


Lecture Notes in Artificial Intelligence 5998
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



Friedhelm Schwenker Neamat El Gayar (Eds.)

Artificial
Neural Networks
in Pattern Recognition
4th IAPR TC3 Workshop, ANNPR 2010
Cairo, Egypt, April 11-13, 2010
Proceedings

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Friedhelm Schwenker
University of Ulm, Department of Neural Information Processing
Oberer Eselsberg, 89069, Ulm, Germany
E-mail: friedhelm.schwenker@uni-ulm.de

Neamat El Gayar
Nile University, Department of Information Technology
Smart Village - B115, Alex Dessert Road, 12677 Giza (Cairo), Egypt
E-mail: nelgayar@nileuniversity.edu.eg

Library of Congress Control Number: 2010922360

CR Subject Classification (1998): I.2, I.4, H.3, I.5, J.3, F.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-12158-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12158-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

The 4th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recog-
nition, ANNPR 2010, was held at Nile University (Egypt), April 11–13, 2010.
The workshop was organized by the Technical Committee on Neural Networks
and Computational Intelligence (TC3) that is one of the 20 technical commit-
tees (TC) of the International Association for Pattern Recognition (IAPR). The
scope of TC3 includes computational intelligence approaches, such as fuzzy sys-
tems, evolutionary computing and artificial neural networks and their use in
various pattern recognition applications.

The major topics of ANNPR are supervised and unsupervised learning, fea-
ture selection, pattern recognition in signal and image processing, and applica-
tions in data mining or bioinformatics. High quality across such a diverse field
of research is achieved through a rigorous and selective review process. For this
workshop, 42 papers were submitted and 23 of them were selected for inclu-
sion in the proceedings. The workshop was enriched by three invited talks given
by Barbara Hammer, University of Bielefeld, Germany, Amir F. Atiya, Cairo
University, Egypt, and Mohamed Kamel, University of Waterloo, Canada.

We would like to thank all authors for the effort they put into their submis-
sions, and the Scientific Committee for taking the time to provide high-quality
reviews and selecting the best contributions for the final workshop program.
Special thanks are due to the members of the Nile University Organizing Com-
mittee, Ahmed Salah, Amira El Baroudy, Esraa Aly, Heba Ezzat, Nesrine Sameh,
Rana Salah and Mohamed Zahhar for their indispensable contributions to the
registration management and local organization.

ANNPR 2010 was supported by the International Association for Pattern
Recognition, the Center for Informatic Sciences at the Nile University, Egypt,
and the Institute of Neural Information Processing at the University of Ulm. We
wish to express our appreciation to our two financial sponsors: The Information
Technology Industry Development Agency (ITIDA), which is the main sponsor
of the event, and the Microsoft Innovation Laboratory in Cairo (CMIC). We
are grateful to Springer for publishing the ANNPR 2010 proceedings in their
LNCS/LNAI series.

January 2010 Neamat El Gayar
Friedhelm Schwenker
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Pattern Classification Using a Penalized
Likelihood Method

Ahmed Al-Ani1 and Amir F. Atiya2

1 Faculty of Engineering and Information Technology, Univesity of Technology,
Sydney, Australia

ahmed@eng.uts.edu.au
2 Department of Computer Engineering, Cairo University, Giza, Egypt

amir@alumni.caltech.edu

Abstract. Penalized likelihood is a well-known theoretically justified
approach that has recently attracted attention by the machine learning
society. The objective function of the Penalized likelihood consists of
the log likelihood of the data minus some term penalizing non-smooth
solutions. Subsequently, maximizing this objective function would lead
to some sort of trade-off between the faithfulness and the smoothness of
the fit. There has been a lot of research to utilize penalized likelihood in
regression, however, it is still to be thoroughly investigated in the pattern
classification domain. We propose to use a penalty term based on the K-
nearest neighbors and an iterative approach to estimate the posterior
probabilities. In addition, instead of fixing the value of K for all pattern,
we developed a variable K approach, where the number of neighbors can
vary from one sample to another. The chosen value of K for a given
testing sample is influenced by the K values of its surrounding training
samples as well as the most successful K value of all training samples.
Comparison with a number of well-known classification methods proved
the potential of the proposed method.

1 Introduction

The basic concept behind penalized likelihood is that a good model should pos-
sesses two indispensable properties: the goodness of fit and the smoothness of
the fit [1], [2]. However, as these two are primarily conflicting goals, a trade-off
that suits the given application is pursued. The penalized likelihood approach
seeks to achieve that trade-off by defining an overall objective function consisting
of the log-likelihood of the data minus a roughness measure, and subsequently
maximizing this objective function. The likelihood function is a measure of the
faithfulness of the fit, while the roughness function is a penalty term that penal-
izes non-smooth solutions.

An example of the roughness function is the integral of the square of the second
derivative of the function, leading to the following objective function (see [3]):

T = log likelihood − λ

∫
f ′′2(x)dx (1)

F. Schwenker and N. El Gayar (Eds.): ANNPR 2010, LNAI 5998, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 A. Al-Ani and A.F. Atiya

One example of a penalized likelihood regression is the well-known regression
spline model [4]. Most of the penalized regression work focused on finding a
complete functional formulation and the optimization is performed mostly in
the Hilbert space [5].

For the classification problem the underlying function would be the class pos-
terior probabilities. These are the functions which we attempt to estimate and
for which we impose smoothness. Among the works considering penalized like-
lihood classification is the work of O’Sullivan et al [6], which was subsequently
analyzed and extended in many other studies [7], [8], [5], [9], [10]. The basic idea
of these approaches is to assume that the class posterior probability (considering
a two-class case with classes C1 and C2) is modeled as a logit function applied to
some (unrestricted) function. This is a mean to enforce the [0, 1] bound on the
posterior probability. In some of these works thin-plate spline is used as smooth-
ness penalty, and in some others general smoothness penalties are used with
the help of the theory of reproducing kernel hilbert spaces. The problem could
be solved through a parametric representation, whose parameters are obtained
through Newton-Raphson iteration. A related approach is to consider the logis-
tic regression problem (which is essentially a two-class classification problem)
in the framework of penalized likelihood regression (see [11] and see also the
generalization to the multinomial logistic regression case in [12]), or the gener-
alized additive model [13] (which also tackles in some way the penalized logistic
regression problem).

A different methodology based on a Bayesian paradigm is the Gaussian process
classification (GPC) approach [19]. While it does not have a penalized likelihood
element in it, it enforces smoothness by defining a Bayesian prior that assigns a
higher probability to smooth solutions. Again, imposing a logit function lead to
intractable integrals that can only be approximated. Another related approach
[15] uses the K-nearest neighbor class memberships in some way to describe the
priors. It is a Bayesian approach, with the key parameters being attached some
priors and these are then integrated out. Again, the integral is intractable and
MCMC is proposed as a way to evaluate it.

In this paper we propose a new penalized likelihood classification method for
the two-class case. Rather than insisting on evaluating the posterior probability
as a functional form (which makes it generally quite difficult), we evaluate it only
for the points we need, that is for the training and the testing points. We use as a
measure of roughness the sum of square difference between the posterior of a point
and that of its K nearest neighbors. We therefore managed to avoid the use of the
logit function, which in all above works was an obstacle to obtaining straightfor-
ward analytic solutions. We propose an iterative algorithm that converges to the
maximum of the penalized likelihood function in few iterations. While we make
use of some kind of pattern distance matrix like in the case of Gaussian process
classification, the philosophy and the approach is quite different.

