the lexjump neighborhood
for (unrestricted) identical parallel machines and (unrestricted) related parallel
machines is provided in Table 1. Schuurman and Vredeveld [23] provided exam-
ples showing that the bounds of the jump and the swap neighborhood are tight
for identical and related parallel machines. In addition to the bounds provided in
Table 1, Brueggemann, Hurink, Vredeveld, and Woeginger [2] introduced the so-
called split neighborhood and considered the corresponding performance guaran-
tees. They showed that this exponentially sized neighborhood has a performance
guarantee of at most 2−2/(m+1). Moreover, combining this neighborhood with
the jump neighborhood improves the guarantee only to 2− 4/(m+ 3). However,
if the split neighborhood is combined with the lexjump neighborhood, the per-
formance guarantee drops to 3/2.

A lexjump optimal assignment corresponds to a pure Nash equilibrium for the
appropriate defined game. Therefore, the results on the price of anarchy carry
over to performance guarantees for lexjump optimal assignments. Czumaj and
Vöcking [5] showed the performance guarantee of a lexjump optimal assignment
on related parallel machines is in O(min {logm/ log logm), log(s+/s−)}, where
s+ := maxi si and s− := mini si, and that this bound is aymptotically tight.

Table 1. Local search performance guarantees for unrestricted parallel machines which
are shown to be tight. “LB” and “UB” denote a lowerbound and an upperbound on
the performance guarantee respectively if the performance guarantee is not shown to
be tight.

Setting Jump Swap Push Lexjump

2 identical machines 4
3

[6] 4
3

[6] 8
7

[23] 4
3

[26]

Identical machines 2 − 2
m+1

[6] 2 − 2
m+1

[6] UB = 4
3
− 1

3m

[23] 2 − 2
m+1

[26]

(m > 2) LB = 4m
3m+1

[23]

Related machines 1+
√

4m−3
2

[4] 1+
√

4m−3
2

[4]
UB = 2 − 2

m+1

[23] O
(

log m
log log m

)[26]

LB = 3
2
− ε[23]
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For unrelated parallel machines, Awerbuch, Azar, Richter and Tsur [1] showed
that the performance guarantee is in Θ(p+ +(logm/ log(2+(logm)/p+))) where
p+ := maxj,i,h:pij<∞ pij/phj.

Recently, results for lexjump optimal assignments on restricted parallel ma-
chines have been developed. Awerbuch et al. [1] proved that the performance
guarantee for identical machines is bounded by Θ(logm/(r · log(2+(logm)/r))),
where r denotes the ratio between the makespan of the optimal schedule and the
largest task (note r ≥ 1). Note that the general bound for identical machines of
Θ(logm/ log logm) are obtained by setting r = 1, i. e., when making no assump-
tions on the largest job in the system. Hoefer and Souza [12] provided an alter-
native upper bound for the performance guarantee: 1 + m2/

∑
j∈J pj. Gairing,

Lücking, Mavronicolas and Monien [7] showed that the performance guarantee
for restricted related parallel machines and identical jobs is in Ω(logn/ log logn).
For restricted related parallel machines, they show that the performance guar-
antee is bounded from below by m − 1 and bounded from above by m. Since
the counterexample of Gairing et al. [7], which shows that the performance
guarantee for restricted related machines can be as bad as m − 1, is somewhat
artificial, Lu and Yu [18] introduced the concept of λ-goodness instances to de-
velop an alternative performance guarantee. An instance is λ-good if and only
if every job can use at least one machine which has a speed of no less than
s+/λ. Lu and Yu show that for λ-good instances, the performance guarantee is
in Θ

(
min

{
log λm

log log λm ,m
})

.
For a more elaborate overview of worst case analysis and other theoretical

aspects of local search, we refer to the book of Michiels, Aarts, and Korst [19].
In [21,17,15] polynomial time algorithms to solve several special cases for

scheduling unit-length jobs on restricted related parallel machines to optimality
are given. Glass and Kellerer [10] gave several polynomial time approximation
algorithms for special cases of the problem of restricted parallel machines with
performance guarantees of 2 − 1/m or better. A PTAS for the identical parallel
machines cases with a special type of eligibility sets is given by Ou, Leung, and

Table 2. Local search performance guarantees for restricted parallel machines. Let
s− := mini si, s+ := maxi si, s̃i := si/s− and s̃ := s+/s−.

Setting Jump/Swap/Push Lexjump

Identical Machines 1/2 +
√

m − 3/4 O
(

log m
log log m

)[1]

Identical Jobs
√(

1 + m−1
n

)∑
i∈M s̃i O

(
log n

log log n

)[7]

Related machines 1/2 +
√

1/4 + (m − 1)s̃ O
(

log
∑

i∈M s̃i

log log
∑

i∈M s̃i

)
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Li [20]. We refer to Leung and Li [14] for a survey on results on polynomial time
algorithms, complexity issues and approximation schemes concerning scheduling
problems with restricted machines.

Our Contribution. In this paper we consider the following neighborhoods:
the jump, swap, push and lexicographical jump neighborhood. We analyze the
quality of each neighborhood by establishing worst-case performance guarantees
for the restricted identical parallel machines, restricted related parallel machines
with identical jobs and restricted related parallel machines problems. The new
performance guarantees are summarized in Table 2, see the unreferenced bounds.
Furthermore, we provide examples to show that these performance guarantees
are tight or almost tight.

2 Performance Guarantees for Restricted Identical
Parallel Machines

In this section, we provide performance guarantees for the scheduling problem
of minimizing makespan on restricted identical parallel machines. For the jump
neighborhood we obtain the following result.

Theorem 1. A jump-optimal assignment for restricted identical parallel ma-
chines has makespan at most 1/2 +

√
m− 3/4 times the optimal makespan.

Theorem 1 follows straightforward from Theorem 5 since for the case of identical
machines si = 1 for all machines i ∈ M . The following example shows that there
exist instances for which the performance guarantee is tight.

Example 1. Let k be an arbitrary positive integer and consider an instance with
n = k(k−1)+1 jobs and m = n machines. All jobs have processing time pj = 1.
Jobs 1, . . . , k can only be processed on the first k machines. The remaining
jobs are allowable on all machines. Consider the following assignment which is
depicted in Figure 1. Jobs 1, . . . , k are assigned to machine 1. Machines 2, . . . , k
process each k − 1 of the remaining jobs. This assignment is jump optimal and

m = k(k − 1) + 1

. . .1

...
...

. . .

. . .2

...

k jobs

k − 1 jobs

k − 1 jobs

(k − 1)2

empty machines

k − 1
machines

...
k

k + 1
... empty

empty

Fig. 1. Jump Optimal Assignment
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has a makespan of CA
max = k, whereas in an optimal assignment, each machine

processes only one job and COPT
max = 1. Hence, CA

max /C
OPT
max = k = 1/2 +√

m− 3/4.

The following theorem has been established independently by Awerbuch, Azar,
Richter and Tsur [1] and Gairing, Lücking, Mavronicolas and Monien [7].

Theorem 2 (Awerbuch et al. [1], Gairing et al. [7]). The performance
guarantee of lexjump optimal assignments for the problem of minimizing the
makespan on restricted identical parallel machines is O (logm/ log logm) .

Gairing et al. [7] also provide an example showing that the bound of Theorem
2 is tight up to a constant factor.

3 Performance Guarantees for Restricted Related
Parallel Machines with Identical (Unit-Length) Jobs

In this section, we discuss performance guarantees on restricted related parallel
machines for the special case of identical (unit-length) jobs. The general case for
arbitrary jobs will be discussed in the next section. For now we will assume that
pj = 1 for all jobs j ∈ J . Denote by s− the minimum speed among all machines,
i. e., s− := mini∈M si. For the jump neighborhood we have the following result:

Theorem 3. A jump optimal assignment for restricted related parallel machines
with identical (unit-length) jobs has a makespan of at most√(

1 +
m− 1

n

)∑
i∈M

s̃i

where s̃i denotes the relative speed, i. e., s̃i := si/s
−.

The proof of Theorem 3 is not provided here due to space limitations. Instead
we refer to [22]. The proof uses similar arguments as the proof of Theorem 5.

The example below shows that there exist instances of three machines and
particular speeds for which the performance guarantee of Theorem 3 is asymp-
totically tight. We remark that the example below can be generalized to any
number of machines.

Example 2. Let k be an arbitrary strictly positive integer and consider the fol-
lowing instance and a jump-optimal assignment A. Each job has processing re-
quirement pj = 1 as is required in this section. We have three machines for which
s1 = s− = 1, s2 = k− 1 and s3 = k(k− 1)− 1. k jobs are assigned to machine 1
but are allowed on machines 1 and 2. k(k − 1)− 1 jobs are assigned to machine
2 but are allowed on machines 2 and 3. No jobs are assigned to machine 3. We
have ΛA

1 = CA
max = k, ΛA

2 = k − 1/(k − 1) and ΛA
3 = 0. An optimal assignment

is obtained by assigning k − 1 jobs, which are in A assigned to machine 1, to
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machine 2 and by assigning all jobs which are in A assigned to machine 2, to ma-
chine 3. Consequently, CA

max /C
OPT
max = k/1 = k. Theorem 3 yields the following

upper bound on the performance guarantee

√(
1 +

m − 1
n

)∑
i∈M

s̃i =

√(
1 +

3 − 1
k2 − 1

)
(k2 − 1) =

√
k2 + 1 k→∞−→ k =

CA
max

COPT
max

. (1)

The results from Gairing, Lücking, Mavronicolas and Monien [7] yield the fol-
lowing result.

Theorem 4 (Gairing et al. [7], Theorem 3.1 and Theorem 4.2). The
performance guarantee of a lexjump optimal assignment for the problem of min-
imizing the makespan on restricted related parallel machines and identical jobs
is Θ (logn/ log logn).

4 Performance Guarantees for Restricted Related
Parallel Machines

In this section, we establish performance guarantees for the scheduling problem
of minimizing the makespan on restricted related parallel machines. Recall that
in this machine environment pij = pj/si for i ∈ Mj and pij = ∞ otherwise.
Let s+ := maxi∈M si and let s− := mini∈M si. For the jump neighborhood we
obtain the following result.

Theorem 5. A jump optimal assignment for restricted related parallel machines
has makespan at most 1/2 +

√
1/4 + (m− 1)s̃ times the optimal solution value;

where s̃ := s+/s− = maxi,h∈M si/sh.

Proof: Consider a jump optimal assignment A having makespan CA
max . Assume

w.l.o.g. that machine 1 is a critical machine, i. e.,ΛA
1 = CA

max . Let MA
1 be the

set of machines to which a job, currently assigned to machine 1 for assignment
A, can be moved, i. e.,MA

1 =
⋃

j∈JA
1
Mj . Let x := |MA

1 | and p+ := maxj∈J pj .
Consider a machine i ∈ MA

1 such that i 	= 1. Then, there exists at least one job
j ∈ JA

1 such that i ∈ Mj . By jump optimality of A we have, ΛA
i +pj/si ≥ CA

max .
Consequently, ΛA

i ≥ CA
max − p+/si for all i ∈ MA

1 \ {1}. Multiplying the last
inequality by si and accumulating over all machines i ∈ MA

1 we obtain,∑
i∈MA

1

LA
i =

∑
i∈MA

1

siΛ
A
i ≥ s1C

A
max +

∑
i∈MA

1 \{1}

si

(
CA

max − p+

si

)
. (2)

To convert assignment A to an optimal assignment with makespan COPT
max , we

need to move at least a load of

s1(CA
max − COPT

max ) +
∑

i∈MA
1 :i
=1

si

(
CA

max − COPT
max − p+

si

)
(3)
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from the machines in MA
1 to the machines in M\MA

1 . Therefore,

(m− x)s+COPT
max ≥

∑
i∈M\MA

1

siΛ
OPT
i (4)

(3)
≥ s1(CA

max − COPT
max ) (5)

+
∑

i∈MA
1 :i
=1

si

(
CA

max − COPT
max

)− ∑
i∈MA

1 :i
=1

p+ (6)

=
∑

i∈MA
1

si

(
CA

max − COPT
max

)− (x− 1)p+ (7)

≥
∑

i∈MA
1

si

(
CA

max − COPT
max

)− (x− 1)s+COPT
max , (8)

since p+/s+ ≤ COPT
max . Then,

CA
max

COPT
max

≤
(m− x)s+ +

∑
i∈MA

1
si + (x− 1)s+∑

i∈MA
1
si

=
(m− 1)s+∑

i∈MA
1
si

+ 1. (9)

As in an optimal assignment the jobs in JA
1 must be assigned to the machines

in MA
1 , we have s1C

A
max ≤∑i∈MA

1
si C

OPT
max and consequently

CA
max

COPT
max

≤
∑

i∈MA
1

si

s1
≤

∑
i∈MA

1

si

s−
. (10)

Combining (9) and (10) yields

CA
max

COPT
max

(
CA

max

COPT
max

− 1
)

(10)
≤

∑
i∈MA

1

si

s−

(
CA

max

COPT
max

− 1
)

(9)
≤ (m− 1)

s+

s−
. (11)

From this it follows that,

CA
max

COPT
max

≤ 1
2

+

√
1
4

+ (m− 1)
s+

s−
. (12)

��

Note that the bound given in Theorem 5 corresponds to the bound given in
Theorem 1 by setting si = 1 for all machines i ∈ M . Therefore, Example 1
shows that the bound of Theorem 5 is tight for s̃ = 1. The example below shows
that there exist instances with non-identical speeds for which a jump optimal
assignment has a makespan of at least

√
s̃(m− 1) + 1/4 · COPT

max , leaving a gap
of less than 1/2 between the upper and the lower bound on the performance
guarantee.
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Example 3. Let k > 1 be an arbitrary strictly positive integer and consider the
following instance. Let there be m = k + 3 machines having speeds s1 = 1 and
s2 = . . . = sm = k. Let there be k + 1 jobs of size pj = 1 for which Mj = {1, 2}
and k + 1 jobs of size pj = k for which Mj = M . Additionally, there is one job
of size ε > 0 which is only allowed on machine 1. In an optimal assignment, one
job of size 1 and the one job of size ε are assigned to machine 1, k jobs of size 1
are assigned to machine 2 and 1 job of size k is assigned to each of the remaining
machines. Then, COPT

max = 1+ε. Consider the following jump optimal assignment
A: k + 1 jobs of size 1 and the one job of size ε are assigned to machine 1, k + 1
jobs of size k are assigned to machine 2 and all the other machines remain empty.
Then CA

max = k + 1 + ε. Hence, when ε tends to zero, CA
max /C

OPT
max tends to

k + 1. Since k + 1 >
√

k(k + 2) + 1/4 =
√

s̃(m− 1) + 1/4, we have established
a lower bound of

√
s̃(m− 1) + 1/4 on the performance guarantee of the jump

neighborhood for related parallel machines by taking ε small enough.

For the lexjump neighborhood for restricted related parallel machines we have
the following result.

Theorem 6. The performance guarantee of lexjump optimal assignments for
the problem of minimizing the makespan on restricted related parallel machines
is

O

(
log
∑

i s̃i

log log
∑

i s̃i

)
where s̃i denotes the relative speed, i. e., s̃i = si/s

−.

Due to space limitations the proof of Theorem 6 is not provided here. Instead
we refer to [22]. Note that the bound given in the above theorem confirms to
the bound given in Theorem 2 by setting si = 1 for all i ∈ M . The following
example shows that there exist instances for which the bound of Theorem 6 is
tight up to a constant factor.

Example 4. Let k > 1 be an arbitrary strictly positive integer and let s > 1. Con-
sider the following instance and assignment. Each job has a processing require-
ment pj = s. The machines are partitioned into sk + 1 groups, S0, S1, . . . , Ssk.
Group S0 consists of only one machine which has a speed of one. For l = 1, . . . , sk,
group Sl contains kΠ l−1

i=1 (sk − i) machines each having a processing speed of s.
In assignment A, each machine in group Sl, for l ≥ 1, processes sk − l jobs.
k jobs are assigned to the machine in S0. Each job j ∈ JA

i with i ∈ Sl has
Mj = Sl ∪ Sl+1. A is lexjump optimal with makespan sk, whereas COPT

max = 1.
The optimal solution is attained by assigning one job to each machine i ∈ Sl for
l ≥ 1 and leaving the machine in S0 empty. Moreover,

∑
i

s̃i ≤ 1 + sk

sk−1∑
i=0

(sk − 1)!
i!

≤ 1 + (sk)!
+∞∑
i=0

1
i!

(13)

≤ 1 + e (sk)! ≤ (sk + 2)! = Γ (sk + 3) . (14)
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where Γ (n) denotes the gamma function, i. e.,Γ (n) = (n−1)! for some integer n.
Hence, using the fact that the inverse of the Gamma function is monotonically
increasing, CA

max /C
OPT
max = sk ≥ Γ−1 (

∑
i s̃i) − 3. Thus, we are able to provide

instances for which CA
max /C

OPT
max is in Ω(log

∑
i s̃i/ log log

∑
i s̃i).

Gairing, Lücking, Mavronicolas and Monien [7] established the following result.

Theorem 7 (Gairing et al. [7]). A lexjump optimal assignment for restricted
related parallel machines has a performance guarantee of at most m.

Furthermore, they provide an example which establishes a lower bound of m−1
on the performance guarantee. Theorems 6 and 7 both establish an upper bound
on the performance guarantee of a lexjump optimal solution. It can be shown
that neither result implies the other result, i. e., we can construct examples for
which the bound of Theorem 6 is tight and the bound of Theorem 7 is not and
vice versa.

5 Concluding Remarks

Since swap optimal assignments as well as push optimal assignments are both
jump optimal, we have that Theorems 1, 3 and 5 directly carry over to the swap
and the push neighborhood. Moreover, the Examples and 1, 2 and 3 are swap
and push optimal. Hence, the tightness results for the jump neighborhood apply
to the swap and the push neighborhood as well.
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Abstract. The packet routing problem, i.e., the problem to send a
given set of unit-size packets through a network on time, belongs to
one of the most fundamental routing problems with important practi-
cal applications, e.g., in traffic routing, parallel computing, and the de-
sign of communication protocols. The problem involves critical routing
and scheduling decisions. One has to determine a suitable (short) origin-
destination path for each packet and resolve occurring conflicts between
packets whose paths have an edge in common. The overall aim is to find
a path for each packet and a routing schedule with minimum makespan.

A significant topology for practical applications are grid graphs. In
this paper, we therefore investigate the packet routing problem under
the restriction that the underlying graph is a grid. We establish approx-
imation algorithms and complexity results for the general problem on
grids, and under various constraints on the start and destination ver-
tices or on the paths of the packets.

1 Introduction

In this paper, we study the packet routing problem on grid graphs. In an instance
of this problem we are given a set of unit-size packets with specified source and
destination vertices. First, we need to find a path for each packet along which
we want to route it. Then we need to find a routing schedule to transfer the
packets through the network such that each link in the network can be used
by at most one packet at a time. The overall goal is to find a path assignment
and routing schedule that minimizes the makespan, i.e., the time when the last
packet has reached its destination. We study also the special case that the paths
of the packets are given and we only need to find the routing schedule.

The packet routing problem has several applications in practice, e.g., in par-
allel computing or in cell structured networks. In those settings, packets of infor-
mation need to be transferred through the network. In order for the network to
operate efficiently, it is required that the packets reach their respective destina-
tions as quickly as possible. Therefore, the paths of the packets and the routing
schedule need to be computed such that the packets encounter as few delay as
possible. One of the most common natural topologies of the routing problem
� This work was partially supported by Berlin Mathematical School, by DFG research
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in practical applications are grid graphs, e.g. in parallel computing. Therefore,
we take this special structure into account when looking for efficient solution
methods.

1.1 Packet Routing Problem

The packet routing problem is defined as follows: Let G = (V,E) be an undi-
rected graph (in our case this will usually be a grid graph). A packet Mi = (si, ti)
is a tuple consisting of a start vertex si ∈ V and a destination vertex ti ∈ V . Let
M =

{
M1,M2,M3, ...,M|M|

}
be a set of packets. Then (G,M) is an instance

of the packet routing problem with variable paths. The problem has two parts:
First, for each packet Mi we need to find a path Pi = (si = v0, v1, ...v�−1, v� = ti)
from si to ti such that {vi, vi+1} ∈ E for all i with 0 ≤ i ≤ 	− 1. Assuming that
it takes one timestep to send a packet along an edge, we need to find a routing
schedule for the packets such that each message Mi follows its path Pi from si to
ti and each edge is used by at most one packet at a time. We assume that time
is discrete and that all packets take their steps simultaneously. The objective
is to minimize the makespan, i.e., the time when the last packet has reached
its destination vertex. For each packet Mi we define D̄i to be the length of the
shortest path from si to ti, assuming that all edges have unit length. Moreover,
the minimal dilation D̄ is defined by D̄ := maxi D̄i. It holds that D̄ is a lower
bound for the length of an optimal schedule.

Since there are algorithms known to determine paths for routing the packets
(see [4,13,24] or simply take shortest paths) we will also consider the packet
routing problem with fixed paths. An instance of this problem is a tuple (G,M,P)
such that G is a (grid) graph, M is a set of packets and P is a set of predefined
paths, one for each packet. Since the paths of the packets are given in advance
they do not need to be computed here. The aim is to find a schedule with the
properties described above such that the makespan is minimized. For each packet
Mi we define Di to be the length of the path Pi, again assuming that all edges
have unit length. Like above we define the dilation D by D := maxi Di. For each
edge e we define Ce to be the number of paths that use e. Then we define the
congestion C by C := maxe Ce. It holds that C and D are lower bounds for the
length of an optimal schedule.

We distinguish between grid graphs in which two packets are allowed to use an
edge in opposite directions at the same time, or not. The infinite grid graph G# =
(V#, E#) is the undirected graph consisting of the vertices V# = {vi,j |i, j ∈ Z}
and the edges

E# = {{vi,j , vi′,j′} | |i− i′| + |j − j′| = 1}

The directed graph
↔
G# =

(
V#,

↔
E#

)
is the bidirected infinite grid graph with

↔
E# = {(u, v) , (v, u) | {u, v} ∈ E#}. We will consider infinite grid graphs rather
than finite grids because we want the borders of a finite grid not to have any
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impact on the problem. However, for our algorithms it would be sufficient to
assume that each start and each destination vertex has a certain minimum dis-
tance to the boundary.

Throughout the paper we will use the notation |S| for the length of a sched-
ule S. For a packet routing instance I with fixed or variable paths, let OPT (I)
denote a schedule with minimum makespan. For an algorithm A for the packet
routing problem denote by A(I) the schedule computed by A for the instance I.
The algorithm A is an α-approximation algorithm if it runs in polynomial time
and for all instances I it holds that |A(I)| ≤ α · |OPT (I)|. We call α the ap-
proximation ratio or performance ratio of A. We denote by n the length of the
overall input where we assume that the coordinates of the start and destination
vertices are given in binary representation. We assume that the grid itself is not
given explicitly in the input. Some of our algorithms are dealing with the special
case that all packets have the same start vertex. In this case we assume that this
start vertex has the coordinates s = (0, 0).

1.2 Related Work

Packet routing and related problems are widely studied in the literature. Di
Ianni shows that the delay routing problem [12] is NP -hard. The proof implies
that the packet routing problem on general graphs is NP -hard as well. Leung et
al. [17, chapter 37] study packet routing on different graph classes. In [3] Busch
et al. study the direct routing problem, that is the problem of finding a routing
schedule such that a packet is never delayed once it has left its start vertex.
They give complexity results and algorithms for finding direct schedules. Peis et
al. [20] present non-approximability results for the packet routing problem on
several graph classes and algorithms for the problem on trees.

In [14] Leighton et al. show that there is always a routing schedule that finishes
in O(C +D) steps. In [15] Leighton et al. present an algorithm that finds such a
schedule in polynomial time. However, this algorithm is not suitable for practical
applications since the hidden constants in the schedule length are very large.
Using the algorithm by Leighton et al. as a subroutine, Srinivasan and Teo [24]
present an algorithm that solves the packet routing problem with variable paths
with a constant approximation factor. Koch et al. [13] improve and generalize this
algorithm for the more general message routing problem (where each message
consists of several packets).

Leighton, Makedon and Tollis [16] show that the permutation routing problem
on an n × n grid can be solved in 2n − 2 steps using constant size queues.
Rajasekaran [21] presents several randomized algorithms for packet routing on
grids. They also give their bounds in terms of the grid size. For the case that
each vertex of the grid is the start vertex of at most one packet Mansour and
Patt-Shamir [18] present an algorithm with constant approximation factor which
uses the algorithm by Leighton et al. [15] as a subroutine.

The packet routing problem is related to the multi-commodity flow over time
problem [5,6,9,10,11]. In particular, Hall et al. [9] show that the latter problem
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is NP -hard, even in the very restricted case of series-parallel networks. It is
equivalent to the packet routing problem if we additionally require unit edge ca-
pacities, unit transit times, and integral flow values. If there is only one start and
one destination vertex then the packet routing problem can be solved optimally
in polynomial time, e.g., using the Ford-Fulkerson algorithm for the maximum
flow over time problem [7,8,22] together with a binary search framework. For the
quickest transshipment problem with multiple sources and multiple sinks Hoppe
and Tardos [11] present a polynomial time algorithm. As a consequence, the
packet routing problem with a single start vertex or a single destination vertex
can be solved optimally.

Finally, Adler et al. [1,2] study the problem of scheduling as many packets as
possible through a given network in a certain time frame. They give approxima-
tion algorithms and NP -hardness results.

1.3 Our Contributions

For the case of the bidirectional grid
↔
G# with the start- and the destination

vertices of all packets being pairwise different, we present an optimal algorithm
which always computes a schedule of length D. For the undirected grid G# it
can be adapted to a 2-approximation algorithm (we will show later that in G#
this setting is NP -hard). We also show that on the grid a bad choice for the
paths of the packets can yield an arbitrary high approximation factor for the
entire problem. This holds even we use an optimal scheduling algorithm once
the paths of the packets are fixed.

We investigate the case that there is only one start vertex but arbitrarily
many destination vertices. Note here that the algorithm by Hoppe et al. [11]
does not necessarily run in polynomial time since in our case the graph is not
part of the input but it is given implicitly. We present an algorithm that finds
a schedule with length at most OPT + 8. Then we improve this algorithm to a
1 + ε approximation while still guaranteeing an absolute error of eight. Denote
by k the number of sink vertices and by n the length of the overall input. The
runtime of our algorithm is bounded by O (n logn + f (1/ε)) (for an exponential
function f). For the same setting we give an optimal algorithm with running time
O
(
k6n

)
. We achieve the polynomial bound on the runtime by not considering

the full grid but only certain subgrids.
Finally, we study the complexity of the packet routing problem on grids. We

prove that if the paths are fixed, it is NP -hard on the bidirected grid
↔
G#, even

if there is only one start vertex and all predefined paths are shortest paths.
Allowing the paths to be variable, we show that the problem is still NP -hard on
the undirected grid G# even if no two packets share their start or destination
vertex.

Due to space constraints the descriptions of the algorithms and the proofs had
to be shortened significantly. For full details we refer to our technical report [19].
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2 Unique Start and Destination Vertices

In this section we assume that in the given instance of the packet routing problem
no two packets have the same start or destination vertex. We present an optimal
algorithm for the bidirectional grid

↔
G#. The algorithm is very simple and can

therefore be implemented very efficiently. A slight modification yields a factor 2
approximation algorithm on G#. Note that the problem is NP -hard on G#, as
we will show in Section 4. Finally, we show that a bad choice of the paths can
result in arbitrarily bad schedules, even if an optimal schedule is used once the
paths of the packets are fixed.

2.1 Optimal Algorithm for
↔
G#

Let I =
(

↔
G#,M

)
be an instance of the packet routing problem with variable

paths. Assume that for each pair of packets M = (s, t) and M ′ = (s′, t′) it holds
that s �= s′ and t �= t′. We first need to specify the paths of the packets and then
the routing schedule.

Let M = ((sr, sc) , (tr, tc)) be a packet (sr denotes the row and sc the column
coordinate of s, tr and tc are to be understood respectively). The path of each
packet M = ((sr, sc) , (tr, tc)) is defined as follows: First, M moves vertically on
the (unique) shortest path from (sr, sc) to (tr, sc) (call this the vertical part)
and then horizontally on the (unique) shortest path from (tr, sc) to (tr, tc) (call
this the horizontal part).

Since each vertex is the start vertex of at most one packet, there can be no
delay in the vertical part of a packet’s path. For scheduling the horizontal part
we use the farthest-destination-first rule: if there are two packets competing for
an edge we give priority to the packet which has still the longer way to go to its
destination. Denote by GRID (I) the obtained schedule for I and by OPT (I) a
schedule with minimum makespan.

Theorem 1. Let I =
(

↔
G#,M

)
be an instance of the packet routing problem

such that no two packets share a start- or destination vertex. Then it holds that
|GRID (I)| = D = |OPT (I)|.
Proof. Due to space constraints we refer to our technical report [19]. ��
On G# this schedule can be simulated as follows: In all even timesteps we move
packets whose next edge goes up or to the right. In all odd timesteps we move
packets whose next edge goes down or to the left. This stretches the length of
the schedule by at most a factor of two and thus we obtain a 2-approximation
algorithm for G#.

2.2 Choice of the Paths

The choice of the paths in Theorem 1 might seem pretty simple. However, in the
above setting a bad choice of (shortest) paths can result in an arbitrarily high
approximation factor.
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Theorem 2. For every k ≥ 1 there is an instance Πk =
(

↔
G#,Mk

)
of the

packet routing problem with variable paths with the following properties:

– The start and destination vertices of all packets are pairwise different.
– Let OPTk denote an optimal solution for Πk. There is a set of shortest

paths for the packets Mk such that for the best possible makespan OPT ′
k

using these paths it holds that OPT ′
k

OPTk
∈ Ω (k).

3 Single Start Multiple Destination Vertices

If we allow only one start vertex the packet routing problem with variable paths
on arbitrary graphs can be solved with the algorithm for the quickest transship-
ment problem presented by Hoppe et al. [11]. However, if we are dealing with
grid graphs the graph itself is not part of the input but it is given implicitly.
Thus, this algorithm does not necessarily run in polynomial time.

First, we present an approximation algorithm for this setting with an approx-
imation factor of 1 + ε and an absolute error of 8. Then, we present an optimal
algorithm with a higher bound on the runtime than our PTAS.

3.1 Absolute Approximation

Let I = (G#,M) be an instance of the packet routing problem with variable
paths such that there is only one start and arbitrarily many destination vertices.
Our algorithm has two phases which we sketch in the sequel.

First, we order the packets decreasingly by the length of the shortest paths
from their start to their destination vertices. W.l.o.g. let M0,M1, ... ...,M|M|−1
be this order. Now we schedule the packets exactly in this order. Since s has
four adjacent edges, we schedule four packets at each timestep. To be precise, at
time t we schedule the packets M4t, M4t+1, M4t+2, and M4t+3 (if packets with
the respective indices exist). We assign the four packets arbitrarily to the four
outgoing edges of s: these edges form the first edges on the paths of the packets.
Then we define a path for each packet such that all collisions (i.e., occasions
where two packets need to use an edge at the same time) are caused by two
packets which use an edge e in opposite directions at the same time. Our choice
of the paths ensures that each packet takes a detour of at most 8 edges.

In the second phase we adjust the schedule S0(I) in order to eliminate all
collisions. By doing this, we do not change the makespan of the overall schedule.
Denote by S(I) the resulting schedule.

Theorem 3. For the schedule S(I) it holds that

|S(I)| ≤ |OPT (I)| + 8

Moreover, the length of S(I) can be computed in O (n logn).
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Furthermore, if there are at most k different destination vertices, in time
O (n + k log k) we can compute a bound T on the length of the optimal schedule
such that |OPT (I)| ≤ T ≤ |OPT (I)| + 8. The (k log k)-term in the runtime
results from sorting the destination vertices by their distance to the source.

We can obtain an approximation scheme for this problem by solving in-
stances with small optimal values by enumeration and using the algorithm
above for instances with large optimal values. This results in a runtime of
O (n logn + f(1/ε)) for an approximation factor of 1 + ε.

3.2 Optimal Algorithm

In this section we present an optimal algorithm for solving the packet routing
problem with one start and many destination vertices on the grid. It is based
on the algorithm by Hoppe et al. [11] which solves the quickest transshipment
problem with multiple sources and multiple sinks on arbitrary graphs in poly-
nomial time. Our main technique is that we do not consider the whole grid but
only certain subgrids of polynomial size.

The algorithm by Hoppe et al. computes a dynamic flow, i.e. a flow over time.
For an introduction to dynamic flows we refer to [11] and [22]. Now we introduce
the quickest transshipment problem.

Definition 1. An instance of the quickest transshipment problem consists of a
dynamic network N = (G, u, τ, S) and a vector v where G = (V,E) is a graph,
the maps u and τ denote the capacities and the transit times on the edges and the
vector v denotes the demand/supply of each vertex in S ⊂ V (the set S contains
all source and sink vertices). We ask for the smallest time horizon T ∗ such that
there is a dynamic flow with time horizon T ∗ which satisfies all demands and
supplies.

First we give an outline of the algorithm by Hoppe and Tardos for the quickest
transshipment problem. Then we show how it can be adjusted in order to obtain
a strongly polynomial time algorithm for the packet routing problem on the grid
with a single start vertex. The algorithm by Hoppe and Tardos works as follows:

1. The algorithm checks for several values of T whether the instance of the
quickest transshipment problem has a solution with makespan at most T .
The optimal makespan T ∗ is then determined by binary search.

2. In order to check whether there is a solution with makespan at most T , the
algorithm needs to compute lexicographically maximum dynamic flows with
time horizon T according to certain orderings of the terminals.

3. The computation of the lexicographically maximum dynamic flows can be
reduced to several minimum-cost-flow computations on G. The source and
sink vertices of these instances correspond to the vertices in G which have
non-zero supply/demand.

4. It can be shown that if the input network is integral (i.e., all capacities and
all transit times are integral) then the resulting dynamic flow is integral as
well.
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Our adjustment for G# addresses the third point: Computing the necessary
minimum cost flows on the whole grid or even in the smallest subgrid which
contains all source/sink vertices would lead to a runtime exponential in the input
size. Instead, we perform them on subgrids which we call thinned out grids. In
the sequel, we will first define the type of minimum cost flow instances which
need to be solved. Then we will show that if we restrict our grid graph to thinned
out grids we can obtain flows with the same cost as in the whole grid.

For the min-cost-flow computations in the third step we study the following
problem:

Definition 2. The One-Source-MinCostFlow-Problem (OSMCF) is defined as
follows: Let G# = (V#, E#) be the grid graph with a source vertex s′ ∈ V# and
sink vertices S ⊆ V#. Let T be a given integer. We introduce a super sink ψ
and for each s̄ ∈ S we introduce an edge es̄ := (s̄, ψ) with transit time c (es̄) :=
− (T + 1) and infinite capacity. The problem is to find a minimum cost flow
from the source s′ to the sink ψ in the network. The cost for each edge equals its
transit time.

Lemma 1. All mincost-flow computations which are needed in the algorithm by
Hoppe and Tardos applied to G# with a single source vertex can be reduced to
the OSMCF-problem.

Now we describe how to solve the OSMCF-problem in polynomial time. In-
stead of solving the OSMCF-problems arising in the packet routing problem
with the full grid we resort to thinned out grids. The intuition is the fol-
lowing: Given a set of vertices V ′ from G#, we create a grid graph G#(V ′)
whose rows and columns are exactly the rows and columns of the vertices in
V ′. The lengths of the edges are set according to the distance of their respec-
tive end-vertices in G#. Formally, let R(V ′) = {r1, r2, ..., rR} and C(V ′) =
{c1, c2, ..., cC} be the sets of the row and column indices of the vertices in
V ′. We define V#(V ′) := {(x, y) |x ∈ C(V ′) ∧ y ∈ R(V ′)} and E# (V ′) :=⋃

i∈R EH,i ∪
⋃

j∈C EV,j with EH,i := {{(i, cj) , (i, cj+1)} |1 ≤ j ≤ C − 1} and
EV,j := {{(ri, j) , (ri+1, j)} |1 ≤ i ≤ R− 1}. We define the cost of an edge
e = {(i, cj) , (i, cj+1)} by c(e) = (cj+1 − cj) and analogously for an edge
e′ = {(ri, j) , (ri+1, j)} by c (e′) = (ri+1 − ri). We define G#(V ′) :=
(V#(V ′), E#(V ′)). We call a graph Ḡ a thinned out grid graph if there is a
set V ′ such that Ḡ = G#(V ′).

Now let Ḡ = (V̄ , Ē) be a thinned out grid graph. We define an op-
eration dense

(
Ḡ
)

which, intuitively, makes the thinned out grid a little
“denser” by adding new rows and columns next to already existing ones. Let
V̄ ′ :=

{
(r − 1, c− 1) , (r, c) , (r + 1, c + 1) | (r, c) ∈ V̄

}
. We define dense

(
V̄
)

:=
G#

(
V̄ ′). Note that the resulting graph is again a thinned out grid graph.

Recursively, we define dense(i)
(
V̄
)

:= dense(dense(i−1)
(
V̄
)
).

Lemma 2. Let S ⊆ V# be a set of sink vertices. Then the OSMCF-problems on
G# and dense(4)(S) have the same objective value.
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Proof (sketch). The proof relies on the fact that in the thinned out grid one can
always find the necessary augmenting paths for computing the mincost-flow. ��
Theorem 4. Let I = (G#,M) be an instance of the packet routing problem on
G# with at most k destination vertices and exactly one start vertex. The optimal
makespan for I can be computed in O

(
k6n

)
.

Proof (sketch). The proof relies on the framework by Hoppe and Tardos,
Lemma 2, and a runtime analysis which uses the fact that for solving the
OSMCF-problems we need at most four augmenting paths. Moreover, employing
the algorithm presented in Section 3.1 we reduce the number of possible values
for the optimal makespan to 8. Thus, we can omit the binary search. ��
Note that the above implies that there is an optimal solution for the instance
which uses only vertices and edges in dense(4)(S). Thus, we can compute an
optimal routing schedule (and not only its length) in polynomial time using
the algorithm presented in [11] for computing an optimal dynamic flow for the
quickest transshipment problem.

4 Complexity Results

Due to space constraints we give only brief sketches of the proof of our complexity
results for the packet routing problem on the grid.

Theorem 5. The packet routing problem with fixed paths is NP -hard on grid
graphs, even if there is only one start vertex. This holds even if all predefined
paths are shortest paths.

Proof. In this proof we employ a technique which was used in [3,23]. We reduce
the 3-COLORING problem to the packet routing problem. We introduce a packet
for each vertex of the coloring instance. The paths of two packets share an edge
if and only if their respective vertices in G are connected by an edge. All paths
have the same length. The number of colors needed in the coloring instance
equals the maximum number of delays which are necessary for each packet. ��
Theorem 6. The packed routing problem with variable paths is NP -hard on the
undirected grid G#. This holds even if no two packets have the same start and
destination vertices.

Proof. We reduce to this problem from MONOTONE-NOT-ALL-EQUAL-3-
SAT [25]. The idea is that for each clause there is one packet which ensures
that there is a true literal and one packet which ensures that there is a false
literal in the clause. The reduction heavily uses the fact that two packets delay
each other if they need to use an edge in opposite directions. ��
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Abstract. We investigate embeddings of graphs into the infinite ex-
tended grid graph. The problem was motivated by computation on adi-
abatic quantum computers, but it is related to a number of other well
studied grid embedding problems. Such problems typically deal with rep-
resenting vertices by grid points, and edges by grid paths, while mini-
mizing some objective function such as the area or the maximum length
of the grid paths representing the edges. Our particular model, while
expressible in this language, is more naturally viewed as one where the
vertices are represented by subtrees of the grid (called islands), and the
edges are represented by the usual grid edges joining the islands. Some-
what unexpectedly, these graphs turn out to unify such seemingly un-
related graph classes as the string graphs and the induced subgraphs
of the extended grid. The connection is established by limiting the size
(number of vertices) k of the representing islands. We study the problem
of representability of an input graph G by islands of size at most k. We
conjecture that this problem is NP-complete for any positive integer k,
and prove the conjecture for k < 3 and k > 5; the cases k = 3, 4, 5 remain
open.

1 Introduction

The extended grid is the set of all points (X,Y ) ∈ Z2 in which two distinct points
A = (XA, YA) and B = (XB, YB) are adjacent, or neighbors, if |XA − XB| ≤
1 and |YA − YB| ≤ 1. Moreover, we say that two points A,B are horizontal
(respectively vertical, respectively diagonal) neighbors if XA = XB and |YA −
YB| = 1 (respectively YA = YB and |XA −XB| = 1, respectively |XA −XB| = 1
and |YA − YB | = 1). The extended grid differs from the usual plane grid only
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A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 131–142, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



132 M.D. Coury et al.

in the diagonal adjacency; in other words, the plane grid is obtained from the
extended grid by deleting the edges joining diagonal neighbors.

An island in the extended grid is a connected set of points in the grid, i.e., a
set of points in which the relation of adjacency defines a connected graph. We
say that two islands i, i′ are adjacent if there is a pair of points P ∈ i, P ′ ∈ i′,
that are adjacent in the extended grid. Given a set of islands I in the extended
grid, the graph of I is the graph in which vertices are the islands from I, and
adjacency is defined as above. Equivalently, the graph of I is the intersection
graph of the sets i+, i ∈ I, where i+ is obtained from i by expanding each point
of i to a ball of suitable radius r. (Any r strictly between 1/

√
2 and 1 will do.)

A faithful representation of a graph G by islands is a set I of vertex disjoint
islands in the extended grid, such that the graph of I is isomorphic to G. The set
of graphs which have faithful representations by islands will be denoted ISLAND.
We also denote by ISLAND the decision problem of recognizing ISLAND graphs.

An island with at most k vertices will be called a k-island, and a k-path if
it is a path. The sets and problems k-ISLAND and k-PATH are defined in the
obvious way as the sets of graphs that can be represented by k-islands or k-paths,
and the problems of their recognition.

Note that a faithful representation of G is essentially an embedding of G in
which vertices are mapped to islands and edges to edges in the extended grid. A
number of embedding problems have been investigated, mostly in the case of the
plane grid, e.g., [3,15,16,18]. In these problems, for a given graph G, one seeks an
embedding (or representation, or layout) where each vertex of G is represented
by a point of the plane grid, and each edge of G by a path in the plane grid.
One such problem is the VLSI Layout problem (see e.g. [5,6,10,17]), where one
typically tries to minimize the area or the width of the smallest rectangle in
which there exists a layout of G. Alternately one may want to minimize the
length or number of bends of the paths representing the edges of G; see the
book [15]. We note that the idea of representing vertices by islands (in this case
in the plane grid) also occurs in [11], where islands are called fragments.

It is interesting to note that our representation problem is related to the
embedding problem in the extended grid, in which one is minimizing the length
of the representing paths. Indeed, we can replace each island by a vertex at the
cost of replacing the edges by paths; if the islands are small, then the paths will
be short. (Conversely, one can construct the islands from the representing points
and paths.)

Most of the embedding problems mentioned above are NP-complete [15]. Our
problem ISLAND will also turn out to be NP-complete.

When k = 1 the set 1-ISLAND (or 1-PATH) consists of graphs which are
induced subgraphs of the extended grid. We shall prove that 1-ISLAND (or 1-
PATH) is an NP-complete problem. We conjecture that recognizing k-ISLAND
graphs is NP-complete for every k. We show that it is indeed so for k < 3 and
k > 5. The unusual aspect of our proof is the fact that the techniques for small
values of k (that is k = 1, 2) are different from the techniques for large values of
k (k > 5). Although we think both these techniques can possibly be stretched a
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little bit more, we don’t see how either of them can cover the other case. In any
event, we leave the three missing cases k = 3, 4, 5 open.

In the plane grid, the problem corresponding to 1-ISLAND is also NP-
complete (this is mentioned, e.g., in [8]). We believe that each of the problems
k-ISLAND with a finite k also behaves similarly from the computational com-
plexity point of view in the plane and the extended grid, namely, we think both
versions are NP-complete for all finite k.

Somewhat surprisingly, these versions behave quite differently when k = ∞,
i.e., when the sizes of the islands are not bounded. In the planar grid, ISLAND
consists exactly of planar graphs, and hence these graphs can be recognized
in polynomial (even linear) time. On the other hand we will show that in the
extended grid the set ISLAND coincides with the set of string graphs. A string
graph is a graph G whose vertices can be represented by strings, i.e., curves in the
plane, such that two vertices are adjacent in G if and only if the strings intersect.
String graphs were introduced in [4]; Sinden [21] showed that not all graphs are
string graphs. Finally, it was shown in [12] that recognizing string graphs is NP-
hard, while Schaefer et al. [20] proved the problem is in NP. (This was quite
unexpected and is rather nontrivial). Hence recognizing whether or not a given
graph G has a faithful representation in the extended grid is also NP-complete.
We shall show that each problem k-ISLAND with k > 5 is NP-complete using
the connection to string graphs.

The paper is organized as follows. In Section 2 we introduce our motivation
which stems from quantum computation. Then in Section 3 the connection to
string graphs is revealed. Graphs representable by large islands are dealt with
in Section 4. The cases of 1-ISLAND and 2-ISLAND are presented in Section 5.
Most of the technical proofs are left for the journal version of the paper.

2 Motivation from Adiabatic Quantum Computing

Our questions are motivated by problems arising in the proposed adiabatic quan-
tum computer AQC [9]. An AQC relies upon a process known as quantum an-
nealing, analogous to classical simulated annealing, to find a global minimum to
an optimization problem. (Rather than relying on thermal fluctuations to escape
local minima, quantum annealing relies on quantum fluctuations which escape
local minima through a process known as tunneling.) Known theoretical results
indicate the rate at which annealing can occur, and for some classes of problems
exponential speedups over classical optimization seem possible. (It was shown
in [1] that the standard and adiabatic quantum models are computationally
equivalent.)

A realization of an AQC might consist of qubits and couplers, which can be
naturally seen to correspond to vertices and edges of a graph. This abstraction
away from the underlying physics allows us to translate computational problems
into a graph theoretic language. An AQC depends upon its hardware to find a
binary vector that optimizes some objective function. In one model, the goal is
to maximize an unconstrained quadratic objective function
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f(x) =
n∑

i=1

hixi + λ

n∑
i=1

n∑
j=i+1

Jijxixj ,

where λ is a (Lagrange) multiplier, h is a vector, and J is an upper-triangular
matrix, describing respectively the linear and quadratic objective functions. For
instance, by taking for h the all-one vector and for J the (upper half of the)
adjacency matrix of G, and setting λ to be smaller than −2, we can formulate
the maximum independent set problem in G.

One specific AQC is layed out like a finite portion of the extended grid. Each
qubit in the hardware is a vertex in the extended grid and each coupler an edge
[2,19]. It may seem that only a limited set of problems can be posed in this
specific graph (the extended grid). However, it is possible to constrain certain
qubits to take on the same spin, and in this way to create islands, i.e., connected
subgraphs (or equivalently subtrees) of the extended grid, which can be treated
as ‘supervertices’. To represent an arbitrary graph G then amounts to assigning
to each vertex of G an island of the extended grid, and to each edge of G an edge
connecting the corresponding islands. Note that adjacent vertices of G must be
assigned to islands that are sufficiently near to be connected by an edge of the
extended grid. If we additionally want to ensure that no noise or information
in the quantum system transfer between islands through inactive couplers, we
further require that nonadjacent vertices of G be assigned islands that are not
sufficiently near to be connected by an edge of the extended grid. In such a case,
we seek a faithful representation of G as defined earlier.

3 Unbounded Islands

It is well known that every string graph has a representation by curves in which
no three curves intersect in the same point, and in every intersection point the
two curves sharing this point cross each other in this point (i.e., they do not
touch). It can be easily seen that such a representation is homeomorphic to a
system of curves that are piece-wise linear and their segments follow the vertical
and horizontal lines of a planar grid. Given such a representation of a graph
G, one can rotate it by 45 degrees, and blow it up so that the segments of
the representation follow the diagonal lines of the (now) extended grid in such
a way that the segments intersect inside the grid squares but not in the grid
points. Then one may represent each vertex of G by the island consisting of the
grid points lying on the corresponding curve. If we further blow up so that the
segments of the curves use only every second diagonal in each direction, any
two islands are adjacent if and only if their corresponding curves cross. (See an
illustration in Fig. 1.)

On the other hand, it is also well known (cf. e.g. [12]) that string graphs
are exactly the intersection graphs of arc-connected sets in the plane. Since for
every island i the expanded set i+ is arc-connected, it follows that every ISLAND
graph is a string graph. Therefore we have the following claim.
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Fig. 1. A string representation and an ISLAND representation of K3

Proposition 1. The ISLAND graphs are exactly the string graphs. Hence the
problem ISLAND is NP-complete.

There is an even more straightforward way to transform a faithful representation
of a graph in the extended grid into a string representation. For every island
i (which represents a vertex ui ∈ V (G)), consider a spanning tree Ti of the
subgraph of the extended grid induced by the points of i. If two islands i, j are
adjacent via a grid edge e = pq (vertical, horizontal, or diagonal), with vertices
p ∈ Ti and q ∈ Tj, one can create a new vertex Pe in the middle (of the drawing)
of e and add the edge pPe to Ti and the edge qPe to Tj. The newly added
point Pe may belong to more than just these two trees (if e was a diagonal
edge), but in such a case all the (at most) four islands involved in the corners
of the square whose diagonal is e are adjacent in the extended grid and so are
the corresponding vertices in G. Hence G is the intersection graph of a family of
trees in the plane. Replacing every tree by a curve running around the drawing of
the tree at a very small distance, we obtain a representation of G by intersecting
curves, where every common point Pe will give rise to 2 crossing points of the
curves, and every crossing of diagonal edges of two different trees gives rise to 4
crossing points. A k-island would thus result in a tree with a linear number of
nodes (linear in k), and hence the total number of crossing points in the string
representation obtained in this way would be O(nk). It is known that there are
string graphs on n vertices requiring at least Ω(2cn) crossing points in any string
representation [13]. Hence one obtains the following result.

Proposition 2. There are ISLAND graphs which require exponentially many
grid points in any faithful representation.

We conclude that the natural guess-and-verify approach to obtaining a faithful
representation of a graph, by guessing the representing islands point by point,
fails. This observation highlights the fact that the membership of ISLAND in
NP is due to deeper reasons [20].

4 Large Islands

In this section we sketch the proof of the following main theorem.

Theorem 1. For every k > 5, the problem k-ISLAND is NP-complete.
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Proof. Note that the membership in NP is trivial when k is a fixed parameter.
Hence we concentrate on the hardness part of the statement. We will describe a
reduction from the NP-complete problem PLANAR-3-CONNECTED (3,4)-SAT
[14]. This is a variant of 3-satisfiability where the input formula has exactly 3
distinct literals in each clause, each variable occurs in at most 4 clauses, and the
bipartite incidence graph of the formula is vertex-3-connected and planar.

Fig. 2. An illustration for the proof of Theorem 1. A rectilinear drawing of the bipartite
incidence graph of the formula (left) is turned into a ‘city of squares and streets’ in the
grid (right).

Given such a formula Φ, we construct a graph GΦ such that GΦ ∈ 6-ISLAND
when Φ is satisfiable while GΦ �∈ ISLAND when Φ is not. Then the NP-hardness
of the problem k-ISLAND for every k > 5 immediately follows.

The way we construct GΦ is similar to the reduction introduced in [12]. We
first fix a rectilinear drawing of the incidence graph of Φ such that both the
variable and the clause vertices are located in points of the planar grid, and the
edges connecting clauses to their variables are piece-wise linear and following
the grid lines. Then we consider a refinement of the grid so that the variable
and clause vertices are replaced by disjoint squares. Based on this drawing we
construct GΦ by replacing every variable vertex by a copy of a variable gadget,
every clause vertex by a copy of a clause gadget, and the edges of the drawing
by pairs of parallel paths of length derived from the drawing. We succeeded in
constructing these gadgets using islands of size at most six. If Φ is satisfiable, a
6-ISLAND representation is built by representing the gadgets inside the corre-
sponding squares and the connecting paths by chains of 6-paths. The details of
the reduction will be given in the journal version of the paper.

5 Small Islands

In this section we focus on representations by 1-islands and 2-islands (i.e., by
1-paths and 2-paths). As pointed out above, 1-ISLAND graphs are exactly the
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induced subgraphs of the extended grid. Already representations by islands of
size at most 2 provide much more flexibility than those by 1-islands. A 2-island
may be positioned along an edge of the planar grid (i.e., horizontally or vertically)
or along a diagonal; this results in a different number of grid points adjacent to
the 2-island. Moreover a vertex may be represented by a 1-island or a 2-island,
thus occupying a different area. As a consequence of this flexibility, it becomes
more difficult to construct rigid structures, or at least to prove their rigidity.
Thus 2-ISLAND graphs are bridging the features of subgraphs and intersection
graphs and they best capture the concept of bounded island representations. We
prove that both problems are computationally hard.

Theorem 2. The problem 1-ISLAND is NP-complete, i. e., it is NP-complete
to decide whether a given graph is an induced subgraph of the extended grid.

Theorem 3. The problem 2-ISLAND is NP-complete.

5.1 The Logic Engine

Our proof is based on the so-called logic engine construction pioneered by Eades
and Whitesides [7]. The logic engine offers an intuitive model of a standard re-
duction from the problem not-all-equal 3-SAT. Every Boolean formula can be
assigned a logic engine. The physical model of the engine consists of a U-shaped
outer frame that holds a shaft to which are attached rotating U-shaped arma-
tures, nested into each other (cf. Fig. 3). The armatures can rotate independently
of each other and the shaft bisects each of them. The tips of each armature are
connected by a chain of fixed length, whose links can flip independently of each
other. Some links have flags (also referred to as strikers) attached to them. By
flipping the strikers while simultaneously rotating the armatures one can encode
a NAE-satisfying assignment to a given formula. The tricky part is to make the
engine rigid and flexible at the same time. Given a formula and a problem, the

Fig. 3. The logic engine. Reprinted with permission of the authors from [7].
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point is to model the Logic Engine by building an instance of the problem from
building blocks that on one hand are rigid enough (fixing the shape of the outer
frame and the armatures, the lengths of the chains and the shape of the flags)
while allowing the desired flexibility (rotating the armatures and flipping the
flags). In such a case the original formula will be NAE-satisfiable if and only if
the corresponding logic engine can be laid out flat so that the strikers do not
overlap. For more details and first examples see [7].

In the rest of the section we describe the constructions of the frame, shafts,
armatures, and strikers. When representing a graph G, we usually name the
vertices of G using lower case letters (a, b, c, . . .), and name the corresponding
islands in a representation by the respective upper case letters (A,B,C, . . .).

5.2 1-ISLAND Graphs: The Proof of Theorem 2

It is easy to see that the only 1-island representation of K4 is formed by four
points positioned in the four corners of a grid square. It follows that the loca-
tion of the points representing any three vertices of K4 uniquely determines the
location of the fourth one. Based on this simple observation we build several
rigid blocks. The basic one is the brick graph depicted in Fig. 4, which has only
one representation (up to obvious symmetries). Overlapping bricks yield rigid
structures which are used for the construction of the frame and the armatures.
They are combined by joints formed by cut-vertices allowing rotations and flips
along the shaft and on the rods. A close-up of the rod and striker graphs is
shown in Fig. 5 and an overview of the entire construction in Fig. 6. A formal
description of this construction and the corresponding proof will be given in the
journal vestion of the paper.

a b

c
d

x

y

x′ y′ z

A B

CD

X ′ Y ′ Z

Y

X

Fig. 4. The brick graph and its representation

The construction of the Logic Engine from a Boolean formula with m clauses
and n variables goes as follows. First we set the dimensions of the frame graph
f . The width of the frame will be set to 9n− 1, the height to 4m+ 4n+ 3, and
the striker height to 4m + 1.

For each variable Xi we construct the armature graph ai where the width of
the armature is 8i − 7 and the height of the armature is 4m + 4i − 1. We also
construct a chain which connects vertices uai and dai . The chain has three parts:
the first part contain m rods g1, g2, . . . , gm (g as gation); the next part is a cross
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X

Fig. 5. The rod graph, the striker graph, and the shapes of their representations

graph ci (if i is n then the short cross graph cn); and the last part contains
m rods nm, . . . , n1 (n as negation). We connect these structures sequentially
into a chain, in such way that if we have two consecutive objects a and b, then
we connect da with ub. Thus the order of the structures in the chain will be
g1, . . . , gm, ci, nm, . . . , n1. This part of the construction is general for all instances
with n variables and m clauses.

We now focus on the parts of the construction that are specific to the given
instance. For a clause cj , all variables Xi not appearing in cj have their rod
gj (for Xi) replaced by the striker graph; all variables Xi for which ¬Xi is not
appearing in cj have their rod nj replaced by the striker. (Both can happen.) It
follows from the construction that the original formula is NAE-satisfiable if and
only if the resulting graph has a faithful representation by 1-islands.

5.3 2-ISLAND Graphs: The Proof of Theorem 3

As in the previous section, we will describe a reduction using the logic engine.
Again, the crucial step is to construct a rigid gadget, i.e., a graph which has only
one 2-island representation (up to obvious symmetries).

This role will be played the 2-brick graph depicted in Fig. 7. It can be shown
that in any 2-island representation of this graph, the four vertices of the outer
four-cycle are represented by diagonal 2-islands as depicted in the figure, while
the islands that represent the inner K4 contain the four corners of the inner grid
square of the representation (these islands may or may not extend to diagonal
2-islands as illustrated by the shaded lines). Connecting two bricks together
by edges of a complete bipartite graph as depicted in Fig. 8 we obtain the 2-
brickjoint graph which provides both rigidness and flexibility that we need. Every
2-island representation looks the same from the geometrical point of view, but
the pairs of islands A,B and A′, B′ can be swapped independently. Brickjoints
are then combined into 2-bricklines and 2-bricksquares which are also rigid in
the geometric sense and are used for the construction of the frame, shaft and
armatures. Finally, 2-bricks connected to the rods by 2-brickjoints are also used
as strikers. In this way we construct a graph which has a 2-island representation if
and only if the original formula was NAE-satisfiable. The details will be included
in the journal version of the paper.
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a4

a2

a3

a1

f
c4c3c1 c2

Fig. 6. The construction for the formula (X1 ∨X2 ∨¬X3)∧ (¬X1 ∨X2¬X4)∨ (¬X2 ∨
¬X3 ∨ X4)
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a b

A B

Fig. 7. The 2-brick graph, with a representation

A′

B′

A

B

B′

A′

A

B

Fig. 8. The 2-brickjoint graph and its two possible representations

6 Conclusions

We have introduced the sets k-ISLAND, for positive integers k. The set 1-
ISLAND consists of induced subgraphs of the extended grid. The set ISLAND
= �k-ISLAND consists of string graphs. Both have NP-complete recognition
problems. However, the nature of the problems, and the proofs of their NP-
completeness, are very different. For ISLAND, and similarly for k-ISLAND with
k > 5, we employed the techniques of string graphs [12]; for 1-ISLAND, and
similarly for 2-ISLAND, we gave a proof based on the logic engine of [7]. We
suspect that all the k-ISLAND recognition problems are NP-complete, but do
not see a unified reduction using just one of these techniques. Perhaps a new
approach can cover both ends of the spectrum. In any event, we leave the cases
k = 3, 4, 5 open.

The problems discussed make sense in higher-dimensional grids as well. We
observe that in three-dimensional grids, ISLAND consists of all graphs, and
hence is trivially polynomial; on the other hand recognizing 1-ISLAND graphs
can be shown NP-complete using similar logic engine techniques as in Section 3.
As we remarked earlier, the situation is similar in the usual plane grid: there
ISLAND consists of all planar graphs and so is polynomial, while 1-ISLAND is
NP-complete.

Acknowledgments. We thank Tomás Feder for suggesting the connection to
string graphs, and William G. Macready for improving our explanation of the
adiabatic quantum computer.
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The I/O Complexity of Sparse Matrix Dense
Matrix Multiplication

Gero Greiner and Riko Jacob

Technische Universität München

Abstract. We consider the multiplication of a sparse N ×N matrix A
with a dense N×N matrix B in the I/O model. We determine the worst-
case non-uniform complexity of this task up to a constant factor for all
meaningful choices of the parameters N (dimension of the matrices), k
(average number of non-zero entries per column or row in A, i.e., there
are in total kN non-zero entries), M (main memory size), and B (block
size), as long as M ≥ B2 (tall cache assumption).

For large and small k, the structure of the algorithm does not need to
depend on the structure of the sparse matrix A, whereas for intermedi-
ate densities it is possible and necessary to find submatrices that fit in
memory and are slightly denser than on average.

The focus of this work is asymptotic worst-case complexity, i.e., the
existence of matrices that require a certain number of I/Os and the
existence of algorithms (sometimes depending on the shape of the sparse
matrix) that use only a constant factor more I/Os.

1 Introduction

Traditionally, the aim of a good algorithmic design is to achieve a task with
as few CPU-operations as possible. In a setting where the main calculation is
phrased as matrix and vector operations, this usually means that the matrices
are kept sparse and it is exploited that many entries are zero. This reduction of
CPU-operation sometimes comes at the price of irregular access patterns induced
by the sparse matrix operations, which can lead to a situation where memory
access is the real bottleneck of the computation.

One successful way of modeling this bottleneck is the so called I/O-model (also
known as Disk-Access-Model DAM) introduced by Aggarwal and Vitter [1]. It
assumes that the CPU can only operate on a main memory of size M whereas
further intermediate results (just like input and final result) must be stored on
an infinite disk, that is organized in blocks of size B. The resulting performance
measure counts the number of read/write operations of the disk, the so called
I/O-operations (or I/Os for short). By now this model is accepted and the I/O-
complexity of many tasks is well understood.

We consider the multiplication of a sparse N × N matrix A containing kN
non-zero entries (A is called k-sparse) with a dense N×N matrix B, computing
C = A ·B. Throughout the paper, we abbreviate this task as SDMk. We study
the worst case complexity of this task in the I/O-model, i.e., we determine up

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 143–156, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to some constant factor the number of I/Os that are necessary and sufficient to
compute C. Here, we use the so-called semiring I/O-machine, where algorithms
can only use addition and multiplication, but cannot rely upon subtraction or
division (as detailed in Section 2 “Model of Computation”). We consider worst-
case complexities, where the worst case is taken over the shape (or conformation)
of the matrix A as given by the positions of the non-zero entries. Our notion
of an algorithm is non-uniform in the sense that we ask for a program that,
depending on the conformation of A, computes C with few I/Os irrespective of
the complexity to create this program.

This model of computation and notion of sparseness has been successfully used
in [3] to study multiplying a sparse matrix with a dense vector. It also coincides
with the notion of “independent evaluation” of Hong and Kung [5] to study the
multiplication of two dense matrices. In this case (in our notation k = N), we do
know that this is a restriction as it disallows algorithms like Strassen’s. However,
the algebraic complexity of dense matrix multiplication is still unknown [7]. In
this computational model, our notion of k-sparseness of A has the effect that
the matrix multiplication requires precisely kN2 multiplications of numbers.

In this paper, we determine the complexity to multiply two N ×N matrices,
one of which is k-sparse in the semiring I/O-model with tall cache M ≥ B2 to
be

Θ

(
max

{
kN2

BΔ
,
kN2

B
√
M

,
N2

B
, 1
})

where

Δ = max

{
ln N

M

ln N ln2 N
M

Mk

,

√
kM

N

}
,

and ln is defined by lnx = max{1, lnx}.
This expression yields three interesting ranges of the parameter k, but for

all k the I/O-complexity boils down to the question how many of the kN2

elementary products can be performed on M elements that are simultaneously
in memory (i.e. in one so called Hong-Kung round). For large k the situation
is basically that of two dense matrices, in particular, for k = N it coincides
with the classical result of Hong and Kung [5] that multiplying two dense square
matrices has complexity Θ

(
N3

B
√

M

)
, i.e, that at most M

3
2 multiplications per

round are possible and can be achieved by using
√
M × √

M tiles. For small k
it resembles that of A being a permutation matrix where M multiplications per
round are best possible (i.e. loaded elements cannot be reused).

Additionally, there is a density from which point on the complexity (reuse
of loaded operands) can be described by above average dense submatrices con-
sisting of M entries and having on average min{Δ,

√
M} entries per row and

column. Our complexity analysis proceeds by showing that there exist matrices
that have essentially no denser submatrices. We get a matching upper bound
by showing that every matrix that has sufficiently many entries must have such
dense submatrices. The resulting algorithm hence depends upon the conforma-
tion (shape) of the sparse input matrix in a complicated manner (which does
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not influence the theoretical statement). How difficult it is to actually compute a
good program is not completely understood. We only have preliminary results [8]
showing that finding such a program is NP-complete, and that determining the
maximum possible density cannot be approximated within an arbitrarily small
constant factor. This limited structural insight is already more than what is
known for the multiplication of a sparse matrix with a dense vector [3], where
it is only clear that difficult matrices exist (by a counting argument), but there
is no characterization of which (permutation) matrices are difficult to multiply
with. One key difference in the consideration of this paper and [3] is that here
the block size B is basically irrelevant (it is only the scaling factor to translate
I/O-volume to number of I/Os), whereas matrix vector multiplication becomes
trivial if B = 1.

For the sake of clarity, throughout the paper we stick to the case where all
matrices are square. The results naturally generalize to non-square situations as
long as the smallest dimension (side-length) is at least

√
M ≥ B.

Clearly, the results presented here are theoretical in nature, and the presented
algorithms are stated more to complement the lower bounds than to be imple-
mented. The real goal is to devise and evaluate practical algorithms, and the
results presented here give important limits on what to expect from them. Fur-
ther, such practical algorithms exist and are implemented in many sparse matrix
libraries, which indicates that the considered problem is of a certain practical
relevance. Also there it has been recognized that memory access patterns are an
important factor in the overall execution time, and memory aware algorithms
have been proposed [2,9,4].

Here, it is worth noting that our notion of k-sparseness fits to the established
experimental performance measure “number of floating point operations per-
formed per second”. Because the number of floating point operations is precisely
kN2 this immediately translates to running time, and hence if memory is the
bottleneck, to number of I/Os.

In contrast to the mentioned practical considerations, our work is theoreti-
cal in nature, with all the well known consequences: The presented results are
mathematical theorems, stating all assumptions and having a clear conclusion.
This generality of course comes at a price, in our context mainly the abstrac-
tion of the model of computation (neglecting everything but the memory access
patterns of a program, and disallowing Strassen-like algorithms) and the focus
on the worst-case input (where practitioners can and have to exploit the special
structure in the input at hand). Nevertheless, we believe that our theoretical
findings and understanding give an important reference point also for the prac-
tical work: What are the difficult instances? In what respect are practical inputs
easy? What is a good worst-case behavior of an algorithm?

Outline of the paper. We introduce the precise model of computation in Sec-
tion 2. This is followed by Section 3 where some easy to derive inequalities, so
called Observations are given. In Section 4 we describe the different algorithms,
depending on the density parameter k, whereas Section 5 shows that there exist
matrices that require the stated number of I/Os.
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2 Model of Computation

We consider the number of I/Os induced by a program as a measurement of
costs. Therefore, we use the model described in [3] which consists of two memory
layers, as is standard. We assume a single processing unit with a fast memory
of limited capacity M assigned to it. Calculations can only be performed on the
elements residing in this internal memory, whereas the programs input and any
(intermediate) results are stored on an external memory of infinite size which
is organized in blocks of size B. Elements are moved between memory layers in
blocks, where the movement of a block incurs costs 1.

Memory elements are to belong to a commutative semiring S = (R,+, ·), i.e.,
a set R with operations addition (+) and multiplication (·) that are associative,
distributive and commutative. Further, there is a neutral element 0 for addi-
tion, 1 for multiplication and 0 is annihilating with respect to multiplication. In
contrast to rings and fields, inverse elements are neither guaranteed for addition
nor for multiplication, i.e., the program is not allowed to use subtraction and
division.

Definition [3]: The semiring I/O machine consists of an internal memory which
can hold up to M elements of a commutative semiring S, and an external memory
of infinite size which is organized in blocks of B consecutive elements. The current
configuration of a machine is described by the content M = (m1, . . . ,mM ),
mi ∈ R of internal memory, and an infinite sequence of blocks ti ∈ RB, i ∈ �
of external memory. An operation is a transformation of one configuration into
another, which can be one of the following types

• Computation, performs any operation of S on elements in M.
• Input, replaces some chosen elements mi1 , . . . ,miB in M by a block ti.
• Output, replaces a block ti of external memory by some chosen elements

mi1 , . . . ,miB of M.

Using this, we define a program P as a finite sequence of operations. The number
of input and output operations describes the I/O costs of P . An algorithm is a
family of programs where the program can be chosen according to the parameters
N , k, and the conformation of A, i.e., the position of the non-zero entries in A.
By L(k,N), we denote the required number of I/Os induced by an algorithm
for SDMk with N × N matrices, and kN non-zero entries in A for all kinds of
conformations.

The value of an element cij of the result matrix C := A · B is given by∑
l∈Ai

ail ·blj where Ai ⊆ {1, . . . , N} describes the positions of non-zero elements
in the i-th row of A. Since our model is based on a semiring, the computation of
C includes the calculation of exactly kN2 elementary products ail · blj . Further,
any intermediate result can be seen as a sum

∑
l∈S ail · blj for a subset S ⊆ Ai.

If |S| < |Ai|, we refer to this as a partial result of cij .
Since we can assume that every program requires at least one I/O, when

writing complexity using O, Θ, or Ω at least 1 is meant.
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3 Math

For the proofs provided in Section 4 and 5, the following Observations are nec-
essary.

Observation 1. For 0 ≤ x ≤ 1/2, it holds that ln(1 − x) ≥ −2x.

Observation 2. For 0 < a ≤ e, for any x > 0 it holds x ≥ a lnx.

Observation 3. For x ≥ y ≥ 1 it holds(
x

y

)y (a)
≤
(
x

y

)
(b)
≤
(
ex

y

)y

.

Observation 4. For n ≥ k ≥ a ≥ 1 it holds(
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k

)
≥
(
n− k

k

)a(
n
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)
.

Proof. By definition of binomial coefficients(
n

k

)
·
(

n

k − a

)−1

=
n!(n− k + a)!(k − a)!

(n− k)!k!n!
=

a∏
i=1

n− k + i

k − a + i
.

By showing that for each 1 ≤ i ≤ a, n−k+i
k−a+i ≥ n−k

k the statement follows. This is
equivalent to (a− 2i)k ≤ (a− i)n which holds for any 1 ≤ k ≤ n and 1 ≤ i ≤ a.

��
Observation 5. For D, f, x > 0, the inequality D ln fD ≤ x is satisfied for
D ≤ x

lnxf
where lnx = max{1, lnx}.

Proof. By substitution, we obtain

D ln fD ≤ x

lnxf
ln
(
f

x

lnxf

)
≤ x

lnxf
ln
(
f
x

1

)
≤ x. ��

Observation 6. For D, f, x ≥ 0, the inequality D ln fD > x is fulfilled if D >
2x

ln 2xf .

Proof. Substituting D yields

D ln fD >
2x

ln 2xf
ln
(
f

2x
ln 2xf

)
≥ 2x

ln 2xf
ln
√

2xf = x

where we use
√

2xf ≥ 2 ln
√

2xf given by Observation 2. ��
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4 Algorithms

Theorem 1. For 1 ≤ k ≤ N , SDMk is possible with

O
(

max
{
kN2

BΔ
,
kN2

B
√
M

,
N2

B

})
I/Os for

Δ = max

{
ln N

M

ln N ln2 N
M

Mk

,

√
kM

N

}
if M = Ω

(
B2
)
. Note that Δ is lower bounded by a constant.

For the sake of clarity, we omit the use of ceiling functions from now on. Since all
the fractions are greater or equal 1, this only increases the bounds by constant
factors.

4.1 Layouts

For the algorithms presented, we either need the dense matrices B and C in
column major layout where elements are saved column wise, or row major layout.
As we prove by lower bounds, a different layout chosen by the algorithm does not
lead to an asymptotic speed up. For the first and the third algorithm presented
in this section, a row major layout is required, i.e., elements are saved row wise
in external memory. If B is saved in column major layout, the matrix has to be
transposed first. In [1], Aggarwal and Vitter showed that this is possible with
O (N2/B

)
I/Os assuming a tall cache, i.e., M ≥ B2. Similarly, if required, C has

to be transposed in the end. For the tile-based approach, the matrices are read
in tiles. However, assuming a tall cache, the algorithm is applicable if B is in
column major layout. This also applies for small instances where M ≥ kN +N .

For all algorithms presented, we assume that A is a list of the non-zero entries
in arbitrary order. For the direct algorithm, the ordering is indeed unimportant,
whereas the desired layout for the other algorithms can be obtained by sorting.
Sorting the elements of A is possible with O

(
kN
B logM/B

kN
M

)
I/Os [1]. Since

k ≤ N , this is at most 2ckN
B logM/B

N√
M

≤ c kN2

B
√

M
since M ≥ 2B. Note that this

is less than the number of I/Os required for the computation itself.

4.2 Direct Algorithm

The direct algorithm for permuting can simply be extended to any 1 ≤ k ≤ N .
Let bi be the i-th row of B, and ci the i-th row of C. By one scan of A while
adding for each non-zero entry aij the product aij · bj to ci, the result matrix

C is computed with O
(

kN2

B

)
I/Os. As we will see, for k ≤ (N/M)1−ε and any

constant ε > 0 this algorithm is asymptotically optimal since Δ in Theorem 1
becomes a constant.
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4.3 Tile-Based Algorithm

For denser cases of A, there is a modification of the tile-based algorithm in
[6] that clearly outperforms the direct algorithm. More precisely, this algorithm
works for any k ≥ N

M and M ≤ kN . For the ease of notation, let 3M be the size
of internal memory. For this approach, matrices B and C have to be partitioned
into tiles of size a × M/a for a =

√
MN/k, while A is partitioned into tiles

of size a × a (cf. Fig. 1). Let Aij ,Bij , and Cij denote the j-th tile within the
i-th tile row of the corresponding matrix. Clearly, it holds Cij =

∑n
l=1 AilBlj

for n = N/a. Throughout the calculation of a certain Cij , partial results can
be kept in internal memory while Ail and Blj are loaded consecutively for each
l. Since each B-tile contains exactly M elements, each such tile can be loaded
in a whole and only once per calculation of a Cij . The same holds for tiles of
A containing at most M entries. For tiles with more non-zero entries, elements
are loaded in bunches of M elements while the corresponding B-tile is kept in
memory.

A B

a

a

a

M/a

Fig. 1. An illustration of the tiles in A and B. C is partitioned similarly to B.

Hence, for saving all C-tiles no more than N2

B I/Os are required. Loading
B-tiles costs at most N2

M · nM
B I/Os. Each tile, and thus, each element in A has

to be loaded for the calculation of no more than N/M
a tiles of C. Therefore,

loading the non-zero elements of A requires at most kN
B

N
√

N√
kM

I/Os. Altogether,
this sums up to

O
(√

kN

M

N2

B

)
I/Os for the computation of C.

4.4 Using Dense Parts of A

In this section, we show that by loading M elements from each matrix, even for
k < N

M a number of ω (M) elementary products can be obtained, i.e., more than
the direct algorithm achieves. This is done by loading dense parts from A.

For the sake of illustration, we consider the matrix A as an adjacency matrix
of a bipartite graph G = (U ∪ V,E), where aij �= 0 constitutes a connection
between the i-th node of U and the j-th node of V . If there are sufficiently many
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subgraphs containing O (M) edges, with average degree Ω (D), SDMk is possible
in time O

(
kN2

BD

)
.

Lemma 1. Given a bipartite graph G = (U ∪ V,E), |U | = |V | = N , |E| = kN ,
i.e., k is the average degree.

Then, for 2 ≤ k ≤ N
32M ln2 N

M and M ≤ N/4 there exist two subsets X ⊆ U ,
Y ⊆ V , such that the subgraph induced by X and Y has average degree at least

D = min

{
ln N

M

2 ln N ln2 N
M

4Mk

,

√
M

2

}

and it holds that |X |, |Y | ≤ M/D. This D satisfies D ≤ k/2.

Before showing this, we need the following preliminary lemma.

Lemma 2. For k ≤ N
32M ln2 N

M , M ≤ N , and D according to Lemma 1 the
inequality

k ≤ ND

4M
ln

N

M
(1)

is satisfied.

Proof. For D = ln N
M

2 ln N
4Mk ln2 N

M

, (1) holds as follows. Substituting D yields

k ln
N ln2 N

M

4Mk
≤ N

8M
ln2 N

M
.

Observe, that for x
k ≥ e, the term k ln x

k for x > 0 is monotonously increasing in
k. Its derivative is ln x

k − 1, and hence, positive for x
k ≥ e. Since by assumption

N ln2 N
M

4Mk ≥ e, we can substitute k resulting in

N ln 8
32M

ln2 N

M
≤ N

6M
ln2 N

M

which is obviously true.
If the second term of the minimum in D applies, i.e. D =

√
M/2, we have to

distinguish the cases N
32M ln2 N

M ≤ N , i.e., M ≥ ln2 N
M

32 and vice versa, i.e. only
k ≤ N has to hold. By substituting D and k in (1) both cases hold within the
desired range. ��
Proof (Lemma 1). In order to make a statement about the minimal degree of a
node, we transform G such that the maximal degree in V is restricted to at most
k. Therefore, split each node vi ∈ V with degree di > k into vi,1, . . . , vi,�di/k� such
that each node has degree no more than k. Let V ′ denote this transformation
of V , E′ the transformed set of edges and G′ = (U ∪ V ′, E′) the created graph.
By construction, the size of V will increase by no more than N , i.e., |V ′| ≤
2N . From this, we can conclude that there are at least N/2 nodes with degree
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no less than k/2: Suppose that c nodes in the original set V have degree less
than k/2. Hence, the degrees of the remaining N − c nodes sum up to at least
(N − c/2)k. By construction of V ′, for each node with degree di > k, there will
be at most one new node with degree less than k/2. This leads to no less than
(N− c/2)k− (N− c)k/2 = kN/2 edges that have to belong to nodes with degree
at least k/2. Since all nodes have degree at most k, there have to be at least
N/2 nodes of degree at least k/2. We call the subset of these nodes V ′

k/2.
Observe that any subgraph G′

S in G′ with average degree D consisting of
nodes X ⊆ U and Y ⊆ V ′ can be transformed into a subgraph GS of G with
average degree at least D by simply replacing any vi,j ∈ Y by the corresponding
node vi of the original graph. The subgraph GS contains at least the amount of
edges of G′

S , but no more nodes than G′
S . Hence, it suffices to show the existence

of the desired X and Y for G′. To this end, we will prove that in G′ for a random
X ⊆ U , |X | = M/D, the expected number of nodes in V ′ that have degree ≥ D
into X is at least M/D.

Now, choose X ⊆ U uniformly at random and consider a vertex vi ∈ V ′
k/2.

The number of vertices chosen for X in the neighborhood of vi is given by
a hypergeometric distribution, resembling drawing at least k/2 times without
replacement from an urn with N marbles, M/D of which are black. The event
we are interested in is that at least D of the drawn marbles are black.

We lower bound this probability by considering only the case of drawing
precisely D black marbles. The probability can be expressed in the following
way: Consider drawing the k/2 marbles one after another, and choose precisely D
positions where black marbles are drawn. The probability of such a drawing can
then be calculated as the product of the fractions of black (white) marbles that
are left in the urn before each drawing. For black marbles the fraction is at least
p = (M

D −D)/N , for white it is at least q = 1 − M
D /(N − k

2 ). In the following,
we use D ≤√M/2, i.e., D ≤ M

2D , and k ≤ N to simplify these expressions.
The overall probability of drawing D black marbles can then be bounded by

summing the probabilities of all possible choices to position the D black marbles
in the consecutive drawing. Let Xi be the number of black marbles drawn, i.e.
the number of edges from vi into X . Thus, we can lower bound the probability
similar to a binomial distribution:

P (Xi ≥ D) ≥
(
k/2
D

)
pDqk/2−D ≥

(
k

2D
M

2DN

)D (
1 − 2M

DN

)k/2

.

Taking logarithm we get

ln P (Xi ≥ D) ≥ D ln
Mk

4ND2 +
k

2
ln
(

1 − 2M
ND

)
≥ D ln

Mk

4ND2 − k
2M
ND

where the last inequality is justified by Observation 1 and 4M ≤ N .
Since we consider at least N/2 nodes, the goal is now to choose the biggest D

satisfying

D ln
4ND2

Mk
+ k

2M
ND

≤ ln
ND

2M
.
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By Lemma 2, k ≤ ND
4M ln N

M , i.e., k 2M
ND ≤ 1

2 ln N
M , holds. Hence, we are interested

in

D ln
4ND2

Mk
≤ 1

2
ln

N

M
+ ln

D

2
which is implied by

D ln
2
√
ND√
Mk

≤ 1
4

ln
N

M
(2)

for D ≥ 2. Otherwise, since k ≥ 2 one can obtain the desired subgraph by
choosing M adjacent edges in G. This yields a subgraph consisting of at most
M + 1 vertices, i.e. with average degree at least 2/(1 + 1/M).

Now, we can use Observation 5 with f =
√

4N
Mk and x = 1

4 ln N
M , and get the

approximation

D ≤ x

lnxf
=

ln N
M

2 ln N ln2 N
M

4Mk

for which inequality (2) holds.
Finally, we check D ≤ k/2. To this end, we plug k/2 as D into (2) and get

k

2
ln

4N · k2

Mk · 4 ≤ 1
2

ln
N

M

k
2 ln Nk

M ≤ 1
2 ln N

M , assuming k ≤ 1, contradicting one of the assumptions. ��
In the following, we assume an internal memory of size 2M to ease notation.
Now consider a subgraph GS = (US ∪VS , ES) with M edges and average degree
D. By construction of G = (U ∪ V,E), we considered a non-zero entry aij as an
edge between ui and vj . Let IU , IV be the set of indices of vertices in US , VS

respectively. In order to create elementary products corresponding to ES , the M
corresponding non-zero entries aij with i ∈ IU , j ∈ IV have to be loaded. Then,
for each column 1 ≤ k ≤ N , by loading all elements bjk with row indices j ∈ IV

together, M elementary products for rows with indices IU in C can be obtained.
To efficiently load certain elements of a column in B, we extract these rows

into a separate |IV | ×N matrix and transpose it to column major layout. This
is possible with 2NM

DB I/Os, since we assume B to be in row major layout. Then,
elements corresponding to a certain column can be loaded with at most M

DB
I/Os. Similarly, partial products can be stored into a |IU |×N matrix in column
major layout. Transposing this, and adding the rows to the corresponding rows
in C requires no more than 3NM

DB I/Os. Hence, given a subgraph with M edges
and average degree D, NM elementary products can be created with at most
6NM

DB + M
B = O (NM

DB

)
I/Os.

Lemma 1 only states the existence of at least one dense subgraph. However,
after creating all the elementary products corresponding to the edges of a dense
subgraph, one can think of removing these edges. This will decrease the number
of edges by no more than M , and we can use Lemma 1 for graphs with kN −
M edges again. Clearly, half of the elementary products can be obtained by
subgraphs with average degree D(k/2). This is possible with O

(
kN2

2D(k/2)B

)
I/Os.
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Let D1(k) = ln N
M /(2 ln N ln2 N

M

4Mk ), i.e., the first argument of the minimum of D
in Lemma 1. Altogether, the number of I/Os necessary to create all elementary
products for C is bounded from above by

L(k,N) ≤ kN

B
+

∞∑
i=1

6 max
{

2kN2

2iB
√
M

,
kN2

2iD1(k/2i)B

}

≤ kN

B
+

12kN2

B
√
M

+ 6kN2
∞∑

i=0

ln N ln2 N
M

4Mk + ln 2i

2iB ln N
M

= O
(
kN2

DB

)
.

Observe that for k ≥ N
32M ln2 N

M ,
√

kN
M = Ω

(
ln N

M

)
and thus, the tile-based

algorithm is asymptotically better.

4.5 Small Instances

For smaller instances where M ≥ kN , neither the tile-based algorithm is ap-
plicable, nor does the proof of dense subgraphs hold. Once M ≥ kN + N , a
degenerated version of the tile-based approach becomes the one of choice: Ini-
tially, all non-zero entries of A are loaded into internal memory. Afterwards, B
is loaded in whole columns. For each column, the corresponding column in C
can be calculated directly and written to external memory. This requires only
O
(

N2

B

)
I/Os.

5 Lower Bounds

Theorem 2. For 1 ≤ k ≤ N any program for SDMk needs

Ω

(
max

{
kN2

BΔ
,
kN2

B
√
M

,
N2

B

})
I/Os, with Δ according to Theorem 1.

Theorem 2 will be proven throughout this section. Therefore, we make use of
the following technique introduced by Hong and Kung in [5].

Lemma 3. A round-based program consists of q rounds where each round con-
sists of M/B input operations, followed by M/B output operations such that
after the round internal memory is empty. A lower bound on the number of
rounds qmin of any round-based program with internal memory of size 2M can
be transformed into a lower bound on the number of I/Os l of any (normal)
program with internal memory of size M by l ≥ M

B · (qmin − 1).

Recall that the overall number of elementary products that have to be produced
for SDMk is kN2. Thus, given an upper bound on the number of elementary
products that can be made during one round, a lower bound on the number of
necessary rounds is obtained. We will do this by showing that there are matrices
with only few dense parts. In the following, we consider the matrix A again as
an adjacency matrix.
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Lemma 4. Let G be the family of bipartite graphs G = (U ∪ V,E) with |U | =
|V | = N and |E| = kN for k ≤ N/2.

For any M ≤ kN there is a graph G ∈ G such that G contains no subgraph
GS = (US ∪ VS , ES) with |ES | = M and average degree

D′
M > max

{
8 ln N

M

ln 16N ln2 N
M

Mk

, e4 ·
√

kM

N

}
. (3)

Proof. We will show this by upper bounding the number of graphs containing
at least one such dense subgraph and compare this to the cardinality of G. The
upper bound is given by the number of possibilities to choose 2M/D′

M vertices
from U∪V and the number of possibilities to insert M edges between the selected
vertices. Furthermore, the remaining kN−M edges are chosen uniformly within
the graph. The former presumes M/D′

M ≤ N . However, since M ≤ kN and

D′
M >

√
kM
N this is implied. Further, we can assume D′

M ≤ √
M since this is the

maximum degree of a subgraph consisting of M edges. Hence, if the inequality(
2N

2M/D′
M

)(
(M/D′

M )2

M

)(
N2

kN −M

)
<

(
N2

kN

)
holds for the parameters given, Lemma 4 is proven.Observation 4 yields(

2N
2M/D′

M

)(
(M/D′

M )2

M

)
<

(
N2 − kN

kN

)M

.

Estimating binomial coefficients according to Observation 3, taking logarithms
and multiplying by D′

M/M , we obtain

2 ln
eD′

MN

M
+ D′

M ln
eM

D′
M

2 < D′
M ln

N2 − kN

kN
= D′

M ln
N

k
+ D′

M ln
(

1 − k

N

)
.

The last term can be estimated for k ≤ N/2 by Observation 1 resulting in

2 ln
eD′

MN

M
+ D′

M ln
eM

D′
M

2 < D′
M ln

N

k
−D′

M

2k
N

.

And by simple transformations, we obtain

D′
M ln

D′
M

2
N

kM
> 2 ln

N

M︸ ︷︷ ︸
Term 1

+ 2 ln eD′
M + D′

M

(
1 + 2

k

N

)
︸ ︷︷ ︸

Term 2

. (4)

Equation 4 is implied if Terms 1 and 2 are both bounded by 1
2D

′
M ln D′

M
2N

kM . We
first check this for Term 2 only. By Observe 2 ln eD′

M ≤ D′
M . Thus,

1
2
D′

M ln
D′

M
2
N

kM
> 2 ln eD′

M + 2D′
M
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is implied by D′
M > e4 ·

√
kM
N . For any such D′

M Inequality 4 holds if

D′
M ln

D′
M

√
N√

kM
> 2 ln

N

M
. (5)

By substitution of D′
M by e4 ·

√
kM
N , (5) already holds for

√
k > 1

2e4

√
N
M ln N

M ,

i.e. especially for M ≥ N . For
√
k ≤ 1

2e4

√
N
M ln N

M , we use Observation 6. Alto-
gether, for

D′
M > max

{
8 ln N

M

ln 16N ln2 N
M

Mk

, e4 ·
√

kM

N

}
not all possible graphs in G are covered and therefore, Lemma 4 holds. Since the

second term is a sufficient bound for any
√
k > 1

2e4

√
N
M ln N

M , we use ln instead
of ln to derive a closed formula by bounding the first term. Finally, note that
D′

M > 4 holds for k ≥ 1. ��
Lemma 5. Let G be the family of bipartite graphs G = (U ∪ V,E) with |U | =
|V | = N and |E| = kN for k ≤ N/2.

For any M ≤ kN , there is a graph G ∈ G such that G contains at most
M−1 edges in subgraphs GS = (US ∪VS , ES) with |ES | ≤ M and average degree
D′ ≥ 2e4Δ where Δ is defined according to Theorem 2.

Proof. By Lemma 4, this holds already for subgraphs consisting of exactly M
edges. For smaller subgraphs, we prove the statement by contradiction.

Suppose that there are at least M edges in subgraphs with average degree at
least D′ consisting of less than M edges. Let S be the set of such subgraphs. Since
each subgraph in S has less than M edges, there exists a subset S′ of subgraphs
in S with a total number of cM edges for 1 ≤ c < 2. The subgraph GS′ =
(US′ ∪ VS′ , ES′) induced by S′ has obviously still average degree at least D′.

Wlog let |US′ | ≥ |VS′ | and consider the vertices US′ in GS′ . Now choose the⌈
M
D′
⌉

vertices in US′ with highest degree, and let U ′
S′ denote the set of these.

Since the vertices US′ have average degree D′ in GS′ , the subset U ′
S′ cannot

have a lower average degree. Hence, the subgraph G′
S′ induced by U ′

S′ and VS′

contains at least M edges, but consists of no more than M
D′ + cM

D′ + 1 vertices.
Therefore, any subgraph induced by exactly M edges of G′

S′ has average degree
at least 2MD′

M+cM+D′ . Since D′ ≤ √
M , the average degree is at least 2D′

2+c ≥ 1
2D

′.
This contradicts Lemma 4 for any D′ ≥ 2D′

M . ��
Using this, we can finally prove Theorem 2. Recall that Lemma 4, and thus, 5
fails for D′

M >
√
M . However, the maximum degree of a subgraph with M edges

is
√
M . The total number of elementary products, necessary for SDMk is kN2.

By Lemma 5, there are at most N(M − 1) elementary products which might
be calculated faster than the rest. For the remaining kN2 − NM + N elemen-
tary products, the following holds. Consider any round-based program for SDMk.
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Within each round, there are at most 2M elements of B and C loaded. Let sij ,
tij be the number of elements from the j-th column of B, C respectively, loaded
in round i. By Lemma 5 and the observation that any subgraph has degree
at most

√
M , there can be made no more than

∑N
j=1 min{D′,

√
M} · sijtij =

2M · min{D′,
√
M} elementary products during each round. Hence, there have

to be at least
kN2 −MN + N

2M · min{D′,
√
M}

rounds. This yields a lower bound of

M

B

(
kN2 −MN + N

2M · min{D′,
√
M} − 1

)
= Ω

(
max

{
kN2

BΔ
,
kN2

B
√
M

})
I/Os for SDMk.

5.1 Closing the Parameter Range

Recall that Lemma 5 only holds for k ≤ N/2. However, Ω
(
max

{
kN2

BΔ , kN2

B
√

M

})
is a lower bound for N/2 ≤ k ≤ N as well since increasing the number of non-
zero entries in A cannot decrease the number of I/Os. For M ≥ kN a scanning
bound of Ω

(
N2

B

)
holds for the output of C.
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Abstract. Over the recent years, a new linear method for compress-
ing high-dimensional data (e.g., images) has been discovered. For any
high-dimensional vector x, its sketch is equal to Ax, where A is an m×n
matrix (possibly chosen at random). Although typically the sketch length
m is much smaller than the number of dimensions n, the sketch contains
enough information to recover an approximation to x. At the same time,
the linearity of the sketching method is very convenient for many appli-
cations, such as data stream computing and compressed sensing.

The major sketching approaches can be classified as either combinato-
rial (using sparse sketching matrices) or geometric (using dense sketching
matrices). They achieve different trade-offs, notably between the com-
pression rate and the running time. Thus, it is desirable to understand
the connections between them, with the goal of obtaining the “best of
both worlds” solution. Several recent results established such connec-
tions, indicating that the two approaches are just different manifestations
of the same underlying phenomenon. This enabled the development of
novel algorithms, including the first algorithms that provably achieve the
(asymptotically) optimal compression rate and near-linear recovery time
simultaneously.

In this talk we give an overview of the results in the area, as well as
look at some of them in more detail. In particular, we will describe a new
algorithm, called “Sequential Sparse Matching Pursuit (SSMP)”. In ad-
dition to having the aforementioned theoretical guarantees, the algorithm
works well on real data, with the recovery quality often outperforming
that of more complex algorithms, such as l1 minimization.

Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Milan
Ruzic and Martin Strauss.
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Abstract. For a static array A of n totally ordered objects, a range
minimum query asks for the position of the minimum between two spec-
ified array indices. We show how to preprocess A into a scheme of size
2n + o(n) bits that allows to answer range minimum queries on A in
constant time. This space is asymptotically optimal in the important
setting where access to A is not permitted after the preprocessing step.
Our scheme can be computed in linear time, using only n + o(n) ad-
ditional bits for construction. We also improve on LCA-computation in
BPS- or DFUDS-encoded trees.

1 Introduction

For an array A[1, n] of n natural numbers or other objects from a totally ordered
universe, a range minimum query rmqA(i, j) for i ≤ j returns the position of a
minimum element in the sub-array A[i, j]; i.e., rmqA(i, j) = argmini≤k≤j{A[k]}.
This fundamental algorithmic problem has numerous applications, e.g., in text
indexing [1,2], document retrieval [3], and position-restricted pattern matching
[4], just to mention a few.

In all of these applications, the array A in which the range minimum queries
(RMQs) are performed is static and known in advance, which is also the scenario
considered in this article. In this case it makes sense to preprocess A into a
(preprocessing-) scheme such that future RMQs can be answered quickly. We
can hence formulate the following problem.

Problem 1 (RMQ-Problem).

Given: a static array A[1, n] of n totally ordered objects.
Compute: an (ideally small) data structure, called scheme, that allows to an-

swer RMQs on A in constant time.

The problem of most previous schemes for O(1)-RMQs [5, 6, 7] is their huge
space consumption of O(n logn) bits. A succinct data structure, on the other
hand, uses space that is close to the information-theoretic lower bound, in the
sense that objects from a universe of cardinality L are stored in (1 + o(1)) lgL
bits.1 Research on succinct data structures is very active, and we just mention
1 Throughout this article, space is measured in bits, and lg denotes the binary loga-

rithm.

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 158–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Table 1. Preprocessing schemes for O(1)-RMQs, where |A| denotes the space for the
(read-only) input array. All schemes can be constructed in O(n) time.

reference final space construction space comments
[5] O(n lg n) + |A| O(n lg n) + |A| via LCAs in Cartesian Tree
[6] O(n lg n) + |A| O(n lg n) + |A| simpler than previous schemes
[7] O(n lg n) + |A| O(n lg n) + |A| not based on Cartesian Trees
[15] 2n + o(n) + |A| 2n + o(n) + |A| generalizes to 2

c
n + o(n) + |A| bits

[16] O(nHk) + o(n) O(nHk) + o(n) Hk: empirical entropy of A

[1] n + o(n) n + o(n) only for ±1rmq;
[3] 4n + o(n) O(n lg n) + |A| only non-systematic data structure
this article 2n + o(n) 3n + o(n) + |A| final space optimal

some examples from the realm of trees [8, 9,10,11,12] and strings [13,14], being
well aware of the fact that this list is far from complete. This article presents the
first succinct data structure for O(1)-RMQs in the standard word-RAM model
of computation (which is also the model used in all LCA- and RMQ-schemes
cited in this article).

Before detailing our contribution, we first classify and summarize existing
solutions for O(1)-RMQs.

1.1 Previous Solutions for RMQ

In accordance with common nomenclature, preprocessing schemes for O(1)-
RMQs can be classified into two different types: systematic and non-systematic.
Systematic schemes must store the input array A verbatim along with the addi-
tional information for answering the queries. In such a case the query algorithm
can consult A when answering the queries; this is indeed what all systematic
schemes make heavy use of. On the contrary, non-systematic schemes must be
able to obtain their final answer without consulting the array. This second type
is important for at least two reasons:

1. In some applications, e.g., in algorithms for document retrieval [3] or position
restricted substring matching [4], only the position of the minimum matters,
but not the value of this minimum. In such cases it would be a waste of
space (both in theory and in practice) to keep the input array in memory,
just for obtaining the final answer to the RMQs, as in the case of systematic
schemes.

2. If the time to access the elements in A is ω(1), this slowed-down access
time propagates to the time for answering RMQs if the query algorithm
consults the input array. As a prominent example, in string processing RMQ
is often used in conjunction with the array of longest common prefixes of
lexicographically consecutive suffixes, the so-called LCP-array [17]. However,
storing the LCP-array efficiently in 2n + o(n) bits [1] increases the access-
time to the time needed to retrieve an entry from the corresponding suffix
array [17], which is Ω(lgε n) (constant ε > 0) at the very best if the suffix
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array is also stored in compressed form [14]. Hence, with a systematic scheme
the time needed for answering RMQs on LCP could never be O(1) in this
case. But exactly this would be needed for constant-time navigation in RMQ-
based compressed suffix trees [2] (where for different reasons the LCP-array
is still needed, so this is not the same as the above point).

In the following, we briefly sketch previous solutions for RMQ schemes. For a
summary, see Table 1, where, besides the final space consumption, in the third
column we list the peak space consumption at construction time of each scheme,
which sometimes differs from the former term.

Systematic Schemes. Most schemes are based on the Cartesian Tree [18], the
only exception being the scheme due to Alstrup et al. [7]. All direct schemes
[1, 6, 7, 15] are based on the idea of splitting the query range into several sub-
queries, all of which have been precomputed, and then returning the overall
minimum as the final result. The schemes from the first three rows of Table 1
have the same theoretical guarantees, with Bender et al.’s scheme [6] being less
complex than the previous ones, and Alstrup et al.’s [7] being even simpler (and
most practical). The only O(n)-bit scheme is due to Fischer and Heun [15] and
achieves 2n + o(n) bits of space in addition to the space for the input array A.
It is based on an “implicit” enumeration of Cartesian Trees only for very small
blocks (instead of the whole array A). Its further advantage is that it can be
adapted to achieve entropy-bounds for compressible inputs [16]. For systematic
schemes, no lower bound on space is known.2

An important special case is Sadakane’s n+ o(n)-bit solution [1] for ±1rmq,
which we will describe it in greater detail in Sect. 2.2.

Non-Systematic Schemes. The only existing scheme is due to Sadakane [3]
and uses 4n+ o(n) bits. It is based on the balanced-parentheses-encoding (BPS)
[8] of the Cartesian Tree T of the input array A and a o(n)-LCA-computation
therein [1]. The difficulty that Sadakane overcomes is that in the “original”
Cartesian Tree, there is no natural mapping between array-indices in A and
positions of parentheses (basically because there is no way to distinguish between
left and right nodes in the BPS of T ); therefore, Sadakane introduces n “fake”
leaves to get such a mapping. There are two main drawbacks of this solution.

1. Due to the introduction of the “fake” leaves, it does not achieve the infor-
mation-theoretic lower bound (for non-systematic schemes) of 2n − Θ(lg n)
bits. This lower bound is easy to see because any scheme for RMQs allows
to reconstruct the Cartesian Tree by iteratively querying the scheme for the

2 The claimed lower bound of 2n + o(n) + |A| bits under the “min-probe-model” [15]
turned out to be wrong, as was kindly pointed out to the authors by S. Srinivasa
Rao (personal communication, November 2007). In fact, it is easy to lower the space
consumption of [15] to 2

c
n + o(n) + |A| bits (constant integer c > 0) by grouping c

adjacent elements in A’s blocks together, and “building” the Cartesian Trees only
on the minima of these groups.
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minimum (in analogy to the definition of the Cartesian Tree); and because
the Cartesian Tree is binary and each binary tree is a Cartesian Tree for some
input array, any scheme must use at least lg(

(2n−1
n−1

)
/(2n−1)) = 2n−Θ(lgn)

bits [19].
2. For getting an O(n)-time construction algorithm, the (modified) Cartesian

Tree needs to be first constructed in a pointer-based implementation, and
then converted to the space-saving BPS. This leads to a construction space
requirement of O(n lg n) bits, as each node occupies O(lg n) bits in memory.
The problem why the BPS cannot be constructed directly in O(n) time (at
least we are not aware of such an algorithm) is that a “local” change in A
(be it only appending a new element at the end) does not necessarily lead to
a “local” change in the tree; this is also the intuitive reason why maintaining
dynamic Cartesian Trees is difficult [20].

1.2 Our Results

We address the two aforementioned problems of Sadakane’s solution [3] and
resolve them in the following way:

1. We introduce a new preprocessing scheme for O(1)-RMQs that occupies only
2n + o(n) bits in memory, thus being the first that asymptotically achieves
the information-theoretic lower bound for non-systematic schemes. The crit-
ical reader might call this “lowering the constants” or “micro-optimization,”
but we believe that data structures using the smallest possible space are
of high importance, both in theory and in practice. And indeed, there are
many examples of this in literature: for instance, Munro and Raman [8]
give a 2n+o(n)-bit-solution for representing ordered trees, while supporting
most navigational operations in constant time, although a O(n)-bit-solution
(roughly 10n bits [8]) had already been known for some 10 years before [19].

2. We give a direct construction algorithm for the above scheme that needs
only n+ o(n) bits of space in addition to the space for the final scheme, thus
lowering the construction space for non-systematic schemes from O(n lg n)
to O(n) bits (on top of A). This is a significant improvement, as the space for
storing A is not necessarily Θ(n lg n); for example, if the numbers in A are
integers in the range [1, lgO(1) n], A can be stored as an array of packed words
using only O(n lg lgn) bits of space. See Sect. 6 for a different example. The
construction space is an important issue and often limits the practicality
of a data structure, especially for large inputs (as they arise nowadays in
web-page-analysis or computational biology).

The intuitive explanation why our scheme works better than Sadakane’s scheme
[3] is that ours is based on a new tree in which the preorder-numbers of the
nodes correspond to the array-indices in A, thereby rendering the introduction
of “fake” leaves (as described earlier) unnecessary. In summary, this article is
devoted to proving
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Theorem 1. For an array A of n objects from a totally ordered universe, there
is a preprocessing scheme for O(1)-RMQs on A that occupies only 2n+O(n lg lg n

lg n )
bits of memory, while not needing access to A after its construction, thus meeting
the information-theoretic lower bound. This scheme can be constructed in O(n)
time, using only n+ o(n) bits of space in addition to the space for the input and
the final scheme.

This result is not only appealing in theory, but also important in practice. For
example, when RMQs are used in conjunction with sequences of DNA (genomic
data), where the alphabet size σ is 4, storing the DNA even in uncompressed
form takes only 2n bits, already less than the 4n bits of Sadakane’s solution [3].
Hence, halving the space for RMQs leads to a significant reduction of total space.
Further, because n is typically very large (n ≈ 232 for the human genome), a
construction space of O(n lg n) bits is much higher than the O(n lg σ) bits for
the DNA itself. An implementation in C++ of our new scheme is available at
http://www-ab.informatik.uni-tuebingen.de/people/fischer/
optimalRMQ.tgz.

2 Preliminaries

We use the standard word-RAM model of computation, where fundamental
arithmetic operations on words consisting of Θ(lg n) consecutive bits can be
computed in O(1) time.

2.1 Rank and Select on Binary Strings

Consider a bit-string S[1, n] of length n. We define the fundamental rank - and
select -operations on S as follows: rank1(S, i) gives the number of 1’s in the prefix
S[1, i], and select1(S, i) gives the position of the i’th 1 in S, reading S from left
to right (1 ≤ i ≤ n). Operations rank0(S, i) and select0(S, i) are defined similarly
for 0-bits. There are data structures of size O(n lg lg n

lg n ) bits in addition to S that
support rank- and select-operations in O(1) time [21].

2.2 Data Structures for ±1RMQ

Consider an array E[1, n] of natural numbers, where the difference between con-
secutive elements in E is either +1 or −1 (i.e. E[i] − E[i − 1] = ±1 for all
1 < i ≤ n). Such an array E can be encoded as a bit-vector S[1, n], where
S[1] = 0, and for i > 1, S[i] = 1 iff E[i] − E[i − 1] = +1. Then E[i] can be
obtained by E[1]+ rank1(S, i)− rank0(S, i)+1 = E[1]+ i− 2rank0(S, i)+1. Un-
der this setting, Sadakane [1] shows how to support RMQs on E in O(1) time,
using S and additional structures of size O(n lg2 lg n

lg n ) bits. We will improve this
space to O(n lg lg n

lg n ) in Sect. 5. A technical detail is that ±1rmq(i, j) yields the
position of the leftmost minimum in E[i, j] if there are multiple occurrences of
this minimum.

http://www-ab.informatik.uni-tuebingen.de/people/fischer/optimalRMQ.tgz
http://www-ab.informatik.uni-tuebingen.de/people/fischer/optimalRMQ.tgz
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2.3 Sequences of Balanced Parentheses

A string B[1, 2n] of n opening parentheses ‘(’ and n closing parentheses ‘)’ is
called balanced if in each prefix B[1, i], 1 ≤ i ≤ 2n, the number of ‘)’s is no more
than the number of ‘(’s. Operation findopen(B, i) returns the position j of the
“matching” opening parenthesis for the closing parenthesis at position i in B.
This position j is defined as the largest j < i for which rank((B, i)−rank)(B, i) =
rank((B, j)− rank)(B, j). The findopen-operation can be computed in constant
time [8]; the most space-efficient data structure for this needs O(n lg lg n

lg n ) bits [10].

2.4 Depth-First Unary Degree Encoding of Ordered Trees

The Depth-First Unary Degree Sequence (DFUDS) U of an ordered tree T is
defined as follows [9]. If T is a leaf, U is given by ‘()’. Otherwise, if the root
of T has w subtrees T1, . . . , Tw in this order, U is given by the juxtaposition of
w+1 ‘(’s, a ‘)’, and the DFUDS’s of T1, . . . , Tw in this order, with the first ‘(’ of
each Ti being omitted. It is easy to see that the resulting sequence is balanced,
and that it can be interpreted as a preorder-listing of T ’s nodes, where, ignoring
the very first ‘(’, a node with w children is encoded in unary as ‘(w)’ (hence the
name DFUDS).

3 The New Preprocessing Scheme

We are now ready to dive into the technical details of our new preprocessing
scheme. The basis will be a new tree, the 2d-Min-Heap, defined as follows. Recall
that A[1, n] is the array to be preprocessed for RMQs. For technical reasons, we
define A[0] = −∞ as the “artificial” overall minimum.

Definition 1. The 2d-Min-Heap MA of A is a labeled and ordered tree with
vertices v0, . . . , vn, where vi is labeled with i for all 0 ≤ i ≤ n. For 1 ≤ i ≤ n, the
parent node of vi is vj iff j < i, A[j] < A[i], and A[k] ≥ A[i] for all j < k ≤ i.
The order of the children is chosen such that their labels are increasing from left
to right.

Observe that this is a well-defined tree with the root being always labeled as 0,
and that a node vi can be uniquely identified by its label i, which we will do
henceforth. See Fig. 1 for an example.

We note the following useful properties of MA.

Lemma 1. Let MA be the 2d-Min-Heap of A.

1. The node labels correspond to the preorder-numbers of MA (starting at 0).
2. Let i be a node in MA with children x1, . . . , xk. Then A[i] < A[xj ] for all

1 ≤ j ≤ k.
3. Again, let i be a node in MA with children x1, . . . , xk. Then A[xj ] ≤ A[xj−1]

for all 1 < j ≤ k.
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Fig. 1. Top: The 2d-Min-Heap MA of the input array A. Bottom: MA’s DFUDS U
and U ’s excess sequence E. Two example queries rmqA(i, j) are underlined, including
their corresponding queries ±1rmqE(x, y).

Proof. Because the root of MA is always labeled with 0 and the order of the
children is induced by their labels, property 1 holds. Property 2 follows imme-
diately from Def. 1. For property 3, assume for the sake of contradiction that
A[xj ] > A[xj−1] for two children xj and xj−1 of i. From property 1, we know
that i < xj−1 < xj , contradicting the definition of the parent-child-relationship
in MA, which says that A[k] ≥ A[xj ] for all i < k ≤ xj . ��
Properties 2 and 3 of the above lemma explain the choice of the name “2d-Min-
Heap,” because MA exhibits a minimum-property on both the parent-child- and
the sibling-sibling-relationship, i.e., in two dimensions.

The following lemma will be central for our scheme, as it gives the desired
connection of 2d-Min-Heaps and RMQs.

Lemma 2. Let MA be the 2d-Min-Heap of A. For arbitrary nodes i and j,
1 ≤ i < j ≤ n, let 	 denote the LCA of i and j in MA (recall that we identify
nodes with their labels). Then if 	 = i, rmqA(i, j) is given by i, and otherwise,
rmqA(i, j) is given by the child of 	 that is on the path from 	 to j.

Proof. For an arbitrary node x in MA, let Tx denote the subtree of MA that is
rooted at x. There are two cases to prove.

	 = i. This means that j is a descendant of i. Due to property 1 of Lemma 1, this
implies that all nodes i, i + 1, . . . , j are in Ti, and the recursive application
of property 2 implies that A[i] is the minimum in the query range [i, j].

	 �= i. Let x1, . . . , xk be the children of 	. Further, let α and β (1 ≤ α ≤ β ≤ k)
be defined such that Txα contains i, and Txβ

contains j. Because 	 �= i and
property 1 of Lemma 1, we must have 	 < i; in other words, the LCA is not
in the query range. But also due to property 1, every node in [i, j] is in Txγ
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for some α ≤ γ ≤ β, and in particular xγ ∈ [i, j] for all α < γ ≤ β. Taking
this together with property 2, we see that {xγ : α < γ ≤ β} are the only
candidate positions for the minimum in A[i, j]. Due to property 3, we see
that xβ (the child of 	 on the path to j) is the position where the overall
minimum in A[i, j] occurs. ��

Note that (unlike for ±1rmq) this algorithm yields the rightmost minimum in
the query range if this is not unique. However, it can be easily arranged to return
the leftmost minimum by adapting the definition of the 2d-Min-Heap, if this is
desired.

To achieve the optimal 2n + o(n) bits for our scheme, we represent the 2d-
Min-Heap MA by its DFUDS U and o(n) structures for rank)-, select)-, and
findopen-operations on U (see Sect. 2). We further need structures for ±1rmq

on the excess-sequence E[1, 2n] of U , defined as E[i] = rank((U, i) − rank)(U, i).
This sequence clearly satisfies the property that subsequent elements differ by
exactly 1, and is already encoded in the right form (by means of the DFUDS U)
for applying the ±1rmq-scheme from Sect. 2.2.

The reasons for preferring the DFUDS over the BPS-representation [8] of
MA are (1) the operations needed to perform on MA are particularly easy on
DFUDS (see the next corollary), and (2) we have found a fast and space-efficient
algorithm for constructing the DFUDS directly (see the next section).

Corollary 1. Given the DFUDS U of MA, rmqA(i, j) can be answered in O(1)
time by the following sequence of operations (1 ≤ i < j ≤ n).

1. x ← select)(U, i + 1)
2. y ← select)(U, j)
3. w ← ±1rmqE(x, y)
4. if rank)(U,findopen(U,w)) = i then return i
5. else return rank)(U,w)

Proof. Let 	 be the true LCA of i and j in MA. Inspecting the details of how
LCA-computation in DFUDS is done [11, Lemma 3.2], we see that after the
±1rmq-call in line 3 of the above algorithm, w+1 contains the starting position
in U of the encoding of 	’s child that is on the path to j.3 Line 4 checks if 	 = i by
comparing their preorder-numbers and returns i in that case (case 1 of Lemma
2) — it follows from the description of the parent-operation in the original article
on DFUDS [9] that this is correct. Finally, in line 5, the preorder-number of 	’s
child that is on the path to j is computed correctly (case 2 of Lemma 2). ��
We have shown these operations so explicitly in order to emphasize the simplicity
of our approach. Note in particular that not all operations on DFUDS have to be
“implemented” for our RMQ-scheme, and that we find the correct child of the
LCA 	 directly, without finding 	 explicitly. We encourage the reader to work
on the examples in Fig. 1, where the respective RMQs in both A and E are
underlined and labeled with the variables from Cor. 1.
3 In line 1, we correct a minor error in the original article [11] by computing the

starting position x slightly differently, which is necessary in the case that i = lca(i, j)
(confirmed by K. Sadakane, personal communication, May 2008).
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4 Construction of 2d-Min-Heaps

We now show how to construct the DFUDS U of MA in linear time and n +
o(n) bits of extra space. We first give a general O(n)-time algorithm that uses
O(n lg n) bits (Sect. 4.1), and then show how to reduce its space to n+o(n) bits,
while still having linear running time (Sect. 4.2).

4.1 The General Linear-Time Algorithm

We show how to construct U (the DFUDS of MA) in linear time. The idea is
to scan A from right to left and build U from right to left, too. Suppose we are
currently in step i (n ≥ i ≥ 0), and A[i + 1, n] have already been scanned. We
keep a stack S[1, h] (where S[h] is the top) with the properties that A[S[h]] ≥
· · · ≥ A[S[1]], and i < S[h] < · · · < S[1] ≤ n. S contains exactly those indices
j ∈ [i + 1, n] for which A[k] ≥ A[j] for all i < k < j. Initially, both S and U are
empty. When in step i, we first write a ‘)’ to the current beginning of U , and
then pop all w indices from S for which the corresponding entry in A is strictly
greater than A[i]. To reflect this change in U , we write w opening parentheses
‘(’ to the current beginning of U . Finally, we push i on S and move to the next
(i.e. preceding) position i− 1. It is easy to see that these changes on S maintain
the properties of the stack. If i = 0, we write an initial ‘(’ to U and stop the
algorithm.

The correctness of this algorithm follows from the fact that due to the defi-
nition of MA, the degree of node i is given by the number w of array-indices to
the right of i which have A[i] as their closest smaller value (properties 2 and 3
of Lemma 1). Thus, in U node i is encoded as ‘(w)’, which is exactly what we
do. Because each index is pushed and popped exactly once on/from S, the linear
running time follows.

4.2 O(n)-Bit Solution

The only drawback of the above algorithm is that stack S requires O(n lg n)
bits in the worst case. We solve this problem by representing S as a bit-vector
S′[1, n]. S′[i] is 1 if i is on S, and 0 otherwise. In order to maintain constant
time access to S, we use a standard blocking-technique as follows. We logically
group s = � lg n

2 � consecutive elements of S′ into blocks B0, . . . , B�n−1
s �. Further,

s′ = s2 elements are grouped into super-blocks B′
0, . . . , B

′
�n−1

s′ �.

For each such (super-)block B that contains at least one 1, in a new table M
(or M ′, respectively) at position x we store the block number of the leftmost
(super-)block to the right of B that contains a 1, in M only relative to the
beginning of the super-block. These tables need O(n

s lg(s′/s)) = O(n lg lg n
lg n ) and

O( n
s′ lg(n/s)) = O( n

lg n ) bits of space, respectively. Further, for all possible bit-
vectors of length s we maintain a table P that stores the position of the leftmost
1 in that vector. This table needs O(2s · lg s) = O(

√
n lg lg n) = o(n) bits. Next,

we show how to use these tables for constant-time access to S, and how to keep
M and M ′ up to date.
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When entering step i of the algorithm, we known that S′[i + 1] = 1, because
position i + 1 has been pushed on S as the last operation of the previous step.
Thus, the top of S is given by i+ 1. For finding the leftmost 1 in S′ to the right
of j > i (position j has just been popped from S), we first check if j’s block
Bx, x = � j−1

s �, contains a 1, and if so, find this leftmost 1 by consulting P . If
Bx does not contain a 1, we jump to the next block By containing a 1 by first
jumping to y = x + M [x], and if this block does not contain a 1, by further
jumping to y = M ′[� j−1

s′ �]. In block y, we can again use P to find the leftmost
1. Thus, we can find the new top of S in constant time.

In order to keep M up to date, we need to handle the operations where (1)
elements are pushed on S (i.e., a 0 is changed to a 1 in S′), and (2) elements are
popped from S (a 1 changed to a 0). Because in step i only i is pushed on S,
for operation (1) we just need to store the block number y of the former top in
M [x] (x = � i−1

s �), if this is in a different block (i.e., if x �= y). Changes to M ′

are similar. For operation (2), nothing has to be done at all, because even if the
popped index was the last 1 in its (super-)block, we know that all (super-)blocks
to the left of it do not contain a 1, so no values in M and M ′ have to be changed.
Note that this only works because elements to the right of i will never be pushed
again onto S. This completes the description of the n + o(n)-bit construction
algorithm.

5 Lowering the Second-Order-Term

Until now, the second-order-term is dominated by the O(n lg2 lg n
lg n ) bits from

Sadakane’s preprocessing scheme for ±1rmq (Sect. 2.2), while all other terms
(for rank, select and findopen) are O(n lg lg n

lg n ). We show in this section a simple
way to lower the space for ±1rmq to O(n lg lg n

lg n ), thereby completing the proof
of Theorem 1.

As in the original algorithm [1], we divide the input array E into n′ = �n−1
s �

blocks of size s = � lg n
2 �. Queries are decomposed into at most three non-

overlapping sub-queries, where the first and the last sub-queries are inside of
the blocks of size s, and the middle one exactly spans over blocks. The two
queries inside of the blocks are answered by table lookups using O(

√
n lg2 n)

bits, as in the original algorithm.
For the queries spanning exactly over blocks of size s, we proceed as follows.

Define a new array E′[0, n′] such that E′[i] holds the minimum of E’s i’th block.
E′ is represented only implicitly by an array E′′[0, n′], where E′′[i] holds the
position of the minimum in the i’th block, relative to the beginning of that block.
Then E′[i] = E[is + E′′[i]]. Because E′′ stores n/ lgn numbers from the range
[1, s], the size for storing E′ is thus O(n lg lg n

lg n ) bits. Note that unlike E, E′ does
not necessarily fulfill the ±1-property. E′ is now preprocessed for constant-time
RMQs with the systematic scheme of Fischer and Heun [15], using 2n′ + o(n′) =
O( n

lg n ) bits of space. Thus, by querying rmqE′(i, j) for 1 ≤ i ≤ j ≤ n′, we can
also find the minima for the sub-queries spanning exactly over the blocks in E.
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Two comments are in order at this place. First, the used RMQ-scheme [15]
does allow the input array to be represented implicitly, as in our case. And
second, it does not use Sadakane’s solution for ±1rmq, so there are no circular
dependencies.

As a corollary, this approach also lowers the space for LCA-computation in
BPS [1] and DFUDS [11] from O(n lg2 lg n

lg n ) to O(n lg lg n
lg n ), as these are based on

±1rmq:

Corollary 2. Given the BPS or DFUDS of an ordered tree T , there is a data
structure of size O(n lg lg n

lg n ) bits that allows to answer LCA-queries in T in con-
stant time.

6 Application in Document Retrieval Systems

We now sketch a concrete example of where Theorem 1 lowers the construction
space of a different data structure. We consider the following problem:

Problem 2 (Document Listing Problem [22]).

Given: a collection of k text documents D = {D1, . . . , Dk} of total length n.
Compute: an index that, given a search pattern P of length m, returns all

d documents from D that contain P , in time proportional to m and d (in
contrast to all occurrences of P in D).

Due to a lack of space, we only state the final result; for a more complete expo-
sition, see the full version of this paper [23].

Theorem 2. The construction space for Sadakane’s Index for Document Listing
[3] is lowered from O(n lg n) bits to O(n + k lg n) bits (constant alphabet) or
O(n lg |Σ| + k lg n) bits (arbitrary alphabet Σ) with our scheme for RMQs from
Theorem 1, while not increasing the construction time.

7 Concluding Remarks

We have given the first optimal preprocessing scheme for O(1)-RMQs under the
important assumption that the input array is not available after preprocessing.
To the expert, it might come as a surprise that our algorithm is not based on
the Cartesian Tree, a concept that has proved to be very successful in former
schemes. Instead, we have introduced a new tree, the 2d-Min-Heap, which seems
to be better suited for our task. We hope to have thereby introduced a new
versatile data structure to the algorithms community. And indeed, we are already
aware of the fact that the 2d-Min-Heap, made public via a preprint of this
article [23], is pivotal to a new data structure for succinct trees [12].

We leave it as an open research problem whether the 3n+o(n)-bit construction
space be lowered to an optimal 2n+ o(n)-bit “in-place” construction algorithm.
(A simple example shows that it is not possible to use the leading n bits of the
DFUDS for the stack.)
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Abstract. Binary relations are an important abstraction arising in a
number of data representation problems. Each existing data structure
specializes in the few basic operations required by one single application,
and takes only limited advantage of the inherent redundancy of binary
relations. We show how to support more general operations efficiently,
while taking better advantage of some forms of redundancy in practical
instances. As a basis for a more general discussion on binary relation
data structures, we list the operations of potential interest for practical
applications, and give reductions between operations. We identify a set of
operations that yield the support of all others. As a first contribution to
the discussion, we present two data structures for binary relations, each
of which achieves a distinct tradeoff between the space used to store and
index the relation, the set of operations supported in sublinear time,
and the time in which those operations are supported. The experimental
performance of our data structures shows that they not only offer good
time complexities to carry out many operations, but also take advantage
of regularities that arise in practical instances to reduce space usage.

1 Introduction

Binary relations appear everywhere in Computer Science. Graphs, trees, in-
verted indexes, strings and permutations are just some examples. They have also
been used as a tool to complement existing data structures (such as trees [3] or
graphs [2]) with additional information, such as weights or labels on the nodes
or edges, that can be indexed and searched. Interestingly, the data structure
support for binary relations has not undergone a systematic study, but rather
one triggered by particular applications: we aim to remedy this fact.

Let us say that a binary relation B relates objects in [1, n] with labels in [1, σ],
containing t pairs out of the nσ possible ones. A simple entropy measure using
these parameters and ignoring any other possible regularity is H(B) = log

(
nσ
t

)
=

t log nσ
t +O(t) bits (log = log2 in this paper). Fig. 1 (top left) illustrates a binary

relation (identifying labels with rows and objects with columns henceforth).
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1 2 3 4 5 6 7 8 9
A . . 1 . . . . . .
B . . . . . 1 1 . .
C . . . 1 . 1 . 1 .
D . 1 . . . . . . .
E 1 . . 1 1 . . . .
F . . . . . . . . 1
G . . . . 1 . 1 . .
H 1 1 . . . . . . .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
E H D H A C E E G B C B G C F

B 1 10 1 10 10 1 10 1 10 1 10 1 10 10 10
A-D/E-H 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1

3 5 6 10 11 12 14
D A C B C B C

A-B/C-D 1 0 1 0 1 0 1

5 10 12
A B B

A/B 0 1 1

C/D 3 6 11 14
D C C C
1 0 0 0

1 2 4 7 8 9 13 15
E H H E E G G F

E-F/G-H 0 1 1 0 0 1 1 0

1 7 8 15
E E E F

E/F 0 0 0 1

2 4 9 13
H H G G

G/H 1 1 0 0

1 2 3 4 5 6 7 8 9
A-D 0 1 1 1 0 1 1 1 0
E-H 1 1 0 1 1 0 1 0 1

2 3 4 6 7 8
A-B 0 1 0 1 1 0
C-D 1 0 1 1 0 1

3 6 7
A 1 0 0
B 0 1 1

2 4 6 8
C 0 1 1 1
D 1 0 0 0

1 2 4 5 7 9
E-F 1 0 1 1 0 1
G-H 1 1 0 1 1 0

1 4 5 9
E 1 1 1 0
F 0 0 0 1

1 2 5 7
G 0 0 1 1
H 1 1 0 0

Fig. 1. An example of binary relation (top left), its representation according to Sec. 4
(right) and according to Sec. 5 (bottom). Note that the labels and object numbers are
included in each node solely for ease of reading; in the encoding they are implicit.

Previous work focused on relatively basic primitives for binary relations: ex-
tract the list of all labels associated to an object or of all objects associated to
a label (an operation called access), or extracting the r-th such element (an
operation called select), or counting how many of these are there up to some
object/label value (called operation rank).

The first representation specifically designed for binary relations [3] supports
rank, select and access on the rows (labels) of the relation, for the purpose of
supporting faster joins on labels. It was later extended to index text [13], and to
separate the content from the index [4], which in turn allows supporting labeled
operations on planar and quasi-planar labeled graphs [2].

Ad-hoc compressed representations for inverted lists [22] and Web graphs [12]
can also be considered as supporting binary relations. The idea here is to write
the objects of the pairs, in label-major order, and support extracting substrings
of the resulting string, that is, little more than access on labels. The string can
be compressed by different means depending on the application.

In this paper we aim at describing the foundations of efficient compact data
structures for binary relations. We list operations of potential interest for practi-
cal applications; we give various reductions between operators, thus identifying
a core set of operations which support all others; we present two data structures
for binary relations, each of which achieves a distinct tradeoff between the space
used to store and index the relation and the time in which the operations are
supported; and we compare the practical performances of our data structures
with the state of the art, showing that our data structures not only offer good
time complexities to carry out many operators, but also reduce the space used
by taking advantage of the redundancy of practical instances.
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Our first data structure uses the reduction of binary relation operators to
string operators [3], but in conjunction with a wavelet tree [16] rather than with
Golynski et al.’s string data structure [15]. Our second data structure extends
the wavelet tree for strings to binary relations. The space used is potentially
smaller than for the previous data structure (close to H(B) bits), at the cost
of worse time for some operations, but it permits taking further advantage of
some common regularities present in real-life binary relations. For the sake of
simplicity, we aim for the simplest description of the operations, ignoring any
practical improvement that does not make a difference in terms of complexity,
or trivial extensions such as interchanging labels and objects to obtain other
space/time tradeoffs.

2 Basic Concepts

Given a sequence S of length n, drawn from an alphabet Σ of size σ, we want
to answer the queries: (1) ranka(S, i) counts the occurrences of symbol a ∈ Σ
in S[1, i]; (2) selecta(S, i) finds the i-th occurrence of symbol a ∈ Σ in S; and
(3) access(S, i) = S[i]. We omit S if clear from context.

For the special case Σ = {0, 1}, the problem has been solved using n + o(n)
bits of space while answering the three queries in constant time [10]. This was
later improved to use nH0(S) + o(n) bits [21]. Here H0(S) is the zero-order
entropy of sequence S, defined as H0(S) =

∑
a∈Σ #a/n log(n/#a), where #a is

the number of occurrences of symbol a in S.
The wavelet tree [16] reduces the three operations on general alphabets to

those on binary sequences. It is a perfectly balanced tree that stores a bitmap of
length n at the root; every position in the bitmap is either 0 or 1 depending on
whether the symbol at this position belongs to the first half of the alphabet or
to the second. The left child of the root will handle the subsequence of S marked
with a 0 at the root, and the right child will handle the 1s. This decomposition
into alphabet subranges continues recursively until reaching level �log σ�, where
the leaves correspond to individual symbols. We call Bv the bitmap at node v.

The access query S[i] can be answered by following the path described for
position i. At the root v, if Bv[i] = 0/1, we descend to the left/right child,
switching to the bitmap position rank0/1(Bv, i) in the left/right child, which
then becomes the new v. This continues recursively until reaching the last level,
when we arrive at the leaf corresponding to the answer symbol. Query ranka(S, i)
can be answered similarly to access, except that we descend according to a and
not to the bit of Bv. We update position i for the child node just as before.
At the leaves, the final bitmap position i is the answer. Query selecta(S, i)
proceeds as rank, but upwards. We start at the leaf representing a and update
i to select0/1(Bv, i) where v is the parent node, depending on whether the
current node is its left/right child. At the root, position i is the result.

Wavelet trees require n log σ+ o(n) log σ bits of space, while answering all the
queries in O(log σ) time. If the bitmaps Bv are represented using the technique
of Raman et al. [21], the wavelet tree uses nH0(S)+o(n) log σ bits. Fig. 1 (right)
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illustrates the structure. Wavelet trees are not only used to represent strings [14],
but also grids [7], permutations [5], and many other structures.

3 Operations

3.1 Definition of Operations

Data structures for binary relations which support efficiently the rank and
select operations on the row (label) yield faster searches in relational databases
and text search engines [3] and, in combination with data structures for ordinal
trees, yield faster searches in multi-labeled trees, such as those featured by semi-
structured documents [3] (e.g. XML). A similar technique [2] combining various
data structures for graphs with binary relations yields a family of data structures
for edge-labeled and vertex-labeled graphs that support labeled operations on
the neighborhood of each vertex. The extension of those operations to the union
of labels in a given range allows them to handle more complex queries, such as
conjunctions of disjunctions.

As a simple example, an inverted index [22] can be seen as a relation between
vocabulary words (the labels) and the documents where they appear (the ob-
jects). Apart from the basic operation of extracting the documents where a word
appears (access on the row), we want to intersect rows (implemented on top of
row rank and select) for phrase and conjunctive queries (popular in Google-
like search engines). Extending these operations to a range of words allows for
stemmed and/or prefix searches (by properly ordering the words). Extracting a
column gives important summarization information on a document: the list of
its different words. Intersecting columns allows for analysis of content between
documents (e.g. plagiarism or common authorship detection). Handling ranges
of documents allows for considering hierarchical document structures such as
XML or filesystems (search within a subtree or subdirectory).

As another example, a directed graph is just a binary relation between ver-
tices. Extracting rows or columns supports direct and reverse navigation from a
node. In Web graphs, where the nodes (Web pages) are usually sorted by URL,
ranges of nodes correspond to domains and subdirectories. For example, count-
ing the number of connections between two ranges of nodes allows estimating
the connectivity between two domains. In general, considering domain ranges
permits the analysis and navigation of the Web graph at a coarser granularity
(e.g. as a graph of hosts, or institutions).

Several text indexing data structures [8,13,17,18,20] resort to a grid, which
relates for example text suffixes (in lexicographical order) with their text posi-
tions, or phrase prefixes and suffixes in grammar compression, or two labels that
form a rule in straight-line programs, etc. The most common operation needed
is counting and returning all the points in a range.

Obviously, the case where the relation represents a geometric grid, where
objects and labels are simply coordinates, and where pairs of the relation are
points at those coordinates, is useful for GIS and other geometric applications.
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lab_sel1 lab_acc obj_acc obj_min obj_sel1

obj_numlab_num rel_rnk

lab_rnk

lab_rnk1 obj_rnk1

obj_rnkrel_rnk_lab_maj

rel_sel_lab_maj

rel_acc_lab_maj

rel_min_lab_maj rel_min_obj_maj

rel_acc_obj_maj

rel_sel_obj_maj

rel_rnk_obj_maj

rel_num

lab_min

lab_sel obj_sel

lab_sel1 lab_acc obj_acc obj_min obj_sel1

obj_numlab_num rel_rnk

lab_rnk

lab_rnk1 obj_rnk1

obj_rnkrel_rnk_lab_maj

rel_sel_lab_maj

rel_acc_lab_maj

rel_min_lab_maj rel_min_obj_maj

rel_acc_obj_maj

rel_sel_obj_maj

rel_rnk_obj_maj

rel_num

lab_min

lab_sel obj_sel

Fig. 2. Results achieved by reducing to strings (left) and by the binary-relation wavelet
tree (right). Grayed boxes are the operations we adressed directly; all the others are
supported via reductions given in Theorem 1: constant-time ones are represented by
solid arrows, and non-constant-time ones by dashed arrows. Operations supported in
time O(log σ) are in solid squares. Dashed squares represent operations supported
in higher time. We draw only the dashed arrows needed to follow the source of the
operations supported via non-constant-time reductions.

The generalization of the basic operations to ranges allows for counting the
number of points in a rectangular area, and retrieving them in different orders.

These examples illustrate several useful ways to extend the definition of the
rank and select operations from single rows (labels) or columns (objects) to
ranges over both rows and columns. Consider for instance the extension of
select to ranges of labels: select(α, r) yields the position of the r-th 1 in
the row α of the matrix (see Fig. 1 (top left)), corresponding to the r-th object
associated to label α. On the range of rows [α, β], the expression “the r-th 1”
requires a total order on the two-dimensional area defined by the range (e.g.
label-major or object-major), which yields two distinct extensions of the oper-
ation. Other applications require instead a select operation that retrieves the
r-th object associated to any label from a given range, regardless of how many
pairs the object participates in.

We generalize the access operation to ranges of labels and objects by support-
ing the search for the minimal (resp. maximal) label or object that participates
in a given rectangular area of the relation, and the search for the first related pair
(in label-major or object-major order) in this area. Among other applications,
this supports the search for the highest (resp. lowest) neighbor of a point, when
the binary relation encodes the levels of points in a planar graph representing a
topography map [2].

Those examples require many distinct extensions for each of the rank, select
and access operations. Table 1 lists their formal definitions.

3.2 Reductions between Operations

The solid arrows in Fig. 2 (left) show the constant-time reductions that we iden-
tified among the operations; disregard the rest for now. A solid arrow op → op′

means that solving op we also solve op′. First, rel rnk is a particular case
of rel num, whereas the latter can be supported by adding/subtracting four
rel rnk queries at the corners of the rectangle. Hence they are equivalent.
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Table 1. Operations of interest for binary relations on [1, σ]× [1, n] (labels × objects).
x, y, z are objects (usually x ≤ z ≤ y); α, β, γ are labels (usually α ≤ γ ≤ β); r is an
integer (typically an index, parameter of select) and ‘#’ is short for ‘number of’. The
solutions for maxima are similar to those for minima. The last two columns are the
complexities we achieve in Section 4 and 5, respectively, per delivered datum.

Operation Meaning String BRWT
rel num(α, β, x, y) # pairs in [α, β] × [x, y] O(log σ) O(β−α+log σ) (*)

rel rnk(α, x) # pairs in [1, α] × [1, x] O(log σ) O(α + log σ)
rel rnk lab maj(x, y, α, z) # pairs in [x, y], up to (α, z) † O(log σ) O(α + log σ) (*)
rel sel lab maj(α, r, x, y) r-th pair in [x, y] × [α, σ] † O(log σ) O(r log σ) (*)
rel acc lab maj(α, x, y) consecutive pairs in [α, σ] × [x, y] † O(log σ) O(log σ)
rel min lab maj(α, x, y) minimum pair in [α, σ] × [x, y] † O(log σ) O(log σ)

rel rnk obj maj(α, β, γ, x) # pairs in [α, β], up to (γ, x) ‡ O(log σ) O(β − α + log σ)
rel sel obj maj(α, β, x, r) r-th pair in [α, β] × [x, n] ‡ (+) O(r log σ)

rel acc obj maj(α, β, x) consecutive pairs in [α, β] × [x, n] ‡ O(log σ) O(log σ)
rel min obj maj(α, β, x) minimum pair in [α, β] × [x, n] ‡ O(log σ) O(log σ)

lab num(α, β, x, y) # distinct labels in [α, β] × [x, y] O(β−α+log σ) O(β−α+log σ)
lab rnk(α, x, y) # distinct labels in [1, α] × [x, y] O(α + log σ) O(α + log σ)

lab sel(α, r, x, y) r-th distinct label in [α, σ] × [x, y] O(r log σ) O(r log σ)
lab acc(α, x, y) consecutive labels in [α, σ] × [x, y] O(log σ) O(log σ)
lab min(α, x, y) minimum label in [α, σ] × [x, y] O(log σ) O(log σ)

obj num(α, β, x, y) # distinct objects in [α, β] × [x, y] O(r log σ) O(r log σ)
obj rnk(α, β, x) # distinct objects in [α, β] × [1, x] O(r log σ) O(r log σ)

obj sel(α, β, x, r) r-th distinct object in [α, β] × [x, n] O(r log σ) O(r log σ)
obj acc(α, β, x) consecutive objects in [α, β] × [x, n] O(log σ) O(log σ)
obj min(α, β, x) minimum object in [α, β] × [x, n] O(log σ) O(log σ)
lab rnk1(α, x) # distinct labels in [1, α] × x O(log σ) O(r log σ)

lab sel1(α, r, x) r-th distinct label in [α, σ] × x O(log σ) O(r log σ)
obj rnk1(α, x) # distinct objects in α × [1, x] O(log σ) O(log σ)

obj sel1(α, x, r) r-th distinct object in α × [x, n] O(log σ) O(log σ)

(+) O(min(r, log n, log r log(β − α + 1)) log σ) † in label-major order
(*) O(log σ) if [x, y] = [1, n] ‡ in object-major order

With a constant number of any of these we also cover the areas described by
rel rnk obj maj and rel rnk lab maj, and vice versa, thus these are equiva-
lent too. Obviously, obj rnk1 and lab rnk1 are particular cases of rel num. Also,
lab rnk1 is a particular case of lab rnk, itself a particular case of lab num. Note
that lab num does not reduce to lab rnk because a label could be related with
objects inside and outside the range [x, y]. Similar reductions hold for objects.

Obviously the support for the select operation rel sel lab maj implies the
support for the access operation rel acc lab maj, and accessing the first result
of the latter gives the solution for the minimum operation rel min lab maj. In
turn this gives the minimum label in a range [α, σ] × [x, y], thus if this label
is β, we get the next label by rerunning the query on [β + 1, σ] × [x, y], this
way supporting lab acc. The latter, in turn, gives the solution to lab min in its
first iteration, whereas successive invocations to lab min (in a fashion similar
to rel min lab maj) solves lab acc. Also analogously as before, lab sel allows
supporting lab min by asking the first occurrence, and lab sel1 is a particular
case of lab sel. Note also that rel sel lab maj allows supporting lab sel1,
by requiring the pairs starting at the desired rows, and extracting the resulting
objects. By symmetry, analogous reductions hold for objects instead of labels.
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The rest of the following theorem stems from inverse-function relations be-
tween rank and select queries, as well as one-by-one solutions to counting and
direct-access problems.

Theorem 1. All the arrows in Figure 2 (left) represent constant-time reduc-
tions that hold for the operations. In addition, the pairs (lab num, lab sel)
support each other with an O(log σ) penalty factor, (obj num, obj sel)
with an O(log n) penalty factor, and (rel rnk lab maj, rel sel lab maj)
and (rel rnk obj maj, rel sel obj maj) with an O(log(σn)) penalty fac-
tor. Finally, in pairs (lab acc, lab sel), (rel acc lab maj, rel sel lab maj),
(obj acc, obj sel), and (rel acc obj maj, rel sel obj maj), the first opera-
tion supports the second with an O(r) penalty factor, where r is the parameter of
the select operation. Finally, the access operations support the corresponding
rank (and counting) operations in time proportional to the answer of the latter.

4 Reduction to Strings

A simple representation for binary relations [3,13] consists in a bitmap B[1, n+t]
and a string S[1, t] over the alphabet [1, σ]. The bitmap B[n+t] concatenates the
consecutive cardinalities of the n columns of the relation in unary. The string
S contains the rows (labels) of the pairs of the relation in column (object)-
major order (see Fig. 1 (right)). Barbay et al. showed [3] that an easy way to
support the rank and select operations on the rows of the binary relation is to
support the rank and select operations on B and S, using any of the several
data structures known for bitmaps and strings. We show that representing S
using a wavelet tree yields the support for more complex operations. For this
purpose, we define the mapping from a column number x to its last element in
S as map(x) = rank1(B, select0(B, x)). The inverse, from a position in S to its
column number, is unmap(m) = rank0(B, select1(B,m)) + 1. Both mappings
take constant time. Finally, let us also define for shortness rankc(B, x, y) =
rankc(B, y)−rankc(B, x−1). The following operations are supported efficiently,
and many others are derived with Theorem 1.

• rel rnk(α, x) in O(log σ) time. This is rank≤α(S, map(x)), where operation
rank≤α(S,m) counts the number of symbols ≤ α in S[1,m]. It can be supported
in time O(log σ) in a string wavelet tree by following the root-to-leaf branch
corresponding to α, while counting at each node the number of objects preceding
position m that are related with a label preceding α, as follows. Start at the
root v with counter c ← 0. If α corresponds to the left subtree, then enter the
left subtree with m ← rank0(Bv,m). Else enter the right subtree with c ←
c + rank0(Bv,m) and m ← rank1(Bv,m). When a leaf is reached (indeed, that
of α), the answer is c + m.

• rel sel lab maj(α, r, x, y) in O(log σ) time. We first get rid of α by setting
r ← r + rel num(1, α− 1, x, y) and thus reduce to the case α = 1. Furthermore
we map x and y to the domain of S by x ← map(x − 1) + 1 and y ← map(y).
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We first find which is the symbol β whose row contains the r-th element. For
this sake we first find the β such that rank≤β−1(S, x, y) < r ≤ rank≤β(S, x, y).
This is achieved in time O(log σ) as follows. Start at the root v and set r′ ← r.
If rank0(Bv, x, y) ≥ r, then continue to the left subtree with x ← rank0(Bv, x−
1) + 1 and y ← rank0(Bv, y). Else continue to the right subtree with r′ ←
r′ − rank0(Bv, x, y), x ← rank1(Bv, x− 1) + 1, and y ← rank1(Bv, y). The leaf
arrived at is β. Finally, we set r ← r− r′, and answer (β, unmap(selectβ(S, r +
rankβ(S, x− 1)))).

• rel sel obj maj(α, β, x, r) in O(min(logn, log r log(β − α + 1)) log σ) time.
Remember that the elements are written in S in object major order. First, we
note that the particular case where [α, β] = [1, σ] is easily solved in O(log σ)
time, by doing r′ ← r + rel num(1, σ, 1, x − 1) and returning (S[r′], unmap(r′)).
In the general case, one can obtain time O(log n log σ) by binary searching the
column y such that rel num(α, β, x, y) < r ≤ rel num(α, β, x, y + 1). Then the
answer is (lab sel1(α, r−rel num(α, β, x, y), y), y). Finally, to obtain the other
complexity, we find the O(log(β − α + 1)) wavelet tree nodes that cover the
interval [α, β]; let these be v1, v2, . . . , vk. We map position x from the root to-
wards those vis, obtaining all the mapped positions xi in O(k + log σ) time.
Now the answer is within the positions [xi, xi + r − 1] of some i. We cycli-
cally take each vi, choose the middle element of its interval, and map it to-
wards the root, obtaining position y, corresponding to pair (S[y], unmap(y)). If
rel rnk obj maj(α, β, S[y], unmap(y)) − rel rnk(α, β, 1, x − 1) = r, the answer
is (S[y], unmap(y)). Otherwise we know whether y is before or after the answer.
So we discard the left or right interval in vi. After O(k log r) such iterations we
have reduced all the intervals of length r of all the nodes vi, finding the answer.
Each iteration costs O(log σ) time.

• rel acc obj maj(α, β, x) in O(log σ) time per pair output. Just as for the
last solution of the previous operator, we obtain the positions xi at the nodes
vi that cover [α, β]. The first element to deliver is precisely one of those xi. We
have to merge the results, choosing always the smaller, as we return from the
recursion that identifies the vi nodes. If we are in vi, we return y = xi. Else, if
the left child of v returned y, we map it to y′ ← rank0(Bv, y). Similarly, if the
right child of v returned y, we map it to y′′ ← rank1(Bv, y). If we have only
y′ (y′′), we return y = y′ (y = y′′); if we have both we return y = min(y′, y′′).
The process takes O(log σ) time. When we arrive at the root we have the next
position y where a label in [α, β] occurs in S. We can then report all the pairs
(S[y + j], unmap(y)), for j = 0, 1, . . ., as long as unmap(y + j) = unmap(y) and
S[y + j] ≤ β. Once we have reported all the pairs corresponding to object
unmap(y), we can obtain those of the next objects by repeating the procedure
from rel acc obj maj(α, β, unmap(y) + 1).

• lab num(α, β, x, y) in O(β − α + log σ) time. After mapping x and y to
positions in S, we descend in the wavelet tree to find all the leaves in [α, β] while
remapping [x, y] appropriately. We count one more label each time we arrive at
a leaf, and we stop descending from an internal node if its range [x, y] is empty.
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• obj sel1(α, x, r) in O(log σ) time: This is a matter of selecting the r-th
occurence of the label α in S, after the position of the pair (α, x). The formula
is unmap(selectα(S, r + obj rnk1(α, x− 1))).

The overall result is stated in the next theorem and illustrated in Fig. 2 (left).

Theorem 2. There is a representation for a binary relation B, of t pairs over
[1, σ] × [1, n], using t log σ + o(t) log σ + O(min(n, t) log( n+t

min(n,t) )) bits of space.
The structure supports operations rel rnk(α, x), rel sel lab maj(α, r, x, y),
rel sel obj maj(1, σ, x, r) (note the limitation), rel acc obj maj(α, β, x), and
obj sel1(α, x, r), in time O(log σ), plus rel sel obj maj(α, β, x, r) in time
O(min(log n, log r log(β−α+1)) logσ), and lab num(α, β, x, y) in time O(β−α+
log σ). The other operations are supported via the reductions from Theorem 1.

Proof. The operations have been obtained throughout the section. For the
space, B contains n 0s out of n + t, so a compressed representation [21] re-
quires O(min(t, n) log n+t

min(t,n) ) bits. The wavelet tree for S[1, t] requires t logσ+
o(t) log σ bits. �

Note that the particular case rel num(1, σ, x, y) can be answered in O(1) time
using B’s succinct encoding. In general the space result is incomparable with
tH(B): if all the nσ pairs are related, then tH0(S) = nσ log σ and H(B) = 0;
but if all the pairs are within a row, then tH0(S) = 0 and H(B) > 0. In the
particular case where t ≤ n, t log σ ≤ tH(B)+O(t), while the wavelet tree for S
requires tH0(S) ≤ t log σ bits: this difference can be relevant depending on the
distribution of pairs across the rows.

5 Binary Relation Wavelet Trees (BRWT)

We propose now a special wavelet tree structure to represent binary relations.
This wavelet tree contains two bitmaps per level at each node v, Bl

v and Br
v .

At the root, Bl
v[1, n] has the x-th bit set to 1 iff there exists a pair of the form

(α, x) for α ∈ [1, �σ/2�], and Br
v has the x-th bit set to 1 iff there exists a pair

of the form (α, x) for α ∈ [�σ/2� + 1, σ]. Left and right subtrees are recursively
built on the positions set to 1 in Bl

v and Br
v , respectively. The leaves (where no

bitmap is stored) correspond to individual rows of the relation. We store a bitmap
B[1, σ + t] recording in unary the number of elements in each row. See Fig. 1
(bottom) for an example. For ease of notation, we define the following functions
on B, trivially supported in constant-time: lab(r) = 1+rank0(B, select1(B, r))
gives the label of the r-th pair in a label-major traversal of R; while its inverse
poslab(α) = rank1(B, select0(B,α)) gives the position in the traversal where
the pairs for label α start.

Note that, because an object x may propagate both left and right, the sizes
of the second-level bitmaps may add up to more than n bits. Indeed, the last
level contains t bits and represents all the pairs sorted in row-major order.
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The following operations can be carried out efficiently on this structure.

• rel num(α, β, x, y) in O(β−α+log σ) time. We project the interval [x, y] from
the root to each leaf in [α, β], adding up the resulting interval sizes at leaves. Of
course we can stop earlier if the interval becomes empty. Note that we can only
count pairs at the leaves. In the case [x, y] = [1, n] we can achieve O(1) time, as
the answer is simply poslab(β) − poslab(α − 1). Note this allows solving the
restricted case rel rnk lab maj(1, n, α, z) in O(log σ) time.
• rel sel lab maj(α, r, 1, n) in O(log σ) time. Let r′ ← r+poslab(α−1) and
β ← lab(r′), thus β is the row where the answer is. Now we start at position
y = r′−poslab(β−1) in leaf β and walk the wavelet tree upwards while mapping
y ← select1(Bl

v, y) or y ← select1(Br
v , y), depending on whether we are left

or right child of our parent v, respectively. When we reach the root, the answer
is (β, y). Note we are only solving the particular case [x, y] = [1, n].
• rel acc lab maj(α, x, y) in O(log σ) time per pair output. Map [x, y] from
the root to each leaf in [α, σ], abandoning a path when [x, y] becomes empty.
(Because left and right child cannot become simultaneously empty, the total
amount of work is proportional to the number of leaves that contain pairs to
report.) Now, for each leaf γ arrived at with interval [x′, y′], map each z′ ∈ [x′, y′]
up to the root, to discover the associated object z, and return (γ, z).
• rel acc obj maj(α, β, x) in O(log σ) time per pair output. Just as in Sec-
tion 4, we cover [α, β] with O(log σ) wavelet tree nodes v1, v2, . . . , and map x to
xi at each such vi, all in O(log σ) time. Now, on the way back of this recursion,
we obtain the next y ≥ x in the root associated to some label in [α, β], by fol-
lowing a process analogous to that for rel acc obj maj in Section 4. Finally, we
start from position y′ = y at the root v and report all the pairs related to y: Re-
cursively, we descend left if Bl

v[y
′] = 1, and then right if Br

v [y′] = 1, remapping y′

appropriately at each step, and keeping within the interval [α, β]. Upon reaching
each leaf γ we report (γ, y). Then we continue from rel acc obj maj(α, β, y+1).
• lab num(α, β, x, y) in O(β−α+ logσ) time. Map [x, y] from the root to each
leaf in [α, β], adding one per leaf where the interval is nonempty. Recursion can
stop when [x, y] becomes empty.
• obj sel1(α, x, r) in O(log σ) time. Map x − 1 from the root to x′ in leaf
α, then walk upwards the path from x′ + r to the root and report the position
obtained.

We have obtained the following theorem, illustrated in Fig. 2 (right; we ignore
the particular cases).

Theorem 3. There is a representation for a binary relation B, of t pairs
over [1, σ] × [1, n], using log(1 +

√
2)tH(B) + o(tH(B)) + O(t + n + σ)

bits of space. The structure supports operations rel num(α, β, 1, n),
rel rnk lab maj(1, n, α, z), rel sel lab maj(α, r, 1, n) (note the limita-
tions of these three), rel acc lab maj(α, x, y), rel acc obj maj(α, β, x),
and obj sel1(α, x, y), in time O(log σ), plus rel num(α, β, x, y) and
lab num(α, β, x, y) in time O(β − α + log σ). This yields the support for
other operations via the reductions from Theorem 1.
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Proof. The operations have been obtained throughout the section. For the space,
B contains σ 0s out of σ + t, so a compressed representation [21] requires
O(min(σ, t) log σ+t

min(σ,t) ) = O(max(σ, t)) bits. The space of the wavelet tree can
be counted as follows. Except for the 2n bits in the root, each other bit is induced
by the presence of a pair. Each pair has a unique representative bit in a leaf, and
also induces the presence of bits up to the root. Yet those leaf-to-root paths get
merged, so that not all those bits are different. Consider an element x related
to tx labels. It induces tx bits at tx leaves, and their paths of bits towards the
single x at the root. At worst, all the O(tx) bits up to level log tx are created
for these elements, and from there on all the tx paths are different, adding up a
total of O(tx) + tx log σ

tx
. Adding over all x we get O(t) +

∑
x tx log σ

tx
. This is

maximized when tx = t/n for all x, yielding O(t)+ t log σn
t = tH(B)+O(t) bits.

Instead of representing two bitmaps (which would multiply the above value
by 2), we can represent a single sequence Bv with the possible values of the two
bits at each position, 00, 01, 10, 11. Only at the root 00 is possible. Except for
those 2n bits, we can represent the sequence over an alphabet of size 3 following
Ferragina et al. [14], to achieve at worst (log 3)tH(B)+o(tH(B)) bits for this part
while retaining constant-time rank and select over each Bl

v and Br
v . (To achieve

this, we maintain the directories for the original bitmaps, of sublinear-size.)
To improve the constant log 3 to log(1+

√
2), we consider that the representa-

tion by Ferragina et al. actually achieves |Bv|H0(Bv) bits. We call 	x = |Bv| ≤ tx
and Hx = |Bv|H0(Bv). After level log tx, there is space to put all the tx bits sep-
arately, thus using only 01 and 10 symbols we achieve 	x = tx and Hx = tx bits.
Yet, this is not the worst that can happen. Hx can be increased by collapsing
some 01’s and 10’s into 11’s (thus reducing 	x). Note that collapsing further 01’s
or 10’s or 11’s with 11’s effectively removes one symbol from Bv, which cannot
increase Hx, thus we do not consider these. Assume the tx bits are partitioned
into t01 01’s, t10 10’s, and t11 11’s, so that tx = t01+t10+2t11, 	x = t01+t10+t11,
and Hx = t01 log �x

t01
+t10 log �x

t10
+t11 log �x

t11
. As t11 = (tx−t01−t10)/2, the maxi-

mum of Hx as a function of t01 and t10 yields the worst case at t01 = t10 =
√

2
4 tx,

so t11 = (1
2 −

√
2

4 )tx and 	x = (1
2 +

√
2

4 )tx, where Hx = log(1 +
√

2)tx bits. This
can be achieved separately at each level. Using the same distribution of 01’s,
10’s, and 11’s for all x we add up to (1 +

√
2)t log σn

t + O(t) bits. �
Note that this is a factor of log(1 +

√
2) ≈ 1.272 away of the entropy of B. On

the other hand, it is actually better if the tx do not distribute uniformly.

6 Exploiting Regularities

Real-life binary relations exhibit regularities that permit compressing them far
more than to tH(B) bits. For example, social networks, Web graphs, and inverted
indexes follow well-known properties such as clustering of the matrix, uneven
distribution of 1s, similarity across rows and/or columns, etc. [6,1,9].

The space tH0(S) achieved in Theorem 2 can indeed be improved upon certain
regularities. The wavelet tree of S, when bitmaps are compressed with local encod-
ing methods [21], achieves locality in the entropy [19]. That is, if S = S1S2 . . . Sn
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then the space achieved is
∑

x |Sx|H0(Sx) + O(n log t). In particular, if Sx corre-
sponds to the labels related to object x, then the space will benefit from clustering
in the binary relation: If each object is related only to a small subset of labels, then
its Sx will have a small alphabet and thus a small entropy. Alternatively, similar
columns (albeit not rows) induce copies in string S. This is not captured by the
zero-order entropy, but it is by grammar compression methods. Some have been
exploited for graph compression [12].

The space formula in Theorem 3 can also be refined: If some objects are related
to many labels and others to few, then

∑
x tx log σ

tx
can be smaller than tH(B).

This second approach can be easily modified to exploit several other regularities.
Imagine we represent bitmaps Bl

v and Br
v separately, but instead of Br

v we store
B′

v = Bl
v xor Br

v , while keeping the original sublinear structures for rank and
select. Any access to O(log n) contiguous bits in Br

v is achieved in constant
time under the RAM model by xor-ing Bl

v and B′
v.

The following regularities turn into a highly compressible B′
v, that is, one

with few or many 0’s: (1) Row-wise similarities between nearby rows, extremely
common on Web graphs [6], yield an almost-all-zero B′

v; (2) (sub)relations that
are actually permutations or strings, that is, with exactly one 1 per column,
yield an almost-all-one B′

v. This second kind of (sub)relations are common in
relational databases, e.g., when objects or labels are primary keys in the table.

As there exists no widely agreed-upon notion of entropy for binary relations
finer than log

(
nσ
t

)
, we show now some experiments on the performance of these

representations on some real-life relations. We choose instances of three types of
binary relations: (1) Web graphs, (2) social networks, (3) inverted indexes.

For (1), we downloaded two crawls from the WebGraph project [6],
http://law.dsi.unimi.it. Crawl EU (2005) contains n = σ = 862, 664 nodes
and t = 19, 235, 140 edges. Crawl Indochina (2004) contains n = σ = 7, 414, 866
nodes and t = 194, 109, 311 edges. For (2), we downloaded a coauthorship
graph from DBLP (http://dblp.uni-trier.de/xml), which is a symmetric re-
lation, and kept the upper triangle of the symmetric matrix. The result contains
n = σ = 452, 477 authors and t = 1, 481, 877 coauthorships. For (3), we consider
the relation FT, the inverted index for all of the Financial Times collections from
trec-4 (http://trec.nist.gov), converting the terms to lowercase. It relates
σ = 502, 259 terms with n = 210, 139 documents, using t = 51, 290, 320 pairs.

Table 2 shows, for these relations B, their entropy H(B), their gap complexity
(defined below), the space of the string representation of Section 4, the space
of the BRWT representation of Section 5, and that using the xor-improvement
described above. All spaces are measured in bits per pair of the relation.

The gap complexity is the sum of the logarithms of the consecutive differ-
ences of objects associated to each label. It is upper bounded by the entropy
and gives a more refined measure that accounts for clustering in the matrix. The
string representation of Section 4 already improves upon the entropy, but not
much. Although it has more functionality, this representation requires signifi-
cantly more space than the BRWT, which takes better advantage of regularities.
Note, however, that for example Web graphs are much more amenable than the
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Table 2. Entropy and space consumption, in bits per pair, of different binary relation
representations over relations from different applications. Ad-hoc representations have
limited functionality.

B H(B) Gap String BRWT +xor Best Ad-Hoc
EU 16.68 5.52 12.57 7.72 6.87 4.38 (WebGraph)
Indochina 19.55 3.12 12.81 4.07 3.93 1.47 (WebGraph)
DBLP 18.52 6.18 15.97 13.54 11.67 21.9 (WebGraph)
FT 12.45 3.54 13.91 9.32 7.85 6.20 (Rice)

social network to exploiting such regularities, while the inverted index is in be-
tween. The xor improvement has a noticeable additional effect on the BRWT
space, reducing it by about 5%–15%. Particularly on the Web graphs, this latter
variant becomes close to the gap complexity.

The last column of the table shows the compression achieved by the best ad-
hoc alternatives, which support a very restricted set of operations (namely, ex-
tracting all the labels associated to an object). The results for crawls Indochina
and EU are the best reported in the WebGraph Project page, and they even break
the gap complexity. For FT we measured the space required by Rice encoding of
the differential inverted lists, plus pointers from the vocabulary to the sequence.
This state-of-the-art in inverted indexes [22]. Finally, in absence of available soft-
ware specifically targeted at compressing social networks, we tried WebGraph v.
1.7 (default parameters) on DBLP. As this is an undirected graph, we duplicate
each edge {i, j} as (i, j) and (j, i). This is not necessary on our representations,
as we can extract direct and reverse neighbors. Our representations are by far
the best in this case where no specific compressors exist.

7 Future Work

The times we have achieved for most operations is O(log σ), where σ is the
number of labels. These can probably be improved to O( log σ

log log t ) by using re-
cent techniques on multiary wavelet trees [7], which would reach the best results
achieved with wavelet trees for much simpler problems [14]. Our representa-
tions allow dynamic variants, where new pairs and/or objects can be inserted
in/deleted from the waveleet trees [19,11]. Adding/removing labels, instead, is
an open challenge, as it alters the wavelet tree shape. The space of our structures
is close but does not reach the entropy of the binary relation, H(B), in the worst
theoretical case. An ambitious goal is to support all the operations we have de-
fined in logarithmic time and within H(B)(1+o(1)) bits of space. A related issue
is to define a finer notion of binary relation entropy that captures regularities
that arise in real life, and express the space we achieve in those terms.

Finally, there is no reason why our list of operations should be exclusive. For
example, determining whether a pair is related in the transitive closure of B
is relevant for many applications (e.g. ancestorship in trees, paths in graphs).
Alternatively one could enrich the data itself, e.g., associating a tag to each
object/label pair, so that one can not only ask for the tag of a pair but also
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find pairs with some tag range within a range of the relation, and so on. This
extension has already found applications, e.g. [13]. Another extension is n-ary
relations, which would more naturally capture joins in the relational model.
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Abstract. We prove that the radix cross-section of a rational set for a
length morphism, and more generally for a rational function from a free
monoid into N, is rational. This property no longer holds if the image of
the function is a subset of a free monoid with two or more generators.

The proof is based on several results on finite automata, such as the
lexicographic selection of synchronous relations and the iterative decom-
position of unary rational series with coefficients in the tropical semiring.
It also makes use of a structural construction on weighted transducers
that we call the length difference unfolding.

The purpose of this paper is to clarify the deep structure of relations realised by
finite transducers. Its starting point is a positive answer to a problem left open
in an old paper [12] and we prove the following property, a refinement of the
Cross-Section Theorem [4]:

Proposition 1. The radix cross-section of a rational set for a length morphism
is rational.

By ‘rational set’ we mean rational set of a free monoid A∗ and by ‘length mor-
phism’, a morphism from A∗ into N, or, which is the same, into {x}∗, the one-
generator free monoid. Let us take for instance the alphabet A = {a, b} , the
morphism θ : A∗ → {x}∗ defined by aθ = x2 and bθ = x3 and the rational set
R = (ba∗)∗ . The lexicographic cross-section of R for θ (assuming that a < b) is

1 + ba∗(1 + b),

which is the set of words in R such that each one is the smallest in the lexico-
graphic order in its class modulo the map equivalence of θ (this smallest element
exists in this case, even if the lexicographic order is not a well-ordering, since
every class is finite). The radix cross-section of R for θ is

1 + b (1 + a + a2)b∗,

which is the set of words in R obtained if we replace lexicographic order by radix
order in the definition above. (The radix order is sometimes called shortlex or
length-lexicographic order — definition of both lexicographic and radix orders
will be recalled below.) That the lexicographic cross-section of a rational set is
rational follows from general results that are recalled in the next section. That
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the radix cross-section of a rational set is rational is not true in general (cf.
Example 2 below), but holds for length morphisms.

As for the Cross-Section Theorem, Proposition 1 has a dual, and equivalent
formulation, the following generalisation of which is established in this paper.

Theorem 1. The radix uniformisation of a rational relation from {x}∗ into A∗

is a rational function.

Indeed, the radix cross-section of a rational set R of A∗ for the morphism
α : A∗ → {x}∗ is the image of the radix uniformisation of the composition of the
inverse of α with the intersection by R and Proposition 1 directly follows from
Theorem 1. The proof of the latter heavily relies on results and constructions
presented by the first author in his thesis [10] and hardly publicised yet [9].

Before going to this proof we want to sketch here, we first recall a series of
statements developed from the Cross-Section Theorem. On the one hand, they
shed some light on the meaning of Theorem 1 by describing similarities and
differences with this statement. On the other hand, they lead rather naturally to
the notion of (rational) relation ‘with bounded length-discrepancy with respect
to a given ratio’, rbld-relation for short.

The proof is then split in two main steps. We first remark that every trans-
ducer T from A∗ into B∗ can be mapped onto an automaton A over A∗ with
multiplicity in the tropical (or min-plus) semiring N by replacing the output by
their length. We call A the min-plus projection of T . The core of that part of
the proof amounts to establishing that the minimal length selection of a rela-
tion realised by a transducer T is realised by an immersion in the product of T
with a min-plus automaton A which realises its min-plus projection, under the
condition that A be unambiguous. The second step boils down to the effective
decomposition of unary min-plus automata into domain-disjoint deterministic
automata, which, in the case of unary relations, insures both that the min-plus
projection is unambiguous and the minimal length selection is a rbld-relation.

1 The Cross-Section and Uniformisation Theorems

In his treatise [4], Eilenberg defines the ‘Rational Cross-Section Property’
(RCSP): a map α : A∗ → E has the RCSP if for every rational set R of A∗

there exists a rational set T which is a set of representatives for the trace on R
of the map equivalence of α, that is, T ⊆ R , Tα = Rα , and α is injective on T
— the property being that such a T can be chosen rational.

Theorem 2 (Eilenberg [4]). Every morphism α : A∗ → B∗ has the RCSP.

An immediate corollary is that every rational function1 α : A∗ → B∗ has
the RCSP. As already quoted above, this last statement can be given a dual, and
immediately equivalent, formulation. A uniformisation of a relation θ : A∗ → B∗

is a function τ : A∗ → B∗ which has the same domain as θ and whose graph is
contained in the graph of θ. The dual statement then reads:
1 i.e., functional rational relation.
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Theorem 3. Every rational relation θ : A∗ → B∗ has a uniformisation which
is an unambiguous rational function.

From now on and for sake of simplicity, we speak of uniformisation only (but in
some examples).

1.1 Lexicographic and Radix Uniformisations

Building a uniformisation amounts to a choice function: the choice of a repre-
sentative in the image of every element of the domain. The foregoing statements
insure that the corresponding choice can be made in such a way that the whole
function is rational, but tell nothing on how this choice is made. Even worse, the
constructive proofs given to these statements are likely to produce uniformisa-
tion functions which will depend upon the representation chosen for the relation
and the arbitrary choices made in the corresponding algorithms. The next step
in the theory is then to characterise choice functions which yield rational uni-
formisation or conversely to describe rational relations for which natural choice
functions are rational.

For sake of completeness, let us first recall the definition of the lexicographic
and radix orders. Let A = {a1, a2, . . . , an} be a totally ordered alphabet with
a1 < a2 < · · · < an . The relation � defined on A∗ by:

f � g ⇐⇒
{
g = f h with h ∈ A∗ or
f = uaiv , g = uajw with i < j .

is a total order called lexicographic order, but is not a well ordering. The rela-
tion � defined on A∗ by:

f � g ⇐⇒
{ |f | < |g| or
|f | = |g| and f � g .

is a well order called radix order.

Definition 1. Let θ : A∗ → B∗ be a relation from A∗ to B∗. We call radix uni-
formisation of θ, denoted θrad, the function from A∗ to B∗ obtained by choosing
for every f in A∗ the smallest element of fθ in the radix order. As the radix order
is a well-order, such a smallest element always exists and Dom θrad = Dom θ .

We call lexicographic selection of θ, denoted θ lex, the function fromA∗ toB∗ ob-
tained by choosing for every f in A∗ the smallest element of fθ in the lexicographic
order. As the lexicographic order is not a well-order, such a smallest element may
not exist, Dom θ lex ⊆ Dom θ and θ lex is not necessarily a uniformisation.

We call minimal-length selection of θ, denoted θml, the relation from A∗ to B∗

obtained by choosing for every f in A∗ the elements of fθ of minimal length.
Obviously Dom θml = Dom θ and the following holds:

θrad = (θml) lex . (1)

There exist rational relations such that neither the radix uniformisation nor the
lexicographic uniformisation is rational.
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Example 1. Let A = {a < b < c} be an ordered alphabet and θ : A∗ → A∗

defined by (an bm)θ = {an b, am c} . It is immediate that

(an bm)θrad =

{
an b if n � m ,
am c otherwise,

and (an bm)θ lex =

{
an b if n � m ,
am c otherwise.

And neither θrad nor θ lex is a rational function.

In [12], and by means of tedious calculations, we proved that the lexicographic
cross-section of a morphism α : A∗ → B∗ is rational, a result that has then been
generalised, and given a more readable proof, by H. Johnson.

Theorem 4 ([8]). The lexicographic selection of a deterministic2 rational rela-
tion is a deterministic rational function.

The same is not true of the radix uniformisation of deterministic rational re-
lations, even of inverse morphisms, as shown by the following example (taken
from [12] and that can be found in [13, Exer. V.3.7] as well).

Example 2. Let α : {a, b, c, d, e, f}∗ → {x, y, z}∗ be defined by aα = x , bα =
y xyx , cα = xy , dα = y z , eα = z y z y , fα = z . The radix cross-section T of
{a, b, c, d, e, f}∗ for α is such that T ∩ ab∗(d2)∗d = {abnd2m+1 | m � n} , and
is not rational.

It is thus natural to turn to an even more restricted family of rational relations.

