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Abstract The frequency of severe systemic fungal diseases has increased in the last

few decades. The clinical use of broad spectrum antibacterial drugs and immuno-

suppressive agents after organ transplantation, cancer chemotherapy, and advance-

ments in surgery are associated with increasing risk of fungal infection. Despite the

effectiveness of available antifungals in combating such infections, the emergence

of drug resistance to antifungals, and problems of toxicity and poor delivery of drugs

at the target site in systemic infections, have necessitated a systematic approach to

the study of fungal pathogens, host–fungi interactions, and identification of viru-

lence factors. Characterization of virulence factors is expected to improve under-

standing of fungal pathogenesis and to help explore new drug targets. In this article

we discuss the process of fungal infections, virulence factors and pathogenicity of

fungal pathogens, with special reference to Candida albicans. Adherence, dimor-

phism, phenotypic switching, secretion of hydrolytic enzymes, biofilm formation,
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and ability to adapt at host body temperature are some of the well-known virulence

factors among pathogenic fungi and are discussed in relation to C. albicans.

2.1 Introduction

Fungi are eukaryotic microorganisms that are more closely related to humans than

bacteria at cellular level. They belong to the group Eumycota, and are chemoheter-

otrophs with a chitinous cell wall. More than 100,000 species have been described.

Most species grow as multicellular filaments called hyphae-forming mycelium such

as molds; some species also grow as single cells like yeasts. Some groups of fungi

are pathogenic to humans and require control measures. Human fungal pathogens

belong to four main groups, namely zygomcetes, ascomycetes, deuteromycetes,

and basidiomycetes. Fungi can cause significant number of human diseases repre-

sented by pathogens such as Trichophyton sp, Epidermophyton sp, Histoplasma sp,

Blastomyces sp, Sporothrix sp, Coccidioides sp, and Paracoccidioides sp, capable of
infecting healthy people, or opportunistic invaders such as Aspergillus sp, Candida
sp, Cryptococcus sp, Fusarium sp, and Rhizopus sp, which are normally avirulent

in healthy people but could be disseminated to deep tissue and cause fatal disease in

unhealthy people (Chakrabarti 2005; Reedy et al. 2007). The morbidity and mortality

rates caused by fungal species such as Candida, Aspergillus, Fusarium, and Trichos-
porum are relatively higher (Fluckiger et al. 2006). In Europe, fungal infections

account for 17% cases associated with intensive care units (Rupp 2007), while in

the USA it has become the seventh most common cause of deaths among hospitalized

patients (Martin et al. 2003). About 15% of allogenic haemopoietic stem cell trans-

plant recipients and 20% of lung transplant recipients suffered fungal infections

(Ribaud et al. 1999). Approximately 60% and 20% of AIDS patients present with

pneumonia and esophageal candidiasis respectively (Moore and Chaisson 1996).

Data from the late 1950s and early 1960s indicate that invasive fungal infections

were extremely rare, even in immunocompromised cancer patients (Chakrabarti

2005). Now, fungal infections have dramatically increased in the past two decades

as a result of improved diagnostics, high frequency of catheterization, instrumenta-

tion and an increasing number of immunosuppressed patients. Particularly, invasive

fungal infections are showing extremely high mortality rate. The use of antineo-

plastic and immunosuppressive agents, broad-spectrum antibiotics, prosthetic

devices and grafts, and more aggressive surgery have led to the development of

complicated infections, including invasive fungal infections. Furthermore, patients

with burns, neutropenia, and HIV infections are now seriously exposed to fungal

infections (Kuleta et al. 2009).

Fungal infections have now also become more common in the healthy population.

The National Nosocomial Infections Surveillance System has reported Candida spp.
as the fourth most common bloodstream isolates in nosocomial infections in USA.

Over 95% of all fungal infections have been associated with Candida albicans,
Aspergillus fumigates, and Cryptococcus neoformans (Richardson 2005).
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2.2 Diseases Caused by Human Pathogenic Fungi

Fungal diseases can be broadly classified on the basis of causative agents as:

(a) dermatophytosis, (b) histoplasmosis, (c) blastomycosis, (d) coccidiomycosis,

(e) candidiasis, (f) cryptococcosis, (g) aspergillosis, (h) hyalohyphomycosis, and

(i) zygomycosis, as described by many authors (Sullivan et al. 2005). These

diseases differ in their nature, causative agents, and distribution. Description of

such fungal diseases, their causative agents and major organs involved etc are given

in Table 2.1. However, candidiasis is described here briefly. Candidiasis encom-

passes secondary or opportunistic infections ranging from acute, sub-acute, and

chronic to life-threatening mycoses. Infections are localized to mouth, throat, skin,

vagina, fingers, bronchi, lungs, and gastrointestinal tract, or sometimes become

Table 2.1 Examples of commonly caused fungal diseases

Fungal diseases Causative agent Site of infection Transmission

Dermatophytosis T. rubrum,
T. mentagrophytes,
E. floccosusm,
M. gypseum,
M. canis

Skin, hair, nails, feet Soil, contact with

arthrospores or

conidia from

contaminated

animals and

humans

Histoplasmosis H. capsulatum Lungs Soil, inhalation of

microconidia

Blastomycosis B. dermatididis Lungs, skin, genitourinary

tract, brain

Soil, inhalation of

conidia

Coccidioidomycosis C. immitis,
C. posadasii

Lungs, bones, joints,

meninges

Soil, inhalation of

arthroconidia

Candidiasis C. albicans,
C. tropicalis,
C. glabrata,
C. dubliniensis,
C. krusei

Intestinal tract, vaginal

tract, skin, fingers,

oral cavity

Endogenous flora,

contact with

secretions from

infected person

Cryptococcosis C. neoformans Lungs, meninges, kidney,

liver, prostate, bones

Soil, contamination

with bird feces

Aspergillosis A. fumigatus, A. flavus,
A. niger

Lungs Soil, inhalation of

spores

Hyalohyphomycosis Fusarium sp.,

Phecilomyces sp,
Scedosporium sp,
Scopulariopsis sp,
and Acremonium sp

Keratin, nails, lungs Soil, plant debris,

ingestion of toxin

contaminated

plant parts

Zygomycosis Rhizopus sp, Mucor sp
and Absidia sp

Skin, cerebral, blood,

lungs, genitourinary

and gastrointestinal

system

Soil, decaying plant

material,

inhalation or

percutaneous

contact of spores

Adapted from Weitzman and Summerbell (1995), Hogan et al. (1996), Pommerville (2004),

Rappleye and Goldman (2006), Willey et al. (2008)
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systemic as candidemia, endocarditis, and meningitis. A number of Candida spp are
encountered in candidiasis such as C. albicans, C. glabrata, C. tropicalis, C. krusei,
C. dubliniensis, C. parapsilosis (Hayens and Westerneng 1996). C. albicans is a
member of the commensal microflora of the intestine. It is pleomorphic and under-

goes reversible morphogenic transitions between budding yeast, pseuodohyphal,

and hyphal growth forms. Healthy persons generally encounter superficial infec-

tions but in immunocompromised patients invasive infections could also occur.

