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Abstract The toxicity of plant proteins, later identified as ribosome-inactivating

proteins (RIPs), was described more than a century ago and their enzymatic activity

was established more than 30 years ago. However, their physiological role and

related biological activities are still uncertain. Therefore, despite the body of

literature, research on RIPs is ongoing. This review deals with new RIPs being

purified, sequenced, characterized, and cloned, and an increasing number of

3D-structures that are determined at high resolution. This is the case of the five

type 1 RIPs (PD-S1-3, PD-L1/2, PD-L3/4, dioicin 1, and dioicin 2) from seeds and

leaves of the ombú tree (Phytolacca dioica L.), native of the grassy pampas of

Argentina. The data collected so far will contribute to our understanding of impor-

tant issues of RIP research: (1) identifying structural determinants responsible for

new enzymatic activities such as the DNA cleaving activity; (2) glycosylation and

its influence on the catalytic and biological activities; (3) cellular localization of

endogenous RIPs and their physiological role(s).

1 Introduction

Ribosome-inactivating proteins (RIPs; rRNA N-b-glycosidases; EC 3.2.2.22) have

been isolated from a number of higher plants; fungi, bacteria, and at least one alga

(Girbés et al. 2004). The genus Phytolacca (Fam. Phytolaccaceae) has several tens
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of species of herbs, shrubs, and trees.1 American pokeweed (Phytolacca americana
L.)2 and Indian pokeweed (Phytolacca esculenta Van Houtte)3 contain antiviral

proteins whose action was described long before their recognition as inhibitors of

protein synthesis (Duggar and Armstrong 1925; Kassanis and Kleczkowski 1948).

Moreover, the first type 1 RIP, an antiviral protein, was identified from American

pokeweed (PAP; Dallal and Irvin 1978).

This chapter will focus on the isolation and characterization of type 1 RIPs from

the ombú tree4 (Phytolacca dioica5 L.; Fig. 1). The plant is very useful for this type
of research, because it produces new leaves for many months, except at the end of

the winter, and can be propagated by seeds, thus allowing the monitoring of RIP

expression under several experimental conditions.

2 RIPs from P. dioica L.

The genus Phytolacca is a rich source of several highly conserved RIPs. The ability
of PAP, isolated from P. americana leaves, to inhibit protein synthesis by enzymat-

ically damaging ribosomes was initially reported by Obrig et al. (1973). Indeed,

several members of this genus have been found to contain type 1 RIPs, such

as PAP isoforms from P. americana seeds, leaves, and root cultures (Irvin 1975;

Irvin et al. 1980; Rajamohan et al. 1999; Park et al. 2002), dodecandrins from leaves

and cell cultures of Phytolacca dodecandra L’Herit6 (Ready et al. 1984;

1The genus Phytolacca is suspected to contain a toxic saponin, which causes enteritis with

vomiting, abdominal pain and diarrhea. The illness may be fatal (cfr. Saunders Comprehensive

Veterinary Dictionary, 3rd edn. # 2007 Elsevier, Inc.). No information is reported of a likely

involvement in the symptoms of ribosome-inactivating proteins. Poisoning of cattle and chickens

from Phytolacca dioica L. (packalacca) or Phytolacca dodecandra l’Herit were reported (Storie

et al. 1992; Mugera 1970).
2Synonym: P. decandra L.
3Synonyms: Phytolacca acinosa Maxim. and Phytolacca kaempferi (A. Gray).
4The ombú tree was introduced in Italy from South America. The plant (also called umbú tree)

grows to a height and spread of 60 ft (20 m) or more, often with multiple trunks developing from an

enormous base resembling a giant pedestal. The huge base may be 3–6 ft tall (1–2 m) and 95 ft

(30 m) in circumference. Ombú tree is native of the grassy pampas of Argentina, usually widely

spaced and the only trees for miles. It is dioecious, and the female tree produces large quantities of

white, fleshy fruits. It is a salt-resistant species, often planted near the sea.
5Synonyms and common names. Synonyms (fromwww.hear.org/pier/species/phytolacca_dioica.htm):

Phytolacca arborea Moq., Phytolacca populifolia Salisb., Pircunia dioica Moq., Sarcoca dioica
Rafin. Common names (English language): belhambra, packalacca (also trade name) and phyto-

lacca; (Spanish language) bella sombra tree, belombra, ombú and umbú (the last two also trade

names).
6Synonym: Phytolacca abissynica Hoffm.
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Thomsen et al. 1991), heterotepalins from Phytolacca heterotepala H. Walter

(Mexican pokeweed; Di Maro et al. 2007), insularin from Phytolacca insularis
Nakai (Song et al. 2000), and PAP-icos isoforms from Phytolacca icosandra7 L.
(red ink plant).

The first paper on the presence of RIPs in P. dioica was published by Parente

et al. (1993), reporting the purification to homogeneity of three type 1 RIPs from

seeds. The major form, named PD-S2 (P. dioica-seeds 2), accounted for about 90%
of the total protein synthesis inhibitory activity of the crude seed extract (Parente

et al. 1993). After this first report, four type 1 RIPs were isolated and characterized

Fig. 1 (a) P. dioica tree growing in the Botanical Garden of the University of Naples Federico II,

Italy. This 100-year-old plant provided leaves and seeds (b and c, respectively) for the purification

of RIPs described in the chapter. P. dioicawas introduced in Europe in 1768 and in Italy in 1840. It
was propagated in the Botanical Garden of the University of Naples by seeds supplied by the

French Botanist Aimé Bonplant

7Synonym: Phytolacca octandra L.

Type 1 Ribosome-Inactivating Proteins from the Ombú Tree 81



both structurally and functionally from the leaves of the same plant (Di Maro et al.

1999; Parente et al. 2008).

2.1 Isolation of RIPs from Seeds and Leaves of P. dioica

Type 1 RIPs from seeds (PD-Ss; Parente et al. 1993), fully expanded leaves of adult

P. dioica (PD-L1, PD-L2, PD-L3, and PD-L4; Di Maro et al. 1999; Parente et al.

2008), fully expanded leaves of young P. dioica (8–36 months old) and developing

leaves of adult plants from 10 to 60-days old (dioicin 1 and dioicin 2; Parente et al.

2008) have been isolated and characterized. Preliminary data on RIP purification

from the bark of summer shoots have shown the presence of the four RIPs isolated

from fully expanded leaves of adult P. dioica PD-Ls1–4 (unpublished).

Experimental conditions employed for RIP isolation from P. dioica are reported

in Table 1. The multi-step purification protocols provided samples with high purity,

which facilitated structural studies (mass spectrometry analysis, sequence and pI
determination, X-ray studies) and lent confidence to the enzymatic characteristics,

especially the adenine polynucleotide glycosylase (APG) and DNA-cleaving activ-

ities. Indeed, some purification steps were essential for full separation of closely

related RIPs (isoforms): in the case of the PD-S forms, with the same primary

structure but different glycosylation pattern (see later), using the CM Sepharose

resin for the second cation-exchange chromatography was essential not only for the

complete separation of the three native forms, but also for nicked PD-S2 forms, one

with a cut between Asn195 and Arg196 (Di Maro et al. 1995) and the other between

Asp82 and Pro83 (Zacchia et al. 2009). The in vivo occurrence and the likely

biological significance of these nicked seed forms are currently being investigated.

Similarly, the third cation-exchange chromatography on S-Sepharose fast flow,

after the CM-52 step, allowed the complete separation of PD-L2 from PD-L3.

The yields of the CM-52 purified PD-L1, PD-L2, PD-L3, PD-L4, dioicin 1, and

dioicin 2 were 1.54, 0.72, 2.48, 4.0, 0.08, and 0.61 mg/100 g leaves, respectively. In

the case of PD-S1–3, the yields were 7.0, 86.0, and 3.4 mg/100 g seeds, respectively.