1.2 Uniformisation of Synchronous Relations

Synchronous relations are those rational relations which can be realised by trans-
ducers whose transitions are labelled by pairs of letters. Stricto sensu, this def-
inition yields length preserving relations only. This last constraint is relaxed by
allowing the replacement of a letter by a padding symbol, in either component
(but under the ‘padding condition’, that is, no letter can appear after the padding
symbol on the same component). Even if this is more than a technical trick since
in particular it is not decidable whether a given relation is synchronous or not
(see [6]), synchronous relations are a very natural subfamily of rational rela-
tions. They have been given a logical characterisation in [5] and are considered
in many instances (automatic structures, operations on numbers, etc.). They
form a Boolean algebra, the largest one considered so far inside the rational re-
lations. As the lexicographic order and radix order are synchronous relations, it
then follows:
2 N.B. Deterministic rational relations are those relations realised by deterministic

transducers, that is, deterministic 2-tape automata, which are distinct from sequen-
tial transducers, that is, transducers with deterministic underlying input automata
(see [8,13]). Morphisms, and then inverse of morphisms, are deterministic rational
relations.
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Proposition 2 (see [13]). The lexicographic selection and radix uniformisation
of a synchronous relation are synchronous functions.

Proposition 2 and its variants are commonly used to give simple proofs for state-
ments involving rational sets and lexicographic or radix order, e.g. ‘if K is a
rational set, then the set of words of K which are maximal for every length
is rational ’ (see [14]), or ‘the radix enumeration of a rational set is a rational
function’ (see [3,1]).

1.3 Rational ρ-bld-Relations

A synchronous relation is, by definition, realised by a transducer whose tran-
sitions are labelled by pairs of letters, that is, such that the ratio between the
length of the ‘input’ and the the length of the ‘output’ is fixed and equal to 1.
For every rational number ρ = p

q (p and q are co-prime integers), we define the
ρ-synchronous relations as those rational relations that are realised by trans-
ducers whose transitions are labelled by pairs of words (f, g) where |f | = q
and |g| = p (as above, we allow the use of a padding symbol, under the padding
condition). It is straightforward to verify that the ρ-synchronous relations form
a Boolean algebra. Moreover, standard constructions show that the composition
of a ρ-synchronous relation with a (1-)synchronous relation is a ρ-synchronous
relation, hence the same proof as above yield the following.

Proposition 3. The lexicographic selection and radix uniformisation of a ρ-
synchronous relation are ρ-synchronous functions.

Let θ : A∗ → B∗ be a relation with the property that there exists a rational
number ρ and an integer k such that, for every f in A∗ and every g in fθ, then∣∣ρ|f | − |g|∣∣ � k . If ρ = 1 and k = 0, θ is a length preserving relation. If ρ = 1
and k is arbitrary, θ has been called a bounded length difference relation ([6])
or bounded length discrepancy relation ([13]), bld-relation for short in any case;
for arbitrary ρ (and k), let us call θ a ρ-bld-relation. And let us say that θ is an
rbld-relation if there exists a ρ such that θ is a ρ-bld-relation.

It is not difficult to verify that a rational relation is ρ-bld if, and only if, any
transducer T (without padding symbol!) which realises θ has the property that
the label of every circuit in T is such that the ratio between the length of the
‘input’ and the the length of the ‘output’ is fixed and equal to ρ, a property which
is thus decidable. The following result is essentially due to Eilenberg who proves
it for length-preserving relations ([4]); it has been extended to bld-relations in [6],
the generalisation to ρ-bld-relations can be found in [13, IV.6].

Theorem 5. A rational ρ-bld-relation is a ρ-synchronous relation.

Theorem 1 will thus be proved once we have established the following.

Theorem 6. The minimal length selection of a rational relation from {x}∗
into A∗ is an effectively computable finite union of domain-disjoint rational rbld-
relations.
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Indeed, if θml =
⋃

θi where every θi is ρi-bld, then θrad =
⋃

(θi) lex by (1)
and since the θi are domain disjoint: θrad is then rational by Theorem 5 and
Proposition 3 and since the union is finite.

2 Minimal-Length Selection of Relations

The construction underlying the proof of Theorem 6 is reminiscent of that of
the Schützenberger covering that allowed us to give a new proof of the ratio-
nal uniformisation theorem ([13]). There, the product of a transducer with the
determinisation of its underlying input automaton was used to choose among
computations with same inputs. Here, we consider a transducer T and a min-
plus automaton A that produces for every input the minimal length of its images
in T . Then, a length-difference covering of the product T ×A allows to select
the computations in T that yield the outputs of minimal length.

2.1 The Min-Plus Projection

All automata or transducers that we consider in this paper are ‘real-time’, that
is, every transition is labelled with a letter (in automata) or by a pair of words
whose first component is a letter (in transducers). As a consequence, they can
equally be described as ‘tuples’ or as ‘representations’. A K-automatonA over A∗

is described either as A = 〈Q,A,K, E, I, T 〉 where E is the set of transitions
of the form (p, a, k, q) and I and T are functions from Q into K or as a triple
〈 I, μ, T 〉, where μ is a morphism from A∗ into the monoid of matrices KQ×Q

and I (resp. T ) is a row (resp. column) vector of KQ. The automaton A realises
the K-rational series |||A||| =

∑
f∈A∗(I · fμ ·T )f , that is, an element of KRatA∗.

A transducer T over A∗ with outputs in B∗ and set of states Q is described
either as T = 〈Q,A,B∗, E, I, T 〉 where E is the set of transitions of the
form (p, a, L, q) with L in RatB∗ and I and T are functions from Q into RatB∗,
or as a triple 〈 I, μ, T 〉, where μ is a morphism from A∗ into the monoid of ma-
trices (RatB∗)Q×Q and I (resp. T ) is a row (resp. column) vector of (RatB∗)Q.
The image of a word f in A∗ by T is f|||T ||| = I ·fμ·T and |||T ||| the relation realised
by T is rather seen as a series over A∗ with coefficients in P(B∗) (in RatB∗ in
fact) than as a (rational) subset of A∗ ×B∗.

The tropical semiring is denoted with N = 〈N ∪ {+∞},min,+,+∞, 0 〉 . For
any alphabet B, the set P(B∗) equipped with union and product is also a semir-
ing and the map ψ : P(B∗) → N defined by Rψ = min{|f | | f ∈ R} for
every R ⊆ B∗ is a semiring morphism, which we call the min-plus projection.

Let T = 〈 I, μ, T 〉 be a transducer, τ = |||T ||| the relation it realises and
σ = τψ . Then, by definition, for every f in A∗,

fσ = min{|u| | u ∈ fτ} .

Moreover, if A = T ψ is the image of T by ψ, that is, the weight of every
transition of A is obtained by taking the image by ψ of the output of the corre-
sponding transition in T , then σ is realised by A (as ψ is a semiring morphism).
A transducer and its min-plus projection are shown below, at Figure 1.
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2.2 Product of a Transducer by a Min-Plus Automaton

Let us first define min-plus transducers, that is, transducers where every word
of the output of a transition is weighted by an element of N , or, which is equiv-
alent, transducers which are realised by representations in NRatB∗. Let us
then note that both RatB∗ and N are subsemirings of NRatB∗, by assigning
a weight 0 = 1N to every element of any subset of B∗ on one hand, and by
considering every element k in N as the monomial k ε on the other hand (in
this context where there are 0’s and 1’s from N going around, we rather denote
the empty word as ε). Moreover, we remark that after these embeddings, every
element of RatB∗ commutes with every element of N within NRatB∗ (which
is not itself a commutative semiring).

It follows then that every transducer T from A∗ to B∗ and every N -auto-
maton A may be seen as min-plus transducers, that their product T ⊗A is
well-defined and is a min-plus transducer described by the tensor product of
their representations.

By Schützenberger’s Theorem, the product of T by A realises the Hadamard
product of their respective behaviours (see [2,13]). Hence the following.

Proposition 4. Let T be a transducer and A a N -automaton which re-
alises |||T |||ψ. Then U = T ⊗A is the N -transducer which associates to every
word f of A∗ the following series:

f|||U||| =
∑

{ku | u ∈ f|||T ||| , k = min{|v| | v ∈ f|||T |||}} .

Example 3. Figure 1 shows the product of a transducer T1 (vertical, left) with
its min-plus projection (horizontal, above).

2.3 Length-Difference Unfolding of a Min-Plus Transducer

Let U =〈S,A,B∗,N , E, I, T 〉 be a min-plus transducer. We call length-difference
unfolding of U the (possibly infinite) transducer3

V = 〈S×Z, A,B∗, E′, I ′, T ′ 〉 defined by

E′ =
{(

(p, z), (a, u), (q, z + |u| − k)
) | (p, (a, ku), q

) ∈ E, z ∈ Z
}
,

I ′ = {(i,−k) | i ∈ S, (i)I = k} and T ′ = {(t, k) | t ∈ S, (t)T = k} .

The transducer V is an immersion in U and not a covering of U : it would be one if
every state (t, z) for t such that (t)T �= +∞ were final. Along a computation of V ,
and at every step, the second component of the state gives the difference between
the length of the word which is output and its coefficient; as in our case, the
coefficient will represent the length of the shortest output for the input read so
far, the name ‘length-difference’ is justified. This construction is associated with
the product of transducer with min-plus automata in the following statement.
3 For the sake of simplicity of notations, we suppose that the functions I and T have

values in N and not in N〈〈B∗〉〉. It would be straightforward to generalise both the
definition and the proof.
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p

q

r

s

x |b

x |ε
x |a

x |ε

x |a

t u vw
x |1 x |0

x |1

x |0
x |1

x |1b

x |0ε

x |1a

x |0ε

x |1a

x |1ε x |0a

x |1a

x |0b

x |1ε
x |1a

Fig. 1. Product of a unary transducer with its min-plus projection

Proposition 5. Let T be a transducer, A an unambiguous N -automaton which
realises |||T |||ψ and U = T⊗A. Let V be the length-difference unfolding of U . Then:

(i) V realises |||T |||ml;
(ii) the trim part of V is finite, and effectively computable.

Proof. For every f in Dom T , there exists a unique computation i
f |k−−−→
A

t

labelled by f in A = 〈J, k, U 〉. If (i)J = h and (t)U = l, then f|||A||| = h + k + l
is the minimal length of the outputs of T for the input f . For every successful

computation p
f |u−−−→
T

q , there exists then a unique computation

(p, i)
f |k u−−−−→
U

(q, t)

and for every x in Z, a unique computation

((p, i), x)
f |u−−−→
V

((q, t), y) where y = x + |u| − k .

This computation is successful if, and only if, x = −h and y = l, and thus
|u| = h + k + l that is, if, and only if, u is an output of f by T of minimal
length.

Let ((q, s), x) and ((q, s), y) be two accessible states in V , with x < y =
x + n . We prove that ((q, s), y) is not co-accessible in V . Suppose, by way of
contradiction, that it is: there exists a computation

((q, s), y)
g|v−−−→
V

((r, t), l) with ((r, t), l) final in V ,
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and thus a computation (q, s)
g|k′ v−−−−→

U
(r, t) with k′ = |v| + y − l . As ((q, s), x)

is accessible, there exists a computation

((p, i),−h)
f |u−−−→
V

((q, s), x) with ((p, i),−h) initial in V ,

and thus a computation (p, i)
f |k u−−−−→
U

(q, s) with k = |u|−x−h . By projection

on T , p
f g|u v−−−−−→

T
r is a successful computation and uv is in (f g)|||T |||. By projec-

tion on A, i
f g|k+k′

−−−−−−→
A

t is a successful computation and (f g)|||A||| = h+k+k′+ l

(under the assumption that A is unambiguous), whereas |u|+ |v| = h+ k+ k′ +
l−n , a contradiction with the hypothesis that (f g)|||A||| is the minimal length of
the elements of (f g)|||T |||.
Example 4 (continued). Figure 2 shows the length-difference unfolding of the
product of the transducer T1 with an unambiguous automaton which realises its
min-plus projection.
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x |ε
x |a

x |ε

x |a

i j k l

x |0

x |1

x |0

x |2

0

0

0

1

1
0

0

−1

−1 0

11
0

x |0b

x |0ε

x |1a

x |0ε

x |1a

x |0a

x |0ε

x |2a

x |0a

x |0b

x |2ε

x |0a

Fig. 2. A length-difference unfolding for T1

With stronger hypotheses, we get an interesting corollary of Proposition 5.

Definition 2. We call yield of a circuit in a min-plus automaton the ratio
between the weight of the circuit and its length.
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Proposition 6. With the hypotheses and notation of Proposition 5, and if more-
over all circuits in A have the same yield ρ, then V realises a ρ-bld-relation.

Proof. A circuit in V comes from a circuit in U which itself projects onto a circuit
in A with yield ρ. A circuit in U gives rise to a circuit in V if, and only if, the
length of its output is equal to its weight and thus the ratio between the lengths
of the output and input in a circuit of V is fixed and equal to ρ.

Our last step in the proof of Theorem 6 will then be to establishing that any
rational relation from {x}∗ into A∗ has a min-plus projection which can be
realised by finite union of pairwise domain disjoint min-plus automata, each of
which with the property that all circuits have the same yield.

3 Sequential Decomposition of Min-Plus Unary
Automata

The result we have in mind has first been stated in an existential way (for any
commutative dioid); we specialise it for the semiring N . For sake of simplicity,
let us call a series over {x}∗ a unary series, an automaton over {x}∗ a unary
automaton. Let us say that a unary min-plus series s is ultimately arithmetic
if it is finite or if there exist non negative integers N and r, and an integer k
such that, for every n larger than N , <s, xn> = nr + k . (In N , these series are
actually geometric series, since the sum is the multiplication law of the semiring,
the product is an exponentiation in N .) A series s is the merge of p series s0,
s1,. . . , sp−1 if for every pair (n, i) in N× [0; p−1], it holds <s, xnp+i> = <si, x

n> .

Proposition 7 ([7]). A unary min-plus rational series is a merge of ultimately
arithmetic series.

The original proof of Proposition 7 consists in proving that the family of merges
of ultimately arithmetic series is closed under rational operations. In terms of
automata, it means that every unary min-plus rational series can be realised by
a finite union of domain disjoint deterministic min-plus automata.

Proposition 8 ([10]). A min-plus unary automaton can be effectively decom-
posed into a finite union of deterministic min-plus (unary) automata whose sup-
ports are pairwise disjoint.

3.1 Sequentialisation of Unary Tight Automata

In [11], we have described a folklore ‘generalised sequentialisation procedure’
which applies to every min-plus automata, but which does not always yield a
finite (sequential) automaton, even for automata that realise a sequential series.

Definition 3. A circuit in a min-plus automaton A is critical if its yield is min-
imal (among the yields of all circuits in A). The critical part of A is the union
of its critical circuits. A computation in A is critical if it meets the critical part
of A. An automaton is tight if almost all words in its domain label a successful
critical computation.
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Remark 1. The critical part of an automaton is easily computable, since critical
circuits are either primitive or composed of smaller critical circuits. It is therefore
sufficient to detect primitive critical circuits.

Theorem 7 ([10]). A unary min-plus automaton realises a sequential min-plus
series if, and only if, it is tight.

3.2 Iterative Decomposition of Unary Min-Plus Automata

The following proposition is the core of the iterative method. The first point
describes a step of the iteration, the second one guarantees that the iteration
ends.

Proposition 9. Let A be a min-plus (unary) automaton, ρ its minimal yield,
and L the set of words which label a successful critical computation. Then:

(i) the restriction of s = |||A||| to L is sequential, realised by a deterministic
automaton whose loop has a yield which is equal to ρ;
(ii) the restriction of s to the complement of L is realised by an automaton B
which is an immersion in A and whose critical yield is strictly larger than ρ.

Proof. i) Let supp(A) be the support of A in which the critical part of A is
tagged. Let B be an automaton formed by two copies of supp(A); the first one
does not contain any final state and the second one does not contain any initial
state; it is possible to jump from a state of the first copy to the corresponding
state in the second copy if and only if this state is tagged. Therefore B recog-
nises L. Thus the product A× B realises the restriction of s to these words.

ii) Let C be a deterministic automaton that recognises the complement of L.
The product A × C realises the restriction of s to the complement of L. This
product is an immersion, each of its circuits corresponds to a circuit of A with
the same yield.

The space constraint does not allow to develop every step of the decomposition
of the min-plus projection τ1 = |||T1|||ψ of the transducer T1. Anyway, Figure 2
above already showed a length unfolding of T1 that is obtained by the product
of T1 by two unary deterministic tight automata with disjoint domains.

3.3 Proof of Theorem 6

Let T be a transducer that realises a rational relation θ : {x}∗ → B∗ and A
its min-plus projection. The iterative application of Proposition 9 effectively
gives k unary deterministic min-plus automata A1, A2, . . . , Ak, with disjoint
domains K1, K2, . . . , Kk, and with yield ρ1, ρ2, . . . , ρk. The length unfolding
of every T ×Ai realises the length selection of the restriction of θ to Ki which
is, by Proposition 9, a ρi-bld relation.
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3. Berthé, V., Frougny, C., Rigo, M., Sakarovitch, J.: On the cost and complexity of
the successor function. In: Arnoux, P., Bédaride, N., Cassaigne, J. (eds.) Proc. of
WORDS 2007, CIRM, Luminy, Marseille (2007)

4. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, London
(1974)

5. Eilenberg, S., Elgot, C.C., Shepherdson, J.C.: Sets recognized by n-tape automata.
J. Algebra 13, 447–464 (1969)

6. Frougny, C., Sakarovitch, J.: Synchronized relations of finite and infinite words.
Theoret. Comp. Sci. 108, 45–82 (1993)

7. Gaubert, S.: Rational series over dioids and discrete event systems. In: Proc. of
the 11th Conf. on Anal. and Opt. of Systems: Discrete Event Systems. LNCIS,
vol. 199. Springer, Heidelberg (1994)

8. Johnson, H.J.: Rational equivalence relations. Theoret. Computer Sci. 47, 39–60
(1986)

9. Lombardy, S.: Sequentialization and unambiguity of (max,+) rational series over
one letter. In: Gaubert, S., Loiseau, J.-J. (eds.) Proc. of a Workshop on Max-Plus
Algebras. IFAC. Elsevier, Amsterdam (2001)

10. Lombardy, S.: Approche structurelle de quelques problèmes de la théorie des au-
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Abstract. For each sufficiently large N , there exists a unary regular
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ambiguous nondeterministic automata with at most N states while the
smallest deterministic automata for these two languages require a super-
polynomial number of states, at least eΩ(
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are accepted by nondeterministic machines sharing the same transition
graph, differing only in the distribution of their final states. As a con-
sequence, the gap between the sizes of unary unambiguous self-verifying
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1 Introduction

Finite state automata with a one-letter input alphabet have been studied exten-
sively, mainly in the last decade (see, e.g., [1,3,6,11,12]). This research revealed
many important differences between the regular languages over the unary input
alphabet and the general case, using at least two different input symbols.

For example, it is well known that each n-state nondeterministic automaton
can be simulated by an equivalent deterministic automaton with 2n states [17],
and this cost was shown to be tight for binary or any larger input alpha-
bet [10,13,15]. However, in the unary case, the optimal cost of this simulation is
strictly smaller, as shown by Chrobak [1] (see also [3,20]): it essentially reduces to
the Landau Function F (n) [8,9], with the subexponential but superpolynomial
growth rate eΘ(
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We also know that, for each n, there exists a language L over the binary (or any
larger) input alphabet recognizable by an n-state nondeterministic automaton,
such that even Lc, the complement of L, can be accepted by a nondeterministic
machine using no more than n+1 states, but the smallest deterministic automaton
for L must still use 2n states [11]. That is, even the gap between the total size
of the two nondeterministic automata for the pair L,Lc and the size of the
corresponding deterministic machines is exponential.

On the other hand, this phenomenon does not happen in the unary case. In
fact, Mera and Pighizzini [11] proved that if a unary language L is a witness
of the maximal state gap, i.e., if L is accepted by an n-state nondeterministic
automaton, while the smallest deterministic automaton for L requires F (n) =
eΘ(

√
n·ln n) states, then the smallest nondeterministic automaton for Lc must

also use F (n) states. (Therefore, it coincides with the smallest deterministic
automaton for Lc.) Thus, taking into account the total number of states in
machines for L and Lc, the superpolynomial gap disappears.

In this paper, we show that if the state gap is a little bit smaller than F (n), it
can be achieved by both L and Lc even in the unary case. More precisely, for any
sufficiently large N , there exists a unary language L such that both L and Lc

are recognized by nondeterministic automata with at most N states, while the
smallest deterministic automaton for L or Lc requires eΩ( 3√

N ·ln2N) states. More-
over, L and Lc are accepted by unambiguous nondeterministic machines with
isomorphic transition graphs (therefore, with equal number of states), differing
only in the distribution of their final states.

This result has an important consequence concerning self-verifying automata,
a special kind of finite automata with a symmetric form of nondeterminism,
introduced in [2]. Recently, Jirásková and Pighizzini [7] proved that an n-state
self-verifying automaton could be converted into an equivalent deterministic ma-
chine with O(3n/3) ≈ O(1.45n) states. This cost was also shown to be tight, if
the input alphabet consists of at least of two letters, leaving open the unary case.
As observed in [7], the cost of the corresponding conversion for unary automata
must be smaller than F (n).

In this paper, we show that the cost of the conversion of unary self-verifying
n-state automata into deterministic ones is still superpolynomial, namely, at
least eΩ( 3√

N ·ln2N) states, even if the self-verifying automata are unambiguous.
This is not too far from F (n) = eΘ(

√
n·lnn).

2 Preliminaries

Let lnx denote the natural logarithm of x. The i-th prime number will be denoted
by pi, starting with p1 =2, p2 =3, . . . . The greatest common divisor of positive
integers a1, . . . , as is denoted by gcd(a1, . . . , as), their least common multiple by
lcm(a1, . . . , as).

A nondeterministic finite automaton (nfa) is a quintuple A = (Q,Σ, δ, qI, F ),
where Q is a finite set of states, Σ a finite set of input symbols, δ : Q×Σ → 2Q

a transition function, qI ∈ Q an initial state, and F ⊆ Q a set of final (accepting)
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states. The automaton A is deterministic (dfa), if the cardinality of δ(q, s) is
equal to 1, for each q ∈ Q and s ∈ Σ, i.e., if A has exactly one computation
path for each input w, not halting before reading the entire input. An nfa A is
called unambiguous, if it has exactly one accepting computation path for each
accepted input w. All automata in this paper are unary, so we can fix the input
alphabet to Σ = {a}.

Clearly, the transition graph of a unary dfa consists of an initial path starting
in an initial state, of length ϕ ≥ 0, followed by some loop, of length λ ≥ 1.

A unary language L is λ-cyclic, if it is accepted by a unary dfa whose tran-
sition graph is a loop of λ states without any initial path, i.e., with ϕ = 0.
Equivalently, L is λ-cyclic if, for each K ≥ 0, aK ∈ L if and only if aK+λ ∈ L.
L is properly λ-cyclic, if it is λ-cyclic but not λ′-cyclic for any λ′ < λ. (In this
case, λ is equal to the number of the states in the smallest dfa for L.)

An nfa is in Chrobak Normal Form, if its graph consists of an initial determin-
istic path and some s disjoint deterministic loops. The last state of the initial
path is connected via s leaving edges to each of the s loops: this is the only
nondeterministic choice ever made. (If s = 1, we get an ordinary deterministic
machine.)

Even though this form is very simple and the use of nondeterminism is re-
stricted to a single computation step, each n-state unary nfa A can be trans-
formed into an nfa A′ in Chrobak Normal Form with at most n2−2 states along
the initial path and at most n−1 states in the loops [1,3].1 Moreover, by [6], if
the language accepted by A is λ-cyclic, then A can be converted into A′ without
increasing the number of states, either with the initial path consisting of a single
state, or the entire A′ becomes a single deterministic loop.

3 Witness Languages and Their Automata

In this section, we introduce the pairs of complementary unary languages used
to state our main result and study their state complexity, both for dfas and
nfas.

Let λ0, . . . , λs−1 be some given powers of different prime numbers, for some
s ≥ 1. That is, λi = pαi

hi
, for some positive integer αi and some prime phi .

We also suppose that λ0, . . . , λs−1 are sorted with respect to their underlying
prime numbers, i.e., phi′ < phi′′ for i′ < i′′. Since the underlying primes are all
different, λi = pαi

hi
≥ phi ≥ pi > i. The product of these prime powers will be

denoted by λ = λ0· · ·λs−1.
Now, fix ŝ as the smallest integer satisfying ŝ ≥ s and dividing some λ� from

among λ0, . . . , λs−1. That is, ŝ = pα̂
h�

≥ s, for some 	 ∈ {0, . . . , s−1} and α̂ ≤ α�.
Since λs−1 > s−1, such ŝ and λ� must exist.

Finally, for the given λ0, . . . , λs−1, define the language L as follows:

L = {aK | ∃ i ∈ {0, . . . , s−1} : K mod λK mod ŝ = K mod ŝ = i} .
1 A subtle error in [1] has been fixed in [20]. The upper bounds n2 − 2 for the number

of states on the initial path and n−1 for the total number of states in the loops are
presented, with a different proof of the Chrobak Normal Form, in [3].
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It is not hard to see that the language L can be expressed in the following form,
which will turn out to be useful to prove our results:

L = {aK | P (K)} , where
P (K) ≡ ∨s−1

i=0 [K mod ŝ = i
∧

K mod λi = i ] .
(1)

Since ŝ ≥ s, the (conjunctive) clauses in the above predicate P (K) are pairwise
disjoint for each input string aK .

Lemma 1. Let aK be a string with K mod ŝ = j, for some j ∈ {0, . . . , s−1}.
Then aK ∈ L if and only if K mod λj = j.

Proof. Assume that K mod ŝ = j, for some j ∈ {0, . . . , s−1}. Then

P (K) ≡ ∨s−1
i=0 [K mod ŝ = i

∧
K mod λi = i ]

≡ [K mod ŝ = j
∧

K mod λj = j ] ≡ [K mod λj = j ] ,

using [K mod ŝ = i] ≡ false for i �= j, together with [K mod ŝ = j] ≡ true. ��
Note that even for the special case of j = 	, in which ŝ divides λj = λ�, the above
lemma says that if K mod ŝ = 	, then aK ∈ L if and only if K mod λ� = 	.

On the other hand, the lemma does not cover the case of K mod ŝ = j ∈
{s, . . . , ŝ−1}, in which aK �∈ L.

Theorem 1. The language L, defined by (1) above, is properly λ-cyclic, i.e., the
transition graph of its optimal dfa is a loop consisting of λ = λ0· · ·λs−1 states.

Proof. From the definition, it is easy to see that L is λ-cyclic. To show it is
properly λ-cyclic, it is enough to prove that, for each λ′ ≥ 1, if L is λ′-cyclic
then λ′ must be a multiple of λi, for i = 0, . . . , s−1.

For such given λ′, let ν be the smallest integer such that ŝ divides νλ′. Hence,
ν = ŝ

gcd(ŝ,λ′) . Since ν divides ŝ which in turn divides λ�, gcd(ν, λj) = 1 for each
j ∈ {0, . . . , s−1} \ {	}. It is also easy to see that aj ∈ L for j ∈ {0, . . . , s−1},
since j < s ≤ ŝ and j < λj , which gives j mod ŝ = j and j mod λj = j. But then
also aj+νλ′ ∈ L. Now, since ŝ divides νλ′, we get (j+νλ′) mod ŝ = j mod ŝ = j.
Combining this with aj+νλ′ ∈ L, we thus get (j+νλ′) mod λj = j. But then
(νλ′) mod λj = ((j+νλ′)−j) mod λj = j−j = 0, and hence λj divides νλ′. In
the case of j �= 	, with gcd(ν, λj) = 1, this implies that λj divides λ′.

It only remains to show that λ� also divides λ′. Let us fix some K ≥ 0 so that
K mod λj = (j−1) mod λj , for each j ∈ {0, . . . , s−1} \ {	}, but K mod λ� = 	.
By the Chinese Remainder Theorem, such K must exist. Since λ� is an integer
multiple of ŝ and 	 < ŝ, we have also K mod ŝ = 	. This gives that aK ∈ L. But
then aK+λ/λ�·λ′

must also be in L. However, for j ∈ {0, . . . , s−1}\{	}, λj divides
λ/λ�, and hence (K + λ/λ� ·λ′) mod λj = K mod λj = (j−1) mod λj �= j.
Summing up, aK+λ/λ�·λ′ ∈ L but (K + λ/λ� ·λ′) mod λj �= j for j �= 	, which
leaves us a single satisfiable possibility, namely, that (K + λ/λ� ·λ′) mod λ� = 	.
Combining this with K mod λ� = 	, we get that (λ/λ�·λ′) mod λ� = 0. However,
gcd(λ�, λ/λ�) = 1, and hence λ� must divide λ′. ��
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Theorem 2. The language L, defined by (1) above, can be accepted by an unam-
biguous nfa in Chrobak Normal Form consisting of at most 1+λ�+ŝ·∑s−1

i=0,i
=� λi

states.

Proof. From the definition of L by (1), it turns out that L can be accepted
by an nfa in Chrobak Normal Form with the initial path consisting just of
a single initial state, in which it nondeterministically chooses one of s loops.
The i-th loop, for i ∈ {0, . . . , s−1}, verifies the truth of the i-th clause in (1),
i.e., whether [K mod ŝ = i

∧
K mod λi = i ], for the given input aK . This

condition can be verified by a loop counting modulo ŝ and, at the same time,
modulo λi, thus consisting of lcm(ŝ, λi) states. Clearly, lcm(ŝ, λi) = ŝ ·λi for
i �= 	, but lcm(ŝ, λ�) = λ�. Hence, the total number of the states in our nfa is
1 + λ� + ŝ ·∑s−1

i=0,i
=� λi.
In addition, it is easy to see that the clauses in (1) are pairwise disjoint, and

hence the above machine does not have more than one accepting computation
path, for any accepted input aK . Therefore, our nfa is unambiguous. ��
Now we focus our attention on the complement of L.

Theorem 3. The complement of the language L, defined by (1) above, can be
accepted by an unambiguous nfa in Chrobak Normal Form with the same transi-
tion graph as the nfa of Theorem 2, and hence with at most 1+λ�+ŝ·∑s−1

i=0,i
=� λi

states.

Proof. By the definition of L, aK ∈ L if and only if P (K) ≡ true, where P (K)
denotes the predicate introduced in (1). In order to cover all possible cases,
including the case of K mod ŝ ∈ {s, . . . , ŝ−1}, let us rewrite P (K) as follows.

P (K) ≡ ∨s−1
i=0 [K mod ŝ = i

∧
K mod λi = i ]∨

[K mod ŝ ∈ {s, . . . , ŝ−1} ∧ false ] .

Now P (K) is expressed in the form P (K) ≡ ∨s
i=0[αi(K) ∧ βi(K) ], where

– αi(K) ≡ [K mod ŝ = i] for i = 0, . . . , s− 1, but αs(K) ≡ [K mod ŝ ∈
{s, . . . , ŝ−1}],

– βi(K) ≡ [K mod λi = i] for i = 0, . . . , s−1, but βs(K) ≡ [false].

Note that exactly one of the predicates α0(K), . . . , αs(K) evaluates to true. More
precisely, for each K,

∨s
i=0 αi(K) ≡ true, but αi(K) ∧ αj(K) ≡ false, for i �= j.

For such exhaustive pairwise disjoint enumeration of all possibilities, it is easy
to see that the negated predicate is ¬P (K) ≡ ∨s

i=0[αi(K)∧¬βi(K) ]. This gives

¬P (K) ≡ ∨s−1
i=0 [K mod ŝ = i

∧
K mod λi �= i ]∨

[K mod ŝ ∈ {s, . . . , ŝ−1} ∧ true ]

≡ ∨s−2
i=0 [K mod ŝ = i

∧
K mod λi �= i ]∨

[ [K mod ŝ = s−1
∧

K mod λs−1 �= s−1 ]∨
K mod ŝ ∈ {s, . . . , ŝ−1} ] .
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But then the complementary language Lc = {aK | ¬P (K)} can also be ac-
cepted by an nfa in Chrobak Normal Form choosing nondeterministically one
of s loops in its initial state. The i-th loop, for i ∈ {0, . . . , s−2}, verifies whether
[K mod ŝ = i

∧
K mod λi �= i ], while the (s−1)-st loop verifies the truth of the

clause [ [K mod ŝ = s−1
∧

K mod λs−1 �= s−1 ]
∨

K mod ŝ ∈ {s, . . . , ŝ−1} ].
Clearly, these s clauses are pairwise disjoint, and hence our nfa is unambiguous.

For each i ∈ {0, . . . , s−1}, including i = s−1, the i-th clause can be verified
by a loop counting modulo ŝ and λi, with lcm(ŝ, λi) states. Thus, the number
of loops and their lengths are the same as in the nfa of Theorem 2, which
results in the same transition graph and in the same number of states, namely,
1+λ� + ŝ ·∑s−1

i=0,i
=� λi. However, the nfas for L and Lc differ in the distribution
of their final states. ��
It should be easily seen that the number of loops (hence, the total number
of states as well) can be reduced, if ŝ = λ� and s > 1. Then λ� divides the
length of some other loop, namely, lcm(ŝ, λi), for some i �= 	, and hence the
loop of length λ� can be removed from the list λ0, . . . , λs−1. This holds for nfas
presented both in Theorem 2 and in Theorem 3.

We also point out that, if s > 1 then the general lower bound on the number
of states for any nfa accepting L or Lc is 1 +

∑s−1
i=0 λi. This follows from [6,

Cor. 2.1], because of the fact that the smallest deterministic machine for L,
presented in Theorem 1, uses a loop of length λ = λ0· · ·λs−1, where the list
λ0, . . . , λs−1 represents the factorization of λ.

4 The Superpolynomial Gap

Here we shall prove our main result, namely, the superpolynomial gap in the num-
ber of the states, between two nfas accepting some unary languageL and its com-
plementLc on one side, and the minimal dfas for these two languages on the other
one. The gap holds even if we restrict ourselves to cyclic unary languages and,
moreover, both L and Lc require the corresponding nfas to be unambiguous.

To achieve this result, we shall make use of the Landau Function F (n) [8,9].
This function, the investigation of which was initially motivated by the group
theory, plays an important role in analysis of simulations among various models
of unary automata [1,3,12]. We now recall the definition of F (n) and present
some of its properties, required later. Given a positive integer n, let

F (n) = max{lcm(λ0, . . . , λs−1) | λ0 + · · · + λs−1 = n} ,
where λ0, . . . , λs−1 denote, for the time being, arbitrary positive integers. Sza-
lay [19] gave a sharp estimation of F (n) that, after some simplification, can be
formulated as follows:2

2 The asymptotic notation in the formula (and, throughout the paper) is interpreted as
follows. The exact value of F (n) can be expressed in the form F (n) = e(1+r(n))·√n·ln n,
for some real function r(n) satisfying limn→∞ r(n) = 0, and r(n) ≥ 0 for each n. If we
do not claim r(n) ≥ 0, we use e(1±o(1))·√n·ln n instead. The meaning of e(1−o(1))·√n·ln n

should be obvious.
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F (n) = e(1+o(1))·
√

n·ln n. (2)

Before proceeding further, we need to express F (n) in a slightly different
form. First, since lcm(λ0, . . . , λs−1) = lcm(λ0, . . . , λs−1, 1, . . . , 1), the condition
λ0 + · · · + λs−1 = n can be replaced by λ0 + · · · + λs−1 ≤ n in the definition
of F (n). Second, if a number λi is a product of some two integers a > 1 and
b > 1, with gcd(a, b) = 1, it can be replaced in the list λ0, . . . , λs−1 by these two
numbers. This does not change the least common multiple of λ0, . . . , λs−1 nor,
since a+b ≤ a ·b, does it increase their sum. Third, if a number λi divides λj ,
for some i �= j, then the number λi can be removed from the list λ0, . . . , λs−1
for the same reasons. In this way, we can restrict our attention to the lists of
prime powers, with the underlying prime numbers all different. Finally, we can
also assume that such lists are sorted with respect to their underlying primes.
This gives:

F (n) = max
{∏s−1

i=0 pαi

hi
| ∑s−1

i=0 pαi

hi
≤ n, ph0<. . .<phs−1 , α0, . . . , αs−1>0

}
.

The above formula clearly shows that F (n) ≤ F (n+1) for each n, i.e., F (n) is
monotone nondecreasing. (For more details, see [8,9,14,16].)

From this point forward, for a given integer n, let λ0, . . . , λs−1 denotes the
list of prime powers, ordered with respect to their underlying primes, for which
the function F (n) reaches its maximum.3 Clearly, λi = pαi

hi
, for some positive

integer αi and some prime phi . Now we recall some facts about these numbers:

Lemma 2.

i. phs−1 ∼ √
n·lnn, that is,4 phs−1 = (1 ±o(1)) · √n·lnn.

ii. s ∼ 2·√n/ lnn, that is, s = (2 ±o(1)) ·√n/ lnn.
iii. There can exist at most one prime smaller than phs−1/2 that does not di-

vide F (n).

Proof. The items (i) and (ii) have been proved by Nicolas [16]. In the same paper,
he proved also that, given three distinct primes p, p′, q, with p+p′ ≤ q, such that
q divides F (n), at least one of p, p′ must also divide F (n). As an immediate
corollary, Grantham [4] stated (iii). ��
Given an integer n, hence, given also a list of prime powers λ0, . . . , λs−1 for which
the function F (n) reaches its maximum, fix ŝ and λ� in the same way as done
in Section 3. Recall that ŝ is the smallest integer satisfying ŝ ≥ s and, moreover,
3 By the Fundamental Theorem of Arithmetic, this factorization of F (n) into

λ0, . . . , λs−1 is unique.
4 The statement gives only the asymptotic behavior of phs−1 . For the sake of com-

pleteness, we mention that Grantham [4] proved that the largest prime phs−1 in
the factorization of F (n) never exceeds the value 1.328·

√
n·ln n, for any integer n.

It is also interesting to mention that the exponent for this largest prime is always
αs−1 = 1, with the only exception of n = 4 [16].
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dividing some λ� from among λ0, . . . , λs−1. That is, we have λ� = pα�

h�
, for some

	 ∈ {0, . . . , s−1}, and also ŝ = pα̂
h�

≥ s, for some α̂ ≤ α�.
Now, by the use of the construction presented in Section 3, we can define a

language L such that:

– the language L and its complement Lc can be accepted by two nfas using
the same number of states, namely, N ≤ 1 + λ� + ŝ ·∑s−1

i=0,i
=� λi, as shown
by Theorems 2 and 3, respectively,

– the smallest dfa accepting L (or Lc) must use F (n) = λ = λ0· · ·λs−1 states,
by Theorem 1.

In order to evaluate the gap, let us now express F (n), the number of states
in the dfas for L and Lc, as a function of N , the number of states in our nfas
for these two languages. To this aim, we prove the following bounds for ŝ:

Lemma 3. For each sufficiently large n, 2 < s ≤ ŝ ≤ 2s.

Proof. First, by (ii) and (i) in Lemma 2, we have s ≤ (2 +o(1)) ·√n/ lnn, but
phs−1 ≥ (1 −o(1)) · √n·lnn. From this we can conclude, for each sufficiently
large n, that 2s < phs−1/2. Similarly, since s ≥ (2 −o(1)) ·√n/ lnn, we get also
2 < 11

2 ≤ s.
But, by [18], for each s ≥ 11

2 , there must exist at least two different primes
p′, p′′ between s and 2s. We thus get two primes satisfying s ≤ p′ < p′′ ≤ 2s <
phs−1/2.

Now, by statement (iii) in Lemma 2, we can conclude that at least one of
p′, p′′ must be a factor of F (n), thus dividing some λ� from among λ0, . . . , λs−1
and, moreover, this divisor is positioned in between s and 2s.

But then ŝ, the smallest divisor of F (n) above s, must also satisfy s ≤ ŝ ≤ 2s.
��

Using Lemmas 3 and 2, we are now able to derive the following inequalities:

N ≤ 1 + λ� + ŝ·∑s−1
i=0,i
=� λi ≤ ŝ·∑s−1

i=0 λi ≤ ŝ·n ≤ 2s·n
≤ (4 +o(1))·√n/ lnn · n ≤ (4 +o(1))·n3/2/ ln1/2n

(3)

Note that, for sufficiently large n, we must get N ≤ n3/2. But then:

ln2N ≤ (lnn3/2)2 ≤ 9
4 · ln2n (4)

Now, by combining (3) with (4), we obtain:

N · ln2N ≤ (4 +o(1))·n3/2/ ln1/2n · 9
4 ·ln2n ≤ (9 +o(1)) · (n·lnn)3/2

This gives:

(n·lnn)1/2 ≥ ( 1
9+o(1) ·N ·ln2N )1/3 ≥ ( (1

9 −o(1)) ·N ·ln2N )1/3

≥ ( 1
91/3 −o(1))·N1/3 ·ln2/3N
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Now, using the approximation for the Landau Function, presented by (2), we
obtain:

F (n) = e(1+o(1))·
√

n·ln n ≥ e
√

n·lnn ≥ e(1/3√9−o(1))· 3√
N ·ln2N

Summing up, for each integer n, we have found an integer N = Nn and a
cyclic unary language LNn such that:

– the languages LNn and its complement Lc
Nn

can be accepted by two unam-
biguous nfas using at most Nn states,

– the smallest dfa accepting the language LNn (or Lc
Nn

) must use at least

F (n) ≥ e(1/3√9−o(1))· 3
√

Nn·ln2Nn states.

It is not difficult to prove that the sequence N1, N2, N3, . . . must contain infinitely
many different integers. Actually, we can extend the gap to all sufficiently large
integers:

Theorem 4. For each sufficiently large N , there exists a cyclic unary lan-
guage LN such that:

– the languages LN and its complement Lc
N

can be accepted by two unambiguous
nfas using at most N states,

– the smallest dfa accepting the language LN (or Lc
N) must use at least

1
2 ·e(1/3√9−o(1))· 3√

N ·ln2N ≥ eΩ( 3√
N ·ln2N) states.

Proof. First, the sequence F (1), F (2), . . . is unbounded, i.e., limn→∞ F (n) = ∞,
by (2). Second, the smallest dfa accepting the language LNn must use at least
F (n) states but, at the same time, LNn can be accepted by an nfa using no
more than Nn states. But then the sequence N1, N2, . . . must also be unbounded.
Hence, for each sufficiently large N , satisfying among others N ≥ N1, we can
find an integer n such that Nn ≤ N < Nn+1.

Now we choose LN = LNn . Clearly, LN and Lc
N

are accepted by two un-
ambiguous nfas using at most N states. Furthermore, by [16, Cor. p. 319],
F (n) ≥ 1

2 ·F (n+1). Hence, the number of the states in the smallest dfa accept-
ing LN (or Lc

N
) is

F (n) ≥ 1
2 ·F (n+1) ≥ 1

2 ·e(1/3√9−o(1))· 3
√

Nn+1·ln2Nn+1 ≥ 1
2 ·e(1/3√9−o(1))· 3√

N ·ln2N .
��

5 Self-verifying Automata

Let us now consider a special kind of finite automata with a symmetric form
of nondeterminism, introduced in [2]. A self-verifying automaton (svfa) is a
nondeterministic automaton equipped with two kinds of final states, namely,
the set of accepting states F+ and the set of rejecting states F−. All remaining
states in Q are neutral. By definition, for each w ∈ L, there must exist at least
one accepting computation path halting in some q ∈ F+, but no path may halt
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in a state q ∈ F−. Symmetrically, for each w ∈ Lc, at least one rejecting path
halts in q ∈ F−, but no path may halt in q ∈ F+.

We shall consider even a more restricted form of nondeterminism: the given
svfa is called unambiguous, if it has exactly one computation path ending in
F+ or F−, for any input w.

As a special case of nfas, svfas can be converted into equivalent dfas by
the usual techniques. However, the cost of the conversion can be reduced [7]:
each n-state svfa can be converted into a dfa with O(3n/3) ≈ O(1.45n) states.
Moreover, this cost was shown to be tight, if the input alphabet consists of at least
of two letters, leaving open the unary case. We remind that the tight upper bound
for the conversion of unary nfas into dfas is given by the Landau Function [1],
with the growth rate only F (n) = e(1+o(1))·

√
n·lnn. However, as observed in [7],

the cost for the unary svfas must be strictly smaller than F (n). Here we show
that this cost is still superpolynomial, with a lower bound not too far from F (n).

Before doing this, let us begin with a general construction, converting two
given nfas A+ and A−, accepting a language L and its complement Lc, respec-
tively, into equivalent svfa A for L. As pointed out in [5], A can be obtained
by introducing a new initial state, connected to copies of A+ and A− with suit-
able transitions. The total number of the states in A is thus the sum of the
corresponding numbers in the two original automata, plus 1. In the next lemma
(which holds for any input alphabet), we show that if A+ and A− share the same
transition graph, we do not need to duplicate this graph.

Lemma 4. Let A+ and A− be two nfas accepting, respectively, a language L
and its complement Lc. If A+ and A− have the same transition graph, then
L can be accepted by an svfa A that also uses the same transition graph.

Moreover, if both A+ and A− are unambiguous, then so is A.

Proof. First, without loss of generality, we assume that neither A+ nor A− have
unreachable states. Now we define A by taking the same states and the same
transitions as in A+ and A−, choosing as a set of accepting states F+ the set
of final states in A+, and as a set of rejecting states F− the set of final states
in A−. All remaining states become neutral. Using the fact that there are no
unreachable states and that each input string w must be accepted either by A+

or by A−, but not by both, the sets of accepting and rejecting states must be
disjoint, and the resulting automaton must be an svfa for L. (See Figure 1 for
an example.)

Moreover, if both A+ and A− are unambiguous, i.e., if A+ has exactly one
accepting computation path for any w ∈ L and, at the same time, A− has exactly
one such path for any w ∈ Lc, then A must have exactly one path ending in F+

or F− for any input. ��
The two unambiguous nfas used in Theorem 4 have the same transition graph.
Thus, by Lemma 4, we get the following:
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nfa A+:
[ K mod 2 = 0

∧
K mod 4 = 0 ]

∨
[ K mod 2 = 1

∧
K mod 5 = 1 ]

nfa A−:
[ K mod 2 �= 0

∨
K mod 4 �= 0 ]

∧
[ K mod 2 �= 1

∨
K mod 5 �= 1 ]

≡
[ K mod 2 = 0

∧
K mod 4 �= 0 ]

∨
[ K mod 2 = 1

∧
K mod 5 �= 1 ]

svfa A: A+ and A− in one

Fig. 1. An example with n = 9 and F (n) = 20 = 22 · 5. This gives λ0 = 4 and λ1 = 5,
and hence ŝ = 2, lcm(ŝ, λ0) = 4, lcm(ŝ, λ1) = 10. The nfa A+ for L, top left, has its
final states marked by “+”, while the nfa A− for Lc, top right, by “−”. The resulting
svfa A is depicted on bottom. The smallest dfa uses λ0 ·λ1 = 20 states.

Corollary 1. For each sufficiently large N , there exists a cyclic unary lan-
guage LN such that:

– the languages LN and its complement Lc
N

can be accepted by two unambiguous
nfas using the same transition graph, of at most N states,

– LN (and Lc
N) can also be accepted by an unambiguous svfa with the same

transition graph, and hence with the same number of states, at most N ,
– the smallest dfa accepting the language LN (or Lc

N) must use at least
1
2 ·e(1/3√9−o(1))· 3√

N ·ln2N ≥ eΩ( 3√
N ·ln2N) states.

The above corollary permits us to conclude that the following gaps are super-
polynomial, even for unary cyclic languages:

– between the total size of two nfas accepting a language and its complement
on one side, and the size of the corresponding dfa on the other one,

– between the sizes of unambiguous nfas and dfas,
– between the sizes of svfas and dfas,
– between the sizes of unambiguous svfas and dfas.

Acknowledgment. The authors would like to thank the anonymous referee for
helping to simplify the proof of Theorem 1.
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Abstract. We study the state complexity of regular operations in the
class of ideal languages. A language L ⊆ Σ∗ is a right (left) ideal if it
satisfies L = LΣ∗ (L = Σ∗L). It is a two-sided ideal if L = Σ∗LΣ∗, and
an all-sided ideal if L = Σ∗ L, the shuffle of Σ∗ with L. We prefer
“quotient complexity” to “state complexity”, and we use quotient for-
mulas to calculate upper bounds on quotient complexity whenever it is
convenient. We find tight upper bounds on the quotient complexity of
each type of ideal language in terms of the complexity of an arbitrary
generator and of its minimal generator, the complexity of the minimal
generator, and also on the operations union, intersection, set difference,
symmetric difference, concatenation, star and reversal of ideal languages.

Keywords: automaton, complexity, ideal, language, quotient, state com-
plexity, regular expression, regular operation, upper bound.

1 Introduction

The state complexity of a regular language L is the number of states in the
minimal deterministic finite automaton (dfa) recognizing L. The state complexity
of an operation f(K,L) or g(L) in a subclass C of regular languages is the
maximal state complexity of the language f(K,L) or g(L), respectively, when
K and L have state complexities m and n, respectively, and range over all
languages in C. For a detailed discussion of general issues of state complexity
see [5,27] and the reference lists in those papers. Here we briefly mention the
previous work on the complexity of operations in the class of regular languages
and its subclasses.

The bound mn on the complexity of intersection was noted in 1959 by Rabin
and Scott [22]. The state complexity of union, product and star was first studied
in 1970 by Maslov [17]. He stated the upper bounds on these operations and
gave examples of languages meeting these bounds, but provided no proofs. In
1981 Leiss [14] showed that the 2n bound for reversal can be met. In 1991
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Birget [2] introduced the term “state complexity” and studied the complexity
of the intersection of n languages. In 1994 Yu, Zhuang and K. Salomaa [28]
examined the complexity of concatenation, star, left and right quotients, reversal,
intersection, and union in the class or regular languages.

The complexity of operations was also considered in several subclasses of
regular languages: unary [21,28], finite [9,27], prefix-free [13], suffix-free [12],
and closed [7]. These studies of subclasses show that the complexity can be
significantly lower in a subclass of regular languages than in the general case.

Here we continue the study of the state complexity of operations in subclasses.
Specifically, we examine four related classes of regular languages: right, left, two-
sided, and all-sided ideals, defined below. Ideals are chosen for several reasons.
They are special subsets of semigroups, well-known in semigroup theory [16,24].
They appear in the theoretical computer science literature as early as 1965 [19]
and continue to be of interest [1,3]. Ideal languages are complements of prefix-,
suffix-, factor-, and subword-closed languages—another interesting class [1,7],
and are closed with respect to the “has a word as a prefix” (respectively, suffix,
factor, subword) relation [1]. They are special cases of convex languages [1,25],
a much larger class. The fact that the four classes of ideals are related to each
other permits us to obtain many complexity results using similar methods.

Our interest is in regular ideal languages. Left and right ideals were studied
by Paz and Peleg [19] in 1965 under the names “ultimate definite” and “reverse
ultimate definite events”. The results in [19] include closure properties, decision
procedures, and canonical representations for these languages. All-sided ideals
were used by Haines [11] (not under that name) in 1969 in connection with
subword-free and subword-closed languages, and by Thierrin [25] in 1973 in
connection with subword-convex languages. De Luca and Varricchio [15] showed
in 1990 that a language is factor-closed (also called “factorial”) if and only if
it is the complement of a two-sided ideal. In [28] there are two results about
left and right ideals. In 2001 Shyr [24] studied right, left, and two-sided ideals
and their generators in connection with codes. In 2007 Okhotin [18] presented a
result concerning all-sided ideals. In 2008 all four types of ideals were considered
by Ang and Brzozowski [1] in the framework of languages convex with respect
to arbitrary binary relations. Decision problems for various classes of convex
languages, including ideals, were addressed in [8]. Complexity issues of nfa to dfa
conversion in right, left, and two-sided ideals were studied in 2008 by Bordihn,
Holzer, and Kutrib [3], under the names “ultimate definite”, “reverse ultimate
definite”, and “central definite” languages, respectively. The closure properties
of ideals were analyzed in [1].

Our approach to state complexity follows closely that of [5]. Since state com-
plexity is a property of a language, it is more appropriately defined in language-
theoretic terms. Hence we use the equivalent concept of quotient complexity as
explained below. Quotient complexity was introduced in 2009 [5], but quotient
methods were used there mainly to derive known results in a new way. In the
present paper, we derive many new complexity bounds using quotients.
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2 Ideal Languages and Quotient Complexity

We assume that the reader is familiar with basic concepts of regular languages
and finite automata, as described in [20,26], for example, or in many textbooks.
For general properties of ideal languages we refer the reader to [16,24].

If Σ is a non-empty finite alphabet, then Σ∗ is the free monoid generated by
Σ. A word is any element of Σ∗, and the empty word is ε. The length of a word
w ∈ Σ∗ is |w|. A language over Σ is any subset of Σ∗.

If u, v, w ∈ Σ∗ and w = uxv, then u is a prefix of w, v is a suffix of w,
and x is a factor of w. If w = w0a1w1 · · ·anwn, where a1, . . . , an ∈ Σ, and
w0, . . . , wn ∈ Σ∗, then v = a1 · · ·an is a subword of w.

A language L is prefix-free (prefix-closed) if w ∈ L implies that no proper
prefix of w is in L (that every prefix of w is in L). In the same way, we define
suffix-free, factor-free, and subword-free, and the corresponding closed versions.

A language L ⊆ Σ∗ is a right ideal (left ideal, two-sided ideal, all-sided ideal)
if it is non-empty and satisfies L = LΣ∗ (L = Σ∗L, L = Σ∗LΣ∗, L = Σ∗ L,
respectively), where is the shuffle operator. We refer to all four types as ideal
languages or simply ideals.

The following set operations are defined on languages: complement
(L = Σ∗ \ L), union (K ∪ L), intersection (K ∩ L), difference (K \ L), and
symmetric difference (K ⊕ L). A general boolean operation with two arguments
is denoted by K ◦ L. We also define the product, usually called concatenation
or catenation, (KL = {w ∈ Σ∗ | w = uv, u ∈ K, v ∈ L}), positive closure
(L+ =

⋃
i≥1 L

i), and star (L∗ =
⋃

i≥0 L
i). The reverse wR of a word w ∈ Σ∗ is

defined as follows: εR = ε, and (wa)R = awR. The reverse of a language L is
denoted by LR and defined as LR = {wR | w ∈ L}.

Regular languages over an alphabet Σ are languages that can be obtained
from the basic languages ∅, {ε}, and {a}, a ∈ Σ, using a finite number of opera-
tions of union, product and star. Such languages are usually denoted by regular
expressions. If E is a regular expression, then L(E) is the language denoted by
that expression. For example, E = (ε ∪ a)∗b denotes L = ({ε} ∪ {a})∗{b}. We
use the regular expression notation for both expressions and languages.

The left quotient, or simply quotient, of a language L by a word w is the
language Lw = {x ∈ Σ∗ | wx ∈ L}. The quotient complexity of L is the number
of distinct quotients of L, and is denoted by κ(L).

We now describe the computation of quotients of a regular language. First, the
ε-function Lε of a regular language L is equal to ε if ε ∈ L, and to ∅ otherwise.
The quotient by a letter a in Σ is computed by structural induction: ba = ∅ if
b ∈ {∅, ε} or b ∈ Σ and b �= a, and ba = ε if b = a; (L)a = La; (K ∪ L)a =
Ka∪La; (KL)a = KaL∪KεLa; (K∗)a = KaK

∗. The quotient by a word w ∈ Σ∗

is computed by induction on the length of w: Lε = L; Lw = La if w = a ∈ Σ;
Lwa = (Lw)a. Quotients computed this way are indeed the left quotients of a
regular language [4,5].

A quotient Lw is accepting if ε ∈ Lw; otherwise it is rejecting.
A deterministic finite automaton (dfa) is a quintuple D = (Q,Σ, δ, q0, F ),

where Q is a finite, non-empty set of states, Σ is a finite, non-empty alphabet,
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δ : Q×Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of final states.

A nondeterministic finite automaton (nfa) is a quintuple N = (Q,Σ, η, S, F ),
where Q, Σ, and F are as in a dfa, η : Q ×Σ → 2Q is the transition function,
and S ⊆ Q is the set of initial states.

The quotient automaton of a regular language L is D = (Q,Σ, δ, q0, F ), where
Q = {Lw | w ∈ Σ∗}, δ(Lw, a) = Lwa, q0 = Lε = L, F = {Lw | Lε

w = ε},
and Lε

w = (Lw)ε. So the number of states in the quotient automaton of L is the
quotient complexity of L. A quotient automaton can be conveniently represented
by quotient equations [4]:

Lw =
⋃

a∈Σ

aLwa ∪ Lε
w, (1)

where there is one equation for each distinct quotient Lw.
We use the following formulas [4,5] for quotients of regular languages to es-

tablish upper bounds on quotient complexity:

Proposition 1. If K and L are regular languages and w ∈ Σ∗, then

(L)w = Lw, (K ◦ L)w = Kw ◦ Lw, (2)

(KL)w = KwL ∪KεLw ∪ (
⋃

w=uv
u,v∈Σ+

Kε
uLv), (3)

(L∗)ε = ε ∪ LL∗, (L∗)w = (Lw ∪
⋃

w=uv
u,v∈Σ+

(L∗)ε
uLv)L∗ for w ∈ Σ+. (4)

3 Ideals, Generators, and Minimal Generators

If L is a right (respectively, left, two-sided, all-sided) ideal, any language G ⊆ Σ∗

such that L = GΣ∗ (respectively, L = Σ∗G, L = Σ∗GΣ∗, L = Σ∗ G) is a
generator of L. The quotients of generated ideals GΣ∗, Σ∗G, and Σ∗GΣ∗ are
given below, where in w = uv and v = xy we assume that u, v, x, y ∈ Σ+:

(GΣ∗)w = (Gw ∪Gε ∪
⋃

w=uv

Gε
u)Σ∗, (5)

(Σ∗G)w = Σ∗G ∪Gw ∪
⋃

w=uv

Gv. (6)

(Σ∗GΣ∗)w = Σ∗(GΣ∗) ∪ (GΣ∗)w ∪
⋃

w=uv

(GΣ∗)v = (7)

[Σ∗G ∪ (Gw ∪
⋃

w=uv

Gv) ∪
⋃

w=uv

[Gε
u ∪ (

⋃
v=xy

Gε
x)]]Σ∗. (8)

We use these formulas to establish upper bounds on the complexity of the ideals
GΣ∗, Σ∗G, and Σ∗GΣ∗ generated by G.
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Theorem 1 (Complexity of Ideals in Terms of Generators). Let G be
any generator of the right ideal GΣ∗ (left ideal Σ∗G, two-sided ideal Σ∗GΣ∗,
or all-sided ideal Σ∗ G) with κ(G) = n ≥ 2, and assume that ε �∈ G. Then

1. κ(GΣ∗) ≤ n, and the bound is tight if |Σ| ≥ 1.
2. κ(Σ∗G) ≤ 2n−1, and the bound is tight if |Σ| ≥ 2.
3. κ(Σ∗GΣ∗) ≤ 2n−2 + 1, and the bound is tight if |Σ| ≥ 3.
4. κ(Σ∗ G) ≤ 2n−2 + 1, and the bound is tight if |Σ| ≥ 2n.

Proof. The first two items follow from [28]. We give short proofs using quotients.

1. From (5), if w has no prefix in G, then (GΣ∗)w = GwΣ
∗. As G is non-

empty and κ(G) = n, there can be at most n− 1 such quotients, for there must
be at least one quotient Gw with w ∈ G. However, for every word w with a prefix
x in G, we have (GΣ∗)w = (GΣ∗)x = Σ∗. Hence there are at most n different
quotients of GΣ∗. The unary language G = an−1a∗ meets the bound.

2. One of the n quotients of G, namely Gε = G, always appears in (6).
Thus there are at most 2n−1 subsets of quotients of G to be added to Σ∗G.
For n ≥ 2 consider the language G = (b ∪ a(a ∪ b)n−1)∗a(a ∪ b)n−2. Then
L = Σ∗G = {w | w has an a in position (n− 1) from the end}. Let x and y be
two different words of length n − 1, and let u be their longest common prefix.
Then, for some v, w ∈ Σ∗, we have x = uav and y = ubw, and a|u| ∈ Lx \ Ly.
Hence all the quotients of L by words of length n− 1 are distinct, and L has at
least 2n−1 distinct quotients. In view of the bound, L has exactly 2n−1 quotients.

3. Let L = Σ∗GΣ∗. Since G is always present in the expression Lw in (8),
there are 2n−1 unions of quotients of G possible. Since G is non-empty, it has
at least one accepting quotient, and that quotient is not G, since ε �∈ G. Hence
at least 2n−2 unions contain an accepting quotient of G and the corresponding
quotients of L are Σ∗. Thus 2n−2 + 1 is an upper bound. If n = 2 and Σ = {a},
then G = aa∗ = a∗aa∗ meets the bound. If n = 3, use Σ = {a} and G = aaa∗ =
a∗aaa∗. For n ≥ 4, consider the language G defined by the quotient automaton
in Fig. 1. Let x = uav and y = ubw be two different words of length n − 2,
and let z = a|u|c; then z ∈ Lx \ Ly. This gives 2n−2 distinct quotients. Adding
Lan−2c = Σ∗, which is the only quotient of L containing ε, we have the bound.

Gn−3
ca, ba, ba, b

cc

a
G G1

a, b

· · ·

b, c a, b, c

Gn−1Gn−2

Fig. 1. Quotient automaton of G with κ(G) = n satisfying κ(Σ∗GΣ∗) = 2n−2 + 1

4. This result for all-sided ideals was proved by Okhotin [18]. For n ≥ 3, he
used Σ = {a1, . . . , at}, where t = n − 2, and G = Σ∗(a1a1 ∪ · · · ∪ atat)Σ∗. He
also showed that the bound cannot be reached if n− 3 letters are used. ��
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Gn−1
a, b

G1 G2
a, ba, ba, b

· · ·

a

b

G

a

Gn−2

b

Fig. 2. Quotient automaton of G with κ(Σ∗G) = 2n−1 − 2n−3 + 1

Theorem 2 (Generators of Left Ideals with Special Properties). Let G
be any generator of the left ideal Σ∗G with κ(G) = n ≥ 3.

1. If Ga �= Gb, Ga �= G and Gb �= G, then κ(Σ∗G) ≤ 2n−1 − 2n−3 + 1.
2. If Ga = Gb and Ga �= G, then κ(Σ∗G) ≤ 2n−2 + 1.

Both bounds are tight if |Σ| ≥ 2.

Proof. 1. Since G always appears in (6), we have at most 2n−1 subsets of quo-
tients of G. Moreover, (Σ∗G)wa contains Ga and (Σ∗G)wb contains Gb. Therefore
the quotient of G by any word of length greater than zero contains either Ga

or Gb. Let S = {G1, . . . , Gn−1} be the set of quotients of G other than G itself.
There are 2n−3−1 non-empty subsets of S containing neither Ga nor Gb. These
subsets can never appear in the union in (6); hence we have the upper bound.
Now consider the language G defined by the quotient automaton in Fig. 2. Here
L = Σ∗G = {w | w ends in b or has an a in position (n − 1) from the end}.
The quotients Lε = L, Law, where |w| = n− 2, and Lbva, where |v| = n− 3, are
all distinct: First, we have ε ∈ Law \ L, an−2 ∈ Lbva \ L, and ε ∈ Law \ Lbva.
Second, consider two words x = auaz and y = aubz′ of the form aw; then
a|au| ∈ Lx \Ly. Third, consider two words x = buaza and y = bubz′a of the form
bva; then a|bu| ∈ Lx \ Ly. Thus the 2n−1 − 2n−3 + 1 quotients are distinct.

2. For all u ∈ Σ∗, the quotient (Σ∗G)ua always contains Ga, by Equation (6).
Since Ga = Gb, we know that Gw contains Ga for any w ∈ Σ+. Hence the number
of possibilities is reduced from 2n−1 to 2n−2 + 1, where 1 is added for (Σ∗G)ε.
Now let Σ = {a, b} and G′ = ΣG, where G = (b∪a(a∪b)n−1)∗a(a∪b)n−2. Then
L = Σ∗G′ = {w | w has an a in position (n− 2) from the end}. The 2n−2 + 1
quotients Lε and Law with |w| = n− 2 are all distinct. ��
We now consider the complexities of ideals in terms of their minimal generators.
The following are well-known properties of ideals [16]: If L is a right ideal, the
minimal generator of L is M = L \ (LΣ+), and M is prefix-free. If L is a left
ideal, the minimal generator of L is M = L \ (Σ+L), and M is suffix-free. If L
is a two-sided ideal, the minimal generator of L is M = L\ (Σ+LΣ∗∪Σ∗LΣ+),
and M is factor-free. If L is an all-sided ideal, the minimal generator of L is
the set M of all words of L that have no proper subwords in L, and thus M is
subword-free.
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Theorem 3 (Complexity of Ideals in Terms of Minimal Generators).
Let M be the minimal generator of the right ideal MΣ∗, (left ideal Σ∗M , two-
sided ideal Σ∗MΣ∗, or all-sided ideal Σ∗ M) with κ(M) = n ≥ 3. Then
1. κ(MΣ∗) ≤ n and the bound is tight if |Σ| ≥ 2.
2. κ(Σ∗M) ≤ 2n−2 and the bound is tight if |Σ| ≥ 2.
3. κ(Σ∗MΣ∗) ≤ 2n−3 + 1 and the bound is tight if |Σ| ≥ 2.
4. k(Σ∗ M) ≤ 2n−3 + 1, and the bound is tight if |Σ| ≥ n− 3.

Proof. 1. The upper bound n follows from Theorem 1. Let Σ = {a, b}, and
let M = aΣn−3. Then M has n quotients and generates the right ideal L =
aΣn−3Σ∗, which also has n quotients. The minimal generator of L is L\LΣ+ =
MΣ∗\MΣ∗Σ+ = (M∪MΣ+)\MΣ+ = M \MΣ+ = M , since M is prefix-free.
Hence M is indeed the minimal generator of MΣ∗, and the bound is tight.

2. Let G be M in (6). One of the n quotients of M , namely Mε = M , always
appears in the union. Thus there are at most 2n−1 subsets of quotients of M to
be added to Σ∗M . Moreover, since M is suffix-free, M has ∅ as a quotient [12].
Since each union of the n−1 quotients other than M that contains ∅ is equivalent
to a union without ∅, there are at most 2n−2 quotients of Σ∗M . Let Σ = {a, b}
and M = aΣn−3; then M has n quotients, and generates the ideal L = Σ∗M =
{w | w has an a in position (n− 2) from the end}. Thus the 2n−2 quotients of
L by words of length n−2 are distinct, and κ(L) = 2n−2. The minimal generator
of L is L \ Σ+L = Σ∗M \Σ+Σ∗M = (M ∪Σ+M) \Σ+M = M \Σ+M = M ,
since M is suffix-free. Hence M is indeed the minimal generator of Σ∗M .

3. Let G be M in (8). Since Mε = M is always present, there are at most 2n−1

subsets of quotients of M to add to Mε. Since M is the minimal generator of L,
it is factor-free, and hence prefix-free. Thus it has only one accepting quotient,
ε, and also has ∅ as a quotient. So we have at most 2n−2 subsets, because each
subset containing ∅ is equivalent to another subset without ∅. Finally, half of
those 2n−2 subsets contain Σ∗, and hence are equivalent to Σ∗. This leaves
2n−3 + 1 subsets, and κ(L) ≤ 2n−3 + 1. For n = 3, let Σ = {a} and M = a;
then M is the minimal generator of a∗aa∗ and meets the bound. For n ≥ 4, let
Σ = {a, b}, M = aΣn−4a, and L = Σ∗MΣ∗. Then M has n quotients. We now
show that the quotients Lw, where |w| = n− 3, and Lan−2 are all distinct. The
only quotient containing ε is Lan−2. If x = uav and y = ubw are two different
words of length n − 3 and z = a|u|a, then z ∈ Lx \ Ly. The minimal generator
of L is L \ (Σ+LΣ∗ ∪ Σ∗LΣ+) = Σ∗MΣ∗ \ (Σ+MΣ∗ ∪ Σ∗MΣ+) = M, since
M is factor-free. Hence M is indeed the minimal generator of Σ∗MΣ∗.

4. Since an all-sided ideal is a two-sided ideal, the bound of 2n−3 + 1 applies.
Let Σ = {a1, . . . , at}, where t = n − 3, and let M = a1a1 ∪ · · · ∪ atat. Now let
L = Σ∗ M =

⋃t
i=1 Σ

∗aiΣ
∗aiΣ

∗, let k ≥ 0, let S = {ai1 , . . . , aik
} ⊆ Σ, where

i1 < i2 < · · · < ik, let wS = ai1ai2 · · · aik
, and add the word a1a1. The quotients

of L by these 2t + 1 words are all distinct. Thus κ(L) = 2n−3 + 1. Now x ∈ L if
and only if x = uaivaiw for some ai ∈ Σ, u, v, w ∈ Σ∗, and all words of this form
are generated by aiai. Hence M is indeed the minimal generator of Σ∗ M . ��
We now consider the converse problem: Given an ideal L of quotient complexity
n, what is the quotient complexity of its minimal generator?
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Theorem 4 (Complexity of Minimal Generators). Let L be an ideal lan-
guage with κ(L) = n ≥ 1. Let M be its minimal generator.

1. If L is a right ideal, then κ(M) ≤ n + 1.
2. If L is a left ideal, then κ(M) ≤ n(n− 1)/2 + 2.
3. If L is a two-sided or an all-sided ideal, then κ(M) ≤ n + 1.

The bound for left ideals is tight if |Σ| ≥ 2; the other bounds are tight if |Σ| ≥ 1.

Proof. 1. If n = 1, then L = Σ∗, M = ε, κ(L) = 1, κ(M) = 2, and the bound
is satisfied. Assume now that ε �∈ L. Since L = LΣ∗, we have LΣ = LΣ+. Now
Mε = L \LΣ and, for a ∈ Σ, x ∈ Σ∗, Mxa = Lxa \ (LΣ)xa. By (3), since ε �∈ L,
we have Lε = ∅ and (recalling that u, v ∈ Σ+),

(LΣ)xa = LxaΣ ∪ LεΣxa ∪ (
⋃

xa=uv

Lε
uΣv) = LxaΣ ∪ Lε

xε,

because the only non-empty quotient of Σ by a non-empty word occurs when
v = a. Thus Mxa = Lxa \ (LxaΣ ∪Lε

xε). We know that L has only one accepting
quotient, namely Σ∗. If Lxa �= Σ∗, then ε �∈ Lxa and Lx �= Σ∗, which implies
that Lε

x = ∅; thus Mxa = Lxa \ LxaΣ, and there are n − 1 such quotients of
M . If Lxa = Σ∗, then there are two cases: (i) Lx = Σ∗: we have ε ∈ Lx and
Mxa = Σ∗\(Σ+∪ε) = ∅; (ii) Lx �= Σ∗: we have ε �∈ Lx and Mxa = Σ∗\Σ+ = ε.
In this case Mxa has the form Lxa \ LxaΣ, and this has already been counted.
Altogether we have Mε, ∅, and n− 1 other quotients. Hence κ(M) ≤ n+ 1. Let
Σ = {a}, and let L = an−1a∗, for n ≥ 1. Then L is a right ideal, κ(L) = n, and
the minimal generator is M = an−1 with κ(M) = n + 1.

2. If L is a left ideal and u, v ∈ Σ∗, then Lv ⊆ Luv. Since L = Σ∗L, we have
ΣL = Σ+L, showing that M = L \ΣL. Let L have quotients L1, L2, . . . , Ln. If
w = av is a nonempty word, then Mw = Lav \ Lv, which is a difference of two
quotients of L. Next, we have Lv ⊆ Lav. This means, that if i �= j, then at most
one of Li \Lj and Lj \Li may be a non-empty quotient of M . Also, Li \Li = ∅
for all i. Hence there are at most n(n−1)/2+2 quotients of M : Mε, at most one
quotient for each i �= j, and ∅. Let n ≥ 3 and let L = (b∪ab)∗a(ab∗)n−3a(a∪b)∗.
Note that w ∈ L if and only if w = xa(ab∗)n−3ay for some x, y ∈ Σ∗ because
every quotient of L contains a(ab∗)n−3a. Thus L is a left ideal with κ(L) = n.
Now let M = L\ΣL. Consider the quotients of M by the following n(n−1)/2+2
words: ε, b, a(ab)iaj , where i = 0, 1, . . . , n − 2 and j = 0, 1, . . . , n − 2 − i. Let
x = a(ab)iaj and y = a(ab)kal, where (i, j) �= (k, l). If i + j < k + 	, then
an−2−(k+�) is in My \Mx. If i+ j = k + 	 and j < 	, then an−1−� is in Mx \My.
Next, an−1 is in Mε \Mb, and an−2−(i+j) is in Mx \Mε as well as in Mx \Mb.
Thus the quotients of the minimal generator M by these words are all distinct,
and the bound is tight.

3. Since every two-sided ideal is a right ideal, the bound of n+ 1 applies. Let
Σ = {a} and let L = Σ∗ an−1 for n ≥ 1. Then L is an all-sided ideal, κ(L) = n,
and the minimal generator is M = an−1 with κ(M) = n + 1. ��
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4 Basic Operations on Ideals
We now examine the complexity of operations on ideal languages. If K and L
are regular languages with quotient complexities m and n, respectively, then the
following bounds, tight in the binary case, are known [5,14,17,28]: κ(K ∪ L),
κ(K ∩ L), κ(K \ L), κ(K ⊕ L) ≤ mn, κ(KL) ≤ m2n − 2n−1, κ(K∗) ≤ 3/4 · 2n,
and κ(LR) ≤ 2n. In this section, we show that the bounds for ideals are generally
lower, and tight for languages over small fixed alphabets, except for reversal of
all-sided ideals, which requires a growing alphabet.

Theorem 5 (Boolean Operations). Let K and L be right ideals (respectively,
two-sided ideals, or all-sided ideals) with κ(K) = m, κ(L) = n, and ε �∈ K ∪ L.

1. κ(K ∩ L) ≤ mn, κ(K ⊕ L) ≤ mn.
2. κ(K ∪ L) ≤ mn− (m + n− 2).
3. κ(K \ L) ≤ mn− (m− 1).

If K and L are left ideals, then κ(K ◦L) ≤ mn. The languages K = (b∗a)m−1Σ∗

and L = (a∗b)n−1Σ∗ meet all the bounds for right ideals, and also for intersection
and symmetric difference of left ideals. For union and difference of left ideals,
the following languages K and L over the alphabet {a, b, c, d} meet the bound:

K = (b ∪ c ∪ d)K ∪ aK1,
Ki = (b ∪ d)Ki ∪ aKi+1 ∪ cK for i = 1, . . . ,m− 2,

Km−1 = (a ∪ b ∪ d)Km−1 ∪ cK ∪ ε.

L = (a ∪ c ∪ d)L ∪ bL1,
Li = (a ∪ c)Li ∪ bLi+1 ∪ dL for i = 1, . . . , n− 2,

Ln−1 = (a ∪ b ∪ c)Ln−1 ∪ dL ∪ ε.

See [6] for the proof of this result.

Theorem 6 (Product). Let K and L be ideals of the same type with κ(K) = m
and κ(L) = n. Then the following are tight bounds:
1. If K and L are right ideals, then κ(KL) ≤ m + 2n−2.
2. If K and L are left, two-sided, or all-sided ideals, then κ(KL) ≤ m + n− 1.

Proof. The following claim can be proved: If N = Σ∗L is a left ideal with κ(N) =
r and K is any non-empty language with κ(K) = m, then κ(KN) ≤ m+ r − 1,
and the bound is tight; see [6].

1. Suppose that K = KΣ∗ and L = LΣ∗ are right ideals. Then KL =
KΣ∗LΣ∗ = KN , where N = Σ∗LΣ∗. Let κ(N) = r. By our claim, κ(KN) ≤
m+ r− 1, and our problem reduces to that of finding r = κ(N) as a function of
n = κ(L). By Equation (6) with G = L and N = Σ∗L, Nw is the union of Σ∗L
and some quotients of L. Since L is always present in the union, we have at most
2n−1 different unions. Since one of the quotients of L is Σ∗, and Σ∗ ∪Lv = Σ∗,
we have at most r = 2n−2 +1 distinct quotients of N . Thus κ(KL) ≤ m+ 2n−2.
Now let Σ = {a, b, c}, K = Σm−1Σ∗, and let L be the right ideal in the proof
of Theorem 1 (Fig. 1). Then κ(K) = m, κ(L) = n, κ(Σ∗LΣ∗) = 2n−2 + 1, and
κ(KL) = κ(Σm−1Σ∗LΣ∗) = m− 1 + 2n−2 + 1 = m + 2n−2.
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2. Suppose K = Σ∗K and L = Σ∗L are left ideals. If ε ∈ K, then K = Σ∗,
m = 1, KL = L, and κ(KL) = n = m + n − 1. Otherwise, by our claim,
κ(KL) ≤ m + n− 1, and this bound is tight. Since every all-sided or two-sided
ideal is also a left ideal, the upper bound applies in these cases as well. The
bound is met for Σ = {a} and all-sided ideals a∗ am−1 and a∗ an−1. ��
Theorem 7 (Star). Let L be an ideal with κ(L) = n. If ε ∈ L then κ(L∗) = 1.
Otherwise, κ(L∗) ≤ n + 1, and this bound is tight if |Σ| ≥ 2.

Proof. If L is an ideal with ε ∈ L, then L = Σ∗. Consider right ideals first, and
suppose ε �∈ L. If L = LΣ∗, then L∗ = ε∪LΣ∗. We have (L∗)ε = L∗ = ε∪LΣ∗.
For every word w in Σ+, from Equation (5)

(L∗)w = (Lw ∪
⋃

w=uv

Lε
u)Σ∗,

where u, v ∈ Σ+. Assume that a non-empty word w has no prefix in L. In that
case, (L∗)w = LwΣ

∗. If w = uv and u ∈ L, then Lu = Σ∗, hence also Lw = Σ∗.
Then (L∗)w = LwΣ

∗ as well. There are at most n such quotients of L∗. So
κ(L∗) ≤ n + 1. Since every all-sided ideal and every two-sided ideal is a right
ideal, we have an upper bound for these three classes of ideals.

If L is a left ideal, and ε �∈ L, then (L∗)ε = ε ∪ Σ∗L, and if w ∈ Σ+, then
(L∗)w is given by Equation (6). We have

(L∗)w = (Σ∗L)w = Σ∗L ∪ Lw ∪
⋃

w=uv

Lv = L ∪ Lw ∪
⋃

w=uv

Lv = Lw,

with u, v ∈ Σ+, since Lv ⊆ Lw for a left ideal. Hence there are at most n + 1
quotients of L∗.

The bound is met for Σ = {a, b} and all sided ideal L = Σ∗ an−1 since
κ(L) = n, L∗ = L ∪ ε, and κ(L∗) = n + 1. ��
To deal with reversal, we start with the dfa of L, reverse it, and use the subset
construction to obtain a dfa for LR with at most 2n states.

Theorem 8 (Reversal). Let L be an ideal language with κ(L) = n ≥ 3.

1. If L is a right ideal, then κ(LR) ≤ 2n−1.
2. If L is a left ideal, then κ(LR) ≤ 2n−1 + 1.
3. If L is a two-sided ideal, then κ(LR) ≤ 2n−2 + 1.
4. If L is an all-sided ideal, then κ(LR) ≤ 2n−2 + 1.

The bound is tight for right ideals if |Σ| ≥ 2, for left and two-sided ideals if
|Σ| ≥ 3, and for all-sided ideals if |Σ| ≥ 2n− 4.

Proof. 1. Since L is a right ideal, it has only one accepting quotient, f = Σ∗. This
quotient becomes the initial state of the nfa for LR. Since LR is a left ideal, we
can add a loop for every letter of Σ from f to f in the nfa. Therefore f appears
in every subset of states of the nfa reachable from q. Hence there are at most
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2n−1 states of the equivalent subset automaton. Let Σ = {a, b}, and consider
the right ideal L = (Σn−2b)∗Σn−2aΣ∗. Then κ(L) = n. In the nfa obtained by
reversing the dfa for L, a word w of length at most 2n−3 is accepted if and only
if w has an a in position n− 1 from the end. Now, if x, y ∈ Σn−1 and x = uav,
y = ubw, then |uava|u|| ≤ 2n− 3 since |u| ≤ n− 2. Similarly, |ubva|u|| ≤ 2n− 3.
Hence a|u| ∈ (LR)x \ (LR)y and all the quotients of LR by the 2n−1 words of
length n− 1 are distinct.

2. The quotient Lε = L, which is the initial state of the quotient automaton
of L, is the only accepting state in the nfa for LR. In the corresponding subset
automaton, L appears in 2n−1 subsets. All these subsets are accepting states
of the subset automaton and all accept Σ∗, since LR is a right ideal. Hence
κ(LR) ≤ 1+2n−1. If n = 1, respectively, n = 2, n = 3, then L = a∗, respectively,
L = aa∗, L = (a ∪ b)∗c(c ∪ (a ∪ b)b∗(a ∪ c))∗, meets the bound. If n = 4, then
the bound is met for Σ = {a, b, c} and L defined by L = (a ∪ b)L ∪ cL1, L1 =
(a ∪ b)L2 ∪ cL1 ∪ ε, L2 = (a ∪ b)L3 ∪ cL1, L3 = (b ∪ c)L1 ∪ aL3. For n ≥ 5, let
D = ({0, 1, . . . , n − 1}, {a, b, c}, δ, 0, {n− 1}) be the dfa shown in Fig. 3, where
the unspecified transitions under c are all to state 1. It was proved in [23] that
the reverse of D′ = ({1, . . . , n−1}, {a, b}, δ′, 1, {n−1}) with δ′ being δ restricted
to {a, b}, has 2n−1 states. It follows that the reverse of dfa D has 2n−1+1 states.
Since L(D) is a left ideal, the theorem holds.

b

· · · n − 2 n − 10 1 2 3 4 5
aaaaaaac

a, b b b bb

a

b

b

Fig. 3. The dfa D for Theorem 8. States 1, 2, . . . , n − 1 go to state 1 under c.

3. Since L is a right ideal, its quotient automaton has exactly one accepting
state f , and this state is not initial because ε �∈ L. Now f is the only initial state
of the nfa for LR. Since LR is a left ideal, we can add a loop for every letter of
Σ from f to f in the nfa. Therefore f appears in every subset of states of the
nfa reachable from f . Hence there are at most 2n−1 subsets of states of the nfa
to consider when using the subset construction. Since L is a left ideal, the initial
state of the quotient automaton of L is the only accepting state of the nfa for
LR, and it appears in 2n−2 of the subsets of states of the nfa. All these subsets
are accepting states of the corresponding subset automaton and all accept Σ∗,
since LR is a right ideal. Hence κ(LR) ≤ 2n−2 + 1. If n = 1, then L = Σ∗ and
κ(LR) = 1. If n = 2, the 2n−2 + 1 bound is met for Σ = {a} and L = a∗aa∗.
If n = 3, the bound is met for Σ = {a} and L = a∗aa∗aa∗. For n ≥ 4, and
Σ = {a, b, c}, consider the language L accepted by the quotient automaton in
Fig. 4. The language L is a two-sided ideal. Now construct the nfa for LR. Note
that a word w in (a∪ b)∗c of length at most 2n− 4 is accepted by this nfa if and
only if w has an a in position n− 1 from the end and w ends with c. We claim
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that {w ∈ {a, b}∗ | |w| = n − 2} ∪ {an−2c} all define distinct quotients: For let
x = uav and y = ubw with |u| ≤ n − 3, be two different words of length n − 2
and let z = a|u|c. Then |xz| = |yz| ≤ 2n − 4 and z ∈ (LR)x \ (LR)y. Also, the
quotient of LR by an−2c is accepting, while the other are rejecting.

b

0 1 2 3
c

a, b c

a, b
n − 1n − 2

a, b, c

aa, b a, b a, b· · ·

c
c

c

Fig. 4. Quotient automaton of two-sided ideal L with κ(LR) = 2n−2 + 1

4. Since an all-sided ideal is a two-sided ideal, the 2n−2 + 1 bound applies.
If n = 2, let Σ = {a} and L = a∗aa∗. For n ≥ 3, let t = n − 2 and
Σ = {a1, . . . , at, b1, . . . , bt}. Also, let A = (a1 ∪ · · · ∪ at), B = (b1 ∪ · · · ∪ bt), and
B \ bi = (b1 ∪ · · · ∪ bi−1 ∪ bi+1 ∪ · · · ∪ bt). Let L be the language defined by the
equations below and shown as an automaton in the figure on the right for n = 5.

L = BL ∪
t⋃

i=1

aiLi,

Li = (B \ bi)Li ∪ (A ∪ bi)Ln−1

for i = 1, 2, . . . , t,
Ln−1 = (A ∪B)Ln−1 ∪ ε.

B

A, b3

A, B

B \ b1

B \ b2

B \ b3

A, b2

a1

a3

a2

A, b1

L4L2L

L3

L1

We claim that L is an all-sided ideal; for this, it suffices to show that if
w = uv ∈ L for u, v ∈ Σ∗, then uav ∈ L for every a ∈ Σ. If u = ε and a ∈ B,
then La = L, and if a = ai, then Lai = Li. However Li ⊇ L; hence all words
of the form εav are in L. If Lu = Σ∗, then uav is in L. Finally, suppose that
Lu = Li for some i. Since (Li)a is either Li or Σ∗, it follows that uav ∈ L. Thus
L is an all-sided ideal.

Now LR =
⋃t

i=1(Σ
∗(A∪ bi)(B \ bi)∗aiB

∗). Consider the set of 2n−2 +1 words
{bi1bi2 · · · bik

| 0 ≤ k ≤ n − 2, 1 ≤ i1 < i2 < · · · < ik ≤ n − 2} ∪ {a1a1}. If
x = bi1 · · · bil

biu and y = bi1 · · · bil
bjv with i < j, then ai ∈ (LR)x \ (LR)y. Also,

(LR)a1a1 is the only accepting quotient. Hence LR has 2n−2 + 1 quotients. ��

5 Conclusions

Tables 1 and 2 summarize our complexity results. The complexities for regular
languages are from [28]; difference and symmetric difference are considered in [5].
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In Table 2, k is the number of accepting quotients of K in column KL, and the
number of accepting quotients of L other than L in column L∗. The results for
unary languages can be found in [6].

Table 1. Bounds on quotient complexity of boolean operations

K ∪ L K ∩ L K \ L K ⊕ L

unary ideals min(m, n) max(m, n) n max(m, n)
right, 2-sided, all-sided mn − (m + n − 2) mn mn − (m − 1) mn

left ideals mn mn mn mn

regular languages mn mn mn mn

Table 2. Bounds on quotient complexity of generation, product, star and reversal

f(G) f(M) κ(M) KL L∗ LR

unary n n − 1 n + 1 m + n − 1 n − 1 n

right n n n + 1 m + 2n−2 n + 1 2n−1

2-sided 2n−2 + 1 2n−3 + 1 n + 1 m + n − 1 n + 1 2n−2 + 1
all-sided 2n−2 + 1 2n−3 + 1 n + 1 m + n − 1 n + 1 2n−2 + 1
left 2n−1 2n−2 n(n−1)

2
+ 2 m + n − 1 n + 1 2n−1 + 1

regular − − − m2n − k2n−1 2n−1 + 2n−k−1 2n
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Abstract. We study the worst case complexity of regular operations on
cofinite languages (i.e., languages whose complement is finite) and pro-
vide algorithms to compute efficiently the resulting minimal automata.

1 Introduction

Regular languages are possibly infinite sets of words that can be encoded in dif-
ferent ways by finite objects. One such encoding is based on finite automata that
are very convenient to efficiently answer to most natural algorithmic questions,
such as membership, emptiness, regular constructions, etc. It is why softwares
handling regular languages given by another kind of representation, such as reg-
ular expressions, often start with the computation of an automaton recognizing
the same language.

In this framework all questions about the size of automata in usual algorithms
are important and directly related to the space complexity needed for the com-
putations. One such issue could be: ”Given a regular language L of size n, what
is the number of states required to encode the language L∗?” Here the notion of
size of a language must be specified, since the results depend upon the represen-
tation (regular expression, nondeterministic automata, deterministic automata,
two way automata, etc.) used.

The starting point is often a deterministic automaton. Although deterministic
automata may require more space than nondeterministic ones, they have good
algorithmic and algebraic properties that make them very useful. In particu-
lar to every regular language is associated its minimal automaton, which is the
smallest deterministic automaton recognizing it and which is unique. The state
complexity of a regular language is then defined as the number of states of its
minimal automaton. The previous question can be reformulated in the following
way: ”Given a regular language of state complexity n, what is the state complex-
ity of its star?” This topic is intensively studied since almost the beginning of
automata theory (see [1,2,3,4] for recent results). Researchers are mainly inter-
ested in automata that represent natural subclasses of regular languages such as
finite languages [5] or prefix-free regular languages [6]. Most articles focus on the
worst case state complexity of basic regular operations such as set constructions,
concatenation, Kleene star and reversal.

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 222–233, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper we analyze the worst case complexity of regular operations on
cofinite languages (i.e., languages whose complement is finite) and provide algo-
rithms to compute efficiently the resulting minimal automata. We now present
the measure chosen for the size of the input. As finite languages can be described
by the finite list of the words they contain, cofinite languages can be described
by the finite list of words they do not contain. Though elementary, this represen-
tation, is natural and often corresponds to the way the input (a finite or cofinite
language) is given for further algorithmic treatments. Consequently given a finite
language its size is defined as the sum of the length of its words. In other words
it is the number of letters needed to write all the words of the language. The
size of a cofinite language is then defined as the size of its complement. In the
framework of finite languages, our question is changed into: ”Given a finite lan-
guage of size n, what is the state complexity of its star?”. Several articles study
that kind of question. For instance, in [7] it is proved that the state complexity
of the star can be exponential and in [8] the authors study the average state
complexity of the star operation.

In the following we focus on the set of cofinite languages. It is stable for the
regular operations, namely union, concatenation and star and has interesting
absorbing properties since combinations of regular and cofinite languages of-
ten produce a cofinite language. To roughly summarize our results the regular
operations applied to cofinite languages tend to produce cofinite languages of
small state complexities, and their minimal automata can be computed quickly.
Therefore in constructions involving cofinite languages together with other reg-
ular languages one can use dedicated algorithms instead of the general ones,
improving significantly the complexity of the computations. This can be seen as
a heuristic method consisting in identifying simpler cases to use specific algo-
rithms on them.

The paper is organized as follows. In Section 2, we present cofinite languages
and their associated automata, along with algorithms to handle them. In Sec-
tion 3 we study the state complexities of basic operations on cofinite languages,
and provide algorithms to compute the resulting minimal automaton. In Sec-
tion 4, we briefly consider operations involving both cofinite languages and reg-
ular languages.

2 Cofinite Languages and Automata

2.1 Automata and State Complexity

In this section we introduce objects and notations used in the sequel. For a
general presentation of automata and regular languages we refer the reader to [9].

We denote automata by tuples (A,Q, T, I, F ) where Q is a finite set of states,
A is a finite set of letters called alphabet, the transition relation T is a subset of
Q×A×Q, I ⊂ Q is the set of initial states and F ⊂ Q is the set of final states.
An automaton is complete when for every (a, q) ∈ A × Q, there exist p ∈ Q
quch that (q, a, p) ∈ T . An automaton is deterministic if |I| = 1 and for every
(a, q) ∈ A×Q, if both (q, a, p) and (q, a, p′) belong to T , then p = p′. We denote
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deterministic automata by tuples (A,Q, ·, q0, F ), where q0 is the unique initial
state and (q, a, p) ∈ T is denoted by q · a. For any word u ∈ A∗ and any state
q ∈ Q in a deterministic automaton, q · u is recursively defined by q · ε = q (ε is
the empty word) and q · ua = (q · u) · a. The regular language recognized by an
automaton A is denoted by L(A).

Let L be a regular language in A∗. Let ML be the deterministic automaton
having the nonempty sets, called the left quotients u−1L = {w ∈ A∗ | uw ∈ L}
for u ∈ A∗ as states, L as initial state, and the states containing the empty word
as final states. Define the transition function, for a state Y = u−1L and a letter
a ∈ A, by Y · a = a−1Y = (ua)−1L. The automaton ML is the unique smallest
deterministic and complete automaton recognizing L, it is called the minimal
automaton of L. If A is an automaton, we denote by MA the minimal automaton
of L(A). There is another way to define the minimal automaton of a regular
language L. Let A = (A,Q, ·, i, F ) be a deterministic automaton recognizing L.
For each q ∈ Q, let Lq = {w ∈ A∗ | q · w ∈ F}. Two states p, q ∈ Q are called
inseparable if Lp = Lq, and separable otherwise. The Myhill-Nerode equivalence
on Q is the relation defined by p ∼ q ⇐⇒ p and q are inseparable. Let q ∈ Q and
let u ∈ A∗ such that i · u = q. Then Lq = u−1X . The automaton obtained by
merging the states belonging to the same equivalence classe is isomorphic to the
minimal automaton of L(A) (it is in fact a quotient of A by the Myhill-Nerode
equivalence). The state complexity of a regular language is the number of states
of its minimal automaton.

Given a deterministic and complete automaton A = (A,Q, ·, q0, F ), the com-
plement of A is the automaton A = (A,Q, ·, q0, Q \ F ). One can check that
L
(A) = L(A), where L(A) = A∗ \ L(A). If A is a deterministic but not com-

plete automaton, the complement of A is the complement of the automaton
obtained by completing A with a sink state.

If u = u1 · · ·un is a word, the reversal (or the mirror image) of u is the word
ũ = un · · ·u1. For any language X the set of all prefixes of words in X is denoted
by Pr(X).

2.2 Cofinite Languages

A language X in A∗ is said to be cofinite if X = A∗ \ X is a finite language.
For a finite language X = {u1, · · · , um}, denote by ‖X‖ =

∑m
i=1 |ui| the sum of

lengths of its elements.
The following properties will be useful throughout this article:

• If X and Y are two languages such that X ⊂ Y and X is cofinite, then Y is
cofinite and ‖Y ‖ ≤ ‖X‖.

• A language X is cofinite if and only if there exists an integer p such that
every word of length at least p is in X .

Cofinite languages have nice stability properties that are described below.

Lemma 1. The set of cofinite languages is stable for the union, the concatenation
and the star operation. It is also stable by mirror image, left quotient and right
quotient. The union of a cofinite language and an arbitrary language is cofinite.
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2.3 Automata Recognizing Cofinite Languages

Given a cofinite language X , let TX be the deterministic automaton defined by
TX = (A,QX , ·, {ε}, F ), where QX = Pr(X) ∪ {pX} (where pX is an accepting
sink state), the transitions are defined, for all a ∈ A and for all u ∈ Pr(X), by⎧⎪⎨⎪⎩

u · a = ua, if ua ∈ Pr(X)
u · a = pX , if ua /∈ Pr(X)
pX · a = pX

and the set of final states by F = (QX ∩X) ∪ {pX}. As TX is the complement
of the tree automaton of X, one obtains the following lemma:

Lemma 2. For any cofinite language X, the automaton TX is a deterministic
and complete automaton with at most ‖X‖ + 2 states that recognizes X.

The bound is tight. When X = {u}, u being a nonempty word, ‖Pr({u})‖ =
|u| + 1 and one must add the accepting sink state.

A state of an automaton is useless if it is either not reachable from an initial
state or no final state can be reached from it.

Lemma 3. Let A be a deterministic automaton. The language L(A) is cofinite if
and only if the automaton obtained by removing useless states from A is acyclic.

Lemma 4. Let A be a complete minimal automaton. The language L(A) is
cofinite if and only if A contains an accepting sink state and the graph obtained
after removing it is acyclic.

Using a result on acyclic automata due to Revuz [10], one gets the following
complexities:

Proposition 1. The following computations can be done in linear time:

– Checking if L(A) is cofinite, where A is a deterministic automaton.
– Computing the minimal automaton and therefore the state complexity of a

cofinite language L(A) given by a deterministic automaton A.
– Computing the minimal automaton and therefore the state complexity of a

cofinite language X given by a set of words.

Proof. First one can compute the automaton B obtained by removing useless
states from A, the complement of A. Then check whether B is acyclic, which
can be done in linear time. Second compute B as before, minimize it in MB
in linear time using Revuz’ algorithm [10]. Then compute MB which is the
minimal automaton of L(A). Indeed, if it is not minimal, computing its comple-
ment produce a deterministic and complete automaton recognizing L(A) which
is strictly smaller than MB, which is not possible. Finally starting from a cofinite
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language X , compute TX whose number of states is linear in ‖X‖, then proceed
as in the previous construction.

Proposition 2. Let X be a language such that X ⊂ {x1, · · · , xm}, then X is
cofinite and the state complexity of X is at most equal to ‖{x1, · · · , xm}‖ + 2.

Proof. Let Z = {x1, . . . , xm} with ‖Z‖ = n and let TZ be the automaton asso-
ciated to Z, with |TZ | ≤ n + 2. Consider the automaton BX obtained from TZ

by adding the elements of Z \X to the set of final states of TZ . As every state
in TZ that is not the accepting sink state can be reached by reading only one
word, no other words than the ones of Z \X have been added to the recognized
language. Hence BX recognizes X and |BX | = |TZ | ≤ n + 2.

Note that, under this only hypothesis, it is not true in general that X ⊂ Y implies
|MY | ≤ |MX |. For example, if X = {a2b, bab, a2, ba} and Y = {a2b, bab, ba}, the
minimal automaton MY of Y of size 7 is bigger than the one of X that is of size 5.

3 Operations on Cofinite Languages

In this section we investigate the state complexities of regular operations between
cofinite languages and provide ad hoc algorithms to make the computations.

3.1 Union, Reversal and Quotient

These operations on cofinite languages given by the list of the words they do not
contain are easy to realize.

Proposition 3 (Union of two cofinite languages). Let X1 and X2 be two
cofinite languages, with ‖X1‖ = n1 and with ‖X2‖ = n2. The union X1 ∪ X2
is a cofinite language of state complexity at most min(n1, n2) + 2. The minimal
automaton of X1 ∪X2 can be computed in time O(n1 + n2).

Proof. Assume by symmetry that n1 ≤ n2. The first part follows from X1 ⊂
X1 ∪ X2 and Proposition 2. Using a classical lexicographic sort [11], one can
compute X1 ∩ X2 in time O(n1 + n2): Form a list made of the element of X1
then those of X2, sort it, and extract words that appear twice. Then build the
associated tree and minimize it in linear time using Proposition 1.

As the the reversal of the complement of a language is equal to the complement
of the reversal the language, we obtain:

Lemma 5 (Reversal of a cofinite language). Let X be a cofinite language
with ‖X‖ = n, the reversal of X is of state complexity at most n + 2 and its
minimal automaton can be computed in linear time.

Proposition 4 (Quotient of a cofinite language). Let X be a cofinite lan-
guage with ‖X‖ = n and let u ∈ A∗. The state complexities of u−1X and Xu−1

are at most n + 2. Their minimal automata can be computed in time O(n).
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Proof. For the state complexity, let qu be the state ε · u in TX . Consider the
automaton A obtained by taking qu as initial state and by keeping only the
accessible part of the automaton. Then A recognizes u−1X , its number of states
is at most |TX | ≤ n+ 2. This construction is linear in n as one can stop reading
u in TX as soon as pX is reached or if |u| > n.

3.2 Star

Note that the result given in Theorem 1 below shows that the behaviors of finite
and cofinite languages are very different. Recall that Ellul, Krawetz, Shallit and
Wang gives in [7] a finite language Xh, with ‖Xh‖ = Θ(h2), such that the state
complexity of X∗

h is in Θ(h2h).

Theorem 1 (Star of a cofinite language). For any cofinite language X with
‖X‖ = n, the state complexity of X∗ is at most n + 2 in the worst case. There
exists an algorithm that build the minimal automaton of X∗ in quadratic time.

Proof. Since X ⊂ X∗, the state complexity of X∗ is at most n + 2 by Proposi-
tion 2. The time complexity is given in the following.

We propose two algorithms, one based on usual automata constructions and
another one, easier to implement, related to dynamic programming. Both algo-
rithms produce in time O(n2) a deterministic automaton with at most n + 2
states that recognizes X∗. Once computed, the automaton can been minimized
in linear time from Proposition 1.

First Algorithm: First associate to the language X the automaton TX =
(A,QX , T, {ε}, F ), as defined in Section 2.3. Build from TX the nondeterministic
automaton A(TX) = (A,QX , T ′, {ε}, F ∪ {ε}), where T ′ is defined by:

T ′ = T ∪ {(u, a, a) | u ∈ F, a ∈ A ∩QX} ∪ {(u, a, pX) | u ∈ F, a ∈ A \QX}
The automaton A(TX) is obtained from TX by adding, for every a ∈ A, the
transitions labelled by a from every final state to the state a, when it exists.

Lemma 6. For any cofinite language X, the nondeterministic automaton A(TX)
recognizes the language X∗.

To obtain a deterministic automaton recognizing X∗ from A(TX), we apply a
tuned version of the accessible subset construction: Since all reachable subsets Q
of QX containing pX are inseparable (one always has LQ = A∗), we first create
a state PX and assimilate every built subset containing pX to PX . Hence the
automaton is partially minimized on the fly, while doing the subset construction.
Let DX denote the resulting deterministic automaton, that recognizes X∗.

Lemma 7. Let X be a cofinite language and let Q �= PX be a state of DX . The
longest word in Q is the label u of the unique path π from ε to Q, and u belongs
to Pr(X).

Proof. By construction if Q = {u1, · · · , ui}, with i ∈ N and each ui ∈ Pr(X), is
a state of DX and a is a letter in A such that neither Q nor Q · a are equal to
PX then Q · a = {a, u1a, · · · , uia} if Q ∩ F �= ∅, and Q · a = {u1a, · · · , uia} if
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Algorithm 1. inStar(X ,u)
if u ∈ X or u ∈ S then return1

True
if u ∈ N then return False2

forall i ∈ {1, · · · , |u| − 1} do3

v = prefix of length i of u4

w = word such that u = vw5

if inStar(X,v) and w ∈ X6

then
Add u in S7

return True8

end9

end10

Add u in N11

return False12

The algorithm inStar(X,u) is called for
every word u ∈ X. To check whether a
word is in X∗, first test if it is in X or in
S. S is initially empty, and we store in S
every already tested word that belongs to
X∗. If it is not in X ∪ S, check whether
u ∈ N or not, i.e., that is whether from
previous computations it known that u is
not in X∗ or not. Initially N = A ∩ X is
made of letters that do not belong to X.
If the algorithm continues to Step 3, u is
split in all possible ways in u = vw, with v
and w nonempty, and we recursively check
if v ∈ X∗ and w ∈ X. If it is true for
one prefix v, u is known to be in X∗ and
added to S. If for all prefixes v /∈ X∗ or
w /∈ X, then u is known not to be in X∗

and added to N .

Fig. 1. Second algorithm: computation of X∗ with a dynamic programming approach

Q ∩ F = ∅. As the states of DX are the state PX and the states reachable from
{ε}, the result is obtained by induction on the size of u.

If one labels the states with integers to avoid handling words, the implemen-
tation of this method can be done in O(n2) since from Lemma 7 there are at
most n+1 states of the form Q �= PX and each state is a set containing at most
n elements.

Second Algorithm: (see Fig.1)
Remark that as X ⊂ X∗, it is sufficient to determine which words of X are in
X∗, that is, which words u ∈ X can be written u = vw, with v and w different
from ε, such that v ∈ X∗ and w ∈ X . As such a w is strictly smaller in size than
u, this can be checked inductively as described in Fig. 1.

In practice we do not use two sets S and N , but flags on the states of TX , to
mark whether they correspond to words that are in S or N . In this way, Step
1 and Step 2 are checked in time O(|u|) by reading the path labelled by u in
TX . So it is linear in the length of u when the result is already known. When
it is not, for each i, Step 6 is done in time O(i) + O(|u| − i) = O(|u|) if v is
in X ∪ S ∪ N . Counting separately the first calls for every word, the overall
complexity is therefore O(

∑
u |u|), where the summation is done on all u such

that inStar(X ,u) is called. Since it can be called only for prefixes of elements in
X, the complexity is upper bounded by O(

∑
u∈Pr(X) |u|) = O(n2).

3.3 Concatenation

In this section, we shall show that the state complexity of the concatenation of
two cofinite languages is linear, and propose an algorithm to build the minimal
automaton in linear time.
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Let Setn,m be the set of sets of m nonempty words whose sum of lengths is
n: Setn,m = {X = {u1, · · · , um} | ‖X‖ = n, ∀i ∈ {1, · · · ,m}, ui ∈ A∗}.

Theorem 2 (Concatenation of two cofinite languages). Let X1 and X2
be two cofinite languages such that X1 ∈ Setn1,m1 and X2 ∈ Setn2,m2 . The state
complexity of X1 · X2 is at most n1 + 1 + min(2m2 , n2 + 2). Moreover, in the
particular case where ε ∈ X2 (resp. ε ∈ X1), the state complexity of X1 ·X2 is at
most n1 + 2 (resp. n2 + 2). The minimal automaton of X1 ·X2 can be computed
in time O(n1 + n2).

Proof. First if ε ∈ X2, then X1 ⊂ X1 ·X2, and the state complexity of X1 ·X2 is
at most n1 + 2 by Proposition 2. Similarly, if ε ∈ X1 then the state complexity
of X1 ·X2 is at most n2 + 2. The general upper bound for the state complexity
of X1 ·X2 is proved in Lemmas 9 and 12.

Associate to the cofinite languages X1 and X2 the automata T1 = TX1 =
(A,Q1, ·, {ε}, F1) and T2 = TX2 = (A,Q2, ∗, {ε}, F2), as defined in Section 2.3.
Then use the classical construction of the concatenation of two automata: From
each final state q of the automaton T1 and for each letter a ∈ A, add a transition
from q to the state ε∗a in T2. Formally consider the nondeterministic automaton
AX1X2 = (A, (Q1 × {∅}) ∪ ({∅} ×Q2), T1 ∪ T2 ∪ T, {(ε, ∅)}, F ), with:

– T1 = {((u, ∅), a, (u · a, ∅)) | u ∈ Pr(X1) ∪ {pX1}, a ∈ A} to form a copy of T1
on the first coordinate.

– T2 = {((∅, u), a, (∅, u ∗ a)) | u ∈ Pr(X2)∪ {pX2}, a ∈ A} to form a copy of T2
on the second coordinate.

– T = {((u, ∅), a, (∅, ε ∗ a)) | u ∈ F1, a ∈ A}.
– F = F1 × {∅} ∪ {∅} × F2 if ε ∈ F2 and F = {∅} × F2 if ε /∈ F2.

Then AX1X2 recognizes X1 ·X2. Consider the automaton DX1X2 obtained from
AX1X2 using the accessible subset construction. The states of DX1X2 are sets of
pairs. But since only transitions from the copy of T1 to the copy of T2 have been
added, the automaton is deterministic on its first coordinate. Hence each state
Q of DX1X2 can be rewritten as (u,Q), where u is the unique value of the first
coordinate in Q1 and Q ⊂ Q2 is the set of values of the second coordinate.

Lemma 8. Let (u,Q) be a state of DX1X2 , with u ∈ Pr(X1). Every word in
Q \ {pX2} is a suffix of u. In particular, Q \ {pX2} is a suffix chain: for every
v, w ∈ Q \ {pX2} either v is suffix of w or w is suffix of v.

Proof. In T1, for every state u that is not pX1 , there is only one path from the
initial state that reaches it, which is the path of label u. Hence, the path labelled
by u is only one path in DX1X2 that reaches the state (u,Q). Every state v in
Q that is not pX2 is the label of a path from a final state of T1, reading the first
letter a of v while going from the copy of T1 to the copy of T2, then following
the path labelled by a−1v in T2. Hence, as it has been done while following the
path labelled by u in T1, v is a suffix of u.
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Lemma 9. Let X1 and X2 be two cofinite languages, with X1 in Setn1,m1 and
X2 in Setn2,m2 . If (pX1 , Q) is a state of DX1X2 , the language L(pX1 ,Q) contains
A∗X2. The state complexity of X1 ·X2 is at most n1 + 2m2 + 1.

Proof. As stated above, for every u ∈ Pr(X1) there is a unique state (u,Q)
in DX1X2 . Hence there are at most n1 + 1 states in DX1X2 such that the first
coordinate is not pX1 .

Let (pX1 , Q) be a state of DX1X2 and let L(pX1 ,Q) be the language recognized
by taking (pX1 , Q) as initial state. Every word u of A∗X2 is in L(pX1 ,Q): Let
v ∈ A∗ and w ∈ X2 be such that u = vw, one can loop on pX1 on the first
coordinate while reading v, then since in AX1X2 there is a transition from (pX1 , ∅)
labelled by the first letter a of w to (∅, ε ∗ a), that is the starting point of
a path labelled by a−1w in the copy of T2, u is recognized by DX1X2 . Hence
X2 ⊂ A∗X2 ⊂ L(pX1 ,Q). Since X2 contains m2 elements, there are at most 2m2

distinct languages of the form L(pX1 ,Q). Hence the states of the form (pX1 , Q)
are in at most 2m2 equivalence classes of Myhill-Nerode equivalence, concluding
the proof.

The property A∗X2 ⊂ L(pX1 ,Q) in Lemma 9 is the key of the next results. The
following lemma characterizes languages of the form A∗X2.

Lemma 10. A word u belongs to A∗X2 if and only if all its suffixes belong to
X2. Consequently A∗X2 is the greatest suffix-closed subset of X2 and if ε ∈ X2,
then A∗X2 = A∗.

Lemma 11. Each language L(pX1 ,Q) is the set of labels of the successful paths
in the minimal automaton of A∗X2 taking as initial state the initial state of the
automaton if Q is empty, the state corresponding to the equivalence class of pX2

if pX2 ∈ Q or to the equivalence class of the longest word of Q otherwise.

Proof. Setting S = A∗X2, let MS be the minimal automaton of S that is A∗X2.
The state corresponding to the class of the state pX2 in MS is still denoted by
pX2 . Note that if Q is the empty set, L(pX1 ,Q) = A∗X2 and if pX2 ∈ Q then
L(pX1 ,Q) = A∗; otherwise L(pX1 ,Q) = ∪u∈Qu−1S or L(pX1 ,Q) = ∩u∈Qu−1S. As
S is suffix-closed, for any u ∈ Q, u−1S ⊂ S. Moreover If u is a suffix of v, then
when vw ∈ S, then uw ∈ S and v−1S ⊆ u−1S. So L(pX1 ,Q) = w−1S where w is
the longest word of Q.

Therefore each language L(pX1 ,Q) is the set of labels of paths in MS from one
of the state, says q, to the final states. If Q is the empty set, q = ε, if pX2 ∈ Q
then q = pX2 , otherwise q is the state reached in MS reading the longest word
w of Q from the initial state.

Note that as S is suffix-closed the size of the minimal automaton of S is
smaller or equal to 2|S|.

When Q is not empty all the information we need about the state (u,Q) is given
by (u, pX2) if pX2 belongs to Q and by (u,w) otherwise, w being the longest
word of Q.
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Fig. 2. The automaton A′
X1X2 for X1 = {ε, b, ab, abb} and X2 = {ε, b, aa, ab, bb, aab}

Lemma 12. Let X1 and X2 be two cofinite languages, with X1 in Setn1,m1 and
X2 in Setn2,m2 . The minimal automaton of X1 · X2 has at most n1 + n2 + 3
states and can be computed in time O(n1 + n2).

Proof. We will construct a deterministic automaton recognizing X1 ·X2 equiv-
alent to DX1X2 .

First build the automaton MS is time O(n2) from the automaton AX2 : the
reversal X̃2 of X2 is cofinite and a depth-first search in T

X̃2
is enough to obtain

the greatest prefix-closed subset of the complement of X̃2, which is reversal of
the greatest suffix-closed subset of X2. Denote by X the cofinite set such that
X is the greatest suffix-closed subset of X2. The next step is to build TX and to
minimize it in time O(n2), using Proposition 1.

Then construct the automaton A′
X1·X2

as the automaton AX1·X2 but from the
automata AX1 and MS instead of AX2 . This is done in time O(n1 + n2).

Apply the subset construction to A′
X1·X2

until finding states with pX1 as
first component. The intermediate states of this automaton do not have pX1

as first component, so their number is at most n1 + 1. Moreover the second
component can be reduced to ∅, pX2 and its longest element otherwise. For
each state (pX1 , Q) continue to apply the subset construction to A′

X1·X2
until

finding state (pX1 , pX2). This part of the algorithm is just the traversal of acyclic
paths in MS and can be done in O(n2). Finally add a loop from (pX1 , pX2) to
itself for every letter of the alphabet. The final states are the one whose second
component is final in MS . The automaton obtained recognizes X1 ·X2 and the
total complexity of the construction is O(n1+n2), and at most (n1+1)+(n2+2) =
n1 + n2 + 3 states have been built.

Example 1. Fig. 2 and Fig. 3 depict an example of the constructions used in the
proofs of this section.
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Fig. 3. The automaton DX1X2 , for X1 = {ε, b, ab, abb} and X2 = {ε, b, aa, ab, bb, aab}

4 Remarks

As shown in Lemma 1 the union of a cofinite language X , given by the list of the
words in X, with ‖X‖ = n, and a regular language L given by a deterministic
automaton A is a cofinite language. Its minimal automaton can be computed in
time O(n): Compute the standard product automaton of TX and A, identifying
on the fly all states whose first component is the accepting sink state of TX .

For the concatenation, we have not establish any interesting state complexity
result, leaving it as an open problem, but the following lemma characterizes
the conditions in which the concatenation of a cofinite language and a regular
language is cofinite.

Lemma 13. Let Y be a cofinite language and X be a regular language. The
language X · Y (resp. Y · X) is cofinite if and only if there exists a positive
integer p such that, for every word w of length at least p, there exists a prefix
(resp. suffix) of w that is in X.

Proof. From Section 2.2 if X · Y is cofinite then there exists a positive number
p such that for each word w of length greater than p, w is in X · Y . Then there
exists a prefix of w in X .

Conversely as Y is cofinite there exists a positive number pY such that every
word of length at least pY is in Y . Let w be a word of length greater than or equal
to p+ pY . Let u be the prefix of length p of w. By hypothesis, there exists a prefix
u′ of u that belongs to X . u′ is also a prefix of w, hence there exists a word v, with
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|v| ≥ pY , such that w = u′v. Therefore, v ∈ Y and w ∈ X · Y . Consequently,
X · Y is cofinite since it contains every word of length at least p + nY .

Note that the condition of Lemma 13 is equivalent to say that X contains a
maximal prefix (resp. suffix) code [12]. Testing whether X contains a maximal
prefix code can be done in time O(|A|), where A is a given deterministic au-
tomaton recognizing X , by removing final states in A and then checking if there
is no cycle accessible from the initial state in the remaining graph.
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Abstract. In this paper we present a new problem, the fast set inter-
section problem, which is to preprocess a collection of sets in order to
efficiently report the intersection of any two sets in the collection. In
addition we suggest new solutions for the two-dimensional substring in-
dexing problem and the document listing problem for two patterns by
reduction to the fast set intersection problem.

1 Introduction and Related Work

The intersection of large sets is a common problem in the context of retrieval
algorithms, search engines, evaluation of relational queries and more. Relational
databases use indices to decrease query time, but when a query involves two
different indices, each one returning a different set of results, we have to intersect
these two sets to get the final answer. The running time of this task depends
on the size of each set, which can be large and make the query evaluation take
longer even if the number of results is small. In information retrieval there is a
great use of inverted index as a major indexing structure for mapping a word
to the set of documents that contain that word. Given a word, it is easy to get
from the inverted index the set of all the documents that contain that word.
Nevertheless, if we would like to search for two words to get all documents that
contain both, the inverted index doesn’t help us that much. We have to calculate
the occurrences set for each word and intersect these two sets. The problem of
intersecting sets finds its motivation also in web search engines where the dataset
is very large.

Various algorithms to improve the problem of intersecting sets have been in-
troduced in the literature. Demaine et al. [1] proposed a method for computing
the intersection of k sorted sets using an adaptive algorithm. Baeza-Yates [2] pro-
posed an algorithm to improve the multiple searching problem which is related
directly to computing the intersection of two sets. Barbay et al. [3] showed that
using interpolation search improves the performance of adaptive intersection al-
gorithms. They introduced an intersection algorithm for two sorted sequences
that is fast on average. In addition Philip et al. [4] presented a solution for
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computing expressions on given sets involving unions and intersections. A spe-
cial case of their result is the intersectin of m sets containing N elements in
total, which they solve in expected time O(N(logω)2/ω + m · output) for word
size ω where output is the number of elements in the intersection.

In this paper we present a new problem, the fast set intersection problem.
This problem is to preprocess a databases of size N consisting of a collection of
m sets to answer queries in which we are given two set indices i, j ≤ m, and wish
to find their intersection. This problem has lots of applications where there is a
need to intersect two sets in a lot of different fields like Information Retrieval,
Web Searching, Document Indexing, Databases etc. An optimal solution for this
problem will bring better solutions to various applications.

We solve this problem using minimal space and still decrease the query time
by using a preprocessing part. Our solution is the first non-trivial algorithm
for this problem. We give a solution that requires linear space with worst case
query time bounded by O(

√
Noutput+ output) where output is the intersection

size.
In addition, we present a solution for the two-dimensional substring indexing

problem, introduced by Muthukrishnan et al. [5]. In this problem we preprocess
a database D of size N . So when given a string pair (σ1, σ2), we wish to return
all the database string pairs αi ∈ D such that σ1 is a substring of αi,1 and σ2
is a substring of αi,2. Muthukrishnan et al. suggested a tunable solution for this
problem which uses O(N2−y) space for a positive fraction y and query time of
O(Ny + output) where output is the number of such string pairs. We present
a solution for this problem, based on solving the fast set intersection problem,
that uses O(N logN) space with O((

√
N logNoutput + output) log2 N) query

time.
In the document listing problem which was presented by Muthukrishnan [6],

we are given a collection of size N of text documents which may be preprocessed
so when given a pattern p we want to return the set of all the documents that con-
tain that pattern. Muthukrishnan suggested an optimal solution for this problem
which requires O(N) space with O(|p|+ output) query time where output is the
number of documents that contain the pattern. However, there is no optimal so-
lution when given a query consists of two patterns p, q to return the set of all the
documents that contain them both. The only known solution for this problem is
of Muthukrishnan [6] which suggested a solution that uses O(N

√
N) space which

supports queries in time O(|p| + |q| + √
N + output). We present a solution for

the document listing problem when the query consists of two patterns. Our solu-
tion uses O(N logN) space with O(|p|+ |q|+(

√
N logNoutput+output) log2 N)

query time.
The paper is structured as follows: In Sect. 2 we describe the fast set intersec-

tion problem. In Sect. 3 we describe our solution for this problem. In Sect. 4 we
present similar problems with their solutions. In Sect. 5 we present our solution
for the two-dimensional substring indexing problem and the document listing
problem for two patterns. In Sect. 6 we present some concluding remarks.
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2 Fast Set Intersection Problem

We formally define the fast set intersection (FSI) problem.

Definition 1. Let D be a database of size N consisting of a collection of m
sets. Each set has elements drawn from 1 . . . c. We want to preprocess D so that
given a query of two indices i, j ≤ m, we will be able to calculate the intersection
between sets i, j efficiently.

A naive solution for this problem is to store the sets sorted. Given a query of
two sets i, j, go over the smaller set and check for each element if it exists in
the second set. This costs O(min(|i|, |j|) logmax(|i|, |j|)). This solution can be
further improved using hash tables. A static hash table [7] can store n elements
using O(n) space and build time, with O(1) query time. For each set we can
build a hash table to check in O(1) time if an element is in the set or not.
This way the query time is reduced to O(min(|i|, |j|)) using linear space. The
disadvantage of using this solution is that on the worst case we go over a lot
of elements even if the intersection is small. A better query time can be gained
by using more space for saving the intersection between every two sets. Using
O(m2c) space we get an optimal query time of O(output) where output is the
size of the intersection. Nevertheless, this solution uses extremely more space.
In the next section we present our solution for the fast set intersection problem
which bounds the query time on the worst case.

3 Fast Set Intersection Solution

Here we present our algorithm for solving the FSI problem. We call result set to
the output of the algorithm, i.e., the intersection of the two sets. By output we
denote the size of the result set.

3.1 Preprocessing

For each set in D we store a hash table to know in O(1) time if an element is in
that set or not. In addition, we store the inverse structure, i.e., for each element
we store a hash table to know in O(1) time if it belongs to a given set or not.

Our main data structure consists of an unbalanced binary tree. Starting from
the root node at level 0, each node in that tree handles number of subsets of the
original sets from D. The cost of a node in that tree is the sum of the sizes of
all the subsets it handles. The root node handles all the m sets in D, therefore,
it costs N .

Definition 2. Let d be a node which costs n. A large set in d is a set which has
more than

√
n elements.

Lemma 1. By definition, a node d which costs n, can handle at most
√
n large

sets.
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A set intersection matrix is a matrix that stores for each set if it has an inter-
section with any other set. For m̀ sets this matrix costs O(m̀2) bits space with
O(1) query time for answering if set i and set j have a non-empty intersection.

For each node we construct a set intersection matrix for the large sets in that
node. By lemma 1, saving the set intersection matrix only for the large sets in a
node that costs n space will cost only another n space.

Now we describe how we divide sets between the children of a node. Only
large sets in a node will be propagated down to its two children, we call them
the propagated group. Let d be a node which costs n and let G be its propagated
group. Then, G costs at most n as well. Let E be the set of all elements in the
sets of G. We partition E into two disjoint sets E1, E2. For a given set S ∈ G
we partition it between the two children as following: The left child will handle
S ∩ E1 and the right child will handle S ∩ E2. We want each child of d to cost
at most n

2 . Nevertheless, finding such a partition of E is a hard problem, if even
possible at all. To overcome this difficulty we shall add elements to E1 until
adding another element will make the left child cost more than n

2 . The next
element, which we denote by e, will be remarked in d for checking, during query
time, whether it lies in the intersection. We now take E2 = E − E1 − {e} , i.e.,
the remaining elements. This way each child costs at most n

2 .
A leaf in this binary tree is a node which is in constant size. Because each

node in the tree costs half the space of its parent then this tree has logN levels.

Theorem 1. The space needed for this data structure is O(N) space.

Proof. The hash tables for all the sets cost O(N) space. As well the inverse hash
tables for all the elements cost O(N) space.

The binary tree structure space cost is as follows: The root costs O(N) bits
for saving the set intersection matrix. In each level we store only another O(N)
bits because every two children don’t cost more than their parent. Hence, the
total cost of this tree structure is O(N logN) bits which is O(N) space in term
of words. ��

3.2 Query Answering

Given sets i, j (without loss of generality we assume |i| ≤ |j|), we start traversing
the tree from the root node. If i is not a large set in the root we check each
element from it in the hash table of j. As there can be at most

√
N elements in

i because it is not a large set, this will cost O(
√
N). If both i, j are large sets we

do as follows: We check in the set intersection matrix of the root wether there
is a non-empty intersection between i and j. If there is not there is nothing to
add to the result set so we stop traversing down. If there is an intersection we
check the hash table of the element which is remarked in that node if it belongs
to i and j and add that element to the intersection if it belongs to both. Next
we go down to the children of the root and continue the traversing recursively.

Elements are added to the result set when we get to a node which in that
node i is not a large set. In this case, we stop traversing down the tree from that
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node. Instead we step over all the elements of i in that node checking for each
one of them if it belongs to j. We call such a node a stopper node.

Theorem 2. The query time is bounded by O(
√
Noutput+ output).

Proof. The query computation consists of two parts. The tree traversal part and
the time we spend on stopper nodes.

There are output elements in the result set, therefore, there can be at most
O(output) stopper nodes. Because the tree height is logN , for each stopper node
we visit at most logN nodes for the tree traversal until we get to it. Therefore,
the tree traversal part adds at most O(output logN) to the query time. But this
is more than what we actually pay for the tree traversal because some stopper
nodes share their path from the root. This can be bounded better. Because
the tree is a binary tree if we fully traverse the tree till log output height it
will cost O(output) time. Now, from this height if we continue traverse the tree
we visit for each stopper node at most logN − log output nodes because we
are already at log output height. Thus, the tree traversal part is bounded by
O(output + output(logN − log output)). By log rules this equals to O(output +
output log N

output ).
Now, we calculate how much time we spent on all the stopper nodes. A stopper

node is a node which during the tree traversal we have to go over all elements of
a non-large set in that node. The size of a non-large set in a stopper at level l is√

N
2l . Consider there are x stopper nodes. We denote by li the level for stopper

node i. For all stopper nodes we pay at most:

x∑
i=1

√
N

2li
=

√
N

x∑
i=1

2−
1
2 li =

√
N

x∑
i=1

1 · 2− 1
2 li

The Cauchy-Schwarz inequality is that (
∑n

i=1 xiyi)2 ≤ (
∑n

i=1 x
2
i )(
∑n

i=1 y
2
i ). We

use it in our case to get:

≤
√
N

√√√√ x∑
i=1

12

√√√√ x∑
i=1

(2−
1
2 li)2

=
√
N
√
x

√√√√ x∑
i=1

2−li

Kraft inequality from Information Theory states that for any binary tree:∑
l∈leaves

2−depth(l) ≤ 1

Because we never visit a subtree rooted by a stopper node, then in our case
each stopper node can be viewed as a leaf in the binary tree. Therefore, we can



Fast Set Intersection and Two-Patterns Matching 239

transform Kraft inequality for all the stopper nodes instead of all tree leaves to
get that

∑x
i=1 2−li ≤ 1. Using this inequality gives us that:

≤
√
N
√
x =

√
Nx ≤

√
Noutput = output

√
N

output

Thus, we pay O(output
√

N
output ), for the time we spend in the stopper nodes.

Therefore, the tree traversal part and the time we spend on all stopper nodes
is O(output+ output log N

output + output
√

N
output ). Hence, the final query time is

bounded by O(
√
Noutput + output). ��

Corollary 1. The fast set intersection problem can be solved in linear space
with worst case query time of O(

√
Noutput+ output).

4 Intersection-Empty Query and Intersection-Size Query

In the FSI problem given a query we want to return the result set, i.e., the
intersection between two sets. What if we only want to know if there is any in-
tersection between two sets? We call that the intersection-empty query problem.
Moreover, sometimes we would like only to know the size of the intersection
without calculating the actual result set. We define these problems as follows:

Definition 3. Let D be a database of size N consisting of a collection of m sets.
Each set has elements drawn from 1 . . . c. The intersection-empty query problem
is to preprocess D so that given a query of two indices i, j ≤ m, we want to
calculate if sets i, j have any intersection. In the intersection-size query problem
when given a query we want to calculate the size of the result set.

A naive solution for the intersection-empty query problem is to build a matrix
saving if there is any intersection between every two sets. This solution uses
O(m2) bits space with query time of O(1). For the intersection-size query prob-
lem we store the intersection size for every two sets by using slightly more space,
O(m2) space, with query time of O(1).

We can use part of our FSI solution method to solve the intersection-empty
query problem using O(N) space with O(

√
N) query time. Instead of the whole

tree structure we store only the root node with its set intersection matrix using
O(N) space. Given sets i, j (without loss of generality let’s assume |i| ≤ |j|), if
i is not large set in the root we check each element from it in the hash table of
j. Because i is not large set, this will cost at most O(

√
N) time. If i is a large

set then we check in the set intersection matrix of the root to see if there is
any intersection in O(1) time. Hence, we can solve the intersection-empty query
problem in O(

√
N) time using O(N) space.

With the same method we can solve the intersection-size query problem by
saving the size of the intersection instead of saving if there is any intersection
in the set intersection matrix. This way we can solve the intersection-size query
problem in O(

√
N) time using O(N) space.
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5 Two-Dimensional Substring Indexing Solution

In this section, we show how to solve the two-dimensional substring indexing
problem and the document listing problem for two patterns using our FSI solu-
tion. The two-dimensional substring indexing problem was showed by Muthukr-
ishnan et al. [5]. It is defined as follows:

Definition 4. Let D be a database consisting of a collection of string pairs
αi = (αi,1, αi,2), 1 ≤ i ≤ c, which may be preprocessed. Given a query string pair
(σ1, σ2), the 2-d substring indexing problem is to identify all string pairs αi ∈ D,
such that σi is a substring of αi,1 and σ2 is a substring of αi,2.

Muthukrishnan et al. [5] reduced the two-dimensional substring indexing prob-
lem to the common colors query problem which is defined as follows:

Definition 5. We are given an array A[1 . . . N ] of colors drawn from 1 . . . C.
We want to preprocess this array so that the following query can be answered
efficiently: Given two non-overlapping intervals I1, I2 in [1, N ], list the distinct
colors that occur in both intervals I1 and I2.

The common colors query (CCQ) problem is another intersection problem
where we have to intersect two intervals on the same array. We now show how
to solve the CCQ problem by solving the FSI problem. By that we solve the
two-dimensional substring indexing problem as well.

Given array A of size N , we build a data structure consisting of logN levels
over this array. In the top level we partition A into two sets of size at most N

2 , the
first set containing colors, i.e., elements, of A in range A[1 . . . N

2 ] and the second
set containing colors in range A[N

2 + 1 . . .N ]. As well, each level i is partitioned
into 2i sets, each respectively, containing a successive set of N

i colors from A.
The bottom level, in similar fashion, is therefore partitioned into N sets each
containing one different color from array A. The size of all the sets in each level
is O(N). Therefore, the size needed for all the sets in all levels is O(N logN).

Lemma 2. An interval I on A can be covered by at most 2 logN sets.

Proof. Assume, by contradiction, that there exists an interval for which at least
m > 2 logN sets are needed. This implies that there is some level that at least
3 (consecutive) sets are selected. However, for every 2 consecutive sets there
have to be a set in the upper level that contains them both, so we can take it
instead, and cover the same interval with only m − 1 sets, in contradiction to
the assumption that at least m sets are required for the cover. ��
Theorem 3. The CCQ problem can be solved using O(N logN) space with
O((

√
N logNoutput + output) log2 N) query time where output is the number

of distinct colors that occur in both I1 and I2.

Proof. Given two intervals I1, I2 we want to calculate their intersection, By
lemma 2, I1, I2 are each covered by a group of 2 logn sets at the most. To get the
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intersection of I1, I2 we will take each set from the first group and intersect it with
each set from the second group using our FSI solution. Hence, we have to solve
the FSI problem O(log2 N) times. Our FSI solution takes O(

√
Noutput+output)

time and O(N) space for dataset which costs O(N) space. Here the dataset costs
O(N logN) space, therefore, we can solve the common colors query problem in
O((

√
N logNoutput+ output) log2 N) time using O(N logN) space. ��

As showed in [5] to solve the two-dimensional substring problem we can solve a
CCQ problem. As a result, the two-dimensional substring problem can be solved
in O((

√
N logNoutput+ output) log2 N) time using O(N logN) space.

5.1 Document Listing Solution for Two Patterns

The document listing problem was presented by Muthukrishnan [6]. In this prob-
lem we are given a collection D of text documents d1, . . . , dc, with

∑
i |di| = N ,

which may be preprocessed, so when given a query comprising of a pattern p
our goal is to return the set of all documents that contain one or more copies
of p. Muthukrishnan presented an optimal solution for this problem by building
a suffix tree for D, searching the suffix tree for p and getting an interval I on
an array with all the occurrences of p in D. Then they solve the colored range
query problem on I to get each document only once. This solution requires O(N)
space with optimal query time of O(|p|+ output) where output is the number of
documents that contain p.

We are interested in solving this problem for a two patterns query. Given two
patterns p, q, our goal is to return the set of all documents that contain both p
and q. In [6] there is a solution that uses O(N

√
N) space with O(|p|+ |q|+√

N +
output) query time. Their solution is based on searching a suffix tree of all the
documents for the two patterns p, q in O(|p| + |q|) time. From this they get two
intervals: I1 with p occurrences and I2 with q occurrences.. On these intervals
they solve a CCQ problem to get the intersection between I1 and I2 for all the
documents that contain both p and q.

We suggest a new solution based on solving the FSI problem. We use the same
method as Muthukrishnan [6] until we get the two intervals: I1 with p occurrences
and I2 with q occurrences. Now, we have to solve a CCQ problem which can be
solved as shown above in theorem 3. Therefore, the document listing problem for
two patterns can be solved in O(|p| + |q| + (

√
N logNoutput + output) log2 N)

time using O(N logN) space where output is the number of documents that
contain both p and q.

6 Conclusions

In this paper we developed a method to improve algorithms which intersects
sets as a common task. We solved the fast set intersection problem using O(N)
space with query time bounded by O(

√
Noutput + output). We showed how to

improve some other problems, the two-dimensional substring indexing problem
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and the document listing problem for two patterns, using the fast set intersection
problem.

There is still a lot of research to be done in regards to the fast set intersection
problem. It is open if the query time can be bounded better. Moreover, we
showed only two applications for the fast set intersection problem. We are sure
that the fast set intersection problem can be useful in other fields as well.
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Abstract. We present counting methods for some special classes of mul-
tivariate polynomials over a finite field, namely the reducible ones, the
s-powerful ones (divisible by the sth power of a nonconstant polynomial),
and the relatively irreducible ones (irreducible but reducible over an ex-
tension field). One approach employs generating functions, another one
a combinatorial method. They yield approximations with relative errors
that essentially decrease exponentially in the input size.

1 Introduction

Classical results describe the distribution of prime numbers and of irreducible
univariate polynomials over a finite field. Randomly chosen integers up to x or
polynomials of degree up to n are prime or irreducible with probability about
1/ lnx or 1/n, respectively.

In two or more variables, the situation changes dramatically. Most multivari-
ate polynomials are irreducible. This question was first studied by Leonard Car-
litz, later by Stephen Cohen and others. In the bivariate case, von zur Gathen
(2008) gave precise approximations with an exponentially decreasing relative
error.

This paper makes the following contributions.

– Precise approximations to the number of reducible, s-powerful, and relatively
irreducible polynomials, with rapidly decaying relative errors. Only reducible
polynomials have been treated in the literature, usually with much larger
error terms.

– Two orthogonal methodologies to obtain such bounds: generating functions
and combinatorial counting.
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– The classical approach of analytic combinatorics with complex coefficients
leads to series that diverge everywhere (except at 0). We use symbolic co-
efficients, namely rational functions in a variable representing the field size,
and manage to extract substantial information by coefficient comparisons.

– Our combinatorial counting follows the aforementioned approach for bivari-
ate polynomials. It is technically slightly involved, but yields explicit con-
stants in our error estimates.

For perspective, we also give an explicit formula which is easy to obtain but hard
to use.

2 Notation and an Exact Formula

We work in the polynomial ring F [x1, . . . , xr] in r ≥ 2 variables over a field F
and consider polynomials with total degree equal to some nonnegative integer
n:

P all
r,n(F ) = {f ∈ F [x1, . . . , xr] : deg f = n}.

The polynomials of degree at most n form an F -vector space of dimension

br,n =
(
r + n

r

)
.

Over a finite field Fq with q elements, we have

#P all
r,n(Fq) = qbr,n − qbr,n−1 = qbr,n(1 − q−br−1,n).

The property of a certain polynomial to be reducible, squareful or relatively irre-
ducible is shared with all polynomials associated to the given one. For counting
them, it is sufficient to take one representative. We choose an arbitrary mono-
mial order, so that the monic polynomials are those with leading coefficient 1,
and write

Pr,n(F ) = {f ∈ P all
r,n(F ) : f is monic}.

Then

#Pr,n(Fq) =
#P all

r,n(Fq)
q − 1

= qbr,n−1 1 − q−br−1,n

1 − q−1 . (1)

The product of two monic polynomials is again monic.
To study reducible polynomials, we consider the following subsets of Pr,n(F ):

Ir,n(F ) = {f ∈ Pr,n(F ) : f irreducible},
Rr,n(F ) = Pr,n(F ) \ Ir,n(F ).

Carlitz (1963) provided the first count of irreducible multivariate polynomials. In
Carlitz (1965), he went on to study the fraction of irreducibles when bounds on
the degrees in each variable are prescribed; see also Cohen (1968). We opt for the
total degree because it has the charm of being invariant under invertible linear
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transformations. Gao & Lauder (2002) considered our problem in yet another
model, namely where one variable occurs with maximal degree. The natural
generating function (or zeta function) for the irreducible polynomials in two
or more variables does not converge anywhere outside of the origin. Wan (1992)
notes that this explains the lack of a simple combinatorial formula for the number
of irreducible polynomials. But he gives a p-adic formula, and also a (somewhat
complicated) combinatorial formula.

In the remainder of this section we will focus on Rr,n(F ) in the special case of
a finite field F = Fq and omit it from the notation. We want to count exactly how
many polynomials there are with a given factorization pattern. Our approach
is to look at inclusion-exclusion from the bottom up, that is, considering each
factorization pattern. A general polynomial of degree n is described by a partition

(m : e,#d) = (m1 : e11,#d11, . . . , e1s1 ,#d1s1 ; . . . ;
mt : et1,#dt1, . . . , etst ,#dtst)

(2)

of n with
n =

∑
1≤i≤t

mi

∑
1≤j≤si

eijdij . (3)

All si, mi, eij , dij , and t are positive integers, m1, . . . ,mt are pairwise distinct,
and for each i, ei1, . . . , eisi are pairwise distinct.

We write Pr,n(m : e,#d) for the set of polynomials in Pr,n with exactly dij

distinct irreducible factors of degree mi and multiplicity eij . Then

#Pr,n(m : e,#d) =
∏

1≤i≤t

(
#Ir,mi

di1, . . . , disi

)
. (4)

Theorem 1

Rr,n =
⋃

(m : e,#d)

Pr,n(m : e,#d),

#Rr,n =
∑

(m : e,#d)

#Pr,n(m : e,#d),

where the union is disjoint and over all partitions as in (2), except (m : e,#d)
= (n : 1,#1) which corresponds to the irreducible polynomials.

These formulas provide an explicit way of calculating the number of irreducible
polynomials inductively. Cohen (1968) notes that, compared to the univariate
case, “the situation is different and much more difficult. In this case, no explicit
formula [...] is available”.

Bodin (2008) gives a recursive formula for #I2,n and remarks on a general-
ization for more than 2 variables.

The formula of Theorem 1 is easily derived but quite impractical (and error-
prone) for hand calculations already at small sizes, and also cumbersome to
program. The next section presents a more elegant approach.
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3 Generating Functions for Reducible Polynomials

We now present a generating series that is easy to implement in any computer
algebra system and gives exact values in lightning speed. This is modeled on
the analytic combinatorial approach that is presented in Flajolet & Sedgewick
(2009) by two experts who created large parts of this theory. We first recall
a few general primitives from this theory that enable one to set up symbolic
equations for generating functions starting from combinatorial specifications.
Given a combinatorial object ω, the formal identity

1
1 − ω

= 1 + ω + ω2 + . . .

generates symbolically arbitrary sequences composed of ω. Let I be a family of
primitive combinatorial objects. Then the product

P =
∏
ω∈I

(1 − ω)−1

generates the class of all finite multisets of elements taken from I.
We take I to be the collection of all monic irreducible polynomials. Then, by

the unique factorization property of polynomials, P generates the collection of
all monic polynomials. Let z be a variable, and |ω| be the total degree of the
polynomial ω. The substitution ω &→ z|ω| in formal sums and products of objects
gives rise to counting generating functions. Since I is identified with the formal
sum

∑
ω∈I ω, the corresponding power series is

I =
∑
ω∈I

z|ω| =
∑
n≥1

Inz
n, (5)

where In = #Ir,n is the number of polynomials in I of total degree n. In a
similar way, the generating function for all monic polynomials is

P =
∏
ω∈I

(
1 − z|ω|

)−1
=
∏
n≥1

(1 − zn)−In =
∑
n≥0

Pnz
n. (6)

We now apply the ideas of this theory in a different setting. For multivariate
polynomials over a finite field Fq, the natural generating functions diverge in all
points except 0. We replace the usual complex analytic scenario, where, e.g., P is
a power series with complex coefficients, by a symbolic setting. Namely, for any r
and n, we consider Pn to be a polynomial in a variable q with integer coefficients.
Substituting a prime power q for q yields the integer #Pr,n(Fq). Allowing, more
generally, rational functions in q leads to power series in Q(q)�z�. Thus now

Pn = qbr,n−1 1 − q−br−1,n

1 − q−1 ∈ Q(q), (7)

in accordance with (1), and similarly for In. Interpreting the second product
in (6) as exp

(
−∑n≥1 In log(1 − zn)

)
, taking logarithms, and applying Möbius

inversion, with the Möbius function μ, yields
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log P =
∑
k≥1

I(zk)
k

and I =
∑
k≥1

μ(k)
k

log P(zk). (8)

P is known from (7), and we take the second equation in (8) as the definition
of I. Similarly, R = P − I is the series of reducible polynomials. The coefficients
of I can be calculated by expanding the logarithm and equating the appropriate
powers of z on both sides.

An 8-line Maple implementation of the resulting algorithm is described in
Figure 1. It is easy to program and execute and was used to calculate the number
of bivariate reducible polynomials in von zur Gathen (2008, Table 2.1).

allp := proc(z,n,r) local i: options remember:

sum(’simplify((q^binomial(i+r,r)-q^binomial(i+r-1,r))/

(q-1))*z^i’,i=0..n):

end:

reducible := proc(n,r) local k: options remember:

convert(taylor(allp(z,n,r)-sum(’mobius(k)/k*log(allp(z^k,n,r))’,

k=1..n),z,n+1),polynom):

end:

Fig. 1. Maple program to compute the generating function of the number of reducible
polynomials in r variables up to degree n

For f ∈ Q(q), deg f is the degree of f , that is, the numerator degree minus
the denominator degree. The appearance of O(q−1) in an equation means the
existence of some f with negative degree that makes the equation valid. The
charm of our approach is that we obtain results for any (”fixed”) r and n. If
a term O(q−1) appears, then we have an asymptotic result for growing prime
powers q. We denote by [zn]F ∈ Q(q) the coefficient of zn in F ∈ Q(q)�z�.

Lemma 1. (i) For i, j ≥ 0, we have degq(Pi · Pj) ≤ degq Pi+j.
(ii) For 1 ≤ k ≤ n/2, the sequence of integers degq(Pk ·Pn−k) is strictly decreas-

ing in k.

Proof. (i) The claim is equivalent to the binomial inequality(
r + i

r

)
+
(
r + j

r

)
− 1 ≤

(
r + i + j

r

)
, (9)

which is easily seen by considering the choices of r-element subsets from a
set with r + i + j elements.

(ii) Using (7), we define a function u as

ur,n(k) = degq(Pk · Pn−k) =
(
r + k

r

)
+
(
r + n− k

r

)
− 2. (10)
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We extend the domain of ur,n(k) from positive integers k between 1 and n/2
to real numbers k by means of falling factorials xr = x · (x−1) · · · (x−r+1):

ur,n(k) =
(k + r)r

r!
+

(n− k + r)r

r!
− 2.

It is sufficient to show that the affine transformation ū with

ū(k) = r! · (ur,n(k) + 2) = (k + r)r + (n− k + r)r

is strictly decreasing. The first derivative with respect to k is

ū′(k) =
∑

1≤i≤r

(
(k + 1) · · · (̂k + i) · · · (k + r)

−(n− k + 1) · · · ̂(n− k + i) · · · (n− k + r)
)
.

Since (k + j) < (n− k + j) for 1 ≤ j ≤ r, each difference is negative, and so
is ū′(k). ��

Theorem 2. Let r, n ≥ 2, and

ρr,n(q) = q(n+r−1
r )+r−1 1 − q−r

(1 − q−1)2
∈ Q(q), (11)

αn =

{
1/2 if n = 4,
1 otherwise.

Then for n ≥ 4

Rn = ρr,n(q) ·
(
1 + αnq−(n+r−2

r−1 )+r(r+1)/2(1 + O(q−1))
)
,

R2 =
ρr,2(q)

2
(
1 − q−r−1) ,

R3 = ρr,3(q)
(

1 − q−r + q−r(r−1)/2 1 − 2q−r + 2q−2r−1 − q−2r−2

3(1 − q−1)

)
.

Proof. Let F = P − 1. The Taylor expansion of log(1 + F(zk)) in (8) yields

I =
∑
k≥1

μ(k)
k

∑
i≥1

(−1)i+1 F(zk)i

i

= F +
∑
i≥2

(−1)i+1 Fi

i
+
∑
k≥2

μ(k)
k

∑
i≥1

(−1)i+1 F(zk)i

i
,

R = P − I = 1 +
∑
i≥2

(−1)i F
i

i
+
∑
k≥2

μ(k)
k

∑
i≥1

(−1)i F(zk)i

i
.
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Since R2 = [z2]R, we directly find R2 = (P1
2 + P1)/2. Similarly, R3 = P2P1 −

(P1
3 − P1)/3, which implies the claim.

When n ≥ 4, then the main contribution of Rn = [zn]R comes from the term
i = 2 in the first sum, according to Lemma 1. For n = 4, the main contribution
is P3P1 + P2

2/2, giving the asymptotic expansion stated in the theorem using
the bounds of Lemma 1. For n ≥ 5 it leads to Rn ∼ (2Pn−1P1 + 2Pn−2P2)/2 =
Pn−1P1(1 + Pn−2P2/(Pn−1P1)). The error estimate follows by taking the main
term in Pn−2P2/(Pn−1P1), again using Lemma 1. ��
Bodin (2008, Theorem 7) shows (in our notation)

1 − #Ir,n

#Pr,n
∼ q−br−1,n−r 1 − q−r

1 − q−1 .

Hou & Mullen (2009) provide results for #Ir,n(Fq). These do not yield error
bounds for the approximation of #Rr,n(Fq). Bodin (2009) claims a result similar
to Theorem 2, for values of n that tend to infinity and with an unspecified
multiplicative factor of the error term, but without proving the required bounds
on the various terms, as in Lemma 1.

4 Explicit Bounds for Reducible Polynomials

We now describe a third approach to counting the reducible polynomials. The
derivation is somewhat more involved. The payoff of this additional effort are
explicit relative error bounds in Theorem 3, replacing the asymptotic O(q−1) by
bounds like 3q−m for some explicit positive integer m.

We consider, for integers 1 ≤ k < n, the multiplication map

μr,n,k : Pr,k × Pr,n−k → Pr,n

(g, h) &→ g · h.
Without loss of generality, we assume k ≤ n/2. Then

# imμr,n,k ≤ #Pr,k · #Pr,n−k

= qur,n(k) (1 − q−br−1,k)(1 − q−br−1,n−k)
(1 − q−1)2

< qur,n(k) 1 − q−br−1,k

(1 − q−1)2
, (12)

with ur,n(k) = br,k +br,n−k−2 as in (10). The asymptotic behavior of this upper
bound is dominated by the behavior of ur,n(k). From Lemma 1(ii) we know that
for any r, n ≥ 2, ur,n(k) is strictly decreasing for 1 ≤ k ≤ n/2. As ur,n(k) takes
only integral values for integers k we conclude that

∑
2≤k≤n/2

qur,n(k) < qur,n(2)
∑
k≥0

q−k =
qur,n(2)

1 − q−1 . (13)
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Proposition 1. In the notation of Theorem 2, we have for n ≥ 2:

(i)
#Rr,n(Fq) ≤ ρr,n(q)

(
1 + 3q−br−1,n−1+br−1,2

)
,

(ii)
#Rr,n(Fq) ≥ ρr,n(q)

(
1 − 7q−br−1,n−1+r

)
,

(iii)
#Ir,n(Fq) ≥ #Pr,n(Fq)

(
1 − 6q−br−1,n+r

)
.

Proof. We start with the proof of (i). Observing

Rr,n =
⋃

1≤k≤n/2

imμr,n,k, (14)

and using (12), we find

#Rr,n ≤
∑

1≤k≤n/2

# imμr,n,k

≤ 1
(1 − q−1)2

∑
1≤k≤n/2

qur,n(k)(1 − q−br−1,k ). (15)

For this sum we have from (13)∑
1≤k≤n/2

qur,n(k)(1 − q−br−1,k) = qur,n(1)(1 − q−r) +
∑

2≤k≤n/2

qur,n(k)(1 − q−br−1,k)

(16)

≤ qur,n(1)(1 − q−r) +
qur,n(2)

1 − q−1

= qur,n(1)(1 − q−r)
(

1 +
q−ur,n(1)+ur,n(2)

(1 − q−1)(1 − q−r)

)
.

Since ur,n(1) = br,n−1 + r − 1 and −ur,n(1) + ur,n(2) = −br−1,n−1 + br−1,2, we
conclude

#Rr,n ≤ qbr,n−1+r−1(1 − q−r)
(1 − q−1)2

(
1 +

q−br−1,n−1+br−1,2

(1 − q−1)(1 − q−r)

)
= ρr,n(q)

(
1 +

q−br−1,n−1+br−1,2

(1 − q−1)(1 − q−r)

)
.

We note that the sum on the right-hand side of (16) is empty for n ≤ 3 and
furthermore that

1
(1 − q−1)(1 − q−r)

≤ 8
3
< 3

for all q, r ≥ 2. This proves (i).
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We proceed with (iii). For linear polynomials we have Ir,1 = Pr,1, hence (iii)
holds for n = 1. For n ≥ 2, we find from (i) that

#Ir,n = #Pr,n − #Rr,n

≥ #Pr,n

(
1 − ρr,n(q)

1 + 3q−br−1,n−1+br−1,2

#Pr,n

)
= #Pr,n

(
1 − q−br−1,n+r (1 + 3q−br−1,n−1+br−1,2 )(1 − q−r)

(1 − q−br−1,n)(1 − q−1)

)
> #Pr,n

(
1 − q−br−1,n+r (1 + 3q−br−1,n−1+br−1,2 )

(1 − q−1)

)
,

since (1 − q−r)/(1 − q−br−1,n) < 1. It is now sufficient to note that for n ≥ 2

1 + 3q−br−1,n−1+br−1,2

1 − q−1 ≤ 6.

We conclude with the proof of (ii). Using (11), (14), and the injectivity of μr,n,1
on Pr,1 × Ir,n−1 for n ≥ 3, it follows that

#Rr,n ≥ # imμr,n,1 (17)
≥ #Pr,1 · #Ir,n−1

≥ qbr,1−1 1 − q−r

1 − q−1 · #Pr,n−1
(
1 − 6q−br−1,n−1+r

)
≥ ρr,n(q)(1 − q−br−1,n−1)

(
1 − 6q−br−1,n−1+r

)
≥ ρr,n(q)(1 − 7q−br−1,n−1+r).

For n = 2 the claimed lower bound is negative. ��
We combine the upper and lower bounds of Proposition 1 for n ≥ 5 and argue
separately for smaller n to obtain the following result.

Theorem 3. In the notation of Theorem 2 we have for n ≥ 4,

|#Rr,n(Fq) − ρr,n(q)| ≤ ρr,n(q) · 3q−(n+r−2
r−1 )+r(r+1)/2,

|#Rr,3(Fq) − ρr,3(q)| ≤ ρr,3(q) · 2q−r(r−1)/2,

#Rr,2(Fq) =
ρr,2(q)

2
· (1 − q−r−1) .

This result supplements the bound of Theorem 2, by replacing O(q−1) with 2
(for n ≥ 5).

For r = 2, these results agree with those in von zur Gathen (2008), but the
added generality leads to a slightly larger relative error term 3q−n+3, compared
to the older bound 2q−n. Our relative error bound is exponentially decaying in
the same sense as there.

We conclude this section with a bound on the irreducible polynomials.

Corollary 1. Let q, r ≥ 2 and ρr,n(q) as in (11). We have

#Ir,n(Fq) ≥ #Pr,n(Fq) − 2ρr,n(q).
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5 Powerful Polynomials

For a positive integer s, a polynomial is called s-powerful if it is divisible by
the sth power of some nonconstant polynomial, and s-powerfree otherwise; it is
squarefree if s = 2. Let

Qr,n,s(F ) = {f ∈ Pr,n(F ) : f is s-powerful}.
Similar to Section 3, let Qn,s denote the corresponding polynomial in Q(q). The
exact count of Section 2 can be immediately applied to s-powerful polynomials,
by taking d11 = s in 2. After proving a statement similar to, but more involved
than, Lemma 1, the generating function approach of Section 3 yields the following
result.

Theorem 4. Let r ≥ 2, n ≥ s ≥ 2, and let

ηr,n,s(q) = q(n−s+r
r )+r−1 (1 − q−r)(1 − q−(n+r−s−1

r−1 ))
(1 − q−1)2

∈ Q(q),

δ =
(
n− s + r

r

)
−
(
n− 2s + r

r

)
− r(r + 1)

2
.

Then δ > 0, and we have

Qn,s =

{
ηr,n,s(q)(1 − q−δ(1 + O(q−1))) if (n, s) �= (6, 2),

ηr,n,s(q)(1 − q−(r+3
4 )−r(1 + O(q−1))) if (n, s) = (6, 2).

The combinatorial approach yields the following explicit error bounds.

Theorem 5. With the notation of Theorem 4, we have

|#Qr,n,s(Fq) − ηr,n,s(q)| ≤
{
ηr,n,s(q) · 6q−δ if (n, s) �= (6, 2),

ηr,6,2(q) · 3q−(r+3
4 )−r+1 if (n, s) = (6, 2).

6 Relatively Irreducible Polynomials

A polynomial over F is called relatively irreducible if it is irreducible but factors
over some extension field of F . We define

Er,n(F ) = {f ∈ Pr,n(F ) : f is relatively irreducible}.
Similar to Section 3, let En denote the corresponding polynomial in Q(q). With
the appropriate preparation à la Lemma 1, the approach by generating functions
gives the following result.

Theorem 6. Let r, n ≥ 2, let 	 be the smallest prime divisor of n, and

εr,n(q) = q�((r+n/�
r )−1) 1 − q−�(r−1+n/�

r−1 )

	(1 − q−�)
∈ Q(q). (18)
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γr,,n(q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/2 if n = 4, r ≤ 4,
3/2 if n = 4, r = 5,
qr(r−5)/2 if n = 4, r ≥ 6,
1 otherwise.

Then the following hold.

(i) If n is prime, then

En = εr,n(q)
(

1 − q−r(n−1) (1 − q−r)(1 − q−n)
(1 − q−1)(1 − q−nr)

)
.

(ii) If n is composite, then

En = εr,n(q)
(
1 − γr,n(q) · q−�((r−1+n/�

r−1 )−r)(1 + O(q−1))
)
.

The combinatorial approach yields the following explicit error bounds.

Theorem 7. In the notation of Theorem 6, the following holds.

(i) If n �= 4 is composite, then

|#Er,n(Fq) − εr,n(q)| ≤ εr,n(q) · 2q−�(br−1,n/�−r),

where the 2 can be omitted unless n = 6.
(ii) For n = 4, we have

|#Er,4(Fq) − εr,4(q)| ≤ εr,4(q) · q−(r2+3r−6)/2.
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A Larger Lower Bound on the OBDD
Complexity of the Most Significant Bit of

Multiplication

Beate Bollig

LS2 Informatik, TU Dortmund,
44221 Dortmund, Germany

Abstract. Ordered binary decision diagrams (OBDDs) are one of the
most common dynamic data structures for Boolean functions. The reach-
ability problem, i.e., computing the set of nodes reachable from a prede-
fined vertex s ∈ V in a digraph G = (V, E), is an important problem in
computer-aided design, hardware verification, and model checking. Saw-
itzki (2006) has presented exponential lower bounds on the space com-
plexity of a restricted class of symbolic OBDD-based algorithms for the
reachability problem. Here, these lower bounds are improved by present-
ing a larger lower bound on the OBDD complexity of the most significant
bit of integer multiplication.

1 Introduction

1.1 Motivation

Some modern application require huge graphs such that explicit representations
by adjacency matrices or adjacency lists are not any longer possible. Since time
and space do not suffice to consider individual nodes, one way out seems to be to
deal with sets of nodes and edges represented by their characteristic functions.
Ordered binary decision diagrams, denoted OBDDs, introduced by Bryant [4],
are one of the most often used data structures supporting all fundamental op-
erations on Boolean functions, therefore, in the last years a research branch has
emerged which is concerned with the theoretical design and analysis of so-called
symbolic algorithms for classical graph problems on OBDD-represented graph
instances (see, e.g., [10,11], [16], and [21]). Symbolic algorithms have to solve
problems on a given graph instance by efficient functional operations offered by
the OBDD data structure. At the beginning the OBDD-based algorithms have
been justified by analyzing the number of executed OBDD operations (see, e.g.,
[10,11]). Since the number of OBDD operations is not directly proportional to
the running time of an algorithm, as the running time for one OBDD opera-
tion depends on the sizes of the OBDDs on which the operations are performed,
newer research tries to analyze the over-all running time of symbolic methods
including the analysis of all OBDD sizes occurring during such an algorithm
(see, e.g., [21]).

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 255–266, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In reachability analysis the task is to compute the set of states of a state-
transition system that are reachable from a set of initial states. Besides explicit
methods for traversing states one by one and SAT-based techniques for deciding
distance-bounded reachability between pairs of state sets, symbolic methods are
one of the most commonly used approaches to this problem (see, e.g., [6,7]). In
the OBDD-based setting our aim is to compute the characteristic function XR

of the solution set R ⊆ V . To be more precise, the input consists of an OBDD
representing the characteristic function of the edge set of a graph G = (V,E)
and a predefined vertex s ∈ V and the output is an OBDD representing the
characteristic function of the node set R which contains all nodes reachable
from the source s via a directed paths. BFS-like approaches using O(|V |) OBDD
operations [12] and iterative squaring methods using O(log2 |V |) operations [16]
are known. In [17] Sawitzki has proved that algorithms solving the reachability
problem by computing intermediate sets of nodes reachable from s via directed
paths of length at most 2p, p ∈ {1, . . . , �log |V |�}, need exponential space if
the variable order is not changed during the algorithms. Here, the challenge has
been to find graph instances whose OBDD size is small, but for which during the
computation of the reachability algorithms exponentially large OBDDs have to
be represented. First, Sawitzki has proved the first exponential lower bound on
the size of OBDDs representing the most significant bit of integer multiplication
for one predefined variable order. Afterwards, he has defined pathological graph
instances for the reachability problem, such that during the computation of the
investigated restricted class of algorithms, representations for the negation of the
most significant bit of integer multiplication are necessary. Since the negation of
a Boolean function cannot be represented by smaller OBDDs than the function
itself, the proof has been done. Hence, an enlargement of the lower bound on the
OBDD size of the most significant bit of integer multiplication leads to larger
lower bounds on the space and time complexity of the considered reachability
algorithms.

In [3] Sawitzki’s result has already been improved by presenting a larger lower
bound on the OBDD size of the most significant bit for the variable order cho-
sen in [17]. Lower bounds on the size of OBDDs for a predefined variable order
do not rule out the possibility that there are other variable orders leading to
OBDDs of small size. Since Sawitzki’s assumption that the variable order is not
changed during the computation is not realistic because in application reordering
heuristics are used in order to minimize the OBDD size for intermediate OBDD
results, in [1,2] the result has been improved by presenting general exponential
lower bounds on the OBDD size of the most significant bit of integer multipli-
cation. Here, we improve Sawitzki’s result once more by presenting larger lower
bounds on the OBDD size of the most significant bit.

1.2 Integer Multiplication and OBDDs

Integer multiplication is certainly one of the most important functions in com-
puter science and a lot of effort has been spent in designing good algorithms
and small circuits and in determining its complexity. For some computation
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models integer multiplication is a quite simple function. It is contained in NC1

and even in TC0,3 (polynomial-size threshold circuits of depth 3) but neither
in AC0 (polynomial-size {∨,∧,¬}-circuits of unbounded fan-in and constant
depth) nor in TC0,2 [13]. For more than 35 years the algorithm of Schönhage-
Strassen [18] has been the fastest method for integer multiplication running in
time O(n logn log logn). Recently algorithms running in time n logn · 2O(log∗ n)

have been presented [8,9]. Until now it is open whether integer multiplication is
possible in time O(n log n).

Definition 1. Let Bn denote the set of all Boolean functions f : {0, 1}n → {0, 1}.
The Boolean function MULi,n ∈ B2n maps two n-bit integers x = xn−1 . . . x0
and y = yn−1 . . . y0 to the ith bit of their product, i.e., MULi,n(x, y) = zi, where
x · y = z2n−1 . . . z0 and x0, y0, z0 denote the least significant bits.

Boolean circuits, formulae, and binary decision diagrams (BDDs), sometimes
called branching programs, are standard representations for Boolean functions.
(For a history of results on binary decision diagrams see, e.g., the monograph
of Wegener [19]). Besides the complexity theoretical viewpoint people have used
restricted binary decision diagrams in applications and OBDDs have become
one of the most popular data structures for Boolean functions. Among the many
areas of application are verification, model checking, computer-aided design,
relational algebra, and symbolic graph algorithms.

Definition 2. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A vari-
able order π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

In the following a variable order π is sometimes identified with the corresponding
order xπ(1), . . . , xπ(n) of the variables if the meaning in clear from the context.

Definition 3. A π-OBDD on Xn is a directed acyclic graph G = (V,E) whose
sinks are labeled by Boolean constants and whose non sink (or inner) nodes are
labeled by Boolean variables from Xn. Each inner node has two outgoing edges
one labeled by 0 and the other by 1. The edges between inner nodes have to
respect the variable order π, i.e., if an edge leads from an xi-node to an xj-node,
π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node v represents a
Boolean function fv : {0, 1}n → {0, 1} defined in the following way. In order
to evaluate fv(b), b ∈ {0, 1}n, start at v. After reaching an xi-node choose the
outgoing edge with label bi until a sink is reached. The label of this sink defines
fv(b). The size of the π-OBDD G is equal to the number of its nodes and π-
OBDD(f) denotes the size of the minimal π-OBDD representing f .

It is well known that the size of an OBDD representing a function f depends
on the chosen variable order and may vary between linear and exponential size.
Since in applications the variable order is not given in advance we have the
freedom (and the problem) to choose a good or even an optimal order for the
representation of f .
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Definition 4. The OBDD size or OBDD complexity of f (denoted by OBDD(f))
is the minimum of all π-OBDD(f).

Lower bounds for integer multiplication are motivated by the general interest
in the complexity of important arithmetic functions. Moreover, lower bounds on
the OBDD complexity of the most significant bit of integer multiplication are
interesting because of the following observation. If z2n−1 cannot be computed
with size s(n), then any other output bit of integer multiplication zi, 2n− 1 >
i ≥ 0, cannot be computed with size s(i/4).

Although many exponential lower bounds on the OBDD size of Boolean func-
tions are known and the lower bound methods are simple, it is often a more
difficult task to prove large lower bounds for some predefined and interesting
functions. The most significant bit of integer multiplication is a good example.
Despite the well-known lower bounds on the OBDD size of the middle bit of
multiplication MULn−1,n ([5], [20]), only recently it has been shown that the
OBDD complexity of the most significant bit of multiplication MUL2n−1,n is
also exponential [1] answering an open question posed by Wegener [19].

1.3 Results and Organization of the Paper

Using techniques from analytical number theory Sawitzki [17] has presented a
lower bound of Ω(2n/6) on the size of π-OBDDs representing the most significant
bit of integer multiplication for the variable order π where the variables are tested
according to increasing significance, i.e., π = (x0, y0, x1, y1, . . . , xn−1, yn−1). In
[3] this lower bound has been improved up to Ω(2n/4) without analytical number
theory. Here, in Section 3 we enlarge this lower bound using a simple proof.

In [2] the lower bound proof on the OBDD complexity of MUL2n−1,n has been
improved up to Ω(2n/72). In Section 4 we present a larger general lower bound.
As a result we gain more insight into the structure of the most significant bit of
integer multiplication.

Our results can be summarized as follows.

Theorem 1. Let π = (x0, y0, x1, y1, . . . , xn−1, yn−1). The π-OBDD size for the
representation of MUL2n−1,n is Ω(2n/3).

Theorem 2. OBDD(MUL2n−1,n) = Ω(2n/45).

2 Preliminaries

2.1 Notation

In the rest of the paper we use the following notation.
Let [x]lr, n − 1 ≥ l ≥ r ≥ 0, denote the bits xl . . . xr of a binary number

x = (xn−1, . . . , x0). For the ease of description we use the notation [x]lr = z if
(xl, . . . , xr) is the binary representation of the integer z ∈ {0, . . . , 2l−r+1 − 1}.
Sometimes, we identify [x]lr with z if the meaning is clear from the context. We
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use the notation (z)l
r for an integer z to identify the bits at position l, . . . , r in

the binary representation of z.
Let 	 ∈ {0, . . . , 2m − 1}, then 	 denotes the number (2m − 1) − 	. For a

binary number x = (xn−1, . . . , x0) we use the notation x for the binary number
(xn−1, . . . , x0).

Let aS be an assignment to variables in a set S and aS(xk) ∈ {0, 1} be the
assignment to xk ∈ S, then we define ‖aS‖ :=

∑
xk∈S aS(xk) · 2k.

2.2 One-Way Communication Complexity and the Size of OBDDs

In order to obtain lower bounds on the size of OBDDs one-way communication
complexity has become a standard technique (see, e.g., [14,15] for the theory of
communication complexity.)

One central notion of communication complexity are fooling sets.

Definition 5. Let f : {0, 1}|XA| × {0, 1}|XB| → {0, 1}. A set S ⊆ {0, 1}|Xa| ×
{0, 1}|XB| is called fooling set for f if f(a, b) = c for all (a, b) ∈ S and some
c ∈ {0, 1} and if for different pairs (a1, b1), (a2, b2) ∈ S at least one of f(a1, b2)
and f(a2, b1) is unequal to c.

The following theorem is well known.

Theorem 3. If f : {0, 1}|XA| × {0, 1}|XB| → {0, 1} has a fooling set of size t
and π is a variable order where the XA-variables are before the XB-variables or
vice versa the size of a π-OBDD for f is at least t.

Now, we present a function fn with a large fooling set which is a main ingredient
in our general lower bound proof on the OBDD size of the most significant bit
of integer multiplication.

The function fn ∈ B3n is defined on the variables a = (a1, . . . , an), b =
(b1, . . . , bn), and c = (c1, . . . , cn):

fn(a, b, c) := (EQn(a, c) ∧ GTn(a, b)) ∨ GTn(a, c),

where EQn(a, b) = 1 iff the vectors a = (a1, . . . , an) and b = (b1, . . . , bn) are
equal, GTn(a, b) = 1 iff [a]n1 ≤ [b]n1 , and GTn(a, b) = 1 iff [a]n1 > [b]n1 .

Using case inspection on the distribution of the c-variables in [2] it has been
shown that for a partition, where for all i ∈ {1, . . . , n} the set XA contains
exactly one of the variables ai and bi, there exists a fooling set of size 2n for fn.

3 A Larger Lower Bound on the π-OBDD Size of
MUL2n−1,n for Some Predefined Variable Order

In this section we prove Theorem 1. We start with the following useful observa-
tions.

Fact 1. For a number 2n−1 + 	2n/3 the corresponding smallest integer such that
the product of the two numbers is at least 22n−1 is 2n − 	2n/3+1 +

⌈
�22(2/3)n+1

2n−1+�2n/3

⌉
.
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Fact 2. For 	 ∈ N and 	 ≤ 2n/3−2:⌈
	22(2/3)n+1

2n−1 + 	2n/3

⌉
≤ 2n/3−1.

Fact 3. For 	1, 	2 ∈ {2n/3−3, . . . , 2n/3−2} and 	2 − 	1 = c ≥ 4:

	222(2/3)n+1

2n−1 + 	22n/3 − 	212(2/3)n+1

2n−1 + 	12n/3 > c/4 ≥ 1.

Now, it is not difficult to construct a fooling set of size 2n/3−3/4 = Ω(2n/3):
Let XU := {xn−1, xn−2, . . . , xn/3}, YU := {yn−1, yn−2, . . . , yn/3}, XL :=

{xn/3−1, xn/2−2, . . . , x0}, and YL := {yn/3−1, yn/2−2, . . . , y0}. The Set S con-
tains all pairs (a, b) for 	 ∈ {2n/3−3, . . . , 2n/3−2} and (	 mod 4) = 0 with the
following properties:

1. a is an assignment that consists of a partial assignment aXU to the variables
in XU and a partial assignment aYU to the YU -variables, where ‖aXU ‖ =
2n−1 + 	2n/3 and ‖aYU ‖ = 2n − 	2n/3+1 and

2. b is an assignment that consists of a partial assignment bXL to the variables
in XL and a partial assignment bYL to the YL-variables, where ‖bXL‖ = 0
and ‖bYL‖ =

⌈
�22(2/3)n+1

2n−1+�2n/3

⌉
.