We tested the proposed method on a number of UCI benchmark datasets. As
it turns out, it produces a classification performance beating many of the well-
known methods (such as SVM and several other methods) and comparable to
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GPC (it is generally believed that SVM and GPC are among the best two classi-
fication approaches [16]). On the other hand the computation time was much less
than that of GPC. Another advantage of the method is that it is entirely based
on distances between the training patterns (like the K nearest neighbor classifier
and the GPC). So it can handle also non-numeric inputs, for example text inputs
whereby some distance function can be defined. The proposed method is also very
simple, consisting of only a simple iteration, and requiring little development time
to implement it and no sophisticated optimization routines.

The paper is organized as follows. The proposed method is presented in the
next section. The following section details the classification algorithm. In Section
5 we present the simulations results, followed by the conclusions section.

2 The Proposed Method

Let xm ∈ RL denote the feature vectors, with x1, . . . , xM denoting the training
patterns, and xM+1, . . . , xM+N denoting the test patterns. In this work we con-
sider only the two-class case. The class membership ygm for class label g and
training pattern xm is defined as follows: it equals 1 if xm ∈ Cg and equals 0
otherwise, where g ∈ {1, 2}.

Let Pgm ≡ P (Cg|xm) denote the posterior probability for class Cg, and∑2
g=1 Pgm = 1. The purpose of the proposed method is to estimate the pos-

terior probabilities Pgm, both for the training set and the test set. Knowing the
posterior probabilities will automatically determine the classification of the pat-
terns. As we will shortly see, the posterior probabilities are obtained by defining
the penalized likelihood function and subsequently maximizing it, leading to an
iterative algorithm.

The likelihood of the data is given by

L =
M∏

m=1

2∏
g=1

P ygm
gm (2)

Denote by K(xm) as the set of Km-nearest neighbors of point xm (their indexes),
and Km the size of K(xm), which can vary from one pattern to another. We
define a roughness function based on the square differences of the posteriors of
neighboring data points. Specifically, it is given by

R =
M∑

m=1

1
Km

∑
m′∈K(xm)

(Phm − Phm′)2 (3)

where h is the class that xm belongs to (either 1 or 2), hence, yhm = 1. Note that
Eq. 2 can be written as L =

∏M
m=1 Phm. We define our overall objective function

as a combination of the log-likelihood function and the roughness function:

J = log(L) − λR (4)

=
M∑

m=1

log(Phm) − λ

M∑
m=1

1
Km

∑
m′∈K(xm)

(Phm − Phm′)2 (5)
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The first term in the penalized log-likelihood J focuses on the goodness of fit
aspect. It gauges how well that the considered Phm’s fit the observed data (i.e.
the given class memberships). The second term serves to penalize the roughness
of the underlying posterior function. A posterior surface where its values for
neighboring points are close (i.e. having low R) will generally be smooth, and
conversely a high R is indicative of a rough or wiggly surface. The goal is to
find the posterior probabilities that maximize the penalized log-likelihood J .
We will therefore achieve a compromise between faithfully respecting the class
memberships of the training data and the smoothness property of the posterior
surface, with λ being the parameter that controls the degree of smoothness.

3 The Proposed Algorithm

The goal is to solve the following maximization problem:

Maximize J (given by (5)) w.r.t. the variables: Pgm, s.t. 0 ≤ Pgm ≤ 1, m =
1, . . . , M, g = {1, 2}.
It is easy to see that J is a convex function w.r.t. the Pgm’s. Hence the prob-
lem has a unique maximum. The algorithm proposed below is based on cy-
cling through all variables, each time optimizing w.r.t. only one of the variables
(through a line search). In each step, the optimum w.r.t. one variable can be
obtained analytically, as show below.

∂J

∂Phm
=

1
Phm

− 2λ

Km

⎡⎣ ∑
m′∈K(xm)

(Phm − Phm′) +
∑

m′∈S(xm)

(Phm − Phm′)

⎤⎦ (6)

=
1

Phm
− 2λ(Km + Sm)

Km
Phm +

2λ

Km

⎡⎣ ∑
m′∈K(xm)

Phm′ +
∑

m′∈S(xm)

Phm′

⎤⎦ (7)

where S(xm) is the set of patterns for which xm is one of the neighbors, Sm is
the length of S(xm). To find the value of Phm that maximizes J , we need to
make the right hand side of Eq. 7 equals 0, which would lead to

1 −
(

2λ(Km + Sm)
Km

)
P 2

hm +

⎛⎝ 2λ

Km

⎡⎣ ∑
m′∈K(xm)

Phm′ +
∑

m′∈S(xm)

Phm′

⎤⎦⎞⎠Phm = 0 (8)

P 2
hm −

⎛⎝ 1
Km + Sm

⎡⎣ ∑
m′∈K(xm)

Phm′ +
∑

m′∈S(xm)

Phm′

⎤⎦⎞⎠Phm − Km

2λ(Km + Sm)
= 0 (9)

Eq. 9 is a quadratic equation that can easily be solved. The algorithm of the
proposed method is given below.
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1. Start with any initial choice e.g. Pgm = 0.5, m = 1, . . . , M, g =∈ {1, 2}.
2. While the change in the posteriors between the current and previous iteration

is greater than a certain threshold (Thresh), execute step 3.
3. For each training pattern, m = 1 to M :

(a) Set:

Phm ≡ 1
2
P̄hm +

1
2

√
(P̄hm)2 +

2Km

λ(Km + Sm)
(10)

where

P̄hm =
1

Km + Sm

[ ∑
m′∈K(xm)

Phm′ +
∑

m′∈S(xm)

Phm′
]

(11)

where Km is the number of nearest neighbors, S(xm) is the set of data
points for which xm is one of the nearest neighbors, and Sm is the size
of set S(xm). Thus P̄hm is the mean of the values of Phm′ for some sort
of neighborhood of points around xm.

(b) Truncate if Phm goes out of the constraint box, set:

Phm = 1 if Phm > 1, or Phm = 0 if Phm < 0 (12)

(c) Let f �= h, f ∈ {1, 2}, set:

Pfm = 1 − Phm (13)

(d) Let the set of possible K-nearest neighbor values KK = {k1, k2, . . . , kn},
calculate the error associated with using kj-nearest neighbors, j = 1 : n,
and set Km to the value that minimizes the error, Emj , as follows

Emj = 1 − mean(PhKKj(xm))
Km = argmin

j
(Emj) (14)

where KKj(xm) is the set of kj-nearest neighbors of xm. One possible
choice is to use KK = {3, 5, 7, . . . , 25}.

4. For each test pattern, m = M + 1 to M + N :
(a) Find the value of Km:

Km =
{

arg minj (mean(EQmj)) if min (mean(EQmj)) < TE

arg minj (mean(EMj)) otherwise (15)

where Qm represents the set of training patterns that surrounds xm

(local neighborhood), while M represents the set of all training patterns.
TE is a threshold, which can be the mean of EMj .

(b) Calculate the posterior probabilities Pgm, g ∈ {1, 2}:

Pgm = mean(PgK(xm)) (16)
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This algorithm performs an iterated estimation of the posteriors through Eq.
10, which is basically the closed-form outcome of the one-variable search that
is performed by cycling through all variables. Eq. 14 shows how the value of
Km can vary from one pattern to another. This can lead to a higher value of J
when compared to using a fixed K for all patterns. The iterations should carry
on until the change in the posteriors from one cycle till the next is small. Once
the algorithm converges, we use the obtained final values of the Pgm’s as the
estimated posteriors of training data points, which will be used to estimate the
posteriors of the test data points. The rationale behind Eq. 15 is to first check
the error of the local neighborhood. If the error is small, then the neighborhood
would influence the choice of Km. Otherwise, use the value of K that, on average,
is most reliable over all training samples. Recalling that Pgm ≡ P (Cg|xm), then
the final classification of a test data point is estimated as class C1 if P1m > P2m,
otherwise it is class C2.