2.2 Basic Characteristics of RIPs from Seeds and Leaves
of P. dioica

The main structural characteristics (Table 2) of the purified RIPs are well within the

canonical parameters of type 1 RIPs: basic pI (range 7.5–9.5) and a ratio Lys þ Arg/

Asp þ Glu higher than 1,Mr of the unglycosylated forms about 30 k, 261–266 amino

acid residues, with an expected prevalence of basic amino acid residues, four half

cysteines engaged in two S–S bridges (Di Maro et al. 2009; Parente et al. 2008), an

average theoretical molar extinction coefficient at 280 nm 27,762.5 (corresponding to

E0.1% ¼ 1mg/mL ¼ 0.941) and a GRAVY index in the range 0.343–0.559 (Table 2).
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The amino acid sequences8 of PD-S1-3; PD-L1, PD-L2, PD-L3, PD-L4, and dioicin

2 were determined using a combined approach based on Edman degradation and mass

spectrometry (Fig. 2a; Del Vecchio Blanco et al. 1997; Chambery et al. 2008;

Table 1 Purification of RIPs from Phytolacca dioica seeds and leaves

Purification step PD-Ss1–3 (from

seeds)

PD-Ls1–4 (from

fully expanded

leaves)

Dioicin 1 and dioicin 2

(from both fully expanded

leaves of young P. dioica
and developing leaves of

adult P. dioica)

Homogenate Buffer: 5 mM Na/P,

0.14 M NaCl

Buffer: 5 mM Na/P,

0.14 M NaCl

Buffer: 5 mM Na/P,

0.14 M NaCl

pH 7.2

(ratio 1:10 w:v)

pH 7.2

(ratio 1:5 w:v)

pH 7.2 (ratio 1:5 w:v)

Precipitation Glacial acetic acid (NH4)2SO4 Glacial acetic acid

pH 4.0 – Step 1: 40% pH 4.0

– Step 2: at

saturation

Direct loading Dialysis vs 10 mM

NaAc, pH 4.5

Direct loading

I-Cation exchange

chromatography

StreamlineTM SP StreamlineTM SP StreamlineTM SP

– equilibration:

10 mM NaAc,

pH 4.5

– equilibration:

10 mM NaAc,

pH 4.5

– equilibration: 10 mM

NaAc, pH 4.5

– elution: 5 mMNa/P,

1 M NaCl, pH 7.2

– elution: 5 mM

Na/P, 1 M NaCl,

pH 7.2

– elution: 5 mM Na/P, 1 M

NaCl, pH 7.2

Gel filtration Sephacryl S-100 HR Hiload 16/60

Superdex 75

Hiload 16/60 Superdex 75

(LPLC) (FPLC) (FPLC)

II-Cation exchange

chromatography

CM-Sepharosea CM-52 CM-52

III-Cation exchange

chromatography

– S-Sepharose fast

flow

–

RP-HPLCb C4 column

(25 � 0.5 cm)

C4 column

(25 � 0.5 cm)

C4 column (25 � 0.5 cm)

5 mm particle size 5 mm particle size 5 mm particles size

Affinity

chromatography

on Red

Sepharosec

– þ þ

aThis step is required for the complete separation of the three native forms and of nicked PD-S2

forms (Di Maro et al. 1995)
bUsed for the preparation of RIPs to be analyzed by mass spectrometry and Edman degradation
cFinal step of the preparation of RIPs (Barbieri et al. 2000) to be assayed for the DNA cleaving

activity on pBR322 (Aceto et al. 2005)

8The protein sequence data of P. dioica RIPs have been deposited in the UniProtKB with accession

numbers P34967 for PD-S2, P84853 for PD-L1/2, P84854 for PD-L3/4 and P85208 for dioicin 2.
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Parente et al. 2008; Di Maro et al. 2009). The sequence determination of dioicin 1 is

ongoing. The comparative analysis of the amino acid sequences (with a consensus

sequence of 278 amino acid residues) shows that PD-L1 and PD-L2 have identical

primary structures, as is the case for PD-L3 and PD-L4. Hereafter, they will be

Fig. 2 (a) Multiple alignment of RIP sequences from P. dioica (PD-Ss, PD-L1/2, PD-L3/4, and

dioicin 2 (accession numbers P34967, P84853, P84854, and P85208, respectively). Asterisk –

identical, double dots – conserved and single dot – semiconserved amino acid residues. N-
glycosylation sites have been shaded. Copyright indicates conserved amino acid residues found

in the active site of Phytolaccaceae RIPs. (b) identity–similarity matrix of PD-Ss, PD-L1/2,

PD-L3/4, and dioicin 2. Sequences were first aligned by the algorithm Clustal W2.0.11 and then

analyzed by BOXSHADE
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reported as PD-L1/2 and PD-L3/4. Even PD-S RIPs were found to have the same

amino acid sequence each other (Chambery et al. 2008). In the case of PD-L1/2, a

microheterogeneity was found by mass spectrometry at position 20, with the

alternative presence of Met or Leu. The identity/similarity matrix (Fig. 2b) shows

that the highest identity (81.6%; 85.1% similarity) is between PD-L1/2 and PD-L3/4,

while the lowest is between dioicin 2 and PD-L1/2 (36.2%; 46.4% similarity). The

identity values of dioicin 2 with PS-Ss and PD-L3/4 is 39 and 41.3%, respectively.

Figure 3a reports an identity/similarity matrix of RIP sequences from P. dioica,
P. americana, P. acinosa, P. heterotepala, P. insularis, and P. icosandra.

Fig. 3 (a) Identity/similarity matrix of type 1 RIP sequences from Phytolaccaceae. See Fig. 2 for

P. dioica RIP sequences (PD-Ss, PD-L1/2, PD-L3/4, and dioicin 2). Sequences of RIPs other than

from P. dioica (PAP-a, PAP, PAP-I, PAPII, PAP-R, PAP-S from P. americana; heterotepalin 4

from P. heterotepala; PIP 2 from P. insularis; Pap-aci and PapS1-aci from P. acinosa: PAP-icos
and PAPII-icos from P. icosandra) were obtained from PubMed (Phytolaccaceae ! taxonomy
search). Sequences were first aligned by the algorithm Clustal W2.0.11 and then analyzed by

BOXSHADE. (b) Unrooted phylogenetic tree of RIPs reported in (a). The tree shows the close

relationship of dioicin 2 with PAP-II and PAPII-icos and their distance from other RIPs

from P. americana and P. dioica, from both seeds and leaves. PD-S2 from seeds of P. dioica
is more closely related to PAP-I or PAP-R from leaves or roots of P. americana, respectively,
than to RIPs from seeds of P. americana (PAP, PAP-S, PAP-a) or PD-L4 from leaves of

P. dioica. The neighbor-joining method was used with Poisson corrected distances. Scale bar,
substitutions/site

86 A. Parente et al.



Dioicin 2 has the lowest identity percentage (35.1%) with PD-L1/2 isolated from

the same tissue of the same plant. The highest percentages are with PAPII-icos

(86.1%) and PAP-II (81.6%). The identity values with the other RIPs are less

than 41%.

The unrooted phylogenetic tree of the Phytolacca RIPs (Fig. 3b) clearly shows

that dioicin 2, PAP II and PAPII-icos are located on a separate branch and may give

rise to other RIPs. All other RIPs are grouped in four branches: (1) PAP-R; (2) PIP

2, PAP alpha, and PD-Ss; (3) PAP-icos, heterotepalin, Pap-aci, and PAP-I; (4) PD-

L3/4, PAP, PD-L1/2, PapS1-aci, and PAP-S.

PD-L1/2 and PD-L3/4 from P. dioica leaves appear more closely related to RIPs

from P. americana seeds than to PD-Ss from seeds of the same plant.

2.3 Differential Seasonal and Age Expression in Leaves

The expression of RIPs is developmentally regulated (Iglesias et al. 2008; Parente

et al. 2008) and under transcriptional control (Kawade and Masuda 2009).