Because of Fact 2 we know that the partial assignment bYL exists. Using Fact 1
we know that the function value of MUL2n−1,n is 1 for all pairs in S. Let (a1, b1)
and (a2, b2) be two different pairs in S. If the value of the partial assignment of
the XU -variables according to a1 is 2n−1 + 	12n/3 and the value of the partial
assignment of the XU -variables according to a2 is 2n−1 + 	22n/3, where w.l.o.g.
	1 < 	2, the function value of MUL2n−1,n(a2, b1) is 0 since⌈

	222(2/3)n+1

2n−1 + 	22n/3

⌉
>

⌈
	212(2/3)n+1

2n−1 + 	12n/3

⌉
according to Fact 3. Therefore, S is a fooling set of size 2n/3−5.

Because of the symmetric definition of fooling sets we also obtain a lower
bound of 2n/3−5 on the size of π′-OBDDs for the most significant bit, where
π′ = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0).

4 A Larger Lower Bound on the OBDD Complexity of
the Most Significant Bit of Integer Multiplication

In this section we prove Theorem 2 and determine the lower bound of Ω(2n/45)
on the size of OBDDs for the representation of the most significant bit of integer
multiplication. We use some of the ideas presented in [2] but we have to apply
them in a more clever way to obtain a larger lower bound. Our aim is to show
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for an arbitrary variable order π that a π-OBDD for MUL2n−1,n contains a
π-OBDD for the Boolean function fn′ defined in Section 2.2:

fn′(a, b, c) = (EQn′(a, c) ∧ GTn′(a, b)) ∨ GTn′(a, c),

where for each position i the variables ai and bi are suitably separated in π and
n′ = Θ(n). Therefore, the size of the π-OBDD for MUL2n−1,n has to be large.
The vector a is a subvector of one of the inputs x and y for MUL2n−1,n, the
vectors b and c of the other input.

In the sequel for the sake of simplicity we do not apply floor or ceiling functions
to numbers even when they need to be integers whenever this is clear from the
context and has no bearing on the essence of the proof.

In the following let 	 be an integer in {1, . . . , 2n/3−1 − 1}. A key observation
is the following one. MUL2n−1,n answers the question whether the product of
two integers is at least 22n−1. As already mentioned in Section 3, for a number
2n−1 + 	2n/3, the corresponding smallest number such that the product of the
two numbers is at least 22n−1 is

2n − 	2n/3+1 +
⌈

	22(2/3)n+1

2n−1 + 	2n/3

⌉
= 2n − 	2n/3+1 +

⌈
	22−n/3+2 − 4	3

2n−1 + 	2n/3

⌉
.

We notice that the number 4�3

2n−1+�2n/3 is smaller than 1 if 	 ≤ 2n/3−1.
Next, we investigate requirements that have to be fulfilled for inputs x and y,

where MUL2n−1,n(x, y) = 1.
If x represents an integer 2n−1 + 	2n/3, 1 ≤ 	 < 2n/3−1, the upper part of y

has to represent an integer of at least 2(2/3)n − 2	, i.e., [y]n−1
n/3 ≥ 2(2/3)n − 2	.

– If [y]n−1
n/3 > 2(2/3)n − 2	, the function value MUL2n−1,n(x, y) is 1.

– Let j be the minimum integer of the set

{i | n/3 ≤ i < (2/3)n− 1 and xi = 1}.

i) If [y]n−1
j+2 > [x]n−2

j+1 , the function value MUL2n−1,n is 0.
ii) If [y]n−1

j+2 < [x]n−2
j+1 , the function value MUL2n−1,n is 1.

iii) If yj+1 = 1, [y]n−1
j+2 = [x]n−2

j+1 , and [y]jn/3 = 0, [y]n/3−1
0 has to represent an

integer of at least
⌈
	22−n/3+2 − 4�3

2n−1+�2n/3

⌉
. In our lower bound proof

the following observation will be helpful. Since 4�3

2n−1+�2n/3 is smaller than
1 for 	 ≤ 2n/3−1, its influence can be limited by choosing 	 carefully. As
a result 	22−n/3+2 is the term which is the most important one to decide
whether the function value is 1.

Now, we investigate some square numbers more closely. The reason is the fol-
lowing one. As we have seen, if some of the x- and y-variables fulfill certain
properties, then the function value of MUL2n−1,n(x, y) is 1 if [y]n/3−1

0 is at least⌈
	22−n/3+2 − 4�3

2n−1+�2n/3

⌉
. Next, we restrict the assignments carefully such that
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	2 satisfies certain requirements. Among others the n/3−2 least significant bits in
the binary representation of the considered square numbers 	2 are less important
for us.

In the rest of the proof let 	 = u2m +w, for integers w < 2m and u < 2(7/8)m

and m := (8/45)n− 8/15. Then 	2 = u222m +uw2m+1 +w2. In our lower bound
proof the integer u will be fixed and w will be chosen in such a way that no carry
is generated by the addition of w2, uw2m+1, and u222m. Since the n/3− 2 least
significant bits in the binary representation of 	2 are more or less unimportant
in our lower bound proof, the square number w2 is too small to be of much
influence. In our lower bound proof the most decisive part is uw2m+1.

Furthermore, we choose the assignments for 	 in such a way that for different
integers 	1 and 	2, where 	1 = u2m + w1 and 	2 = u2m + w2, w1 < w2,

(u222m + uw12m+1) div 22m+1 < (u222m + uw2m+1
2 ) div 22m+1.

Moreover, (u222m + uw12m+1 + w2
1) mod 22m+1 and (u222m + uw22m+1 + w2

2)
mod 22m+1 are less than 22m. Therefore,

(u222m + uw12m+1 + 22m) div 22m > (u222m + uw12m+1 + w2
1) div 22m but

(u222m + uw12m+1 + 22m) div 22m < (u222m + uw22m+1 + w2
2) div 22m.

We can conclude that

(u222m + uw12m+1 + 22m) div 2n/3−2 >

⌈
	212

−n/3+2 − 4	31
2n−1 + 	12n/3

⌉
and

(u222m + uw12m+1 + 22m) div 2n/3−2 <

⌈
	222

−n/3+2 − 4	32
2n−1 + 	22n/3

⌉
since 2m > n/3 − 2.

Altogether, we have seen that we can get rid of the influence of w2 and
4�3

2n−1+�2n/3 provided that it is possible to choose 	 as discussed above.

Next, we make our proof ideas more precise. We rename [x]n/3+m−1
n/3 by [w]m−1

0

and [x](2/3)n−1
n/3+m by [u](7/8)m

0 − 1. (Note, that n/3 + m − 1 = n/3 + (8/45)n− 2
and n/3 + m + (7/8)m− 1 = (2/3)n− 1.) (See Figure 1 for the composition of
the number x.) The main idea is to replace some of the x-variables and the cor-
responding y-variables by constants, where yi+1 is the corresponding y-variable
to xi, such that a certain part of the upper half of the binary representation of
u · w is equal to a certain part of 2d · w for d suitably chosen.

Now, the crucial part is to choose an appropriate subset of the input variables
in order to show that there exists a large fooling set. In other words we have to
choose the variables for the a, b-, and c-variables in the reduction from fn′ to
MUL2n−1,n carefully.

Let S := {wm/2, . . . , wm−1, y(5/2)m−n/3+2, . . . , y2m+1−n/3+2} and T be the set
of the first |T | variables according to π where there are m/2 variables from S and
B be the set of the remaining variables. (Note, that (5/2)m−n/3+2 = n/9+1/2
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n − 1
2
3
n − 2 n

3
+ m − 1 n

3
− 1 0

l

u w

1 0 . . . 0 0 . . . 0 x

Fig. 1. The composition of the input x

2m − 1 − n
3

+ 2 03 3
4
m + 1 − n

3

w′

1 0 . . . 0 y

Fig. 2. The effect of the replacements of some of the y-variables, where u = [u](7/8)m−1
0

and [w]m−1
0 (w′ has to be at least u22−1 + (uw) div 2m = 22d−1 + (w2d) div 2m )

and 2m+1−n/3+2 = n/45+1.) Let WS,T be the w-variables in S∩T , WS,B the
w-variables in S ∩ B. Similar the sets YS,T and YS,B are defined. Using simple
counting arguments we can prove that there exists a distance parameter d such
that there are at least m/8 pairs (wi, ym+1+i+d−n/3+2) in WS,T ×YS,B ∪WS,B ×
YS,T (for a similar proof see, e.g., [5]). (Note, that m + 1 + i + d − n/3 + 2 =
i+ d− (7/45)n+ 2.) Let I be the set of indices, where wi belongs to such a pair.
We replace the u-variables such that [u](7/8)m−1

0 = 2d.
The variables xn/3+i, i ∈ I, are called free x-variables, the variables yn/3+i+1

and yi+d−(7/45)n+2, i ∈ I, free y-variables. The free x-variables will play the role
of the a-variables, the free variables yn/3+i+1, i ∈ I, the role of the c-, and the
remaining free y-variables the role of the b-variables in the reduction from the
function fn′ mentioned above to MUL2n−1,n. Finally, we are ready to present
the reduction. (Figure 2 and 3 show some of the replacements to the inputs x
and y of MUL2n−1,n.)

- The variables yn−1 and xn−1 are set to 1,
- the variables xn/3 and yn/3+1 are set to 1,
- xn/3+m−d−1 (which corresponds to wm−d−1) is set to 0 and yn/3+m−d and
yn/45 are set to 1 (note that 2m + d− n/3 + 2 = n/45),

- xn/3+m+d (which corresponds to ud) is set to 1, the corresponding variable
yn/3+m+d+1 is set to 0, and yn/45+2d−1 to 1 (note, that 2m+2d−1−n/3+2 =
n/45 + 2d− 1).

- The variables yn/2, . . . , yn/2+m−d−1 are set to 0.
- Besides the free y-variables in {y0, . . . , yn/3} the remaining y-variables in
{y0, . . . , yn/3} are replaced by 0.
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w
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n
3

+ m
2
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2
3
n − 2

1
45

n − 1

Fig. 3. A (simplified) presentation of some replacements of the x- and y-variables. The
shaded areas contain the free variables (and possibly other variables). The number w′

has to be at least 22d−1 + (w2d) div 2m, if MUL2n−1,n(x, y) = 1. (Note, that 2m− 1−
n/3 + 2 = n/45 − 1.)

- Besides the free x-variables the remaining x-variables are replaced by 0.
- Besides the free y-variables the remaining y-variables are replaced by 1.

In the following we describe the effect of these replacements.

- The inputs x and y represent integers that are at least 2n−1, since otherwise
the function value MUL2n−1,n(x, y) is 0.

- Since yn/3 = 0, [u](7/8)m−1
0 = 2d, wm−d−1 = 0 but y2m+d−n/3+2 = 1, [y]n/3−1

0

has to be at least (u222m+uw2m+1+22m) div 2n/3−2 = (22m+2d+w2m+d+1+
22m) div 2n/3−2 to represent an integer of at least

⌈
	22−n/3+2 − 4�3

2n−1+�2n/3

⌉
,

where 	 = u2m + w = 2m+d + w.
- Since xn/3 = 1 and yn/3+1 = 1, [x]n−2

n/3+m = [y]n−1
n/3+m+1, [x]n/3+m−1

n/3+1 has

to be at least [y]n/3+m
n/3+2 for inputs x and y, where MUL2n−1,n(x, y) = 1. If

[x]n/3+m−1
n/3+1 > [y]n/3+m

n/3+2 , MUL2n−1,n(x, y) = 1.
- Since yn/45+2d−1 = 1 (and because of some of the other replacements), the

product of x and y is at least 22n−1 and therefore MUL2n−1,n(x, y) = 1,
where [y]n−1

n/3 = 2(2/3)n−2	 and [x]n−1
n/3 = 2(2/3)n−1 + 	, if [y]n/45+d

n/45+1 is at least
(w2d) div 2m. (Note, that 2m + 1 − n/3 + 2 = n/45 + 1.)

Therefore, the correctness of our reduction follows from our considerations above.
Summarizing, we have shown that for an arbitrary variable order π a π-OBDD
for MUL2n−1,n contains a π-OBDD for the functions fn′ , where n′ is at least
m/8, and for each i ∈ {1, . . . , n′} exactly one of the variables ai and bi is in
T , in other words π is a bad variable order for fn′ . Considering the fact that
m = (8/45)n− 1, we get the result that the OBDD complexity of MUL2n−1,n is
at least Ω(2n/45).
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5 Concluding Remarks

We have already learned in primary school how to multiply integers, neverthe-
less, the complexity of integer multiplication is a fascinating subject. The next
challenge is to improve the lower bound on the OBDD complexity of MUL2n−1,n

significantly. The method presented in this paper seems to be not strong enough.
Moreover, the complexity of MUL2n−1,n for more general (non-oblivious) models
than OBDDs is unknown.
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Modelling the LLL Algorithm by Sandpiles
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Abstract. The LLL algorithm aims at finding a “reduced” basis of a
Euclidean lattice and plays a primary role in many areas of mathemat-
ics and computer science. However, its general behaviour is far from
being well understood. There are already many experimental observa-
tions about the number of iterations or the geometry of the output, that
raise challenging questions which remain unanswered and lead to natural
conjectures which are yet to be proved. However, until now, there exist
few experimental observations about the precise execution of the algo-
rithm. Here, we provide experimental results which precisely describe
an essential parameter of the execution, namely the “logarithm of the
decreasing ratio”. These experiments give arguments towards a “regu-
larity” hypothesis (R). Then, we propose a simplified model for the LLL
algorithm based on the hypothesis (R), which leads us to discrete dy-
namical systems, namely sandpiles models. It is then possible to obtain
a precise quantification of the main parameters of the LLL algorithm.
These results fit the experimental results performed on general input
bases, which indirectly substantiates the validity of such a regularity
hypothesis and underlines the usefulness of such a simplified model.

Introduction

Lenstra, Lenstra, and Lovász designed the LLL algorithm [10] in 1982 for solv-
ing integer programming problems and factoring polynomials. This algorithm
belongs to the general framework of lattice basis reduction algorithms and solves
a general problem: Given a basis for a lattice, how to find a basis for the same
lattice, which enjoys good euclidean properties? Nowadays, this algorithm has a
wide area of applications and plays a central algorithmic role in many areas of
mathematics and computer science, like cryptology, computer algebra, integer
linear programming, and number theory. However, even if its overall structure is
simple (see Figure 1), its general probabilistic behaviour is far from being well
understood. A precise quantification of the main parameters which are character-
istic of the algorithms —principally, the number of iterations and the geometry
of reduced bases— is yet unknown. The works of Gama, Nguyen and Stehlé [6,11]
provide interesting experiments, which indicate that the geometry of the output
seems to be largely independent of the input distribution, whereas the number of
iterations is highly dependent on it. The article of Daudé and Vallée [5] provides
a precise description of the probabilistic behaviour of these parameters (number
of iterations, geometry of the output), but only in the particular case in which
the vectors of the input basis are independently chosen in the unit ball. This

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 267–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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input distribution does not arise naturally in applications. In summary, the first
works [6,11] study general inputs, but do not provide proofs, whereas the second
one [5] provides proofs, but for non realistic inputs. Furthermore, none of these
studies is dedicated to the fine understanding of the internal structure of the
algorithm.

The LLL algorithm is a multidimensional extension, in dimension n, of the
Euclid algorithm (obtained for n = 1) or the Gauss algorithm (obtained for
n = 2). In these small dimensions, the dynamics of the algorithms is now well
understood and there exist precise results on the probabilistic behaviour of these
algorithms [12,13,14] which are obtained by using the dynamical systems theory,
as well as its related tools. However, even in these small dimensions, the dynamics
is rather complex and it does not seem possible to directly describe the fine
probabilistic properties of the internal structure of the LLL algorithm in an
exact way.

This is why we introduce here a simplified model of the LLL algorithm, which
is based on a regularity hypothesis: Whereas the classical version deals with a
decreasing factor which may vary during the algorithm, the simplified version
assumes this decreasing factor to be constant. Of course, this appears to be a
strong assumption, but we provide arguments towards this simplification. This
assumption leads us to a classical model, the sandpile model, and this provides
another argument for such a simplification.

Sandpile models are instances of dynamical systems which originate from ob-
servations in Nature [9]. They were first introduced by Bak, Tang and Wiesen-
feld [3] for modelling sandpile formations, snow avalanches, river flows, etc.. By
contrast, the sandpiles that arise in a natural way from the LLL algorithm are
not of the same type as the usual instances, and the application of sandpiles to
the LLL algorithm thus needs an extension of classical results.
Plan of the paper. Section 1 presents the LLL algorithm, describes a nat-
ural class of probabilistic models, and introduces the simplified models, based
on the regularity assumption. Section 2 provides arguments for the regularity
assumption. Then, Section 3 studies the main parameters of interest inside the
simplified models, namely the number of iterations, the geometry of reduced
bases, and the independence between blocks. Section 4 then returns to the ac-
tual LLL algorithm, within the probabilistic models of Section 1, and exhibits an
excellent fitting between two classes of results : the proven results in the simpli-
fied model, and the experimental results that hold for the actual LLL algorithm.
This explains why these “regularized” results can be viewed as a first step for a
probabilistic analysis of the LLL algorithm.

1 The LLL Algorithm and Its Simplified Version

1.1 Description of the Algorithm

The LLL algorithm considers a Euclidean lattice L given by a system B of n
linearly independent vectors in the ambient space Rp (n ≤ p). It aims at finding
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a reduced basis B̂ formed with vectors that are almost orthogonal and short
enough. The algorithm operates with the matrix P which expresses the system
B as a function of the Gram–Schmidt orthogonalized system B∗; the generic
coefficient of the matrix P is denoted by mi,j . The lengths 	i of the vectors of
the basis B� and the ratios ri between successive 	i, i.e.

ri :=
	i+1

	i
, with 	i := ‖b�

i ‖. (1)

play a fundamental role in the algorithm. The algorithm aims at obtaining lower
bounds on these ratios, by computing a s–Siegel reduced basis B̂ that fulfills, for
any i ∈ [1..n− 1], the Siegel condition Ss(i),

|m̂i+1,i| ≤ 1
2
, r̂i :=

	̂i+1

	̂i

≥ 1
s
, with s > s0 =

2√
3
. (2)

In the classical LLL algorithm, a stronger condition, the Lovasz condition Lt(i),

|m̂i+1,i| ≤ 1
2
, 	̂2i+1 + m̂2

i+1,i 	̂
2
i ≥ 1

t2
	̂2i (with t > 1), (3)

must be fulfilled for all i ∈ [1..n− 1]. When s and t are related by the equality
1/t2 = (1/4) + 1/s2, Condition Lt(i) implies Condition Ss(i).

The version of the LLL algorithm studied here directly operates with the
Siegel conditions (2). However, the behaviours of the two algorithms are similar,
as it is shown in [2], and they perform the same two main types of operations:

(i) Translation (i, j) (for j < i).1 The vector bi is translated with respect to
the vector bj by : bi := bi − �mi,j�bj , with �x� := the integer closest to x.
This translation does not change 	i, and entails the inequality |mi,j | ≤ (1/2).

(ii) Exchange (i, i + 1). When the condition Ss(i) is not satisfied, there is
an exchange between bi and bi+1, which modifies the lengths 	i, 	i+1. The new
value 	̌i is multiplied by a factor ρ and satisfies

	̌2i := 	2i+1+m2
i+1,i 	

2
i , so that 	̌i = ρ 	i with ρ2 =

	2i+1

	2i
+m2

i+1,i, (4)

while the determinant invariance implies the relation 	̌i 	̌i+1 = 	i 	i+1, hence the
equality 	̌i+1 = (1/ρ) 	i+1. This entails that ρ defined in (4) satisfies

ρ ≤ ρ0(s) with ρ2
0(s) =

1
s2 +

1
4
< 1; (5)

The “decreasing factor” ρ plays a crucial rôle in the following.
Figure 1 describes the standard strategy for the LLL algorithm, where the

index i is incremented or decremented at each step. However, there exist other
strategies which perform other choices for the next position of reduction, which
can be any index i for which Condition Ss(i) does not hold (See Section 2). Each
execution conducted by a given strategy leads to a random walk. See Figure 9
for some instances of random walks in the standard strategy.
1 In the usual LLL algorithm, all the translations (i+1, j) are performed at each step

when the condition Ss(i) is satisfied. These translations do not change the length
i+1, but are useful to keep the length of bi+1 small. Here, we look at the trace of
the algorithm only on the i, and the translations (i + 1, j), with j < i, are not
performed.
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RLLL (ρ, s)
with s > 2/

√
3, ρ ≤ ρ0(s) < 1

Input. A sequence (�1, �2, . . . �n)
Output. A sequence (b�1, b�2, . . . b�n)

with b�i+1 ≥ (1/s)b�i.

i := 1;
While i < n do

If �i+1 ≥ (1/s)�i, then i := i+1
else �i := ρ �i;

�i+1 := (1/ρ) �i+1;
i := max(i − 1, 1);

ARLLL (α) with α > α0(s).

Input. A sequence (q1, q2, . . . qn)
Output. A sequence (bq1, bq2, . . . bqn)

with bqi − bqi+1 ≤ 1.

i := 1;
While i < n do

If bqi − bqi+1 ≤ 1, then i := i + 1
else qi := qi − α;

qi+1 := qi+1 + α;
i := max(i − 1, 1);

Fig. 1. Two versions of the LLL algorithm. On the left, the classical version, which
depends on parameters s, ρ, with ρ0(s) defined in (5). On the right, the additive version,
which depends on the parameter α := − logs ρ, with α0 := − logs ρ0(s).

1.2 What Is Known about the Analysis of the LLL Algorithm?

The main parameters of interest are the number of iterations and the quality
of the output basis. These parameters depend a priori on the strategy. There
are classical bounds, which are valid for any strategy, and involve the potential
D(B) and the determinant detB defined as

D(B) =
n∏

i=1

	i
i, det(B) =

n∏
i=1

	i.

Number of iterations. This is the number of steps K where the test in step 2
is negative. There is a classical upper bound for K which involves the potential
values, the initial one D(B) and the final one D(B̂), together with the constant
ρ0(s) defined in (5). We observe that K can be exactly expressed with the po-
tential values and the mean α of the values α := − logs ρ used at each iteration

K(B) =
1

α(B)
logs

D(B)

D(B̂)
, so that K(B) ≤ 1

α0
logs

D(B)

D(B̂)
, (6)

where α0 := − logs ρ0(s) is the minimal value of α.

Quality of the output. The first vector b̂1 of a s-Siegel reduced basis B̂ is short
enough; there is an upper bound for the ratio γ(B) between its length and the
n-th root of the determinant,

γ(B) :=
||̂b1||

det(B)1/n
≤ s(n−1)/2. (7)

The two main bounds previously described in (6) and (7) are worst–case bounds,
and we are interested here in the “average” behaviour of the algorithm: What
are the mean values of the number K of steps and of the output parameter γ?
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1.3 Our Probabilistic Model

We first define a probabilistic model for input bases, which describe realistic
instances, of variable difficulty. We directly choose a distribution on the actual
input instance, which is formed with the coefficients mi,j of the matrix P , to-
gether with the ratios ri. As Ajtai in [1], we consider lattice bases of full–rank
(i.e, n = p) whose matrix B is triangular: in this case, the matrix P and the
ratios ri are easy to compute as a function of bi := (bi,j),

ri =
bi+1,i+1

bi,i
, mi,j =

bi,j

bj,j
.

Furthermore, it is clear that the main parameters are the ratios ri, whereas the
coefficients mi,j only play an auxilliary rôle. As Ajtai suggests it, we choose them
(for j < i) independently and uniformly distributed in the interval [−1/2,+1/2].
Since Ajtai is interested in worst-case bounds, he chooses very difficult instances
where the input ratios ri are fixed and very small, of the form ri ∼ 2−(a+1)(2n−i)a

with a > 0. Here, we design a model where each ratio ri is now a random variable
which follows a power law:

∀i ∈ [1..n− 1], ∃θi > 0 for which P [ri ≤ x] = x1/θi for x ∈ [0, 1]. (8)
This model produces instances with variable difficulty, which increases when the
parameters θi become large. This distribution arises in a natural way in various
frameworks, in the two dimensional case [13] or when the initial basis is uniformly
chosen in the unit ball. See [14] for a discussion about this probabilistic model.

1.4 An Additive Version

First, we adopt an additive point of view, and thus consider the logarithms of
the main variables (logs is the logarithm to base s),

qi := logs 	i, ci := − logs ri = qi − qi+1 α := − logs ρ, (9)
Then, the Siegel condition becomes qi ≤ qi+1 +1 or ci ≤ 1, and the exchange
in the LLL algorithm is rewritten as (see Figure 1. right)

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α]. (10)
In our probabilistic model, each ci follows an exponential law of the form

P[ci ≥ y] = s−y/θi for y ∈ [0,+∞[ with E[ci] =
θi

log s
. (11)

This model is then called the Exp-Ajtai(θ) model. Remark that, if we restrict
ourselves to non-reduced bases, we deal with the Mod-Exp-Ajtai(θ) distribution,

P[ci ≥ y + 1] = s−y/θi for y ∈ [0,+∞[, with E[ci] = 1 +
θi

log s
. (12)

1.5 The Regularized Version of the LLL Algorithm

The main difficulty of the analysis of the LLL algorithm is due to the fact that
the decreasing factor ρ defined in (4) can vary throughout the interval [0, ρ0(s)].
For simplifying the behaviour of the LLL algorithm, we assume that the following
Regularity Hypothesis holds (R):
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(R). The decreasing factor ρ (and thus its logarithm α := − logs ρ) are con-
stant.

Then, Equation (10) defines a sandpile model which is studied in Section 3.

There are now three main questions:
– Is Hypothesis (R) reasonable? This is discussed in Section 2.
– What are the main features of the regularized versions of the LLL algorithm,

namely sandpiles? This is the aim of Section 3.
– What consequences can be deduced for the probabilistic behaviour of the

LLL algorithm? This is done in Section 5 that transfers results of Section 4 to
the framework described in Section 2 with the arguments discussed in Section 4.

2 Is the LLL Algorithm Regular?

2.1 General Bounds for α

Since the evolution of the coefficients mi+1,i seems less “directed” by the algo-
rithm, we may suppose them to be uniformly distributed inside the [−1/2,+1/2]
interval, and independent of the Siegel ratios. The average of the square m2 is
then equal to 1/12, and if we assume m2 to be constant and equal to 1/12, then
the value of α satisfies (with s near s0 = 2/

√
3),

−1
2

logs0

(
3
4

+
1
12

)
≤ α := −1

2
logs0

(
r2 +

1
12

)
≤ −1

2
logs0

(
1
12

)
.

Then α ∈ [0.5, 8.5] most of the time. This fits with our experiments.

2.2 General Study of Parameter α

We must make precise the regularity assumption. Of course, we cannot assume
that there is a universal value for α := − logs ρ, and we describe the possible
influence of four variables on the parameter α, when the dimension n becomes
large:

(a) The input distribution of Exp-Ajtai type is described byΘ=(θ1, . . . , θn−1).
(b) The position i ∈ [1..n(B) − 1] is the index where the reduction occurs.
(c) The discrete time j ∈ [1..K(B)] is the index when the reduction occurs,
(d) The strategy defines the choice of the position i at the j–th iteration,

inside the set N (j) which gathers the indices for which Condition S(i) is not
satisfied. We consider three main strategies Σ : – The standard strategy Σs

chooses i := MinN (j) – The random strategy Σr chooses i at random in N (j)
– The greedy strategy Σg chooses the index i ∈ N (j) for which the ratio ri is
minimum.
The study of α decomposes into two parts. First, we study the variations of α
during one execution, due to the position i or the time j. Second, we consider
the variable α, defined as the mean value of α during one execution, and study
the influence of the input distribution, the strategy, and the dimension on α.



Modelling the LLL Algorithm by Sandpiles 273

We consider a set B of input bases, and we determine a maximal value M of
α for this set of inputs. In order to deal with fixed intervals for positions, times,
and values, we choose three integers X,Y, Z, and we divide

– the interval [1..n] of positions into X equal intervals of type Ix with x ∈
[1..X ],

– the interval [1..K] of times into Y equal intervals of type Jy with y ∈ [1..Y ],
– the interval [0,M ] of values into Z equal intervals. of type Lz with z ∈ [1..Z]

Then the parameters α〈x〉, α
〈y〉 are respectively defined as the restriction of α

for i ∈ Ix, (resp. for j ∈ Jy).

2.3 Distribution of the Variable α

Here, the parameter Θ of the input distribution and the strategy Σ∈{Σs, Σr, Σg}
are fixed, . and we consider a set N of dimensions. We first consider the global
variable α, study its distribution, and its mean, for each n ∈ N [See Figure 2(1)].
We observe that the distribution of α gets more and more concentrated when
the dimension grows, around a value which appears to tend to 2.5.

2.4 Variations of α During an Execution

Figure 2(2) describes the two functions x &→ α〈x〉 and y &→ α〈y〉, for each dimen-
sion n ∈ N . Figure 2(3) provides (for n = 20) a description of the distribution of
parameters α〈x〉, α

〈y〉 for various values of (x, y). We observe that the variations
of the functions y &→ α〈y〉 and x &→ α〈x〉 are small, and become smaller when the
dimension n increases. The distributions of α〈x〉 and α〈y〉 are also concentrated,
at least for y’s not too small and for central values of x.

2.5 Influence of the Strategy

Here, for n = 20, we investigate the influence of the strategy on the functions
x &→ A〈x〉, y &→ α〈y〉, z &→ P[α ∈ Lz].

The experimental results, reported in Figure 2(4), show the important in-
fluence of the strategy on the parameter α. They are of independent interest,
since, to the best of our knowledge, the strategy is not often studied. There are
two groups: On the one hand, the standard strategy2 is the least efficient: it
performs a larger number of steps, and deals with a parameter α whose value
is concentrated below α = 5. On the other hand, the other two ones, (random
and greedy) are much more efficient, with a much smaller number of steps; they
deal with values of α which vary in the whole interval [5, 20] and decrease with
the discrete time. These two strategies (random and greedy) must be used if
we wish more efficient algorithms. If we wish simulate with sandpiles the LLL
algorithm under these two strategies, we have to consider different values of α,
for instance, at the beginning, in the middle and at the end of the execution.
2 We have not reported the results relative to the anti-standard strategy which chooses

i := MaxN (j), but they are of the same type as the standard one.
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(1) The distribution of the parameter α for n = 5 (•); n = 10 (�); n = 15 (�); n = 20 (	)

(2) The two functions y �→ α〈y〉(left, with Y = 20) and x �→ α〈x〉 (right, with X = 5),
for n = 5 (•); n = 10 (�);n = 15 (�); n = 20 (	)

(3) On the left, the distribution of α〈y〉 with Y = 20 and y = 2 (•); 5 (�); 10 (�);
15 (	); 20 (
)
On the right, the distribution of α〈x〉 with X = 5 and x = 1 (•); 2 (�); 3 (�); 4 (	); 5 (
)

(4) The curves are associated to • for Σs (standard), � for Σg (greedy), and 	 for Σr

(random). On the right, the functions x �→ A〈x〉. In the middle, the functions y �→ α〈y〉.
On the left, the distribution of α.

Fig. 2. Experiments about the Regularity Hypothesis: Study of the global parameter
α. Influence of position and time. Influence of the strategy for n = 20.
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2.6 Influence of the Input Distribution

We study the influence of the parameter Θ of the Exp-Ajtai distribution on
α. We first recall what happens in two dimensions, where the LLL algorithm
coincides with the Gauss algorithm. The paper [13] studies this algorithm when
the input c := − logs r follows an exponential law with mean θ and proves
that the number of steps K of the Gauss algorithm follows a geometric law of
ratio λ(1 + 1/θ), where λ(s) is the dominant eigenvalue of the transfer operator
associated to the Gauss algorithm.

The relations − logs P[K ≥ k] ∼ − logs P [c ≥ kα] ∼ Eθ[α]
θ

k

entail that the mean Eθ[α] depends on θ as Eθ[α] ∼ −θ logs λ

(
1 +

1
θ

)
.

Then, properties of the pressure3 imply that the function Eθ[α] satisfies

Eθ[α] ∼ |λ′(1)|
log s

for θ → ∞, and Eθ[α] ∼ 2
log s

log(1 +
√

2) for θ → 0,

where |λ′(1)| ∼ 3.41 equals the entropy of the Euclid centered algorithm. This
entails that, in two dimensions, the mean value E[α] varies in the interval [14, 23].
Led by the dynamical point of view, we set a conjecture which extends the
previous two–dimensional property to any dimensions.
Entropy Conjecture. Consider the probabilistic Exp-Ajtai(θ) model in n di-
mensions. Then, for θ → ∞, the mean of the variable α tends to the entropy En

of the dynamical system underlying the LLL algorithm.

lim
θ→∞

E(θ,n)[α] =
En

log s

3 Study of the Sandpile Model

There are three main questions about the RLLL algorithm:

(Q1) Does the RLLL algorithm depend on the strategy?
(Q2) How does the behaviour of the RLLL algorithm depend on the value of

parameter α? What about the number of iterations? the output configuration?
Are there lower bounds on average in relations (6) and (7)?

(Q3) Does there exist a characterisation for two blocks to be independent in
the RLLL algorithm? We can run the execution of the LLL algorithm, both on
the block B− formed with the first vectors and on the block B+ formed on the
last vectors The two blocks B− and B+ are said to be independent if the total
basis formed by concatening the two reduced bases B̂− and B̂+ is reduced.
Here, we answer these three main questions. As we already said previously, the
additive version of the regularized algorithm (see Figure 1.right) deals with the
sandpile model. Even if this model is very well known, the modelling of the
RLLL algorithm gives rise to non classical instances of sandpile models.
3 In dynamical systems theory, the pressure is the logarithm of the dominant eigen-

value.
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3.1 Main Objects for Sandpiles

Here, H,h denote strictly positive real numbers.
A sandpile model Qn(q, H, h) describes all the possible evolutions of the con-

figuration q = (q1, . . . , qn) under the action of functions fi

fi(q) =

⎧⎪⎨⎪⎩
qj − h if j = i and qi − qi+1 > H,

qj + h if j = i + 1 and qi − qi+1 > H,

qj else.
We associate to q := (q1, . . . , qn) the configuration c := Δ(q) formed with the
differences between the components, ci = qi − qi+1 for i ∈ [1..n− 1].

The strategy graph, denoted by G(q, H, h), is a directed graph whose vertices
are all the configurations that are reachable from q; there is an edge from u to
v (with u �= v) if there exists an index i ∈ [1..n− 1] for which v = fi(u).

The energy E and the total mass M of the configuration q are defined by

E(q) =
n∑

i=1

i · qi, and M(q) =
n∑

i=1

qi, (13)

and satisfy M(fi(q)) = M(q), E(fi(q)) = E(q) + h.

3.2 Various Kinds of Sandpiles

The usual sandpiles are basic and decreasing:

Definition 1. (i) A sandpile q is basic if the configuration Δ(q) is integral and
parameters (H,h) equal (1, 1)

(ii) A sandpile is (H,h)–integral if the components ci of c := Δ(q) belong to
the same discrete line H + Zh

(iii) A basic sandpile q is decreasing if the components of c := Δ(q) are
positive (ci ≥ 0). It is strictly decreasing if c is strictly positive. On the contrary,
it is increasing if all the components of c are negative.

The sandpiles used in the RLLL algorithm are not basic. However, the following
result shows that any general sandpile is isomorphic to a basic sandpile.

Proposition 1. The mapping ψ : q &→ q′ defined by

c′i := 1 −
⌊
H − ci

h

⌋
, q′n = 0 (14)

transforms a general sandpile into a basic sandpile. Moreover, the two graphs
G(q, H, h) and G(ψ(q), 1, 1) are isomorphic.

A general sandpile q is decreasing (resp. strictly decreasing, increasing) if ψ(q) is
decreasing (resp. strictly decreasing, increasing). A general sandpile decomposes
into strictly decreasing configurations, separated by increasing configurations.

Definition 2. Two adjacent strictly decreasing sandpiles q−,q+ are indepen-
dent if the configuration obtained by concatening the two final configurations
q̂− and q̂+ is a final configuration.
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3.3 Study of a General Sandpile

Here, we obtain (easy) extensions of results of Goles and Kiwi who considered
only in [8] basic decreasing sandpiles.

Theorem 1. The following holds for any sandpile Q(q, H, h):
(i) The graph G(q, H, h) is finite, with a unique final configuration q̂. The

length of a path q → q̂ is the same for any path. This is the number of steps
T (q),

T (q) =
1
h

[E(q̂) − E(q)] =
1
2h

n−1∑
i=1

i(n− i) (ci − ĉi)

(ii) If Qn(q, H, h) is decreasing, then the components of the output configu-
ration ĉ satisfy H − 2h < ĉi ≤ H , and the number of iterations satisfy

0 ≤ T (q) − 1
2h

n−1∑
i=1

i(n− i) (ci −H) ≤ 2A(n) with A(n) := n
n2 − 1

12

(iii) If Qn(q, H ;h) is strictly decreasing, then there exists j ∈ [1..n − 1] for
which ∀i �= j, H − h < ĉi ≤ H, and H − 2h < ĉj ≤ H − h,

and the number of steps T (q) satisfies

0 ≤ T (q) −
[
A(n) +

1
2h

n−1∑
i=1

i(n− i) (ci −H)

]
≤ 1

8
n2

(iv) For a general sandpile Qn(q, H, h), the output configuration satisfies

H − 2h < ĉi ≤ H if ci > H − h, ĉi ≥ ci if ci ≤ H − h

and the number of steps T (q) satisfies

1
2h

n−1∑
i=1

i(n− i)(ci −H + h) ≤ T (q) ≤ 1
2h

n−1∑
i=1

i(n− i)max(ci −H + h, 0)

(v)A sufficient condition for two adjacent sandpilesQp(q−, H, h),Qn(q+, H, h)
to satisfy the independence condition of Definition 2 is

1
p
M(q−) − 1

n
M(q+) ≤

(
n + p

2

)
(H − h) − h

and for a sandpile (H,h)–integral:
1
p
M(q−) − 1

n
M(q+) ≤

(
n + p

2

)
H − 2h.

4 Returning to Lattices

We now return to the LLL algorithm, with the framework of Section 1, and
apply the results of Section 3 to the so–called ρ–regular executions of the LLL
algorithm, for which the decreasing factor is constant and equal to ρ. We recall
that, in this case, the execution of the algorithm in dimension n can be viewed
as a sandpile model Qn(q, 1, α) associated to a parameter α := − logs ρ, and an
initial configuration q related to the lengths 	i of the orthogonalised basis B�

of the input basis B via the equalities qi := logs 	i. The main objects associated
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to the basis B, namely the potential D(B) or the determinant det(B) are then
related to the energy E(q) or the total mass M(q),

E(q) = logs D(B), M(q) = logs det(B).
We are interested in two kinds of input bases:
(i) We first study totally non-reduced bases, for which Condition Ss(i) is never

satisfied on the input. In this case, the sandpile is strictly decreasing. [Sections
4.1 and 4.2]

(ii) We then study a general input basis, which is a sequence of blocks, some
of them are totally non-reduced, and other ones are totally reduced [Section 4.3]

We compare here the results that are proven for regular executions of the LLL
algorithm, (by an easy transfer of results of Section 3) and the experimental
results that are performed on general executions of the algorithm. We will see
that there is a good fitting between these two kinds of results. This good fitting
has two main consequences:

– This provides an indirect validation of the property : “The executions of the
LLL algorithm are very often regular enough”.

– This shows that long experiments on the LLL algorithm can be simulated by
fast computations in the sand pile model (with a good choice of parameter α).

As in Section 3, we study the final configurations, the number of steps, and the
independence of blocks.

4.1 Final Configurations

When the initial basis is totally non reduced, the sandpile is strictly decreasing.
Then, with Theorem 1 (ii), each output Siegel ratio r̂i and the first vector of the
output basis satisfy

ρs ≤ 1
r̂i

=
	̂i

	̂i+1
≤ s, ρ(s · ρ)(n−1)/2 ≤ γ(B̂) =

||̂b1||
(detL)1/n

≤ s(n−1)/2. (15)

Then, we have proven:

Theorem 2. Consider a totally non reduced basis B on which the execution of
the LLL algorithm is ρ–regular. Then, the output parameter γ(B̂) defined in (7)
satisfies

2
n− 1

logs γ(B̂) ∈ [1 − α, 1], with α := − logs ρ.

This is compatible with experiments done on general executions by Nguyen and
Stehlé [11], which show that there is a mean value β ∼ 1.04 , such that, for most
of the output bases B̂, the ratio γ(B̂) is close to β(n−1)/2. The relation β ∼ s

√
ρ

is then plausible, so that the “usual” ρ would be close to 0.81.

4.2 Number of Iterations

Suppose that the (totally non reduced) input basis follows the Mod-Exp-Ajtai(θ)
distribution. Then, the configuration c′ associated to c via Theorem 1 follows a
geometric law,
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P[c′i ≥ 1 + k] = ρk/θ, E[c′i − 1] =
ρ1/θ

1 − ρ1/θ
,

and Theorem 1 (iii) entails:

Theorem 3. Consider an input basis B, which follows the Mod-Exp-Ajtai dis-
tribution of parameter θ. If the execution of the LLL algorithm in dimension n
is ρ–regular on the basis B, the number of iterations satisfies

Kn(ρ, θ) ∼ n3

12α

(
ρ1/θ

1 − ρ1/θ

)
(n → ∞).

If the Entropy Conjecture of Section 3.6 is true, then

lim
θ→∞

Kn(θ) ∼
(
θ log s

12

)
n3

E2
n

where En is the entropy of the LLL algorithm.

This results fits with the experiments done for general executions of the LLL al-
gorithm by Nguyen and Stehlé [11]. In particular, for the choice of Ajtai, namely
θ = na, the experiments show a number of iterations of order Θ(n3+a).

4.3 An Instance of the Independence Property

The question of the independence between blocks is important. We now describe
such an instance of this phenomenon in the framework of Coppersmith’s method.
In the paper [4], Boneh and Durfee present a method for breaking the RSA
cryptosystem based on Coppersmith’s method. Coppersmith’s method uses the
LLL algorithm in order to find a small root of a polynomial modulo an integer
E. For the cryptanalysis of RSA, one deals with the public exponent E. We let
L := logs E.

The initial configuration is formed with m + 1 blocks, indexed from k = 0
to m. The k-th block has length k + 1, is (1, α)-integral, and the components
ci of the configuration c are equal to L/2. However, the total configuration is
not totally decreasing, but the (second) sufficient condition of Theorem 1 (v) is
always true. Then, Theorem 1(v) entails:

Theorem 4. Suppose that the execution of the LLL algorithm is ρ-regular on
the Coppersmith lattice described in [4]. Then, the blocks of the lattice are
always independent, and the reduction can be done in parallel on each block.
The number of iterations Kp performed in this parallel strategy is then

Kp =
m3

12α

(
L

2
− 1

)
to be compared to Ks =

m∑
i=1

Ki ∼ m4

48α

(
L

2
− 1

)
,

which is the number of steps in the sequential strategy.

Of course, the execution of the LLL algorithm on the Boneh-Durfee lattice can-
not be totally regular : the first vector of the reduced lattice basis would be the
first vector of the initial basis, and the method would fail! However, it is possi-
ble to compare (see [7]) the result of Theorem 4 to an execution of the actual LLL
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Fig. 3. On the left, the random walk of the actual LLL algorithm on a Coppersmith
lattice of dimension 21 (related to m = 5). On the right, the random walk of the
execution of the LLL algorithm on the basis formed by the concatenation of the reduced
blocks.

algorithm on a Boneh–Durfee lattice (see Figure 3 left). We first see that, on each
block, the number of iterations is quite large (the blocks are totally non reduced)
and this fits with the order Θ(k3) which is proven for a ρ–regular execution. We
also remark that the blocks are not independent but almost independent: the
basis obtained by concatening the reduced bases of each block is not totally
reduced, but few reduction steps are needed for reducing it, as Figure 3 (right)
shows it. Such a strategy, whose first step can be performed in a parallel way, is
very efficient in this case.

5 Conclusion

This paper presents a simplified model of the LLL algorithm, under a “regu-
larity” hypothesis which assumes that the decreasing factor ρ is constant. Of
course, this hypothesis does not exactly hold in the reality, and we have pro-
vided experimental results about its validity. We have also explained why this
simplified model is very useful for understanding the LLL algorithm in an intu-
itive way, and for testing (at least qualitative) conjectures on the algorithm. The
excellent fitting of this model on a class of Coppersmith lattices is also striking.
In fact, the sandpile model represents a good compromise between simplicity
and adequation to the reality.
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Abstract. Let V be a finite set of points in the plane. We present a
2-local algorithm that constructs a plane 4π
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-spanner of the unit-disk

graph UDG(V ). Each node can only communicate with nodes that are
within unit-distance from it. This algorithm only makes one round of
communication and each point of V broadcasts at most 5 messages. This
improves on all previously known message-bounds for this problem.

1 Introduction

A wireless ad hoc network consists of a finite set V of wireless nodes. Each node
u in V is a point in the plane that can communicate directly with all points of
V within u’s communication range. If this range is one unit for each point, then
the network is modeled by the unit-disk graph UDG(V ) of V . This (undirected)
graph has V as its vertex set and any two distinct vertices u and v are connected
by an edge if and only if the Euclidean distance |uv| between u and v is at most
one unit. In order for two points that are more than one unit apart to be able
to communicate, the points of V use a so-called local algorithm to construct
a subgraph G of UDG(V ). This subgraph should support efficient routing of
messages, i.e., there should be a simple and efficient protocol that allows any
point of V to send a message to any other point of V .

In this paper, we present a local algorithm that constructs a subgraph G of
UDG(V ) that satisfies the following properties:

1. Each point u of V stores a set E(u) of edges that are incident on u. The
edge set of G is equal to ∪u∈V E(u).

2. The edge sets E(u) with u ∈ V are consistent : For any two points u and v
in V , (u, v) is an edge in E(u) if and only if (u, v) is an edge in E(v).

3. The graph G is plane. This property is useful, because several algorithms are
known for routing messages in a plane subgraph of UDG(V ); see, e.g., [4,6].

4. The graph G is a t-spanner of UDG(V ), for some constant t > 1: For
each edge (u, v) of UDG(V ), the graph G contains a path between u and
v whose Euclidean length is at most t|uv|. Observe that this implies that
shortest-path distances in UDG(V ) are approximated, within a factor of t,
by shortest-path distances in G. Our construction shows that t ≤ 4π
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As mentioned above, we model a wireless ad hoc network by the unit-disk
graph UDG(V ), where V is a finite set of points in the plane. The points of V
want to construct a communication graph G (which is a subgraph of UDG(V ))
using a distributed and local algorithm. The points of V can communicate with
each other by broadcasting messages. If a point u of V broadcasts a message, then
each point of V within Euclidean distance one from u receives the message. Each
point of V can perform computations based on its location and all information
received from other points. Let δUDG(u, v) denote the minimum Euclidean length
of any path between the points u and v in the graph UDG(V ). For any integer
k ≥ 1, let

Nk(u) = {v ∈ V : δUDG(u, v) ≤ k}.
(Observe that u ∈ Nk(u).) An algorithm is called k-local, if the computation
performed at each point u of V is based only on the points in the set Nk(u).
Thus, in a local algorithm, information cannot “travel” over a “large” distance.

A k-local algorithm runs in parallel on all points of V , where each point u
performs an alternating sequence of computation steps and broadcasting steps
in a synchronized manner. In a computation step, point u performs some com-
putation based on the subset of Nk(u) that is known to u at that moment. For
example, u may compute the Delaunay triangulation of this subset; we consider
this to be one computation step. We assume that each such computation step
works in the algebraic computation model (see, e.g., [9] for a description of this
model). In a broadcasting step, point u broadcasts a (possibly empty) sequence
of messages, which is received by all points in N1(u). A message is defined to
be the location of a point in the plane. A message broadcast by u need not
be an element of V , but it must have been computed, based on the subset of
Nk(u) that is known to u at that moment, in the algebraic computation model.
(Thus, bit-manipulation cannot be used to encode several points, or any other
information, in one message.)

The efficiency of a local algorithm will be expressed in terms of the following
measures: (i) The value of k. The smaller the value of k, the “more local” the
algorithm is. (ii) The maximum number of messages that are broadcast by any
point of V . The goal is to minimize this number. (iii) The number of commu-
nication rounds, which is defined to be the maximum number of broadcasting
steps performed by any point in V . This number measures the (parallel) time for
the entire algorithm to complete its computation. Again, the goal is to minimize
this number.

Above, we have defined the notion of a t-spanner of the unit-disk graph
UDG(V ). For a real number t > 1, a graph G is called a t-spanner of the point
set V if for any two elements u and v of V , there exists a path in G between u
and v whose length is at most t|uv|. The problem of constructing t-spanners for
point sets has been studied intensively in computational geometry; see the book
by Narasimhan and Smid [9] for a survey.

Since we are concerned with plane spanners of the unit-disk graph, our al-
gorithm will be based on the Delaunay Triangulation DT (V ) of V . Keil and
Gutwin [7] have shown that DT (V ) is a 4π

√
3

9 -spanner of V . To extend this
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result to unit-disk graphs, it is natural to consider subgraphs of UDel(V ), which
is defined to be the intersection of the Delaunay triangulation and the unit-disk
graph of V . It has been shown by Bose et al. [3] that UDel(V ) is a 4π

√
3

9 -spanner
of UDG(V ). Unfortunately, constructing UDel(V ) using a k-local algorithm, for
any constant value of k, is not possible: Consider an edge (u, v) in UDel(V )
whose empty disk D is very large. In order for a k-local algorithm to verify that
no point of V is in the interior of D, information about the points of V must
travel over a large distance to u or v. Clearly, this is possible only if the value
of k is very large. Because of this, researchers have considered the problem of
designing local algorithms that construct a plane subgraph of UDG(V ) which is
a supergraph of UDel(V ). Obviously, by the result of [3], such a graph is also a
4π

√
3

9 -spanner of UDG(V ).
As is common in this field, we assume that, at the start of the algorithm,

each point u of V knows the locations (i.e., the x- and y-coordinates) of all
points in N1(u). Gao et al. [5] proposed a 2-local algorithm that constructs a
plane subgraph of UDG(V ) which is a supergraph of UDel(V ). However, the
number of messages broadcast by a single point of V can be as large as Θ(n),
where n is the number of elements of V . This result was improved by Li et
al. [8]: They presented a 2-local algorithm that constructs such a graph in four
communication rounds and in which each point broadcasts at most 49 messages.

Currently, the best result for computing a plane t-spanner (for some constant
t) of the unit-disk graph UDG(V ) is by Araújo et al. [1]. They presented a 2-local
algorithm which computes such a spanner in one communication round and in
which each point broadcasts at most 11 messages.

In this paper, we improve the upper bound of Araújo et al. [1]:

Theorem 1. Let V be a finite set of points in the plane. There exists a 2-local
algorithm that computes a plane and consistent 4π

√
3

9 -spanner of the unit-disk
graph of V . This algorithm makes one communication round and each point of
V broadcasts at most 5 messages.

Because of lack of space, we can only give an outline of the proof of this result.
Complete proofs can be found in [2].

Throughout the rest of this paper, we assume that the points in the set V are
in general position (meaning that no three points of V are collinear and no four
points of V are cocircular). We also assume that the unit-disk graph UDG(V )
is connected. We will use the following notation:

– D(a, b, c) denotes the disk having the three points a, b, and c on its boundary.
– D(c; r) denotes the disk centered at the point c and having radius r.
– Δ(a, b, c) denotes the triangle with points a, b, and c as its vertices.
– ∂D denotes the boundary of the disk D.
– int(D) denotes the interior of the disk D.
– Let v, x, and y be points of V , where v �= y. Assume there exists a disk D

such that N1(x) ∩ ∂D = {v, y} and N1(x) ∩ int(D) = ∅. We denote such
a disk D by Delx(v, y). Observe that Delx(v, y) is a certificate for the fact
that (v, y) is an edge in the Delaunay triangulation of the point set N1(x).
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2 A Preliminary Algorithm

In this section, we present a 2-local algorithm that constructs a graph, called the
plane localized Delaunay graph PLDG(V ), whose vertex set is a finite set V of
points in the plane. The algorithm computes PLDG(V ) in one communication
round and each point of V broadcasts at most 6 messages. We will prove that
PLDG(V ) is a plane and consistent supergraph of UDel(V ).

In the construction, each point v of V runs algorithm PLDG(v) in parallel.
Let Nv = N1(v), i.e., Nv = {u ∈ V : |uv| ≤ 1}. Recall that we assume that,
at the start of the algorithm, point v knows the locations of all points in Nv.
Algorithm PLDG(v) first computes the Delaunay triangulation LDT (v) of the
set Nv. Then, for each triangular face Δ(u, v, w) in LDT (v) for which ∠uvw > π

3 ,
algorithm PLDG(v) broadcasts the location v together with the center of the
disk D(u, v, w) containing u, v, and w on its boundary.

In the final step, algorithm PLDG(v) checks the validity of all edges that are
incident on v in LDT (v) and removes those edges which cause a crossing. To be
more precise, let x be a point in Nv, and assume that v receives a center c′i from
x. Algorithm PLDG(v) considers the unit-disk D(v; 1) centered at v and the disk
D(c′i; |c′ix|) centered at c′i that contains x on its boundary. The algorithm knows
that ∂D(c′i; |c′ix|) contains exactly three points which define a triangular face in
the Delaunay triangulation LDT (x) of Nx. Point x is one of these three points;
let p and q be the other two points. Assume that the set Nv contains exactly
two points of {x, p, q}, say x and p. Thus, algorithm PLDG(v) knows the points
x and p, but it does not know q. The algorithm computes arci, which is defined
to be the (open) portion of ∂D(c′i; |c′ix|) which is not contained in D(v; 1). Even
though the algorithm does not know the exact location of the third point q, it
does know that q is on arci. The algorithm chooses an arbitrary point z′ on
arci such that |xz′| ≤ 1 or |pz′| ≤ 1 and acts as if Δ(x, p, z′) is a triangular
face in LDT (x). (Observe that, since q ∈ arci and |xq| ≤ 1, the algorithm can
choose such a point z′. Also, z′ is not necessarily a point of V .) The algorithm
now considers each edge (v, y) in LDT (v) (where, possibly, v = p, y = p, or
y = x) and uses the triangle Δ(x, p, z′) to decide whether or not to remove
(v, y): Since (v, y) is an edge in LDT (v), algorithm PLDG(v) can compute a
disk D = Delv(v, y) such that (i) v and y are the only points of Nv that are
on the boundary of D and (ii) the interior of D does not contain any point of
Nv. If arci is fully contained in the interior of Delv(v, y), then the algorithm
knows that q is contained in the interior of Delv(v, y) (even though it does not
know the exact location of q) and, therefore, Delv(v, y) is not a certificate that
(v, y) is an edge in the Delaunay triangulation of the entire set V . Therefore,
the algorithm checks if (i) arci is fully contained in the interior of Delv(v, y) and
(ii) the line segment vy crosses any of the two line segments xz′ and pz′. If both
(i) and (ii) hold, the algorithm removes the edge (v, y). Observe that if (v, y) is
not an edge of the Delaunay triangulation DT (V ), the algorithm still keeps it
as long as it does not cross any other edge. The formal algorithm is given below.
An illustration, for the case when y �= x, y �= p, and v �= p, is given in Figure 1.
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Algorith .m PLDG(v)
1. let Nv = {u ∈ V : |uv| ≤ 1};
2. compute the Delaunay triangulation LDT (v) of Nv;
3. let E(v) be the set of all edges in LDT (v) that are incident on v;
4. let Δv be the set of all triangular faces Δ(u, v, w) in LDT (v) for which

∠uvw > π
3 ;

5. let k be the number of elements in Δv;
6. if k ≥ 1
7. then let c1, . . . , ck be the centers of the circumcircles of all triangles in

Δv;
8. broadcast the sequence (v, c1, . . . , ck);
9. for each sequence (x, c′1, . . . , c

′
m) received

10. do for i = 1 to m
11. do let D(c′i; |c

′
ix|) be the disk with center c′i that contains x on

its boundary;
12. if ∂D(c′i; |c

′
ix|) contains exactly two points of Nv

13. then let p be the point in (Nv \ {x}) ∩ ∂D(c′i; |c
′
ix|);

14. let arci be the (open) arc on ∂D(c′i; |c
′
ix|) that is

not contained in the unit-disk D(v; 1) centered at
v;

15. let z′ be an arbitrary point on arci with |xz′| ≤ 1
or |pz′| ≤ 1;

16. for each edge (v, y) in E(v)
17. do let Delv(v, y) be a disk D such that Nv ∩

∂D = {v, y} and Nv ∩ int(D) = ∅;
18. if arci is contained in the interior of Delv(v, y)

and the line segment vy crosses at least one
of the line segments xz′ and pz′

19. then remove (v, y) from E(v)

Running algorithm PLDG(v) for all points v of V in parallel will be referred
to as running algorithm PLDG(V ). We denote by E(v) the edge set that is
computed by algorithm PLDG(v). Observe that each edge in E(v) is incident
on the point v. Let E = ∪v∈V E(v) and let PLDG(V ) denote the graph with
vertex set V and edge set E.

Lemma 1. Let S = {u, v, w, z} be a set of four points in the plane in general
position, such that |uv| ≤ 1, |wz| ≤ 1, and the line segments uv and wz cross.
Then there exists a point x in S such that |xy| ≤ 1 for all y in S.

Lemma 2. Let p and q be two points with |pq| ≤ 1, let D be a disk containing p
and q on its boundary, and let Dcap be the part of D that is bounded by the line
segment pq and the minor arc p̂q on ∂D between p and q. Then |xy| ≤ 1 for all
x and y in Dcap.

The following lemma implies that for every edge (v, y) in E(v), the edge (v, y)
is in the Delaunay triangulation LDT (y) of the set Ny.
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v
x

c′i
y

z′

p

arci

D(v; 1)

D(c′i; |c′ix|)
Delv(v, y)

Fig. 1. Illustrating algorithm PLDG(v). Edge (v, y) is removed, where y �= x, y �= p,
and v �= p

Lemma 3. Let v and y be two distinct points of V and assume that (v, y) is not
an edge in LDT (y). Then, after algorithm PLDG(V ) has terminated, (v, y) is
not an edge in E(v).

Proof. If (v, y) is not an edge in LDT (v), then, since E(v) is a subset of the
edge set of LDT (v), (v, y) is not an edge in E(v). Assume that (v, y) is an edge
in LDT (v). Observe that |vy| ≤ 1. Since (v, y) is not an edge in LDT (y), there
exist two points p and q in V such that the triangle Δ(y, p, q) is a triangular
face in LDT (y) and vy crosses pq. Observe that the points p, q, v, and y are
pairwise distinct. The lemma follows by proving the following two claims: First,
algorithm PLDG(y) broadcasts the center of the circumcircle of Δ(y, p, q). Since
|vy| ≤ 1, v will receive this center. Second, when algorithm PLDG(v) considers
the center of Δ(y, p, q), it deletes the edge (v, y). As a result, the edge (v, y) is
not in E(v). ��
Lemma 4. Let x, q, v, and y be four pairwise distinct points of V . Assume
that |xq| ≤ 1, |xv| ≤ 1, |xy| ≤ 1, |vy| ≤ 1, xq crosses vy, (x, q) is an edge in
LDT (x), and (v, y) is an edge in LDT (y). Then, after algorithm PLDG(V ) has
terminated, (v, y) is not an edge in E(y).

Proof. If (v, y) is not an edge in LDT (v), then the claim follows from Lemma 3.
Assume that (v, y) is an edge in LDT (v). We have to show that algorithm
PLDG(y) removes the edge (v, y) from E(y). Thus, we have to show that there
exists a point x′ in Ny which broadcasts the center of the circumcircle of some
triangular face in LDT (x′) and, based on this information, PLDG(y) removes
(v, y). We will use the edge (x, q) to prove that such a point x′ exists. We assume,
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without loss of generality, that vy is horizontal and v is to the right of y. For
each x′ ∈ V \ {v, y}, let

Qvy(x′) = {q′ ∈ V \ {v, y} : (x′, q′) is an edge in LDT (x′) and x′q′ crosses vy}.
We define Xvy = {x′ ∈ V \ {v, y} : |x′y| ≤ 1, |x′v| ≤ 1, Qvy(x′) �= ∅}. Since
q ∈ Qvy(x), we have Qvy(x) �= ∅. Since |xy| ≤ 1 and |xv| ≤ 1, we have x ∈ Xvy

and, therefore, Xvy �= ∅.
Let x′ be the leftmost point in Xvy. Let q′ be the point in Qvy(x′) such that

the intersection between x′q′ and vy is closest to y. We assume, without loss of
generality, that x′ is above the line through vy. Since x′q′ crosses vy, the point q′

is below the line through vy. Observe that x′, q′, v, and y are pairwise distinct.
By definition, (x′, q′) is an edge in LDT (x′). Let p′ be the point of V such that

Δ(x′, p′, q′) is a triangular face in LDT (x′) and p′ is to the left of the directed
line from q′ to x′. Since y ∈ Nx′ and y is to the left of this line, the point p′

exists. Observe that p′ may be equal to y.
The following two facts imply that (i) p′ is not below the line through vy, and

(ii) in the case when p′ �= y, p′q′ crosses vy: First, since y ∈ Nx′ and Δ(x′, p′, q′)
is a triangular face in LDT (x′), the point y cannot be in Δ(x′, p′, q′). Second,
by our choice of q′, the line segments x′p′ and vy do not cross.

The lemma follows by proving the following two claims. First, algorithm
PLDG(x′) broadcasts the center of the circumcircle of Δ(x′, p′, q′). Since |x′y| ≤
1, y will receive this center. Second, when algorithm PLDG(y) considers the cen-
ter of the circumcircle of Δ(x′, p′, q′), it deletes the edge (v, y). As a result, the
edge (v, y) is not in E(y). ��
Lemma 5. PLDG(V ) is a plane graph.

Proof. The proof is by contradiction. Assume that PLDG(V ) contains two cross-
ing edges (v, y) and (x, q). By Lemma 1, we may assume without loss of generality
that |xq| ≤ 1, |xv| ≤ 1, and |xy| ≤ 1. By Lemma 3, (v, y) is an edge in LDT (v)
and in LDT (y), and (x, q) is an edge in LDT (x).

Since all conditions in Lemma 4 are satisfied, (v, y) is not an edge in E(y).
Also, the conditions in Lemma 4, with v and y interchanged, are satisfied. There-
fore, (v, y) is not an edge in E(v). Thus, (v, y) is not an edge in PLDG(V ), which
is a contradiction. ��
The following lemma summarizes the different scenarioswhen algorithmPLDG(v)
removes an edge (v, y) from the edge set E(v). The proof is omitted; the main dif-
ficulty is in proving the third claim.

Lemma 6. Let v and y be two distinct points of V such that (v, y) is an edge
in LDT (v). Assume that algorithm PLDG(v) removes (v, y) from E(v). Then,
there exist three pairwise distinct points x, p, and q in V such that

1. Δ(x, p, q) is a triangular face in LDT (x),
2. v �= x, |vx| ≤ 1, |vp| ≤ 1, |vq| > 1,
3. neither v nor y is in the interior of the disk D(x, p, q), and
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4. (a) if y �= x, v �= p, and y �= p, the line segment vy crosses both the line
segments xq and pq,

(b) if y = x, the line segment vy crosses the line segment pq,
(c) if v = p, the line segment vy crosses the line segment xq,
(d) if y = p, the line segment vy crosses the line segment xq.

Lemma 7. The graph PLDG(V ) is consistent: For any two distinct points v
and y of V , (v, y) is an edge in E(v) if and only if (v, y) is an edge in E(y).

Proof. The proof is by contradiction. Assume there is a pair (v, y) which is
an edge in E(y) but not in E(v). Then (v, y) is an edge in LDT (y) and, by
Lemma 3, (v, y) is an edge in LDT (v). Since (v, y) is not an edge in E(v), it
has been removed by algorithm PLDG(v). Thus, by Lemma 6, there exist three
pairwise distinct points x, p, and q in V such that (i) Δ(x, p, q) is a triangular
face in LDT (x), (ii) v �= x, |vx| ≤ 1, |vq| > 1, and (iii) the line segment vy
crosses at least one of the line segments pq and xq.

Assume that vy does not cross xq. Then vy crosses pq and, by the fourth
claim in Lemma 6, y = x. Thus, since (v, y) is an edge in LDT (y) = LDT (x)
and using (i), it follows that LDT (x) is not plane, which is a contradiction.

Thus, vy crosses xq. This implies that the points x, q, v, and y are pairwise
distinct. It follows from (i) that (x, q) is an edge in LDT (x) and |xq| ≤ 1. Since
|vy| ≤ 1, |xq| ≤ 1, |vq| > 1, and since vy crosses xq, it follows from Lemma 1 that
|xy| ≤ 1. Thus, all conditions in Lemma 4 are satisfied. As a result, algorithm
PLDG(y) deletes the edge (v, y) from E(y). This is a contradiction. ��
Recall that UDel(V ) denotes the intersection of the Delaunay triangulation and
the unit-disk graph of V . We next show that PLDG(V ) contains UDel(V ).

Lemma 8. The graph UDel(V ) is a subgraph of PLDG(V ).

Proof. Let (v, y) be an edge of UDel(V ). We will show that (v, y) is an edge in
E(v). By definition, |vy| ≤ 1 and (v, y) is an edge in the Delaunay triangulation
of V . Therefore, (v, y) is also an edge in the Delaunay triangulation LDT (v)
of Nv and, thus, (v, y) is added to the edge set E(v) in line 3 of algorithm
PLDG(v). We have to show that algorithm PLDG(v) does not remove (v, y) in
line 19.

Assume that (v, y) is removed in line 19 of algorithm PLDG(v). By Lemma 6,
there exist three pairwise distinct points x, p, and q in V such that (i) neither v
nor y is in the interior of the disk D(x, p, q) and (ii) the line segment vy crosses
at least one of the line segments xq and pq.

Assume that vy crosses xq. Then, the points v, y, x, and q are pairwise distinct.
Observe that p may be equal to v or y. Let D be an arbitrary disk having v and
y on its boundary, and assume that neither x nor q is contained in D. Then it
follows from (i) and (ii) that the boundaries of D and D(x, p, q) intersect more
than twice, which is a contradiction. Thus, D contains at least one of x and
q. Since D was arbitrary, this contradicts the fact that (v, y) is an edge in the
Delaunay triangulation of V .
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By a symmetric argument, the case when vy crosses pq also leads to a contra-
diction to the fact that (v, y) is an edge in the Delaunay triangulation of V . ��
In the next lemma, we summarize the results obtained in this section.

Lemma 9. Let V be a finite set of points in the plane. The distributed algo-
rithm PLDG(v), where v ranges over all points in V , is a 2-local algorithm
that computes a plane and consistent 4π

√
3

9 -spanner PLDG(V ) of the unit-disk
graph of V . This algorithm makes one communication round and each point of
V broadcasts at most 6 messages.

3 The Final Algorithm

We have seen that in algorithm PLDG, each point of V broadcasts at most 6
messages. In this section, we improve this upper bound to 5. We obtain this im-
provement, by making the following modification to the algorithm: The sequence
(v, c1, . . . , ck) that is broadcast in line 8 of algorithm PLDG(v) contains the lo-
cation of the sender v. In our new algorithm, point v sends only the sequence
(c1, . . . , ck) of centers. Thus, any point that receives this sequence does not know
that the sequence was broadcast by v. Assume that v receives a center c′i from
some node x in Nv. Since v does not know that c′i was broadcast by x, line 11
in algorithm PLDG(v) has to be modified. In the new algorithm, v computes a
point x′ in Nv \ {v} that is closest to c′i and uses the disk D(c′i; |c′ix′|) to decide
whether or not to remove an edge (v, y). The new algorithm, which we denote
by PLDG

′, is given in Figure 2.
We denote by E′(v) the edge set that is computed by algorithm PLDG

′(v).
Let E′ = ∪v∈V E′(v) and let PLDG ′(V ) denote the graph with vertex set V and
edge set E′.

Recall that E(v) denotes the edge set that is computed by algorithm PLDG(v)
and PLDG(V ) denotes the graph with vertex set V and edge set ∪v∈V E(v). We
claim that PLDG(V ) = PLDG ′(V ); thus, the new algorithm PLDG

′ computes
the same graph as algorithm PLDG. In order to prove this claim, it suffices to
show that algorithm PLDG(v) removes an edge (v, y) from E(v) if and only if
algorithm PLDG

′(v) removes the edge (v, y) from E′(v). We will show this in
the following two lemmas.

Lemma 10. Let v be an element of V and let (v, y) be an edge of the Delaunay
triangulation LDT (v) of the set Nv. If algorithm PLDG(v) removes (v, y) from
E(v), then algorithm PLDG

′(v) removes (v, y) from E′(v).

Proof. By Lemma 6, there exist three pairwise distinct points x, p, and q in
V such that (i) Δ(x, p, q) is a triangular face in LDT (x), (ii) v �= x, |vx| ≤ 1,
|vp| ≤ 1, |vq| > 1, (iii) neither v nor y is in the interior of the disk D(x, p, q).

In fact, in algorithm PLDG(v), v receives from x the center c′i of the disk
D(c′i; |c′ix|) = D(x, p, q). Since |vx| ≤ 1, in algorithm PLDG

′(v), v receives the
center c′i, but does not know that it was broadcast by x. Consider the point
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Algorithm PLDG
′(v)

1. let Nv = {u ∈ V : |uv| ≤ 1};
2. compute the Delaunay triangulation LDT (v) of Nv;
3. let E′(v) be the set of all edges in LDT (v) that are incident on v;
4. let Δv be the set of all triangular faces Δ(u, v, w) in LDT (v) for which ∠uvw > π

3
;

5. let k be the number of elements in Δv;
6. if k ≥ 1
7. then let c1, . . . , ck be the centers of the circumcircles of all triangles in Δv;
8. broadcast the sequence (c1, . . . , ck);
9. for each sequence (c′1, . . . , c′m) received
10. do for i = 1 to m
11. do compute a point x′ in Nv \ {v} that is closest to c′i;
12. let D(c′i; |c′ix′|) be the disk with center c′i that contains x′ on its

boundary;
13. if ∂D(c′i; |c′ix′|) contains exactly two points of Nv

14. then let p′ be the point in (Nv \ {x′}) ∩ ∂D(c′i; |c′ix′|);
15. let arci = (∂D(c′i; |c′ix′|)) \ D(v; 1);
16. let Z = {z′ ∈ arci : |x′z′| ≤ 1 or |p′z′| ≤ 1};
17. if arci �= ∅ and Z �= ∅
18. then let z′ be an arbitrary element of Z;
19. for each edge (v, y) in E′(v)
20. do let Delv(v, y) be a disk D such that Nv ∩

∂D = {v, y} and Nv ∩ int(D) = ∅;
21. if arci is contained in the interior of

Delv(v, y) and the line segment vy crosses
at least one of the line segments x′z′ and
p′z′

22. then remove (v, y) from E′(v)

Fig. 2. The final algorithm PLDG
′(v)

x′ that is computed in line 11 of algorithm PLDG
′(v). Thus, x′ is a point in

Nv \{v} that is closest to c′i. Since x ∈ Nv \{v}, we have |c′ix′| ≤ |c′ix|. We claim
that |c′ix′| = |c′ix|.

To prove this claim, assume, by contradiction, that |c′ix′| < |c′ix|. Then x′ is in
the interior of the disk D(x, p, q). Since Δ(x, p, q) is a triangular face in LDT (x),
we have |xx′| > 1.

Consider the disk Delv(v, y) that is computed in line 17 of algorithm PLDG(v).
Recall that Nv ∩ ∂Delv(v, y) = {v, y} and Nv ∩ int(Delv(v, y)) = ∅. Since both
x and x′ are in Nv, neither of these two points is in the interior of Delv(v, y). It
follows from line 18 of algorithm PLDG(v) that q is in the interior of Delv(v, y)
(because q ∈ arci).

Assume, without loss of generality that vy is horizontal, v is to the right of y,
and q is below the line through v and y; refer to Figure 3.

Since |vq| > 1 and |vy| ≤ 1, we have ∠yqv < π/2. Let ŷv be the arc on
∂Delv(v, y) with endpoints y and v that contains the north pole of ∂Delv(v, y).
Then ŷv is a minor arc.
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Fig. 3. Illustrating the proof of Lemma 10

Let u1 and u2 be the intersections between ∂Delv(v, y) and ∂D(x, p, q), where
u1 is to the left of u2. Then both u1 and u2 are contained in ŷv and, therefore,
by Lemma 2, |u1u2| ≤ 1.

Let û1u2 be the arc on ∂D(x, p, q) with endpoints u1 and u2 that contains the
north pole of ∂D(x, p, q). Since ∠u1qu2 ≤ ∠yqv < π/2, û1u2 is a minor arc.

Recall that x �∈ int(Delv(v, y)). Also, if x ∈ ∂Delv(v, y), then x = y. It follows
that x is not below the line through u1 and u2. By a similar argument, x′ is not
below this line. Since both x and x′ are in D(x, p, q) and since û1u2 is a minor
arc, it follows from Lemma 2 that |xx′| ≤ 1, which is a contradiction.

Thus, we have shown that |c′ix′| = |c′ix|. Recall that p is the point that is
computed in line 13 of algorithm PLDG(v). Consider the point p′ that is com-
puted in line 14 of algorithm PLDG

′(v). Since D(c′i; |c′ix|) = D(c′i; |c′ix′|), we
have {x, p} = {x′, p′}. In other words, algorithm PLDG

′(v) knows the points x
and p, but does not know which of them is x and which of them is p.

Since lines 15–19 of algorithm PLDG(v) are symmetric in x and p, and since
lines 16–22 of algorithm PLDG

′(v) are symmetric in x′ and p′, it follows that the
behaviors ofPLDG(v) and PLDG

′(v) with respect to the edge (v, y) are identical.
Therefore, algorithm PLDG

′(v) removes the edge (v, y) from E′(v). ��

Lemma 11. Let v be an element of V and let (v, y) be an edge of the Delaunay
triangulation LDT (v) of the set Nv. If algorithm PLDG

′(v) removes (v, y) from
E′(v), then algorithm PLDG(v) removes (v, y) from E(v).

Proof. Since algorithm PLDG
′(v) removes (v, y) from E′(v), there exist three

pairwise distinct points x, p, and q in V such that (i) Δ(x, p, q) is a triangular
face in LDT (x), (ii) algorithm PLDG

′(x) broadcasts the center c′i of the disk
D(x, p, q) = D(c′i; |c′ix|), (iii) v �= x, |vx| ≤ 1, (iv) v receives the center c′i (but
does not know that it was broadcast by x).

Consider the point x′ that is computed in line 11 of algorithm PLDG
′(v).

Thus, x′ is a point in Nv \ {v} that is closest to c′i. Since x ∈ Nv \ {v}, we have
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|c′ix′| ≤ |c′ix|. We claim that |c′ix′| = |c′ix|. As in the proof of Lemma 10, this
implies that algorithm PLDG(v) removes the edge (v, y) from E(v). ��
By Lemmas 10 and 11, algorithms PLDG(v) and PLDG

′(v) compute the same
graph. Therefore, the proof of Theorem 1 can be completed as in the proof of
Lemma 9 and by observing that the sequence that is broadcast in line 8 of
algorithm PLDG

′(v) contains at most 5 points.
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Abstract. Topological self-stabilization is an important concept to build
robust open distributed systems (such as peer-to-peer systems) where
nodes can organize themselves into meaningful network topologies. The
goal is to devise distributed algorithms that converge quickly to such a
desirable topology, independently of the initial network state. This pa-
per proposes a new model to study the parallel convergence time. Our
model sheds light on the achievable parallelism by avoiding bottlenecks
of existing models that can yield a distorted picture. As a case study, we
consider local graph linearization—i.e., how to build a sorted list of the
nodes of a connected graph in a distributed and self-stabilizing manner.
We propose two variants of a simple algorithm, and provide an extensive
formal analysis of their worst-case and best-case parallel time complexi-
ties, as well as their performance under a greedy selection of the actions
to be executed.

1 Introduction

Open distributed systems such as peer-to-peer systems are often highly transient
in the sense that nodes join and leave at a fast pace. In addition to this natural
churn, parts of the network can be under attack, causing nodes to leave involun-
tarily. Thus, when designing such a system, a prime concern is robustness. Over
the last years, researchers have proposed many interesting approaches to build
robust overlay networks. A particularly powerful concept in this context is (dis-
tributed) topological self-stabilization: a self-stabilizing system guarantees that
from any connected topology, eventually an overlay with desirable properties
will result.

In this paper, we address one of the first and foremost questions in distributed
topological self-stabilization: How to measure the parallel time complexity? We
consider a very strong adversary who presents our algorithm with an arbitrary
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connected network. We want to investigate how long it takes until the topology
reaches a (to be specified) desirable state. While several solutions have been
proposed in the literature over the last years, these known models are inappro-
priate to adequately model parallel efficiency: either they are overly pessimistic
in the sense that they can force the algorithm to work serially, or they are too
optimistic in the sense that contention or congestion issues are neglected.

Our model is aware of bottlenecks in the sense that nodes cannot perform
too much work per time unit. Thus, we consider our new model as a further
step to explore the right level of abstraction to measure parallel execution times.
As a case study, we employ our tools to the problem of graph linearization
where nodes—initially in an arbitrary connected graph—are required to sort
themselves with respect to their identifiers.

As the most simple form of topological self-stabilization, linearization allows
to study the main properties of our model. As we will see in our extensive
analysis, graph linearization under our model is already non-trivial and reveals an
interesting structure. This paper focuses on two natural linearization algorithms,
such that the influence of the modeling becomes clear. For our analysis, we will
assume the existence of some hypothetical schedulers. In particular, we consider
a scheduler that always makes the worst possible, one that always makes the best
possible, one that makes a random, and one that makes a “greedy” selection of
actions to execute at any time step. Since the schedulers are only used for the
complexity analysis of the protocols proposed, for ease of explanation, we treat
the schedulers as global entities and we make no attempt to devise distributed,
local mechanisms to implement them.1

1.1 Related Work

The construction and maintenance of a given network structure is of prime im-
portance in many distributed systems, for example in peer-to-peer computing
[6,7,11,13,14]; e.g., Kuhn et al. [11] showed how to maintain a hypercube un-
der dynamic worst-case joins and leaves, and Scheideler et al. [13] presented the
SHELL network which allows peers to join and leave efficiently. In the technical
report of the distributed hash table Chord [15], stabilization protocols are de-
scribed which allow the topology to recover from certain degenerate situations.
Unfortunately, however, in these papers, no algorithms are given to recover from
arbitrary states.

Also skip graphs [1] can be repaired from certain states, namely states which
resulted from node faults and inconsistencies due to churn. In a recent paper, we
have shown [9] that a modified and locally checkable version of the skip graph
can be built from any connected network. Interestingly, the algorithm introduced
in [9] self-stabilizes in polylogarithmic time. Unfortunately, however, while the
resulting structure is indeed scalable, the number of edges can become quadratic
1 In fact, most likely no such local mechanism exists for implementing the worst-case

and best-case schedulers, while we believe that local distributed implementations
that closely approximate—within a constant factor of the parallel complexity—the
randomized and greedy schedulers presented here would not be hard to devise.
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during the execution of that algorithm. Moreover, the execution model does not
scale either.

In this paper, in order to be able to focus on the main phenomena of our model,
we chose to restrict ourselves to topological linearization. Linearization and the
related problem of organizing nodes in a ring is also subject to active research.
The Iterative Successor Pointer Rewiring Protocol [5] and the Ring Network
[14] organize the nodes in a sorted ring. Unfortunately, both protocols have a
large runtime. We have recently started to work on 2-dimensional linearization
problems for a different (classic) time-complexity model [10].

The papers closest to ours are by Onus et al. [12] and by Clouser et al. [4].
In [12], a local-control strategy called linearization is presented for converting
an arbitrary connected graph into a sorted list. However, it is only studied in
a synchronous environment, and the strategy does not scale since in one time
round it allows a node to communicate with an arbitrary number of its neigh-
bors (which can be as high as Θ(n) for n nodes). Clouser et al. [4] formulated
a variant of the linearization technique for arbitrary asynchronous systems in
which edges are represented as Boolean shared variables. Any node may estab-
lish an undirected edge to one of its neighbors by setting the corresponding
shared variable to true, and in each time unit, a node can manipulate at most
one shared variable. If these manipulations never happen concurrently, it would
be possible to emulate the shared variable concept in a message passing system
in an efficient way. However, concurrent manipulations of shared variables can
cause scalability problems because even if every node only modifies one shared
variable at a time, the fact that the other endpoint of that shared variable has
to get involved when emulating that action in a message passing system implies
that a single node may get involved in up to Θ(n) many of these variables in a
time unit.

1.2 Our Contributions

The contribution of this paper is two-fold. First, we present an alternative ap-
proach to modeling scalability of distributed, self-stabilizing algorithms that does
not require synchronous executions like in [12] and also gets rid of the scalability
problems in [4,12] therefore allowing us to study the parallel time complexity of
proposed linearization approaches. Second, we propose two variants of a simple,
local linearization algorithm. For each of these variants, we present extensive
formal analyses of their worst-case and best-case parallel time complexities, and
also study their performance under a random and a greedy selection of the ac-
tions to be executed.

2 Model

We are given a system consisting of a fixed set V of n nodes. Every node has a
unique (but otherwise arbitrary) integer identifier. In the following, if we com-
pare two nodes u and v using the notation u < v or u > v, we mean that the
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identifier of u is smaller than v or vice versa. For any node v, pred(v) denotes
the predecessor of v (i.e., the node u ∈ V of largest identifier with u < v) and
succ(v) denotes the successor of v according to “<”. Two nodes u and v are
called consecutive if and only if u = succ(v) or v = succ(u).

Connections between nodes are modeled as shared variables. Each pair (u, v)
of nodes shares a Boolean variable e(u, v) which specifies an undirected adjacency
relation: u and v are called neighbors if and only if this shared variable is true.
The set of neighbor relations defines an undirected graph G = (V,E) among the
nodes. A variable e(u, v) can only be changed by u and v, and both u and v have
to be involved in order to change e(u, v). (E.g., node u sends a change request
message to u. More details on this will be given below.) For any node u ∈ V ,
let u.L denote the set of left neighbors of u—the neighbors which have smaller
identifiers than u—and u.R the set of right neighbors (with larger IDs) of u.

In this paper, deg(u) will denote the degree of a node u and is defined as
deg(u) = |u.L ∪ u.R|. Moreover, the distance between two nodes dist(u, v) is
defined as dist(u, v) = |{w : u < w ≤ v}| if u < v and dist(u, v) = |{w :
v < w ≤ u}| otherwise. The length of an edge e = {u, v} ∈ E is defined as
len(e) = dist(u, v).

We consider distributed algorithms which are run by each node in the network.
The algorithm or program executed by each node consists of a set of variables
and actions. An action has the form

< name > : < guard > → < commands >

where < name > is an action label, < guard > is a Boolean predicate over
the (local and shared) variables of the executing node and < commands > is a
sequence of commands that may involve any local or shared variables of the node
itself or its neighbors. Given an action A, the set of all nodes involved in the
commands is denoted by V (A). Every node that either owns a local variable or
is part of a shared variable e(u, v) accessed by one of the commands in A is part
of V (A). Two actions A and B are said to be independent if V (A) ∩ V (B) = ∅.
For an action execution to be scalable we require that the number of interactions
a node is involved in (and therefore |V (A)|) is independent of n. An action is
called enabled if and only if its guard is true. Every enabled action is passed to
some underlying scheduling layer (to be specified below). The scheduling layer
decides whether to accept or reject an enabled action. If it is accepted, then the
action is executed by the nodes involved in its commands.

We model distributed computation as follows. The assignments of all local and
shared variables defines a system state. Time proceeds in rounds. In each round,
the scheduling layer may select any set of independent actions to be executed
by the nodes. The work performed in a round is equal to the number of actions
selected by the scheduling layer in that round. A computation is a sequence of
states such that for each state si at the beginning of round i, the next state si+1
is obtained after executing all actions that were selected by the scheduling layer
in round i. A distributed algorithm is called self-stabilizing w.r.t. a set of system
states S and a set of legal states L ⊆ S if for any initial state s1 ∈ S and any fair
scheduling layer, the algorithm eventually arrives (and stays) at a state s ∈ L.
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v’ v u v’vu

Fig. 1. Left and right linearization step

Notice that this model can cover arbitrary asynchronous systems in which
the actions are implemented so that the sequential consistency model applies
(i.e., the outcome of the executions of the actions is equivalent to a sequential
execution of them) as well as parallel executions in synchronous systems. In a
round, the set of enabled actions selected by the scheduler must be independent
as otherwise a state transition from one round to another would, in general, not
be unique, and further rules would be necessary to handle dependent actions
that we want to abstract from in this paper.

2.1 Linearization

In this paper we are interested in designing distributed algorithms that can
transform any initial graph into a sorted list (according to the node identifiers)
using only local interactions between the nodes. A distributed algorithm is called
self-stabilizing in this context if for any initial state that forms a connected graph,
it eventually arrives at a state in which for all node pairs (u, v),

e(u, v) = 1 ⇔ u = succ(v) ∨ v = succ(u)

i.e., the nodes indeed form a sorted list. Once it arrives at this state, it should
stay there, i.e., the state is the (only) fixpoint of the algorithm. In the distributed
algorithms studied in this paper, each node u ∈ V repeatedly performs simple
linearization steps in order to arrive at that fixpoint.

A linearization step involves three nodes u, v, and v′ with the property that
u is connected to v and v′ and either u < v < v′ or v′ < v < u. In both cases,
u may command the nodes to move the edge {u, v′} to {v, v′}. If u < v < v′,
this is called a right linearization and otherwise a left linearization (see also
Figure 1). Since only three nodes are involved in such a linearization, this can
be formulated by a scalable action. In the following, we will also call u, v, and v′

a linearization triple or simply a triple.

2.2 Schedulers

Our goal is to find linearization algorithms that spend as little time and work as
possible in order to arrive at a sorted list. In order to investigate their worst, av-
erage, and best performance under concurrent executions of actions, we consider
different schedulers.

1. Worst-case scheduler Swc: This scheduler must select a maximal independent
set of enabled actions in each round, but it may do so to enforce a runtime
(or work) that is as large as possible.
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2. Randomized scheduler Srand: This scheduler considers the set of enabled
actions in a random order and selects, in one round, every action that is
independent of the previously selected actions in that order.

3. Greedy scheduler Sgreedy: This scheduler orders the nodes according to their
degrees, from maximum to minimum. For each node that still has enabled
actions left that are independent of previously selected actions, the sched-
uler picks one of them in a way specified in more detail later in this pa-
per when our self-stabilizing algorithm has been introduced. (Note, that
’greedy’ refers to a greedy behavior w.r.t. the degree of the nodes; large
degrees are preferred. Another meaningful ’greedy’ scheduler could favor
triples with largest gain w.r.t. the potential function that sums up all link
lengths.)

4. Best-case scheduler Sopt: The enabled actions are selected in order to mini-
mize the runtime (or work) of the algorithm. (Note, that ’best’ in this case
requires maximal independent sets although there might be a better solution
without this restriction.)

The worst-case and best-case schedulers are of theoretical interest to explore
the parallel time complexity of the linearization approach. The greedy scheduler
is a concrete algorithmic selection rule that we mainly use in the analysis as
an upper bound on the best-case scheduler. The randomized scheduler allows
us to investigate the average case performance when a local-control randomized
symmetry breaking approach is pursued in order to ensure sequential consistency
while selecting and executing enabled actions.

As noted in the introduction, for ease of explanation, we treat the schedulers
as global entities and we make no attempt to formally devise distributed, local
mechanisms to implement them (that would in fact be an interesting, orthogonal
line for future work). The schedulers are used simply to explore the parallel
time complexity limitations (e.g., worst-case, average-case, best-case behavior)
of the linearization algorithms proposed. In practice the algorithms LINall and
LINmax to be presented below may rely on any local-control rule (scheduler) to
decide on a set of locally independent actions—which trivially leads to global
independence—to perform at any given time.

3 Algorithms and Analysis

We now introduce our distributed and self-stabilizing linearization algorithms
LINall and LINmax. Section 3.1 specifies our algorithms formally and gives cor-
rectness proofs. Subsequently, we study the algorithms’ runtime.

3.1 LINall and LINmax

We first describe LINall. Algorithm LINall is very simple. Each node constantly
tries to linearize its neighbors according to the linearize left and linearize right
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rules in Figure 1. In doing so, all possible triples on both sides are proposed to
the scheduler. More formally, in LINall every node u checks the following actions
for every pair of neighbors v and w:

linearize left(v, w):
(v, w ∈ u.L ∧ w < v < u) → e(u,w) := 0, e(v, w) := 1

linearize right(v, w):
(v, w ∈ u.R ∧ u < v < w) → e(u,w) := 0, e(v, w) := 1

LINmax is similar to LINall: instead of proposing all possible triples on each side,
LINmax only proposes the triple which is the furthest (w.r.t. IDs) on the cor-
responding side. Concretely, every node u ∈ V checks the following actions for
every pair of neighbors v and w:

linearize left(v, w):
(v, w ∈ u.L) ∧ w < v < u ∧�x ∈ u.L\{w} : x < v) → e(u,w) := 0, e(v, w) := 1

linearize right(v, w):
(v, w ∈ u.R) ∧ u < v < w ∧�x ∈ u.R\{w} : x > v) → e(u,w) := 0, e(v, w) := 1

We first show that these algorithms are correct in the sense that eventually, a
linearized graph will be output.

Theorem 1. LINall and LINmax are self-stabilizing and converge to the sorted
list.

3.2 Runtime

We first study the worst case scheduler Swc for both LINall and LINmax.

Theorem 2. Under a worst-case scheduler Swc, LINmax terminates after O(n2)
work (single linearization steps), where n is the total number of nodes in the
system. This is tight in the sense that there are situations where under a worst-
case scheduler Swc, LINmax requires Ω(n2) rounds.

Proof. Due to space constraints, we only give a proof sketch for the upper bound.
Let ζl(v) denote the length of the longest edge out of node v ∈ V to the left
and let ζr(v) denote the length of the longest edge out of node v to the right. If
node v does not have any edge to the left, we set ζl(v) = 1/2, and similarly for
the right. We consider the potential function Φ which is defined as

Φ =
∑
v∈V

[(2ζl(v) − 1) + (2ζr(v) − 1)] =
∑
v∈V

2(ζl(v) + ζr(v) − 1).

Observe that initially, Φ0 < 2n2, as ζl(v) + ζr(v) < n for each node v. We show
that after round i, the potential is at most Φi < 2n2−i. Since LINmax terminates
(cf. also Theorem 1) with a potential Φj > 0 for some j (the term of each node
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is positive, otherwise the node would be isolated), the claim follows. In order
to see why the potential is reduced by at least one in every round, consider
a triple u, v, w which is right-linearized and where u < v < w, {u, v} ∈ E,
and {u,w} ∈ E. (Left-linearizations are similar and not discussed further here.)
During the linearization step, {u,w} is removed from E and the edge {v, w} is
added if it did not already exist.

We distinguish two cases.
Case 1: Assume that {u,w} was also the longest edge of w to the left. This
implies that during linearization of the triple, we remove two longest edges (of
nodes u and w) of length len({u,w}) from the potential function. On the other
hand, we may now have the following increase in the potential: u has a new
longest edge {u, v} to the right, v has a new longest edge {v, w} to the right, and
w has a new longest edge of length up to len({u,w})−1 to the left. Summarizing,
we get

ΔΦ ≤ (2 · len({u, v}) − 1) + (2 · len({v, w}) − 1) +
(2(len({u,w}) − 1) − 1) − (4 · len({u,w}) − 2)

≤ −3

since len({u,w}) = len({u, v}) + len({v, w}).
Case 2: Assume that {u,w} was not the longest edge of w to the left. Then,

by this linearization step, we remove edge {u,w} from the potential function but
may add edges {u, v} (counted from node u to the right) and {v, w} (counted
from node v to the right). We have

ΔΦ ≤ (2 · len({u, v}) − 1) + (2 · len({v, w}) − 1) − (2 · len({u,w}) − 1) ≤ −1

since len({u,w}) = len({u, v}) + len({v, w}). Since in every round, at least one
triple can be linearized, this concludes the proof.

For the LINall algorithm, we obtain a slightly higher upper bound. In the anal-
ysis, we need the following helper lemma.

Lemma 1. Let Ξ be any positive potential function, where Ξ0 is the initial
potential value and Ξi is the potential after the ith round of a given algorithm
ALG. Assume that Ξi ≤ Ξi−1 ·(1−1/f) and that ALG terminates if Ξj ≤ Ξstop

for some j ∈ N. Then, the runtime of ALG is at most O(f · log (Ξ0/Ξstop))
rounds.

Theorem 3. LINall terminates after O(n2 logn) many rounds under a worst-
case scheduler Swc, where n is the network size.

Proof. We consider the potential function Ψ =
∑

e∈E len(e), for which it holds
that Ψ0 < n3. We show that in each round, this potential is multiplied by a
factor of at most 1 −Ω(1/n2).

Consider an arbitrary triple u, v, w ∈ V with u < v < w which is right-
linearized by node u. (Left-linearizations are similar and not discussed further
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here.) During a linearization step, the sum of the edge lengths is reduced by
at least one. Similarly to the proof of Theorem 4, we want to calculate the
amount of blocked potential in a round due to the linearization of the triple
(u, v, w). Nodes u, v, and w have at most d̂eg(u) + d̂eg(v) + d̂eg(w) < n many
independent neighbors. In the worst case, when the triple’s incident edges are
removed (blocked potential at most O(n2)), these neighbors fall into different
disconnected components which cannot be linearized further in this round; in
other words, the remaining components form sorted lines. The blocked potential
amounts to at most Θ(n2). Thus, together with Lemma 1, the claim follows. �

Besides Swc, we are interested in the following type of greedy scheduler. In each
round, both for LINall and LINmax, Sgreedy orders the nodes with respect to their
remaining degrees : after a triple has been fired, the three nodes’ incident edges
are removed. For each node v ∈ V selected by the scheduler according to this
order (which still has enabled actions left which are independent of previously
selected actions), the scheduler greedily picks the enabled action of v which
involves the two most distant neighbors on the side with the larger remaining
degree (if the number of remaining left neighbors equals the number of remaining
neighbors on the right side, then an arbitrary side can be chosen.) The intuition
behind Sgreedy is that neighborhood sizes are reduced quickly in the linearization
process.

Under this greedy scheduler, we get the following improved bound on the time
complexity of LINall.

Theorem 4. Under a greedy scheduler Sgreedy, LINall terminates in O(n log n)
rounds, where n is the total number of nodes in the system.

Finally, we have also investigated an optimal scheduler Sopt.

Theorem 5. Even under an optimal scheduler Sopt, both LINall and LINmax

require at least Ω(n) rounds in certain situations.

3.3 Degree Cap

It is desirable that the nodes’ neighborhoods or degrees do not increase much
during the sorting process. We investigate the performance of LINall and LINmax
under the following degree cap model. Observe that during a linearization step,
only the degree of the node in the middle of the triple can increase (see Figure 1).
We do not schedule triples if the middle node’s degree would increase, with one
exception: during left-linearizations, we allow a degree increase if the middle
node has only one left neighbor, and during right-linearizations we allow a degree
increase to the right if the middle node has degree one. In other words, we study
a degree cap of two.

We find that both our algorithms LINall and LINmax still terminate with a
correct solution under this restrictive model.

Theorem 6. With degree cap, LINmax terminates in at most O(n2) many rounds
under aworst-case schedulerSwc, wheren is the total number of nodes in the system.
Under the same conditions, LINall requires at most O(n3) rounds.
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4 Experiments

In order to improve our understanding of the parallel complexity and the be-
havior of our algorithms, we have implemented a simulation framework which
allows us to study and compare different algorithms, topologies and schedulers.
In this section, some of our findings will be described in more detail.

We will consider the following graphs.

1. Random graph: Any pair of nodes is connected with probability p (Erdös-
Rényi graph), i.e., if V = {v1, . . . , vn}, then P[{vi, vj} ∈ E] = p for all
i, j ∈ {1, . . . , n}. If necessary, edges are added to ensure connectivity.

2. Bipartite backbone graph (k-BBG): This seems to be a “hard” graph which
also allows to compare different models. For n = 3k for some positive in-
teger k define the following k-bipartite backbone graph on the node set
V = {v1, . . . , vn}. It has n nodes that are all connected to their respective
successors and predecessors (except for the first and the last node). This
structure is called the graph’s backbone. Additionally, there are all (n/3)2

edges from nodes in {v1, . . . , vk} to nodes in {v2k+1, . . . , vn}.
3. Spiral graph: The spiral graph G = (V,E) is a sparse graph forming a spiral,

i.e., V = {v1, . . . , vn} where v1 < v2 < . . . < vn and

E = {{v1, vn}, {vn, v2}, {v2, vn−1}, {vn−1, v3}, . . . , {v�n/2�, v�n/2�+1}}.

4. k-local graph: This graph avoids long-range links. Let V = {v1, . . . , vn} where
vi = i for i ∈ {1, . . . , n}. Then, {vi, vj} ∈ E if and only if |i− j| ≤ k.

We will constrain ourselves to two schedulers here: the greedy scheduler Sgreedy
which we have already considered in the previous sections, and a randomized
scheduler Srand which among all possible enabled actions chooses one uniformly
at random.

Many experiments have been conducted to shed light onto the parallel run-
time of LINall and LINmax in different networks. Figure 2 depicts some of our
results for LINall. As expected, in the k-local graphs, the execution is highly par-
allel and yields a constant runtime—independent of n. The sparse spiral graphs
appear to entail an almost linear time complexity, and also the random graphs
perform better than our analytical upper bounds suggest. Among the graphs we
tested, the BBG network yielded the highest execution times. Figure 2 gives the
corresponding results for LINmax.

A natural yardstick to measure the quality of a linearization algorithm—
besides the parallel runtime—is the node degree. For instance, it is desirable
that an initially sparse graph will remain sparse during the entire linearization
process. It turns out that LINall and LINmax indeed maintain a low degree.
Figure 3 (top) shows how the maximal and average degrees evolve over time
both for LINall and LINmax on two different random graphs. Note that the
average degree cannot increase because the rules only move or remove edges.
The random graphs studied in Figure 3 have a high initial degree, and it is
interesting to analyze what happens in case of sparse initial graphs. Figure 3
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Fig. 2. Left: Parallel runtime of LINall for different graphs under Srand: two k-local
graphs with k = 5, k = 10 and k = 20, two random graphs with p = .1 and p = .2, a
spiral graph and a n/3-BBG. Right: Same experiments with LINmax.
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Fig. 3. Top left: Maximum and average degree during a run of LINall and LINmax on
a random graph with edge probability p = .1. Top right: The same experiment on
a random graph with p = .2. Bottom: Evolution of maximal degree on spiral graphs
under a randomized scheduler Srand.

(bottom) plots the maximal node degree over time for the spiral graph. While
there is an increase in the beginning, the degree is moderate at any time and
declines again quickly.



Time Complexity of Distributed Topological Self-stabilization 305

References

1. Aspnes, J., Shah, G.: Skip graphs. In: Proc. 14th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 384–393 (2003)

2. Blumofe, R.D., Leiserson, C.E.: Space-e cient scheduling of multithreaded compu-
tations. SIAM Journal on Computing 27(1), 202–229 (1998)

3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. Journal of the ACM 46(5), 720–748 (1999)

4. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic
skip list. In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340, pp. 124–
140. Springer, Heidelberg (2008)

5. Cramer, C., Fuhrmann, T.: Self-stabilizing ring networks on connected graphs.
Technical Report 2005-5, System Architecture Group, University of Karlsruhe
(2005)

6. Dolev, D., Hoch, E.N., van Renesse, R.: Self-stabilizing and byzantine-tolerant
overlay network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878, pp. 343–357. Springer, Heidelberg (2007)

7. Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. Distributed
Computing 20(5), 375–388 (2008)

8. Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Modeling
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Abstract. In this paper we analyse broadcasting in d-regular networks
with good expansion properties. For the underlying communication, we
consider modifications of the so called random phone call model. In the
standard version of this model, each node is allowed in every step to
open a channel to a randomly chosen neighbour, and the channels can be
used for bi-directional communication. Then, broadcasting on the graphs
mentioned above can be performed in time O(log n), where n is the size of
the network. However, every broadcast algorithm with runtime O(log n)
needs in average Ω(log n/ log d) message transmissions per node. This
lower bound even holds for random d-regular graphs, and implies a high
amount of message transmissions especially if d is relatively small.

In this paper we show that it is possible to save significantly on com-
munications if the standard model is modified such that nodes can avoid
opening channels to the same neighbours in consecutive steps. We con-
sider the so called Rr model where we assume that every node has a
cyclic list of all of its neighbours, ordered in a random way. Then, in
step i the node communicates with the i-th neighbour from that list. We
provide an O(log n) time algorithm which produces in average O(

√
log n)

transmissions per node in networks with good expansion properties. Fur-
thermore, we present a related lower bound of Ω(

√
log n/ log log n) for

the average number of message transmissions. These results show that
by using memory it is possible to reduce the number of transmissions
per node by almost a quadratic factor.

1 Introduction

We consider randomised broadcasting in (almost) regular graphs1 with good ex-
pansion properties. In the broadcasting problem, the goal is to spread a message
� Partly supported by the German Research Foundation under contract EL 399/2-1.
1 Almost regular means that the smallest and largest degree in the graph differ by at

most a constant factor.
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of a certain node among all vertices of a network by using local communica-
tion only. Our interest in the graphs mentioned before is motivated by overlay
topologies in peer to peer (P2P) systems. Important topological properties of
these networks include good connectivity, high expansion, and small diameter;
all these properties are perfectly fulfilled by the graphs considered here. Our
aim is to develop time-efficient broadcasting algorithms which produce a mini-
mal number of message transmissions in the graphs described above. Since P2P
systems are significant decentralised platforms for sharing data and computing
resources, it is very important to provide efficient, simple, and robust broad-
casting algorithms for P2P overlays. Minimising the number of transmissions
is important in applications such as the maintenance of replicated databases in
which broadcasts are necessary to deal with frequent updates in the system.

In this paper we assume the so called phone call model (see [17]). In this model,
each node v may perform the following actions in every step. 1) create a new
message to be broadcasted. 2) establish a communication channel between v itself
and one of its neighbours. 3) transmit messages over incident channels opened
by himself or by its neighbours. At the end of each step, the nodes close all open
channels. Note that open channels can be used for bi-directional (push&pull)
communications. In the case of push transmissions calling nodes (i.e., the nodes
that opened the channels) send their messages to their neighbours. In the case
of pull transmissions messages are transmitted from called nodes to the calling
ones. Note that nodes can combine several broadcast messages to larger ones
which can be sent over a channel in one time step.

In the standard phone call model it is assumed that nodes open a channel to
a randomly chosen neighbour, and the nodes have to decide whether to transmit
a specific message over a channel, without knowing if they opened a channel
to the corresponding node in earlier steps. In this paper we assume that every
node has a cyclic list of all of its neighbours, ordered in a random way. In step i
the node opens a channel to the i (modulo d)-th neighbour from that list. This
model is called Rr model in the following. The Rr rule prevents a node to open a
channel to the same neighbour again and again. The question we address in this
paper is whether remembering the communication partners from earlier rounds
helps or not. We give a positive answer to this question and provide further
evidence for the power of memory in randomised broadcasting (see [10]). More
precisely, we present an algorithm, and show that w.r.t. the average number
of transmissions per node this algorithm performs significantly better than any
algorithm in the so called Random[c]-model introduced in [10] (i.e. we achieve
an almost quadratic improvement). The later model is similar to the standard
random phone call model, however, every node may open channels to c different
randomly chosen neighbours in each step. Our algorithm is address oblivious,
i.e., the send decisions of the nodes do not depend on the IDs of the nodes to
which they open channels in the actual step. However, the nodes are allowed to
remember with which nodes they communicated in the steps before [17].
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1.1 Related Work

There is a huge amount of work considering epidemic type (broadcasting) algo-
rithms on proper graph models for P2P overlays. Most of these papers deal with
the empirical analysis of these algorithms e.g. [18,20]. Due to space constraints,
we can only describe here the results which focus on the analytical study of
push&pull algorithms.

Runtime. Most randomised broadcasting results analyse the runtime of the push
algorithm. For complete graphs of size n, Frieze and Grimmett [14] present an
algorithm that broadcasts a message in time log2(n) + ln(n) + o(logn) with a
probability of 1−o(1). Later, Pittel [21] shows that (with probability 1−o(1)) it
is possible to broadcast a message in time log2(n)+ln(n)+f(n) [21], where f(n)
can be any slow growing function. In [13], Feige et al. determine asymptotically
optimal upper bounds for the runtime of the push algorithm on G(n, p) graphs
(i.e., traditional Erdös-Rényi random graphs [11,12]), bounded degree graphs,
and Hypercubes. In [9] Elsässer and Sauerwald consider arbitrary graphs and
show that the expected broadcasting time is bounded, up to a logarithmic factor,
by the mixing time of a corresponding Markov chain. Additionally, a new class
of Cayley graphs is introduced on which the push algorithm has optimal perfor-
mance. Boyd et al. consider the combined push&pull model in arbitrary graphs
of size n, and show that the running time is asymptotically bounded by the mix-
ing time of a corresponding Markov chain plus an O(log n) value [2]. Sauerwald
shows that the same result also holds if only the push algorithm is considered
[22]. In [6] Doerr et al. analyse the so called quasi-random rumor spreading in
an adversarial version of the Rr model where the order of the lists is assumed to
be given by an adversary. However, the nodes choose a random position in their
lists to start with communication. They show for hypercubes and G(n, p) graphs
that O(log n) push steps suffice to inform every node, w.h.p.2. These bounds
are similar to the ones in traditional randomised broadcasting (push model).
Recently, these results have been extended to further graph classes with good
expansion properties [7].

Number of transmissions. Karp et al. [17] note that in complete graphs the pull
approach is inferior to the push approach, until roughly n/2 nodes receive the
message, and then the pull approach becomes superior. They present a push&pull
algorithm, together with a termination mechanism, which reduces the number
of total transmissions to O(n log logn) (w.h.p.), and show that this result is
asymptotically optimal. They also consider communication failures and analyse
the performance of their method in cases where the connections are established
using arbitrary probability distributions.

For sparser graphs it is not possible to get O(n log logn) message transmissions
together with a broadcast time of O(log n) in the standard phone call model.
In [8] Elsässer considers random G(n, p) graphs, and shows a lower bound of
Ω(n logn/ log(pn)) message transmissions for broadcast algorithms with a run-
time of O(log n). On the positive side, for p > log2 n/n he develops an algorithm
2 W.h.p. or “with high probability” means with probability 1 − o(n−1).
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that broadcasts in time O(log n) using O(n · (log logn + logn/ log(pn))) trans-
missions, w.h.p.

In [10] the authors consider a simple modification of the standard phone call
model called Random[c] above. For G(n, p) graphs with p > log2 n/n, they
show that this modification results in a reduction of the number of message
transmissions down to O(n log logn). In [1] the authors show similar results for
random d-regular graphs with d = O(log n).

1.2 Models and Results

We assume that every node has an estimation of n which is accurate to within a
constant factor. We also assume that all nodes have access to a global clock, and
that they work synchronously. In each step every node can create an arbitrary
amount of messages to be broadcasted. The number of message transmissions
for a certain message is defined as the the number of open channels traversed by
the message during the execution of the algorithm. As in [17], we assume here
that new pieces of information are generated frequently in the network, and
then the cost of establishing communication channels amortises over all message
transmissions. However, we only concentrate on the distribution and lifetime of
a single message, and consider broadcasting in the following graphs.

Edge-Node Expanders. Let G = (V,E) be a d-regular graph of size n. For A ⊂ V ,
let E(A,A) denote the set of edges between A and A = V \ A, and let N(A) =
{v ∈ A | ∃u ∈ A with (u, v) ∈ E}. For a constant α, G is called α-Edge-Node
expander (or simply Edge-Node expander) if the following holds:

1. For any set A ⊂ V with |A| ≤ n/2 we have |E(A,A)| ≥ αd · |A|.
2. For any set A ⊂ V with |A| ≤ min{φn/d, n/2} it holds that |N(A)| ≥ αd·|A|,

where φ is large but constant.

In [10,1] we showed that in random graphs one can save on the number of mes-
sage transmissions if the nodes avoid communication with the neighbours chosen
already in some recent steps. In the analysis we used the randomised construc-
tion of these graphs, and integrated the dynamical behaviour of the Random[c]
model (i.e., the parallelised version of the model described above) into the ran-
dom structure of the underlying topology. However, the methods derived in [10,1]
cannot be generalised to non-random graphs with similar expansion and connec-
tivity properties, not even to pseudo-random graphs [19]. Therefore, the main
question is whether the same result also holds in graphs with random graph
like properties. To answer this question, we show that in certain Edge-Node
expanders the Random[c] model requires Ω(n logn/ log logn) message trans-
missions for constant c, if the broadcast time is O(log n) and d = logO(1) n
(Theorem 1). Then, we present an algorithm for the Rr model, and introduce a
new combinatorial technique which only uses the structural properties of Edge-
Node expanders to show that this algorithm completes broadcasting in time
O(log n) and generates O(n

√
logn) message transmissions (see Sections 2.1-2.2).

Finally we establish a lower bound of Ω(n
√

logn/ log logn) on the number of
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message transmissions in the Rr model (if the broadcast time is O(log n) and
d = logO(1) n), showing that our analysis is tight up to a

√
log log n factor.

The upper bound on the number of message transmissions in the Rr model is
significantly smaller than the lower bound in the Random[c] model, which sub-
stantiates the importance of memory in randomised broadcasting. Notice that
all (regular) graphs G for which λ2 = d−O(

√
d) (λ2 is the second smallest eigen-

value of the Laplacian of G) obey the properties described above (cf. [4,16,23]).
Examples for such graphs are so called Ramanujan graphs. By using the tech-
niques of this paper, our results can be extended to graphs in which the ratio
between the maximum and minimum degree is bounded by a constant.

2 Broadcasting on Edge-Node Expanders

For simplicity, we prove our results for the case d ∈ {ω(log3/2 n), 2o(
√

log n)}. The
more general case with no restriction on d can be shown using similar techniques,
however, this would require an elaborate case analysis which is omitted in this
extended abstract. In this section we first consider the following lower bound
w.r.t. the performance of the Random[c] model in Edge-Node Expanders. The
proof of this theorem is omitted due to space limitations.

Theorem 1. Assume A is a broadcasting algorithm with runtime O(log n) in
the Random[c] communication model, where c is a constant. There exists a
family of Edge-Node Expanders for which A needs Ω(n logn/ log logn) message
transmissions, w.h.p.

2.1 The Algorithm

We assume that every node v stores a cyclic list v with a random permutation
of all its neighbours. Let v(t) be the t-th entry in the list. Then we assume
that v communicates with v(t) in step t (we omit the division by d for t > d).
We also define Lv[t, t′] = {v(t), v(t + 1), . . . v(t′)} for t′ > t. For a fixed node
v, push sends the message over the outgoing channel to v(t), and pull sends
the message over all incoming channels of v. We should note that a node has
to decide whether to transmit a message (by push or pull) without knowing
if this message have already been received by the node at the other end of the
channel. If several messages are to be broadcasted, then the algorithm will be
run for every message on every node. Each node combines all messages it has
to transmit via push (pull) to a single message and forwards it over all open
outgoing (incoming) channels.

The following algorithm describes the behavior of the nodes w.r.t. one specific
message. The age of a message (i.e., the difference between the current time step
and the time step in which the message has been generated) is used by the
nodes to decide which of the following phases applies for the message. A node is
called informed if it got a copy of that message. We assume that ρ > 40/α2 is a
constant. We also assume that the message is generated at time step 0 (i.e., at
step t the age of the message equals t). Recall that α is the expansion value of
the graph.
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Phase 0: [age ≤ �ρ logn�] The node which generates the message performs push
in each step of this phase. No other node transmits the message in this phase.
Phase 1: [�ρ log n� + 1 ≤ age ≤ 2 · �ρ logn� + �80/α2�] Nodes that received the
message in Phase 0 use the first �80/α2� steps of this phase to perform push in
each of these steps. If a node receives a message for the first time at time step
t ∈ {�ρ logn� + 1, . . . , 2 · �ρ logn�} , then the node will use the next �80/α2�
steps to perform push in each of these steps.

Phase 2: [2 · �ρ logn� + �80/α2� + 1 ≤ age ≤ 2 · �ρ logn� + �ρ log d�] Every
informed node performs push in each step of this phase.

Phase 3: [2 · �ρ logn� + �ρ log d� + 1 ≤ age ≤ 2 · �ρ logn� + 2 · �ρ log d�] Every
informed node performs pull in each step of this phase.

Phase 4: [2·�ρ logn�+2·�ρ logd�+1 ≤ age ≤ 2·�ρ logn�+2·�ρ logd�+�ρ√log n�]
Every informed node performs pull in each step of this phase.

Phase 5: [2 · �ρ logn� + 2 · �ρ log d� + �ρ√logn� + 1 ≤ age ≤ 3 · �ρ logn�] Every
node that receives the message in Phase 4 or 5 performs pull in each step of this
phase. The other informed nodes flip a coin and perform pull with probability
1/

√
logn.

Phase 6: [3 · �ρ logn�+1 ≤ age ≤ 3 · �ρ logn�+ �ρ√logn�] Every informed node
performs pull in each step of this phase.

We assume that there is only one message in the network. However, the al-
gorithm will work exactly the same as if there were several broadcast messages.
We say a node is active in a phase if it performs transmissions in that phase.
The algorithm consists of 7 phases. In the first 3 Phases the algorithm performs
push transmissions, in the remaining 4 phases it performs pull transmissions.

push Phases. In Phase 0 the node which generated the message performs a push
transmission in every step. At the end of the phase O(log n) nodes are informed,
w.h.p. In Phase 1 every informed node performs a constant number of push
transmissions. After that we have w.h.p. n/d informed nodes. The restriction to
a constant number of transmissions per node helps to reduce the transmission
number. The purpose of the next phase is to inform n/2 nodes. In this phase
every informed node performs a push transmission in every step of the phase.
Note that this phase consists only of O(log d) many steps.

pull Phases. In every step of Phase 3 and Phase 4 every informed node performs
a pull transmission. At the end of the Phase 3 we have n−n/d3 informed nodes,
w.h.p. Note that here is no algorithmic difference between Phase 3 and Phase
4. We introduce these two phases since they will be analysed separately. In
Phase 5 the nodes that were informed during phases 4 and 5 become active. All
remaining nodes will become active with a probability of 1/

√
logn. This again

helps to keep the number of transmissions down. In Phase 5 every active node
performs a pull transmission in every step. Phase 4 and Phase 5 inform w.h.p.
all uninformed nodes that have, in turn, many uninformed neighbours at the
beginning of Phase 4. The remaining nodes are informed in Phase 6 where every
informed node performs a pull transmission in every step.
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2.2 Analysis of the Algorithm

The analysis of the algorithm is more or less divided into the same phases as the
algorithm. First we show (Lemma 1 and Lemma 2) that the algorithm informs
w.h.p. at least n/2 nodes during the first O(log n) steps, using O(n) message
transmissions. More precisely, we show that (w.h.p.) in a constant number of
steps the number of informed nodes increases by a constant factor, as long as
the number of informed nodes is less than n/2. As soon as the number of in-
formed nodes is larger than n/2 the analysis becomes much more complicated.
If we were only interested in the running time of our algorithm, then we could
apply a backward analysis as in e.g. [10,22] to show that the algorithm com-
pletes broadcasting in O(log n) steps, w.h.p. However, this would result in a
bound of Θ(n logn) on the number of message transmissions. Since our goal is
to significantly reduce the number of message transmission per node we need
new analytical techniques for this case. Thus, we first analyse the distribution of
edges in the set of uninformed nodes as well as the distribution of the so called
cut edges separating informed and uninformed nodes from each other. To obtain
the desired result, we design a new combinatorial technique that combines the
information flow from informed to uninformed vertices with the distribution of
the cut edges.

In our proofs we assume for simplicity that ρ logn, ρ log d, and ρ
√

logn are
all integers. We also assume that d = Ω(f(n) log3/2 n) with f : N → R being
a function such that limn→∞ f(n) = ∞. Whenever we analyse a phase of our
algorithm we assume that all earlier phases were successfull in the sense that they
informed the right number of nodes. We can do that since all results hold with
high probability. To get the failure probability of Algorithm Rr one has to add
up the failure probability of all 6 phases. We will use the following definitions.

– I(t) is the set of informed nodes at the beginning of step t.
– Let I+(t) = I(t + 1) \ I(t), that is, the nodes that get informed in step t.
– Let τ = (t, t + 1, . . . t′) be some consecutive steps of our algorithm. Then

I+(τ) is the set of nodes that get informed in steps t, t+ 1, . . . t′ from one of
the nodes of I(t).

– H(t) is the set of uninformed nodes V \ I(t) at time t.
– E(S, S) is the set of edges between S and S.
– N(S, S′) is the set of neighbours of S that are in S′. Accordingly, N(u, S′)

is the set of neighbours of u ∈ V in S′.

It is easy to see that in Phase 0 the node, on which the message is generated,
informs ρ logn different neighbours, which results in the following observation.

Observation 1. At the end of Phase 0 there are ρ logn informed nodes.

Lemma 1. With a probability of 1−n−2 at least n/d nodes are informed at the
end of Phase 1.

Proof. Let t be the beginning of Phase 1 and define  = 40/α2. To show the
result we will prove that |I+(t + ρ logn)| ≥ n/d with a probability of 1 − n−2.
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We divide Phase 1 into k = (ρ logn)/ + 2 time intervals τ1, . . . , τk of length
 each. We assume that ti is the first step of time interval τi. Let |I+(τi)| be
the random variable that counts the number of nodes in I+(τi). Note that all
nodes in I+(τi) will perform push transmissions in every step of interval τi+1
(for i < k−1). Since ρ > 4 we can assume that we have already 4 logn informed
nodes at the beginning of Phase 1. None of these nodes has transmitted the
message yet. The proof of the lemma is based on Claim A 1 which can be found
in the appendix. The claim shows that with probability 1 − n−3 it holds that
|I+(τi)| ≥ (8/α) · |I(ti)|, which implies |I(ti+1)| ≥ (8/α) · |I(ti)|. By repeatedly
applying Claim A 1 we conclude that if ρ is large enough, then after k many
time intervals at least n/d nodes are informed with a probability of 1−n−2. ��
Next we consider Phase 2 where informed nodes perform push for roughly ρ log d
many steps. Note that the statement of this lemma holds conditioned on the
event that Phase 1 was successfull.

Lemma 2. With a probability of 1 − n−2 at least (n/2) nodes are informed at
the end of Phase 2.

The proof of this lemma is omitted due to space limitations.
Now we consider Phase 3 in the next lemma. To proof of this lemma is omitted

due to space limitations.

Lemma 3. With a probability of 1 − n−2 at least n − n/d3 nodes are informed
at the end of Phase 3.

Now we focus on Phases 4 and 5. Assume that t is the end of Phase 3 and that
there are at least n− n/d3 informed nodes at that time. Recall that, in Phase 4
(age t to t + ρ

√
logn)3 all informed nodes perform pull transmissions. In Phase

5 (age t + ρ
√

(logn) + 1 to 3ρ logn) every node that was informed in Phase
1-3 performs pull transmissions with probability 1/

√
logn, and every node that

was informed in Phase 4 or Phase 5 performs pull transmissions with
probability 1.

Lemma 4. Let t be the beginning of Phase 4. A node v ∈ H(t) with |N(v, I(t))| ≤
d/2 receives the message with probability 1 − n−2 by the end of Phase 5.

Proof. To prove the lemma we need some definitions first. The node v(τ) is
called the τ-active neighbour of v, and the nodes Lv[τ1, τ2] are called (τ1, τ2)-
active neighbours of v (notice that τ denotes a single time step here rather than
a time period as in Lemma 1). A node w is called τ-predecessor of v if there
exists k ≤ τ , some nodes w1, . . . , wk and time steps t0 < t1 < · · · < tk ≤ τ
such that w is the t0-active neighbour of w1, node wi is the ti-active neighbour
of wi+1 (1 ≤ i < k), and wk the tk-active neighbour of v. This means that v
is connected to w by a path consisting of edges that were active in the time
3 Although Phase 4 begins at time t+1, we assume for simplicity in our analysis that

t also belongs to Phase 4.
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interval [t0, τ ]. Note that, if w is a τ -predecessor of v and w is informed at step
t0, then v becomes informed at time τ at the latest. For different choices of
k and t0, t1, . . . , tk one might regard v as being a node of a tree consisting of
τ -predecessors. If one of the nodes is informed at the right time, v will get the
message via the corresponding path in the tree. We define

T0 = t+ρ
√

logn, T1 = t+(ρ·logn)/4, T2 = t+(ρ·logn)/2, and T3 = t+ρ logn.

Although there is a small overlap between the intervals [T0, T1], [T1, T2], and
[T2, T3] (i.e., T1 = [T0, T1] ∩ [T1, T2] and T2 = [T1, T2] ∩ [T2, T3]), we can ignore
these side effects in our further analysis. We show the following claim stating that
every uninformed node with many uninformed neighbours has at least (ρ·log n)/8
many (T2, T3)-active neighbours in H(t).

Claim 1. Let v be a node inH(t)with |N(v, I(t))| ≤ d/2. ThenH(t)∩Lv[T2, T3] ≥
ρ log n

8 , with probability 1 −O(n−4).

The proof of this claim is omitted due to space limitations. Applying the claim,
we can assume for the rest of the proof that v has at least (ρ logn)/8 many
(T2, T3)-active neighbours in H(t). We say a node v ∈ H(t) is I(t)-good if it has
at least d/2 of its neighbours in I(t) (meaning |N(v, I(t))| ≥ d/2). Otherwise
the node is called I(t)-bad. In the following we show that every node that is
I(t)-bad (|N(v, I(t))| ≤ d/2) will receive the message from a node in I(t) either
directly via one of its I(t)-good neighbours, or via a longer path to a node in
I(t) consisting of nodes which are in H(t). Note that this shows the lemma since
it only states that nodes v ∈ H(t) with |N(v, I(t))| ≤ d/2 will be informed by
the end of Phase 5. We consider two cases.

Case 1: In Lv[T2, T3] ∩ H(t) are at least ρ · √logn I(t)-good nodes. Let U be
the set of I(t)-good neighbours of Lv[T2, T3]. Note that v receives the message in
[T2, T3] if there exists a node u ∈ U that received the message in Phase 4. This
holds since all nodes which receive the message for the first time in Phase 4 or
Phase 5 respond to every pull request. The probability that a node w ∈ U is still
uninformed at the end of Phase 4 (step t + ρ

√
logn) is at most (3/8)−ρ

√
log n.

This holds since for every τ ∈ [t, t+ρ
√

logn] the probability that w(τ) ∈ I(t) is
at least (d/2 − ρ log d− ρ

√
logn)/d ≥ 3/8 (ρ log d edges in Phase 3 and at most

ρ
√

logn edges in Phase 4 might have already been used for pull requests). For
ρ > 4, all nodes of U are still uninformed at time t+ ρ

√
logn with a probability

of at most (3/8)−ρ2(
√

log n)2 = o(n−4).

Case 2: In Lv[T2, T3] ∩ H(t) are fewer than ρ · √logn I(t)-good nodes. Due to
our assumption that v has at least ρ logn/8 many (T2, T3)-active neighbours in
H(t), at least (ρ/8) · logn − ρ

√
logn of v’s (T2, T3)-active neighbours (in H(t))

are I(t)-bad. Let U = w1, . . . wk be an arbitrary subset of size k =
√

f(n) logn
of the I(t)-bad neighbours of v. Now we step back in time and consider the
time interval [T1, T2]. Let U ′ =

⋃
w∈U Lw(T1, T2). We show that |U ′ ∩ H(t)| =

Ω(
√

f(n)(log n)3/2) with a probability of 1 − o(n−3). To bound the size of U ′ ∩
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H(t) we consider one node of U after the other. We define U ′
0 = ∅ and for

1 ≤ i ≤ k

U ′
i =

{
U ′

i−1 if |U ′
i−1| ≥

√
f(n) · (logn)3/2⋃i

j=1 Lwj [T1, T2] ∩H(t) otherwise.

Then we calculate the probability that the construction ends with |U ′
k| <

√
f(n)·

(logn)3/2.
Assume |U ′

i−1| <
√

f(n) · (log n)3/2 for some i. Then, for wi ∈ U and j ∈
Lwi [T1, T2] we have

Pr
[
j ∈ U ′

i−1
] ≤ √

f(n) · (logn)3/2 + ·ρ · logn/2
d− ρ logn

≤
√

f(n) · (logn)3/2 + (ρ · log n)/2
f(n) · (log n)3/2 − ρ logn

≤ 2√
f(n)

.

Here, the term
√

f(n) · (log n)3/2 stands for the maximum size of U ′
i−1, and the

additional term ρ · logn/2 for |Lwi [T0, T2]|. The term ρ logn in the denominator
represents an upper bound on the number of neighbours chosen already in Phases
3, 4, and 5.

By time step τ ∈ [T1, T2], wi used at most ρ log d+ (ρ logn)/2 < ρ logn many
edges for pull transmissions. Since we assumed that d = ω(log3/2 n), we can
argue that

Pr [ j ∈ I(t) ] ≤ d/2
d− (ρ logn)

≤ 5
8
.

Hence,

Pr
[
j ∈ I(t) ∪ U ′

i−1
] ≤ 2√

f(n)
+

5
8

≤ 3
4
,

regardless of the setsUi−1 and I(t). The expected number of nodes in Lwi [T1, T2]∩
(I(t) ∪ U ′

i−1) is at most (3ρ logn)/16 and we can apply Chernoff bounds [3] to
conclude that with probability 1 − O(n−4/

√
f(n) logn) we have Lwi [T1, T2] ∩

(I(t) ∪ U ′
i−1) ≤ 7ρ logn/32, and thus, |U ′

i | ≥ |U ′
i−1| + (ρ logn)/4 − 7ρ logn/32.

Since k =
√

f(n) · logn, with a probability of 1 − o(n−3) we have |U ′ ∩ H(t)| ≥
(ρ
√

f(n) · (logn)3/2)/32.

Next we show that the set of predecessors of any node w ∈ U ′ ∩ H(t) grows
the further we go backwards from T1 to T0. We define  = 40/α and divide the
time interval [T0, T1] into k′ = (T1 − T0)/ rounds of equal length (although
the interval [T0, T1] consists of T1 − T0 + 1 time steps we ignore the +1 in our
analysis). For 0 ≤ i ≤ k′ − 1 we define T̃i = [T1 − i · , T1 − (i + 1) · ] . Let

UH
0 =

⋃
w∈U ′∩H(t)

Lw[T̃0] ∩H(t) and U I
0 =

⋃
w∈U ′∩H(t)

Lw[T̃0] ∩ I(t)
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be the corresponding (T̃0-active) set of uninformed and informed neighbours of
w ∈ U ′ ∩H(t), respectively. For 1 ≤ i ≤ k′ − 1 we define

UH
i =

⋃
w∈UH

i−1

Lw[T̃i] ∩H(t) and U I
i =

⋃
w∈UH

i−1

Lw[T̃i] ∩ I(t).

For every node wi ∈ U I
i there is a path P = (wi, . . . , w0, w

′, w) to a node w ∈ U ,
where wi−1, . . . , w0, w

′, w ∈ H(t), and wj+1 is an active neighbour of wj in T̃j+1.
Hence, together UH

i and U I
i can be regarded as the i-th level of a tree routed

in w and, consequently (since w is an active neighbour of v), also in v. Nodes
in H(t) are inner nodes of the tree, and the leaves are nodes in I(t) or nodes in
H(t) on level k′−1. Note that nodes can occur several times on several different
levels of the tree.

In the following we argue that the amount of different leaves (informed nodes)
in the tree is w.h.p. at least ρ · (logn)3/2. Then we will show that the informed
leaves are sufficient to inform node v. Let

UH
0→i =

⎡⎣ i⋃
j=0

UH
j

⎤⎦ and U I
0→i =

⎡⎣ i⋃
j=0

U I
j

⎤⎦ .

According to Claim A 1, UH
0 ∪ U I

0 ≥ 8
α |U ′ ∩ H(t)|. Then, the following claim

shows that w.h.p. there exists a time interval i with |U I
0→i| ≥ ρ · (logn)3/2.

Claim 2. With a probability of 1 − O(n−3) there exists i ∈ {1, . . . , k′ − 1} with
U I

0→i > ρ · (logn)3/2.

The proof of this claim is omitted due to space limitations. Now let i ≤ k′−1 be
the value with U I

0→i > ρ · (log n)3/2. Using the claim we can easily argue that v
will get the message over a path starting at one of the nodes in U I

0→i. Recall that
every node u ∈ U I

0→i answers pull requests with a probability of 1/
√

logn. Since
for such a u there is a path P = (u,ws, . . . , w0, w

′, w, v) consisting of nodes in
H(t), all the nodes on this path answer every pull request. Hence, if there exists
a node u ∈ U I

0→i which answers the pull request at the time u was the active
neighbour of ws, v will be informed. This happens with a probability of

1 −
(

1 − 1√
logn

)ρ·(log n)3/2

≤ 1 − e−ρ log n ≤ 1 − o(n−3),

and the lemma follows. ��
Lemma 5. At the end of Phase 6 every node is informed with probability 1−n−2.

The proof of this lemma is omitted due to space limitations. By summarizing
the results of the lemmas of this section we obtain the following theorem.

Theorem 2. Assume G is a Edge-Node Expander. Algorithm Rr broadcasts a
message in G in time O(log n) by using O(n

√
logn) transmissions, w.h.p.
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In the next theorem we show that the result of Theorem 2 is tight up to a√
log logn factor. For the following bound we also assume the oblivious commu-

nication model. In this model, a node’s decision whether to transmit in a fixed
step can depend on the age of the message and on any information the node
might have aquired before the current step. However, the node’s decision is not
influenced by the ID’s of the nodes at the other end of a currently open channel.
We can assume that the nodes decide if they want to transmit in a fixed step
or not before the channels become opened. The proof of the theorem is omitted
due to space limitations.

Theorem 3. Assume A is a broadcast algorithm with runtime O(log n) in the
Rr communication model. There exists a family of Edge-Node Expanders for
which A needs Ω(n

√
(log n)/ log logn) message transmissions, w.h.p.

3 Conclusion

In this paper we presented upper and lower bounds for broadcasting in Edge-
Node Expanders. The results of this paper (together with the results of [10])
show that choosing different neighbours is very important to save on broadcast
communication. In this sense, model Rr can be regarded as more advantageous
than Random[c], which provides further evidence for the power of memory in
randomised broadcasting.
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A Appendix

Before we show Claim A 1 below, we first define the so called AdvRr model. This
model is similar to Rr, but the lists of the nodes are ordered by an adversary.
Then, each node chooses at the beginning a random place in the list to start
the communication. That is, if 1 ≤ l ≤ d is the random choice of node v, then v
communicates in step i with the neighbour (i + l) mod d + 1 from the list. To
create the list, the adversary may have total knowledge about the topology of
the network, but she cannot foresee any node’s random choice w.r.t. the position
selected at the beginning. Obviously, the result of the following claim also holds
in the Rr model.

Claim A 1. Let τ1, . . . , τi, . . . be the time intervals of Phase 1 and let ti be
the beginning of τi. Furthermore, we assume that the underlying communication
model is the AdvRr model, and there may be o(|I(ti)|) nodes in I+(τi−1) which
do not send the message in the whole time interval τi. Assume further that

|I(ti)| ≤ n

d
and |I(ti)| ≥ 8

α
· |I(ti−1)|.
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Then with a probability of 1 − n−3 we have

|I+(τi)| ≥ 8
α

· |I(ti)|.

Proof. We assumed that there are at most o(I(ti) = o(|I+(τi−1)|) nodes in
I+(τi−1) which do not transmit in time interval τi. We denote this subset of nodes
by I−(τi−1). Using the expansion properties of the graph and H(ti) ⊂ H(ti−1)
we obtain that |N(I+(τi−1) \ I−(τi−1), H(ti))| is at least

|N(I(ti), H(ti))| − |N(I(ti−1), H(ti))| − |N(I−(τi−1), H(ti))|
≥ |N(I(ti), H(ti))| − |N(I(ti−1), H(ti−1))| − |N(I−(τi−1), H(ti))|
≥ α · d · |I(ti)| − d · |I(ti−1)| − d · o(|I(ti)|)
≥ α · d · |I(ti)| − d · α

8
· |I(ti)| − o(d|I(ti)|)

=
7
8
· α · d · |I(ti)|(1 − o(1)).

The last inequality holds due to the second precondition of the claim. Every
node v ∈ I+(τi−1) \ I−(τi−1) performs  = 40/α2 push transmissions in time
interval τi. Now fix node u ∈ N(I+(τi−1) \ I−(τi−1)) and assume the node has
r neighbours in I+(τi−1) \ I−(τi−1). Then

Pr
[
u ∈ I+(τi)

]
= 1 −

(
1 − 40

α2d

)r

≥ 1 −
(

1 − 40
α2d

)
=

40
α2d

.

By linearity of expectations we get

E
[ |I+(τi)|

] ≥ (
7
8
· α · d · |I(ti)|(1 − o(1))

)
·
(

40
α2d

)
≥ 35

α
· |I(ti)|(1 − o(1)).

For v ∈ I+(τi−1), let Sv = {s1
v, . . . s

�
v} be the random variables determining

the choices of v, i.e. determining the nodes to which v opens a channel in the
interval τi, and let S =

⋃
v∈I+(τi−1)\I−(τi−1) Sv. Note that the choices in Sv and

Sw are independent from each other for v �= w. Since every v ∈ I+(τi−1) can
only inform at most 40/α2 in time interval τi, I+(τi) satisfies the 40/α2-Lipschitz
condition and the method of independent bounded differences [17] gives

Pr
[
I+(τi) ≤ E

[
I+(τi)

]− λ
] ≤ exp

(
− λ2

2|I+(τi)|(40/α2)2

)
.

With λ = 27|I(ti)|/α we can conclude that

Pr
[
I+(τi) ≤ 8

α
· |I(ti)|

]
≤ exp (−O(log n)) ≤ n−3,

since |I(ti)| ≥ ρ · logn with a sufficiently large ρ. ��
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Abstract. We consider random instances of the MAX-2-XORSAT op-
timization problem. A 2-XOR formula is a conjunction of Boolean equa-
tions (or clauses) of the form x⊕y = 0 or x⊕y = 1. The MAX-2-XORSAT
problem asks for the maximum number of clauses which can be satisfied
by any assignment of the variables in a 2-XOR formula. In this work,
formula of size m on n Boolean variables are chosen uniformly at random
from among all

(
n(n−1)

m

)
possible choices. Denote by Xn,m the minimum

number of clauses that can not be satisfied in a formula with n variables
and m clauses. We give precise characterizations of the r.v. Xn,m around
the critical density m

n
∼ 1

2
of random 2-XOR formula. We prove that

for random formulas with m clauses Xn,m converges to a Poisson r.v.
with mean − 1

4
log(1 − 2c) − c

2
when m = cn, c ∈]0, 1/2[ constant. If

m = n
2
− μ

2
n2/3, μ and n are both large but μ = o(n1/3), Xn,m−λ√

λ
with

λ = log n
12

− log μ
4

is normal. If m = n
2

+ O(1)n2/3, Xn,m− log n
12√

log n
12

is normal.

If m = n
2

+ μ
2
n2/3 with 1 � μ = o(n1/3) then 12Xn,m

2μ3+log n−3 log(μ)

dist.−→1. For

any absolute constant ε > 0, if μ = εn1/3 then 8(1+ε)

n(ε2−σ2)
Xn,m

dist.−→1 where
σ ∈ (0, 1) is the solution of (1 + ε)e−ε = (1 − σ)eσ. Thus, our findings
describe phase transitions in the optimization context similar to those
encountered in decision problems.

Keywords: MAX XORSAT, Constraint Satisfaction Problem, Phase
transition, Random graph, Analytic Combinatorics.

1 Introduction

1.1 Context and Previous Works

The last decade has seen a growth of interest in phase transition for Boolean sat-
isfiability (SAT) and more generally for Constraint Satisfaction Problems (CSP).
For k ≥ 2, the random version of k-SAT is known to exhibit sharp phase tran-
sition [19] : for a given number of variables and as the number of clauses in the
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formula is increased, it shows a phase transition from almost-sure satisfiability to
almost-sure unsatisfiability around a critical threshold point. For general CSP,
determining the nature of the phase transition (sharp/coarse [8,9]), locating it
(see e.g. [1,14,20]), determining a precise scaling window (cf. [5,10]) and un-
derstanding the structure of the space of solutions (cf. [2,6]) represent the main
tasks. These challenging problems have involved different communities including
those from computer science, mathematics and physics (see e.g. [15,18]). As far
as we know, the results of Coppersmith, Hajiaghayi, Gamarnik and Sorkin [6]
are the closest to ours in the litterature. Given a conjunctive normal form (CNF)
formula F on n variables and with m clauses, denote by maxF the maximum
number of clauses satisfiable by a single assignment of the variables. By means
of method of moments, algorithmic analysis and martingale arguments, the au-
thors of [6] were able to quantify the expectation of maxF . In [10], Daudé and
Ravelomanana were able to give the precise description of the SAT/UNSAT
transition of 2-XORSAT as the density of clauses is increased. If [10] quantifies
the SAT/UNSAT probabilities corresponding to the polynomial-time decision
problem 2-XORSAT, in the current paper, we deal with the corresponding hard
optimization problem MAX-2-XORSAT.

1.2 Our Contribution and Organization of the Paper

As mentioned by Coppersmith et al. in their paper (see [6, Section 9. Conclusion
and open problems]) which studied MAX CUT, MAX k-XORSAT is an obvious
candidate of these families to study. The XORSAT problem is a variant of SAT
and has been introduced in [7]. Since then, it has aroused a lot of interest both
as an alternative to the SAT problem [10,14] and as a generalization of MAX
CUT.

In this paper, we consider random instances of MAX 2-XORSAT. More pre-
cisely, formula of size m on n Boolean variables are chosen uniformly at random
from among all

(
n(n−1)

m

)
possible choices. In order to cope with the maximum

number of satisfiable clauses, denote by Xn,m the minimum number of clauses
that can not be satisfied in a formula with n variables and m clauses. We then
provide precise results about the random variable Xn,m as m ≡ m(n) increases.
Since the maximum number of satisfiable clauses is m−Xn,m, the characteriza-
tion of the r.v. Xn,m is obviously crucial. We will consider formula in different
regions according to the density of their underlying graph, the sub-critical region
whenever n− 2m � n2/3, the critical region when n − 2m = ±O(n2/3) and the
super-critical region when 2m− n � n2/3.

Using enumerative and analytic combinatorics [17], we obtain our results con-
densed in the following:

Theorem 1. Let Xn,m be the minimum number of unsatisfiable clauses in a
random 2-XOR formula with n variables and m clauses. Then, Xn,m satisfies:

• For m = cn s.t. c constant and 0 < c < 1
2 ,

Xn,m
dist.−→ Poisson

(
−1

4
log(1 − 2c) − c

2

)
. (1)
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• For m = n
2 (1 − μn−1/3) where 1 � μ = o(n1/3),

Xn,m − log n
12 + log μ

4√
log n
12 − log μ

4

dist.−→ N (0, 1) . (2)

• For m = n
2 + O(1)n2/3,

Xn,m − log n
12√

log n
12

dist.−→N (0, 1) . (3)

• For m = n
2 (1 + μn−1/3) where 1 � μ = o(n1/3),

12Xn,m

2μ3 + logn− 3 log(μ)
dist.−→ 1 . (4)

• For m = n
2 (1 + ε),

8(1 + ε)
n(ε2 − σ2)

Xn,m
dist.−→ 1 , (5)

where ε > 0 is any positive absolute constant and σ is the unique solution of
(1 + ε)e−ε = (1 − σ)eσ with σ ∈ (0, 1).

Theorem 1 shows that just as random instances of the decision problem 2-
XORSAT exhibit a phase transition from almost-sure satisfiability to almost-sure
unsatisfiability (around the critical density m

n = 1
2 ), the corresponding maxi-

mization problem undergoes a transition at the same point. The expectation of
the minimum number of unsatisfiable clauses rises quickly from Θ(1) to Θ(n).
Though our results draw on the structure of the components of the classical ran-
dom graph G(n,m) (e.g. [4,25]), we note that the MAX-2-XORSAT problem is
an NP-complete problem. Thus, obtaining any combinatorial description of the
quantity of interest is extremely difficult. Consequently, the results described by
the theorem above are not trivial, especially in the super-critical region. In fact,
if (1), (2) and (3) can be viewed as ‘subsequent’ results from random graph the-
ory, to obtain (4) and (5) many combinatorial arguments are needed as shown
in Section 3. We should point out that by (1), (2), (3), (4) and (5), Xn,m evolves
in a ‘continuous’ fashion. Note also that in a previous work and using different
methods, Coppersmith, Hajiaghayi, Gamarnik and Sorkin [6] obtained the ex-
pectation of the maximum number of satisfiable clauses in a CNF formula. In
our paper, we restrict our attention on the MAX-2-XORSAT problem, but we
give more precise results since Theorem 1 offers the limit distributions of the
minimum number of unsatisfiable clauses in 2-XORSAT formula with various
densities. Note that due the lack of precise enumerative results, we are enable
to obtain non-degenerate limit laws for the cases (4) and (5).

This paper is organized as follows. Section 2 gives some enumerative back-
ground for our investigation. It also offers the proofs of (1) and of (2). The proof
of (3) is omitted due to lack of space. In Section 3, we will enumerate connected
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cactus graphs or Husimi trees (see e.g. [22,23]) according to their number of
vertices and edges. Then, using these enumerative results together with combi-
natorial arguments and analytical tools, we will prove (4) and (5).

2 The Sub-critical and Critical Regions

In order to study random MAX-2-XORSAT, we will use enumerative/analytic
methods by means of generating functions [22,17]. The correspondence between
satisfiable formula and edge-weighted 0/1 graphs (or shortly weighted graphs)
has been shown in [10]. In the following, we will recall briefly that a formula
is satisfiable if and only if its associated weighted graphs has no cycle of odd
weight.

2.1 2-XORSAT, Weighted Graphs and MAX-2-XORSAT

A 2-XOR-clause or shortly a clause is a linear equation over the finite field
GF (2) using exactly 2 variables, C = ((x1 ⊕ x2) = ε) where ε = 0 or 1. A
2-XOR-formula or simply a formula is a conjunction of distinct 2-XOR-clauses.

A truth assignment I is a mapping that assigns 0 or 1 to each variable in its
domain. It satisfies a 2-XOR-clause C = ((x1 ⊕x2) = ε) iff (I(x1) + I(x2)) mod
2 = ε. A truth assignment satisfies a formula s iff it satisfies every clause in
s. The set of 2-XOR-formula that are satisfiable (resp., unsatisfiable) will be
denoted shortly SAT (resp. UNSAT). Observe that every formula that contains
an unsatisfiable sub-formula is itself unsatisfiable. In the terminology of random
graph theory, SAT (resp. UNSAT) is a decreasing (resp. increasing) property.

Throughout this paper we reserve n for the number of variables ({x1, . . . , xn}
denotes the set of variables). There are N = 2

(
n
2

)
= n(n − 1) different 2-XOR-

clauses over n variables. We consider random formula obtained by choosing uni-
formly, independently and without replacement m clauses from the N possible
2-clauses. This defines a discrete probability space (Ω(n,m), Pn,m) whose asso-

ciated probability is the uniform law : ∀s ∈ Ω(n,m) Pn,m(s) =
(
n(n−1)

m

)−1
.

In [10], the authors gave very precise estimates of the probability that a formula
drawn at random from Ω(n,m) is SAT, that is in estimating

p(n,m) := Pn,m

(
2XORSAT

)
.

Each formula s in Ω(n,m) can be represented by a weighted graph G(s) with n
vertices (one for each variable) and m weighted (0 or 1) edges. For each equation
xi ⊕xj = ε, we add the edge {xi, xj} weighted by ε. The weight of a graph is the
sum of the weights of its edges. Observe that our weighted graphs are without
self-loops and that the underlying graph of a satisfiable formula is always simple
(without multiple edges). We have, as noticed in [8,10]:

p(n,m) = Pn,m

(
G(s) has no cycle of odd weight

)
.
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We are interested in the maximum number of satisfiable clauses or equivalently
the minimum number of unsatisfiable clauses. According to the correspondence
between random 2-XORSAT formula and its underlying weighted graphs, the
random variable Xn,m defined in Theorem 1 can be (simply) described as follows:

Proposition 1. Given a formula s and its graph G(s), Xn,m is the minimum
number of edges to suppress in G(s) in order to obtain a weighted graph without
cycle of odd weight.

2.2 Exponential Generating Functions

As shown in [16] and [24], exponential generating functions (EGFs) can lead
to stringent results about the main characteristics of random graphs when they
apply. In this paragraph, let us recall briefly the main EGFs involved in our
proofs. In particular, we refer the reader to Harary and Palmer [22] for EGFs
related to graphical enumeration.

The number of (unweighted) trees on n labelled vertices is given by Cayley’s
formula nn−2 and its EGF is given by

W−1(z) = t(z) − t(z)2

2
where t(z) = zet(z) =

∞∑
n=1

nn−1 z
n

n!
. (6)

The EGF of unicyclic components (connected components with n vertices and
n edges) is given by

W0(z) = −1
2

log (1 − t(z)) − t(z)
2

− t(z)2

4
. (7)

As in [24], the excess of a connected component is the number of its edges minus
the number of its vertices. Thus, the excess of the trees enumerated by (6) is −1,
the excess of unicyclic components (7) is 0 and so on. For any  ≥ 1, Wright [29]
gave a method to compute all the EGFs of components of excess . As in Janson,
Knuth, �Luczak and Pittel [24], connected components of excess > 0 are called
complex. An -component is a connected component with  edges more than
vertices, i.e. it has excess .

For our purpose, let us decompose the random variable Xn,m into two parts:
Given a random 2-XOR-formula s and its underlying weighted graph G(s), let
Yn,m (resp. Zn,m) be the minimum number of edges to be removed from G(s)
in order to suppress all odd weighted unicyclic (resp. complex) components. By
definition, we have Xn,m = Yn,m + Zn,m.

2.3 Proof of (1) and (2)

In [10, Theorem 3.2], it is shown that the probability that a random unweighted
graph built with n vertices and m edges has no complex components is

1 −O

(
n2

(n− 2m)3

)
, (8)
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as n and m tend to infinity but n − 2m � n2/3. Consequently, in these ranges1

Zn,m = Op

(
n2

(n−2m)3

)
. Thus, (2) is proved by means of the Theorem 2 below

and the dominated convergence theorem.

Theorem 2. Let m = n
2 (1−μn−1/3). If n and μ tend to infinity but μ = o(n1/3)

then the following holds:
(a) Define

β(n) =
1
12

log(n) − 1
4

log(μ) − 1
4

+
1
4
μn−1/3 = −1

4
log
(

1 − 2m
n

)
− m

2n
. (9)

For all R = O(β(n)), we have

P (Yn,m = R) = e−β(n)β(n)R

R!

(
1 + O

(
1
μ3

))
. (10)

(b) There exists R0 and constants C, ε > 0, such that ∀R > R0

P (Ym,n = R) ≤ Ce−εR . (11)

Proof. Let Cs,� be the generating functions of connected weighted graphs of
excess  such that exactly s edges have to be suppressed to obtain graphs without
odd weight cycles. Using symbolic methods of EGFs [17], we easily obtain

C0,−1(z) = T (z) − T (z)2 , C1,0(z) =
1
4

log
(

1
1 − 2T (z)

)
− T (z)

2
and

C0,0(z) =
1
4

log
(

1
1 − 2T (z)

)
− T (z)

2
− T (z)2

2
,

where T (z) = z exp(2T (z)) =
∑

n≥1(2n)n−1zn/n! is the EGF for weighted
rooted trees. Therefore, the probability that a random weighted graph contains
only trees, unicyclic components of even weight and R unicyclic components of
odd weight is2

pR(n,m) =
n!(

n(n−1)
m

) [zn]

(
T (z) − T (z)2

)n−m

(n −m)!
exp(C0,0(z))

C1,0(z)R

R!
. (12)

Substituting u = 2T (z), we get

pR(n,m) =
1(

n(n−1)
m

) n!
(n −m)!

4m

2n

1
R!

1
2πi

∮
g1(u)g2,R(u)enh(u) du

u
, (13)

1 As in Janson, �Luczak and Rucinsḱı [25, p. 10], if Xn are r. v. and an are real numbers
we write Xn = Op(an) as n → ∞ if for every δ > 0 there exists constants Cδ and n0

s.t. P(|Xn| ≤ Cδan) > 1 − δ for every n ≥ n0.
2 If A(z) =

∑
n anzn is a power series, [zn]A(z) = an.
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with

g1(u) = (1 − u)3/4 exp(−u/4 − u2/8) ,

g2,R(u) = (− log(1 − u) − u)R /4R ,

h(u) = u− log(u) + (1 −m/n) log(2u− u2) .

We have h′(1) = 0 , h′(2m/n) = 0 and h′′(2m/n) = 1
4

(−n+2 m)n
m(−n+m) > 0. Applying

the saddle-point method for (13) by choosing a path of integration {u/|u| =
2m/n}, using the probability that the random graph has no complex compo-
nents, viz. (8), after some algebra we get (10). The part (b) of the theorem is
proved by bounding (13).

Corollary 1. If n, m = n
2 (1 − μn−1/3) → ∞ such that 1 � μ = o(n1/3) then

for x ∈ R we have

P

(
Yn,m − β(n)√

β(n)
≤ y

)
→ 1√

2π

∫ y

−∞
e−x2/2dx , (14)

where β(n) is given by (9).

Using similar methods, we obtain the following result for values ofm s.t. lim m
n < 1

2 :

Theorem 3. If m = cn with lim supn→∞ c < 1/2 then for R ∈ N

P(Yn,m = R) = e−γ(c)γ(c)R

R!

(
1 + O

(
1
n

))
, (15)

where
γ(c) = −1

4
log(1 − 2c) − c

2
. (16)

Remark. Due to the page limitation, the proof of (3) is omitted in this extended
abstract.

3 The Super-Critical MAX-2-XORSAT

As the number of clauses of s reaches m = n
2 + μn2/3 with μ ≡ μ(n) � 1,

almost surely there is a unique giant component in G(s) of excess O(μ3) [24,27].
Hence, in contrary to the previous sections, we need to take into account the
odd weighted cycles in this unique complex component. Recall that Cs,� is the
EGF of connected weighted graphs of excess  such that exactly s edges have
to be suppressed to obtain graphs without odd weight cycles. The power series
C0,�,  ≥ −1, have been computed in [10] and we have:

C0,�(z) =
W�(2z)

2
, ∀ ≥ −1 , (17)
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where W� is the Wright’s EGFs of connected unweighted graphs of excess 
(see [29]). We find C�+1,� (see paragraph 3.2 below) but it turns out that finding
the EGF Cs,� for general  and s ≥ 1 is an extremely difficult enumeration
problem (probably the difficulty is intrinsic to the NP-completeness of MAX-2-
XORSAT). Nevertheless, we succeed to find (4) and (5) of Theorem 1 and the
main ideas of their proofs relies on the following:

• First, we will find an upper-bound of Cs,�. This bound implies that with
high probability, the minimum number of edges to delete in Cs,� (in order
to suppress all cycles of odd weight) is at least �

4 − o().
• Next, we count connected weighted cactus graphs. Cactus graphs are defined

as graphs where every edge belongs to at most one cycle3. By using the EGF of
connected cactus graphs, we will show that in connected components of excess
, with high probability the number of edges to suppress is at most �

4 + o().

3.1 Upper-Bound of Cs,� and Lower-Bound of the Number of Edges
to Delete

In this paragraph, we will prove that the EGFs Cs,� satisfy the following:

Lemma 1

∀s ≥ 0 , Cs,�(z) �
2s∑

i=s

(
 + 1
i

)
C0,�(z) + Bs,�(z) . (18)

with Bs,�(z) is the EGF of all −components with multiedges.

Proof. Given a connected graph G of excess , it can be associated to its  + 1
fundamental cycles. In fact, let T be a spanning tree of G, and a be any of the
( + 1) edges in G \ T . The graph T ∪ a has a unique cycle Ca and in graph
terminology (see for instance [13]) the (+1) cycles Ca form a basis of the cycle
space associated to G. An edge can be shared by many fundamental cycles.
Suppose that initially G has no cycles of odd weight. We can modify this graph
by flipping the weight of an edge e in a path. The fact of choosing e and changing
its weight is similar to the one of changing the weights of all the cycles containing
this path. This is equivalent to the choice of at most 2 of the fundamental cycles
in order to modify their weights. Recursively, the choice of s edges in s different
paths in order to change their weights is similar to the choice of at least s and at
most 2s cycles among the + 1 fundamental cycles. The components containing
multiple edges are not taken into account by this construction. Hence, we have
the additional term Bs,�(z) denoting the EGF of these components.

As a consequence, using the concentration of the binomial coefficients and since
[zn]Bs,� � [zn]C0,�, it yields:

Lemma 2. Let Z� be the number of edges to remove from an -component in
order to obtain a component without odd cycles. Define c() as a function of

3 Also known as Husimi trees or cactus trees.
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 such that
√

log( + 1) � c() � ( + 1)1/6 for large values of . For any
s ≤ �+1

4 − c()
√
 + 1 and large , we have

P (Z� = s) ≤ e−4c(�)2+ 1
2 log(�+1) . (19)

3.2 Enumeration of Spanning Cactus Graphs and Probabilistic
Upper-Bound of the Excess of Complex Components

Let Ξs be the EGFs of unweighted connected cactus with s cycles. Clearly,
Cs,s−1(z) = Ξs(z) and Ξs(z) can be obtained via standard enumerative tools.
Thus, using analytic combinatorics it can be proved that the EGF Ξs(z) ’be-
haves’ as ξs

(1−t(z))3s−3 with

ξs =
1
6

(
3
2

)s−1 3s/2
√

2πs3(s− 1)

(
1 + O

(
1
s

))
. (20)

Now, we are ready to show that almost surely a cactus graph Λ of excess �
2 +o()

can not span4 a connected component of excess . In fact, we have the following
lemmas:

Lemma 3. Let Υs,� be the EGFs of connected graphs of excess  obtained by
adding − s edges to cacti of Ξs+1 (of excess s), then as both  and s are large

Υs,�(z) � ξs+1

(
9
2

)�−s Γ ()Γ
(
 + 2

3

)
Γ (s)Γ

(
s + 2

3

) 1
(1 − t(z))3�

. (21)

Proof. The proof makes use of combinatorial operators corresponding to the
marking of an edge and then unselecting it (see e.g. [21,3,17]). Recall that Υs,�

is the EGF of connected graphs of excess  obtained by adding  − s edges to
cacti of Ξs+1. We repeatedly proceed −s times the two following combinatorial
operations:

(OP1). We add an edge to Ξs+1. To do so, we have to choose 2 distinguished
and not connected vertices. For a graph of size n, the number of such choices is
less than n!

(
n
2

)
[zn]Ξs+1(z). Thus, the combinatorial operator is z2

2!
∂2z
∂z2 applied

on Ξs+1(z).
(OP2). The edge added in (OP1) is marked. We have to unmark this edge. We
know that the last added edge belongs to a smooth graph (obtained by the
pruning, i.e., reducing recursively all vertices of degree 1 from the original graph
of Ξs+1). Hence, the operators (OP1) and (OP2) applied on graphs of Ξs leads
to an upper-bound of the form : (1 − t(z)) z2

2!
∂2z
∂z2Ξs+1(z).

Lemma 4. For any fixed real number x, the probability that a cactus from
Ξs = �

2+( 3
8 log 3+ 1

2 log 2+x) �
log �

spans an -component is at most e−2x�.

4 A spanning cactus of a graph G is subgraph of G that is a cactus and connects all
of the vertices of G.
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Proof. (Sketch.) The proof involves the enumerative results from paragraph 3.2
and Lemma 3.

Corollary 2. Let smax ≡ smax() be the r.v. denoting the maximum excess of a
cactus spanning an -component, then for large values of 

∀x > 0, P
[
smax ≤ 

2
+
(3

8
log 3 +

1
2

log 2 + x
) 

log 

]
≥ 1 − e−2x� . (22)

3.3 Analytic Results for the Super-Critical Region

Lemma 5. If s edges have to be removed in an -component in order to suppress
all cycles of odd weight then the component has at most s fundamental odd
weighted and pairwise disjoint5 cycles.

Proof. Recall that an −component contains no odd weighted cycle if and only
if it has no fundamental cycle of odd weight [10]. If we need to remove s edges, it
has obviously at least s fundamental cycles of odd weight. Only s of these cycles
are pairwise disjoint. If at least s + 1 of these cycles are pairwise disjoint, they
cannot be eliminated by removing at most s edges.

Lemma 6. Let Z� the r.v. given in Lemma 2. For any real positive x, if  → ∞
we have

P

(


4
− c()

√
 ≤ Z� ≤ 

4
+ (c0 + x)



2 log()

)
≥ 1 − e−2x� − e−2c(�)2+ 1

4 log(�) ,

where c() is any function satisfying log  � c()2 � 1/3 and c0 = 3
8 log 3 +

1
2 log 2.

Proof. By means of lemma 2, corollary 2 and lemma 5.

Finally as μ is large but m = O(n), Yn,m is at most Op(logn) and for the r.v
Zn,m, we have the following result:

Theorem 4. Let m = n
2 + μn2/3

2 . If μ = O(n1/3) and tend to infinity, we have

P

(
Zn,m ∼ 

4

)
≥ 1 − e−O(�) − e−2c(�)2+ 1

4 log(�) , (23)

where  ∼ 2
3

(2m−n)3

n2 if μ = o(n1/3) and  ∼ ε2−σ2

2(1+ε)n if μ = εn1/3. σ ∈ (0, 1) is
the unique solution of (1 + ε)e−ε = (1− σ)eσ and c() is any function satisfying
log  � c()2 � 1/3.

Proof. Equation (23) follows from Lemma 6. We know from the theory of random
graphs [27] that the excess of the (almost surely) unique giant component of
G(n,m = n

2 +μn2/3

2 ) is Gaussian (throughout the whole supercritical phase, viz.
from μ = o(n1/3) to μ = εn1/3). For μ = o(n1/3), the expected excess of the giant
component is ∼ 2

3μ
3 whereas if μ = εn1/3 the excess of the giant component is

centered at ε2−σ2

2(1+ε)n.

5 We say two cycles are disjoints if and only if they have no common edge.



330 V. Rasendrahasina and V. Ravelomanana

4 Conclusion

We have presented a work on random MAX-2-XORSAT based on enumera-
tive/analytic approaches. Our results establish that as the random formula are
enriched with more clauses, the number of satisfiable clauses diminishes dramat-
ically around the critical density 1

2 . In particular, we have shown how one can
quantify the minimum number of unsatisfiable clauses for random instances of
the MAX-2-XORSAT problem when the ratio number of clauses over number
of variables is about 1

2 . For the supercritical cases, our results are obtained by
counting cactus spanning subgraphs. These techniques that allow us to compute
the most probable excess of these specific subgraphs are of independent inter-
est and can be generalized in order to study other instances of MAX-2-CSP
problems.
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9. Creignou, N., Daudé, H.: Coarse and sharp transitions for random generalized
satisfiability problems. In: Proc. of the third Colloquium on Mathematics and
Computer Science, pp. 507–516. Birkhäuser, Basel (2004)
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Abstract. A predicate P : {−1, 1}k → {0, 1} can be associated with a
constraint satisfaction problem Max CSP(P ). P is called “approxima-
tion resistant” if Max CSP(P ) cannot be approximated better than the
approximation obtained by choosing a random assignment, and “approx-
imable” otherwise. This classification of predicates has proved to be an
important and challenging open problem. Motivated by a recent result
of Austrin and Mossel (Computational Complexity, 2009), we consider a
natural subclass of predicates defined by signs of quadratic polynomials,
including the special case of predicates defined by signs of linear forms,
and supply algorithms to approximate them as follows.

In the quadratic case we prove that every symmetric predicate is ap-
proximable. We introduce a new rounding algorithm for the standard
semidefinite programming relaxation of Max CSP(P ) for any predicate
P : {−1, 1}k → {0, 1} and analyze its approximation ratio. Our round-
ing scheme operates by first manipulating the optimal SDP solution so
that all the vectors are nearly perpendicular and then applying a form
of hyperplane rounding to obtain an integral solution. The advantage of
this method is that we are able to analyze the behaviour of a set of k
rounded variables together as opposed to just a pair of rounded variables
in most previous methods.

In the linear case we prove that a predicate called “Monarchy” is
approximable. This predicate is not amenable to our algorithm for the
quadratic case, nor to other LP/SDP-based approaches we are aware of.

1 Introduction

This paper studies the approximability of constraint satisfaction problems
(CSPs). Given a predicate P : {−1, 1}k → {0, 1}, the Max CSP(P ) problem is
defined as follows. An instance is given by a list of k-tuples (clauses) of literals
over some set of variables x1, . . . , xn, where a literal is either a variable or its
negation. A clause is satisfied by an assignment to the variables if P is satisfied
when applied to the k literals of the clause. The goal is then to find an assignment
to the variables that maximizes the number of satisfied clauses. Our specific inter-
est is predicates of the form P (x) = 1+sign(Q(x))

2 where Q : Rk → R is a quadratic

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 332–343, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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polynomial with no constant term, i.e., Q(x) =
∑k

i=1 aixi +
∑

i�=j bijxixj for
some set of coefficients a1, . . . , an and b11, . . . , bnn. While this special case is
arguably very rich and interesting in its own right, we give some further motiva-
tions below. But first, we give some background to the study of Max CSP(P )
problems in general.

A canonical example of a Max CSP(P ) problem is when P (x1, x2, x3) =
x1∨x2∨x3 is a disjunction of three variables, in which case Max CSP(P ) is the
classic Max 3-Sat problem. Another well-known example is the Max 2-Lin(2)
problem in which P (x1, x2) = x1 ⊕ x2. As Max CSP(P ) is NP-hard for almost
all choices of P (the only case for which it is not NP-hard is when P depends on at
most 1 variable), much effort has been put into understanding the best possible
approximation ratio achievable in polynomial time. A (randomized) algorithm is
said to have approximation ratio α ≤ 1 if, given an instance with optimal value
Opt, it produces an assignment with (expected) value at least α · Opt.

The arguably simplest approximation algorithm is to pick a uniformly ran-
dom assignment. As this algorithm satisfies each constraint with probability
|P−1(1)|

2k it follows that it gives an approximation ratio of |P−1(1)|
2k . In their clas-

sic paper [5], Goemans and Williamson used semidefinite programming to ob-
tain improved approximation algorithms for predicates on two variables. For
instance, for Max 2-Lin(2) they gave an algorithm with approximation ratio
αGW ≈ 0.878. Following [5], many new approximation algorithms were found for
various specific predicates, improving upon the random assignment algorithm.
However, for some cases, perhaps most prominently the Max 3-Sat problem,
no such progress was made. Then, in another classic paper [7], H̊astad proved
that Max 3-Sat is in fact NP-hard to approximate within 7/8+ ε, showing that
a random assignment in fact gives the best possible worst-case approximation
that can be obtained in polynomial time.

Predicates which exhibit this behavior are called approximation resistant.
One of the main open questions along this line of research is to characterize
which predicates admit a non-trivial approximation algorithm, and which pred-
icates are approximation resistant. For predicates on three variables, the work
of H̊astad together with work of Zwick [13] shows that a predicate is resistant
iff it is implied by an XOR of the three variables, or the negation thereof, where
a predicate P is said to imply a predicate P ′ if P (x) = 1 ⇒ P ′(x) = 1. For four
variables, Hast [6] made an extensive classification leaving open the status of 46
different predicates.

There have been several papers [11,3,12], mainly motivated by the soundness-
query trade off for PCPs, giving increasingly general conditions under which
predicates are approximation resistant. In a recent paper [2], the first author and
Mossel proved that, if there exists an unbiased pairwise independent distribution
on {−1, 1}k whose support is contained in P−1(1), then P is approximation
resistant under the Unique Games Conjecture [10]. This condition is very general
and turned out to give many new cases of resistant predicates [1]. A related result
by Georgiou et al [4] that is independent of complexity assumptions, shows that
under the same condition on P , the so-called Sherali-Admas hierarchy—which is
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in some sense the strongest version of the Linear Programming approach—does
not beat a random assignment. Indeed, when it comes to algorithms, there are
very few systematic results that give algorithms for large classes of predicates.
One such result can be found in [6]. Given the result of [2], such systematic
results can only work for predicates that do not support pairwise independence.
A very natural subclass of these predicates are those of the form 1+sign(Q)

2 for
Q a quadratic polynomial as described above. To be more precise, the following
fact from [1] is our main motivation for studying this type of predicates.

Fact 1. A predicate P does not support pairwise independence if and only if
there exists a quadratic polynomial Q : {−1, 1}k → R with no constant term that
is positive on all of P−1(1) (in other words, P implies a predicate of such form).

Given that the main tool for approximation algorithms—semidefinite
programming—works by optimizing quadratic forms, it seemed natural and intu-
itive to hope that predicates of this form are always approximable. This however
turns out to be false—H̊astad [8] constructs a predicate that is the sign of a
quadratic polynomial and still approximation resistant. Loosely speaking, the
main crux is that semidefinite programming is good for optimizing the degree-2
part of the Fourier expansion of a predicate, which unfortunately can behave
very differently from P itself or the quadratic polynomial used to define P (we
elaborate on this below.) However, it turns out that when we restrict our atten-
tion to the special case of symmetric predicates, this can not happen, and we
can obtain an approximation algorithm, which is our first result.

Theorem 1. Let P : {−1, 1}k → {0, 1} be a predicate that is of the form P (x) =
1+sign(Q(x))

2 where Q is a symmetric quadratic polynomial with no constant term.
Then P is not approximation resistant.

A very natural special case of the signs of quadratic polynomials is the case
when P (x) = 1+sign(

∑
aixi)

2 is simply the sign of a linear form, i.e., a linear
threshold function. While we cannot prove that linear threshold predicates are
approximable in general, we do believe this is the case, and make the following
conjecture.

Conjecture 1. Let P : {−1, 1}k → {0, 1} be a predicate that is a sign of a linear
form with no constant term. Then P is not approximation resistant.

We view the resolution of this conjecture as a very natural and interesting open
problem. As in the quadratic case, the difficulty stems from the fact that the
low-degree part of P can be unrelated to the linear form used to define P . Specif-
ically, it can be the case that the low-degree part of the arithmetization of P
vanishes or becomes negative for some inputs where the linear/quadratic poly-
nomial is positive (i.e. accepting inputs), and unfortunately this seems to make
the standard SDP approach fail. The perhaps most extreme case of this phe-
nomenon is exhibited by the predicate Monarchy : {−1, 1}k → {0, 1} suggested
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by H̊astad [8], in which the first variable (the “monarch”) decides the outcome,
unless all the other variables unite against it. In other words,

Monarchy(x) =
1 + sign((k − 2)x1 +

∑k
i=2 xi)

2
.

Now, for the input x1 = −1, x2 = . . . = xk = 1, the linear part of the Fourier
expansion of Monarchy takes value −1 + ok(1), whereas the linear form used to
define monarchy is positive on this input, hence the value of the predicate is
1. Again, we stress that this means that known algorithms and techniques do
not apply. However, in this case we are still able to achieve an approximation
algorithm, which is our second result.

Theorem 2. The predicate Monarchy is not approximation resistant.

This shows that there is some hope in overcoming the apparent barriers to
proving Conjecture 1.

Techniques: Our starting point in both our algorithms is the standard SDP re-
laxation of Max CSP(P ). The main difficulty in rounding the solutions of these
SDPs is that current rounding algorithms offer no analysis of the joint distribution
of the outcome of the rounding for k variables, when k > 2. (Interestingly, when
some modest value k = 3 is used, often some numerical methods are employed
to complete the analysis [9,13].) Unfortunately, such analysis seems essential to
understanding the performance of the algorithm for Max CSP(P ) as each con-
straint depends on k variables. Indeed, even a local argument would have to argue
about the outcome of the rounding algorithm for k variables together.