Approximately 70% of woman experience vaginal candidiasis once in a life,

and 20% suffer from recurrence (Fidel et al. 1999). Among other Candida spp,

C. glabrata has emerged as a frequent pathogen due to increased use of immune

suppressive agents. C. krusei is a pathogen of importance in patients with hemato-

logical malignancies and transplants. C. parapsilosis is frequently isolated from

blood cultures due to insertive medical devices. C. tropicalis is one of the causative
agents of candidemia and isolated from patients with leukemia and those who have

undergone bone-marrow transplantation. C. dubliniensis is found associated with

systemic infections in AIDS patients.

2.3 Host–Fungi Interaction: The Process of Infection

Like any other microbial pathogen, fungal infection also involves some basic steps

such as (1) entry and adherence to the host tissue, (2) invasion of the host tissue,

(3) multiplication, colonization and dissemination in the tissues, and (4) evasion of

the host immune system and damage to the tissues.

2.3.1 Entry or Adherence to the Host Tissue

Humans are first exposed to fungus C. albicans when passing through the vaginal

canal during birth. In this course the fungus colonizes the buccal cavity, and upper

and lower parts of the gastrointestinal tract of the newborn, where it becomes

commensal (Khan and Gyanchandani 1998; Claderone and Fonzi 2001). Other

fungi of human diseases come from exogenous sources of soil and decaying vege-

tation as saprophytes. Generally, they enter through respiratory portals. Fungi rarely

cause disease in immunocompetent hosts, though often exposed to infectious

spores. Disease results when fungi accidentally penetrate host barriers or when

immunologic defects or other debilitating conditions exist that favor fungal entry

and growth (Hogan et al. 1996). Infection of a host starts with the adherence of

fungi at epithelial surface layers and further dissemination to different host sites.

Invasion of various tissues and resistance to attack by the host immune system is

necessary for a pathogen to establish infection.
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2.3.2 Adaptation and Propagation

For a fungus to survive in its niche it has to adapt to constantly changing para-

meters. Therefore, fungi respond to change in a specific environmental component

by inducing transcriptional and translational changes that promote survival under

the newest environmental conditions. When fungi enter the mammalian host their

lifestyle changes from saprophytic to parasitic. As saprophytes, fungi survive in an

environment with a moderate ambient temperature and pH, essential nutrients such

as carbon and metal ions, and atmospheric concentrations of carbon dioxide and

oxygen. Once having invaded a human host, these environmental factors are

suddenly replaced by drastic changes. In the different niches of a host, completely

different nutrient compositions may exist and specialized features of fungal patho-

gens may be involved in the establishment, dissemination, and manifestation of an

infection (Brock 2009). For example, ambient temperature is replaced by the high

temperature of the human body. Fungal survival at the elevated temperature of a

human host is essential for virulence. The fungal pathogens C. neoformans and

A. fumigatus are simply better able to survive at 37�C than their nonpathogenic

counterparts (Hogan et al. 1996). Fungi often develop morphogenetic virulence

mechanisms, e.g., formation of yeasts, hyphae, and spherules that facilitate their

multiplication within the host at higher temperature. Yeast cells of many Candida
species form filamentous pseudohyphae and hyphae in tissues, whereas C. neofor-
mans yeasts become coated with a capsule, and Coccidioides immitis develops

swollen, septated spherules in the host. Other fungi such as Histoplasma capsula-
tum, Blastomyces dermatitidis, and Penicillium marneffei form filamentous mycelia

in the environment, but convert to yeast morphology upon contact with the human

host (Rappleye and Goldman 2006). Hyphae that grow in the skin or nail as

dermatophytes can fragment into arthroconidia or other conidial types. On the

other hand, ambient pH is replaced with acidic conditions of mucosal surfaces or

neutral to slightly alkaline pH of blood and tissues. One pathway used by fungi in

response to changing pH involves activation of the transcription factors such as

PacC in A. nidulans and Rim101 in C. albicans (De Bernardis et al. 1998). Carbon
and metal ions are lacking in host tissues; iron is sequestered from microbes by iron

carrier proteins in tissues, creating an iron-limited environment. In order to survive,

fungi encode certain mechanisms by employing siderophores, high affinity iron

chelators, to efficiently bind host iron into fungal cytoplasm (Haas et al. 2008).

Also, fungi have to face hypoxia and high levels of carbon dioxide in tissues. In

C. albicans, the response to hypoxia is dependent on coordination of specific

transcriptional regulators; for example, transcription factor Ace2 represses oxida-

tive metabolic processes and promotes filamentation (Mulhern et al. 2006).

All these specialized adaptations help fungi in sustaining infection at the host

site. Most of the free-living pathogenic fungi possess an extremely versatile metab-

olism which allows them to adapt immediately to changes in the environmental

conditions during life in the soil. Therefore, success of infection depends on rapid

adaptation to changing micro-environments.
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2.3.3 Dissemination

Dissemination of fungi in the host body is facilitated by severe endocrinopathies

and immune disorders. A fungus utilizes various mechanisms to deceive or destroy

the immune cells and spread to various organs. Dissemination depends on interac-

tions of factors from host and fungi, as described by several authors (Casadevall and

Pirofski 2001; Latge and Calderone 2002).