A differential seasonal expression was first found for PAP and PAP-II from

P. americana, isolated from spring and summer leaves, respectively (Houston et al.

1983). This notion was later revisited by Rajamohan et al. (1999), reporting the

expression of PAP-I (corresponding to PAP), PAP-II and PAP-III, in spring, early

summer, and late summer leaves, respectively.

P. dioica has been very useful for studying RIP expression, because it produces

new leaves for many months, except at the end of the winter, thus making it possible

to monitor RIP activity during leaf ontogeny during most of the year. We have

found that PD-L1, PD-L2, PD-L3, and PD-L4 RIPs from fully expanded leaves of

adult P. dioica show differential seasonal and age expression. PD-L3 and PD-L4

are abundant in spring and summer leaves, decrease in autumn, and almost disap-

pear in winter, when PD-L1 represents 80% of the RIP isoforms synthesized. On the

contrary, the expression of PD-L2 remains constant throughout the year. PD-Ls 1–4

are not present in fully expanded leaves of young P. dioica (8–36 months old),

where they appear to be replaced by two novel RIPs, dioicin 1 and dioicin 2.

Furthermore, in developing leaves of adult plants (from 10- to 60- days old),

PD-Ls 1–4 and dioicin 2 are always present, while dioicin 1 can be detected only

at day 10 and 17. Dioicin 2 is also present in fully developed leaves of the adult

plant; therefore, its expression is neither age- nor seasonally regulated.

The fact that P. dioica synthesizes and accumulates RIPs indirectly indicates that

plant fitness benefits from these processes. In this view, the seasonal changes of RIP

pattern could be due to the different and potentially adverse environmental condi-

tions suffered, at least by the adult plant, in each season. Therefore, PD-L3 and

PD-L4, mainly expressed in summer, could improve plant tolerance to drought

and/or heat, whereas PD-L1, abundant in winter, may contribute to the avoidance of

different abiotic stresses. Moreover, PD-Ls could be involved in the already known

salt tolerance of P. dioica (Wheat 1977), thus conferring an adaptive, other than
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functional, role. As for the prevalence of diocin 1 and dioicin 2 in young plants, this

may be due to the need to protect young and perhaps more susceptible tissues to

pathogen attacks, e.g., by inactivating host ribosomes after virus challenge. The

presence of diocin 1 only in developing leaves of adult plants could lend support to

this hypothesis. Interestingly, treatment of tobacco and bean leaves with diocin

2 greatly reduced the infection of tobacco necrosis virus (TNV), an uncapped virus

without the 50 terminal m7GpppG cap, by inducing a slight H2O2 burst, but without

activating any cell death phenomena (Faoro et al. 2008).

All the above suggested roles for P. dioica RIPs are also supported by the

evidence of the newly reported enzymatic properties of RIPs other than N-glycosi-
dase activity, such as RNAse, DNAse, superoxide dismutase (SOD), and phospho-

lipase activities (reviewed in Park et al. 2004a, b). It must also be taken into account

that senescence may induce RIP synthesis as well (Sawasaki et al. 2008). In this

context, cytological changes activated by aging, as well as by pathogen infection,

could alter the RIP compartmentalization, thus exposing the host ribosomes to the

their action.

2.4 Cellular Localization

Diocin 1 and dioicin 2 from fully expanded leaves of young P. dioica were

localized in the extracellular space, in the vacuole and in the Golgi apparatus of

mesophyll cells (Parente et al. 2008). The presence of RIPs in the extracellular fluid

was ascertained by western blot. For immunocytochemical localization studies,

antidioicin 2 IgGs gave a positive signal mainly localized in the extracellular space

of mesophyll cells, where they often aggregated forming amorphous and scarcely

electron opaque deposits, intensely labeled by the gold probe. Some labeling was

also found in the Golgi complex, indicating that the protein traffics via this route

before being sorted into the cell vacuole or secreted.

Although double localization in the vacuole and apoplast is not unusual for type

1 RIPs (Carzaniga et al. 1994; Yoshinari et al. 1996, 1997), it is interesting to note

that for the highly identical PAP-II (81.6%), an exclusive extracellular localization

has been reported (Ready et al. 1986).

2.5 Glycosylation of P. dioica RIPs

The structure of glycan moieties present in PD-Ss and PD-Ls was determined by a

fast and sensitive mass spectrometry-based approach, applying a precursor ion

discovery mode on a Q-TOF mass spectrometer (Di Maro et al. 2009; Chambery

et al. 2008). The MS analysis confirmed that PD-Ls 1–3 were glycosylated at
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different sites. In particular, PD-L1 contained three glycidic chains, with the well-

known paucimannosidic structure (Man)3 (GlcNAc)2 (Fuc)1 (Xyl)1, linked to

Asn10, Asn43, and Asn255. PD-L2 was glycosylated at Asn10 and Asn43, and

PD-L3 was glycosylated only at Asn10. PD-L4, dioicin 1, and dioicin 2 were not

glycosylated.

The standard plant paucimannosidic N-glycosylation pattern was found for

PD-S1 and PD-S2 on Asn120, while in PD-S1 and PD-S3 Asn112 was shown to

link an HexNAc residue, probably N-acetyl-D-glucosamine (GlcNAc) (Chambery

et al. 2008). The glycosylation patterns of PD-Ss, PD-L1/2, and PD-L3/4 RIPs help

explaining their different chromatographic behavior (Table 1).

Basic understanding of protein glycosylation is still an area of intense investiga-

tion. Several roles have been ascribed to N-linked glycans, such as prevention of

proteolytic degradation, induction of the correct folding and influence on protein

conformation, stability and biological activity, involvement in protein recognition,

and cell–cell adhesion processes (Ceriotti et al. 1998; Elbein 1991; Lis and Sharon

1993; Sharon and Lis 1993; Varki 1993). Regarding the protein folding and

stability, a direct contribution of N-glycans has also been related to the increase

of protein solubility, the reduced tendency to aggregate, and to the presence of

additional hydrogen bonds and hydrophobic interactions between the oligosaccha-

ride and the protein (O’Connor and Imperiali 1996; Wyss andWagner 1996). In this

context, the four PD-Ls forms constitute an excellent experimental model suitable

to further investigate the role of glycosylation in the modulation of the biological

activity on different substrates.

The primary structure of PD-L1 and PD-L2 are identical, as well as those of

PD-L3 and PD-L4 (see Sect. 10.2.2). Therefore, biological differences between

each protein couple could be ascribed to the presence of the glycan moieties. The

comparative modeling of PD-L1, PD-L2, PD-L3, and PD-L4 showed an overall

high structural similarity, but also potential influences of the glycan chains on their

APG activity on different substrates (Di Maro et al. 2009), possibly related to the

bending of the glycan chain linked to Asn255. The observed catalytic activity

decrease is much more evident with the poly(A) (41%), but it is repeatedly observed

also with the rRNA (24%) and hsDNA (4%), suggesting that it is associated with

an acquired impairment of adenine interaction with the enzyme when Asn255 is

glycosylated. Indeed, the relatively lower activity on DNA and rRNA could be

explained in terms of obvious lower frequency-abundance of adenines in these

substrates. The same trend is also observed when the activities of PD-L4 are

compared with those of PD-L3.