4 Simulation Results

A number of benchmark datasets were used to test the performance of the pro-
posed method. We have compared the performance of the proposed method to
that of the following well-known classification methods:

– Bayes classifier ([17], p. 168) with the class-conditional densities estimated
according to the Parzen window density estimator (PARZEN) [18]. A key
parameter for the Parzen estimator is the width of kernels h. We used the
value derived in [18] (Silverman’s rule):

h = σ̂

[
4

(2L + 1)I

] 1
L+4

(17)

where σ̂2 ≡ ∑L
i=1Sii/L denotes the mean of the diagonal of the sample

covariance matrix S, L is the dimension of the space, and I is the number
of data points (we used Gaussian kernels).

– Gaussian process classification using the expectation propagation approxi-
mation [19]. We used the non-optimized (GPC) and optimized (GPCo) ver-
sions. The latter attempts to approximate the integrals in the Gaussian
process classification formula. We used the software available in [14].

– Support vector machines (SVM) (Scholkopf and Smola [20]). We used a radial
basis function SVM implemented using the OSUsvm toolbox1. The values of
C and γ for the latter are set using a K-fold validation procedure (we used
five-fold validation and allowed C and γ to range between [0.5, 1.5]).

– K-nearest neighbor classifier. The value of K was set using a five-fold valida-
tion process (only odd numbers that range between 3 and 25 were considered).

– Evidential K-nearest neighbor (KNNds). This algorithm is based on the
Dempster-Shafer theory of evidence taking into account the distance and class
label information of the neighbors for generating soft decision vectors [21]2.

1 Obtained from http://downloads.sourceforge.net/svm/osu-svm-3.0.zip
2 The KNNds software is available at http://www.hds.utc.fr/ tdenoeux/software.htm
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We tested all these competing methods on real-world pattern classification
problems, mostly from the UCI repository [22]. We also tested those algorithms
on the well-known two-spiral classification problem. This dataset consists of
points on two inter-wined spirals that cannot be linearly separated, as shown in
Fig. 1. Table 1 summarizes the characteristics of the datasets used in this paper.

Patterns that consist of missing values were removed from the datasets. In
certain cases, attributes that consist of many missing values were excluded to
minimize the number of removed patterns. Categorical attributes were changed
to attributes with integer values to enable the chosen algorithms to handle them.
For all considered problems the input attributes are first scaled so that they
lie in a suitable range. We used 80% of the data as a training set, and the
remaining 20% as a test set. We performed 20 runs for each method, each run
with a different random train/test partition. Then we average the classification
accuracies on the test sets of the 20 runs.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Feature 1

F
ea

tu
re

 2

Class1
Class2

Fig. 1. Two-spiral dataset

Table 1. Datasets used to evaluate the performance of classifiers

Dataset # Attributes # Patterns Class distribution
Two Spiral 2 194 0.50/0.50
Ger. Credit 24 1000 0.70/0.30
Cylinder bands 30 350 0.62/0.38
Blood transfusion 4 748 0.24/0.76
cancer 9 683 0.65/0.35
Haberman’s survival 3 306 0.73/0.27
heart 22 267 0.79/0.21
heart SPECT 13 270 0.55/0.45
hill-valley 100 606 0.51/0.49
ionosphere 33 351 0.64/0.36
mammographic 5 814 0.48/0.52
monk 6 432 0.50/0.50
Parkinson 22 195 0.75/0.25
pima 8 768 0.35/0.65
sonar 60 208 0.53/0.47
Tic-tac 9 958 0.65/0.35
wdbc 30 569 0.63/0.37
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In order to compare the performance of the various algorithms mentioned
above, we used the following measures:

– Mean classification accuracy (Acc). This measure gives a general indi-
cation about the performance of each classifier.

– Estimated standard deviation of the accuracy. It is calculated by
dividing the standard deviation of Acc by the square root of the number of
runs.

– Significance test. A two-tailed paired t-test is performed with significance
level of α = 0.05. This indicates if there is a significant difference in the
performance of two classifiers.

– Geometric mean error ratio. For the two classifiers that have errors
a1, a2 . . . , an and b1, b2 . . . , bn respectively (n represents the number of runs),
the geometric error ratio is:

exp
∑n

i=1 log(ai/bi)
n

= n

√√√√ n∏
i=1

ai/bi (18)

This measure reflects the relative performance of one classifier with respect
to another. If the outcome is less than 1, then it is an indication that the
first classifier outperforms the second classifier in terms of error reduction.

– Win-Tie-Loss. This is an important measure, where the three values are
the number of datasets for which classifier a obtained better, equal, or worse
performance outcomes than classifier b.

– Sign test. The p-values of a two-tailed sign test based on the win-tie-loss
record. if p is significantly low, then one can conclude that it is unlikely that
the outcome was obtained by chance, i.e., the difference between the two
classifiers is significant. On the other hand, a higher p value indicates that
the two classifiers are not significantly different.

For detailed description of these measures the reader is referred to [23], [24].
The PLC algorithm described in section 3 only needed few iterations to con-

verge for all of the 17 datasets when we set Thresh to 0.01. Table 2 shows the
average classification accuracy of the competing methods with the estimated
standard deviation. It also shows if (PLC) is significantly different from other
classifiers from a statistical viewpoint. For a given dataset, if PLC is significantly
better than a certain classifier, then a bullet is displayed next to that classifier’s
result. On the other hand, an open circle indicates that the classifier is signif-
icantly better than PLC. A quick glance at the table would show that there
are more bullets than open circles. PLC is found to be particularly better than
Parzen, GMM, KNNds and KNN. However, the results indicate that PLC is not
significantly better than the Gaussian process and SVM, particularly GPCo.
As mentioned earlier, these two classifiers are considered in the literature to be
among the best classification approaches.

In order to present a more detailed analysis of the classification results, Table 3
presents other comparison measures. The first row of the table represents the
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Table 2. Classification accuracy and estimated standard deviation for the considered
classifiers