2.3.3.1 Host Factors

Considering the interaction between host and pathogen, immune cells are the major

antagonists to the survival of fungal pathogens inside the host. However, primary

resistance to fungal invasion and colonization is contributed by cutaneous and

mucosal physical barriers. The non-specific host defenses include (1) the antifungal

activity of saliva and sweat, (2) the competition for space and nutrients by the

normal microbiota of the skin and mucous membranes, which limits the growth of

potential pathogens, and (3) the mechanical barrier of the skin and mucous mem-

branes which prevent entry of fungi. Inflammatory systems to combat fungal

proliferation involving the action of neutrophils, mononuclear phagocytes, and

other granulocytes are also considered to be nonspecific. The specific host defenses

or acquired immunity consist basically of the cell-mediated immunity regulated by

T-lymphocytes. In humans, mycoses acquired by exposure to fungal spores through

the respiratory tract are checked primarily by the first line of defense, i.e., muco-

ciliary clearance. Remaining spores are ingested and killed by monocytes or

macrophages through phagocytosis as adaptive innate immunity (Wanner et al.

1996). In addition, healthy individuals employ a second line of defense formed by

neutrophilic granulocytes. They mainly attack hyphae, which are too large for

ingestion. These in turn are killed by oxidative and non-oxidative mechanisms,

including different defensins. Each of these two defense systems alone is able to

protect the host against large spores over long time periods. Fungal pathogens can

cause invasive disease only if both protective lines are surpassed (Murphy 1991).

Overall, severity of disease depends on factors such as inoculum size of the

attacking pathogen, magnitude of tissue damages, ability of fungi to multiply in

the tissue, and the immune status of the host cells.

2.3.3.2 Fungal Factors

Production of extracellular enzymes such as keratinases, collagenases, gelatinases,

phospholipases, lipases, and acid proteinases by dermatophytes, Aspergillus sp,

Candida sp, and Cryptococcus sp is considered to be the fungal-associated factor

that helps fungi in nutrient uptake, tissue invasion, adherence, and dissemination

inside the host. In some fungi such as C. neoformans, the presence of capsule may be
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an important factor. Similarly, the ability to grow at 37�C, dimorphism, and other

factors contribute to fungal pathogenesis, which involves a complex interplay of

many fungal and host factors.

2.4 Virulence and Pathogenicity

Pathogenesis is the ability of a microorganism to infect the host and produce disease

resulting from interaction of pathogen with host via expression of certain factors on

both sides. Pathogenicity of a fungus depends on its ability to adapt to the tissue

environment and to withstand the lytic activity of the host’s defenses. Several

determinants including genes or gene products such as enzyme molecules known

as virulence factors are involved in this relationship, producing superficial to

invasive infections in humans. Virulence refers specifically to a property of the

pathogen and, according to modern definitions, virulence is the ability of a pathogen

to multiply and cause harm to its host (Casadevall 2007). For a fungus to produce

disease in a patient, it must be actively invading tissues. Diseases caused by fungi

without invasion of live tissues include mould allergies and cutaneous dermato-

phyte infections (ringworm), in which fungi invade and damage only the nonviable

epidermis. Further, potentially lethal mycoses involving deep tissues result from

fungal dissemination and invasion throughout the body (Fluckiger et al. 2006).

Many human fungal pathogens are dimorphic (capable of reversible transitions

between yeast and hyphal forms), and the morphogenetic transition between these

forms is often stimulated by growth in the host and correlated with host invasion.

However, the nature of association between fungal morphogenesis and host inva-

sion is a highly debated aspect of fungal virulence (Molero et al. 1998; Klein and

Tebbets 2007).

Determinants of pathogenicity are called virulence factors. Pathogenic microbes

often possess a number of virulence factors and mechanisms. These factors deter-

mine whether the organism (the host) lives or dies during host–microbe interac-

tions. The factors can be inducible or constitutive, the direct product of genetic

elements (proteins), or the products of complex biosynthetic pathways such as

polysaccharides or lipid mediators. The virulence factor can be assessed by com-

paring biological response in fungi with and without the factor. The most convinc-

ing evidence for a factor to be considered as a virulence determinant is the

simultaneous loss of the factor and loss of virulence, and the regaining of virulence

when the factor is restored. Virulence factors must help the pathogen to grow at

elevated temperatures, facilitate adherence, penetration and dissemination, or assist

in resistance against innate immune defenses, e.g., phagocytosis and complement,

evasion from adaptive immune defenses, or nutritional and metabolic factors,

necrotic factors, or morphology variation. The ability of a fungus to grow at 37�C
and physiological pH is a virulence factor for fungi that invade deep tissue, and the

transition to parasitic form is essential for the pathogenicity of dimorphic fungi.

A size compatible with alveolar deposition is a virulence factor for fungi producing
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infections by inhalation of airborne spores (Tomee and Kauffman 2000). Some

kinds of virulence factors are commonly required for all pathogens, such as the

ability to recognize and adhere to host tissues, to respond rapidly to changes in the

external environment and to secrete hydrolases; all are thought to be important

in virulence. But the complex nature of the host–fungus interaction has resulted in

some factors that are absolutely required for fungal virulence. Some properties are

frequently associated with pathogenesis across all fungal pathogens and others have

been found to be important for specific pathogens. Because pathogenesis is com-

plex phenomenon, possession of a single putative virulence factor is not sufficient

for a fungus to become pathogenic; rather, a complex combination of properties is

usually required. Several kinds of processes are thought to be involved in virulence

in a wide range of fungal pathogens. Virulence factors associated with certain well-

characterized fungi have been described in the literature, and we have listed some

of them associated with medically important fungi in Table 2.2.

2.5 Candida albicans: An Opportunistic Fungus

Candida spp are asexual yeasts of the genus ascomycetes and genetically diploid

with the presence of eight chromosomes. Some species have shown phenotypic

switching, variant colony morphology and dimorphism, and transition from yeast

to filamentous form. Out of more than 200 species, the most commonly encountered

in medical practices are C. albicans, C. dubliniensis, C. glabrata, C. krusei,
C. parapsilosis, and C. tropicalis. About 8%–15% of nosocomial blood stream

infections are reported to be caused by Candida spp (Pfaller and Diekema 2002).