Of particular interest was the DNA cleaving activity shown by PD-L1 (and

PD-L2), both native (with sugars) and recombinant (without sugars and likely

without contaminating DNases), dioicin 1 and dioicin 2 on ds pBR322 DNA (see

Sect. 10.3.5 later), while PD-L3/4 does not possess this activity. First, it was

ascribed to differences in glycosylation; it has been later attributed solely to the

differences of the protein sequences (see Sects. 3.5 and 4.3 below for PD-L1;

Ruggiero et al. 2009).
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3 Enzymatic and Biological Characteristics

3.1 N-b-Glycosidase and APG Activities

RIPs from P. dioica are N-b-glycosidases as shown by the appearance of the

“aniline fragment” in the RNA from ribosomes treated with the RIPs (Parente

et al. 1993, 2008). When assayed for the inhibition of protein synthesis on a cell-

free system, they gave IC50 values in the pmolar range (Table 3), comparable to

those of other type 1 RIPs. PD-S2 inhibited protein synthesis by cells at a much

higher concentration (120 pM in the reticulocyte lysate against >3,310, 2,950, 6

and 90 nM for 3T3 fibroblasts, HeLa, NB 100, and BEWO cells, respectively;

Parente et al. 1993). The maximum release of adenine from purified rat liver

ribosomes in the case of PD-S2 was �0.5 mol/mol of ribosomes (as in the case of

PAP-S). PD-S2 also inhibited phenylalanine polymerization by purified rat liver

ribosomes. The inhibition was not complete, with a residual �40% of polymeriza-

tion even at the highest concentrations of RIPs tested (Parente et al. 1993). This

resistance was observed previously with abrin (Battelli et al. 1984) and with an RIP

from Petrocoptis glaucifolia (Arias et al. 1992). These results suggest that part of

the ribosomes escape inactivation, and this was confirmed by treating ribosomes

with PD-S2 RIP, and incubating them again, after washing, with or without

the same RIP. In this second incubation, pretreated ribosomes polymerized phenyl-

alanine to the same extent (�30% of controls) independently of the addition of

Table 3 Enzymatic characteristics and cellular localization of Type 1 RIPs purified from P. dioica
seeds and leaves

RIP IC50
a (pM) APGb activity DNA cleaving activity Cellular localization

PD-S1c 120 nd nd nd

PD-S2c 60 nd nd nd

PD-S3c 80 nd nd nd

PD-L1d 102 þ þ nd

PD-L2d 110 þ þ nd

PD-L3e 228 þ Absent nd

PD-L4e 134 þ Absent nd

Dioicin 1 658 þ þ Extracellular space

Vacuole

Golgi apparatus

Dioicin 2 229 þ þ Extracellular space

Vacuole

Golgi apparatus
aProtein synthesis inhibition
bAdenine polynucleotide glycosylase (APG) activity on substrates such as RNA, poly(A) and

DNA (Stirpe and Battelli 2006)
cRIPs from seeds, with the same primary structure, but different glycosylation
dRIPs from leaves, with the same primary structure, but different glycosylation
eRIPs from leaves, with the same primary structure, but different glycosylation

nd not determined
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PD-S2 RIP. Addition of supernatant from a rabbit reticulocyte lysate (22 mg of

protein/sample) did not modify the inhibition. A similar incomplete inhibition was

observed with ricin added to ribosomes at 1:1 molar ratio.

RIPs from P. dioica show APG activity, determined by measuring the adenine

amount released from herring sperm DNA at 260 nm. This APG activity appears to

be more variable among RIPs and related to amino acid residue(s) present in the

active site other than the ones already known to be part of it (i.e. Tyr76, Tyr129,

Glu186, Arg189, Trp220, numbering of the consensus sequence of P. dioica RIPs,

Fig. 2a). Indeed, a conserved seryl residue identified by multiple sequence align-

ment analysis and located in the proximity of the catalytic tryptophan, appears to

play a role in this activity. Its involvement in the enzymatic mechanism of RIPs was

investigated in PD-L4 by site-directed mutagenesis (Chambery et al. 2007). The

replacement of Ser211 (numbering of the PD-L4 sequence or Ser224, numbering of

the aforementioned consensus sequence) with Ala apparently does not influence the

inhibition of the protein synthesis (determined as IC50 in a cell-free system), but it

reduces the APG activity, assayed spectrophotometrically on other substrates such

as DNA, rRNA, and poly(A). The ability of PD-L4 to deadenylate polynucleotides

appears more sensitive to the Ser211Ala replacement when poly(A) is used as

substrate, as only 33% activity is retained by the mutant, while with more complex

and heterogeneous substrates such as DNA and rRNA, its APG activity is 73% and

66%, respectively. While the mutated protein shows a conserved secondary struc-

ture by CD, it also exhibits a remarkably enhanced tryptophan fluorescence. This

indicates that although the overall protein 3D structure is maintained, removal of

the hydroxyl group locally affects the environment of a Trp residue. Modeling,

docking analyses, and 3D structure (Sect. 10.4.2) confirmed the interaction between

Ser211 and Trp207, which is located within the active site, thus likely affecting the

PD-L4 APG activity (Chambery et al. 2007).

3.2 Toxicity to Mice

PD-S2 RIP was toxic to mice with an LD50 of 1.12 mg/kg of body wt (Parente et al.

1993). The pathology of dead animals was similar to that observed in mice poisoned

with other RIPs (Battelli et al. 1990), with necrotic lesions in the liver and kidneys.

3.3 Immunotoxin

The PD-S2 RIP could be derivatized with 2-iminothiolane and subsequently linked

to monoclonal antibodies retaining good inhibitory activity on protein synthesis by

the reticulocyte lysate system (IC50 18 nM and 26 nM, respectively, after derivati-

zation and after conjugation to the antibody). An immunotoxin prepared with the
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anti-CD30 monoclonal antibody and containing 2.5 mol of RIP per mol of antibody

inhibited protein synthesis by target L540 cells with an IC50 < 50 pM. A similar

immunotoxin made with a control LS3 antibody was much less toxic to the same

cells (IC50 45 nM) (Parente et al. 1993). The toxicity of this immunotoxin to target

cells was comparable to that of an immunotoxin prepared with the same antibody

and saporin (Tazzari et al. 1992).

Consistent with the results obtained with other RIPs, the effects of PD-S RIPs on

different cells were highly variable, BeWo and NB 100 being more sensitive than

HeLa cells and fibroblasts (Battelli et al. 1992).

PD-S2 RIP is immunologically distinct from most RIPs and appears to be

suitable for the preparation of immunotoxins. Thus PD-S2 RIP could be useful to

overcome the immune reaction which would follow the administration of immu-

notoxins prepared with other RIPs.

3.4 Cross-Reactivity

The PD-S2 RIP gives a significant cross-reaction only with antibodies against

dianthin 32 and PAP-R, and a weak or no cross-reactivity with antibodies against

other RIPs, including saporin 6, momordin, momorcochin-S, and trichokirin

(Parente et al. 1993). This immune-response pattern was somewhat unexpected,

because of the many identities in the amino acid sequences of PD-S2 RIP and PAP-S

(73.4% identity; Fig. 3a), and since RIPs from plants belonging to the same family

often give a strong cross-reaction with the respective antisera (Strocchi et al. 1992).

Cross-reactivity data have also been obtained for dioicin 1 and dioicin 2. These

two RIPs were localized, by immunoblot analysis, in the extracellular fluid proteins

of fully expanded leaves of young P. dioica plants. Antidioicin 1-specific IgGs

cross-reacted with dioicin 2, as they showed up both RIPs, while antidioicin

2-specific IgGs did not react with dioicin 1. When used for immunocytochemical

localization studies, antidioicin 1 IgGs gave only faint or no staining, while anti-

dioicin 2 IgGs gave a positive signal mainly localized in the extracellular space of

mesophyll cells (Parente et al. 2008).