For Theorem 1, we give a new, simpler proof of a theorem by Hast [6], giving a
general condition on the low-degree part of the Fourier Expansion which guaran-
tees a predicate is approximable (Theorem 4). We then show that this condition
holds for predicates which are defined by symmetric quadratic polynomials. The
basic idea behind our new algorithm is as follows. First, observe that the SDP
solution in which all vectors are perpendicular is easy to analyze when the usual
hyperplane rounding is employed, as in this case the obtained integral values
are distributed uniformly. This motivates the following approach: start with the
perpendicular configuration and then perturb the vectors in the direction of the
optimal SDP solution. This perturbation acts as a differentiation operator, and
as such allows for a “linear snapshot” of what is typically a complicated system.
For each clause we analyze the probability that hyperplane rounding outputs a
satisfying assignment, as a function of the inner products of vectors involved.
Now, the object of interest is the gradient of this function at “zero”. The hope
is that since the optimal SDP solution (almost) satisfies this clause, it has a
positive inner product with the gradient, and so can act as a global recipe that
works for all clauses. It is important to stress that since we are only concerned
with getting an approximation algorithm that works slightly better than random
we can get away with this linear simplification. We show that this condition on
the gradient translates into a condition on the low-degree part of the Fourier
expansion of the predicate.
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As it turns out, the predicate Monarchy which we tackle in Theorem 2 does
not exhibit the aforementioned desirable property. In other words, the gradient
above does not generally have a positive inner product with an optimal SDP
solution. Instead, we show that when all vectors are sufficiently far from ±v0 it
is possible to get a similar guarantee on the gradient using high (but not-too-
high) moments of the vectors. We can then handle vectors which are very close
to ±v0 separately by rounding them deterministically to ±1.

Organization: The rest of the paper is organized as follows. First, we intro-
duce some definitions and preliminaries including the standard SDP relaxation
of Max CSP(P ) in Section 2. Then, in Section 3 we give our new algorithm
for this SDP relaxation and characterize the predicates for which it gives an ap-
proximation ratio better than a random assignment. We then take a closer look
at signs of symmetric quadratic forms in Section 4 and show that these satisfy
the condition of the previous section, proving Theorem 1. In Section 5 we give
the approximation algorithm for the Monarchy predicate and the ideas behind
its somewhat tedious analysis. Finally, we give a discussion and some directions
for future work in Section 6.

2 Preliminaries

In what follows E stands for expectation. For any positive integer n we use the
notation [n] for the set {1, . . . , n}. For a finite set S (often a subset of [n]) we
use the notation {−1, 1}S for the set of all −1, 1 vectors indexed by elements of
S. For example, |{−1, 1}S| = 2|S|.

We use ϕ and Φ for the probability density function and the cumulative dis-
tribution function of a standard normal random variable, respectively. We use
the notation Sn−1 for the n − 1 dimensional sphere,i.e. , the set of unit vectors
in Rn.

Throughout the paper, we take the convention that sign(0) = −1.

2.1 Fourier Representation

Consider the set of real functions with domain {−1, 1}k as a vector space. It is
well known that the following set of functions called the characters form a com-
plete basis for this space, χS(x) def=

∏
i∈S xi. In fact if we define inner products

of functions as f · g def= Ex [f(x)g(x)] this basis will be orthonormal and every
function will have a unique Fourier expansion when written in this basis,

f =
∑

S⊆[k]

f̂(S)χS , f̂(S) def= f · χS .

f̂(S)’s are often called the Fourier coefficients of f . We write f=d for the part
of the function that is of degree d, i.e.,

f=d(x) =
∑
|S|=d

f̂({S})χS(x).
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2.2 Semidefinite Relaxation

For any fixed P , Max CSP(P ) has a natural SDP relaxation that can be seen
in Figure 1. The essence of this relaxation is that each IS,∗ is a distribution,
often called a local distribution, over all possible assignments to the variables
in set S as enforced by (1). Whenever, S1 and S2 intersect (2) guarantees that
their marginal distributions on the intersection agree. Also, (3) and (4) ensure
that v0 · vi and vi · vj are equal to the bias of variable xi and the correlation
of the variables xi and xj in the local distributions respectively. The clauses of
the instance are C1, . . . , Cm, with Ci being an application of P (possibly with
some variables negated) on the set of variables Ti. The objective function is the
fraction of the clauses that are satisfied.

Observe that the reason this SDP is not an exact formulation but a relaxation
is that these distributions are defined only on sets of size up to k. It is worth
mentioning that this program is weaker than the kth round of the Lasserre
hierarchy for this problem while stronger than the kth round of the Sheralli-
Adams hierarchy. From here on the only things we use in the rounding algorithms
are the vectors v0, . . . ,vn and the existence of the local distributions.

Maximize
1
m

mX
i=1

X
ω∈{−1,1}Ti

Ci(ω) ITi,ω

Where, ∀S ⊂ [n], |S| ≤ k, ω ∈ {−1, 1}S IS,ω ∈ [0, 1]

∀i ∈ [n] vi ∈ Rn+1, ‖vi‖2
2 = 1

v0 ∈ Rn+1, ‖v0‖2
2 = 1

Subject to ∀S ⊂ [n], |S| ≤ k
X

ω∈{−1,1}S

IS,ω = 1 (1)

∀S ⊂ S′ ⊂ [n], |S′| ≤ k, ω ∈ {−1, 1}S
X

ω′∈{−1,1}S′

ω′ is an extension of ω

IS′,ω′ = IS,ω (2)

∀i ∈ [n] I{i},(1) − I{i},(−1) = v0 · vi (3)

∀i, j ∈ [n] I{i,j},(1,1) − I{i,j},(−1,1)

−I{i,j},(1,−1) + I{i,j},(−1,−1) = vi · vj(4)

Fig. 1. Standard SDP relaxation of Max CSP(P )

3 (ε, η)-Hyperplane Rounding

In this section we define a rounding scheme for the semidefinite program of
Max CSP(P ) and proceed to analyze its performance. The rounding scheme is
based on the usual hyperplane rounding but is more flexible in that it uses two
parameters ε and η where ε is a sufficiently small constant and η is an arbitrary
real number. We will then formalize a (sufficient) condition involving P and η
under which our approximation algorithm has approximation factor better than
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that of a random assignment. In the next section we show that this condition is
satisfied (for some η) by signs of symmetric quadratic polynomials.

Given an instance of Max CSP(P ), our algorithm first solves the standard
SDP relaxation of the problem (Figure 1.) Then, it employs the rounding scheme
outlined in Figure 2 to get an integral solution.

Input: v0,v1, . . . ,vn ∈ Sn.
Output: x1, . . . , xn ∈ {−1, 1}.

1. Define unit vectors w0,w1, . . . ,wn ∈ Sn such that for all 0 ≤ i �= j,

wi · wj = ε(vi · vj),

2. Let g ∈ Rn+1 be a random (n + 1)-dimensional Gaussian.
3. Assign each xi as,

xi =
j

1 if wi · g > −η(w0 · wi),
−1 otherwise.

Fig. 2. (ε, η)-Hyperplane Rounding

Note that when ε = 0 the rounding scheme above simplifies to assigning all
xi’s uniformly and independently at random which satisfies |P−1(1)|

2k fraction of
all clauses in expectation. For non-zero ε, η will determine how much weight is
given to the position of v0 compared to the correlation of the variables.

Notice that in the pursuit of a rounding algorithm that has approximation ra-
tio better than |P−1(1)|

2k it is possible to assume that the optimal integral solution
is arbitrary close to 1 (in terms of k) as otherwise random assignment already
delivers an approximation factor better than |P−1(1)|

2k . In particular, the optimal
vector solution can be assumed to be that good. This observation is in fact essen-
tial to our analysis. But, for the sake of simplicity first consider the case where
the value of the vector solution is precisely 1. Fix a clause, say P (x1, x2, . . . , xk).
(In general, without loss of generality we can assume that the current clause is
on k variables as opposed to k literals. This is simply because one can assume
that ¬xi is a separate variable from xi with SDP vector −vi.) Since the SDP
value is 1, every clause (and this clause in particular) is completely satisfied by
the SDP, hence the local distribution I[k],∗ is supported on the set of satisfying
assignments of P . The hope now is that when ε increases from zero to some
small positive value this distribution helps to boost the probability of satisfying
the clause (a little) beyond |P−1(1)|

2k . This becomes a question of differentiation.
Specifically, consider the probability of satisfying the clause at hand as a func-
tion of ε. We want to show that for some ε > 0 the value of this function is bigger
than its value at zero which is closely related to the derivative of the function at
zero. We can show,
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Theorem 3. For any fixed η, the probability that P (x1, . . . , xk) is satisfied by
the assignment behaves as follows at ε = 0:

Pr
[
(x1, . . . , xk) ∈ P−1(1)

]
=

|P−1(1)|
2k

d
dε

Pr
[
(x1, . . . , xk) ∈ P−1(1)

]
=

2η√
2π

k∑
i=1

P̂ ({i})v0 · vi +
2
π

∑
i<j

P̂ ({i, j})vi · vj .

(5)

Now, the inner products vi ·vj are equal to the moments of the local distributions
I{i,j},∗, which in turn agree with those of the local distribution I[k],∗. It follows
that,

2η√
2π

k∑
i=1

P̂ ({i})v0 ·vi+
2
π

∑
i<j

P̂ ({i, j})vi ·vj = E
ω∼I[k],∗

[
2η√
2π

P=1(ω)+
2
π
P=2(ω)

]
.

(6)
Thus, in order for the derivative in (5) to be positive for all possible values of
the vi’s, it is necessary and sufficient that 2η√

2π
P=1(ω)+ 2

πP
=2(ω) is positive for

every ω ∈ P−1(1). We can then show the following Theorem.

Theorem 4. Suppose that there exists an η ∈ R such that

2η√
2π

P=1(ω) +
2
π
P=2(ω) > 0 (7)

for every ω ∈ P−1(1). Then P is approximable.

As mentioned in the Techniques section, this theorem is not new. It was previously
found by Hast [6]. However, his algorithm and analysis is completely different from
ours (using different algorithms to optimize the linear and quadratic parts of the
predicate, and case analysis depending on the behaviour of the integral solution).
Our algorithm is considerably more direct, and its analysis is simpler.

The general strategy for the proof, which is deferred to the full version is
as follows. We will concentrate on a clause that is almost satisfied by the SDP
solution. By the condition and Theorem 3 the first derivative of the probability
that this clause is satisfied by the rounded solution is at least some positive
global constant (say δ) at ε = 0. We will then show that provided that ε is small
enough the second derivative of this probability is bounded in absolute value by,
say, Γ at any point in [0, ε]. Now we can apply Taylor’s theorem to show that
if ε is small enough the probability of success is at least |P−1(1)|

2k + δε − Γε2/2

which for ε = δ/Γ is at least |P−1(1)|
2k + δ2/2Γ .

4 Signs of Symmetric Quadratic Polynomials

In this section we study signs of symmetric quadratic polynomials, and give a
proof of Theorem 1. Consider a predicate P : {−1, 1}k → {0, 1} that is the sign
of a symmetric quadratic polynomial with no constant term, i.e.,
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P (x) =
1 + sign (α

∑
xi + β

∑
xixj)

2

for some constants α and β. We would like to apply the (ε, η)-rounding scheme to
Max CSP(P ), which in turn requires us to understand the low-degree Fourier
coefficients of P . Note that because of symmetry, the value of a Fourier coefficient
P̂ (S) depends only on |S|.

We will prove that “morally” the degree-2 Fourier coefficient of P and β have
the same sign and that if one of them is 0 then so is the other. This statement is
not quite true (consider for instance the predicate P (x1, x2) = 1+sign(x1+x2)

2 =
1+x1+x2+x1x2

4 ), however it is always true that by slightly adjusting β (without
changing P ), we can assure that this is the case.

Theorem 5. For any P of the above form, there exists β′ with the property that
β′ · P̂ ({1, 2}) ≥ 0 and β′ = 0 iff P̂ ({1, 2}) = 0, satisfying

P (x) =
1 + sign (α

∑
xi + β′∑xixj)
2

.

Due to space considerations the proof of this theorem is deferred to the full
version. We are now ready to prove Theorem 1.

Theorem 1 (restated). Let P : {−1, 1}k → {0, 1} be a predicate that is of the
form P (x) = 1+sign(Q(x))

2 where Q is a symmetric quadratic polynomial with no
constant term. Then P is not approximation resistant.

Proof. Without loss of generality, we can take Q(x) = α
∑

xi + β
∑

xixj where
β satisfies the property of β′ in Theorem 5.

If P̂ ({1, 2}) = β = 0, we set η = α/P̂ ({1}) (note that in this case we can
assume that α, hence P̂ ({1}) is non-zero as otherwise P is the trivial predicate
that is always false). We then have, for every x ∈ P−1(1),

2η√
2π

P=1(x) +
2
π
P=2(x) =

2α√
2π

∑
xi,

which is positive by the definition of P . If P̂ ({1, 2}) �= 0, we set η =
√

2
π

α

P̂ ({1}) ·
P̂ ({1,2})

β . In this case for every x ∈ P−1(1),

2η√
2π

P=1(x) +
2
π
P=2(x) =

2P̂ ({1, 2})
πβ

(
α
∑

xi + β
∑

xixj

)
> 0,

since β agrees with P̂ ({1, 2}) in sign and Q(x) > 0. In either cases, using Theo-
rem 4 and the respective choices of η we conclude that P is approximable.

5 Monarchy

In this section we prove that for k > 4 the Monarchy predicate is not approx-
imation resistant. Notice that Monarchy is defined only for k > 2, and that
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the case k = 3 coincides with the predicate majority that is known not to be
approximation resistant. Further, the case k = 4 is handled by [6].1

Just like the algorithm for symmetric predicates we first solve the natural
semidefinite program of Monarchy, and then use a rounding algorithm to con-
struct an integral solution out of the vectors. The rounding algorithm, which is
given in Figure 3, has two parameters ε > 0 and an odd positive integer , both
depending on k. These will be fixed in the proof.

Input: “biases” b1 = v0 · v1, . . . , bn = v0 · vn.
Output: x1, . . . , xn ∈ {−1, 1}.

1. Choose a parameter τ ∈ [1/2(k − 2)2, 1/(k − 2)2] uniformly at random.
2. For all i,

(a) If bi > 1 − τ or bi < −1 + τ , set xi to 1 or −1 respectively.
(b) Otherwise, set xi (independent of all other xj ’s), randomly to −1 or

1 such that E [xi] = εb	
i . In particular, set xi = 1 with probability

(1 + εb	
i)/2 and xi = −1 with probability (1 − εb	

i)/2.

Fig. 3. Rounding SDP solutions for Monarchy

Remark 1. As the reader may have observed, the “geometric” power of SDP
is not used in the above rounding scheme, and indeed a linear programming
relaxation of the problem would suffice for the algorithm we propose. However,
in the interest of consistency and being able to describe the the techniques in a
language comparable to Theorem 1 we elected to use the SDP framework.

Here is the outline of the analysis. We first ignore the greedy ingredient (2a
above). Notice that for ε = 0 the rounding gives a uniform assignment to the
variables, hence the expected value of the obtained solution is 1/2. As long as
ε > 0 is small enough, the probability of success for a clause is essentially only
affected by the degree-one Fourier coefficients of Monarchy. Now, fix a clause and
assume that the SDP solution completely satisfies it. Specifically, consider the
clause Monarchy(x1, . . . , xk), and define b1, . . . , bk as the corresponding biases.
Notice that all Fourier coefficients of Monarchy are positive. This implies that
the rounding scheme above will succeed with probability that is essentially 1/2
plus some positive linear combination of the εb�

i . Our objective is then to fix 
that would make the value of this combination positive (and independent from
n). It turns out that the maximal bi in magnitude (call it bj) is always positive
in this case. Oversimplifying, imagine that |bj | ≥ |bi| + ξ for all i different than
j where ξ is some positive constant. Clearly in this setting it is easy to take 
(a function of k) that makes the effect of all bi other than bj vanish, ensuring
a positive addition to the probability as desired so that overall the expected
fraction of satisfied clauses is more than 1/2.
1 In the notation of [6], Monarchy on 4 variables is the predicate 0000000101111111,

which is listed as approximable in Table 6.6. We remark that this is not surprising
since Monarchy in this case is simply a majority in which x1 serves as a tie-breaker
variable.
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More realistically, the above slack ξ does not generally exist. However, we can
show that a similar condition holds provided that the |bi| are bounded away from
1. This condition suffices to prove that the rounding algorithm works for clauses
that do not have any variables with bias very close to ±1. The case where there
are bi that are very close to 1 in magnitude is where the greedy ingredient of the
algorithm (2a) is used, and it can be shown that when τ is roughly 1/k2, this
ingredient works.In particular, we can show that for each clause, if rule (2a) is
used to round one of the variables, it is used to round essentially every variable
in the clause. Also, if this happens, the clause is going to be satisfied with high
probability by the rounded solution.

The last complication stems from the fact that the clauses are generally not
completely satisfied by the SDP solution. However, using an averaging argument,
it is enough to only deal with clauses that are almost satisfied by the SDP
solution. For any such clause the SDP induces a probability distribution on the
variables that is mostly supported on satisfying assignments, compared to only
on satisfying assignments in the above ideal setting. As such, the corresponding
bi’s can be thought of as a perturbed version of the biases in that ideal setting.
Unfortunately, the greedy ingredient of the algorithm is very sensitive to such
small perturbations. In particular, if the biases are very close to the set threshold,
τ , a small perturbation can break the method. To avoid this, we choose the actual
threshold randomly, and we manage to argue that only a small fraction of the
clauses end up in such unfortunate configurations.

This completes the high level description of the proof of the following theorem.
Due to space considerations we leave the complete proof for the full version.

Theorem 2 (restatement of Theorem 2). The predicate Monarchy is not
approximation resistant.

6 Discussion

We have given algorithms for two cases of Max CSP(P ) problems not previously
known to be approximable. The first case, signs of symmetric quadratic forms,
follows from the condition that the low-degree part of the Fourier expansion
behaves “roughly” like the predicate in the sense of Theorem 4. The second case,
Monarchy, is interesting since it does not satisfy the condition of Theorem 4. As
far as we are aware, this is the first example of a predicate which does not satisfy
this property but is still approximable. Monarchy is of course only a very special
case of Conjecture 1, and we leave the general form open.

A further interesting special case of the conjecture is a generalization of
Monarchy called “republic”, defined as sign(k

2x1 +
∑k

i=2 xi). In this case the
x1 variable needs to get a 1/4 fraction of the other variables on its side. We do
not even know how to handle this seemingly innocuous example.

It is interesting that the condition on P for our (ε, η)-rounding to succeed
turned out to be precisely the same as the condition previously found by Hast [6],
with a completely different algorithm. It would be interesting to know whether
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this is a coincidence or whether there is a larger picture there that we can not
yet see.

As we mentioned in the introduction, there are very few results which give
approximation algorithms for large classes of predicates, and it would be very
interesting if new such algorithms could be devised.
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Abstract. Determining the optimal complexity of secret sharing schemes
for every given access structure is a difficult and long-standing open prob-
lem in cryptology. Lower bounds have been found by a combinatorial
method that uses polymatroids. In this paper, we point out that the best
lower bound that can be obtained by this method can be determined by
using linear programming, and this can be effectively done for access struc-
tures on a small number of participants. By applying this linear program-
ming approach, we present better lower bounds on the optimal complexity
and the optimal average complexity of several access structures. Finally,
by adding the Ingleton inequality to the previous linear programming ap-
proach, we find a few examples of access structures for which there is a gap
between the optimal complexity of linear secret sharing schemes and the
combinatorial lower bound.

Keywords: Secret sharing, Optimization of secret sharing schemes for
general access structures.

1 Introduction

A secret sharing scheme is a method to distribute a secret value among a set P
of participants, in such a way that only some qualified subsets can recover the
secret value. Secret sharing schemes were introduced in an independent way
by Blakley [9] and Shamir [33]. In this work we consider only unconditionally
secure perfect secret sharing schemes, in which the shares of the participants in a
non-qualified set do not provide any information about the secret. This paper is
self-contained. Nevertheless, the reader that is unfamiliar with secret sharing will
find more information about the topic in the survey by Stinson [34]. In addition,
some of the concepts appearing in this paper are described in more detail in [29].

The collection of qualified subsets Γ is called the access structure of the secret
sharing scheme. In general, access structures are considered to be monotone,
that is, every superset of a qualified set of participants is also qualified. Then
an access structure is completely determined by the family minΓ of its minimal
qualified subsets.

The length of the shares, when compared to the length of the secret value,
is usually considered as a measure of the efficiency of a secret sharing scheme.
Specifically, the complexity σ(Σ) of a secret sharing scheme is defined as the
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ratio between the maximum length of the shares and the length of the secret.
The average complexity σ̃(Σ) is defined analogously, but considering the average
length of the shares instead of the maximum one.

In every secret sharing scheme, the length of every share is at least the length
of the secret [28]. Therefore, 1 ≤ σ̃(Σ) ≤ σ(Σ). A scheme Σ is said to be ideal
if σ(Σ) = 1, that is, if all shares have the same length as the secret. The access
structures of ideal secret sharing schemes are called ideal as well.

Ito, Saito and Nishizeki [25] constructively proved that there exists a secret
sharing scheme for every access structure. Nevertheless, the complexity of the
obtained schemes is exponential in the number of participants. A natural prob-
lem arises at this point: to determine the most efficient secret sharing scheme for
every given access structure. The optimal complexity σ(Γ ) of an access struc-
ture Γ is defined as the infimum of the complexities of all secret sharing schemes
for Γ . The optimal average complexity σ̃(Γ ) is defined analogously. Determining
the values of these parameters is one of the main open problems in secret shar-
ing. Very few is known about it and there is a huge gap between the best known
upper and lower bounds.

Because of the difficulty of finding general results, this problem has been con-
sidered for several particular families of access structures in [10,14,15,16,17,20,27]
among other works. But the value of this parameter is not known even for very
simple access structures, as some structures on five [27] and six [17,20] partic-
ipants. On the other hand, a great achievement has been obtained recently by
Csirmaz and Tardos [16] by determining the optimal complexity of all access
structures defined by trees.

The homomorphic properties of linear secret sharing schemes are very impor-
tant for some of the main applications of secret sharing as, for instance, secure
multiparty computation. On the other hand, linear secret sharing schemes are
obtained when applying the best known techniques to construct efficient schemes,
as the decomposition method in [35]. Because of that, it is also interesting to
consider the parameters λ(Γ ) and λ̃(Γ ), the infimum of the (average) complex-
ities of all linear secret sharing schemes for Γ . Obviously, σ(Γ ) ≤ λ(Γ ) and
σ̃(Γ ) ≤ λ̃(Γ ).

Most of the known lower bounds on the optimal complexity have been found
by implicitly or explicitly using a combinatorial method based on polymatroids.
The parameter κ(Γ ) was introduced in [29] to denote the best lower bound on
σ(Γ ) that can be obtained by this method. We introduce here the corresponding
parameter κ̃(Γ ) for the combinatorial lower bounds on σ̃(Γ ).

Since κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ), the parameters κ and λ are used to find, respec-
tively, lower and upper bounds on the optimal complexity. The same applies to
the corresponding parameters for the average optimal complexity. Nevertheless,
these bounds are not tight in general because of the separation results among
those parameters that have been obtained in [3,5,7,15]. See [29] for more infor-
mation about these results.

In this paper, we discuss how linear programming can be used to determine the
values of parameters κ and κ̃ for access structures on small sets of participants,
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and also to find better lower bounds for the other parameters. In particular,
we improve the known bounds for these parameters for several particular access
structures over five participants, and also for some graph access structures over
six and eight participants. We think that some refinements of this method could
be applied in the future to determine the values of those parameters for broader
families of access structures.

2 Secret Sharing Schemes and Polymatroids

Let Q be a finite set with a distinguished element p0 ∈ Q called dealer , and
let P = Q − {p0} be the set of participants . Consider a finite set E with a
probability distribution on it and, For every i ∈ Q, consider a finite set Ei and
a surjective mapping πi : E → Ei. We notate E0 = Ep0 and π0 = πp0 . Those
mappings induce random variables on the sets Ei. Let H(Ei) be the Shannon
entropy of one of these random variables. For a subset A = {i1, . . . , ir} ⊆ Q,
we write H(EA) for the joint entropy H(Ei1 . . . Eir ), and a similar convention is
used for conditional entropies as, for instance, in H(Ei|EA) = H(Ei|Ei1 . . . Eir ).

The mappings πi define a secret sharing scheme Σ with access structure Γ
on the set of participants P if, for every A ⊆ P ,

– H(E0|EA) = 0 if A ∈ Γ ,
– while H(E0|EA) = H(E0) if A /∈ Γ .

In this situation, every random choice of an element x ∈ E according to the
given probability distribution results in a distribution of shares ((si)i∈P , s0),
where si = πp(x) ∈ Ei is the share of the participant i ∈ P and s0 = π0(x) ∈ E0
is the shared secret value.

Since the security of a system decreases with the amount of information
that must be kept secret, the length of the shares is an important parame-
ter in secret sharing. We define the complexity of a secret sharing scheme Σ
as σ(Σ) = maxi∈P H(Ei)/H(E0), that is, the maximum length of the shares
in relation to the length of the secret. The average complexity is defined by
σ̃(Σ) =

∑
i∈P H(Ei)/(nH(E0)), where n = |P | is the number of participants.

The optimal complexity σ(Γ ) of an access structure Γ is defined as the infi-
mum of the complexities σ(Σ) of the secret sharing schemes for Γ . The optimal
average complexity σ̃(Γ ) is defined analogously. It is not difficult to check that
H(Ei) ≥ H(E0) for every participant i ∈ P , and hence σ(Σ) ≥ σ̃(Σ) ≥ 1. Secret
sharing schemes with σ(Σ) = 1 are said to be ideal and their access structures
are called ideal as well.

A secret sharing scheme Σ is said to be linear if the sets E and Ei are
vector spaces over some finite field K , the mappings πi are linear mappings,
and the uniform probability distribution is considered on E. As a consequence
of the general construction in [25], every access structure admits a linear secret
sharing scheme. For an access structure Γ , we notate λ(Γ ) for the infimum of
the complexities of the linear secret sharing schemes for Γ . We consider as well
the corresponding parameter λ̃(Γ ) for the average complexity.
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Fujishige [23] proved that the joint Shannon entropies of a set of random vari-
ables define a polymatroid. Csirmaz [13] used that result to provide a unified
description for the methods previously used to find most of the known lower
bounds on the optimal complexity. Namely, they can be obtained by using the
fact that the access structure of a secret sharing scheme implies certain restric-
tions on the polymatroid derived from the random variables involved in the
scheme. Some new results about this connection between secret sharing and
polymatroids have been given in [29]. Some basic facts about this topic are pre-
sented in the following.

Let P(Q) denote the power set of Q. A polymatroid is a pair S = (Q, h),
where Q is a finite set, the ground set , and the h, the rank function, is a mapping
h : P(Q) → R satisfying:

1. h(∅) = 0;
2. h is monotone increasing: if A ⊆ B ⊆ Q, then h(A) ≤ h(B);
3. h is submodular : h(A ∪B) + h(A ∩B) ≤ h(A) + h(B) for every A,B ⊆ Q.

An element p0 ∈ Q is said to be an atomic point of the polymatroid S = (Q, h)
if, for every X ⊆ Q, either h(X ∪ {p0}) = h(X) or h(X ∪ {p0}) = h(X) + 1.

For a polymatroid S = (Q, h) with an atomic point p0 ∈ Q, we define on the
set P = Q−{p0} the access structure Γp0(S) = {A ⊆ P : h(A∪{p0}) = h(A)},
which is clearly a monotone increasing family of subsets of P . For an access
structure Γ on P , a polymatroid S = (Q, h) with Q = P ∪ {p0} is said to be a
Γ -polymatroid if p0 is an atomic point of S and Γ = Γp0(S).

A secret sharing scheme Σ defines a polymatroid S(Σ) = (Q, h) by considering
the mapping h : P(Q) → R defined by h(A) = H(EA)/H(E0). Clearly, S(Σ)
determines the access structure Γ of Σ because S(Σ) is a Γ -polymatroid. For a
polymatroid S = (Q, h) and p0 ∈ Q, we define

σp0 (S) = max{h({i}) : i ∈ Q− {p0}} and σ̃p0(S) =
1
n

∑
i∈Q−{p0}

h({i}),

where n = |Q| − 1. Clearly, σ(Σ) = σp0(S(Σ)) and σ̃(Σ) = σ̃p0(S(Σ)) for every
secret sharing scheme Σ. Finally, given an access structure Γ , we define

κ(Γ ) = inf{σp0(S) : S is a Γ -polymatroid},
while κ̃(Γ ) is defined analogously, that is, the infimum of the values σ̃p0(S) over
all Γ -polymatroids. It is obvious that κ(Γ ) ≤ σ(Γ ) and κ̃(Γ ) ≤ σ̃(Γ ). These
inequalities are not equalities in general because there can exist Γ -polymatroids
that are not defined from any secret sharing scheme for Γ . The first examples of
access structures with κ(Γ ) < σ(Γ ) were presented in [5].

3 Linear Programming Approach

We discuss here how the values κ(Γ ) and κ̃(Γ ) can be obtained by solving linear
programming problems. Nevertheless, the number of variables and of constraints
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is exponential in the number of participants, and hence, this only can be done
if the set of participants is not too large.

Observe that, by ordering in some way the elements in P(Q), a polymatroid
S = (Q, h) can be represented as a vector (h(A))A⊆Q ∈ Rk, where k = |P(Q)| =
2n+1. The polymatroid axioms imply a number of linear constraints on this
vector. If, in addition, we assume that S is a Γ -polymatroid for some access
structure Γ on P = Q − {p0}, other linear constraints appear. Since σ̃p0(S) is
also a linear function on the vector h, one can find σ̃(Γ ) by solving the linear
programming problem

Minimize σ̃p0(S) = (1/n)
∑

i∈P h({i})
subject to S is a Γ -polymatroid.

Observe that σp0(S) is not linear. Because of that, we introduce a new real variable
v in such a way that κ(Γ ) is the solution of the next linear programming problem

Minimize v
subject to S is a Γ -polymatroid and

v ≥ h({i}) for every i ∈ Q

The feasible region for the first linear programming problem is

Ω = Ω(Γ ) = {h ∈ Rk : h is the rank function of a Γ -polymatroid}.
Since there exist Γ -polymatroids for every access structure, Ω �= ∅. For the other
linear programming problem, the feasible region is

Ω′ = {(h, v) ∈ Rk+1 : h ∈ Ω and v ≥ h({i}) for every i ∈ Q},
which is obviously nonempty as well.

The number of constraints to define these feasible regions can be reduced
by using the following characterization of polymatroids given by Matúš [31].
Namely, h : P(Q) → R is the rank function of a polymatroid S = (Q, h) if and
only if

1. h(∅) = 0,
2. h(Q− {i}) ≤ h(Q) for every i ∈ Q, and
3. h(A ∪ {i}) + h(A ∪ {j}) ≥ h(A ∪ {i, j}) + h(A) for every i, j ∈ Q with i �= j

and for every A ⊆ Q− {i, j}.
Moreover, we can further reduce the number of constraints by taking into account
that a polymatroid S = (Q, h) is a Γ -polymatroid if and only if

4. h({p0}) = 1,
5. h(A ∪ {p0}) = h(A) if A ⊆ P is a minimal qualified subset of Γ , and
6. h(B ∪ {p0}) = h(B) + 1 if B ⊆ P is a maximal unqualified subset of Γ .

For every A ⊆ Q, we consider the vector eA ∈ Rk with eA(A) = 1 and eA(B) = 0
for every B ∈ P(Q)−{A}. At this point, we can present a set of linear constraints
defining the feasible region Ω (vectors are considered as columns).
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– eT
∅ h = 0.

– (eQ−{i} − eQ)Th ≤ 0 for every i ∈ Q.
– (eA∪{i,j} + eA − eA∪{i} − eA∪{j})Th ≤ 0 for every i, j ∈ Q with i �= j and

for every A ⊆ Q− {i, j}.
– eT

{p0}h = 1.
– (eA∪{p0} − eA)Th = 0 for every A ∈ minΓ .
– (eB∪{p0} − eB)Th = 1 for every maximal unqualified subset B.

Both the number of variables and the number of constraints grow exponen-
tially on the number n of participants. The number of variables is k = 2n. If
m = |minΓ | and m′ is the number of all maximal unqualified subsets, then
the number Nc of constraints is Nc =

(
n+1

2

) · 2n−1 + n + 2(m + m′) + 5, where
m,m′ ≤ (

n
�n/2�

)
by the Sperner’s Theorem [1].

4 New Bounds

In this section we present some improvements on previous bounds on the optimal
complexity of some access structures that have been obtained by using a computer
to solve the linear programming problems described in the previous section.

Jackson and Martin [27] determined the optimal (average) complexities of
all access structures on five participants except a few ones, for which upper
and lower bounds were given. Specifically, there are 180 non-isomorphic access
structures with five participants. The optimal complexities of 170 of them and
the optimal average complexities of 165 of them are determined in [27].

Duality plays an important role in the problems that are considered here. For
an access structure Γ on a set P , the dual access structure Γ ∗ is defined by
Γ ∗ = {A ⊆ P : P − A /∈ Γ}. From every linear secret sharing scheme for an
access structure Γ , a linear scheme with the same (average) complexity can be
obtained for the dual access structure Γ ∗ [19,26], and hence λ(Γ ∗) = λ(Γ ) and
λ̃(Γ ∗) = λ̃(Γ ). In addition, it was proved in [29] that κ(Γ ∗) = κ(Γ ) and, by using
the same arguments, it is not difficult to check that κ̃(Γ ∗) = κ̃(Γ ). Therefore,
the results we obtained for those access structures on five participants apply as
well to their dual access structures. Nevertheless the behavior of the parameters
σ, σ̃ with respect the dual access structures is unknown.

The results in [27] are obtained by finding lower bounds on κ(Γ ) and κ̃(Γ )
and upper bounds on λ(Γ ) and κ̃(Γ ). The values of σ(Γ ) that are determined
in [27] correspond to exactly to the cases in which the lower bound on κ(Γ ) is
equal to the upper bound on λ(Γ ). The same applies to the average complexity.
Because of that, the value of σ(Γ ) (or κ̃(Γ )) is determined in [27] if and only if
σ(Γ ∗) (respectively, κ̃(Γ ∗)) is determined.

By using our linear programming approach, we are able to improve the results
in [27] for the access structures on five participants given in the following. We
enumerate them as in [27]. Since our results deal with the values of κ and κ̃,
they apply as well to the corresponding dual access structures.
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– minΓ73 = {{1, 2}, {1, 3}, {2, 4}, {3, 5}, {1, 4, 5}}.
– minΓ80 = {{1, 2}, {1, 3}, {2, 3, 4}, {2, 3, 5}, {4, 5}}.
– minΓ82 = {{1, 2}, {1, 3}, {2, 3, 4}, {2, 3, 5}, {1, 4, 5}, {2, 4, 5}}.
– minΓ83 = {{1, 2}, {1, 3}, {2, 3, 4}, {2, 3, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}}.
– minΓ86 = {{1, 2}, {1, 3}, {2, 3, 4}, {4, 5}}.
– minΓ88 = {{1, 2}, {1, 3}, {2, 3, 4}, {1, 4, 5}, {2, 4, 5}}.
– minΓ89 = {{1, 2}, {1, 3}, {2, 3, 4}, {1, 4, 5}, {1, 4, 5}, {3, 4, 5}}.
– minΓ150 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 5}, {2, 3, 5}.
– minΓ152 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 5}, {3, 4, 5}.
– minΓ153 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 5}, {2, 3, 4, 5}}.

We determined the values of κ(Γ ) and κ̃(Γ ) for all these access structures (and
hence also for the dual structures) by using linear programming. The obtained
results are given in Table 1. The entries with an interval correspond to a lower
and an upper bound. Observe that we improved some of the bounds on σ̃(Γ )
but could not improve the bounds on σ(Γ ) for any of these access structures.
Nevertheless, the exact values of κ(Γ ) and κ̃(Γ ) have been determined. There-
fore, we know now that no better lower bounds can be obtained by using this
combinatorial technique. That is, whether better constructions of secret sharing
schemes are obtained for those structures, or better lower bounds have to be
searched by considering information inequalities other than the basic Shannon
inequalities, as it is discussed in Section 5. We also included in the table some
information about the running time of our implementation (in mili-seconds) and
the number of constraints that define the feasible region.

A graph defines an access structure on the set of vertices by considering the
edges as the minimal qualified subsets. Secret sharing for graph access structures
have been studied by many works, as for instance [10,14,12,16,17,20,34,35]. The
112 non-isomorphic graph access structures on six vertices were listed by van
Dijk [17], and the optimal complexities of all of them, except 18, were determined.

Table 1. Our results for access structures on five participants

Access σ σ̃ κ κ̃ Current Number of
structure from [27] from [27] with LP with LP σ̃ constraints

(time in ms)
Γ73 [3/2, 5/3] [7/5, 8/5] 3/2 (121) 3/2 [3/2, 8/5] 272
Γ80 3/2 [6/5, 7/5] 3/2 (122) 13/10 [13/10, 7/5] 274
Γ82 [3/2, 5/3] [6/5, 7/5] 3/2 (145) 13/10 [13/10, 7/5] 274
Γ83 3/2 [6/5, 7/5] 3/2 (139) 13/10 [13/10, 7/5] 280
Γ86 3/2 [6/5, 7/5] 3/2 (121) 13/10 [13/10, 7/5] 268
Γ88 3/2 [6/5, 7/5] 3/2 (122) 7/5 7/5 270
Γ89 3/2 [6/5, 7/5] 3/2 (99) 13/10 [13/10, 7/5] 274
Γ150 [3/2, 12/7] 7/5 3/2 (138) 7/5 7/5 272
Γ152 [3/2, 5/3] [7/5, 8/5] 3/2 (156) 3/2 [3/2, 8/5] 272
Γ153 [3/2, 5/3] 7/5 3/2 (122) 7/5 7/5 274



Finding Lower Bounds on the Complexity of Secret Sharing Schemes 351

1 2

6 3

45

1 2

6 3

45

1 2

6 3

45

1 2

6 3

45

1 2

6 3

45

Γ6,40 Γ6,42 Γ6,43 Γ6,61Γ6,9

Fig. 1. Graph access structures with six vertices

Better upper bounds for some of these 18 structures were obtained in [12,20].
By using linear programming, we have been able to improve the lower bounds
for five of them, the ones depicted in Figure 1. The results are shown in Table 2.

Table 2. Our results for graph access structures on six vertices

Access σ σ κ Current Number of
structure from [17] from [12,20] with LP σ constraints

(time in sec)
Γ6,9 [5/3, 2] [5/3, 7/4] (from [12] and [20]) 7/4 (1.43) 7/4 703
Γ6,40 [5/3, 9/5] [5/3, 7/4] (from [12]) 7/4 (1.53) 7/4 707
Γ6,42 [5/3, 7/4] no improvement 7/4 (1.41) 7/4 707
Γ6,43 [5/3, 7/4] no improvement 7/4 (1.51) 7/4 707
Γ6,61 [5/3, 2] [5/3, 16/9] (from [12]) 7/4 (1.52) [7/4, 16/9] 707

5 Sharpening the Feasible Region

In the previous sections, we applied linear programming to determine the values
of the parameters κ and κ̃, which provide lower bounds on the parameters σ and
σ̃, respectively. Nevertheless, these lower bounds are not tight in general and, in
order to determine the values of σ and σ̃, the so called non-Shannon information
inequalities must be considered in some situations.

A Γ -polymatroid S = (Q, h) is said to be entropic if there exists a secret
sharing scheme Σ with access structure Γ such that S = S(Σ), that is, if there
exists a set of random variables such that their normalized joint entropies coin-
cide with the values of the rank function h. There exists a secret sharing scheme
for every access structure, and hence, for every structure Γ , there exist an en-
tropic Γ -polymatroid. Nevertheless, an access structure Γ admits many different
Γ -polymatroids, and some of them may not be entropic. Because of that, κ(Γ )
or κ̃(Γ ) may be smaller than σ(Γ ) or κ̃(Γ ), respectively.

Consider the region

Ω∗ = Ω∗(Γ ) = {h ∈ Rk : S = (Q, h) is an entropic polymatroid}.
Then σ(Γ ) = inf{σp0(S) : S = (Q, h) with h ∈ Ω∗(Γ )}. Clearly, Ω∗(Γ ) ⊆
Ω(Γ ), but these two regions are not equal in general [36]. In addition, the re-
gion Ω∗ cannot be described by linear constraints [30]. Therefore, it seems that
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in general κ(Γ ) and κ̃(Γ ) are not tight lower bounds for σ(Γ ) and σ̃(Γ ), re-
spectively. Actually, M. van Dijk [18] was the first to point out the need of new
information inequalities to sharpen the lower bounds on the optimal (average)
complexity. At the same time, Zhang and Yeung [37] presented the first non-
Shannon information inequalities , that is, inequalities that must be satisfied
by every entropic polymatroid but cannot be derived from the basic Shannon
inequalities. Many other such inequalities have appeared afterwards as, for in-
stance, the ones in [21,32]. These inequalities actually prove that Ω∗ �= Ω. More-
over, they were used in [5] to present the first examples of access structures with
κ(Γ ) < σ(Γ ). Those non-Shannon information inequalities are linear, and hence,
they can be used to sharpen the feasible region to find better lower bounds on
σ(Γ ) and σ̃(Γ ) by using linear programming. Even though Beimel and Orlov [6]
proved that all known non-Shannon information inequalities cannot improve our
knowledge on the asymptotic values of the optimal complexity, the use of these
inequalities in combination with the linear programming approach can provide
better bounds for some particular families of access structures.

If one is interested only in linear secret sharing schemes, then the feasible
region defined by the linearly entropic polymatroids, that is the polymatroids
that are defined from linear secret sharing schemes, should be considered:

Ω∗
L = Ω∗

L(Γ ) = {h ∈ Rk : S = (Q, h) is an linearly entropic Γ -polymatroid}.

The parameters λ and λ̃ are obtained by minimizing the corresponding functions
over Ω∗

L. Clearly, Ω∗
L(Γ ) ⊆ Ω∗(Γ ), and these regions are different because of

the separation results between linear and non-linear schemes in [3,7]. A non-
Shannon information inequality that must be satisfied by every linearly entropic
polymatroid was given by Ingleton [24]. Specifically, if S = (Q, h) is a linearly
entropic polymatroid, then J(h;A,B,C,D) ≤ 0 for every A,B,C,D ⊆ Q, where

J(h;A,B,C,D) = h(A) + h(B) + h(C ∪D) + h(A ∪B ∪ C) + h(A ∪B ∪D)
−h(A ∪B) − h(A ∪ C) − h(A ∪D) − h(B ∪ C) − h(B ∪D)

As a consequence of results in [11], a minimal set of Ingleton inequalities can be
found by adding to the axioms of the rank function the next property:

JIn(h;A,B,C,D,X) = J(h;AX,BX,CX,DX) ≤ 0,

where A,B,C,D,X are disjoint nonempty sets.
If HIN is the region in Rk determined by a well defined set of Ingleton inequal-

ities, then the region ΩIN (Γ ) = Ω(Γ ) ∩ HN is such that Ω∗
LIN(Γ ) ⊆ ΩIN (Γ ).

As a consequence, the solution λIN (Γ ) of the next linear programming problem
is such that λIN (Γ ) ≤ λ(Γ ). As before, we added here a new variable v.

Minimize v
subject to h ∈ ΩIN (Γ ) and

v ≥ h({i}) for every i ∈ Q,
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Fig. 2. Graph access structures with 8 vertices: Γ1, Γ2 and Γ3

This idea can be applied to any access structure in order to find separations
between the parameters κ and λ. By considering the Ingleton inequalities of
the form JIn(h; {a}, {b}, {c}, {d}, X) ≤ 0, where a, b, c, d ∈ P are distinct par-
ticipants and either X = ∅ or X = {x} with x ∈ Q, we solved this linear
program problem for the access structures in Tables 1 and 2. We obtained that
λIN (Γ ) = κ(Γ ) ≤ λ(Γ ) in all those cases, and hence no new information about
the value of λ(Γ ) is obtained for those structures. Nevertheless, by using this
method, we are able to present three examples of graph access structures such
that κ(Γ ) < λ(Γ ). Specifically, we consider the access defined by the graphs
in Figure 2 and we apply the above method by considering the Ingleton in-
equalities of the form JIn(h; {a}, {b}, {c}, {d}, X) ≤ 0, where a, b, c, d ∈ P are
distinct participants and either X = ∅ or X = {x} with x ∈ Q. The solutions
to the corresponding linear programming problems are λIN (Γ1) = 19/10, and
λIN (Γ2) = λIN (Γ3) = 13/7. On the other hand, we used linear programming as
well to compute κ(Γ1) = 11/6, and κ(Γ2) = κ(Γ3) = 9/5.

An infinite family of graphs such that κ(Γ ) < λ(Γ ) has been found recently
by Csirmaz [15] by using other techniques.
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Abstract. In this paper, we look at covering arrays with forbidden
edges (CAFEs), which are used in testing applications (software, net-
works, circuits, drug interaction, material mixtures, etc.) where certain
combinations of parameter values are forbidden. Covering arrays are clas-
sical objects used in these applications, but the situation of dealing with
forbidden configurations is much less studied. Danziger et. al. [8] have
recently studied this problem and shown some computational complexity
results, but left some important open questions. Around the same time,
Martinez et al. [18] defined and studied error-locating arrays (ELAs),
which are very related to CAFEs, leaving similar computational com-
plexity questions. In particular, these papers showed polynomial-time
solvability of the existence of CAFEs and ELAs for binary alphabets
(g = 2), and the NP-hardness of these problems for g ≥ 5. This not only
left open the complexity of determining optimum CAFEs and ELAs for
g = 2, 3, 4, but some suspicion that the binary case might be solved by
a polynomial-time algorithm. In this paper, we prove that optimizing
CAFEs and ELAs is indeed NP-hard even when restricted to the case of
binary alphabets. We also provide a hardness of approximation result.
The proof strategy uses a reduction from edge clique covers of graphs
(ECCs) and covers all cases of g. We also explore important relationships
between ECCs and CAFEs and give some new bounds for uniform ECCs
and CAFEs.

1 Introduction

Before a company releases a new product, much testing needs to occur in or-
der to ensure high quality standards. Whether the product is a software-based
electronic device or a new prescription drug, there are often various components
or factors involved, each having several options, which should be tested in some
sensible way. To model the general situation, we use the following definition.

A testing problem is a system with k components called factors, which we
label by the indices 1, ..., k. Each factor i ∈ [1, k] has gi possible options, called
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Table 1. Mobile phone product line

Factors 1 = display 2 = email viewer 3 = camera 4 = video camera 5 = video
ringtones

Values 0 = 16 million colours 0 = graphical 0 = 2 megapixels 0 = yes 0 = yes
1 = 8 million colours 1 = text 1 = 1 megapixel 1 = no 1 = no
2 = black and white 2 = none

values1. Typically, we use the alphabet [0, gi − 1] to denote the values of factor
i. For convenience, we denote such a testing problem as TP(k, (g1, ..., gk)). If
the alphabet size is constant, that is, if g1 = g2 = · · · = gk = g for some
g ∈ Z, then we shorten the notation to TP(k, g). We represent a test by a k-
tuple T = (a1, ..., ak) ∈ [0, g1 − 1] × · · · × [0, gk − 1], to mean that value ai

has been selected for factor i for each i ∈ [1, k]. For example, Table 1 shows a
TP(5, (3, 3, 3, 2, 2)) for possible options on a mobile phone taken from Cohen et.
al. [4]. We assume that the nature of the system is such that the outcome of each
test is either pass or fail. If a test fails, we conclude that a fault is present in the
system and that this fault is responsible for the test’s failure. Our goal is thus
to design a suite of tests which can reveal the faults of the system.

In practice, exhaustively testing a TP(k, (g1, ..., gk)) is too costly. Even for
a moderately small testing problem, say a TP(5, 4), exhaustive testing would
require 45 = 1024 tests, which could be infeasible depending on budget and
time. So we must look for more reasonably sized test suites, but at the same
time, we want the tests to cover a wide range of possibilities. Since the purpose
of testing products is to eliminate problems, we have to consider the causes of
problems. It may be that one specific value of one of the factors causes a fault.
However, with systems involving several components, faults are often due to
unexpected interactions that occur between a specific combination of the options
[5,21]. Therefore, one alternative to exhaustive testing would be to design a suite
of tests in which every t-way interaction between any t of the factors is covered.
To be precise we use the following definition.

Definition 1. Let TP(k, (g1, ..., gk)) be a testing problem, and let t be a positive
integer such that 1 ≤ t ≤ k. A t-way interaction is a set of values assigned to
t distinct factors. We denote a t-way interaction as I = {(f1, af1), ..., (ft, aft)}
where fi ∈ [1, k], fi �= fj for i �= j, and afi ∈ [0, gfi −1] for 1 ≤ i ≤ t. If t = 2, we
refer to a 2-way interaction as a pairwise interaction. If t = 1, we refer to a 1-
way interaction as a pointwise interaction. We say that a test T = (T1, ..., Tk) ∈
[0, g1 − 1] × · · · × [0, gk − 1] covers interaction I = {(f1, af1), ..., (ft, aft)} if
Tfi = afi for each i ∈ [1, t].

As an alternative to exhaustive testing, test suites designed to cover all t-way
interactions for some small value of t can be applied. Indeed, research has shown
that testing all pairwise interactions in a testing problem finds a large percentage
of existing faults, thus offers a good compromise to exhaustive testing [2,7,13,14].

1 Throughout, this paper, for integers i, j, we denote {i, i + 1, . . . , j} by [i, j].
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We focus on (mixed) covering arrays which have the desired properties of corre-
sponding to test suites that guarantee the coverage of all t-way interactions.

Definition 2. A mixed covering array (MCA) is an N × k array A, with each
column i ∈ [1, k] having symbols from the alphabet [0, gi−1], that satisfies the fol-
lowing requirement. For each {i1, ..., it} ⊆ {1, ..., k}, consider the N × t subarray
of A obtained by selecting columns i1, ..., it; there are

∏t
j=1 gij distinct t-tuples

that could appear as a row, and we require that each appear at least once. We de-
note such an array as an MCA(N ; t, k, (g1, g2, ..., gk)). The minimum integer N
for which an MCA(N ; t, k, (g1, ..., gk)) exists is called the MCA number and we
denote it by MCAN(t, k, (g1, ..., gk)). When gi = g for all i ∈ [1, k] then we call
it a covering array, denoted by CA(N ; t, k, g), with CA number CAN(t, k, g).

For a survey of constructions for CAs and MCAs and their applications to test-
ing, see [5]. The number of tests in a test suite built from an MCA is much
smaller than in exhaustive testing, since for fixed k and g ≥ max{gi|i ∈ [1, k]},
MCAN(t, k, (g1, . . . , gk)) ≤ CAN(t, k, g) ∈ O(log k) (see [5]), while exhaustive
testing would use

∏k
i=1 gi ∈ O(gk) tests.

Unfortunately, in practice, testing problems are even more complicated, and
they frequently come with extra constraints. For many reasons, some particular
t-way interactions of a given testing problem may need to be forbidden from all
tests. For example, some combinations of components in a highly-configurable
software system can be invalid. Consider the example in Table 1 This system con-
tains some inherent constraints, as given in Table 2. For example, video ringtones
cannot be used without the presence of a video camera. In this case, the system
has seven forbidden pairwise interactions and one forbidden 3-way interaction.
An MCA(N ; 2, 5, (3, 3, 3, 2, 2)) would provide a suite of tests which guarantees the
coverage of all pairwise interactions, but would ignore these constraints. Conse-
quently, some of the tests generated by the MCA simply could not take place,
resulting in wasted tests. Thus it is desirable to design a minimal suite of tests
which cover all permitted interactions, but which avoid the forbidden interactions.
Experiments involving material mixtures provide an example of a testing problem
where ignoring forbidden interactions could be deadly. These types of experiments
may combine materials in order to produce mixtures with improved properties
such as strength and flexibility, but absolutely must avoid creating known explo-
sive or toxic combinations. Cawse [3] supports the use of covering arrays for the
design of such experiments, but the ability to avoid the dangerous combinations
is essential.

Hartman and Raskin [11] address the need for forbidden configurations in
testing applications, although their proposed solution requires an exhaustive list
of all invalid tests (not simply a list of the forbidden interactions themselves).
Cohen et. al. [4] define constrained covering arrays and present a general tech-
nique for representing constraints so that existing algorithms can now handle
constraints. Danziger et. al. [8] use graphs to represent forbidden pairwise inter-
actions of a testing problem and define covering arrays avoiding forbidden edges
(CAFEs); we follow this approach in this paper.
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Table 2. Constraints on the mobile phone product line

Constraints Forbidden
Interactions

(C1) graphical email viewer requires a colour display {(1, 2), (2, 0)}
(C2) 2 megapixel camera requires a colour display {(1, 2), (3, 0)}
(C3) graphical email viewer is not supported with {(2, 0), (3, 0)}
2 megapixel camera
(C4) 8 million colour display does not support a {(1, 1), (3, 0)}
2 megapixel camera
(C5) video camera requires a camera and a colour {(3, 2), (4, 0)}
display {(1, 2), (4, 0)}
(C6) video ringtones cannot occur without a video {(4, 1), (5, 0)}
camera
(C7) the combination of 16 million colours, text, and {(1, 0), (2, 1), (3, 0)}
2 megapixel camera will not be supported

In general, the constraints imposed on a testing problem can result in forbidden
interactions of any size (forbidden t-way interactions for any t ∈ [1, k]). For ex-
ample, the constraint (C7) of Table 2 yields a forbidden 3-way interaction. These
situations can be modeled using hypergraphs to represent the forbidden interac-
tions; however, we concentrate solely on the simpler case, where all forbidden in-
teractions are pairwise interactions. From now on, we only consider the problem of
covering all pairwise interactions of a given testing problem, that is, we fix t = 2.
Moreover, if a testing problem has an associated forbidden interaction set, we as-
sume all forbidden interactions are pairwise interactions. Unless otherwise stated,
we refer to pairwise interactions simply as interactions.

In this paper, we study CAFEs and prove several hardness results. In Sec-
tion 2, we give definitions of CAFEs and related objects, including uniform edge
clique covers and error-locating arrays. In Section 3 and 4, we provide some new
results and bounds on uniform ECCs and on CAFEs, respectively. In Section 5,
we show that the problem of finding a CAFE of minimum size is NP-hard, even
for the binary alphabet case (where all gi = 2, for all i ∈ [1, k]). We use this
result to show that the problem of finding a minimum error-locating array is
also NP-hard, even for the binary alphabet case. We also provide a hardness of
approximation result for CAFEs.

2 Definitions and Preliminaries

Given a testing problem TP(k, (g1, ..., gk)) and an associated forbidden (pairwise)
interaction set, say F = {I|I is a forbidden interaction of TP(k, (g1, ..., gk))}, we
represent the forbidden interactions using a k-partite graph G that is a member
of the following family of graphs. The family of forbidden edges graphs, denoted
by G(g1,...,gk), is the family of k-partite graphs having parts of sizes g1, ..., gk.
Furthermore the vertices of any G ∈ G(g1,...,gk) are labeled vi,ai where i ∈ [1, k]
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and ai ∈ [0, gi − 1], so that the respective parts are of the form Pi = {vi,ai |ai ∈
[0, gi − 1]} for each i ∈ [1, k]. The edge set of any G ∈ G(g1,...,gk) is a subset
of the edge set of the complete k-partite graph K(g1,...,gk) with vertices labeled
likewise. In the particular case when g1 = g2 = · · · = gk = g, we denote the
family of forbidden edges graphs with uniform alphabet size g as Gk,g, and the
complete k-partite graph in Gk,g as Kk,g.

For each G ∈ G(g1,...,gk) there is a corresponding testing problem TP
(k, (g1, ..., gk)) with forbidden interaction set F such that G contains one vertex
for each value of each factor in the corresponding testing problem, and interac-
tion I = {(i, ai), (j, aj)} ∈ F if and only if {vi,ai , vj,aj} ∈ E(G). In this case, we
call G the forbidden edges graph for the testing problem TP(k, (g1, ..., gk)) with
forbidden interaction set F. It is sometimes convenient for us to refer to an in-
teraction I = {(i, ai), (j, aj)} simply as the pair of vertices {vi,ai , vj,aj}. Then, if
{vi,ai , vj,aj} �∈ E(G), we have a non-forbidden interaction, and if {vi,ai , vj,aj} ∈
E(G), we have a forbidden interaction.

Although we never allow a test to assign two distinct values of a given factor
simultaneously, we do not add these “implicitly forbidden” interactions to the
forbidden edges graph. However, it is sometimes convenient to consider these
edges. We denote by G| the graph obtained from a forbidden edges graph G ∈
G(g1,...,gk) by adding to G all edges of the form {vi,ai , vi,bi} for each factor i ∈ [1, k]
and for every two distinct values ai �= bi such that ai, bi ∈ [0, gi − 1].

Given a testing problem TP(k, (g1, ..., gk)), we say that a k-tuple T =(T1, ..., Tk)
avoids interaction I = {(f1, af1), ..., (ft, aft)} if T does not cover I. A k-tuple
T = (T1, ..., Tk) ∈ [0, g1 − 1] × · · · × [0, gk − 1] is said to avoid the forbidden
edges graph G ∈ G(g1,...,gk) if for all i, j ∈ [1, k], we have {vi,Ti , vj,Tj} �∈ E(G).
Note that if a k-tuple T = (T1, ..., Tk) avoids a graph G, then the set of vertices
{v1,T1 , ..., vk,Tk

} is an independent set of G and of G|.
We now define CAFEs, a generalization of MCAs that considers forbidden

interactions.

Definition 3. [8] A covering array avoiding forbidden edges (CAFE) of a graph
G ∈ G(g1,...,gk), is an N × k array A, with each column i having symbols from
the alphabet [0, gi − 1], and denoted CAFE(N,G), such that:

1. each row of A forms a k-tuple avoiding G, and
2. for all vi,ai , vj,aj ∈ V (G) with i �= j, if {vi,ai , vj,aj} �∈ E(G), then there exists

a row Rl = (Rl(1), ..., Rl(k)) of A such that Rl(i) = ai and Rl(j) = aj.

The CAFE number of a forbidden edges graph G, denoted by CAFEN(G), is the
minimum integer N for which a CAFE(N,G) exists, if a CAFE of G exists, or
+∞ otherwise.

Not every graphG ∈ G(g1,...,gk) admits a CAFE. An interaction I={(i, ai), (j, aj)}
is said to be consistent with G if there exists a k-tuple T with Ti = ai and Tj = aj

that avoids G. The graph G is consistent if all interactions {(i, ai), (j, aj)} such
that i �= j and {vi,ai , vj,aj} �∈ E(G) are consistent with G. Indeed, there exists a
CAFE(n,G) for a forbidden edges graph G if and only if G is consistent.
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For the particular case of binary forbidden edges graphs, that is, for graphs
G ∈ Gk,2 corresponding to CAFEs with binary alphabets, we have the following
result by Danziger et. al. [8] which characterizes their consistency.

Proposition 1. (Danziger et. al. [8]) Let G ∈ Gk,2 be a forbidden edges graph
with vertex set V (G) = {vi,a|1 ≤ i ≤ k, a ∈ {0, 1}}. Then G is consistent if and
only if

1. {vi,a, vj,b} ∈ E(G) whenever i �= j and there exist vertices in the same
factor, say vl,c and vl,1−c, such that l �= i, l �= j and {vi,a, vl,c} ∈ E(G) and
{vj,b, vl,1−c} ∈ E(G), and

2. {vi,a, vj,b} ∈ E(G) for all j ∈ [1, k] \ {i} whenever there exist vertices in the
same factor, say vl,0 and vl,1 such that l �= i, l �= j, and {vi,a, vl,0} ∈ E(G)
and {vi,a, vl,1} ∈ E(G).

Proposition 2. (Danziger et. al. [8]) Let G ∈ G(g1,...,gk) be a consistent forbid-
den edges graph. Let Ei,j(G) denote the set of edges with one end in factor i and
the other end in factor j. Then

max
1≤i<j≤k

{
gigj − |Ei,j(G)|} ≤ CAFEN(G) ≤

∑
1≤i<j≤k

(
gigj − |Ei,j(G)|) .

The lower and upper bounds of Proposition 2 are attained for all forbidden edges
graphs G ∈ G(g1,g2) with only k = 2 factors, since in this case lower and upper
bounds match.

In Section 4, we prove that the upper bound is never attained by any consistent
forbidden edges graph with k ≥ 3 factors. The lower bound, however, can be
attained for all k ≥ 3 by a specific consistent graph G ∈ G(g1,g2,1,...,1) such that
all of its forbidden interactions lie between factors 1 and 2.

Other closely related objects are error-locating arrays (ELAs), which are gen-
eralization of covering arrays that allows the determination of the pairwise failing
interactions [18].

Definition 4. Let G ∈ G(g1,...,gk). A k-tuple T = (T1, ..., Tk) ∈ [0, gi − 1] ×
· · · × [0, gk − 1] is said to locate interaction I = {(i, ai), (j, aj)} if Ti = ai and
Tj = aj, and for every other interaction {(p, ap), (q, aq)} �= I that T covers
we have {vp,ap , vq,aq} �∈ E(G). In this case we say that interaction I is located
by T . An error-locating array (ELA) for a graph G ∈ G(g1,...,gk), denoted by
ELA(N,G), is an N × k array A, with each column i having symbols from the
alphabet [0, gi − 1], such that every interaction {(i, ai), (j, aj)} corresponding to
a pair of vertices vi,ai , vj,aj ∈ V (G) with i �= j (corresponding to an edge, or
a non-edge of G) is located by a k-tuple corresponding to some row of A. If
for some N ∈ Z there exists an ELA(N,G), then we say that G is locatable.
The ELA number of G, denoted by ELAN(G), is the smallest N such that an
ELA(N,G) exists, if there exists an ELA for G, or +∞ otherwise.



362 E. Maltais and L. Moura

The next result shows a strong relationship between ELAs and CAFEs.

Theorem 1. (Danziger et. al. [8]) If G ∈ G(g1,...,gk) is locatable, then

ELAN(G) = CAFEN(G) + |E(G)|.
We now look at the relationship of CAFEs and edge clique covers of graphs.

Definition 5. Let G be a simple graph. If C is a clique of G and e is an edge
of G, we say that the clique C covers e if the ends of e belong to C. That is,
if e = {u, v} and u, v ∈ C, then C covers e. If C = {C1, ..., CN} is a collection
of N cliques of G such that for every edge e ∈ E(G) there is at least one clique
Ci ∈ C that covers e, then we say that C is an edge clique cover (ECC) of G.
We say that an ECC of G, C, is optimal if there is no ECC of G, say C′, such
that |C′| < |C|. The number of cliques in an optimal ECC of G is called the ECC
number of G, and is denoted by θ′(G).

For results on edge clique covers and θ′(G) see [1,9,10,12,15,20]. A variation on
the ECC problem is the restriction on the size of all the cliques.

Definition 6. Let G be a simple graph and k be an integer. An ECC of G, C,
is said to be k-uniform if every clique in C has cardinality k. We call C a k-ECC
of G for short. We define the k-uniform ECC number of G to be the size of a
minimum k-ECC of G if it exists, or +∞ if one does not exist, and denote it by
θ′k(G). An ECC of G is said to be uniform if it is k-uniform for some integer k.

Comparing the k-uniform ECC number of a graph G to its ECC number, we
always have θ′(G) ≤ θ′k(G), since θ′k(G) = +∞ if a k-ECC of G does not exist,
and if θ′k(G) �= +∞, then every k-uniform ECC of G is in particular an ECC
of G. Strict inequality holds, for example, in the case where G = Kn for some
n > k. Then θ′(Kn) = 1 < θ′k(Kn). Now, suppose for a graph G we know that
G admits a k-uniform ECC, then when do we have equality? That is, when does
θ′(G) = θ′k(G) hold? Proposition 3 and Theorem 2 give classes of graphs for
which this holds.

Proposition 3. Let k be a positive integer. Then θ′(K(g1,...,gk))=θ′k(K(g1,...,gk)).

Since an MCA(N ; 2, k, (g1, ..., gk)) can be shown to be equivalent to a k-uniform
ECC, containing N cliques, of the complete k-partite graph K(g1,...,gk), we obtain
the following corollary.

Corollary 1. MCAN(2, k, (g1, ..., gk)) = θ′k(K(g1,...,gk)) = θ′(K(g1,...,gk)). In par-
ticular, we have CAN(2, k, g) = θ′k(Kk,g) = θ′(Kk,g).

Indeed, we can now improve on Orlin’s bound for θ′(Kk,2) [20], which is linear
in k, using the exact value for binary strength 2 covering arrays which is known
to be in O(log k) (see [5]).

Corollary 2. Let k be a positive integer. Then

θ′(Kk,2)=θ′k(Kk,2)=CAN(2, k, 2)=min
{
N ∈ Z|

(
N − 1

 N
2 ! − 1

)
≥ k

}
= O(log k).
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The next proposition gives us the equivalence between a CAFE(N,G), where
G ∈ G(g1,...,gk), and a k-uniform ECC of the complement of G|.

Proposition 4. (Danziger et. al.[8]) Let k be a positive integer and let G ∈
G(g1,...,gk) be a forbidden edges graph. Then there exists a CAFE(N,G) if and
only if there exists a k-uniform ECC, containing N cliques, of the graph G|.

Corollary 3. (Danziger et. al. [8]) Let G ∈ G(g1,...,gk). Then CAFEN(G) =
θ′k(G|) ≥ θ′(G|).

In fact, in the case of binary alphabets the above inequality is an equality.

Theorem 2. (Danziger et. al. [8]) Let G ∈ Gk,2 be a binary forbidden edges
graph. If G is consistent, then CAFEN(G) = θ′k(G|) = θ′(G|).

3 New Results for Uniform ECCs

In this section, we provide a number of results for uniform ECCs, but the proofs
are omitted here. Using the hand-shaking Lemma for graphs, we obtain the
following result.

Proposition 5. Let G be a simple graph and let k ≥ 2 be an integer. If G admits
a k-uniform edge clique cover then |E(G)| ≥ n(k−1)

2 , where n is the number of
non-isolated vertices of G.

The next propositions shows classes of graphs in which k-ECC and ECC numbers
are the same.

Proposition 6. If a simple graph G satisfies ω(G) = 2 (triangle-free graphs),
then θ′(G) = θ′2(G).

Proposition 7. Let G be a simple graph satisfying ω(G) = 3. Furthermore,
assume that G admits a 3-ECC, that is, assume θ′3(G) �= +∞. Then θ′(G) =
θ′3(G).

The statement that a graph G satisfies θ′(G) = θ′k(G) whenever ω(G) = k and
θ′k(G) �= +∞, however, does not hold in general, as we show next.

Theorem 3. Let k ≥ 4 and m ≥ 1 be integers. Then there exists a graph G
such that ω(G) = k and θ′k(G) = θ′(G) + m.

In the following results, we give upper bounds on the k-uniform ECC number.

Proposition 8. Let k ≥ 4 be a positive integer and let G be a simple graph such
that ω(G) = k and θ′k(G) �= +∞. Then

θ′k(G) ≤
(
k − 1

2

)
θ′(G).

Proposition 9. Let G be a simple graph and let k ≥ 2 be a positive integer. If
G admits a k-uniform ECC then

θ′k(G) ≤ |E(G)| −
(
k

2

)
+ 1.
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4 New Results for CAFEs

Next, we give a necessary condition for a CAFE to exist, as well as some new
upper bounds on the CAFE number, based on its relationship with the k-ECC
number. We omit their proofs.

Proposition 10. Let G ∈ G(g1,...,gk) and assume that for every vertex vi,ai ∈
V (G) there exists at least one vertex vj,aj ∈ V (G) such that i �= j and {vi,ai , vj,aj} �∈
E(G) (i.e., there are no “dummy” vertices). Then CAFEN(G) �= +∞ implies

|E(G)| ≤
∑

1≤i<j≤k

gigj −
(
k − 1

2

) k∑
i=1

gi.

The following result gives an upper bound on the CAFE number, and for k ≥ 3,
it is a strict improvement on the upper bound given in Proposition 2.

Proposition 11. Let G ∈ G(g1,...,gk). If CAFEN(G) �= +∞, then

CAFEN(G) ≤
∑

1≤i<j≤k

gigj − |E(G)| −
(
k

2

)
+ 1.

Here we translate Proposition 8 and Proposition 7 into results for CAFEs, re-
spectively.

Proposition 12. Let k ≥ 4 and let G ∈ G(g1,...,gk). If CAFEN(G) �= +∞ then,

CAFEN(G) ≤
(
k − 1

2

)
θ′(G|).

Proposition 13. Let G ∈ G(g1,g2,g3) be a consistent forbidden edges graph with
k = 3 factors. Then CAFEN(G) = θ′3(G|) = θ′(G|).

5 Complexity of Problems Related to CAFEs

5.1 Decision Problems Related to CAFEs and Previous Results

We consider the following decision problems corresponding to the existence of a
CAFE(n,G) and the determination of CAFEN(G), for a graph G ∈ G(g1,...,gk):

COVER&AVOID={G ∈ G(g1,...,gk) | for some N there exists a CAFE(N,G)},
CAFEN = {(G,N) ∈ G(g1,...,gk) × Z | there exists a CAFE(N,G)}.

Furthermore, for each language L defined above and below, we use the notation g-
L to describe the language where the graph input G is of the particular form G ∈
Gk,g. For example, 2-CAFEN={(G,N) ∈ Gk,2×Z | there exists a CAFE(N,G)}.

Danziger et. al. [8] has shown that g-COVER&AVOID and g-CAFEN are NP-
complete for all g ≥ 5. On the other hand, they show that 2-COVER&AVOID ∈
P , leaving the suspicion that 2-CAFEN be polynomial-time solvable. Indeed in
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the next section we show that g-CAFEN is NP-complete for all g ≥ 2, providing
an answer to the open cases g = 2, 3, 4.

We also consider the languages related to the ECC problems:

ECCN = {(G,N) ∈ G × Z | θ′(G) ≤ N},
UNIFORM-ECCN = {(G,N, k) ∈ G × Z × Z | θ′k(G) ≤ N}.

Kou, Stockmeyer and Wong [12] and independently Orlin [20] have shown that
ECCN is NP-complete. In the next section, we obtain that UNIFORM-ECCN
is also NP-complete.

We now look at the related problem of error-locating arrays. We consider the
following decision problems corresponding to the existence of a ELA(N,G) and
the determination of ELAN(G), for a graph G ∈ G(g1,...,gk):

Martinez et. al. [18] have shown that g-LOCATE is NP-complete for g ≥ 5, which
implies g-ELAN is NP-complete for g ≥ 5. However, since 2-LOCATE ∈ P , we
could conceive that 2-ELAN might be in P. In Section 5.3, we show that g-ELAN
is NP-complete for all g ≥ 2, providing an answer to the open cases g = 2, 3, 4.

5.2 NP-Completeness and Hardness of Approximation of
g-CAFEN, for g ≥ 2

Throughout this section we assume without loss of generality that the original
graph G is nonempty. Let NG(v) denote the neighbours of v in G, that is NG(v) =
{u ∈ V (G) : {u, v} ∈ E(G)}. The reduction algorithm we use to prove our main
result is given next.

Algorithm 1. Let ν ≥ 2 and let G be a simple nonempty graph on ν vertices.
We construct another simple graph, GUV , on 2(k + 2) vertices, where k is the
number of non-isolated vertices in G, such that θ′(G) + 2 = CAFEN(GUV ).

1. Remove all isolated vertices from G to obtain a new graph Gk on k non-
isolated vertices, which we denote by {v1, v2, ..., vk}. Since G is nonempty,
k ≥ 2.

2. Take the complement, Gk, of Gk.
3. Add two extra vertices, vk+1 and vk+2, and add edges joining vk+1 to each

vi for 1 ≤ i ≤ k. Moreover, join the vertex vk+2 to all vertices vi for 1 ≤
i ≤ k + 1. Refer to the resulting graph as GV and denote its vertex set as
V = {v1, v2, ..., vk, vk+1, vk+2}.

4. Construct graph GUV from GV by adding the vertex set U = {u1, u2, ..., uk+2}
to GV , and adding edges according to the Across Edge Rule: we add edge
{vi, uj} to E(GUV ) if and only if i �= j and NGV (vj) ⊆ NGV (vi). Any edge
joining a vertex in U to a vertex in V , we refer to as an across edge. Any
pair of vertices ui ∈ U and vj ∈ V which are not joined to each other by an
edge we refer to as an across non-edge.
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Now, let us observe a few properties of GUV .

Proposition 14. Let G be a simple nonempty graph, and let GUV be the graph
obtained from G using Algorithm 1. Let i ∈ [1, k + 2]. Then,

1. {vi, uk+1} �∈ E(GUV ), and {vi, uk+2} �∈ E(GUV ),
2. {ui, vk+1} �∈ E(GUV ) and {ui, vk+2} �∈ E(GUV ),
3. if i �∈ {k + 1, k + 2}, then NGV (vi) �= V \ {vi}.

The following result gives an equivalent statement for the Across Edge Rule.

Corollary 4. For two distinct vertices vi, vj ∈ V , {vi, uj} ∈ E(GUV ) if and
only if {vi, vj} ∈ E(Gk) and NGk

(vi) \ {vj} ⊆ NGk
(vj) \ {vi}.

Now, by Proposition 14, we get the following lemma.

Lemma 1. Let G be a simple graph. Then I = {u1, . . . , uk, uk+1, vk+2} is the
only independent set of size k + 2 of GUV that contains both vertices uk+1 and
vk+2, and I ′ = {u1, . . . , uk, vk+1, uk+2} is the only independent set of size k + 2
of GUV that contains both vertices vk+1 and uk+2.

Remark 1. The graph GUV is a graph in Gk+2,2, with each vertex vi of GUV

representing the vertex vi,1 and each vertex ui representing vi,0, where 1 ≤ i ≤
k + 2. Given an interaction I = {(i, ai), (j, aj)}, we refer to I as a zero-zero,
zero-one, or one-one interaction, if ai = aj = 0, {ai, aj} = {0, 1}, or ai = aj =
1, respectively. Moreover, if I is not forbidden, that is, if {vi,ai , vj,aj} �∈ E(GUV ),
then we call I a required interaction.

Lemma 2. Let G be a simple graph and let A be a CAFE(N,GUV ), for some
N . Then each row of A, Ri, corresponds to an independent set of GUV , namely
Ii = {vj|Ri(j) = 1} ∪ {uj|Ri(j) = 0} and |Ii| = k + 2.

Lemma 3. Let G be a simple graph. A required one-one interaction of the graph
GUV corresponds to an edge of the original graph G.

Proposition 15. Let G be a nonempty simple graph. Then the graph GUV ,
constructed by Algorithm 1, is consistent.

Proof. Since GUV is a loopless binary CAFE graph and also has the property
that none of its zero vertices ui are joined by any edge, there are only three
possibilities for an inconsistency to occur according to Proposition 1. First, by
condition 2. of Proposition 1, we would have an inconsistency if for some i �= j
we have {vi, uj} ∈ E(GUV ) and {vi, vj} ∈ E(GUV ), but {vi, x} �∈ E(GUV )
for some x ∈ V (GUV ). However, this would never occur because the across edge
{vi, uj} would not be added when computing GUV since NGV (vj) �⊆ NGV (vi). By
condition 1. of Proposition 1, GUV would not be consistent, if for three distinct
indices i, j, l ∈ [1, k + 2] we have {vi, ul} ∈ E(GUV ), {vj , vl} ∈ E(GUV ), and
{vi, vj} �∈ E(GUV ). However, since the across edge {vi, ul} is an edge of GUV , we
know that NGV (vl) ⊆ NGV (vi). This is a contradiction since vj ∈ NGV (vl) but
vj �∈ NGV (vi). Thus, GUV cannot contain such an inconsistency. By condition 1.
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of Proposition 1, we could also have an inconsistency if for three distinct indices
i, j, l ∈ [1, k + 2] we have {vi, ul} ∈ E(GUV ), {vl, uj} ∈ E(GUV ), but {vi, uj} �∈
E(GUV ). By the Across Edge Rule, we have NGV (vl) ⊆ NGV (vi) and NGV (vj) ⊆
NGV (vl). Therefore, we have NGV (vj) ⊆ NGV (vi), and so {vi, uj} must be an
edge of GUV . Therefore, GUV is consistent. ��
Proposition 16. Let G be a nonempty simple graph and let GUV be graph con-
structed by Algorithm 1. Let C be a clique of G that is maximal with respect to
set inclusion such that |C| > 1. Then, I = {vi ∈ V |vi ∈ C} ∪ {ui ∈ U |vi �∈ C}
forms an independent set of size k + 2 of GUV .

Theorem 4. Let G be a nonempty simple graph and let GUV be the graph ob-
tained from G by applying Algorithm 1. Then θ′(G) + 2 = CAFEN(GUV ).

Proof. First we show that CAFEN(GUV ) ≤ θ′(G) + 2. Let N = θ′(G) and let
C = {C1, ..., CN} be an optimal ECC of G. Assume w.l.o.g. that each Ci is a
maximal clique with respect to set inclusion. By Proposition 16, for 1 ≤ i ≤ N ,
we can build a row, Ri = (Ri(1), Ri(2), ..., Ri(k + 2)), corresponding to each
clique Ci ∈ C, by taking Ri(j) = 1 whenever vj ∈ Ci and Ri(j) = 0 whenever
vj �∈ Ci. Since GUV is constructed so that vk+1 and vk+2 are both joined by
an edge to every other vertex in V , we see that covering all interactions of the
form {vi, vj} where i, j ∈ [1, k] is sufficient to cover all the required one-one
interactions of GUV . Since the required one-one interactions of GUV correspond
exactly to the edges of the original graph G, we see that the N rows, R1, ..., RN

do indeed cover the required one-one interactions of GUV . Note that every row Ri

corresponding to the clique Ci ∈ C must also cover the interaction {uk+1, uk+2}
since vk+1 �∈ Ci and vk+2 �∈ Ci for each Ci ∈ C.

Now, we build row RN+1 corresponding to the independent set IN+1 =
{u1, ..., uk+1, vk+2}, possible by Lemma 1. The row RN+1 is sufficient to cover
all the required zero-zero interactions between the vertices u1, ..., uk+1, as well
as all the required interactions of the form {ui, vk+2} where 1 ≤ i ≤ k + 1.
Finally, we build row RN+2 corresponding to the independent set IN+2 =
{u1, ..., uk, vk+1, uk+2}, possible by Lemma 1. The row RN+2 is sufficient to
cover all the required zero-zero interactions of the form {ui, uk+2}, as well as all
the required interactions of the form {ui, vk+1} where 1 ≤ i ≤ k or i = k + 2.

We claim that R1, . . . , RN+2 are sufficient to cover all the across non-edges of
GUV , i.e., all required zero-one interactions. Let vi ∈ V and uj ∈ U such that
{vi, uj} �∈ E(GUV ). We have two possible cases.

Case 1: {vi, vj} �∈ E(GUV ). By the Across Edge Rule, we know that NGV (vj) �⊆
NGV (vi), otherwise {vi, uj} would be an edge of GUV . Hence, there exists a
vertex vl ∈ NGV (vj) such that vl �∈ NGV (vi). This means that {vi, vl} is a non-
edge corresponding to a required one-one interaction and therefore was already
covered by Rp, for some p ∈ [1, N ]. Row Rp must also cover {vi, uj}.
Case 2: {vi, vj} ∈ E(GUV ). If i = k + 1, we are done since row RN+2 covers
all required interactions of the form {vk+1, uj} where 1 ≤ j ≤ k or j = k + 2.
Similarly, if i = k + 2 we are done since the row RN+1 covers all required
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interactions of the form {vk+2, uj} where 1 ≤ j ≤ k + 1. If 1 ≤ i ≤ k then by
Proposition 14 we know that NGV (vi) �= V \{vi}. So there is a vertex vl ∈ V such
that vl �∈ NGV (vi). Thus {vi, vl} �∈ E(GUV ) is a required one-one interaction and
it is covered by row Rp, for some p ∈ [1, N ], which forces the across non-edge
{vi, uj} to be covered.

Hence, we have CAFEN(GUV ) ≤ N + 2 whenever θ′(G) = N .
Next we show that θ′(G) + 2 ≤ CAFEN(GUV ). Suppose we have an optimal

CAFE(N,GUV ) with N rows. By Lemma 1, the only row that can cover the
interaction {uk+1, vk+2} is the one corresponding to the independent set I1 =
{u1, ..., uk+1, vk+2}. Call this row R1. In addition, the only row that can cover
the interaction {vk+1, uk+2} is the one corresponding to the independent set
I2 = {u1, ..., uk, vk+1, uk+2}. Call this row R2. Since neither R1 nor R2 cover
any one-one interactions, we observe that the remaining N − 2 rows of the
optimal CAFE(n,GUV ) must be sufficient to cover all the one-one interactions
of GUV . Call these remaining N−2 rows R3, ..., RN , and name the corresponding
independent sets of GUV of size k+2, I3, ..., IN , respectively. Then for 3 ≤ i ≤ N ,
we have an independent set Ci ⊆ Ii where Ci = {vj |vj ∈ Ii and j ∈ [1, k]}.
Thus, each Ci is an independent set of GUV containing only vertices from the
set {v1, ..., vk}. In other words, each Ci corresponds to a clique of the original
graph G, and C3, ..., CN cover all the edges of G. Therefore, N − 2 ≥ θ′(G).
Equivalently, θ′(G) + 2 ≤ CAFEN(GUV ). ��
Corollary 5. 2-CAFEN is NP-complete.

Proof. Algorithm 1 is a polynomial-time reduction, and Theorem 4 shows ECCN
≤P 2-CAFEN. Since ECCN is NP-complete, the result follows. ��
Corollary 6. UNIFORM-ECCN is NP-complete.

Proof. An instance (G,N) for 2-CAFEN with G ∈ Gk,2 is a particular instance for
UNIFORM-ECCN, namely (G|, N, k), so the result follows from Corollary 5. ��
To obtain a hardness of approximation for 2-CAFEN, we use the following result.

Theorem 5. (Lund and Yannakakis [16]) There exists a δ > 0 such that there
does not exist a polynomial-time approximation algorithm A that satisfies A(G) ≤
νδθ′(G) for all simple graphs G on ν vertices, unless P = NP.

The next result follows from Theorem 4 and Theorem 5, taking δ′ = δ/3.

Theorem 6. There exists a δ′ > 0 such that there does not exist a polynomial-
time approximation algorithm A′ that satisfies A′(G) ≤ kδ′

CAFEN(G) for all
G ∈ Gk,2, unless P = NP.

Now we look at g-CAFEN, for g ≥ 3.
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Proposition 17. For g ≥ 2 we have g-CAFEN ≤P (g + 1)-CAFEN.

Proof. Let G ∈ Gk,g be a graph that is an instance for g-CAFEN. Without
loss of generality, assume the vertices of G are labeled as vi,a where i ∈ [1, k]
and a ∈ [0, g − 1]. Construct a new graph G′ from G as follows. Add a new
vertex, vi,g, to each factor i ∈ [1, k]. Add edges of the form {vi,g, vj,a} for all
i �= j, i, j ∈ [1, k] and for all a ∈ [0, g − 1]. Moreover, add edges of the form
{vi,g, vj,g} for all i �= j, i, j ∈ [1, k]. So G′ ∈ Gk,g+1. Clearly the non-forbidden
interactions of G′ correspond exactly to the non-forbidden interactions of G,
thus CAFEN(G) = CAFEN(G′). Therefore (G,N) ∈ g-CAFEN if and only if
(G′, N) ∈ (g + 1)-CAFEN. It is easy to see that G′ can be computed from G in
polynomial time with respect to the size of the graph G, and thus, g-CAFEN
≤P (g + 1)-CAFEN. ��
Corollary 7. For g ≥ 2, g-CAFEN is NP-complete.

5.3 NP-Completeness of g-ELAN, for g ≥ 2

We now give a proof for the NP-completeness of g-ELAN, for g ≥ 2, by reducing
from ECCN using the following reduction algorithm. The proof is based on
Theorem 1.

Algorithm 2. Let G be a simple graph on ν vertices and let n be the number
of non-isolated vertices of G. We construct from G the graph YG on g(2n + 2)
vertices as follows.

1. Remove all isolated vertices of G to obtain a new graph Gn on n vertices.
Denote the vertices of Gn as V (Gn) = {v1, v2, ..., vn}.

2. Add a new set of vertices V ′ = {vn+1, vn+2, ..., v2n} and join by an edge each
vi to the corresponding vertex vn+i ∈ V ′ for 1 ≤ i ≤ n. In addition, form
an n-clique between all the vertices of V ′ by adding the edges {vn+i, vn+j}
to the graph for 1 ≤ i < j ≤ n. Denote this graph by HG.

3. Apply Algorithm 1 to the graph HG obtaining (HG)UV .
4. Create (g − 1) copies of (HG)UV , and refer to the vertices in copy i as V i =

{vi
1, ..., v

i
2n+2} and U i = {ui

1, . . . , u
i
2n+2}. For 1 ≤ j ≤ 2n+ 2 identify vertices

ui
j, for all 1 ≤ i ≤ g − 1. For every i1 �= i2, 1 ≤ i1, i2 ≤ g − 1, and for every

1 ≤ j1, j2 ≤ 2n + 2, add the edge {vi1
j1
, vi2

j2
}. Refer to this as graph YG.

Theorem 7. g-ELAN is NP-complete, for g ≥ 2.

Sketch of the Proof. Let G be any simple graph and let g ≥ 2. Use Algorithm 2
to create YG. We first prove that (HG)UV built in Step 3 has no across edges,
and so every ui ∈ U is isolated, which implies that YG is locatable. Using Theo-
rem 1, we get that ELAN(YG) = CAFEN(YG)+ |E(YG)|. Moreover, we can show
CAFEN(YG) = (g− 1)[CAFEN((HG)UV )]. We also use that CAFE((HG)UV ) =
θ′(HG) + 2, by Theorem 4, and show that θ′(HG) = θ′(G) + n + 1. It is easy to
see that
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|E(YG)| = (g − 1)|E((HG)UV )| +
(
g − 1

2

)
(2n + 1)(2n + 2).

Therefore,

ELAN(YG)=(g−1)[θ′(G)−|E(G)|]+(g−1)
[
3n2

2
+

7n
2

+4
]
+
(
g−1

2

)
(2n+1)(2n+2),

and so (G,N) ∈ ECCN if and only if (YG, N ′) ∈ g-ELAN, where

N ′ = (g − 1)[N − |E(G)|] + (g − 1)
[
3n2

2
+

7n
2

+ 4
]

+
(
g − 1

2

)
(2n+ 1)(2n+ 2).

Since Algorithm 2 runs in polynomial time with respect to the size of G, and
ECCN is NP-complete, we get that g-ELAN is NP-complete. ��
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Abstract. We consider the relationship between size and depth for
layered Boolean circuits, synchronous circuits and planar circuits as
well as classes of circuits with small separators. In particular, we show
that every layered Boolean circuit of size s can be simulated by a lay-
ered Boolean circuit of depth O(

√
s log s). For planar circuits and syn-

chronous circuits of size s, we obtain simulations of depth O(
√

s). The
best known result so far was by Paterson and Valiant [16], and Dymond
and Tompa [6], which holds for general Boolean circuits and states that
D(f) = O(C(f)/ log C(f)), where C(f) and D(f) are the minimum size
and depth, respectively, of Boolean circuits computing f . The proof of
our main result uses an adaptive strategy based on the two-person peb-
ble game introduced by Dymond and Tompa [6]. Improving any of our
results by polylog factors would immediately improve the bounds for
general circuits.

Keywords: Boolean circuits, circuit size, circuit depth, pebble games.

1 Introduction

In this paper, we study the relationship between the size and depth of fan-in
2 Boolean circuits over the basis {∨,∧,¬}. Given a Boolean circuit C, the size
of C is the number of gates in C, and the depth of C is the length of the
longest path from any input to the output. We will use the following notation
for complexity classes. DTIME(t(n)) and SPACE(s(n)) are the classes of lan-
guages decidable by deterministic multi-tape Turing machines in time O(t(n))
and space O(s(n)), respectively. Given a Boolean function f : {0, 1}n → {0, 1},
define C(f) to be the smallest size of any circuit over {∨,∧,¬} computing f ,
and define D(f) to be the smallest depth of any circuit over {∨,∧,¬} computing
f . Note that C(f) and D(f) are not necessarily achieved by the same circuit.
We also need the following conventions to compare computation times in uni-
form models (Turing machines) and in non-uniform models (Boolean circuits and
PRAMs). Given L ⊆ {0, 1}∗, let Ln = L ∩ {0, 1}n. We will also view Ln as the
following Boolean function: Ln : {0, 1}n → {0, 1} such that Ln(x1, . . . , xn) = 1
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iff x1 . . . xn ∈ Ln. In other words, we will use the notation Ln to denote both the
set Ln and its characteristic function. Now define SIZE(t(n)) = {L : C(Ln) =
O(t(n))} and DEPTH(s(n)) = {L : D(Ln) = O(s(n))}. We will also con-
sider uniform versions of these classes, i.e. logspace-uniform-SIZE(t(n)) and
logspace-uniform-DEPTH(s(n)).

Pippenger and Fischer [17] showed that for t(n) ≥ n, DTIME(t(n)) ⊆
logspace-uniform-SIZE(t(n) log t(n)). Thus, circuit size is related to sequen-
tial computation time. Furthermore, Borodin [4] showed that for s(n) ≥ logn,
logspace-uniform-DEPTH(s(n)) is a subset of SPACE(s(n)), and SPACE
(s(n)) is a subset of logspace-uniform-DEPTH(s2(n)). Thus, circuit depth is
closely related to sequential computation space.

For the PRAM model, define Punit(f) and Plog(f) to be the minimum com-
putation time to compute f in the unit-cost and log-cost PRAM models, re-
spectively. For our purposes, it is sufficient to consider CRCW PRAMs. Define
PRAMunit(t(n)) = {L : Punit(Ln) = O(t(n))} and PRAMlog(t(n)) = {L :
Plog(Ln) = O(t(n))}. Similarly to circuit classes, we will also consider uniform
versions of PRAM classes.

There is a tight connection between circuit depth and PRAM time. Stock-
meyer and Vishkin [21] showed that PRAMlog(t(n)) ⊆ DEPTH(t(n) logm(n))
and DEPTH(s(n)) ⊆ PRAMlog(s(n)), where m(n) is the maximum of t(n), the
number of processors, and the input length n. These results hold even for the
unit-cost PRAM model as long as multiplication is not counted as a unit-cost
instruction.

The above results show that the study of circuit size versus depth helps to
investigate the relationship between sequential and parallel computation time,
as well as time versus space in sequential computation. However, very little is
known about the size versus depth question for general Boolean circuits. The
best known result so far is the following theorem, which was first proved by
Paterson and Valiant [16], and later proved by Dymond and Tompa [6] using
another method.

Theorem A. [16,6] Given a Boolean function f : {0, 1}n → {0, 1}, we have
D(f) = O(C(f)/ logC(f)), or SIZE(t(n)) ⊆ DEPTH(t(n)/ log t(n)).

On the other hand, it can be easily shown that D(f) = Ω(logC(f)). Theorem A
leaves a huge gap (logC(f) versus C(f)/ logC(f)) for circuits of any size. McColl
and Paterson [13] showed that every Boolean function depending on n variables
has circuit depth at most n + 1. There is an even stronger result by Gaskov
[7] showing that circuit depth is at most n − log logn + 2 + o(1). This gives
a much stronger bound on depth than Theorem A for functions that require
circuits of large size. In particular, for f : {0, 1}n → {0, 1} such that C(f) is
exponential in n, [13] and [7] give essentially tight bounds on depth. However,
for functions that can be computed by subexponential-size circuits, there is still
a large gap. Note that Theorem A gives a stronger result than [13] and [7] only
when C(f) = o(n logn). Improving Theorem A would yield improvements over
[13] and [7] for larger C(f) as well.
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Because of the connections mentioned above, there are other important conse-
quences if Theorem A can be improved. Hopcroft, Paul, and Valiant [10] proved
the following analogous theorem about sequential time and space, and Adleman
and Loui [1] later gave an alternative proof.

Theorem B. [10,1] DTIME(t(n)) ⊆ SPACE(t(n)/ log t(n)).

By the results of Pippenger and Fischer, and Borodin mentioned above, improv-
ing Theorem A by at least a polylog factor immediately improves Theorem B.

Dymond and Tompa [6] showed that DTIME(t(n)) ⊆ PRAMunit(
√

t(n))
for the unit-cost PRAM model. (This also holds for logspace uniform unit-cost
PRAM.) However, no such result is known for the log-cost PRAM model. Since
DEPTH(s(n)) ⊆ PRAMlog(s(n)), improving Theorem A by at least a polylog
factor will also imply non-trivial relationship between DTIME and log-cost
PRAM computation time.

For general Boolean circuits, the simulating depth O(t(n)/ log t(n)) in Theo-
rem A is very close to the circuit size. On the other extreme, consider tree-like
circuits, where every gate has fan-out at most 1. Spira [20] showed that given
any tree-like Boolean circuit C of size t(n), we can always simulate C by an-
other tree-like Boolean circuit of depth O(log t(n)). Note that tree-like circuits
are commonly referred to as formulas in circuit complexity. We will use the term
tree-like circuits to avoid any ambiguity. It is unlikely that Spira’s result holds
for general Boolean circuits, since that would imply P = NC1. Still, it is possible
that Theorem A can be improved. We indeed achieve improved simulations for
special classes of Boolean circuits.

1.1 Our Results

We consider the size versus depth problem for special classes of Boolean circuits.
As far as we know, previously no better bounds were known for these classes
than what follows from the bounds for general circuits [16,6]. We obtain signif-
icant improvements over these general bounds for layered circuits, synchronous
circuits, and planar circuits as well as classes of circuits with small separators.
Informally, a circuit is layered if its set of gates can be partitioned into subsets
called layers, such that every wire in the circuit is between adjacent layers. A
circuit is synchronous if for any gate g, every path from the inputs to g has
the same length. Synchronous and planar circuits have been extensively studied
before. Synchronous circuits were introduced by Harper [9]. Planar circuits were
introduced by Lipton and Tarjan [12]. Layered circuits are a natural generaliza-
tion of synchronous circuits, but as far as we know they have not been explicitly
studied. Layered graphs have been studied by Paul, Tarjan, and Celoni [14] (they
call these “level graphs” in their paper). Belaga [3] defined locally synchronous
circuits, which is a subclass of layered circuits, with the extra condition that each
input variable can appear at most once. The synchronous circuits form a proper
subset of layered circuits. (See next section for more details.) Furthermore, Turán
[22] showed that there exists a function fn such that any synchronous circuit for
fn has size Ω(n log n), but there exists a layered circuit for fn with size O(n).
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See Belaga [3] for the same gap for functions with multiple outputs. This distin-
guishes synchronous circuits and layered circuits with respect to their computa-
tional powers. Notice that every Boolean function can be computed by circuits
from each of the classes we consider. Furthermore, these classes of circuits are
quite frequently used in various situations.

Our main result is for layered circuits.

Theorem 1. Every layered Boolean circuit of size s can be simulated by a lay-
ered Boolean circuit of depth O(

√
s log s) computing the same function.

We obtain slightly better bounds for synchronous circuits and planar circuits.

Theorem 2. Every synchronous Boolean circuit of size s can be simulated by a
synchronous Boolean circuit of depth O(

√
s) computing the same function.

A circuit is planar if its underlying graph can be embedded in the plane without
crossings of the wires.

Theorem 3. Every planar Boolean circuit of size s can be simulated by a planar
Boolean circuit of depth O(

√
s) computing the same function.

For planar circuits, we use the fact that every planar circuit of size s has a
separator of size O(

√
s) [11]. Informally, the separator of a graph is a subset of the

nodes whose removal yields two subgraphs of comparable sizes. This allows us to
use a divide-and-conquer strategy. Graphs with small separators include trees,
planar graphs [11], graphs with bounded genus [8], and graphs with excluded
minors [2]. In fact, we can get similar results for arbitrary classes of circuits with
small separators.

On the other hand, not all synchronous circuits and layered circuits have
small separators. See [19] for many examples. So we need strategies other than
the divide-and-conquer approach. Our idea is to consider cuts, which separate
the graph into two subgraphs that are not necessarily comparable in size. For
synchronous circuits, our technique is to find a relatively small cut such that the
function can be computed by the composition of two circuits of small depths.
This gives a simple proof for synchronous circuits, but the same method cannot
be applied to the more general layered circuits. For layered circuits, we develop
an adaptive strategy in the two-person pebble game, such that the sizes of the
cuts are taken into account during the game. Note that both [16] and [6] use
the notion of separators in their proofs. Our results for synchronous circuits and
layered circuits show that the minimum circuit depth does not necessarily grow
with the separator size of the minimum-size circuit.

Finally we note that an arbitrary circuit of size s can be converted to either a
planar or a synchronous circuit of size O(s2) [24]. Thus improving our results by
polylog factors for any of the classes we considered would also yield improvements
over the best known bounds for general circuits.
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2 Definitions and Backgrounds

2.1 The Circuit Model

A Boolean circuit is a labeled directed acyclic graph (DAG), where every node
is labeled by either a variable from {x1, . . . , xn}, or an operation from {∧,∨,¬}.
The inputs of a Boolean circuit are the nodes with in-degree (fan-in) zero, and
the outputs of a Boolean circuit are the nodes with out-degree (fan-out) zero.
The size of a Boolean circuit is the number of its gates. We will consider Boolean
circuits with gates of fan-in at most 2 from the basis {∧,∨,¬}. We refer interested
readers to [24] for more background on Boolean circuits.

A circuit is planar if we can find an embedding in the plane for the circuit
such that no two edges cross [12].

Definition 1. [9] Synchronous circuits: A circuit is synchronous if for any
gate g, all paths from the inputs to g have the same length.

Definition 2. Layered circuits: A circuit is layered, if its set of gates can be
partitioned into subsets called layers, such that every wire in the circuit is be-
tween adjacent layers. For circuits with one output, the following is an equivalent
definition: A circuit with one output is layered if for any gate g all paths from g
to the output have the same length.

Definition 3. Depth and height: Let C be a circuit, and let g be any gate
in C. The depth of g is the length of the longest path from any input to g. The
depth of C is the depth of the output gate.

For circuits with one output, the height of g is the length of the longest path
from g to the output.

Definition 4. Levels and layers: The ith level of a circuit consists of all gates
with depth equal to i. For circuits with one output, the ith layer of the circuit
consists of all gates with height equal to i.

Note that the 0th layer in a circuit with one output consists of the output gate,
and the 0th level in any circuit consists of the inputs. Also note that “levels” and
“layers” are usually used interchangeably in the literature, and distinguishing
them this way is just our terminology. The following lemma is straightforward
from the definitions, and it shows that every synchronous circuit is layered. A
simple example shows that the converse is not true: consider the circuit with
inputs x1, x2, x3, gates g1 = x1 ∧ x2, g2 = g1 ∧ x3, and g2 being the output.

Lemma 1. A circuit C is synchronous if and only if every wire in C is between
adjacent levels. Thus, every synchronous circuit is also a layered circuit.

2.2 The Two-Person Pebble Game

Several variants of pebble games have been invented to study questions related to
the space requirements of computation, e.g. [15,5]. See [18] for a survey. Here we
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focus on the two-person pebble game, which was defined by Dymond and Tompa
[6]. The game is played on a DAG G. There are two players, the challenger and
the pebbler. The challenger starts the game by challenging any single node of
G, then the pebbler puts some pebbles on a subset of the nodes. From this
point on, the challenger can only challenge a node that was either challenged
or pebbled in the previous round. The game continues until at the beginning
of the pebbler’s move, all the predecessors of the currently challenged node w
are already pebbled. Then we say the challenger loses G at w. If, under the
best defense of the challenger, the pebbler can win with t number of pebble
placements, then we say that G can be two-person pebbled in time t. Notice that
the pebbler does not remove pebbles once a node is pebbled.

The next two theorems give an alternative proof of Theorem A.

Theorem C. [6] Let G be a DAG with node set V . Then the pebbler can win
the game in time O(|V |/ log |V |).

Theorem D. (Theorem 3 in [6]) Let C be a Boolean circuit computing a func-
tion f . If C can be two-person pebbled with t pebbles, then there exists a tree-like
circuit of depth 2t + 1 that also computes f .

We will use Theorem D to obtain our results for layered circuits and circuits
with small separators. Note that Paul, Tarjan, and Celoni [14] gave a pebbling
strategy for layered graphs but used the rules of a different pebble game, which
does not imply bounds on the depth.

3 Size versus Depth for Layered Circuits

The following lemma gives an adaptive strategy in the two-person pebble game
for layered circuits.

Lemma 2. Let C be a layered circuit of size s. Then C can be two-person pebbled
in time O(

√
s log s). That is, the pebbler can win by using O(

√
s log s) pebbles.

Proof. First note that at any point in the game, we only need to consider the
subcircuit whose single output is the currently challenged node. Thus, in the
proof we can assume without loss of generality that the circuit C has only one
output, and that the first move of the challenger is to challenge the output gate.

Let L(0), . . . , L(d) be all the layers, where d is the depth of C, and L(i) is the
set of gates with height i. (See previous section for definitions.) Note that L(0)
consists of the output gate. We say that a layer L(i) is large if |L(i)| > y and
small otherwise. We shall determine the value of y later.

The strategy of the pebbler has two phases. During the first phase, the pebbler
forces the challenger to go into a subcircuit between two small layers such that
every layer between the two small layers is large, or into a subcircuit such that all
nodes of the subcircuit belong to large layers. In the second phase, the pebbler
will win the game within that subcircuit.
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During the first phase, the pebbler always pebbles a small layer Sα with
α > β, where Sβ is the layer where the challenged node resides in that round.
The pebbler continues this phase until the small layer Sα with α > β closest to
the challenged node is pebbled, or until there are no more such small layers. Note
that the pebbler pebbles the small layers S0, S1, . . . , Sm in a divide-and-conquer
way depending on the location of the challenged node in each round. Since there
are at most s small layers, the number of pebbles used in the first phase is at
most y�log s�.

Phase I. Let S0, S1, . . . , Sm be the small layers numbered starting from the
output. Note that S0 = L(0) since L(0) contains only one gate. Define h(j) to
be the height of the gates in the jth small layer Sj. We shall define the strategy
inductively.

At the beginning of the game (round 1), the challenger challenges the output
node, which belongs to S0 = L(0).

Suppose that for r ≥ 1 at the beginning of round r the challenger challenges
a node w ∈ Sj . Note that since during phase I pebbles are only placed on nodes
in small layers, the challenged node w belongs to a small layer in every round
within phase I. We have three cases.

1. No small layer L(h(b)) = Sb with b > j exists. That is, every layer L(k) with
k > h(j) is a large layer. Then the pebbler continues with the second phase.

2. None of the small layers L(h(b)) = Sb with b > j is pebbled. The pebbler
then puts a pebble on each node of S�m+j

2 �.
3. There exists a small layer L(h(b)) = Sb with b > j, such that all nodes in Sb

are pebbled, and none of the small layers between Sj and Sb is pebbled. The
pebbler then puts a pebble on each node of S� b+j

2 � if  b+j
2 ! �= b. If  b+j

2 ! = b,
then there are no small layers between Sj and Sb, and the pebbler continues
with the second phase.

Phase II. The pebbler’s strategy in the second phase is as follows: Suppose that
the challenger challenges node w in the beginning of the kth round for some k.
Then the pebbler puts pebbles on the two inputs of w, say u and v. In the (k +
1)st round, if the challenger stays on w, then the pebbler wins the game. On the
other hand, if the challenger challenges one of the inputs of w, WLOG u, then
the pebbler puts pebbles on the two inputs of u in the (k + 1)st round. The game
continues inductively this way until at the beginning of pebbler’s move either the
currently challenged node w is an input of C, or the two immediate predecessors
of w are already pebbled. Thus the pebbler wins in the second phase.

Note that in this phase, the pebbler only spends at most two pebbles in each
round, and the two pebbles are put on nodes in large layers of C. Moreover,
during k rounds of the second phase, the pebbler pebbles nodes from k different
large layers. Since the number of large layers in C is at most s

y , the second phase
must terminate in at most s

y rounds. Thus, the number of pebbles used in this
phase is at most 2s

y .
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The total number of pebbles used throughout the game is at most p =
y�log s� + 2s/y. The minimum of this expression is p = 2

√
2s�log s�, achieved

when y =
√

2s
�log s� . This proves the lemma. ��

Proof of Theorem 1. Follows immediately from Theorem D and Lemma 2.

4 Size versus Depth for Synchronous Circuits

The following simple lemma was given in [24]. The results by McColl and Pa-
terson [13], and Gaskov [7] mentioned in the introduction give stronger results.
But for our purposes, this slightly weaker bound is sufficient, and we include a
simple proof for completeness.

Lemma 3. [24] For every function f : {0, 1}n → {0, 1}, there exists a syn-
chronous circuit of depth at most n + logn + 1 computing f .

Proof. The proof is based on considering any DNF of f . The terms can be
computed in parallel with depth at most logn + 1, and the number of terms is
at most 2n. This gives the desired depth. Note that any circuit can be made
synchronous without increasing its depth. ��
Next we prove Theorem 2. Note that in the proof, we use the property of syn-
chronous circuits that given any level LV (i), f is a function of exactly those
functions computed at the gates in LV (i). This property allows us to do func-
tion composition in terms of two circuits. However, for layered circuits, inputs
could be in the jth layer for j > i. Thus the property no longer holds for layered
circuits that are not synchronous.

Note that the notation LV stands for “levels”, while in the previous section
we used L for “layers”.

Proof of Theorem 2. Let f be the function computed by C. (If C has more than
one output, the proof can be applied by considering each output function sepa-
rately, and combine the resulting small depth circuits.) Since C is synchronous,
every level in C forms a cut. Furthermore, given any level LV (i), f is a function
of exactly those functions computed at the gates in LV (i). We shall use this
special property of synchronous circuits to compute f by the composition of two
circuits.

Let LV (0), LV (1), . . . , LV (d) be the levels in C, where d is the depth of C, and
LV (0) contains the inputs. Let y be an integer whose value will be determined
later. We say that a level LV (i) is small if |LV (i)| ≤ y and large otherwise.

If C has many outputs, then it is possible that all the levels are large, but
then the depth of C is at most s

y . Assume that C has at least one small level.
Let LV (k0) be the small level farthest from the output of C.

Now let g1, . . . , gm be the gates in LV (k0), and let γi be the function computed
at gi. As noted above, f is a function of γ1, . . . , γm. Let f = f ′(γ1, . . . , γm). Then
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by Lemma 3, given γ1, . . . , γm as inputs, f ′ can be computed by a synchronous
circuit F of depth O(|LV (k0)|) = O(y).

Let C′ be the multiple-output subcircuit of C with outputs g1, . . . , gm. That
is, C′ consists of the levels LV (0), . . . , LV (k0) in C, where LV (k0) contains the
outputs of C′. (If LV (k0) = LV (0), then C′ consists of only one level, formed
by the inputs of C.) We use the outputs of C′ as inputs for the circuit F . The
resulting combined circuit F ′ is a synchronous circuit computing f . Note that
all the levels LV (0), . . . , LV (k0 − 1) are large. Since there are at most s

y large
levels in C, the depth of F ′ is at most O(y + s

y ).
Thus, we obtain a synchronous circuit of depth at most O(y + s

y ). Letting
y =

√
s, we can simulate C by a synchronous circuit of depth O(

√
s). ��

5 Size versus Depth for Planar Circuits and Circuits with
Small Separators

Informally, a node separator of a graph G is a set of nodes whose removal yields
two disjoint subgraphs of G that are comparable in size. The following gives a
formal definition of a node separator in the fashion of Ullman [23].

Definition 5. A DAG G = (V,E) has an h(t)-separator, and we say G is h(t)-
separable, if G has only one node, or it satisfies the following two properties.

1. There exists an S ⊆ V of size at most h(|V |) whose removal disconnects G
into two subDAGs, G1 = (V1, E1) and G2 = (V2, E2), that satisfy |Vi| ≥ 1

3 |V |
for i = 1, 2.

2. The two subDAGs G1 and G2 have h(t)-separators.

Note that the two subDAGs could be disconnected within themselves.
Although the separator serves as a natural tool to define a divide-and-conquer

strategy, we need something stronger than the separator for the two-person peb-
ble game. This is because the challenged nodes in the game could be arbitrary
nodes in the graph. Thus we need to consider every possible subDAG of G.

Definition 6. A DAG G is everywhere-h(t)-separable, if any subDAG H of G
with one output such that the underlying undirected graph of H is connected, also
has an h(t)-separator. A circuit C is everywhere-h(t)-separable if its underlying
DAG is everywhere-h(t)-separable.

Theorem 4. Let C = (V,E) be an everywhere-h(t)-separable Boolean circuit,
where h(t) = o(t). Then C can be two-person pebbled in time

O

⎛⎝�log3/2 |V |�∑
i=0

h
(
(2/3)i |V |

)⎞⎠ .
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Proof. Let p(|V |) be the number of pebbles required by the pebbler to win in
the two-person pebble game on C. In each round, the pebbler will separate C
into two subDAGs to see which subDAG the currently challenged node belongs
to, and then recurse on that subDAG. Notice that in general, both components
may contain several disjoint subcomponents.

We now define the strategy recursively. If C has only one node, then the
pebbler wins immediately after the challenger’s initial move. Now suppose that
the challenger puts a challenge on a node g ∈ C. Then the pebbler places pebbles
on the nodes of some appropriately chosen separator S of C1, where C1 is the
unique maximal subcircuit of C with g as its output. Let i ≥ 1. There are two
cases in the (i + 1)th round.

1. The challenger re-challenges g. Let Si be the separator of Ci chosen in the ith
round. Let Ci+1 be the unique maximal subcircuit of Ci with g as its output,
such that the inputs of Ci+1 are some inputs of Ci upon which g depends,
or some nodes in the separator Si, and the underlying undirected graph of
Ci+1 is connected. Furthermore, we require that every path from the inputs
of Ci+1 to g does not contain any node in Si. Then the pebbler applies
this strategy recursively, and in the next round, looks for an appropriate
separator of Ci+1.

2. The challenger puts a new challenge on a node w ∈ S. Let Ci+1 be defined
as above, but with w as its output. Then, as above, the pebbler applies this
strategy recursively.

Let Ci1 and Ci2 be the two subDAGs of Ci defined by the separator Si. Note
that Ci1 and Ci2 might be disconnected, but we defined Ci+1 to be a connected
subcircuit of either Ci1 or Ci2. We claim that the pebbler will win after at most
O(log |V |) rounds. To see this, notice that after the first round, the challenger can
only challenge a node that has just been challenged, or a node in the separator.
So the challenged node is restricted to either Ci1 ∪Si or Ci2 ∪Si that have sizes
at most (2

3 + o(1))|Ci| because by assumption C is everywhere-h(t)-separable
and h(t) = o(t). This also implies that the size of Ci+1 is at most (2

3 + o(1))|Ci|,
and the game must terminate in at most O(log |V |) rounds.

For the number of pebbles used, we have the following recursion:

p(1) = 0, p(|Ci|) ≤ h(|Ci|) + p

((
2
3

+ o(1)
)

|Ci|
)
.

Solving the above recursion yields p(|V |)=O

⎛⎝�log3/2 |V |�∑
i=0

h
(
(2/3)i |V |

)⎞⎠ . ��

For planar graphs, the following theorem is due to Lipton and Tarjan [11].

Theorem E. [11] Given a planar graph G with node set V , G has a separator
of size O(

√|V |).
Since any subgraph of a planar graph is still planar, every planar graph is
everywhere-O(

√
t)-separable.
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Proof of Theorem 3. The claim follows by Theorem 4, Theorem D, and the
observation that any tree-like circuit is also planar. ��
For graphs with bounded genus, we have the following theorem due to Gilbert,
Hutchinson, and Tarjan [8].

Theorem F. [8] Given a graph G with node set V and genus g, G has a sepa-
rator of size O(

√
g|V |).

Since any subgraph of a graph G with genus g cannot have genus more than g,
G is everywhere-O(

√
gt)-separable. By Theorem 4 and Theorem D we obtain:

Theorem 5. Let C be a Boolean circuit of size s such that its underlying graph
of C has genus g. Then there exists a tree-like circuit F of depth O(

√
gs) that

computes the same function.

Let Kk denote the complete graph on k nodes. For graphs having no Kk as a
minor, we have the following theorem due to Alon, Seymour, and Thomas [2].

Theorem G. [2] Given a graph G with node set V and having no Kk as a
minor, G has a separator of size O(k

3
2 |V | 12 ).

If a graph G does not have Kk as its minor, neither can any subgraph of G. So
G is everywhere-O(k3/2t1/2)-separable. As above, this gives:

Theorem 6. Let C be a Boolean circuit of size s such that its underlying graph
of C does not contain Kk as a minor. Then there exists a tree-like circuit F of
depth O(k

3
2 s

1
2 ) that computes the same function.
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Abstract. We describe algorithms for finding the regression of t, a se-
quence of values, to the closest sequence s by mean squared error, so that
s is always increasing (isotonicity) and so the values of two consecutive
points do not increase by too much (Lipschitz). The isotonicity constraint
can be replaced with a unimodular constraint, for exactly one local max-
imum in s. These algorithm are generalized from sequences of values to
trees of values. For each we describe near-linear time algorithms.

1 Introduction

Let M be a triangulation of a polygonal region P ⊆ R2 in which each vertex is as-
sociated with a real valued height (or elevation)1. Linear interpolation of vertex
heights in the interior of each triangle of M defines a piecewise-linear function
t : P → R, called a height function. A height function (or its graph) is widely
used to model a two-dimensional surface in numerous applications (e.g. modeling
the terrain of a geographical area). With recent advances in sensing and mapping
technologies, such models are being generated at an unprecedentedly large scale.
These models are then used to analyze the surface and to compute various geo-
metric and topological properties of the surface. For example, researchers in GIS
are interested in extracting river networks or computing visibility or shortest-
path maps on terrains modeled as height functions. These structures depend
heavily on the topology of the level sets of the surface and in particular on the
topological relationship between its critical points (maxima, minima, and saddle
points). Because of various factors such as measurement or sampling errors or
the nature of the sampled surface, there is often plenty of noise in these surface
models which introduces spurious critical points. This in turn leads to mislead-
ing or undesirable artifacts in the computed structures, e.g., artificial breaks in
river networks. These difficulties have motivated extensive work on topological
simplification and noise removal through modification of the height function t
into another one s : M → R that has the desired set of critical points and that
is as close to t as possible [8,20,23]. A popular approach is to decompose the
1 Supported by grants NSF: CNS-05-40347, CFF-06-35000, DEB-04-25465, 0937060-

CIF32 to CRA; ARO: W911NF-04-1-0278, W911NF-07-1-0376; NIH: 1P50-GM-
08183-01; DOE: OEG-P200A070505; and U.S.–Israel Binational Science Foundation.

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 384–396, 2010.
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surface into pieces and modify each piece so that it has a unique minimum or
maximum [23]. In some applications, it is also desirable to impose the additional
constraint that the function s is Lipschitz; see below for further discussion.

Problem statement. Let M = (V,A) be a planar graph with vertex set V
and arc (edge) set A ⊆ V × V . We may treat M as undirected in which case we
take the pairs (u, v) and (v, u) as both representing the same undirected edge
connecting u and v. Let γ ≥ 0 be a real parameter. A function s : V → R is
called

(L) γ-Lipschitz if (u, v) ∈ A implies s(v) − s(u) ≤ γ.

Note that if M is undirected, then Lipschitz constraint on an edge (u, v) ∈ A
implies |s(u)−s(v)| ≤ γ. For an undirected planar graph M = (V,A), a function
s : V → R is called

(U) unimodal if s has a unique local maximum, i.e. only one vertex v ∈ V such
that s(v) > s(u) for all (u, v) ∈ A.

For a directed planar graph M = (V,A), a function s : V → R is called

(I) isotonic if (u, v) ∈ A implies s(u) ≤ s(v).2

For an arbitrary function t : V → R and a parameter γ, the γ-Lipschitz unimodal
regression (γ-LUR) of t is a function s : V → R that is γ-Lipschitz and unimodal
on M and minimizes ‖s− t‖2 =

∑
v∈V (s(v)− t(v))2. Similarly, if M is a directed

planar graph, then s is the γ-Lipschitz isotonic regression (γ-LIR) of t if s
satisfies (L) and (I) and minimizes ‖s−t‖2. The more commonly studied isotonic
regression (IR) and unimodal regression [3,5,7,22] are the special cases of LIR
and LUR, respectively, in which γ = ∞, and therefore only the condition (I) or
(U) is enforced.

Given a planar graph M, a parameter γ, and t : V → R, the LIR (resp. LUR)
problem is to compute the γ-LIR (resp. γ-LUR) of t. In this paper we propose
near-linear-time algorithms for the LIR and LUR problems for two special cases:
when M is a path or a tree. We study the special case where M is a path prior to
the more general case where it is tree because of the difference in running time
and because doing so simplifies the exposition to the more general case.

Related work. As mentioned above, there is extensive work on simplifying the
topology of a height function while preserving the geometry as much as possi-
ble. Two widely used approaches in GIS are the so-called flooding and carving
techniques [1,11,23]. The former technique raises the height of the vertices in
“shallow pits” to simulate the effect of flooding, while the latter lowers the value
of the height function along a path connecting two pits so that the values along
2 A function s satisfying the isotonicity constraint (I) must assign the same value to all

the vertices of a directed cycle of M (and indeed to all vertices in the same strongly
connected component). Therefore, without loss of generality, we assume M to be a
directed acyclic graph (DAG).
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the path vary monotonically. As a result, one pit drains to the other and thus one
of the minima ceases to exist. Various methods based on Laplacian smoothing
have been proposed in the geometric modeling community to remove unnecessary
critical points; see [6,17,20] and references therein.

A prominent line of research on topological simplification was initiated by
Edelsbrunner et. al. [13] who introduced the notion of persistence; see also [12,28].
Roughly speaking, each homology class of the contours in sublevel sets of a height
function is characterized by two critical points at one of whom the class is born
and at the other it is destroyed. The persistence of this class is then the height
difference between these two critical points. Efficient algorithms [13,14,4] sim-
plify topology based on persistence, optimally eliminating all critical points of
persistence below a threshold measured as ‖s− t‖∞ = maxv∈V |s(v) − t(v)|. No
efficient algorithm is known to minimize ‖s− t‖2.

The isotonic-regression (IR) problem has been studied in statistics [5,7,22]
since the 1950s. It has many applications ranging from statistics [25] to bioin-
formatics [7], and from operations research [19] to differential optimization [16].
The pool adjacent violator algorithm (PAVA) [5] solves the IR problem on paths
in O(n) time, by merging consecutive level sets of vertex values that are out of
order. Brunk [10] and Thompson [27] initiated the study of the IR problem on
general DAGs and trees, respectively. Jewel [18] introduced the problem of Lips-
chitz isotonic regression on DAGs and showed connections between this problem
and network flow with quadratic cost functions. Stout [26] solves the UR prob-
lem on paths in O(n) time. Pardalos and Xue [21] give an O(n log n) algorithm
for the IR problem on trees. For the special case when the tree is a star they
give an O(n) algorithm. Spouge et. al.[24] give an O(n4) time algorithm for
the IR problem on DAGs. The problems can be solved under the L1 and L∞
norms on paths [26] and DAGs [3] as well, with an additional logn factor for
L1. To our knowledge there is no prior work on efficient algorithms for Lipschitz
isotonic/unimodal regressions in the literature.

Our results. We present efficient exact algorithms for LIR and LUR problems
on two special cases of planar graphs: paths and trees. In particular, we present
an O(n logn) algorithm for computing the LIR on a path of length n (Section 4),
and an O(n log n) algorithm on a tree with n nodes (Section 6). We present an
O(n log2 n) algorithm for computing the LUR problem on a path of length n
(Section 5). Our algorithm can be extended to solve the LUR problem on an
unrooted tree in O(n log3 n) time (Section 7). The LUR algorithm for a tree is
particularly interesting because of its application in the aforementioned carving
technique [11,23]. The carving technique modifies the height function along a
number of trees embedded on the terrain where the heights of the vertices of
each tree are to be changed to vary monotonically towards a chosen “root” for
that tree. In other words, to perform the carving, we need to solve the IR problem
on each tree. The downside of doing so is that the optimal IR solution happens
to be a step function along each path toward the root of the tree with potentially
large jumps. Enforcing the Lipschitz condition prevents sharp jumps in function
value and thus provides a more natural solution to the problem.
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Section 3 presents a data structure, called affine composition tree (ACT), for
maintaining a xy-monotone polygonal chain, which can be regarded as the graph
of a monotone piecewise-linear function F : R → R. Besides being crucial for our
algorithms, ACT is interesting in its own right. A special kind of binary search
tree, an ACT supports a number of operations to query and update the chain,
each taking O(log n) time. Besides the classical insertion, deletion, and query
(computing F (x) or F−1(x) for a given x ∈ R), one can apply an Interval

operation that modifies a contiguous subchain provided that the chain remains
x-monotone after the transformation, i.e., it remains the graph of a monotone
function. For space, several proofs are missing; see the full version [2].

2 Energy Functions

On a discrete set U , a real valued function s : U → R can be viewed as a point
in the |U |-dimensional Euclidean space in which coordinates are indexed by the
elements of U and the component su of s associated to an element u ∈ U is s(u).
We use the notation RU to represent the set of all real-valued functions defined
on U .

Let M = (V,A) be a directed acyclic graph on which we wish to compute
γ-Lipschitz isotonic regression of an input function t ∈ RV . For any set of ver-
tices U ⊆ V , let M[U ] denote the subgraph of M induced by U , i.e. the graph
(U,A[U ]), where A[U ] = {(u, v) ∈ A : u, v ∈ U}. The set of γ-Lipschitz isotonic
functions on the subgraph M[U ] of M constitutes a convex subset of RU , de-
noted by Γ (M, U). It is the common intersection of all half-spaces determined
by the isotonicity and Lipschitz constraints associated with the edges in A[U ],
i.e., su ≤ sv and sv ≤ su + γ for all (u, v) ∈ A[U ].

For U ⊆ V we define EU : RV → R as EU (s) =
∑

v∈U (s(v) − t(v))2. The γ-
Lipschitz isotonic regression of the input function t is σ = argmins∈Γ (M,V ) EV (s).
For a subset U ⊆ V and v ∈ U define the function Ev

M[U ] : R → R as

Ev
M[U ](x) = min

s∈Γ (M,U);s(v)=x
EU (s).

Lemma 1. For any U ⊆ V and v ∈ U , the function Ev
M[U ] is continuous and

strictly convex.

3 Affine Composition Tree

In this section we introduce a data structure, called affine composition tree
(ACT), for representing an xy-monotone polygonal chain in R2, which is being
deformed dynamically. Such a chain can be regarded as the graph of a piecewise-
linear monotone function F : R → R, and thus is bijective. A breakpoint of F
is the x-coordinate of a vertex of the graph of F (a vertex of F for short),
i.e., a b ∈ R at which the left and right derivatives of F disagree. The num-
ber of breakpoints of F will be denoted by |F |. A continuous piecewise-linear
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function F with breakpoints b1 < · · · < bn can be characterized by its vertices
qi = (bi, F (bi)), i = 1, . . . , n together with the slopes μ− and μ+ of its left and
right unbounded pieces, respectively, extending to −∞ and +∞. An affine trans-
formation of R2 is a map φ : R2 → R2, q #→ M · q + c where M is a nonsingular
2 × 2 matrix, (a linear transformation) and c ∈ R2 is a translation vector — in
our notation we treat q ∈ R2 as a column vector.

An ACT supports the following operations on a monotone piecewise-linear
function F with vertices qi = (bi, F (bi)), i = 1, . . . , n:

1. Evaluate(a) and Evaluate
−1(a): Given any a ∈ R, return F (a) or F−1(a).

2. Insert(q): Given a point q = (x, y) ∈ R2 insert q as a new vertex of F . If
x ∈ (bi, bi+1), this operation removes the segment qiqi+1 from the graph of
F and replaces it with two segments qiq and qqi+1, thus making x a new
breakpoint of F with F (x) = y. If x < b1 or x > bk, then the affected
unbounded piece of F is replaced with one parallel to it but ending at q and
a segment connecting q and the appropriate vertex of F (μ+ and μ− remain
intact). We assume that F (bi) ≤ y ≤ F (bi+1).

3. Delete(b): Given a breakpoint b of F , removes the vertex (b, F (b)) from F ;
a delete operation modifies F in a manner similar to insert.

4. Affine(ψ): Given an affine transformationψ : R2 → R2, modify the function
F to one whose graph is the result of application of ψ to the graph of F . See
Figure 1(Left).

5. Intervalp(ψ, τ−, τ+): Given an affine transformation ψ : R2 → R2 and
τ−, τ+ ∈ R and p ∈ {x, y}, this operation applies ψ to all vertices v of F
whose p-coordinate is in the range [τ−, τ+]. Note that Affine(ψ) is equiv-
alent to Intervalp(ψ,−∞,+∞) for p = {x, y}. See Figure 1(Right).

Affine and Interval are applied with appropriate choice of transformation
parameters so that the resulting chain remains xy-monotone.

An ACT T = T(F ) is a red-black tree that stores the vertices of F in the sorted
order, i.e., the ith node of T is associated with the ith vertex of F . However,
instead of storing the actual coordinates of a vertex, each node z of T stores an

Fig. 1. Left: the graph of a monotone piecewise linear function F (in solid black).
The dashed curve is the result of applying the linear transform ψ0(q) = Mq where
M =

( 1 1/3
1/3 2/3

)
. The gray curve, a translation of the dashed curve under vector

c =
(−1
−2

)
, is the result of applying Affine(ψ) to F where ψ(q) = Mq + c. Right:

Interval(ψ, τ−, τ+), only the vertices of curve F whose x-coordinates are in the
marked interval [τ−, τ+] are transformed. The resulting curve is the thick gray curve.
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affine transformation φz : q #→ Mz · q + cz. If z0, . . . , zk = z is the path in T from
the root z0 to z, then let Φz(q) = φz0(φz1(. . . φzk

(q) . . . )). Notice that Φz is also
an affine transformation. The actual coordinates of the vertex associated with z
are (qx, qy) = Φz(0) where 0 = (0, 0).

Given a value b ∈ R and p ∈ {x, y}, let Predp(b) (resp. Succp(b)) denote
the rightmost (resp. leftmost) vertex q of F such that the p-coordinate of q is
at most (resp. least) b. Using ACT T, Predp(b) and Succp(b) can be computed
in O(log n) time by following a path in T, composing the affine transformations
along the path, evaluating the result at 0, and comparing its p-coordinate with
b. Evaluate(a) determines the vertices q− = Predx(a) and q+ = Succx(a) of
F immediately preceding and succeeding a and interpolates F linearly between
q− and q+; if a < b1 (resp. a > bk), then F (a) is calculated using F (b1) and μ−
(resp. F (bk) and μ+). Since b− and b+ can be computed in O(log n) time and the
interpolation takes constant time, Evaluate(a) is answered in time O(log n).
Similarly, Evaluate

−1(a) is answered using Predy(a) and Succy(a).
A key observation of ACT is that a standard rotation on any edge of T can

be performed in O(1) time by modifying the stored affine transformations in a
constant number of nodes (see Figure 2(left)) based on the fact that an affine
transformation φ : q #→ M · q + c has an inverse affine transformation φ−1 :
q #→ M−1 · (q − c); provided that the matrix M is invertible. A point q ∈ R2

is inserted into T by first computing the affine transformation Φu for the node
u that will be the parent of the leaf z storing q. To determine φz we solve, in
constant time, the system of (two) linear equations Φu(φz(0)) = q. The result is
the translation vector cz. The linear transformation Mz can be chosen to be an
arbitrary invertible linear transformation, but for simplicity, we set Mz to the
identity matrix. Deletion of a node is handled similarly.

To perform an Intervalp(ψ, τ−, τ+) query, we first find the nodes z− and
z+ storing the vertices Predp(τ−) and Succp(τ+), respectively. We then suc-
cessively rotate z− with its parent until it becomes the root of the tree. Next,
we do the same with z+ but stop when it becomes the right child of z−. At this
stage, the subtree rooted at the left child of z+ contains exactly all the vertices
q for which qp ∈ [τ−, τ+]. Thus we compose ψ with the affine transformation
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Fig. 2. Left: Rotation in affine composition trees, with each node’s affine function
in greek. When rotating (z1, z2), changing the functions as shown the leaves remain
unchanged. Right: The breakpoints of the function Fi = dẼi/dx. For each i, s∗i−1 and
s∗i−1 + γ are the “new” breakpoints of Fi. All other breakpoints of Fi come from Fi−1

where those smaller than s∗i remain unchanged and those larger are increased by γ.
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at that node and issue the performed rotations in the reverse order to put the
tree back in its original (balanced) position. Since z− and z+ were both within
O(log n) steps from the root of the tree, and since performing each rotation on
the tree can only increase the depth of a node by one, z− is taken to the root in
O(log n) steps and this increases the depth of z+ by at most O(log n). Thus the
whole operation takes O(log n) time.

We can augment T(F ) with additional information so that for any a ∈ R the
function E(a) = E(b1) +

∫ a

b1
F (x) dx, where b1 is the leftmost breakpoint and

E(b1) is value associated with b1, can be computed in O(log n) time; we refer to
this operation as Integrate(a). We provide the details in the full version [2].

Theorem 1. A continuous piecewise-linear monotonically increasing function
F with n breakpoints can be maintained using a data structure T(F ) such that

1. Evaluate and Evaluate
−1 queries can be answered in O(log n) time,

2. an Insert or a Delete operation can be performed in O(log n) time,
3. Affine and Interval operations can be performed in O(1) and O(log n)

time, respectively.
4. Integrate operation can be performed in O(log n) time.

One can use the above operations to compute the sum of two increasing con-
tinuous piecewise-linear functions F and G as follows: we first compute F (bi)
for every breakpoint bi of G and insert the pair (bi, F (bi)) into T(F ). At this
point the tree still represents T(F ) but includes all the breakpoints of G as de-
generate breakpoints (at which the left and right derivates of F are the same).
Finally, for every consecutive pair of breakpoints bi and bi+1 of G we apply an
Intervalx(ψi, bi, bi+1) operation on T(F ) where ψi is the affine transformation
q #→ Mq + c where M =

(
1 0
α 1

)
and c =

( 0
β

)
, in which Gi(x) = αx + β is

the linear function that interpolates between G(bi) at bi and G(bi+1) at bi+1
(similar operation using μ− and μ+ of G for the unbounded pieces of G must
can be applied in constant time). It is easy to verify that after performing
this series of Interval’s, T(F ) turns into T(F + G). The total running time
of this operation is O(|G| log |F |). Note that this runtime can be reduced to
O(|G|(1 + log |F |/ log |G|)), for |G| < |F |, by using an algorithm of Brown and
Tarjan [9] to insert all breakpoints and then applying all Interval operations
in a bottom up manner. Furthermore, this process can be reversed (i.e. creat-
ing T(F −G) without the breakpoints of G, given T(F ) and T(G)) in the same
runtime. We therefore have shown:

Lemma 2. Given T(F ) and T(G) for a piecewise-linear isotonic functions F
and G where |G| < |F |, T(F + G) or T(F − G) can computed in O(|G|(1 +
log |F |/ log |G|)) time.

Tree sets. We will be repeatedly computing the sum of two functions F and
G. It will be too expensive to compute T(F + G) explicitly using Lemma 2,
therefore we represent it implicitly. More precisely, we use a tree set S(F ) =
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{T(F1), . . . ,T(Fk)} consisting of affine composition trees of monotone piecewise-
linear functions F1, . . . , Fk to represent the function F =

∑k
j=1 Fj . We perform

several operations on F or S similar to those of a single affine composition tree.
Evaluate(x) on F takes O(k logn) time, by evaluating

∑k
j=1 Fj(x). And

Evaluate
−1(y) on F takes O(k log2 n) time using Frederickson and Johnson [15].

Given the ACT T(F0), we can convert S(F ) to S(F + F0) in two ways:
an Include(S, F0) operation sets S = {T(F1), . . . ,T(Fk),T(F0)} in O(1) time.
A Merge(S, F0) operations sets S = {T(F1 + F0),T(F2), . . . ,T(Fk)} in time
O(|F0| log |F1|). We can also perform unInclude(S, F0) and unMerge(S, F0),
operations that reverse the respective above operations in the same runtimes.

We can perform an Affine(S, ψ) where ψ describes a linear transform M and
a translation vector c. To update F by ψ we update F1 by ψ and for j ∈ [2, k]
update Fj by just M . This takes O(k) time. It follows that we can perform
Interval(S, ψ, τ−, τ+) in O(k logn) time, where n = |F1| + . . . + |Fk|. Here we
assume that the transformation ψ is such that each Fi remains monotone after
the transformation.

4 LIR on Paths

In this section we describe an algorithm for solving the LIR problem on a path,
represented as a directed graph P = (V,A) where V = {v1, . . . , vn} and A =
{(vi, vi+1) : 1 ≤ i < n}. A function s : V → R is isotonic (on P ) if s(vi) ≤
s(vi+1), and γ-Lipschitz for some real constant γ if s(vi+1) ≤ s(vi) + γ for each
i = 1, . . . , n−1. For the rest of this section let t : V → R be an input function on
V . For each i = 1, . . . , n, let Vi = {v1, . . . , vi}, let Pi be the subpath v1, . . . , vi,
and let Ei and Ẽi, respectively, be shorthands for EVi and Evi

Pi
. By definition, if

we let Ẽ0 = 0, then for each i ≥ 1:

Ẽi(x) = (x− t(vi))2 + min
x−γ≤y≤x

Ẽi−1(y). (1)

By Lemma 1, Ẽi is convex and continuous and thus has a unique minimizer s∗i .

Lemma 3. For i ≥ 1, the function Ẽi is given by the recurrence relation:

Ẽi(x) = (x− t(vi))2 +

⎧⎨⎩
Ẽi−1(x− γ) x > s∗i−1 + γ

Ẽi−1(s∗i−1) x ∈ [s∗i−1, s
∗
i−1 + γ]

Ẽi−1(x) x < s∗i−1.

(2)

Thus by Lemmas 1 and 3, Ẽi is strictly convex and piecewise quadratic. We call
a value x that determines the boundary of two neighboring quadratic pieces of
Ẽi a breakpoint of Ẽi. Since Ẽ1 is a simple (one-piece) quadratic function, it has
no breakpoints. For i > 1, the breakpoints of the function Ẽi consist of s∗i−1
and s∗i−1 + γ, as determined by recurrence (2), together with breakpoints that
arise from recursive applications of Ẽi−1. Examining equation (2) reveals that all
breakpoints of Ẽi−1 that are smaller than s∗i−1 remain breakpoints in Ẽi and all
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those larger than s∗i−1 are increased by γ and these form all of the breakpoints of
Ẽi (see Figure 2(right)). Thus Ẽi has precisely 2i − 2 breakpoints. To compute
the point s∗i at which Ẽi(x) is minimized, it is enough to scan over these O(i)
quadratic pieces and find the unique piece whose minimum lies between its two
ending breakpoints.

Lemma 4. Given the sequence s∗1, . . . , s
∗
n, one can compute the γ-LIR s of input

function t in O(n) time.

One can compute the values of s∗1, . . . , s
∗
n in n iterations. The ith iteration com-

putes the value s∗i at which Ẽi is minimized and then uses it to compute Ẽi+1
via (2) in O(i) time. Hence, the γ-LIR of t ∈ RV can be computed in linear time.
However, this gives an O(n2) algorithm for computing the γ-LIR of t. We now
show how this running time can be reduced to O(n logn).

For simplicity we assume each s∗i is none of the breakpoints of Ẽi. Hence
s∗i belongs to the interior of some interval on which Ẽi is quadratic, and its
derivative is zero at s∗i . If we know to which quadratic piece of Ẽi the point s∗i
belongs, we can determine s∗i by setting the derivative of that piece to zero.

Lemma 5. The derivative of Ẽi is continuous isotonic and piecewise-linear.

Let Fi denote the derivative of Ẽi with the recurrence (via (2)):

Fi+1 = 2(x− t(vi+1)) + F̂i(x); (3)

F̂i(x) =

⎧⎨⎩Fi(x− γ) x > s∗i + γ,
0 x ∈ [s∗i , s

∗
i + γ],

Fi(x) x < s∗i .
(4)

if we set F0 = 0. As mentioned above, s∗i is simply the solution of Fi(x) = 0,
which, by Lemma 5 always exists and is unique. Intuitively, F̂i is obtained from
Fi by splitting it at s∗i , shifting the right part by γ, and connecting the two
pieces by a horizontal edge from s∗i to s∗i + γ (lying on the x-axis).

In order to find s∗i efficiently, we use an ACT T(Fi) to represent Fi. It
takes O(log |Fi|) = O(log i) time to compute s∗i = Evaluate

−1(0) on T(Fi).
Once s∗i is computed, we store it in a separate array for back-solving through
Lemma 4. We turn T(Fi) into T(F̂i) by performing a sequence of Insert((s∗i , 0)),
Intervalx(ψ, s∗i ,∞), and Insert((s∗i , 0)) operations on T(Fi) where ψ(q) =
q +

( γ
0

)
; the two insert operations add the breakpoints at s∗i and s∗i + γ and

the interval operation shifts the portion of Fi to the right of s∗i by γ. We then
turn T(F̂i) into T(Fi+1) by performing Affine(φi+1) operation on T(F̂i) where
φi+1(q) = Mq + c where M =

(
1 0
2 1

)
and c =

( 0
−2t(vi+1)

)
.

Given ACT T(Fi), s∗i and T(Fi+1) can be computed in O(log i) time. Hence,
we can compute s∗1, . . . , s

∗
n in O(n log n) time. By Lemma 4, we can conclude:

Theorem 2. Given a path P = (V,A), a function t ∈ RV , and a constant γ,
the γ-Lipschitz isotonic regression of t on P can be found in O(n logn) time.
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Update operation. We define a procedure Update(T(F̂i), t(vi+1), γ) that en-
capsulates the process of turning T(F̂i) into T(F̂i+1) and returning s∗i+1. Specif-
ically, it performs Affine(φi+1) of T(F̂i) to produce T(Fi+1), then it outputs
s∗i+1 = Evaluate

−1(0) on T(Fi+1), and finally a sequence of Insert((s∗i+1, 0)),
Interval(ψ, s∗i+1,∞), and Insert((s∗i+1, 0)) operations on T(Fi+1) for T(F̂i+1).
Performed on T(F ) where F has n breakpoints, an Update takes O(log n) time.
An unUpdate(T(F̂i+1), t(vi+1), γ) reverts affects of Update(T(F̂i), t(vi+1), γ).
This requires that s∗i+1 is stored for the reverted version. Similarly, we can per-
form Update(S, t(vi), γ) and unUpdate(S, t(vi), γ) on a tree set S, in O(k log2 n)
time, the bottleneck coming from Evaluate

−1(0).

Lemma 6. For T(F̂i), Update(T(F̂i), t(vi), γ) and unUpdate(T(F̂i), t(vi), γ)
take O(log n) time.

5 LUR on Paths

Let P = (V,A) be an undirected path, V = {v1, . . . , vn}, A = {{vi, vi+1}, 1 ≤
i < n}, and t ∈ RV . For vi ∈ V let Pi = (V,Ai) be a directed graph in which
all edges are directed towards vi; that is, for j < i, (vj , vj+1) ∈ Ai and for
j > i (vj , vj−1) ∈ Ai. For each i = 1, . . . , n, let Γi = Γ (Pi, V ) ⊆ RV and let
σi = argmins∈Γi EV (s). If κ = argmini EV (σi), then σκ is the γ-LUR of t on P .

We find σκ in O(n log2 n) time by solving the LIR problem, then traversing
the path while maintaining the optimal solution using Update and unUpdate.
Specifically, for i = 1, . . . , n, let V −

i = {v1, . . . , vi−1} and V +
i = {vi+1, . . . , vn}.

For Pi, let F̂−
i−1, F̂

+
i+1 be the functions on directed paths P [V −

i ] and P [V +
i ], re-

spectively, as defined in (3). Set F̄i(x) = 2(x− t(vi)). Then the function Fi(x) =
dEvi(x)/dx can be written as Fi(x) = F̂−

i−1(x) + F̂+
i+1(x) + F̄i(x). We store Fi

as the tree set Si = {T(F̂−
i−1),T(F̂+

i+1),T(F̄i)}. By performing Evaluate
−1(0)

we can compute s∗i in O(log2 n) time (the rate limiting step), and then we
can compute EV (s∗i ) in O(log n) time using Integrate(s∗i ). Assuming we have
T(F̂−

i−1) and T(F̂+
i+1), we can construct T(F̂−

i ) and T(F̂+
i+2) in O(log n) time be

performing Update(T(F−
i−1), t(vi), γ) and unUpdate(T(F+

i+1), t(vi+1), γ). Since
S1 = {T(F−

0 ),T(F+
2 ),T(F̄1)} is constructed in O(n log n) time, finding κ by

searching all n tree sets takes O(n log2 n) time.

Theorem 3. Given an undirected path P = (V,A) and a t ∈ RV together with
a real γ ≥ 0, the γ-LUR of t on P can be found in O(n log2 n) time.

6 LIR on Rooted Trees

Let T = (V,A) be a rooted tree with root r and let for each vertex v, Tv =
(Vv, Av) denote the subtree of T rooted at v. Similar to the case of path LIR,
for each vertex v ∈ V we use the shorthands Ev = EVv and Ẽv = Ev

Tv
. Since
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the subtrees rooted at distinct children of a node v are disjoint, one can write
an equation corresponding to (1) in the case of paths, for any vertex v of T :

Ẽv(x) = (x− t(v))2 +
∑

u∈δ−(v)

min
x−γ≤y≤x

Ẽu(y), (5)

where δ−(v) = {u ∈ V | (u, v) ∈ A}. An argument similar to that of Lemma
5 together with Lemma 1 implies that for every v ∈ V , the function Ẽv is con-
vex and piecewise quadratic, and its derivative Fv is continuous, monotonically
increasing, and piecewise linear. We can prove that Fv satisfies the following
recurrence where F̂u is defined analogously to F̂i in (4):

Fv(x) = 2(x− t(v)) +
∑

u∈δ−(v)

F̂u(x). (6)

Thus to solve the LIR problem on a tree, we post-order traverse the tree (from
the leaves toward the root) and when processing a node v, we compute and sum
the linear functions F̂u for all children u of v and use (6) to compute the function
Fv. We then solve Fv(x) = 0 to find s∗v. As in the case of path LIR, F̂v can be
represented by an ACT T(F̂v). For simplicity, we assume each non-leaf vertex
v has two children h(v) and l(v), where |F̂h(v)| ≥ |F̂l(v)|. Given T(F̂h(v)) and
T(F̂l(v)), we can compute T(F̂v) and s∗v with the operation Update(T(F̂h(v) +
F̂l(v)), t(v), γ) in O(|F̂l(v)|(1 + log |F̂h(v)|/ log |F̂l(v)|)) time. The merging of two
functions dominates the time for the update. By careful, global analysis of all
merge costs we can achieve the following result:

Theorem 4. Given rooted tree T = (V,A), function t ∈ RV , and Lipschitz
constant γ, we can find in O(n logn) time, the γ-LIR of t on T .

7 LUR on Trees

We extend this framework to solve the LUR on trees problem. Given an undi-
rected input tree, we direct the tree towards an arbitrary vertex chosen as the
root and invoke Theorem 4. Similar to LUR on paths, we traverse the tree, let-
ting each vertex be the root, and maintaining enough information to recompute
the LIR solution for the new root in O(log3 n) time. We return the solution for
the root which minimizes the error. The details are left for the full version [2].

Theorem 5. Given unrooted tree T = (V,A), function t ∈ RV , and Lipschitz
constraint γ, we can find in O(n log3 n) time the γ-LUR of t on T .
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Abstract. We introduce the concepts of weighted ambiguity and de-
ficiency for a mapping between two finite Abelian groups of the same
size. Then we study the optimum lower bounds of these measures for
a permutation of Zn and give a construction of permutations meeting
the lower bound by modifying some permutation polynomials over finite
fields. These permutations are also APN permutations.

1 Introduction

The injectivity and surjectivity of maps between groups and rings can be of
crucial importance to various applications where these maps appear. One simple
example of this is polynomials over finite rings. Since the domain and codomain
are identical and finite the concepts of injectivity and surjectivity are equivalent.
A polynomial is a permutation polynomial over a finite ring R if it induces a
bijective map from R to R. We are interested in the finite field Fq or the integer
ring Zn. In recent years, there has been a lot of interest in studying permutation
polynomials, partly due to their applications in coding theory, combinatorics and
cryptography. For more background material on permutation polynomials over
finite fields we refer to Chapter 7 of [7]. For a detailed survey of open questions
and recent results see [5,6,9]. For permutation polynomials over Zn, we refer the
readers to [10,12,14].

Two other instances of the importance of injectivity and surjectivity have re-
ceived a lot of attention in recent years. Let f : G1 → G2 be a map, or partial map,
between two Abelian groups. For a ∈ G1, a �= 0 we can define a difference map

gf,a(x) = f(x + a) − f(x)

which can measure the degree of “linearity” of f . A Costas array is a permutation
f : [1, n] ⊂ Z → [1, n] ⊂ Z such that gf,a : Z → Z is injective.

Costas arrays were first considered by Costas [2] as n×n permutation matrices
with ambiguity functions taking only the values 0 and (possibly) 1, which were
applied to the processing of radar and sonar signals. The injectivity of gf,a reduces
the ambiguity of locating a time and frequency shifted echo of the original signal.
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Similarly for maps between Abelian groups of the same cardinality, a func-
tion f is called perfectly non-linear (PN) if gf,a is injective and almost perfectly
non-linear (APN) if gf,a is at worst 2 to 1. These functions have received signif-
icant attention because they are resistant to linear cryptanalysis and differential
cryptanalysis (see [11]). In particular, we note that APN functions of Z256 was
used in SAFER family of cryptosystem proposed by Massey [8].

In these examples and applications injectivity and surjectivity of gf,a are no
longer equivalent as they are for the function f itself (due to either the sizes
of domain and codomain being finite but different or infinite) but they are still
strongly correlated. In this paper we attempt to understand the injectivity and
surjectivity of gf,a. In Section 2 we define two generalized measures of injec-
tivity and surjectivity of gf,a which we call the ambiguity and the deficiency of
f , respectively. These help to make strong connections between permutations,
Costas arrays and almost perfectly non-linear functions. In Section 3 we prove
bounds on these measures which then allow us to define notions of optimality
with respect to them. We finish Section 3 by constructing an infinite family of
permutations which achieve these lower bounds for functions f : Zn → Zn. These
are provably better and more frequently existing than other recent constructions
for this Abelian group [3].

2 Definitions and Connections

2.1 Definitions

Let G1 and G2 be finite Abelian groups of the same cardinality n and f : G1 →
G2. Let G∗

1 = G1 \ {0} and G∗
2 = G2 \ {0}. For any a ∈ G∗

1 and b ∈ G2, we
denote gf,a(x) = f(x+a)− f(x) and λa,b(f) = #g−1

f,a(b). Let ni(f) = #{(a, b) ∈
G∗

1 ×G2 | λa,b(f) = i} for 0 ≤ i ≤ n. We call n0(f) the deficiency of f , denoted
by D(f). Hence D(f) = n0(f) measures the number of pairs (a, b) such that
gf,a(x) = b has no solutions. This is a measure of the surjectivity of gf,a; the
lower the deficiency the closer the gf,a are to surjective.

Moreover, we define the ambiguity of f as

A(f) =
∑

0≤i≤n

ni(f)
(

i

2

)
.

From this definition, we can see that the weighted ambiguity of f measures the
total replication of pairs of x and x′ such that gf,a(x) = gf,a(x′) for some a ∈ G∗

1.
This is a measure of the injectivity of the functions gf,a; the lower the ambiguity
of f the closer the gf,a are to injective.

For a fixed a �= 0 the values of gf,a(x) are the entries in the ath row of what is
often referred to as the difference triangle of f (when the domain of f is Z [3,13])
or what we might call the difference array (when the domain of f is Zn). Thus
for a fixed a �= 0, we define the row-a-ambiguity of f as

Ar=a(f) =
∑

b

(
λa,b(f)

2

)
.
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This measures the injectivity of the individual gf,a. Similarly, we define the row-
a-deficiency as Dr=a(f) = #{b | λa,b(f) = 0, b ∈ G2}, which measures the
number of b’s such that gf,a(x) = b has no solutions for a fixed a. We have that
Dr=a(f) = n − #{gf,a(x) | x ∈ G1} (and Dr=a(f) = n − 1 − #{gf,a(x) |
x ∈ G1} when f is a bijection). Likewise, we define column-b-deficiency as
Dc=b(f) = #{a | λa,b(f) = 0, a ∈ G∗

1}, which measures the number of a’s
such that gf,a(x) = b has no solutions for a fixed b.

In this paper we restrict our attention to f : Zn → Zn that are bijections.
This has the implication that gf,a(x) = b can never have solutions for b = 0 thus
we use the corresponding form of all our definitions that restrict b ∈ G∗

2 = Z∗
n

and this includes summations and universal quantifiers. Another effect of this is
that the domain and co-domain of gf,a are now sizes n and n − 1, respectively;
this is particularly important to remember when reading the proofs otherwise
our references to “n− 1” will seem odd.

It is clear that the ambiguity and deficiency are positively correlated although
they are not exactly related. In the context of b ∈ G∗

2 we can give bounds on
their relationship.

Lemma 1. Let f : G1 → G2 be a bijection. If a row-a-deficiency of f is
Dr=a(f) = d, then row-a-ambiguity of f satisfies

d + 1 ≤ Ar=a(f) ≤
(

d + 2
2

)
.

Proof. Because Dr=a(f) = n− 1−#{gf,a(x) | x ∈ G1}, the size of the value set
{gf,a(x) | x ∈ G1} is n−1−d for a given row-a-deficiency d. The maximum row-
a-ambiguity, Ar=a(f) =

(
d+2
2

)
, occurs when the n images, gf,a(x), are distributed

with n− 2− d values of x giving distinct images and the remaining d + 2 values
all agreeing. The minimum value, Ar=a(f) = d + 1, occurs when the n images
are distributed with d + 1 pairs of {x, x′} having gf,a(x) = gf,a(x′) and the
remaining n− 2(d + 1) images distinct. �

We note that two conditions are necessary when Ar=a(f) achieves its minimum:

• d ≤ n/2− 1;
• the sets g−1

f,a(b) having cardinality 0, 1 and 2.

2.2 Connections

Costas arrays were first considered by Costas [2] for applications to radar and
sonar signal processing. His definition is equivalent to an n × n permutation
matrix with ambiguity function taking only the values 0 and (possibly) 1. We
remark that the domain and co-domain were both Z for Costas.

Definition 1. A Costas array is a permutation matrix (that is, a square matrix
with precisely one 1 in each row and column and all other entries 0) for which
all the vectors joining the pairs of 1’s are distinct.
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It is clear that a permutation f , from the columns to the rows (i.e. to each
column x we assign one and only one row f(x)), gives a Costas array if and only
if for x �= y and k �= 0, f(x + k) − f(x) �= f(y + k) − f(y). We note that in
the standard definition of Costas array, the arithmetic takes place inside Z and
the vectors are in Z×Z. The Costas array definition is precisely the property of
A(f) = 0 when f : [1, n] ⊂ Z → [1, n] ⊂ Z.

A special class of Costas arrays is the so called singly periodic Costas arrays,
which is an n × ∞ matrix built by infinitely and repeatedly horizontally con-
catenating an n × n Costas array with the property that any n × n window is
a Costas array. This is equivalent to considering the injection f : Zn → Z and
asking again that f have zero ambiguity.

If we consider f : Zn → Zn, the bounds from our Theorem 1 show that zero
ambiguity is impossible and thus “doubly periodic Costas arrays” cannot exist.
However the bounds from Theorem 1 also tell us precisely what it means to be as
close as possible to a “doubly periodic Costas array”: we require the ambiguity
(and correspondingly the deficiency) to be as small as possible. In Theorem 2
we build a family of permutations f for an infinite number of orders, n, which
are optimum with respect to both the ambiguity and deficiency.

Perfect and almost perfect non-linear functions can also be defined within the
terminology of ambiguity and deficiency.

Definition 2. [4] Let G1 and G2 be finite Abelian groups of the same cardinality
and f : G1 → G2. We say f is a perfect non-linear function if

f(x + a) − f(x) = b

has exactly one solution for all a �= 0 ∈ G1 and all b ∈ G2.

This corresponds again to zero ambiguity. This property is often too strong to
require and particularly in the case of bijections, it can never be satisfied. Thus
a relaxed definition is frequently useful.

Definition 3. [4] Let G1 and G2 be finite Abelian groups of the same cardinality
and f : G1 → G2. We say f is an almost perfect non-linear function if

f(x + a) − f(x) = b

has at most two solutions for all a �= 0 ∈ G1 and all b ∈ G2.

When f is a bijection we only consider b ∈ G∗
2 and APN functions are clearly

functions with small ambiguity. Since a function can be APN and still have an
ambiguity anywhere between 0 and (n−1)�n/2	, our definition of ambiguity has
a higher resolution power than just the definition of APN and thus can usefully
be regarded as a refinement of the concept. Indeed, we show in Section 3 that
ambiguity meeting our bounds implies the APN property for permutations of
Zn and thus provides a general construction of such APN permutations.

The two subjects of Costas arrays and APN functions have been connected be-
fore by Drakakis, Gow and McGuire in [4] where they use the Welch construction
of singly periodic Costas arrays to build APN permutations, f : Zp−1 → Zp−1
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for p a prime. We note that our constructions have optimum and therefore lower
ambiguity than those coming from the Welch construction and thus are closer
to being PN functions. Additionally our constructions are defined on the larger
set of n = q − 1 where q is a prime power. Our methods in Section 3 modify
known families of permutation polynomials of finite fields. Our permutations are
optimum in both ambiguity and deficiency.

3 Results

In this section we determine a lower bound on the ambiguity and the deficiency
and then construct permutations of Zn achieving these bounds for an infinite
number of values of n.

Theorem 1. Let n ∈ N and f : Zn → Zn be a bijection. The ambiguity of f is
at least 2(n − 1) when n is odd and 2(n − 2) when n is even. The deficiency of
f is at least n− 1 if n is odd and at least n− 3 when n is even.

Proof. Since f is a permutation of Zn, f(x + a) �= f(x) and so the n elements
of the multiset {f(x + a)− f(x)} are elements of Z∗

n. The pigeon hole principle
says there must be at least one pair, x and x′ such that f(x + a) − f(x) =
f(x′ + a) − f(x′).

The lower bound on deficiency when n is odd is straightforward. Suppose for
a given a that the set {f(x+a)− f(x)} = Z∗

n, that is, the contribution by this a
to the deficiency is zero. Since there are n elements f(x + a)− f(x) which span
n − 1 values there can only be a single repeated value, say r �= 0. Thus since f
is a permutation and n is odd

0 =
∑

x∈Zn

f(x + a) −
∑

x∈Zn

f(x) =
∑

x∈Zn

(f(x + a)− f(x)) = r +
∑

x∈Z∗
n

x = r,

which is a contradiction. Thus among the values of gf,a(x) = f(x + a) − f(x),
at least one value from Z∗

n is missed. Hence Dr=a(f) ≥ 1. Summing these over
all non-zero a gives the required lower bound D(f) ≥ n − 1. By Lemma 1,
Ar=a(f) ≥ 2. Summing these over all non-zero a gives the required lower bound
for ambiguity of f , that is, A(f) ≥ 2(n− 1).

When n even, and for a fixed a �= 0, we suppose that the set {gf,a(x) =
f(x + a)− f(x)} = Z∗

n and the single repeated element is r. We get

0 =
∑

x∈Zn

f(x + a) −
∑

x∈Zn

f(x) =
∑

x∈Zn

(f(x + a)− f(x))

= r +
∑

x∈Z∗
n

x = r + n/2,

and thus it is possible for {gf,a(x) = f(x+a)−f(x)} = Z∗
n if the repeated value

is n/2. We put an upper bound on the number of times this can happen.
For a given f let R be the set of a ∈ Z∗

n such that {f(x + a) − f(x)} = Z∗
n

and let C be the set of b such that {f−1(x + b) − f−1(x)} = Z∗
n.
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As we have seen earlier, the row-a-deficiency is the cardinality of

Z∗
n \ {f(x + a) − f(x) | x ∈ Zn}.

Similarly the column-b-deficiency is the cardinality

Z∗
n \ {f−1(y + b) − f−1(y) | y ∈ Zn}.

It is clear that the deficiency can be computed from either the row or column
deficiencies ∑

a�=0

Dr=a(f) =
∑
b�=0

Dc=b(f).

For a ∈ Zn if Dr=a(f) = 0 then for all n/2 �= b ∈ Z∗
n there exists xb such

that f(xb + a) − f(x) = b and there exist x, x′ such that f(x + a) − f(x) =
f(x′ + a) − f(x′) = n/2. Let y = f(x) and y′ = f(x′). Thus

f−1(y + n/2)− f−1(y) = f−1(y′ + n/2)− f−1(y′) = a

Therefore, for every row-a-deficiency value of 0, there is a pair of repeated ele-
ments, a, in {f−1(y + n/2)− f−1(y)}. Also Dr=a(f) = Dr=−a(f), and hence

Dc=n/2(f) ≥ n− 1 − (|R \ {n/2}|+ (n− 2|R \ {n/2}|)) = |R \ {n/2}| − 1,

and similarly
Dr=n/2(f) ≥ |C \ {n/2}| − 1.

So the deficiency, D(f) is calculated

D(f) =
1
2

⎛⎝∑
a�=0

Dr=a(f) +
∑
b�=0

Dc=b(f)

⎞⎠
=

1
2

⎛⎝ ∑
a�=0,n/2

Dr=a(f) +
∑

b�=0,n/2

Dc=b(f) + Dc=n/2(f) + Dr=n/2(f)

⎞⎠
≥ 1

2
((n− 2 − |R \ {n/2}|) + (n − 2 − |C \ {n/2}|)

+ |R \ {n/2}| − 1 + |C \ {n/2}| − 1)
= n− 3.

Again, by Lemma 1, a row-a-deficiency value of d contributes at least d + 1 to
the ambiguity, so we get that the total ambiguity for f is at least n−1+n−3 =
2(n− 2). �

If, for a fixed n, a permutation f : Zn → Zn has the smallest possible ambiguity
we say it has optimum ambiguity and similarly we define optimum deficiency for
a permutation if it achieves the smallest possible deficiency over all permutations
of Zn. Clearly any permutations meeting the bounds from Theorem 1 will be
optimum.

For the optimum ambiguity, all the sets g−1
f,a(b) have cardinality 2. It is these

observations that allow us to connect our notions of ambiguity to APN functions.
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Corollary 1. If a permutation f : Zn → Zn achieves the bound on ambiguity
from Theorem 1, then f is Almost Perfect Non-linear.

Proof. Consideration of the forced equalities throughout the proof of Theorem 1
give that the number of pairs of (a, b) such that |g−1

f,a(b)| ≥ 2 is exactly the
ambiguity and each inverse image size 0, 1 or 2. Thus f is APN [4]. �

However a permutation which is APN could have ambiguity as large as (n −
1)�n/2	 and correspondingly a deficiency as large as (n− 1)(�n/2	 − 1).

Example 1. One APN permutation constructed in Z10 from the Welch Costas
array constructions is f(x) = (2x mod 11) − 1 or f = (0)(1)(23768)(4)(59) and
has ambiguity 19 > 2(10−2) = 16 and deficiency 12 > (10−3) = 7 although this
construction does not attain the worst possible values for APN permutations. �

Next we provide our main construction which produces permutations that achieve
the minimum ambiguity and deficiency whenever n is precisely one less than a
prime power. In order to do so, we first introduce a way to obtain a permutation
polynomial of fixed point 0 over a finite field Fq from another permutation poly-
nomial of Fq which does not fix 0. Namely, let h(x) be a permutation polynomial
of Fq such that h(0) = a �= 0 and h(b) = 0. Then we define g(x) as

g(x) =

⎧⎨⎩
h(b) = 0, x = 0;
h(0) = a, x = b;
h(x), x �= 0, b.

It is obvious that g(x) is again a permutation polynomial of Fq which fixes 0.

Example 2. For any positive integer e such that gcd(e, q − 1) = 1 and m, a �=
0 ∈ Fq, the polynomial h(x) = mxe +a is a permutation polynomial of Fq which
does not fix 0. Let b be the unique (non-zero) field element such that h(b) = 0.
Using the above construction, we let

g(x) =

⎧⎨⎩h(b) = 0, x = 0;
h(0) = a, x = b;
h(x) = mxe + a, x �= 0, b.

Then g(x) is a permutation polynomial of Fq which fixes 0. �

This twist of permutation polynomials can be very useful in constructing per-
mutations of Zq−1 with optimum deficiency and optimum ambiguity.

Theorem 2. Let q be a prime power, n = q−1 and α a primitive element in Fq.
For gcd(e, n) = 1 and m, a �= 0 ∈ Fq, let h : Fq → Fq be defined by h(x) = mxe+a
and let b be the unique (non-zero) field element such that h(b) = 0. Let

g(x) =

⎧⎨⎩h(b) = 0, x = 0;
h(0) = a, x = b;
h(x) = mxe + a, x �= 0, b.

Then, f : Zn → Zn defined by f(i) = logα(g(αi)) meets the lower bounds from
Theorem 1 and therefore has optimum ambiguity and optimum deficiency.
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Proof. We have f(i + a) − f(i) = logα(g(αi+a)) − logα(g(αi)) = logα(g(αi+a)
g(αi) ).

Let d = αa. We need to study the size vd of the value set of g(dx)/g(x) for x �= 0.
From the definition of g(x), we have

g(dx)
g(x)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m(db)e+a
a , x = b;

a
m(b/d)e+a , x = b/d;

m(dx)e+a
mxe+a , x �= b, b/d.

First we show that vd ≥ q − 3 for any d �= 0, 1. Let x, y be both different from
b, b/d. Assume that

m(dx)e + a

mxe + a
=

m(dy)e + a

mye + a
.

Then

m2dexeye + amye + amdexe + a2 = m2dexeye + amdeye + amxe + a2.

Since m, a �= 0, we obtain (de − 1)ye = (de − 1)xe. Because gcd(e, q − 1) = 1,
we have de �= 1 if d �= 1. Hence xe = ye. Again, by gcd(e, q − 1) = 1, we obtain
x = y. Hence vd ≥ q − 3 for any d �= 0, 1.

Moreover, if
m(db)e + a

a
=

m(dx)e + a

mxe + a
,

then
m2debexe + amxe + amdebe + a2 = amdexe + a2.

Hence
(m2debe + am− amde)xe = −amdebe.

Since mbe = −a, we obtain

(am− 2amde)xe = −amdebe.

Again, m, a �= 0. This implies that (2de − 1)xe = debe. If q is odd, we can find a
solution for x as long as 2de − 1 �= 0. On the other hand, there exists a unique
d such that de = 1/2 and

m(db)e + a

a
�= m(dx)e + a

mxe + a
.

Similarly, there exists a unique d such that de = 2 and

a

m(b/d)e + a
�= m(dx)e + a

mxe + a
.

Hence vd = q − 3 = n − 2 if de �= 2 or 1/2, and vd = q − 2 = n − 1 if de = 2 or
1/2. (We observe that if char(Fq) = 3 then a

m(b/d)e+a = m(db)e+a
a ). Hence there
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are two rows with row deficiency 0 and the rest rows have deficiency 1. Thus
D(f) = n− 3 for even n. It is obvious that A(f) = n− 1 + n− 3 = 2(n− 2) in
this case.

If q is even, we always find x such that

m(db)e + a

a
=

m(dx)e + a

mxe + a
,

and
a

m(b/d)e + a
=

m(dx)e + a

mxe + a
.

Hence vd = q−3, and D(f) =
∑

a∈Z∗
n

Dr=a(f) = (n−1)(n−1− (q−3)) = n−1
when n is odd. It is obvious that A(f) = 2(n− 1) in this case. �

4 Conclusions

Our construction can produce a permutation f : Zn → Zn that has optimum
ambiguity and deficiency when n is one less than a prime power.We currently know
of a permutation for only one other n which is not one less than a prime power.

Example 3. Let f : Z5 → Z5 be the permutation f = (0)(1)(2)(34). The multiset
of differences that are covered by the map is

{(1, 1), (1, 1), (1, 2), (1, 4), (1, 2), (2, 2), (2, 3), (2, 1), (2, 1), (2, 3)}

and their inverses. The differences that are missing, including inverses, are

{(1, 3), (2, 4), (3, 1), (4, 2)}.

Thus the ambiguity is 4 + 4 = 8 and the deficiency is 4 both optimum with
respect to the bounds on Theorem 1. �

We have done exhaustive searches for optimum permutations for all n ≤ 16 and
n = 5 is the only case where they exist and n is not one less than a prime power.
This could either be a case of optimality in general only for n = q − 1 for q a
prime power and n = 5 excusable with the “law of small numbers” or there may
be other exceptions.

We also hoped that the permutations constructed in Theorem 2 might give
Costas arrays (vectors in Z × Z rather than in Zn × Zn). The first prime power
for which this construction does not yield Costas arrays is q = 23 and we found
none for the more interesting range 29 ≤ q ≤ 101.

There are some other interesting open questions:

• Can general lower bounds be proven for bijections f : G1 → G2?
• Can constructions similar to Theorem 2 be applied to other known families

of permutation polynomials?
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Abstract. In centralized computing we can compute a function com-
posing a sequence of elementary functions, where the output of the i-th
function in the sequence is the input to the i + 1-st function in the se-
quence. This computation is done without persistent registers that could
store information of the outcomes of these function invocations. In dis-
tributed computing, a task is the analogue of a function. An iterated
model is defined by some base set of tasks. Processes invoke a sequence of
tasks from this set. Each process invokes the i+1-st task with its output
from the i-th task. Processes access the sequence of tasks, one-by-one, in
the same order, and asynchronously. Any number of processes can crash.
In the most basic iterated model the base tasks are read/write registers.
Previous papers have studied this and other iterated models with more
powerful base tasks or enriched with failure detectors, which have been
useful to prove impossibility results and to design algorithms, due to the
elegant recursive structure of the runs. This talk surveys results in this
area, contributed mainly by Borowsky, Gafni, Herlihy, Raynal, Travers
and the author.

1 Introduction

A distributed model of computation consists of a set of n processes commu-
nicating through some medium, satisfying specific timing and failure assump-
tions. The communication medium can be message passing or some form of
shared memory. The processes can run synchronously or run at arbitrarily vary-
ing speeds. The failure assumptions describe how many processes may fail, and
it what way. Along each one of these three dimensions, there are many variants,
which when combined, give rise to a wide variety of distributed computing mod-
els, e.g. [6,29,37]. And for each model, we would like to know which distributed
tasks can be solved, and at what cost, in terms of time and communication. Thus,
work for developing a theory of distributed computing has been concerned with
finding ways of unifying results, impossibility techniques, and algorithm design
paradigms of different models.
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1.1 In Search of a Fundamental Model

In early stages of distributed computing theory similar result needed different
proofs for different models. Consider for example the consensus task, where pro-
cesses need to agree on one of their input values. In an asynchronous system,
the problem is impossible to solve even if only one process may crash. This was
proved in [18] for the case where the processes communicate by sending mes-
sages to one another. Read/write shared memory is in principle a more powerful
communication media than message passing, so proving that consensus is also
impossible here, is a stronger result. Indeed, the same impossibility result holds,
if processes communicate through read/write memory, as proved in [28]. A first
approach towards the goal of unifying distributed computing theory, was to de-
rive direct simulations from one model to another, e.g., [2,5,8]. In particular, [2]
shows how to transform a protocol running in an asynchronous message passing
model to one for a shared memory model. This implies that it is sufficient to
prove the consensus impossibility result in the shared memory model, to get the
impossibility in the message passing model.

Later on, the approach of devising models of a higher level of abstraction,
where results about various more specific models can be derived, e.g., [19,24,30]
was explored. For instance, [30] described a generic layered model of computation
where a consensus impossibility result is proved, and as specific cases, consensus
impossibilities can be derived for both a message passing and a shared memory
model, and even for several synchronous models. Recently, the approach proved
useful also for randomized algorithms, e.g. [3].