Candidal infections are a serious problem in individuals with weakened immune

defense. Interestingly, C. albicans differs from other medically important fungi

such as H. capsulatum, A. fumigatus, and C. neoformans in rarely being isolated

from soil. Therefore, infections caused are categorized as endogenous and not

exogenous as with others. C. albicans and related spp have been isolated from

several body locations as a carrier in the oral cavities, gastrointestinal tract, anus,

groin, vaginal canal, and vulva of healthy people, and may attain sufficiently high

density without symptoms of disease. Among these, C. albicans was predominant

at all body locations (70%), C. glabrata and C. tropicalis (7%) (Odds 1988). In

normal conditions, it exists with other normal microbial flora of host organs; about

50% of a healthy population is supposed to be a benign carrier of Candida spp, but

in immunocompromised patients who have undergone chemotherapy, bone-mar-

row transplantations, or diabetic treatment, it behaves like an opportunistic patho-

gen and produces superficial to systemic infection. Broad-spectrum antibiotic

therapy may also alter the population of normal bacterial flora, resulting in Candida
sp taking over the niche and assisting in flourishing and establishing secondary

infections. Oral and vaginal thrushes are very common even in individuals with

slightly weakened immunity (Soll 2002a; Fluckiger et al. 2006; Odds et al. 2006).

The ability of C. albicans and other Candida spp to colonize and survive at different
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Table 2.2 Role of virulence factors in pathogenic fungi

Fungal pathogen Type of virulence factors Role in pathogenicity

Dermatophytes Keratinase Damage of keratinous layer in epidermis

Elastase Destruction of elastin in tissues

Acid proteinase Cleavage of peptide bonds in host cells to obtain

nutrients and invasion

Phospholipase Cleavage of phosphodiester bond in membrane

lipids for invasion

Aspergillus spp Cell wall component,

b-1,3 glucan

Cell adhesion

Conidial size (2–3 m) Escape from mucocilliary extrusion

Adhesin, tronchin Binding of conidia to lung tissue

cAMP, rasA, rasB Nutritional uptake and growth of pathogen,

germination of conidia, branching of hyphae

Elastase-alkaline serine

proteinase

Degradation of elastin in lung tissue

Phospholipase C (plb1,2,3) Tissue damage and penetration

Catalases (catA, catB and

cat2), Superoxide

dismutase

Prevention from oxidative damage in

macrophages

Gliotoxin, helvolic acid Immunosuppressive properties, prevention from

oxidative burst of macrophages

Ribotoxin Cleavage of phosphodiester bond in eukaryotic

28s rRNA

Siderophore (sidA gene) Uptake of iron from blood heme

Growth at 37�C, hsp1, cgrA Ability to invade host tissue and survival at

elevated temperature of host

Histoplasma
capsulatum

Dimorphism Altered cell surface adhesion, tissue invasion by

hyphal phase, dissemination by yeast phase

a-1,3-glucan in cell wall Required for adhesion

Growth inside macrophage Evasion from immune cells, dissemination to

other organ tissues

Catalase Protection from oxidative killing

Coccidiodes
immitis

Dimorphism Sheer size of spherule is required for

dissemination, hyphal phase tolerate pH 2–12

Elastase Destruction of lung insertium and blood vessels

Estrogen binding protein Acceleration of spherule maturation and

endospore release

Blastomyces
dermatitidis

Dimorphism Tissue invasion and dissemination

Adhesin (BAD1) Suppression of immune response

a-1,3-glucan in cell wall Adhesion and masking of cell surface receptors

being recognized by immune cells

Cryptococcus
neoformans

Capsule Inhibition to phagocytosis

Melanin Prevention from oxidative damages

Mannitol Scavenging of hydroxyl radical during

respiratory burst

Phospholipases A,B,C,D

(plb1,2,3)

Tissue invasion and adherence

Acid proteinases Tissue invasion and dissemination

Candida albicans Adhesin (Als family,

HWP1)

Adherence to epithelial cells, fibronectin, biofilm

establishment

(continued)
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anatomic sites of the host has made them more harmful than other commensals of

the human body.

Microorganisms colonizing the gut can normally cause dysfunctions of intestine

such as E. coli or Salmonella sp, but opportunistically Candida cells can dissemi-

nate from gut to oral, vaginal mucosa, or skin as superficial infections and to

the bloodstream as systemic infections. Candida makes this spread possible by

expressing tissue site-specific metabolites. For example, in host tissue or blood-

stream having neutral or slightly alkaline pH, it expresses the gene PHR1 whose

products are involved in cell wall synthesis and work at neutral pH. On the other

hand, in vaginal mucosa where pH is acidic, this gene is switched off and another

gene, PHR2, is expressed with similar functions (Saporito-Irwin et al. 1995;

Muhlschlegel and Fonzi 1997).

As a commensal, Candida resides in yeast form and multiplies by budding into

blastospores, but during weakened immunity of the host it transforms into the

hyphal form as the start of pathogenesis. In vivo study has revealed that change

in pH, oxygen, carbon dioxide, or glucose concentration in host tissue triggers this

transition (Claderone and Fonzi 2001; Haynes 2001). Filamentous forms are more

adhesive due to increased expression of adhesins on the surface, and also secretion

of a higher amount of hydrolytic enzyme enhances the invasiveness. Moreover, the

pathogenic stage has to resist recognition by the immune system or damaging

macrophages and neutrophils. This interaction with host tissue in favor of Candida
results in deep tissue penetration and the establishment of infections. It is specu-

lated that host (tissue environment and immune system) alone determines the

balance between commensalism and pathogenicity (Soll 2002a; Hube 2004).

The work of several researchers has shown that certain genes such as pH-

regulated PHR1 and PHR2, genes encoding secreted aspartyl proteinases (SAPs

1–9), and genes encoding phospholipases (PHL A–D) are expressed differentially

in specific tissues at different stages of infections (Yang 2003; Naglik et al. 2004).