3.5 Activity on Double-Stranded pBR322 DNA

PD-L1/2, dioicin 1, and dioicin 2 purified on Red Sepharose® not only showed

N-b-glycosidase and APG activity but cleaved supercoiled pBR322 dsDNA,

generating relaxed and linear molecules. PD-L3/4, purified in the same way, did

not produce the same effect. The DNA cleaving activity of PD-S2 could not be

determined because of a very tight interaction with the substrate DNA (supercoiled

pBR322 dsDNA), with the resulting complex migrating towards the cathode (Delli

Bovi, personal communication). An extensive study has been performed with PD-

L1, the most glycosylated P. dioica RIP isoform. This RIP produced both free
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30-OH and 50-P termini randomly distributed along the DNAmolecule, as suggested

by labeling experiments with [a-32P]dCTP and [g-32P]dATP. Moreover, when the

reaction was carried out under low-salt conditions, cleavage was observed mainly at

a specific site, located downstream of the ampicillin resistance gene (close to

position 3200), ending with the deletion of a fragment of approximately 70 nucleo-

tides. This cleavage pattern is similar to that obtained under the same conditions

with mung bean nuclease, a single-strand endonuclease. Furthermore, pBR322

DNA treated with PD-L1 showed reduced transforming activity with Escherichia
coli HB101 competent cells in comparison to untreated control plasmid DNA.

Semiquantitative analysis of the effect of PD-L1/2, dioicin 1 and 2 showed that

pBR322, pGem-3, PM2, and FX174 replication form DNA were cleaved under

standard experimental conditions (50 mM Tris–Cl, 12.5 mM EDTA, pH 7.5, 37�C),
producing linearized and relaxed forms. However, an extensive study, using several

experimental conditions and methodologies, was performed with PD-L1 on

pBR322 dsDNA. These include (1) analyzing the effect of temperature, salt, and

divalent metal ions; (2) mapping the preferential RIP cleavage site; (3) performing

“nick-translation-like” experiments; (4) assessing the endonucleolytic activity,

under low-salt conditions, on pBR322 DNA by low amounts of S1, DNase I, or

mung bean endonucleases to map the pBR322 linearization cleavage site; (5)

performing substrate competition experiments with pBR322-oligonucleotides and

transformation assays.

Overall, the results suggest that PD-L1 RIP from P. dioica leaves induce the

cleavage of phosphodiester bond(s) on pBR322 DNA. This action is similar to that

previously reported for either type 1 or type 2 RIPs extracted from different sources

(Ling et al. 1994; Roncuzzi and Gasperi-Campani 1996). The experiments have

shown that the nicking activity on supercoiled pBR322 DNA results in the produc-

tion of predominantly circular and linear forms. Furthermore, the nicking activity

and the linearization cleavage(s) were dependent on (1) temperature, (2) ionic

strength, with inhibition on increasing the NaCl concentration, and (3) divalent

cations, such as Mg2+, Mn2+, Zn2+, and even more so Co2+. Their presence under

standard conditions potentiated the capacity to produce linear and circular pBR322

forms. However, the activity was completely abolished in the presence of 10 mM

EDTA. This result suggests that PD-L1 could be endowed with or contaminated by

cation-dependent endonuclease activity because, as reported for the most well-

known endonucleases, the addition of a chelating agent blocks the activity, even

though PD-L1 does not seem to be strictly dependent on the presence of the divalent

cations tested so far. However, the recombinant PD-L1 (rPD-L1; Ruggiero et al.

2009) exhibits the same activity. We can hypothesize that the addition of EDTA

abolishes the activity because it might chelate metal ions present in trace amounts

that are important for maintenance of the structure. It cannot be excluded that the

activity is abolished merely because the ionic strength of 10 mM EDTA is high

enough to compact the DNA structure and dramatically reduce any endonucleolytic

activity on it.

Under low-salt conditions, PD-L1 exerted its nicking activity predominantly at a

major site. In fact, the experiments in which the linearized and circular pBR322
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forms, obtained after RIP incubation in the absence of salts, were digested with

various restriction enzymes, showed fragments of different sizes according to the

preferential cleavage downstream of the ampicillin resistance gene of the plasmid.

It has already been reported that this region is sensitive to the single-strand-specific

mung bean endonuclease (MBN; Sheflin and Kowalski 1985). Moreover, the

linearization cleavage by the PD-L1 nicking activity under low-salt conditions

generates ligatable blunt termini and a deletion of an approximately 70-bp DNA

fragment at a specific site, as suggested by the sequence analysis of the mutant

clones. The same deletion was present in clones obtained from both blunted and

unblunted linear pBR322 DNA produced by PD-L1 cleavage. Furthermore, once

this region was eliminated, as in the case of mutant clones with the deletion, the

nicking activity under low-salt conditions was mainly restricted to a second prefer-

ential site, which is another structurally unstable sequence, described as a preferen-

tial site for topoisomerase II (Amir-Aslani et al. 1995) and single-strand

endonucleases such as S1 nuclease and MBN (Sheflin and Kowalski 1985). These

mapped preferential sites are the only two regions rich in A–T sequences that could

assume a hairpin conformation, as found after analysis of the complete pBR322

sequence by the PC-GENE software hairpin option. Furthermore, analysis of the

entire pBR322 sequence by Web-Thermodyn (the sequence analysis software for

profiling DNA helical stability; Huang and Kowalski 2003), revealed that these two

regions require the lowest free energy to unwind and separate the strands of the

double helix under our low-salt conditions at 37�C (http://wings.buffalo.edu/gsa/

dna/dk/WEBTHERMODYN). As described earlier, these two regions are very rich

in A–T sequences, and the stable unwinding of these regions may be important for

single-strand-specific nuclease hypersensitivity (Kowalski et al. 1988). PD-L1

activity on supercoiled DNA produced free 30-OH and 50-P, as shown by labeling

experiments, in common with other endonucleases. However, the endonucleolytic

effect, as in the case of MBN (Sheflin and Kowalski 1985), is mainly dependent on

the ionic environment. In fact, PD-L1 endonucleolytic activity on pBR322 DNA

was more pronounced at low-salt concentrations and was almost absent under high-

salt conditions. It has often been suggested that the nicking activity of RIPs can be

attributed to contaminating endonucleases (Barbieri et al. 2000; Day et al. 1998).

We addressed this question by incubating pBR322 DNA with endonucleases such

as DNase I, S1 and MBN, using the same experimental conditions as for PD-L1.

Our experiments performed with DNase I and S1 showed that in the presence of

very low amounts of these enzymes, the cleaving action appeared to be limited and

largely resulted in linear and circular plasmid forms, as obtained with PD-L1

treatment. However, it should be noted that in both cases this result was achieved

with the addition of a minimum amount of divalent cations (Mg2+ for DNase I and

Zn2+ for S1, not necessary for PD-L1) and that the linearized form was a conse-

quence of random cleavage of pBR322 DNA. The pattern obtained with PD-L1,

conversely, seemed to be very similar to that obtained with MBN. Thus, if a

contaminant is present, it should be an endonuclease (the orthologue of MBN in

P. dioica?) with functional and structural properties very similar to the well-known

properties of MBN, even though its complete amino acid sequence has not yet been
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determined (Di Maro et al. 2008). If this is the case, the contaminating MBN-like

protein should be present in very small amounts because, apart from PD-L1 RIP, no

traces of other proteins were detected using the purification protocol reported in

Table 1. It has also been suggested that the contamination could not be detected by

the analytical procedures used. However, contamination from DNases could also be

excluded on the basis of the following considerations: (1) our purification procedure

for PD-Ls and dioicins (Table 1) includes steps that have been reported to be

capable of removing the contaminating DNase activities (Barbieri et al. 2000);

(2) the contaminating DNase activities should be present in almost all our RIP

preparations eluted over a wide range of ionic strength (from 20 to 120 mM NaCl)

necessary to elute proteins with high pI. Indeed, pI values for RIPs (>8.5) used in

this study appear to be higher than those reported for commercial DNase I (pI 4.5)
and S1 (theoretical pI 4.26); (3) contamination by DNase II (pI between pH 6.0 and

8.0) is not likely because this enzyme acts in the presence of high-salt concentration

(Adams et al. 1986), while RIP endonucleolytic activity is inhibited under these

conditions; (4) finally, the purification and storage conditions (low pH, water, and

the absence of metal ions) would cause a loss in activity of such contaminating

endonucleases. It is well known that MBN stability and activity are Zn2+-dependent

at pH 5.0. In fact, its presence is essential during the purification procedure and over