1.2 From Graph Connectivity to Topology

The 1 failure asynchronous consensus impossibility results [18,28] mentioned
above, lead to a characterization of the tasks that can be solved in an asyn-
chronous system where at most 1 process can crash [11]. Thus, the case of 1
failure seemed to be the base case from which one should generalize to any num-
ber of failures. After all, dealing with many failures is more complicated than
dealing with few failures, isn’t it? A major step in the development of the the-
ory was taken in 1993, by three works presented in the ACM STOC conference
[8,25,36], that uncovered a deep relationship between distributed computing and
topology. This lead to the realization that, instead of the case of 1 failure, the
read/write wait-free case is fundamental. In a system where any number of pro-
cesses can crash, each process must complete the protocol in a finite number
of its own steps, and “wait statements” to hear from another process are not
useful. Roughly speaking, when we want to study the complexity and solvability
of a task, we should first study it in the wait-free model, and then generalize
the results to stronger models (either with more powerful communication primi-
tives or stronger synchrony assumptions). For example, reductions from the case
where at most t processes can crash, to the wait-free model have been presented
in [8,10,20].

In the topology approach one considers the simplicial complex of global states
of the system after a finite number of steps, and then proves topological invariants
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Fig. 1. Three simplexes

about the structure of such a complex, to derive impossibility results. The notion
of indistinguishability, which has played a fundamental role in nearly every lower
bound in distributed computing, is hence generalized from graph connectivity, to
higher dimensions. Two global states are indistinguishable to a set of processes if
they have the same local states in both. In the next figure there is a complex with
three triangles, each one is a simplex representing a global state; the corners of a
simplex represent local states of processes in the global state. The center simplex
and the rightmost simplex represent global states that are indistinguishable to
processes p1 and p2, which is why the two triangles share an edge. Only process
p3 can distinguish between the two global states.

1.3 The Importance of the Wait-Free Snapshot Model

We have seen that the read/write wait-free model is fundamental. However, there
are several ways of defining read/write registers, like single-writer/multi-reader,
multi-writer/multi-reader, and others. A research branch in distributed comput-
ing theory has been concerned with finding the simplest read/write communica-
tion abstraction. Several variants of read/write registers were studied early on
[6,27] and proved to be equivalent. We now use snapshots [1], or even immediate
snapshots [7], as such abstractions are wait-free equivalent to read/write regis-
ters (although at a complexity cost), but give rise to cleaner and more structured
models. In a snapshot object each process has a component where it can write,
and the process can read all components with a single atomic read operation
that returns an instantaneous snapshot of its contents. An immediate snapshot
object provides a single write-snapshot operation, guaranteeing that the snap-
shot is executed immediately after the write. The complex corresponding to a
snapshot object for three processes is in the first part of Figure 2 and will be
explained below.

2 The Basic Iterated Model

We have explained above that the snapshot wait-free model is fundamental.
However, in this paper we argue that a specific variant of this model is especially
suitable for a central role in distributed computing theory. Most attempts at
unifying models of various degrees of asynchrony restrict attention to a subset
of well-behaved, round-based executions. The approach in [9] goes beyond that
and defines an iterated model, where each communication object can be accessed
only once by each process. In the paper only the basic case of snapshot objects is
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considered. The sequence of snapshot objects are accessed asynchronously, and
one after the other by each process. It is shown in [9] that this iterated model is
equivalent (for bounded wait-free task solvability) to the usual read/write shared
memory model.

2.1 Recursive Structure

The iterated model has an elegant recursive structure. In each iteration, the only
information transmitted can be the local state of processes after each snapshot–
the snapshot objects are not persistent, we may think they exist only during an
iteration. The result in [9] can be thought of as a variant of the result in [2] that
shows that shared-memory can be emulated over message passing. In message
passing too, there are no persistent objects. The recursive structure is clearly
expressed in the complex of global states of a protocol. The complex of global
states after i + 1 rounds is obtained by replacing each simplex by a one round
complex, see Figure 2. Indeed, this iterated model was the basis for the proof in
[9] of the main characterization theorem of [25].

In more detail, the properties of an immediate snapshot are represented in
the first image of Figure 2, for the case of three processes. The image represents
a simplicial complex, i.e. a family of sets closed under containment; each set is
called a simplex, and it represents the views of the processes after accessing the
IS object. The vertices are the 0-simplexes, of size one; edges are 1-simplexes,
of size two; triangles are of size three (and so on). Each vertex is associated with
a process pi, and is labeled with smi (the view pi obtains from the object).

In the first complex of Figure 2, the highlighted 2-dimensional simplex, rep-
resents a run where p1 and p3 access the object concurrently, both get the same
views seeing each other, but not seeing p2, which accesses the object later, and
gets back a view with the 3 values written to the object. But p2 can’t tell the or-
der in which p1 and p3 access the object; the other two runs are indistinguishable
to p2, where p1 accesses the object before p3 and hence gets back only its own
value or the opposite. These two runs are represented by the corner 2-simplexes.

Recall that in the iterated immediate snapshot model the objects are accessed
sequentially and asynchronously by each process. In Figure 2 one can see that the
complex after one round is constructed recursively by replacing each simplex by
the one round complex. Thus, the highlighted 2-simplex in the second complex
of the figure, represents global states after two snapshots, given that in the first
snapshot, p1 and p3 saw each other, but they did not see p2.

2.2 On the Meaning of Failures

Notice that the runs of the iterated model are not a subset of the runs of a stan-
dard (non-iterated) model. Consider a run where processes, p1, p2, p3, execute an
infinite number of rounds, but p1 is scheduled before p2, p3 in every round. The
triangles at the left-bottom corners of the complexes in Figure 2 represent such a
situation; p1, at the corner, never hears from the two other processes. Of course,
in the usual (non-iterated read/write shared memory) asynchronous model, two
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Fig. 2. One, two and three rounds in the IIS model

correct processes can always eventually communicate with each other. Thus, in
an iterated model, the set of correct processes of a run, may be defined as the
set of processes that observe each other directly or indirectly infinitely often (a
formal definition is given in [33]).

2.3 Equivalence with the Standard Model

Recall that in the k-set agreement task each of the n processes in the system
starts with an input value of some domain of at least n values, and must decide
on at most k of their input values. It was proved in [9] that if a task (with a
finite number of inputs) is solvable wait-free in the read/write memory model
then it is solvable in the snapshot iterated model (the other direction is trivial),
using an algorithm that simulates the read/write model in the iterated model.
Recently another simulation was described in [21], somewhat simpler. As can be
seen in Figure 2, the complex of global states at any round of this model is a
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subdivided simplex, and hence Sperner’s Lemma implies that k-set agreement
is not solvable in the model if k < n. Thus, it is also unsolvable in the wait-free
read/write memory model.

3 General Iterated Models

We can consider iterated models where instead of snapshots, in each round pro-
cesses communicate through some other task. The advantages of programming
in an iterated model are two fold: First, as there are no “side effects” during a
run, we can logically imagine all processes going in lockstep from task to task
just varying the order in which they invoke each task; they all do return from
task S1, before any of them invokes task S2. This structured set of executions
facilitates an inductive reasoning, and greatly simplifies the understanding of
distributed algorithms. Second, if we have a description of S1 as a topological
complex X1, and S2 as X2, the iterated executions accesing S1 and then S2
have a simple topological description: replacing each simplex of X1 by X2. This
iterated reasoning style have been studied and proved useful in works such as
[15,16,19,24,30,35,34].

3.1 The Moebius Task

In [22], the situation where processes communicate using a Moebius task is con-
sidered. It is possible to construct a complex that is a subdivision of a Moebius
band out of 2-dimensional simplexes, as in Figure 3. But to construct a task
specification, the complex should satisfy two properties. Consider the case of 3
processes. First, it must be chromatic. That is, each of the three vertices of its
2-simplexes has to be labeled with a different process id. The label of a vertex
is also be labeled with an output value of the task. Second, the complex should
have a span structure identified. That is, a specification stating what is the out-
put of the task when each of the processes runs solo, what is the output when
pairs of processes run solo, and what are the possible outputs when all three
run concurrently. Figure 4 from [22], is the task specification for three processes,
that corresponds to a Moebius band. Notice that its boundary is identical to the
boundary of a chromatic subdivided simplex.

The Moebius task was introduced in [22] because it is a manifold: if we consider
any of the edges of its complex, either it belongs to one or to two triangles. The
one-round Moebius task is a manifold task, so composing the Moebius task with
itself in an iterated model, with read/write rounds, or with any other manifold
task yields a manifold task. Thus, any protocol in such an iterated model yields a
protocol complex that is also a manifold. And as mentioned above, we can apply
Sperner’s lemma to a manifold to prove that k-set agreement is not solvable in
the model if k < n. Furthermore, [22] shows that the Moebius task can be used
to prove that set agreement is strictly more difficult than renaming [4], in the
iterated model.
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Fig. 3. Construction of a Mobius band

Fig. 4. One-round Moebius task protocol complex for 3 processes

3.2 Equivalence of More General Models with the Standard Model

Recall that the standard read/write memory model is equivalent to the iterated
snapshot model (for bounded task solvability) [9]. Recently another simulation
was described in [21], that shows that both models are also equivalent, when
enriched with tasks T more powerful than read/write registers– for any task T
solvable by set agreement, the power of the standard and the iterated model
coincide. This implies that set agreement is strictly more difficult than renaming
also in the standard non-iterated model.

4 Iterated Models and Failure Detectors

In the construction of a distributed computing theory, a central question has
been understanding how the degree of synchrony of a system affects its power to
solve distributed tasks. The degree of synchrony has been expressed in various
ways, typically either by specifying a bound t on the number of processes that
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can crash, as bounds on delays and process steps [17], or by a failure detector
[12]. It has been shown multiple times that systems with more synchrony can
solve more tasks. Previous works in this direction have mainly considered an
asynchronous system enriched with a failure detector that can solve consensus.
Some works have identified this type of synchrony in terms of fairness properties
[38]. Other works have considered round-based models with no failure detectors
[19]. Some other works [26] focused on performance issues mainly about consen-
sus. Also, in some cases, the least amount of synchrony required to solve some
task has been identified, within some paradigm. A notable example is the weak-
est failure detector to solve consensus [13] or k-set agreement [40]. Set agreement
[14] represents a desired coordination degree to be achieved in the system, and
hence is natural to use it as a measure for the synchrony degree in the system. A
clear view of what exactly “degree of synchrony” means is still lacking. For exam-
ple, the same power as far as solving k-set agreement can be achieved in various
ways, such as via different failure detectors [31] or t-resilience assumptions.

4.1 A Restriction of the Snapshot Iterated Model

The paper [35] introduces the IRIS model, which consists of a subset of runs
of the immediate snapshots iterated model of [9], to obtain the benefits of the
round by round and wait-freedom approaches in one model, where processes run
wait-free but the executions represent those of a partially synchronous model.
As an application, new, simple impossibility results for set agreement in several
partially synchronous systems are derived. The IRIS model provides a mean of
precisely representing the degree of synchrony of a system, and this by consid-
ering particular subsets of runs of the snapshots iterated model.

A failure detector [12] is a distributed oracle that provides each process with
hints on process failures. According to the type and the quality of the hints,
several classes of failure detectors have been defined (e.g., [31,40]). Introduc-
ing a failure detector directly into an iterated model is not useful [34]. Instead,
the the IRIS model of [35] represents a failure detector as a restriction on the
set of possible runs of the iterated system. As an example, the paper consid-
ers the family of limited scope accuracy failure detectors, denoted �Sx [23,39].
They are a generalization of the class denoted �S that has been introduced
in [12].

Consider the read/write computation model enriched with a failure detector
C of the class �Sx. An IRIS model that precisely captures the synchrony pro-
vided by the asynchronous system equipped with C is described in [35]. To show
that the synchrony is indeed captured, the paper presents two simulations. The
first is a simulation from the shared memory model with C to the IRIS model.
The second shows how to extract C from the IRIS model, and then simulate
the read/write model with C. For this, a generalization of the wait-free simu-
lation of [9] is described, that preserves consistency with the simulated failure
detector.



Iterated Shared Memory Models 415

4.2 Equivalence of Failure Detector Enriched Models with Iterated
Models

As a consequence of these simulations, we get: an agreement task is wait-free solv-
able in the read/write model enriched with C if and only if it is wait-free solvable
in the corresponding IRIS model. Then, using a simple topological observation,
it is easy to derive the lower bound of [23] for solving k-set agreement in a system
enriched with C. In the approach presented in this paper, the technically diffi-
cult proofs are encapsulated in algorithmic reductions between the shared mem-
ory model and the IRIS model, while in the proof of [23] combinatorial topology
techniques introduced in [24] are used to derive the topological properties of the
runs of the system enriched with C directly. A companion technical report [32]
extends the equivalence presented in [35] to other failure detector classes.
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Abstract. In this paper, we consider the problem of representing graphs by poly-
gons whose sides touch. We show that at least six sides per polygon are necessary
by constructing a class of planar graphs that cannot be represented by pentagons.
We also show that the lower bound of six sides is matched by an upper bound of
six sides with a linear time algorithm for representing any planar graph by touch-
ing hexagons. Moreover, our algorithm produces convex polygons with edges
with slopes 0, 1, -1.

1 Introduction

For both theoretical and practical reasons, there is a large body of work considering
how to represent planar graphs as contact graphs, i.e., graphs whose vertices are rep-
resented by geometrical objects with edges corresponding to two objects touching in
some specified fashion. Typical classes of objects might be curves, line segments or
isothetic rectangles, and an early result is Koebe’s theorem [20], which shows that all
planar graphs can be represented by touching disks.

In this paper, we consider contact graphs whose objects are simple polygons, with
an edge occurring whenever two polygons have non-trivially overlapping sides. As with
treemaps [3], such representations are preferred in some contexts [4] over the standard
node-link representations for displaying relational information. Using adjacency to rep-
resent a connection can be much more compelling, and cleaner, than drawing a line
segment between two nodes. For ordinary users, this representation suggests the famil-
iar metaphor of a geographical map.

It is clear that any graph represented this way must be planar. As noted by de Frays-
seix et al. [7], it is also easy to see that all planar graphs have such representations for
sufficiently general polygons. Starting with a straight-line planar drawing of a graph,
we can create a polygon for each vertex by taking the midpoints of all adjacent edges
and the centers of all neighboring faces. Note that the number of sides in each such
polygon is proportional to the degree of its vertex. Moreover, these polygons are not
necessarily convex; see Figure 1.

It is desirable, for aesthetic, practical and cognitive reasons, to limit the complex-
ity of the polygons involved, where “complexity” here means the number of sides in
the polygon. Fewer sides, as well as wider angles in the polygons, make for simpler
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(a) (b)

(c)

Fig. 1. Given a drawing of a planar graph(a), we apportion the edges to the endpoints by cutting
each edge in half (b), and then apportion the faces to form polygons (c).

and cleaner drawings. In related applications such as floor-planning [24], physical con-
straints make undesirable polygons with very small angles or many sides. One is then
led to consider how simple can such representations be. How many sides do we really
need? Can we insist that the polygons be convex, perhaps with a lower bound on the size
of the angles or the edges? If limiting some of these parameters prevents the drawings
of all planar graphs, which ones can be drawn?

1.1 Our Contribution

This paper provides answers to some of these questions. Previously, it was known
[12,24] that triangulated planar graphs can be represented using non-convex octagons.
On the other hand, it is not hard to see that one cannot use triangles (e.g., K5 minus one
edge cannot be represented with triangles).

Our main result is showing that hexagons are necessary and sufficient for represent-
ing all planar graphs. For necessity we construct a class of graphs that cannot be rep-
resented using five or fewer sides. For sufficiency, we describe a linear-time algorithm
that produces a representation using convex hexagons all of whose sides have slopes 1,
0, or -1. Finally, we describe an alternative algorithm for generating convex hexagonal
representations for general planar graphs that leads to O(n) × O(n) drawing area. Note
that if the input graph is triangulated, our output corresponds to a tiling of the plane
with convex heagons; otherwise, there might be convex holes present.

1.2 Related Work

As remarked above, there is a rich literature related to various types of contact graphs.
There are many results considering curves and line segments as objects (cf. [13,14]). For
closed shapes such as polygons, results are rarer, except for axis-aligned (or isothetic)
rectangles. In a sense, results on representing planar graphs as “contact systems” can
be dated back to Koebe’s 1936 theorem [20] which states that any planar graph can be
represented as a contact graph of disks in the plane.



Optimal Polygonal Representation of Planar Graphs 419

The focus of this paper is side-to-side contact of polygons. The algorithms of He [12]
and Liao et al. [24] produce contact graphs of this type for triangulated graphs, with
nodes represented by the union of at most two isothetic rectangles, thus giving a polyg-
onal representation by non-convex octagons.

We now turn to contact graphs using isothetic rectangles, which are often referred to
as rectangular layouts. This is the most extensively studied class of contact graphs, due
in part to its relation to application areas such as VLSI floor-planning [22,31], archi-
tectural design [28] and geographic information systems [10], but also due to the math-
ematical ramifications and connections to other areas such as rectangle-of-influence
drawings [25] and proximity drawings [1,16].

Graphs allowing rectangular layouts have been fully characterized [26,30] with lin-
ear algorithms for deciding if a rectangular layout is possible and, if so, constructing
one. The simplest formulation [4] notes that a graph has a rectangular layout if and
only if it has a planar embedding with no filled triangles. Thus, K4 has no rectangular
layout. Buchsbaum et al. [4] also show, using results of Biedl et al. [2], that graphs that
admit rectangular layouts are precisely those that admit a weaker variation of planar
rectangle-of-influence drawings.

Rectangular layouts required to form a partition of a rectangle are known as rect-
angular duals. In a sense, these are “maximal” rectangular layouts; many of the results
concerning rectangular layouts are built on results concerning rectangular duals. Graphs
admitting rectangular duals have been characterized [11,21,23] and there are linear-time
algorithms [11,19] for constructing them.

Another view of rectangular layouts arises in VLSI floorplanning, where a rectangle
is partitioned into rectilinear regions so that region adjacencies correspond to a given
planar graph. It is natural to try to minimize the complexities of the resulting regions.
The best known results are due to He [12] and Liao et al. [24] who show that regions
need not have more than 8 sides. Both of these algorithms run in O(n) time and produce
layouts on an integer grid of size O(n) × O(n), where n is the number of vertices.

Rectilinear cartograms can be defined as rectilinear contact graphs for vertex-weighted
planar graphs, where the area of a rectilinear region must be proportional to the weight of
its corresponding node. Even with this extra condition, de Berg et al. [6] show that recti-
linear cartograms can always be constructed in O(n log n) time, using regions having at
most 40 sides. The resulting regions, however, are highly non-convex and can have poor
aspect ratio.

Although not considered by the authors, an upper bound of six for the minimum
number of sides in a touching polygon representation of planar graphs might be ob-
tained from the vertex-to-side triangle contact graphs of de Fraysseix et al. [7]. The top
edge of each triangle can be converted into a raised 3-segment polyline, clipping the tips
of the triangles touching it from above, thereby turning the triangles into side-touching
hexagons. It is likely to be difficult to use this approach for generating hexagonal repre-
sentations as it involves computing the amounts by which each triangle may be raised
so as to become a hexagon without changing any of the adjacencies. Moreover, by the
nature of such an algorithm, there would be many “holes,” potentially making such
drawings less appealing, or requiring further modifications to remove them.
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1.3 Preliminaries

Touching Hexagons Graph Representation: Throughout this paper, we assume we
are dealing with a connected planar graph G = (V, E). We would like to construct a
set of closed simple polygons R whose interiors are pairwise disjoint, along with an
isomorphism R : V → R, such that for any two vertices u, v ∈ V , the boundaries of
R(u) and R(v) overlap non-trivially if and only if {u, v} ∈ E. For simplicity, we adopt a
convention of the cartogram community and define the complexity of a polygonal region
as the number of sides it has. We call the set of all graphs having such a representation
where each polygon in R has complexity 6 touching hexagons graphs.

Canonical Labeling: Our algorithms begin by first computing a planar embedding of
the input graph G = (V, E) and using that to obtain a canonical labeling of the vertices.
A planar embedding of a graph is simply a clockwise order of the neighbors of each
vertex in the graph. Obtaining a planar embedding can be done in linear time using the
algorithm by Hopcroft and Tarjan [15]. The canonical labeling or order of the vertices
of a planar graph was defined by de Fraysseix et al. [9] in the context of straight-
line drawings of planar graphs on an integer grid of size O(n) × O(n). While the first
algorithm for computing canonical orders required O(n log n) time [8], Chrobak and
Payne [5] have shown that this can be done in O(n) time.

In this section we review the canonical labeling of a planar graph as defined by de
Fraysseix et al. [8]. Let G = (V, E) be a fully triangulated planar graph embedded in
the plane with exterior face u, v,w. A canonical labeling of the vertices v0 = u, v1 =

v, v2, . . . , vn−1 = w is one that meets the following criteria for every 2 < i < n:

1. The subgraph Gi−1 ⊆ G induced by v0, v1, . . . , vi−1 is 2-connected, and the boundary
of its outer face is a cycle Ci−1 containing the edge (u, v);

2. The vertex vi is in the exterior face of Gi−1, and its neighbors in Gi−1 form an (at
least 2-element) subinterval of the path Ci−1 − (u, v).

The canonical labeling of a planar graph G allows for the incremental placement of
the vertices of G on a grid of size O(n) × O(n) so that when the edges are drawn as
straight-line segments there are no crossings in the drawing. The two criteria that define
a canonical labeling are crucial for the region creation step of our algorithm.

Kant generalized the definition for triconnected graphs. In this case, the vertices
are partitioned into sets V1 to VK which can be either singleton vertices or chains of
vertices [18].

2 Lower Bound of Six Sides

Here we show that at least six sides per polygon are needed in touching polygon
representations of planar graphs. We begin by constructing a class of planar graphs
that cannot be represented by four-sided polygons and then extend the argument to
show that there exists a class of planar graphs that cannot be represented by five-sided
regions.
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Fig. 2. (a) The graph that provides the counterexample. (b) A pair of subsequent fair quadrilaterals
adjacent to the same sides of QA and QB. (c) Illustration for Lemma 2 shows one of three possible
cases for two touching regions.

2.1 Four Sides Are Not Enough

Consider the fully triangulated graph G in Figure 2(a). G has three nodes on the outer
face A, B and C, and contains a chain of nodes 1, ..., k which are all adjacent to A and B.
Consecutive nodes in the chain, i and i + 1, are also adjacent. The remaining nodes of
G are degree-3 nodes li and ri inside the triangles Δ(A, i, i + 1) and Δ(B, i, i + 1).

Theorem 1. For k sufficiently large, there does not exist a touching polygon represen-
tation for G in which all regions have complexity 4 or less.

Proof: Assume, for the sake of contradiction, that we are given a touching polygon
drawing for G in which all regions have complexity 4 or less. Without loss of generality,
we assume that the drawing has an embedding that corresponds to the one shown in
Figure 2(a). Let QA and QB denote the quadrilaterals representing nodes A and B, and
Qi denotes the quadrilateral representing node i. Once again, without loss of generality,
let QA lie in the left corner, QB in the right corner and QC at the top of the drawing.

We start with a couple of observations:

Observation 1: For simplicity, assume that the three quadrilaterals QA,QB,QC that are
adjacent to the outer face are convex. Then a complete side of each quadrilateral must
be adjacent to the outer face.

From this observation, we conclude that at most three sides of each of the outer
quadrilaterals are inside of the drawing. We consider the three sides A1, A2, A3 and
B1, B2, B3 of QA and QB, respectively, numbered from top to bottom; see Figure 2(b).
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The quadrilaterals of the chain are adjacent to the three sides in this order, such that if
Qi is adjacent to A j (resp. B j), then Qi+1 is adjacent to Ak (resp. Bk) with k ≥ j. The
adjacency of each Qi defines two intervals, one on the polygonal chain A1, A2, A3 and
another one on B1, B2, B3.

Observation 2: Consider the c(= 4) corners of QA and QB, where the sides A1 and A2,
A2 and A3, B1 and B2, B2 and B3 coincide. Clearly, at most 2 of the intervals that are
defined by the adjacencies of the Qi’s are adjacent to each of the c corners. In total,
this makes at most 2c = 8 intervals, that are adjacent to any of the corners of QA or
QB. Hence, at most 8 quadrilaterals of the chain Q1, ...,Qk are adjacent to corners of QA

and/or QB.
We now consider the quadrilaterals that do not define any of those intervals.
Let Qi be a quadrilateral that is not adjacent to any of the corners of the polygonal

chains A1, A2, A3 and B1, B2, B3. Two of its corners are adjacent to the same side Ak and
to the same side Bl, 1 ≤ k, l ≤ 3 of QB. We call such a quadrilateral a fair quadrilateral.

Lemma 1. If we choose k large enough, there exists a pair of fair quadrilaterals Qi

and Qi+1 that are adjacent to the same sides of QA and QB.

Proof: We use a counting argument. We know that at most 8 quadrangles are not fair.
Hence, for k ≥ 2 · 2c + 2 = 18, there must be a pair of subsequent fair quadrilaterals.
The worst case happens for k = 17 if Q2,Q4,Q6, . . .Q16 are not fair. We can state even
more precisely that there are at least k − 17 pairs of subsequent fair quadrilaterals. Note
that the pair (Qi,Qi+1) of fair quadrilaterals where Qi is adjacent to the sides A1 and B1,
but Qi+1 is not adjacent to A1 and B1 does not have the property claimed in the lemma.
We call such a pair transition pair.

We can partition the set of fair quadrilaterals into at most 5 equivalence classes
C1, ...,C5 that denote the sets of fair quadrilaterals, which are adjacent to the same
sides of QA and QB. When we sweep through the chain of middle quadrilaterals, we si-
multaneously proceed through the equivalence classes. Hence there exist at most t = 4
transition pairs, namely pairs of subsequent fair quadrilaterals that are in different equiv-
alence classes.

These equivalence classes denote the pairs of sides (Ai, B j) that are used, beginning
from the top with, say, (A1, B1), then (A1, B2), (A2, B2), (A3, B2) and finally (A3, B3). Note
that this is not the only possible set of equivalence classes, but by planarity, it is not
possible to have (A2, B3) and (A3, B1) simultaneously. Hence, there are at most 5 classes.

We repeat our counting argument from above and argue that for k ≥ 23 there are at
least 5 or more pairs of subsequent fair quadrilaterals, so at least one has the property
claimed in the lemma. �

Before we continue with the proof of the theorem, we include the following Lemma,
partially illustrated in Figure 2(c):

Lemma 2. If there are two regions R, S touching in some nontrivial interval I = (a, b)
then at a, there is a corner of R or S . The same holds for corner b.

Now, let (Qi,Qi+1) be a pair of fair same-sided quadrilaterals, touching sides Ap and
Bq. Since Qi and Qi+1 have to be adjacent, the two sides next to each other touch. We
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can use the above Lemma 2 to show that each interval that is shared by two polygons
ends at two of the corners of the two polygons. Since there exist the polygonal regions
representing ri and li, it is clear that the interval where Qi and Qi+1 touch is disjoint from
the regions QA and QB. Hence the corners derived from Lemma 2 are not the corners of
Qi or Qi+1 that are incident to sides Ap and Bq. This is a contradiction, since then both
Qi and Qi+1 must have at least 5 corners, or one of them has even 6 corners. �

2.2 Five Sides Are Not Enough

If we allow the regions to be pentagons, we have to sharpen the argument a little more.

Lemma 3. If we choose k large enough, there exists a triple of fair pentagons Pi, Pi+1,
Pi+2 that is adjacent to the same sides of PA and PB.

Proof: We prove this along the same lines as before. Now we have four sides with
c = 6 inner corners of the pentagons PA and PB. As before, we can see that at most 12
pentagons of the inner chain are not fair. Since we aim now for triples and not just for
pairs, we get a worst case where every third pentagon is not fair. Hence for k ≥ 3 ·2c+3,
we get at least k − 38 fair subsequent pentagons. Next, we estimate the number of
transition triples. The number of equivalence classes of pentagons with sides solely on
the same side of PA and PB is seven. As we deal with triples, this makes a bound of at
most 14 transition triples, since we can differentiate transition points between the first
two and the last two pentagons of the triple.

Hence, we have to grow k to 38 + 14 = 52 to ensure that a triple of fair same-sided
pentagons exists. �

Theorem 2. For k sufficiently large, there does not exist a touching polygon represen-
tation for G in which all regions have complexity five or less.

Proof: We choose k to be at least 52. Now, let (Pi, Pi+1, Pi+2) be a triple of fair same-
sided pentagons, touching sides Ap and Bq. Since Pi and Pi+1 have to be adjacent, the
two sides next to each other touch. We can use Lemma 2 that each interval that is
shared by two polygons ends at two of the corners of the two polygons. Since there
exist the polygonal regions representing ri and li, it is clear that the interval where Qi

and Qi+1 touch is disjoint from the regions PA and PB. Hence the corners derived from
Lemma 2 are not the corners of Pi or Pi+1 that are incident to sides Ap and Bq. This
is a contradiction, since both Pi and Pi+1 have at least 5 corners, or one of them has
even 6 corners. In the case, that Pi and Pi+1 have exactly 5 corners, we repeat the same
argument for Pi+1 and Pi+2. From the second application, we prove the existence of
a second additional corner at Pi+1 or that Pi+2 has two additional corners at the side
opposite to Pi+1. In both cases, we get a contradiction. There exists a region with at
least 6 corners. �

Note that six-sided polygons are indeed sufficient to represent the graph in Figure 2(a).
In particular, for subsequent fair polygons Pi and Pi+1, we can use three segments on
the lower side of Pi, while the upper side of Pi+1 consists of only one segment which
completely overlaps the middle of the three segments from the lower side of Pi.
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3 Touching Hexagons Representation

In this section, we present a linear time algorithm that takes as input a planar graph G =
(V, E) and which produces a representation of G in which all regions are convex hexagons,
thus proving that planar graphs belong to the class of touching hexagons graphs.

3.1 Algorithm Overview

We assume that the input graph G = (V, E) is a fully triangulated planar graph with
|V | = n vertices. If the graph is planar but not fully triangulated, we can augment it
to a fully triangulated graph with the help of dummy vertices and edges, run the algo-
rithm below and remove the polygons that correspond to dummy vertices. Traditionally,
planar graphs are augmented to fully triangulated graphs by adding edges to each non-
triangular face. Were we to take this approach, however, when we remove the dummy
edges we have to perturb the resulting space partition to remove polygonal adjacencies.
As this is difficult to do, we convert our input graph to a fully triangulated one by adding
one additional vertex to each face and connecting it to all vertices in that face. The above
approach works if the input graph is biconnected. Singly-connected graphs must first be
augmented to biconnected graphs as follows. Consider any articulation vertex v, and let
u and w be consecutive neighbors of v in separate biconnected components. Add new
vertex z and edges (z, u) and (z,w). Iterating for every articulation point biconnects G
and results in an embedding in which each face is bounded by a simple cycle.

The algorithm has two main phases. The first phase computes the canonical labeling.
In the second phase we create regions with slopes 0, 1, -1 out of an initial isosceles right-
angle triangle, by processing vertices in the canonical order. Each time a new vertex is
processed, a new region is carved out of one or more already existing regions. At the
end of the second phase of the algorithm we have a right-angle isosceles triangle which
has been partitioned into exactly n = |V | convex regions, each with at most 6 sides. We
will show that creating and maintaining the regions requires linear time in the size of
the input graph. We illustrate the algorithm with an example; see Figure 3.

(a) (b) (c) (d)

Fig. 3. Incremental construction of the touching hexagons representation of a graph. Shaded ver-
tices on the bottom row and shaded regions on the top row are processed at this step. In general,
the region defined at step i is carved at distance 1/2i from the active front on the top. Note that
the top row forms a horizontal line at all times.
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3.2 Region Creation

In this section we describe the n-step incremental process of inserting new regions in
the order given by the canonical labeling, where n = |V |. The regions will be carved
out of an initial triangle with coordinates (0, 0), (−1, 1), (1, 1). The process begins by
the creation of R0, R1, and R2, which correspond to the first three vertices, v0, v1, v2; see
Figure 3(a). Note that the first three vertices in the canonical order form a triangular
face in G and hence must be represented as mutually touching regions.

At step i of this process, where 2 < i < n, region Ri will be carved out from the
current set of regions. Define a region as “active” at step i if it corresponds to a vertex
that has not yet been connected to all its neighbors. An invariant of the algorithm is that
all active regions are non-trivially tangent to the top side of the initial triangle, which
we refer to as the “active front.”

New vertices are created in one of two ways, depending on the degree of the current
node, vi, in the graph induced by the first i vertices, Gi. By the property of the canon-
ical ordering and the active regions invariant, vi is connected to 2 or more consecutive
vertices on the outer face of Gi−1:

1. If dGi (vi) > 2 then Ri, the region corresponding to vi, is a quadrilateral carved out
of all but the leftmost and rightmost regions, by a horizontal line segment that is at
distance 1/2i from the active front; see Figure 3(d). Note that all but the leftmost
and rightmost neighbors of vi are removed from the set of active regions as their
corresponding vertices have been connected to all their neighbors. Region Ri is
added to the new set of active regions. Call this a “type 1 carving.”

2. If dGi (vi) = 2, let Ra and Rb be its neighbors on the frontier. Region Ri is then carved
out as a triangle from either Ra or Rb.

Lemma 4. The regions produced by the above algorithm are convex and have at most
6 sides.

Proof: First note that the above algorithm leads to the creation of at most fifteen differ-
ent types of regions; see Figure 4. Each region has a horizontal top segment, a horizontal
bottom segment (possibly of length 0), and sides with slopes -1 or 1. Moreover, each
region can be characterized as either opening (the first two), static (the next six), or
closing (the last 7), depending on the angles of the two sides connecting it to the top
horizontal segment. Opening and static regions give rise to new regions via type 1 carv-
ings (dashed arrows) and type 2 carvings (solid arrows). Closing regions only give rise
to type 1 carvings.

We show that the regions produced as a result of type 1 and type 2 carvings from the
initial triangle are convex polygons with at most 6 sides with slopes 0, 1, -1 by induction
on the number of steps. Assume that the claim is true until right before step i; we will
show that the claim is true after step i.

If dGi (vi) > 2 then the new region Ri is created by a type 1 carving. Recall that Ri is
created by the addition of the horizontal line segment at distance 1/2i from the top of the
triangle, cutting through all but the leftmost and rightmost neighbors of vi. It remains
to show that the resulting region Ri has exactly four sides and that the complexity of
the all other regions is unchanged. By construction, Ri has a top and bottom horizontal
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Fig. 4. There are a fifteen possible region shapes, falling into three categories: 2 opening, 6 static,
and 7 closing. Solid arrows indicate type 2 (triangular) carving and dashed arrows indicate type 1
carving (a horizontal strip from the top of the current region). The four filled quadrilateral regions
are the only types created due to type 1 carving.

segments and exactly one line segment on the left and one line segment on the right.
The construction of Ri resulted in modifications in the regions representing all but the
leftmost and rightmost neighbors of vi in Gi, and there is at least one such neighbor. The
changes in these regions are the same: each such region had its top carved off by the
bottom horizontal side of the new region Ri. These changes do not affect the number of
sides defining the regions. Regions corresponding to nodes that are not adjacent to vi in
Gi are unchanged.

Otherwise, if d(vi) = 2 we must create a new region Ri between two adjacent regions
Ra and Rb. By construction, the complexity of the new region Ri is 3, as we carve off a
new triangle between regions Ra and Rb with a horizontal top side and apex at distance
1/2i from the active front. As a result of this operation either the Ra or Rb was modified
and all other regions remain unchanged. Specifically, the complexity of either Ra or Rb

must increase by exactly one. Without loss of generality, let Ra be the region from which
Ri will be carved; see Figure 5. It is easy to see that if Ra had complexity 6 then it must
have been a “closing” region (one of the rightmost two in the last row on Fig. 4. Then
the new region Ri would have been carved out of Rb which must have complexity 5 or
less as it is impossible to have Ra and Rb both “closing” and adjacent. Therefore, at the
end of step i the complexity of Ra has increased by one but is still no greater than 6. �
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3.3 Running Time

The above algorithm can be implemented in linear time. The linear time algorithm for
computing a canonical labeling of a planar graph [5] requires a planar embedding as
an input. Recall that planar embedding of a graph is simply a clockwise order of the
neighbors of each vertex in the graph. Obtaining a planar embedding can be done in
linear time using the algorithm by Hopcroft and Tarjan [15].

Creating and maintaining the regions in the second phase of our algorithm can also
be done in linear time. We next prove this by showing that each region requires O(1)
time to create and requires O(1) number of modifications.

Consider the creation of new regions. By the properties of canonical labeling, when
we process the current vertex vi, it is adjacent to at least two consecutive vertices on the
outer face of Gi−1. By construction of our algorithm the vertices in the outer face of Gi−1

correspond to active regions and so have a common horizontal tangent. If dGi (vi) = 2,
then a new region Ri is carved out of one of the neighboring regions Ra or Rb. Determin-
ing the coordinates of Ri takes constant time, given the coordinates of Ra and Rb and the
fact that Ri will have height 1/2i and will be tangent to the active frontier. If dGi (vi) > 2,
then all but the leftmost and rightmost neighbors of vi have their corresponding regions
carved, in order to create the new region Ri. In this case the coordinates of the Ri can
also be determined in constant time given the coordinates of the leftmost and rightmost
neighbors and the fact that Ri will have height 1/2i and will be tangent to the active
frontier. Note that the updates of the regions between the leftmost and rightmost are
considered in the modification step.

Consider the modifications of existing regions. As can be seen from the hierarchy
of regions on Figure 4, there are exactly 15 different kinds of regions and each region
begins as a triangle and undergoes at most 4 modifications (e.g., from triangle, to quadri-
lateral, to pentagon, to hexagon, to quadrilateral). Moreover, once a region goes from
one type to the next, it can never change back to the same type (i.e., all the arrows point
downward). Finally note that the total number of region modifications is proportional
to |E| and since G is planar, |E| = O(|V |) Thus, each region needs at most a constant
number of modifications from the time it is created to the end of the algorithm.

Ra Rb
Ri

Ra Rb
Ri

Ra Rb
Ri

Ra Rb
Ri

Ra Rb
Ri

Fig. 5. Introducing region Ri between Ra and Rb, assuming Ri is carved out of Ra. All the possible
cases are shown, assuming that Ra and Rb were convex, at most 6-sided regions with slopes 0,
1, -1. (There are five more symmetric cases when Ri is carved out of Rb.) Note that these five
regions correspond to the non-filled regions from the region-creating hierarchy in Fig. 4 with two
static regions in the first row and the three closing regions in the second row.
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The algorithm described in this section, yields the following theorem:

Theorem 3. A planar graph can be converted into a set of touching convex polygons
with complexity at most six, in linear time in the number of vertices of the graph.

As defined, the above algorithm requires exponential area, if polygonal endpoints
are to be placed at integer grid points. We show in the Appendix how to compact the
initial exponential area drawings. However, the compaction approach is not guaranteed
to always find a small area drawing. Therefore, we next show with a different algorithm
that, in fact, O(n) × O(n) area suffices.

4 Hexagonal Representation of Planar Graphs Using O(n) × O(n)
Area

One drawback to the algorithms described in Sections 3 is it is not easy to obtain a
good bound on the drawing area. Using a different approach, we can show that any
general n-vertex planar graph can be represented by touching convex hexagons, drawn
on the O(n) × O(n) grid. This approach is based on Kant’s algorithm for hexagonal
grid drawing of 3-connected, 3-planar graphs [17]. In Kant’s algorithm the drawing is
obtained by looking at the dual graph, and processing its vertices in the canonical order.
In the final drawing, however, there are two non-convex faces, separated by an edge
which is not drawn as a straight-line segment. These problems can be addressed by
adding several extra vertices in a pre-processing step. When the dual of this augmented
graph is embedded, the faces corresponding to the extra vertices can be removed to
yield the desired grid drawing on area O(n) × O(n).

Let H = (V, E) be a 3-connected, 3-planar graph. Note that the dual D(H) is fully
triangulated, as each face in the dual corresponds to exactly one vertex in H. So, for f
faces in H, we have f vertices in D(H). We first compute a canonical ordering on the
vertices of D(H) as defined by de Fraysseix et al. [7]. Let v1, ..., v f be the vertices in
D(H) in this canonical order.

Kant’s algorithm now constructs a drawing for H such that all edges but one have
slopes 0◦, 60◦, or −60◦, with the one edge with bends lying on the outer face. The
typical structure of those drawings is shown in Figure 6(a).

The algorithm incrementally constructs the drawing by adding the faces of H in
reverse order of the canonical order of the corresponding vertices in D(H). We let wi be
the vertices of H. Let face Fi correspond to vertex vi in D(H). The algorithm starts with
a triangular region for the face F f that corresponds to vertex v f . The vertex wx which is
adjacent to F f , F1 and F2 is placed at the bottom. Let wy and wz be the neighbors of wx

in F f . These three vertices form the corners of the first face F f . (wx,wz) and (wx,wy)
are drawn upward with equal lengths and slopes -1 and 1, respectively. All the edges on
the path between wy and wz along F f are drawn horizontally between the two vertices.
From this first triangle, all other faces are added in reverse canonical order to the upper
boundary of the drawing region. If a face is completed by only one vertex wi, this vertex
is placed appropriately above the upper boundary such that it can be connected by two
edges with slopes -1 and 1, respectively. If the face is completed by a path, then the
two end segments of the path have slopes -1 and 1, while the other edges are horizontal.
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G

a

b

x

z

y

c

F1

F2

Ff

(a) (b)

Fig. 6. (a) Polygonal structure obtain from Kant’s algorithm. (b) Graph G augmented by vertices
z, y and x together with its dual which serves as input graph for Kant’s algorithm.

The construction ends when w1 is inserted, corresponding to the outer face F1. Note
that there is an edge between w1 and wx, which is drawn using some bends. This edge
is adjacent to the faces F1 (the outer face) and F2.

From this construction, we can observe that the angles at faces F f , ..., F3 have size
≤ π as the first two edges do not enter the vertex from above, and the last edge leaves
the vertex upwards. Hence, we have the following result.

Lemma 5. The faces F f , ..., F3 are convex, and as the slopes of the edges are -1,0 or 1,
they are drawn with at most 6 sides.

This property is exactly what we are aiming for, as the vertices of our input graph
G should be represented by convex regions of at most 6 sides. Unfortunately, Kant’s
algorithm creates two non-convex faces F1 and F2 separated by an edge which is not
drawn as a line segment. Furthermore, the face F f is drawn as large as all the remaining
faces F3, ...F f−1 together.

Kant also gave an area estimate for the result of his algorithm. A corollary of Kant’s
algorithm is the following.

Corollary 1. For a given 3-connected, 3-planar graph H of n vertices, H − wx can be
drawn within an area of n/2 − 1 × n/2 − 1.
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4.1 From Hexagonal Grid Drawing to Touching Hexagons

To apply Kant’s result to the problem of constructing touching hexagons representation,
we enlarge the embedded input graph G so that the dual of the resulting graph G′ can be
drawn using Kant’s algorithm in such a way that the original vertices of G correspond
to the faces F3, ..., F f−1.

We have to add 3 vertices which will correspond to the faces F1, F2 and F f in Kant’s
algorithm. Since G is fully triangulated, let a, b and c be the vertices at the outer face of
G in clockwise order. We add the vertices x, y and z in the outer face and connect toG
appropriately. We want z to correspond to the outer face F1, y correspond to F2 and x
to F f . First, we add x and connect it to a, b and c such that b and c are still in the outer
face. Then we add y and connect it to x, b and c such that b is still in the outer face.
Finally, we add z and connect it to x, b and c such that z, y and x are now in outer face,
as shown in the Figure 6(b).

Since the vertices x, y, z are on the outer face, we can choose which one is first,
second and last in the canonical order. We can then apply Kant’s algorithm with the
canonical order v1 = z, v2 = y and v f = x. After constructing the final drawing, we
remove the regions corresponding to vertices z, y and x, leaving us with a hexagonal
representation of G. Since Kant’s algorithm runs in linear time, and our emendations
can be done in constant time, we can summarize:

Theorem 4. For a fully triangulated planar graph G on n vertices, we can construct a
contact graph of convex hexagons in time O(n). The sides of the hexagons have slope 1,
0, or -1.

Given any planar graph G, if it is not biconnected, we can make it biconnected using
a procedure attributed to Read [27], adding a vertex and two edges at each articulation
point. Once biconnected, we can fully triangulate the graph by adding a vertex inside
each non-triangular face and connecting that vertex to each vertex on the face. We can
then apply Theorem 4, to get a hexagonal representation of the extended graph. Finally,
removing the added vertices and their edges, we obtain a hexagonal representation of
G. This gives us:

Theorem 5. For any planar graph G on n vertices, we can construct a contact graph
of convex hexagons in time O(n). The sides of the hexagons have slope 1, 0, or -1.

4.2 Area Estimation

For a triangulated input graph G = (V, E), we have n vertices and, by Euler’s formula,
2n − 4 faces. Since we enhanced our graph to n + 3 vertices, we have f = 2n + 2 faces.
Those faces are the vertices in the dual D(G) which is the input to Kant’s algorithm.
His area estimation gives an area of n/2 − 1 × n/2 − 1 for f = n vertices when we
coalesce the faces F1, F2 and F f into a single outer face by removing the corresponding
vertices and edges. Thus, we get an area bound of n×n using exactly the same argument
as he did.

Theorem 6. For a fully triangulated planar graph G of n vertices, we can achieve a
contact representation of convex hexagons with area n × n.
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5 Conclusion and Future Work

Thomassen [29] had shown that not all planar graphs can be represented by touching
pentagons, where the external boundary of the figure is also a pentagon and there are
no holes. Our results in this paper are more general, as we do not insist on the external
boundary being a pentagon or on there being no holes between pentagons. Finally, it is
possible to derive algorithms for convex hexagonal representations for general planar
graphs from several earlier papers, e.g., de Fraysseix et al. [7], Thomassen [29], and
Kant [17]. However, these do not immediately lead to algorithmic solutions to the prob-
lem of graph representation with convex low-complexity touching polygons. To the best
of our knowledge, this problem has never been formally considered.

In this paper we presented several results about touching n-sided graphs. We showed
that for general planar graph six sides are necessary. Then we presented an algorithm
for representing general planar graphs with convex hexagons. Finally, we discussed
a different algorithm for general planar graphs which also yields an O(n) × O(n)
drawing area.

Several interesting related problems are open. What is the complexity of the deciding
whether a given planar graph can be represented by touching triangles, quadrilaterals,
or pentagons? In the context of rectilinear catrograms the vertex-weighted problem has
been carefully studied. However, the same problem without the rectilinear constraint has
received less attention. Finally, it would be interesting to characterize the subclasses of
planar graphs that allow for touching triangles, touching quadrilaterals, and touching
pentagons representations.
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Abstract. Given a set S of segments in the plane, a polygon P is an
intersecting polygon of S if every segment in S intersects the interior
or the boundary of P . The problem MPIP of computing a minimum-
perimeter intersecting polygon of a given set of n segments in the plane
was first considered by Rappaport in 1995. This problem is not known
to be polynomial, nor it is known to be NP-hard. Rappaport (1995)
gave an exponential-time exact algorithm for MPIP. Hassanzadeh and
Rappaport (2009) gave a polynomial-time approximation algorithm with
ratio π

2
≈ 1.58. In this paper, we present two improved approximation

algorithms for MPIP: a 1.28-approximation algorithm by linear program-
ming, and a polynomial-time approximation scheme by discretization
and enumeration. Our algorithms can be generalized for computing an
approximate minimum-perimeter intersecting polygon of a set of convex
polygons in the plane. From the other direction, we show that comput-
ing a minimum-perimeter intersecting polygon of a set of (not necessarily
convex) simple polygons is NP-hard.

1 Introduction

A polygon is an intersecting polygon of a set of segments in the plane if every
segment in the set intersects the interior or the boundary of the polygon. In
1995, Rappaport [11] proposed the following geometric optimization problem:

MPIP: Given a set S of n (possibly intersecting) segments in the plane, com-
pute a minimum-perimeter intersecting polygon P ∗ of S.

The problem MPIP was originally motivated by the theory of geometric transver-
sals; see [13] for a recent survey on related topics. As of now, MPIP is not known
to be polynomial, nor it is known to be NP-hard. Rappaport [11] gave an ex-
act algorithm for MPIP that runs in O(n log n) time when the input segments
are constrained to a constant number of orientations, but the running time be-
comes exponential in the general case. Recently, Hassanzadeh and Rappaport [8]
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presented the first polynomial-time constant-factor approximation algorithm for
MPIP with ratio π

2 ≈ 1.58.
In this paper, we present two improved approximation algorithms for MPIP.

Our first result (in Section 2), is a 1.28-approximation algorithm for MPIP which
is based on linear programming:

Theorem 1. For any ε > 0, a 4
π (1 + ε)-approximation for minimum-perimeter

intersecting polygon of n segments in the plane can be computed by solving O(1/ε)
linear programs, each with O(n) variables and O(n) constraints. In particular, a
1.28 approximation can be computed by solving a constant number of such linear
programs.

Our second result (in Section 3) is a polynomial-time approximation scheme
(PTAS) for MPIP which is based on discretization and enumeration:

Theorem 2. For any ε > 0, a (1+ε)-approximation for minimum-perimeter in-
tersecting polygon of n segments in the plane can be computed in O(1/ε) poly(n)+
2O((1/ε)2/3)n time.

Both algorithms can be generalized for computing an approximate minimum-
perimeter intersecting polygon of a set of (possibly intersecting) convex polygons
in the plane. Details appear in Section 4. From the other direction, we show
that computing a minimum-perimeter intersecting polygon of a set of (possibly
intersecting but not necessarily convex) simple polygons is NP-hard. Details
appear in Section 5.

Theorem 3. Computing a minimum-perimeter intersecting polygon of a set of
simple polygons, or that of a set of simple polygonal chains, is NP-hard.

While the problem MPIP has been initially formulated for segments, it can be
formulated for any finite collection of connected (say, polygonal) regions in the
plane, as input, for which the problem is to find a minimum-perimeter inter-
secting polygon. Natural subproblems to consider are the cases when the input
is a set of line segments, a set of convex or non-convex polygons, and a set of
polygonal chains (as we do in the hardness reduction).

Preliminaries. Denote by conv(A) the convex hull of a planar set A. For a poly-
gon P , let perim(P ) denote its perimeter. Let P ∗ denote a minimum-perimeter
intersecting polygon of S. We can assume without loss of generality that not all
segments in S are concurrent at a common point (this can be easily checked in
linear time), thus perim(P ∗) > 0. The following two facts are easy to prove; see
also [8,11].

Proposition 1. P ∗ is a convex polygon with at most n vertices.

Proposition 2. If P1 is an intersecting polygon of S, and P1 is contained in
another polygon P2, then P2 is also an intersecting polygon of S.
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2 A 4
π
(1 + ε)-Approximation Algorithm

In this section we prove Theorem 1. We present a 4
π (1 + ε)-approximation algo-

rithm for computing a minimum-perimeter intersecting polygon of a set S of line
segments. The idea is to first prove that every convex polygon P is contained in
some rectangle R = R(P ) that satisfies perim(R) ≤ 4

π perim(P ), then use linear
programming to compute a (1 + ε)-approximation for the minimum-perimeter
intersecting rectangle of S.

Algorithm A1.

Let m = � π
4ε. For each direction αi = i · 2ε, i = 0, 1, . . . , m − 1, compute

a minimum-perimeter intersecting rectangle Ri of S with orientation αi.
Return the rectangle with the minimum perimeter over all m directions.

We now show how to compute the rectangle Ri by linear programming. By
a suitable rotation of the set S of segments in each iteration i ≥ 1, we can
assume for convenience that the rectangle Ri is axis-parallel. For i = 1, . . . , n,
let pi = (ai, bi) and qi = (ci, di) be the two endpoints of the ith segment in S.
Then a point p in the plane belongs to the ith segment if and only if p is a convex
combination of the two endpoints of the segment, that is, p = (1 − ti)pi + tiqi

for some parameter ti ∈ [0, 1]. To satisfy the intersecting requirement, each
segment in S must have a point contained the rectangle Ri. The objective of
minimum perimeter is naturally expressed as a linear function. The resulting
linear program has n variables ti, i = 1, . . . , n, for the n segments in S, and 4
variables x1, x2, y1, y2 for the rectangle Ri = [x1, x2]× [y1, y2]:

minimize 2(x2 − x1) + 2(y2 − y1) (LP1)

subject to

⎧⎨⎩x1 ≤ (1 − ti)ai + tici ≤ x2, 1 ≤ i ≤ n
y1 ≤ (1 − ti)bi + tidi ≤ y2, 1 ≤ i ≤ n
0 ≤ ti ≤ 1, 1 ≤ i ≤ n

A key fact in the analysis of the algorithm is the following lemma. This inequality
is also implicit in [12], where a slightly different proof is given. Nevertheless we
present our own proof for completeness.

Lemma 1. Let P be a convex polygon. Then the minimum-perimeter rectangle
R containing P satisfies perim(R) ≤ 4

π perim(P ).

Proof. Let R(α) denote a minimum-perimeter rectangle with orientation α that
contains the polygon P . For any direction α ∈ [0, π) in the plane, let w(α) denote
the width of P in the direction α, that is, the width of the smallest parallel strip
in the direction α that contains P . We have

perim(R(α)) = 2
(
w(α) + w

(
α +

π

2

))
. (1)

According to Cauchy’s surface area formula [14], we have∫ π

0
w(α) dα = perim(P ). (2)
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We obviously have ∫ π

0
w(α) dα =

∫ π

0
w
(
α +

π

2

)
dα. (3)

By substituting (3) into (1) and by integrating (1) over the interval [0, π] we get
that

π · perim(R) ≤
∫ π

0
perim(R(α)) = 4

∫ π

0
w(α) dα = 4 · perim(P ). (4)

From this the claimed inequality follows:

perim(R) ≤ 4
π
·perim(P ). ��

Let R∗ be a minimum-perimeter intersecting rectangle of S. To account for the
error made by discretization, we need the following:

Lemma 2. For all i = 0, 1, . . . , m − 1, perim(Ri) ≤
√

2 perim(R∗). Moreover,
there exists an i ∈ {0, 1, . . . , m− 1} such that perim(Ri) ≤ (1 + ε) perim(R∗).

Proof. Refer to Figure 1. Consider any rectangle Ri, i ∈ {0, 1, . . . , m − 1}. Let
β be the minimum angle difference between the orientations of Ri and R∗, 0 ≤
β ≤ π/4. Let R′

i be the minimum-perimeter rectangle with the same orientation
as Ri such that R′

i contains R∗. An easy trigonometric calculation shows that

perim(R′
i) = (cos β + sin β) perim(R∗).

It follows that

perim(Ri) ≤ perim(R′
i) = (cosβ + sinβ) perim(R∗) ≤ √

2 perim(R∗).

Since the directions αi = i · 2ε are discretized with consecutive difference at
most 2ε, there exists an i ∈ {0, 1, . . . , m} such that the difference β between the
orientations of Ri and R∗ is at most ε. For this i, we have

perim(Ri) ≤ (cosβ + sin β) perim(R∗) ≤ (1 + β) perim(R∗) ≤ (1 + ε) perim(R∗),

as required. ��

Fig. 1. The discretization error
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Let Ri be the rectangle returned by Algorithm A1. Let P ∗ be a minimum-
perimeter intersecting polygon of S. Then

perim(Ri) ≤ (1 + ε) perim(R∗) ≤ 4
π

(1 + ε) perim(P ∗),

where the two inequalities follow by Lemma 2 and Lemma 1, respectively. This
completes the proof of Theorem 1.

3 A Polynomial-Time Approximation Scheme

In this section we prove Theorem 2. We present a (1 + ε)-approximation algo-
rithm for computing a minimum-perimeter intersecting polygon of a set S of
line segments. The idea is to first locate a region Q that contains either an op-
timal polygon P ∗ or a good approximation of it, then enumerate a suitable set
of convex grid polygons in this region Q to approximate P ∗.

Algorithm A2.

Step 1. Let ε1 = ε
2+ε . Run Algorithm A1 to compute a rectangle R that is a

(1 + ε1)-approximation for minimum-perimeter intersecting rectangle of S.
Let Q be a square of side length 3 perim(R) that is concentric with R and
parallel to R.

Step 2. Let k = �48/ε. Divide the square Q into a k × k grid Qδ of cell length
δ = 3 perim(R)/k. Enumerate all convex grid polygons with grid vertices from
Qδ. Find an intersecting polygon Pδ of the minimum perimeter among these
grid polygons. If perim(Pδ) < perim(R), return Pδ. Otherwise return R.

Let the distance between two compact sets A and B in the plane be the minimum
distance between two points a ∈ A and b ∈ B (A and B intersect if and only
if their distance is zero). Let P ∗ be a minimum-perimeter intersecting polygon
of S that has the smallest distance to R. The choice of the square region Q in
Step 1 is justified by the following lemma:

Lemma 3. Suppose that perim(R) ≥ (1 + ε) perim(P ∗). Then P ∗ ⊆ Q.

Proof. The length of any side of the rectangle R is at most 1
2 perim(R). Consider

the smallest rectangle R′ that is parallel to R and contains the polygon P ∗. Then
the length of any side of R′ is at most 1

2 perim(P ∗). Suppose first that R intersects
P ∗. Then R must also intersect R′. It follows that R′ is contained in a square of
side length 1

2 perim(R) + 1
2 perim(P ∗) + 1

2 perim(P ∗) that is concentric with R
and parallel to R. Since perim(P ∗) ≤ perim(R), we have

1
2

perim(R) +
1
2

perim(P ∗) +
1
2

perim(P ∗) ≤ 3
2

perim(R) < 3 perim(R).

Thus P ∗ is contained in the square Q of side length 3 perim(R) that is concentric
with R and parallel to R. In the following we assume that R and P ∗ are disjoint.
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y0 y1 y2

x1
x2

R

P ∗

Fig. 2. The two dashed lines are tangent to both the rectangle R and the polygon
P ∗, and are symmetric about the x axis. The three vertical segments between the two
dashed lines have lengths y0, y1, and y2, respectively, and have distances x1 and x2

between consecutive segments. The left vertical segment is tangent to the rectangle R.
The middle and right vertical segments are tangent to the polygon P ∗.

Refer to Figure 2. Consider the two common supporting lines of R and P ∗ such
that each line is tangent to both R and P ∗ on one side. Assume without loss of
generality that the two lines are symmetric about the x axis. Denote by xmin(A)
and xmax(A), respectively, the minimum and the maximum x-coordinates of
a point in a planar set A. Without loss of generality, further assume that
xmax(R) ≤ xmax(P ∗). We next consider two cases: (1) xmax(R) < xmin(P ∗),
and (2) xmax(R) ≥ xmin(P ∗). Figure 2 illustrates the first case.

Case 1: xmax(R) < xmin(P ∗). Refer to Figure 2. The crucial observation in this
case is the following:

(�) Since both R and P ∗ are intersecting polygons of S, each segment in S has
at least one point in R and one point in P ∗.

Therefore, by the convexity of each segment in S, any vertical segment be-
tween the two supporting lines with x-coordinate at least xmax(R) and at most
xmin(P ∗) is a (degenerate) intersecting polygon of S. For example, the left and
middle vertical segments of lengths y0 and y1 in Figure 2 correspond to two
intersecting polygons of perimeters 2y0 and 2y1, respectively. We must have
y0 > y1 because otherwise there would be an intersecting polygon of perimeter
2y0 ≤ 2y1 ≤ perim(P ∗) that is closer to R than P ∗ is, which contradicts our
choice of P ∗.

Recall that R is a (1 + ε1)-approximation for minimum-perimeter intersect-
ing polygon of S, and observe that the middle vertical segment of length y1
in Figure 2 corresponds to a (degenerate) intersecting rectangle of S. Thus
perim(R) ≤ (1 + ε1)2y1. Since perim(R) ≥ 2y0, it follows that y0 ≤ (1 + ε1)y1.
Also note that 2y2 ≤ perim(P ∗). If y2 > (1 − ε1)y1, then we would have

perim(R) ≤ (1 + ε1)2y1 <
1 + ε1

1 − ε1
2y2 = (1 + ε)2y2 ≤ (1 + ε) perim(P ∗),

which contradicts the assumption of the lemma. Therefore we must have
y2 ≤ (1 − ε1)y1.
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Let x1 = xmin(P ∗) − xmax(R) and x2 = xmax(P ∗) − xmin(P ∗). By triangle
similarity, we have

x1

x2
=

y0 − y1

y1 − y2
≤ (1 + ε1)y1 − y1

y1 − (1 − ε1)y1
= 1.

Thus x1 + x2 ≤ 2x2 ≤ perim(P ∗) ≤ perim(R). Note that the distance from the
center of R to the left vertical segment of length y0 is at most half the diagonal
of R, which is at most 1

4 perim(R). Thus P ∗ is contained in an axis-parallel
rectangle concentric with R, of width 2(1

4 perim(R) + perim(R)) = 5
2 perim(R)

and of height perim(R). Since (5
2 )2 + 12 < 32, this axis-parallel rectangle is

contained in the square Q of side length 3 perim(R) that is concentric with R
and parallel to R (recall that R is not necessarily axis-parallel). Thus P ∗ ⊆ Q,
as required.

R1

R2

R

P ∗

Fig. 3. The case that xmax(R) ≥ xmin(P ∗)

Case 2: xmax(R) ≥ xmin(P ∗). Refer to Figure 3. Consider the smallest axis-
parallel rectangle R1 that contains R and the smallest axis-parallel rectangle
R2 that contains P ∗. Then the two rectangles R1 and R2 intersect. The length
of any side of R1 is at most 1

2 perim(R); the length of any side of R2 is at
most 1

2 perim(P ∗). Thus R2 is contained in an axis-parallel square of side length
1
2 perim(R) + 1

2 perim(P ∗) + 1
2 perim(P ∗) ≤ 3

2 perim(R) that is concentric with
R1. Note that R1 is concentric with R. Since

√
2 · 3

2 perim(R) < 3 perim(R),
this axis-parallel square is contained in the square Q of side length 3 perim(R)
that is concentric with R and parallel to R (recall that R is not necessarily axis-
parallel). Thus again P ∗ ⊆ Q, as required. ��
The following lemma justifies the enumeration of convex grid polygons in Q:

Lemma 4. Suppose that P ∗ ⊆ Q. Then there exists a convex grid polygon Pδ

with grid vertices from Qδ such that P ∗ ⊆ Pδ and perim(Pδ) ≤ (1+ε) perim(P ∗).

Proof. We will use the following two well-known facts1 on any two compact sets
A and B in the plane:
1 Fact 1 is trivial. For convex polygons A and B, fact 2 can be easily proved by

repeatedly “shaving” B into a smaller convex polygon by a supporting line of A and
applying the triangle inequality. Since convex compact sets can be approximated
arbitrarily well by convex polygons, a limiting argument completes the proof of
fact 2 for convex compact sets.
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Fig. 4. V (dots), C (shaded squares), and D (disks)

1. If A ⊆ B, then conv(A) ⊆ conv(B).
2. If A ⊆ B and both A and B are convex, then perim(A) ≤ perim(B).

Refer to Figure 4. Let V be the set of vertices of the polygon P ∗. Let C be the
union of the grid cells of Qδ that contain the vertices in V . Let D be the union of
the disks of radii r =

√
2δ centered at the vertices in V . Then V ⊆ C ⊆ D. It

follows by Fact 1 that conv(V ) ⊆ conv(C) ⊆ conv(D). Note that P ∗ = conv(V ).
Let Pδ = conv(C). Then P ∗ = conv(V ) ⊆ conv(C) = Pδ. By Fact 2, we also have

perim(Pδ) = perim(conv(C)) ≤ perim(conv(D))

= perim(conv(V )) + 2πr = perim(P ∗) + 2π
√

2δ.

Recall that δ = 3 perim(R)/k = 3 perim(R)/�48/ε ≤ ε
16 perim(R). Let R∗

the a minimum-perimeter intersecting rectangle of S. By Lemma 2 and Lemma 1
in the previous section, we have perim(R) ≤ √

2 perim(R∗) and perim(R∗) ≤
4
π perim(P ∗). Thus

2π
√

2δ ≤ 2π ·
√

2 · ε

16
·perim(R) ≤ 2π ·

√
2 · ε

16
·
√

2 · 4
π
·perim(P ∗) = ε ·perim(P ∗).

So we have perim(Pδ) ≤ (1 + ε) perim(P ∗). ��
By Lemma 3 and Lemma 4, Algorithm A2 indeed computes an (1 + ε)-
approximation for the minimum-perimeter intersecting polygon of S. We now an-
alyze its running time. Step 1 runs in O(1/ε1) poly(n) = O(1/ε) poly(n) time. In
Step 2, each convex grid polygon in a k×k grid has O(k2/3) grid vertices [1,2]. It
follows from a result of Bárány and Pach [4] that there are 2O(k2/3) such polygons
in a k× k grid. Moreover, all these polygons can be enumerated in 2O(k2/3) time
because the proof in [4] is constructive. For each convex grid polygon, computing
its perimeter takes O(1/ε) time, and checking whether it is an intersecting poly-
gon of S takes O(n/ε) time, by simply checking each segment for intersection in
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O(1/ε) time. Thus Step 2 runs in 2O((1/ε)2/3)O(n/ε) = 2O((1/ε)2/3)n time, and
the total running time of Algorithm A2 is O(1/ε) poly(n) + 2O((1/ε)2/3)n.

4 Generalization for Convex Polygons

Both Algorithm A1 and Algorithm A2 can be generalized for computing an
approximate minimum-perimeter intersecting polygon of a set C of n (possibly
intersecting) convex polygons in the plane.

To generalize Algorithm A1, for each direction αi = i · 2ε, where i=0, 1, . . . ,
m − 1, we simply replace the linear program LP1 by another linear program
LP2, that computes a minimum-perimeter intersecting rectangle Ri of C with
orientation αi. As earlier, by a suitable rotation of the set C of polygons in
each iteration i ≥ 1, we can assume that the rectangle Ri is axis-parallel. For
1 ≤ j ≤ n, let Cj be the jth convex polygon in C, and let nj be the number
of vertices of Cj . Each convex polygon Cj can be represented as intersection of
nj linear constraints (halfplanes). The linear program requires the existence of
n points, pj = (sj , tj), 1 ≤ j ≤ n, such that pj is contained in Ri ∩ Cj , for each
j = 1, . . . , n. It can be written symbolically as follows:

minimize 2(x2 − x1) + 2(y2 − y1) (LP2)

subject to
{

pj ∈ Cj , 1 ≤ j ≤ n
pj ∈ Ri, 1 ≤ j ≤ n

There are 2n variables for the point coordinates, sj , tj , 1 ≤ j ≤ n, and 4 vari-
ables x1, x2, y1, y2 for the rectangle Ri = [x1, x2] × [y1, y2]. There are nj linear
constraints corresponding to pj ∈ Cj , and 4 linear constraints corresponding to
pj ∈ Ri. So the resulting linear program has 2n + 4 variables and 4n +

∑
j nj

constraints.
To generalize Algorithm A2, use the generalized Algorithm A1 in Step 1, then

in Step 2 replace the checking for intersection between a convex polygon and a
segment by the checking for intersection between two convex polygons. Lemma 3
is still true because the crucial observation (�) remains valid when segments are
generalized to convex polygons; since convexity is a property shared by segments
and convex polygons, the argument based on this observation continues to hold.
Lemma 4 is utterly unaffected by the generalization.

5 NP-Hardness

In this section we prove Theorem 3, namely that computing a minimum-perimeter
intersecting polygon of a set of simple polygons is NP-hard. For simplicity, we will
prove the stronger result that computing a minimum-perimeter intersecting poly-
gon of a set of simple polygonal chains is NP-hard. Note that a simple polygonal
chain is a degenerate simple polygon with area zero; by slightly “fattening” the
polygonal chains, our reduction also works for simple polygons. The reduction is
from the NP-hard problem Vertex Cover [7]:
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Instance: A graph G = (V, E) with a set V of n vertices and a set E of m
edges, and a positive integer k ≤ n.

Question: Is there a subset S ⊆ V of k vertices such that S contains at least
one vertex from each edge in E?

Assume that n ≥ 5. We will construct a set Z of n+m polygonal chains. Refer
to Figure 5. Let V = {0, 1, . . . , n− 1}. Let Vn be a regular n-gon centered at the
origin, with vertices vi = (cos i·2π

n , sin i·2π
n ), i = 0, 1, . . . , n−1. Let Wn be another

regular n-gon centered at the origin, with vertices wi = (4 cos i·2π
n , 4 sin i·2π

n ),
i = 0, 1, . . . , n − 1. Let Un = u0u1 . . . un−1 be a regular n-gon inscribed in Vn

such that the vertices of Un are midpoints of the edges of Vn, that is, ui =
1
2 (vi +vi+1 mod n), i = 0, 1, . . . , n−1. The set Z includes n polygonal chains that
degenerate into the n points ui, i = 0, 1, . . . , n − 1, and m polygon chains that
represent the m edges in E, where each edge {i, j} in E, 0 ≤ i < j ≤ n − 1,
is represented by the polygonal chain viwi . . . wjvj in Z. The following lemma
establishes the reduction:

u0

u1

u2

u3

u4

u5

v0

v1

v2

v3

v4

v5

w0

w1w2

w3

w4 w5

Fig. 5. Reduction from vertex cover. For n = 6, V6 = v0v1v2v3v4v5 and W6 =
w0w1w2w3w4w5 are two regular hexagons centered at the origin. The vertices of the
dashed hexagon U6 = u0u1u2u3u4u5 are midpoints of the edges of V6. The edge {1, 5}
is represented by the polygonal chain v1w1w2w3w4w5v5.



Minimum-Perimeter Intersecting Polygons 443

Lemma 5. There is a vertex cover S of k vertices for G if and only if there is
an intersecting polygon P of perimeter at most 2n sin π

n cos π
n +2k sin π

n (1−cos π
n )

for Z.

Proof. We first prove the direction implication. Suppose there is a vertex cover
S of k vertices for G. We will find an intersecting polygon P of perimeter at
most 2n sin π

n cos π
n + 2k sin π

n (1 − cos π
n ) for Z. For each vertex i in S, select

the corresponding vertex vi of Vn. Let P be the convex hull of the k selected
vertices of Vn and the n vertices of Un. Then P contains at least one point from
each polygonal chain in Z. An easy trigonometric calculation shows that the
perimeter of P is exactly

(n− k) · 2 cos
π

n
sin

π

n
+ k · 2 sin

π

n
= 2n sin

π

n
cos

π

n
+ 2k sin

π

n

(
1 − cos

π

n

)
. (5)

We next prove the reverse implication. Suppose there is an intersecting polygon
P of perimeter at most 2n sin π

n cos π
n + 2k sin π

n (1 − cos π
n ) for Z. We will find

a vertex cover S of k vertices for G. Assume without loss generality that P is a
minimum-perimeter intersecting polygon of Z. Then P must be convex because
otherwise the convex hull of P would be an intersecting polygon of even smaller
perimeter. Since the n vertices of Un are included in Z as n degenerate polygonal
chains, the convex polygon P must contain the regular n-gon Un. It follows that
P contains the origin. For n ≥ 3, we have

perim(P ) ≤ 2n sin
π

n
cos

π

n
+ 2k sin

π

n

(
1 − cos

π

n

)
≤ 2n sin

π

n
cos

π

n
+ 2n sin

π

n

(
1 − cos

π

n

)
= 2n sin

π

n
≤ 2π.

The distance from the origin to each edge of the regular n-gon Wn is 4 cos π
n .

For n ≥ 5, this distance is greater than π:

4 cos
π

n
≥ 4 cos

π

5
= 3.236 . . . > π.

Thus P cannot intersect the boundary of Wn, although it may intersect some
segments viwi. For each segment viwi that P intersects, the vertex vi must be
contained in P . This is because P is convex and contains the origin, while each
segment viwi is on a line through the origin. Since P is a minimum-perimeter
intersecting polygon, it must be the convex hull of some vertices of Vn and the
n vertices of Un. Then the same calculation as in (5) shows that P contains at
most k vertices of Vn, which, by construction, correspond to a vertex cover of at
most k vertices of V . By adding more vertices as necessary we obtain a vertex
cover S of exactly k vertices for G. ��
The polygonal chains in Z can be slightly fattened into simple polygons with
rational coordinates. Then Lemma 5 still holds with some slight change in the
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threshold value 2n sin π
n cos π

n + 2k sin π
n (1− cos π

n ). Note that the multiplicative
coefficient of k in this threshold value is

2 sin
π

n

(
1 − cos

π

n

)
= 2 sin

π

n
· 2 sin2 π

2n
= Θ

(
1
n3

)
.

The reduction can clearly be made polynomial. This completes the proof of
Theorem 3.

6 Concluding Remarks

The problem MPIP is related to two other geometric optimization problems
called largest and smallest convex hulls for imprecise points [10]. Given a set
R of n regions that model n imprecise points in the plane, the problem largest
(resp. smallest) convex hull is that of selecting one point from each region such
that the convex hull of the resulting set P of n points is the largest (resp. small-
est) with respect to area or perimeter. Note that MPIP is equivalent to smallest-
perimeter convex hull for imprecise points as segments. The dual problem of
largest convex hull for imprecise points as segments has been recently shown to
be NP-hard [10] for both area and perimeter measures, and to admit a PTAS [9]
for the area measure. We note that the core-set technique used in obtaining the
PTAS for largest-area convex hull [9] cannot be used for MPIP because, for min-
imization, there could be many optimal or near-optimal solutions that are far
from each other. For example, consider two long parallel segments that are very
close to each other. Our Algorithm A2 overcomes this difficulty by Lemma 3.

The problem of computing a minimum-perimeter intersecting polygon of a set
of simple polygons is also related to the traveling salesman problem with neigh-
borhoods (TSPN), see [3,6,5]. Given a set R of n regions (neighborhoods) in the
plane, the problem TSPN is that of finding the shortest tour that visits at least
one point from each neighborhood. Note that the shortest tour is the boundary
of a (possibly degenerate) simple polygon but this polygon need not be convex.
Although established independently, we noticed afterwards a certain similarity
between our NP-hardness reduction and the APX-hardness reduction for TSPN
in [5]. However, the convexity of an optimal solution, in our case, seemed to limit
this similarity and prohibit us in obtaining a similar inapproximability result for
MPIP with arbitrary polygons (or chains).

We conclude with two open questions:

1. Is the problem of finding a minimum-perimeter intersecting polygon of a set
of segments NP-hard?

2. Does the problem of finding a minimum-perimeter intersecting polygon of
a set of simple polygons admit a PTAS or a constant factor approximation
algorithm?

Acknowledgment. The authors would like to thank the anonymous reviewers for
pertinent comments.
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M.L., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 363–374.
Springer, Heidelberg (2009)
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Finding the Smallest Gap between Sums of
Square Roots�
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Abstract. Let k and n be positive integers, n > k. Define r(n, k) to be
the minimum positive value of

|√a1 + · · · + √
ak −

√
b1 − · · · −

√
bk|

where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n.
It is important to find a tight bound for r(n, k), in connection to the
sum-of-square-roots problem, a famous open problem in computational
geometry. The current best lower bound and upper bound are far apart.
In this paper, we present an algorithm to find r(n, k) exactly in nk+o(k)

time and in n�k/2	+o(k) space. As an example, we are able to compute
r(100, 7) exactly in a few hours on one PC. The numerical data indicate
that the known upper bound seems closer to the truth value of r(n, k).

1 Introduction

In computational geometry, one often needs to compare lengths of two polygo-
nal paths, whose nodes are on an integral lattice, and whose edges are measured
according to the Euclidean norm. The geometrical question can be reduced to a
numerical problem of comparing two sums of square roots of integers. In com-
putational geometry one sometimes assumes a model of real-number machines,
where one memory cell can hold one real number. It is then assumed that an alge-
braic operation, taking a square root as well as a comparison between real num-
bers can be done in one operation. There is a straight-forward way to compare
sums of square roots in real-number machines. But this model is not realistic,
as shown in [11,9].

If we consider the problem in the model of the Turing machine, then we need
to design an algorithm to compare two sums of square roots of integers with
low bit complexity. One approach would be approximating the sums by decimal
numbers up to a certain precision, and then hopefully we can learn which one is
larger. Formally define r(n, k) to be the minimum positive value of

|√a1 + · · · +√
ak −

√
b1 − · · · −

√
bk|
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where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. The
time complexity of the approximation approach is polynomial on − log r(n, k),
since an approximation of a sum of square roots of integers can be computed
in time polynomial in the number of precisions. One would like to know if
− log r(n, k) is bounded from above by a polynomial function in k and log n.
If so, the approximation approach to compare two sums of square roots of inte-
gers runs in polynomial time. Note that even if the lower bound of − log r(n, k)
is exponential, it does not necessarily rule out a polynomial time algorithm.

Although this problem was put forward during the 1980s [4], not many results
have been reported. In [3], it is proved that

− log r(n, k) = O(22k log n)

using the root separation method. Qian and Wang [8] presented a constructive
upper bound for r(n, k) at O(n−2k+ 3

2 ). The constant hidden in the big-O can be
derived from their paper and it depends on k. Taking it into account, one can
show that

− log r(n, k) ≥ 2k log n− 8k2 + O(log n + k log k).

See Section 2 for details. Hence the bound is nontrivial only when n ≥ 24k. There
is another upper bound for r(n, k) using solutions for the Prouhet–Tarry–Escott
problem [8]. However, the Prouhet–Tarry–Escott problem is hard to solve by
itself.

There is a wide gap between the known upper bound and lower bound of
r(n, k). For example by the root separation method, one has

r(100, 7) ≥ (14 ∗
√

100)−213 ≈ 10−17581.

One can not derive a nontrivial upper bound for r(100, 7) either from Qian and
Wang’s method, or from the Prouhet–Tarry–Escott method.

1.1 Our Contribution

The lack of strong bounds for r(n, k) after many years of study indicates that
finding a tight bound is likely to be very hard. We feel that the situation calls
for an extensive numerical study of r(n, k). So far only a few toy examples have
been reported and they can be found easily using an exhaustive search:

r(20, 2) ≈ .0002 =
√

10 +
√

11 −
√

5 −
√

18.

r(20, 3) ≈ .000005 =
√

5 +
√

6 +
√

18 −
√

4 −
√

12 −
√

12.

Computing power has gradually increased which makes it feasible for us to go
beyond toy examples. In addition, there are other motivations for a numerical
study of the sum-of-square-roots problem:
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1. The numerical data shed light on the type of integers whose square roots
summations are extremely close.

2. In many practical situations, especially in the exact geometric computation,
n and k are small. Explicit bounds like one we produce here help to speed
up the computation, as they are better than the bounds predicted by the
root separation method.

3. Since the upper bound is so far away from the lower bound, the numerical
data may provide us some hints on which bound is closer to the truth and
may inspire us to formulate a reasonable conjecture on a tight bound of
r(n, k).

How can we find the exact value of r(n, k)? The naive exhaustive search uses
little space but requires n2k time. If n = 100 and k = 7, the algorithm needs
about 10014 ≈ 293 operations, which is prohibitive. A better approach would
be first sorting all the summations of

√
a1 + · · · +

√
ak ( 1 ≤ ai ≤ n for all

1 ≤ i ≤ k) and then going through the sorted list to find the smallest gap
between two consecutive elements. It runs in time at least nk and in space at
least nk. If n = 100 and k = 7, then the approach would use at least 1007 =
1014 ≈ 10000 Gbytes of space, under an overly optimistic assumption that we
use only one byte to hold one value of the summation. The space complexity
makes the computation of r(100, 7) very expensive, to say the least.

We present an algorithm to compute r(n, k) exactly based on the idea of enu-
merating summations using heap. Our algorithm uses much less space than the
sorting approach while preserving the time complexity, which makes computing
r(100, 7) feasible. Indeed it has the space complexity at most of n�k/2	+o(k). Our
search reveals that

r(100, 7) = 1.88× 10−19,

which is reached by
√

7 +
√

14 +
√

39 +
√

70 +
√

72 +
√

76+
√

85 = 47.42163068019049036900034846

and
√

13+
√

16+
√

46+
√

55+
√

67+
√

73+
√

79 = 47.42163068019049036881196876.

We also prove a simple lower bound for − log r(n, k) based on a pigeonhole
argument:

− log r(n, k) ≥ k log n − k log k + O(k + log n).

In comparison to Qian–Wang’s bound, it is weaker when n is very large, but it is
better when n is polynomial on k, hence it has wider applicability. For example,
when n = 100 and r = 7, it can give us a meaningful upper bound:

r(100, 7) ≤ 7.2 × 10−8.
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1.2 Related Work

The use of heaps to enumerate sums in a sorted order appeared quite early
[6, Section 5.2.3]. Let P be a sorted list of p real numbers whose i-th element
is denoted by P [i]. Let Q be another sorted list of q real numbers whose i-th
element is denoted by Q[i]. Consider the following way of enumerating elements
of form P [i] + Q[j] in a sorted order:

Algorithm 1

Build a heap for P [i] + Q[1], 1 ≤ i ≤ p;
while the heap is not empty do

Remove the element P [i] + Q[j] at the root from the heap
if j < q

then put P [i] + Q[j + 1] at the root of the heap
endif
reheapify.

endwhile

Note that for the program to work, one needs to keep track of the indexes i
and j for the summation P [i] + Q[j]. The algorithm uses space to store p + q
elements but produces a stream of pq elements in a sorted order. Schroeppel
and Shamir [10] applied this idea to attack cryptosystems based on knapsack.
Number theorists have been using this idea as a space-saving mechanism to test
difficult conjectures on computers. For example, consider the following Diophan-
tine equation:

a4 + b4 + c4 = d4.

Euler conjectured that the equation had no positive integer solutions. It was
falsified with a explicit counterexample by Elkies [5] using the theory of elliptic
curves with help from a computer search. Bernstein [1] was able to find all the
solutions with d ≤ 2.1×107. His idea was to build two streams of sorted integers,
one for a4 + b4 and another one for d4 − c4, and then look for collisions. To find
solutions with d ≤ H , the algorithm needs only H1+o(1) space and runs in time
H2+o(1). A similar idea can be used to find integers which can be written in
many ways as summations of certain powers. Our approach is inspired by this
work. Essentially we use heap to enumerate all the summations of form

∑k
i=1

√
ai

( 1 ≤ ai ≤ n for all 1 ≤ i ≤ k ) and try to find the smallest gap between two
consecutive elements. In our case, equality (i.e. gap = 0) is not interesting in the
view of Proposition 1, while in the power summation applications, only equality
(collision) is desired. There are other important differences:

– In the power sum case it will deal with only integers, while in our case, we
have to deal with float-point numbers. The precision of real numbers plays
an important role. Sometimes two equal sums of square roots can result in
different float point numbers. For example, using double double type to
represent real numbers, the evaluation of
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(
√

1 +
√

8 +
√

8) + (
√

24 +
√

83 +
√

83 +
√

89)

differs from the evaluation of

(
√

1 +
√

6 +
√

6) + (
√

32 +
√

83 +
√

83 +
√

89)

by about 8× 10−28, even though they are clearly equal to each other.
– In the power sum case, p-adic restriction can often be applied to speed up

the search, while unfortunately we do not have it here.

2 An Upper Bound from the Pigeonhole Principle

Qian-Wang’s upper bound was derived from the inequality:

0 <

∣∣∣∣∣
2k−1∑
i=0

(
2k − 1

i

)
(−1)i

√
t + i

∣∣∣∣∣ ≤ 1 ∗ 3 ∗ 5 ∗ · · · ∗ (4k − 5)
22k−1t2k− 3

2
.

Let ai =
(2k−1

2i−2

)2
(t + 2i − 2) for 1 ≤ i ≤ k and bi =

(2k−1
2i−1

)2
(t + 2i − 1) for

1 ≤ i ≤ k, we have

0 < |
k∑

i=1

√
ai −

k∑
i=1

√
bi| ≤ 1 ∗ 3 ∗ 5 ∗ · · · ∗ (4k − 5)

22k−1t2k− 3
2

.

Note that
(2k−1

i

)
can be as large as

(2k−1
k

) ≥ 22k−1/(2k). To get an upper bound
for r(n, k), assign

n =
(

2k − 1
k

)2

(t + k), (1)

thus we have

− log r(n, k) ≥ 2k log n− 8k2 + O(log n + k log k).

Hence Qian and Wang’s result only applies when n is much greater than 24k. In
particular it does not give a meaningful bound for r(100, 7).

Another interesting upper bound depends on the Prouhet–Tarry–Escott prob-
lem, which is to find a solution for a system of equations:

k∑
i=1

at
i =

k∑
i=1

bt
i, 1 ≤ t ≤ k − 1

under the condition that a1 ≤ a2 · · · ≤ ak and b1 ≤ b2 · · · ≤ bk are distinct lists
of integers. However no such solutions have been found for k = 11 and k > 13
[2]. Therefore the approach based on the Prouhet–Tarry–Escott problem is not
scalable.
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Here we present an upper bound based on the pigeonhole argument.

Definition 1. We call an integer n square-free if there is no integer a > 1 such
that a2|n. We use s(n) to denote the number of positive square free integers less
than n, e.g. s(100) = 61.

Proposition 1. Suppose that s1, s2, · · · , · · · , and sk are distinct positive square-
free integers. Then

√
s1,

√
s2, · · · , and

√
sk are linear independent over Q.

Theorem 1. We have

r(n, k) ≤ k
√

n− k(
s(n)+k−1

k

)− 1
.

Proof. Consider the set

{(a1, a2, · · · , ak)|ai is squarefree , 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n.

The set has cardinality
(
s(n)+k−1

k

)
. For each element (a1, a2, · · · , ak) in the set,

the sum
∑k

i=1
√

ai is distinct by Proposition 1. Hence there are
(
s(n)+k−1

k

)
many

distinct sums in the range [k, k
√

n]. There must be two points within the distance
k
√

n−k

(s(n)+k−1
k )−1

from each other. The theorem follows.

Plugging in n = 100 and k = 7, we have

r(100, 7) ≤ (70 − 7)(67
61

)− 1
= 7.2 × 10−8.

It is well known that s(n) = 6n
π2 + O(

√
n) [7]. From this one can derive

Corollary 1.

− log r(n, k) ≥ k log n− k log k + O(log(nk))

Note that when n is much larger than k, then this bound is not as good as Qian
and Wang’s bound.

3 Algorithm for Finding r(n, k)

We first sketch the algorithm. It takes two positive integers n and k as input.
Assume that k < n.

Algorithm 2. Input: Two positive integers n, k (n > k).

Store all the lists (a1, a2, . . . , aA), where 1 ≤ a1 ≤ a2 ≤ · · · ≤ aA ≤ n, into
an array P , and then sort the array P according to the sum

∑A
i=1

√
ai.

Assume that there are p elements in the list;
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Store all the lists (a1, a2, . . . , ak−A), where 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak−A ≤ n,
into an array Q, and then sort the array Q according to the sum∑k−A

i=1
√

ai. Assume that there are q many elements in Q;
current small gap = ∞;
previous smallest element = k;
Build a heap for (P [i], Q[1]), 1 ≤ i ≤ p, where two lists are compared according

to the sum of square roots of the integers in the lists;
While the heap is not empty do

Let (P [i], Q[j]) be the element at the root of the heap;
current top element =

∑A
l=1

√
P [i][l] +

∑k−A
l=1

√
Q[j][l]

if 0 < current top element − previous top element < current small gap
then current small gap = current top element− previous top element;

endif
remove (P [i], Q[j]) from the heap;
previous top element = (P [i], Q[j]);
if there exist integers j′ such that j < j′ ≤ q and P [i][A] ≤ Q[j′][1]

let j′ be the smallest one and put (P [i], Q[j′]) at the root
endif
reheapify

endwhile
Ouput r(n, k) = current small gap

Note that in the above algorithm, unlike in Algorithm 1, we replace (P [i], Q[j])
at the root by (P [i], Q[j′]), which is not necessarily (P [i], Q[j + 1]). In many
cases, j′ is much bigger than j + 1. This greatly improves the efficiency of the
algorithm. Now we prove the correctness of the algorithm.

Theorem 2. When the algorithm halts, it outputs r(n, k);

Proof. For any 1 ≤ a1 ≤ a2 · · · ≤ aA ≤ n, define

Sa1,a2,··· ,aA = {(a1, a2, · · · , ak)|aA ≤ aA+1 ≤ aA+2 ≤ · · · ≤ ak ≤ n}
Partition the set

S = {(a1, a2, · · · , ak)|1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n}
into subsets according to the first A elements, namely,

S =
⋃

1≤a1≤a2≤···aA≤n

Sa1,a2,··· ,aA .

As usual, we order two lists of integers by their sums of square roots. Consider
the following procedure: select the smallest element among all the the minimum
elements in all the subsets, and remove it from the subset. If we repeat the
procedure, we generate a stream of elements in S in a sorted order.

It can be verified that in our algorithm, the heap consists of exactly all the
minimum elements from all the subsets. The root of the heap contains the min-
imum element of the heap. After we remove the element at the root, we put
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the next element from its subset into the heap. Hence the algorithm produces
a stream of elements from S in a sorted order. The minimum gap between two
consecutive elements in the stream is r(n, k) by definition.

Theorem 3. The algorithm runs in time at most nk+o(k) and space at most
nmax(A,k−A)+o(k).

Proof. Using the root separation bound, we need at most O(22k log n) bit to
represent a sum of square roots for comparison purposes. So comparing two
elements takes time (22k log n)O(1). Since every element in S appears at the root
of the heap at most once and |S| ≤ nk, the main loop has at most nk iterations.
For each iteration, the time complexity is

(22k log n)O(1) log(nA).

The complexity of other steps are much smaller comparing to the loop. Hence
the time complexity is nk+o(k). The space complexity is clearly nmax(A,k−A)+o(k).

4 Numerical Data and Observations

To implement our algorithm, the main issue is to decide the precision when
computing the square roots and their summations. We need to pay attention to
two possibilities:

– First, two summations may be different, but if the precision is set too small,
then they appear to be equal numerically. Keep in mind that we have not
ruled out that r(n, k) can be as small as n−2k

.
– Secondly two expressions may represent the same real number, but after

the numerical calculation, they are different. This is the issue of numerical
stability.

In either case, we may get a wrong r(n, k). Our strategy is to set the precision at
about 2k log n decimal digits. For example, to compute r(100, 7), we use the data
type which has precision about 32 decimal digits. Whenever the difference of two
summations is smaller than k2n−2k, we call a procedure based on Proposition 1
to decide whether the two numbers are equal or not.

We produce some statistics data about the sums of square roots and the gaps
between two consecutive sums. The computation takes about 18 hours on a high-
end PC. There are 17940390852 real numbers in [7, 100] which can be written as
summations of 7 square roots of positive integers less than 100. Hence there are
17940390851 gaps between two consecutive numbers after we sort all the sums.

In Table 1, we list an integer 7 ≤ a ≤ 70 with the number of reals in [a, a+1)
which can be represented as

√
a1+

√
a2+· · ·+√

a7 ( 1 ≤ a1 ≤ a2 · · · ≤ a7 ≤ 100).
Note that if two summations have the same value, they are counted only once.
From the table, we see that there are 1163570911 sums in the [48, 49), which
gives us a more precise pigeonhole upper bound for r(n, k) at 1/1163570911 =
8.6× 10−10, which is still several magnitudes away from r(n, k).

In Table 2, for each range, we list the number of gaps between consecutive
numbers in the range. From the table, we see that there are 7 gaps which have
magnitude at 10−19.
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Table 1. Statistics on the summations of square roots

7 8 9 10 11 12

4 17 57 161 418 1003
13 14 15 16 17 18

2259 4865 10044 20061 38742 72903
19 20 21 22 23 24

133706 239593 420279 722739 1218852 2017818
25 26 27 28 29 30

3280805 5239096 8218857 12664315 19165803 28482325
31 32 33 34 35 36

41554376 59503519 83607939 115241837 155784865 206478894
37 38 39 40 41 42

268254403 341520055 425961992 520334126 622307266 728445926
43 44 45 46 47 48

834229563 934295227 1022797808 1093860379 1142175328 1163570911
49 50 51 52 53 54

1155526520 1117588507 1051539385 961294902 852549403 732208073
55 56 57 58 59 60

607649679 486014737 373475729 274666260 192383944 127511613
61 62 63 64 65 66

79264404 45637971 23914891 11119037 4410314 1398655
67 68 69 70

316043 40172 1476 1

Table 2. Statistics about the gaps

10−19 ∼ 10−18 10−18 ∼ 10−17 10−17 ∼ 10−16 10−16 ∼ 10−15 10−15 ∼ 10−14

7 47 1245 14139 129248
10−14 ∼ 10−13 10−13 ∼ 10−12 10−12 ∼ 10−11 10−11 ∼ 10−10 10−10 ∼ 10−9

1459473 13100265 132767395 1272832428 8256755966
10−9 ∼ 10−8 10−8 ∼ 10−7 10−7 ∼ 10−6 10−6 ∼ 10−5 10−5 ∼ 10−4

7766837445 463570895 30415764 2314151 176109
10−4 ∼ 10−3 10−3 ∼ 10−2 10−2 ∼ 10−1 10−1 ∼ 1

14890 1300 80 5

5 Conclusion Remarks

In this paper we have proposed a space-efficient algorithm to compute r(n, k)
exactly. Our numerical data seem to suggest that the upper bound is closer to the
truth than the root separation bounds. Further investigations, both experimental
and theoretical, are needed.
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Abstract. Given an ordered set of points and an ordered set of geo-
metric objects in the plane, we are interested in finding a non-crossing
matching between point-object pairs. We show that when the objects we
match the points to are finite point sets, the problem is NP-complete in
general, and polynomial when the objects are on a line or when their
number is at most 2. When the objects are line segments, we show that
the problem is NP-complete in general, and polynomial when the seg-
ments form a convex polygon or are all on a line. Finally, for objects
that are straight lines, we show that the problem of finding a min-max
non-crossing matching is NP-complete.

1 Introduction
Finding a matching between pairs of planar objects, that is connecting them by
a set of non-crossing line segments, is a natural problem that has been frequently
studied in computational geometry. It is well known, for instance, that given two
sets of n points in the plane, say n red points and n blue points, there always
exists a non-crossing matching between red and blue points. In particular, it
is not difficult to show that the minimum Euclidean length matching is non-
crossing. Kaneko and Kano [22] survey a number of related results. Algorithms
for finding minimum sum and minimum bottleneck distance red-blue matchings
are given in [15,27].
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A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 456–467, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Matching Points with Things 457

In this paper, we investigate related questions for general planar objects in-
stead of points. Again, matchings are represented by line segments, but here the
endpoints can be placed anywhere inside the corresponding matched objects.
Note that as a consequence of the aforementioned result on points, there always
exists a non-crossing matching between two sets of objects. Here we consider
the problem where we are given object pairs (i.e. a point and the geometric
object it must be matched to) and need to find a set of non-crossing matching
edges, if one exists. This can be seen as a 1-regular graph drawing problem with
constraints on the location of vertices.

Related work. Problems on matchings have an important role in combinatorial
graph theory, both for theoretical and applied aspects; hence a lot of research is
devoted to the study of these problems (for example, see [24]).

p1

p2

p3

t2

t1

t3

Fig. 1. A non-crossing matching
for a set P={p1, p2, p3} of points
and a set T={t1, t2, t3} of planar
objects

Suppose we are given an embedding of a
graph in the Euclidean plane, where the vertices
are points in the plane, edges are rectilinear line
segments, and weights on these edges represent
the Euclidean distance between the vertices they
connect. Elementary geometry tells us that the
sum of any pair of opposite sides of a convex
quadrilateral is strictly smaller than the sum of
the diagonals. Remarkably, this implies that the
minimum weight matching in any realization of
the complete graphs K2n and Kn,n consists of
pairwise non-crossing segments. These geomet-
ric graph problems can be solved using generic
algorithms for weighted graphs. However, in the
planar case just mentioned, Vaidya [27] proved
that it is possible to obtain specialized algo-
rithms with better running times (the title of his paper is especially sugges-
tive: Geometry helps in matching). In particular, in [27] the running time of the
generic algorithm for the bipartite case was reduced from O(n3) to O(n2.5 log n).
This was later improved to O(n2+ε) by Agarwal et al. [1]. Similar results have
been obtained for other matching variations, such as bottleneck matching or uni-
form matching, in the work of Efrat, Itai and Katz [15]. The authors consider
matchings as an approach for the problem of matching a point set A with a
point set B, where A must be moved in some way to coincide as much as pos-
sible with B or one of its subsets. This is a fundamental problem in pattern
recognition [5,7,8,10,11,12,19,20,21].

The non-crossing requirement in our problems is quite natural in geomet-
ric scenarios (see for example [25,2,3]), and the family of geometric problems
that we consider has several applications; these applications include geomet-
ric shape matching [4,13,17,18], colour-based image retrieval [13], music score
matching [26], and computational biology [14,16].

Our results. Throughout the paper, we let P := {p1, p2, . . . , pn} be a set of
points in the plane and T := {t1, t2, . . . , tn} be a set of planar objects. A matching
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for a pair (P, T ) consists of a set of line segments, called edges, of the form
{p1m1, p2m2, . . . , pnmn}, where mi ∈ ti. A matching is said to be non-crossing
if no pair of matching edges properly cross. This is illustrated in Figure 1.

We consider the problem of deciding whether a non-crossing matching exists
for a given pair (P, T ). In cases where a non-crossing matching always exists, we
consider the problem of finding the matching that minimizes either the length
of the longest edge, or the sum of the lengths of all the edges.

In Section 2, we study the case where the objects ti are finite point sets.
We prove that the decision problem is NP-complete in general, but becomes
polynomial when every ti has size at most two, or when all the tis are on a line.
In Section 3 we consider T to be a set of line segments and prove that the (P, T )
matching problem is NP-complete. We also consider special cases, such as the
case when the line segments form a convex polygon surrounding all points in P
(Section 4), or the case when segments belong to a single line (Section 5). We
show that these special cases have polynomial solutions. Finally, in Section 6,
we consider the problem of matching points with lines. In this variation, a non-
crossing matching always exists, but the optimization problems are NP-hard.

2 Matching Points with Finite Point Sets

We first prove that if the objects ti are pairs of points, then we can decide
whether there exists a non-crossing matching in polynomial time. On the other
hand, if the sets ti may contain three points or more, the problem becomes
NP-complete. This situation is similar to that of the k-satisfiability problem (k-
SAT). In k-SAT we are given a boolean formula f of the form C1∧C2 ∧· · ·∧Cm

(where each Ci is an OR clause of k variables), and we are required to find a
truth assignment of its variables that satisfy the formula. It is well-known that
2-SAT has a polynomial-time solution whereas k-SAT is NP-complete for k ≥ 3.
The 2-SAT problem can be solved in polynomial time by exploiting the fact
that, if in a clause a variable is set to false, it forces the other variable to be
set to true. This dependency between the variables can be represented by an
implication graph.

An implication graph for the formula f is a directed graph having two vertices
for each variable xi of f , one of these vertices is labeled xi while the other is
labeled ¬xi. The vertex xi represents setting xi to true while ¬xi represents
setting xi to false. Dependencies between literals in f are represented by directed
edges. Thus if (xi ∨ ¬xj) is a clause in f , in the implication graph there would
be a directed edge from ¬xi to ¬xj and a directed edge from xj to xi. These
edges represent the fact that if xi is set to false then xj must also be set to false
in order for the formula to be satisfied. Likewise if xj is set to true then xi must
be set to true.

There exists a truth assignment satisfying f if and only if no strong component
of the implication graph contains both a vertex and its negation. The implication
graph can be constructed in O(m) time, where m is the number of clauses.
The previous condition can be verified in O(m) time, and in general the strong
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components of a directed graph of v vertices and e edges can be computed in
O(e+v) time. A similar implication graph can be constructed for our problem
when ti is a pair of points. Using this graph, it is possible to decide in O(n2)
time whether (P, T ) has a non-crossing perfect matching.

Theorem 1. Given an ordered set P of points and an ordered set T of pairs
of points, there is an algorithm that decides in O(n2) time whether (P, T ) has a
non-crossing matching.

Proof. Assume that the elements of each ti are labeled arbitrarily “Ti” and “Fi”
(thus ti = {Ti,Fi}). We think of each pi as a boolean variable, so that if we
match pi with Ti then pi is set to “true”, and if pi is matched with Fi, it is set
to “false”. We construct a directed implication graph G as follows: For each pi

we have vertices pi,Ti and pi,Fi in G. For every i, j = 1, 2, . . . , n, we add the edge
(pi,X , pj,Y ) (X equal to Ti or Fi, and Y equal to Tj or Fj) to G if and only
if the line segments pi, X and pj,¬Y intersect. For example if pi, Ti intersects
pj ,Fj, we add the edge (pi,Ti , pj,Tj) to G (since if pi is matched to Ti, pj must be
matched to Tj as well). So (P, T ) has a non-crossing complete matching if and
only if for every pi, pi,Ti and pj,Fj lie in different strong connected components
of G. Since G is constructed in O(n2) time and has O(n2) edges, the overall
complexity of the algorithm is O(n2). ��

2.1 Matching Points with Triples

By a reduction from Planar 3-SAT, we can prove that the problem of matching
points with triples is NP-complete, even when the points within each triple are
horizontally collinear. Details are omitted due to space limitations.

Theorem 2. Given an ordered set P of points and an ordered set T of triples of
points, it is NP-complete to decide whether (P, T ) has a non-crossing matching.
The problem remains NP-complete even if each triple is horizontally collinear.

2.2 Matching Points with k-Tuples on a Line

Theorem 3. Given an ordered set P of points and an ordered set T of k-tuples
of points on a line, we can decide in O(k3n2) time whether (P, T ) has a non-
crossing matching.

Proof. Without loss of generality, assume all the tuples are on a horizontal line L.
Assume also that all points are on one side of L; otherwise we may consider each
problem separately as the matching edges on each side of L do not interact. We
now show how to build a dynamic programming table that solves the problem.

In any solution to the problem, if a matching edge e is part of the solution,
then there is no matching edge that intersects e. Therefore, we can consider
the regions on each side of e (sub-problems) separately and determine whether
they in turn have a valid solution. Thus, a sub-problem (P ′, T ′) is defined as
follows (see Figure 2): given a simple quadrilateral A with one face adjacent to
L, we want to decide if it is possible to find a non-crossing matching completely
contained in the region A for all the points contained in A, i.e., we want to solve
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A
p

Fig. 2. Definition of a sub-problem
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p
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Fig. 3. In this example, there are three pairs of sub-problems to consider to decide if
p can be matched

the problem with P ′ = P ∩ A and T ′ containing the subsets of the tuples of T
contained in A. If A does not contain at least one point of P (sub-problem of
size 0), it is trivially true that there is a non-crossing matching. Otherwise, to
solve the sub-problem we consider the topmost point p in A. It has at most k
possible matching edges. If it has no possible matching edge, i.e., if all points
that p could be matched to in T are out of A, then there is no valid matching.

Each of the possible matching edges defines two new independent sub-problems
(see Figure 3) in the quadrilaterals A1 and A2, whose sizes are strictly smaller than
that of the original problem, as there is one less point to match. To decide whether
a matching exists for the original sets P and T , we solve the sub-problem defined
by the bounding box of both P and T . Notice that all the sub-problems correspond
to quadrilaterals defined by a pair of possible matching edges (or by the edges of
the bounding box). Moreover, since in every sub-problem A the y-coordinates of
the corners of the bounding box are at least as large as that of every point in A,
then the union of the regions of the sub-problems of A will contain all the points
in A. Thus no point will be left out.

The dynamic programming table has kn+2 rows and kn+2 columns, each of
which corresponds to a possible matching edge or one of the left and right edges
of the bounding box; the cells correspond to sub-problems (a pair of non-adjacent
edges defines a quadrilateral), and we fill them with true or false depending on
whether or not a matching exists for the considered sub-problem. Filling a cell of
the table corresponds to solving at most k pairs of sub-problems, which implies
at most 2k lookups in the table for each of the O(k2n2) cells. Therefore, the
total time and space required to solve the problem is O(k3n2). ��

The additional restriction of having points on a line greatly simplifies the prob-
lem, because the problem is NP-hard in the general case, but is polynomial for
points on a line.
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3 Matching Points with Line Segments: General Case

In this section we show that deciding the existence of a non-crossing matching
between a set of points and a set of line segments is NP-complete, even if the
segments are all horizontal or all have equal length. The proof uses appropriate
gadgets to show that this problem reduces from the problem of matching points
to triples (Theorem 2). It is omitted due to space limitations.

Theorem 4. Given an ordered set P of points and an ordered set T of line seg-
ments, it is NP-complete to decide whether (P, T ) has a non-crossing matching.
The problem remains NP-complete even if all line segments in T are horizontal
or all have equal length.

4 Matching Points to an Enclosing Convex Polygon

In this special case of matching points with line segments, we assume the seg-
ments are the edges of a convex polygon and the points to be matched are inside
the polygon, in general position.

We first describe some geometric properties of the input of this problem. We
then describe an algorithm that runs in O(n log2 n) time, and finds a non-crossing
matching (if one exists) between a given set of point-segment pairs where the
line segments form a convex polygon enclosing the points. This algorithm allows
a minimum-length matching to be extracted easily.

Let Do = {Δo
1, Δ

o
2, . . . , Δ

o
n} be a set of triangles where each Δo

i is the trian-
gle with apex pi and base ti. Any valid matching edge ei must lie completely
inside Δo

i . Depending on the positions of other triangles in Do, some candidate
positions for ei can be identified as invalid because they would always cross
other matching edges. By identifying such cases, triangle Δo

i can be reduced to
a smaller triangle Δi. At any time, the reduced triangle Δi has apex pi but its
opposite base is a subsegment of ti. Initially, Δi = Δo

i .
There are four ways in which two triangles Δi and Δj interact. The second

case leads to a reduction rule. We describe the four cases below (see Figure 4):

Δi Δo
i

pi pi pi

Fig. 4. Left: Δo
i is reduced to Δi (case 2). Middle: one of the two combinatorially

distinct solutions (case 3). Right: no solution exists (case 4).
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1. Δi, Δj are disjoint. In this case there will never be a direct interaction be-
tween the two.

2. pj is in Δi, but pi is not in Δj . In this case Δi should be reduced so that
the two triangles become tangent (so that pj is no longer in Δi).

3. pi is in Δi and pj is in Δj . We call Δi and Δj inverted triangles, and cannot
immediately make a reduction.

4. Both edges incident to each of pi and pj pairwise intersect. Then no non-
crossing matching exists.

Note that in case (2) there is no choice but to reduce. The matching edge ej that
is finally chosen will block any candidate ei that is outside the newly reduced
Δi. In case (3) there are two combinatorially valid placements for ei, ej , with
respect to the positions of pi, pj. There is no reason to choose arbitrarily before
verifying that neither triangle will be reduced further.

If we exhaustively apply our reduction rule to the triangles based on the cases
described above, we would end up with a set having certain properties. Due to
lack of space, we omit a detailed discussion of these properties.

Let two (three) mutually inverted triangles be called an inverted pair (triple).
Let a unit be a (possibly reduced) triangle, an inverted pair, or an inverted triple.

Theorem 5. Given an ordered set P of points inside a convex polygon having
an ordered set T of line segments as edges, deciding whether (P, T ) admits a
non-crossing matching can be done in O(n log2 n) time.

Proof. We provide an algorithm where we employ a divide-and-conquer tech-
nique. Suppose that we have solved the problem separately on two consecutive
convex chains (we can transform a chain into a polygon by adding 3 fake edges
and points; thus, solving the problem on a chain is equivalent to solving the
polygonal version).

We claim that we can merge the two solutions in O(n log n) time. Each solution
is a set of disjoint triangles and inverted pairs or triples. Refer to Figure 5.

Let A and B be two solved sub-problems of size k. We construct a standard
point-location data structure on each in O(k) time [23] by first triangulating A
and B using Chazelle’s linear-time triangulation algorithm [9]. Now, for every

Fig. 5. Merging two solved sub-problems. In the left diagram, the grey regions in the
left (black) sub-problem cannot contain points from the right (blue) sub-problem if
there is a valid solution. In the right diagram, we see the type of event that we must
check for after some initial reductions.
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point pi in B, we locate pi in A to determine if it is inside a unit in A. Note that
pi can be in at most one unit. If it is, we determine if Δi reduces this unit by
case (2). Likewise, for every point pj in A, we locate pj in B to determine if it
is inside a unit in B and apply the appropriate reductions. Note that if at some
moment Δi (belonging to B) gets reduced, this will not affect its corresponding
unit in A; the same holds for all Δj in A that get reduced.

Of course, it is possible that Δi will be inverted with a triangle in A. In this
case we simply determine if there are reductions and, if applicable, we merge
the two units. Therefore a constant number of reductions are applied per point,
which means we spend O(log k) time per point for the point-location step.

The only unresolved issue is to detect if case (4) will occur between triangles
of A and B (see Figure 5-right). Given that all triangles have been reduced and
merged into units, essentially we are verifying that no segments intersect. For
this we can use the Bentley-Ottmann line segment intersection algorithm and
stop as soon as a bad intersection is found [6]. For k segments, such queries
take O(log k + h log k) time, where h is the number of intersections reported.
As we stop as soon as we report one intersection, h = 1 and hence the total
time is O(log k) per point. Thus our merge procedure takes O(k log k) time.
By a simple recurrence analysis, we determine that the entire algorithm takes
O(n log2 n) time. ��
The algorithm described in the proof of Theorem 5 either decides that no solution
exists, or otherwise produces a final set of reduced triangles that represents all
valid solutions to the problem. In the latter case, every resulting unit is disjoint
and thus independent of all others. So in each triangle we can easily pick the
shortest joining segment, and in each inverted pair/triple, we try out the two
possible choices and take the best matching. Therefore, after the algorithm finds
a solution, the min-max and min-sum optimization problems can be solved in
linear time.

5 Matching Points with Segments on a Line

As another special case of matching points to line segments, we now consider
the case when the input line segments belong to one single line L. Throughout
this section we will assume, without loss of generality, that L is horizontal. As
no matching edge will cross over L, our problem is split into two disjoint sub-
problems, and we focus on points above L. We consider two cases, depending on
whether the segments are disjoint or not.

5.1 Matching Points with Disjoint Segments on a Line

Theorem 6. Given an ordered set P of points above a horizontal line L and an
ordered set T of disjoint line segments belonging to L, deciding whether (P, T )
admits a non-crossing matching can be done in linear time. In the affirmative,
the matching that minimizes the sum of the lengths of the edges can be found
within the same time bound.
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Fig. 6. Leftmost non-crossing matching (right) obtained from an initial non-crossing
matching (left)

Proof. We denote by [ai, bi] the interval corresponding to segment ti, for i =
1, ..., n. Since the intervals are given in sorted order, we have a1 ≤ b1 < a2 ≤
b2 < ... < an ≤ bn.

If (P, T ) admits some non-crossing matching {p1m1, p2m2, . . . , pnmn}, where
ai ≤ mi ≤ bi for all i = 1, 2, . . . , n, we can always slide the point mi inside ti to
a position mL

i as far to the left as possible (see Figure 6). This gives the unique
leftmost non-crossing matching for (P, T ), {p1m

L
1 , p2m

L
2 , . . . , pnmL

n}. Notice that
either mL

i = ai, or pi and mL
i are collinear with some pj with j < i.

Next we describe an algorithm for finding the leftmost non-crossing matching,
if it exists. The algorithm considers points in a sequential greedy fashion, in the
left-to-right order of the corresponding segments.

For p1, the leftmost matching is simply given by the segment p1a1. We then
consider the rays from the endpoints of this segment in the direction of the neg-
ative semiaxis of abscissae; their points at infinity can be symbolically described
as q0 = (−∞, 0) and q1 = (−∞, y(p1)).

The forbidden region is the (unbounded) region enclosed by an alternating
sequence of horizontal line segments and subsegments of matched edges (See
Figure 7). This region is updated at every step of the algorithm. Initially, it is
described clockwise by its vertices, namely q1p1a1q0. Observe that if p2 is inside
the forbidden region, then a non-crossing matching (P, T ) would be impossible.
If p2 is outside the forbidden region, a matching is possible if and only if there is
some point m2 in the interval a2b2 such that the segment p2m2 does not cross the
forbidden region. In the affirmative, we slide m2 to its leftmost possible position,
and shoot a ray from p2 in the direction of the negative semiaxis of abscissae,
which may go to infinity, or stop by hitting the segment p1a1. The forbidden

forbidden region

p
1i

p
2i

p
ki

p
j

q
1i

bjmjm
ki

q
0

q
2i

q
ki

L

Fig. 7. Forbidden region and incremental step
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Fig. 8. Moving the new edge to the leftmost position

region is updated in each case, and is always defined by alternating horizontal
edges with portions of segments from the matching.

Assume that, in a generic step, we have obtained the leftmost matching
{p1m

L
1 , p2m

L
2 , . . . , pj−1m

L
j−1} and we are processing pj . Let qi1pi1qi2pi2 ...qik

pik

mL
ik

q0 be the current forbidden region (refer to Figure 7). Observe that if there
is some mj ∈ [aj , bj] such that the segment pjmj can be added to the edges
found so far, getting a non-crossing matching, the segment pjbj is also valid. We
show next how to check the validity of pjbj .

We first check the y coordinates of the points mik
, pik

, pik−1 ..., which form
an increasing sequence, until we find that y(pit) ≥ y(pj) ≥ y(pit+1) (the case in
which y(pj) is a maximum is completely analogous). Then, we check whether
the segment pjbj crosses the segments mik

pik
, qik−1pik−1 , ..., qit−1pit−1 . In the

affirmative, the algorithm is over, as no crossing-free matching is possible. Oth-
erwise, the segment pjbj is valid. We slide the point matched with pj as much
to the left as possible (Figure 8), which can be done by finding the angularly
closest point among pit+1 , pit+2 , ..., pik

, aj .
If we shoot a ray from pj in the direction of the negative semiaxis of abscissae,

we hit the boundary of the forbidden region in a point qj , possibly at infinity,
and the forbidden region is updated to be qi1pi1qi2pi2 ...pitqjpjm

L
j q0.

The cost of the step for pj is proportional to the size of the forbidden polygonal
region that disappears, and that will never be processed again. Therefore, the
amortized cost of one step is constant and the global cost of the algorithm is
O(n). At the end we obtain the leftmost matching {p1m

L
1 , p2m

L
2 , . . . , pnmL

n},
unless no matching is possible.

If (P, T ) admits a non-crossing matching, with a symmetrical algorithm we
can obtain the rightmost matching {p1m

R
1 , p2m

R
2 , . . . , pnmR

n }. Then any points
mi in the intervals [mL

i , mR
i ] provide a non-crossing matching {p1m1, p2m2, . . . ,

pnmn}. In particular, in each interval [mL
i , mR

i ] we can pick the matching point
mi which is closest to pi, and hence obtain the matching that minimizes the sum
of the lengths of the edges in additional O(n) time. ��

5.2 Matching Points with Arbitrary Segments on a Line

In this section, we show that when the given segments are confined to a line and
possibly intersect, we can determine the existence of a non-crossing matching in
polynomial time. The proof first discretizes the problem, and then uses the same
approach as in the proof of Theorem 3 for k-tuples with k = O(n2). Details of
the proof are omitted from this version of the paper.
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Theorem 7. Given an ordered set P of points above a horizontal line L and an
ordered set T of line segments belonging to L, deciding whether (P, T ) admits a
non-crossing matching can be done in O(n8) time.

6 Matching Points with Lines

In the case where points are matched with lines, it is easy to see that a non-
crossing matching always exists: choose an arbitrary direction, not parallel to
any line, and project each point on its corresponding line in that direction.

Here we consider the optimization problem of minimizing the maximum length
over all matching edges. The proof, omitted here due to space limitations, uses a
reduction from the problem of deciding the existence of a non-crossing matching
between a set of points and a set of segments.

Theorem 8. Given an ordered set P of points and an ordered set T of lines,
finding a min-max non-crossing matching of (P, T ) is NP-complete.
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Abstract. We study the NP-hard problem of finding non-crossing thick
minimum-link rectilinear paths which are homotopic to a set of input
paths in an environment with rectangular obstacles. We present a 2-
approximation that runs in O(n3 + kin log n + kout) time, where n is the
total number of input paths and obstacles and kin and kout are the total
complexities of the input and output paths. Our algorithm not only ap-
proximates the minimum number of links, but also simultaneously mini-
mizes the total length of the paths. We also show that an approximation
factor of 2 is optimal when using smallest paths as lower bound.

1 Introduction

Motivation. Schematic maps are a well-known cartographic tool; they visualize
a set of nodes and edges (for example, highway or metro networks) in simplified
form to communicate connectivity information as effectively as possible. Many
schematic maps deviate substantially from the underlying geography since edges
and vertices of the original network are moved in the simplification process.
This can be a problem if we want to integrate the schematized network with
a geographic map, for example, when creating a thematic map depicting traffic
flow on highways. In this scenario the schematized network has to be drawn
with thick edges, using few orientations and links, while critical features (cities,
lakes, etc.) of the base map are not obscured and retain their correct topological
position with respect to the network. There has been little algorithmic work on
network schematization under geometric embedding restrictions; in this paper
we address one of the fundamental underlying problems for the first time.

Our input is a set of no rectangular obstacles and np pairs of points (ai, bi)
together with non-crossing paths πi that connect ai to bi. We want to find a
collection of np non-crossing rectilinear thick ai-bi paths which are homotopic to
the paths πi. Our goal is to minimize the total number of horizontal and vertical
segments (links) of the paths. We refer to this problem as the thick routing
problem (see Fig. 1). The obstacles model the (bounding boxes of) critical map
features and the paths πi correspond to the actual geographic location of the
highways we want to schematize. Note that the endpoints of the paths—the
cities connected by the highways—necessarily also constitute obstacles.
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Fig. 1. The thick routing problem, input and output

Related Work. The thick routing problem can be seen as a variation on the
thick non-crossing paths problem studied by Mitchell and Polishchuk [13]. They
find shortest non-crossing thick paths in a polygonal domain, that is, the points
ai and bi lie on the boundary of a simple polygon. We consider general input
paths, albeit with fixed homotopy classes, and study minimum-link rectilinear
instead of shortest paths. There are several papers [2,7] that find shortest paths
homotopic to a given collection of input paths. However, while a set of shortest
paths homotopic to a set of non-crossing input paths is necessarily non-crossing,
the same does not hold for minimum-link (rectilinear) paths. Hence the prob-
lem of finding non-crossing minimum-link paths differs substantially from the
problem of finding shortest paths. Our problem is also related to drawing graphs
with fat edges [6] and to wire routing in VLSI design [5,8,10,12], although none
of these papers strives to minimize the number of links.

Many variants of the thick routing problem, even without obstacles and with
thin paths, are proven NP-hard by Bastert and Fekete [1] if the homotopy
classes of the paths are not specified. Yang et al. [15] find a pair of non-crossing
minimum-link rectilinear paths inside a rectilinear polygon in linear time. Their
result does not generalize to more than two paths. Cabello et al. [3] schematize
a given network using 2 or 3 links per paths, if that is possible. Nöllenburg and
Wolff [14] use a method based on mixed-integer programming to generate metro
maps using one edge per path. These methods do not incorporate obstacles and
are restricted to a small constant number of links per path. Our problem allows
an arbitrary number of paths with an arbitrary number of links per path. Gupta
and Wenger [9] do allow many paths with many links and present an approxi-
mation algorithm (with a factor ≥ 120) for finding non-crossing minimum-link
paths inside a simple polygon; here all endpoints lie on the boundary of the
polygon. The endpoints of our paths can lie anywhere in the plane.

Results. The thin (or thick) routing problem is NP-hard (the proof can be found
in the full version of the paper). In the following we present a 2-approximation al-
gorithm which runs in O(n3+kin log n+kout) time, where n = no+np is the total
number of obstacles and input paths and kin and kout are the total complexities
of the input and output paths. As a lower bound for the minimum number of
links any solution must have, we use the total number of links of smallest paths
(rectilinear paths that are both shortest and minimum-link) that are homotopic
to the input paths. These smallest paths always exist. Our algorithm not only
approximates the minimum number of links, but also minimizes the total length
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of the paths. In the full paper we also argue that an approximation factor of 2
is optimal when using smallest paths as lower bound.

Our algorithm is based on a surprisingly simple incremental construction,
which we first explain for thin paths in Section 3, before extending it to thick
paths in Section 4. Intuitively, any incremental approach to this problem should
be doomed due to a cascading number of links, but we show how to move already
inserted paths without increasing the number of links or creating crossings to
make room for each new path. We compute smallest paths using variants of the
algorithms described in [6,7]. Our main contribution is the algorithm that “un-
tangles” these smallest paths while keeping the number of links low. Background
material and supporting lemmas concerning homotopy and rectilinear paths are
given in the next section; all omitted proofs and many additional details can be
found in the full version of the paper.

2 Preliminaries

Our input is a set of no rectangular obstacles and np pairs of points (ai, bi)
together with non-crossing paths πi that connect ai to bi (note that non-crossing
paths can overlap). The endpoints of the paths together with the rectangular
obstacles form a set B of obstacles. No path can contain an element of B, except
its own endpoints. Two paths π1, π2 with the same endpoints are homotopic
(denoted by π1 ∼h π2) with respect to B if there exists a continuous function
Γ : [0, 1] × [0, 1] → R2 with the following properties: (i) Γ (0, t) = π1(t) and
Γ (1, t) = π2(t) for 0 ≤ t ≤ 1, (ii) Γ (s, 0) = π1(0) = π2(0) and Γ (s, 1) = π1(1) =
π2(1) for 0 ≤ s ≤ 1, and (iii) Γ (s, t) /∈ B for 0 ≤ s ≤ 1 and 0 < t < 1. Since the
homotopic relation is an equivalence relation, we can speak of the equivalence
class of a path, its homotopy class. A homotopy class C is said to be non-crossing
if there is a path π ∈ C which is non-crossing. Similarly, two homotopy classes
C1 and C2 are called pairwise non-crossing if there are two paths π1 ∈ C1 and
π2 ∈ C2 such that π1 and π2 are pairwise non-crossing.

Observation 1. Let C1 and C2 be two non-crossing homotopy classes which are
pairwise non-crossing. Then the shortest paths of these homotopy classes σ1 ∈ C1
and σ2 ∈ C2 are non-crossing.

A collection of n non-crossing homotopy classes is non-crossing if there is a path
in each homotopy class such that these paths are non-crossing. Observation 1
implies that a collection of n non-crossing homotopy classes is non-crossing if
the homotopy classes are pairwise non-crossing. Since the input paths are non-
crossing, the homotopy classes of our input are always non-crossing.

The following lemma is about y-monotone paths. Note that a path is y-
monotone if every horizontal line crosses the path only once.

Lemma 1. Given a collection of y-monotone paths with non-crossing homotopy
classes and a collection of obstacles ωj, the homotopy classes of all paths can be
characterized by a total order ≺ on the paths and the obstacles.
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π1, ω1, ω4, π2, ω3, ω2, ω5, π3

π1

π2

π3

ω1
ω2

ω3

ω4 ω5

Fig. 2. Order on paths and obstacles

R1

R2

intersection

πi πj

regions

Fig. 3. Intersection regions

This order is illustrated in Figure 2. It can be seen as the rotated analogue of
the aboveness order defined in [4].

If πi ≺ πj , then an intersection region of πi and πj is a region enclosed by
πi and πj at y-coordinates where the paths are out of order, i.e. where πj is to
the left of πi. Intersection regions are y-monotone polygons; two paths can have
more than one intersection region (Fig. 3). The following observation follows
directly from Lemma 1.

Observation 2. Intersection regions do not contain obstacles.

Every rectilinear path π consists of a sequence of horizontal and vertical links.
If a horizontal link �i is above or below both its neighboring (vertical) links
�i−1 and �i+1, then we call �i−1�i�i+1 a horizontal U-turn. Vertical U-turns are
defined correspondingly. If there is an obstacle on the inside of a U-turn touching
the middle link, then we call this U-turn a tight U-turn. The support of a tight
U-turn is the part of the U-turn supported by the obstacles. We say that two
paths share a tight U-turn, if the supports of the U-turns are equal. If we split
a rectilinear path at the supports of its U-turns, then we get a collection of
monotone staircase chains. As every staircase chain between two points has the
same length, the length of a rectilinear path depends only on its U-turns. Hence
a rectilinear path of a given homotopy class is shortest iff it has only tight U-
turns. Rectilinear shortest path are not unique. Further, not every collection of
rectilinear shortest paths of non-crossing homotopy classes is non-crossing. So
we consider rectilinear shortest paths with “lowest” staircase chains. We say a
staircase chain ρ is lowest if for every staircase chain ρ′ (ρ′ ∼h ρ), ρ is completely
below or on ρ′. A rectilinear shortest path with only lowest staircase chains—a
lowest path in short—always exists and is unique.

Lemma 2. Lowest paths (πi)n
i=1 of non-crossing homotopy classes are non-

crossing.

Proof (sketch). Since the homotopy classes are non-crossing, there exist recti-
linear shortest paths σi (σi ∼h πi) that are non-crossing. Because the paths πi

are shortest, they share the (tight) U-turns with σi. Now consider two crossing
staircase chains ρj and ρk and let ρ′j and ρ′k be the corresponding non-crossing
chains in σi. Note that ρj and ρ′j must have the same endpoints. Furthermore,
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since ρj ∼h ρ′j and there are obstacles at tight U-turns, ρj and ρ′j must pass the
endpoints of ρk on the same side and vice versa. Hence ρj and ρk must cross a
second time. So they must form an intersection region, which contains no obsta-
cles by Observation 2. Hence either ρj or ρk is not lowest. Contradiction. ��
The same applies to highest rectilinear shortest paths (highest paths in short).
Lowest and highest paths overlap at every U-turn and differ only in the staircase
chains. Unfortunately lowest and highest paths can have Ω(n) times more links
than a homotopic minimum-link path. Hence we use smallest paths—paths that
are both minimum-link and rectilinear shortest. We use lowest and highest paths
to compute smallest paths, as every smallest path must lie in between the lowest
and highest paths.

We distinguish two types of staircase chains: positive staircase chains which go
right and down (or left and up) and negative staircase chains which go left and
down (or right and up). Positive staircase chains and negative staircase chains
can cross only once due to monotonicity. Following the proof (sketch) of Lemma
2, this immediately implies the following.

Lemma 3. A positive staircase chain and a negative staircase chain of rectilin-
ear shortest paths with non-crossing homotopy classes cannot cross.

Our paths are rectilinear shortest, so we need to consider only crossings between
two positive or two negative staircase chains; this is crucial for our algorithm.

π′
1

π′
2

π′
3

Fig. 4. Path π′
2 is not feasible

Thick paths. We assume that we are given a re-
quired thickness Δi for each thick path. For Δ > 0
let SΔ be the square of size Δ centered at the ori-
gin. A thick path is defined as the Minkowski sum
of a spine πi and SΔi : (πi)Δi = πi ⊕ SΔi . For
convenience we refer also to a thick path by πi in-
stead of (πi)Δi . When working with thick paths,
fixing one path might make it impossible for an-
other path to be routed (Fig. 4). We say that a
path π′

i ∼h πi is feasible if there exist paths π′
j ∼h πj for 1 ≤ j ≤ np and i �= j

such that all thick paths are interior disjoint. In a valid solution of the thick
routing problem every path is feasible. Hence we use feasible smallest paths as
a starting point for the thick routing problem.

Lemma 3 holds only for thin paths, but can easily be extended to feasible
thick paths. Therefore positive and negative staircase chains of feasible rectilinear
shortest paths are interior disjoint.

3 Thin Paths

To illustrate our techniques we first present a solution for the thin routing prob-
lem where all paths have thickness zero. Algorithm ThinRouting consists of
two steps: (i) computing smallest paths that are homotopic to the input paths,
and (ii) untangling smallest paths in such a way that the output paths have no
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more than twice the number of links of the input paths. The preprocessing Step
(i) relies mostly on previous work, Step (ii)—the crucial part of the algorithm—is
the main contribution of this paper.

3.1 Computing Smallest Paths

To compute smallest paths efficiently, we first compute the lowest and highest
paths homotopic to the input paths. We use a variant of the algorithm by Efrat
et al. [7] which computes shortest (non-rectilinear) paths that are homotopic to
a collection of non-crossing input paths. This algorithm can easily be adapted
to compute lowest and highest paths. It also allows us to bundle the homotopic
y-monotone chains of the lowest and highest paths into O(n) y-monotone chains
with O(n) links each. This bundled representation can be computed in O(n2 +
kin log n) time.

We now compute a y-monotone smallest path for each bundle using a plane
sweep. This is possible, since every bundle of lowest chains corresponds to a bun-
dle of highest chains representing the same y-monotone chains of the input paths
(chains are only bundled when they are homotopic). So we compute a smallest
path for each corresponding pair of bundles and obtain a bundled representation
of all smallest paths in O(n2 + kin log n) time.

Although the lowest and highest paths are non-crossing, smallest paths are
generally not. Actually, finding non-crossing smallest paths is NP-complete (the
proof can be found in the full version of the paper). For the approximation
algorithm we use a set of canonical smallest paths where all horizontal links are
pushed down as much as possible and all vertical links are pushed right (left) as
much as possible for positive (negative) staircase chains. These canonical smallest
paths have the nice property that all intersection regions are rectangular1.

3.2 Untangling Smallest Paths

The second step untangles the (bundled) y-monotone chains. By Lemma 3 we
can treat positive and negative staircase chains independently, so we restrict the
description of algorithm Untangle to positive staircase chains. By Lemma 1 we
can assume the input paths to be ordered positive staircase chains πi (1 ≤ i ≤ n).

We untangle the paths incrementally, adding paths in order from left to right.
The first two paths π1 and π2 can have only rectangular intersection regions. We
can add two links to π2 (for each intersection region) to remove the crossings. Un-
fortunately this might make intersection regions with πk (k > 2) non-rectangular
such that rerouting requires more links. To avoid these cascading effects we keep
track of where paths are rerouted using reroute boxes (Fig. 5). Reroute boxes
are rectangular and contain no obstacles.

1 This is easy to prove using Obs. 2. Note that there can be two different smallest paths
with the given requirements: one starting with a horizontal link and one starting with
a vertical link. If both are possible, we refer to the latter as the canonical path.
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π1 π2

reroute box

Fig. 5. Untangling two paths

We maintain three invariants after adding path
πk (rerouted paths are denoted by π′

i): (i) π′
1 . . . π′

k

are non-crossing, (ii) π1 . . . πk have at most one
reroute box per lower-left bend, and (iii) all paths
π′

i pass an upper-right bend of a path πj (i < j)
on the left side. All invariants hold initially.

Path πk+1 is added one L-segment L at a time.
L can cross multiple other paths. The original
paths πi have only rectangular intersection re-
gions. L is unchanged and we have added only
reroute boxes to π′

1 . . . π′
k, hence there are only a few shapes possible for the

intersection regions with L (Fig. 6): one, two, or three upper-right bends.

π′
i L

Fig. 6. The possible shapes of intersection regions. Dashed lines denote reroute boxes.

Now assume that L is crossed by the paths π′
a . . . π′

b (a ≤ b). We want to make
the intersection region of L with π′

b rectangular such that we can add a reroute
box to L to remove all crossings. We do this incrementally for all intersection
regions, starting with π′

a and ending with π′
b. Assume the intersection region Ri

of L and π′
i ∈ [π′

a . . . π′
b] is rectangular. To make the intersection region Ri+1

rectangular, we move the links of π′
i+1 through Ri+1 (intersection regions contain

no obstacles), but not through Ri (this would introduce crossings with π′
i). By

Invariant (i) π′
i+1 does not cross Ri initially. If Ri+1 contains one upper-right

bend, we do nothing as Ri+1 is already rectangular. If Ri+1 contains two upper-
right bends, then we either move the first vertical link of π′

i+1 to the left (onto
L) or the last horizontal link down. Due to the rectangular shape of Ri, we can
always perform one of the two moves without crossing Ri. If Ri+1 contains three
upper-right bends, then either Ri is in the middle corner and we move the first
vertical link of π′

i+1 to the left and the last horizontal link down, or Ri is not in
the middle corner, in which case we can simplify the middle corner and handle
this as a case with two upper-right bends (see Fig. 7 for an example).

L L L L L

Fig. 7. Making intersection regions rectangular and rerouting L
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The algorithm maintains all invariants and hence the output paths are non-
crossing. They are also homotopic to the input paths, because we change paths
only by adding reroute boxes or by moving links through intersection regions.
We add only two links per reroute box and there is at most one reroute box per
lower-left bend. Because a positive staircase chain with L links has at most L/2
lower-left bends, the algorithm at most doubles the number of links.

We can extend this algorithm to work on the y-monotone chains of the smallest
paths. Since we can add an L-segment in O(n) time and we have only O(n)
chains with at most O(n) links each, we can untangle the chains in O(n3) time.
Finally we can unbundle the paths in O(kout) time. So in total we can compute
a 2-approximation for the thin routing problem in O(n3 + kin log n + kout) time.

4 Thick Paths

We now extend ThinRouting to thick paths. For thin paths, non-crossing ho-
motopy classes imply that a solution exists. This is not the case for thick paths.
If there is an input path for which there is no homotopic feasible path, then there
is no valid solution for that problem instance and our algorithm will detect this
fact. Otherwise a solution always exists and our algorithm will find it.

Algorithm ThickRouting also consists of two steps. First we compute fea-
sible canonical smallest paths that are homotopic to the input paths. Then we
untangle the paths such that they are interior disjoint, while making sure that
the number of links is no more than doubled. To simplify the discussion, we de-
scribe the algorithm for the spines instead of the thick paths. Clearly the thick
paths are interior disjoint if their spines are sufficiently separated.

4.1 Feasible Smallest Paths

We first compute feasible lowest and highest paths by adapting the growing ap-
proach by Duncan et al. [6]2. We start with the thin lowest and highest paths
and “grow” the paths until they have the required thickness. During the growing
process we keep the paths disjoint, shortest, and lowest (or highest). The result-
ing paths are feasible (if the problem instance has a solution). The algorithm
as described in [6] works for shortest paths and point obstacles, we extend it to
rectilinear paths and rectangular obstacles. The details are many and somewhat
intricate, although not difficult; they can be found in the full version of the pa-
per. This algorithm takes O(n3 +kin log n) time and returns an ordered bundled
representation of the y-monotone chains of the feasible lowest and highest paths.

Using the bundled representation of feasible lowest and highest paths, we can
easily compute a bundled representation of the feasible canonical smallest paths,
because every feasible smallest path lies between the feasible lowest and highest
paths. Since the chains in a bundle are homotopic, we can compute a feasible
canonical smallest path for a whole bundle to represent the feasible canonical
smallest paths of all chains in the bundle.
2 We cannot use the algorithm from [7], as the feasibility of a path depends on the

homotopy classes and thickness of the other paths.
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4.2 Untangling Thick Paths

The second step of the algorithm untangles the feasible smallest paths while
ensuring that the output paths are interior disjoint. We cannot directly use the
approach for thin paths, but we can do something similar.

By extending Lemma 3 to thick paths, we can again restrict the discussion to
positive staircase paths. To keep the thick paths feasible we use fences. A fence
γi(j) of a path πi with respect to another path πj is a path representing the
closest position at which πj can be with respect to πi (see Fig. 8(a)). A fence
ignores all obstacles. The fence γi(j) defines the region where πj is feasible, if we
fix πi and ignore the obstacles. So a fence γi(j) is a shifted version of πi, where
the distance depends on the thickness of the paths between πi and πj , which can
differ along πi. We do not compute fences explicitly, but only the parts we need.

Lemma 4. If R is an intersection region between γi(j) and πj, then any routing
of πj inside R is homotopic to πj and feasible.

Proof. To prove that any routing is homotopic, we prove that R does not contain
any obstacles. We consider two parts of R: the intersection region of πi and πj

and the remaining part (Fig. 8(b)). The first part does not necessarily exist. If it
exists, then by Observation 2, it is free of obstacles. Now consider the remaining
part and assume there is an obstacle ω in it. Both πi and πj must be routed on
the same side of ω. But γi(j) shows that πi forces πj to be on the other side of
ω (because ω lies inside R). That implies that πi is not feasible. Contradiction.

Because πi is feasible, following γi(j) is also feasible for πj by definition of
γi(j). As πj itself is also feasible, every routing of πj inside R must be as well,
because R does not contain any obstacles. ��
An intersection region of a fence γi(j) and a path πj is also called a forbidden
region. Note that a forbidden region Rij between γi(j) and πj has exactly the
same shape as the forbidden region Rji between γj(i) and πi, because both
fences depend on the thickness of the paths in between πi and πj .

Lemma 5. If πi and πj are canonical smallest paths, then any forbidden region
between γi(j) and πj is rectangular.

(c)

πi

πj

γj(i)

γi(j)

Rji

Rij �1

�2

�′1

�′2

(a)

πi

πj

γi(j)

(b)

πi

πj

γi(j)ω

R

Fig. 8. An example of a fence γi(j) (a), the dotted paths lie between πi and πj .
Forbidden regions are free of obstacles (b) and rectangular (c).
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Proof. Without loss of generality we have i < j. Define Rij and Rji as above (see
Fig. 8(c)). Assume that Rij is not rectangular. Then there must be a horizontal
link �1 and a vertical link �2 that are completely part of the boundary of Rij . If
�1 and �2 are part of πj , then by Lemma 4 �2 is not rightmost. If �1 and �2 are
part of γi(j), then there are also corresponding links �′1 and �′2 which are part
of πi that are completely part of the boundary of Rji. Again by Lemma 4 �′1 is
not downmost. Contradiction. ��
To untangle thick paths, we use an adapted version of Untangle. The rerouted
paths are denoted by π′

i. We maintain three invariants: (i) π′
1 . . . π′

k are interior
disjoint, (ii) π1 . . . πk have at most one reroute box per lower-left bend, and (iii)
all paths π′

i pass an upper-right bend of a fence γj(i) (i < j) on the left side. We
change the paths in only two ways: we move links of paths π′

1 . . . π′
k (only left

and down) and we add reroute boxes to the current path (and hence add links).
We add paths one L-segment L at a time, always turning the forbidden regions
involving L into a rectangle. Then we add a reroute box to L to make the paths
interior disjoint. The challenge here is to efficiently turn the forbidden regions
into rectangles. For this we first need to compute a certain subset of the fences
for L. Recall the situation for thin paths. To create a rectangular intersection
region between L and a previously inserted path π′

i, we moved segments of π′
i to

coincide with L. Now we move these segments to coincide with the fence γL(i).
In the following we sketch our approach to compute the relevant fences.

When inserting path πk+1 we go through the paths π′
i (1 ≤ i ≤ k) from

right to left and accumulate their thickness in Δ to compute the fences γL(i).
Recall that a fence γL(i) is a shifted version of L where the distance depends on
the total thickness Δ of the paths between L and π′

i. Hence we can compute the
fences by maintaining Δ going from right to left and for every path we encounter,
add its thickness to Δ. But although all paths π′

j (i < j ≤ k) are between L and
π′

i, a path π′
j might have a y-range such that it does not influence L or its fences

(see Fig. 9(b)). In those cases, the thickness of π′
j should not be added to Δ. To

determine whether the thickness Δj of a path π′
j should be added to Δ, we use

the following simple rule: if the forbidden region of γL(j) with π′
j does not exist,

then Δj is not added to Δ, otherwise it is.

Lemma 6. The above rule correctly computes the forbidden regions with L.

(c)

L

γL(j)

π′
jπ′

i

γL(i)(b)

L

γL(j) = γL(i)

π′
jπ′

i

(a)

L

γL(j)

π′
j

π′
i

γL(i)

Fig. 9. Computing fences for L. If a forbidden region exists for π′
j , Δj is added to Δ

(a), otherwise it is not (b). If the forbidden region for π′
j does not exist, the forbidden

region for π′
i will also not exist (c).
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Proof. First assume the forbidden region of γL(j) with π′
j does not exist. If π′

j

does not influence L or its fences, then the rule is correct (Fig. 9(b)). Otherwise,
because all paths π′

i (1 ≤ i ≤ j) are interior disjoint (Invariant (i)), the forbidden
regions for all π′

i do not exist either (even if we added Δj to Δ) and hence the
rule is correct in this case as well (Fig. 9(c)). If the forbidden region with π′

j

does exist (Fig. 9(a)), then we should be able to add Δj to Δ. Recall that a
fence γL(i) (i < j) defines the region where π′

i is feasible, if we fix L and ignore
the obstacles. Now assume we fix L, then π′

j must follow the lower-left bend of
γL(j). Consider a line between the lower-left bend of L and the lower-left bend
of a fence γL(i) (i < j). For the fence to be correct, it should include all paths
crossed by this line, like π′

j . Hence it is correct to add Δj to Δ. ��
After the fences and forbidden regions have been computed, we work from left
to right, considering only the paths π′

a . . . π′
b for which a forbidden region exists.

The different possible forbidden regions are handled as is described in Section 3.
The cases for the forbidden regions are exactly the same as those shown in Fig. 6
(the cases are implied by Invariant (ii) and (iii)). Finally we reroute L along the
fence γb(L) which can trivially be computed. In fact this is essentially the same
as adding a reroute box (see Fig. 10).

Lemma 7. The resulting paths are interior disjoint and homotopic to the input
paths.

We can extend this algorithm to untangle complete y-monotone chains. After
the y-monotone bundles of the feasible smallest paths have been untangled, we
can easily extract the resulting paths from the bundles.

Theorem 1. The algorithm ThickRouting computes a 2-approximation for
the thick routing problem that also minimizes the lengths of the paths in O(n3 +
kin log n + kout) time.

Proof. The correctness of the algorithm follows from Lemma 7. The approxima-
tion ratio of the algorithm can be argued exactly as for thin paths. The feasible
smallest paths can be found in O(n3+kin log n) time. The feasible smallest paths
are given as O(n) y-monotone bundles with at most O(n) links each. Untangling
thick paths is just as fast asymptotically as untangling thin paths, hence it takes
O(n3) time. Finally, we need to unbundle the paths and reconnect chains, which
takes O(kout) time. Hence the total running time is O(n3 + kin log n + kout).
Finally note that untangling the paths does not change the lengths of the paths,
hence the total length of the paths is minimized. ��

L
π′

b
γb(L) L′

reroute box

Fig. 10. Growing a rectangle for thick paths



Homotopic Rectilinear Routing with Few Links and Thick Edges 479

5 Conclusions and Open Problems

We presented an algorithm that computes a 2-approximation for the thick rout-
ing problem. Our algorithm not only approximates the minimum number of
links, but also simultaneously minimizes the total length of the paths. This ap-
proximation factor is optimal when smallest paths are used as a lower bound.

Our motivation to study these problems relates to the construction of schematic
maps with geometric embedding restrictions. In this context we would like to ex-
tend our results to c-oriented paths, implement our algorithm, and evaluate the
cartographic quality of the resulting maps experimentally.

References

1. Bastert, O., Fekete, S.P.: Geometrische Verdrahtungsprobleme. Technical Report
247, Mathematisches Institut, Universität zu Köln (1996)
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Abstract. We study the error robustness of tilings of the plane. The
fundamental question is the following: given a tileset, what happens if
we allow a small probability of errors? Are the objects we obtain close
to an error-free tiling of the plane?

We prove that tilesets that produce only periodic tilings are robust
to errors. For this proof, we use a hierarchical construction of islands
of errors (see [6,7]). We also show that another class of tilesets, those
that admit countably many tilings is not robust and that there is no
computable way to distinguish between these two classes.

1 Introduction

Tilings are a basic and intuitive way to express geometrical constraints. They
have been used as static geometrical models of computation since Berger proved
the undecidability of the so-called domino problem [2] by capturing geometric
aspects of computation [19,2,11,14,5,10,3]. The model assumes the reliability of
local color-constraints of tilings, hence several research tracks were aimed at
constructing tilesets that are reliable to errors, be it as a computing model [7,8]
or as a model for DNA self-assembly [22,18].

In this paper we are interested in error robustness of tilesets. We can see an
erroneous tiling as an usual tiling by Wang tiles [21] where we allow a small
proportion of colors on adjacent edges of tiles not to match. We give a more
formal definition of this notion in Section 2. Some constructions using fixed point
methods construct tilesets that are robust to a small proportion of errors [7,8].
Our goal here is to focus on general properties that imply error-robustness or
non-error-robustness of some classes of tilesets.

In Section 3 we give a construction of “error-cleaning functions” for tilesets
that allow only periodic tilings. We prove that for this class of tilesets it is
possible to apply well known hierarchical constructions [9,6] so that we can repair
every erroneous tiling with probability one granted the probability of errors is
sufficiently small.

On the other hand, we prove that the family of tilesets that produce only
a countable number of tilings are not locally robust: the correction of a finite
number of errors in those tilings may always require a modification of an infi-
nite number of tiles. This is incompatible with local error correction and thus
robustness. Locally robust tilesets can be expressed as properties of their ground
state configurations as used to model crystals [16,17].

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 480–491, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Finally, by using classical constructions [3,19,15] for encoding Turing machines
into tilesets, we prove in Section 5 that these two classes of tilesets are recursively
inseparable, which shows that it is not possible to obtain a simple (recursive)
characterization of tilesets robust to errors.

2 Definitions

We present notations and definitions for tilings; we focus our study on tilings
of the plane but most of the results naturally extend to higher dimensions. We
define tilings by local constraints as they give the most straightforward definitions
for tiling errors. Different models are used in literature, such as Wang tiles [20]
or subshifts of finite type [12], but one can easily transform one formalism into
another (see [4] for more details and proofs).

In our definition of tilings, we first associate a color to each cell of the plane.
Then we impose a local constraint on them, that is we describe which colorings
are allowed and which are not. More formally, Q is a finite set, called the set
of colors. A configuration c consists of cells of the plane with colors, thus c is
an element of QZ

2
. We denote by c(i) the color of c at the cell i ∈ Z2. For an

element x of Z2 we denote by c + x the configuration i → c(i + x).

Definition 1 (Patterns). A pattern P is a finite restriction of a configuration
i.e., an element of QV for some finite domain V of Z2. A pattern appears in
a configuration c if it can be found somewhere in c; i.e., if there exists a vector
t ∈ Z2 such that c(x + t) = P (x) on the domain of P .

Definition 2 (Local constraints). A local constraint is a pair τ = (V, δ). V is
a finite domain of Z2 and is called the neighborhood. δ is the constraint function
from QV to {0, 1}.

The idea behind this formalism of local constraints is to define which patterns
are allowed and which are not. A pattern is allowed if and only if it maps to 0
by the constraint function. The local constraint τ = (V, δ) naturally extends to
a global constraint function Δτ : QZ

2 → {0, 1}Z
2

by applying it uniformly on
every cell of the plane: Δτ (c)(x) = δ((c + x)|V ). This corresponds to a sliding
block code [13, Chapter 1, § 5].

Definition 3 (Tilings). A configuration c ∈ QZ
2
is said to be valid for τ =(V, δ)

(or a tiling by τ , or allowed by τ) when it satisfies the local constraint everywhere,
that is for every cell x, Δτ (c)(x) = 0.

The set of tilings by τ is denoted by Tτ . In this paper we only consider tilesets
that can tile the plane, thus Tτ �= ∅ is an implicit condition of all the results.

As we want to study tilings with some errors, this definition of classical tilings
naturally extends to tilings with errors by considering an error repartition where
some cells are not correctly tiled:
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Definition 4 (Tiling with errors). Let e be an element of {0, 1}Z
2

and c a
configuration, we say that c is a tiling by τ with error repartition e if Δτ (c) = e.

One may remark that with this definition, repairing an error is different from
replacing the erroneous tile with a correct one as errors may have consequences
that require replacing other tiles, even if those tiles are locally correct.

In this paper we first prove that the consequences of such a correction are not
problematic in the case of tilesets that allow only periodic tilings (Section 3) but
may have consequences on infinitely many cells in the case of tilesets that allow
countably many tilings (Section 4).

Before entering the core of the problem of tilings with errors we need to recall
a couple of structural results on regular tilings of the plane. We embed Q with the
discrete topology, QZ

2
with the induced product topology. A classical result on

the set of configurations is its compactness, as a direct application of Tychonoff’s
theorem:

Proposition 1. QZ
2

is a compact perfect metric space (a Cantor space).

The metric we consider, as induced by the product topology, is defined by
d(x, y) = 2−|i| where |(a, b)| denotes |a| + |b| and i is the point closest to (0, 0)
(i.e., with minimal norm) such that x(i) �= y(i). The ball of center x and radius
k is the set of points y such that |x − y| ≤ k. In this paper we reformulate the
compactness of sets of tilings in a way that suits our needs:

Lemma 1. For each finite subset D of Z2, there exists C such that if a pat-
tern defined on D can be extended to a pattern on C while respecting the local
constraints then P|D appears in a tiling of Z2.

This means that if we can tile sufficiently large but finite patterns we are sure
that a small part of it will appear in a valid tiling of the whole plane. The function
that is given a tileset τ and outputs the set C, even with a fixed D = {(0, 0)},
is uncomputable since this would allow us to decide the domino problem which
is a well known non-recursive problem [2,15,19].

Proof. We prove that for every pattern P there exists a finite domain CP of Z2

such that there exists a valid pattern defined on CP that contains P if and only
if P appears in a tiling of the plane. This proves the lemma by taking C to be
the finite union of all CP where P is a pattern of domain D.

If P appears in a tiling of the plane take CP to be the domain of P . Suppose
that there is a pattern P that does not appear in a tiling of the plane but such that
there exists arbitrary large valid extensions of it. By compactness, this sequence of
patterns can be extracted to converge towards a configuration. This configuration
contains P and is a valid tiling of the plane. Therefore, if P does not appear in a
tiling of the plane, there exists a finite domain such that any correct tiling of this
domain does not contain P ; we take CP to be this domain. ��
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3 Robustness

In this section we show how, in the case of tilesets that allow only periodic tilings,
it is possible to reconstruct a valid tiling from one with a small proportion of
errors by a local modification. The method is the same that was used to prove
the error robustness of strongly aperiodic tilesets in [7,8]; since sets of periodic
tilings have a very simple structure we are able to easily apply the same methods.
We consider error distributions eε such that each cell of Z2 has probability ε to
be equal to 1 independently of other points, i.e., a Bernoulli distribution.

We first describe a generic process [6,7] of sorting errors into “islands of errors”
that given a repartition taken with a Bernoulli distribution transforms it into an
error free repartition with probability one (Section 3.1). Then we present some
structural results on tilesets that will allow us to apply this generic process to
these tilesets (Section 3.2).

3.1 Iterative Cleaning Process

When ε is small the intuition is that cells with value 1 will be sparse; we will not
have big clusters of 1’s; however big clusters have a non-null probability to appear
thus they almost surely appear on the infinite plane Z2. Even if there is such an
unavoidable problem, we will see that we can decompose error repartitions into
different layers then repair each layer incrementally so that eventually everything
gets repaired. First of all, let us define what a layer is:

Definition 5. For an error repartition e ∈ {0, 1}Z
2

and a point x ∈ Z2 such
that e(x) = 1, x is said to be in an (i, j)−island of e if there exists no point at
distance between i and j in e that has value 1, that is:

∀y ∈ Z2, e(y) = 1 ⇒ |x − y| �∈ [i; j]

We denote by Ii,j(e) the set of points of Z2 that are in an (i, j)−island of e.
Figure 1 depicts some islands. These islands can be seen as isolated clusters of
errors. The idea now is to remove the islands, hence our definition of an erasing
function:

Definition 6 (Erasing function). The function Ei,j from {0, 1}Z
2

into itself
erases the (i, j)−islands of an error repartition:

{0, 1}Z
2 → {0, 1}Z

2

e → c : c(x) =
{

0 if x ∈ Ii,j(e)
e(x) otherwise

Now if we consider integer sequences (αn)n∈N and (βn)n∈N, we can think about
applying successively the functions Eαn,βn to an error repartition so that we
obtain an iterative cleaning process [6,7] that erases small islands of errors, then
bigger ones, then even bigger ones, etc.
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αn

βn

Fig. 1. Islands of rank n

Definition 7 (Iterative cleaning process). Let e be an error repartition and
consider two sequences αn and βn. We define the iterative cleaning of e by (α, β)
denoted (eα,β

n )n∈N by:

– eα,β
0 = e

– eα,β
n+1 = Eαn,βn(eα,β

n ).

We call “islands of rank n” the points that we corrected at the nth iteration.
This operation is pictured on Figure 1 where the black points are the points with
value 1, those that will be “cleaned” at this step are marked by a cross, and we
can see that we have a kind of security belt between αn and βn. The important
part of this process is that cleaning the islands of rank n at the nth iteration
creates more islands that we will catch at the n+1th step. The following theorem
catches this phenomenon:

Theorem 1 ([6,7]). If the sequences αn and βn match the conditions:

– ∀i, 8(β1 + ... + βi) < αi+1 ≤ βi+1

–
∑

i
log(βi)

2i < ∞
Then there exists ε > 0 (sufficiently small) such that, almost surely, for any
element of {0, 1}Z

2
taken with the Bernoulli distribution of probability ε, this

iterative cleaning process removes all the ones.

We do not give a proof of this result and refer the reader to the original [6,7]. It
is easy to check that the following sequences match the conditions of Theorem 1
for n sufficiently large:



Tilings Robust to Errors 485

αn = 2n2

βn = nαn

Moreover, what interests us is the fact that lim
n→∞

βn − αn = ∞, which means
that we can have arbitrary large security belts.

3.2 Error-Robustness of Periodic Tilesets

In this section we consider tilesets such that their only valid tilings are periodic.
We describe how to use Theorem 1 for tilings.

With the process described in Section 3.1, when n is sufficiently large, αn−βn

is also large. In our application to tilings with errors, this means that the islands
of rank n are surrounded by a belt of width αn − βn that is correctly tiled.
However, this zone is only locally tiled correctly. Lemma 1 ensures that when we
have a sufficiently large correctly tiled pattern then a smaller part of it appears
in a tiling of the whole plane. Hence, if n is sufficiently large, the islands of rank
n are surrounded by a belt of large width, say k, where each pattern of size k×k
appears in a tiling of the whole plane. One may remark that k may be much
smaller than αn−βn but k can still be as big as we would like it to be if we take
n sufficiently big. This is depicted on Figure 2.

Now we want to replace the erroneous zone by other tiles so that the whole
zone is tiled correctly but we are facing a problem: even if we can ensure that
the islands of rank n are surrounded by a belt of patterns that appear in a valid
tiling of the whole plane, like on Figure 2, how can we be certain that the zone
surrounded by the belt can be properly filled by tiles so that no error remains?

A pattern P defined on D is said to be k−extensible if there exists a decom-
position of D in (Di)1≤i≤n such that:

– ∪1≤i≤nDi = D
– For every i, P|Di

appears in a valid tiling of the plane
– For every i < n, Di ∩ Di+1 contains a ball of radius k.

With the help of the previous remarks, it is clear that for any k there exists a
sufficiently large n such that the islands of rank n are surrounded by a belt that
is k−extensible.

It is already known that a tileset allows only a finite number of tiling if and
only if it allows only periodic tilings [1, Theorem 3.8], hence we can focus on
this simpler case:

Lemma 2. If a tileset τ admits only a finite number of tilings then there exists
k such that any k−extensible pattern P can be found in a tiling of the whole
plane.

Proof. There exists ε > 0 such that the distance between two different tilings
is greater than ε. Let k be an integer such that any two configurations that are
equal at their center on the pattern defined on [−k; k]× [−k; k] are at distance
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strictly smaller than ε. We now prove that any k−extensible pattern can be
found in a tiling of the whole plane.

Let n and (Di)1≤i≤n be such that P is k−extensible over (Di)1≤i≤n. We may
assume that n = 2, the result for any n being obtained by an easy induction of
this simpler case.

Let a be a tiling containing P|D1 and b one containing P|D2 . There exists a′

and b′ that are shifted forms of, respectively, a and b such that a′ and b′ are equal
on P|D1 ∩ P|D2 at their center. a′ and b′ are both tilings by τ . Since P|D1 ∩ P|D2

contains a ball of radius k, by our choice of k we obtain that a′ = b′ because the
distance between them is strictly lower than ε. Therefore P appears in a′ which
is a tiling of the whole plane. ��
Now, with n sufficiently large, Lemma 2 tells us a bit more on the belt sur-
rounding islands of rank n: there exists such a surrounding belt that appears in
a valid tiling of the plane. On Figure 2 this means that the outer (blue) belt is
in fact part of a tiling of the plane. This allows us to state our main theorem of
robustness:

Theorem 2. If a tileset allows only periodic tilings then it is robust to a small
probability of errors.

Proof. By Theorem 1 from [1], tilesets that allow only periodic tilings are exactly
the tilesets that allow only a finite number of tilings. Hence Lemma 2 applies to
these tilesets. By Lemmas 1 and 2, there exists N such that any belt of width
N contains a smaller belt that appears in a tiling of the plane.

If we take αn = 2(n+N)2 and βn = (n + N)αn, for every n, the belt has width
at least N , hence the (finite) set of points surrounded by this belt can be filled

αn

βn

: Locally correct.
: Possibly incorrect.
: Locally correct and appears in a tiling of the plane.

Fig. 2. Example of what happens with a sufficiently large security belt
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by tiles from the tiling where the belt appears. Moreover these sequences match
the conditions of Theorem 1 thus we can repair every tiling taken with a small
probability of errors. ��
We remark that this method of obtaining a valid tiling by surrounding the errors
with a security belt also works obviously for a tileset that allows everything
(Tτ = QZ

2
). We can complicate it a little bit by considering Q = {0, 1, 2} and

the tilings may contain only 1’s and 2’s or only 0’s. Moreover it is possible to
use this method to obtain aperiodic tilings robust to errors [7,8].

4 Non Robustness

In the previous section we proved that there exist ways of correcting errors for
some tilesets. It would not make much sense to define exactly what we call a
“tileset robust to errors” since there may exist other methods for correcting
errors but it seems natural that every way of correcting errors has to be local,
hence our definition of local robustness:

Definition 8 (Locally robust). We say that a tileset is locally robust if for any
finite repartition of errors (that contains only finitely many 1’s), any tiling with
this error repartition can be transformed in a tiling without error by modifying
only finitely many cells.

This definition can be related to the ground state configurations used by C.
Radin to model crystalline order [16,17]. Recall that a configuration is said to
be ground state if whenever we modify a finite part of it we do not decrease the
number of tiling errors in it. In that sense, locally robust tilesets are the tilesets
for which ground state configurations are either tilings without any error or have
an infinite number of tiling errors.

The structural results from Section 3 ensure that tilesets which allow only peri-
odic tilings are locally robust: find n such that all the errors are in the same island
of rank n and replace the finite area surrounded by the belt by a valid one.

Theorem 3. Tilesets that allow countably many tilings are not locally robust.

First recall a structural result about such tilesets:

Theorem 4 ([1]). If a tileset allows a countable number of tilings then it allows
one with exactly one direction of periodicity.

Corollary 1. If a tileset τ allows a countable number of tilings then it allows
one with exactly one direction of periodicity that can be seen as a bi-infinite word
ωxyzω with |x| = |y| = |z| and y �= z.

Proof. Take a configuration c with exactly one direction of periodicity v from
Theorem 4. We can represent c as a bi-infinite word w on a finite alphabet
Σ. By representation we mean that we can decode letters of Σ in blocks of tiles
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such that when the blocks from w are repeated along v we obtain c. It is easy
to prove that we can obtain from τ a tileset τ ′ over Z such that any tiling by
τ ′ can be decoded in such a way in a tiling by τ . Without loss of generality we
may also assume that the neighborhood of τ ′ is {−1, 0, 1}: it suffices to code the
tileset τ ′ into Wang tiles [4]. Even after all these codings, Σ is still finite.

Since Σ is finite, there exists j > i > 0 such that w(i) = w(j). Therefore, the
word w is of the form xayaz where a is a letter of Σ and x and z are infinite words.

If x is equal to ω(ay), w is equal to ω(ay)z′. If x is not equal to ω(ay), x(ay)ω

is also allowed by τ . In both cases, we obtain a bi-infinite word w = x′(z′)ω that
is not periodic and x′ is an infinite word (the case where x is equal to ω(ay)
being symmetric). Since w is not periodic it can be written as w = xy(z)ω where
|y| = |z| and y �= z. We repeat the same argument on the infinite x part of w to
write it in the desired form. ��

This corollary gives us a configuration that we prove to be incompatible with
local robustness. Such a configuration is depicted on Figure 3. Imagine now that
we shift half a plane horizontally by one cell. We obtain a configuration like on
Figure 4(a). This configuration has only a finite number of tiling errors: around
the cell where we broke the vertical line of y’s. Now, what can we do in order to
correct it? The only solution seems to shift back half a plane in order to restore
the vertical line of y’s. We now prove it is indeed the only solution by obtaining a
contradiction with our hypothesis that the set of all possible tilings is countable.

x x x x x y z z z z

x x x x x y z z z z

x x x x x y z z z z

x x x x x y z z z z

x x x x x y z z z z

x x x x x y z z z z

Fig. 3. Example of a tiling from Corollary 1

Proof (of Theorem 3). Let c be a tiling as in Corollary 1: c is of the form ωxyzω

with |x| = |y| = |z| = p and y �= z. We modify c by shifting half a plane by p
to obtain a configuration like depicted on Figure 4(a). Since this transformation
breaks only finitely many tiling rules, suppose that we can correct this by mod-
ifying only a finite number of cells. We obtain a tiling like on Figure 4(b) where
we have a semi-infinite line of y’s in one direction and a shifted semi-infinite line
of y’s in the other direction, separated by a pattern that repaired the error.

We obtained a transformation of the tiling and can repeat it on every suf-
ficiently long vertical line of y’s. This transformation gives us a different tiling
each time we apply it since y �= z. Such vertical lines of y’s appear infinitely
many times, therefore we obtain 2ℵ0 valid tilings for τ , a contradiction. ��
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x x x y z z z z z z

x x x y z z z z z z

x x x y z z z z z z

x x x x y z z z z z

x x x x y z z z z z

x x x x y z z z z z

(a) Small modification of c

x x x x x y z z z z z z z z

x x x x x y z z z z z z z z

x x x x x y z z z z z z z z

x x x x x y z z z z z z z z

x x x x x y z z z z z z z z

x x x x x x y z z z z z z z

x x x x x x y z z z z z z z

x x x x x x y z z z z z z z

x x x x x x y z z z z z z z

x x x x x x y z z z z z z z

x x x x x x y z z z z z z z

(b) Corrected version of a small modifica-
tion of c

Fig. 4. Transformations of c

5 Recursive Inseparability of Robust and Non-locally
Robust Tilesets

Tilesets that allow countably many tilings are not locally robust (Theorem 3)
while tilesets that allow only periodic tilings are robust to errors (Theorem 2). In
this section we prove that those classes of tilesets are not recursively separable,
hence neither are robust and non locally robust tilesets.

Theorem 5. Robust tilesets and non-locally robust tilesets are recursively in-
separable.

Proof. We will assume the reader familiar with the encoding of Turing machines
into tilesets à la Berger [2], if not please refer to the detailed constructions in
[3,15]. Every tiling by such a tileset contains arbitrary large squares on which
we can force the bottom left corner. This corner is where we put the start of a
Turing machine computation. We can see the rows of these squares as the Turing
machine’s tape, time is going bottom-up. Then we do the following:

– If the machine halts and outputs 1 then we force a periodic tiling: when this
halting state reaches the border of the square we force a new border such
that the only way to tile the plane is to repeat periodically this square. This
is exactly what is done in [3, Appendix A].

– If the machine does not halt, the tileset tiles aperiodically with an infinite
computation of the Turing machine inside.

– If the machine halts and outputs 2 then force the periodicity vertically but
allow only a new color, blue, that forces a monochromatic half plane at its
left and another color at its right, green, that also forces a monochromatic
half plane.
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This new tileset always tiles the plane with the uniform blue and green tilings.
If the machine halts and outputs 1 then the tileset allows only periodic tilings. If
it halts and outputs 2 then it allows countably many tilings because the vertical
computation line can appear at a countable number of positions. If it does not
halt then it allows an uncountable number of tilings.

The class M1 of Turing machines that halt and output 1 is recursively in-
separable of the class M2 of TM that halt and output 2: consider the sets Ci

(i ∈ {1, 2}) of Turing machines that halt on i with their code as input, then a
Turing machine M that outputs 2 if its input is not in C2 and 1 if it is not in
C1; there exists such a machine that always halts if we suppose C1 and C2 to be
recursively separable and M(〈M〉) gives the contradiction.

With the previous tileset construction, the class M1 is recursively encoded
into tilesets that are robust to errors and the class M2 into tilesets that are not
locally robust. ��

6 Conclusions and Open Problems

In this paper we have shown how it is possible to repair tiling errors (as defined
in Section 3) on very simple tilesets (the periodic ones). This correction process
relies on the fact that we can surround errors by correct zones which we are sure
appear in a valid tiling of the plane; while this is true for periodic tilesets we
remark that there exists some other tilesets for which it is also true, it would be
interesting to obtain a characterization of such tilesets.

We also proved that tilesets that allow countably many tilings are not locally
robust; being locally robust is a necessary condition for being able to apply
our iterative correction process. While this iterative correction process allows to
repair periodic tilesets and even some aperiodic ones [7,8] we believe there exists
some tilesets that would be locally robust but on which this iterative correction
process will not work.

The recursive inseparability between tilesets that we are able to repair and the
ones that are not locally robust shows that there is no simple characterization
of error-robustness for tilesets.
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Abstract. Many surgical procedures could benefit from guiding a bevel-tip nee-
dle along circular arcs to multiple treatment points in a patient. At each treatment
point, the needle can inject a radioactive pellet into a cancerous region or ex-
tract a tissue sample. Our main result is an algorithm to steer a bevel-tip needle
through a sequence of treatment points in the plane while minimizing the num-
ber of times that the needle must be reoriented. This algorithm is related to [6]
and takes quadratic time when consecutive points in the sequence are sufficiently
separated. We can also guide a needle through an arbitrary sequence of points in
the plane by accounting for a lack of optimal substructure.

Keywords: Needle Steering, Link Distance, Brachytherapy, Biopsy.

1 Introduction

Many surgical procedures could benefit from guiding a bevel-tip needle through a se-
quence of treatment points in a patient. For example, brachytherapy procedures per-
manently implant radioactive seeds that irradiate the surrounding cancerous tissue, and
biopsy procedures extract tissue samples to test for cancer.

A bevel-tip needle has an asymmetric tip that cuts through tissue along a circular
arc. By rotating the needle during its insertion into soft tissue, the needle can be steered
along a sequence of circular arcs so that it reaches a treatment point while avoiding
bones and vital organs. Although unpredictable deflections can occur due to tissue het-
erogeneity, these deflections can be accounted for by taking snapshots of the needle’s
position during surgery [3].

Although current procedures typically create a new puncture for each treatment
point, our work permits multiple treatment points to be visited with a single puncture.
Since each reorientation of the needle inherently complicates the path for the physician,
we minimize the number of arcs that are required for the needle to visit a sequence of
treatment points.
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1.1 Previous Work

The path traveled by a bevel-tip needle is theoretically equivalent to a restricted type
of Dubins path [7] that can move along circular arcs but cannot move straight. Needle
paths also have similarities to touring problems [6], curvature-constrained shortest path
problems [1,4,7], and link distance problems [5,9,10]. Since curvature-constrainedpaths
are NP-Hard to compute in the plane with polygonal obstacles [1], recent work has
explored curvature-constrained paths in convex polygons [1] and narrow corridors [4].

Alterovitz et al. [3] consider steering a needle through a plane with polygonal obstacles
to a single treatment point. They calculate an optimal entry point for a needle and assume
that no rotations are performed during the procedure. Subsequent work in the plane by
Alterovitz et al. [2] permits the needle to rotate during its insertion into soft tissue. Their
dynamic programming approach uses a Markov model to maximize the probability of
successfully reaching a single treatment point without bumping into an obstacle.

Several studies have steered a needle in three dimensions. Duindam et al. [8] guide
a needle to a single treatment point in a three dimensional setting without obstacles.
Xu et al. [11] use a probabilistic roadmap to reach a single treatment point in a three-
dimensional space that contains spherical obstacles.