Parzen GPC GPCo SVM
2Spiral 33.16 ± 1.31• 47.63 ± 1.51• 50.39 ± 0.29• 47.63 ± 1.61 •
GerCr 68.75 ± 0.65• 76.78 ± 0.57◦ 77.50 ± 0.58◦ 75.90 ± 0.46◦
bands 68.57 ± 0.84 74.00 ± 1.41◦ 75.00 ± 1.29◦ 73.14 ± 1.22◦
Btrans 76.97 ± 0.39 76.73 ± 0.36 77.7 ± 0.41 75.97 ± 0.15•
canc 95.84 ± 0.36• 96.82 ± 0.23 96.57 ± 0.32 96.57 ± 0.23
haber 71.48 ± 0.59• 72.87 ± 0.70 73.28 ± 0.77 72.54 ± 0.50
heart 80.19 ± 1.31• 83.96 ± 0.86◦ 84.15 ± 1.00 83.68 ± 0.95
heartS 80.19 ± 0.87 83.24 ± 0.83◦ 83.70 ± 1.00◦ 83.06 ± 0.89◦
hill 53.51 ± 0.74• 50.45 ± 0.58• 51.78 ± 0.51• 49.96 ± 0.57•
ion 88.21 ± 0.8◦ 89.57 ± 0.65◦ 96.07 ± 0.52◦ 94.29 ± 0.55◦
mamm 79.20 ± 0.67 80.68 ± 0.58◦ 82.01 ± 0.56◦ 80.19 ± 0.62
monk 76.86 ± 0.95• 80.99 ± 1.00 94.65 ± 0.82◦ 91.10 ± 0.49◦
parkin 95.00 ± 0.71 83.72 ± 1.10• 93.08 ± 1.10 87.82 ± 1.08•
pima 73.21 ± 0.50 76.33 ± 0.61◦ 76.79 ± 0.61◦ 76.66 ± 0.57◦
sonar 87.32 ± 1.14 84.63 ± 1.30• 83.66 ± 1.41• 86.34 ± 1.33
tic-tac 87.49 ± 0.38 83.48 ± 0.70• 96.18 ± 0.36◦ 95.71 ± 0.29◦
wdbc 97.52 ± 0.31 97.65 ± 0.31 97.26 ± 0.28 97.92 ± 0.27◦

KNN KNNds PLC
2Spiral 75.13 ± 2.10• 75.13 ± 2.10• 79.61 ± 1.09
GerCr 72.48 ± 0.34• 72.15 ± 0.74• 73.88 ± 0.40
bands 68.36 ± 1.30 67.57 ± 0.99 68.93 ± 1.14
Btrans 77.90 ± 0.45 73.27 ± 0.72• 77.5 ± 0.58
canc 96.64 ± 0.31 96.61 ± 0.27 96.68 ± 0.29
haber 73.11 ± 0.68 70.33 ± 1.01• 72.87 ± 0.69
heart 81.79 ± 1.17 80.28 ± 1.43 82.36 ± 1.13
heartS 81.76 ± 1.03 77.78 ± 1.07• 81.48 ± 0.92
hill 54.38 ± 0.77• 55.95 ± 1.12• 59.09 ± 1.00
ion 84.71 ± 0.69• 89.86 ± 0.74◦ 86.36 ± 0.68
mamm 79.26 ± 0.70 77.10 ± 0.47• 79.66 ± 0.62
monk 83.72 ± 0.87 83.95 ± 0.80◦ 82.50 ± 0.87
parkin 92.56 ± 1.03 92.69 ± 1.04 93.85 ± 1.08
pima 73.64 ± 0.67 73.99 ± 0.47 74.09 ± 0.58
sonar 83.66 ± 1.05• 83.78 ± 1.01• 87.56 ± 1.20
tic-tac 88.04 ± 0.48◦ 82.64 ± 0.48• 86.86 ± 0.57
wdbc 96.81 ± 0.31 96.99 ± 0.30 97.17 ± 0.26

mean accuracy across all the datasets. According to this measure PLC is found
to be the second best classifier, after GPCo, outperforming all remaining clas-
sifiers, including SVM. The table also presents pair-wise comparisons between
the classifiers according to their geometric error ratio (ṙ), and the win-tie-loss
(s). Also shown is the p-value of the sign test for the win-tie-loss (p). According
to these measures, PLC outperformed Parzen, KNN, and KNNds. In fact the
geometric error ratio indicates that PLC is slightly better than GPC and not
too different from SVM. On the other hand, the win-tie-loss favors the Gaussian
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Table 3. Comparison of averaged classification accuracy, geometric error, win-tie-loss,
and p-value of the sign test across all the used datasets

Parzen GPC GPCo SVM KNN KNNds PLC
Mean Acc. 77.26 78.80 81.75 80.50 80.23 79.42 81.20

Parzen
ṙ 1.016 1.333 1.212 1.052 1.020 1.112
s 5-0-12 4-0-13 4-0-13 5-0-12 9-0-8 4-0-13
p 0.1435 0.049 0.049 0.1435 1.000 0.049

GPC
ṙ 1.311 1.193 1.035 1.003 1.094
s 3-0-14 9-1-7 10-0-7 12-0-5 9-1-7
p 0.0127 0.8036 0.6291 0.1435 0.8036

GPCo
ṙ 0.910 0.789 0.765 0.834
s 14-0-3 12-1-4 13-0-4 12-0-5
p 0.0127 0.0768 0.049 0.1435

SVM
ṙ 0.868 0.841 0.917
s 11-0-6 13-0-4 10-0-7
p 0.3323 0.049 0.6291

KNN
ṙ 0.969 1.057
s 9-1-7 5-0-12
p 0.8036 0.1435

KNNds
ṙ 1.090
s 2-0-15
p 0.0023

Table 4. Execution Time for GPCo and PLC, measured in CPU time (sec). This time
includes training time and testing time.

2Spiral GerCred bands Btrans cancer haber heart heartS hill
GPCo 1.63 882.85 22.77 360.82 314.43 11.75 9.58 7.63 82.67
PLC 0.19 2.73 0.56 1.40 1.43 0.36 0.35 0.31 6.06

ion mamm monk parkin pima sonar tic-tac wdbc
GPCo 59.81 530.17 106.57 9.31 469.99 10.39 1229.33 238.80
PLC 1.09 3.73 1.25 0.38 3.67 0.62 5.55 2.80

process and support vector machine over PLC. However, as seen from the p-value
measure, only GPCo is significantly better than PLC.

The above results indicate that GPCo is the only classifier that is significantly
better from a statistical point of view. So, it would be important to compare
these two classifiers in terms of computational complexity. Table 4 shows the
computation time of both GPCo and PLC for all considered datasets. The table
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indicates that PLC is considerably faster than GPCo, which represents a great
advantage for the proposed algorithm.

5 Conclusion

A new classification method based on penalized likelihood concept is presented
in this paper. The method is based on defining a roughness term based on the K-
nearest neighbors. We have developed an algorithm that converges to the global
optimum in only few iterations. We have also proposed to allow the value of K
to vary from one pattern to another, which proved to be useful in maximizing
the objective function. When compared with several well-known classification
methods, the proposed classifier achieved a performance competitive with the
top models, but with less computational time. As such, the proposed approach
can be ranked among the top binary classification algorithms.
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Abstract. In this paper, we propose and evaluate the feature selec-
tion criterion based on kernel discriminant analysis (KDA) for multiclass
problems, which finds the number of classes minus one eigenvectors. The
selection criterion is the sum of the objective function of KDA, namely
the sum of eigenvalues associated with the eigenvectors. In addition to
the KDA criterion, we propose a new selection criterion that replaces the
between-class scatter in KDA with the sum of square distances between
all pairs of classes. To speed up backward feature selection, we introduce
block deletion, which deletes many features at a timeC and to enhance
generalization ability of the selected features we use cross-validation as
a stopping condition.

By computer experiments using benchmark datasets, we show that
the KDA criterion has performance comparable with that of the selection
criterion based on the SVM-based recognition rate with cross-validation
and can reduce computational cost. We also show that the KDA crite-
rion can terminate feature selection stably using cross-validation as a
stopping condition.

1 Introduction

Feature selection is to select from the original set of features the minimum subset
of features that realizes the maximum generalization ability. To realize this,
during the process of feature selection, the generalization ability of a subset of
features needs to be estimated. This type of feature selection is called a wrapper
method. Instead of estimating the generalization ability, some selection criterion,
which is considered to well reflect the generalization ability, is used. This method
is called a filter method.