90% of the activity can be lost or restored by zinc deprivation or its addition after

dialysis at pH 5.0 in the absence of EDTA (Kowalski et al. 1976). Hence, if MBN

endonucleolytic activity is greatly potentiated in the presence of Zn2+, it cannot be

explained why PD-L1 is only slightly potentiated by this ion and can exert its

activity without the addition of any divalent cations. Moreover, as mentioned

above, our purification procedure involves steps (dialysis at pH 4.5; Di Maro

et al. 1999) that could inactivate the MBN-like protein and exclude copurification

of a protein with MBN endonuclease properties (i.e., stepwise elution at pH 7.2,

which allows the elution of proteins with pI in the range 5.0–7.0, such as MBN;

Kowalski et al. 1976). In conclusion, our results suggest that the activity of PD-L1

on DNA is an intrinsic property of this RIP form and is exerted mainly at low ionic

strength, where secondary single-stranded structures may be formed and unpaired

bases are present. Similar behavior is shown by other known single-strand-specific

endonucleases (Desai and Shankar 2003). The competition experiments performed

at various single- and double-stranded oligonucleotide/substrate excesses support

this hypothesis and show that the nicking RIP activity persisted even at a 1,000-fold

molar excess of the scavenger oligos over pBR322. This suggests that the nicking

activity is dependent more on the single-stranded secondary structure with unpaired

bases than on the occurrence of a specific sequence. Recent reports are in agreement

with this hypothesis (Park et al. 2004a, b). Experiments showing a decrease in the

transformation capacity of plasmid DNA after PD-L1 treatment suggest that dam-

age to DNA occurred. This could be considered the mechanism responsible for the

additional biological activity of RIPs according to results described in a different

system (Nicolas et al. 1997). The fact that some RIPs may be endowed with enzyme

activity against DNA, even though it may occur only at high concentrations, helps

to explain some of their different biological properties. In fact, direct or indirect RIP
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activity against DNA has been reported in several papers hypothesizing different

roles and biological significance: (1) RIP binding DNA (Hao et al. 2001); (2)

nuclear DNA damage (Brigotti et al. 2002); (3) internucleosomal DNA fragmenta-

tion activity (Bagga et al. 2003); and (4) a role in transforming mammalian cells

(Barbieri et al. 2003). These different capabilities may be necessary for these

proteins to perform different biological roles: (1) resistance to pathogenic micro-

organisms or viruses; (2) implication in the mechanism of apoptosis and in meta-

bolic regulation; and (3) activity as gene expression regulators. There remains a

need to elucidate the mechanism of DNA cleavage exerted by PD-L1 and the

structural determinants involved in this activity, questions not yet fully resolved

for other RIPs showing the same activity, although it has been suggested that RIPs

may act as DNA glycosylase/AP lyases (Wang et al. 1999a). This mechanism

proposed for MAP30 is based on the presence of a lysyl residue (K195) close to a

triptophanyl residue, the side-chain amino group of which would function as a

nucleophile that attacks the C19 of the ribose of the abasic site (Wang et al. 1999b).

However, PD-L4, which contains a lysyl residue corresponding to K195 of MAP 30

in the 3D structure, does not show nicking activity under the experimental condi-

tions used here.

4 X-ray Crystal Structure of P. dioica RIPs

X-ray structures of RIPs from P. dioica have recently been determined (Table 4)

(Ruggiero et al. 2007a, b, 2008, 2009). These structures describe three of the four

RIPs isolated from fully expanded leaves of adult P. dioica leaves (PD-L1-4).

Crystallographic studies of PD-L4, in its unliganded and adenine-bound states

(Table 4), have provided atomic resolution structural information. As such, they

constitute reference structures for this class of proteins (Ruggiero et al. 2008).

4.1 Atomic Resolution Studies of PD-L4: A Reference RIP
Structure

Analogous to other RIPs (ricin A-chain, trichosanthin, PAP-I), P. dioica RIPs are

composed of two domains and possess a well-defined secondary structure (Fig. 4a).

Table 4 Available crystal structures of RIPs from P. dioica

Description Ligand Resolution (Å) PDB code Ref.

PD-L4 – 1.10 2Z4U Ruggiero et al. 2007a, b, 2008

PD-L4 Adenine 1.24 2QES Ruggiero et al. 2007a, b, 2008

PD-L4 mutant S211A – 1.29 2Z53 Ruggiero et al. 2007a, b, 2008

PD-L4 mutant S211A Adenine 1.24 2QET Ruggiero et al. 2007a, b, 2008

PD-L1 – 1.45 3H5K Ruggiero et al. 2007a, b, 2009

PD-L3 – 1.80 Ongoing –
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Despite a structural similarity with pokeweed antiviral protein (PDB code 1qcg),

with an average r.m.s.d. value after superposition of 261 equivalent Ca atoms of

0.65 Å, significant differences exist in the electrostatic potential surface of the two

proteins (Fig. 4b, c). These differences are particularly evident in the putative RNA

binding site cleft, where the electrostatic potential surface of PD-L4 is more

negatively charged (Fig. 4b, c). This behavior is predictive of a different activity/

specificity of the two proteins.

4.2 An Insight into the Active Site of PD-L4: Tyr72 as a Substrate
Carrier Through p–p Stacking Interactions with Adenine

Although high resolution structures of various RIPs have been determined (Ago

et al. 1994; Fermani et al. 2005; Hou et al. 2007; Kurinov and Uckun 2003; Kurinov

et al. 1999; Savino et al. 2000; Touloupakis et al. 2006; Zeng et al. 2003), the

mechanism by which they inhibit cell growth is still not fully understood. The

currently accepted reaction mechanism involves the protonation of the adenine to

be cleaved and the successive hydrolysis by a water molecule of the positively

charged oxicarbonium intermediate. However, the residues which are involved in

the protonation of the adenyl group are not known and contrasting hypotheses have

been proposed (Guo et al. 2003; Huang et al. 1995; Ren et al. 1994).

Fig. 4 (a) Ribbon structure of PD-L4. N-terminal and C-terminal domains are drawn in green and
magenta, respectively; adenine is drawn in blue. The figure has been drawn using MOLSCRIPT

(Esnouf 1999). (b) Surface electrostatic potential distributions of PD-L4 and 8C9 of PAP. Positive

(blue) and negative (red) electrostatic potential is mapped on the molecular surfaces by GRASP.

PD-L4 residue numbering has been used
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The well-conserved active site residues of PD-L4 (Tyr72, Glu175, Arg178,

Trp207) are located in the central part of the long concave presumed RNA-binding

region (Fig. 4a). Analysis of the refined model of PD-L4 in the unliganded state

shows that two well-defined conformations exist for the active site Tyr72 (Fig. 5a).

Fig. 5 (a) (2Fo–Fc) electron density map, contoured at 2s, of A and B conformations of Tyr72 in

PD-L4. (b) (2Fo–Fc) electron density map, contoured at 2s, of PD-L4 in complex with adenine.