Related work also exists in the realm of robotic motion. Robots typically have a
much easier time moving straight than turning, so the “length” of a path is typically
measured by the number of turns on the path instead of the Euclidean length of the
path [9]. Steering a needle is similar in the sense that reorienting the needle during the
insertion process complicates the path for the physician.

1.2 Our Results

We always assume that the needle travels on circular arcs with a fixed radius r. Note that
this radius can be controlled to some extent by varying the stiffness of the needle. Al-
though deflections can in practice lead to deviations from an ideal path, the location of the
needle can be periodically sampled during a procedure to account for these deflections.

Our main result is an algorithm to steer a needle through an (ordered) sequence of
treatment points in a plane without obstacles. When consecutive points in this sequence
are sufficiently separated, optimal substructure holds, and we can iteratively propagate
all optimal paths through the sequence. Although optimal substructure need not hold
for an arbitrary sequence of points, we can still propagate all optimal paths through the
sequence by accounting for some locally suboptimal paths. We also discuss how to steer
a needle between two given points in Rd.

To our knowledge, no previous algorithm exists to steer a needle through multiple
treatment points. However, another work has previously explored Euclidean shortest
paths that tour a sequence of polygons [6].

2 Needle Steering in Rd

A bevel-tip needle has an asymmetric tip that cuts through soft tissue along a circular
arc. Each rotation of the needle during its insertion into tissue causes the needle to start
moving along a new circular arc that is tangent to the previous circular arc [2]. A needle
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arc is a directed circular arc that lies on a needle circle with radius r. Figure 1a illus-
trates that a needle path πN (s, t) is a connected sequence of needle arcs that connects
two points s and t. The length dN (s, t) of a needle path equals the smallest possible
number of needle arcs that can be used to connect s and t. Consecutive needle arcs of
πN (s, t) lie on tangent needle circles, and consecutive needle arcs always have oppo-
site orientations (e.g., if the current arc travels clockwise, then the next arc must travel
counter-clockwise). A needle vector is a vector that is tangent to the needle’s current
position on a needle arc.

A shortest path map can quickly return a needle path πN (s, t) from some fixed
source point s ∈ Rd to any treatment point t ∈ Rd. Assuming that the initial nee-
dle vector can be chosen arbitrarily, all points within Euclidean distance 2r of s can
be reached with one needle arc. More generally, for any integer j ≥ 1 all points
{t ∈ Rd | (j − 1) · 2r < ||s − t|| ≤ j · 2r} can be reached by at least one needle
path that is composed of j needle arcs (see Figure 1a).1 Thus, the length of a needle
path from s to t is dN (s, t) = � ||s−t||

2r . The needle arcs of πN (s, t) can be constructed
by stacking a sequence of needle circles with centers on the line segment st. Note that
the final circle on πN (s, t) should be tangent to t and may not have its center on st.
We can now define a shortest path map SPMN (s) as a partition of Rd into an interior-
disjoint set of layers L1, ...,LM such that all points t ∈ Lj have dN (s, t) = j. Such a
shortest path map is an arrangement of concentric hyperspheres that are centered at s
and have radii j · 2r for all integers j ≥ 1 (see Figure 1a).

s
2r

2r

2r

2r

s1 s2

(a) (b)

L4L3L2L1

L4

L3

L2
L1

L4

L3

L2

L1...

...

...
t

Fig. 1. (a) The shortest path map SPMN (s) is an arrangement of concentric hyperspheres. A
needle path πN (s, t) with four needle arcs is shown. (b) The shaded bisector of SPMN (s1) and
SPMN (s2) is a superset of the Euclidean bisector for s1, s2.

Given multiple candidate start positions {s1, ..., sn} for the needle, we may wish to
quickly determine a nearest starting point to a given query point t ∈ Rd. Such a task can
be efficiently accomplished using a traditional Euclidean Voronoi diagram. The bisector
for any two points si, sj is the set of all points {t ∈ Rd | dN (si, t) = dN (sj , t)}
(see Figure 1b). This bisector is always a superset of the Euclidean bisector of si, sj

1 The Euclidean distance between points s and t is denoted ||s − t||.
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because being equidistant with respect to Euclidean distance implies being equidistant
with respect to the length of a needle path.

3 Visiting a Sequence of Well-Separated Points in the Plane

This section shows how to compute a needle path πN (p1, ..., pn) in the plane that starts
at a point p1, visits a sequence of points p2, ..., pn−1, and ends at a point pn. A needle
path is said to visit a sequence of points when these points appear in order along the
path. Let dN (p1, ..., pn) be the number of needle arcs on πN (p1, ..., pn). Assume for
now that the needle vector is allowed to be arbitrary when the needle visits each point pi.
We call a sequence of points p1, . . . , pn moderately-separated whenever ||pi−pi−1|| ≥
2r for all 2 ≤ i ≤ n and well-separated whenever ||pi − pi−1|| ≥ 4r for all 2 ≤ i ≤ n.
Given an optimal path πN (p1, ..., pn), optimal substructure guarantees that all possible
subpaths πN (pi, ..., pj) for 1 ≤ i ≤ j ≤ n must also be optimal.

Lemma 1. Optimal substructure need not hold for a needle path that visits an arbitrary
sequence of points. Optimal substructure does hold for moderately-separated points.

Proof. Figure 2a illustrates a needle path πN (p1, p2, p3) that does not have optimal
substructure. Although a locally optimal path from p1 to p2 is possible with one needle
arc, all possible extensions of such a path can require a total of three needle arcs to
reach p3. By contrast, a globally optimal path can reach p3 with just two needle arcs if
a locally suboptimal path with two needle arcs is used to connect p1 to p2.

To see that optimal substructure does hold for moderately-separated points, consider
two paths to pi. Let co be a needle circle that intersects pi and lies on an (optimal)
needle path πN (p1, ..., pi) with length dN (p1, ..., pi) = j. Let cs be a needle circle that
intersects pi and lies on a suboptimal path with length at least j+1. Figure 2b illustrates
that the shaded set of all points reachable from co with one additional needle arc will
always contain all points on the suboptimal circle cs that lie outside the disk do that is
bounded by co. This implies that for any point pi+1 /∈ do, there always exists a path
πN (p1, ..., pi+1) that contains co and has the same length as any path π′

N (p1, ..., pi+1)
that contains cs. Since moderately-separated points guarantee that pi+1 /∈ do, optimal
substructure holds for moderately-separated points. ��

p1 p2p3

p1 p2p3

1

2
3

1
2

(a) (b)

pi

co
cs

Ci

r 2r

2r

Fig. 2. (a) Optimal substructure need not hold for a needle path that visits an arbitrary sequence
of points. (b) Optimal substructure does hold for moderately-separated points.
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Fig. 3. (a) The sequence of layers L1
1, ...,LM

1 for p1 can always be described by the shortest path
map SPMN (p1). We refer to S1 as the first layer in this sequence that intersects C2. (b,c) Layer
L1

2 is the set of all needle circles that intersect both p2 and S1. Layer S2 is the first layer in the
sequence L1

2, ...,LM
2 that intersects C3.

For each point pi, we can now define a partition of the plane such that each point t ∈ R2

has an associated distance dN (p1, ..., pi, t). Such a partition can be described by a se-
quence of pairwise disjoint layersL1

i , ...,LM
i such that all points t ∈ Lj

i have associated
distance dN (p1, ..., pi) + j − 1 (see Figure 3). Note that all needle circles composing
L1

i must necessarily intersect pi, so the boundary of L1
i is a connected sequence of

needle arcs.
Although the number of layers needed to partition the plane can be unbounded,

the optimal substructure of moderately-separated points ensures that it is always pos-
sible to efficiently construct any layer Lj

i directly from L1
i because all needle paths

πN (p1, ..., pi, t) must pass through L1
i . In particular, any layer Lj≥2

i is the set of all
points {t ∈ Rd | (j − 2) · 2r < mins∈L1

i
||s − t|| ≤ (j − 1) · 2r}. The boundary

separating Lj≥2
i and Lj+1

i can be computed by additively enlarging the radius of arcs
on the boundary of L1

i by (j − 1) · 2r while keeping the center of each arc fixed.
We now show how to computeL1

i fromL1
i−1 for a sequence of moderately-separated

points. Let Ci be the circle with radius 2r that is centered at the point pi. Notice that
each needle circle in L1

i must intersect both pi and some unique point of Ci. For our
purposes, the first layer in the sequence L1

i−1, ...,LM
i−1 that intersects Ci will be of such

importance that we will give this layer the special name Si−1 (see Figures 3b and 3c).
Optimal substructure implies that L1

i is the union of all needle circles that intersect
pi and are tangent to a circle in Si−1. For each arc on the boundary of Si−1, compute
the at most two needle circles that are tangent to this arc and intersect pi. Order the
resulting needle circles into a sequence by the polar coordinates of their centers with
respect to pi. Let c and c′ be two adjacent needle circles in this sequence such that if c
is continuously rotated counter-clockwise about pi to c′, then all of the needle circles
during this rotation will intersect Si−1 (see Figure 3b). Notice that the union of all
needle circles in the rotation from c to c′ can be compactly described by a constant
complexity region Rj

i ⊆ L1
i . We call the arc αj

i ⊆ Ci that intersects Si−1 and lies
between c and c′ a generating arc because αj

i encodes all of the information necessary
to generate the region Rj

i .
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Fig. 4. (a) Region Rj
i ⊆ L1

i is bounded by αj
i ⊆ Ci and two circular arcs. (b) Whenever a

generating arc αj
i covers less than half of Ci, the points in the interior of c ∩ c′ are contained in

layer L2
i . (c) In general, layer L1

i is the union of a sequence of regions R1
i , ...,Rk

i . These regions
can be computed from the associated sequence of generating arcs α1

i , ..., α
k
i ⊆ Ci.

Each regionRj
i is always bounded by its associated generating arc αj

i ⊆ Ci and arcs
of c and c′ (see Figure 4a). Whenever a generating arc αj

i covers less than half of Ci,
the points in the interior of c ∩ c′ are contained in layer L2

i (see Figure 4b). Optimal
substructure ensures that all layers Lj≥3

i will be connected.
Notice that a layer L1

i can have multiple associated generating arcs. Consequently,
L1

i can be defined as the union of a sequence of regions R1
i , ...,Rk

i (see Figure 4c). In
the remainder of this section, we will avoid computing an explicit union of these regions
and instead work directly with the individual generating arcs and regions that compose
a layer.

Lemma 2. A sequence of points p1, ..., pn that are not well-separated can define a
layer L1

n with Θ(2n) generating arcs.

Proof. The lower bound can be realized by placing p1, ..., pn on a line such that 2r <
||pi − pi−1|| < 4r for all 2 ≤ i ≤ n. As illustrated in Figure 5a, layer L1

1 is a disk.
Place p2 to the right of p1 so that layer L1

2 is defined by one generating arc α1
2 ⊂C2

that represents all needle circles that intersect p2 and are tangent to some needle circle
in L1

1. Place p3 to the right of p2 such that only two discrete needle circles intersect
p3 and are tangent to some needle circle in L1

2. Each of these needle circles defines a
(degenerate) generating arc, and the union of these two needle circles is L1

3. Place p4 to
the left of p3 such that four discrete needle circles intersect p4 and are tangent to some
needle circle in L1

3. The union of these four needle circles is L1
4 (see Figure 5b). Place

p5 to the right of p4 such that eight discrete needle circles define L1
5 (see Figure 5c).

Continuing in this fashion for every i ≥ 3, we can place p2i to the left of p2i−1 and
p2i+1 to the right of p2i such that layer L1

n is composed of 2n−2 circles. Thus, L1
n can

have Ω(2n) generating arcs.
We now show that layer L1

n has O(2n) generating arcs. Assume that L1
i−1 is defined

by k generating arcs. By definition, each region associated with these generating arcs is
bounded by an arc on Ci−1 and at most two additional arcs that can lie on unique circles
(see Figure 4a). This implies that the arcs bounding any fixed layer Lj

i−1 lie on at most
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Fig. 5. When points are not well-separated, layer L1
n can have Θ(2n) generating arcs. Part (a)

shows the disk defining L1
1, the generating arc α1

2 defining L1
2, and the two circles defining

L1
3. Parts (b) and (c), respectively, illustrate the four circles defining L1

4 and the eight circles
defining L1

5.

2k + 1 unique circles. Now consider the circle Ci. Since any pair of circles intersect at
most twice, Ci intersects each of the 2k+1 unique circles for Si−1 at most twice. Since
each generating arc of L1

i can always be charged to two unique intersections of Ci with
these circles, L1

i is defined by at most 2k + 1 generating arcs. An inductive argument
now ensures that L1

n has O(2n) generating arcs. ��

Exponential behavior occurred above because Ci was able to pass through L1
i−1 many

times. However, if we assume that ||pi−pi−1|| ≥ 4r, then Ci intersects L1
i−1 in at most

one point. This property is used in the following lemma to show that when the points
p1, ..., pn are well-separated, each layer L1

i is defined by O(i) generating arcs.

Lemma 3. Given both a sequence of well-separated points p1, ..., pn and the sequence
of generating arcs defining layer L1

i−1, there exist O(i) generating arcs for any layer
L1

i , ...,LM
i . These O(i) generating arcs can be constructed in O(i) total time.

Proof. Assume thatL1
i−1 is defined by a sequence of k sorted, pairwise disjoint generat-

ing arcs α1
i−1, ..., α

k
i−1 ⊆ Ci−1. Recall that Si−1 denotes the first layer in the sequence

L1
i−1, ...,LM

i−1 that intersects Ci. If Si−1 = L1
i−1, then the well-separated property en-

sures that at most one circle definesL1
i−1. Otherwise, Si−1 equals some layerLj≥2

i−1 , and
the well-separated property ensures that Ci only intersects the connected component of
Si−1 that lies outside the disk bounded by Ci−1. Such a connected component has two
closed boundaries, and we let B be the boundary that is farthest from pi−1. Observe
that B is a closed sequence of arcs (see Figure 6). Every third arc of B is an additively
enlarged version of a generating arc such that all additively enlarged generating arcs
lie on one fixed circle. Adjacent additively enlarged generating arcs in B are always
connected by two arcs that intersect in one concave vertex. Hence, there are at most k
concave vertices on B.

We now bound the number of generating arcs that can define L1
i by counting the

number of times that Ci can intersect B. There are two types of intersections to con-
sider. First, Ci can intersect B at most twice over all additively enlarged generating arcs
because these arcs all lie on a single circle. Second, Ci can intersect B at most twice
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B
pi−1 ...

Fig. 6. An arbitrary circle Ci intersects the boundary B ⊆ Si−1 at most twice for each of the
gray concave vertices on B and at most twice over all points on the thick additively enlarged
generating arcs

for each of the k concave vertices on B. Since a generating arc is always defined by two
unique intersections, the at most 2k + 2 intersections of Ci with B ensure that L1

i is
defined by at most k + 1 generating arcs. An inductive argument can now easily show
that O(i) generating arcs define L1

i . These generating arcs can be constructed in sorted
order on Ci in O(i) total time by traversing the boundary B in sorted order. ��
We can now compute a needle path πN (p1, ..., pn) that passes through a sequence of
well-separated points.

Theorem 1. Given a sequence p1, ..., pn of well-separated points, a needle path πN

(p1, ..., pn) can be computed in O(n2 + K) time and space, where K is the complexity
of the returned path.

Proof. The generating arcs for L1
i and Si can be constructed from the generating arcs

of L1
i−1 in O(i) time by Lemma 3. Hence, the generating arcs for S1, ..., Sn−1 and L1

n

can be constructed in O(n2) total time.
To compute πN (p1, ..., pn), pick any circle cn ⊆ L1

n. This circle intersects some
point q ∈ Sn−1. To connect q ∈ Sn−1 to pn−1, draw a line segment from pn−1 to q
and find the last intersection point q′ of this line segment with the boundary of L1

n−1.
Draw the circle cn−1 that touches pn−1 and q′. To connect the two circles cn−1 and cn,
identify the closest pair of points r ∈ cn−1, r′ ∈ cn (with respect to Euclidean distance)
and create a chain of tangent needle circles along the line segment from r to r′. Note
that the needle circle touching r′ may need to be rotated slightly about the previous
circle in the chain to ensure that this circle is tangent to cn. We have now found an
optimal path from pn to pn−1, and this process can be iteratively repeated from cn−1 to
construct the remainder of πN (p1, ..., pn). ��
Note that if we require the needle to have a specific needle vector when it visits each
pi, then each layer L1

i consists of the at most two needle circles that are tangent to this
vector. For this scenario, our layers technique can return a needle path in only O(n+K)
time and space, where K is the complexity of the returned path.

4 Visiting a Sequence of Arbitrary Points in the Plane

This section describes a fixed-parameter tractable algorithm that computes a needle path
for a sequence of points p1, ..., pm+n such that any m pairs of consecutive points are
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positioned arbitrarily and the remaining pairs of consecutive points are well-separated.
Note that optimal substructure can fail for this scenario as depicted by Figure 2a. How-
ever, an optimal path can still be returned by accounting for locally suboptimal needle
circles that touch multiple consecutive points in the sequence.

Lemma 4. Given a sequence of points p1, ..., pm+n, the generating arcs for layer L1
i

can be constructed in time proportional to the number of generating arcs defining L1
i−1

and L1
i−2.

Proof. If ||pi − pi−1|| ≥ 2r, then optimal substructure holds by Lemma 1, and we can
compute the generating arcs for L1

i from the generating arcs of L1
i−1 as in the previous

section. Now assume that ||pi − pi−1|| < 2r, and let γ = dN (p1, ..., pi−1). Our first
step is to determine the value of dN (p1, ..., pi).

If pi ∈ L1
i−1, then we can immediately return dN (p1, ..., pi) = γ. If there exists

any fixed needle circle c ∈ L1
i−1 that does not surround pi, then the precondition

||pi − pi−1|| < 2r ensures that dN (p1, ..., pi) = γ + 1. The only other way to ob-
tain dN (p1, ..., pi) = γ + 1 is for a locally suboptimal path with total length γ + 1 to
end in a needle circle that touches both pi and pi−1. Such paths can be accounted for
by determining whether the layer Lj

i−2 with associated distance γ +1 contains a needle
circle that touches both pi and pi−1. Otherwise, the precondition ||pi − pi−1|| < 2r
ensures that dN (p1, ..., pi) = γ + 2. This means that we can compute dN (p1, ..., pi) in
time proportional to the number of generating arcs defining L1

i−1 and L1
i−2.

We now use the value of dN (p1, ..., pi) to compute L1
i . If dN (p1, ..., pi) = γ, then

L1
i is composed of the at most two circles that touch both pi and pi−1 and are contained

in L1
i−1 (see Figure 7a).

If dN (p1, ..., pi) = γ + 1, then we can partially compute L1
i as in Lemma 3 using

locally optimal paths from L1
i−1. In addition, we must also account for locally subop-

timal paths by testing whether the layer Lj
i−2 with associated distance γ + 1 contains

either of the at most two needle circles that touch both pi and pi−1.
If dN (p1, ..., pi) = γ + 2, then L1

i is the disk centered at pi with radius 2r. This
follows from ||pi − pi−1|| < 2r because it will always be possible to connect any
needle circle c∈L1

i−1 to an arbitrary needle circle c′ that touches pi by choosing one
needle circle that it tangent to both c and c′ (see Figure 7b). Hence, all of the operations

pi

(a)

pi−1

pi

c
pi−1

L1
i−1

pi

L1
i

c′

pi

(b)

L1
i

Fig. 7. (a) If dN(p1, ..., pi) = γ, then there are at most two circles that define L1
i . (b) If ||pi −

pi−1|| < 2r and dN (p1, ..., pi) = γ + 2, then at most one extra circle is needed to connect an
arbitrary circle c ∈ L1

i−1 to an arbitrary circle c′ that touches pi.
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needed to construct the generating arcs for L1
i take time proportional to the number of

generating arcs defining L1
i−1 and L1

i−2. ��
Theorem 2. A needle path πN (p1, ..., pm+n) can be computed in O(2mn + n2 + K)
time and space, where K is the complexity of the returned path.

Proof. Given a sequence of m arbitrary points, layer L1
m can have Θ(2m) generating

arcs by Lemma 2. Lemma 3 ensures that each of the well-separated pairs of consecutive
points adds only a constant number of additional generating arcs to the current layer.
Consequently, the worst-case time to compute the generating arcs for L1

1, ...,L1
m+n is

on the order of Σn
i=1(2

m + i) ∈ O(2mn + n2). Once these generating arcs have been
computed, it is a simple matter to construct πN (p1, ..., pm+n) in the same manner as
Theorem 1. ��

5 Conclusion

We developed two algorithms to guide a bevel-tip needle through a sequence of treat-
ment points in the plane. Such paths are potentially useful for biopsy and brachytherapy
procedures because they reduce the number of times that a physician is required to in-
sert and withdraw a needle during a medical procedure. We are currently extending our
technique to visit multiple edges instead of multiple points. It would also be interesting
to extend our algorithm to points in three dimensions while avoiding an exponential
runtime.
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Abstract. In this paper, we consider Steiner forest and its generalizations, prize-
collecting Steiner forest and k-Steiner forest, when the vertices of the input graph
are points in the Euclidean plane and the lengths are Euclidean distances. First, we
present a simpler analysis of the polynomial-time approximation scheme (PTAS)
of Borradaile et al. [11] for the Euclidean Steiner forest problem. This is done
by proving a new structural property and modifying the dynamic programming
by adding a new piece of information to each dynamic programming state. Next
we develop a PTAS for a well-motivated case, i.e., the multiplicative case, of
prize-collecting and budgeted Steiner forest. The ideas used in the algorithm may
have applications in design of a broad class of bicriteria PTASs. At the end, we
demonstrate why PTASs for these problems can be hard in the general Euclidean
case (and thus for PTASs we cannot go beyond the multiplicative case).

1 Introduction

Prize-collecting Steiner problems are well-known network design problems with sev-
eral applications in expanding telecommunications networks (see e.g. [22,29]), cost
sharing, and Lagrangian relaxation techniques (see e.g. [21,14]). The most general
version of these problems is called the prize-collecting Steiner forest (PCSF) prob-
lem1, in which, given a graph G = (V, E), a set of (commodity) pairs D =
{(s1, t1), (s2, t2), . . . }, a non-negative cost function c : E → Q≥0, and finally a non-
negative penalty function π : D → Q≥0, our goal is a minimum-cost way of buying a
set of edges and paying the penalty for those pairs which are not connected via bought
edges. When all penalties are ∞, the problem is the classic APX-hard Steiner forest
problem for which the best approximation factor is 2 − 2

n (n is the number of ver-
tices of the graph) due to Goemans and Williamson [17]. When all sinks are identical
in the PCSF problem, it is the classic prize-collecting Steiner tree problem. Bienstock,
Goemans, Simchi-Levi, and Williamson [8] first considered this problem (based on
a problem earlier proposed by Balas [3]) for which they gave a 3-approximation al-
gorithm. The current best approximation algorithm for this problem is a recent 1.992-
approximation algorithm of Archer, Bateni, Hajiaghayi, and Karloff [1] improving upon

� Refer to the full version [5] for the omitted proofs and further discussion.
�� The author was supported by a Gordon Wu fellowship as well as NSF ITR grants CCF-

0205594, CCF-0426582 and NSF CCF 0832797, NSF CAREER award CCF-0237113, MSPA-
MCS award 0528414, NSF expeditions award 0832797.

1 It is sometimes called prize-collecting generalized Steiner tree (PCGST) in the literature.

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 503–514, 2010.
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a primal-dual
(
2 − 1

n−1

)
-approximation algorithm of Goemans and Williamson [17].

When in addition all penalties are ∞, the problem is the classic Steiner tree problem,
which is known to be APX-hard [7] and for which the best known approximation factor
is 1.55 [28].

There are several 3-approximation algorithms for the prize-collecting Steiner forest
problem using LP rounding, primal-dual, or iterative rounding methods which are first
initiated by Hajiaghayi and Jain [19] (see [8,20]). Currently the best approximation fac-
tor for this problem is a randomized 2.54-approximation algorithm [19]. The approach
of Hajiaghayi and Jain has been generalized by Sharma, Swamy, and Williamson [30]
for network design problems where violating arbitrary 0-1 connectivity constraints are
allowed in exchange for a very general penalty function.

Lots of attention has been paid to budgeted versions of Steiner problems as well.
In the k-Steiner forest (or just k-forest for abbreviation), given a graph G = (V, E)
and a set of (commodity) pairs D, the goal is to find a minimum-cost forest that con-
nects at least k pairs of D. The best current approximation factor for this problem is in
O(min{√k,

√
n}) [18]. On the other hand, Hajiaghayi and Jain [19] could transform

notorious dense k-subgraph to this problem, for which the current best approximation
factor is O(n1/3−ε) [15]. The special case in which we have a root r and D consists of
all pairs (r, v) for v ∈ V (G) − {r} is the well-known NP-hard k-MST problem. The
first non-trivial approximation algorithm for the k-MST problem was given by Ravi et
al. [27], who achieved an approximation ratio of O(

√
k). Later this approximation ratio

is improved to a constant by Blum et al. [9]. Currently the best approximation factor for
this problem is 2 due to Garg [16].

In this paper, we consider Euclidean prize-collecting Steiner forest and Euclidean
k-forest in which the vertices of the input graph are points in the Euclidean plane (or
low-dimensional Euclidean space) and the lengths are Euclidean distances. For the Eu-
clidean Steiner tree problem, Arora [2] and Mitchell [26] gave polynomial-time ap-
proximation schemes (PTASs). Recently Borradaile, Klein and Kenyon-Mathieu [11]
claim a PTAS for the more general problem of Euclidean Steiner forest .

1.1 Problem Definition

Motivated by the settings in which the demand of each pair is the product of the weight
of the origin vertex and the weight of the destination vertex in the pair and thus in a sense
contributions of each vertex to all adjacent pairs are the same (e.g., see product multi-
commodity flow in Leighton and Rao [24] or [10,23], and its applications in wireless
networks [25] or routing [12,13]), we consider the following multiplicative version of
prize-collecting Steiner forest for the Euclidean case.

In the Multiplicative prize-collecting Steiner forest (MPCSF) problem, given an
undirected graph G(V, E) with non-negative edge lengths ce for each edge e ∈ E,
and also given weights φ(v) for each vertex v ∈ V , our goal is to find a forest F which
minimizes the cost ∑

e∈F

ce +
∑

u,v∈V : u and v are not connected via F

φ(u)φ(v).
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Indeed, this is an instance of PCSF in which each ordered vertex pair (u, v) forms a
request with penalty φ(u)φ(v).2 We may be asked to collect a certain prize S, in which
case the goal is to find the forest F of minimum cost for which∑

u,v∈V : u and v are connected via F

φ(u)φ(v) ≥ S.

Let us call this problem S-MPCSF. We show that this is a generalization of the k-MST
problem and thus currently there is no approximation better than 2 for this problem,
either. When working on the Euclidean case, the input does not include any Steiner
vertices, as all the points of the plane are potential Steiner points.

A bicriteria (α, β)-approximate solution for the the S-MPCSF problem is one whose
cost is at most αOPT, yet collects a prize of at least βS. Our main contribution in this
paper is a bicriteria (1+ε, 1−ε′)-approximation algorithm that runs in time exponential
in 1/ε but polynomial in n and 1/ε′. We then use this algorithm to obtain a PTAS for
MPCSF.

1.2 Our Contribution

First of all, we present a simpler analysis for the algorithm of Borradaile et al. [11] for
the Euclidean Steiner forest problem and reprove the following theorem.

Theorem 1. For any constant ε > 0, there is an algorithm that runs in polynomial
time and approximates the Euclidean Steiner forest problem within 1 + ε of the optimal
solution.

This is done by modifying the dynamic programming (DP) algorithm so that instead of
storing paths enclosing the zones in the algorithm by Borradaile et al., we use a bitmap
to identify a zone. The modification results in simplification of the structural property
required for the proof of correctness (See Section 3). We prove this structural property
in Theorem 6. The proof has some ideas similar to [11], but we present a simpler charg-
ing scheme that has a universal treatment throughout. Details of the DP algorithm are
deferred to the full version of the paper. We have recently come to know that similar
simplifications have been independently discovered by the authors of [11], too.

Next we extend the algorithm for Euclidean S-MPCSF and MPCSF problems in
Section 4.

Theorem 2. For any ε, ε′ > 0, there is a bicriteria (1 + ε, 1− ε′)-approximation algo-
rithm for the Euclidean S-MPCSF problem, that runs in time polynomial in n, 1/ε′ and
exponential in 1/ε.

Notice that ε′ need not be a constant. In particular, if all weights are polynomially
bounded integers, we can find in polynomial time a (1 + ε)-approximate solution that
collects a prize of at least S; this can be done by picking ε′ to be sufficiently small (ε′−1

is still polynomial). Next we present a PTAS for Euclidean MPCSF.

2 We can change the definition to unordered pairs whose treatment requires only a slight modi-
fications of the algorithms. Currently, each unordered pair (u, v) has a prize of 2φ(u)φ(v) if
u �= v.



506 M. Bateni and M. Hajiaghayi

Theorem 3. For any constant ε, there is a (1 + ε)-approximation algorithm for the
Euclidean MPCSF problem, that runs in polynomial time.

We also study the case of asymmetric prizes for vertices in which each vertex v has
two types of weights (type one and type two) and the prize for an ordered pair (u, v) is
the product of the first type weight of u, i.e., φs(u), and the second type weight of v,
i.e., φt(v). This case is especially interesting because it generalizes the multiplicative
prize-collecting problem when we have two disjoint sets S1 and S2 and we pay the
multiplicative penalty only when two vertices, one in S1 and the other one in S2, are
not connected (by letting for each vertex in S1 the first type weight be its actual weight
and the second type weight be zero and for each vertex in S2 the first type weight
be zero and the second type weight be its actual weight.) After hinting on the arising
complications, we show how we can extend our algorithms for this case as well.

Theorem 4. For any ε, ε′ > 0, there is a bicriteria (1 + ε, 1− ε′)-approximation algo-
rithm for the Euclidean Asymmetric S-MPCSF problem, that runs in time polynomial
in n, 1/ε′ and exponential in 1/ε. In addition, for any constant ε, there is a (1 + ε)-
approximation algorithm for the Euclidean Asymmetric MPCSF problem, that runs in
polynomial time.

Indeed, the algorithms in Theorem 4 can be extended to the case in which there are
a constant number of different types of weights for each vertex generalizing the case
in which we have a constant number of disjoint sets and we pay the multiplicative
penalty when two vertices from two different sets are not connected. Notice that the
case of two disjoint sets already generalizes the prize-collecting Steiner tree problem
(by considering S1 = {r} and S2 = V − {r}) whose best approximation guarantee is
currently 1.992.

At the end, we present in Section 5 why PCSF and k-forest problems can be APX-
hard in the general case (and thus for PTASs we cannot go beyond the multiplicative
case). We conclude with some open problems in Section 6. All the omitted proofs ap-
pear in the appendix.

1.3 Our Techniques for the Prize-Collecting Version

Here, we summarize our techniques for the multiplicative prize collecting Steiner for-
est algorithms; see Section 4. In all those algorithms, we store in each DP state extra
parameters, including the sum of the weights, as well as the multiplicative prize already
collected in each component. These parameters enable us to carry out the DP update
procedure. Interestingly, the sum and collected prize parameters have their own preci-
sion units.

In the asymmetric version, a major issue is that no fixed unit is good for all sum
parameters. Some may be small, yet have significant effect when multiplied by others.
To remedy this, we use variable units, reminiscent of the floating-point storage formats
(mantissa and exponent). To the best of our knowledge, Bateni and Hajiaghayi [4] were
the first to take advantage of this idea in the context of (polynomial time) approximation
schemes. The basic idea is that a certain parameter in the description of DP states has
a large (not polynomial) range, however, as the value grows, we can afford to sacrifice
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more on the precision. Thus, we store two (polynomial) integer numbers, say (i, x),
where i denotes a variable unit, and x is the coefficient: the actual number is then
recovered by x · ui. The conversion between these representations is not lossless, but
the aggregate error can be bounded satisfactorily.

In Section 4.3 we consider the problem where the objective is a linear function of
penalties paid and the cost of the forest built. The challenging case is when the cost of
the optimal forest is very small compared to the penalties paid. In this case, we identify
a set of vertices with large penalties and argue they have to be connected in the optimal
solution. Then, with a novel trick we show how to ignore them in the beginning, and
take them into account only after the DP is carried out.

2 Preliminaries

Let n = |V | be the total number of terminals and let OPT be the total length of the
optimal solution. A bitmap is a matrix with 0-1 entries. Two bitmaps of the same di-
mensions are called disjoint if and only if they do not have value one at the same entry.
Consider two partitions P = {P1, P2, . . . , P|P|} and P ′ = {P ′

1, P
′
2, . . . , P

′
|P′|} over

the same ground set. Then, P is said to be a refinement of P ′ if and only if any set of P
is a subset of a set in P ′, namely ∀P ∈ P , ∃P ′ ∈ P ′ : P ⊆ P ′.

(a) (b)

Fig. 1. (a) An example of a dissection square
with depth 3, and depiction of portals for a sam-
ple dissection square with m = 8; (b) the γ× γ
grid of cells inside a sample dissection square
with γ = 4.

By standard perturbation and scaling
techniques, we can assume the following
conditions hold incurring a cost increase
of O(εOPT); see [2,11] for example.

(I) The diameter of the set V is at most
d′ = n2ε−1OPT.

(II) All the vertices of V and the Steiner
points have coordinates (2i + 1, 2j +
1) where i and j are integers.

For simplicity of exposition, we ignore
the above increase in cost. As we are go-
ing to obtain a PTAS, this increase will be
absorbed in the future cost increases. We
have a grid consisting of vertical and hor-
izontal lines with equations x = 2i and y = 2j where i and j are integers. Let L denote
the set of lines in the grid. We let L be the smallest power of two greater than or equal
to 2d′ and perform a dissection on the randomly shifted bounding box of size L × L;
see Figure 1(a).

For each dissection square R and each side S of R, designate m + 1 equally spaced
points along S (including the corners) as portals of R where m is the smallest power of
2 greater than 4ε−1 log L. So the square R has 4m portals.

There is a notion of level associated with each dissection square, line, or side of a
square. The bounding box has level zero, and level of each other dissection square is one
more than the level of its parent dissection square. The level of a line � is the minimum
level of a square R a side of which falls on the line �. Thus, the first two lines dividing
the bounding box have level one. If a side S of a square R falls on a line �, we define
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level(S) = level(�). So level(S) ≤ level(R). The thickness of the lines in Figure 1
denotes their level: the thicker the line, the lower is its level.

For a (possibly infinite) set of geometric points X , let comp(X) denote the number
of connected components of X ; we will use the shorthand “component” in this paper.
With slight abuse of notation, � ∈ L is used to refer to the set of points3 on �. In addition,
we use L to denote the union of points on the lines in L. Similarly, we use R to denote
the set of all points on or inside the square R. The set of points on (the boundary of) the
square R is referred to by ∂R. The total length of all line segments in F is denoted by
length(F ).

The following theorem is mentioned in [11] in a stronger form. We only need its first
half whose proof follows from [2].

Theorem 5. [11] There is a solution F having expected length at most (1 + 1
4ε)OPT

such that each dissection square R satisfies the following two properties: for each side
S of R, F ∩S has at most ρ = O(ε−1) non-corner components4 (boundary components
property); and each component of F ∩ ∂R contains a portal of R (portal property).

3 Structural Theorem

Let R be a dissection square. Divide R into a regular γ × γ grid of cells, where γ is
a constant power of two determined later; see Figure 1(b). We say R is the owner of
these cells. The level of these cells, as well as the new lines they introduce, is defined
in accordance with the dissection. That is, we assign them levels as if they are normal
dissection squares and we have continued the dissection procedure for log γ more lev-
els. There are several lemmas in the work of [11] to prove the structural property they
require (this is the main contribution of that work). We modify the dynamic program-
ming definition such that its proof of correctness needs a simpler structural property.
The proof of this property is simpler than that in the aforementioned paper.

Theorem 6. There is a solution F having expected length at most (1 + 1
2ε)OPT such

that each dissection square R satisfies the locality property: if the terminals t1 and t2
are inside a cell C of R and are connected to ∂R via F , then they are connected in
F ∩ R.

The proof has ideas similar to [11, Theorem 3.2, and Lemmas 3.3, 3.4, 3.5 and 3.9].
We first mention and prove a lemma we need in order to prove Theorem 6. The lemma
more or less appears in [2,11].

Lemma 1. For the forest F output by Theorem 5, comp(F ∩ L) ≤ length(F ).

We can now prove the main structural result. A side S of a square R is called private
if it does not lie on a side of the parent square R′ of R. Observe that out of any two
opposite sides of a dissection square, exactly one is private.

3 Not necessarily terminals.
4 Non-corner components are those not including any corners of squares. Note that each square

can have at most four corner components.



Euclidean Prize-Collecting Steiner Forest 509

Proof (Theorem 6). We start with a solution F satisfying Theorem 5. The final solution
is produced by iteratively finding the smallest cell C owned by a square R that violates
the locality property, and adding σ(C, F ) to F , where σ(C, F ) is defined as the union
of the private sides of C and any side of C having non-empty intersection with F . We
claim the locality property is realized after finitely many such additions. If after adding
σ(C, F ) to F , the cell C still violates the locality property, there has to be exactly two
opposite sides of the cell having non-empty intersection with F ; otherwise, the σ(C, F )
is clearly connected. However, in case of the opposite sides, one middle side will be a
private side of C and hence included as well. We omit the proof that the conditions of
Theorem 5 still hold.

Finally we show that the additional length is not large. Let F ∗ = F ∩ L, and let
G = {(x, y) : x = 2i, y = 2j} be the set of all grid points. We will charge the additions
to the connected components of F ∗ − G. Notice that

comp(F ∗ − G) ≤ comp(F ∗) + 3|F ∗ ∩ G| (1)

≤ comp(F ∗) + 3 · (length(F ∗) + comp(F ∗)) (2)

= 4 comp(F ∗) + 3 length(F )
≤ 7 length(F ), by Lemma 1. (3)

Inequality (1) holds because removal of each grid point on F ∗ increases the number of
components by at most three. To obtain (2), notice that in any connected component of
F ∗, the distance between any two points of F ∗∩G is at least 2. Hence, if there are more
than one such points, there cannot be more than length(F ∗) ones.

We charge this addition to a connected component of (∂R ∩ F ) − G, in such a way
that each connected component is charged to at most twice: once from each side. For
simplicity, we duplicate each connected component of (F ∩ �)−G: they correspond to
squares from either side of �. For any dissection square R, let CR refer to the connected
components of F ∩R that reach ∂R. Further, let KR be the set of connected components
of (F ∩ ∂R)− G. When σ(C, F ) is added where R is the owner of C, there are k ≥ 2
components c1, . . . , ck ∈ CR that become connected. Any element of KR connected
via F ∩ R to a component c ∈ CR is said to be an interface of c. The addition will
be charged to a free interface of some c ∈ CR with maximum level. This element will
no longer be free for the rest of the procedure. We argue this procedure successfully
charges all the additions to appropriate border components. To this end, we prove the
following stronger claim via induction on the number of additions performed; proof
omitted here. We call a dissection square R violated if the locality property does not
hold for a cell C owned by R.

Claim. At all times during the execution of this procedure, any component c ∈ CR has
a free interface, for each violated square R. As a result, any addition can be charged to
a free component.

Simple calculation (omitted in this version) shows that the expected increase in
length is at most 112

γ length(F ). We pick γ to be the smallest power of two larger
than 112(1 + ε) · 2ε−1 to finish the proof.

Therefore, with probability 1/2, we have length(F ) ≤ (1 + ε)OPT. In the entire argu-
ment, no attempt was made to optimize the parameters.
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3.1 Highlights of the New Ideas

Here, we point out the differences between our work and the previous work of [11]. Bor-
radaile et al. use closed paths to identify the connected zones of the dissection square.
These paths consist of vertical and horizontal lines and all the break-points are the cor-
ners of the cells. As part of their structural property, they prove that they can guarantee a
solution in which these zones can be identified via paths whose total length is at most a
constant η times the perimeter of the square R. Then each path is represented by a chain
of {1, 2, 3} of length at most O(ηγ): the three values are used to denote moving one
unit forward, or turning to the left or right. This results in a storage of 3O(ηγ) which is
a constant parameter. Instead, we use a bitmap of size γ × γ to address this issue. Each
zone is represented by a bitmap that has an entry one in the cells of the zone. The bound
that we obtain, 2γ2

, may be slightly worse than the previous work, however, a simpler
structural property, namely the locality property, suffices as the proof of correctness.
Borradaile et al. in contrast need a bound on the total length of the zone boundaries, as
noted above.

In addition to the simplification made due to this change, both to the proof and the
treatment of the dynamic programming, we simplify the proof further. Borradaile et
al. charge the additions of σ(C, F ) to three different structures, and the argument is
described and analyzed separately for each. We manage to perform a universal treatment
and charging all the additions to the simplest of the three structures in their work. But
this can be done only after showing F ∗ − G has a limited number of components. The
proof is simple yet elegant—a weaker claim is proved in [11], but even the statement of
the claim is hard to read.

4 Multiplicative Prizes

We first tackle the S-multiplicative prize-collecting Steiner forest problem. Then, we
will take a look at its asymmetric generalization. Finally, we show how the multiplica-
tive prize-collecting Steiner forest problem can be reduced to S-MPCSF.

4.1 Collecting a Fixed Prize

Suppose we are given S, the amount of prize we should collect. Let OPT be the min-
imum cost of a forest F that collects a prize of at least S, and suppose Q ⊆ D is the
set of terminal pairs connected via F . We show how to find a forest with cost at most
(1 + ε)OPT that collects a prize of at least (1 − ε′)S. By the structural property, we
know that there is a solution F ′ connecting the same set of terminal pairs Q whose cost
is at most (1 + ε)OPT, yet it satisfies the conditions of Theorems 5 and 6. Round all
the vertex weights down to the next integer multiple of θ = ε′

√
S/2n. In a connected

component of F ′ of total weight Ai that lost a weight ai due to rounding, the lost prize
is A2

i − (Ai − ai)2 ≤ 2aiAi ≤ 2ai

√
S, because the total weight of the component is at

most
√

S. Thus, F ′ collects at least S−2nθ
√

S ≤ (1− ε′)S from the rounded weights.
Each dynamic programming state consists of a dissection square R, a set of compo-

nents K, and a new parameter Π which denotes the total prize collected inside R by
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connecting the terminal pairs. Each element of K—corresponding to a connected com-
ponent in the subsolution—now has the form κ = (P, Σ) where P denotes the portals
of κ, and Σ is the total sum of the weights in κ. The DP is carried out in a fashion
similar to that of [2]. The values of Σ and Π are easy to determine for the base cases.
It is not difficult to update them, either. Whenever two components κ1 = (P1, Σ1) and
κ2 = (P2, Σ2) merge in the DP, the sum Σ for the new component is simply Σ1 + Σ2.
Besides, the merge increases the Π value of the DP state by 2Σ1Σ2.

To start the algorithm, we need to guarantee the instance satisfies the conditions at
the beginning of Section 2. This is discussed in the full version of the paper.

4.2 The Asymmetric Prizes

The basic idea is to store two parameters Σs and Σt for each component of K. These
parameters store the total weight of the first and second type in the component, namely∑

i φs
i and

∑
i φt

i, respectively. The difficulty is that to collect a prize of A = AsAt in
a component, only one of the parameters As or At needs to be large. In particular, we
cannot do a rounding with a precision like ε′

√
A/n. It may even happen that As is large

in one component, whereas we have a large At in another. In fact, we cannot store the
values of the Σs or Σt as multiples of a fixed unit. To get around the problem, Σs is
stored as a pair (v, x), where v is a vertex of the graph and x is an integer. Together they
show that Σs is x ·ε1φs(v)/n2; the value of ε1 will be chosen later, and v is supposed to
be the vertex of largest type-one weight present in the component. A similar provision
is made for Σt. Finally, the value of Π is stored as a multiple of ε2A/n; we will shortly
pick the value of ε2.

Whenever Σs
1 = (v1, x1) and Σs

2 = (v1, x1) are added to give Σs = (v, x), we do
the calculation as follows: let v be the vertex v1 or v2 that has the larger φs value, and

then x =
⌊

x1φs(v1)/n2+x2φs(v2)/n2

ε1φs(v)/n2

⌋
.

4.3 The Prize-Collecting Version: Trade-off between Penalty and Forest Cost

In the prize-collecting variant, we pay for the cost of the forest, and for the prizes not
collected. If the total weight is Δ, the prize not collected is Δ2 minus the collected
prize. One difficulty here is to determine the correct range for the collected prize so
that we can use the algorithm of Section 4.1. The trivial range is zero to Δ2. However,
the rounding precision we pick for the penalties should also take into account the cost
of the forest. If the cost of the intended solution is much smaller than Δ2, we cannot
simply go with rounding errors like εΔ/n. Otherwise, the error caused due to rounding
the penalties will be too large compared to the solution value.

The trick is to find an estimate of the solution value, and then consider two cases
depending on how the cost compares to the total penalty. Using a 3-approximation
algorithm, we obtain a solution of value ω. We are guaranteed that OPT ≥ ω/3. If
Δ2 ≤ ω/3, the optimum solution is to collect no prize at all. Otherwise, assume Δ2 >
ω/3. To beat the solution of value ω, we should collect a prize of at least Δ2 − ω.

We first consider the simpler case when ω/Δ2 > 1/n2: For an ε′ > 0 whose precise
value will be fixed below, we use the algorithm of Section 4.1 to find a bicriteria (1 +
ε/2, 1−ε′)-approximate solution for collecting a prize S; this is done for any S which is
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a multiple of ε′Δ2 in range [(1−ε′)Δ2−ω, Δ2]. We select the best one after adding the
uncollected prize to each of these solutions. Suppose the optimal solution OPT collects
a prize S′. Let OPTf = OPT− (Δ2−S′) be the length of the forest. Round S′ down to
the next multiple of ε′Δ2, say S. Fed with prize value S, the algorithm finds a solution
that collects a prize of at least (1 − ε′)S with forest cost at most (1 + ε/2)OPTf .

Claim. The total cost of this solution is at most (1 + ε)OPT if ε′ = 1
6n2 min

(
ε
3 , 1
)
.

The other case, i.e., ω/Δ2 ≤ 1/n2, is more challenging. Notice that in order to carry
out the same procedure in this case, ε′ may not be bounded by 1/ poly(n) and thus
the running time may not be polynomial. The solution, however, has to collect almost
all the prize. Thus, one of the connected components includes almost all the vertex
weights. We set aside a subset B of vertices of large weight. The vertices of B have to
be connected in the solution, or else the paid penalty will be too large. Then, dynamic
programming proceeds by ignoring the effect of these vertices and only keeping tabs
on how many vertices from B exist in each component. At the end, we only take into
account the solutions that gather all the vertices of B in one component and compute
the actual cost of those solutions and pick the best one. In the following, we provide the
details of our method and prove its correctness.

Let B be the set of all vertices whose weight is larger than nω/Δ.

Lemma 2. All the vertices of B are connected in the optimal solution.

Next, we round up all the weights to the next multiple of θ = ε′ω/Δ for vertices not
in B. Define OPT′ as the optimal solution of the resulting instance. Let OPTf be the
length of the forest in OPT, and define OPT′

f similarly. Let OPTπ and OPT′
π denote the

penalty paid by OPT and OPT′, respectively. Assume that ε′ ≤ 1.

Lemma 3. OPT′
π ≤ OPTπ + 12nε′OPT.

Suppose we use a dynamic programming approach similar to the previous subsec-
tions to find the approximately minimum forest length for any specified collected prize
amount; in particular, we obtain a bicriteria (1 + ε/2, 1 − ε′)-approximate solution.
During this process, we ignore the weights associated with vertices in B. Consider a
DP state χ = (K, Π) corresponding to a dissection square R. Each component κ ∈ K
looks like (P, Σ, μ): the new piece of information, μ, is an integer number denoting the
number of vertices of B inside κ. Extending the previous algorithm to populate the new
DP table is simple. Finally, we look at all the configurations χ for the bounding box
such that the μ value of one component is exactly |B| whereas it is zero for all other
components. This guarantees that all elements of B are inside the former component and
hence we can add up the penalties involving those vertices. Let K = {κ1, κ2, . . . , κq}
where κi = (Pi, Σi), and let κ1 be the component containing B. The additional cost
due to vertices of B is

(∑
v∈B φ(v)

) · (∑q
i=2 Σi). Finally, we report the best solution

corresponding to these configurations.

5 Evidence for Hardness

So far PTASs for geometric problems in Euclidean plane including ours and those of
Arora [2] and Mitchell [26] can be easily generalized for Euclidean d-dimensional
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space, for any constant d > 2. However we can prove the following theorem on the
hardness of the problem for Euclidean d-dimensional space.

Theorem 7. If notorious densest k-subgraph is hard to approximate within a factor
O(n

1
d ) for some constant d, then for any d′ > 2d+1, the k-forest problem in Euclidean

d′-dimensional space is hard to approximate within a factor O(n
1
2d− 1

d′−1 ).

Note as mentioned above that, despite extensive study, the current best approximation
factor for notorious densest k-subgraph is O(n1/3−ε) [15] and thus we do not expect to
have any PTAS for k-forest in 8-dimensional Euclidean space.

Unlike the general cases of these problems, as far as PTASs for the case of Euclidean
spaces are concerned, it seems k-forest and prize-collecting Steiner forest problems are
essentially equivalent. Indeed we can prove that any PTAS for k-forest results in a PTAS
for prize-collecting Steiner forest, and we believe that any DP algorithm giving a PTAS
for PCSF computes along its way the optimal solution to different k-forest instances.

Thus based on the evidences above, we do believe Euclidean k-forest and Euclidean
prize-collecting Steiner forest have no PTASs in their general forms.

6 Conclusion

Besides presenting a simpler and correct analysis of the PTAS for the Euclidean Steiner
forest problem, we showed how the approach can be generalized to solve multiplicative
prize-collecting problems. Very recently, Bateni, Hajiaghayi and Marx [6] generalized
our results and presented a PTAS for Steiner forest on graphs of bounded treewidth,
and used it to obtain a PTAS for planar and bounded-genus graphs, thereby settling a
long-open problem. Finally, obtaining any improvement over the approximation factor
2.54 in [19] for multiplicative prize-collecting Steiner forest in general graphs seems
very interesting.
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Abstract. In this paper we design an iterative rounding approach for the classic
prize-collecting Steiner forest problem and more generally the prize-collecting
survivable Steiner network design problem. We show as an structural result that
in each iteration of our algorithm there is an LP variable in a basic feasible so-
lution which is at least one-third-integral resulting a 3-approximation algorithm
for this problem. In addition, we show this factor 3 in our structural result is in-
deed tight for prize-collecting Steiner forest and thus prize-collecting survivable
Steiner network design. This especially answers negatively the previous belief
that one might be able to obtain an approximation factor better than 3 for these
problems using a natural iterative rounding approach. Our structural result is ex-
tending the celebrated iterative rounding approach of Jain [13] by using several
new ideas some from more complicated linear algebra. The approach of this paper
can be also applied to get a constant factor (bicriteria-)approximation algorithm
for degree constrained prize-collecting network design problems.

We emphasize that though in theory we can prove existence of only an LP vari-
able of at least one-third-integral, in practice very often in each iteration there ex-
ists a variable of integral or almost integral which results in a much better approx-
imation factor than provable factor 3 in this paper (see patent application [11]).
This is indeed the advantage of our algorithm in this paper over previous approx-
imation algorithms for prize-collecting Steiner forest with the same or slightly
better provable approximation factors.

1 Introduction

Consider a mailing company that wishes to ship packages overnight between several
pairs of cities. To this end, this company can build connecting carriers between cities
such that at the end by scheduling the carriers, the company is able to ship the packets
overnight between pairs of connected cities. Assume the cost of connecting city i to
city j is cij and the costs are symmetric. In addition, the company has the choice of
leasing other companies for some pairs (i, j) of cities with cost πij so that without any
worry the leased company do the shipment between cities i and j overnight. The goal
is to build some carriers and lease some other companies such that the company do the
shipments overnight with minimum total cost.

The above network design problem which has also several applications in expand-
ing telecommunications and transportation networks (see e.g. [15,20]), and cost shar-
ing and Lagrangian relaxation techniques (see e.g. [14,6]) is called the prize-collecting

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 515–526, 2010.
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Steiner forest (PCSF) problem1. In this problem, given a graph G = (V, E), a set of
(commodity) pairs P = {(s1, t1), (s1, t1), . . . , (s�, t�)}, a non-negative cost function
c : E → Q+, and finally a non-negative penalty function π : P → Q+, our goal is a
minimum-cost way of buying a set of edges and paying the penalty for those pairs which
are not connected via bought edges. When all sinks are identical in the PCSF problem,
it is the classic prize-collecting Steiner tree problem. Bienstock, Goemans, Simchi-Levi,
and Williamson [5] first considered this problem (based on a problem earlier proposed
by Balas [2]) for which they gave a 3-approximation algorithm. The current best approx-
imation algorithm for this problem is a primal-dual 2− 1

n−1 approximation algorithm (n
is the number of vertices of the graph) due to Goemans and Williamson [7]. The general
form of the PCSF problem first has been formulated by Hajiaghayi and Jain [12]. They
showed how by a primal-dual algorithm to a novel integer programming formulation
of the problem with doubly-exponential variables, we can obtain a 3-approximation al-
gorithm for the problem (see also [10]). In addition, they show that the factor 3 in the
analysis of their algorithm is tight. However they show how a direct randomized LP
rounding algorithm with approximation factor 2.54 can be obtained for this problem.
Their approach has been generalized by Sharma, Swamy, and Williamson [21] for net-
work design problems where violated arbitrary 0-1 connectivity constraints are allowed
in exchange for a very general penalty function. The work of Hajiaghayi and Jain has
also motivated a game-theoretic version of the problem considered by Gupta et al. [8].

In this paper, we also consider a generalized version of prize-collecting Steiner forest,
called prize-collecting survivable Steiner network design, in which we are also given
connectivity requirements ruv for all pairs of vertices u and v and a non-increasing
marginal penalty function for u and v in case we cannot satisfy all ruv . Our goal is
to find a minimum way of constructing a network (graph) in which we connect u and
v with r′uv ≤ ruv edge-disjoint paths and paying the marginal penalty for ruv − r′uv

violated connectivity between u and v. When all penalties are ∞, the problem is the
classic survivable Steiner network design problem. For this problem, Jain [13] using
the method of iterative rounding obtains a 2-approximation algorithm improving on a
long line of earlier research that applied primal-dual methods to this problem.

In this paper, for the first time, we are using the iterative rounding approach for
prize-collecting versions of Steiner forest and more generally survivable Steiner net-
work design. To the best of our knowledge, so far this method of iterative rounding has
not been used for any prize-collecting problem. After several years since Jain’s work,
the method of iterative rounding has been revived recently to obtain the best possible
bicriteria (1, Bv +1)-approximation algorithm for minimum bounded-degree spanning
trees [23] (Bv is the degree bound on vertex v) and minimum-bounded degree vari-
ants of other problems such as arborescence, Steiner forest and survivable Steiner net-
work design [18,3,19]. The approach of iterative rounding in this paper can be extended
further for other prize-collecting problems such as prize-collecting survivable network
design with degree constraints Bv on each vertex (i.e., in our solution we should buy
at most Bv edges attached to each vertex v) to get factor 3 (bicriteria-)approximation
algorithms.

1 In the literature, they also called this problem prize-collecting generalized Steiner tree
(PCGST).
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1.1 Our Results

In this paper, we are extending our current knowledge of iterative rounding approaches
to prize-collecting Steiner forest and more generally survivable Steiner network design.
For the sake of presentation, after introducing the novelty of our approach by stating
it precisely for prize-collecting Steiner forest, then we show how it can be extended
for prize-collecting survivable Steiner network design. Note that as mentioned in the
introduction, so far the only approach to obtain a constant factor approximation algo-
rithm for the survivable Steiner network design, a special case of the prize-collecting
survivable Steiner network design problem in which all penalties are ∞, is the method
of iterative rounding. Other approaches such as primal-dual methods do not consider
the global structure of the network enough to be used for this problem.

We first show as an structural result that in a natural LP for prize-collecting Steiner
forest, either a variable corresponding to an edge or a variable corresponding to a
penalty for a pair is at least one-third-integral in any basic feasible solution (see Sec-
tion 3). Indeed we also show this variable of one-third-integral is best that one can
hope in a basic feasible solution (see Section 5). This one-third-integral bound obtains
a 3-approximation for this problem via much stronger structural results (see Section 2).

There are several novelties in our approach of iterative rounding for the PCSF prob-
lem mostly coming from linear algebra. First, so far in all iterative rounding approaches
the main constraint is that the fractional value of a cut corresponding to a set S is at least
a submodular function of S. This has been relaxed in our setting where the fractional
value of a cut is also a (not necessarily submodular) function of a penalty associated
with a commodity pair separated by this cut. Second, in all previous iterative rounding
approaches (in which indeed the heart is obtaining a laminar family using linear alge-
bra, first introduced by Jain [13]) the linear dependence between constraints is a simple
addition with all coefficients having absolute values ones (see Theorem 3, Part 5). We
show a more complicated fractional dependence between constraints which is crucial to
our results. Third, our approach of constructing a laminar family is more complicated
than previous approaches when we replace a constraint with one of five (instead of two
in previous approaches) constraints (see Theorem 4). Last but not least, obtaining a vari-
able of at least one-third-integral in previous approaches (see e.g. Jain [13]) is relatively
easy, however in our case it is much more complicated and needs new ideas from linear
algebra (see Theorem 5). Subsequent and separate to our work Konemann et al. [22]
obtain the same iterative algorithm as ours for PCSF with some proofs simplified.

After presenting our one-third-integral result for the PCSF problem (which results in
a 3-approximation), we show how we can generalize this approach to obtain a variable
of at least one-third-integral (and thus a 3-approximation algorithm) for the minimum
prize-collecting survivable Steiner network design problem. We briefly discuss the case
in which we also have degree constraints on bought edges.

Finally we should emphasize that though in theory we can prove existence of only
an LP variable of at least one-third-integral, in practice very often in each iteration there
exists a variable of integral or almost integral which results in a much better approxi-
mation factor than provable factor 3 in this paper (see AT&T patent application [11]
on this regard). This is indeed the advantage of our algorithm in this paper over previous
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approximation algorithms for prize-collecting Steiner forest with the same or slightly
better provable approximation factors.

2 Iterative Rounding Approximation Algorithm

The traditional LP relaxation for the PCSF problem which can be solved using Ellipsoid
algorithm2 is as follows:

OPT = minimize
∑
e∈E

cexe +
∑

(i,j)∈P
πijzij (1)

subject to
∑

e∈δ(S)

xe + zij ≥ 1 ∀S ⊂ V, (i, j) ∈ P, S ! (i, j) (2)

xe ≥ 0 ∀e ∈ E (3)

zij ≥ 0 ∀(i, j) ∈ P (4)

Here for a set S ⊂ V , we denote |{i, j} ∩ S| = 1 by S ! (i, j).
Let x∗, z∗ be an optimal basic feasible solution for LP 1. For 0 < α ≤ 1, let Eα be

the set of edges whose value in x∗ is at least α and let Pα be the set of edges whose
value in z∗ is at least α. We define Gres = E − Eα and Pres = P − Pα. Now we
consider the following LP, called the residual LP, in which we fix all values in edges in
Eα and pairs in Pα to be 1.

OPTres = minimize
∑
e∈E

cexe +
∑

(i,j)∈Pres

πijzij (5)

subject to
∑

e∈δ(S)

xe + zij ≥ 1 ∀S ⊂ V, (i, j) ∈ Pres, (6)

S ! (i, j), δ(S) ∩ Eα = ∅
xe ≥ 0 ∀e ∈ Eres (7)

zij ≥ 0 ∀(i, j) ∈ Pres (8)

Note that in the above LP by contracting edges in Eα and ignoring pairs in Pα, indeed
we can always work with an LP similar to that for OPT. Our approximation algorithm
for the PCSF problem based on this LP is as follows.

Algorithm PCSF-ALG which is based on the the following theorem is as follows:
First we find an optimal basic feasible solution x∗, z∗ to LP 1. Then we pay all the
penalties of pairs (i, j) whose z∗ij ≥ α and remove them from further consideration.
We include all edges e whose x∗

e ≥ α in the solution and contract them and remove
multiple edges by keeping only an edge e with minimum ce among them. We solve the
residual problem recursively.

2 Indeed we can also write the corresponding standard flow-based LP rather than the cut-based
LP here, and then use other LP-solver algorithms for a polynomial number of variables and
constraints.
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Theorem 1. In any basic feasible solution for LP 1, for at least one edge e ∈ E, xe >=
1
3 , or for at least one pair (i, j) ∈ P, zij >= 1

3 .

We prove Theorem 1 in Section 3.

Theorem 2. If xI , zI is an integral solution to the LP 5 with value at most 1
αOPTres,

then Exe=1 ∪Eα, Pzij=1 ∪Pα is feasible solution for LP 1 with value at most 1
αOPT.

The proof of Theorem 2 is standard and hence omitted. By combining Theorems 1 and
2 we obtain the following conclusion:

Corollary 1. There is an iterative rounding 3-approximation algorithm for PCSF.

3 One-Third-Integrality Result

In this section, we prove Theorem 1. Let x, z be a basic feasible solution. If for an edge
e, xe = 1 or for a pair (i′, j′), zij = 1, then the theorem follows. Also, if for an edge
e, xe = 0, then we can assume that the edge was never there before. This assumption
does not increase the cost of the optimum fractional solution xe . Thus we can assume
that 0 < xe < 1 and 0 ≤ ze < 1 for all e ∈ E and (i, j) ∈ P.

Let M(S, ii′) be the row of the constraint matrix corresponding to a set S ⊂ V and
pair (i, i′) ∈ P . Let x(A, B) be the sum of all xe’s, where e has one end in A and the
other end in B. We represent x(A, A) by x(A), for ease of notation. We say a set A is
tight with pair (i, i′) if A ! (i, i′) and x(A) + zii′ = 1.

Theorem 3. If A is tight with (i, i′) and B is tight with (j, j′) then at least one of the
following holds:

1. A−B is tight with (i, i′), B−A is tight with (j, j′) and M(A, ii′)+M(B, jj′) =
M(A −B, ii′) +M(B −A, jj′).

2. A−B is tight with (j, j′), B−A is tight with (i, i′) and M(A, ii′)+M(B, jj′) =
M(A −B, jj′) +M(B −A, ii′).

3. A∩B is tight with (i, i′), A∪B is tight with (j, j′) and M(A, ii′)+M(B, jj′) =
M(A ∩ B, ii′) +M(A ∪ B, jj′).

4. A∩B is tight with (j, j′), A∪B is tight with (i, i′) and M(A, ii′)+M(B, jj′) =
M(A ∩ B, jj′) +M(A ∪ B, ii′).

5. A − B is tight with (i, i′), B − A is tight with (i′, i), A ∩ B is tight with (j, j′),
A ∪ B is tight with (j, j′) and 2M(A, ii′) + 2M(B, jj′) = M(A −B, ii′) +
M(B −A, ii′) +M(A ∩ B, jj′) +M(A ∪ B, jj′).

Proof. The proof is by case analysis. For the ease of notation, if a set A is tight with
pair (i, i′), we assume i ∈ A (and thus i′ �∈ A).

We consider two cases i ∈ A −B and i ∈ A ∩ B. Without loss of generality, we
assume in the latter case j ∈ A ∩ B also (otherwise we consider j instead of i in our
arguments). Because of tightness we have:

x(A)=x(A− B, B − A)+x(A− B, A ∪ B)+x(A ∩ B, B − A)+x(A ∩ B, A ∪ B)=1−zii′

x(B)=x(B − A, A − B)+x(B − A, A ∪ B)+x(A ∩ B, A − B)+x(A ∩ B, A ∪ B)=1−zjj′
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Let’s first start with the case in which i ∈ A ∩B (and thus j ∈ A ∩ B). In this case
i′ ∈ A ∪ B and j′ ∈ A ∪B. Because of the feasibility:

x(A ∩ B) = x(A ∩ B, A −B) + x(A ∩ B, B −A) + x(A ∩ B, A ∪ B) ≥ 1 − zii′

x(A ∪ B) = x(A −B, A ∪ B) + x(A ∩ B, A ∪B) + x(B −A, A ∪B) ≥ 1 − zjj′

Since x(., .) ≥ 0, by summing up the two inequalities above and using the equalities
for x(A) and x(B), we conclude that the inequalities should be tight, i.e., x(A ∩ B) =
1 − zii′ and x(A ∪ B) = 1 − zjj′ and in addition x(A −B, B −A) = 0, i.e.,
M(A, ii′) +M(B, jj′) = M(A ∩ B, ii′) + M(A ∪ B, jj′). Thus we are in the case
3 of the statement of the theorem.

Now assume that i ∈ A −B and j ∈ B −A. Then independent of the place of i′, j′,
by the feasibility of the solution we have:

x(A −B) = x(A −B, A ∩B) + x(A −B, B −A) + x(A −B, A ∪B) ≥ 1 − zii′

x(B −A) = x(B −A, A−B) + x(B −A, A ∩ B) + x(B −A, A ∪ B) ≥ 1 − zjj′

Since x(., .) ≥ 0, by summing up the two inequalities above and using the
equalities for x(A) and x(B), we conclude that the inequalities should be tight, i.e.,
x(A −B) = 1− zii′ and x(B −A) = 1− zjj′ and in addition x(A ∩ B, A ∪ B) = 0,
i.e., M(A, ii′) +M(B, jj′) = M(A −B, ii′) +M(B −A, jj′). Thus we are in the
case 1 of the statement of the theorem.

Finally we consider the case in which i ∈ A −B and j ∈ A ∩ B (and thus j′ ∈
A ∪B).

Now if i′ ∈ A ∪ B, then by the feasibility of the solution we have:

x(A ∩ B) = x(A ∩ B, A −B) + x(A ∩ B, B −A) + x(A ∩ B, A ∪B) ≥ 1 − zjj′

x(A ∪ B) = x(A − B, A ∪ B) + x(A ∩ B, A ∪ B) + x(B −A, A ∪ B) ≥ 1 − zii′

Since x(., .) ≥ 0, by summing up the two inequalities above and using the equalities
for x(A) and x(B), we conclude that the inequalities should be tight, i.e., x(A ∩ B) =
1 − zjj′ and x(A ∪ B) = 1 − zii′ and in addition x(A −B, B −A) = 0, i.e.,
M(A, ii′) +M(B, jj′) = M(A ∩ B, jj′) + M(A ∪ B, ii′). Thus we are in the case
4 of the statement of the theorem.

Finally if i′ ∈ B −A then, because of feasibility we have

x(A −B) = x(A −B, A ∩B) + x(A −B, B −A) + x(A −B, A ∪B) ≥ 1 − zii′

x(A ∩ B) = x(A ∩ B, A −B) + x(A ∩ B, B −A) + x(A ∩ B, A ∪B) ≥ 1 − zjj′

x(B −A) = x(B −A, A−B) + x(B −A, A ∩ B) + x(B −A, A ∪ B) ≥ 1 − zjj′

x(A ∪ B) = x(A − B, A ∪ B) + x(A ∩ B, A ∪ B) + x(B −A, A ∪ B) ≥ 1 − zii′

Since x(., .) ≥ 0, by summing up the four inequalities above and and use the equal-
ities for 2x(A) and 2x(B), we conclude that all inequalities should be tight, and in
addition x(A −B, B −A) = 0 and x(A ∩ B, A ∪ B) = 0, i.e., and 2M(A, ii′) +
2M(B, jj′) = M(A −B, ii′) +M(B −A, jj′) +M(A ∩B, ii′) +M(A ∪ B, jj′).
So the case 5 of the statement of the theorem holds. �
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Note that especially Case 5 in Theorem 3 is novel to our extension of iterative rounding
methods.

Let T be the set of all tight constraints. For any set of tight constraints F , we denote
the vector space spanned by the vectors M(S, ii′), where S ⊂ V and (i, i′) ∈ P , by
Span(F). We say two sets A and B cross if none of the sets A−B, B −A and A∩B
is empty. We say a family of tight constraints is laminar if no two sets corresponding to
two constraints in it cross.

The proof of the following theorem is similar to that of Jain [13] and hence omitted.

Theorem 4. For any maximal laminar family L of tight constraints, Span(L) =
Span(T ).

Since x, z is a basic feasible solution, the dimension of Span(T ) is |E(G)|+ |P|. Since
Span(L) = Span(T ), it is possible to choose a basis for Span(T ) from the vectors in
{M(S, ii)} ∈ L. Let B ⊆ L forms a basis for Span(T ). Hence we have the following
theorem.

Corollary 2. There exists a laminar family, B, of tight constraints satisfying 1) |B| =
|E(G)|+ |P|; 2) The vectors in B are independent; and 3) All constraints in B are tight.

Note that in our laminar family if a set S is tight with both (i, i′) and (j, j′) in two
different constraints, since zii′ = zjj′ , we can remove variable zjj′ and just use zii′

instead. Since we removed one variable and one constraint, still we have a basic feasible
solution which is laminar. By this reduction, we always can make sure that each set is
tight with only one pair. Thus a tight set uniquely determines the tight pair and we use
a tight constraint and a tight set interchangeably in our discussion below.

Now we are ready to prove Theorem 1.

Theorem 5. In any basic feasible solution for LP 1, for at least one edge e ∈ E, xe ≥
1
3 , or for at least one pair (i, j) ∈ P, zij ≥ 1

3 .

Proof. We are giving a token to each end-point of an edge (and thus two tokens for an
edge) and two tokens to all z variables (notice that some z variables are used for more
than one commodity pairs as discussed above). Now, we will distribute the tokens such
that for every set in the laminar family gets at least two tokens and every root at least
four tokens unless the corresponding cut has exactly three edges. (note that each cut has
at least three edges since the value of each variable is less than 1

3 ) in which the root
gets at least three token. This contradict the equality |V (F )| = |E(G)| + |P| where F
is the rooted forest of laminar sets in the laminar family. The subtree of F rooted at R
consists of R and all its descendants. We will prove this result by the induction on every
rooted subtree of F .

Consider a subtree rooted at R. Since all xe and zij are at most 1
3 , if R is a leaf node,

it has at least three edges crossing it and thus gets at least three tokens (and more than 3
tokens if the degree is more than 3). This means the induction is correct for a leaf node,
as the basis of the induction.

If R has four or more children, by the induction hypothesis each child has at least
three tokens and each of their descendants gets at least two tokens. We re-assign one
extra token from each child to the node R. Thus R has at least four tokens and the
induction hypothesis is correct in this case.
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If R has three children, if there is a private vertex u to R, i.e., a vertex which is in R but
not in any of its children, then we are done (since all xe values are fractional, the degree of
u is at least two and thus can contributes at least two extra tokens toward R). Also if one of
the children has at least four edges in its corresponding cut, by the induction hypothesis
it has at least two extra tokens to contribute toward those of R and we are done.

Next, if R has exactly three children each with exactly three edges in its correspond-
ing cut, then by parity R has an odd number of edges in its corresponding cut. If R has
edges in the its cut then the three extra token by its children suffices. If R has seven
or nine edges in the cut, then at least one of its children has all three edges in the cut
and the corresponding pair is not satisfied. But this means all other edges than those of
this cut should be zero which is contradiction to fractional value assumption. Now if R
tight with zpp′ has exactly five edges in the cut, it should be the case that two children
C1 tight with zii′ and C3 tight with zkk′ have two edges in the cut and C2 tight with
zjj′ has one edges in the cut. Note that in this case zpp′ > min{zii′ , zjj′ , zkk′} then
at least for one of zii′ , zjj′ , and zkk′ all pairs should be inside R for the first time and
thus we have at least two extra tokens towards the requirement of R and we are done. It
also means that p should be inside the child C with min{zii′ , zjj′ , zkk′} and it should
be equal to its corresponding z value (otherwise child C violates the condition for zpp′ ).
Assume that zpp′ = zjj′ . In this case, it is easy to see that since C2 is tight with three
edges and with five edges, the sum of x variables of C1 and C3 in the cut R is equal to
the sum of x variables of C1 and C3 to C2. But it means at least for one of C1 and C3,
the edge e to C2 has xe ≥ xe′ + xe′′ where e′ and e′′ are the edges in the cut R. But
since xe + xe′ + xe′′ > 2

3 (due to the fact that all z variables are less than 1
3 ), xe ≥ 1

3
which is a contradiction. If zpp = zii′ ≤ zkk′ where zii′ < zjj′ . In this case the edge
from C1 to C2 should has an x value equal to that those edges of C2 and C3 in the
cut R. It means the total x value of two edge of C3 in the cut is less than 1

3 which is a
contradiction, since the third edge has x value at least 1

3 .
Now we consider the case in which R is tight with zpp′ and has two children . If

there is a private vertex u to R we have at least four tokens to satisfy R (two from
u and one from each of its children). If both of these children have degree at least
four, then we have four extra tokens for R (two from each child). Then at least one of
two children, namely C1 tight with zii′ , has exactly three edges in its corresponding
cut. The other child C2 tight with zjj′ has at least three edges in the cut. Note that in
this case zpp′ > min{zii′ , zjj′} then at least for one of zii′ and zjj′ all pairs should
be inside R for the first time and thus we have at least two extra tokens towards the
requirement of R and we are done. It also means that p should be inside the child C
with min{zii′ , zjj′ , zkk′} and it should be equal to its corresponding z value (otherwise
child C violates the condition for zpp′ ). First assume that zpp′ = zii′ ≤ zjj′ . In this
case it is not possible that all three edges of C1 are in the cut R, since then all edges of
C2 are in the cut R and they are zero (since the cut R is already tight with zpp′ = zii′ ).
If C1 has two edges in the cut, since zii′ ≤ zjj′ , it means sum of the x values of the
edges in the cut corresponding to R, which has one edges from C1 and the rest are the
edges of C2 in the R cut, should be at least the sum of x values of the cut corresponding
to C2. But these means the x value of the edge of C1 in the R cut is at least the sum of
x values of the two edges from C1 to C2. Since value of all three edges in C1 is at least
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2
3 , it means the x value of the edge of C1 in the R cut is at least 1

3 , a contradiction. In
case C1 does not have any edges in the cut R, then all edges should go C2 which means
zii′ should be tight with a proper subset of edges of C2 though we know that x values
of all edges of C2 is at most 1 − zjj , a contradiction. we know even all edges of minus
those edges should be tight in R with the same zjj′ which means all edges between C1
and C2 should be zero which is a contradiction.

Next assume that zpp′ = zjj′ ≤ zii′ . In this case it is not possible that all edges of
C2 and thus C1 are in the cut since all edges of C1 should have zero x value. In case if
one edge of C1 or two edges of C1 are in the cut R, then x value of one edge of C1 is
equal to the x value of two edges of C1 which means that edge should have x value at
least 1

3 which is a contradiction. In case C1 does not have any edges in the cut R, then
C2 minus those edges should be tight in R with the same zjj′ which means all edges
between C1 and C2 should be zero which is a contradiction.

It only remains the case in which R has only one child C. In this case if R and C
are both tight with respect to zii′ then since R and C are independent there is a vertex
u ∈ R − C. However, if R is tight with zii′ and C is tight with zjj′ since zii′ �= zjj′ ,
these two cuts should be different and thus again there is vertex u ∈ R−C. Since all xe

values are fractional the degree of u is at least two and thus u gets at least two tokens.
Without loss of generality assume u is the node with maximum degree. If u has degree
at least three then we can assign at least these three private tokens of u and at least one
extra token of C to R to have the induction hypothesis satisfied. In case u has degree
two and C has at least four edges in the cut, then we have at least two tokens from u and
two extra tokens from C to assign at least four tokens to R and satisfy the hypothesis.

The only remaining case when R has only one child is when u has degree two and
C has an odd number of edges in its cut. However in this case because of parity, R
should have an odd number of edges in its cut (note that in this case, we may have
some other vertices than u of degree two in R − C.) If this odd number is three then
two tokens of u and one extra token of C satisfies the required number of tokens for
R. If there is a vertex other than u in RC it has also two extra tokens and we are done.
The only case is that u has degree two, C has three edges and all these five edges are
in the cut corresponding to R. It means in this case R should be tight with zii′ and C
should be tight with zjj′ where zii′ < zjj′ (otherwise the edges from u in the cut should
zero which is a contradiction to the fractional values for xes). Here i �= u otherwise, u
has degree three and thus three extra tokens and we have at least four tokens for R. It
means i ∈ C which is again a contradiction since the current cut for C violates the cut
condition for i in the LP. �

Finally, it is worth mentioning though we guarantee that during the course of the algo-
rithm, we can get a variable which is only one-third-integral, in the first iteration always
we can find an integral z variable. Below there is a more general proposition regarding
this issue.

Proposition 1. If there is a set S of fractional variables which contains exactly one
variable from each tight constraint in our laminar family, our solution cannot be a
basic optimum solution. In particular, there is no basic optimum solution in which all
constraints are tight with fractional z variables.
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Proof. The second statement follows immediately by taking set S in the first statement
to be the set of all fractional z variables. The first statement follows from the fact that we
can always increase (decrease) each variable w in set S by ε(1−w), for a very small ε >
0, and decrease (increase) each other variable u by εu (increase/decrease is depending
on which option does not increase the objective function). It is easy to see in this way
we can always get another feasible solution which makes all our current constraints in
the laminar family tight and whose value is not larger than that of optimum. �

4 Prize-Collecting Survivable Steiner Network Design

In this section, we show how we can generalize our approach of iterative rounding to
obtain a 3-approximation algorithm for the prize-collecting survivable Steiner network
design problem. In this problem, we are given connectivity requirements ruv for all
pairs of vertices u and v and a non-increasing marginal penalty function πuv(.) for
u and v. Our goal is to find a minimum way of constructing a graph in which we
connect u and v with r′uv ≤ ruv edge-disjoint paths and paying the marginal penalty
πuv(r′uv + 1) + πuv(r′uv + 2) + · · ·+ πuv(ruv) for violating the connectivity between
u and v to the amount of ruv − r′uv .

Let us first start with the following natural LP.

OPT = minimize
∑
e∈E

cexe +
∑

i,j∈P

rij∑
k=1

πij(k)zk
ij (9)

subject to
∑

e∈δ(S)

xe +
rij∑
k=1

zk
ij ≥ rij ∀S ⊂ V, (i, j) ∈ P, S ! (i, j) (10)

xe ≥ 0 ∀e ∈ E (11)

zk
ij ≥ 0 ∀(i, j) ∈ P , 0 ≤ k ≤ rij (12)

First, it is easy to see that since πuv’s are non-increasing without loss of general-
ity we can assume 0 < zk

uv only if zk+1
uv = 1 for 1 ≤ k < ruv . Now the

algorithm indeed is very similar to PCSF-ALG in Figure 1, except for an edge
e with x∗

e ≥ 1
3 , we do not contract that edge (indeed the contraction was only

due to simplicity in PCSF-ALG). Instead we choose edge e to be in our solu-
tion and consider it like an edge of x∗

e = 1 value in the rest of the rounding.
We repeat this process until we satisfy all the commodity pairs either by connect-
ing or paying enough penalty. The argument follows almost the same as the ar-
gument for PCSF with the change of connectivity rij instead of 1 in our argu-
ments in Theorem 3. Note that since 0 < zk

uv only if zk+1
uv = 1 for 1 ≤ k <

ruv , we can assume that each constraint is tight with only one variable zk
uv, 1 ≤

k ≤ ruv (all zk
uv = 1 can be rounded to one and removed from further con-

sideration in the LP without costing any extra penalties with respect to the opti-
mum solution of the LP in Theorem 2). Thus as a result we have the following
theorem.
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Theorem 6. There is an iterative rounding 3-approximation algorithm for the prize-
collecting survivable Steiner network design problem.

Finally, it is worth mentioning that by combining the technique of this paper in ob-
taining a one-third-integral variable and that of Lau et. al [18] (which essentially use
the work of Jain for survivable network design as a block-box), it is not hard to get
(3, 3Bv + 3)-approximation algorithm for the prize-collecting survivable network de-
sign with bounded-degree constraints Bv, where the cost of the returned solution is at
most three times the cost of an optimum solution satisfying the degree bounds and the
degree of each vertex is at most 3Bv + 3.

5 Conclusions and Tight Example

In this paper, we presented a new approach of iterative rounding for prize-collecting
problems which generalizes the use of iterative rounding when we do not have nec-
essarily submodular functions. In addition, we used more linear dependence between
constraints instead of just some simple additions with all coefficients one. The replace-
ment of one of four sets instead of two sets in our laminar family is another extension to
previous iterative rounding approaches (e.g. see [13]). In addition, next we show that in-
deed our approach of iterative rounding for getting a 3-approximation algorithm is tight
even for prize-collecting Steiner forest, i.e., there is an instance with a basic feasible
solution in which all x and z variables, except one zero z variable3, are 1

3 .

Tight example: Consider a complete bipartite graph K3,2 = ({v1, v2, v3}∪{v4, v5}, E)
with (penalty) pairs P = {(v1, v3), (v2, v3), (v4, v5)}. Assume all edges in E and penal-
ties in P are ones. Consider a basic feasible solution in which all x and z variables are
1
3 , except z4,5 = 0. The cost of this fractional solution is 8

3 which is less than the opti-
mum integral solution 3 for this example. Also, it is easy to check that sets {v1} with
(v1, v3), {v2} with (v2, v3), {v3} with (v1, v3), {v3} with (v2, v3), {v4} with (v4, v5),
{v5} with (v4, v5), {v1, v4} with (v4, v5), {v2, v5} with (v4, v5) form a laminar family
of tight constraints. These eight tight constraints in addition of tight constraint z4,5 = 0
form nine tight independent constraints of the aforementioned basic feasible solution. In
this case, by fixing z4,5 = 0 and omitting variable z4,5, we end up with exactly the same
instance in which all variables are 1

3 . This shows that 1
3 in our Theorem 5 is indeed tight.

Finally, we do believe that our iterative rounding approach might be applicable for
other problems such as multicommodity connected facility location (MCFL) and multi-
commodity rent-or-buy (MRoB) (see e.g. [1,4,9,16,17]) to obtain simpler approximation
algorithms with better factors than those currently exist.

Acknowledgement. The first author would like to thank Philip Klein and Mohammad-
Hossein Bateni for several fruitful discussions and reading an early draft of this paper.
Thanks especially goes to Howard Karloff whose program generated an example whose
simplified version is the tight example in Section 5.

3 Note that always there exists a z variable with an integral value when we solve the original LP
according to Proposition 1.
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Kernelization through Tidying
A Case Study Based on s-Plex Cluster Vertex Deletion�
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Abstract. We introduce the NP-hard graph-based data clustering prob-
lem s-Plex Cluster Vertex Deletion, where the task is to delete at
most k vertices from a graph so that the connected components of the
resulting graph are s-plexes. In an s-plex, every vertex has an edge to
all but at most s − 1 other vertices; cliques are 1-plexes. We propose a
new method for kernelizing a large class of vertex deletion problems and
illustrate it by developing an O(k2s3)-vertex problem kernel for s-Plex

Cluster Vertex Deletion that can be computed in O(ksn2) time,
where n is the number of graph vertices. The corresponding “kerneliza-
tion through tidying” exploits polynomial-time approximation results.

1 Introduction

The contributions of this work are two-fold. On the one hand, we introduce a
vertex deletion problem in the field of graph-based data clustering. On the other
hand, we propose a novel method to derive (typically polynomial-size) problem
kernels for NP-hard vertex deletion problems whose goal graphs can be charac-
terized by forbidden induced subgraphs. More specifically, using “kernelization
through tidying”, we provide a quadratic-vertex problem kernel for the NP-hard
s-Plex Cluster Vertex Deletion problem, for constant s ≥ 1.

s-Plex Cluster Vertex Deletion. Many vertex deletion problems in graphs
can be considered as “graph cleaning procedures”, see Marx and Schlotter [11].
This view particularly applies to graph-based data clustering, where the graph
vertices represent data items and there is an edge between two vertices iff the
two items are similar enough [14]. Then, a cluster graph is a graph where every
connected component forms a cluster, a dense subgraph such as a clique in the
most extreme case. Due to faulty data or outliers, the given graph may not
be a cluster graph and it needs to be cleaned in order to become a cluster
graph. A recent example for this is the NP-hard Cluster Vertex Deletion

problem [9], where the task is to delete as few vertices as possible such that the
resulting graph is a disjoint union of cliques. In contrast, in the also NP-hard
s-Plex Cluster Vertex Deletion problem we replace cliques with s-plexes
(where s is typically a small constant):
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s-Plex Cluster Vertex Deletion (s-PCVD)

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Is there a vertex set S ⊆ V with |S| ≤ k such that G[V \ S]
is a disjoint union of s-plexes?

Herein, an s-plex is a graph where every vertex has an edge to all but at most s−1
other vertices [13]. Subsequently, we refer to the solution set S as s-plex cluster
graph vertex deletion set (s-pvd set). The concept of s-plexes has recently received
considerable interest in various fields, see, e.g., [2,6,7,12]. The point of replacing
cliques with s-plexes in the context of cluster graph generation is that s-plexes
better allow to balance the number of vertex deletions against the sizes and
densities of the resulting clusters. Note that too many vertex deletions from the
input graph may too strongly change the original data whereas asking for cliques
as clusters often seems overly restrictive [5,13]. Summarizing, s-PCVD blends
and extends previous studies on Cluster Vertex Deletion [9] (which is the
same as 1-PCVD) and on s-Plex Editing [7], where in the latter problem one
adds and deletes as few edges as possible to transform a graph into an s-plex
cluster graph.

Problem kernelization. Data reduction and problem kernelization is a core
tool of parameterized algorithmics [8]. Herein, viewing the underlying problem
as a decision problem, the goal is, given any problem instance x (a graph in
our case) with a parameter k (the number of vertex deletions in our case), to
transform it in polynomial time into a new instance x′ with parameter k′ such
that |x′| is bounded by a function in k (ideally, a polynomial in k), k′ ≤ k, and
(x, k) is a yes-instance iff (x′, k′) is a yes-instance. We call (x′, k′) the problem
kernel. It is desirable to get the problem kernel size |x′| as small as possible.
By means of a case study based on s-PCVD, we will present a method to de-
velop small problem kernels for vertex deletion problems where the goal graph
can be characterized by a set of forbidden induced subgraphs. For instance, if
the goal graph shall be a disjoint union of cliques, then it is characterized by
forbidding induced P3’s [14], that is, induced paths containing three vertices.
A more complex characterization has been developed for graphs that are dis-
joint unions of s-plexes [7]. We term our data reduction approach “kernelization
through tidying”—it uses a polynomial-time constant-factor approximation to
“tidy up” the graph to make data reduction rules applicable.

Discussion of results. Complementing and extending results for Cluster

Vertex Deletion [9], we prove an O(k2s3)-vertex problem kernel for s-PCVD,
which can be computed in O(ksn2) time. Note that the related edge modifica-
tion problem s-Plex Editing has an O(ks2)-vertex problem kernel which can
be computed in O(n4) time [7]. We emphasize that the underlying kernelization
algorithms are completely different in both cases and that vertex deletion is a
“more powerful” operation than edge modification, so a larger problem kernel in
the case of s-PCVD does not come unexpectedly. Our main conceptual contribu-
tion is the “kernelization through tidying” method outlined in Section 2. There
is related work by Kratsch [10] that provides polynomial-size problem kernels for
constant-factor approximable problems contained in the classes MIN F+Π1 and
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MAX NP. The s-PCVD problem is contained in MIN F+Π1. Applying Kratsch’s
more general method to s-PCVD would lead to an kO(s)-vertex kernel. By way
of contrast, in our O(k2s3)-vertex bound, the value of s does not influence the
degree of the polynomial in k, a significant advantage. Other related work is due
to Abu-Khzam [1], who considers problem kernels for Hitting Set problems.
Again, translating our problem instances into Hitting Set instances (which
can be done in a straightforward way) and applying a kernelization for Hit-

ting Set would yield problem instances which are size-bounded by polynomials
whose degree depends on s.

Due to space limits, most proofs are deferred to a full version of this paper.

Notation. We only consider undirected graphs G = (V, E), where V is the
set of vertices and E is the set of edges. Throughout this work, we use n := |V |
and m := |E|. The open neighborhood N(v) of a vertex v ∈ V is the set of vertices
that are adjacent to v. For a vertex set U ⊆ V , we define N(U) :=

⋃
v∈U N(v)\U .

We call a vertex v ∈ V adjacent to V ′ ⊆ V if v has a neighbor in V ′. Analogously,
we call U ⊆ V adjacent to a vertex set W ⊆ V with W ∩U = ∅ if N(U)∩W �= ∅.
We call two vertices v and w connected in G if there exists a path from v to w
in G. For a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over
the vertex set V ′ with the edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V , we
use G − V ′ as an abbreviation for G[V \ V ′]. For a set F of graphs, we call a
graph F -free if it does not contain any graph from F as an induced subgraph.

2 Kernelization through Tidying

For a set F of forbidden induced subgraphs (Fisgs) we outline a general kernel-
ization method for the F-Free Vertex Deletion problem. Here, the task is,
given an undirected graph G = (V, E) and an integer k ≥ 0, to decide whether
the graph can be made F -free by deleting at most k vertices. If F is finite (as
we have for s-PCVD, s being a constant), then F-Free Vertex Deletion is
clearly fixed-parameter tractable with respect to the parameter k, as directly fol-
lows from Cai’s [4] general result. Moreover, one may observe that its minimiza-
tion version is in MIN F+Π1; therefore, using a technique due to Kratsch [10],
F-Free Vertex Deletion admits a problem kernel containing O(kh) ver-
tices, where h is the maximum number of vertices of a Fisg in F . We present an
alternative technique to kernelize such vertex deletion problems. While the tech-
nique of Kratsch [10] is more general, our approach seems to be useful to obtain
smaller problem kernels. For example, the Fisgs for s-PCVD consist of at most
s+1+Ts vertices [7], where Ts is the maximum integer satisfying Ts ·(Ts+1) ≤ s;
therefore, Kratsch’s technique [10] yields an O(ks+1+Ts)-vertex problem kernel.
In contrast, we obtain an O(k2s3)-vertex problem kernel using a novel method.
Our approach comprises the following three main steps.

Approximation Step. This step is to compute an approximate solution X
for F-Free Vertex Deletion in polynomial time; let a be the corresponding
approximation factor. Obviously, the residual graph G − X is F -free. Since X
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Fig. 1. Minimal forbidden induced subgraphs (Fisgs) for 2-plex cluster graphs

is a factor-a approximate solution, we can abort with returning “no-instance”
if |X | > ak. Hence, otherwise, we proceed knowing that |X | ≤ ak. It remains to
bound the number of vertices in the residual graph G −X . To this end, we use
the property that G −X is F -free.

This property can be difficult to exploit; however, it is always possible to
efficiently find a small vertex set T ⊆ V \X (called tidying set) such that in G−T
(called the tidy subgraph), for each v ∈ X , deleting all vertices in X \ {v} results
in an F -free graph (called the local tidiness property of G − T ). As we will see,
this additional property helps in finding suitable data reduction rules to shrink
the size of G−X . The subsequent Tidying Step finds such a tidying set T .

Tidying Step. In this step, polynomial-time data reduction is employed and
the tidying set T is computed. Roughly speaking, the data reduction ensures
that the tidying set does not become too big.

First, we describe the data reduction. Compute for each v ∈ X a maximal
set F(v) of Fisgs that pairwise intersect exactly in v. If |F(v)| > k, then a
“high-degree data reduction rule” deletes v from both G and X and decreases
the parameter k by one. The correctness of this rule is easy to verify.

Second, we describe how to compute the tidying set T , show that its size is
bounded, and argue that G−T fulfills the local tidiness property. We define the
tidying set of a vertex v ∈ X as T (v) :=

⋃
F∈F(v) V (F ) \X (that is, all vertices

in V \X that are in a Fisg of F(v)). The tidying set of the whole graph is defined
as T :=

⋃
v∈X T (v). Since after the high-degree data reduction rule |F(v)| ≤ k,

we know that |T (v)| ≤ hk, where h is the maximum number of vertices of a Fisg

in F ; hence, |T | ≤ hak2. The local tidiness property of G − T follows directly
from the maximality of F(v). The local tidiness property can be exploited in the
final Shrinking Step.

Shrinking Step. This is the most unspecified step, which has to be developed
using specific properties of the studied vertex deletion problem. In this step, the
task is to shrink the tidy subgraph G− T using problem-specific data reduction
rules that exploit the local tidiness property. Depending on the strength of these
data reduction rules, the total problem kernel size is as follows: as we have
seen, the factor-a approximate solution X has size at most ak. The tidying
set T based on size-at-most-h Fisgs has size at most hak2. If we shrink the tidy
subgraph G− T to at most f(k) vertices, then we obtain a problem kernel with
O(ak + hak2 + f(k)) vertices.

In the next section, we present a case study of kernelization through tidying
using 2-PCVD. After that, we generalize the approach to s-PCVD with s > 2
(Section 4). Finally, we show how to significantly speed up the kernelization.
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3 A Problem Kernel for 2-Plex Cluster Vertex Deletion

We specify the steps outlined in Section 2 to obtain a problem kernel for 2-PCVD.

Approximation Step. Following the tidying kernelization method, greedily com-
pute a factor-4 approximate 2-plex cluster graph vertex deletion set (2-pvd set) X
using the Fisg characterization of 2-plex cluster graphs [7] (simply find one
of the three four-vertex Fisgs (see Figure 1), add its vertices to X , and re-
move its vertices from the graph, until the remaining graph is a 2-plex cluster
graph). If |X | > 4k, then simply return “no-instance”. Therefore, in the follow-
ing one may assume that |X | ≤ 4k. It remains to bound the number of ver-
tices in the residual graph G −X.

Using the linear-time algorithm by Guo et al. [7] to find a Fisg for 2-plex
cluster graphs, we can compute X in O(k · (n+m)) time, by either applying the
linear-time algorithm at most k + 1 times or returning “no-instance”.

Tidying Step. Let X be the factor-4 approximate 2-pvd set computed in the
Approximation Step. For each v ∈ X, greedily compute a maximal set F(v) of
Fisgs pairwise intersecting exactly in v. Since the Fisgs for 2-PCVD contain
four vertices, this can be done in O(n3) time for each v ∈ X and therefore
in O(|X | · n3) = O(k · n3) time in total.1

Reduction Rule 1. If there exists a vertex v ∈ X such that |F(v)| > k, then
delete v from G and X and decrement k by one.

Lemma 1. Rule 1 is correct and can be exhaustively applied in O(n + m) time.

Additionally, we apply a simple and obviously correct data reduction rule in
O(n + m) time:

Reduction Rule 2. Delete connected components from G that form 2-plexes.

In the following, we assume that G is reduced with respect to Rules 1 and 2.
Moreover, X is a 2-pvd set of size at most 4k, and a maximal set of Fisgs F(v)
that pairwise intersect exactly in v shall be computed for each v ∈ X . The
tidying set is T (v) :=

⋃
F∈F(v) V (F ) \ X for each v ∈ X and the tidying set for

the whole graph is T :=
⋃

v∈X T (v). Since |F(v)| ≤ k, |X | ≤ 4k, and the Fisgs
have at most four vertices, we can conclude that |T | ≤ 12k2. It remains to bound
the number of vertices in G− (X ∪ T ); more specifically, we bound the number
of vertices in the tidy subgraph G − T .

Shrinking Step. Since the set F(v) of Fisgs is maximal, the tidy subgraph G−T
fulfills the local tidiness property, that is, for each v ∈ X , deleting X \ {v}
from G − T results in an F -free graph.

1 In Section 4, we present a slightly modified version of our kernelization algorithm
that can be performed in O(kn2) time.
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H

X

H ∩ T

H \ T

(a) An X-separated set H ∈ H(X)

H

X

H ∩ T

H \ T

(b) A non-X-separated set H ∈ H(X)

Fig. 2. Diagrams illustrating an X-separated and a non-X-separated set H ∈ H(X).
The solid lines between X and H denote possible edges, and the dashed line between X
and H \ T illustrates that there is no edge between these two sets.

Definition 1. Let {G1, . . . , Gl} be the set of connected components of G−X and
let H(X) := {V (G1), . . . , V (Gl)} be the collection of vertex sets of the connected
components of G −X.

Since X is a 2-pvd set, each element of H(X) induces a 2-plex in G.
The local tidiness property helps in finding useful structural information; in

particular, observe that each vertex v ∈ X can be adjacent to vertices of arbi-
trarily many clusters in G−X , but in the tidy subgraph G−T , each vertex v ∈ X
is adjacent to vertices of at most two clusters in G − (T ∪ X); otherwise, if a
vertex v ∈ X were adjacent to at least three clusters in G− (T ∪X), then there
would be a Fisg (more precisely, a K1,3) that contains v and three vertices
from G− (T ∪X), contradicting the local tidiness property of G−T . With such
kind of observations, we can show that the local tidiness property implies the
following two properties for each v ∈ X . These properties will later be exploited
by the data reduction rules and the corresponding proof of the kernel size:
Property 1: There are at most two sets H ∈ H(X) with H \ T adjacent to v.
Property 2: If there is a set H ∈ H(X) such that H \T is adjacent to v, then v

is nonadjacent to at most one vertex in H \ T .

Lemma 2. The local tidiness property of G − T implies Properties 1 and 2.

Recall that |X | ≤ 4k and that |T | ≤ 12k2; it remains to reduce the size of the
tidy subgraph G − T . To this end, we distinguish between two types of sets
in H(X), namely X-separated and non-X-separated sets:

Definition 2. A vertex set H ∈ H(X) is X-separated if H \ T is nonadja-
cent to X. A connected component of G −X is X-separated if its vertex set is
X-separated.

See Figure 2 for an illustration. The remainder of this section is mainly devoted
to data reduction rules that shrink the size of large sets in H(X). We deal with
X-separated sets and non-X-separated sets separately. The intuitive idea to
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bound the number of vertices in X-separated sets is as follows. We use the fact
that T ∩ H is a separator to show that if there are significantly more vertices
in H \ T than in H ∩ T , then some vertices in H \ T can be deleted from
the graph. Together with the size bound for T , one can then obtain a bound
on the number of vertices in X-separated sets. The intuitive idea to bound the
number of vertices in non-X-separated sets is to use Properties 1 and 2. Roughly
speaking, Property 1 guarantees that in G−T , each vertex from X is adjacent to
at most two sets from H(X); if there is a large non-X-separated set H ∈ H(X),
then most of its vertices must have the same neighbors in X due to Property 2.
This observation can be used to show that some vertices in H \T can be deleted
from the graph.

In the following, we exhibit the corresponding technical details. First, we
shrink the size of the X-separated sets.

Bounding the size of X-separated connected components. The following
data reduction rule decreases the number of vertices in large X-separated sets
in H(X). Recall that G is reduced with respect to Rules 1 and 2.

Reduction Rule 3. If there exists a vertex set H ∈ H(X) that is X-separated
by T such that |H \T | > |H ∩T |+1, then choose an arbitrary vertex from H \T
and delete it from G.

Lemma 3. Rule 3 is correct and can be exhaustively applied in O(n + m) time.

Proof. First, we show the correctness. Let u ∈ H be the vertex that is deleted by
Rule 3. If (G, k) is a yes-instance, then obviously (G−{u}, k) is a yes-instance as
well. Now suppose that (G−{u}, k) is a yes-instance. Let S be a 2-pvd set of size
at most k for G − {u}. If S is a 2-pvd set for G, then (G, k) is obviously a yes-
instance. Otherwise, u must be contained in a Fisg F in G−S; we show that in
this case one can use S to construct a 2-pvd set S′ of size at most k for G. Since H
induces a 2-plex and since H is X-separated, F must contain a vertex v ∈ X and
a vertex w ∈ H ∩ T . By the preconditions of Rule 3 and because |H ∩ T | ≥ 1,
we have |H \ {u}| = |H \ (T ∪ {u})|+ |H ∩ T | ≥ 3. Thus, all vertices in H \ {u}
are connected to v and the at least |H ∩ T | + 1 vertices in H \ (T ∪ {u}) are
nonadjacent to v, because H is X-separated. Since v, w �∈ S, the 2-pvd set S
for G − {u} must contain all but at most one vertex from H \ (T ∪ {u}), thus
|S ∩ (H \ T )| ≥ |H ∩ T |. Hence S′ := (S \ (H \ T )) ∪ (H ∩ T ) is a 2-pvd set
for G − {u} of size at most |S| ≤ k. Since (H ∩ T ) ⊆ S′, u ∈ H \ T , and H
is X-separated, it follows that S′ is also a 2-pvd set of size at most k for G,
thus (G, k) is a yes-instance.

For the running time, consider that we can construct H(X) in O(n+m) time.
If for a H ∈ H(X) we find that all vertices in H \T are not adjacent to X , then
apply Rule 3 to H until |H \ T | ≤ |H ∩ T | + 1; deleting vertices from a graph
takes O(n + m) time in total. ��
With Rule 3, the number of vertices in H\T is bounded from above by |H∩T |+1
for each X-separated set H ∈ H(X). It remains to shrink the size of non-X-
separated sets.
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H

R(H)

X

H ∩ T

A(H)
C(H)

B(H)

Fig. 3. Illustration of the sets A(H), B(H), C(H), and R(H). Solid lines indicate
edges and dashed lines “non-edges”. Note that the sets A(H), B(H), C(H), and H ∩T
might have pairwise non-empty intersections (which is not relevant for our arguments);
to keep the figure simple, they are drawn without intersections.

Bounding the size of non-X-separated connected components. Our goal
is to find vertices in a non-X-separated set H ∈ H(X) that can safely be deleted
by a data reduction rule. To this end, we need the following definitions. We call
a vertex set Z ⊆ V an X-module if any two vertices u, v ∈ Z satisfy N(u)∩X =
N(v) ∩ X . We define the following set of “candidate” vertices for deletion.

Definition 3. Let H ∈ H(X). Then, a redundant subset R ⊆ H is an X-
module in which every vertex u ∈ R is adjacent to every vertex in H \ R.

With this definition, one can state the following data reduction rule; we describe
later how a redundant subset of H can be computed.

Reduction Rule 4. Let R ⊆ H be a redundant subset of some H ∈ H(X).
If |R| > k + 3, then choose an arbitrary vertex from R and delete it from G.

Lemma 4. Rule 4 is correct.

We next show how to efficiently find a redundant subset R ⊆ H . See Figure 3
for an illustration of the following definitions. Let A(H) be the set of vertices
in H that are nonadjacent to at least one vertex in H ∩ T ; let B(H) be the
set of vertices in H that are nonadjacent to at least one vertex from X that
has some neighbor in H \ T ; finally, let C(H) be the set of vertices in H that
are nonadjacent to some vertex in B(H). Let R̄(H) := A(H) ∪ B(H) ∪ C(H)
and R(H) := H\(R̄(H)∪T ). Intuitively, R̄(H) contains vertices in H that violate
Definition 3, guaranteeing that R(H) contains vertices that satisfy Definition 3.

Lemma 5. For each H ∈ H(X), the set R(H) ⊆ H is redundant and the
set R̄(H) contains at most |H ∩ T |+ 2|N(H \ T ) ∩ X | vertices.

Proof. To prove that R(H) is redundant, one has to show that R(H) is an X-
module (that is, N(u)∩X = N(v)∩X for all u, v ∈ R(H)) and that each vertex
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in R(H) is adjacent to all vertices in H \R(H) (see Definition 3). We first show
N(u) ∩ X = N(v) ∩ X for all u, v ∈ R(H). Assume that w ∈ N(u) ∩ X . This
implies w ∈ N(H \ T ) ∩ X . If w /∈ N(v) ∩ X , then v ∈ B(H), contradicting
v ∈ R(H); as a consequence, N(u) ∩X ⊆ N(v) ∩X . The inclusion N(v) ∩ X ⊆
N(u) ∩ X can be shown analogously.

We now show that each vertex in R(H) is adjacent to all vertices in H \R(H).
Every vertex in R(H) is (by definition) adjacent to all vertices in H ∩ T and
B(H). Because each vertex in A(H)∪C(H) is nonadjacent to a vertex in B(H)∪
(H ∩ T ) and because H induces a 2-plex, each vertex in R(H) is adjacent to all
vertices in A(H)∪C(H). Thus, each vertex in R(H) is adjacent to every vertex
in H \ R(H).

Because H induces a 2-plex, |A(H)| ≤ |H∩T | and |C(H)| ≤ |B(H)|. For each
vertex v ∈ X , Property 2 states that there is at most one vertex in H \T that is
nonadjacent to v. Thus, |B(H)| ≤ |N(H \ T )∩X |. As a consequence, |R̄(H)| =
|A(H) ∪ B(H) ∪C(H)| ≤ |H ∩ T |+ 2|N(H \ T ) ∩ X |. ��
Lemma 6. For all H ∈ H(X), the set R(H) can be computed in O(n2) time.

By Lemma 6, we can compute in O(n2) time the sets R(H) and shrink them
using Rule 4 so that |R(H)| ≤ k + 3. The number of vertices in H \ (T ∪R(H))
is upper-bounded by |H ∩ T | + 2|N(H \ T ) ∩ X | due to Lemma 5. This shows
the following proposition:

Proposition 1. The exhaustive application of Rule 4 takes O(n2) time. Af-
ter that, for each non-X-separated set H ∈ H(X), |H \ T | has size at most
|H ∩ T |+ 2|N(H \ T ) ∩ X |+ k + 3.

Now we have all ingredients to show our main result.

Theorem 1. 2-Plex Cluster Vertex Deletion admits a problem kernel of
at most 52k2 + 32k vertices, which can be computed in O(k · n3) time.

Using a more intricate analysis, without introducing further data reduction rules,
we can improve the upper bound from Theorem 1 to 40k2 + 24k vertices [3].

4 Generalization to s-Plex Cluster Vertex Deletion

In this section, we generalize the kernelization approach for 2-PCVD (Section 3)
to s-PCVD with s > 2, focusing the presentation on the main differences.
In addition, in the last part of this section, we discuss how to speed up the
kernelization algorithm.

As in Section 3, we start with the Approximation Step. To greedily compute
an approximate solution X , we employ the algorithm by Guo et al. [7], which
finds a Ts-vertex Fisg if the given graph contains one; here, Ts is the largest
integer satisfying Ts · (Ts + 1) ≤ s. If X contains more than k·(s+1+Ts) vertices,
then return “no-instance”. Therefore, in the following, assume that |X | ∈ O(sk).

For the Tidying Step, for each v ∈ X , compute a maximal set F(v) of Fisgs
that pairwise intersect exactly in v. A simple algorithm (trying all subgraphs
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of G− {v} with at most s + Ts vertices) takes O(|X | · sns+Ts) = O(s2k · ns+Ts)
time in total (that is, polynomial time). Then, apply Rule 1, that is, if there
exists a vertex v ∈ X such that |F(v)| > k, then delete v from G and X
and decrement k by one. After that, apply a data reduction rule that deletes
connected components from G that are s-plexes (cf. Rule 2). The tidying set
is T (v) :=

⋃
F∈F(v) V (F ) \ X for each v ∈ X and the tidying set for the whole

graph is T :=
⋃

v∈X T (v). Since |F(v)| ≤ k, |X | = O(sk), and the Fisgs have
at most O(s) vertices, it follows that |T | = O(s2k2). It remains to describe
the Shrinking Step, which decreases the number of vertices in the tidy sub-
graph G− T . For G = (V, E), let H(X) := {H ⊆ V | H induces a connected
component in G−X}. Analogous to the case s = 2, we can show that the local
tidiness property implies the following two properties for each v ∈ X :
Property 1: There are at most s sets H ∈ H(X) with H \ T adjacent to v.
Property 2: If there is a set H ∈ H(X) such that H \T is adjacent to v, then v

is nonadjacent to at most 2s− 3 vertices in H \ T .
We again distinguish between X-separated sets H ∈ H(X) and non-X-separated
sets H ∈ H(X). The main difference compared to the case s = 2 is that the proof
of the upper bound on the size of the non-X-separated sets is technically more
demanding.

Reduction Rule 5 (Generalization of Rule 3). If there exists a vertex
set H ∈ H(X) that is X-separated by T such that |H \ T | ≥ |H ∩ T | + 2s − 2,
then choose an arbitrary vertex from H \ T and delete it from G.

Next, we deal with non-X-separated sets in H(X). To this end, we need the
following definition.

Definition 4 (Generalization of Definition 3). Let H ∈ H(X). Then, we
call a subset R ⊆ H redundant if there is an X-module Z with R ⊆ Z ⊆ H that
contains all vertices from H that are nonadjacent to a vertex in R.

The main difference to Definition 3 for s = 2 is that one cannot guarantee that
each vertex in a redundant subset R is adjacent to all vertices in H \ R.

Reduction Rule 6 (Generalization of Rule 4). Let R ⊆ H be a redundant
subset of some H ∈ H(X). If |R| ≥ k + 2s, then choose an arbitrary vertex
from R and delete it from G.

Lemma 7. Rule 6 is correct.

To find a redundant subset R(H) ⊆ H , one can use the same definitions of R(H)
and R̄(H) as for the case s = 2; however, the proof that R(H) is a redundant
subset becomes slightly more involved.

Lemma 8 (Generalization of Lemma 5). For each H ∈ H(X), the set
R(H) ⊆ H is redundant and the set R̄(H) contains O(s · |H ∩ T | + s2 · |N(H \
T ) ∩X |) vertices.

Now, we are ready to prove the problem kernel.
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Theorem 2. s-PCVD admits a problem kernel of O(k2s3) vertices, which can
be computed in O(s2k · ns+Ts) time, where Ts is the maximum integer satisfy-
ing Ts · (Ts + 1) ≤ s.

Speeding up the Kernelization Algorithms. So far, we focused on the kernel size
rather than the running time of the kernelization. The bottleneck of the kernel-
ization result given by Theorem 2 is the running time of the simple algorithm
that finds for each v ∈ X a maximal set F(v) of Fisgs that pairwise intersect
exactly in v. The maximality of F(v) was used to prove that the tidying set T
fulfills Properties 1 and 2 (of Section 4). We obtain a fast kernelization if we
do not demand that F(v) is maximal; rather, we show that we can compute a
set T (v) of bounded size such that Properties 1 and 2 are still fulfilled.

Lemma 9. Let X be an s-pvd set. Then, for all v ∈ X, a vertex set T (v)
with |T (v)| ≤ 2sk and satisfying the following properties can be found in O(|X | ·
n2) time:
1. For each vertex v ∈ X, there are at most s sets H ∈ H(X) such that H \T (v)

is adjacent to v.
2. If there is a vertex v ∈ X and a set H ∈ H(X) such that H \T (v) is adjacent

to v, then v is nonadjacent to at most 2s− 3 vertices in H \ T (v).

Using Lemma 9 instead of the expensive computation of T (v) in Section 4 and
a few additional tricks [3], the following result can be shown.

Theorem 3. s-PCVD admits a problem kernel of O(k2s3) vertices, which can
be computed in O(ksn2) time.

5 Conclusion

Our results are based on linking kernelization with polynomial-time approxi-
mation, dealing with vertex deletion problems whose goal graphs are charac-
terized by forbidden induced subgraphs. This is a rich class of graphs, among
others containing various cluster graphs. When applicable, our method may al-
low for significantly smaller problem kernel sizes than the more general method
by Kratsch [10].

As to future work, it would be desirable to start a general study under
which conditions fixed-parameter tractable vertex deletion problems possess
polynomial-size kernels.
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Abstract. We present a lattice algorithm specifically designed for some
classical applications of lattice reduction. The applications are for lattice
bases with a generalized knapsack-type structure, where the target vec-
tors are boundably short. For such applications, the complexity of the
algorithm improves traditional lattice reduction by replacing some de-
pendence on the bit-length of the input vectors by some dependence on
the bound for the output vectors. If the bit-length of the target vectors
is unrelated to the bit-length of the input, then our algorithm is only
linear in the bit-length of the input entries, which is an improvement
over the quadratic complexity floating-point LLL algorithms. To illus-
trate the usefulness of this algorithm we show that a direct application
to factoring univariate polynomials over the integers leads to the first
complexity bound improvement since 1984. A second application is alge-
braic number reconstruction, where a new complexity bound is obtained
as well.

1 Introduction

Lattice reduction algorithms are essential tools in computational number theory
and cryptography. A lattice is a discrete subset of Rn that is also a Z-module.
The goal of lattice reduction is to find a ‘nice’ basis for a lattice, one which
is near orthogonal and composed of short vectors. Since the publication of the
1982 Lenstra, Lenstra, Lovász [15] lattice reduction algorithm many applications
have been discovered, such as polynomial factorization [15,11] and attacking sev-
eral important public-key cryptosystems including knapsack cryptosystems [23],
RSA under certain settings [7], and DSA and some signature schemes in par-
ticular settings [12]. One of the important features of the LLL algorithm was
that it could approximate the shortest vector of a lattice in polynomial time.
This is valuable because finding the exact shortest vector in a lattice is provably
NP-hard [1,18]. Given a basis b1, . . . ,bd ∈ Rn which satisfies ‖ bi ‖≤ X ∀i,
the LLL algorithm has a running time of O(d5n log3 X) using classical arith-
metic. Recently there has been a resurgence of lattice reduction work thanks to
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Nguyen and Stehlé’s L2 algorithm [20,21] which performs lattice reduction in
O(d4n log X [d + log X ]) CPU operations. The primary result of L2 was that the
dependence on log X is only quadratic allowing for improvement on applications
using large input vectors.

The main result: Many applications of LLL (see the applications section below)
involve finding a vector in a lattice whose norm is known to be small in advance.
In such cases it can be more efficient to reduce a basis of a sub-lattice which
contains all targeted vectors than reducing a basis of the entire lattice. In this
paper we target short vectors in specific types of input lattice bases which we
call knapsack-type bases. The new algorithm introduces a search parameter B
which the user provides. This parameter is used to bound the norms of targeted
short vectors. To be precise:

The rows of the following matrices represent a knapsack-type basis⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 · · · PN

0 · · · 0 0 . . . 0
0 · · · 0 P1 · · · 0
1 · · · 0 x1,1 · · · x1,N

...
. . .

...
...

...
0 · · · 1 xr,1 · · · xr,N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
or

⎛⎜⎝1 · · · 0 x1,1 · · · x1,N

...
. . .

...
...

...
0 · · · 1 xr,1 · · · xr,N

⎞⎟⎠.

The specifications of our algorithm are as follows. It takes as input a knapsack-
type basis b1, . . . ,bd ∈ Zn of a lattice L with ‖ bi ‖≤ X ∀i and a search
parameter B; it returns a reduced basis generating a sub-lattice L′ ⊆ L such
that if v ∈ L and ‖ v ‖≤ B then v ∈ L′.

Our algorithm has the following complexity bounds for various input:

No Pi O(d2(n + d2)(d + log B)[log X + n(d + log B)])
No restriction on Pi O(d4(d + log B)[log X + d(d + log B)])

Many Pi large w.r.t. B O(dr3(r + log B)[log X + d(r + log B)])

These complexity bounds have several distinct parameters, so a comparison with
other algorithms is a bit subtle. The most significant parameter to explore is B,
the search parameter. If one selects B = X then our algorithm will return a
reduced basis of L′ = L in O(d2n(n + d2)[d2 + log2 X ]). This is an interesting
result because our algorithm, like the original LLL and the L2 algorithms, uses
switches and size-reductions of the vectors to arrive at a reduced basis. The fact
that we return a reduced basis with a complexity so similar to L2 implies that
there are alternative orderings on the switches which lead to similar performance.

When using a smaller value of B than X the algorithm will return either:

– A reduced basis of a sub-lattice L′ which contains all vectors of norm ≤ B.
This sub-lattice may be different than the sub-lattice, L′′, generated by all
vectors of norm ≤ B, and we do have L′′ ⊆ L′ ⊆ L. Also, because the basis
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of L′ is reduced, we have an approximation of the shortest non-zero vector
of L.

– The empty set, in which case the algorithm has proved that no non-zero
vector of norm ≤ B exists in L.

We offer the following complexity comparison with L2 [20] for some values of B
on square input lattices (with Pj ’s). When a column has a non-zero Pj we can
reduce the xi,j modulo Pj . Thus, without loss of generality, we may assume that
Pj is the largest element in its column. Note that r = d −N .

L2 O(d6 log X + d5 log2 X)

B = O(X) O(d7 + d5 log2 X)
B = O(X1/d) O(d2r5 + r3 log2 X)

B = 2O(d) O(d4r3 + d2r3 log X)

It should be noted that [20] explores running times of L2 on knapsack lattices
with N = 1 (such lattice bases are used in [9]). In this case, L2 will have com-
plexity O(d5 log X + d4 log2 X).

Our approach: We reduce the basis gradually, using many separate calls to
another lattice reduction algorithm. To get the above complexity results we
chose H-LLL [19] but there are many suitable lattice reduction algorithms we
could use instead such as [13,15,20,24]. For more details on why we made this
decision see the discussion in section 5.

There are three important features to our approach. First, we approach the
problem column by column. Beginning with the r × r identity and with each
iteration of the algorithm we expand our scope to include one more column of
the xi,j . Next, within each column iteration, we reduce the new entries bit by
bit, starting with a reduction using only the most significant bits, then gradual
including more and more bits of data. Third, we allow for the removal of vectors
which have become too large. This allows us to always work on small entries,
but restricts us to a sub-lattice.

The proof of the algorithm’s complexity is essentially a study of two quantities,
the product of the Gram-Schmidt lengths of the current vectors which we call the
active determinant and an energy function which we call progress. We amortize
all of the lattice reduction costs using progress, and we bound the number of
iterations and number of vectors using the active determinant. Neither of these
quantities is impacted by the choice of lattice reduction algorithm.

Applications of the algorithm: As evidence for the usefulness of this new
approach we show two new complexity results based on applications of the main
algorithm. The first result is a new complexity for the classical problem of fac-
toring polynomials in Z[x]. If the polynomial has degree N , coefficients smaller
than log(A), and when reduced modulo a prime p has r irreducible factors then
we prove a complexity of O(N3r4 + N2r4 log A) for the lattice reduction costs
using classical arithmetic. One must also add the cost of multi-factor Hensel
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lifting which is O(N6 + N4 log2 A) ignoring the small terms log(r) and log2 p
(see [8] for details). This is the first improvement over the Schönhage bound
given in 1984 [25] of O(N8 + N5 log3 A).

The second new complexity result comes in the problem of reconstructing
a minimal polynomial from a complex approximation of the algebraic number.
In this application we know O(d2 + d log H) bits of an approximation of some
complex root of an unknown polynomial h(x) with degree d and with maximal
coefficient of absolute value ≤ H . Then our algorithm can be used to find the
coefficients of h(x) in O(d7 + d5 log2 H) CPU operations.

Other problems of common interest which might be impacted by our algorithm
include integer relation finding (where N = 1) and simultaneous Diophantine
approximation of several real numbers [10,6] (where r = 1).

Notations: All costs are given for the bit-complexity model. A standard row
vector will be denoted v, v[i] represents the ith entry of v, v[i, . . . , j] a vector
consisting of all entries of v from the ith entry to the jth entry, and v[−1]
the final entry of v. Also we will use ‖w‖∞ as the max-norm or the largest
absolute value of an entry in the vector w, ‖ w ‖:= √∑

(w[i])2 which we
call the norm of w, and wT as the transpose of w. The scalar product will be
denoted v ·w :=

∑
v[i] ·w[i]. For a matrix M we will use M [1, . . . , k] to denote

the first k columns of M . The n by n identity matrix will be denoted In×n. For
a real number x we use �x and �x	 to denote the closest integer ≥ x and ≤ x
respectively.

Road map: In section 2 we give a brief introduction to lattice reduction algo-
rithms. In section 3 we present the central algorithm of the paper and prove its
correctness. In section 4 we prove several important features by studying quasi-
invariants we call the active determinant and progress. In this section we treat
lattice reduction as a black-box algorithm. In section 5 we prove the overall com-
plexity and other important claims about the new algorithm by fixing a choice
for a standard lattice reduction algorithm. In section 6 we offer new complexity
results for factoring polynomials in Z[x] and algebraic number reconstruction.

2 Background on Lattice Reduction

The purpose of this section is to present some facts from [15] that will be needed
throughout the paper. For a more general treatment of lattice reduction see [17].

A lattice, L, is a discrete subset of Rn that is also a Z-module. Let b1, . . . ,bd ∈
L be a basis of L and denote b∗

1, . . . ,b
∗
d ∈ Rn as the Gram-Schmidt orthogo-

nalization over R of b1, . . . ,bd. Let δ ∈ (1/4, 1] and η ∈ [1/2,
√

δ). Let li =
log1/δ ‖ b∗

i ‖2, and denote μi,j =
bi·b∗

j

b∗
j ·b∗

j
. Note that bi,b∗

i , li, μi,j will change
throughout the algorithm sketched below.

Definition 1. b1, . . . ,bd is LLL-reduced if ‖ b∗
i ‖2 ≤ 1

δ−μ2
i+1,i

‖ b∗
i+1 ‖2 for 1 ≤

i < d and |μi,j | ≤ η for 1 ≤ j < i ≤ d.
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In the original paper the values for (δ, η) were chosen as (3/4, 1/2) so that 1
δ−η2

would simply be 2.

Algorithm 1. (Rough sketch of LLL-type algorithms)
Input: A basis b1, . . . ,bd of a lattice L.
Output: An LLL-reduced basis of L.

A - κ := 2
B - while κ ≤ d do:

1 - (Gram-Schmidt over Z). By subtracting suitable Z-linear combinations
of b1, . . . ,bκ−1 from bκ make sure that |μi,κ| ≤ η for i < κ.

2 - (LLL Switch). If interchanging bκ−1 and bκ will decrease lκ−1 by at
least 1 then do so.

3 - (Repeat). If not switched κ := κ + 1, if switched κ = max(κ − 1, 2).

That the above algorithm terminates, and that the output is LLL-reduced was
shown in [15]. Step B1 has no effect on the li. In step B2 the only li that change
are lκ−1 and lκ. The following lemmas present some standard facts which we
will need.

Lemma 1. An LLL switch can not increase max(l1, . . . , ld), nor can it decrease
min(l1, . . . , ld).

Lemma 2. If ‖ b∗
d ‖ > B then any vector in L with norm ≤ B is a Z-linear

combination of b1, . . . ,bd−1.

In other words, if the current basis of the lattice is b1, . . . ,bd and if the last
vector has sufficiently large G-S length then, provided the user is only interested
in elements of L with norm ≤ B, the last basis element can be removed.

Lemma 2 follows from the proof of [15, Eq. (1.11)], and is true regardless of
whether b1, . . . ,bd is LLL-reduced or not. However, if one chooses an arbitrary
basis b1, . . . ,bd of some lattice L, then it is unlikely that the last vector has large
G-S length (after all, ‖ bd

∗ ‖ is the norm of bd reduced modulo b1, . . . ,bd−1
over R). The effect of LLL reduction is to move G-S length towards later vectors.

3 Main Algorithm

In this section we present the central algorithm of the paper and a proof of
its correctness. Our algorithm is a kind of wrapper for other standard lattice
reduction algorithms. We try to present it as independently as possible of the
choice of lattice reduction algorithm. In order to be general we must first outline
the features that we require of the chosen lattice reduction algorithm. Our first
requirement is that the output satisfy the following slightly weakened version of
LLL-reduction.

Definition 2. Let L ⊆ Rn be a lattice and b1, . . . ,bs ∈ L be R-linearly inde-
pendent. We call b1, . . . ,bs an α-reduced basis of L if 1,2, and 3a hold, and an
(α, B)-reduced sequence (basis of a sub-lattice) if 1,2, and 3b hold:
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1. ‖ b∗
i ‖≤ α ‖ b∗

i+1 ‖ for i = 1 . . . s− 1.
2. ‖ b∗

i ‖≤‖ bi ‖≤ αi−1 ‖ b∗
i ‖ for i = 1 . . . s.

3. (a) L = Zb1 + · · · + Zbs.
(b) ‖ b∗

s ‖≤ B and for every v ∈ L with ‖ v ‖≤ B we have v ∈ Zb1 + · · ·+
Zbs.

The original LLL algorithm from [15] returns output with α =
√

2, L2 from [20]
with α =

√
1

δ−η2 for appropriate choices of (δ, η), and H-LLL from [19] reduced

with α = θη+
√

(1+θ2)δ−η2

δ−η2 for appropriate (δ, η, θ). We may now also make a
useful observation about an (α, B)-reduced sequence.

Lemma 3. If the vectors b1, . . . ,bs form an (α, B)-reduced sequence and we let
b∗

1, . . . ,b
∗
s represent the GSO, then the following properties are true:

– ‖ b∗
i ‖≤ αs−iB for all i.

– ‖ bi ‖≤ αs−1B for all i.

We use the concept of α-reduction as a means of making proofs which are largely
independent of which lattice reduction algorithm a user might choose. For a basis
which is α-reduced, a small value of α implies a strong reduction. In our algorithm
we use the variable α as the worst-case guarantee of reduction quality. We make
our proofs (specifically Lemma 8 and Theorem 3) assuming an α ≥√4/3. This
value is chosen because [15,20,19] cannot guarantee a stronger reduction. An
(α, B)-reduced bases is typically made from an α-reduced basis by removing
trailing vectors with large G-S length. The introduction of (α, B)-reduction does
not require creating new lattice reduction algorithms, just the minor adjustment
of detecting and removing vectors above a given G-S length.

Algorithm 2. LLL with removals
Input: b1, . . . ,bs ∈ Rn and B ∈ R.
Output: b′

1, . . . ,b′
s′ ∈ Rn (α, B)-reduced, s′ ≤ s.

Procedure: Use any lattice reduction procedure which returns an α-reduced
basis and follows Assumption 1. However, when it is discovered that the final
vector has G-S length provably > B remove that final vector (deal with it no
further).

Assumption 1. The lattice reduction algorithm chosen for LLL with removals
must use switches of consecutive vectors during its reduction process. These
switches must have the following properties:

1. There exists a number γ > 1 such that every switch of vectors bi and bi+1
increases ‖ b∗

i+1 ‖2 by a factor provably ≥ γ.
2. The quantity max{‖ b∗

i ‖, ‖ b∗
i+1 ‖} cannot be increased by switching bi and

bi+1.
3. No steps other than switches can affect G-S norms ‖ b∗

1 ‖, . . . , ‖ b∗
s ‖.
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Assumption 1 is not very strong as [15,20,19,24,27] and the sketch in Algorithm 1
all conform to these assumptions. We do not allow for the extreme case where
γ = 1, although running times have been studied in [2,16]. It should also be
noted that in the floating point lattice reduction algorithms ‖ b∗

s ‖ is only known
approximately. In this case one must only remove vectors whose approximate G-S
length is sufficiently large to ensure that the exact G-S length is ≥ B.

The format of the input matrices was given in section 1. A search parameter
B is given to bound the norm of the target vectors. The algorithm performs
its best when B is small compared to the bit-length of the entries in the input
matrix, although B need not be small for the algorithm to work.

Definition 3. We say the Pj are large enough if:

|Pj | ≥ 2α4r+4k+2B2 for all but k = O(r) values of j. (1)

Note that if N = O(r) then the Pj are trivially large enough. However, for
applications where N is potentially much larger than r this becomes a non-
trivial condition. In this case having B close to X means that the Pj ’s are not
large enough.

In the following algorithm we will gradually reduce the input basis. This will
be done one column at a time, similar to the experiments in [3,6]. The current
basis vectors are denoted bi and we will use M to represent the matrix whose
rows are the bi. We will use the notation xj to represent the column vector
(x1,j , . . . , xr,j)T .

The matrix M will begin as Ir×r, and we will adjoin x1 and a new row (0, P1)
if appropriate. Each time we add a column xj we will need to calculate the
effects of prior lattice reductions on the new xj . We use yj to represent a new
column of entries which will be adjoined to M . In fact yj = M [1, . . . , r] · xj .
Before adjoining the entries we also scale them by a power of 2, to have smaller
absolute values. This keeps the entries in M at a uniform absolute value. The
central loop of the algorithm is the process of gradually using more and more
bits of yj until every entry in M is again an integer. No rounding is performed:
we use rational arithmetic on the last column of each row. Throughout the
algorithm the number of rows of M will be changing. We let s be the cur-
rent number of rows of M . If (1) is satisfied for some k = O(r) then we
can actually bound s by 2r + 2k + 1. We use c as an apriori upper bound
on s, either c := 2r + 2k + 1 or c := r + N . The algorithm has better per-
formance when c is small. We let L represent the lattice generated by the
rows of A.

Algorithm 3. Gradual LLL
Input: A search parameter, B ≥ √

5 ∈ Q, an integer knapsack-type matrix,
A, and an α ≥√4/3.

Output: An (α, B)-reduced basis b1, . . . ,bs of a sub-lattice L′ in L with the
property that if v ∈ L and ‖ v ‖ ≤ B then v ∈ L′.
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The Main Algorithm:

1 - if (1) holds set c := min(2r + 2k + 1, r + N)
2 - s := r; M := Ir×r

3 - for j = 1 . . .N do:
a - yj := M [1, . . . , r] · xj ; � := �log2 (max{|Pj |, ‖yj‖∞, 2})	
b - M :=

[
0 Pj/2�

M yj/2�

]
; if Pj �= 0 then s := s + 1 else remove zero row

c - while (� �= 0) do:
i - yj := 2� · M · [0, · · · , 0, 1]T ; � := max{0, �log2 (‖yj‖∞

α2cB2 )}
ii - M :=

[
M [1, . . . , r + j − 1] yj/2�

]
iii - Call LLL with removals on M and set M to output; adjust s

4 - return M

First we will prove the correctness of the algorithm. We need to show that the
Gram-Schmidt lengths are never decreased by scaling the final entry or adding
a new entry.

Lemma 4. Let b1, . . . ,bs ∈ Rn be the basis of a lattice and b∗
1, . . . ,b

∗
s its GSO.

Let σ : Rn → Rn scale up the last entry by some factor β > 1, then we have
‖ b∗

i ‖≤‖ σ(bi)
∗ ‖. In other words, scaling the final entry of each vector by the

same scalar β > 1 cannot decrease ‖b∗
i ‖ for any i.

Lemma 5. Let b1, . . . ,bs ∈ Rn and let b∗
1, . . . ,b

∗
s ∈ Rn be their GSO. The act

of adjoining an (n + 1)st entry to each vector and re-evaluating the GSO cannot
decrease ‖ b∗

i ‖ for any i (assuming that the new entry is in R).

The proofs of these lemmas are quite similar and can be found in the appendix.
Now we are ready to prove the first theorem, asserting the correctness of algo-
rithm 3’s output.

Theorem 1. Algorithm 3 correctly returns an α-reduced basis of a sub-lattice,
L′, in L such that if v ∈ L and ‖ v ‖≤ B then v ∈ L′.

Proof. When the algorithm terminates all entries are unscaled and each vector in
the output is inside of L as it is a linear combination of the original input vectors.
Thus the output is a basis of a sub-lattice L′ inside L. Further, the algorithm
terminates after a final call to step 3(c)iii so returns an (α, B)-reduced sequence.

Now we show that if v ∈ L and ‖ v ‖≤ B then v ∈ L′. The removed vectors
correspond to vectors b̃i ∈ L that, by lemmas 4 and 5, have G-S length at least
as large as those of bi. The claim then follows from lemmas 1 and 2.

4 Two Invariants of the Algorithm

Here we present the important proofs about the set-up of our algorithm. All
proofs in this section and the next allow for a black-box lattice reduction al-
gorithm up to satisfying assumption 1. Each proof in this section involves the
study of an invariant. The two invariants which we use are:
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– The Active Determinant, AD(M), which is the product of the G-S lengths
of the active vectors. This remains constant under standard lattice reduction
algorithms, and allows us to bound many features of the proofs.

– The Progress, PF =
∑s

i=1(i− 1) log ‖ b∗
i ‖2 +nrmr log(4α4cB4), where nrm

is the total number of vectors which have been removed so far. This function
is an energy function which never decreases, and is increased by ≥ 1 for each
switch made in the lattice reduction algorithm.

A Study of the Active Determinant

Definition 4. We call the active determinant of the vectors b1, . . . ,bs the prod-
uct of their Gram-Schmidt lengths. For notation we use, AD or AD({bi}) :=∏s

i=1 ‖ b∗
i ‖. For a matrix M with the ith row denoted by M [i], we use AD or

AD(M) = AD({M [1], . . . , M [s]}).
For an (α, B)-reduced sequence we can nicely bound the AD. We have such a
sequence after each execution of step 3(c)iii.

Lemma 6. If b1, . . . ,bs are an (α, B)-reduced sequence then AD ≤ (αs−1B2)s/2.

We now want to attack two problems, bounding the norm of each vector just
before lattice reduction, and bounding the number of vectors throughout the
algorithm.

Lemma 7. If s ≤ c then just before step 3(c)iii we have ‖ bi ‖2≤ 2α4cB4 for
i = 1 . . . s.

The full details of this proof can be found in the appendix. The following theorem
holds trivially when there is no condition on the Pj or if N = 0. When N > r
and B is at least a bit smaller than X we can show that not all of the extra
vectors stay in the lattice. In other words, if there is enough of a difference
between B and X then the sub-lattice aspect of the algorithm begins to allow
for some slight additional savings. Here the primary result of this theorem is
allowing O(r) vectors with a relatively weak condition on the Pj .

Theorem 2. Throughout the algorithm we have s ≤ c.

Proof. If c = r + N then s ≤ c is vacuously true. So assume c = 2(r + k) + 1
and all but k = O(r) of the Pj satisfy |Pj | ≥ 2α4r+4k+2B2. When the algo-
rithm begins, AD = 1 and s = r. For s to increase step 3 must finish without
removing a vector. If this happens during iteration j then the AD has increased
by a factor |Pj |. The LLL-switches inside of step 3(c)iii do not alter the AD by
Assumption 1. Each vector which is removed during step 3(c)iii has G-S length
≤ 2α4r+4k+2B2 by Lemmas 7 and 1. After iteration j we have nrm = r + j − s
as the total number of removed vectors. All but k of the Pi have larger norm
than any removed vector. Therefore the smallest AD can be after iteration j

is ≥ (2α(4r+4k+2)B2)
j−k−nrm . Rearranging we get AD ≥ (2α4r+4k+2B2)s−r−k.

This contradicts Lemma 6 when s reaches 2r + 2k for the first time because
(2α4r+4k+2B2)r+k ≥ (α2r+2k−1B2)r+k.
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Corollary 1. Throughout the algorithm we have ‖ b∗
i ‖≤ 2α2cB2.

We also use the active determinant to bound the number of iterations of the
main loop, i.e. step 3c. First we show in the appendix that AD is increased by
every scaling which does not end the main loop.

Lemma 8. Every execution of step 3(c)ii either increases the AD by a factor
≥ αcB

2 or sets � = 0.

Now we are ready to prove that the number of iterations of the main loop is
O(r + N). This is important because it means that, although we look at all
of the information in the lattice, the number of times we have to call lattice
reduction is unrelated to log X .

Theorem 3. The number of iterations of step 3c is O(r + N).

The strategy of this proof is to show that each succesful scaling increases the
active determinant and to bound the number of iterations using Lemma 6 and
Corollary 1. For space constraints this proof is provided in the appendix.

A Study of the Progress Function. We will now amortize the costs of
lattice reduction over each of the O(r + N) calls to step 3(c)iii. We do this by
counting switches, using Progress PF (defined below). In order to mimic the
proof from [15] for our algorithm we introduce a type of Energy function which
we can use over many calls to LLL (not only a single call).

Definition 5. Let b1, . . . ,bs be the current basis at any point in our algorithm,
let b∗

1, . . . ,b
∗
s be their GSO, and li := logγ ‖ b∗

i ‖2 for all i = 1 . . . s. We let nrm

be the number of vectors which have been removed so far in the algorithm. Then
we define the progress function PF to be:

PF := 0 · l0 + · · ·+ (s − 1) · ls + nrm · c · logγ (4α4cB4).

This function is designed to effectively bound the largest number of switches
which can have occurred so far. To prove that it serves this purpose we must
prove the following lemma:

Lemma 9. After step 2 Progress PF has value 0. No step in our algorithm can
cause the progress PF to decrease. Further, every switch which takes place in
step 3(c)iii must increase PF by at least 1.

Theorem 4. Throughout our algorithm the total number of switches used by all
calls to step 3(c)iii is O((r + N)c(c + log B)) with Pj and O(c2(c + log B)) with
no Pj.

Proof. Since Lemma 9 shows us that PF never decreases and every switch in-
creases PF by at least 1, then the number of switches is bounded by PF .
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However PF is bounded by Lemma 7 which bounds li ≤ logγ (α4rB4), The-
orem 2 which bounds s ≤ c, and the fact that we cannot remove more vec-
tors than are given which implies nrm ≤ r + N . Further we can see that
(s− 1)ls ≤ (c− 1) logγ (4α4cB4) so PF is maximized by making nrm = (r + N)
(or c if no vectors added) and s = 0. In which case we have number of switches ≤
PF ≤ (r + N)(c − 1)(logγ (4α4cB4) = O((r + N)c(c + log B)). Also if there are
no Pj , we can replace r + N by c.

5 Complexity Bound of Main Algorithm

In this section we wish to prove a bound for the overall bit-complexity of al-
gorithm 3. The complexity bound must rely on the complexity bound of the
lattice reduction algorithm we choose for step 3(c)iii. The results in the previous
sections have not relied on this choice. We will present our complexity bound
using the H-LLL algorithm from [19]. We choose H-LLL for this result because
of its favorable complexity bound and because the analysis of our necessary
adaptations is relatively simple. See [19] for more details on H-LLL.

We make some minor adjustments to the H-LLL algorithm and its analysis.
The changes to the algorithm are the following:

– We have a single non-integer entry in each vector of bit-length O(c+log X).
– Whenever the final vector has G-S length sufficiently larger than B, it is

removed. This has no impact on the complexity analysis.

We use τ as the number of switches used in a single call to H-LLL. This allows
the analysis of progress PF to be applied directly. The following theorem is an
adaptation of the main theorem in [19] adapted to reflect our adjustments.

Theorem 5. If a single call to step 3(c)iii, with H-LLL [19] as the chosen vari-
ation of LLL, uses τ switches then the CPU cost is bounded by O((τ + c +
log B)c2[(r + N)(c + log B) + log X ]) bit-operations.

Now we are ready to complete the complexity analysis of the our algorithm.

Theorem 6. The cost of executing algorithm 3 with H-LLL [19] as the variant
of LLL in step 3(c)iii is

O((r + N)c3(c + log B)[log X + (r + N)(c + log B)])

CPU operations, where B is a search parameter chosen by the user, |A[i, j]| ≤ X
for all i, j, and c = r + N or c = O(r) (see definition 3 for details). If there are
no Pj’s then the cost is

O((r + N + c2)(c + log B)c2[log X + (r + N)(c + log B)]).

Proof. Steps 2, 3b, 3(c)i, and 3(c)ii have negligible costs in comparison to the
rest of the algorithm. Step 3a is called N times, each call performs s inner
products. While each inner product performs r multiplications each of the form
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bi[m] · xm,j appealing to Corollary 1 we bound the cost of each multiplication
by O((c + log B) log X). Since Theorem 2 gives s ≤ c we know that the total
cost of all calls to step 3a is O(Ncr(c + log B) log X). Let k = O(r + N) be the
number of iterations of the main loop. Let τi be the number of LLL switches
used in the ith iteration. Theorem 5 gives the cost of the ith call to step 3(c)iii
as = O((τi + c + log B)c2[(r + N)(c + log B) + log X ]). Theorem 4 implies that
τ1+· · ·+τk = O((r+N)c(c+logB)) (or O(c2(c+logB)) when there are no Pj ’s).
The total cost of all calls to step 3(c)iii is then O([k(c+logB)+τ1+· · ·+τk]c2[(r+
N)(c+log B)+log X ]). The term [k(c+log B)+τ1 + · · ·+τk] can be replaced by
O((r+N)c(c+log B)) (if no Pj then O((r+N+c2)(c+log B))). The complete cost
of is now O(Nrc(c+log B) log X+(r+N)c3[c+log B)(log X+(r+N)(c+log B)]).
The first term is absorbed by the cost of the second term, proving the theorem. If
there are no Pj then we get O((r+N+c2)(c+log B)c2[log X+(r+N)(c+log B)]).

6 New Complexities for Applications of Main Algorithm

Our algorithm has been designed for some applications of lattice reduction. In
this section we justify the importance of this algorithm by directly applying it
to two classical applications of lattice reduction.

New Complexity Bound for Factoring in Z[x]. In [4] it is shown that
the problem of factoring a polynomial, f ∈ Z[x], can be accomplished by the
reduction of a large knapsack-type lattice. In this subsection we merely apply
our algorithm to the lattice suggested in [4].

Reminders from [4]. Let f ∈ Z[x] be a polynomial of degree N . Let A be a
bound on the absolute value of the coefficients of f . Let p be a prime such that
f ≡ lff1 · · · fr mod pa a separable irreducible factorization of f in the p-adics
lifted to precision a, the fi are monic, and lf is the leading coefficient of f . For
our purposes we choose B :=

√
r + 1.

We will make some minor changes to the All-Coefficients matrix defined in [4]
to produce a matrix that looks like:⎛⎜⎜⎜⎜⎜⎜⎜⎝

pa−bN

. .
.

pa−b1

1 x1,1 · · · x1,N

. . .
...

. . .
...

1 xr,1 · · · xr,N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Here xi,j is the jth coefficient of f ′
i · f/fi mods pa divided by pbj and pbj rep-

resents
√

N times a bound on the jth coefficient of g′ · f/g for any true fac-
tor g ∈ Z[x] of f . In this way the target vectors will be quite small. An
empty spot in this matrix represents a zero entry. This matrix has pa−bj >
2N2+N log(A) > 2α4r+2B2 for all j. An (α, B)-reduction of this matrix will solve
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the recombination problem by a similar argument to the one presented in [4]
and refined in [22]. Now we look at the computational complexity of making and
reducing this matrix which gives the new result for factoring inside Z[x].

Theorem 7. Using algorithm 3 on the All-Coefficients matrix above provides a
complete irreducible factorization of a polynomial f of degree N , coefficients of
bit-length ≤ log A, and r irreducible factors when reduced modulo a prime p in

O(N2r4[N + log A])

CPU operations. The cost of creating the All-Coefficients matrix adds O(N4[N2+
log2 A]) CPU operations using classical arithmetic (suppressing small factors
log r and log2 p) to the complexity bound.

The following chart gives a complexity bound comparison of our algorithm with
the factorization algorithm presented by Schönhage in [25] we estimate both
bounds using classical arithmetic and fast FFT-based arithmetic [5]. We also
suppress all log N , log r, log p, and log log A terms.

Classical Gradual LLL O(N3r4 + N2r4 log A + N6 + N4 log2 A)
Classical Schönhage O(N8 + N5 log3 A)
Fast Gradual LLL O(N3r3 + N2r3 log A)
Fast Schönhage O(N6 + N4 log2 A)

The Schönhage algorithm is not widely implemented because of its impracti-
cality. For most polynomials, r is much smaller than N . Our main algorithm will
reduce the All-Coefficients matrix with a competitive practical running time, but
constructing the matrix itself will require more Hensel lifting than seems neces-
sary in practice. In [22] a similar switch-complexity bound to section 4 is given
on a more practical factoring algorithm.

Algebraic Number Reconstruction. The problem of finding a minimal poly-
nomial from an approximation of a complex root was attacked in [14] using lat-
tice reduction techniques using knapsack-type bases. For an extensive treatment
see [17].

Theorem 8. Suppose we know O(d2 + d log H) bits of precision of a complex
root α of an unknown irreducible polynomial, h(x), where the degree of h is d
and its maximal coefficient has absolute value ≤ H. Algorithm 3 can be used to
find h(x) in O(d7 + d5 log2 H) CPU operations.

This new complexity is an improvement over the L2 algorithm which would use
O(d9 + d7 log2 H) CPU operations to reduce the same lattice. Although, one
can prove a better switch-complexity with a two-column knapsack matrix by
using [10, Lem. 2] to bound the determinant of the lattice as O(X2) and thus
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the potential function from [15] is O(X2d), leading to a switch complexity of
O(d log X) (posed as an open question in [26, sec. 5.3]). Using this argument the
complexity for L2 is reduced to O(d8 + d6 log2 H).
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Abstract. We explore the revenue capabilities of truthful, monotone
(“fair”) allocation and pricing functions for resource-constrained auction
mechanisms within a general framework that encompasses unlimited sup-
ply auctions, knapsack auctions, and auctions with general non-decreasing
convex production cost functions. We study and compare the revenue
obtainable in each fair pricing scheme to the profit obtained by the ideal
omniscient multi-price auction. We show (1) for capacitated knapsack auc-
tions, no constant pricing scheme can achieve any approximation to the
optimal profit, but proportional pricing is as powerful as general monotone
pricing, and (2) for auction settings with arbitrary boundednon-decreasing
convex production cost functions, we present a proportional pricing mech-
anism which achieves a poly-logarithmic approximation. Unlike existing
approaches, all of our mechanisms have fair (monotone) prices, and all of
our competitive analysis is with respect to the optimal profit extraction.

1 Introduction

Practical experience [1,2,3] demonstrates that any store charging non-monotone
prices (that is, charging some buyer i more than buyer j despite the fact that
buyer i receives strictly less of the good than j) risks public outrage and ac-
cusations of unfair practices. There are of course very simple auction pricing
schemes that are monotone: for example, constant pricing, in which each bidder
is quoted the same price regardless of the quantity of the good she receives,
and proportional pricing in which each bidder is quoted a price proportional to
her demand. Given that fairness may thus in many situations be considered a
first-order mechanism design constraint, even at the expense of short-term profit
maximization, it is natural to ask, “are clever implementations of these simple
monotone pricing schemes capable of maximizing profit?”

We answer this question in the affirmative in a broad class of auctions in which
bidders demand different quantities of a given resource, for example, server ca-
pacity, bandwidth, or electricity. We consider natural subclasses of this class of
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auctions: unlimited supply, limited supply (“knapsack auctions”), and a more
general setting in which the cost to the mechanism may be some arbitrary non-
decreasing convex function of the supply sold. This last model we propose gen-
eralizes the first two, and models any way in which the auctioneer may incur
decreasing marginal utility as the production of the good being sold increases
(for example if increased demand for raw materials increases the producer’s per
unit cost for these materials).

In general, no truthful auction can acquire the value h from the highest bidder
(see, for example, [4]), and at best can hope to compete with OPT− h. In the
unlimited supply setting, the constant pricing mechanism from [5] is O(log n)
competitive with OPT − h, where OPT is the sum of all bidders’ valuations,
not just the optimal profit obtainable by any constant price mechanism, and h
is the highest bid. Our findings are as follows:

– In the limited supply (knapsack) setting, we show that no constant pricing
mechanism can achieve an approximation factor of o(n) with OPT− o(n)h.
However, we give a mechanism that uses proportional pricing that, aside from
an extra profit loss of h, achieves an O(log S) approximation to OPT− 2h,
where S is the knapsack size constraint.

– In a general setting in which the mechanism incurs some non-decreasing con-
vex cost as a function C of the supply it sells, we give a proportional pricing
mechanism that achieves (again aside from an extra loss of h) a polyloga-
rithmic approximation to REV− 3h− 2C(S∗), where REV is the revenue
obtained, and C(S∗) is the cost incurred by the auctioneer in the optimal
solution maximizing REV − C(S∗). (Here we assume the cost function is
polynomially bounded.)

In each of these settings, there is essentially a log lower bound on the profit
competitiveness for any monotone pricing mechanism[5]. Additionally, in the
generalized auction setting, we show that proportional pricing is strictly weaker
than monotone pricing (independent of truthfulness). We give an instance that
show that no proportional pricing scheme can achieve profit within any finite
factor of REV − O(1)C(S∗). This perhaps makes it more surprising that a
truthful proportional pricing mechanism can be close to optimally competitive
with OPT − h. Overall, our results show that there exist proportional pricing
schemes that compete with full profit extraction essentially as effectively as the
best possible monotone pricing scheme.

1.1 Related Work

The framework of competitive analysis in the setting of auction design was in-
troduced by Goldberg et al. [6]. In the digital goods setting, where each bidder
demands one unit of the resource, and the supply of the resource is unlimited,
[6,7] give randomized truthful mechanisms that are competitive with the opti-
mal constant price profit. In the “knapsack auction” setting, where each bidder
may have a different demand and there is a fixed limited supply, [4] gives a ran-
domized truthful mechanism that achieves a profit of αOPTmono − γh lg lg lg n,
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where n is the number of players, OPTmono is the optimal monotone pricing
profit, h is the maximum valuation of any bidder, and α and γ are constants.
It is important to note that the mechanisms given in [6] and [4] use random
sampling techniques and are not monotone. That is, they can quote customers
different prices for identical orders. This can in some sense be justified by the
result in [5] that shows that, for either the setting of digital goods or knapsack
auctions, no truthful, fair pricing mechanism can be can be o(log n/ log log n)
competitive with the optimal constant price profit. That is, there is no mech-
anism that achieves all the properties of (1) truthfulness, (2) fairness, and (3)
constant competitiveness with respect to profit.

Goldberg and Hartline [5] go on to show that if the fairness requirement is
relaxed (and the auction is allowed to give non-envy-free outcomes with small
probability), auctions competitive with the optimal constant price can be found.
Guruswami et al. [8] show that in two auction settings closely related to ours,
simply computing fair prices that maximize profit, without the requirement of
truthfulness, is APX-hard. Very recently, Babaioff et al. considered an auction
setting in which the supply arrives online, and generalized the definition of fair-
ness to their setting, also showing an Ω(log n/ log log n) lower bound for even
welfare maximization in this online setting [9].

Intuitively, the papers [6,4,7] (among others) study the the profit competi-
tiveness that can be achieved if one gives up on fairness. In contrast, the goal of
this work is to understand the pricing techniques that are needed to maximize
profit in a variety of settings, if montonicity and truthfulness are objectives we
are unwilling to sacrifice.

1.2 The Problem

In this work, we consider single-round, sealed-bid auctions with a set N = [n]
of single-minded bidders. Each bidder i has a public size, or demand, xi and a
private valuation vi. We write x = (x1, . . . , xn) and v = (v1, . . . , vn). We will
assume that smallest size xi of any bidder is 1. Let X =

∑n
i=1 xi. The demand

of a player must be satisfied completely or not at all; we do not allow fractional
allocations.

Definition 1. In a single-round, sealed-bid auction, each bidder i submits a bid
bi, which is the most she is willing to pay if she wins. We write b = {b1, . . . , bn}.
Given b and x, the mechanism returns prices p = (p1, . . . , pn) and an indicator
vector w = (w1, . . . , wn). If wi = 1, we say player i wins; otherwise, we say she
loses. Player i pays pi if she is a winner and 0 if she is not. The mechanism is
valid if and only if every winning bidder has bi ≥ pi, and every losing bidder has
pi ≥ bi. The profit achieved by the mechanism depends on the capacity constraints
under consideration (discussed below).

Note that the agents are indistinguishable to the auction mechanism, except
for their size. We will only present truthful mechanisms, and so throughout the
paper, we will assume b = v.
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Definition 2. A deterministic auction is truthful if, for any x, for all bidders
i ∈ N , for any choice of v−i, bidder i’s profit is maximized by bidding her
true value vi. We say that a randomized auction is truthful if it is a probability
distribution over deterministic truthful auctions.

We require that our pricing schemes be fair, meaning monotone: we cannot
charge some player more than another player if her demand is lower.

Definition 3. A deterministic auction’s pricing is monotone if for any v and
x, it assigns prices p such that pi ≥ pj whenever xi ≥ xj , for any i and j
in N . A randomized auction’s pricing is monotone if it is a distribution over
deterministic monotone auctions.

One example of of a valid monotone pricing scheme is constant pricing, where
each player is offered the same price p = p1 = p2 = . . . = pn, every player i with
vi > p is a winner, and no player i with vi < p is a winner. Another monotone
scheme, proportional pricing, fixes some value c and charges each player i a price
pi = c · xi; every player i with vi > pi is a winner, and no player i with vi < pi

is a winner.
In all cases, we assume that the bidders are trying to maximize profit, that

they know the mechanism being used, and that they don’t collude. Our goal is
to study truthful, monotone pricing mechanisms that maximize our profit, in a
variety of capacity constraint settings:

– In the unlimited supply setting, there is no limit on the total size of the
bidders we can accept. A mechanism’s profit here is just p ·w.

– In the knapsack setting, there is a hard limit S on the total size of the
winning bidders. Here, the mechanism’s profit is p ·w if x ·w ≤ S, and −∞
otherwise.

– In the general cost setting, there is some non-decreasing convex cost function
C of the size of the winning bidder set, and the profit of the auctioneer is
the difference between the sum of the prices paid by the winning bidders
and the cost of the size of the winning set. Here, we define the mechanism’s
profit to be p ·w− C

(∑
i∈w xi

)
.

Note that the unlimited supply problem is an instance of the knapsack problem
with S > X . The knapsack problem is an instance of the general cost setting,
with a cost function that takes value 0 for x < C and jumps to ∞ at C.

In all three cases, we compare our schemes with the optimal multiple-price
omniscient allocation that is not constrained to be truthful nor envy-free. In the
unlimited supply case, OPT =

∑n
i=1 vi. In the knapsack setting,

OPT = max
B⊆2N |

∑
i∈B xi≤S

∑
i∈B

vi.

In the general cost setting,

OPT = maxB⊆2N

((∑
i∈B vi

)− C
(∑

i∈B xi

))
.
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Setting B to be the set of winners in an optimal general-cost solution, we will
write REV =

∑
i∈B vi for the revenue of the optimal solution. As mentioned

above, in general no truthful algorithm can achieve better than OPT−h, where
h is the value of the highest bid, so this will be our performance benchmark.

1.3 Unlimited Supply Auctions

In the unlimited supply setting, the auctioneer has an unlimited number of
items to sell, at zero marginal cost (equivalently, if each item has some con-
stant marginal cost, we may simply subtract this cost from the valuations of
the bidders). Goldberg and Hartline gave a simple randomized mechanism that
achieves a Θ(log n) approximation to the profit obtained by the best constant
price OPTc,1 and showed that this is almost optimal [5]. It is also known that
OPTc can differ by a Θ(log n) factor from OPT.2 That is, if the profit obtained
by the mechanism below is OPTc/α, and OPTc = OPT/β, it is known that
α and β can both take values as large as Θ(log n), but no larger. This immedi-
ately shows that RandomPrice (given below) is an O(log2 n) approximation to
OPT. In fact, for any instance, α ·β = O(log n). In other words, RandomPrice

gives a Θ(log n) approximation to OPT.

RandomPrice(v,x)
1 Choose i ∈ {1, 2, . . . , log n} uniformly at random.
2 Let g = 2i. Sell items to the g − 1 highest bidders at price vg

(where v1 ≥ v2 ≥ . . . ≥ vn).

Theorem 1 (implicit in [5]). For any set of bidder values, let P be the expected
profit obtained by RandomPrice. Let α be such that P = OPTc/α, and let β
be such that OPTc = (OPT − h)/β. Then α · β = O(log n). Equivalently,
P ≥ (OPT − h)/O(log n).

We note that although constant pricing is sufficient to obtain an O(log n) approx-
imation, this mechanism is almost optimal over the set of all monotone pricing
mechanisms. The following lower bound is implicit in the lower bound proved
by Goldberg and Hartline in the context of digital goods auctions:

Theorem 2 (Goldberg and Hartline [5]). In the uncapacitated setting, no
truthful mechanism using a monotone pricing scheme can achieve profit within
a factor of o(log n/ log log n) of OPT− c · h for any constant c.

2 Knapsack Auctions

Knapsack auctions were first studied by Aggarwal and Hartline [4], and model
auctions for items for which there is a strict limit on supply: we are given a set
1 Actually, they show something slightly weaker, defining OPTc to be the optimal

constant price when the mechanism is required to sell at least 2 items.
2 Consider n bidders with valuations v1, . . . , vn with vi = 1/i. OPT = H(n), but the

best constant price obtains profit i · vi = 1 for all i. [4].
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of bidders with demands and valuations, and can only sell to a set of bidders
whose total demand is smaller than our knapsack capacity S.

When supply is unlimited, we have seen that constant pricing is as powerful
as monotone pricing in the sense that both can achieve within a O(log n) factor
of OPT− h, but no better. In this section, we show that in the knapsack case,
when supply is limited, no valid constant pricing scheme can achieve within
any finite factor of OPT − o(n)h. However, we show that proportional pricing
is as powerful as monotone pricing in the sense that both can achieve O(log S)
competitiveness with OPT−h, but no better. Our result is also optimal over the
set of proportional pricing schemes, even those that are not truthful: Aggarwal
and Hartline give an example in which the optimal proportional pricing is an
Ω̃(log S) factor off from OPT− h [4].3

Theorem 3. In the knapsack setting, no mechanism which uses a valid constant
pricing scheme can guarantee any approximation to OPT− o(n)h.

Proof. Consider an instance with knapsack capacity S = 1/ε, 1/ε bidders i with
size xi = 1 and value vi = 1, and one bidder i∗ of size xi∗ = 1/ε and value
vi∗ = 1 + ε. Clearly, OPT = 1/ε, which results from selling to each of the
1/ε bidders i �= i∗, and OPT − o(n)h = 1/ε − o(1/ε) = Θ(1/ε). However, no
constant price p ≤ 1 results in a valid allocation, since

∑
i:vi≤1 xi = 2/ε > S.

Therefore, OPTc = 1 + ε, and results from selling only to bidder i∗. Therefore,
(OPT− o(n)h)/OPTc = Θ((1/(1 + ε)ε), which can be unboundedly large.

We can also extend the lower bound for general monotone mechanisms from
the unlimited supply setting, simply by choosing the total demand of the lower
bound instance to be strictly less than the knapsack size.

Theorem 4 (Goldberg and Hartline [5]). In the knapsack setting, no truthful
mechanismusing anymonotone pricing scheme can guarantee an o(log S/ log log S)
approximation to OPT− c · h for any constant c.

Next, we give a truthful mechanism which achieves an O(log S) approximation
to OPT−2h by using a valid proportional pricing scheme. This pricing scheme is
similar to the “RANDOM single price” algorithm proposed in [10] for an online,
combinatorial auction setting. In [10] they show their algorithm is O(log(S) +
log(n)) competitive with OPT. Below we give a bound for our algorithm only
in terms of S.

3 Aggarwal and Hartline show that proportional pricing cannot in general approximate
monotone pricing within a factor of o(n), and in their lower bound instance, use
bidders with exponentially large demand (also showing that proportional pricing
cannot in general approximate monotone pricing to within an Ω̃(log T ) factor, where
T is the total demand of all players). Our result implies that there always exists a
proportional pricing that approximates OPT−h (and not just the optimal monotone
pricing) to within an O(log S) factor.
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ProportionalKnapsack(v,x, S)
1 Let π be an ordering of bidders in non-increasing order of density di =vi/xi.

Denote by H the largest prefix of bidders that is satisfiable with supply S;
note

∑
i∈H xi ≤ S. Let Xi :=

∑i
j=1 xπ(j); X0 = 0.

Let g be a function mapping points in the knapsack x ∈ [0, S] to bidders, in
order of π as follows: g(x) = i if x ∈ [Xi−1, Xi)

2 Choose s ∈ {0, . . . , �log(S)	} uniformly at random.
Consider the bidder π(i∗) = g(2s − 1) who corresponds to the point 2s − 1
in the knapsack; let d∗ = dπ(i∗) be its density.

3 Sell items to bidders π(1), . . . , π(i∗ − 1) at prices proportional to d∗.

Proposition 1. ProportionalKnapsack is truthful and produces a valid
proportional pricing.

Proof. We observe that fixing any realization of the random coin flips, no winning
bidder can become a losing bidder by raising his bid, since a bidder can only
increase his rank in π by raising his bid. Our pricing scheme is truthful because
the price we charge a player is independent of her bid, and all losing players
have values at below the price they would be offered if they raised their bid to
a winning level. Validity follows since winning bidders are charged proportional
to a rate that is at most their own density, and losing bidders are charged
proportional to a rate that is at least their own density.

Theorem 5. ProportionalKnapsack achieves expected profit at least
(OPT− 2h)/O(log S) − h.

Proof. Let OPT(H) refer to the value of the optimal solution if the set of
bidders were comprised only of those in the set H . First observe that OPT(H) ≥
OPT − h. To see this, note that OPT can take value at most the value of the
corresponding knapsack problem. By taking the largest density prefix that fits
in our knapsack, we are preserving the value of the optimal solution to the
fractional knapsack problem, minus at most the value of a single bidder (the
first bidder according to π not included in H). Since we wish to be competitive
with OPT−h, for the rest of the argument, we may restrict our attention to H
and assume we are in the unlimited supply setting (since the available supply is
larger than the total remaining demand).

We bound OPT(H) by considering the bidders in decreasing order of density
π(1), . . . , π(|H |), and bounding the density of the optimal knapsack solution. Let
f(x) denote the density of the bidder occupying positionx in the knapsack.Wehave

OPT(H) ≤
∫ S

0
f(x)dx ≤

�log(S)�∑
i=0

f(2i − 1)2i,

where the inequality follows since we have ordered the bidders such that their
density is non-increasing. Similarly, we may bound the expected profit P ob-
tained by our mechanism:
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P =
1

�log(S)	 + 1

⎛⎝�log(S)�∑
i=0

(
f(2i)2i − h

)⎞⎠ ,

where we lose the h term since we cannot sell to the bidder from whom we’ve
sampled the sale density d∗. Thus,

OPT(H) ≤ h + 2 ((P + h)(�log(S)	 + 1)) .

Recalling that OPT(H) ≥ OPT− h, we get

P ≥ OPT− 2h

2(�log(S)	 + 1)
− h.

3 General Convex Cost Auctions

In this section, we propose a general setting in which the mechanism incurs
a cost, expressed as a function of the amount of supply sold. In the previous
section, we showed that in the bounded supply setting, proportional pricing was
sufficient to get essentially as good an approximation to OPT−h as was possible
using any monotone pricing scheme. Here, we show that, in general, there is an
unboundedly large gap between the profit attainable with proportional pricing
and the profit obtainable by monotone pricing, even if we require the monotone
pricing scheme to pay a higher cost. Note that this lower bound discusses pricing
schemes, not mechanisms. We will show that surprisingly, if we wish to compete
with OPT − h (which any truthful mechanism must do), then proportional
pricing is sufficient.

Theorem 6. In the general non-decreasing convex cost setting, for any value
d, there exists a set of bidders and a convex cost function such that the optimal
profit is obtained by selling supply S∗, yielding profit OPT = REV−C(S∗), but
no proportional pricing scheme is able to achieve any approximation to REV−
d · C(S∗).

Proof. Consider an instance with a quadratic cost function: C(x) = x2. There are
two bidders: One bidder has size 1 and value d+2 (this bidder has density d+2).
Let k refer to the size of the second bidder, and set his value to (d + 2)k + 1
(this bidder has higher density, d + 2 + 1/k). The optimal monotone pricing
sells only to the first bidder, and gets profit d + 1. Note in this case, even
REV − d · C(1) = 1 ≥ 0. However, for proportional pricing, it is impossible to
sell to the first bidder without selling to the second, since the second bidder is
denser. If we sell to the both, however, we get at most profit (d(k+1)+1−(k)2),
which is negative for large enough k. If we sell to only the denser bidder, we get
a most profit (d+2)k+1−k2, again negative for large enough k. Thus, the best
proportional pricing sells no items, and gets profit 0.
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Fiat et al. [7] also consider a setting in the presence of a cost function and give
a mechanism that is competitive only with the optimal revenue in some class,
minus a multiplicative factor times the cost function, and conjecture that this
is necessary. Below, we demonstrate a proportional pricing mechanism that is
polylog competitive with REV − 3h− (1 + ε)C(S∗), for any constant ε.

Given a non-decreasing convex cost function C, the profit P the algorithm
obtains when assigning prices p and allocation w to players (v,x) is P = p ·
w − C

(∑
i∈w xi

)
. We assume C is continuous and that C(0) = 0.

We will write OPTS(v,x) for the maximum profit extraction obtainable from
v and x with a knapsack restriction S in place of the cost function. Let S∗ be
the total size of the set of winning bidders under the optimal (non-truthful)
allocation:

S∗ =
∑
i∈B∗

xi where B∗ = argmax
B⊆2N

(∑
i∈B

vi − C

(∑
i∈B

xi

))
.

Our algorithm first attempts to guess S∗. We then estimate values for each
bidder based on their stated valuations minus their contribution to the estimated
solution size, and run our proportional-pricing mechanism on these estimated
values. We then adjust the resulting prices and output this with the resulting
allocation. In what follows, we assume that h ≥ 1; if this is not the case, the
algorithm can be easily adapted to begin guessing the value of c at h instead of
1, losing an additional log 1/h factor.

GeneralAuction(v,x, C)
1 Select cost c at random from among {1, 2, 22, . . . , 2�log C(X)	}.a
2 Set S to be the largest value such that C(S) = c, or ∞ if no such value exists.
3 v′i := vi − C(S)xi

S and v′ := (v′1, . . . , v′n)
4 (p′,w′) := ProportionalKnapsack(v′,x, S).
5 pi := p′i + C(S)xi

S
6 Return (p,w′)

a Note that if h ≥ 1, we lose at most an additive h by assuming S∗ is such that
c ≥ 1. Also note that it is possible to get a slightly stronger result by excluding
values of S such that S >

∑n
i=1 vi, although we omit this here.

Lemma 1. Suppose that 2C(S∗) ≥ C(S) ≥ C(S∗) ≥ 1. The optimal profit
obtainable in an S-capacitated knapsack, given values v′, is at least the op-
timal revenue minus twice the cost at that supply, on the original instance:
OPTS(v′,x) ≥ OPTS∗(v,x) − 2C(S∗).

Proof. We observe OPTS(v′,x) ≥ OPTS(v,x) − C(S), since at worst, the
optimal knapsack solution given v′ selects the exact same winners as the optimal
knapsack solution given v. Now note that S∗ ≤ S and 2C(S∗) ≥ C(S), and so
OPTS(v,x) − C(S) ≥ OPTS∗(v,x) − 2C(S∗).
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Theorem 7. The GeneralAuction algorithm obtains expected profit at least

REV − 2C(S∗)− 3h

O(log(X) log(C(X)))
− h

log(C(X))
.

Note that the denominator is O(log2(X)) when C is polynomially bounded.4

Proof. Suppose that 2C(S∗) ≥ C(S) ≥ C(S∗) ≥ 1. Note that by definitions
of REV, S∗, and OPTS∗(v,x), we have REV ≤ OPTS∗(v,x). Hence, the
optimal profit obtainable in an S-capacitated knapsack under (v′,x), as shown
above, is

OPTS(v′,x) ≥ REV− 2C(S∗).

Then by the approximation ratio of the knapsack algorithm, ProportionalK-

napsack returns a solution of value

OPTS(v′,x) − 2h

2�log(S)	 − h ≥ REV− 2C(S∗)− 2h

2�log(S)	 − h.

If C(S∗) < 1, this becomes at worst

REV − 2C(S∗)− 3h

2�log(S)	 − h

for h ≥ 1. The additional profit obtained by prices p over prices p′ in allocation
w is C(S)S′

S , where S′ is the size of the solution selected by ProportionalK-

napsack. The cost imposed by the cost function is C(S′). Thus, in this case,
the profit GeneralAuction obtains is at least

REV− 2C(S∗) − 3h

2�log(S)	 − h +
(

C(S)
S′

S
− C(S′)

)
.

Since the cost function C is non-decreasing and convex, this second term is non-
negative. Since 2C(S∗) ≥ C(S) ≥ C(S∗) holds with probability O(1/ log(C(X))),
and X =

∑n
i=1 xi is an upper bound on S, this completes the proof.

Proposition 2. GeneralAuction is truthful.

Proof. This is immediate, since it is a distribution over truthful mechanisms.
(Specifically, it is a distribution over instances of ProportionalKnapsack

in which the prices have been modified by a bid-independent function, which
preserves truthfulness).

Proposition 3. GeneralAuction is a valid mechanism.