The forward or backward selection method using a selection criterion is widely
used. In backward selection, we start from all the features and delete one feature
at a time, which deteriorates the selection criterion the least. We delete features
until the selection criterion reaches a specified value. In forward selection, we
start from an empty set of features and add one feature at a time, which improves
the selection criterion the most. We iterate this procedure until the selection

F. Schwenker and N. El Gayar (Eds.): ANNPR 2010, LNAI 5998, pp. 13–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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criterion reaches a specified value. Because forward or backward selection is
slow, we may add or delete more than one feature at a time based on feature
ranking, or we may combine backward and forward selection [1].

Because these selection methods are local optimization techniques, global op-
timality of feature selection is not guaranteed. Usually, backward selection is
slower but is more stable in selecting optimal features than forward selection
[2]. If a selection criterion is monotonic for deletion or addition of a feature, we
can terminate feature selection when the selection criterion violates a predefined
value [3].

By the introduction of support vector machines (SVMs), various selection
methods suitable for support vector machines have been developed. The selec-
tion criterion for filter methods used in the literature is, except for some cases
[4,5,6,7,8], the margin [9,10,11,12]. In addition, in most cases, a linear support
vector machine is used.

In [4,6], the objective function of kernel discriminant analysis called the KDA
criterion, namely the ratio of the between-class scatter and within-class scatter,
is proved to be monotonic for the deletion of features for two-class problems,
and feature selection based on the KDA criterion was shown to be robust for
benchmark data sets.

As a wrapper method, in [13,14], block deletion of features in backward feature
selection is proposed using the generalization ability by cross-validation as the
selection criterion.

In addition to filter and wrapper methods, the embedded methods combine
training and feature selection; because training of support vector machines re-
sults in solving a quadratic optimization problem, feature selection can be done
by modifying the objective function [15,16,17].

In this paper we discuss backward feature selection based on KDA proposed
in [18]. For an n-class problem, KDA gives n− 1 projection axes. We use as the
selection criterion the sum of the objective function values associated with the
eigenvectors, which is equivalent to the sum of eigenvalues. To speedup feature
selection we use block deletion of features used in [13,14], which deletes features
at the same time that give the larger KDA criterion than the threshold value if
each is deleted. To stabilize stopping of feature selection, we use cross-validation
for the selected sequence by block deletion. Further, to improve the separability
measure of KDA, as the between-class scatter, we propose using the scatter
between all the class pairs.

We compare the proposed KDA criterion with the SVM-based criterion with
cross-validation and the between-class and within-class ratio and demonstrate
usefulness of the proposed criterion from the standpoint of selected features and
the computation time.

In Sections 2, we summarize KDA and in Section 3, we discuss selection
criteria. In Section 4, we explain feature selection methods. In Section 5 we
demonstrate the validity of the proposed methods by computer experiments.
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2 Kernel Discriminant Analysis for Multiclass Problems

In this section, we explain kernel discriminant analysis for multiclass problems
based on [19].

We assume that the center of mapped training data in the feature space is
zero. Then the total scatter matrix QT and the between-class scatter matrix QB
are given, respectively, by

QT =
1
M

n∑
k=1

Mk∑
j=1

φ(xkj)φ�(xkj), (1)

QB =
1
M

n∑
k=1

Mkckc�k , (2)

where xkj is the jth training data for class k, n is the number of classes, Mk is
the number of training data for class k, M = M1 + · · · + Mn, ck is the center
of class k, and φ(x) is the mapping function that maps the input space to the
high-dimensional feature space.

For n class problems, we obtain n − 1 projection axes. Let them be wi (i =
1, . . . , n − 1). Then the total scatter and the between-class scatter on this axis
are given, respectively, by

1
M

n∑
k=1

Mk∑
j=1

(w�
i φ(xkj))2 = w�

i QTwi, (3)

1
M

n∑
k=1

Mk(w�
i ck)2 = w�

i QBwi. (4)

We seek the projection axis wi that maximizes the between-class scatter and
minimizes the total scatter. Namely,

maximize J(wi) =
w�

i QBwi

w�
i QTwi

. (5)

Here, wi can be expressed by the linear combination of the mapped training
data:

wi =
n∑

k=1

Mk∑
j=1

akj
i φ(xkj), (6)

where akj
i are constants.

Substituting (6) into (5), we obtain

J(ai) =
a�

i KWKai

a�
i KKai

, (7)
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where ai = {akj
i } (i = 1, . . . , n − 1, k = 1, . . . , n, j = 1, . . . , Mk), K is the kernel

matrix, and W = {Wij} is the block diagonal matrix given by

Wij =

⎧⎨⎩
1

Mk
xi,xj ∈ class k,

0 otherwise.
(8)

Taking the partial derivative of (7) with respect to wi, and the resulting equation
to 0, we obtain the following generalized eigenvalue problem:

KWKai = λiKKai, (9)

where λi are eigenvalues.
Let singular value decomposition of K be K = PΓP�, where Γ is the diagonal

matrix with nonzero eigenvalues and P�P = I. Substituting K = PΓP� into
(7) and replacing ΓP�ai with βi, we obtain

J(βi) =
β�

i P�WPβi

β�
i P�Pβi

=
β�

i P�WPβi

β�
i βi

. (10)

Therefore, the resulting eigenvalue problem is

P�WPβi = λiβi. (11)

Solving (11) for βi we obtain ai from ai = PΓ−1βi.

3 Selection Criteria

3.1 KDA Criterion for Multiclass Problems

The feature selection method based on KDA for two-class problems [6] can be
extended to multiclass problems but will be architecture dependent. Therefore,
we extend the method to multiclass problems using the multiclass KDA. In
multiclass KDA, n − 1 projection axes are obtained for an n-class problem. We
propose using the sum of the objective function values associated with the n− 1
projection axes. We can easily show that

J(wi) = λi. (12)

Therefore the selection criterion is
n−1∑
i=1

J(wi) =
n−1∑
i=1

λi, (13)

where λi are given by (11). Because the sum of eigenvalues is the trace of the
associated matrix, (13) becomes

n−1∑
i=1

J(wi) = trace{P�W P}, (14)

which leads to speeding up the calculation of the selection criterion. We call this
the KDA criterion.
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3.2 New Between-Class Scatter

The between-class scatter for multiclass problems is calculated by the square sum
of distances between the center of the mapped training data and class centers ck.
Namely, the between-class scatter does not consider the overlap between classes.
Suppose for a multiclass problem in which data of different classes do not overlap,
we rotate all the data of some classes around the center of the mapped training
data until different classes overlap under the constraint that the center of the
mapped data does not move. Then, the between-class scatters of the initial and
the rotated problems are the same. But this is unfavorable from the standpoint
of class separability.

This problem can be avoided if we use the following between-class scatter:

QB =
n−1∑
i=1

n∑
j=i+1

(ci − cj)(ci − cj)�. (15)

The eigenvalue problem becomes

KAKa = λKKa, (16)

where

Aij =

⎧⎪⎪⎨⎪⎪⎩
n − 1
M2

k

xi,xj ∈ class k,

− 1
MpMq

xi ∈ class p,xj ∈ class q, p �= q.

(17)

The difference with the previous method is that in (9), W is replaced with A.
Thus the calculation time will not change very much.