(c) (2Fo–Fc) electron density map, contoured at 2.5s, of (A) PD-L4. (d) PD-L4 mutant S211A at

the mutation site. (e) Superposition of residues close to the mutation site in PD-L4 (dark gray)
and the PD-L4 mutant S211A (light gray). Figures have been drawn using BOBSCRIPT and

MOLSCRIPT (Esnouf 1999)
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In contrast, only one of the two Tyr72 conformations, the less abundant in the

unliganded state (occupancy factor 0.15), is observed in the adenine complex. In

this conformation, the phenoxy plane of Tyr72 is almost parallel with that of the

adenine base (Fig. 5b). Many different protein systems, beside RIPs, employ Tyr

residues in the recognition of the adenine ring, through a p–p stacking interaction

(Boehr et al. 2002). Also, the orientation of Ade and Tyr72, with the Tyr OH group

pointing at the N9 atom of adenine, has been found to be the most frequent in

proteins; this has been attributed to the occurrence of favorable electrostatic inter-

actions between the two rings (Boehr et al. 2002). The observed tight interaction of

the Tyr72 ring with adenine (with a distance of 3.75 Å between their centroids) as

well as the existence of two conformations in the unliganded PD-L4 are likely to be

a requirement for the catalytic role of the adenine interaction, attributed to Tyr72

(Huang et al. 1995). It is worth noting that the A conformation of Tyr72 (Fig. 5a) is

nearly superposable to that observed in the complex of inactive mutants of tricho-

santhin with AMP (Guo et al. 2003). Consistent with these findings, it has been

proposed that Tyr72 in the A conformation (Fig. 5a) is devoted to the binding of the

adenyl group in the early stages of the reaction mechanism. Modeling of AMP with

Tyr72 in the A conformation shows that adenine is in the near proximity of Asp91,

likely to be the protonating moiety (Huang et al. 1995). Consistently, the equivalent

residue of Asp91 in trichosanthin (Glu85) has been shown to strongly affect

catalysis (Guo et al. 2003). Most probably, after protonation, the adenyl group

remains bound to the A conformation of Tyr72 (Fig. 5a) since it is unlikely that a

positively charged adenine could be hydrogen bonded to the positively charged

Arg178 (Fig. 5b). Finally, only when the N-glycosidic bond has been cleaved, the

product adenine is accompanied to its final destination by Tyr72 (B conformation,

Fig. 5a) and establishes the hydrogen-bonding interactions (to Arg178, Val73,

Ser120) observed in the structures of the adenine complex of PD-L4 (Fig. 5b).

Sequence alignment of all known RIPs clearly evidences that a high sequence

conservation characterizes residues which are not traditionally considered as cata-

lytically relevant, since they are located outside the active site cleft. As a part of a

systematic study of the impact of these residues on function and structure of RIPs,

PD-L4 was used as a model for mutational studies (Chambery et al. 2007). This

study provided evidence that the mutation of the invariant Ser211 to Ala causes a

significant decrease in APG activity, with the major extent of reduction for poly(A)

substrates (Chambery et al. 2007). Structural bases of the reduced activity of the

PD-L4 S211A mutant were obtained by determining the X-ray structure of this

mutant both in its unliganded state and in complex with adenine, the major product

of their enzymatic reaction (Table 4). In the crystal structure of the PD-L4 S211A

mutant, the formation of a cavity formed by the lack of the Ser211 OH group is not

compensated by a reorganization of the local enzyme structure, but the OH is

replaced by a water molecule (Fig. 5c, d). This resulted in subtle conformational

changes of residues which play a fundamental role in substrate binding, like Trp207

and Arg178 (Fig. 5e; Ruggiero et al. 2008). These data point to the importance of

precise catalytic residue positioning for substrate binding. Furthermore, these

studies show that subtle, albeit significant, structural changes are responsible for
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significant differences in the enzymatic activity. This highlights the importance of

atomic resolution studies for the understanding of enzymatic properties (Schmidt

and Lamzin 2002; Vrielink and Sampson 2003).

4.3 PD-L1 and PD-L4 – Two Homologous Proteins
with Distinct Functional Properties

As previously reported, leaves of P. dioica express four type 1 RIPs, named PD-L1,

PDL-2, PD-L3, and PD-L4. PD-L1–3 isoforms exhibit different degrees of glyco-

sylation, whereas PD-L4 is not glycosylated (see Sect. 10.2.5). Despite the high

sequence identity of these proteins, PD-L1 (and PD-L2) induce the cleavage of

supercoiled double-stranded pBR322 DNA, whereas PD-L4 (and PD-L3) do not

(see Sect. 10.3.5, Aceto et al. 2005). The structural basis of the different functional

behavior of PD-L1 and PD-L4 was identified by determining the X-ray structure of

native PD-L1 and by evaluating the role of glycosylation on DNA cleaving activity

(Ruggiero et al. 2009). The crystallographic structure of PD-L1 evidenced that the

protein catalytic cleft is not large enough to host double-strand DNA. This sug-

gested that DNA cleavage occurs at unstable sites, where the double helix is locally

unfolded. Consistently, regions of the E. coli plasmid pBR322 identified as PD-L1

cleavage sites, are rich in adenine and thymine (AT-rich) (Aceto et al. 2005), and

therefore characterized by a lower thermal stability. It is likely that the stress

present within supercoiled DNA destabilizes double helices in AT rich regions,

thus making them accessible to the action of RIPs (Ak and Benham 2005; Benham

and Bi 2004). The structure of PD-L1 provided evidence for the flexible nature of

its glycan chains, a result which suggested that glycan chains provide little, if any,

contribution to the formation and stabilization of the enzyme–substrate complex

prior to catalysis. Consistently, DNA cleavage assays on the E. coli plasmid

pBR322 clearly showed that native and recombinant (nonglycosylated) PD-L1

were able to cleave the plasmid pBR322, as linearized forms were clearly detect-

able for both proteins (Ruggiero et al. 2009). By contrast, no cleavage of pBR322

was observed upon treatment with PD-L4, purified by the same procedure as native

PD-L1. Altogether, these data unambiguously showed that the different behavior of

PD-L1, compared to its homologue PD-L4, is not due to the protein glycosylation,

but to differences in their protein sequences. When the structures of PD-L1 and

PD-L4 are compared, most significant structural variations are observed in loop

regions. Among these, a conformational change of the loop including Asp91

(Fig. 6) was identified. Asp91 has been proposed to play an important role in

catalysis, as the equivalent amino acid residue in trichosanthin (Glu85) has impor-

tant implications for N-glycosidase activity (Guo et al. 2003). Compared to the

PD-L4 structure, the entire loop embedding Asp91 is pulled back in the PD-L1

structure (Fig. 6). This conformational change, induced by the presence of arginine

at position 97, a serine in PD-L4, opens the active site cleft by about 2.5 Å. (Fig. 6).

Notably, this same loop conformation is observed in the structure of the PAP, which
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displays a similar ability to induce DNA cleavage. In addition, other RIPs exhibit-

ing DNA cleaving activity, like saporin 6 (Savino et al. 2000) and dianthin 30

(Fermani et al. 2005), are characterized by a two-residue shorter loop. The observed

catalytic cleft opening may allow the binding of regions of the to-be-cleaved

supercoiled DNA, whose binding is hampered by the obstructing loop in PD-L4.

Following DNA binding and deadenylation by PD-L1, a spontaneous breakage of

phosphodiester bonds was proposed. Consistently, thermodynamic studies have

shown that abasic sites impact the stability, conformation, and melting behavior

of a DNA duplex (Vesnaver et al. 1989). Consequently, phosphodiester bonds in

extensively deadenylated regions of supercoiled DNA likely become liable because

of the existence of tension in supercoiled DNA.

Overall, structural studies on PD-L1 confirmed that DNA cleaving activity is not

to be attributed to nuclease contaminations during RIP preparation, as previously

proposed (Ruggiero et al. 2009). In this framework, DNA cleavage is proposed to

be a consequence of PD-L1 catalytic action, although not directly catalyzed by the

enzyme. This interpretation is in line with evidences that (1) various RIPs which

exhibit DNA relaxing activity are also able to depurinate supercoiled double-

stranded DNA (Wang et al. 1999) and that (2) mutants of PAP that inhibit

N-glycosidase activity also inhibit the cleavage of supercoiled double-stranded

DNA (Bagga et al. 2003). In this study, PD-L1 and PD-L4, which share a sequence

identity of 81.5%, offered a good opportunity for understanding the structural basis

of DNA cleavage, given the limited number of diverse residues in their sequences.