Table 2.2 (continued)

Fungal pathogen Type of virulence factors Role in pathogenicity

Dimorphism (phr1, hyr1,

chs2, chs3, rbf1)

Hyphal phase required for invasion and

adherence, yeast phase for dissemination

Phenotypic switching

(efg1)

Conversion to more virulent forms showing

increased ASP and adhesion production,

evasion from host response

Secreted aspartyl

proteinases (SAPs

1–10)

Nutrient uptake, tissue invasion, adherence and

dissemination

Phosphlipases A,B,C,D

(plb1,2,3)

Tissue invasion and adherence

Farnesol Quorum sensing, Biofilm formation

Catalase, Superoxide

dismutase

Prevention from oxidative damages

SUN41, GCN4, MKc1p Biofilm establishment

Adapted from Hogan et al. (1996), Ghannoum 2000, Claderone and Fonzi (2001), Yang (2003),

Blankenship and Mitchell (2006), Kuleta et al. (2009)
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Expression or modulation of these genes on the same mucosal surfaces only during

transition from the commensal to the parasitic stage reflects a weakness in the

immune system responsible for this shift (Casadevall and Pirofski 2001). Candida
survives and proliferates as commensal in competition with other microbial flora

and is affected by epithelial cell proliferation and the immune system. Proliferation

of epithelial cells constitutively forces Candida to attempt deeper invasion into

tissues. Prolonged antibiotic therapy provides more available nutrients and space

for Candida to multiply as other commensal microbial flora are diminished (Senet

1998). Immune suppression in HIV patients and inhibition of epithelial cell prolif-

eration such as in cancer therapy changes the tissue environment in terms of pH,

osmolarity, and oxidative stress. This changed condition is perceived by the

candidal cell and subsequently down- or up-regulation of certain genes provokes

Candida to switch over from commensal to opportunistic pathogens (Claderone and

Fonzi 2001; Hube 2004).

Advanced medical equipment and surgery has also led to the increased spread

of commensal Candida to tissues as pathogens. Medical devices such as catheter,

dental implants, artificial joints, pacemakers, central nervous system shunts, and

others have provided the opportunity to form biofilms, a stage more resistant to

drugs and capable of greater invasion to tissues. These devices are easily colo-

nized by candidal cells from mucosal surfaces and blood stream, and frequently

get spread from one tissue site to another. Further, candidal cells can also migrate

via blood flow to all inner organs, leading to septicemia and life-threatening

diseases (Douglas 2003; Hall-Stoodley et al. 2004). Biofilm-forming cells have

been reported to be more virulent than planktonic cells (Ramage et al. 2005;

Seneviratne et al. 2007). Recently, several workers have reported increased

production of proteinases, phospholipases, and adhesins in biofilm compared to

planktonic cells (Chandra et al. 2001; Al-Fattani and Douglas 2006; Seneviratne

et al. 2007). All these collectively aid in establishing infections by heightening

the adherence and invasion of tissues, leading to increased virulence.

Further, genetic changes in biofilms result in elevated drug resistance, pro-

nounced quorum sensing and regulated carbohydrate synthesis, thereby influen-

cing the pathogenicity of Candida. Therefore, biofilms-forming capacity has

greatly increased the potency of Candida to convert from the commensal stage

into a virulent pathogen.

2.6 Virulence Factors Involved in Pathogenicity

of Candida albicans

Like other fungal pathogens, C. albicans also regulates expression of certain genes

and their products as virulence factors to produce disease. This is the most common

opportunistic pathogen, utilizing several kinds of virulence factors. Some of the

commonly studied virulence factors in C. albicans are briefly described here.
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2.6.1 Adhesion

Adherence of candidal cells to host tissues is a complex multifactorial phenomenon

utilizing several types of adhesins expressed on morphogenetically changing cell

surfaces. But the striking feature ofCandida cells is the formation of biofilms in host

tissue, resulting in enhanced adherence. Ramage et al. (2006) have reported that in

the last few decades, Candida-related infections have been found associated with

biofilm-forming capacity. Well-known adhesins are agglutinin-like sequences

(ALS) that are members of a family of seven glycosylated proteins. Als1p, Als3p

and Als5p (Ala1p) on the cell surface of hyphae adhere to human buccal epithelial

cells (HBEC) and fibronectin, collagen, laminin, and endothelial cells (Hawser and

Douglas 1994; Hoyer 2001). Als6p and Als9p bind to collagen and laminin respec-

tively. Als4p binds to endothelial cells and Als5p is additionally needed for cell

aggregation. However, the role of Als7p is unclear (Filler et al. 2006; Kuleta et al.

2009). Another 34 kDa adhesin molecule, Hwp1 (hyphal wall protein), encodes an

outer surface mannoprotein on the hyphal wall; the amino terminal sequences of this

adhesin are recognized as mammalian transglutaminase substrate (TGase) and form

covalent binding with HBEC. Studies with hwp1� knockout mutant and HWP1�

deficient mutant of C. albicans have shown reduced adherences and mortality in

murine models (Chaffin et al. 1998; Staab et al. 1999). An integrin-like protein

(Int1p) which is a plasma membrane receptor and antigenic functionally similar to

human complement receptors 3 and 4, has been isolated from C. albicans and found
to bind with extracellular matrix (ECM) ligands such as fibronectin, laminin, and

collagen I and IV, and induce morphological changes in response to extracellular

signals (Claderone and Fonzi 2001; Ruiz-Herrera et al. 2006).

2.6.2 Morphogenesis

Morphogenesis in C. albicans is defined as transition from unicellular yeast form to

filamentous form (pseudohyphae or hyphae). Of all the species only C. albicans and
C. dubliniensis are able to undergo morphogenesis. Transition from yeast form to

hyphal form is facilitated by nutrients, near-neutral pH, temperature of 37�C–40�C,
CO2 concentration about 5.5%, and presence of N-acetyl-D-glucosamine, serum,

some amino acids, and biotin. Reverse transition from hyphal to yeast form is

provoked by lower temperatures, acidic pH, absence of serum, and higher concen-

tration of glucose (Corner and Magee 1997; Eckert et al. 2007). This transition is

strongly required for pathogenesis. Yeast forms are more suited for dissemination in

tissues and to other hosts, whereas hyphal forms are required for tissue damage and

invasion. For example, the yeast cell, when phagocytosed by macrophages, pro-

duces hyphae and secretes hyphae-associated proteinases that kill macrophages;

these factors also prevent hyphal cells from being killed by neutrophils. In addition,

hyphal cells have been shown to induce phagocytosis by endothelial cells, helping
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Candida cells to escape from the bloodstream (Molero et al. 1998; Gow et al.

2002; Hube 2004). Further, hyphal cells have stronger adherence capacity due to

expression of ALS adhesins and also exhibit greater invasiveness to tissues.

Increased expression of superoxide dismutase (SOD) antagonizes oxidative burst

of phagocytic cells. Several genes have been identified which regulate phase

transition, namely PHR1, ECE1, HYR1, RBF1, CHS2, CHS3 which are differen-

tially expressed during morphogenesis (Haynes 2001; Claderone and Fonzi 2001).