4 Feature Selection Methods

4.1 Backward Feature Selection

We select features by backward feature selection. In sequential backward feature
selection, first we calculate the value of the selection criterion using all the fea-
tures. Then starting from the initial set of features we temporarily delete each
feature, calculate the value of the selection criterion, and delete the feature with
the largest value of the selection criterion from the set. We iterate feature dele-
tion so long as the value of the selection criterion is larger than the prescribed
threshold.

The KDA criterion for two-class problems is nonincreasing for the deletion of
features. We assume that this hold for the KDA criterion for multiclass prob-
lems. Then to determine the threshold we normalize the selection criterion by
that evaluated using all the features. Then we set the threshold smaller than
1. It is difficult to set a proper value but in the following study based on some
preliminary experiment we set δ = 0.95 for multiclass problems.
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Let the initial number of features be m and F k and F k
j denote the set of k

features and the set of k features with the jth element temporarily deleted from
the set, respectively. And let the selection criterion for F k

j be T (F k
j ). Then the

normalized selection criterion c(F k
j ) is

c(F k
j ) =

T (F k
j )

T (Fm)
. (18)

The procedure of backward feature selection is as follows:

1. Set the initial set of features as Fm = {1, . . . , m}, and evaluate the selection
criterion T (Fm). Set k = m and go to Step 2.

2. Delete the ith (i = 1, . . . , k) feature temporarily from F k and calculate the
normalized selection criterion c(F k

i ). For the KDA criterion, if

c(F k
j ) > δ for j = arg max

i∈F k
c(F k

i ), (19)

where δ is the threshold for the KDA criterion, go to Step 3. Otherwise stop
feature selection.

3. Permanently delete j from F k:

F k−1 = F k − {j}. (20)

Then k ← k − 1 and go to Step 2.

4.2 Block Deletion

To speed up sequential backward selection, backward selection with block dele-
tion is proposed [13,14]. To speed up variable selection, we use this method.

In block deletion, we reorder the candidate features with c(F k
j ) > δ in the

descending order of c(F k
j ) and delete the features simultaneously. If the selection

criterion after deletion is larger than or equal to the threshold value we continue
backward deletion. If not, we delete the lower half of the candidate features and
repeat the above procedure until the deletion succeeds. Because one feature can
be deleted, the block deletion does not fail. The algorithm is as follows.

1. Calculate T (Fm) and set k = m.
2. Calculate c(F k

i ) (i ∈ F k) and if

c(F k
i ) > δ for i ∈ F k,

include i in the candidate set V k, which is ordered in descending order of
c(F k

i ) and go to Step 3. If there is no i, terminate the algorithm.
3. If |V k| = 1, where |V k| is the number of elements in V k, delete that element

from F k, k ← k − 1, and go to Step 2. If |V k| > 1 and c(F k − V k) > δ, set
F k ← F k − V k, k ← k − |V k|, and go to Step 2. Otherwise, go to Step 4.

4. Delete the lower half of V k, k ← |V k|, and go to Step 3.
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4.3 Cross-Validation as a Stopping Condition

Usually it is difficult to set a proper value to the threshold δ. To solve this
problem, we use the recognition rate of the validation set by cross-validation
of the SVM as a stopping condition. Namely, at Step 1 of block deletion in
Section 4.2 we calculate the recognition rate, r, of the validation data set in
cross-validation of the SVM. And at the end of Step 3, by sequentially deleting
features according to the order of V k, we repeat evaluating the recognition rate
of the validation data set so long as it is equal to, or higher than, r. And we stop
feature selection if it is lower.

In the following we show the selection algorithm for the sequence of deleted
features obtained by block deletion in Section 4.2.

1. Generate the sequence of features [f1, . . . , fk], where fi is a feature deleted
by KDA and k is the number of deleted features.

2. Calculate the recognition rate of the validation data set with all the
features, r.

3. Calculate ri, where ri is the recognition rate of the validation data set with
i features f1, . . . , fi deleted.

4. Find maximum ri that satisfies ri ≥ r and delete [f1, . . . , fi].

5 Performance Evaluation

5.1 Data Sets and Evaluation Conditions

We performed feature selection normalizing the input range into [0, 1] and using
polynomial kernels: (x�x′+1)d or RBF kernels: exp(−γ‖x−x′‖2), where d is the
polynomial degree and γ is the width of the radius. We selected the parameter
value from d = [1, 2, 3, 4] for polynomial kernels and γ = [0.1, 1, 10] for RBF
kernels by fivefold cross-validation using the SVM.

In evaluating the classification performance we used the SVM with the same
kernel parameter values used for feature selection and the margin parameter
value selected from C = [1, 10, 50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000,
50000, 100000] by fivefold cross-validation.

Table 1 lists the data sets used in the study. It also includes the kernel param-
eter value determined by cross-validation. In eigenvalue analysis we used the QR
algorithm with the error limit for the off-diagonal elements being 10−6 and with
the maximum iteration number of 100. We used Athlon 64×2 4800+ personal
computer running on Linux.

The threshold value for the proposed method was set to δ = 0.95 and we
compared the following four selection methods:

1. Sequential backward selection using the proposed criterion with δ = 0.95
(abbreviated as KDA),

2. Block deletion using the proposed criterion with δ = 0.95 (KDA+B),
3. Block deletion using the proposed criterion with cross-validation (KDA+BC),
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Table 1. Data sets

Data Inputs Classes Train. Data Test Data kernel
Iris 4 3 75 75 γ = 0.1
Numeral 12 10 810 820 d = 3
Thyroid 21 3 3772 3428 d = 1
Blood cell 13 12 3097 3100 γ = 10
Hiragana-13 13 38 8375 8375 γ = 10
Hiragana-50 50 39 4610 4610 γ = 10
Satimage [20] 36 6 4435 2000 γ = 10

4. Block deletion using the SVM with cross-validation (SVM+BC),
5. Kernel class separability (KCS).

SVM+BC and KCS were used for comparing the proposed methods and
SVM+BC used the same selection procedure as that of KDA+BC. The only
difference is the selection criterion.

Kernel class separability, which is a simplified version of KDA, is a well-used
measure and is defined by [21,22]∑n−1

i=1
∑n

j=i+1 ||ci − cj ||2∑n
i=1

1
Mi

∑Mi

j=1 ||φ(xij) − ci||2
. (21)

We selected the same number of features as that by KDA+BC.

5.2 Experimental Results

Table 2 shows the results. In the table, the “Deleted (Remaining) Features”
column lists the deleted features in the order of deletion and the sequence of
features in parentheses is that of remaining features. The first row of each data set
shows the results using all the features and for each data set, the best recognition
rate of the test data is shown in boldface. The “C” column lists the value of C
selected by cross-validation of the SVM for the selected features. And “Train.”
and “Test” columns show the recognition rates of training data and test data,
respectively.