5 Concluding Remarks

Structure and function studies of type 1 RIPs from P. dioica have provided

fundamental knowledge on these plant toxins. These include (1) phylogenetic

relationships among Phytolacca RIPs; (2) confirmation that RIP expression is

developmentally regulated; (3) double localization, both in the extracellular spaces

and in the cell vacuoles of leaf tissues. This offers a view of the physiological role

of RIPs. Furthermore, detailed structural information obtained by high resolution

X-ray studies, contribute to our knowledge of the role of single amino acid residues

Fig. 6 Superposition of

PDL1 (light gray) and PD-L4

(dark gray) structures. The
entire protein structures are

represented as transparent
cartoons, whereas the loop
88–106 and a-helix 2 is

shown as solid cartoons.
Asp91 in the two structures is

shown in ball-and-stick
representation
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and of the glycan moieties, shedding new light on the discussed DNA cleaving

activity reported for RIPs. However, there is still much to be learned about this

family of enzymes: such as gene number and organization; complete screening of

plant tissues; detection of the factor(s) regulating RIP expression; biosynthesis and

characterization of their biological activity in plant. An even better knowledge on

the intracellular trafficking and protein target(s) upon intoxication of these type 1

RIPs will extend the utility of theses enzymes for better targeted biotechnological

applications.
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Arias FJ, Rojo MA, Ferreras MJ, Iglesias R, Muñoz R, Rocher A, Mendez E, Barbieri L, Girbés T

(1992) Isolation and partial characterization of a new ribosome-inactivating protein from

Petrocoptis glaucifolia (Lag.) Boiss. Planta 186:532–540

Bagga S, Seth D, Batra JK (2003) The cytotoxic activity of ribosome-inactivating protein saporin-

6 is attributed to its rRNA N-glycosidase and internucleosomal DNA fragmentation activities.

J Biol Chem 278:4813–4820

Barbieri L, Valbonesi P, Righi F, Zuccheri G, Monti G, Gorini P, Samorı̀ B, Stirpe F (2000)

Polynucleotide:adenosine glycosidase is the sole activity of ribosome-inactivating proteins on

DNA. J Biochem (Tokyo) 128:883–889

Barbieri L, Brigotti M, Perocco P, Carnicelli D, Ciani M, Mercatali L, Stirpe F (2003) Ribosome-

inactivating proteins depurinate poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase and

have transforming activity for 3T3 fibroblasts. FEBS Lett 538:178–182

Battelli MG, Lorenzoni E, Stirpe F, Cella R, Parisi B (1984) Differential effect of ribosome-

inactivating proteins on plant ribosomes activity and plant cells growth. J Exp Bot 155:

882–889

Battelli MG, Barbieri L, Stirpe F (1990) Toxicity of, and histological lesions caused by, ribosome-

inactivating proteins, their IgG-conjugates, and their homopolymers. Acta Pathol Microbiol

Immunol Scand 98:585–593

Battelli MG, Montacuti V, Stirpe F (1992) High sensitivity of cultured human trophoblasts to

ribosome-inactivating proteins. Exp Cell Res 201:109–112

Benham CJ, Bi C (2004) The analysis of stress-induced duplex destabilization in long genomic

DNA sequences. J Comput Biol 11:519–543

Boehr DD, Farley AR, Wright GD, Cox JR (2002) Analysis of the pi–pi stacking interactions

between the aminoglycoside antibiotic kinase APH(30)-IIIa and its nucleotide ligands. Chem

Biol 9:1209–1217

102 A. Parente et al.



Brigotti M, Alfieri R, Sestili P, Bonelli M, Petronini PG, Guidarelli A, Barbieri L, Stirpe F, Sperti S

(2002) Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells.

FASEB J 16:365–372

Carzaniga R, Sinclair L, Fordharm-Skelton AP, Harris N, Croy RDR (1994) Cellular and subcel-

lular distribution of saporins, type-1 ribosome-inactivating proteins, in soapwort (Saponaria
officinalis L.). Planta 194:461–470

Ceriotti A, Duranti M, Bollini R (1998) Effects of N-glycosylation on the folding and structure of

plant proteins. J Exp Bot 49:1091–1103

Chambery A, Pisante M, Di Maro A, Di Zazzo E, Ruvo M, Costantini S, Colonna G, Parente A

(2007) Invariant Ser211 is involved in the catalysis of PD-L4, type I RIP from Phytolacca
dioica leaves. Proteins 67:209–218

Chambery A, Di Maro A, Parente A (2008) Primary structure and glycan moiety characterization

of PD-Ss, type 1 ribosome-inactivating proteins from Phytolacca dioica L. seeds, by precursor
ion discovery on a Q-TOF mass spectrometer. Phytochemistry 69:1973–1982

Dallal JA, Irvin JD (1978) Enzymatic inactivation of eukaryotic ribosomes by the pokeweed

antiviral protein. FEBS Lett 89:257–259

Day PJ, Lord JM, Roberts LM (1998) The deoxyribonuclease activity attributed to ribosome-

inactivating proteins is due to contamination. Eur J Biochem 258:540–545

Del Vecchio Blanco F, Bolognesi A, Malorni A, Sande MJ, Savino G, Parente A (1997) Complete

amino-acid sequence of PD-S2, a new ribosome-inactivating protein from seeds of Phytolacca
dioica L. Biochim Biophys Acta 1338:137–144

Desai NA, Shankar V (2003) Single-strand-specific nucleases. FEMS Microbiol Rev 26:457–491

Di Maro A, Del Vecchio Blanco F, Savino G, Parente A (1995) Isolation and characterization of a

nicked form of the single-chain ribosome inactivating protein from seeds of Phytolacca dioica L.
In: First European symposium of the protein society, vol 4, Protein Science, Davos, Switzerland,

p 128 (com 495)

Di Maro A, Valbonesi P, Bolognesi A, Stirpe F, De Luca P et al (1999) Isolation and characteri-

zation of four type-1 ribosome-inactivating proteins, with polynucleotide:adenosine glycosi-

dase activity, from leaves of Phytolacca dioica L. Planta 208:125–131

Di Maro A, Chambery A, Daniele A, Casoria P, Parente A (2007) Isolation and characterization of

heterotepalins, type 1 ribosome-inactivating proteins from Phytolacca heterotepala leaves.

Phytochemistry 68:767–776

DiMaro A, Di Giovannantonio L, Delli Bovi P, De Andrés SF, Parente A (2008) N-terminal amino

acid sequences of intact and cleaved forms of mung bean nuclease. Planta Med 74:588–590

Di Maro A, Chambery A, Carafa V, Costantini S, Colonna G et al (2009) Structural characteriza-

tion and comparative modeling of PD-Ls 1–3, type 1 ribosome-inactivating proteins from

summer leaves of Phytolacca dioica L. Biochimie 91:352–363

Duggar BM, Armstrong JK (1925) The effect of treating the virus of TMV with juices of various

plants. Ann Missouri Bot Garden 12:359–366

Elbein AD (1991) The role of N-linked oligosaccharides in glycoprotein function. Trends Bio-

technol 9:346–352

Esnouf RM (1999) Further additions to MolScript version 1.4, including reading and contouring of

electron-density maps. Acta Crystallogr D Biol Crystallogr 55:938–940

Faoro F, Conforto B, Di Maro A, Parente A, Iriti M (2009) Activation of plant defence response

contributes to the antiviral activity of diocin 2 from Phytolacca dioica. IOBC/wprs Bull

44:53–57

Fermani S, Falini G, Ripamonti A, Polito L, Stirpe F et al (2005) The 1.4 angstroms structure of

dianthin 30 indicates a role of surface potential at the active site of type 1 ribosome inactivating

proteins. J Struct Biol 149:204–212

Girbés T, Ferreras JM, Arias FJ, Stirpe F (2004) Description, distribution, activity and phyloge-

netic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev

Med Chem 4:461–476

Type 1 Ribosome-Inactivating Proteins from the Ombú Tree 103
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