Of these, ECE1 correlates with hyphal elongation although ECE1 null mutants

displayed no morphological alterations. Similarly, null mutants for expression of

CHS2, CHS3 and HYR1 did not show any obvious morphological type. But

disruption of RBF1 demonstrated alteration in cell morphology and strongly

involved in yeast–hypha transition (Yang 2003). Studies with homozygous null

mutants for Hst7p, Cph1p and Cst20p have shown defective hyphal formation

(Leberer et al. 1996); in addition, three genes TUP1, EFG1, CLA4 were found to

be regulating candidal morphogenesis (Liu 2001). Transcription factors such as

Tup1 and Rbp1 are negative regulators of filamentation (Braun and Johnson 2000).

A tup1 mutant strain resulted in constitutive filamentous growth under all condi-

tions, indicating a role in filament formation. Deletion of homozygous allele of

Ste20 encoded by CLA4 showed impaired hyphal formation in a wide range of

medium, and decrease in virulence in a murine model (Braun and Johnson 1997;

Celera and Claderone 2001). A protein of bHLH class encoded by EFG1 acts as

transcriptional activator as well as repressor, and is required for pseudohyphal and

hyphal morphogenesis (Liu 2001; Noffiz et al. 2008). A study with homozygous

mutants cfg1 and cph1 showed failure of germ tube and hyphae production in a

murine model (Noffiz et al. 2008).

2.6.3 Phenotypic Switching

Unlike other pathogens, phenotypic switching in Candida is pleitropic by affecting

several phenotypic and metabolic parameters, with subsequently a number of

virulence traits such as SAP gene regulation. This allows Candida to adapt to a

different host environment during infection (Soll 1992; Soll 2002b). Colonies of

C. albicans show morphological variation, including smooth, rough, star, stippled,

hat, wrinkle, and fuzzy at high frequency. This switching is reversible, occurs

spontaneously in stress, and results in changes in cell surface behavior, colony

appearance, and metabolic, biochemical and molecular attributes to become more

virulent and effective during infection (Soll 2002b; Odds et al. 2006). Strains

isolated from vaginitis or systemically infected patients showed higher frequencies

of switching, indicating a strong role for the switching phenomenon in establishing

diseases (Kvaal et al. 1999). In the case of yeast–hypha transition, all cells of a

population express the same phenotype under the same environmental conditions,

whereas in the case of switching, some cells of a population express different

phenotypes under the same set of environmental conditions. Earlier research had
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reported that laboratory isolate 3153A, grown on amino acid rich agar which was

limiting for zinc and incubated at 25�C, showed a smooth phenotype as dominant,

while variant colonies of star, ring, irregular, and wrinkle occurred spontaneously.

Such types of variation were also observed with cells of strain 3153A treated with

low doses of UV irradiation (Soll 1992). At present, of all the phenotypes described,

the white-opaque system in strain WO-1 is the most studied. This system is

characterized by transition from smooth, white colonies to flat, gray opaque colo-

nies. White cells are round ovoid while opaque cells are elongated or bean shaped

(Soll 2002b). Study of gene expression with the WO-1 system revealed an associa-

tion of OPA1 (SAP1) and SAP3 in opaque cells, in contrast to SAP2, WH11and

EFG1 in white cells (Soll 1997; Miller and Johnson 2002). Study with efg1 null

mutants exhibited no involvement of EFG1 in switching, but rather control of

phenotypic characteristics. It has been reported that white cells in WO-1 hardly

form hyphal stages, but this was achieved by opaque cells (Staib et al. 2002). There

is good evidence that opaque cells are more virulent than white cells in several

murine models (Yang 2003).

2.6.4 Phospholipases

Phospholipases are enzymes that hydrolyze ester linkages of glycophospholipids

and hence impart tissue invasiveness to Candida cells. In C. albicans, four types
of phospholipases are classified by researchers on the basis of the ester bond they

cleaved, viz., phospholipase A, B, C, and D. All types possess hydrolase activity,

but PLB in addition also possesses lysophospholipase transacylase activities; there-

fore, it is able to release fatty acids from phospholipids and the remaining fatty acid

from lysophospholipids, and then transfer a free fatty acid to lysophospholipids,

producing phospholipids. Of these, only PLB1, a 84 kDa glycoprotein isolated from

hyphal tip in the course of tissue invasion, has been shown to be required for

virulence in a murine model of candidiasis (Ghannoum 2000; Yang 2003; Theiss

et al. 2006). A study conducted by Ibrahim et al. (1995) revealed an increased level

of phospholipase production in blood isolates compared to commensal isolates.

2.6.5 Proteinases

Secretion of proteinases by pathogen is mandatory in order to degrade the tissue

barriers and obtain nutrition at the infection site. Secreted aspartyl proteinases

(SAPs) from Candida have been reported that hydrolyze many proteins such as

albumin, hemoglobin, keratin, collagen, laminin, fibronectin, mucin, salivary lacto-

ferin, interleukin1b, cystatin A, and Immunoglobulin A (Hube et al. 1998). To date,

ten proteins have been recognized as SAP family (SAPs 1–10) and found to be

responsible for tissue invasion. Several researchers have reported that production of

SAPs is also correlated with hyphal formation, adherence, and phenotypic switching
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(Monod and Zepelin 2002; Naglik et al. 2003). Such researches have highlighted the

complex role played by SAPs in the pathogenicity of C. albicans. Several models

using SAP inhibitors such as pepstatin A and SAP-disrupted or over-expressing

mutants demonstrated the need for these factors in candidal pathogenesis. In vitro

studies have reported that SAPs 1, 2 and 3 are expressed by the yeast phase, only

while SAPs 4, 5 and 6 are expressed in the hyphal phase (Hube et al. 1998; Schaller

et al. 1999; Naglik et al. 2004).Whereas, SAPs 9 and 10 are expressed by both forms

(Albrecht et al. 2006). Structural analysis revealed that SAPs 1–8 are secreted

extracellularly, but that SAPs 9 and 10 are anchored to the cell wall by glycopho-

sphotidyinositol (GPI) protein (Naglik et al. 2003; Albrecht et al. 2006). Models of

epidermal and vaginitis candidiasis revealed involvement of SAPs 4–6 in invasive

systemic disease whereas SAP 7 was never detected in vitro. The role of SAPs 1–3 is
associated with early adherence, invasion, and cutaneous infections as studied in the