Proof. Suppose player i is a winner. Then, by the validity of ProportionalK-

napsack, v′i ≥ p′i. Thus,
4 This can be improved to (REV − (1 + ε)C(S∗) − 3h)/(O(log(X) log(C(X)))) −

h/ log(C(X)) for arbitrary constant ε simply by selecting c from among {1, (1 +
ε), (1 + ε)2, . . .}.
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vi = v′i +
C(S)xi

S
≥ p′i +

C(S)xi

S
= pi.

Now, suppose player i loses. Then, by the validity of the knapsack mechanism,
p′i ≥ v′i. Thus,

pi = p′i +
C(S)xi

S
≥ v′i +

C(S)xi

S
= vi.

Proposition 4. GeneralAuction produces a proportional pricing.

Proof. ProportionalKnapsack produces a proportional pricing scheme, and
the prices returned by GeneralAuction increase the proportional factor by
C(S)

S .
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Abstract. Inspired by Internet ad auction applications, we study the
problem of allocating a single item via an auction when bidders place
very different values on the item. We formulate this as the problem of
prior-free auction and focus on designing a simple mechanism that always
allocates the item. Rather than designing sophisticated pricing methods
like prior literature, we design better allocation methods. In particular,
we propose quasi-proportional allocation methods in which the probabil-
ity that an item is allocated to a bidder depends (quasi-proportionally)
on the bids.

We prove that corresponding games for both all-pay and winners-pay
quasi-proportional mechanisms admit pure Nash equilibria and this equi-
librium is unique. We also give an algorithm to compute this equilibrium
in polynomial time. Further, we show that the revenue of the auctioneer
is promisingly high compared to the ultimate, i.e., the highest value of
any of the bidders, and show bounds on the revenue of equilibria both
analytically, as well as using experiments for specific quasi-proportional
functions. This is the first known revenue analysis for these natural mech-
anisms (including the special case of proportional mechanism which is
common in network resource allocation problems).

1 Introduction

Consider the following motivating example. There is a single item (in our case,
an ad slot) to be sold by auction. We have two bidders A and B, A with valuation
bA = 100 and B with valuation bB = 1. Who should we allocate the item and
what is the price we charge? In the equilibrium of the first price auction, A wins
by bidding 1 + ε. We (the auctioneer) get revenue of 1 + ε for some small ε > 0.
In the second price auction, A wins and pays bB + ε = 1 + ε for some ε > 0 and
the revenue is 1 + ε, equivalent to the first price revenue. So, neither generates
revenue anywhere close to the maximum valuation of max{bA, bB} = 100. Is
there a mechanism that will extract revenue close to the maximum valuation
of bidders in equilibrium? What is the formal way to address this situation
where valuations are vastly different? In this paper, we look at this problem in
� Part of this work was done when the author was at Google.

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 565–576, 2010.
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a general setting of prior-free auction design, and study revenue maximization.
Further, we propose a class of natural allocations and analyze them for revenue
and equilibrium properties under different pricing methods.

Our motivation arises from allocation of ad slots on the Internet. Consider
the example of sponsored search where when a user enters a phrase in a search
engine, an auction is run among advertisers who target that phrase to determine
which ads will be shown to the user. There are several instances where the
underlying value is vastly different for the different participating advertisers.
For example, the phrase “shoes” may be targeted by both high end as well as
low end shoe retailers and may have vastly different values, budgets or margins in
their business. Thus their bids will likely be vastly different. In another example,
we have display advertising, where users who visit certain web sites are shown
“display” ads like images, banners or even video. Then, depending on the history
of the user — e.g., someone who is new to the website versus one who has been
previously — different display advertisers value the user significantly differently,
and therefore their bid values will be vastly different. In both these motivating
scenarios, there are other issues to model and this paper is not a study of these
applications, but rather, a study of a fundamental abstract problem inherent in
these applications.

Prior-free Auctions and Revenue Maximization. Revenue Maximization is a cen-
tral issue in mechanism design and has been studied extensively. A standard way
for maximizing revenue is to derive some value profile from the bids, calculate
bidder-specific reserve price, and run a second price auction [16,2,18]. In the
example above, say both buyers’ value comes from some random distribution.
Then, if we know this distribution, we can calculate a reserve price r using this
distribution, and run a second-price auction with this reserve price r, i.e, allo-
cate the item to the highest bidder A and charge A the max{bB, r} if bA ≥ r
(else, the item remains unsold); here, bA and bB’s are bids by A and B resp.
Many such mechanisms are known; these mechanisms are incentive-compatible
(that is, each bidder has no incentive to lie), and even additionally revenue-
optimal, perhaps as the number of bidders goes to infinity. Such methods that
rely on some assumptions over the values of bidders, i.e, that the values are drawn
from some distribution (known or unknown), are called prior-aware mechanisms.
Prior-aware mechanisms are popular in Economics. Still, from mathematical and
practical point, the following questions arise:

1. Are there prior-free mechanisms that work independent of the value distribu-
tions of bidders?

This question is of inherent interest: what can be accomplished without knowl-
edge of the value distributions. This is also a question that is motivated by prac-
tice. In practical applications, a way to use prior-aware mechanisms is to rely
on running the same auction many times, and then use the history of bids to
“machine learn” the values. Of course in practice the parameters of the auction
change (users evolve), there is sparse data (query phrases are rare), advertisers
strategize in complex ways and their values change over time (as they learn their
own business feedbacks better), or worse, even if the machine learning methods
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converge, they provide “approximate” value distributions and we need to under-
stand the mechanisms under approximate distributions. As a result, there are
challenges in applying prior-aware mechanisms in practice and a natural question
is if they can be avoided.

2. Are there prior-free mechanisms that work without reserve-prices?
This question is a more nuanced concern. First, when there is a reserve price,

the item may remain unsold in instances when bA < r. This may not be desirable
in general. For example, in display ads, if an ad slot is unsold, the webpage has
to find a different template without that ad slot or fill in that space with backup
ads. Also, when the item is not sold, the outcome is not efficient, since the value
to the advertisers (defined the value of time to the winner) is not maximized.
And in an ever more nuanced note, advertisers do not find it transparent when
the mechanism has bidder-specific reserve prices, and often see it as a bias. This
is more so when each advertiser may get many different bidder-specific reserve
prices corresponding to different search phrases or display ad locations as implied
by the general prior-aware mechanisms above. More discussions on mechanisms
that always assign the item can be found in [14].

Prior-free revenue-maximizing mechanisms have been developed for various
auction settings [7,10,15]. Lower bounds show that prior-free truthful auction
cannot achieve revenue comparable to the revenue-optimal auctions with prior
[7,10,15], and the mechanism in [15] achieves the best possible revenue among
prior-free truthful mechanisms. Still, these mechanisms work by setting reserve
prices, and do not address the second concern above.

Our Contribution. We study a simple, practical prior-free mechanism that
always allocates the item. In contrast to the approaches described above that
allocate the item to the highest bidder, but determine nontrivial prices, we focus
on the allocation problem and allocate the item probabilistically. Our contribu-
tions are as follows.
1. We propose a quasi-proportional allocation scheme where the probability that
a bidder wins the item depends (quasi-proportionally) on the bids.

As an example, for two bidders with bids bA and bB, we allocate the item
to bidder A with probability

√
bA√

bA+
√

bB
, and to B otherwise. More generally in

the presence of n bidders with bid vector (b1, . . . , bn), we consider a continu-
ous and concave function w, and set the probability of winning for bidder i

to w(bi)∑
1≤j≤n w(bj)

. Thus the winner of the auction is not necessarily the bidder

with the highest bid. The special case when w(bi) = bi is known as the pro-
portional allocation scheme and has been studied previously e.g., in [11,13,9].
We study both payment methods that are common in auction theory, namely,
all-pay (where all bidders pay their bid no matter if they win the item or not) as
well as the winner-pay (only the winner pays her bid to the auctioneer) methods.
2. We study Nash equilibria of quasi-proportional mechanisms.

2.1. We prove that the corresponding games for both all-pay and winners-pay
quasi-proportional mechanisms admit pure Nash equilibria and this equilibrium
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is unique. We also give an algorithm to compute this equilibrium in polynomial
time.

2.2. We show that the revenue of the auctioneer is promisingly high, while
not losing much in the efficiency of the allocation. More precisely, we compare
the revenue of such mechanisms against the ultimate: maxi vi, the highest value
of any of the bidders, and show bounds on the revenue of equilibria in such
mechanisms. For example, consider an auction among two bidders with values
vA = α and vB = 1 respectively. The revenue of equilibria for both first-price
and second-price auctions approaches 1. Instead, with quasi-proportional mech-
anisms, (i) for the all-pay mechanism with function w(x) = xγ where γ ≤ 1,
the revenue of equilibrium is γα1−γ , and (ii) for winners-pay mechanism, where
α >> 1, we show that the revenue of all-pay and winners-pay mechanisms with
functions w(x) = x and w(x) =

√
x are Ω(α

1
2 ) and Ω(α

2
3 ) respectively. For the

case of more than two bidders, we first show preliminary results for the revenue
of various (specific) valuation vectors for the case that the number of buyers
tends to ∞, and then we present numerical results for the revenue of equilibria
for some key example functions such as w(x) =

√
x and w(x) = x. Taken to-

gether, these results give a set of analytical and experimental tools to bound the
revenue of these mechanisms against the maxivi benchmark.

Proportional allocation, a special case of our quasi-proportional allocation,
has been studied extensively in literature, in particular for efficiency analysis.
But even for this rather natural allocation method, we do not know of any prior
work on revenue analysis.

2 Preliminaries

Consider a sealed-bid auction of a single item for a set A = {1, . . . , n} of n
potential buyers. Let the value of these n buyers for the single item be v1 ≥
v2 ≥ · · · ≥ vn. Throughout this paper, we assume that v1 = α ≥ 1, and vn = 1.
Consider a concave function w : R → R (e.g., w(x) =

√
x). Each buyer i ∈ A

bids an amount bi to get the item. A quasi-proportional mechanism allocates the
item in a probabilistic manner. In particular, the item is allocated to exactly one
of the buyers, and the probability that buyer i gets the item is w(bi)∑

j∈A w(bj)
. For

a bid vector (b1, . . . , bn), let b−i be the bid vector excluding the bid of buyer i.
We study the following two variants of quasi-proportional mechanisms with two
payment schemes.

1. All-pay Quasi-proportional Mechanisms. The allocation rule in this
mechanism is described above. For the payment scheme in this mechanism,
each buyer pays her bid (no matter if he receives the item or not). This
mechanism is ex-ante individually rational, but not ex-post individually ra-
tional. Given the above payment scheme, in the all-pay mechanism, we can
write the utility of buyer i, as a function of the bids vector as follows:

ui(b) = ui(bi, b−i) = vi
w(bi)∑

j∈A w(bj)
− bi.
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2. Winners-pay Quasi-proportional Mechanisms. The allocation rule in
this mechanism is described above. For the payment scheme in this mech-
anism, the buyer who receives the item pays her bid, and the other buyers
pay zero. This mechanism is ex-post individually rational. As a result buyer
i’s utility as a function of the bids is

ui(b) = ui(bi, b−i) =
w(bi)∑

j∈A w(bj)
(vi − bi).

We are interested in Nash equilibria1 of the above mechanisms. We consider Nash
equilibria of normal-form games with complete information. In the corresponding
normal-form game of the quasi-proportional mechanism, the strategy of each
buyer i is her bid. Formally, a bid vector (b∗1, . . . , b

∗
n) is a Nash equilibrium if for

any buyer i and any bid b′i, we have ui(b∗) = u(b∗i , b
∗
−i) ≥ ui(b′i, b

∗
−i).

In addition, we study efficiency and revenue of quasi-proportional mechanisms:
(i) the efficiency of a bid vector (b1, . . . , bn) is the expected valuation of buyers,
i.e.,

∑
i∈A(vi

w(bi)∑
j∈A w(bj)

), and (ii) the revenue of a bid vector (b1, . . . , bn) is the
expected revenue for the auctioneer given this bid vector, i.e.,

∑
i∈A bi, in the

all-pay auction, and
∑

i∈A(bi
w(bi)∑

j∈A w(bi)
), in the winner-pay auction.

3 All-Pay Quasi-Proportional Mechanism: A Warm-Up
Example

To demonstrate the kind of analyses we do, and to develop the intuition, we
present a study of revenue properties of an all-pay quasi-proportional mechanism
for two buyers for functions w(t) = tγ where γ ∈ [0, 1] is a parameter. Let the
bid of the first buyer be y = b1 and the bid of the second buyer x = b2. As
mentioned earlier, we assume v1 = α and v2 = 1 are the valuations of the two
buyers. The expected utility of the second buyer is xγ

xγ+yγ − x, and the utility of

the first buyer is α yγ

xγ+yγ − y.
For a fixed y, the second buyer’s utility is a concave function of his bid, in the

region [0,∞) and similarly, for a fixed x, the first buyer’s utility is concave in
his bid. Hence, in equilibrium, both buyers have their first derivative nullified:
∂
∂x

(
xγ

xγ+yγ − x
)

= 0, and ∂
∂y

(
α yγ

xγ+yγ − y
)

= 0. Thus, we get that

γ(x)γ−1yγ

(xγ + yγ)2
= 1 and

αγ(y)γ−1xγ

(xγ + yγ)2
= 1

From which it follows that in equilibrium y
x = α. Now, combining with the

second equality, we get that αγ(αx)γ−1xγ

((1+αγ)xγ)2 = 1 or αγ(αx)γ−1

(1+αγ )2xγ = 1, and we get that

x = γαγ

(1+αγ)2 ; y = α γαγ

(1+αγ)2 . Hence,

x + y = (1 + α)
γαγ

(1 + αγ)2
α→∞−→ γα1−γ .

1 Throughout this paper, we study pure Nash equilibria and not mixed NE.
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Moreover, as y
x = α, the probability that buyer 2 receives the item is 1

1+αγ ,
and otherwise buyer 1 gets the item. Thus, the efficiency of this mechanism is
1+αγ+1

1+αγ . In particular, as α → ∞, the efficiency is arbitrarily close to α. The
most efficient allocation rule is to assign the item to buyer 1, and get efficiency
α. That completes the analysis and shows that

Theorem 1. The all-pay quasi-proportional mechanism with two buyers guar-
antees a total revenue of (1 + α) γαγ

(1+αγ )2 and expected efficiency of 1+αγ+1

1+αγ in
equilibrium. In particular, for a large enough α, the revenue is γα1−γ and effi-
ciency is arbitrarily close to α.

4 Equilibrium: Existence and Uniqueness

In this section, we establish the existence and uniqueness of Nash equilibria of
both the all-pay and winners-pay quasi-proportional auctions.

Definition 1 (from [6]). A game is socially concave if the following holds:

1. There exists a strict convex combination of the utility functions which is a
concave function. Formally, there exists an n-tuple (λi)i∈A , λi > 0, and∑

i∈A λi = 1, such that g(x) =
∑

i∈A λiui(x) is a concave function in x.
2. The utility function of each buyer i, is convex in the actions of the other

buyers. I.e., for every si ∈ Si the function ui(si, x−i) is convex in x−i ∈ S−i,
where Si is the strategy space of agent i, and S−i =

∏
j∈A,j �=i Sj.

Rosen [17] defined the diagonal concavity property for concave games, and
showed that when it holds, the Nash equilibrium of the game is unique. Even
Dar et al [6] showed that if one of the properties 1 and 2 holds with strict con-
cavity or convexity, respectively, then the diagonal concavity property holds.
Now, we show that a quasi-proportional auction is a socially concave game. The
uniqueness of Nash equilibrium would follow as a corollary of [17] and [6].

Lemma 1. Let Γ = (A, {ui}i∈A)) be an all-pay quasi-proportional auction, with
utility functions for buyer i, ui() defined as above and assume that the weight
function w() is a concave function, and that the strategy of each buyer is re-
stricted to a compact set [Bmin, Bmax], where 0 < Bmin < Bmax < ∞. Then Γ is
a socially-concave game.

A similar lemma holds for winner-pay auctions, with weight function of the form
w(x) = xγ , where 0 < γ ≤ 1.

Lemma 2. Let Γ = (A, {ui}i∈A)) be an winner-pay quasi-proportional auction,
with utility functions for user i, ui() defined as above and assume that the weight
function w(x) = xγ , where 0 < γ ≤ 1, and that the strategy of each user is
restricted to a compact set [Bmin, Bmax], where 0 < Bmin < Bmax < ∞. Then Γ
is a socially concave game.
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5 Revenue of Quasi-Proportional Mechanisms

In section 3, we computed the revenue of all-pay quasi-proportional mechanisms
for two buyers, and functions w(x) = xγ . In this section, we first observe general
properties for the revenue of equilibria of quasi-proportional mechanisms. Then,
we focus on two special functions and prove tight bounds on the revenue of the
winners-pay mechanisms. The utility function ui(bi, b−i) for both all-pay and
winners-pay mechanisms is a strictly concave function of bi in the region [0,∞]
(as it is a concave function minus a convex function). As a result, in an all-
pay quasi-proportional auction, we have: ∂

∂bi

(
w(bi)∑

i∈A w(bi)
vi − bi

)
= 0. For a bid

vector, (b1, b2, . . . , bn), let σ(b) =
∑

i∈A w(bi). When clear from context, we let
σ = σ(b). As a result, in equilibrium,

∂

∂bi

(
w(bi)

σ
vi − bi

)
= 0

From which we derive:

vi =
σ2

w′(bi)(σ − w(bi))
(5.1)

Similarly, for winners-pay quasi-proportional mechanisms, the bid of each buyer
i satisfies the following:

∂

∂bi

(
w(bi)(vi − bi)

(σ − w(bi)) + w(bi)

)
= 0

From which it follows that

vi = bi +
w(bi)σ

w′(bi)(σ − w(bi))
(5.2)

We will use equations 5.1 and 5.2 in studying the revenue of the equilibrium for
various functions. In both equations 5.1 and 5.2 for increasing concave functions
such as w(x) =

√
x, the value of vi increases as bi increases, i.e, fixing b−i vi is

monotonically increasing in terms of bi. This observation leads to the following
fact: For increasing and concave functions w, if v1 ≥ v2 ≥ . . . ≥ vn, in the
equilibrium bid vector (b∗1, b

∗
2, . . . , b

∗
n), we have b∗1 ≥ b∗2 ≥ . . . b∗n.

5.1 Revenue for Winners-Pay: Two Bidders

Here, we study winners-pay proportional mechanism for w(x) = x. The utility
of bidder i as a function of the bids is

ui(b) =
bi∑

j∈A bj
(vi − bi) .
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Given this utility function, it is easy to see that for vi > 0, in equilibrium bi > 0.
Let’s fix b−i �= 0. In equilibrium, for every i with bid bi > 0,

∂

∂bi
ui(bi, b−i)=− bi(vi − bi)

(
∑

j∈A bj)2
+

vi − bi∑
j∈A bj

− bi∑
j∈A bj

=−1 +
(
∑

j 
=i bj)(
∑

j 
=i bj + vi)
(
∑

j∈A bj)2

and we get that in equilibrium,

bi =
√

(
∑
j �=i

bj)(
∑
j �=i

bj + vi)−
∑
j �=i

bj , for every i ∈ A. (5.3)

The revenue from the proportional mechanism as described above is

∑
i∈A

Pr[agent i wins] · bi =
∑
i∈A

bi∑
j∈A bj

bi =
∑

i∈A b2
i∑

j∈A bj
(5.4)

Consider a setting of two buyers with values v1, v2. We can, without loss of
generality, assume that v2 = 1.

Theorem 2. In the case of two buyers, the revenue from the winners-pay pro-
portional mechanism is O(

√
α), where α = max(v1, v2). Moreover, for arbitrarily

large α, the efficiency of this mechanism is arbitrarily close to α.

A similar technique can be used for showing a lower bound on the revenue in
quasi-proportional winner-pay auctions, with weight function w(x) =

√
x, which

asymptotically yields a higher revenue. The proof is left to the appendix.

Theorem 3. The revenue from the winners-pay mechanism for two bidders,
with weight function w(x) =

√
x is O(α2/3), where α = max(v1, v2). Moreover,

for arbitrarily large α, the efficiency of this mechanism is arbitrarily close to α.

We will give numerical results for revenue of other settings like w(x) = x1/4 in
Section 6. In a full version of this paper we consider other functions as well,
e.g., we prove an upper bound on the revenue of both all-pay and winners-
pay mechanisms for w(x) = log(x + 1), and show that the revenue is not more
than α

log(α) .

5.2 Revenue for Many Buyers

Here, we analyze the revenue for two special valuation vectors for n bidders, i.e,
(i) uniform valuation vector, vi = V , and (ii) valuation vector v1 = α, and for
i �= 1, vi = 1 for i ∈ A. The second type of valuation is important as it captures
examples in which there is a large gap between the highest valuation and value
of other buyers.

Theorem 4. For the uniform valuation vector where vi = V for all i ∈ A, the
revenue in the equilibrium for function w(x) = xγ is n−1

n γV for all-pay mecha-
nism, and is V ( 1

1+( n
n−1 )γ ) for winners-pay mechanism. Moreover, the equilibrium

revenue for uniform valuation vector for function w(x) = log(x+1) for both all-
pay and winners-pay mechanisms is asymptotically V

log V as V, n →∞ .
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Theorem 5. For the valuation vector (α, 1, 1, . . . , 1), the revenue in the equi-
librium of winners-pay quasi-proportional mechanism converges to a constant as
n goes to ∞ for a fixed α. Moreover the revenue of all-pay quasi-proportional
mechanism for function w(x) = xγ goes to zero as n goes to ∞ for a fixed α.

The above theorem shows some bounds on the revenue for a fixed α and as n
tends to ∞. It would be interesting to understand the trade-off between the
revenue for large α and n. In particular, it would be interesting to compute the
revenue for a fixed n as α tends to ∞.

6 An Efficient Algorithm and Numerical Study

In this section, we present an efficient algorithm for computing Nash equilibria
of quasi-proportional mechanisms and then using this algorithm, we present a
family of plots showing the quality of the mechanisms.

6.1 A Polynomial-Time Algorithm for Equilibrium Computation

In [6], Even Dar et. al. describe a natural process that converges to a Nash
equilibrium in every socially concave game. This method is useful for computing
Nash equilibrium of the all-pay and winner-pay auctions. The process considered
is known as no-regret dynamics. Informally, a buyer’s update process is said to
have no-regret, if in the long-run, it attains an average utility which is not sig-
nificantly worse than that of the best fixed action in hindsight (in the context of
auctions, the best fixed bid). Even Dar et. al. show that if every buyer uses an
update process with no-regret property, in a repeated socially concave game, the
joint average action profile converges to a Nash Equilibrium. Many efficient al-
gorithms for attaining the no-regret property (also known as no-external-regret),
exist [20,1,12]. In order to compute a Nash equilibrium of the all-pay auction,
and the winner-pay auction, one could simulate the process of running a no-
regret algorithm for every buyer that participates in the auction. The rate at
which the average vector of bids converges to Nash equilibrium, depends on the
vector λ, which existence is guaranteed in property 1. In particular, there exists
no-regret algorithms (e.g., [20]), such that the rate of convergence to Nash equi-
librium, for the quasi-proportional mechanisms, is O( n√

t

∑
j∈A vj

vmin
), (I.e., at time

t of the simulation process, the average bids vector is an εt-Nash equilibrium,
where εt = O( n√

t

∑
j∈A vj

vmin
). Algorithm 1 describes the simulation of running si-

multaneous no-regret for every buyer, where the actual no-regret algorithm used
is GIGA [20].

6.2 Numerical Revenue Computation

In this section, we present numerical results for the revenue of the all-pay and
winners-pay quasi-proportional auctions with different weight functions and dif-
ferent number of buyers. Figures 1-4 describe the revenue as a function of the
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Algorithm 1. Algorithm for computing NE bids for the quasi-proportional
auction.
Input: a vector v = {v1, v2, . . . , vn}.
Output: an ε-NE, b1, . . . , bn.

Set b0 ← (1, 1 . . . , 1)
for t = 1 to T = O(n

ε

∑
j∈A vj

vmin
) do

for all i ∈ A do
yt

i ← bt−1
i + 1√

t

∂
∂bi

ui(b)
if yt

i > vi then
bt
i ← vi

else
bt
i ← max(yt

i , 0)
end if

end for
t ← t + 1

end for
return b

highest value for the item, over all the bidders, denoted by α. Figure 1 describes
the revenue in an all-pay auction with two bidders — one bidder has a ‘high’
value α ≥ 1, and the other bidder has a value of 1. We consider two versions of
the all-pay auctions. In the first, we used a weight function w(z) =

√
z, and in

the second we used a weight function w(z) = z
1
4 . Next, in Figure 2, we consider

the same setting as in Figure 1, for the winners-pay auction. The revenue in equi-
librium is presented for three different versions of the winners-pay auction: The
lowest curve describes the winner pay auction with the linear weight function
w(z) = z. The middle curve describes the revenue when the weight function is
w(z) =

√
z and the upper curve describes the revenue when the weight function

is w(z) = z1/4.
In Figures 3, and 4 we study numerically the revenue in a winners-pay auc-

tion when the number of bidders varies from n = 2 to n = 5. The bidders’
private values are such that a single bidder has a high value α ≥ 1, and
the other n − 1 bidders have a low value of 1. Each curve in Figures 3,4 de-
scribes the revenue in equilibrium as a function of α, and each different curve
corresponds to a different number n of bidders. Figure 3 and 4 differ in the
weight function used: in Figure 3 we used w(z) = z, and in Figure 4 we
used w(z) =

√
z. In Theorem 5, we show that the revenue in a winners-pay

auction, with values profile (α, 1, 1, . . . , 1) asymptotically goes to a constant,
as the number of bidders with value 1 tends to ∞. It is interesting however
to notice that in both Figures 3 and 4, while the number of bidders is kept
relatively small, the revenue actually increases with the number of low-value
bidders.
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Fig. 1. Revenue from equilibrium bids in
an all-pay auction with two bidders with
values α, and 1 respectively. The lower
curve describes an all-pay auction with
weight function w(x) =

√
x. The upper

curve describes an all-pay auction with
weight function w(x) = x1/4.
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Fig. 2. Revenue from equilibrium bids
in a winners-pay auction with two bid-
ders with values α, and 1 respectively.
The lower, middle, and upper curves de-
scribes a winners-pay auction with weight
functions w(x) = x, w(x) =

√
x, and

w(x) = x1/4 respectively.
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Fig. 3. A winners-pay auction with
weight w(x) = x, and value profile
(α, 1, . . . , 1). The curves from lowest to
highest describe the revenue when the
number of bidders with value 1 is 1,2,3,4
respectively
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Fig. 4. A winners-pay auction with
weight w(x) =

√
x, and value profile

(α, 1, . . . , 1). The curves from lowest to
highest describe the revenue when the
number of bidders with value 1 is 1,2,3,4
respectively.

7 Concluding Remarks

We study a natural class of quasi-proportional allocation mechanisms. Combined
with all-pay or winner-pay methods, this gives a simple prior-free auction mech-
anism without any reserve prices. Our analytical and experimental study shows
the revenue under various quasi-proportional functions in equilibrium, and we
showed existence of a unique Nash equilibrium that can also be computed ef-
ficiently. We believe quasi-proportional mechanisms will find applications and
a deeper understanding of their properties will be useful. An interesting open
question is to design an auction for a single item that achieves a total rev-
enue of constant factor of α = maxi vi in equilibria. We proved that simple
quasi-proportional mechanisms show promising revenue properties in equilibria,
however none of our mechanisms achieve a constant approximation factor of α
(off by at least facor log α). A main open problem is to design a mechanism for
a single item that achieves a constant factor of α in equilibria while not losing
much in the efficiency of the allocation. Also as we discussed in Section 5.2, the
promising revenue properties of quasi-proportional mechanisms for small num-
ber of buyers disappears as the number of buyers tends to ∞. An interesting
open question is to modify the mechanism to ensure good revenue properties
when many buyers are in the system. A simple idea is that for any number of
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bidders, the auctioneer runs a quasi-proportional mechanism among the highest
two bids. One hopes such mechanisms have good revenue properties, however,
we can show that such mechanisms may not admit any pure Nash equilibria.
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Abstract. We define the notion of diversity for families of finite func-
tions, and express the limitations of a simple class of holographic
algorithms in terms of limitations on diversity. We go on to describe
polynomial time holographic algorithms for computing the parity of the
following quantities for degree three planar undirected graphs: the num-
ber of 3-colorings up to permutation of colors, the number of connected
vertex covers, and the number of induced forests or feedback vertex sets.
In each case the parity can be computed for any slice of the problem,
in particular for colorings where the first color is used a certain number
of times, or where the connected vertex cover, feedback set or induced
forest has a certain number of nodes. These holographic algorithms use
bases of three components, rather than two.

1 Introduction

The theory of holographic algorithms is based on a notion of reduction that
enables computational problems to be interrelated with unusual fluidity. The
theory offers three basic reduction techniques:

(a) Holographic transformations that relate pairs of problems by simply taking
a different view or basis,

(b) Holographic gadgets that use internal cancelations custom designed for the
problems at hand, and

(c) Interpolation techniques for recovering information from the outputs of
computations on a set of specially prepared variants of the problem instance at
hand.
The overarching open question in the theory is whether this combination of
techniques can bridge the gap between classical polynomial algorithms on the
one hand, and the class of #P-complete (or NP- or ⊕P-complete) problems as
defined by classical reductions, on the other.

In order to further our understanding of this question we introduce here the
notion of diversity for finite functions, in terms of which some limitations of the
simplest kinds of holographic algorithms that we discussed in an earlier paper
[V06] can be explored more explicitly. These simplest holographic algorithms
are those obtained from what we define as elementary reductions. We show that
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such algorithms do impose a limitation on the diversity of the functions that
can be realized. It remains unresolved, however, whether holographic algorithms
that are not bound by the constraints of elementarity, such as those given in
later sections of this paper, can evade this diversity limitation.

In the later sections we go on to describe some polynomial time holographic
algorithms for three natural problems for undirected graphs of degree three.
These compute the parity of the number of solutions of each of the following
three problems: feedback vertex sets (or, equivalently, induced forests), connected
vertex covers, and vertex 3-colorings up to permutations of colors.

Besides evading the elementarity constraint our algorithms have other features
that put them outside the currently better understood regions of holographic
theory. For one thing the use of the three element basis b3 from [V08] puts
them outside the collapse theorem of Cai and Lu [CL09], and hence outside any
known classification such as [CL07]. (Of course, the possibility has not yet been
excluded that #P-complete problems can be solved even within the scope of
this collapse theorem or classification.) Second, the results hold for parity rather
than counting. For parity problems, or fixed finite fields in general, holographic
transformations and interpolation both appear to offer less flexibility than they
do for general counting problems. For example, understanding the complexity of
the counting problems modulo three, for the structures we analyze here modulo
two, appears to remain a challenge.

For brevity of exposition we shall assume familiarity with the basic notions
and notations of holographic algorithms as described in ([V04], [V08]).

2 Diversity

For a Boolean function f(x1, ..., xm) and a subset S ⊆ X = {x1, ..., xm} of size
n, we define the diversity of S in f to be the logarithm to the base two of the
number of different functions of the n variables of S that can be obtained by
fixing the m − n remaining variables X − S in the 2m−n different ways. This
is the central concept in Neciporuk’s proofs [N66] of lower bounds on formula
complexity. He showed that if X has a partition into subsets Si such that the
average diversity of the Si in f is substantial, then a nonlinear lower bound on
the formula size of f follows.

We say that a Boolean function f(x1, ..., xm) has n-diversity D if D is the
maximum diversity of S in f , over all subsets S ⊆ X = {x1, ..., xm} of size n .
Since there are 22n

Boolean functions of n variables, the maximum n-diversity
of a function is 2n.

A Boolean function family f = {fm(x1, ..., xm) | m = 1, ...} has diversity g(n)
if for each positive integer n, g(n) is the maximum n-diversity of fm for any
m ≥ n. Clearly g(n) ≤ 2n.

A Boolean function family f has polynomial diversity if its diversity g(n) is
upper bounded by some polynomial p(n). It has exponential diversity if it is
lower bounded by c2cnκ

for some constants c, κ > 0. It has exponential standard
diversity if, for some polynomial p(n), exponential diversity is achieved for all n
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by fm with some m ≤ 2p(n). It has polynomial standard diversity if, for all poly-
nomials p(n), the n-diversity achieved for n by fm with m ≤ 2p(n) is polynomial
bounded.

Such definitions can also be made for finite fields Fq for families with fi:
{0, ..., q− 1}i $→ {0, ..., q− 1}. In that case the maximum n-diversity of a family
is qn log2 q.

High diversity does not imply high complexity. The Circuit Value problem
[L75] CVn,r(x1, ..., xn+r) we shall formulate here as the function that regards
its first n inputs as a vector v of n Boolean values, and the remaining bits as a
specification of a Boolean circuit C of n inputs with binary gates. An m gate
circuit of n inputs can be specified using r = O((n + m)log(n + m)) binary bits.
Since all the 22n

Boolean functions of n variables can be realized by a circuit
with O(2n/n) gates [Lu58], they can all be encoded in CVn,r if r = O(2n). We
define CV to have such an encoding of circuits. Hence CV has diversity 2n since
S = (x1, ..., xn) has diversity 2n in CVn,r for an appropriate r = O(2n). Clearly
CV then also has exponential standard diversity.

Using the following notion of reduction one can deduce that most natural P-,
NP- and #P-complete problems have exponential standard diversity. We say
that a reduction τ from {CVn,r} to a family of functions {Qi} is segregating if in
polynomial time τ maps the pair v, C to a pair of Boolean sequences (y, z) such
that (i) for any fixed n and r, the lengths of y and of z are uniquely determined,
(ii) the length of y is polynomially bounded in terms of n, (iii) y depends on v
and not C, (iv) z depends on C and not v, and (v) Qi(y, z) = C(v). (In short, y
encodes v, z encodes C, and Qi evaluates C on v. The length of y is polynomial
in n, but the length of z may be exponential in n.)

Proposition 1. If CV is reducible to Q by a segregating reduction then Q has
exponential standard diversity.

Proof. For a fixed size n consider CVn,r with r exponential in n and large enough
that all 22n

Boolean functions of n variables can be expressed. Now consider one
of the 22n

choices of C. Since the reduction, say τ , is segregating, for all v it
will map (v, C) to (y, z) for the some fixed value of z. For C and z so fixed, as v
varies so will y, and Qi(y, z) = C(v). Hence, Qi will compute on the encoding y
of v the same Boolean function as C does on v. Hence, fixing z in different ways
will make Qi compute 22n

different functions of y. If S is the set of variables
that represents y then the diversity of S in Qi will be 2n. Since τ is segregating,
by condition (ii) |S| is polynomially bounded in terms of n. It follows that the
diversity of S in Qi will be at least c2c|S|1/κ

for appropriate positive constants c
and κ. �.

Now for many NP-complete problems, by tracing through the known reductions,
one can derive segregating reductions from CV to them. For example, consider
the family Q corresponding to Cook’s 3SAT problem. Here Qi(x) is a 3CNF
formula with i clauses and variables from x1, ..., xi. From a circuit C with inputs
x1, ..., xn, and any vector v of values of x1, ..., xn, one can construct by now
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standard methods a polynomial size 3CNF formula that is satisfiable if and only
if that circuit C on that input v evaluates to one: The formula will have the first
n clauses encode the input with the jth clause being (xj) or (x′

j) according to
whether the jth among the n bits of v is 1 or 0. It will have the remaining clauses
encode the gates. This is a segregating polynomial time reduction from CV to
3CNF. Related to the 3CNF satisfiability problem is ⊕3CNF, the problem of
determining the parity of the number of solutions of a 3CNF formula, and their
planar analogs Pl-3CNF and ⊕Pl-3CNF. From the above construction we can
deduce the following.

Proposition 2. The problems 3CNF, ⊕3CNF, Pl-3CNF and ⊕Pl-3CNF all have
exponential standard diversity.

Proof. The previous paragraph describes a segregating reduction from CV to
3CNF. This establishes the result for 3CNF by virtue of Proposition 1. Since the
construction can be made to preserve the number of solutions, the 3CNF formula
will have 0 or 1 solutions according to whether the value output by the circuit
C is 0 or 1. The result for ⊕3CNF therefore also follows. For the planar case
one uses additional sets of clauses that act as crossovers and make the formula
planar, as described by Lichtenstein [L82]. These can also be made to preserve
the number of solutions [HMRS98]. These additional clauses can be viewed as
part of the circuit encoding, and then yield a segregating reduction to the planar
versions of Pl-3CNF and ⊕Pl-3CNF as needed. �

With this starting point one can ask for each of the known NP-complete prob-
lems, such as those of Karp [K72], whether CV is reducible to some natural
encodings of them by a segregating reduction. It appears that this is the case
for the vast majority, and for those it then follows that some natural encoding
of them has exponential standard diversity.

What is the status of the numerous counting problems that are known to be
complete in an appropriate counting class, but for which existence is polynomial
time computable and not known to be complete for P? Do these counting prob-
lems have CV embedded in them equally explicitly? The following shows that
in some such cases the embedding is in fact explicit.

Proposition 3. The Permanent modulo k for any prime k �= 2 has exponential
standard diversity.

Proof. From the proof in [V79a] one can obtain a segregating reduction from CV
via 3CNF to the permanent modulo k for any prime k other than two. �

On the other hand, if the proof of #P-completeness goes through interpolation
(eg [V79b], [J87], [Vad01], [XZZ07], [CLX08]) then exponential diversity does not
appear to follow immediately. For example, does counting matchings modulo 3
in some natural encoding of planar graphs [J87], have exponential diversity?
There are cases in which the known reductions to the counting problem take
particularly circuitous routes through interpolations, raising the possibility that
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the CV problem is truly disguised, but nevertheless exponential diversity can
be deduced from known reductions for the corresponding parity problem. One
example of this is planar vertex cover for which known #P completeness proofs
[Vad01, XZZ07] are indirect. However, for the subclass of planar 3/2-bipartite
graphs (bipartite graphs with degree 2 on one side and 3 on the other) a seg-
regating reduction from 3CNF to this vertex cover problem that preserves the
parity of the number of solutions can be derived from the the ⊕P-completeness
proof of this problem given in [V06].

Proposition 4. The parity of the number of vertex covers for planar 3/2 graphs
has exponential standard diversity.

Clearly a unary Boolean function family, one that is zero whenever any xi = 1,
will have polynomial diversity. Since there exist unary functions of arbitrarily
high Turing machine time complexity it follows that polynomial diversity does
not imply polynomial time Turing machine complexity. Pavel Pudlak has made
the following elegant observation that shows that low diversity can also be pos-
sessed by functions that have high complexity in many other senses, such as
having exponential circuit complexity or being NP-complete. For any function
f(x) on n inputs consider an error correcting code g: {0, 1}n → {0, 1}r that
corrects more than n errors and can be computed and inverted efficiently. Let
h : {0, 1}r → {0, 1} be such that h(y) = 1 iff y = g(x) for some x and f(x) = 1.
Then h has n-diversity at most n + 1 since for any domain d of n of its input
bits, fixing the remaining bits will permit it to have value 1 for at most 1 of
the 2n values of d, and hence there are at most 2n + 1 such different functions
possible of the n variables of d.

3 Elementary Reductions to Matchgrids

We shall now define the notion of an elementary reduction to matchgrids. The
definition is a generalization of the one given in [V06] that was specific to reduc-
tions from 3CNF. Here we consider a family f with respect to input domain d.
This means that for each m there is a specified function fm on Boolean variables
x1, ..., xm, and a specified subset dm of nm of these m variables.

We say that τ is a k(m)-oracle reduction if for family member fm it generates
k(m) matchgrids in polynomial time and from their Holants it computes the solu-
tion to the original problem also in polynomial time. Note that while many holo-
graphic algorithms in the literature are 1-oracle, some multi-oracle matchgrid re-
ductions that use interpolation have been described also ([V04], [V08], [CC07]).

Suppose that τ is a polynomial time 1-oracle reduction from f to matchgrids
over field F . For a function fm, a domain of its variables dm of size n = nm,
and an assignment z to the set cm of variables that is the complement of dm, let
M(fm, dm, z) be the set of 2n adjacency matrices of the set of matchgrid images
under τ of the 2n restrictions of fm when the n = nm variables specified by dm

are fixed in all possible ways.
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Then τ is a local boundary reduction for (fm, dm) if for each m, z and adjacency
matrix in M(fm, dm, z) there is a planar embedding such that for every fixed m
and z

(a) the corresponding 2n embeddings have an identical set of nodes Um,z.
(b) in these 2n embeddings all the edges and their weights are identical, except
possibly those that have both endpoints within a subset Zm,z ⊆ Um,z, which is
of size upper bounded by a polynomial L(n) independent of m.
(c) the Zm,z nodes have degrees bounded by a constant independent of n, m
or z.
(d) the nodes Zm,z all lie in the infinite outer face of the embedding of the graph
induced by Tm,z = Um,z − Zm,z, and
(e) the edges incident to pairs of vertices in Zm,z can be partitioned into n sets
such that each such set Si corresponds to a variable xki in dm, and the weights
of Si are functions of the value of xki but are independent of the values of the
other xj in dm (i. e. those with j �= ki.)

We shall say that a reduction τ from a family f with respect to input domain
d of size n to matchgrids over F is elementary if it has the four properties of
(i) being 1-oracle, (ii) being local boundary, (iii) having the number of members
|F | polynomial bounded in m, and (iv) having Holant(τ(f(x))) determine the
value of f(x). We then also say that τ is an elementary reduction for (f, d).

We note that there are no constraints on what the transformation does on
different z. The intent is that when the Circuit Value problem is embedded, then
the different circuits C can be embedded in arbitrarily different ways, but for
any one circuit there are constraints on the way the matchgrids can vary as the
inputs v to C vary. Also note that the field size is allowed to grow polynomially
with m, so that it can be exponential in n if m is exponential in n.

4 Elementary Reductions Compute Functions of
Polynomial Diversity

Our negative results are based on the following statement [V06]:

Theorem 1. There is a weighted planar graph G having r external nodes and
O(r4) edges of which all but O(r2) have fixed weight 1, such that for any field F ,
any r-component standard signature that is realized by some matchgrid can be
realized by G by setting the O(r2) variable-weight edges to appropriate constants.

Proof. For r ≤ 4 this result is proved in [V08] (Propositions 6.1-6.3). For general
r the corresponding result was proved by Cai, Choudhary and Lu (Corollary
4.1 in [CCL09]), but for matchcircuits. The general result then follows from the
equivalence of matchgrids and matchcircuits (Lemmas 3.1 and 3.2 in [CC07]). �
Theorem 2. For any family f and domain d if there is an elementary reduction
to matchgrids for (f, d), then d has polynomial standard diversity in family f .

Proof. Suppose that τ is a polynomial time 1-oracle reduction from f to match-
grids over field F . For a function fm and a domain of its variables dm of size
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n = nm, for each z let M(fm, dm, z) be the set of adjacency matrices as defined
above and consider the planar embeddings that respect conditions (a)-(e) of the
definition of elementarity.

By (a), (b) these embeddings are identical with respect to all the edges that
are incident to a Tm,z node at laest at one end . We regard the embedding of the
nodes Tm,z as a matchgrid Hm,z. By (d) the remaining nodes Zm,z are all mapped
into the outer face of Hm,z. Since, by (b) and (c), |Zm,z| is upper bounded by
a polynomial L(n), and the degrees of the Zm,z nodes by a constant, Hm,z has
O(L(n)) external connections, and can be regarded as a matchgrid with O(L(n))
external nodes. Now, by Theorem 1, Hm,z can be replaced by a matchgrid with
O((L(n))2) variable weight edges. From this we deduce that as z varies, the total
number of inequivalent matchgrids Hm,z is at most a1 = |F |O((L(n))2). (In other
words it is single exponential in n however large m may be.)

It remains to complete the estimation of the number of different functions of
the original n domain dm variables that the matchgrids can realize as z varies, by
also taking into account the remainder of the matchgrid specification, namely the
nodes |Zm,z| and the edges incident to them. We can fix the names of the nodes of
Zm,z and the external nodes of Hm,z, which altogether number O(L(n)). Then the
number of potential edges that have at least one endpoint in |Zm,z| is at most A =
O((L(n))2). By assumption (e), each choice of z partitions the edges among pairs
of Zm,z nodes into n sets, and each such set will have a weight assignment that
represents the corresponding domain variable having value zero, and a weight as-
signment corresponding to value one. The number of partitions is upper bounded
by a2 = An clearly. Also, for each such partition, a3 = |F |2A upper bounds the
number of distinct values of the edges between Zm,z nodes that among them rep-
resent all combinations of representing 0’s and 1’s for the n variables of dm. Also,
the number of possible weight assignments to edges incident to both |Zm,z| and
|Tm,z| nodes is upper bounded by a4 = |F |O(L(n)). It follows that the total num-
ber of functions of the domain variables that the matchgrids can realize is upper
bounded by a1a2a3a4, which itself is upper bounded by (L(n)|F |)O((L(n))2). Now,
by condition (iii) of elementarity, |F | is polynomial bounded in m. For standard
diversity m is single exponential in a polynomial p(n). It follows that the number
of distinct functions is at most 2O(q(n)) for some polynomial q. In other words the
standard diversity is at most polynomial in n. �
From this result one can deduce for problems known to have high diversity that
they do not have elementary reductions to matchgrids. The following is an in-
stance that parallels a result in [V06]:

Corollary 1. There is no elementary reduction from (f, d) to matchgrids where
f is any one of Pl-3CNF, 3CNF, ⊕Pl-3CNF or ⊕3CNF, and d specifies a subset
of O(log m) of the clauses for formulae with m clauses.

Proof. This follows from Proposition 2 and Theorem 2. �
It is an interesting question whether converse implications also hold. For prob-
lems such as #7Pl-Rtw-Mon-3CNF [V06] for which 1-oracle holographic algo-
rithms exist, even for fields whose size does not increase at all with the input size,
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one would like to determine whether they have polynomial diversity. For planar
representations of Boolean functions one can define a notion of planar diversity
where the domains dm have to be on the outer face of the embedding. Then the
particulars of the algorithm just described for #7Pl-Rtw-Mon-3CNF do imply
polynomial planar diversity for that problem. However, such arguments do not
appear to apply to domains that are not on the periphery, or to general diversity.

Multiple oracle calls appear to be very useful in reductions among counting
problems. There are multitudes of #P-complete problems that have been proved
complete via reductions that involve multiple oracle calls and polynomial inter-
polation on the results ([V79b], [J87], [Vad01], [XZZ07], [CLX08]). For any one
of these problems one can ask whether they have polynomial diversity.

In the opposite direction, one can ask whether algorithms that make multiple
oracle calls, each via an elementary reduction, can compute functions of expo-
nential diversity. To formulate specific questions of this kind one would need to
define specific classes of such multiple oracle call algorithms. One relevant such
class is offered by the algorithms described in Sections 6-8 of this paper. These
all have the following form: Given an instance G of the problem, one generates a
single matchgrid with weights that are polynomials in x with coefficients from a
field F . The solution sought is the jth least significant bit in the coefficient of xi

of the Holant, where i, j are predetermined integers, and all the coefficients are
guaranteed to be integral. There is the further constraint that if this coefficient
is nonzero then it has at least j− 1 factors of 2. Note that the solutions here are
obtained by the multi-oracle reduction that evaluates the matchgrid at enough
different values of x, and then interpolates for the appropriate coefficient. It is
an interesting question to determine whether or not these classes of reductions
can evade the polynomial constraint on diversity of elementary reductions.

5 The Basis b3

The basis b3 [V08] has three components z = (1, 0), n = (1,−1), p = (1, 1). It
has the useful property that for all x ∈ F , xz3 + n3 + p3 is an even ternary
signature and therefore, by Proposition 6.2 in [V08], is realizable by a planar
matchgate. To verify this it is sufficient to expand xz3 + n3 + p3 as:

(x, 0, 0, 0, 0, 0, 0, 0) + (1,−1,−1, 1,−1, 1, 1,−1)+ (1, 1, 1, 1, 1, 1, 1, 1)
= (x + 2, 0, 0, 2, 0, 2, 2, 0) = [x + 2, 0, 2, 0].

We shall call this signature, and the gate realizing it, g3(x). The analogous
two-output signature g2(x) is also even, and therefore realizable by virtue of
Proposition 6.1 in [V08], since

xz2 + n2 + p2 = (x, 0, 0, 0) + (1,−1,−1, 1) + (1, 1, 1, 1) = [x + 2, 0, 2],

as is also the one output signature g1(x) = xz + n + p = [x + 2, 0]
For each of the three parity problems that we define in the sections that follow,

we shall consider planar graphs of n vertices all of maximum degree three. Our
constructions do not require that the graph be cubic in the sense that every node
has degree exactly three.
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For each problem we shall construct for any such graph G a family of match-
grids Ω(G, x) indexed by x, using a fixed binary recognizer r for the edges, and
the above mentioned generators g1(x), g2(x) and g3(x), for the nodes of degrees
one, two and three, respectively. Then for each problem, Holant(Ω(G, x)) can be
viewed as a polynomial in x of degree at most n. If we evaluate Holant(Ω(G, x))
for one G and n+1 distinct values of x, and interpolate for the coefficients, then
the coefficient of xi will be the sum of the contributions to the Holant of the
states in which exactly i of the generators are generating z’s, and the remainder
n’s or p’s.

Alternatively, we shall sometimes substitute g1(s), g2(t) and g3(x), with
different indeterminates s, t, x. Then after evaluating at O(n3) distinct points,
we can interpolate to obtain the coefficient of sitjxl, which gives the contribution
to the Holant of states where among the z generators, exactly i have degree one,
j degree two, and l degree three.

We now describe the binary recognizers that we use for the edges. Each of
these recognizers is a simple chain, of one, two or three edges, with the end nodes
serving as the two external nodes. In our notation below * denotes a node, and
*(w)* denotes an edge of weight w between two nodes. The following can be
verified by inspection.

Proposition 5. The values of the following three recognizers are as follows when
(a, b) is input from the left, and (c, d) from the right:
r1: *(1)* has value ac + bd,
r2: *(1)*(1)* has value ad + bc, and
r3: *(1)*(-1)* has value ad− bc.

6 Holographic Algorithm for the Parity of the Number
of Induced Forests or Feedback Vertex Sets

The Minimum Feedback Vertex Set problem for undirected graphs is defined
as follows: Given an undirected graph G and an integer k the question is to
determine whether there is a set of k vertices whose removal leaves a forest (i.e. a
graph with no cycles.) There is a substantial literature on this existence problem.
The directed version of this problem was proved NP-complete by Karp [K72].
The undirected version we study here was proved NP-complete by Garey and
Johnson [GJ79]. Subsequently it was shown to be NP-complete even for planar
graphs of degree four by Speckenmeyer [S83]. For cubic (i.e regular degree three)
graphs a polynomial algorithm was given by Li and Liu [LL99]. (This last result
is also implied by the polynomial time algorithm of Ueno et al. [UKG88] for
the Minimum Connected Vertex Cover problem (defined in the next section) for
cubic graphs, in conjunction with the result of Speckenmeyer that for any cubic
graph on n vertices MCVC-MFVS = n/2− 1, where MCVC and MFVS denote
the sizes of the minimum connected vertex cover and the minimum feedback
vertex set.)
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Here we are interested not in the existence problem but in the parity of the
number of solutions, not only for forests of the largest size but for forests of
every size, and not only for regular graphs of degree three, but for all graphs of
maximum degree three. Thus the probem we address, ⊕mFVS, is the following:
Given a degree m undirected graph G and an integer k, determine the parity of
the number of sets of k nodes that induce a forest in G.

Theorem 3. There is a deterministic polynomial time algorithm for ⊕3FVS.

Proof. We place g3(x), g2(x) and g1(x) generators at vertices of degree three,
two and one respectively. We place a recognizer r1 on each edge. Then, by
Proposition 5, the value of each recognizer as a function of the nine possible
combinations of what the adjacent nodes generate are as follows: zz → 1; zp →
1; zn → 1; pz → 1; nz → 1; pp → 2; nn → 2; pn → 0; np → 0.

We regard each state σ (i.e. each combination of states of all the generators)
of the matchgrid as a two-coloring, where one color, Z, corresponds to the nodes
generating z’s, and the other, Y, those generating n’s and p’s. For each such
state we define #YY(σ) to be the number of edges joining a pair of nodes both
colored Y, and #Ycomponents(σ) to be the number of connected components
induced in G by the removal of the Z nodes and the edges adjacent to them.
Then the Holant will be the sum over all such Z/Y 2-colorings of G of the value
V = 2#Y components(σ)+#Y Y (σ), since each connected component has one of two
states (all n or all p), and each edge in such a component contributes a further
factor of two. If G has n nodes and the number of Z nodes is fixed as n−k, then
the minimum number of divisors of 2 in V is 2n−(n−k) = 2k, and is achieved if
and only if the YY edges induce a forest in G. (Note that in any graph with k
nodes the sum of the number of edges and the number of connected components
is at least k, the minimum being achieved only if the graph is a forest.) Hence,
if one divides the coefficient of xn−k in Holant(Ω(G, x)) by 2k, then the parity
of that number is the desired solution to ⊕3FVS(G). �

7 Holographic Algorithm for the Parity of the Number
of Connected Vertex Covers

The Minimum Connected Vertex Cover problem is the following. Given an undi-
rected graph G determine the size of the smallest set of nodes that (i) is a vertex
cover, and (ii) induces a connected subgraph of G.

The existence problem was shown NP-complete for degree four planar graphs
by Garey and Johnson [GJ77]. Fernau and Manlove [FN06] showed that this
result holds even in the bipartite case. For cubic graphs it was shown to be
polynomial time computable by Ueno, Kajitani and Gotoh [UKG88].

Here we are interested in the following parity problem⊕mCVC. Given an undi-
rected planar graph G of maximum degree m and an integer k, the problem is to
compute the parity of the number of connected vertex covers of G of k vertices.
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Theorem 4. There is a deterministic polynomial time algorithm for ⊕3CVC.

Proof. We place g3(x), g2(t), and g1(s) generators at vertices of degree three,
two and one respectively. We place a recognizer r2 on each edge. Then, by
Proposition 5, the value of each recognizer as a function of the nine possible
combinations of what the adjacent nodes generate are as follows: zz → 0; zp →
1; zn → -1; pz → 1; nz → -1; pp → 2; nn → -2; pn → 0; np → 0.

As before, we regard each state σ of the matchgrid as a two coloring, where
one color, Z, corresponds to the nodes generating z’s, and the other, Y, those
generating n’s and p’s. For each such state we define #YY(σ) to be the number
of edges joining a pair of nodes both colored Y, and #Ycomponents(σ) to be
the number of connected components induced in G by these YY edges. Now the
Holant will be the sum over some such Z/Y 2-colorings of G in which the nodes
colored Z form an independent set, of V = ±2#Y components(σ)+#Y Y (σ). This will
follow by a similar argument to that used in Theorem 3, except now the Z nodes
form an independent set since the value of r2 for zz input is zero, and we need
to analyze potential cancelations.

To derive this value of V we first note that if the graph has n nodes and is cubic,
then for a state in which the Z nodes form an independent set of size n−k, it will be
the case that #Y Y (σ) = 3n/2−3(n−k) = 3(k−n/2). For each Y/Z coloring and
for any connected component induced by the Y colored edges in G, there will be
two valid states, corresponding to the Y-colored nodes having all p or all n states.
When one changes all the Y nodes from p to n then the values of all the recognizers
in G will change sign. Hence if the nodes in this component have an even number
of edges incident to them then these contributions to the Holant will have the same
sign, and otherwise will cancel. Hence the minimum (nonzero) number of divisors
of 2 in V is 23(k−n/2)+1, and is achieved if and only if the YY edges induce one
connected component inG andGhas an evennumber of edges.Hence, if one divides
the coefficient of xn−k in Holant(Ω(G, x)) by 23(k−n/2)+1, then the parity of that
number is the desired solution to ⊕3CVC(G).

If the graph is not regular, then by interpolation we can find the coefficient
of sitjxl in Holant(Ω(G, s, t, x)) for all i, j, l. For any specific combination of
i, j, l the value of #YY(σ) is |E| − i− 2j − 3l, where |E| is the total number of
edges in G. Hence we can compute the parity of the number of solutions for any
combination i, j, l, and hence for all the combinations with i + j + l = n− k. We
shall derive the parity of the number of solutions corresponding to such Z sets by
dividing the appropriate coefficient by 2|E|−i−2j−3l+1 rather than by 23(k−n/2)+1

as used in the regular case.
So far we have assumed that the number of edges in G is even. To treat

the alternative case we choose an arbitrary edge and replace r2 by r1 on it.
This ensures that when switching between all p and all n states the sign will
not change on this one edge, and hence not for the product of all of these odd
number of edges. It only remains to ensure that the Y nodes still form a vertex
cover, and for this it is necessary to preclude that the endpoints of the chosen
edge be both in state Z. This can be done by multiplying the x term in these
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two generators by a new indeterminate w, and, by interpolation, computing and
adding the coefficients of w0 and w1 (while ignoring that of w2.) �

8 Holographic Algorithm for the Parity of the Number
of Vertex Colorings

A 3-Vertex Coloring of a graph G is an assignment of a color from a palette of
3 colors to each vertex so that no pair of adjacent vertices has the same color.
Clearly the set of all such proper colorings can be partitioned into equivalence
classes of 3! colorings, so that the members of each class differ only by a permu-
tation of the colors. Here we are interested in the following two closely related
problems. The problem ⊕mCol: for an undirected planar graph G of maximum
degree m determine the parity of the number of equivalence classes of 3-colorings
of G. The problem ⊕mFCol: for an undirected planar graph G of maximum de-
gree m and an integer k determine the parity of the number of 3-colorings that
are invariant under permutations of the remaining two colors when exactly k
nodes are given the first color. We note that the corresponding counting prob-
lems for 3-colorability of degree three graphs are #P-complete [BDGJ99].

Theorem 5. [B04] For some constant m, ⊕mCol is ⊕P-complete.

Theorem 6. There is a deterministic polynomial time algorithm for ⊕3FCol
and for ⊕3Col.

Proof. We place g3(x), g2(t), and g1(s) generators at vertices of degree three,
two and one respectively, and r3 recognizers on each edge. The r3 recognizers
for ad−bc are not symmetric, and can be placed in arbitrary orientation without
influencing our result. By Proposition 5 the value of each recognizer as a function
of the nine possible combinations of what the adjacent nodes generate are as
follows: zz → 0; zp → 1; zn → -1; pz → -1; nz → 1; pp → 0; nn → 0; pn →
-2; np → 2.

Again we regard each state σ of the matchgrid as a two coloring, where one
color, Z, corresponds to the nodes generating z’s, and the other, Y, those gen-
erating n’s and p’s. For each such state we define #YY(σ) to be the number of
edges joining a pair of nodes both colored Y, and #Ycomponents(σ) to be the
number of connected components induced in G by these YY edges. Then the
Holant will be the sum over some such Z/Y 2-colorings of G in which the nodes
colored Z form an independent set and those colored Y form a bipartite graph,
of the values V = ±2#Y components(σ)+#Y Y (σ).

To see this we first assume that the graph is cubic and has an even number
of edges. If the graph has n nodes, then for a state in which the Z nodes form
an independent set of size k, then #Y Y (σ) = 3n/2− 3k. We note that for each
Y/Z coloring the Y Y edges will form a set of connected bipartite components in
G. In each component there will be two valid states, corresponding to which of
the two parts is in p or n state. When one swaps p and n all the values of all the
recognizers will change sign. Hence if there are an even number of edges incident
to the nodes in one such component, then the contributions to the Holant will
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have the same sign for the two states. Hence the minimum number of divisors
of 2 in V is 23n/2−3k+1, and is achieved if and only if the YY edges induce one
connected bipartite component in G. Hence, if one divides the coefficient of xk

in Holant(Ω(G, x)) by 23n/2−3k+1, then the parity of that number is the parity
of the number of solutions to ⊕3FCol(G).

Graphs that are not regular or have an odd number of edges can be treated
exactly as in Theorem 4. �

For completeness we mention the following application:

Theorem 7. The parity of the number of edge 3-colorings of planar 3/2 bipartite
graphs can be computed in polynomial time.

Proof. The line graph of such a graph is a planar degree three graph, and hence
the result follows immediately from Theorem 6. Note that we do not require the
3/2-graph to be a regular 3/2 graph. �
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Abstract. In this paper, we settle the open complexity status of interval con-
strained coloring with a fixed number of colors. We prove that the problem is
already NP-complete if the number of different colors is 3. Previously, it has only
been known that it is NP-complete, if the number of colors is part of the input
and that the problem is solvable in polynomial time, if the number of colors is
at most 2. We also show that it is hard to satisfy almost all of the constraints
for a feasible instance. This implies APX-hardness of maximizing the number of
simultaneously satisfiable intervals.

1 Introduction

In the interval constrained 3-coloring problem, we are given a set I of intervals defined
on [n] := {1, . . . , n} and a requirement function r : I → Z3

≥0, which maps each
interval to a triple of non-negative integers. The objective is to determine a coloring
χ : [n] → {1, 2, 3} such that each interval gets the proper colors as specified by the
requirements, i.e.

∑
i∈I eχ(i) = r(I) where e1, e2, e3 are the three unit vectors of Z3.

This problem is motivated by an application in biochemistry to investigate the ter-
tiary structure of proteins as shown in the following illustration. More precisely, in
Hydrogen-Deuterium-Exchange (HDX) experiments proteins are put into a solvent of
heavy water (D2O) for a certain time after which the amount of residual hydrogen
atoms, that have exchanged with deuterium atoms, is measured [1]. Doing this experi-
ment for several timesteps, one can determine the exchange rate of the residues. These
exchange rates indicate the solvent accessibility of the residues and hence they pro-
vide information about the spatial structure of the protein. Mass spectroscopy is one of
the methods for measuring these exchange rates. To this end, the proteins are digested,
i.e. cut into parts which can be considered as intervals of the protein chain, and the mass
uptake of each interval is measured. But thereby only bulk information about each in-
terval can be obtained. Since there is not only one protein in the solvent but millions and
they are not always cut in the same manner, we have this bulk information on overlap-
ping fragments. That is, we are given the number of slow, medium, and fast exchanging
residues for each of these intervals and our goal is to find a feasible assignment of these
three exchange rates to residues such that for each interval the numbers match with the
bulk information.
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Fig. 1. Coloring of the residues of a protein chain according to their exchange rates

Though the interval constrained 3-coloring problem is motivated by a particular ap-
plication, its mathematical abstraction appears quite simple and ostensibly more gen-
eral. In terms of integer linear programming, the problem can be equivalently formu-
lated as follows. Given a matrix A ∈ {0, 1}m×n with the row-wise consecutive-ones
property and three vectors b1,2,3 ∈ Zm

≥0, the constraints⎛⎜⎜⎝
A 0 0
0 A 0
0 0 A
I I I

⎞⎟⎟⎠ ·
⎛⎝x1

x2
x3

⎞⎠ =

⎛⎜⎜⎝
b1
b2
b3
1

⎞⎟⎟⎠ (1)

have a binary solution, i.e. x1,2,3 ∈ {0, 1}n, if and only if the corresponding interval
constrained 3-coloring problem has a feasible solution. We may assume w.l.o.g. that the
requirements are consistent with the interval lengths, i.e. A · 1 = b1 + b2 + b3, since
otherwise we can easily reject the instance as infeasible. Hence, we could treat x3 as
slack variables and reformulate the constraints as

Ax1 = b1, Ax2 = b2, x1 + x2 ≤ 1. (2)

It is known that if the matrix A has the column-wise consecutive ones property (instead
of row-wise), then there is a reduction from the two-commodity integral flow prob-
lem, which has been proven to be NP-complete in [2]. However, the NP-completeness
w.r.t. row-wise consecutive ones matrices has been an open problem in a series of papers
as outlined in the following subsection.

1.1 Related Work

The problem of assigning exchange rates to single residues has first been considered
in [3]. In that paper, the authors presented a branch-and-bound framework for solving
the corresponding coloring problem with k color classes. They showed that there is a
combinatorial polynomial time algorithm for the case of k = 2. Moreover, they asked
the question about the complexity for k > 2. In [4], the problem has been called interval
constrained coloring. It has been shown that the problem is NP-hard if the parameter
k is part of the input. Moreover, approximation algorithms have been presented that
allow violations of the requirements. That is, a quasi-polynomial time algorithm that
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computes a solution in which all constraints are (1 + ε)-satisfied and a plynomial time
rounding scheme, which satisfies every requirement within ±1, based on a technique
introduced in [5]. The latter implies that if the LP relaxation of (1) is feasible, then
there is a coloring satisfying at least 5

16 of the requirements. APX-hardness of finding
the maximum number of simultaneously satisfiable intervals has been shown in [6] for
k ≥ 2 provided that intervals may be counted with multiplicities. But still, the question
about the complexity of the decision problem for fixed k ≥ 3 has been left open. In [7],
several fixed parameter tractability results have been given. However, the authors state
that they do not know whether the problem is tractable for fixed k.

1.2 Our Contribution

In this paper, we prove the hardness of the interval constrained k-coloring problem for
fixed parameter k. In fact, we completely settle the complexity status of the problem,
since we show that already the interval constrained 3-coloring problem is NP-hard by
a reduction from 3-SAT. This hardness result holds more generally for any problem
that can be formulated like (1). Moreover, we even show the stronger result, that it is
still difficult to satisfy almost all of the constraints for a feasible instance. More pre-
cisely, we prove that there is a constant ε > 0 such that it is NP-hard to distinguish
between instances where all constraints can be satisfied and those where only a (1− ε)
fraction of constraints can be simultaneously satisfied. To this end, we extend our re-
duction using expander graphs. This gap hardness result implies APX-hardness of the
problem of maximizing the number of satisfied constraints. It is important to note that
our construction does neither rely on multiple copies of intervals nor on inconsistent
requirements for an interval, i.e. in our construction for every interval (i, j) we have
unique requirements that sum up to the length of the interval.

2 NP-Hardness

Theorem 1. It is NP-hard to decide whether there exists a feasible coloring χ for an
instance (I, r) of the interval constrained 3-coloring problem.

Proof. The proof is by reduction from the 3-SAT problem.

Suppose to be given an instance of the 3-SAT problem, defined by q clauses C1, . . . , Cq

and p variables x1, . . . , xp. Each clause Ci (i = 1, . . . , q) contains 3 literals, namely
y1(i), y2(i), y3(i). Each literal yh(i) (i = 1, . . . , q and h = 1, 2, 3) refers to a variable
xj , that means, it is equal to either xj or x̄j for some j in 1, . . . , p. A truth assignment
for the variables x1, . . . , xp satisfies the 3-SAT instance if and only if, for each clause,
at least one literal takes the value true.

We now construct an instance of the interval constrained 3-coloring problem. For
each clause Ci we introduce a sequence of consecutive nodes. This sequence is, in its
turn, the union of three subsequences, one for each of the three literals (see Fig. 2).

In the following, for the clarity of presentation, we drop the index i, if it is clear from
the context. We denote color 1 by RED, color 2 by BLACK and color 3 by WHITE.
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. . . . . . . . . . . .. . .

C1 C2 C3 Cq

n

. . . .   .   . . . .

y1(i) y2(i) y3(i)

Ci

Fig. 2. The sequence of nodes in an instance of the interval constrained 3-coloring problem

Literal y1(i). The subsequence representing literal y1 is composed of 8 nodes. Among
them, there are three special nodes, namely t1, f1 and a1, that play a key role since they
encode the information about the truth value of the literal and of the variable xj it refers
to. The basic idea is to achieve the following two goals: 1) given a feasible coloring, if
χ(t1) is BLACK, we want to be able to construct a truth assignment setting xj to true,
while if χ(f1) is BLACK, we want to be able to construct a truth assignment setting the
variable xj to false; 2) given a feasible coloring, if χ(a1) is RED, we want to be able
to construct a truth assignment where y1 is true.

To achieve the first goal, we will impose the following property:

Property 1. In any feasible coloring, exactly one among t1 and f1 will be BLACK.

To achieve the second goal, and being consistent with the first one, we must have the
property that:

Property 2. In any feasible coloring, if χ(a1) = RED, then χ(t1) = BLACK if
y1 = xj , while χ(f1) = BLACK if y1 = x̄j .

To guarantee properties (1) and (2), we introduce a suitable set I(y1) of six intervals1,
shown in Fig. 3a.

The requirement function for such intervals changes whether y1 = xj or y1 = x̄j . If
y1 = xj , we let r(I1) = (1, 1, 1); r(I2) = (1, 1, 1); r(I3) = (1, 0, 1); r(I4) = (1, 1, 2);
r(I5) = (0, 1, 0); r(I6) = (2, 3, 3). For any feasible coloring there are only three
possible outcomes for such sequence, reported in Fig. 3b. Observe that the properties
(1) and (2) are enforced.

Now suppose that y1 = x̄j : then we switch the requirement function with respect
to WHITE and BLACK, i.e. define it as follows: r(I1) = (1, 1, 1); r(I2) = (1, 1, 1);
r(I3) = (1, 1, 0); r(I4) = (1, 2, 1); r(I5) = (0, 0, 1); r(I6) = (2, 3, 3). Trivially, the
possible outcomes for such sequence are exactly the ones in Fig. 3b but exchanging the
BLACK and WHITE colors.

1 In principle, interval I5 and the node it contains are not needed. However, this allows to have
the same number of WHITE and BLACK colored nodes for the sake of exposition.
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(a) (b)

Fig. 3. Literal y1. The picture on the right shows the three feasible colorings. On a black and
white printout red color appears as grey.

Literal y3(i). The sequence of nodes representing literal y3 is similar to the one repre-
senting y1. We still have a sequence of 8 nodes, and three special nodes t3, f3 and a3.
As before, we let t3 and f3 encode the truth value of the variable xj that is referred to
by y3, while a3 encodes the truth value of the literal y3 itself. Therefore, we introduce
a set I(y3) of intervals in order to enforce the following properties:

Property 3. In any feasible coloring, exactly one among t3 and f3 will receive color
BLACK.

Property 4. In any feasible coloring, if χ(a3) = RED, then χ(t3) = BLACK if
y3 = xj , while χ(f3) = BLACK if y3 = x̄j .

Fig. 4a shows the nodes and the six intervals that belong to I(y3): observe that the
sequence is similar to the one representing y1, but the position of node a3 and the in-
tervals are now “mirrored”. If y3 = x̄j , we let r(I1) = (1, 1, 1); r(I2) = (1, 1, 1);
r(I3) = (1, 0, 1); r(I4) = (1, 1, 2); r(I5) = (0, 1, 0); r(I6) = (2, 3, 3). Fig. 4b re-
ports the three possible outcomes for such sequence in a feasible coloring. Note that
properties (3) and (4) hold.

Now suppose that y3 = xj : once again, we switch the requirement function with
respect to WHITE and BLACK.

Literal y2(i). The sequence of nodes representing literal y2 is slightly more compli-
cated. It is composed of 36 nodes, and among them there are 4 special nodes, namely
t2, f2, a

�
2 and ar

2 (see Fig. 5). Still, we let t2 and f2 encode the truth value of the variable
xj that is referred to by y2, while a�

2 and ar
2 encode the truth value of the literal.

Similarly to the previous cases, we want to achieve the following goals: 1) given a
feasible coloring, if χ(t2) is BLACK, we want to be able to construct a truth assignment
setting the variable xj to true, while if χ(f2) is BLACK, we want to be able to construct
a truth assignment setting the variable xj to false; 2) given a feasible coloring, if
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(a) (b)

Fig. 4. Literal y3

. . . . . .

t2 f2a2
l a2r

13 nodes 15 nodes

I1

I3 I2

I4

I5

I6

I7

I8 I9

I10

I11

I12

I13

I14

18 nodes

Fig. 5. Literal y2

χ(a�
2) = χ(ar

2) = RED, we want to be able to construct a truth assignment where
the literal y2 is true. We are therefore interested in the following properties:

Property 5. In any feasible coloring, exactly one among t2 and f2 will receive color
BLACK.

Property 6. In any feasible coloring, if χ(a�
2) = RED and χ(ar

2) = RED, then
χ(t2) = BLACK if y2 = xj , and χ(f2) = BLACK if y2 = x̄j .

In this case, we introduce a set I(y2) of 14 suitable intervals, shown in Fig. 5. The
requirements for the case y2 = x̄j are given in the following table.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

RED 1 1 1 1 0 2 1 1 1 1 0 2 0 4
BLACK 1 1 0 1 1 3 1 1 0 1 1 3 2 7
WHITE 1 1 1 2 0 3 1 1 1 2 0 3 1 7
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Observe that the set of intervals {I1, . . . , I6} is defined exactly as the set I(y3), there-
fore the possible outcomes for the sequence of 8 nodes covered by such intervals are
as in Fig. 4b. Similarly, the set of intervals {I7, . . . , I12} is defined exactly as the set
I(y1), therefore the possible outcomes for the sequence of 8 nodes covered by such
intervals are as in Fig. 3b. Combining r(I6) and r(I12) with r(I14), it follows that in
any feasible coloring χ, exactly one node among t2 and f2 has WHITE (resp. BLACK)
color, enforcing Property (5). Still, note that if χ(a�

2) = RED and χ(ar
2) = RED,

then both the leftmost node and the rightmost node covered by interval I13 have color
BLACK, therefore t2 must have color WHITE otherwise r(I13) is violated. Together
with Property (5), this enforces Property (6).

In case y2 = xj , once again we switch the requirement function with respect to
WHITE and BLACK.

It remains to describe the role played by the first 13 nodes and the last 15 nodes of the
sequence, that so far we did not consider. We are going to do it in the next paragraph.

Intervals encoding truth values of literals. For each clause Ci, we add another set I(Ci)
of intervals, in order to link the nodes encoding the truth values of its three literals. The
main goal we pursue is the following: given a feasible coloring, we want to be able to
construct a truth assignment such that at least one of the three literals is true. To achieve
this, already having properties (2), (4) and (6), we only need the following property:

Property 7. For any feasible coloring, if χ(a1) �= RED and χ(a3) �= RED , then
χ(a�

2) = χ(ar
2) = RED.

Fig. 6 shows the six intervals that belong to I(Ci). The requirement function is: r(I1) =
(1, 2, 2); r(I2) = (1, 2, 2); r(I3) = (1, 6, 6); r(I4) = (1, 3, 3); r(I5) = (1, 2, 2);
r(I6) = (1, 7, 7). We now show that Property (7) holds. Suppose χ is a feasible col-
oring, and let v1, . . . , v13 be the first 13 nodes of the sequence introduced for literal
y2. By construction, if χ(a1) �= RED, then there is a node vj : χ(vj) = RED and
j ∈ {1, 2, 3} , otherwise r(I1) is violated. Similarly, if χ(a�

2) �= RED, then there is
a node vj : χ(vj) = RED and j ∈ {11, 12, 13} , otherwise r(I2) is violated. On
the other hand, this subsequence contains exactly one node with RED color, otherwise
r(I3) is violated. It follows that at least one among a1 and a�

2 has RED color. The same
conclusions can be stated for nodes ar

2 and a3. Putting all together, it follows that the
Property (7) holds.

Intervals encoding truth value of variables (later also called: variable intervals). Our
last set of intervals will force different nodes to take the same color, if they encode the
truth value of the same variable. In particular, we aim at having the following property:

Property 8. In any feasible coloring, χ(th(i)) = χ(tk(i′)) if both literals yh(i) and
yk(i′) refer to the same variable xj .

To achieve this, for each pair of such literals we add a big interval I(yh(i), yk(i′)) from
fk(i′) to th(i) (assuming i′ < i without loss of generality). Note that, by construction,
there is a subset of intervals that partitions all the internal nodes covered by the interval.
That means, we know exactly the number of such nodes that must be colored with color
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Fig. 6. Set of intervals I(Ci)

RED, BLACK and WHITE (say z1, z2, z3 respectively). Then, we let the requirement
function be r(I(yh(i), yk(i′))) = (z1, z2 + 1, z3 + 1). Under these assumptions, if χ
is a feasible coloring then χ(th(i)) �= χ(fk(i′)), and in particular one node will have
WHITE color and the other one BLACK color. Combining this with properties (1),(3)
and (5), the result follows.

Notice that such an interval constrained 3-coloring instance can clearly be constructed
in polynomial time. Now we discuss the following claim in more details.

Claim. There exists a truth assignment satisfying the 3-SAT instance if and only if there
exists a feasible coloring χ for the interval constrained 3-coloring instance.

First, suppose there exists a feasible coloring. We construct a truth assignment as fol-
lows. We set a variable xj to true if χ(th(i)) = BLACK , and to false otherwise,
where yh(i) is any literal referring to xj . Note that, by Property (8), the resulting truth
value does not depend on the literal we take. Still, combining Property (7) with proper-
ties (2),(4) and (6), we conclude that, for each clause, at least one literal will be true. By
construction, we therefore end up with a truth assignment satisfying the 3-SAT instance.
The result follows.

Now suppose that there is a truth assignment satisfying the 3-SAT instance. The basic
idea, is to construct a coloring χ such that the following property holds for all literals:

Property 9. χ(th(i)) = BLACK (resp. WHITE) if and only if yh(i) refers to a true-
variable (resp. false-variable).

Consider the sequence of nodes representing literal y1(i), and suppose y1(i) = xj

for some j. We color such nodes as in Fig. 3b-(1) if the literal is true in the truth
assignment, and as in Fig. 3b-(3) otherwise. If y1(i) = x̄j , switch BLACK and WHITE
colors, in both previous cases. Now focus on the sequence of nodes representing literal
y3(i). If y3(i) = x̄j for some j, we color such nodes as in Fig. 4b-(1) if the literal
is true, and as in Fig. 4b-(3) otherwise. If y3(i) = xj , switch BLACK and WHITE
colors, in both previous cases. Finally, consider the sequence of nodes representing
literal y2(i). Suppose y2(i) = x̄j . We color the 18 nodes in the middle of the sequence
as in Fig. 7-(1) if y2(i) is true, as in Fig. 7-(2) if both y2(i) and y1(i) are false, and
as in Fig. 7-(3) otherwise. Once again, if y2(i) = xj , we switch BLACK and WHITE
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colors, in all the previous three cases. Notice that, by construction, Property (9) holds,
and all requirements for the intervals in I(yh(i)) (i = 1, . . . , q and h = 1, 2, 3) are not
violated.

Now we show how to color the first 13 nodes (v1, . . . , v13) and the last 15 nodes
(w1, . . . , w15) of the sequence representing literal y2(i), in such a way that the require-
ments of the intervals I1, . . . , I6 in I(Ci) are not violated (i = 1, . . . , q). Note that, by
construction, at least one node among a1 and a�

2 is colored with RED. In fact, if y1(i)
is true then χ(a1) = RED, while if y1(i) = false then a�

2 is colored with RED. Simi-
larly, at least one node among a3 and ar

2 is colored with RED, since χ(ar
2) �= RED only

if both literals y1(i) and y2(i) are false: then, necessarily y3(i) is true, and therefore
χ(a3) = RED. Let us focus on the nodes v1, . . . , v13, and let u be the node in between
v13 and a�

2. In the following, we refer to WHITE as the opposite color of BLACK and
vice versa. As we already discuss, we can have only two cases:

Case 1: χ(a1) = χ(a�
2) = RED. We color v1 with the opposite color of f1, and the

nodes v2 and v3 with BLACK and WHITE. Note that r(I1) is not violated. We then
color v4, v5, v6 with the opposite color of v1, v2, v3 respectively. Similarly, we color
v13 with the opposite color of u. Then, we color v12 and v11 with BLACK and WHITE,
so that r(I2) is not violated. Once again, we assign to v10, v9, v8 the opposite color of
v13, v12, v11 respectively. Finally, we let χ(v7) = RED. Note that r(I3) is not violated.

Case 2: χ(a1) �= RED and χ(a�
2) = RED, or vice versa. Suppose χ(a1) �= RED

(the other case is similar). Both nodes a1 and f1 can have only BLACK or WHITE
colors. Then, we can color v1 and v2 with the opposite color of a1 and f1 respectively,
and v3 with color RED, so that r(I1) is not violated. Still, we color v4 and v5 with the
opposite color of v1 and v2. Finally, we color v6 and v7 with BLACK and WHITE. To
the remaining nodes v8, . . . , v13 we assign the same colors as in Case 1. One checks
that requirements of intervals I2 and I3 are not violated.

One can prove in a similar manner that nodes (w1, . . . , w15) can be properly colored,
without violating the requirements of intervals I4, I5, I6.

Finally, since Property (9) holds, it is easy to see that, for each couple of literals
yh(i), yk(i′), the requirement r(I(yh(i), yk(i′))) is also not violated. The result then
follows. ��
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3 Gap Hardness

We will now argue that not only the interval constrained 3-coloring problem but also its
gap version is NP-hard, i.e., it is hard to distinguish between satisfiable instances and
those where only up to a (1− ε) fraction of constraints may be simultaneously satisfied.

For the purpose of our argument we will use the following, rather restricted, def-
inition of gap hardness. We will only talk about maximization versions of constraint
satisfaction problems. Think of an instance of the problem as being equipped with an
additional parameter t called threshold. We ask for a polynomial time algorithm which
given the instance answers:

– “YES” if all the constraints can be satisfied,
– “NO” if there is no solution satisfying more than t constraints.

Note that for instances, where more than t but not all constraints can be simultaneously
satisfied, any answer is acceptable. We will now restrict our attention to the case where
the threshold is a fixed fraction of the total amount of constraints in the instance. We call
problem A to be gap NP-hard if there exists a positive ε such that there is no polynomial
time algorithm to separate feasible instances from those where only at most a (1 − ε)
fraction of the constraint can be simultaneously satisfied unless P = NP .

Observe that gap NP-hardness implies APX-hardness, but not vice versa. For exam-
ple the linear ordering problem (also known as max-subdag) is APX-hard [8], but is not
gap NP-hard, since feasible instances may be found by topological sorting.

Let us first note that the 3-SAT problem, which we used in the reduction from the
previous section, has the gap hardness property. It is the essence of the famous PCP
theorems that problems with such gap hardness exist. For a proof of the gap hardness
of 3-SAT see [9].

Before we show how to modify our reduction to prove gap hardness of the interval
constraint coloring problem, we need to introduce the notion of expander graphs. For
brevity we will only give the following extract from [9].

Definition 1. Let G = (V, E) be a d-regular graph. Let E(S, S) = |(S×S)∩E| equal
the number of edges from a subset S ⊆ V to its complement. The edge expansion of G
is defined as

h(G) = min
S:|S|≤|V |/2

E(S, S)
|S| .

Lemma 1. There exists d0 ∈ Z and h0 > 0, such that there is a polynomial-time
constructible family {Xn}n∈Z of d0-regular graphs Xn on n vertices with h(Xn) ≥ h0.
(Such graphs are called expanders).

Let us now give a “gap preserving” reduction from gap 3-SAT to gap interval con-
strained 3-coloring. Consider the reduction from the previous section. Observe that the
amount of intervals in each literal gadget, and therefore also in each clause gadget, is
constant. The remaining intervals are the variable intervals. While it is sufficient for the
NP-hardness proof to connect occurrences of the same variable in a “clique” fashion
with variable intervals, it produces a potentially quadratic number of intervals. Alter-
natively, one could connect these occurrences in a “path” fashion, but it would give
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too little connectivity for the gap reduction. The path-like connection has the desired
property of using only linear amount of intervals, since each occurrence of a variable
is linked with at most two other ones. We aim at providing more connectivity while
not increasing the amount of intervals too much. A perfect tool to achieve this goal is a
family of expander graphs.

Consider the instance of the interval coloring problem obtained by the reduction from
the previous section, but without any variable intervals yet. Consider literal gadgets
corresponding to occurrences of a particular variable x. Think of these occurrences as of
vertices of a graph G. Take an expander graph X|V (G)| and connect two occurrences of
x if the corresponding vertices in the expander are connected. For each such connection
use a pair of intervals. These intervals should be the original variable interval and an
interval that is one element shorter on each of the sides. We will call this pair of intervals
a variable link. Repeat this procedure for each of the variables.

Observe that the number of variable links that we added is linear since all the used
expander graphs are d0-regular. By contrast to the simple path-like connection, we now
have the property, that different occurrences of the same variable have high edge con-
nectivity. This can be turned into high penalty for inconsistent valuations of literals in
an imperfect solution.

Theorem 2. Constrained interval 3-coloring is gap NP-hard.

Proof. We will argue that the above described reduction is a gap-preserving reduction
from the gap 3-SAT problem to the gap interval 3-coloring problem. We need to prove
that there exists a positive ε such that feasible instances are hard to separate from those
less than (1 − ε) satisfiable.

Let ε0 be the constant in the gap hardness of gap 3-SAT. We need to show two proper-
ties: that the “yes” instances of the gap 3-SAT problem are mapped to “YES” instances
of our problem, and also that the “NO” instances are mapped to “NO” instances.

The first property is simple, already in the NP-hardness proof in the previous section
it was shown that feasible instances are mapped by our reduction into feasible ones. To
show the second property, we will take the reverse direction and argue that an almost
feasible solution to the coloring instance can be transformed into an almost feasible
solution to the SAT instance.

Suppose we are given a coloring χ that violates at most ε fraction of the constraints.
Suppose the original 3-SAT instance has q clauses, then our interval coloring instance
has at most c ·q intervals for some constant c. The number of unsatisfied intervals in the
coloring χ is then at most εqc.

We will say that a clause is broken if at least one of the intervals encoding it is not
satisfied by χ. We will say that a variable link is broken if one of its intervals is not
satisfied or one of the clauses it connects is broken. An unsatisfied variable link interval
contributes a single broken link; an unsatisfied interval within a clause breaks at most
3d0 intervals connected to the clause. Therefore, there is at most 3d0εqc broken variable
links in total.

Recall that each variable link that is not broken connects occurrences of the same
variable in two different not broken clauses. Moreover, by the construction of the vari-
able link, these two occurrences display the same logical value of the variable.
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Consider the truth assignment φ obtained as follows. For each variable consider its
occurrences in the not broken clauses. Each occurrence associates a logical value to the
variable. Take for this variable the value that is displayed in the bigger set of not broken
clauses, break ties arbitrarily.

We will now argue, that φ satisfies a big fraction of clauses. Call a clause bad if it is
not broken, but it contains a literal such that in the coloring χ this literal was active, but
φ evaluates this literal to false. Observe that if a clause is neither broken nor bad, then
it is satisfied by φ. It remains to bound the amount of bad clauses.

Consider the clauses that become bad from the choice of a value that φ assigns to a
particular variable x. Let bx be the number of such clauses. By the connectivity property
of expanders, the amount of variable links connecting these occurrences of x with other
occurrences is at least h0bx. As we observed above, all these variable links are broken.
Since there are in total at most 3d0εqc broken links, we obtain that there is at most
3
h0

d0εqc bad clauses. Hence, there are at most ( 3
h0

d0 +1)εqc clauses that are either bad
or broken and they cover all the clauses not satisfied by φ.

It remains to fix ε = h0
(3d0+h0)c

ε0 to obtain the property, that more than ε0 unsat-
isfiable instances of 3-SAT are mapped to more than ε unsatisfiable instances of the
constrained interval 3-coloring problem. ��
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Abstract. A hexagonal patch is a plane graph in which inner faces have length 6,
inner vertices have degree 3, and boundary vertices have degree 2 or 3. We con-
sider the following counting problem: given a sequence of twos and threes, how
many hexagonal patches exist with this degree sequence along the outer face?
This problem is motivated by the enumeration of benzenoid hydrocarbons and
fullerenes in computational chemistry. We give the first polynomial time algo-
rithm for this problem. We show that it can be reduced to counting maximum
independent sets in circle graphs, and give a simple and fast algorithm for this
problem.

Keywords: graph algorithms, computational complexity, counting problem, pla-
nar graph, circle graph, fullerene, hexagonal patch, fusene, polyhex.

1 Introduction

Since their discovery in 1985, fullerenes have become the subject of intense research
within chemistry and related sciences. Fullerenes are molecules consisting only of car-
bon atoms, where every atom is connected to three other atoms, arranged in a spherical
structure consisting of hexagons and pentagons. In graph theoretical terms, they can
be modelled by 3-regular plane graphs with only 5-faces and 6-faces. One important
topic is the enumeration of fullerenes [8]. Informally speaking, this requires solving the
following subproblem: when given a partial fullerene, in how many ways can this be
completed to a fullerene? This problem is also important for the study of how fullerenes
are formed [13]. We now define this more precisely. A plane graph G is a graph together
with an embedding in the plane without edge crossings. The unbounded face is called
the outer face and the other faces are called inner faces. The boundary of the outer face
is simply called the boundary of G. A fullerene patch is a 2-connected plane graph in
which all inner faces have length 5 or 6, boundary vertices have degree 2 or 3, and
non-boundary vertices have degree 3. It is a hexagonal patch if all inner faces have
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v1 v2 u2
u1

Fig. 1. Two different hexagonal patches with the same boundary code

length 6. Hexagonal patches are also known as fusenes [19], hexagonal systems [10],
polyhexes [18] and (6,3)-polycycles [12] in the literature. A sequence x0, . . . ,xk−1 of
twos and threes is a boundary code of a hexagonal patch G if there is a way to label the
boundary vertices of G with v0, . . . ,vk−1 such that v0, . . . ,vk−1,v0 is a boundary cycle of
G, and the degree d(vi) = xi for all i. It can be checked that, when given two fullerene
patches, it depends only on their boundary codes whether they can be combined into
a fullerene by identifying their boundaries (and embedding the resulting planar graph
appropriately). Therefore we study the following counting problem (Fullerene Patch):
Given is a sequence S of twos and threes of length k. How many fullerene patches ex-
ist with boundary code S? This problem is also known as the PentHex Puzzle in the
literature. It is well-known and easily verified using Euler’s formula that the boundary
code of a fullerene patch satifies d2 − d3 = 6− f5, where di is the number of bound-
ary vertices with degree i, and f5 is the number of inner faces of length 5. We define
the parameters d2(S) and d3(S) also for sequences S of twos and threes, as expected.
Until now, the only algorithms known for this problem were (super)exponential time
branching algorithms [6] and/or algorithms for special cases of the problem [9,8,10].
In [3] we gave a polynomial Turing reduction from the problem on instances S with
d2(S) > d3(S) to instances S′ with d2(S′)−d3(S′) = 6. When d2(S′)−d3(S′) = 6, any
fullerene patch with boundary code S′ is a hexagonal patch. When restricted to such
sequences, the counting problem is called Hexagonal Patch. This is the problem we
consider in this paper.

A result by Guo, Hansen and Zheng [19] shows that even this restricted problem is
not as easy as was first expected: in Figure 1 their example is shown which shows that
also in this case, different patches may exist with the same boundary code. This can
be verified by comparing the degree of v1 with u1, v2 with u2, etc. Our drawing of this
graph is taken from [7]. (In [19] it is also shown that although multiple solutions may
exist, they all have the same size.) Guo et al [19] and Graver [18] give conditions for
when solutions are unique, if they exist. Deza et al [10] give an algorithm for deciding
whether at least one solution exist. The complexity of their algorithm is however su-
perexponential. In addition they give a polynomial time algorithm for a very restricted
case (see Section 3). Brinkmann and Coppens [6] generalize this algorithm to the prob-
lem Fullerene Patch, and gave a practical implementation. However, even the question
whether it can be decided in polynomial time if at least one hexagonal patch exists with
a given boundary code remained open.
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Fig. 2. A circle graph, (simple) chord diagram and (simple) chord model graph

In this paper we show that the counting problem Hexagonal Patch can be solved in
time O(k3), where k is the length of the input sequence. This is surprising since the num-
ber of solutions may be exponential in k, which can be shown by generalizing the exam-
ple from Figure 1. Therefore, we can only return the number of solutions in polynomial
time, and not return a list of all corresponding patches. The algorithm can however be
extended to subsequentely generate n different solutions (if this many exist) in time
O(k2n). Details will follow in the full version of this paper. Combined with the result
in [3], this gives a polynomial time algorithm for many instances of Fullerene Patch, and
combined with [8] this allows for much more efficient enumeration of fullerenes. The
problem Hexagonal Patch is also interesting by itself, since these graphs model ben-
zenoid hydrocarbons and graphite fragments (see e.g. [19] and the references therein).
In addition, our results also have implications outside of computational chemistry, since
our algorithm is based on the following idea: with a few intermediate steps, we trans-
form the problem Hexagonal Patch to the problem of counting maximum independent
sets in circle graphs. A circle graph G is the intersection graph of chords of a circle.
Algorithms are known for the optimization problem of finding maximum independent
sets in circle graphs [17], but counting problems on circle graphs have not been studied
to our knowledge.

In this paper we give a simple dynamic programming algorithm for counting inde-
pendent sets in circle graphs. In addition this algorithm improves the complexity for the
optimization problem. Circle graphs can be represented as follows (see Figure 2(a),(b)):
Every vertex of G is associated with a chord of a circle drawn in the plane, which is a
straight line segment between two points on the circle, such that two vertices are ad-
jacent if and only if the two chords overlap (possibly only in a common end). We will
represent chord diagrams with graphs as follows (see Figure 2(d)). Number the points
on the circle that are ends of chords with 0, . . . ,k− 1, in order around the circle, and
view these as vertices. View a chord from i to j as an edge i j. Call the resulting graph
G′ the chord model graph. Note that (maximum) independent sets of the circle graph
correspond bijectively to (maximum) planar matchings or (M)PMs of G′, which are
(maximum) matchings M that do not contain edges i j and xy with i < x < j < y. Hence
counting MPMs in G′ is polynomially equivalent to counting maximum independent
sets in circle graphs.
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Circle graphs have been extensively studied and generalize permutation graphs and
distance hereditary graphs, see e.g. [5]. Recognizing them and constructing a chord
representation can be done in polynomial time [4,16], and the current fastest algorithm
uses time O(n2), where n is the number of vertices [23]. A number of problems that
are NP-hard on general graphs are easy on circle graphs, such as in particular finding
maximum independent sets [17,24,25,20]. All of these algorithms work with the chord
model graph (or chord diagram), and as a first step, transform it into a 1-regular graph
as shown in Figure 2(e): for a vertex of degree d, d new vertices are introduced, and the
d incident edges are distributed among these in such a way only one of these edges can
appear in a PM of G. This does not change the size and number of MPMs. The resulting
graph G has 2m vertices and m edges, and is called the simple chord model graph. We
assume the vertices are numbered 0, . . . ,2m− 1, in the proper order. Then the length
of an edge i j ∈ E(G) is | j− i|. The current fastest algorithm [25] has complexity O(l),
where l is the sum of all edge lengths of the simple chord model graph obtained this way.
Clearly this is at most O(m2), and in many cases better. However, when dense chord
model graphs are given on n vertices and m ∈ Ω(n2) edges, this algorithm may need
Ω(n4) steps. Our transformation from Hexagonal Patch yields a chord model graph G′,
which in fact may be dense.

We give a simple algorithm with complexity O(nm), which not only determines the
size of a MPM, but also counts the number of MPMs of the chord model graph. This
improvement in time complexity is possible by working with arbitrary degrees, and
not using the simple chord model graph, in contrast to all previous algorithms for this
problem [25].

Finally, our results have possible applications to the problem of counting immersions
of disks that extend immersions of circles. This is discussed in Section 7. The outline
of the paper is as follows. In Section 2 we give definitions, and a precise formulation of
the problem. In Section 3 we define locally injective homomorphisms to the hexagonal
lattice (the brickwall) as a way of representing problem instances and solutions and
reduce the counting problem to a problem on walks in the brickwall. In Section 4 we
reduce that problem to that of counting proper assignment sets of the walk, which is in
fact the problem of counting MPMs in chord model graphs. In Section 5 we present our
algorithm for counting MPMs, and in Section 6 we give a summary of our algorithm
for Hexagonal Patch. We end in Section 7 with a discussion. Due to space constraints
most proofs are omitted.

2 Preliminaries

For basic graph theoretic notions not defined here we refer to [11]. A walk of length k
in a (simple) graph G is a sequence of k + 1 vertices v0, . . . ,vk such that vi and vi+1 are
adjacent in G for all i∈ {0, . . . ,k−1}. v1, . . . ,vk−1 are the internal vertices and v0,vk the
end vertices of the walk. The walk is closed if v0 = vk. Throughout this paper we will
in addition assume that vi−1 �= vi+1 for all i ∈ {1, . . . ,k− 1}, and if the walk is closed,
v1 �= vk−1 (i.e. we will assume walks do not turn back). If vi �= v j for all i �= j then
the walk is a path. If the walk is closed and vi �= v j for all distinct i, j ∈ {0, . . . ,k− 1}
then it is also called a cycle. A cycle of length k is also called a k-cycle. For a walk
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W = v0, . . . ,vk, Wx denotes vx. If W is a closed walk, then Wx denotes vx mod k. We will
also talk about the vertices and edges of a walk, which are defined as expected. In a
slight abuse of terminology, the graph consisting of these vertices and edges will also
be called a walk (or path or cycle if applicable).

Let H be a hexagonal patch, and B be a boundary cycle of H of length k. Let X =
x0, . . . ,xk−1 be a sequence of twos and threes. We say that the tuple (H,B) is a solution
for the boundary code X if d(Bi) = xi for all i∈ {0, . . . ,k−1}. Two solutions (H,B) and
(H ′,B′) are considered equivalent if there is an isomorphism ψ from H to H ′ such that
ψ(Bi) = B′

i for all i. Formally, when we ask for the number of different pairs (H,B) that
satisfy some property, we want to know how many equivalence classes contain a pair
(H,B) satisfying this property. The counting problem Hexagonal Patch is now defined
as follows: given a sequence X , how many different solutions (H,B) to X exist?

3 From Boundary Codes to Walks in the Brickwall

An (infinite) 3-regular plane graph where every face has length 6 is called a brickwall.
It can be shown that the facial cycles are the only 6-cycles of a brickwall, and that all
brickwalls are isomorphic. We will use B to denote the brickwall as drawn in Figure 3.
Edges that are horizontal (vertical) in this drawing are called the horizontal (vertical)
edges of B. Paths consisting of horizontal edges are called horizontal paths. Two ver-
tices joined by a horizontal path are said to have the same height.

The reason that we study brickwalls is because the following mapping of hexagonal
patches into them is very useful. Let H be a hexagonal patch. A locally injective homo-
mophism (LIH) of H into B is a mapping of the vertices of H to vertices of B, such
that adjacent vertices are mapped to adjacent vertices in B, and such that all neighbors
of any vertex in H are mapped to different vertices in B. Since the shortest cycles in B
are of length 6, a LIH into B maps 6-cycles to 6-cycles. Since the faces of B are the
only 6-cycles in B, we see that a LIH of H into B also maps inner faces to faces.

Loosely speaking, the idea behind these mappings is as follows. Let H be a hexagonal
patch of which we fix a boundary cycle B. When we map H with a LIH φ into B, then
the boundary B is mapped to some walk W in B. But now it can be shown that this
walk W is only determined by the choice of the initial vertices and the boundary code of
H. Hence instead of asking how many hexagonal patches exist with a certain boundary
code, we may ask how many patches exist that can be mapped properly to the brickwall,
such that the boundary coincides with the walk that is deduced from the boundary code.
Below we will go into more detail.

The technique of mapping patches to brickwalls is not new, and is actually considered
folklore to some extent [10]. For instance, Deza et al [10] observe that Hexagonal Patch

Fig. 3. The brickwall B



608 P. Bonsma and F. Breuer

can be solved in polynomial time if the LIH is bijective, and Graver [18] shows that the
problem Hexagonal Patch can only have multiple solutions if there is a brickwall vertex
that has at least three preimages in such a LIH. We will however study these mappings
more in more detail than has been done before, and develop new concepts, and prove
new statements which we feel are of independent interest.

Let W be a walk in a 3-regular plane graph G. We say W makes a right (left) turn at i
when edge WiWi−1 immediately follows edge WiWi+1 in the clockwise (anticlockwise)
order around Wi. Note that since we assume that walks do not turn back and G is 3-
regular, W makes either a left or a right turn at every i.

Walk construction: Using a given sequence x0, . . . ,xk−1 of twos and threes, we con-
struct a walk W = v0, . . . ,vk in B as follows. For v0 and v1, choose two (arbitrary)
adjacent vertices. For i ≥ 1, choose vi+1 such that W makes a left turn at i if xi = 3, and
makes a right turn at i if xi = 2.

Let W be a closed walk in B of length k, H be a hexagonal patch, φ a LIH from
H to B and B a boundary walk of H of length k. Then the tuple (H,φ ,B) is said
to be a solution for W when φ(Bi) = Wi for all i. Two solutions S = (H,φ ,B) and
S′ = (H ′,φ ′,B′) are considered to be equivalent if and only if there is an isomorphism
ψ from H to H ′ such that ψ(Bi) = B′

i for all i. We say that ψ is an (or demonstrates the)
equivalence between S and S′. The LIH φ allows us to use the terminology defined for
B for the graph H as well; we will for instance call edges of H horizontal or vertical if
their images under φ are horizontal or vertical, respectively.

Let the boundary B of a hexagonal patch H be mapped to the closed walk W in B
by the LIH φ . This is a clockwise solution if and only if for every i, d(Bi) = 2 if W
makes a right turn at i, and d(Bi) = 3 if W makes a left turn at i. It is anticlockwise
when these conditions are reversed. Let RIGHT(W ) and LEFT(W ) denote the number
of indices i ∈ {0, . . . ,k−1} such that W makes a right turn or left turn at i, respectively.
The turning number of W is t(W )= (RIGHT(W )− LEFT(W ))/6. Using the fact that
for a solution (H,φ ,B), φ maps faces of H to faces of B, it can be shown that every
solution is either clockwise or anticlockwise. Since a hexagonal patch has d2 −d3 = 6
(di is the number of degree i vertices on the boundary), Lemma 1 then follows. Variants
of Lemma 2 have been proved in [7,18].

Lemma 1. Let W be a closed walk in B. If t(W ) = 1, then every solution to W is
clockwise. If t(W ) = −1 then every solution to W is anticlockwise. If t(W ) �∈ {−1,1},
then no solution exists.

Lemma 2. Let (H,B) be a solution to a boundary code X and let W be a walk in B
that is constructed using X. Then there exists a unique LIH φ such that (H,φ ,B) is a
clockwise solution to W .

Because of Lemma 2, we may rephrase the problem Hexagonal Patch in terms of solu-
tions (H,φ ,B) to a closed walk W in the brickwall.

Theorem 3. The number of different (hexagonal) solutions for a boundary code X with
d2(X)− d3(X) = 6 is the same as the number of different clockwise solutions for the
walk W in B that is constructed using X.
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Proof. For any solution (H,B) for X , a unique LIH φ exists such that (H,φ ,B) is a
clockwise solution to W (Lemma 2). For any clockwise solution (H,φ ,B) to W , the
characterization of clockwise solutions and the construction of W shows that (H,B) is
a solution to X . (Since d2(X)−d3(X) = 6 and t(W ) = 1 by Lemma 1, W turns at 0 as
prescribed by x0.) Note that the definitions of equivalence for pairs (H,B) and triples
(H,φ ,B) coincide and, in particular, do not depend on φ . �

4 From Walks in the Brickwall to Assignment Sets

Throughout Section 4, W denotes a closed walk in B with length k. We first sketch
the main idea of this section. Non-boundary vertices and edges of a patch are called
interior. If we consider a solution (H,φ ,B) to W , then, as mentioned above, this defines
which edges of H are horizontal and vertical. Now if we start at a boundary vertex Bi of
H that is incident with a horizontal interior edge of H, then we can continue following
this horizontal path of H until we end in a different boundary vertex B j. We will say
that this solution assigns i to j. If we only know all assignments defined by the solution
this way, we can reconstruct the unique solution. We will deduce properties of such sets
of assignments such that there is a solution if and only if these properties are satisfied.
The purpose is to show that we may focus on counting such assignment sets instead of
solutions to the walk.

For all i, j where Wi and Wj lie on the same height, Hi, j denotes the horizontal walk
in B from Wi to Wj. Consider an index i ∈ {0, . . . ,k− 1} and the vertex Wi. Let u be
the neighbor of Wi in B not equal to Wi−1 or Wi+1. If u has the same height as Wi and
W makes a left turn at i, then index i is called a PA-index. In Figure 4(b) an example
is shown, where vertices corresponding to PA-indices are encircled, and their indices
are shown. Note that if W has a clockwise solution (H,φ ,B), then the PA-indices are
precisely those indices i such that Bi has degree 3 and the interior edge incident with Bi

is horizontal (see Figure 4(a)).
A possible assignment (PA) is a pair {i, j} of PA-indices with Wi �= Wj such that Wi

and Wj have the same height and Hi, j does not contain any of Wi−1,Wi+1,Wj−1,Wj+1

(note that Hi, j has non-zero length). For instance, in Figure 4(b) some PAs are {1,28},
{1,14} and {21,32}, but {1,24} is not.

Let (H,φ ,B) be a clockwise solution to a closed walk W in B. An assignment path
P is a horizontal path in H from Bi to B j where i �= j, and all edges and internal vertices
of P are interior edges and vertices of H. In Figure 4(a) the assignment paths of the
given solution are shown in bold.

Proposition 4. If a clockwise solution (H,φ ,B) to W contains an assignment path from
Bi to B j, then {i, j} is a PA of W.

This motivates the following definition. A clockwise solution S = (H,φ ,B) to a walk W
assigns i to j if there is an assignment path from Bi to B j. For each clockwise solution S,
we define the set A (S):= {{i, j} : {i, j} is a PA of W and S assigns i to j}. This is the
assignment set defined by the solution S.

Lemma 5. Let W denote a closed walk in B and let S,S′ be clockwise solutions of W.
If S and S′ are equivalent, then A (S) = A (S′).
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Fig. 4. Assignment paths of a solution and PA-indices of a walk

Now we will deduce the properties of a set A (S). Proposition 6 shows that assignment
paths do not share vertices. Combining this with planarity yields Proposition 7.

Proposition 6. Let (H,φ ,B) be a clockwise solution to W . Every interior vertex of H
and every vertex Bi, where i is a PA-index, lies on a unique assignment path.

Proposition 7. Let S be a solution to a closed walk W that assigns i to j. For any x,y
with x < i < y < j or i < x < j < y, S does not assign x to y.

These two propositions give us properties a set of the form A (S) for a clockwise so-
lution S necessarily has to have. Given W , a set A of possible assignments of W is a
perfect matching on the set of PA-indices if for every PA-index i of W there is exactly
one pair {i, j} ∈ A. A is non-crossing if there do not exist assignments {i, j},{x,y} ∈ A
such that i < x < j < y. An assignment set for W is a set of possible assignments of
W . It is a proper assignment set if it is a non-crossing, perfect matching on the set
of PA-indices of W . Combining Proposition 4, Proposition 6 and Proposition 7 yields
Lemma 8. Lemma 9 states more or less the reverse.

Lemma 8. If S = (H,φ ,B) is a clockwise solution of W then A (S) is a proper assign-
ment set for W.

Lemma 9. Let W denote a closed walk in B with t(W ) = 1, and let A be a proper
assignment set of W. Then there exists a clockwise solution S of W with A (S) = A.

It remains to establish the converse of Lemma 5. Suppose we have two solutions S =
(H,φ ,B) and S′ = (H ′,φ ′,B′) with A (S) = A (S′). Every vertex of H and H ′ lies on the
boundary or on an assignment path (Proposition 6). Therefore we can use the boundary
and the assignment paths to define a bijection ψ : V (H) → V (H ′). When doing this
appropriately, it can be shown that ψ is an equivalence.

Lemma 10. Let W be a closed walk in B, and let S and S′ denote clockwise solutions
of W. If A (S) = A (S′), then S and S′ are equivalent.

Theorem 11. Let W be a walk in B with t(W ) = 1. The number of equivalence classes
of solutions to W is the same as the number of different proper assignment sets for W.
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Proof. The above lemmas show that S $→ A (S) gives a bijection from the set of equiv-
alence classes of clockwise solutions of W to the set of proper assignment sets for W ,
since the following properties are satisfied: (1) A is well-defined: Let S1 and S2 denote
clockwise solutions of W . If S1 and S2 are equivalent, then A (S1) = A (S2) (Lemma 5).
(2) The range of A is correct: For any clockwise solution S of W the set A (S) is a
proper assignment set for W (Lemma 8). (3) A is injective: Let S1 and S2 denote clock-
wise solutions of W . If A (S1) = A (S2), then S1 and S2 are equivalent (Lemma 10).
(4) A is surjective: For any proper assignment set A for W , there exists a clockwise
solution S of W with A (S) = A (Lemma 9). �
It follows that for solving the Hexagonal Patch problem, we may focus on counting
proper assignment sets for the walk W (assuming t(W ) = 1).

5 Counting Maximum Planar Matchings

In this section we will observe that the remaining algorithmic problem is that of count-
ing independent sets in circle graphs, and present a fast algorithm for this problem. We
use the closed walk W in B to construct a graph GW with vertex set V = {0, . . . ,n−1},
where n is the number of PA-indices of W . Let p0, . . . , pn−1 be all PA-indices of W ,
numbered according to their order in W . Then the edge set of GW will be E = {i j |
{pi, p j} is a PA of W}. The following lemma is now easily observed.

Lemma 12. Let GW be the graph as constructed above from the walk W. The number
of proper assignment sets for W is equal to the number of perfect PMs in GW .

Now we will present an algorithm for counting MPMs of a graph G with V (G) =
{0, . . . ,n− 1}. As mentioned in the introduction, this is equivalent to counting maxi-
mum independent sets in a circle graph H, where G is the chord model graph of H. We
will present this algorithm for the general case where G has edge weights: wi j denotes
the edge weight of i j, and a PM M is maximum if ∑e∈M we is maximum. For i, j ∈V (G)
with i ≤ j, let Gi, j= G [{i, . . . , j}]. For i, j ∈V (G) with i ≤ j, let Si, j denote the size of a
MPM in Gi, j. In particular, S0,n−1 is the size of a MPM in G. If i > j or {i, j} �⊆ V (G),
we define Si, j = 0. We now give a subroutine S(i, j) for calculating Si, j, which considers
the sizes of various PMs for Gi, j, and returns the size of the largest PM.

A subroutine S(i, j) for calculating Si, j:
(1) m := Si+1, j

(2) For v ∈ N(i) with i+ 1≤ v ≤ j:
(3) m := max{m,wiv + Si+1,v−1 + Sv+1, j}
(4) Return m

Lemma 13. Let G be a graph with V (G) = {0, . . . ,n−1} and i, j ∈V (G). If the values
Sx,y are known for all x,y with y− x < j− i, then the subroutine S(i, j) computes Si, j in
time O(d(i)).

Let Ni, j denote the number of MPMs in Gi, j if i, j ∈V (G) and i ≤ j, and let Ni, j = 1 if
i > j or {i, j} �⊆ V (G). Below is a similar subroutine N(i, j) for calculating Ni, j, which
considers various PMs for Gi, j, checks whether they are maximum by comparing the
size with Si, j, and keeps track of the number of MPMs using the variable N.
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A subroutine N(i, j) for calculating Ni, j:
(1) If Si, j = Si+1, j then N := Ni+1, j else N := 0
(2) For v ∈ N(i) with i+ 1≤ v ≤ j:
(3) If Si, j = wiv + Si+1,v−1 + Sv+1, j then N := N + Ni+1,v−1×Nv+1, j

(4) Return N

Lemma 14. Let G be a graph with V (G) = {0, . . . ,n− 1} and i, j ∈ V (G). If the val-
ues Sx,y and Nx,y are known for all x,y with y− x < j − i, and Si, j is known, then the
subroutine N(i, j) computes Ni, j in time O(d(i)).

Theorem 15. Let G be a graph with V (G) = {0, . . . ,n− 1} on m edges. The size and
number of MPMs of G can be computed in time O(nm).

Proof. For d = 0 to n−1, we consider all i, j ∈{0, . . . ,n−1}with j− i = d, and calculate
Si, j and Ni, j using the above subroutines. This way, for every value of d, every vertex of
G is considered at most once in the role of i. For this choice of i, calculating Si, j and Ni, j

takes time O(d(i)) (Lemma 13, Lemma 14). Hence for one value of d this procedure
takes time O(∑i∈V (G) d(i)) = O(m). �
We remark that Valiente’s algorithm [25] for simple (1-regular) chord model graphs
can also be extended by using Subroutine N(i, j) to calculate Ni, j in constant time,
immediately any time after a value Si, j is calculated. This then yields time complexity
O(l) and space complexity O(n) (see Section 1). In some cases it may be better to
transform to a simple chord model graph and use Valiente’s algorithm.

6 Summary of the Algorithm

We now summarize how counting the number of hexagonal patches that satisfy a given
boundary code X of length k can be done in time O(k3). W.l.o.g. d2(X)− d3(X) = 6.
First use X to construct a walk W in B of length k, as shown in Section 3. Theorem 3
shows that we may now focus on counting clockwise solutions to W . If W is not closed
it clearly has no solution. Since d2(X)− d3(X) = 6 we may now assume t(W ) = 1.
Then Theorem 11 shows we may focus on counting proper assignment sets for W . Now
construct GW as shown in Section 5. GW has n vertices where n < k is the number of
PA-indices of W (and O(n2) edges). By Lemma 12, the number of proper assignment
sets for W is equal to the number of MPMs of GW , provided that GW has a perfect PM.
This number and property can be determined in time O(n3) ∈ O(k3) (Theorem 15).

7 Discussion

Our first question is whether the complexity of O(k3) can be improved. Secondly, con-
sidering the motivation from benzenoid hydrocarbons, it is interesting to study whether
a patch exists that can be realized in R3 using regular hexagons with ‘minimal distor-
tion’. This is the problem from Section 3, but requires in addition giving a consistent
linear order ≺ (‘depth’) for all vertices mapped to the same vertex of B. That is, if
patch H is mapped to B by LIH φ , uv,xy ∈ E(H), φ(u) = φ(x) and φ(v) = φ(y), then
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u ≺ x should hold if and only if v ≺ y. Surprisingly these problems are not equivalent.
It may also be interesting to study generalizations such as to surfaces of higher genus.

After we presented an early version of this work [2], Jack Graver pointed us to a
similar well-studied problem in topology. Let S1 denote the unit circle and D2 the unit
disk in R2. An immersion is a continuous function f : A → B such that for every x in
A there is a neighborhood N of x such that f |N is a homeomorphism. (A curve when
A = S1, B = R2.) An immersion c : S1 → R2 of the circle into the plane is normal
if c has only finitely many double-points and c crosses itself at each of these. Two
immersions d, d′ are equivalent if there exists a homeomorphism φ : R2 → R2 such
that d ◦ φ = d′. Now the Immersion Extension problem is this: given an immersion
c : S1 → R2, how many immersions d : D2 → R2 exist that extend c? Note that this
problem is not combinatorial, therefore it makes no sense to study its computational
complexity. One can turn it into a combinatorial problem by restricting the input to
piecewise linear (PL) curves c : S1 → R2.

When viewing the walk constructed in Section 3 as a curve, there are obvious sim-
ilarities between the Hexagonal Patch problem and the Immersion Extension problem.
However, to our knowledge it is an open problem to prove that these problems are in
fact equivalent. The ideas introduced here may be helpful for giving such a proof. Es-
tablishing this would provide insight to both problems, since the Immersion Extension
problem is well-studied – at least on normal curves – see e.g. [1,14,22]. Interestingly,
Blank [1,15] reduces the Immersion Extension problem problem to a combinatorial
problem that is essentially the same as counting MPMs in simple chord model graphs.
He does not address the complexity of this problem. Shor and Van Wyk [22] were the
first to study the complexity of the combinatorial Immersion Extension problem on
normal curves. They give an O(n3 logn) algorithm where n is the number of pieces of
the PL curve c. Assuming the equivalence of the Immersion Extension problem and
the Hexagonal Patch problem, this would give an alternative algorithm for Hexagonal
Patch; note that there are methods for transforming general PL curves to equivalent nor-
mal PL curves [21]. Since our algorithm does not need such a step, it is not only faster
but also much easier to implement (see also [21]). However, the question of equivalence
of these problems is still interesting because many generalizations of the Immersion Ex-
tension problem have been studied [14]. Finally, we believe that in fact our method can
be adapted to give a simple and fast algorithm for the combinatorial Immersion Exten-
sion problem that does not require the assumption that the given curve is normal, but
that is beyond the scope of this paper.
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Abstract. The paper studies the maximum diameter-bounded subgraph
problem (MaxDBS for short) which is defined as follows: Given an n-
vertex graph G and a fixed integer d ≥ 1, the goal is to find its largest
subgraph of the diameter d. If d = 1, the problem is identical to the max-
imum clique problem and thus it is NP-hard to approximate MaxDBS

to within a factor of n1−ε for any ε > 0. Also, it is known to be NP-hard
to approximate MaxDBS to within a factor of n1/3−ε for any ε > 0 and
a fixed d ≥ 2. In this paper, we first strengthen the hardness result; we
prove that, for any ε > 0 and a fixed d ≥ 2, it is NP-hard to approxi-
mate MaxDBS to within a factor of n1/2−ε. Then, we show that a simple
polynomial-time algorithm achieves an approximation ratio of n1/2 for any
even d ≥ 2, and an approximation ratio of n2/3 for any odd d ≥ 3. Further-
more, we investigate the (in)tractability and the (in)approximability of
MaxDBS on subclasses of graphs, including chordal graphs, split graphs,
interval graphs, and k-partite graphs.

1 Introduction

MaxClique is one of the central problems in graph theory and combinatorial
optimization and thus many researches are devoted to it [4]: A clique Q in a graph
is a set of pairwise adjacent vertices, i.e., the diameter of the subgraph induced by
Q is one. Given a graph G, the goal of MaxClique is to find a clique of maximum
cardinality in G. The decision version of MaxClique was one of Karp’s original
21 problems shown NP-complete in [11]. The currently best polynomial-time
approximation algorithm is only guaranteed to find a clique within a factor of
n(log log n)2/(log n)3 of optimal for n-vertex graphs [6]. On the negative side,
under the assumption that NP �= ZPP, Bellare, Goldreich and Sudan [3] proved
that MaxClique cannot be efficiently approximated within a factor of n1/3−ε

and then H̊astad [10] showed a stronger hardness ratio of n1−ε for any ε > 0.
Note that under a weaker assumption that P �= NP , H̊astad’s hardness ratio
becomes n1/2−ε. The strongest hardness ratio so far is by Zuckerman [15] who
proved that, assuming only P �= NP , MaxClique cannot be approximated
within a factor of n1−ε for any ε > 0 in polynomial time.

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 615–626, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we consider a natural generalization of MaxClique, named the
maximum diameter-bounded subgraph problem (MaxDBS for short), which is
defined as follows: Given a graph and an integer d ≥ 1, the goal is to find its
largest subgraph of the diameter d. If d = 1, the problem is identical to Max-

Clique. Thus, under the assumption that P �= NP, for any ε > 0, MaxDBS

cannot be efficiently approximated within a factor of n1−ε if d = 1. Further-
more, it can be shown that, for any ε > 0 and a fixed d ≥ 2, it is NP-hard to
approximate MaxDBS to within a factor of n1/3−ε by using the gap preserv-
ing reduction provided by Marinc̆ek and Mohar [12] (although they assumed
that NP �= ZPP in their original proof). In this paper we first strengthen the
hardness result for d ≥ 2; we prove that, for any ε > 0 and a fixed d ≥ 2, it
is NP-hard to approximate MaxDBS to within a factor of n1/2−ε for general
graphs. Then, we present a simple polynomial-time algorithm which achieves an
approximation ratio of n1/2 for any even d ≥ 2, and an approximation ratio of
n2/3 for any odd d ≥ 3. As far as the authors know, there has been no result on
the approximability of MaxDBS for d ≥ 2 so far.

MaxClique (and also MaxDBS) is very difficult even to approximate.
Fortunately, however, it is known [8] that if the input graph is restricted to
planar graphs, chordal graphs, or graphs with bounded degrees, then Max-

Clique is solvable in polynomial time. This tractability suggests that if we
restrict the set of instances to such subclasses of graphs, MaxDBS for a fixed
d ≥ 2 might be also solvable efficiently. From this point of view, this paper
investigates MaxDBS, namely, our work focuses on the (in)tractability and
the (in)approximability of MaxDBS on subclasses of graphs, including chordal
graphs, split graphs, interval graphs, and k-partite graphs. The split graphs and
the interval graphs are subclasses of the chordal graphs. The definitions of these
graphs are presented in Section 2.

The following is a list of our main results shown in the paper, the tractability
and the (in)approximability for the graph classes:

(i) For general graphs, MaxDBS can be approximated within a factor of n1/2

for even d’s and n2/3 for odd d’s. [Section 3.1]
(ii) For any ε > 0 it is NP-hard to approximate MaxDBS to within a factor

of n1/2−ε for general graphs. [Section 3.2]
(iii) For odd d’s, MaxDBS can be solved in polynomial time for chordal graphs

and also for split graphs. [Sections 4 and 5]
(iv) For d = 2, MaxDBS can be approximated within a factor of n1/3 for split

graphs. [Section 5]
(v) For any ε > 0 and even d’s, it remains NP-hard to approximate MaxDBS

to within a factor of n1/3−ε for chordal graphs and also for split graphs.
[Sections 4 and 5]

(vi) MaxDBS can be solved in polynomial time for interval graphs. [Section 6]
(vii) For any ε > 0 it remains NP-hard to approximate MaxDBS to within

a factor of n1/3−ε for bipartite graphs with d ≥ 3, and also for k-partite
graphs (k ≥ 3) with d ≥ 2. [Section 7]
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One can see that the complexity of MaxDBS depends on the parity of d, espe-
cially, if the set of input graphs is limited to chordal graphs.

2 Problem and Algorithms

Notation. Let G = (V, E) be a connected undirected graph, where V and E
denote the set of vertices and the set of edges, respectively. V (G) and E(G) also
denote the vertex set and the edge set of G, respectively. We denote an edge
with endpoints u and v by (u, v). The maximum degree among all vertices in a
graph G is denoted by degmax(G). For a vertex v, the set of vertices adjacent to
v in G is denoted by NG(v), and N+

G (v) denotes NG(v) ∪ {v}.
A graph GS is a subgraph of a graph G if V (GS) ⊆ V (G) and E(GS) ⊆ E(G).

For a subset of vertices U ⊆ V , let G[U ] be the subgraph induced by U . For a
subgraph GS = (VS , ES) of G, if ES = VS × VS , then GS (or G[VS ]) and VS are
called a clique and a clique set, respectively. If GS is the maximum clique in G,
then VS is called the maximum clique set. Also, If (VS × VS) ∩ E = ∅, then GS

and VS are called a stable graph and a stable set, respectively.
For a positive integer d ≥ 1 and a graph G, the d-th power of G, denoted

by Gd = (V (G), Ed), is the graph formed from V (G), where all pairs of vertices
u, v ∈ G such that distG(u, v) ≤ d are connected by an edge (u, v). Note that
E(G) ⊆ Ed, i.e., the original edges in E(G) are retained.

A path P of length � from a vertex v0 to a vertex v� is represented as a
sequence of vertices such that P = 〈v0, v1, · · · , v�〉. A cycle C of length � is
similarly written as C = 〈v0, v1, · · · , v�−1, v0〉. In this paper, we deal with simple
paths and simple cycles only, that is, vi �= vj for any vi and vj in the sequences
of vertices. For a pair of vertices u and v, the length of a shortest path from u to
v, i.e., the distance between u and v is denoted by distG(u, v), and the diameter
of G is defined as diam(G) = maxu,v∈V distG(u, v).

The definitions of graph classes are from [5]: A chord of a cycle is an edge
between two vertices of the cycle that is not an edge of the cycle. A graph G is
chordal if each cycle in G of length at least 4 has at least one chord. A graph
G = (V, E) is a split graph if there is a partition of V into a clique set V1 and a
stable set V2 such that V1 ∩ V2 = ∅ and V1 ∪ V2 = V . A graph G = (V, E) is an
interval graph if the following two conditions are satisfied for a collection I of
intervals on the real line: (i) There is a one-to-one correspondence between V and
I, and (ii) for a pair of vertices u, v ∈ V and their corresponding two intervals
Iu, Iv ∈ I, Iu ∩ Iv �= ∅ if and only if (u, v) ∈ E. We would like to note again that
the split graphs and interval graphs are subclasses of the chordal graphs [5]. A
graph G = (V, E) is a k-partite graph if there is a partition of V into k disjoint
stable sets V1, V2, · · · , Vk, namely, for any i �= j, Vi ∩ Vj = ∅, V =

⋃k
i=1 Vi, and

each Vi is a stable set. Note that the class of k-partite graphs is a subclass of
(k + 1)-partite graphs by definition. A graph is a star if it is a rooted tree of
height one.

For the maximization problems, an algorithm ALG is called a σ-approximation
algorithm and ALG’s approximation ratio is σ if OPT (G)/ALG(G) ≤ σ holds for
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every input G, where ALG(G) and OPT (G) are the numbers of vertices of
obtained subgraphs by ALG and an optimal algorithm, respectively.

Problem. The maximum diameter-bounded subgraph problem (MaxDBS)
considered in this paper is formulated as follows:

Problem: Maximum Diameter-Bounded Subgraph (MaxDBS)
Input: A connected undirected graph G = (V, E) and an integer d

such that 1 ≤ d ≤ |V | − 1
Output: A subgraph GS of G such that diam(GS) ≤ d and |V (GS)|

is the maximum among all such subgraphs.

Throughout the paper, we use the following notation: n = |V | and m = |E| for
the input graph G. If d = 1, the problem is identical to MaxClique, and hence
MaxDBS is a generalization of MaxClique in terms of the diameter of output
subgraphs.

Algorithms. Let us start with a construction algorithm PowerOfGraph of the
d-th power of a graph; given a connected undirected graph G = (V, E) and
an integer d, PowerOfGraph outputs the d-th power Gd of G: First, compute
distG(u, v) for any pair of vertices u, v ∈ V , and then add an edge (u, v) if
distG(u, v) ≤ d. The correctness of PowerOfGraph is obvious by the definition of
the power of a graph, and PowerOfGraph runs in polynomial time.

Let an algorithm which can obtain optimal solutions for MaxClique (or,
MaxDBS for d = 1) be FindClique. Here, the running time of FindClique
might be exponential. By using FindClique as the main procedure, we can
design a simple algorithm called ByFindClique for MaxDBS with d ≥ 2, whose
output is optimal. The following is a description of the algorithm ByFindClique.

Algorithm ByFindClique

Input: A connected undirected graph G = (V, E) and an integer d
such that 1 ≤ d ≤ |V | − 1

Output: A subgraph GS of G such that diam(GS) ≤ d and |V (GS)|
is the maximum among all such subgraphs.

Step 1. Obtain the d-th power Gd of G by PowerOfGraph(G, d).
Step 2. Apply FindClique to Gd, and then obtain a maximum

clique GQ = (VQ, EQ) in Gd.
Step 3. Output GS = (VQ, E ∩ EQ).

Since any subgraph H of G such that diam(H) ≤ d transforms into a clique in Gd

after applying PowerOfGraph(G, d),ByFindClique can find a maximum subgraph
such that its diameter is bounded by d. As for the running time, ByFindClique
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is an exponential time algorithm if the running time of FindClique is exponen-
tial, since ByFindClique uses FindClique as a sub-procedure. If FindClique is
a polynomial time algorithm, so is ByFindClique, because all the steps can be
executed in polynomial time.

If d = 2, we may design a simple approximation algorithm called FindStar
which finds a vertex v having the maximum degree degmax(G) in the input
graph G and then outputs the subgraph G[N+

G (v)] induced by the vertex v
and its adjacent degmax(G) vertices. The number of vertices of the output is
degmax(G)+ 1 in total. FindStar is rather simple and runs in linear time. Little
surprisingly, however, FindStar outputs good solutions as we can see in the
following sections. Combining two algorithms PowerOfGraph and FindStar, we
obtain the following algorithm ByFindStar, in which the �d/2	-th power of the
input graph is constructed while the d-th power is constructed in ByFindClique.
The running time of ByFindStar is also polynomial in the input size.

Algorithm ByFindStar

Input: A connected undirected graph G = (V, E) and an integer d
such that 1 ≤ d ≤ |V | − 1

Output: A subgraph GS of G such that diam(GS) ≤ d and |V (GS)|
is the maximum among all such subgraphs.

Step 1. Obtain the �d/2	-th power G�d/2� of the graph G by ap-
plying PowerOfGraph(G, �d/2	).

Step 2. Apply FindStar to G�d/2�, and then obtain a largest star
GT = (VT , ET ) in G�d/2�.

Step 3. Output GS = (VT , E ∩ ET ).

3 General Graphs

3.1 Approximability

Given an n-vertex graph, the currently best polynomial-time approximation al-
gorithm achieves an approximation ratio of O(n(log log n)2/(log n)3) for Max-

Clique [6] as mentioned in Section 1. We can adopt this algorithm as FindClique
to design the approximation version of the algorithm ByFindClique for MaxDBS

with d ≥ 2. The obtained algorithm has the same approximation ratio as the one
for MaxClique:

Proposition 1. Given an n-vertex graph and a fixed integer d ≥ 2, we can
design a polynomial time O(n(log log n)2/(log n)3)-approximation algorithm for
MaxDBS. ��
Now we examine the approximation ratio of the algorithm FindStar.

Lemma 1. Given an n-vertex graph and a fixed integer d ≥ 2, FindStar achieves
an approximation ratio of O(n1−1/d) for MaxDBS.
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Proof. The output size FindStar(G) of the algorithm FindStar is degmax(G)+1.
If degmax(G) ≥ n1/d, then

OPT (G)
FindStar(G)

≤ n

degmax(G) + 1
< n1−1/d

since OPT (G) ≤ n. Conversely, assume that degmax(G) < n1/d. Since the num-
ber of vertices in the optimal subgraph with the diameter d is at most 1 +
degmax(G)+(degmax(G))2+· · ·+(degmax(G))d = (degmax(G)d+1−1)/(degmax(G)
− 1) = (degmax(G))d + O(degmax(G)d−1), the following holds:

OPT (G)
FindStar(G)

≤ degmax(G)d + O(degmax(G)d−1)
degmax(G) + 1

= O(degmax(G)d−1) = O(n1−1/d). ��
By the above Lemma 1, one can see that, for the case d = 2, the approxima-
tion ratio of FindStar is O(n1/2). Although FindStar is quite simple and its
approximation ratio is easy to analyze, the approximation ratio of FindStar is
the best possible for the case d = 2 in the sense that the lower bound of the
approximation ratio is Ω(n1/2−ε) for any ε > 0 as shown later. Furthermore,
utilizing Lemma 1 and PowerOfGraph, we can obtain the following theorem for
any even d, which is also best possible in the sense that the inapproximability
bound for any even d is also Ω(n1/2−ε) as shown later.

Theorem 1. Given an n-vertex graph and a fixed even integer d ≥ 2, we can
design a polynomial time O(n1/2)-approximation algorithm for MaxDBS.

Proof. We show ByFindStar achieves the approximation ratio of O(n1/2) for
d ≥ 4. For any pair of vertices u and v, it is easy to see that distG(u, v) ≤ d if
and only if distGd/2(u, v) ≤ 2. Hence an optimal set of vertices for MaxDBS with
an input graph G and distance d is also an optimal set of vertices for MaxDBS

with an input graph Gd/2 and distance two. Since the approximation ratio of
FindStar is O(n1/2) for the latter problem by Lemma 1, the approximation ratio
of ByFindStar is also O(n1/2) for the former problem. ��
Next, take a look at odd d’s. By a similar argument to Lemma 1, we obtain the
following theorem.

Theorem 2. Given an n-vertex graph and a fixed odd integer d ≥ 3, we can
design a polynomial time O(n2/3)-approximation algorithm for MaxDBS. (The
proof is omitted.) ��

3.2 Inapproximability

In this section, we show lower bounds of the approximability of MaxDBS for
general graphs. Under the assumption that P �= NP , the best approximation
lower bound so far is n1−ε for MaxClique (MaxDBS with d = 1) [15]. We will
show the inapproximability of MaxDBS by providing a gap-preserving reduction
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Fig. 1. A graph G and the reduced graph H from G

from MaxClique (refer to, e.g., pp.307–308 in [14]). First of all, the following
lemma deals with the case d = 2:

Lemma 2. For d = 2 and any ε > 0, it is NP-hard to approximate MaxDBS

to within a factor of n1/2−ε.

Proof. We give a gap-preserving reduction from MaxClique to MaxDBS.
Namely, from an instance G = (V (G), E(G)) of MaxClique, we construct
an instance H = (V (H), E(H)) of MaxDBS. Let OPT1(G) (or OPT2(H),
resp.) denote the number of vertices of an optimal solution for G of Max-

Clique (or H of MaxDBS, resp.). Let V (G) = {v1, v2, · · · , vn} of n vertices
and E(G) = {e1, e2, · · · , em} of m edges. Let g(n) be a parameter function of
the instance G. Then, we can provide the gap-preserving reduction such that (1)
if OPT1(G) ≥ g(n), then OPT2(H) ≥ (n+1)×g(n), and (2) if OPT1(G) < g(n)

n1−ε1

for a positive constant ε1, then OPT2(H) < (n + 1) × g(n)
n1−ε1 . In the following,

only a brief construction of H will be presented due to space limitations.
A graph H consists of (i) n subgraphs, H1 through Hn, which are associated

with n vertices, v1 through vn, and (ii) m edge sets, E1 through Em, which are
associated with m edges, e1 through em: (i) For i = 1, 2, · · · , n, the subgraph
Hi = (V (Hi), E(Hi)) includes n+1 vertices and n(n+1)/2 edges joining them to
form a complete graph: V (Hi) = {vi,0, vi,1, · · · , vi,n} and E(Hi) = {(vi,k, vi,�) |
k �= �, 0 ≤ k, � ≤ n}. In total, there are n(n + 1) vertices in H . For simplicity,
let Vi denote V (Hi). (ii) For each j = 1, 2, · · · , m, Ej = {(vk,i, v�,i) | ej =
(vk, v�), i = 0, 1, · · · , n} includes n+1 “parallel” edges connecting Hk to H�. See
Fig. 1 for an example of the input G and its reduced graph H , where the sets of
six edges E1, E3, E5, and E6 are simplified by replacing the six edges with two
bold lines. This reduction can be done in polynomial time.
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Since |V (H)| = n2 + n and so the approximation gap is Θ(|V (H)|1/2−ε) for
any ε > 0, the lemma holds. ��
Moreover we can show the following lemma for the case d = 3 based on a similar
idea to the proof of Lemma 2:

Lemma 3. For d = 3 and any ε > 0, it is NP-hard to approximate MaxDBS

to within a factor of n1/2−ε. (The proof is omitted.) ��
A minor modification provides the same inapproximability bound for a larger
diameter d:

Theorem 3. For a fixed diameter 2 ≤ d ≤ O(
√

diam(G)) and any ε > 0, it is
NP-hard to approximate MaxDBS to within a factor of n1/2−ε. ��

4 Chordal Graphs

In this section, we restrict the set of input graphs to chordal ones. We will
show that the complexity of MaxDBS alternates between tractableness and
intractableness according to the parity of d, i.e., MaxDBS is in P for odd d’s,
but APX -hard for even d’s.

Theorem 4. If the input graph G is chordal, then MaxDBS is in P for every
fixed odd d such that 1 ≤ d ≤ diam(G).

Proof. There exits a polynomial-time algorithm that can find a maximum clique
of any chordal graph [8]. Thus MaxDBS is in P if d = 1. As for any odd d ≥ 3,
it is known that the d-th power Gd of G is also chordal [1,2]. Hence, utilizing the
polynomial-time algorithm [8] as FindClique, we can find an optimal solution
by ByFindClique. ��
If d is even, the d-th power of a chordal graph G is not always chordal, which
means that ByFindClique may not find an optimal solution in polynomial time.
Indeed, we can show the inapproximability of MaxDBS for chordal graphs with
d = 2.

Lemma 4. For d = 2 and any ε > 0, it is NP-hard to approximate MaxDBS

to within a factor of n1/3−ε for chordal graphs.

Proof. From an input graph G1 = (V1, E1) of MaxClique, we construct a graph
G2 = (V2, E2) for MaxDBS with d = 2. Let V1 = {v1, v2, · · · , vn} and E1 =
{e1, e2, · · · , em}. First, we construct a vertex set VE = {w1, w2, · · · , wm} which
mimics the edge set E1. Then, another vertex set VαV = {u1,1, u1,2, · · · , u1,m,
u2,1, u2,2, · · · , un,m} is constructed, which mimics V1. The vertex set V2 of G2
contains these two sets: V2 = VE ∪ VαV . The edge set E2 also consists of the
following two edge sets, EE and EαE , and E2 = EE ∪EαE : EE = {(wi, wj) | 1 ≤
i, j ≤ m, i �= j}, by which G2[VE ] turns to be a clique. EαE connects between VαV

and VE : EαE = {(w�, ui,h), (w�, uj,h) | e� = (vi, vj) ∈ E1, 1 ≤ �, h ≤ m}. Fig. 2
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Fig. 2. The reduced graph G2 from the graph G in Fig. 1

illustrates the reduced graph G2 from G in Fig. 1. It is clear that this reduction
can be done in polynomial time because |V2| = |VE | + |VαV | = m + m × n and
|E2| = |EE |+ |EαE | = m(m− 1)/2+m× 2m. Note that since G2[VE ] is a clique
and G2[VαV ] is a stable graph, G2 is a split graph and is also a chordal graph.

It can be shown that (1) if OPT1(G1) ≥ g(n), then OPT2(G2) ≥ m× g(n) +
m, and (2) if OPT1(G1) ≤ g(n)

n1−ε1 for a constant ε1, then OPT2(G2) ≤ m ×
g(n)

|V2|1/3−ε2
+ m for a constant ε2. The key construction of the reduction is that

distG2(ui,k, uj,h) = 2 if and only if distG1(vi, vj) ≤ 1 for any vi, vj ∈ V1 and any
ui,k, uj,h ∈ VαV . Details are omitted. ��
In case d ≥ 4, we can arbitrarily enlarge the diameter of the reduced graph G2
and also that of an optimal solution by adding a (redundant) path starting from
each vertex in VαV ; for example, for each vertex v ∈ VαV , adding one vertex and
one edge connecting to v enlarges the diameter of G2 and an optimal solution
by two. Thus, we obtain the following theorem:

Theorem 5. For any even d such that 2 ≤ d ≤ O(diam(G)) and any ε > 0, it
is NP-hard to approximate MaxDBS to within a factor of n1/3−ε for chordal
graphs. ��

5 Split Graphs

Since the graph G2 constructed in the proof of Lemma 4 is a split graph, we
obtain the following corollary straightforwardly. Remind that the diameter of
any split graph is at most three, and so our interest here is only the case of
d = 2.

Corollary 1. It remains NP-hard to approximate MaxDBS to within a factor
of n1/3−ε even for split graphs if d = 2. ��
In the following, we show the O(n1/3) approximability for split graphs, which is
tight in the sense that the lower bound of the approximability is Ω(n1/3−ε) as
shown above. Here again, the simple algorithm FindStar is the best approxima-
tion algorithm.
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Theorem 6. Given an n-vertex graph and an integer d = 2, we can design
a polynomial time O(n1/3)-approximation algorithm for MaxDBS if the input
graph is split.

Proof. For the input graph G, FindStar(G) and OPT (G) denote the size of the
obtained solution by FindStar and an optimal size, respectively. If degmax(G) ≥
n2/3, it holds that FindStar(G) ≥ n2/3 +1 by its definition. Since OPT (G) ≤ n
holds,

OPT (G)
FindStar(G)

≤ n

n2/3 + 1
< n1/3.

Suppose that degmax(G) < n2/3. Let us partition the optimal set V ∗ of vertices
into two disjoint subsets C and S such that V ∗ = C ∪ S and C ∩ S = ∅, where
C is a clique set and S is a stable set. Note that we can do this because G
is a split graph, and |C| ≤ degmax(G) + 1 ≤ n2/3. For simplicity, G∗ denotes
G[V ∗]. We denote an upper bound of |N(v) ∩ S| for any vertex v ∈ C by k, i.e.,
k = degmax(G∗) − (|C| − 1).

In the following we obtain an upper bound of |S|. Consider a pair of vertices
u, w ∈ S. Since diam(G∗) = 2 and S is a stable set, there must be two edges (u, v)
and (v, w) for some v ∈ C in order to satisfy the condition distG∗(u, w) ≤ 2.
Here we say that (u, v) covers w for u. Since |NG∗(v) ∩ S| ≤ k, (u, v) can cover
at most k vertices in S for u. This implies that N(u) ≥ �|S|/k holds in order to
cover all vertices in S by at least one edge for u. Since this is true for all vertices
in S, we observe that there exist at least �|S|/k · |S| edges between C and S.
Since every vertex in C is adjacent to at most k vertices in S, the following
condition must be satisfied:

k · |C| ≥
⌈ |S|

k

⌉
· |S| ≥ |S|2

k
,

which implies that |S| ≤ k
√|C|.

Finally, the approximation ratio of the algorithm FindStar is estimated as
follows:

OPT (G)
FindStar(G)

≤ |C| + |S|
|C| + k

≤ |C|+ k
√|C|

|C| + k
≤
√
|C| ≤ n1/3,

where the first inequality comes from the fact that |C| + k = degmax(G∗) + 1 ≤
degmax(G) + 1 = FindStar(G). ��

6 Interval Graphs

Interval graphs are very popular and useful in graph theory and operations
research; for example, several resource allocation problems can be naturally rep-
resented by using interval graphs. For interval graphs, MaxDBS is tractable for
all d’s:
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Theorem 7. If the input graph is an interval graph, MaxDBS is in P for a
fixed d ≥ 1.

Proof. Recall that the class of interval graphs is a subclass of chordal graphs.
For chordal graphs, MaxClique can be solved in polynomial time [8], and hence
MaxDBS is also in P for d = 1. As for the case d ≥ 2, it is known that the d-th
power Gd of G remains an interval graph [1]. Hence, we can obtain an optimal
solution by ByFindClique with the polynomial-time algorithm in [8]. ��

7 k-Partite Graphs

In this section, we mention the complexity of MaxDBS for k-partite graphs.
First of all, it is known [13] that MaxClique is NP-hard even for k-partite
graphs. However, if k is constant, MaxClique is solvable in polynomial time
since the size of the maximum clique is at most k. As for MaxDBS on bipartite
graphs, it is still solvable in polynomial time if d = 2, by using a polynomial
time algorithm which finds the maximum complete bipartite subgraph in a given
bipartite graph [7,9]. On the other hand, we can show the NP-hardness and the
inapproximability of MaxDBS for k-partite graphs for k ≥ 3 even if d = 2 by
providing a gap-preserving reduction from MaxClique.

Lemma 5. For any ε > 0, it is NP-hard to approximate MaxDBS to within
a factor of n1/3−ε if d = 2 and the input graph is restricted to 3-partite graphs.
(The proof is omitted.) ��
Since the class of k-partite graphs is a subclass of (k + 1)-partite graphs, the
following theorem for k-partite graphs (k ≥ 3) holds from Lemma 5:

Theorem 8. For any ε > 0 and d = 2, it is NP-hard to approximate MaxDBS

to within a factor of n1/3−ε, even if the input graph is restricted to k-partite
graphs for k ≥ 3. ��
It can be also shown by a small modification that the same inapproximability
holds for k-partite graphs having larger diameter.

Corollary 2. For k-partite graphs, it is NP-hard to approximate MaxDBS to
within a factor of n1/3−ε for any ε > 0, k ≥ 3 and 2 ≤ d ≤ diam(G) − 1. (The
proof is omitted.) ��
Furthermore, for a fixed d ≥ 3, we can obtain the same approximation lower
bound even for bipartite graphs by using a similar, but different gap-preserving
reduction:

Theorem 9. For any ε > 0 and a fixed 3 ≤ d ≤ diam(G)− 1, it is NP-hard to
approximate MaxDBS to within a factor of n1/3−ε for bipartite graphs. ��
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8 Conclusion

In this paper we have presented several approximability and inapproximability
results for MaxDBS, with respect to graph classes. There still, however, exists a
gap between the n2/3-approximability and the n1/2-inapproximability for general
graphs for odd d’s. Also, currently we have not obtained tight bounds of the
approximability for chordal and k-partite graphs. As a further research, we can
consider an extended problem whose input is a weighted graph.
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Abstract. Given a simple directed graph D = (V, A), let the size of
the largest induced acyclic tournament be denoted by mat(D). Let D ∈
D(n, p) be a random instance, obtained by choosing each of the

(
n
2

)
pos-

sible undirected edges independently with probability 2p and then ori-
enting each chosen edge in one of two possible directions with probability
1/2. We show that for such a random instance, mat(D) is asymptotically
almost surely one of only 2 possible values, namely either b∗ or b∗ + 1,
where b∗ = �2(logp−1 n) + 0.5�. It is then shown that almost surely any
maximal induced acyclic tournament is of a size which is at least nearly
half of any optimal solution. We also analyze a polynomial time heuris-
tic and show that almost surely it produces a solution whose size is at
least logp−1 n + Θ(

√
logp−1 n). Our results also carry over to a related

model in which each possible directed arc is chosen independently with
probability p. An immediate corollary is that (the size of a) minimum
feedback vertex set can be approximated within a ratio of 1 + o(1) for
random tournaments.

Keywords: Random graphs, acyclic tournaments, analysis of algorithms,
2-point concentration, feedback vertex set.

1 Introduction

By a simple directed graph, we mean a directed graph having no self-loops,
parallel arcs, or 2-cycles. Throughout the paper, we assume, w.l.o.g., that V =
{1, . . . , n}. Given a directed graph D = (V, A), we want to find the maximum
size of an induced acyclic tournament in D, denoted by mat(D). A tournament is
a simple directed graph whose underlying undirected graph is a complete graph.
A tournament is acyclic if and only if it is transitive. By MAT(D, k), we denote
the following computational problem : Given a simple directed graph D = (V, A)
and k, determine if mat(D) ≥ k. When restricted to the class of tournaments,
this problem is the complement of the Feedback Vertex Set (FVS) problem. The
FVS problem is to determine if the removal of a given number of vertices results
in an acylic subgraph. It comes up in various applications in computer science,
such as in proving partial correctness of programs [5], in deadlock recovery in
operating systems [4], and in VLSI design. It has been widely studied by the
approximation and parameterized algorithms communities [10, 12].

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 627–637, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The MAT(D, k) problem is known to be NP-complete [6], even if D is restricted
to be a tournament [13]. Also, it is NP-complete even when D is restricted to be
a directed acyclic graph (DAG), as shown in Theorem 1 stated below.

Theorem 1. MAT(D, k) is NP-complete even when D is restricted to be acyclic.

Proof. We reduce the NP-complete Maximum Clique problem MC(G, k) to the
MAT(D, k) problem as follows. Given an instance (G = (V, E), k) of the first
problem, compute an instance (G′ = (V, A), k) in polynomial time where

A = {(u, v) : uv ∈ E, u < v}.
Clearly, G′ is a DAG and it is easy to see that a set V ′ ⊆ V induces a clique in
G if and only if V ′ induces an acyclic tournament in G′. This establishes that
MAT(D, k) is NP-hard even if D is restricted to be a DAG.

In fact, even the approximation version is known to be hard [9] when the input
is an arbitrary digraph: a polynomial-time approximation algorithm with an
approximation ratio of O(nε) is not possible unless P = NP .

However, the average case version of the problem - finding mat(D) for a ran-
dom digraph D - might offer some hope. We study the following model of a simple
random digraph introduced in [14]. In what follows, p ≤ 0.5 is a real number.

Model D(n, p): Let the vertex set be V = {1, 2, ..., n}. Choose each undirected
edge joining distinct elements of V independently with probability 2p. For each
chosen {u, v}, independently orient it in one of the two directions {u → v, v → u}
in D with equal probability = 1/2. The resulting directed graph is an orientation
of a simple graph, i.e., there are no 2-cycles.

Subramanian [14] first studied the related problem of determining mas(D),
the size of a largest induced DAG in a random digraph D = (V, E), and later
Spencer and Subramanian [15] obtained the following result.

Theorem 2. [15] Let D ∈ D(n, p) and w = np. There is a sufficiently large
constant W such that : If p satisfies w ≥ W , then, asymptotically almost surely
(referred to as a.a.s),

mas(D) ∈
[(

2
ln q

)
(ln w − ln lnw −O(1)),

(
2

ln q

)
(ln w + 3e)

]
where q = (1 − p)−1.

Thus, mas(D) is concentrated in an integer band of width O
(

ln ln w
ln q

)
which can

become large for small values of p. However, if we focus on more restricted sub-
graphs, namely, induced acyclic tournaments, then the optimum size can be shown
to be one of two consecutive values a.a.s. In other words, we obtain a 2-point con-
centration for mat(D). This is our main result in this paper. Further, under certain
assumptions on p(n), mat(D) is shown to be a unique value almost surely.

Theorem 3. Let {D(n, p)|n ≥ 1, p = p(n)} be an infinite sequence of probability
distributions. Let w = w(n) be an arbitrarily slow-growing function of n. Let
D ∈ D(n, p). Then, asymptotically almost surely:
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(i) Suppose p ≥ 1/n. Then, mat(D) is either b∗ or b∗ + 1 where

b∗ = �d− 1/2	; d = 2 logp−1 n + 1 =
2(lnn)
ln p−1 + 1.

(ii) mat(D) ∈ {2, 3} if 1/(wn) ≤ p < 1/n.
(iii) mat(D) = 2 if wn−2 ≤ p < 1/(wn).
(iv) mat(D) ≤ 2 if p < wn−2.

With some assumptions about p = p(n), one can also prove a stronger one-point
concentration on mat(D) for all large values of n. The proof of the following
theorem is omitted from this abstract.

Theorem 4. Let D(n, p), d be as defined in in Theorem 3. Let w = w(n) be
an arbitrarily slow-growing function of n. If p ≥ 1/n is such that d satisfies

w
ln n ≤ �d − d ≤ 1 − w

lnn for all large values of n, then a.a.s. mat(D) = �d	.
The proof of Theorem 1 suggests a correspondence between cliques in arbitrary
undirected graphs and acyclic tournaments in specific orientations of these graphs.
When random graphs are compared to random digraphs instead, this relation can
be seen more clearly. G(n, p) denotes the standard random model for simple undi-
rected graphs on V defined by including each of the possible

(
n
2

)
edges indepen-

dently with probability p. The clique number ω(G) (maximum size of a clique in
G) has been well-studied for this model and very tight concentration results (see
[3, 2, 8]) have been obtained for this number. We relate the two quantities mat(D)
(D ∈ D(n, p)) and ω(G) (G ∈ G(n, p)) in the following lemma (proof omitted due
to lack of space). A similar relationship was established relating mas(D) and α(G)
(maximum size of an independent set in G) in [14].

Lemma 1. For any integer b > 0, D ∈ D(n, p) and G ∈ G(n, p),

Pr[mat(D) ≥ b] ≥ Pr[ω(G) ≥ b].

Note: Recall that we first draw an undirected G ∈ G(n, 2p) and then choose
uniformly randomly an orientation of E(G). Hence, for any fixed A ⊆ V of size
b with b = ω(1),

Pr(D[A] is an acy. tourn. | G[A] induces a clique) =
b!

2(b
2)

= o(1).

However, there are so many cliques of size b in G that one of them manages to
induce an acyclic tournament.

Outline: The remaining sections are organized as follows: In Section 2, we pro-
vide the proofs of Theorems 3 and 4. The proofs are based on the Second Moment
Method. In Section 3, we show (Theorem 5) that almost surely every maximal
induced acyclic tournament is of size which is at least nearly half of the opti-
mal size. Hence any greedy heuristic obtains a solution whose approximation
factor is almost surely 2 + O ((ln lnn)/(ln n)). This is similar to the case of the
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clique number ω(G(n, p)), but unlike the case of ω(G(n, p)), we obtain explicit
closed-form expression for mat(D) for every p.

In Section 4, we study another heuristic which combines greedy and brute-
force approaches as follows. We first apply the greedy heuristic to get a partial
solution whose size is nearly logp−1 n−c

√
logp−1 n for some arbitrary constant c.

Amongst the remaining vertices, let C be the set of vertices such that each vertex
in C can be individually “safely” added to the partial solution. Then, in the
subgraph induced by C we find an optimal solution by brute-force and combine
it with the partial solution. It is shown in Theorem 6 that this modified approach
produces a solution whose size is at least logp−1 n + c

√
logp−1 n. This results in

an additive improvement of Θ(
√

logp−1 n) over the simple greedy approach. The
improvement is mainly due to the fact we stop using greedy heuristic at a point
where it is possible to apply brute-force efficiently. This approach is similar to
(and was motivated by) the one used in [7] for finding large independent sets in
G(n, 1/2).

Each of the concentration and algorithmic results mentioned before also carry
over (with some slight changes) to a related random model D2(n, p) where we
allow 2-cycles to be present and each of the potential arcs is chosen indepen-
dently. These are presented in Section 5. In Section 6, we show how our results
lead to a (1 + o(1)) - approximation for the feedback vertex set problem in ran-
dom tournaments. Finally, in Section 7, we conclude with a summary and some
open problems.

2 Analysis of D(n, p)

Each of the following two easy-to-verify observations play a role in the analysis.
Their proofs are omitted here.

Fact 1. A DAG H = (U, A) has at most one (directed) hamilton path.

Let U be any fixed subset of V of size b.

Proposition 1. Pr[D[U ] is an acyclic tournament ] = b! p(b
2)

Before we proceed further, we introduce some notations which play an important
role in the analysis. Define δ = �d − d. Then, clearly

b∗ =
{

d − 2 + δ if δ > 1/2;
d − 1 + δ if δ ≤ 1/2.

For a given b, let m =
(
n
b

)
and let {A1, . . . , Am} denote the set of all b-sized

subsets of V . For i ∈ [m], let Xi denote the random variable that indicates
whether D[Ai] induces an acyclic tournament or not. Let X = X(b) = X(n, b)
denote the number of induced acyclic tournaments of size b in D. Since there
are

(
n
b

)
sets of size b, it follows by Linearity of Expectation that

E[X(n, b)] =
∑

i

E[Xi] =
(

n

b

)
b! p(b

2).
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We are only interested in the behavior of E[X(n, b)] for b ∈ [1, b∗ + 2]. From
the definition of b∗, it follows that b∗ + 2 ≤ �d + 1 ≤ 2(ln n)

ln p−1 + 3 ≤ 3(ln n) for
sufficiently large n since p ≤ 1/2. As a result,

[1 − o(1)] · f(n, p, b)b ≤ E[X(n, b)] ≤ f(n, p, b)b . . . . . . (A)

where f(n, p, b) = n p(b−1)/2.

Now, for the sake of analysis, we extend the definition of f(n, p, b) for the case
of non-negative reals also. Setting f(n, p, b) = 1 and solving for b, we see that

f(n, p, b) > 1 if b < d; f(n, p, d) = 1; f(n, p, b) < 1 if b > d.

2.1 Proof of mat(D) ≤ b∗ + 1

First, we focus on proving the upper bound of Theorem 3. This is done by
proving that

Pr(X(b∗ + 2) > 0) ≤ E[X(b∗ + 2)] = o(1).

This is established by using the upper bound of (A) with b = b∗. The details are
omitted in this abstract.

2.2 Proof of mat(D) ≥ b∗

Next, we focus on proving the lower bound of Theorem 3. For this, we first show
that E[X(b∗)] →∞ as n →∞. The proof is omitted for lack of space.

For the sake of notational simplicity, we use X to denote X(b∗) and use b to
denote b∗ for the rest of this section. Now, we need to show that X > 0 with high
probability. We use the well-known Second Moment Method to establish this. Let
V ar(X) denote the variance of X . From Chebyshev’s Inequality, it follows that

Pr[X = 0] ≤ V ar(X)/(E[X ])2 (1)

It follows from standard arguments (see [1]) that

V ar(X) ≤ E[X ] +
∑
i�=j

E[XiXj ] (2)

where the second sum is over ordered pairs (i, j) such that 2 ≤ |Ai ∩ Aj | < b.
For (i, j) with |Ai ∩ Aj | = l, we have

E[XiXj ] = E[Xi]E[Xj |Xi = 1]

= b!p(b
2) · (b!/l!) · p(b

2)−(l
2) (3)

where the last equality follows from Proposition 1. Also, for any fixed i, the
number of b-sized subsets Aj such that |Ai ∩ Aj | = l is exactly

(
b
l

)(
n−b
b−l

)
. As a

result, it is verified that
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i�=j

E[XiXj] =
∑

i

∑
j : 2≤|Ai∩Aj|≤b−1

E[XiXj ] ≤ E[X ]2 · M (4)

where M = M(n, p, b) =

⎛⎝ ∑
2≤l≤b−1

(b)l

(l!)2

(
n− b

b− l

)(
n

b

)−1

· p−(l
2)

⎞⎠
Combining (1), (2) and (4), we notice that

Pr(X = 0) ≤ E[X ]−1 + M = o(1) (5)

provided M = o(1) since it has already been shown that E[X ] → ∞. Thus, we
only need to show that M = o(1).

Before that, we make the following proposition whose proof is skipped.

Proposition 2. np(b−1)/2 ≥ 1.

Write M =
∑

2≤l≤b−1 Fl where

Fl =
(b)l

(l!)2
·
(

n− b

b− l

)
·
(

n

b

)−1

· p−(l
2) ≤

(
b

l

)2

· 1
(n)l

· p−(l
2)

≤
(

b

l

)2

· 1 + o(1)
nl

· p−(l
2) ≤ 2

(
b

l

)2

·
(

1
n · p(l−1)/2

)l

≤ 2
(

b

l

)2(
p(b−l)/2

np(b−1)/2

)l

≤ 2
(

b

l

)2 (
p(b−l)/2

)l

(by Proposition 2) . (6)

Case l < b/2: In this case,

(b− l)/2 > b/4 ≥ (d − 2 + δ)/4 ≥ ln n

2(ln p−1)
− 1

4
.

Hence, p(b−l)/2 ≤ p−1/4

n0.5 = O
(
n−1/4

)
since p ≥ 1/n.

As a result, Fl = O

(
b2l

nl/4

)
= O

(
n−l/8

)
= O(n−1/4)

where we have used the fact that b = O(ln n) and l ≥ 2. This is true for every
p ≥ 1/n. It then follows that∑

2≤l<b/2

Fl = b(O(n1/4)) = O(b/n1/4) = o(1) . . . . . . (B)

Case l ≥ b/2 and p ≤ (ln n)−1: From (6), it follows that

Fl ≤ 2
(
4e2 · p(b−l)/2

)l

≤ 2
(
4e2 · (ln n)−1/2

)l

⇒
∑

l≥b/2

Fl ≤ 2

⎛⎝∑
l≥b/2

(
4e2 · (ln n)−1/2

)l

⎞⎠ = o(1) . . . . . . (C)

(B) and (C) together prove that M =
∑

l Fl = o(1) for p ≤ (ln n)−1.
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Case b/2 ≤ l < b− 12 and p ≥ (ln n)−1: We have

Fl ≤ 2
(
(4e2) · p6)l ≤ 2

(
4e2 · 2−6)l ≤ 2 · 2−l.

Also, if p ≥ (ln n)−1, then it follows that b ≥ d − 2 = 2(lnn)
ln p−1 − 1 ≥ 2(ln n)

ln ln n − 1.
Hence ∑

b/2≤l<b−12

Fl ≤ 2

⎛⎝∑
l≥b/2

2−l

⎞⎠ = o(1) . . . . . . (D)

Case l ≥ b− 12 and p ≥ (ln n)−1: We have

∑
l≥b−12

Fl ≤ 24
(

b

12

)2

· 2−(b−12) ≤ 24(3(lnn))24 · 2− ln n
ln ln n = o(1) . . . (E)

(B), (D) and (E) together prove that M =
∑

l Fl = o(1) for p ≥ (ln n)−1.

We have thus completely established that M = o(1) for all p ≥ 1/n, thereby
establishing that Pr(M = 0) = o(1). Hence, almost surely, mat(D) ∈ {b∗, b∗+1}
for the stated range of p. The proofs of the remaining parts of Theorem 3 are
easier and are omitted. This completes the proof of Theorem 3.

3 Finding an Induced Acyclic Tournament

In this section, we study a simple greedy heuristic for finding a large induced
acyclic tournament inside a random digraph. We study the greedy heuristic
GRDMAT(D) (described below), and show that almost surely, it produces an
acyclic tournament of size within a constant factor (≥ 1/2) of the optimal. The
algorithm is simple:

GRDMAT(D = (V, E))

1. A := ∅.
2. while ∃ u ∈ V \ A such that D[A ∪ {u}] induces an acyclic tournament do
3. Add u to A. (* ties are broken arbitrarily *)
4. end
5. Return D[A] and halt.

It is easy to inductively verify that GRDMAT(D) always outputs a maximal
acyclic tournament. The following theorem proves a lower bound on the size of
any maximal solution. Its proof is omitted for lack of space.

Theorem 5. Given D ∈ D(n, p) with p ≥ 1/n and any ω = ω(n) such that
ω(n) → ∞ as n → ∞, with probability 1 − o(1), every maximal induced acyclic
tournament is of size at least d = �δ logp−1 n	, where δ = 1 − ln(ln n+ω)

ln n .
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4 Another Efficient Heuristic with Improved Guarantee

We present below another efficient heuristic which will be analyzed and be shown
to have an additive improvement of Θ

(√
lnn

ln p−1

)
over the guarantee given (in

Section 3) on the size of any maximal solution. It is similar to a heuristic pre-
sented in [7] for finding large independent sets in G ∈ G(n, 1/2). We show that
for every fixed c > 0, one can find in polynomial time an acyclic tournament of
size at least �logp−1 n + c

√
logp−1 n	.

For a given partial solution A (obtained using the greedy method), let C be the
set of the vertices in the remaining graph such that each vertex u ∈ C can be indi-
vidually added as a sink vertex (vertex of zero outdegree) to A. Any acyclic tourna-
ment in C together with A forms a larger acyclic tournament. The idea is therefore
to construct greedily a solution A of size g(n, p, c) = �logp−1 n− c

√
logp−1 n and

then add an optimal solution (found by an exhaustive search) in the subgraph in-
duced by C. We will show that an exhaustive search can be done in polynomial
time and yields (a.s.) a solution of size 2c

√
logp−1 n. As a result, we finally get a

solution of the stated size. The algorithm is described below.

ACYTOUR(D = (V, E), c)

1. Choose and fix a linear ordering σ of V .
2. c′ = 1.2c; A = ∅; B = V .
3. while B �= ∅ and |A| < g(n/2, p, c′) do
4. Let u be the σ-smallest vertex in B.
5. If D[A ∪ {u}] is an acyclic tournament then add u to A.
6. remove u from B. endwhile
7. if |A| < g(n/2, p, c′) or |B| < n/2, then Return FAIL and halt.
8. C = {u ∈ B : (v, u) ∈ E, ∀v ∈ A}; r = p−1; μ = |B|p|A|.
9. if |C| �∈ [(0.9)μ, (1.1)μ] then Return FAIL.

10. for each X ⊂ C : |X | = �2c′
√

logr n/2	 − 1 do
11. if D[X ] is an acylic tournament then Return D[A ∪ X ] and halt.

endfor
12. Return FAIL.

We analyze the above algorithm and obtain the following result.

Theorem 6. Let D ∈ D(n, p). For every sufficiently large constant c ≥ 1 : if p

is such that n−1/c2 ≤ p ≤ 0.5, then, with probability 1 − o(1), ACYTOUR(D)
will output an induced acyclic tournament of size at least b′ = �(1+ ε′) logp−1 n	,
where ε′ = c/

√
logp−1 n.

Proof. Recall our assumption that c is sufficiently large.

Correctness: Note that D[A] is always an acyclic tournament. Also, each u ∈ C
is such that D[A ∪ {u}] is an acyclic tournament with u as the unique sink
vertex (having zero out-degree). Hence, any acyclic tournament D[X ] present
as a subgraph in D[C] can be added to A so that D[A ∪ X ] is also an acyclic
tournament.
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Time Complexity: It is easy to see that the running time is polynomial except
for the for loop of lines 10 and 11. The maximum number of iterations of the
for loop is at most(

(1.05) · rc′
√

logr n

�2c′
√

logr n	
)

= O
(
r4c′2(logr n)

)
= O

(
nO(1)

)
.

Since each iteration takes polynomial time, the algorithm finishes in polynomial
time always.

Analysis: It is possible to analyze ACYTOUR(D) and prove (details omitted
for lack of space) that it outputs a solution of size at least (1 + ε′) logp−1 n with
probability 1− o(1).

Remark 1. In Theorem 6, we assume that p ≥ n−1/c2
. This is because if p ≤

n−1/c2
, then mat(D) ≤ �2c2+1 almost surely and hence even a provably optimal

solution can be found in polynomial time a.a.s.

5 mat(D) for Non-simple Random Digraphs

We also consider another model introduced in [15] which does not force the
random digraph to be simple and allows cycles of length 2.

Model D ∈ D2(n, p): Choose each directed edge u → v joining distinct elements
of V independently with probability p.

Note that if D ∈ D2(n, p) and D′ ∈ D2(n, 1 − p), then for every b,

Pr(mat(D) = b) = Pr(mat(D′) = b).

Hence, for the rest of this section, without loss of generality, we assume that
p ≤ 0.5 and use q to denote 1 − p.

Using similar arguments, we can obtain the following analogues of Theorems
3, 4, 5, 6 and Lemma 1.

Theorem 7. Let D ∈ D2(n, p) with p ≥ 1/n. Define

d = 2 log(pq)−1 n + 1 =
2(ln n)

ln(pq)−1 + 1; b∗ = �d− 1/2	.

Then, almost surely as n →∞, mat(D) is either b∗ or b∗ + 1.

Theorem 8. Let D ∈ D2(n, p). Let ω = ω(n) be any slowly growing function.
If p = p(n), p ≥ 1/n, is such that d (defined in Theorem 7) satisfies ω

ln n ≤
�d − d ≤ 0.5 for all large values of n, then mat(D) is a.a.s equal to b∗.

Lemma 2. For any integer b > 0, D ∈ D2(n, p) and G ∈ G(n, pq),

Pr[mat(D) ≥ b] ≥ Pr[ω(G) ≥ b].
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Theorem 9. Given D ∈ D2(n, p) with p ≥ 1/n and any ω = ω(n) such that
ω(n) → ∞ as n → ∞, with probability 1 − o(1), every maximal induced acyclic
tournament is of size at least d = �δ log(pq)−1 n	, where δ = 1 − ln(ln n+ω)

ln n .

Theorem 10. Let D ∈ D2(n, p). For every sufficiently large constant c ≥ 1,
if p ≤ 0.5 is such that n−1/c2 ≤ pq ≤ 0.25, then, with probability 1 − o(1),
ACYTOUR(D) will output an induced acyclic tournament of size at least b′ =
�(1 + ε′) log(pq)−1 n	, where ε′ = c/

√
log(pq)−1 n.

Remark 2. However, in the case of D2(n, p), we need to slightly modify the
description of ACYTOUR(D) as follows : In the definition of C (Line 8), we also
need to require that (u, v) �∈ E for each v ∈ A.

6 Remarks on Approximating Minimum FVS

Since the vertices left on removing an induced acyclic subtournament form a
FVS, we notice that we obtain a 2-point concentration for the minimum FVS
in random tournaments also. This follows from Theorems 3 and 7. While the
presently best known algorithm in [10] has a worst-case approximation ratio of
2.5, we notice that the 2-approximate algorithms GRDMAT and ACYTOUR
yield an approximate solution (for minimum FVS) with an approximation ratio
of 1 + mat(D)

2∗opt(minfvs(D)) = 1 + O((logp−1 n)/n) for random tournaments.

7 Summary

We studied the problem of determining the size of the largest induced acyclic
tournament mat(D) in a random digraph D = (V, E). We showed that asymp-
totically almost surely mat(D) takes one of only two possible values. The result
is valid for all ranges of the arc probability p. The value of mat(D) also has a
closed form expression (for all ranges of p) which is simpler than the one for
ω(G), G ∈ G(n, p)).

We then showed that every maximal acyclic tournament is of size which is
at least nearly half of the optimal size. As a result, we have a simple greedy
heuristic whose approximation ratio is bounded by 2 + O((ln lnn)/(ln n)). We
also considered and analyzed another efficient heuristic whose approximation
ratio was shown to be 2 −O(1/

√
logp−1 n).

Although we proved only a 2-point concentration for mat(D), we believe that
for every fixed p, actually mat(D) is just one value a.s. for every n ∈ S, where
S is a subset of positive integers with density 1. This is presently being verified.
An interesting and natural open problem that comes to mind is the following.