First we compare the results for the proposed methods. For hiragana-50 and
satimage data sets we could not obtain the selected features by KDA because of
slow sequential backward selection. Now compare KDA and KDA+B. If different
features were selected, they are shown in boldface. From the table both methods
selected the same or similar sets of features. And except for the thyroid data set,
both methods gave the similar recognition rates for the test data. Comparing
the recognition rates of the test data with those without deleting variables, for
all the data sets except for the iris data set, the recognition rates of the both
methods were inferior. This means that too many features were deleted because
of the improper selection of the threshold value. For example, for the hiragana-
50 data by KDA+B, only five features remained and the recognition rate was
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Table 2. Performance comparison of feature selection methods

Data Method Deleted (Remaining) Features C Train. Test
Iris — None 100 100 97.33

KDA 2 3000 97.33 97.33
KDA+B 2 3000 97.33 97.33
KDA+BC 2 3000 97.33 97.33
SVM+BC 1 50 100 97.33
KCS 1 — 100 97.33

Numeral — None 105 100 99.76
KDA 3, 12, 7, 4, 10, 2, 5 105 100 99.51
KDA+B 3, 10, 12, 5, 4, 7, 2 105 100 99.51
KDA+BC 3, 10, 12 500 100 99.76
SVM+BC 3, 7, 12, 10 105 100 99.51
KCS 4, 5, 9 — 99.26 98.29

Thyroid — None 105 98.83 97.64
KDA (10, 17, 19, 20) 105 95.20 95.01
KDA+B (2, 18, 3, 10, 17, 19, 20) 105 97.64 96.79
KDA+BC (8, 2, 18, 3, 10, 17, 19, 20) 105 98.73 97.90
SVM+BC (3, 8, 17, 19, 20) 105 98.59 97.81
KCS (7, 12, 13, 15, 18, 19, 20, 21) — 94.03 93.47

Blood — None 50 97.22 93.55
KDA 1, 8, 13, 10, 11, 6 500 96.03 92.32
KDA+B 1, 8, 13, 10, 11, 4 50 96.03 92.32
KDA+BC 1, 8 50 97.13 93.16
SVM+BC 9, 8, 1, 6 50 96.96 92.41
KCS 5, 6 — 96.19 92.00

H-13 — None 500 100 99.76
KDA 13, 11, 10 105 100 99.62
KDA+B 13, 3,12, 11 50 99.64 99.53
KDA+BC 13 1000 100 99.76
SVM+BC 13 1000 100 99.72
KCS 1 — 99.99 99.55

H-50 — None 50 100 99.07
KDA+B (14, 18, 28, 30, 33) 500 99.74 90.65
KDA+BC 43, 15, 37 50 100 99.05
SVM+BC 6, 8, 9, 12, 13, 18, 20, 23, 25, 26, 32, 35, 37, 38,

42, 43, 44, 47, 49 100 100 98.52
KCS 43, 46, 5 — 100 99.08

Satimage — None 1000 97.34 89.20
KDA+B (1, 3, 5, 7, 9, 11, 13, 19, 21, 23, 25, 27, 30, 31,

33,35) 1000 95.78 87.70
KDA+BC 24, 20, 16, 4, 32, 8 1000 97.47 88.95
SVM+BC (1, 2, 3, 5, 10, 11, 18, 20, 23, 25, 26, 30, 36) 1000 95.65 89.15
KCS 3, 27, 26, 19, 35, 10 — 96.82 89.60

90.65%, which was much lower than 99.07% with all the features. This happened
as follows. At the initial stage of feature deletion, deletion of any feature did not
decrease the selection criterion. Therefore, we needed to delete features randomly
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until deletion of a feature led to a decrease of the selection criterion. In such a
situation, we needed to use an alternative selection criterion.

By replacing the stopping condition of the threshold value in KDA+B with
cross-validation, the selection became much more stable. Out of seven data sets,
KDA+BC performed best four times and for the remaining data sets: the blood
cell, hiragana-50, and satimage data sets, the differences from the best values
were small. From the standpoint of recognition rate of the test data, KDA+BC
was better than SVM+BC except for the satimage data set.

For the iris, hiragana-50 and satimage data sets, KCS showed better recogni-
tion rates than KDA+BC but for other four data sets, KDA+BC showed better
recognition rates. Because KCS is not monotonic for the deletion of features
selection was not stable.

In the above evaluation, we used (2) as the between-class scatter. Instead
of (2), we used (15) and compared the difference of the selected features for
KDA+BC, but there were not much difference between the two. For the thyroid
data set, the obtained sequences were different, but the selected features for
δ = 0.95 were the same.

Table 3 shows the feature selection time for the four methods. In each problem
the shortest time is shown in boldface. For the thyroid data set, we measured
the feature selection time confining the value of C in C = [10000, 50000, 100000].
By introducing block deletion two to five times speedup was realized. Except for
the blood cell and hiragana-13 data sets, KDA+BC was faster than SVM+BC.
But for the hiragana-13 data set, SVM+BC was faster because only one feature
was deleted.

For two-class problems the KDA criterion is proved to be monotonic for the
deletion of features. But for the KDA criterion for multiclass problems, it is
an open problem whether the KDA criterion is monotonic. Figure 1 shows the
change of KDA criteria for the deletion of features for five data sets. We set
γ = 10, which gave the maximum class separability. Except for the thyroid data
set, the KDA criterion monotonically decreased as the features were deleted.
For the thyroid data set, until six features were deleted, the KDA criterion
monotonically increased. And afterwards, it decreased monotonically. For the
KCS criterion, this sort of monotonicity was not observed.

Table 3. Comparison of feature selection time in seconds

Data KDA KDA+B KDA+BC SVM+BC
Iris 1 1 1 1
Numeral 313 122 391 773
Thyroid 87, 303 25, 686 31, 822 116, 026
Blood cell 20, 430 11, 240 12, 371 5, 432
Hiragana-13 835, 648 165, 408 174, 703 51,357

Hiragana-50 − 165, 408 271, 001 404, 445
Satimage − 82, 737 12,664 166, 182
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Fig. 1. Monotonicity of KDA Criterion

6 Conclusions

We proposed using the sum of objective function values associated with the
eigenvectors of KDA as the selection criterion. This criterion reduces to the sum
of eigenvalues of the KDA. To speed up feature selection by backward selection,
we proposed to use block deletion of features at a time, and to improve the
generalization ability of the selected features we proposed to use cross-validation.
We also proposed calculating the between-class scatter using all the class pair
distances.

By the computer experiment, we showed that the KDA criterion with block
deletion performed better than the recognition rate of the SVM calculated by
cross-validation if cross-validation is used to stop feature selection. But feature
selection by the proposed between-class scatter did not give much difference from
the conventional between-class scatter calculated based on the distances between
the class centers and the center of the mapped training data.
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Abstract. High dimensional feature spaces with relatively few samples
usually leads to poor classifier performance for machine learning, neural
networks and data mining systems. This paper presents a comparison anal-
ysis between correlation-based and causal feature selection for ensemble
classifiers. MLP and SVM are used as base classifier and compared with
Naive Bayes and Decision Tree. According to the results, correlation-based
feature selection algorithm can eliminate more redundant and irrelevant
features, provides slightly better accuracy and less complexity than causal
feature selection. Ensemble usingBagging algorithm can improve accuracy
in both correlation-based and causal feature selection.

Keywords: Correlation-based feature selection, causal feature selection,
ensemble classification.

1 Introduction

With improvements in information and technology, many information databases
have been created. However, in some applications especially in biomedical area,
dataset usually contains hundreds to thousands of features with relatively small
sample size and leads to degradation in accuracy and efficiency of system by
curse of dimensionality and over-fitting. The resulting classifier works very well
with training data but very poorly on testing data.