WO1 strain, whereas SAP8 is associated with extensive penetration. SAPs 6 and 9

were found expressed in later stages of hyphal growth (Hube et al. 1998; Schaller

et al. 1999; Kvaal et al. 1999). Different properties of SAPs are exploited in the

pathogenicity of Candida. For example, SAPs are active across a broad range of pH

2.0–7.0, as SAPs 1–3 are active at pH 3.5, SAPs 4–6 at pH 5.0–7.0, and therefore

make Candida capable of colonizing and invading different tissue sites of varying

pH. In addition, SAPs show varied levels of protein specificity, as SAPs 1, 2, 3 and 6

cleave peptide bonds in larger hydrophobic amino acids; SAPs 1, 2 and 6 act on

phenylalinine, whereas SAP 3 attacks leucine and SAPs 9 and 10 hydrolyze yapsin

and kexins (Naglik et al. 2004). This attribute enables Candida to obtain nitrogen at
different tissue makeups, and aids pathogenicity by revealing potential binding sites

from tissue for adhesion of candidal cells, and also dissemination via circulatory

systems. In vivo studies have confirmed the role of SAPs in colonization, increased

adhesion and tissue penetration (Naglik et al. 2004; Hube and Naglik 2001).

Disruption of SAPs 1, 2 and 3 have resulted in decreased virulence in mouse models

(Hube et al. 1997). Several reports have supported functional role of SAP2 in

invasion and dissemination of systemic infections (Kvaal et al. 1999; Naglik et al.

2004; De Bernardis et al. 1999). Further research data have indicated increased

expression of SAP genes, especially SAPs 5, 6 and 9 mRNA transcripts, in biofilm

rather than planktonic cells (Green et al. 2004; Naglik et al. 2008). Recently, in

addition to SAPs, a 60 kDa metallopeptidase and 50 kDa serine peptidases have also

been isolated, and reported to hydrolyze extracellular matrix proteins and serums

(dos Santos et al. 2006). Expression of SAPs has been found to be correlated with

other virulence determinants to enhance the pathogenicity of C. albicans. Correla-
tion of SAPs with other virulence factors in C. albicans is illustrated in Fig. 2.1.

2.6.6 Biofilm Formation

Biofilms are the organized structures involving microbial communities that are

attached to some inanimate surfaces or tissues and circumvented in a matrix of
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exopolymeric materials. Biofilm formation is initiated by irreversible adherence of

microbial cells to tissues or devices and followed by growth and maturation to form

a mesh of cells with altered phenotype, growth rate, and gene expression compared

to planktonic cells. Studies with scanning electron microscopy of biofilms revealed

the presence of both adherent yeast cells and invasive hyphal forms constructing

basal and upper layers respectively, enclosed in an extracellular polymer matrix

consisting of polysaccharides and proteins and forming a three-dimensional struc-

tures with water channels (Dominic et al. 2007). These forms differ in ultrastruc-

ture, physiological behavior and composition of cell walls, and are required for

candidal pathogenicity, as mutants lacking genes for any one became less virulent

both in vitro and in vivo (Chandra et al. 2001). Heterogeneity of these biofilms

depends on the substrate composition, environmental conditions, and type of strains

involved. Although yeast–hypha transition is necessary for full maturation of the

biofilm, strains that are unable to grow as yeasts or to form hyphae can still form

biofilms but are easily detachable (Baille and Douglas 1999). In addition, some

authors have reported a change in biofilm-forming ability of candidal cells, with
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Fig. 2.1 Correlation of secreted aspartyl proteinases with other virulence attributes in Candida
albicans. Partially adapted from Naglik et al. (2004)
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alteration in variants produced during phenotypic switching (Brown and Gow 1999;

Berman and Sudbery 2002).

The ability of Candida to form biofilms on catheters, endotracheal tubes, pace-

makers and other prosthetic devices has contributed to its predominant prevalence

in nosocomial infections (Douglas 2003; Ramage et al. 2005). Such devices, in

addition to providing a platform for candidal cells to form biofilm, grow and

develop, provide a route through host barrier defenses for dissemination. During

weakened immunity, hematogenous dissemination of candidal cells from biofilms

to deep-seated organs could occur, resulting in candidemia and septicemia. Recent

studies have confirmed biofilm growth in the majority of diseases caused by

Candida spp (Chandra et al. 2001; Douglas 2003; Chandra et al. 2005). Dental

plaque is a well-known example of biofilm formation from Candida cells, and is

responsible for oral candidiasis. Biofilm formation on such tissues is favored by a

high concentration of glucose, serum, and other proteins. Biofilm formation was

found to be linked to dimorphism and phenotypic switching, well-known virulence

traits for candidal cells (Baille and Douglas 1999; Chandra et al. 2001). Also,

alerted phenotypes exhibited reduced susceptibility to the host immune system

and to antifungal drug therapy (Chandra et al. 2001). These biofilm-specific cell

properties are an indicator for virulence, and have prompted much recent interest in

C. albicans biofilm structure, physiology, and regulation. Therefore, knowing the

ability of C. albicans to populate a surface and produce a biofilm as a virulence trait,

exhaustive research is being focused on the prevention of biofilm infection by

Candida cells.

Adherence is the critical property for biofilm-forming cells and is mediated by

hydrophobic interactions, electrostatic forces, and adhesion–ligand interactions;

multiple adhesion molecules function in the successful establishment of biofilm.

A variety of genes are involved in adhesion, and penetrations are associated deeply

with the biofilm-forming capability of C. albicans. Here, we would discuss some of

them for their role in pathogenicity. A number of adhesins, termed glycosylpho-

sphatidylinositol-dependent cell wall proteins (GPI-CWPs), encoded by ALS1,

ALS2, ALS4, ALS5 (ALA1), HWP1, and EAP1, mediate adhesion to organic

and inorganic surfaces, extracellular matrix proteins, human endothelial cells, and

epithelial cells (Blankenship andMitchell 2006; Filler et al. 2006; Zhao et al. 2006).

Experimental results showed upregulated ALS family gene expression in biofilm-

forming cells compared with planktonic cells (Hoyer et al. 1998; Chandra et al.