Open Problem: Let p, 0 < p ≤ 0.5, be a constant. Design a polynomial
time algorithm which, given D ∈ D(n, p), almost surely finds an induced acyclic
tournament of size at least (1 + ε) logp−1 n for some positive constant ε.
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Solving this problem could turn out to be as hard as designing an efficient
algorithm which finds, given G ∈ G(n, 1/2), a clique of size (1 + ε) log2 n, which
has remained open for more than three decades.

Unlike the case of mat(D), the gap between lower and upper bounds on
mas(D) obtained in [14, 15] is not very sharp. However, further progress has
been made on shortening this gap and the results are being written up.
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Abstract. We investigate the complexity of counting Eulerian tours
(#ET) and its variations from two perspectives—the complexity of exact
counting and the complexity w.r.t. approximation-preserving reductions
(AP-reductions [DGGJ04]). We prove that #ET is #P-complete even
for planar 4-regular graphs.

A closely related problem is that of counting A-trails (#A-trails)
in graphs with rotational embedding schemes (so called maps). Kotzig
[Kot68] showed that #A-trails can be computed in polynomial time for
4-regular plane graphs (embedding in the plane is equivalent to giving
a rotational embedding scheme). We show that for 4-regular maps the
problem is #P-hard. Moreover, we show that from the approximation
viewpoint #A-trails in 4-regular maps captures the essence of #ET,
that is, we give an AP-reduction from #ET in general graphs to #A-

trails in 4-regular maps. The reduction uses a fast mixing result for a
card shuffling problem [Wil04].

1 Introduction

An Eulerian tour in a graph is a tour which travels each edge exactly once. The
problem of counting Eulerian tours (#ET) of a graph is one of a few recognized
counting problems (see, e. g., [Vaz01], p. 339). The exact counting in general
graphs is #P-complete [BW05], and thus there is no polynomial-time algorithm
for it unless P=NP. For the approximate counting one wants to have a fully
polynomial randomized approximation scheme (FPRAS), that is, an algorithm
which on every instance x of the problem and error parameter ε > 0, will output
a value within a factor exp(±ε) of f(x) with probability at least 2/3 and in
time polynomial in the length of the encoding of x and 1/ε, where f(x) is the
value we want to compute. The existence of an FPRAS for #ET is an open
problem [TV01, Jer, Vaz01].

A closely related problem to #ET is the problem of counting A-trails (#A-

trails) in graphs with rotational embedding schemes (called maps, see Section 2
for a definition). A-trails were studied in the context of decision problems (for
example, it is NP-complete to decide whether a given plane graph has an A-
trail [BM87, AF95]; on the other hand for 4-regular maps the problem is in
� Research supported, in part, by NSF grant CCF-0910584.
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P [Dvo04]), as well as counting problems (for example, Kotzig [Kot68] showed
that #A-trails can be computed in polynomial time for 4-regular plane graphs,
reducing the problem to counting of spanning trees).

In this paper, we investigate the complexity of #ET in 4-regular graphs and
its variations from two perspectives. First, the complexity of exact counting is
considered. We prove that #ET in 4-regular graphs (even in 4-regular planar
graphs) is #P-complete. We also prove that #A-trails in 4-regular maps is
#P-complete (recall that the problem can be solved in polynomial time for 4-
regular plane graphs).

The second perspective is the complexity w.r.t. the AP-reductions proposed
by Dyer, Goldberg, Greenhill and Jerrum [DGGJ04]. We give an AP-reduction
from #ET in general graphs to #A-trails in 4-regular maps. Thus we show
that if there is an FPRAS for #A-trails in 4-regular maps, then there is also an
FPRAS for #ET in general graphs. The existence of AP-reduction from #ET

in general graphs to #ET in 4-regular graphs is left open.

2 Definitions and Terminology

For the definitions of cyclic orderings, A-trails, and mixed graphs, we follow
[Fle90]. Let G = (V, E) be a graph. For a vertex v ∈ V of degree d > 0, let
K(v) = {e1, . . . , ed} be the set of edges adjacent to v in G. The cyclic ordering
O+(v) of the edges adjacent to v is a d-tuple (eσ(1), . . . , eσ(d)), where σ is a
permutation in Sd. We say eσ(i) and eσ(i+1) are cyclicly-adjacent in O+(v), for
1 ≤ i ≤ d, where we set σ(d + 1) := σ(1). The set O+(G) = {O+(v)|v ∈ V }
is called a rotational embedding scheme of G. For a plane graph G = (V, E), if
O+(v) is not specified, we usually set O+(v) to be the clockwise order of the
half-edges adjacent to v for each v ∈ V .

Let G = (V, E) be a graph with a rotational embedding scheme O+(G). An
Eulerian tour v0, e1, v1, e2, . . . , e�, v� = v0 is called an A-trail if ei and ei+1 are
cyclicly-adjacent in O+(vi), for each 1 ≤ i ≤ �, where we set e�+1 := e1.

Let G = (V, E, E′) be a mixed graph, that is, E is the set of edges and E′ is
the set of half-edges (which are incident with only one vertex in V ). Let |E′| = 2d
where d is a positive integer and assume that the half-edges in E′ are labelled
by numbers from 1 to 2d. A route r(a, b) is a trail (no repeated edges, repeated
vertices allowed) in G that starts with half-edge a and ends with half-edge b. A
collection of d routes is called valid if every edge and every half-edge is travelled
exactly once.

We say that a valid set of routes is of the type {{a1, b1}, . . . , {ad, bd}} if it
contains routes connecting ai to bi for i ∈ [d]. We use V R({a1, b1}, . . . , {ad, bd})
to denote the set of valid sets of routes of type {{a1, b1}, . . . , {ad, bd}} in G.

We will use the following concepts from Markov chains to construct the gadget
in Section 4 (see, e. g., [Jer03] for more detail). Given two probability distribu-
tions π and π′ on finite set Ω, the total variation distance between π and π′ is
defined as
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‖π − π′‖TV =
1
2

∑
ω∈Ω

|π(ω) − π′(ω)| = max
A⊆Ω

|π(A) − π′(A)|.

Given a finite ergodic Markov chain with transition matrix P and stationary dis-
tribution π, the mixing time from initial state x, denoted as τx(ε), is defined as

τx(ε) = min{t : ‖P t(x, ·) − π‖TV ≤ ε},
and the mixing time of the chain τ(ε) is defined as

τ(ε) = max
x∈Ω

{τx(ε)}.

3 The Complexity of Exact Counting

3.1 Basic Gadgets

We describe two basic gadgets and their properties which will be used as a basis
for larger gadgets in the subsequent sections.

The first gadget, which is called the (X, Y, Y ) node, is shown in Figure 1(a),
and it is represented by the symbol shown in Figure 1(b). There are k internal
vertices in the gadget, and the labels 0, 1, 2 and 3 are four half-edges of the
(X, Y, Y ) node which are the only connections from the outside.

i1 i2 ik−1 ik

0

1 2

3

(a)

(X,Y,Y)
0

1 2

3
(b)

Fig. 1. An (X, Y, Y ) node and its symbol. (a): an (X, Y, Y ) node consisting of k internal
vertices; (b): symbol representing the (X, Y, Y ) node.

By elementary counting we obtain the following fact.

Lemma 1. The (X, Y, Y ) node with parameter k has three different types of
valid sets of routes and these satisfy

|V R({0, 1}, {2, 3})| = k2k−1,

|V R({0, 2}, {1, 3})| = |V R({0, 3}, {1, 2})| = 2k−1.

The gadget has k vertices.

The second gadget, which is called the (0, X, Y ) node, is shown in Figure 2(a),
and it is represented by the symbol shown in Figure 2(b). Let p be any odd
prime. In the construction of the (0, X, Y ) node we use p copies of (X, Y, Y )
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(X,Y,Y)
0 1

23
(X,Y,Y)
0 1

23
(X,Y,Y)
0 1

23

0

1 2

3

(a)

(0,X,Y)
0

1 2

3
(b)

Fig. 2. A (0, X, Y ) node and its symbol. (a): a (0, X, Y ) node consisting of p copies of
(X, Y, Y ) nodes; (b): symbol representing the (0, X, Y ) node.

nodes as basic components, and each (X, Y, Y ) node has the same parameter
k. As illustrated, half-edges are connected between two consecutive (X, Y, Y )
nodes. The four labels 0, 1, 2 and 3 at four corners in Figure 2(a) are the four
half-edges of the (0, X, Y ) node, and they are the only connections from the
outside.

By elementary counting, binomial expansion, Fermat’s little theorem, and the
fact that 2 has a multiplicative inverse mod p, we obtain the following:

Lemma 2. Let p be an odd prime and let k be an integer. The (0, X, Y ) node
with parameters p and k has three different types of valid sets of routes and these
satisfy

|V R({0, 1}, {2, 3})| = pA(A + B)p−1 ≡ 0 mod p, (1)

|V R({0, 2}, {1, 3})| = (A + B)p − (B −A)p

2
≡ A mod p, (2)

|V R({0, 3}, {1, 2})| = (A + B)p + (B −A)p

2
≡ B mod p, (3)

where A = 2k−1 and B = k2k−1. The gadget has kp vertices.

3.2 #ET in 4-Regular Graphs Is #P-Complete

Next, we will give a reduction from #ET in general Eulerian graphs to #ET

in 4-regular graphs.

Theorem 1. #ET in general Eulerian graphs is polynomial time Turing re-
ducible to #ET in 4-regular graphs.

The proof of Theorem 1 is postponed to the end of this section.
We use the gadget, which we will call Q, illustrated in Figure 3 to prove the

Theorem. The gadget is constructed in a recursive way. The d labels 1, . . . , d on
the left are called input half-edges of the gadget, and the d labels on the right are
called output half-edges. Given a prime p and a positive integer d, the gadget
consists of d − 1 copies of (0, X, Y ) nodes with different parameters and one
recursive part represented by a rectangle with d − 1 input half-edges and d − 1
output ones. For 1 ≤ i ≤ d− 1, the i-th (0, X, Y ) node from left has parameters
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(0,X,Y)
0

1 2

3

(0,X,Y)
0

1 2

3

(0,X,Y)
0

1 2

3

d-1

1 1

2 2

d-2 d-2

d-1 d-1

d d

Fig. 3. Gadget Q with d input half-edges and d output half-edges

p and i. Half-edge 0 of the i-th (0, X, Y ) node is connected to half-edge 3 of
the (i − 1)-st (0, X, Y ) node except that for the 1st (0, X, Y ) node half-edge 0
is the d-th input half-edge of the gadget. Half-edge 1 of the i-th (0, X, Y ) node
is the (d − i)-th input half-edge of the gadget. Half-edge 2 of the i-th (0, X, Y )
node is connected to the (d− i)-th input half-edge of the rectangle. Half-edge 3
of the (d − 1)-st (0, X, Y ) node is the d-th output half-edge of the gadget. For
1 ≤ j ≤ d − 1, the j-th output half-edge of the rectangle is the j-th output
half-edge of the gadget. From the constructions of (X, Y, Y ) nodes and (0, X, Y )
nodes, the total size of the d − 1 copies of (0, X, Y ) nodes is O(pd2). Thus, the
size of the gadget is O(pd3).

Lemma 3. Consider the gadget Q with parameters d and p. Let σ be a permu-
tation in Sd. Then

|V R(σ)| := |V R({IN1, OUTσ(1)}, . . . , {INd, OUTσ(d)})| ≡ Rd mod p, (4)

where Rd ≡
∏d−1

i=1 (2i(i−1)/2i!).
Moreover, any type τ which connects two IN (or two OUT) half-edges satisfies

|V R(τ)| ≡ 0 mod p. (5)

Proof. The proof is by induction on d, the base case d = 1 is trivial. Suppose the
statement is true for gadget Q with (d− 1) input half-edges, that is, |V R(�)| ≡
Rd−1 mod p for every � ∈ Sd−1.

Now, consider gadget Q with d input half-edges. For 1 ≤ j ≤ d − 1, we cut
the gadget by a vertical line just after the j-th (0, X, Y ) node and only consider
the part of the gadget to the left of the line, we will call this partial gadget Qj .

Claim. Let As be the set of permutations in Sd which map s to d. In the partial
gadget Qj we have that for s ∈ {d− j, . . . , d} have∑

σ∈As

|V RQj (σ)| ≡ j!2j(j−1)/2 mod p,

where the subscript Qj is used to indicate that we count routes in gadget Qj .
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Proof of the Claim. We prove the claim by induction on j, the base case j = 1
is trivial.

Now assume that the claim is true for j−1, that is, for all s ∈ {d−j+1, . . . , d}
in gadget Qj−1 we have∑

σ∈As

|V RQj−1 (σ)| ≡ (j − 1)!2(j−1)(j−2)/2 mod p.

The j-th (0, X, Y ) node takes (d − j)-th input half-edge of the gadget and the
half-edge 3 of the (j − 1)-st (0, X, Y ) node, and has parameters p and j.

The type of the j-th (0, X, Y ) node is {{0, 2}, {1, 3}} if and only if the resulting
permutation in Qj is in Ad−j. Thus we have

∑
σ∈Ad−j

|V RQj (σ)| ≡ 2j−1
j−1∏
k=1

(2k−1(k + 1)) ≡ j!2j(j−1)/2 mod p,

where the first term is the number of choices (modulo p) in the j-th (0, X, Y )
node to make it {{0, 2}, {1, 3}} and the k-th term in the product is the number
of choices (modulo p) in the k-th (0, X, Y ) node to make it either {{0, 2}, {1, 3}}
or {{0, 3}, {1, 2}}.

If the type inside the j-th (0, X, Y ) node is {{0, 3}, {1, 2}} then the resulting
permutation is in As for s ∈ {d − j + 1, . . . , d}. Thus∑

σ∈As

|V RQj (σ)| ≡ j2j−1
∑

σ∈As

|V RQj−1 (σ)| ≡ j2j−1(j − 1)!2(j−1)(j−2)/2

≡ j!2j(j−1)/2 mod p,

where j2j−1 is the number of choices (modulo p) in the j-th (0, X, Y ) node to
make it {{0, 3}, {1, 2}}. ��
Now we continue with the proof of the Lemma 3.

Let σ be a permutation in Sd. Let l = σ−1(d). In order for σ to be realized by
gadget Q we have to have l mapped to d by Qd−1 and the permutation realized
by the recursive gadget of size d− 1 must “cancel” the permutation of Qd−1. By
the claim there are (d− 1)!2(d−1)(d−2)/2 (modulo p) choices in Qd−1 which map
l to d and by the inductive hypothesis there are Rd−1 (modulo p) choices in the
recursive gadget of size d − 1 that give the unique permutation that “cancels”
the permutation of Qd−1. Thus

|V R(σ)| ≡ Rd ≡ (d − 1)!2(d−1)(d−2)/2Rd−1 mod p,

finishing the proof of (4).
To see (5) note that the number of valid sets of routes which contain route

starting and ending at both input half-edges or both output half-edges is 0
modulo p. This is because the number of valid set of routes of type {{0, 1}, {2, 3}}
inside the (0, X, Y ) node is 0 modulo p. ��
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Proof (of Theorem 1). The reduction is now a standard application of the Chi-
nese remainder theorem. Given an Eulerian graph G = (V, E), we can, w.l.o.g.,
assume that the degree of vertices of G is at least 4 (vertices of degree 2 can
be removed by contracting edges). The number of Eulerian tours of a graph on
n vertices is bounded by nn2

(the number of pairings in a vertex of degree d is
d!/(2d/2(d/2)!) ≤ nn).

We choose n2 primes p1, . . . , pn2 > n such that
∏n2

i=1 pi > nn2
and each pi is

bounded by O(n3) (see, e. g., [BS96], p.296). For each pi, we construct graph
Gi by replacing each vertex v of degree d > 4 with Q gadget with d input
and d output half-edges where the (2j − 1)-st and 2j-th output half-edge are
connected (for j = 1, . . . , d/2), and the input half-edges are used to replace half-
edges emanating from v (that is, they are connected to the input half-edges of
other gadgets according to the edge incidence at v). Note that Gi is a 4-regular
graph. Since pi = O(n3), the construction of Gi can be done in time polynomial
in n. Having Gi, we make a query to the oracle and obtain the number Ti of
Eulerian tours in Gi. Let T be the number of Eulerian tours in G. Then

Ti ≡ T

n∏
d=6

((
d

2

)
!2d/2Rd

)nd

mod pi, (6)

where nd is the number of vertices of degree d in G.
Since Ti is of length polynomial in n, we can compute Ti mod pi for each

i and thus T mod pi (since on the right hand side of (6) T is multiplied by a
term that has an inverse modulo pi). By the Chinese remainder theorem, we can
compute T in time polynomial in n (see, e. g., [BS96], p.106). ��

3.3 #ET in 4-Regular Planar Graphs Is #P-Complete

First, it’s easy to see that #ET in 4-regular planar graphs is in #P. We will give
a reduction from #ET in 4-regular graphs to #ET in 4-regular planar graphs.

Theorem 2. #ET in 4-regular graphs is polynomial time Turing reducible to
#ET in 4-regular planar graphs.

Proof. Given a 4-regular graph G = (V, E), we first draw G in the plane. We
allow the edges to cross other edges, but i) edges do not cross vertices, ii) each
crossing involves 2 edges. The embedding can be found in polynomial time.

Let p be an odd prime, we will construct a graph Gp from the embedded
graph as follows. Let e, e′ be two edges in G which cross in the plane as shown
in Figure 4(a), we split e (and e′) into two half-edges e1, e2 (e′1, e′2, respectively).
As illustrated in Figure 4(b), a (0, X, Y ) node with parameters p and k = p is
added, and e1, e

′
1, e2, e

′
2 are connected to the half-edges 0,1,2,3 of the (0, X, Y )

node, respectively.
Let Gp be the graph after replacing all crossings by (0, X, Y ) nodes. We have

that Gp is planar since (X, Y, Y ) nodes and (0, X, Y ) nodes are all planar. The
construction can be done in time polynomial in p and the size of G (since the
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e

e’

(a) Two crossing edges

(0,X,Y)
0 1

23

e1

e2

e1’

e2’
(b) After the replacement

Fig. 4. To replace a crossover point by a (0, X, Y ) node with parameters p and k = p

number of crossover points is at most O(|E|2) and the size of each (0, X, Y ) node
is O(p2)).

In the reduction, we choose n = |V | primes p1, p2, . . . , pn such that pi = O(n2)
for i ∈ [n] and

∏n
i=1 pi ≥ 3n, where 3n is an upper bound for the number of

Eulerian tours in G (the number of pairings in each vertex is 3). For each pi, we
construct a graph Gpi from the embedded graph as described above with p = pi.
Let T be the number of Eulerian tours in G and Ti be the number of Eulerian
tours in Gpi , we have

T ≡ Ti mod pi. (7)

Equation (7) follows from the fact that the number of Eulerian tours in which
the set of routes within any (0, X, Y ) node is not of type {{0, 2}, {1, 3}} is zero
(modulo pi) (since in (2) we have A ≡ 1 mod pi and in (3) we have B ≡ 0
mod pi). We can make a query to the oracle to obtain the number Ti. By the
Chinese remainder theorem, we can compute T in time polynomial in n. ��

3.4 #A-trails in 4-Regular Graphs with Rotational Embedding
Schemes Is #P-Complete

In this section, we consider #A-trails in graphs with rotational embedding
schemes (maps). We prove that #A-trails in 4-regular maps is #P-complete
by a simple reduction from #ET in 4-regular graphs.

First, it’s not hard to verify that #A-trails in 4-regular maps is in #P.

Theorem 3. #ET in 4-regular graphs is polynomial time Turing reducible to
#A-trails in 4-regular maps.

Proof. Given a 4-regular graph G = (V, E), for each vertex v of G, we use the
gadget shown in Figure 5 to replace v.

The gadget consists of three vertices which are represented by circles in Fig-
ure 5. The labels 0, 1, 2 and 3 are the four half-edges which are used to re-
place half-edges emanating from v. The cyclic ordering of the 4 (half-)edges
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0

3

1 2

Fig. 5. Gadget simulating vertex of degree 4

incident to each circle is given by the clockwise order, as shown in Figure 5.
There are three types of valid sets of routes inside the gadget, V R({0, 1}, {2, 3}),
V R({0, 2}, {1, 3}) and V R({0, 3}, {1, 2}). By enumeration, we have the size of
each of the three sets is 2.

Let G′ be the 4-regular map obtained by replacing each vertex v by the gadget.
Let T be the number of Eulerian tours in G, we have the number of A-trails in
G′ is 2|V |T . ��
Note that Kotzig [Kot68] gave a one-to-one correspondence between the A-trails
in any 4-regular plane graph G (the embedding in the plane gives the rotational
embedding scheme) and the spanning trees in a plane graph G′, where G is the
medial graph of G′. By the Kirchhoff’s theorem (c.f. [Jer03]), the number of
spanning trees of any graph can be computed in polynomial time. Thus #A-

trails in 4-regular plane graphs can be computed in polynomial time.

4 The Complexity of Approximate Counting

In this section, we show that #ET in general graphs is AP-reducible to #A-

trails in 4-regular maps. AP-reductions were introduced by Dyer, Goldberg,
Greenhill and Jerrum [DGGJ04] for the purpose of comparing the complexity of
two counting problems in terms of approximation (given two counting problems
f, g, if f is AP-reducible to g and there is an FPRAS for g, then there is also an
FPRAS for f).

In the AP-reduction from #ET to #A-trails in 4-regular maps, we use the
idea of simulating the pairings in a vertex by a gadget as what we did in the
construction of the Q gadget. The difference is that the new gadget works in an
approximate way, that is, instead of having the number of valid sets of routes
to be the same for each of the types, the numbers can be different but within a
small multiplicative factor. The analysis of the gadget uses a fast mixing result
for a card shuffling problem.

We use the gadget illustrated in Figure 6. The circles represent the vertices
in the map. Let d be an even number. The gadget has d input half-edges on left
and d output half-edges (Figure 6 demonstrates the case of d = 6). There are
T layers in the gadget which are numbered from 1 to T from left to right. In
an odd layer t, the (2i− 1)-st and the 2i-th output half-edges of layer t − 1 are
connected to a vertex of degree 4, for i ∈ [d/2]. In an even layer t, the 2i-th and
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Fig. 6. Construction of the gadget for a vertex of degree 6

the (2i+1)-st output half-edges of layer t−1 are connected to a vertex of degree
4, for i ∈ [d/2 − 1]. In Figure 6, we illustrate the first two layers each of which
is in two consecutive vertical dashed lines. The cyclic ordering of each vertex is
given by the clockwise ordering (in the drawing in Figure 6), and so we have
that the two half-edges in each vertex which are connected to half-edges of the
previous layer are not cyclicly-adjacent.

Note that a valid route in the gadget always connects an input half-edge to
an output half-edge. Thus a valid set of routes always realizes some permutation
σ connecting input half-edge i to output half-edge σ(i).

In order to prove that |V R(σ)| is almost the same for each permutation σ ∈ Sd,
we show that for T = Θ(d2 log d log(d!/ε)) we have |V R(σ)|/∑�∈Sd

|V R(�)| ∈
[(1−ε)/d!, (1+ε)/d!] for each permutation σ ∈ Sd. The gadget can be interpreted
as a process of a Markov chain for shuffling d cards. The simplest such chain
proceeds by applying adjacent transpositions. The states of the chain are all the
permutations in Sd. In each time step, let σ ∈ Sd be the current state, we choose
i ∈ {1, . . . , d − 1} uniformly at random, and then switch σ(i) and σ(i + 1) with
probability 1/2 and stay the same with probability 1/2. For our gadget, it can
be viewed as an even/odd sweeping Markov chain on d cards [Wil04]. The ratio
|V R(σ)|/∑�∈Sd

|V R(�)| is exactly the probability of being σ at time T when the
initial state of the even/odd sweeping Markov chain is the identity permutation.
By the analysis in [Wil04], we can relate T with the ratio as follows.

Lemma 4 ([Wil04]). Let T be the number of layers of the gadget with d input
half-edges and d output half-edges as shown in Figure 6, and let μ, λ be two
distributions on Sd such that μ(σ) = |V R(σ)|/∑�∈Sd

|V R(�)| and λ(σ) = 1/d!
(λ is the uniform distribution on Sd). For

T = O(d2 log d log(d!/ε)),

then ‖μ− λ‖TV ≤ ε/d!, and thus (1 − ε)/d! ≤ μ(σ) ≤ (1 + ε)/d!.
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Theorem 4. If there is an FPRAS for #A-trails in 4-regular maps, then we
have an FPRAS for #ET in general graphs.

Proof. Given an Eulerian graph G = (V, E) and an error parameter ε > 0,
we can, w.l.o.g., assume that the degree of vertices of G is at least 4 (vertices
of degree 2 can be removed by contracting edges). We construct graph G′ by
replacing each vertex v of degree d > 2 with a gadget with d input half-edges, d
output half-edges and Td = Θ(d2 log d log(4d!n/ε)) layers where the (2i − 1)-st
and 2i-th output half-edge are connected (for 1 ≤ i ≤ d/2), and the input half-
edges are used to replace half-edges emanating from v (that is, they are connected
to the input half-edges of other gadgets according to the edge incidence at v).
We have that G′ has O(n2Tn) = O(n4 log n(n log n + log(1/ε))) vertices and can
be constructed in time polynomial in n and 1/ε.

Let A be an FPRAS for #A-trails in 4-regular maps by the assumption
of the theorem, we run A on G′ with error parameter ε/2. Let A(G′, ε/2) be
the output of A and NA be the number of A-trails in G′, we have A(G′, ε/2) ∈
[e−ε/2NA, eε/2NA] with probability at least 2/3. This process can be done in
time polynomial in the size of G′ and 1/ε, which is polynomial in n and 1/ε.

Let Dd be the number of vertices in the gadget of d input half-edges and d
output half-edges, and let Rd = 2Dd2d/2(d/2)!/d! and R =

∏n
d=4 Rnd

d where nd

is the number of vertices of degree d in G. Our algorithm B will output

B(G, ε) = A(G′, ε/2)/R. (8)

We next prove that B is an FPRAS for #ET in general graphs. For every
Eulerian tour in G, the type of the pairing in each vertex in G is fixed. Note that
each pairing corresponds to (d/2)!2d/2 permutations in a gadget with d input
half-edges and d output half-edges. By Lemma 4, we have (1− ε/(4n))2Dd/d! ≤
|V R(σ)| ≤ (1 + ε/(4n))2Dd/d! for each σ ∈ Sd where V R(σ) is counted in a
gadget with d input half-edges and d output half-edges. Thus, the number of
A-trails in G′ which correspond to the same Eulerian tour in G is in [(1 −
ε/(4n))nR, (1 + ε/(4n))nR]. Let NE be the number of Eulerian tours in G, we
have NA ∈ [(1−ε/(4n))nRNE, (1+ε/(4n))nRNE ], and thus for ε ≤ 2n, NA/R ∈
[e−ε/2NE , eε/4NE ] (the case when ε > 2n is trivial, B can just output 3n). Since
A(G′, ε/2) ∈ [e−ε/2NA, eε/2NA] with probability at least 2/3, then by (8), we
have B(G, ε) ∈ [e−εNE , eεNE ] with probability at least 2/3. This completes the
proof. ��
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Abstract. This paper deals with theEfficient Edge Domination Problem
(EED, for short), also known as Dominating Induced Matching Problem.
For an undirected graph G = (V, E) EED asks for an induced matching
M ⊆ E that simultaneously dominates all edges of G. Thus, the distance
between edges of M is at least two and every edge in E is adjacent to an
edge of M . EED is related to parallel resource allocation problems, en-
coding theory and network routing. The problem is NP-complete even for
restricted classes like planar bipartite and bipartite graphs with maximum
degree three. However, the complexity has been open for chordal bipartite
graphs.

This paper shows that EED can be solved in polynomial time on hole-
free graphs. Moreover, it provides even linear time for chordal bipartite
graphs.

Finally, we strengthen the NP-completeness result to planar bipartite
graphs of maximum degree three.

Keywords: efficient edge domination; dominating induced matching;
chordal bipartite graphs; weakly chordal graphs; hole-free graphs; linear
time algorithm; polynomial time algorithm.

1 Introduction

Let G = (V, E) be a simple undirected graph with vertex set V and edge set E.
A subset M of E is an induced matching if every pair of edges e, e′ in M has
distance at least two. That means that e ∩ e′ = ∅ and there is no edge xy ∈ E
with x ∈ e and y ∈ e′. A subset M ⊆ E is called dominating edge set if every
edge e ∈ E \ M shares one endpoint with an edge e′ ∈ M , i.e., if e ∩ e′ �= ∅.
The Efficient Edge Domination Problem (EED for short) is to decide whether
a given graph has a dominating induced matching (d.i.m. for short). Therefore,
EED is also known as the Dominating Induced Matching Problem. Moreover, in
literature d.i.m.s are sometimes called efficient edge packings. A brief history of
EED as well as some applications in the fields of resource allocation, encoding
theory and networking routing are presented in [8] and [11].

Grinstead et al. [8] show that EED is NP-complete in general. It remains hard
for bipartite graphs [13] and even for some of their very special subclasses. In

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 650–661, 2010.
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hole-free (pol) bipartite (NP-c [13])

weakly chordal (pol)
planar bip.
(NP-c [12])

bip. maxdeg. 3
(NP-c [6])

chordal (lin [12]) chordal bip. (lin) planar bip. maxdeg. 3 (NP-c)

bip. permutation (lin [14])

Fig. 1. An inclusion diagram for graph classes related to this work. The time complexity
of MEED is given in brackets. The graph classes for which new complexity results are
given in this paper are printed boldly.

particular, [12] shows the intractability of EED for planar bipartite graphs and
[6] for bipartite graphs with maximum degree three.

On the other hand, EED can be solved efficiently on various specific graph
classes such as series-parallel graphs [8], bipartite permutation graphs [14] and
claw-free graphs [6]. Since EED can be stated in monadic second order logic it is
also polynomial time solvable on any graph class with bounded clique-width [6].
The complexity of EED for weakly chordal graphs is stated as an open problem
in [12]. However, it has neither been known whether EED is tractable on the
subclass of chordal bipartite graphs nor if it is NP-complete for the superclass
of hole-free graphs.

In this paper we consider the generalized optimization version of EED, the Min-
imum Efficient Edge Domination Problem (MEED), which asks for a d.i.m. M
in G = (V, E) of minimum weight with respect to some given weight function
ω : E → R. Hence, we try to find M in such a way that it minimizes

∑
e∈M ω(e).

Clearly, MEED is computationally harder than EED.
In this paper, we show that MEED can be solved in linear time on chordal

bipartite graphs. This extends the result in [14], since bipartite permutation
graphs are chordal bipartite. Furthermore, we show that MEED can be solved
in polynomial time on hole-free graphs. In this way we answer the open question
posed in [12]. Finally we generalize the hardness results of [6] and [12] by showing
that EED is NP-complete for planar bipartite graphs even with maximum degree
three. See Figure 1 for a small overview.

2 Basic Notions

Let G = (V, E) be a finite simple (i.e., without loops and multiple edges) undi-
rected graph with vertex set V and edge set E. The complement graph G = (V, E)
of G contains for all x, y ∈ V the edge xy ∈ E iff xy �∈ E.
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Fig. 2. The small graphs gem, K4, diamond and butterfly. Graphs containing a gem
or a K4 as subgraphs have no d.i.m. If a graph contains a diamond or butterfly as
subgraphs then the thick edges are mandatory.

For v ∈ V , let N(v) := {u ∈ V | uv ∈ E} denote the open neighborhood of v,
and let N [v] := N(v) ∪ {v} denote the closed neighborhood of v. For uv ∈ E let
N(uv) := N(u) ∪ N(v) \ {u, v} and N [uv] := N [u] ∪ N [v]. For U ⊆ V , let G[U ]
denote the induced subgraph of G with vertex set U , hence, the graph which
contains exactly the edges xy ∈ E with both vertices x and y in U .

A path Pk (resp. cycle Ck) is a sequence of distinct vertices, say v1, . . . , vk,
which are connected by edges vivi+1, 1 ≤ i ≤ k − 1 (and vkv1, resp.). We
say that such a path has length k − 1 and such a cycle has length k. For two
vertices x, y ∈ V , let distG(x, y) denote the distance between x and y in G, i.e.,
the length of a shortest path between x and y in G. The distance of two edges
e, e′ ∈ E is the length of a shortest path between e and e′, i.e., distG(e, e′) =
min{distG(u, v) | u ∈ e, v ∈ e′}. In particular, this means that distG(e, e′) = 0 if
and only if e ∩ e′ �= ∅. A connected component of G is a maximal vertex subset
U ⊆ V such that all pairs of vertices of U are connected by paths in G[U ]. A
biconnected component of G is a maximal vertex subset U ⊆ V such that all
pairs of vertices of U are connected by at least two paths in G[U ] that share no
other vertices than start and end vertex.

See Figure 2 and [5,7] for important graphs and graph classes used in this
paper but not defined in the folling listing: A graph is a block graph if all its
biconnected components U induce complete graphs (cliques) G[U ], i.e., xy ∈ E
for all x, y ∈ U . For a set F of graphs, a graph G is called F-free if G contains
no induced subgraph from F . A graph is chordal if it is Ck-free for all k ≥ 4. A
bipartite graph B = (X, Y, E) is chordal bipartite if B is C2k-free for all k ≥ 3.

A graph G(u, v) is generalized series-parallel if it has two designated vertices u
and v and is either a single edge uv or can be built out of two smaller generalized
series-parallel graphs G1(u1, v1) and G2(u2, v2) with the following compositions:

Series-1: Combine G1 and G2 by identifying v1 with u2 to obtain G(u1, v2).
Series-2: Combine G1 and G2 by identifying v1 with u2 to obtain G(u1, v1).
Parallel: Combine G1 and G2 by identifying u1 with u2 and v1 with v2 to

obtain G(u1, v1).

The paper deals with dominating induced matchings (d.i.m.s) as defined in the
previous section. If an edge e of G is part of a d.i.m.M we call it an edge matched
by M . Furthermore, we call a vertex v ∈ V matched by M if it is endpoint of an
edge matched by M . If an edge e ∈ E is matched by every d.i.m. of G, we call it
mandatory in G.
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3 Basic Properties of Graphs Having Dominating
Induced Matchings

The following general observations are useful when dealing with d.i.m.s.

Observation 1. Let G be a graph having a d.i.m. M . Then the following holds:

(i) M contains exactly one edge of every triangle of G.
(ii) M contains no edge of any (not necessarily induced) cycle of length four in

G.

As a simple consequence we obtain:

Corollary 2. If a graph G contains a triangle such that two of its edges are in
a cycle of length four (not necessarily the same), the third edge of the triangle
is mandatory in G. If a graph G contains a triangle such that all its three edges
are in cycles of length four then G has no d.i.m.

In a reduction described later in this paper, we want to remove induced diamonds
and butterflies by replacing mandatory edges. So we need:

Observation 3. In a graph G, in every induced diamond, its mid-edge xy is
mandatory in G, and for every induced butterfly in G, its two peripheral edges
vw and xy are mandatory in G (see Figure 2).

For every d.i.m. M of a graph G, the matched edges must have distance at least
two. This must be true in particular for mandatory edges, so we obtain:

Corollary 4. If a graph G has a d.i.m. M , then G is (K4, gem)-free.

4 Dominating Induced Matchings in Chordal Bipartite
Graphs

MEED is known to be solvable in linear time on generalized series-parallel graphs
by [12]. The aim of this section is a linear time reduction from a chordal bipar-
tite graph G into a K4-free block graph G′, such that solving MEED on G′ is
equivalent to solving MEED on G. Since K4-free block graphs are generalized
series-parallel, this gives a linear time algorithm for MEED on chordal bipartite
graphs.

Therefore, we substitute every biconnected component of G by a gadget to
obtain G′. The gadget must ensure that G′ behaves like G with respect to d.i.m.s.

The reduction from G = (V, E) to G′ = (V ′, E′) works as follows: Let G
be a chordal bipartite graph and let U1, . . . , Uk be the biconnected components
of G. Since G is bipartite, the biconnected components are bipartite. So let
Ui = Xi ∪ Yi be a bipartition for every 1 ≤ i ≤ k. Note that all edges of a
biconnected component in a chordal bipartite graph G are part of a C4, be-
cause G contains no other induced cycles. By Observation 1, no edge of G[Ui]
is matched in any d.i.m. Hence, all edges of G[Ui] must be dominated from the
outside. The following lemma demonstrates the only two ways of how the edges
of a biconnected component can be dominated:
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Lemma 5. Let G = (X, Y, E) be a chordal bipartite graph and Ui = Xi ∪ Yi a
biconnected component of G. Then for every d.i.m. M of G, either all vertices
in Xi and none of Yi are matched or vice versa.

Proof. For every d.i.m. M and every biconnected component Ui = Xi ∪ Yi of G
consider an edge xy ∈ E with x ∈ Xi and y ∈ Yi. By Observation 1, xy /∈ M .
Thus, x or y must be matched by M . If M matches both x and y then there are
two edges xx′ ∈ M and yy′ ∈ M with distance one and M is not an induced
matching, a contradiction.

Hence M matches x if and only if M does not match y. Suppose that M
matches a vertex x′ ∈ Xi and a vertex y′ ∈ Yi. Then there is an induced path P
in U between x′ and y′ such that P has an odd number 2k + 1, k ≥ 1, of edges.
Then a simple inductive argument shows that there is a shorter odd path with
matched endpoints in both Xi and Yi. Thus, either M matches all vertices in
Xi and none of Yi or M matches all vertices in Yi and none of Xi. ��

To simulate this property of biconnected components, we modify every bicon-
nected component using a certain gadget that also allows exactly two different
d.i.m.s. It consists of a triangle (xi, yi, di) and a pending edge dipi. The reduction
replaces the edges of G[Ui] for every biconnected component Ui by the gadget
Di = ({di, xi, yi, pi}, {dixi, diyi, dipi, xiyi}). From Observation 1 we know that
exactly one edge of every triangle must be matched in every d.i.m. The pend-
ing edge dipi forces to match either dixi or diyi, because if xiyi were matched,
there would be no way to dominate dipi. Now, we add edges uxi for all u ∈ Xi

and edges uyi for all u ∈ Yi. This retains the property of the Lemma 5 for all
vertices of Ui in G′ by the reduction, i. e. either all vertices in Xi and none in
Yi are matched or vice versa. The edge weights for G′ are inherited from G and
new edges get weight zero: ω′(e) = ω(e) for all e ∈ E ∩ E′ and ω′(e) = 0 for all
e ∈ E′\E. See an example for the reduction of one single biconnected component
in Figure 3. By construction, the resulting graph G′ is a K4-free block graph.

It remains to show that finding a d.i.m. in G is equivalent to finding one in G′.

Lemma 6. A chordal bipartite graph G has a d.i.m. M with weight ω(M) = W
if and only if the graph G′ has a d.i.m. M ′ with weight ω′(M ′) = W .

Y1X1

...
... U1

⇒

Y1X1

...
... D1

p1

d1

x1 y1

Fig. 3. The biconnected component U1 of G (left) is substituted by the gadget D1 and
additional edges in G′ (right)
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Proof. Let G = (V, E) be a chordal bipartite graph with biconnected components
U1, . . . , Uk and their bipartitions Ui = Xi∪Yi. Let M be a d.i.m. of G. We define
M ′ as follows:

M ′ := M ∪ MD

where MD fulfills the following conditions for all 1 ≤ i ≤ k:

1. Let diyi ∈ MD if and only if all vertices of Xi are matched by M .
2. Let dixi ∈ MD if and only if all vertices of Yi are matched by M .

Since MD ⊆ E′ by definition of G′, M ∩Ui = ∅ for all 1 ≤ i ≤ k by Observation
1 and M ⊆ E it is true M ′ ⊆ E′. We have to show that M ′ is an induced
matching in G′ and dominates all edges of G′.

Assume there are two edges uv, u′v′ ∈ M ′ with distance smaller than two in
G′. If uv ∈ M and u′v′ ∈ M , then they have distance smaller than two also in
G and M was not an induced matching. If uv ∈ M and u′v′ ∈ MD, then there
are two matched vertices u ∈ Xi and xi (u ∈ Yi and yi respectively) for some
1 ≤ i ≤ k. Then by definition of MD, diyi ∈ MD (dixi ∈ MD respectively)
and then there exists a matched vertex u′ ∈ Yi (u′ ∈ Xi respectively). But by
Lemma 5, then M was not a d.i.m. of G, a contradiction. This is also the case if
uv ∈ MD and u′v′ ∈ MD.

Since M dominates all edges in E and M ⊆ M ′, all edges in E′ ∩ E are
dominated by M ′. By Lemma 5, either dixi ∈ M ′ or diyi ∈ M ′ for all 1 ≤ i ≤ k
and hence, dipi and xiyi are dominated by M ′. Assume there is an edge in E′

that is not dominated by M ′, it must have the form uxi with u ∈ Xi or uyi

with u ∈ Yi for some 1 ≤ i ≤ k. If u ∈ Xi, then dixi �∈ M ′, because otherwise
uxi would be dominated and diyi �∈ M ′ by definition of MD, because u is not
matched. Analogously, if u ∈ Yi. But if both dixi and diyi are not in M ′, then
by Lemma 5, M is not a d.i.m. of G, a contradiction.

Now let M ′ be a d.i.m. of G′. We define M as M := M ′ ∩ E, so it is an edge
subset of G. Note that in every d.i.m. M ′ of G′ either dixi ∈ M ′ or diyi ∈ M ′

for all 1 ≤ i ≤ k, because exactly one edge of the triangle (di, xi, yi) must be in
M ′ by Observation 1 and it cannot be xiyi ∈ M ′, because then there would be
no way to dominate dipi. Furthermore, if dixi ∈ M ′ for some 1 ≤ i ≤ k, then all
vertices in Yi are matched by M ′, because otherwise an edge between yi and Yi

is not dominated, and analogously for diyi ∈ M ′. Assume there are two edges
uv ∈ M and u′v′ ∈ M with a distance smaller two. Since E \ E′ contains only
C4-edges and M ′ is an induced matching, uv and u′v′ have both one endpoint in
Xi or Yi for some 1 ≤ i ≤ k. Without loss of generality, let u ∈ Xi and u′ ∈ Yi.
But then M ′ was not an induced matching, because either u is too close to xi

or u′ is too close to yi, a contradiction.
Since edges in M ′\E cannot dominate edges in E by definition of G′, M already

dominates all edges in E ∩E′. Assume there is a not dominated edge uu′ ∈ Ui for
some 1 ≤ i ≤ k and without loss of generality let u ∈ Xi and u′ ∈ Yi. Then M ′

was not a d.i.m., since either uxi or u′yi is not dominated in G′.
It is easy to see that M and M ′ have the same weight in both cases, since it is

true M ⊆ M ′ and all edges in M ′ \ M have weight zero by definition of G′. ��
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Now we can formulate the following theorem.

Theorem 1. MEED is solvable in linear time on chordal bipartite graphs.

Proof. Let G be a chordal bipartite graph. The problem can be solved by con-
structing G′ of G as above and then solving the problem on G′. The correctness
results directly from Lemma 6.

To find all biconnected components of G, we can use Tarjan’s algorithm (see,
e. g., [15]). The algorithm can easily be modified to give a bipartition for each
biconnected component in a single depth-first search run as well. The reduction
from G to G′ adds a constant number of new vertices for every biconnected
component of G. Since the number of biconnected components is at most the
number of vertices of G, the number of vertices of G′ is linear in the number of
vertices of G. The reduction modifies also the number of edges; for every vertex
of G there is at most one new edge in G′, so the increase is linear, too. Since K4-
free block graphs are generalized series-parallel graphs, we can use the algorithm
given in [12] to solve MEED on G′ in linear time. ��

5 Dominating Induced Matchings in Hole-Free Graphs

We use a reduction from hole-free graphs to K4-free block graphs, that is simi-
lar to the reduction described in the previous section. Since hole-free graphs can
contain more complex biconnected components than chordal bipartite graphs, the
reduction is more sophisticated, needs two steps and requires polynomial time.

The first step simplifies the biconnected components of the given hole-free
graph G such that the resulting graph G′ contains only triangles of a simpler
structure. This reduction uses a graph operation f1 that is repeatedly applied
until the result does not change any more, we say G′ = f∗

1 (G).
Then, the second reduction step from G′ to G′′ performs a gadget based

substitution of biconnected components. It also uses a graph operation f2 that
is repeatedly applied such that G′′ = f∗

2 (G′). After that, G′′ is a K4-free block
graph. Again, the reductions have to guarantee, that solving MEED on G is
equivalent to solving MEED on G′′. This is done by showing that applying f1
and f2 keeps this equivalence.

Let G be a hole-free graph. Since graphs containing a gem or a K4 are not
of interest by Observation 4 and because finding such induced subgraph can be
done in polynomial time, we can assume that G is (K4, gem)-free in the rest of
this section.

The first reduction step from G to G′ works as follows: We define a graph
operation f1 that replaces certain kinds of triangle edges. In particular, f1 con-
cerns the mandatory edges in diamonds, butterflies (see Observation 3) and
other triangles described in Corollary 2. Let uv ∈ E be such a mandatory edge
in G = (V, E). Then f(G) is defined as follows: Remove vertices u and v from G
and add a P4 with new vertices p1, p2, p3, p4 and edges pipi+1, i = 1, 2, 3. Add
additional edges such that N(p2) = N(uv)∪{p1, p3}. Let ω(p1p2) = ω(p3p4) = 0
and ω(p2p3) = ω(uv). Moreover, let ω(p2x) = 0 for all x ∈ N(uv).
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Lemma 7. Let G be a hole-free graph. Then G has a d.i.m. M with weight
ω(M) = W if and only if f1(G) has a d.i.m. Mf1 with weight ωf1(Mf1) = W .
Furthermore, f1(G) is hole-free.

The graph G′ = f∗
1 (G) results from applying f1 repeatedly for all mandatory

edges given by Observation 3 and Corollary 2. Since f1 reduces the number of
edges that are in a cycle, the number of iterations is smaller than |E(G)|. From
Lemma 7 follows:

Corollary 8. G has a d.i.m. M with weight ω(M) = W if and only if G′ has a
d.i.m. M ′ with ω′(M ′) = W .

Observation 9. Let G be a hole-free graph and let G′ be defined as above. If G
has a d.i.m., then for every triangle in G′, exactly one of the following conditions
holds:

(1) No edge of the triangle is in another cycle.
(2) Exactly one edge of the triangle is in one or more cycles of length four.

If G does not fulfill the condition of Observation 9, it has no d.i.m. This can
obviously be checked in polynomial time. Consequently, from now on we assume
that G fulfills this condition.

In the reduction step from G′ to G′′, we use a gadget transformation f2
to generate a K4-free block graph G′′. The graph f2(G) is defined as follows:
Let U be a biconnected component of G with more than three vertices. Hence,
G[U ] contains either at least one triangle of the second form of Observation 9
or it is triangle-free. In both cases, we replace all edges of G[U ] by the gadget
D = ({d, x, y, p}, {dx, dy, dp, xy}), known from the previous section.

In the easy case, where G[U ] is triangle-free, that is bipartite, let U = X ∪ Y
be a bipartition of U . Then the graph f2(G) results from G by adding edges ux
for all u ∈ X and uy for all u ∈ Y .

In the other case, the embedding of the gadget D is more sophisticated
due to the presence of triangles in the biconnected components. Let T1 =
(tX1 , tY1 , t1), . . . , T� = (tX� , tY� , t�) be all triangles of G[U ] and let T ⊂ U con-
tain all triangle vertices of G[U ]. Note that all triangles are disjoint because the
first reduction step eliminates all diamonds and butterflies in G′. Every triangle
Ti has exactly one edge being part of an induced cycle of length four. Without
loss of generality let this be the edge tXi tYi . Let U ′ = U \{t1, . . . , t�}. Then G[U ′]
is obviously bipartite. Let U ′ = X ′ ∪ Y ′ be a bipartition of U ′. Without loss of
generality let tXi ∈ X ′ and tYi ∈ Y ′ for all 1 ≤ i ≤ �. Let N (v) = N(v)\U denote
all neighbors of v outside of U . Then f2(G) results from G by the following steps:

– Remove all vertices of T from G.
– Add an edge ux for all u ∈ X ′ \ T .
– Add an edge uy for all u ∈ Y ′ \ T .
– Add edges such that N (ti) ⊆ N(d) for all 1 ≤ i ≤ �.
– Add edges such that for all 1 ≤ i ≤ �:

N (tYi ) ⊆ N(x) and N (tXi ) ⊆ N(y).
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Y ′X ′

...
... U

N (tX) N (tY )

N (t)

tX tY

t

⇒

Y ′X ′

...
... D

N (tY ) N (tX)

N (t)

p

d

x y

Fig. 4. The biconnected component U of a graph G (left) is substituted by the gadget
D and appropriate edges in f2(G) (right)

Furthermore let

w��(yd) =
∑

1≤i≤�

w′(tXi ti) and w��(xd) =
∑

1≤i≤�

w′(tYi ti).

All other new edges get weight zero. See Figure 4 for an example of this trans-
formation.

Lemma 10. Let G be a (hole,diamond,butterfly)-free graph that fulfills the con-
dition given in Observation 9. Then G has a d.i.m. M with weight ω(M) = W
if and only if f2(G) has a d.i.m. Mf2 with weight ωf2(Mf2) = W .

The graph G′′ = f∗
2 (G′) results by repeatedly applying f2. Since f2 reduces the

number of biconnected components of more than three vertices, the number of
iterations is polynomial. The resulting graph G′′ is a K4-free block graph, since
all biconnected components of more than three vertices get substituted by a
gadget containing a single triangle.

Corollary 11. G′ has a d.i.m. M ′ with weight ω′(M ′) = W if and only if G′′

has a d.i.m. M ′′ with ω′′(M ′′) = W .

Theorem 2. MEED is solvable in polynomial time on hole-free graphs.

6 Dominating Induced Matchings in Planar Bipartite
Graphs with Maximum Degree Three

The previous sections show quite clearly that restricting the length of induced
cycles makes MEED less difficult. On the other hand, EED becomes NP-complete
for planar bipartite graphs [12]. A closer examination of the proof in [12] shows
that one can additionally restrict to graphs of maximum degree four. For maxi-
mum degree two however EED is trivial again and thus, it would be interesting
to know the complexity of EED on the same problem with max-degree three.
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Theorem 3. EED is NP-complete on planar bipartite graphs of maximum de-
gree three (3-PBEED).

The basic ideas for the polynomial time reduction of the NP-complete Planar
Monotone One-In-Three-3SAT Problem [9] to 3-PBEED are as follows: We con-
struct a planar bipartite graph G(F ) (of max-degree three) from any planar
monotone 3CNF-formula F such that G(F ) has a dominating induced matching
M if and only if F has a satisfying assignment with exactly one true variable in
each clause. Monotone means, that all clauses of F contain only positive literals
(i.e., variables). Moreover, if X are the variables and Y the clauses of F let
I(F ) = (X, Y, E) be F ’s incidence graph, where x ∈ X and y ∈ Y are connected
by an edge xy iff x occurs in y. Then F is called planar if I(F ) is planar.

The basic idea is to construct G(F ) from I(F ) by replacing the vertices x
of X and y of Y by specific planar gadgets V (x) and C(y). This modification
preserves the planarity for G(F ).

Every d.i.m. M of G(F ) represents an assignment t : X → {0, 1} of truth
values. In fact, M can match the edges of each V (x) in only two ways. We can
interpret this two states as the truth value of x. Particularly, V (x) contains an
edge e0

x such that t(x) = 1 iff e0
x is in M . Moreover, V (x) clones the matching

state of e0
x to fan out edges e1

x, . . . , ep
x. The number p is chosen to be a power of

four with p ≥ |Y |. Beside preserving the bipartite structure for V (x) this makes
sure that there will be enough copies of x’s truth value.

V (a)

e0
a

e1
a

e2
a

e4
a

e3
a

V (b)

e0
b

e1
b

e2
b

e4
b

e3
b

V (c)

e0
c

e1
c

e2
c

e4
c

e3
c

V (d)

e0
d

e1
d

e2
d

e4
d

e3
d

C(a ∨ b ∨ c)

C(b ∨ c ∨ d)

C(a ∨ c ∨ d)

F = (a ∨ b ∨ c) ∧ (a ∨ c ∨ d) ∧ (b ∨ c ∨ d)

Fig. 5. An example of how a formula F is encoded into a graph G(F ). The planar
incidence graph I(F ) can be found grayed-out in the background with roundly variable
vertices and rectangular clause vertices. Obviously, G(F ) follows the structure of I(F )
by replacing vertices with gadgets. The vertex coloring shows the bipartition of G(F ).
Thick edges in G(F ) give a d.i.m. to encode a = b = d = 0 and c = 1, a solution for
Planar Monotone One-In-Three-3SAT.
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The gadgets C(y) guarantee that M encodes exactly one true literal for each
clause y. If y contains the variables a, b, c then C(y) connects to free output
edges ei

a, ej
b and ek

c of V (a), V (b) and V (c).
Finally, every V (x) is a binary tree of at most 6p−4 ≤ 24|Y | edges and every

C(y) is only a claw of 6 edges. Consequently, G(F ) has max-degree three and
can be constructed in polynomial time. Figure 5 gives an intuitive example.

7 Conclusion

In this paper we studied complexity aspects of the Minimum Efficient Edge Dom-
ination Problem. We generalized various results of [14,12]. This section draws a
wider picture on the relation and impact of our findings.

The central concept of our polynomial time results is a reduction of MEED
on chordal bipartite and hole-free graphs to the same problem on K4-free block
graphs. Such graphs have bounded clique-width which implies bounded tree-
width. Particularly, their treewidth is at most two. Because EED can be ex-
pressed in terms of monadic second order logic this gives in fact immediately the
tractability of MEED on these classes (see the corresponding discussion in [4]).

In case of chordal bipartite graphs we have shown that MEED can be solved
even in linear time. However, it should be clarified that the recognition of chordal
bipartite graphs in linear time is a long-standing open problem. Consequently,
the input graph for the given linear time algorithm for MEED on chordal bipar-
tite graphs must be chordal bipartite.

Our second result states that MEED can be solved in polynomial time on
hole-free graphs. In fact it turns out that every hole-free graph with a d.i.m. is
weakly chordal (i.e., hole- and anti-hole-free), a proper subclass of hole-free
graphs. Anyway, our result on hole-free graphs solves a number of open problems
stated in previous papers. Lu et al. [12] gave a variety of subclasses of weakly
chordal graphs where EED’s complexity was open. Certainly all of them can
now be solved in polynomial time. Another interesting aspect in context of our
two results is the question whether the linear time approach for chordal bipar-
tite graphs can be extended to permutation graphs, a small subclass of weakly
chordal graphs.

The relation between permutation graphs and chordal bipartite graphs is also
an interesting matter in the context of the following vertex version of the efficient
domination problem: If G = (V, E) is a graph and D ⊆ V then we call D an
efficient dominating set if (1) V = ∪x∈DN [x] and (2) for all x �= y ∈ D it
is true distG(x, y) ≥ 3. The Efficient Vertex Domination Problem (EVD) is to
decide whether a given graph G has an efficient dominating set. This concept
was independently invented in [1], [2] and [3]. EVD is NP-complete on chordal
bipartite graphs [13] which nicely contrasts with our result for EED. On the
other hand EVD is efficiently solvable on permutation graphs [10] just as EED.

Our third result provides NP-completeness of EED on planar bipartite graphs
with maximum degree three. We can conclude that neither degree constraints,
restrictions on G’s coloring nor G’s planarity influence the complexity of this
problem significantly. However, the two polynomial time results motivate the



Efficient Edge Domination on Hole-Free Graphs in Polynomial Time 661

question for a precise answer on how the complexity is influenced by the maxi-
mum length of induced cycles. We leave this as a challenge for future work.
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Abstract. We study the computational complexity of deciding the ex-
istence of a Hamiltonian Cycle in some dense classes of k-uniform hy-
pergraphs. Those problems turned out to be, along with the hypergraph
Perfect Matching problems, exceedingly hard, and there is a renewed
algorithmic interest in them. In this paper we design a polynomial time
algorithm for the Hamiltonian Cycle problem for k-uniform hypergraphs
with density at least 1

2
+ε, ε > 0. In doing so, we depend on a new method

of constructing Hamiltonian cycles from (purely) existential statements
which could be of independent interest. On the other hand, we establish
NP-completeness of that problem for density at least 1

k
− ε. Our results

seem to be the first complexity theoretic results for the Dirac-type dense
hypergraph classes.

1 Introduction

Weaddress theproblemofdeciding the existence andconstructionof aHamiltonian
Cycle in some dense classes of hypergraphs. The corresponding problem is being
well understood for dense graphs (cf., e.g., [7] and [19]), as well as random graphs
(cf., e.g., [2],[4], [5], and [10]). However, the computational status of the problem
for hypergraphs was widely open and has become a challenging issue recently.

In this paper we shed some light on the computational complexity of that
problem for k-uniform hypergraphs. For any ε > 0, we design the first polyno-
mial time algorithm for the Hamiltonian Cycle problem for k-uniform hyper-
graphs with Dirac-type density at least 1/2 + ε. We prove also a complementary
intractability result for k-uniform hypergraphs with density at least 1/k−ε. The
techniques used in this paper could be also of independent interest.

We consider k-uniform hypergraphs, that is, hypergraphs H whose edges are
k-element subsets of V := V (H). We refer to k-uniform hypergraphs as k-graphs.
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For k-graphs with k ≥ 3, a cycle may be defined in many ways (see, e.g.,
[3], [13] and [14]). Here by a cycle of length l ≥ k + 1 we mean a k-graph
whose vertices can be ordered cyclically v1, . . . , vl in such a way that for each
i = 1, . . . , l, the set {vi, vi+1, . . . , vi+k−1} is an edge, where for h > l we set
vh = vh−l. Such cycles are sometimes called tight. A Hamiltonian cycle in a
k-graph H is a spanning cycle in H . A k-graph containing a Hamiltonian cycle
is called Hamiltonian.

For a k-graph H and a set of k−1 vertices S, let NH(S) be the set of vertices
v of H such that S∪{v} ∈ H . We define the degree of S as degH(S) = |NS(H)|,
and write degH(S, T ) for the degree restricted to the subset T ⊆ V , that is,
degH(S, T ) = |NS(H) ∩ T |. We define δ(H) = minS degH(S) and refer to it as
the (k−1)-wise, collective minimum degree of H , or simply, minimum co-degree.
The ratio δ(H)/|V (H)| is sometimes called a Dirac-type density of H .

We denote by HAM(k, c) the problem of deciding the existence of a Hamilto-
nian cycle in a k-graph with minimum co-degree δ(H) satisfying δ(H) ≥ c|V (H)|.

For graphs, that is, for k = 2, one of the classic theorems of Graph Theory
by Dirac [8] states that if the minimum degree in an n-vertex graph is at least
n/2, n ≥ 3, then the graph is Hamiltonian. Hence, the problem HAM(2, 1/2)
is trivial. Complementing this result, it was shown in [7] that HAM(2, c) is
NP-complete for any c < 1

2 .
Turning to genuine hypergraphs (k ≥ 3), it was recently shown in [16] that for

all k ≥ 3, c > 1
2 , and sufficiently large n, every k-graph H with |V (H)| = n and

δ(H) ≥ cn contains a Hamiltonian cycle. Hence, again, HAM(k, c) is trivial for
all c > 1

2 . In the case in which c = 1
2 Rödl et al.[17] proved that the same holds

for 3-graphs and the problem remains open for k ≥ 4.
Our main contribution are two complementary results on HAM(k, c).

Theorem 1. For all k ≥ 3 and c < 1
k the problem HAM(k, c) is NP-complete.

Interestingly, Theorem 1 leaves a similar hardness gap of ( 1
k , 1

2 ) as for the problem
of deciding the existence of a perfect matching in a k-graph with δ(H) ≥ c|V (H)|
(see [18] and [12]). Note that, in view of [7], this gap collapses for graphs. In
Section 2, Theorem 1 is proved by a reduction from HAM(2, c), c < 1

2 .
In the second part of this paper, we strengthen the above mentioned result

from [16], by designing a polynomial time algorithm for the search version of
HAM(k, c).

Theorem 2. For all k ≥ 3 and c > 1
2 there exists a polynomial time algo-

rithm, called HamCycle, which finds a Hamiltonian cycle in every k-graph with
δ(H) ≥ c|V (H)|.
In view of [17], we believe that also the proof from there can be turned into a
polynomial time algorithm extending Theorem 2 to c = 1

2 for k = 3.
Our construction is based on the existential proofs from [16] and [17]. In short,

the idea is as follows. First, procedure AbsorbingPath constructs a special,
relatively short path A in H , called absorbing. Next, procedure AlmostHam-

Cycle finds an almost Hamiltonian cycle C containing A. Finally, the remaining
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vertices are absorbed by A into C to form a Hamiltonian cycle. Along the way,
two probabilistic lemmas from [16] are derandomized using the Erdős-Selfridge
method of conditional expectations [1].

2 The Reduction

In this section we prove Theorem 1. We will show that for all k ≥ 3 and all ε > 0,
the problem HAM(k−1, 1

k−1 − ε′), where ε′ = k
k−1ε reduces to HAM(k, 1

k − ε).
This, together with the known fact proved in [7] that HAM(2, c) is NP-complete
for all c < 1

2 , shows that also HAM(k, c) is NP-complete for all c < 1
k .

Let H be a (k−1)-graph on (k−1)n vertices with δ(H) ≥ ( 1
k−1−ε′)(k−1)n. We

construct a (gadget) k-graph G as follows. Let V (G) = A ∪B where A = V (H)
and B is disjoint from A with |B| = n. The edge set E(G) is union of three sets:

E(G) = E≤k−3 ∪ EH ∪Ek,

where for i = 0, . . . , k, Ei consists of all k-element subsets of V (G) which in-
tersect A in precisely i vertices, E≤k−3 =

⋃
i≤k−3 Ei and EH consists of all k-

element subsets of V (G) whose intersection with A is an edge of H (see Figure 1).
Let us check first that δ(G) ≥ ( 1

k −ε)kn. We assume, as we can, that εkn ≥ 2. Let
S ∈ (V (G)

k−1

)
. If |S∩A| = k−3 (and so |S∩B| = 2) then degG(S) = |B|−2 = n−2.

If |S ∩A| ≤ k− 4 then degG(S) = |V (G)| − (k− 1) = kn− k + 1. If S ⊂ A, then
degG(S) ≥ |A| − (k − 1) ≥ n, regardless whether S ∈ E(H) or not. Finally, if
|S ∩ A| = k − 2, we know by the assumption on δ(H) that there are at least(

1
k − 1

− k

k − 1
ε

)
(k − 1)n =

(
1
k
− ε

)
kn

vertices v ∈ A \ S such that (S ∩A) ∪ {v} ∈ E(H), and hence, S ∪ {v} ∈ EH ⊂
E(G).

k |A| = (k − 1)n

|B| = n

k − 1

≥ 3

Fig. 1. The gagdet. The dotted oval represents an edge of H .
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It remains to show that H has a Hamiltonian cycle if and only if G does. Let
v1v2 . . . v(k−1)n be a Hamiltonian cycle in H and let us order the vertices of B
arbitrarily, say B = {w1, . . . , wn}. Then the sequence

v1 . . . vk−1w1vk . . . v2k−2w2 . . . wn−1v(k−1)(n−1)+1 . . . v(k−1)nwn (1)

forms a Hamiltonian cycle in G. Indeed, every k consecutive (cyclically) vertices
of that string contain exactly one vertex of B and an edge of H , and thus, by
the definition of EH , form an edge of G.

Conversely, let G have a Hamiltonian cycle F . Note first that E(F ) �⊆ E≤k−3,
because each edge of E≤k−3 contains at most k−3 vertices of A and each vertex
of F is contained in precisely k edges of F . Hence, F could cover only at most

kn × (k − 3)× 1
k

= (k − 3)n < |A|

vertices of A. But then E(F ) ∩ E≤k−3 = ∅, because, due to the lack of edges
of Ek−2 in G, the cycle cannot traverse from an edge of E≤k−3 to any edge in
EH ∪Ek.

Secondly, no edge of Ek can be in F either. Indeed, since the edges of F
covering B are all in EH ⊆ Ek−1, each vertex of B has to be immediately
preceded in F by exactly k−1 vertices of A, making no room for any edge of Ek

in F . So, F looks exactly like in (1). Note that every k consecutive (cyclically)
vertices of that string form an edge of G and contain exactly one vertex of B
and a set S of k − 1 vertices of A. Thus, by the definition of G, this set S must
be an edge of H . Hence, the sequence v1v2 . . . v(k−1)n forms a Hamiltonian cycle
in H .

3 Subroutines

In this section we describe several subroutines which will be used by the main
algorithm, HamCycle. We begin with procedures constructing tight paths in a
dense hypergraph. Wherever convenient, we will identify a sequence of distinct
vertices (v1, v2, . . . ) with the set of its elements {v1, v2, . . . }.

3.1 Paths

A path is a k-graph P , whose vertices can be ordered v1, . . . , vl, where l = |V (P )|,
in such a way that for each i = 1, . . . , l− k + 1, we have {vi, vi+1, · · · , vi+k−1} ∈
P . We say that P connects the sequences (v1, v2, . . . vk−1) and (vl, . . . , vl−k+2),
which will be called the ends of P . A path on l vertices (and thus with l− k + 1
edges) will be said to have length l.

Our algorithm will frequently use the following subroutine. Let γ > 0. By
Lemma 4 in [16], for sufficiently large n, every k-graph H with n vertices and
δ(H) ≥ (1

2 + γ)n contains a path of length at most 2k/γ2 between any pair of
(k − 1)-element sequences of distinct vertices. Thus, an exhaustive search of all
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O(n2k/γ2
) sequences of distinct 2k/γ2 vertices would certainly find such a path.

However, for better complexity, a BFS-type search can be applied.

Subroutine Connect

In: k-graph H with δ(H) ≥ (1
2 + γ)n and two disjoint (k− 1)-element sequences

of distinct vertices, u and v
Out: Path P in H with ends u and v of length at most 2k/γ2.

Connect begins its BFS search at u and moves on by one vertex at a time
until the reverse of v is found. Throughout it maintains a record of the path by
which the current end has been reached, and uses this record to verify that the
new vertex added is distinct from all previous on the current path. Each step
corresponds to traversing one edge of H in a particular order and no edge is
traversed twice in the same order. Hence, the time complexity of Connect is
O(nk).

In fact, we will rather need a restricted version of Connect, where the con-
necting path is supposed to use, except for the ends u and v, only the vertices
from a specified ,,transfer set” T .

Subroutine ConnectVia

In: k-graph H , a subset T ⊂ V such that for every S ∈ ( V
k−1

)
we have degH(S, T )

≥ (1
2 + γ)|T |, and two (k− 1)-element sequences of distinct vertices from V \ T ,

u = (u1, u2, . . . uk−1) and v = (v1, v2, . . . vk−1)
Out: Path P in H with ends u and v of length at most 2k/γ2 + 2(k − 1) and
such that V (P ) \ (u ∪ v) ⊂ T

In its first 2k − 2 steps ConnectVia moves from u and v to, resp., u′ and v′,
where all vertices of u′ and v′ are in the set T . Then it invokes Connect with
H [T ], u′, and v′ as inputs.

Another subroutine finds a long path in any dense k-graph. It is an algorith-
mic generalization of Claim 6.1 from [17]. For a k-graph F denote by δ>0(F ) the
minimum of degF (S) taken over all S ∈ (V (F )

k−1

)
with degF (S) > 0.

Subroutine LongPath

In: k-graph F with l vertices and m > 0 edges
Out: Path P in F of length at least d := m/

(
l

k−1

)
.

1. V (F ) := V, F ′ := F
2. Find a set S ∈ ( V

k−1

)
for which degF ′(S) = δ>0(F ′);

3. If δ>0(F ′) < d, then F ′ := F ′ \ {e ∈ F ′ : e ⊃ S} and go to Step 2;
4. Greedily find a maximal path P in F ′;
5. Return P .

Observe that at the outset of Step 3 we have degF ′(S) = 0 and so, every set S
is selected in Step 2 at most once. Note also that once we get to Step 4, we have
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F ′ �= ∅ and δ>0(F ′) ≥ d. Hence, any maximal path in F ′ has length at least d.
The time complexity of LongPath is O(lk−1 + m).

3.2 Derandomization

At the heart of our algorithm lies the following procedure based on a simple
probabilistic fact. Let τ > 0, β > τ , and m, N , and r ≤ N , be positive integers.
Set ρ := 2mr/N2.

Algorithm SelectSubset

In: Graph G = (U ∪ W, E) such that

• |U | = M and e(G[U ]) = 0
• |W | = N and e(G[W ]) = m
• minu∈U degG(u) ≥ βN ,

and an integer r, 1 ≤ r ≤ N
Out: Independent set R ⊂ W with (1−ρ)r ≤ |R| ≤ r and minu∈U degG(u, R) ≥
(β − τ − ρ) r.

1. Set U = {u1, . . . , uM}, W = {w1, . . . , wN};
2. R′ := ∅;
3. For k = 1 to r do:

(a) For i = 1 to M and j = 1 to N do:

d′i,j := degG(ui, R
′ ∪ {wj}) and d′′i,j := degG(ui, W \ (R′ ∪ {wj})).

(b) For j = 1 to N do:

e
(0)
j :=e(G[R′∪{wj}]), e(1)

j :=e(G[R′, W\R′]), e(2)
j :=e(G[W\(R′∪{wj})]).

(c) Find wjk
∈ W \R′ such that, with y := 2m(r/N)2,

M∑
i=1

∑
d≤(β−τ)r−d′

i,jk

(d′′
i,jk
d

)(N−k−d′′
i,jk

r−k−d

)(
N−k
r−k

)
+

1
y

(
e
(0)
jk

+ e
(1)
jk

r − k

N − k
+ e

(2)
jk

(r − k)(r − k − 1)
(N − k)(N − k − 1)

)
< 1.

(2)

(d) R′ := R′ ∪ {wjk
}.

4. Remove one vertex from each edge of G[R′] and call the resulting set R.
5. Return R.

Lemma 1. If log M = o(r), then SelectSubset finds the desired set R in time
O(M × poly(N)).
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In the proof we use the following probabilistic fact, which together with Markov’s
inequality implies the existence of the required set R. Algorithm SelectSubset

derandomizes this fact.

Fact 3. Let G be the graph given as an input of SelectSubset. Further, let
R′ be a random subset of W chosen uniformly from

(
W
r

)
, let X be the number

of vertices u ∈ U with degG(u, R′) ≤ (β − τ)r and Y = e(G[R′]). Then

EX = o(1) and EY ≤ m
( r

N

)2
.

Proof. First observe that X =
∑

u∈U Iu, where Iu is the indicator of the event
{degG(u, R′) ≤ (β − τ)r}. Note also that P (Iu = 1) = P (Zu ≤ (β − τ)r), where
Zu is a hypergeometric random variable with parameters N, degG(u), r and that,
by the properties of G, the expectation of Zu is rdegG(u)/N ≥ βr. Thus, by a
Chernoff bound for hypergeometric distributions (see, e.g., [11], Theorem 2.10,
formula (2.6)), EX ≤ Me−Θ(r) = o(1). Finally, by the linearity of expectation,
EY = m

(
N−2
r−2

)
/
(
N
r

) ≤ m(r/N)2.

Proof of Lemma 1: By Fact 3 and the definition of y, EX + EY
y ≤ o(1) + 1

2 < 1.
We can view the selection of R′ as a result of a random process wj1 , . . . , wjr ,
where in step k, a vertex wjk

∈ W is randomly selected without repetitions.
Let αj = E(X |j1 = j)+ EY

y E(Y |j1 = j). Then, by the law of total probability,

EX + EY
y = 1

N

∑N
j=1 αj , and so, there exists an index j such that αj < 1. Take

that index as j1. Repeat until the whole set R′ is selected. Then, E(X |R′) +
1
y E(Y |R′) = X(R′)+ 1

y Y (R′) < 1, which implies that X(R′) = 0 and Y (R′) < y.
This proves that R′, and consequently R, have the desired properties.

Note that the conditional expectations E(X |j1, . . . , jk) and E(Y |j1, . . . , jk)
correspond to the quantities appearing in the expression (2) given in Step 3(c)
of the algorithm.

4 The Algorithm

In this section we prove Theorem 2 by giving the main algorithm HamCycle.
It will be based on two major procedures, AbsorbingPath and AlmostHam-

Cycle which we will describe first.
In order to formulate our main procedures, we need a few definitions from

[16]. We choose 0 < ε < c− 1
2 small enough.

Given a vertex v we say that a (2k − 2)-element sequence of vertices
x = (x1, . . . , x2k−2) is v-absorbing in H if for every i = 1, . . . , k − 1 we have
{xi, xi+1, . . . , xi+k−1} ∈ H (that is, x spans a path in H) and for every i =
1, . . . , k we also have edges {xi, xi+1, . . . , xi+k−2, v} ∈ H . Note that, if x is actu-
ally a segment of a path P and v is not a vertex of P , then the segment x of P
can be replaced by the new segment (x1, . . . , xk−1, v, xk, . . . , x2k−2), absorbing
v onto P .

A path A in H is called absorbing if |V (A)| ≤ 8kεk−1n and for every v ∈ V
there are at least

q := 2k−4ε2kn (3)
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disjoint v-absorbing sequences, each of which is a segment of A. Note that if A
is an absorbing path in H , then for every subset U ⊂ V \ V (A) of size |U | ≤ q
there is a path AU in H with V (AU ) = V (A) ∪ U and such that AU has the
same ends as A.

The idea behind our algorithm is the same as the idea of the existential proofs
in [16] and [17], and can be summarized as follows.

• Find an absorbing path A in H .
• Find a cycle C in H containing A as well as all but at most q vertices of

V (H) \ V (A).
• Extend C to a Hamiltonian cycle of H using the absorbing property of A

with respect to U = V (H) \ V (C).

To build an absorbing path we use Procedure AbsorbingPath and to
build the long cycle – Procedure AlmostHamCycle, both described below.

We are now ready to give our main algorithm which finds a Hamiltonian cycle
in every k-graph with δ(H) ≥ cn, for c > 1

2 .

Algorithm HamCycle

In: n-vertex k-graph H with δ(H) ≥ cn, c > 1
2

Out: Hamiltonian cycle C in H

1. Fix a sufficiently small 0 < ε < c − 1
2 ;

2. Apply AbsorbingPath to H obtaining an absorbing path A;
3. Apply AlmostHamCycle to H with P0 = A, obtaining a cycle C in H of

length at least n − q which contains A;
4. For each vertex v ∈ V \ V (C) do:

(a) Find a v-absorbing sequence x = (x1, . . . , x2k−2) which is a segment of
C;

(b) Replace (x1, . . . , x2k−2) by (x1, . . . , xk−1, v, xk, . . . , x2k−2) and call the
new cycle C;

5. Return C.

It remains to describe how the two procedures used by HamCycle work. By
Claim 3.2 in [16] we know that for every vertex v ∈ V (H) there are at least
2k−2γk−1 v-absorbing sequences in H . In [16] a random selection of (2k − 2)-
sequences was chosen and proved to contain enough v-absorbing sequences for
every v. Here we derandomize this step by invoking SelectSubset.

Procedure AbsorbingPath

In: n-vertex k-graph H with δ(H) ≥ (1
2 + ε)n

Out: Absorbing path A in H

1. Build an auxiliary graph G = (U ∪ W, E), where U = V (H), W is the set
of all (2k − 2)-element sequence of vertices x = (x1, . . . , x2k−2) in H , and E
consists of all pairs v ∈ U,x ∈ W such that x is v-absorbing in H , as well as
of all pairs x,x′ ∈ W which share at least one element;
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2. Apply SelectSubset to G with r = εk+1n, ρ = 8(k−1)2εk+1, and τ = β/2,
to obtain a family F of s ≤ r vertex-disjoint sequences and such that for
each vertex v of H the number of v-absorbing sequences in F is at least
2k−4ε2kn;

3. Use repeatedly ConnectVia to connect all sequences of F into one path A.

Note that in the above application of SelectSubset, M = n, N = (n)(2k−2) ∼
n2k−2, m ≤ (2k−2)2n4k−5, and β = 2k−2γk−1. Thus, SelectSubset does find
a family F as described in Step 2. As the final path A contains all elements of
F as disjoint segments, the absorbing property of A follows.

Our second major procedure constructs in H an almost Hamiltonian cycle
containing any given, not too long path. In [16] this has been done by applying a
weak regularity lemma to H and finding in the cluster k-graph an almost perfect
matching. Then, applying repeatedly the existential analog of LongPath to the
dense and regular clusters, a collection of finitely many paths covering almost
all vertices of H was found. These paths were then connected into a cycle by
applying ConnectVia with a preselected reservoir set R.

That proof can be turned into an algorithm by recalling the algorithmic ver-
sion of the weak hypergraph regularity lemma from [6]. We, however, prefer
to follow the more elementary approach from [17], generalizing it to k-graphs
without any effort.

In fact, the single difficulty in both these approaches was the same: to de-
randomize the selection of a reservoir set R, a small subset of vertices which
reflects the property of the entire hypergraph and can be used to connect paths
during the whole procedure. This step is now derandomized by using algorithm
SelectSubset (Steps 1 and 2 of procedure AlmostHamCycle).

Once we have R which is disjoint from P0, we keep extending P0 in H − R
by little increments until it reaches the desired length. Initially, we extend P0
greedily (Step 3), using the fact that δ(H −R) > n/2. After reaching the length
of n/2, in every step we look at L := V \ (V (P ) ∪ R), where P is the current
path, and consider two cases.

If H [L] is dense we apply LongPath to find a long path P ′ in |H [L]| and
connect it via R using ConnectVia with the transfer set R (Step 5(c)).

If H [L] is sparse then many edges of H have k− 1 vertices in L and one in P .
By averaging, there must be a constant length segment I of P with many such
edges incident to I, and, again by averaging, a subset J ⊂ I with |J | ≥ 4

3k |I|
and whose every vertex is hit by the same set H0 of (k− 1)-tuples from L (Step
5(d)(i)). Next a (k − 1)-partite (k − 1)-clique K is found in H0 and trivially
extended, by adding J , to a k-partite k-clique K ′. Clique K ′ contains a spanning
Hamiltonian path Q whose length is 4

3 |I|. We then cut I out of P and reconnect
the two remaining subpaths, P1 and P2, with Q, obtaining a path longer by
1
3 |I| (Step 5(d)(ii)-(vi)). Finally, when P has grown long enough, we connect
the two ends of P to form the desired cycle. All connections are via R using
ConnectVia.
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For details of the case k = 3 we refer to [17]. Since the general case has not
appeared in the literature yet, we provide here a detailed pseudo-code, followed
by a formal proof of the most crucial steps.

Let D be a large integer, say

D ' n/q = 24−kε−2k,

where q is given by (3).

Procedure AlmostHamCycle

In: n-vertex k-graph H with δ(H) ≥ (1
2 + ε)n and a path P0 in H of length at

most 1
3εn

Out: Cycle C in H such that P0 ⊂ C and |V (C)| ≥ n− q.

1. Build an auxiliary graph G = (U ∪W, E), where U =
(

V
k−1

)
, W = V \V (P0),

and E consists of all pairs S ∈ U, v ∈ W such that S ∪ {v} ∈ H ;
2. Apply SelectSubset to G with r = 1

2q, and τ = ε/6, to obtain a set
R ⊂ V \V (P0) of size |R| = r with the property that degH(S, R) ≥ 1

2 (1+ ε)r
for all S ∈ ( V

k−1

)
.

3. Extend greedily P0 (at one end only) to a path P in H−R of length at least
n/2;

4. Let x be the common end of P0 and P ;
5. While |V (P )| < n − q do:

(a) let y be the end of P other than x;
(b) L := V \ (V (P ) ∪ R), l := |L|;
(c) If |H [L]| > D

(
l

k−1

)
then do:

i. Apply LongPath to H [L] obtaining a path P ′ of length at least D,
disjoint from P .

ii. Apply ConnectVia with γ = 1
3ε and T = R, obtaining a path Q

of length at most 20k/ε2 from y to x′, and thus connecting paths P
and P ′ into a new path PQP ′;

iii. P := PQP ′, R := R \ V (Q);
(d) If |H [L]| ≤ D

(
l

k−1

)
then do:

i. Find (by exhaustive search) a segment (that is, a set of consecutive
vertices) I ⊂ V (P )\(V (P0)∪y), a subset J ⊂ I, and a (k−1)-graph
H0 ∈

(
L

k−1

)
such that |I| = D, |J | = 4

3kD, |H0| ≥ 2−D(1
2 − 4

3k )
(

l
k−1

)
,

and for every e ∈ H0 and every v ∈ J we have e ∪ {v} ∈ H ;
ii. Find (by exhaustive search) a (k−1)-partite, complete (k−1)-graph

K in H0 with all partition classes of size |J |;
iii. Let K ′ be the k-partite, complete k-graph spanned in H by the

partition classes of K and J ;
iv. Take any Hamiltonian path Q in K ′ with ends z and z′;
v. Remove I from P obtaining two disjoint paths P1 ⊃ P0 and P2;
vi. Apply ConnectVia with γ = 1

3ε and T = R, to connect P1, Q, and
P2 together (see Figure 2); call the resulting path P ;
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6. Apply ConnectVia with γ = 1
3ε and T = R, to the ends x and y of P ,

obtaining a path Q of length at most 20k/ε2 from x to y, and thus creating
a cycle C = PQ of length at least n − q;

7. Return C.

x1 x2

z′

Q

Q1 Q2

P2P1

P0

x

z

y

Fig. 2. Illustration to Step 4(d) of procedure AlmostHamCycle

Fact 4. AlmostHamCycle constructs a cycle C in H such that P0 ⊂ C and
|V (C)| ≥ n − q.

Proof. The graph G constructed in Step 1 has parameters M =
(

n
k−1

)
, (1 −

8kεk−1)n ≤ N ≤ n, m = 0, and β ≥ 1
2 + 2

3ε, and so SelectSubset does find a
set R as described in Step 2.

Now we prove that the sets I and J , and a (k − 1)-graph H0 searched for in
Step 5(d)(i) do exist. By estimating the sum

∑
S∈( L

k−1) degH(S) in two ways we
derive the inequality

(1
2 + γ)n

(
l

k − 1

)
≤ kD

(
l

k − 1

)
+ |R ∪ V (P0) ∪ y|

(
l

k − 1

)
+ N,

where N counts the number of edges of H with k−1 vertices in L and one vertex
in V (P ) \ (V (P0) ∪ y). Since |R ∪ V (P0) ∪ y| ≤ 3

4γn, this yields that

N ≥ [(1
2 + 1

4γ)n −O(1)]
(

l

k − 1

)
.

Let Ni be the number of edges of H counted by N , with one vertex in the i-th
D-element segment Ii of V (P )\(V (P0)∪y). Then, with s := |V (P )\(V (P0)∪y)|
we have

s−D+1∑
i=1

Ni ≥ ND −O(1)
(

l

k − 1

)
≥ (1

2 + 1
5γ)n

(
l

k − 1

)
D,

so, by averaging, there exists i such that Ni ≥ 1
2

(
l

k−1

)
D. Let Hi be the (k − 1)-

graph of all S ∈ (
L

k−1

)
with at least 4

3kD neighbors in I := Ii. Then |Hi| ≥
(1
2 − 4

3k )
(

l
k−1

)
. For each J ⊂ I, |J | ≥ 4

3kD, let HJ be the set of those edges of
Hi whose H-neighborhood in I is exactly J . By averaging there exists a set J
such that |HJ | ≥ 2−D|Hi|.
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The existence of a (k−1)-partite, complete (k−1)-graphK in H0 with all parti-
tion classes of size |J | searched for in Step 5(d)(ii) follows by an old result of Erdős
[9], see also [15], Lemma 8. (Recall that |L| > 1

2q.) Note that the initial path P0 has
stayed intact throughout the entire procedure and so, it is contained in C.

Finally, note that the time complexity of AlmostHamCycle is O(poly(n)).
This completes the proof of Theorem 2.
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15. Rödl, V., Ruciński, A., Schacht, M.: Ramsey Properties of Random k-Partite, k-
Uniform Hypergraphs. SIAM J. of Discrete Math. 21(2), 442–460 (2007)
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Abstract. Suppose we have a set of K-dimensional records stored in
a general purpose spatial index like a K-d tree. The index efficiently
supports insertions, ordinary exact searches, orthogonal range searches,
nearest neighbor searches, etc. Here we consider whether we can also effi-
ciently support search by rank, that is, to locate the i-th smallest element
along the j-th coordinate. We answer this question in the affirmative
by developing a simple algorithm with expected cost O(nα(1/K) log n),
where n is the size of the K-d tree and α(1/K) < 1 for any K ≥ 2.
The only requirement to support the search by rank is that each node in
the K-d tree stores the size of the subtree rooted at that node (or some
equivalent information). This is not too space demanding. Furthermore,
it can be used to randomize the update algorithms to provide guar-
antees on the expected performance of the various operations on K-d
trees. Although selection in multidimensional data can be solved more
efficiently than with our algorithm, those solutions will rely on ad-hoc
data structures or superlinear space. Our solution adds to an existing
data structure (K-d trees) the capability of search by rank with very
little overhead. The simplicity of the algorithm makes it easy to imple-
ment, practical and very flexible; however, its correctness and efficiency
are far from self-evident. Furthermore, it can be easily adapted to other
spatial indexes as well.

1 Introduction

Selection is a fundamental computing task: given a collection A of n items drawn
from a totally ordered domain, and a rank i, 1 ≤ i ≤ n, the goal is to retrieve the
i-th smallest item from A. The selection problem can be trivially solved in time
O(n log n) by sorting A, but it can be solved more efficiently in either expected
linear time [1] or worst-case linear time [2].

Suppose that the collection A is stored in some balanced (or unbalanced)
binary search tree. Then we can dynamically mantain the collection, supporting
both updates and searches in (expected) time O(log n), but we can also support
selection in (expected) time O(log n) quite easily. We will only need to augment
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the data structure so that each node stores the size of the subtree rooted at that
node. This is a very modest price to pay. In fact, the information about subtree
sizes can be used advantageously to balance the tree, either probabilistically [3]
or deterministically [4]. Hence, we might argue that adding the capability of
searching or deleting items by rank comes at no cost.

When dealing with multidimensional point data, we also face frequently the
need to sort the data according to one of the coordinates or to find the i-th
smallest element along some given coordinate. Those problems can be solved like
in the unidimensional case in time O(n log n) and O(n), respectively. But it is
natural to question if we can do better when the collection of multidimensional
points is stored in a data structure like a K-d tree [5] or a quadtree [6] (see
also [7,8] for background on multidimensional data structures).

Here we show that we can select the i-th point along a given coordinate j,
0 ≤ j < K, in expected sublinear time, when the collection of K-dimensional
points is stored in a K-d tree. More specifically, for a collection of n points, we can
find the answer in expected time O(nα(1/K) log n), where α(x) is a function that
depends on the type of K-d tree we use. Furthermore, the exponent α(x) < 1 for
all x ∈ (0, 1), with α(x) → 1 as x → 0 (that is, when 1/x = K →∞). Although
better performance for rank search in multidimensional data can be obtained
(using more than linear space, for instance), we stress here that our solution
adds efficient rank search to general purpose multidimensional data structures
like K-d trees or quadtrees, with only a modest increase of space, namely, storing
the size of the subtree rooted at each node. Thus the total space comsumption
remains linear in n. Like in the case of ordinary “unidimensional” binary search
trees, the information about subtree sizes can be used to randomize the inser-
tion and deletion in K-d trees, thus guaranteeing the expected time bounds of
several operations like ordinary search, partial match search, orthogonal range
search and nearest neighbor search, even when the dynamic updates are not
random [9,10].

Section 2 briefly summarizes the standard K-d trees and several of its vari-
ants, the probabilistic model that will be used in the sequel, and recalls a few
important previous results, e. g., the expected cost of partial match search in
K-d trees. Then we describe in Sect. 3 the main contribution of this paper, the
algorithm to find the i-th smallest element of a K-d tree T along the j-th coor-
dinate. The following section, Sect. 4, is devoted to the analysis of the expected
cost of the algorithm, and we prove there that this cost is sublinear for any K.
Sect. 5 reports the results of several experiments that we have conducted. The
results match very well the predictions of the theoretical analysis in Sect. 4.

2 Preliminaries

A K-dimensional search tree T (K-d tree, for short) of size n ≥ 0 stores a set
of n K-dimensional records, each holding a key x = (x0, . . . , xK−1) ∈ D, where
D = D0 × · · · × DK−1, and each Dj is a totally ordered domain. The K-d tree
T is a binary tree such that:
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– Either it is empty and n = 0, or
– Its root stores a record with key x and has a discriminant j, 0 ≤ j < K, and

the remaining n − 1 records are stored in the left and right subtrees of T ,
say L and R, in such a way that both L and R are K-d trees; furthermore,
for any key u ∈ L, it holds that uj ≤ xj , and for any key v ∈ R, it holds
that xj < vj .

We will assume without loss of generality that D = [0, 1]K . We will also use the
notation 〈x, j〉 to refer to a node that contains the key x and the discriminant j.

A K-d tree of size n induces a partition of the domain D into n + 1 regions,
each corresponding to a leaf in the K-d tree. The bounding box of a node z is
the region of the space associated to the leaf replaced by z when it was inserted
into the tree. Thus, the bounding box of the root 〈x, j〉 is [0, 1]K , the bounding
box of the root of the left subtree is [0, 1]× · · · × [0, xj ]× · · · × [0, 1], and so on.

Different variants of K-d trees have been proposed so far; many differ in the
way the discriminants are assigned to nodes. In the original or standard K-d
trees by Bentley [5] the root of the tree gets discriminant 0, the nodes in the
first level get discriminant 1, and so on, in a cyclic fashion. Notice that, since
there is a fixed, data-independent rule, to assign discriminants to nodes, there is
no need to explicitly store the discriminants. Much later Duch et al. [9] proposed
relaxed K-d trees, where each node is assigned a random discriminant, uniform
and independently drawn from {0, . . . , K−1}. The squarish K-d trees of Devroye
et al. [11] try to get a more balanced partition of the space by discriminating
along the coordinate for which the bounding box of the node is more elongated.
We will consider along the paper the two first variants mentioned above, as
representative variants of K-d trees.

Because of their definition, the insertion and search algorithms for K-d trees
are straightforward, and we will not give here the details. Insertions work iden-
tically in the three variants, except in the way discriminants are assigned to
newly inserted nodes. We also mention here two other algorithms, common
to all variants of K-d trees. In partial match search we are given a pattern
q = (q0, . . . , qK−1) where qj ∈ [0, 1] or qj = ⊥, for 0 ≤ j < K. Coordinates such
that qj �= ⊥ are called specified, otherwise they are called unspecified ; we assume
that the number s of specified coordinates satisfies 0 < s < K. The goal of the
partial match search is to retrieve all points in the K-d tree that match the
pattern q, that is, the points x such that xj = qj whenever qj �= ⊥. To perform a
partial match the K-d tree is recursively explored. First, we check whether the
root matches or not the pattern, to report it in the former case. Then, if the root
discriminates with respect to an unspecified coordinate, we make recursive calls
in both subtrees. Otherwise, if the root containing x discriminates with respect
to a specified coordinate j we continue recursively in the appropriate subtree,
depending on whether qj ≤ xj or xj < qj . The other algorithm is orthogonal
range search. The input to the algorithm is a K-d tree T and a K-dimensional
rectangle Q = [�0, u0] × · · · × [�K−1, uK−1], and the goal is to retrieve all the
points in T that lie within Q. The algorithm is very similar to partial match
search; the recursion proceeds into one of the subtrees if the root stores 〈x, j〉
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and xj < �j or uj < xj ; otherwise we have to make recursive calls in both
subtrees and check if x does actually fall inside Q or not.

We now turn our attention to the probabilistic model that we will use later in
Sect. 4, when analyzing the expected performance of our algorithm. We say that
a K-d tree built from a given set of n keys is random if it is built with identical
probability from any of the n! possible input sequences. The discriminants must
be assigned according to a fixed rule (standard, squarish K-d trees) or at random
(relaxed K-d trees). As a consequence, a K-d tree T of size n is random if and
only if it is either empty (n = 0), or if its left and right subtrees, L and R, are
independent random K-d trees of sizes � and n− 1 − �, respectively, with

Pr [|L| = � | |T | = n] =
1
n

,

for any 0 ≤ � < n.
There is another equivalent, alternative formulation of the probabilistic model

above which is also useful. A random K-d tree of size n is built by n successive
random insertions in a initially empty K-d tree. An insertion in a random K-d
tree of size n is random if it has the same probability to fall in any of the n + 1
leaves of the tree. Thus the insertion of n points independently drawn from a
continuous distribution in [0, 1]K into an initially empty K-d tree will produce
always a random K-d tree.

The probabilistic model for random K-d trees is equivalent, as far as the
shape of trees are concerned, to the probabilistic model of binary search trees. It
follows then that the expected cost of insertions and the expected cost of exact
searches is Θ(log n) (see, for instance, [12]).

On the other hand, the expected cost of a partial match search with s random
specified coordinates in a random K-d tree of size n is

Pn = βqn
α(s/K) +O(1), 0 < s < K, (1)

where βq is a constant that might depend on the alternance of specified and
unspecified coordinates in the pattern q, and α(x) is a function depending on
the type of K-d tree that we consider. In all cases, 1 − x ≤ α(x) ≤ 1 for
x ∈ [0, 1] with α(x) < 1 if x > 0 and α → 1 as x → 0. For squarish K-d trees
α(x) = 1 − x [11], for relaxed K-d trees α(x) = (

√
9 − 8x − 1)/2 [9,13] and for

standard K-d trees α(x) = 1 − x + φ(x) [14,15], where φ = φ(x) is the unique
solution in [0, 1] of (φ + 3 − x)x(φ + 2 − x)1−x − 2 = 0.

For instance, for standard K-d trees, α(1/2) ≈ 0.561, α(1/3) ≈ 0.716 and
α(1/4) ≈ 0.790. For relaxed K-d trees, we have α(1/2) ≈ 0.618, α(1/3) ≈ 0.758
and α(1/4) ≈ 0.823.

The expected cost of orthogonal range search comes as a combination of
partial match costs [16,17]. The query rectangle Q induces a division of the
space into 2K regions, which can be indexed with bitstrings of length K.
The query rectangle itself is the region R00...0. By extending Q along each
one of the K coordinates and then substracting Q, we obtain K regions
R100...0, R010...0, . . . , R00...01. By extending Q along two coordinates and then



678 A. Duch, R.M. Jiménez, and C. Mart́ınez

substracting Q and all regions of the previous step, we obtain the regions
R00...011, . . . , R110...0, and so on. Denoting pw the probability that a point falls
in region Rw when the point is drawn from the continuous distribution in [0, 1]K

used to build the random K-d tree, and the center of the query is also drawn
using the same distribution, the expected cost of an orthogonal range search
is [17]

Sn = p00···0 · n + 2p11...1 · log n +
K−1∑
j=1

∑
w:w has j ones

βwpwnα(j/K) +O(1), (2)

The probabilities pw will depend on the dimensions Δ0, . . . , ΔK−1 of the query
Q and can be thought of as the “volumes” of the corresponding regions. For
instance, if the data points and the center of the queries are uniformly distributed
in [0, 1]K then

pw =

( ∏
i:wi=0

Δi

)
·
( ∏

i:wi=1

(1 −Δi)

)
.

For the particular case where the query hyperrectangle is a slice Q = [0, 1]×
[0, 1]× · · · × [�j, uj ]× [0, 1]× · · · × [0, 1] the expected cost reduces to

Sn = p · n + β000...1...0 · (1 − p) · nα(1/K) +O(1), (3)

since all regions except R00...0 = Q and R00...1...0 are empty. Here we use p for
the probability that a random point falls inside the slice; the first term is thus
the expected number of points that fall inside the slice.

3 The Algorithm

We present now the algorithm to find the i-th smallest point along the coordinate
j, 0 ≤ j < K, in a K-d tree T . The algorithm has three main steps. In the first
step, it does a breadth-first traversal of the tree T using a queue Q of pointers
to nodes. This first step can also be easily formulated using a recursive preorder
traversal of the tree.

During the first step, at any of its iterations, we have a current subtree t
and two values low and high with the guarantee that the j-th coordinate of
the sought element is between those two values. The purpose of the first step is
either to locate the i-th point along the j-th coordinate—and we would be then
done—or to return a reasonably “thin” slice defined by low and high that must
contain the sought element. If the sought element is not found during the first
phase, the algorithm performs a convential orthogonal range search to find all
the points within the slice [low, high]. Finally, the third step finds the sought
element using a standard selection algorithm applied to the elements returned
by the second step.

We give now a detailed description of the first step. If the current subtree t
discriminates with respect to j′ �= j, then the sought element could be eventually
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Algorithm 1. The first phase of multidimensional selection

kdt kdselect (kdt T, int i, int j) {

queue <kdt > Q; Q.push(T);

double low = 0.0;

double high = 1.0;

bool found = false;

kdt t;

while (not Q.empty() and not found) {

t = Q.pop(); if (t == NULL) continue ;

if (t -> discr != j) {

Q.push(t -> left ); Q.push(t -> right);

} else { / / t - > d i s c r = = j

double z = t -> key[j];

if (low <= z and z <= high) {

int r = below(z, j, T);

if (i < r) high = z;

else if (i > r) low = z;

else found = true ;

}

if (z <= low) Q.push(t -> right);

if (z >= high) Q.push(t -> left );

}

}

if (found) return t;

...

}

found in any of its subtrees; therefore, nothing useful can be inferred and both
subtrees of t are enqueued for further processing in later iterations. If, on the
other hand, the root of t contains 〈x, j〉, then we have to consider three possi-
bilities. If xj < low then none of the elements in the left subtree of t can be the
sought element; therefore, we enqueue the right subtree of t only. Similarly, if
high < xj then the right subtree of t can be pruned, and we need only to explore
(part of) the left subtree of t. Finally, if low ≤ xj ≤ high then we compute how
many points in the collection, that is, in T , have coordinate j less than or equal
to xj . This is done using the procedure below. Let r be that number. Then if
i = r the root of t is the sought element. If i < r then the sought element might
be in the left subtree of t but not in its right subtree, thus we push only the
left subtree of t into the queue. Furthermore, the j-th coordinate of the sought
element must be less than or equal to xj , hence we set high := xj . If i > r then
the sought element cannot be in the left subtree of t, and we enqueue the right
subtree of t; additionally, we set low := xj , since the j-th coordinate of the i-th
element must be greater than or equal to xj . This first part of the algorithm is
given in Algorithm 1. Figure 1 illustrates a standard K-d tree with K = 2, the
partition of [0, 1]2 that it induces, and the outcome (the shaded slice) of the first
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Fig. 1. An example of K-d tree and the execution of Algorithm 1

step of kdselect when looking for the 11-th smallest element along coordinate
1 (the y-axis). Note that the labels of the items in the figure only indicate the
order of insertion.

To complete our description of the first step, we now draw our attention to the
procedure below. It is a simple variation of partial match (see Algorithm 2). The
algorithm uses the sizes of subtrees that we store at each node. Using this stored
information is essential to avoid computation and thus to achieve a reasonable
expected performance. We assume, for convenience, that each node stores its
rank relative to its bounding box and the discriminating coordinate, that is, the
size of its left subtree plus one.

If the tree is empty we return 0. Otherwise, if the root of T discriminates with
respect to a coordinate different from j, we count recursively how many points
there are below the given line in both subtrees. We also add one if the root itself
meets the condition xj ≤ z. If the root of T discriminates with respect to j then
we have to continue counting recursively in only one of the subtrees. Note that
if xj ≤ z then we count how many points are below z in the right subtree, as all
the points in the left subtree and the root itself are below z. We avoid making
any traversal of the left subtree since its root stores the corresponding size.

4 Analysis

For our analysis of kdselect, we will consider that the input K-d tree is random,
that the given rank i is random, namely, uniformly distributed in {1, . . . , n}, and
that the given coordinate j is also uniformly chosen from {0, . . . , K − 1}.

The analysis of the expected performance of kdselect is based upon the fol-
lowing ingredients, which we will later prove formally:

1. The number of visited nodes in the main loop of kdselect is at most the
number of nodes that we would visit in an orthogonal range search to locate
the points that lie within the slice defined by [low, high].
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Algorithm 2. Below counts how many points in T have coordinate j less than z

int below( double z, int j, kdt T) {

if (T == NULL) return 0;

if (T -> discr != j) {

int c = (T -> key[j] <= z) ? 1 : 0;

return below(z, j, T -> left) +

below(z, j, T -> right) + c;

} else {

if (z < T -> key[j])

return below(z, j, T -> left );

else

return T -> rank + below(z, j, T -> right);

}

}

2. The expected cost of a call to below is that of a partial match query with a
single specified coordinate (the j-th).

3. The expected number of calls to below is O(log n).
4. If the i-th smallest element along coordinate j discriminates along coordinate

j, it will be found during the first step; otherwise, the first step will report
the smallest slice [low, high] that contains the i-th element along the j-th
coordinate and no interior point discriminating along coordinate j.

5. If the first step of kdselect does not find the sought element, then the expected
number of points in [low, high] is Θ(1).

Before going on with a formal proof of each of the statements above, we discuss
now how they affect the overall expected performance of kdselect. The expected
cost of the first phase will have two contributions, one coming from the calls
to below, the other from the main loop. From the items 2 and 3 above, and
since the expected cost of a partial match (1) is Θ(nα(1/K)), it follows that the
first contribution is O(nα(1/K) log n). For the second contribution, we deduce
from items 1 and 5 and (3) that it is Θ(nα(1/K)). In total, the first step of
the algorithm has expected cost O(nα(1/K) log n). The second and third steps
are only necessary if the i-th element has not been found (this happens1 with
probability (K − 1)/K, when it does not discriminate with respect to j). The
second step is an orthogonal range search for points falling in the slice [low, high]
and has expected cost Θ(nα(1/K)). The third and last step is an ordinary selection
algorithm applied to the points found in the previous step; since the expected
number of points within the slice is Θ(1) (item 5), this part has expected cost
Θ(1). Summing up everything we conclude with the following theorem.

1 Actually, for variants of K-d trees such as standard and relaxed K-d trees; in general,
for any variant which does not exhibit a bias in the distribution of the coordinates
assigned to the discriminants.
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Theorem 1. The expected cost to select the i-th smallest element along coor-
dinate j in a K-d tree of size n is O(nα(1/K) log n), where α(x) is a function
depending on the variant of K-d tree used, such that 1 − x ≤ α(x) ≤ 1 for all
x ∈ [0, 1]. Furthermore, α(x) < 1 for all x > 0, and α(x) → 1 as x → 0.

We now prove the key five statements above. For the first statement, relating
the number of iterations of the first phase and the cost of an orthogonal range
search, the proof relies in the fact that a node x in a K-d tree is visited during
an orthogonal range search with query Q if and only if Q and the bounding
box of x intersect [16,17]. Let �0 = 0, �1, . . . , �r be the sequence of values
assigned to the variable low along the execution of Algorithm 1 and similarly,
h0 = 1, h1, . . . , hr′ for the values of high. Suppose t = 〈x, j′〉 is the current
node, and that its bounding box intersects [�r, hr′ ]. Suppose also that at that
iteration low = �m and high = hm′ . If j′ �= j both subtrees of t will be visited (if
they are non-empty) and their corresponding bounding boxes intersect [�r, hr′ ].
If j′ = j and xj < low = �m then only the right subtree of t will be visited.
Since �m ≤ �r, the bounding box of the right subtree of t does intersect [�r, hr′ ],
whereas the bounding box of the left subtree of t does not. For the case where
high = hm′ < xj , we have that the left subtree is visited and its bounding box
intersects [�r, hr′ ], and the right subtree is not visited and its bounding box does
not intersect [�r, hr′ ]. Finally, if low ≤ xj ≤ high we will update either low or
high (or finish because we find the sought element). If we have not yet finished,
the new current [low, high] contains the final [low, high] slice, that is, [�r, hr′ ],
and we apply the same reasoning as above. The basis of this inductive proof is
provided by the root of the tree, whose bounding box [0, 1]K obviously intersects
the slice [�r, hr′ ].

The second statement, that the cost of below is that of a partial match is also
very easy to prove. The algorithm below behaves exactly as a partial match with
a query pattern q = (⊥,⊥, . . . , z,⊥ . . .), where only the j-th coordinate of q is
specified.

For the third statement, where we claim that the expected number of calls to
below is O(log n) we reason as follows. Consider the points whose j-th coordi-
nate is smaller than or equal to that of the element for which we set the final
value of low. Of those, only the points whose bounding box intersects [low, high]
will be visited. Furthermore, only a fraction 1/K (on average, see the remarks
in the footnote of the previous page) of them discriminate with respect to j, so
eventually a call to below will be made when visiting them. Since the K-d tree
is random, the sequence of j-th coordinates of these points will form a random
permutation of [1, . . . , N ], where N ≤ n is the number of points discriminating
with respect to j, whose bounding box intersects [low, high] and such that its
j-th coordinate is less than or equal to low. Each call to below to update the
value of low corresponds to a left-to-right maxima in that permutation, and it
is well-known (see for instance [12]) that the expected number of left-to-right
maxima in a random permutation of size N is Θ(log N). Analogously, each call
to below to update the value of high corresponds to a left-to-right minima in
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the random permutation induced by the sequence of j-th coordinates larger or
equal to high, for visited points discriminating with respect to j.

The fourth statement says that if the sought element discriminates with re-
spect to the given coordinate j, then it will be found; otherwise, the first phase
of the algorithm will terminate returning the slice [low, high] that contains the
sought element. The last part follows by design of the algorithm: the invariant of
the iteration guarantees that the sought element lies within the slice [low, high].
On the other hand, the bounding box of the sought elements always intersects
[low, high] so, if it discriminates with respect to j, sooner or later it will be
visited and its rank will be computed using below.

The last statement establishes that the expected number of points within
the slice is Θ(1), when the sought element is not found by the first step of
kdselect. By item 4, the sought element does not discriminate with respect to j.
Moreover, low and high are the j-th coordinates of two points, say u and v, that
discriminate with respect to j; all points properly falling within [low, high] have
been visited but do not discriminate with respect to j. The expected number of
points in the slice is the number of points that we see when we start from the
j-th coordinate of the sought element and go towards low = uj , plus the number
of points that we see when we go towards high = vj . These points that we count
must not discriminate with respect to j. Since the probability that a point does
not discriminate with respect to j is (K − 1)/K, the expected number of points
within the slice in either direction is K, including the two points discriminating
with respect to j that define the boundaries of the slice. In total, the expected
number of points is 2K + 1.

5 Experiments

To corroborate the analysis of kdselect we have performed a preliminary set of
experiments in two diferent variants of K-d trees (standard and relaxed).

For every dimension going from K = 2 to K = 4, we generate M K-d trees
of size n, with n going from 1000 to 50000 with a step of 1000 elements. In each
tree we look for the i-th element (with i going from 1 to n with a step of n/100)
in each of the K possible coordinates (going from 0 to K − 1). For each tree we
count the total number of visited nodes in the main loop of kdselect, the number
of calls to function below and the number of points lying in interval [low, high]
and take the corresponding averages.

Figure 2 contains the experimental results regarding the total number of vis-
ited nodes in the main loop of kdselect. In particular, we plot the ratio of the
number of visited nodes to nα(1/K), so the figures exhibit the convergence of the
ratio to a constant factor as n grows.

The number of calls to below can be found in Fig. 3; we actually plot the
number of calls to below minus 2 logn, which converges to a constant factor
depending on K. Our analysis of the previous section can be refined to show
that the expected number of calls to below when the rank is chosen at random
is 2 log n +O(1), as the experiment corroborates.



684 A. Duch, R.M. Jiménez, and C. Mart́ınez
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Fig. 2. Number of visited nodes in the main loop of Algorithm 1 divided by nα(1/K),
for standard (left) and relaxed (right) K-d trees
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Fig. 3. Number of calls made to Algorithm 2 (below) minus 2 log n in standard (left)
and relaxed (right) K-d trees
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Fig. 4. Number of points within interval [low, high] in in standard (left) and relaxed
(right) K-d trees

Finally, Fig. 4 shows the number of points contained in the interval [low, high].
The experiments confirm very well the predicted value 2K + 1, that does not
depend on the variant of K-d trees considered.
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Abstract. The working-set bound [Sleator and Tarjan, J. ACM, 1985]
roughly states that searching for an element is fast if the element was
accessed recently. Binary search trees, such as splay trees, can achieve
this property in the amortized sense, while data structures that are not
binary search trees are known to have this property in the worst case. We
close this gap and present a binary search tree called a layered working-
set tree that guarantees the working-set property in the worst case. The
unified bound [Bădoiu et al., TCS, 2007] roughly states that searching
for an element is fast if it is near (in terms of rank distance) to a re-
cently accessed element. We show how layered working-set trees can be
used to achieve the unified bound to within a small additive term in
the amortized sense while maintaining in the worst case an access time
that is both logarithmic and within a small multiplicative factor of the
working-set bound.

1 Introduction

Let S be a set of keys from a totally ordered universe and let X be a sequence
of elements from S. Typically, one is required to store elements of S in some
data structure D such that accessing the elements of S using D in the order
defined by X is “fast.” Here, “fast” can be defined in many different ways, some
focusing on worst case access times and others on amortized access times. For
example, the search times of splay trees [9] can be stated in terms of the rank
difference between the current and previous elements of X ; this is the dynamic
finger property [4,5].

If x is the i-th element of X , we say that x is accessed at time i in X . The
working-set number of x at time i, denoted wi(x), is the number of distinct
elements accessed since the last time x was accessed or inserted, or |D| if x is
either not in D or has not been accessed by time i.

The working-set property states the time to access x at time i is O(lg wi(x)).1

Splay trees were shown by Sleator and Tarjan [9] to have the working-set prop-
erty in the amortized sense. One drawback of splay trees, however, is that most of
the access bounds hold only in an amortized sense. While the amortized cost of a
query can be stated in terms of its rank difference between successive queries or
� This research was partially supported by NSERC and MRI.
1 In this paper, lg x is defined to be log2(x + 2).

A. López-Ortiz (Ed.): LATIN 2010, LNCS 6034, pp. 686–696, 2010.
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the number of distinct queries since a query was last made, any particular opera-
tion can take Θ(n) time. In order to address this situation, attention has turned
to finding data structures that maintain the distribution-sensitive properties of
splay trees but guarantee good performance in the worst case.

The data structure of Bădoiu et al. [2], called the working-set structure, guar-
antees this property in the worst case. However, this data structure departs from
the binary search tree model and is instead a collection of binary search trees
and queues.

Bădoiu et al. [2] also describe a data structure called the unified structure that
achieves the unified property, which states that searching for x at time i takes time
O(miny∈S lg(wi(y) + d(x, y))) where d(x, y) is the rank difference between x and
y. Again, this data structure is not a binary search tree. The skip-splay algorithmof
Derryberry and Sleator [7] fits into the binary search tree model and comes within
a small additive term of the unified bound in an amortized sense.

Our Results. We present a binary search tree that is capable of searching for
a query x in worst-case time O(lg wi(x)) and performs insertions and deletions
in worst-case time O(lg n), where n is the number of keys stored by the tree
at the time of the access. This fills in the gap between binary search trees that
offer these query times only in an amortized sense and data structures which
guarantee these query times in the worst-case but do not fit in the binary search
tree model. We have also shown how to use this binary search tree to achieve
the unified bound to within a small additive term in the amortized sense while
maintaining in the worst case an access time that is both logarithmic and within
a small multiplicative factor of the working-set bound. Due to space constraints,
proofs have been omitted; full proofs can be found in the technical report [3].

1.1 The Working-Set Structure

The working-set structure of Bădoiu et al. [2] maintains a dynamic set under
the operations Insert, Delete and Search. Denote by Si ⊆ S the set of keys
stored in the data structure at time i.

The structure is composed of t = O(lg lg |Si|) balanced binary search trees
T1, T2, . . . , Tt and t doubly linked lists Q1, Q2, . . . , Qt. For any 1 ≤ j ≤ t, the
contents of Tj and Qj are identical, and pointers (in both directions) are main-
tained between their common elements. Every element in the set Si is contained
in exactly one tree and in its corresponding list. For j < t, the size of Tj and Qj

is 22j

, whereas the size of Tt and Qt is |Si| −
∑t−1

j=1 22j ≤ 22t

.
The working-set structure achieves its stated query time of O(lg wi(x)) by

ensuring that an element x with working-set number wi(x) is stored in a tree
Tj with j ≤ �lg lg wi(x). Every list Qj orders the elements of Tj by the time of
their last access, starting with the youngest (most recently accessed) and ending
with the oldest (least recently accessed).

Operations in the working-set structure are facilitated by an operation called
a shift. A shift is performed between two trees Tj and Tk. Assume j < k, since
the other case is symmetric. To perform a shift, we begin at Tj. We look in Qj
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to determine the oldest element and remove it from Qj and delete it from Tj .
We then insert it into Tj+1 and Qj+1 (as the youngest element) and repeat the
process by shifting from j + 1 to k. This process continues until we attempt
to shift from one tree to itself. Observe that a shift causes the size of Tj to
decrease by one and the size of Tk to increase by one (although the contents of
intermediate trees change).

To search for an element x, we search sequentially in T1, T2, . . . until we find
x or search all of the trees and fail to find x. If x /∈ Tj for any j, then we will
search every tree at a total cost of O(lg |Si|) and then report that x is not in the
structure. Otherwise, assume x ∈ Tj. We delete x from Tj and Qj and insert it in
T1 and place it at the front of Q1. We then perform a shift from 1 to j to restore
the sizes of the trees and lists. The time required for a search is dominated by
the search time in Tj . Observe that if x ∈ Tj and j > 1, then it must have
been removed as the oldest element from Qj−1, and so wi(x) ≥ 22j−1

. Thus, the
search time is O(lg wi(x)).

Insertions are performed by inserting the element into T1 and Q1 (as the
youngest element) and shifting from 1 to t (possibly creating a new tree) at
total cost O(lg |Si|). Deletions are performed by first searching for the element
to be deleted. Once found, say in Tj, it is removed from Tj and Qj and a shift
from t to j is performed at total cost O(lg |Si|). If the last tree becomes empty,
it can be removed.

2 The Binary Search Tree

In this section, we describe a binary search tree that has the working-set property
in the worst case.

Model. Recall the binary search tree model of Wilber [11]. Each node of the tree
stores the key associated with it and has a pointer to its left and right children
and its parent. The keys stored in the tree are from a totally ordered universe
and are stored such that at any node, all of the keys in the left subtree are less
than that stored in the node and all of the keys in the right subtree are greater
than that stored at the node. Furthermore, each node may keep a constant2

amount of additional information called fields, but no additional pointers may
be stored. To perform an access to a key, we are given a pointer initialized to the
root of the tree. An access consists of moving this pointer from a node to one of
its adjacent nodes (through the parent pointer or one of the children pointers)
until the pointer reaches the desired key. Along the way, we are allowed to update
the fields and pointers in any nodes that the pointer reached. The access cost is
the number of nodes reached by the pointer.

2.1 Tree Decomposition

Our binary search tree T will adapt the working-set structure described in the
previous section to the binary search tree model. At a high level, our binary
2 By standard convention, O(lg |Si|) bits are considered to be “constant.”
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search tree layers the trees T1, T2, . . . , Tt of the working-set structure together
to form T , and then augments nodes with enough information to recover which
is the oldest in each tree at any given time.

Consider a labelling of T where each node x ∈ T has a label from {1, 2, . . . , t}
such that no node has an ancestor with a label greater than its own label.
This labelling partitions the nodes of T . We say that the nodes with label j ∈
{1, 2, . . . , t} form a layer Lj. Observe that layer Lj can be connected to any
layer Lk with k > j. A layer Lj will play the same role as Tj in the working-set
structure. Like Tj, Lj contains exactly 22j

elements for j < t, and Lt contains
the remaining elements. Unlike Tj , Lj is typically a collection of subtrees of T .
We refer to a subtree of a layer Lj as a layer-subtree. Every node x ∈ T stores as
a field the value j such that x ∈ Lj which we denote by layer[x]. We also record
the total number of layers t and the size of Lt at the root as fields of each node.

Each layer-subtree T ′
j ∈ Lj is maintained independently as a tree that guar-

antees that each node of T ′
j has depth in T ′

j at most O
(
lg |T ′

j |
)

= O(lg |Lj |) (e.g.,
a red-black tree [1,8]). Balance criteria are applied only to the elements within
a single layer-subtree.

Our first observation concerns the depth of a node in a given layer.

Lemma 1. The depth of a node x ∈ Lj is O
(
2j
)
.

The main obstacle in creating our tree comes from the fact that the core opera-
tions are performed on subtrees rather than trees, as is the case for the working-
set structure. Consequently, standard red-black tree operations cannot be used
for the operations spanning more than one layer as described in Section 2.3.
We break the operations into those restricted to one layer, those spanning two
neighbouring layers, and finally those performed on the tree as a whole. These
operations are described in the following sections.

Another difficulty arises from having to implement the queues of the working-
set structure in the binary search tree model. The queues are needed to determine
the oldest element in a layer at any given time. We encode the linked lists in
our tree as follows. Each node x ∈ Lj stores the key of the node inserted into
Lj directly before and after it. This information is stored in the fields older[x]
and younger[x], respectively. We also store a key value in the field nextlayer[x].
If x is the oldest element in layer Lj, then no element was inserted before it
and so we set older[x] = nil. In this case, we use nextlayer[x] to store the key of
the oldest element in layer Lj+1. Similarly, if x is the youngest element in layer
Lj, then no element was inserted after it and so we set younger[x] = nil and use
nextlayer[x] to store the key of the youngest element in layer Lj+1. If x is neither
the youngest nor the oldest element in Lj, then we have nextlayer[x] = nil.

Before we describe how operations are performed on this binary search tree,
we must make a brief note on storage. Each node x stores three pointers (parent
and children) and a key. The root also maintains the number of trees t and
the size of Lt. In addition, we must store balance information (one bit for red-
black trees) and three additional key values (exactly one of which is nil): older[x],
younger[x] and nextlayer[x]. If keys are assumed to be of size O(lg n), then our
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structure fits the binary search tree model described earlier. Note that we are
storing key values, not pointers. Given a key value stored at a node, we do not
have a pointer to it, so we must search for it by performing a standard search
from the root of the tree. If keys have size ω(lg n), it is true that we use more
than O(lg n) additional space per node. However, since every node would then
store a key of size ω(lg n), we are only increasing the size of a node by a constant
factor.

2.2 Intra-layer Operations

Within a layer, we need notions of restoring balance after insertions and deletions
and of splitting and joining. We will state these operations and the required time
bounds, and then show how red-black trees [1,8] can be used to fulfill this role.
Any binary search trees that meets the requirements of each operation could also
be used. Layer-subtrees must also ensure that their operations do not leave the
layer-subtree; this can be done by checking the layer number of a node before
visiting it.

Intra-layer operations rearrange layer-subtrees in some way. Observe that
layer-subtrees hanging off a given node are maintained even after rearranging
the layer-subtree, since the roots of such layer-subtrees can be viewed as the
results of unsuccessful searches. Therefore, when describing these operations, we
need not concern ourselves with explicitly maintaining layer-subtrees below the
current one.

Consider a node x in a layer-subtree T ′
j of Lj.

Insert-FixUp(x). This operation is responsible for ensuring that each node of
T ′

j has depth O
(
lg |T ′

j|
)

after the node x has been inserted into the layer-subtree.
For red-black trees, this operation is precisely the RB-Insert-Fixup operation
presented by Cormen et al. [6, Section 13.3]. Although the version presented
there does not handle colouring x, it is straightforward to modify it to do so.

Delete-FixUp(x). This operation is responsible for ensuring that each node
of T ′

j has depth O
(
lg |T ′

j |
)

after a deletion in the layer-subtree. The exact node
x given to the operation is implementation dependent. For red-black trees, this
operation is precisely the RB-Delete-Fixup operation presented by Cormen et
al. [6, Section 13.4]. In this case, the node x is the child of the node spliced out
by the deletion algorithm; we will elaborate on this when describing the layer
operations in Section 2.3.

Split(x). This operation will cause the node x ∈ T ′
j to be moved to the root

of T ′
j . The rest of the layer-subtree will be split between the left and right side

of x such that each side is independently balanced and thus guarantee depth
O
(
lg |T ′

j |
)

of their respective nodes; this may mean that the layer-subtree is no
longer balanced as a whole. For red-black trees, this operation is described by
Tarjan [10, Chapter 4], except we do not destroy the original trees, but rather
stop when x is the root of the layer-subtree.
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Join(x). This operation is the inverse of Split(x): given a node x ∈ T ′
j , we will

restructure T ′
j to consist of x at the root of the T ′

j and the remaining elements in
subtrees rooted at the children of x such that all nodes in the layer-subtree have
depth O

(
lg |T ′

j |
)
. For red-black trees, this operation is described by Cormen et

al. [6, Problem 13-2].

Lemma 2. When red-black trees are used as layer-subtrees, the operations
Insert-FixUp(x), Delete-FixUp(x), Split(x) and Join(x) can be imple-
mented to take worst-case time O

(
2j
)

for a node x ∈ Lj.

2.3 Inter-layer Operations

The operations performed between layers correspond to the queue and shift op-
erations of the working-set structure. The four operations performed on layers are
YoungestInLayer(Lj)andOldestInLayer(Lj) fora layerLj andMoveUp(x)
and MoveDown(x) for a node x. Only the operationMoveDown(x) will require
knowledge of the implementation of the layer-subtrees; the remaining operations
simply make use of the operations defined in Section 2.2.

YoungestInLayer(Lj). This operation returns the key of the youngest node
in layer Lj . We first examine all elements in L1 (of which there are O(1)). Once
we find the element that is the youngest (by looking for the element for which
younger[x] = nil), say x1, we go back to the root and search for nextlayer[x1],
which will bring us to the youngest element in L2, say x2. We then go back to
the root and search for nextlayer[x2], and so on. This repeats until we find the
youngest element in Lj, as desired.

OldestInLayer(Lj). The process is the same as the previous operation, except
our initial search in L1 is for the oldest element.

MoveUp(x). This operation will move x from its current layer Lj to the next
higher layer Lj−1. To accomplish this, we first split x to the root of its layer-
subtree using Split(x). We remove x from Lj by setting layer[x] = j−1. We now
must restore balance properties. Observe that, by the definition of split, both of
the layer-subtrees rooted at the children of x are balanced. Therefore, we only
need to ensure the balance properties of Lj−1. Since we have just inserted x
into the layer Lj−1, this can be done by performing the intra-layer operation
Insert-FixUp(x). Finally, we remove x from the implicit queue structure of Lj

and place it in the implicit queue structure of Lj−1.
To do this, we look at both older[x] and younger[x]. If they are both non-nil,

then we go to the root and perform searches for older[x] and younger[x], setting
younger[older[x]] = younger[x] and older[younger[x]] = older[x]. Otherwise, if only
younger[x] is nil, then we conclude that x is the youngest in its former layer.
After removing it from that layer, older[x] will be the new youngest element in
that layer, so we go to the root search for older[x] and set younger[older[x]] = nil.
Since older[x] is the youngest element in that layer, we also copy nextlayer[x] into
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nextlayer[older[x]]. We must also update the key stored by the youngest element
in the next higher layer. In order to do this, we run YoungestInLayer(Lj−1)
to find this element, say y, and set nextlayer[y] = older[x]. The case for when only
older[x] is nil is symmetric: the new oldest element in the layer is younger[x], so
we update older[younger[x]] = nil, we copy nextlayer[x] into nextlayer[younger[x]],
and update the pointer to the oldest element in this layer that is stored in Lj−1
in the same was as we did for the youngest.

We now must insert x into the implicit queue structure of layer Lj−1. To do
this, we search for the youngest node in Lj−1, say y. We then set older[x] = y,
younger[x] = nil and younger[y] = x. We then go to the next layer Lj−2 and update
its pointer to the youngest element in this layer the same way we did before.

MoveDown(x). This operation will move x from its current layer Lj to the next
lower layer Lj+1. We describe how to perform this operation for red-black trees.
Let p denote the predecessor of x in Lj . If x does not have a predecessor in Lj, set
p = x. Similarly, let s denote the successor of x in Lj , and if x does not have a
successor in Lj, set s = x. Our first goal is to move x such that it becomes a leaf
of its layer-subtree. If x is not already a leaf in Lj, then x has at least one child in
its layer-subtree. To make it a leaf of it layer-subtree, we splice out the node s by
making the parent of s point to the right child of s instead of s itself. Note that this
is well-defined since s has no left child in Lj as it is the smallest element greater
than x. We then move s to the location of x. Finally, we make x a child of p and
make the new children of x the old children of p and s.

Observe that we now have that x is a leaf of its layer-subtree. The layer-
subtree is configured exactly as if we had deleted x using the deletion oper-
ation described by Cormen et al. [6, Section 13.4]. Therefore, we can perform
Delete-FixUp(s′), where s′ is the (only) child of s, to restore the balance prop-
erties of the nodes of the layer-subtree. Thus, s′ is exactly the child of the node
spliced out by the deletion (s), as required by the operation of Cormen et al. [6,
Section 13.4].

To complete the movement to the next layer, we change the layer number
of x and execute Join(x) to create a single balanced layer-subtree from x and
its children.3 We then update the implicit queue structure as we did before.
Observe that once x has been removed from its original layer-subtree, layer-
subtree balance has been restored because no node on that path was changed.

Lemma 3. For a layer Lj and a node x ∈ Lj, YoungestInLayer(Lj),
OldestInLayer(Lj), MoveUp(x) and MoveDown(x) take worst-case time
O
(
2j
)
.

2.4 Tree Operations

We are now ready to describe how to perform the usual dictionary operations
Search(x), Insert(x) and Delete(x) on the tree as a whole.
3 Note that if these children have larger layer numbers than the new layer number for

x, nothing is performed and x becomes the lone element in its (new) layer-subtree;
this follows from the fact that Join(x) only joins nodes that are in the same layer.
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Search(x). To perform a search for x, we begin by performing the usual
method of searching in a binary search tree. Once we have found x ∈ Lj , we
execute MoveUp(x) a total of j − 1 times to bring x into L1. We then re-
store the sizes of the layers as was done in the working-set structure. We run
OldestInLayer(L1) to find the oldest element y1 in layer L1 and then run
MoveDown(y1). We then run OldestInLayer(L2) to find the oldest element
y2 in layer L2 and run MoveDown(y2). This process of moving elements down
layer-by-layer continues until we reach a layer Lk such that |Lk| < 22k

.4 Note
that efficiency can be improved by remembering the oldest elements of previous
layers instead of finding the oldest element in each of L1, . . . , Lj when running
OldestInLayer(Lj). Such an improvement does not alter the asymptotic run-
ning time, however.

Insert(x). To insert x into the tree, we first examine the index t and size |Lt|
of the deepest layer, which we have stored at the root. If |Lt| = 22t

, then we
increment t and set |Lt| = 1. Otherwise, if |Lt| < 22t

, we simply increment
|Lt|. We now insert x into the tree (ignoring layers for now) using the usual
algorithm where x is placed in the tree as a leaf. We set layer[x] = t + 1 (i.e., a
temporary layer larger than any other) and update the implicit queue structure
for Lt (and the youngest and oldest elements of Lt−1) as we did before. Finally,
we run Search(x) to bring x to L1. Note that since Search(x) stops moving
down elements once the first non-full layer is reached, we do not place another
element in layer t+1. Thus, this layer is now empty and we update the youngest
and oldest elements in layer t to indicate that there is no layer below.

Delete(x). To delete x from the tree, we look at the total number t of lay-
ers in the tree that is stored at the root. We then locate x ∈ Tj and perform
MoveDown(x) a total of t − j + 1 times. This will cause x to be moved to a
new (temporary) layer that is guaranteed to have no other nodes in it. There-
fore, x must be a leaf of the tree, and we can simply remove it by setting the
corresponding child pointer of its parent to nil. As was the case for insertion,
this temporary layer is now empty and so we update the youngest and oldest
elements in layer t to indicate that there is no layer below. We then perform
t − j + 1 MoveUp(y) operations for the youngest element y of each layer from
t to j to restore the sizes of the layers. At this point, it could be the case that
|Lt| = 0. If this happens, we decrement the number of layers t which is stored at
the root, and update the youngest and oldest elements in the new deepest layer
to indicate that there is no layer below.

Theorem 1. There exists a binary search tree that performs accesses in
O(lg wi(x)) worst-case time and insertions and deletions in O(lg n) worst-case
time.

4 Note that for an ordinary search, we have k = j. However, thinking of the algorithm
this way gives us a clean way to describe insertions.
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3 Skip-Splay and the Unified Bound

In this section, we show how to use layered working-set trees in the skip-splay
structure of Derryberry and Sleator [7] to achieve the unified bound to within a
small multiplicative factor. The unified bound [2] requires that the time to search
for an element x at time i is UB(x) = O(miny∈Si lg(wi(y) + d(x, y))) where wi(y)
is the working-set number of y at time i (as in Section 1) and d(x, y) is defined
as the rank distance between x and y. This property implies both the working-
set and the dynamic finger properties. Informally, the unified bound states that
an access is fast if the current access is close in term of rank distance to some
element that has been accessed recently. Bădoiu et al. [2] introduced a data
structure achieving the unified bound in the amortized sense. This structure
does not fit into the binary search tree model, but the splay tree [9], which does
fit into this model, is conjectured to achieve the unified bound [2].

Recently, Derryberry and Sleator [7] developed the first binary search tree
that guarantees an access time close to the unified bound. Their binary search
tree, called skip-splay, performs an access to an element x in O(UB(x) + lg lg n)
amortized time. Insertions and deletions are not supported. In the remainder of
this section, we briefly describe skip-splay and then show how to modify it using
the layered working-set tree presented in Section 2 in order to achieve a new
bound in the binary search tree model.

The skip-splay algorithm works in the following way. Assume for simplicity
that the tree T stores the set {1, 2, . . . , n} where n = 22k−1 − 1 for some integer
k ≥ 0 and that T is initially perfectly balanced. Nodes of height 2i (where the
leaves of T have height 1) for i ∈ {0, 1, . . . , k − 1} are marked as the root of a
subtree. Such nodes partition T into a set of splay trees called auxiliary trees.
Each auxiliary tree is maintained as an independent splay tree. Observe that the
i-th auxiliary tree encountered on a path from the root to a leaf in T has size
2lg2 n/2i

= n1/2i

. Define aux[x] to be the auxiliary tree containing the node x.
To access an element x, we perform a standard binary search in T to locate

x. We then perform a series of splay operations on some of the auxiliary trees of
T . We begin by splaying x to the root of aux[x] using the usual splay algorithm.
If x is now the root of T , the operation is complete. Otherwise, we skip to the
new parent of x, say y, and splay y to the root of aux[y]. This process is repeated
until we reach the root of T .

As suggested by Derryberry and Sleator [7], instead of using splay trees to
maintain the auxiliary trees, we could use any data structure that satisfies the
working-set property. By using layered working-set trees as auxiliary trees and
by doubling each access, we obtain

Theorem 2. There exists a binary search tree that performs an access to
xi in worst-case time O(min{lg n, (lg lg n) lg wi(xi)}) and amortized time
O(UB(xi) + lg lg n).
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4 Conclusion and Open Problems

We have given the first binary search tree that guarantees the working-set prop-
erty in the worst-case. We have also shown how to combine this binary search
tree with the skip-splay algorithm of Derryberry and Sleator [7] to achieve the
unified bound to within a small additive term in the amortized sense while main-
taining in the worst case an access time that is both logarithmic and within a
small multiplicative factor of the working-set bound. Several directions remain
for future research.

For layered working-set trees, it seems that by forcing the working-set property
to hold in the worst case, we sacrifice good performance on some other access
sequences. Is it the case that a binary search tree that has the working-set
property in the worst case cannot achieve other properties of splay trees? For
example, what kind of scanning bound can we achieve if we require the working-
set property in the worst case? It would also be interesting to bound the number
of rotations performed per access. Can we guarantee at most O(lg lg wi(xi))
rotations to access xi? Red-black trees guarantee O(1) rotations per update, for
instance. For the results on the unified bound, the most obvious improvement
would be to remove the lg lg n term, as posed by Derryberry and Sleator [7], or
removing the lg lg n factor from the worst-case access cost.

Acknowledgements. We thank Jonathan Derryberry and Daniel Sleator for send-
ing us a preliminary version of their skip-splay paper [7] and Stefan Langerman
for stimulating discussions.
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Abstract. In this paper we describe algorithms for computing the BWT
and for building (compressed) indexes in external memory. The innova-
tive feature of our algorithms is that they are lightweight in the sense
that, for an input of size n, they use only n bits of disk working space
while all previous approaches use Θ(n log n) bits of disk working space.
Moreover, our algorithms access disk data only via sequential scans, thus
they take full advantage of modern disk features that make sequential
disk accesses much faster than random accesses.

We also present a scan-based algorithm for inverting the BWT that
uses Θ(n) bits of working space, and a lightweight internal-memory al-
gorithm for computing the BWT which is the fastest in the literature
when the available working space is o(n) bits.

Finally, we prove lower bounds on the complexity of computing and
inverting the BWT via sequential scans in terms of the classic product:
internal-memory space × number of passes over the disk data, showing
that our algorithms are within an O(log n) factor of the optimal.

1 Introduction

Full-text indexes are data structures that index a text string T [1, n] to support
subsequent searches for arbitrarily long patterns like substrings, regexp, errors,
etc., and have many applications in computational biology and data mining. Re-
cent years have seen a renewed interest in these data structures since it has been
proved that full-text indexes can be compressed up to the k-th order empirical
entropy of the input text T , and searched without being fully decompressed [22].
Clearly, data compression and indexing are mandatory when the data to be pro-
cessed and/or transmitted has large size. But larger data means more memory
levels involved in their storage and hence, more costly memory references. It is
already known how to design an optimal external-memory (uncompressed) full-
text index [7], and some results on external memory compressed indexes have
recently appeared in the literature [3,14]. However, whichever is the index chosen
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(compressed or uncompressed), to use it one must first build it! The sheer size
of data available nowadays for mining and search applications has turned the
construction/compression phase into a bottleneck that can even prevent these
indexing and compression tools from being used in large-scale applications.

Recent research [11,16,17,21,23] has highlighted that a major issue in the
construction of such data structures is the large amount of working space usually
needed for the construction. Here working space is defined as the space required
by an algorithm in addition to the space required for the input (the text to
be indexed/compressed) and the output (the index or the compressed file). If
the data to be indexed is too large to fit in main memory one must resort to
external memory construction algorithms. Such algorithms are known (see e.g.
[5,18]), but they all use Θ(n log n) bits of working space. We found (see Section 3)
that this working space can be up to 500 times larger than the final size of the
compressed output that, for typical data, is three to five times smaller than the
original input and is anyway O(n) bits in the worst case.

Given these premises, the first issue we address in this paper is the design
of construction algorithms for full-text indexes which work on a disk-memory
system and are lightweight in that their working space is as small as possible. The
second issue we address concerns the way our algorithms fetch/write data onto
disk: we design them to access disk data only via sequential scans. This approach
is motivated by the well known fact that sequential I/Os are much faster than
random I/Os. Sequential access to data has the additional advantage of using
modern caching architectures optimally, making the algorithm cache-oblivious.
In this paper we investigate the problems of building (compressed) full-text
indexes and compressing data using only sequential scans (i.e. streaming-like).
We provide nearly matching upper and lower bounds for them in terms of the
product “internal-memory space × passes over the disk data”.

In the following we consider the classical I/O model [24]: a fast internal mem-
ory with M words (i.e. Θ(M log n) bits) and O(1) disks of unbounded capacity.
Disks are organized in pages consisting of B consecutive words (i.e. Θ(B log n)
bits overall). Since our algorithms access disk data only by sequential scans, we
analyze them counting the number of disk passes as in the streaming models:
From that number is straightforward also to derive the cost in terms of the
number of I/Os (disk page accesses).

Our first contribution is a lightweight algorithm for computing the BWT —
a basic ingredient of both compressors and compressed indexes — in O(n/M)
passes and n bits of disk working space. Note that the total space usage of the
algorithm is Θ(n) bits and therefore proportional to the size of the input. Since
at each pass we scan Θ(n) bits of disk data, each pass scans Θ(n/(B log n)) pages
and the overall I/O complexity is O

(
n2/(MB log n)

)
. We have implemented a

prototype of this algorithm (available from people.unipmn.it/manzini/bwtdisk).
The prototype takes advantage of the sequential disk access by storing all files
(input, output, and intermediate) in compressed form, thus further reducing
the disk usage and the total I/Os. Our tests show that our tool is the fastest
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currently available for the computation of the BWT in external memory, and
that its disk working space is much smaller than the size of the input.

The second contribution of the paper is to show that from our algorithm
we can derive: (1) a lightweight internal-memory algorithm for computing the
BWT, which is the fastest in the literature when the amount of available working
space is o(n) bits (Theorem 2), and (2) lightweight algorithms for computing: the
suffix array, the Ψ array, and a sampling of the suffix array, which are important
ingredients of (compressed) indexes (see Theorems 3, 4, and 5).

Another contribution is a lightweight algorithm to invert the BWT which uses
O(n/M) passes with one disk or O(log2 n) passes with two disks, and Θ(n) bits
of working space (Theorem 6). This result is based on different techniques than
the ones used for our construction algorithms.

Finally, we try to assess to what extent we can improve our scan-based al-
gorithms for computing/inverting the BWT with only one disk. In this setting,
lower bounds are often established considering the product “internal-memory
space × passes” [20]. For our BWT construction and inversion algorithms such
product is O(n logn) bits; by strengthening a lower bound from [12], we prove
that we cannot reduce it to o(n) bits with a scan-based algorithm using a single
disk (Theorem 7). Hence our algorithms are within an O(log n) factor of the
optimal. We note that our lower bound is “best possible” because, if we have
Ω(n) bits of memory, then we can read the input into internal memory with one
pass over the disk and then compute the BWT there. Due to space limitations
some proofs will be omitted, the reader can find them in [8].

Related results. As we mentioned above, the problem of the lightweight com-
putation of (compressed) indexes in internal memory has recently received much
attention [11,15,16,17,21,23]. However, all the proposed algorithms perform many
random memory-accesses so they cannot be easily transformed into external mem-
ory algorithms. To our knowledge no lightweight algorithms specific for external
memory are known. The construction of most full-text indexes reduces to suffix-
array construction, which in turn needs log n recursive sorting-levels [6]. In exter-
nal memory this sort-based approach takes O

(
n
B logM/B

n
B

)
I/Os [7] and is faster

than our algorithms when M = O
(
n/
(
log n logM/B

n
B

))
. However, this approach

is not lightweight since it uses Θ(n log n) bits of disk working space.

2 Notation

We briefly recall some definitions related to compressed full-text indexes; for
further details see [22]. Let T [1, n] denote a text drawn from a constant size
alphabet Σ. As is usual, we assume that T [n] is a character not appearing
elsewhere in T and is lexicographically smaller than all other characters. Given
two strings s, t we write s ≺ t to denote that s precedes t lexicographically. The
suffix array sa[1, n] is the permutation of [1, n] giving the lexicographic order of
the suffixes of T , that is T [sa[i], n] ≺ T [sa[i + 1], n] for i = 1, . . . , n − 1. The
inverse of the sa is the pos array, such that pos[i] is the rank of suffix T [i, n]
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in the suffix array. This way, sa[pos[i]] = i. We denote by posd the set of (n/d)
values pos[d], pos[2d], . . . , pos[n] that indicate the distribution of the positions of
the d-spaced suffixes within sa.

The Burrows-Wheeler transform is an array of characters bwt[1, n] defined as
bwt[i] = T [(sa[i]− 1) mod n]. The array Ψ [1, n] is the permutation of [1, n] such
that sa[Ψ(i)] = sa[i] + 1 mod n. The value Ψ [i] is the lexicographic rank of the
suffix which is one character shorter than the suffix of rank i. The basic ingre-
dients of most compressed indexes are either the bwt or the Ψ array, optionally
combined with the set posd for some d = Ω(log n). In this paper we describe
external memory lightweight algorithms for the computation of all these three
basic ingredients.

3 Lightweight Scan-Based BWT Construction

In this section we describe the algorithm bwt-disk for the computation of the
bwt of a text T [1, n] when n is so large that the computation cannot be done
in internal memory. Our algorithm is lightweight in the sense that it uses only
M words of RAM and n bits of disk space — in addition to the disk space
used for the input T [1, n] and the output bwt(T [1, n]). Our algorithm is scan-
based in the sense that all data on disk is accessed by sequential scans only.
Note that in the description below our algorithm scans the input file right-to-
left: in the actual implementation we scan the input rightward which means
that we compute the bwt of T reversed. The bwt-disk algorithm is an evolution
of a disk-based construction algorithm for suffix arrays first proposed in [13]
and improved in [4]. However, our algorithm constructs the bwt directly without
passing through the sa and uses some new ideas to reduce the working space
from Θ(n log n) to n bits.

The algorithm bwt-disk logically partitions the input text T [1, n] into blocks
of size m = Θ(M) characters each, i.e. T = Tn/mTn/m−1 · · ·T2T1, and computes
incrementally the bwt of T via n/m passes, one per block of T . Text blocks
are examined right to left so that at pass h + 1 we compute and store on disk
bwt(Th+1 · · ·T1) given bwt(Th · · ·T1). The fundamental observation is that going
from bwt(Th · · ·T1) to bwt(Th+1 · · ·T1) requires only that we insert the characters
of Th+1 in bwt(Th · · ·T1). In other words, adding Th+1 does not modify the
relative order of the characters already in bwt(Th · · ·T1).

At the beginning of pass h + 1, in addition to the bwt of Th · · ·T1 we assume
we have on disk a bit array, called gt, such that gt[i] = 1 if and only if the suffix
T [i, n] starting in Th · · ·T1 is greater than the suffix Th · · ·T1 (hence at pass h+1
this array takes exactly hm− 1 bits). For simplicity of exposition, we denote by
gth[1, m− 1] the part of the array gt referring to the text suffixes which start in
Th: namely, it is gth[i] = 1 iff the suffix starting at Th[1 + i] is lexicographically
greater than the suffix starting at Th[1], for i = 1, . . . , m− 1 (note that all these
suffixes extend past Th up to the last character of T ).

The pseudo-code of the generic (h + 1)-th pass is given in Figure 1. Step 1
reads into internal memory the substring t[1, 2m] = Th+1Th and the binary
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1. Compute in internal memory the array saint[1, m] which contains the lexicographic
ordering of the suffixes starting in Th+1 and extending up to T [n] (the end of T ).
This step uses Th+1, Th and the first m − 1 entries of gt. Let us call the suffixes
starting in Th+1 new suffixes, and the ones starting in Th · · ·T1 old suffixes.

2. Compute in internal memory the array bwtint[1, m] defined as bwtint[i] =
Th+1[saint[i] − 1], for i = 1, . . . , m. If saint[i] = 1 set bwtint[i] = # where # is
a character not appearing in T .

3. Using bwtint and scanning both ThTh−1 · · ·T1 and gt, compute how many old
suffixes fall between two lexicographically consecutive new suffixes. At the same
time update gt so that it contains the correct information for the extended string
Th+1Th · · ·T1.

4. Merge bwtext and bwtint so that at the end of the step bwtext contains the bwt of
Th+1Th · · ·T1.

Fig. 1. Pass h+1 of the bwt-disk algorithm. At the beginning of pass h+1, we assume
that bwtext contains the bwt of ThTh−1 · · ·T1, and the bit array gt is defined as described
in the text. Both arrays are stored on disk.

array gth[1, m− 1]. Then we build saint by lexicographically sorting the suffixes
starting in Th+1 and possibly extending up to T [n] (the last character of T ).
Observe that, given two such suffixes starting at positions i and j of Th+1, with
i < j, we can compare them lexicographically by comparing the strings t[i, m]
and t[j, j + m− i], which have the same length and are completely contained in
t[1, 2m] (thus, they are in internal memory). If these strings differ we are done;
otherwise, the order between the above two suffixes is determined by the order
of the suffixes starting at t[m+1] ≡ Th[1] and t[j+m−i+1] ≡ Th[1+j−i]. This
order is given by the bit stored in gth[j − i], also available in internal memory.
This argument shows that t[1, 2m] and gth contain all the information we need to
build saint working in internal memory. The actual computation of saint is done
in O(m) time as follows. First we compute the rank rm+1 of the suffix starting
at t[m + 1] ≡ Th[1] among all suffixes starting in Th+1; that is, we compute for
how many indices i with 1 ≤ i ≤ m the suffix starting at t[i] is smaller than
the suffix starting at t[m + 1] (both extending up to T [n]). This can be done
in O(m) time using the above observation and Lemma 5 in [17]. At this point
the problem of building saint is equivalent to the problem of building the suffix
array of the string t[1, m]$, where $ is a special end-of-string character that has
rank precisely rm+1 (instead of being lexicographically smaller than all other
suffixes, as usual). Thus, we can compute saint in O(m) time and O(m log m)
bits of space with a straightforward modification of the algorithm DC3 [18].

At Step 2 we build the array bwtint which is a sort of bwt of the string Th+1:
it is not a real bwt because it refers to suffixes which are not confined to Th+1
but start in this string and extend up to T [n]. The crucial point of the algorithm
is then to compute some additional information that allows us to merge bwtint

and bwtext I/O-efficiently. This additional information consists of a counter array
gap[0, m] which stores in gap[j] the number of (old) suffixes of the string Th · · ·T1
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which lie lexicographically between the two new suffixes— i.e. saint[j − 1] and
saint[j]— starting in Th+1. Note that the gap array was used also in [4]. However
in [4] gap is computed in O(n log M) time using Θ(n logn) extra bits; here we
compute gap in O(n) time using only the n extra bits of gt. The following lemma
is the key to this improvement.

Lemma 1. For any character c ∈ Σ, let C[c] denote the number of charac-
ters in bwtint that are smaller than c, and let Rank(c, i) denote the number of
occurrences of c in the prefix bwtint[1, i]. Assume that the old suffix T [k, n] is
lexicographically larger than precisely i new suffixes, that is,

T [saint[i], n] ≺ T [k, n] ≺ T [saint[i + 1], n].

Now fix c = T [k − 1]. Then, the old suffix T [k − 1, n] = c T [k, n] is lexicograph-
ically larger than precisely j new suffixes, that is, T [saint[j], n] ≺ T [k − 1, n] ≺
T [saint[j + 1], n], where

j =
{

C[c] + Rank(c, i) if c �= Th+1[m];
C[c] + Rank(c, i) + gt[k] if c = Th+1[m].

Step 3 uses the above lemma to compute the array gap with a single right-to-
left scan of the two arrays Th · · ·T1 and gt. Step 3 takes O(n) time because
we can build a o(m)-bit data structure supporting O(1) time Rank queries over
bwtint [22]. Finally, Step 4 uses gap to create the new array bwtext by merging
bwtint with the current bwtext. The idea is very simple: for i = 0, . . . , m − 1 we
copy gap[i] old values in bwtext followed by the value bwtint[i + 1].

At Step 3 we also compute the content of gt for the next pass: namely, gt[k] = 1
iff Th+1 · · ·T1 ≺ T [k, n]. We know the lexicographic relation between Th+1 · · ·T1
and all new suffixes since it does exist r1 such that T [saint[r1], n] = Th+1 · · ·T1
(the latter is a new suffix, indeed). The relation between Th+1 · · ·T1 and any
old suffix T [k, n] is available during the construction of gap: when we find that
T [k, n] is larger than i new suffixes of saint, we know that Th+1 · · ·T1 ≺ T [k, n]
iff r1 ≤ i. So we can write the correct value for gt[k] to disk.

Our algorithm uses O(m log m) bits of internal memory. Hence, if the internal
memory consists of M words, we can take m = Θ(M) and establish the following:

Theorem 1. We can compute the bwt of a text T [1, n] in O(n/M) passes over
Θ(n) bits of disk data, using n bits of disk working space. The total number of
I/Os is O

(
n2/(MB log n)

)
and the CPU time is O

(
n2/M

)
.

Single-disk implementation. In the bwt-disk algorithm, and in its derivatives
described below, we scan T and the gt array in parallel so we need at least two
disks. However, in view of the lower bounds in Section 6, which hold for a single
disk, it is important to point out that our algorithm (and its derivatives) can
work via sequential scans using only one disk. This is possible by interleaving
T and the gt array in a single file. At pass h we interleave m new bits within
the segment Th (so that the portion Tn/m · · ·Th+1 is shifted by m bits). These
new bits together with the bits already interleaved in Th−1 · · ·T1 allow us to
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store the portion of the gt array that is needed at the next pass. Note also that
the merging of bwtext and bwtint at Step 4 can be done on a single disk. This
requires that, at the beginning of the algorithm, we reserve on disk the space for
the full output (n characters), and that we fill this space right-to-left (that is,
at the end of pass h bwt(Th · · ·T1) is stored in the rightmost mh characters of
the reserved space).

Working with compressed files. Accessing files only by sequential scans
makes it possible to store them on disk in compressed form. This is not par-
ticularly significant from a theoretical point of view — in the worst case the
compressed files still take Θ(n) bits — but is a significant advantage in practice.
If the input file T [1, n] is large, it is likely that it will be given to us in com-
pressed form. If the compression format allows for the scanning of a file without
full decompression (as, for example, gzip, bzip, and ppm) our algorithm is able
to work on the compressed input without additional overhead. An algorithm
that accesses the input non-sequentially would require the additional space for
an uncompressed image of T [1, n]. The same considerations apply to the output
file bwt(T ) and the intermediate files bwt(Th · · ·T1). Since they are bwt’s of (suf-
fixes of) T they are likely to be highly compressible, so it is very convenient to
be able to store them in compressed form: this makes our algorithm even more
“lightweight”. It goes without saying that using compressed files also yields a
reduction of the I/O transfer so this is advantageous also in terms of running
time (see experimental results below).

Note that the use of compressed files is straightforward if we use two disks:
in this way we can store T and gt separately and at Step 4 we can store on two
different disks the compressed images of bwt(Th · · ·T1) and bwt(Th+1 · · ·T1). The
use of compression in the single disk version is trickier and requires the use of
ad-hoc compressors.

Experimental results. To test how bwt-disk works in practice, we have im-
plemented a prototype in C (see [8] for the details of our implementation). The
main modification wrt the description of Fig. 1 is that, instead of storing the
entire array gt on disk, we maintain a “reduced” version in RAM. In fact, Step 1
uses gth[1, m− 1] which can be stored in RAM. At Step 3 we need the entire gt
to lexicographically compare all suffixes T [k, n] of Th · · ·T1 with Th · · ·T1 itself
(see proof of Lemma 1 [8]). Instead of storing the whole gt, we keep in internal
memory the length-� prefix of Th · · ·T1, call it αh, and the entries gt[k] such that
αh is a prefix of T [k, n]. Unless T is a very pathological string, this “reduced”
version of gt is much more succinct: by setting � = 1024 we were able to store it
in internal memory in just 128KB. Using this “reduced” version, the comparison
between T [k, n] and Th · · ·T1, can be done by comparing T [k, n] with αh. If these
two strings are different, we are done; otherwise, αh is a prefix of T [k, n] and
thus the bit gt[k] is available and provides the result of that suffix comparison.
Hence, by using standard string-matching techniques, it is possible to compare
all suffixes T [k, n] with Th · · ·T1 in O(n + �) time overall. Our implementation
can work with a block size m of up to 4GB and uses 8m bytes of internal memory
for the storage (and computation) of saint, bwtint, and the gap array. We ran
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File Name Description
Proteins Sequence of bare protein sequences from the Pizza&Chili corpus [10].
Swissprot Annotated Swiss-prot Protein knowledge base.
Genome Human genome filtered to have a string over the alphabet A,C,G,T,N.
Gutenberg Concatenation of English texts from Project Gutenberg.
Random2 Two concatenated copies of a random string of length 2GB.
Mice&Men Concatenation of the Mouse (mm9) and Human (hg18) genomes.
Html Collection of html pages crawled from the UK-domain in 2006-07 [1].

Input file bwt-disk space bwt-disk time DC3
name size output total step 1 step 3 step 4 total time w. space
Proteins 1.10 0.29 1.02 0.49 0.59 0.15 1.45 6.31 30.62
SwissProt 1.88 0.08 0.33 0.36 1.16 0.10 1.88 6.67 30.68
Genome 2.86 0.22 0.69 0.50 2.32 0.55 3.72 6.88 30.68
Gutenberg 3.05 0.18 0.74 0.85 2.19 0.36 3.76 7.14 30.58
Random2 4.00 0.56 2.00 0.80 3.28 2.32 6.90 7.48 30.66
Mice&Men-4 4.00 0.22 0.70 0.52 3.37 0.80 5.06 7.22 30.66
Html-4 4.00 0.06 0.33 0.58 2.55 0.19 3.60 7.49 30.66
Mice&Men 5.43 0.22 0.70 0.52 4.06 1.14 6.10 — —
Html 8.00 0.05 0.32 0.49 4.90 0.33 6.01 — —

Fig. 2. Dataset (top) and experimental results (bottom). Since DC3 cannot handle files
larger than 4GB we considered also the files Mice&Men and Html truncated at 4GB
(indicated by the suffix -4). In the bottom table, column 2 reports the size (in Giga-
bytes) of the uncompressed input file: the values in all other columns are normalized
with respect to this size. Column 3 reports the size of the compressed bwt which is also
an upper bound to the working space of bwt-disk(see text). Column 4 reports the total
(working + input + output) disk space used by bwt-disk. Columns 5–9 report running
(wallclock) times in microseconds per input byte. The last column reports the size of
DC3 working space (again normalized with respect to the size of the input file).

our experiments with m = 400MB on a Linux box with a 2.5Ghz AMD Phenom
9850 Quad Core processor (only one CPU was used for our tests) and 3.7GB of
RAM. On the same machine we also tested the best competitor of our algorithm.
Since all other known approaches for computing the BWT in external memory
compute the suffix array first, we tested the DC3 tool [5] which is the current
best algorithm for computing the suffix array in external memory. We ran DC3
using two disks for the storage of temporary files and setting the ram usage pa-
rameter to 1500MB. With these settings the peak heap memory usage reported
by memusage was between 3.2 and 3.3 Gigabytes for both bwt-disk and DC3.

In our implementation we store the files in compressed form: the input T is
gzip-compressed, whereas the partial (and final) bwt’s are compressed by Rle
followed by range coding: according to the experiments in [9] this combination
offers the best compression/speed tradeoff for compressing the BWT. Our cur-
rent implementation uses a single disk. Since at Step 4 we scan simultaneously
two partial bwt’s (say bwt(Th · · ·T1) and bwt(Th+1 · · ·T1)) in that step the disk
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head has to move between the two files and the algorithm is not “scan-only”.
We plan to support the use of two disks to remove this inefficiency in a future
version.

Our algorithm stores on disk only the compressed input and at most two
compressed partial bwt’s. Hence, the working space (the space used in addition
to the input and the output) has the size of a single compressed partial bwt:
in Fig. 2 we bound it with the size of the final compressed bwt. The results in
Fig. 2 show that our algorithm is indeed lightweight: for all files the working
space is (much) smaller than the size of the input text uncompressed; for most
files even the total space usage is less than the size of the uncompressed input.
The algorithm DC3 uses consistently a working space of more than 30 times the
size of the uncompressed input. Comparing columns 3 and 9 we see that, for
all files except Random2, DC3 working space is more than 100 times the size
of the compressed bwt; for the file Html-4, which is highly compressible, DC3
working space is more than 500 times the size of the compressed bwt! (recall
that bwt-disk working space is at most the size of the compressed bwt). By
comparing the running times (columns 8 and 9 in Fig. 2) we see that bwt-disk
is always faster than DC3 (recall that DC3 only computes the suffix array so we
are ignoring the additional cost of computing the BWT from the suffix array).
The results show that the more compressible is the input, the faster is bwt-disk,
while DC3’s running time is less sensitive to the content of the input file. Another
interesting data is the total I/O volume of the two algorithms (measured as the
ratio between total I/Os and input size and not reported in Fig. 2). According
to [5] for files up to 4GB for DC3 such ratio is between 200 and 300. For bwt-disk
such ratio is less than 6 for all files except Random2 for which the ratio is 14.76.

The asymptotic analysis predicts that, if M ) n, as the size of the input
grows, our algorithm will eventually become slower than DC3 (our algorithm is
designed to be lightweight, not to be fast!). However, the above results show that
the use of compressed files and avoiding the construction of the suffix array make
our algorithm, not only lightweight, but also faster than the available alternatives
on real world inputs.

4 Other Lightweight Scan-Based Algorithms

Internal Memory Lightweight BWT construction. Our bwt-disk algorithm
can be turned into a lightweight internal memory algorithm with interesting
time-space tradeoffs. For example, setting M = n/ logn we get an internal mem-
ory algorithm that runs in O(n log n) time and uses 2n bits of working space: n
bits for the gt array and n bits for the M words that play the same role as the
internal memory in bwt-disk. Setting M = n/ log1+ε n, with ε > 0, the running
time becomes O

(
n log1+ε n

)
and the working space is reduced to n + o(n) bits.

This algorithm still accesses the text and the partial bwt’s by sequential scans,
hence it takes full advantage of the very fast caches available on modern CPU’s.

We can further reduce the working space by replacing the n bits of the gt
array with a o(n)-bit data structure supporting O(1)-time Rank queries over
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bwt(Th · · ·T1). This data structure can provide in constant time the lexicographic
rank of each suffix of Th · · ·T1 (in right-to-left order, see [22]) and therefore can
emulate, without asymptotic slowdown, the scanning of gt.

If we no longer need the input text T , we can write the (partial) bwt’s over
the already processed portion of text. That is, at the end of pass h, we store
bwt(Th · · ·T1) in the space originally used for Th · · ·T1. The right-to-left scan of
Th · · ·T1 required at Step 3 can be emulated, without any asymptotic slowdown,
using the same data structure used to replace gt (see again [22]). Note that
overwriting T roughly doubles the size of the largest input that can be processed
with a given amount of internal memory. Summing up, we have:

Theorem 2. For any ε > 0, we can compute the BWT in internal memory in
O
(
n log1+ε n

)
time, using o(n) bits of working space. The BWT can be stored in

the space originally containing the input text.

The only internal-memory BWT construction algorithm that can use such a
small working space is [17] which—when restricted to using o(n) bits of work-
ing space—runs in ω

(
n log2 n

)
time. Note, however, that the algorithm [17]

has the advantage of working also for non constant alphabets and can use as
little as Θ(n log n/

√
v) bits of working space with v = O

(
n2/3

)
, running in

O(n log n + vn) worst case time. The algorithms in [16,21] build directly a com-
pressed suffix array but, at least in their original formulation, they use Ω(n)
bits of working space. The algorithm in [23] build a compressed suffix array of
a collections of texts. For a collection of p = Θ(log n) texts of size n/p the algo-
rithm in [23] runs in O(n log n) time using O(n) bits of working space, storing
the output in compressed form and overwriting the input.

Lightweight SA construction. We can transform our bwt-disk algorithm into
a lightweight algorithm for computing the Suffix Array. The key observation
is that the values stored in bwtext are never used in subsequent computations.
Therefore, to compute the sa, we can simply replace bwtext with an array saext

containing the sa entries (that is, at the end of pass h saext contains sa(Th · · ·T1)).
The only change in the algorithm is that, after the computation of the gap array,
at Step 4 we update saext as follows: we copy gap[i] old saext entries followed by
saint[i + 1], for i = 0, . . . , m − 1. Summing up, we have the following result.

Theorem 3. We can compute the suffix array in O(n/M) passes over Θ(n log n)
bits of disk data, using n bits of disk working space. The total number of I/Os is
O
(
n2/(MB)

)
and the CPU time is O

(
n2/M

)
.

Lightweight Computation of the Ψ Array. We use the same framework
as above and maintain an array Ψext that, at the end of pass h, contains the
Ψ values for the string Th · · ·T1. Since the value Ψ [j] refers to the suffix of
lexicographic rank j, at Step 4 Ψext values are computed using the same scheme
used for BWT and suffix array entries: for i = 0, . . . , m−1, we first update gap[i]
values in Ψext referring to old suffixes and then compute and write the Ψ value
referring to T [saint[i+1], n]. We can compute Ψ values for the new suffixes using
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information available in internal memory, while for old suffixes we make use of
the relationship Ψh+1[j] = Ψh[j] + kj where kj is the largest integer such that
gap[0]+gap[1]+ · · ·+gap[kj ] < Ψh[j] (details in the full paper). Since each value
kj can be computed in O(log m) time with a binary search over the array whose
i-th element is gap[0] + · · ·+ gap[i], we have the following result.

Lemma 2. We can compute Ψ in O(n/M) passes over Θ(n log n) bits of disk
data, using n bits of working space. The CPU time is O

(
(n2 log M)/M

)
.

To reduce the amount of processed data, we observe that although Ψ values are
in the range [1, n], it is well known [22] that the sequence Ψ [1], Ψ [2]−Ψ [1], Ψ [3]−
Ψ [2], . . . , Ψ [n] − Ψ [n − 1], can be represented in Θ(n) bits. Thus, by storing an
appropriate encoding of the differences Ψ [i]−Ψ [i−1] we can obtain an algorithm
that works over a total of O(n) bits.

Theorem 4. We can compute the array Ψ in O(n/M) passes over Θ(n) bits
of disk data, using n bits of disk working space. The total number of I/Os is
O
(
n2/(MB log n)

)
and the CPU time is O

(
(n2 log M)/M

)
.

Lightweight Computation of posd. To compute the set posd with a sam-
pling step d = Ω(log n), we modify our bwt-disk algorithm as follows. At the
end of pass h, instead of bwtext = bwt(Th · · ·T1) we store on disk the pairs
〈i1, j1〉, 〈i2, j2〉, . . . 〈ik, jk〉 such that sah[i�] = j� is a multiple of d (here sah =
sa(Th · · ·T1)). These pairs are sorted according to their first component and es-
sentially represent posd(Th · · ·T1). The update of this set of pairs at pass h + 1
is straightforward: the second component does not change, whereas the value
i� must be increased by the number of new suffixes which are lexicographically
smaller than i� old suffixes. This can be done via a sequential scan of the al-
ready computed set of pairs and of the gap array. Since the set posd contains
n/d = O(n/ logn) pairs, we have:

Theorem 5. We can compute posd in O(n/M) passes over Θ(n) bits of disk data,
using n bits of disk working space. The number of I/Os is O

(
n2/(MB log n)

)
and

the CPU time is O
(
n2/M

)
.

5 Lightweight Scan-Based BWT Inversion

The standard algorithm for inverting the BWT is based on the fact that the
“successor” of character bwt[i] in T is bwt[Ψ [i]]. Since we can set up a pointer
from position i to position Ψ [i] for i = 1, . . . , n in linear time, to retrieve T
we essentially need to solve a list ranking problem in which we have to restore
a sequence given the first element and a pointer to each element’s successor.
The näıve algorithm for list ranking — follow each pointer in turn — is optimal
when the permuted sequence and its pointers fit in memory, but very slow when
they do not. List ranking in external memory has been extensively studied,
and Chiang et al. [2] showed how to reduce this problem to sorting a set of
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n items (recursively), each of size Θ(log n) bits. If we invert bwt by turning it
into an instance of the list-ranking problem and solve that by using Chiang et
al.’s algorithm, then we end up with a solution requiring Θ(n log n) bits of disk
space. The following Theorem establishes that, using Chiang et al.’s algorithm
as a subroutine, we can invert bwt using a sorting primitive now applied on
O(n/ log n) items, for a total of O(n) bits of disk space. In the full paper we will
also show how we can similarly recover T from the array Ψ still using O(n) bits
of total disk space, and how to take advantage of the posd array.

Our algorithm for BWT-inversion works in O(log n) rounds, each working
on two files. The first file contains a set S of n/ logn substrings of T . Each
substring is prefaced by a header, which specifies (i) the position in bwt of the
substring’s first character, (ii) the position in bwt of the successor in T of the
substring’s last character, (iii) eventually, the character whose index is in (ii)
and, (iv) eventually, the substring’s position in a certain partial order that we
will define later. These substrings are non-overlapping and their length increases
as the algorithm proceeds with its rounds. The second file contains the bwt plus
an n-bit array bwtMark which marks the characters of bwt already appended to
some substring of S. The overall space taken by both files is O(n) bits.

The main idea underlying our algorithm is to cover T by the substrings of S,
avoiding their overlapping. The substrings of S consist initially of the characters
which occupy the first n/ logn positions of bwt; then, they are extended one
character after the other along the O(log n) rounds, always taking care that
they do not overlap. If, at some round, c of those substrings become adjacent in
T , they are merged to form one single, longer substring which is then inserted in
S, and those c constituting substrings are deleted. In each round, we use Chiang
et al.’s list-ranking algorithm on the headers both to detect when substrings
become adjacent and to determine the order in which we should merge adjacent
substrings. Our algorithm preserves the condition |S| = n/ logn, by selecting
(c−1) new substrings which are inserted in S and consist of one single character
not already belonging to any substring of S. This is easily done by scanning bwt
and bwtMark and taking the first (c−1) characters of bwt which result unmarked
in bwtMark. Keep in mind that whenever a character is appended to a substring,
its corresponding bit in bwtMark is set to 1.

Theorem 6. We can invert the BWT in O(n/M) passes on one disk and in
O(log2 n) passes on two or more disks. If we allow random (i.e. non sequen-
tial) disk accesses we can invert the BWT in O( n

B logM/B
n

B log n ) I/Os. For all
algorithms the total disk usage is Θ(n) bits.

6 Lower Bounds

Our scan-based algorithms to compute or invert the bwt have a product “mem-
ory’s size × number of passes” which is O(n logn) bits. We prove in this section
that we cannot reduce them to o(n) bits via any algorithm that uses only one
single disk (accessed sequentially). Hence our algorithms are an O(log n)-factor
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from the optimal. We note that our lower bound is best-possible because, if we
have Ω(n) bits of memory, then we can read the input into internal memory with
one pass over the disk and then compute the BWT there using, e.g., Theorem 2.

In a recent paper [12] we observed that, if the repeated substring is larger than
the product of the size of the memory and the number of passes, then an algo-
rithm that uses multiple passes but only one disk still cannot take full advantage
of the string’s periodicity. Using properties of De Bruijn sequences we proved that,
with polylogarithmicmemory and polylogarithmic passes over one disk, we cannot
achieve entropy-only bounds and, therefore, we also cannot compute the BWT.
In that paper, however, we were mostly concerned with low-entropy bounds, and
only considered the BWT as a means to achieve them. Our new lower bound for
the BWT alone is stronger, with a simple and direct proof. Our previous lower
bound was based on a technical lemma that we can restate as follows:
Lemma 3. Consider an invertible function from strings to strings and a ma-
chine that computes (or inverts) that function using only one disk. We can com-
pute any substring of an input string given
1. for each pass, the machine’s memory configurations when it reaches and

leaves the part of the disk that initially (resp., eventually) holds that sub-
string,

2. the eventual (resp., initial) contents of that part of the disk.

Our new lower bound is based on the same lemma but, instead of combining it
with properties of De Bruijn sequences, we now combine it with a property of the
BWT itself, demonstrated by Mantaci, Restivo and Sciortino [19]: it turns periodic
strings with relatively short periods into strings consisting of relatively few runs.

Lemma 4. If T is periodic and its minimum period r divides n, then bwt(T )
consists of r runs, each of length n/r and containing only one distinct character.

Lemma 3 implies that, if the initial contents of some part of the disk are much
more complex than its eventual contents (or vice versa), then the product of
the memory’s size and the number of passes must be at least linear in the initial
(resp., eventual) contents’ complexity. To see why, consider that we can compute
the initial contents from the eventual contents (or vice versa) and two memory
configurations for each pass; therefore, the product of the memory’s size and
the number of passes must be at least the difference between the complexities.
Lemma 4 implies that, if T is periodic, then short substrings of bwt(T ) are
simple. Combining these ideas in a fairly obvious way gives us our lower bound.

Theorem 7. In the worst case, we can neither compute nor invert the BWT
using only one disk when the product of the memory’s size in bits and the number
of passes is o(n).
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van Hoeij, Mark 539
Vázquez, Leonor 344
Verbeek, Kevin 468
Viola, Alfredo 243
von zur Gathen, Joachim 243
Vredeveld, Tjark 108
Vyskočil, Tomáš 131
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