2001; Nobile and Mitchell 2005; Green et al. 2004) and ALS 3 was also found

necessary for biofilm formation on silicone substrates in vitro (Nobile et al. 2006a).
ALS1, ALS3, and HWP1 are regulated by transcription factor BCR1 (biofilm and

cell wall regulator), a zinc finger protein, which is under the control of transcription

factor Tec1. An als3/als3 mutant strain was found defective in biofilm formation

in vitro, and overexpression of ALS3 permitted biofilm formation by a bcr1/bcr1

mutant in vitro and in vivo. Studies with the bcr gene revealed involvement of

BCR1 in governing the mechanism of biofilm formation only and not the filamen-

tation (Nobile and Mitchell 2005; Lopez-Ribot 2005; Nobile et al. 2006a; Nobile

et al. 2006b). Hwp1 is a cell surface protein covalently linked to the cell wall glucan
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through a remnant of its GPI anchor. Functional analysis showed its requirement

for tight adherence to oral epithelial cells (Chaffin et al. 1998; Staab et al. 1999;

Mendes-Giannini et al. 2008). A role for Hwp1 in C. albicans cell–cell adherence is
exhibited from the finding that it is induced by mating factor and is deposited on the

surface of the bridge between mating partners (Staab et al. 1999; Hoyer et al. 1998).

Recent studies showed that Hwp1is required as first cell surface protein in vivo for

biofilm formation (Nobile et al. 2006a; Nobile et al. 2006b). Recently, work from

Granger et al. (2005) described the role of Ywp1 (Yeast cell wall specific protein)

as anti-adhesin. The mutant for Ywp1 led to enhanced adherence of yeast cells,

therefore highlighting its negative role in biofilm establishment. In addition, studies

with mutants for transcription factor Ace2 (activation of CUP1 expression 2)

resulted in inhibition of biofilm formation (Kelly et al. 2004). A study conducted

by Li et al. (2007) showed eap1 mutants exhibiting reduced adhesion to plastic

surfaces and epithelial cells, and that Eap1p was able to mediate adhesion to yeast

cells. The same study also showed of the need for eap1 gene expression in biofilm

formation under shear flow in vitro and in central venous catheter biofilm model

in vivo. In a study, another cell wall protein Ecm33 was found to be necessary for

cell wall integrity and yeast-to-hypha transition (Martinez-Lopez et al. 2004), and

Mp65 (Norice et al. 2007) is also required for full virulence in a disseminated

infection model, illustrating that cell wall proteins may have diverse functions that

are relevant to infection. Norice et al. (2007) also showed that protein SUN41

plays major roles in biofilm formation, cell wall integrity, and virulence in both

oropharyngeal and disseminated candidiasis.

Richard et al. (2005) showed involvement of genes sun3, nup85, mds3, kem1 in

hyphal development and biofilm formation. Some studies have also demonstrated

that the hyphal regulatory gene efg1 is required for normal biofilm growth, and

efg1/efg1 and efg1/efg1 cph1/cph1 mutants have exhibited defective biofilms and

also adhered poorly to the substrate (Lewis et al. 2002; Watamoto et al. 2009). Gcn4,

a general amino acid control regulatory gene, was shown to be required for full

biofilm biomass production (Blankenship and Mitchell 2006). A contact-activated

protein kinase, Mkc1p, is also required for biofilm development, suggesting that

C. albicans may respond uniquely to surface contact during biofilm formation.

Further, an experiment by Ramage et al. (2002) showed that biofilms are

organized communities under tight regulation of gene expression controlled

through quorum sensing which in turn is regulated by farnesol and tyrosol mole-

cules. Several workers have observed these organized communities under the

control of a signaling molecule (Hogan 2006). This cell-to-cell communication

prevents and controls unnecessary overpopulation and nutritional competition, and

has implications in dissemination and establishment of infection at the distal site

from old biofilm (Alem et al. 2006). Farnesol, a quorum-sensing molecule that

inhibits C. albicans biofilm formation by inhibiting yeast-to-hypha transition,

decreases HWP1 expression in biofilms (Ramage et al. 2002). Farnesol acts on

yeast cells to prevent filamentation but elongated hyphae continue to form biofilms.

A report highlighted differential expression of genes associated with hyphae forma-

tion in farnesol-treated biofilms, such as genes involved in cell wall maintenance,
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iron transport, stress response and upregulation of TUP1 and downregulation of

CSH1 protein associated with cell surface hydrophobicity. Farnesol also prevents

induction of Tup1-regulated filament specific genes hwp1, rbt1, cph1 and hst7 (Cao

et al. 2005; Dominic et al. 2007). In contrast to farnesol, another quorum-sensing

molecule, tyrosol, induces filamentation under conditions conducive to germ tube

formation, but its role in biofilms has not been much investigated (Alem et al.

2006). However, a recent study highlighted a two-component signal transduction

protein Chk1p regulating both quorum sensing and biofilm formation by negatively

regulating hyphal development in C. albicans. However, it is not clear whether

chk1p is directly involved in response to farnesol or not (Kruppa et al. 2004;

Blankenship and Mitchell 2006). Involvement of different virulence factors in

forming biofilms and associated pathogenicity is depicted in Fig. 2.2.

2.7 Conclusion

Based on the review of the literature on fungal infection, virulence, and

pathogenicity, it is clear that at present the frequency of fungal infection rate is

increasing, up to 90% for patients with disseminated candidiasis, aspergillosis or
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Fig. 2.2 Illustration of virulence factors involved in establishing biofilm and associated pathoge-

nicity in Candida albicans: (a) planktonic yeast cells, (b) initiation of biofilm formation on living

tissues or inert object like polyvinyl chloride (PVC) by adherence of yeast cells forming basal

layer, (c) development of biofilm by initiation of upper invasive hyphal layer and production of

exoploysaccharide, and (d) maturation of biofilm by more filamentation and exopolysaccharide

production. Partially adapted from Blankenship and Mitchell (2006)
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cryptococcosis. Fungal pathogenesis is a multifactorial phenomenon; therefore, the

nature of fungal pathogens, their virulence factors, and their interaction with host

defense mechanisms need to be explored for the development of more effective

antifungal therapy. Although phenomenal progress has been made on molecular

characterization of various virulence factors and host–fungi interactions; this issue

needs further investigation in order to know the exact contribution of each virulence

factor under different disease conditions.
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