To overcome this high dimensional feature spaces degradation problem, num-
ber of features should be reduced. Basically, there are two methods to reduce
the dimension: feature extraction and feature selection. Feature extraction trans-
forms or projects original features to fewer dimensions without using prior knowl-
edge. Nevertheless, it lacks comprehensibility and uses all original features which
may be impractical in large feature spaces. On the other hand, feature selection
selects optimal feature subsets from original features by removing irrelevant and
redundant features. It has the ability to reduce over-fitting, increase classification
accuracy, reduce complexity, speed of computation and improve comprehensibil-
ity by preserving original semantic of datasets. Normally, clinicians prefer feature
selection because of its understandbility and user acceptance.
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Feature selection is an important pre-processing step whether the classifier
is Multilayer Perceptron (MLP), Support Vector Machines (SVM) or any other
classifier. Generally, feature selection can be divided into four categories: Filter,
Wrapper, Hybrid and Embedded methods [1],[2],[3]. Filter method is indepen-
dent from learning method used in the classification process and uses measure-
ment techniques such as correlation, distance and consistency measurement to
find a good subset from entire set of features. Nevertheless, the selected subset
may or may not be appropriate with the learning method. Wrapper method
uses pre-determined learning algorithm to evaluate selected feature subsets that
are optimum for the learning process. This method has high accuracy but is
computationally expensive. Hybrid method combines advantage of both Filter
and Wrapper method together. It evaluates features by using an independent
measure to find the best subset and then uses a learning algorithm to find the
final best subset. Finally, Embedded method interacts with learning algorithm
but it is more efficient than Wrapper method because the filter algorithm has
been built with the classifier.

Basically, feature selection does not take causal discovery or casuality into ac-
count [4]. Nevertheless, in some cases such as when training and testing dataset
do not conform to i.i.d. assumption, testing distribution is shifted from manipu-
lation by external agent, causal discovery can provide some benefits for feature
selection under these uncertainty conditions. Causality also can learn underlying
data structure, provide better understanding of the data generation process and
better accuracy and robustness under uncertainty conditions [4].

Normally, causal relationships are uncovered by Bayesian Networks (BNs)
which consists of a direct acyclic graph (DAG) that represents dependencies and
independencies between variable and joint probability distribution among a set
of variables [5].

An ensemble classifier or multiple classifier system (MCS) is another well-
known technique to improve system accuracy [6]. Ensemble combines multiple
base classifiers to learn a target function and gathers their prediction together.
It has ability to increase accuracy of system by combining output of multiple
experts to reduce bias and variance, improve efficiency by decomposing complex
problem into multiple sub problems and improve reliability by reducing uncer-
tainty. To increase accuracy, each classifier in the ensemble should be diverse or
unique in order to reduce total error such as starting with different input, initial
weight, random features or random classes [7].

In this paper, we present a comparison analysis between correlation-based and
causal feature selection for ensemble classifiers in terms of number of eliminated
features, complexity of algorithms and average percent accuracy.

1.1 Related Research

Feature selection and ensemble classification have received attention from many
researchers in statistics, machine learning, neural networks and data mining areas
for many years. At the beginning of feature selection history, most researchers
focused only on removing irrelevant features such as ReliefF [8], FOCUS [9] and
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Correlation-based Feature Selection(CFS) [10]. Recently, in Yu and Liu (2004)
[11], Fast Correlation-Based Filter (FCBF) algorithm was proposed to remove
both irrelevant and redundant features by using Symmetrical Uncertainty (SU)
measurement and was successful for reducing high dimensional features while
maintaining high accuracy.

In the past few years, learning BNs from observation data has received increas-
ing attention from researchers for many applications such as decision support
system, information retrieval, natural language processing, feature selection and
gene expression data analysis [12],[13].

The category of BNs can be divided into three approaches: Search-and-Score,
Constraint-Based and Hybrid approaches [12],[13]. In Search-and-Score approach,
BNs search all possible structures to find the one that provides the maximum
score. The second approach, Constraint-Based, uses test of conditional depen-
dencies and independencies from the data by estimation using G2 statistic test or
mutual information, etc. This approach defines structure and orientation from
results of the tests based on some assumptions that these tests are accurate.
Finally, Hybrid approach uses Constraint-Based approach for conditional inde-
pendence test (CI test) and then identifies the network that maximizes a scoring
function by using Search-and-Score approach [13].

Constraint-Based algorithms are computationally effective and suitable for
high dimensional feature spaces. PC algorithm [14], is a pioneer, prototype and
well-known global algorithm of Constraint-Based approach for causal discovery.
Three Phase Dependency Analysis (TPDA or PowerConstructor) [15] is another
global Constraint-Based algorithm that uses mutual information to search and
test for CI test instead of using G2 Statistics test as in PC algorithm. However,
both PC and TPDA algorithm use global search to learn from the complete
network that can not scale up to more than few hundred features (they can deal
with 100 and 255 features for PC and TPDA, respectively) [16]. Sparse Candidate
algorithm (SC) [17] is one of the prototype BNs algorithm that can deal with
several hundreds of features by using locally candidate set. Nevertheless, SC
algorithm has some disadvantages, it may not identify true set of parents and
users have to find appropriate k parameter of SC algorithm by themselves [12].

Recently, many Markov Blanket-based algorithms for causal discovery have
been studied extensively and they have ability to deal with high dimensional
feature spaces such as MMMB, IAMB [16] and HITON [5] algorithms. HITON
is a state-of-the-art algorithm that has ability to deal with thousands of features
and can be used as an effective feature selection in high dimensional spaces.
However, HITON and all other MB-based algorithms may not specify features
in Markov Blanket for desired classes or target (MB(T)) when the data is not
faithful [20].

2 Theoretical Approach

In our research, two correlation-based feature selection methods, Fast Correlation-
Based Filter (FCBF) [11] and Correlation-based Feature Selection with Sequen-
tial Forward Floating Search (CFS+SFFS) [10],[18] are compared with causal
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feature selection algorithms (PC, TPDA, SC and HITON) for Bagging [21] en-
semble classifiers (described in Section 2.2) and experimentally compared with
different learning algorithms.

2.1 Feature Selection

Fast Correlation-Based Filter (FCBF). FCBF [11] algorithm has two stages:
relevance analysis and redundancy analysis.

Relevance Analysis. Normally, correlation is widely used to analyze relevance.
In linear systems, correlation can be measured by linear correlation coefficient.

r =
∑

i(xi − xi)(yi − yi)√∑
i(xi − xi)2

√∑
i(yi − yi)2

(1)

However, most systems in real world applications are non-linear. Correlation in
non-linear systems can be measured by using Symmetrical Uncertainty (SU).

SU = 2
[ IG(X |Y )
H(X)H(Y )

]
(2)

IG(X, Y ) = H(X) − H(X |Y ) (3)

H(X) = −
∑

i

P (xi)log2P (xi) (4)

where IG(X |Y ) is the Information Gain of X after observing variable Y . H(X)
and H(Y ) are the entropy of variable X and Y , respectively. P (xi) is the prob-
ability of variable x.

SU is the modified version of Information Gain that has range between 0 and
1. FCBF removes irrelevant features by ranking correlation (SU) between feature
and class. If SU between feature and class equal to 1, it means that this feature
is completely related to that class. On the other hand, if SU is equal to 0, the
features are irrelevant to this class.

Redundancy Analysis. After ranking relevant features, FCBF eliminates re-
dundant features from selected features based on SU between feature and class
and between feature and feature. Redundant features can be defined from mean-
ing of predominant feature and approximate Markov Blanket. In Yu and Liu
(2004) [11], a feature is predominant (both relevant and non redundant feature)
if it does not have any approximate Markov blanket in the current set.

Approximate Markov blanket: For two relevant features Fi and Fj (i �= j), Fj

forms an approximate Markov blanket for Fi if

SUj,c ≥ SUi,c and SUi,j ≥ SUi,c (5)

where SUi,c is a correlation between any feature and the class. SUi,j is a corre-
lation between any pair of feature Fi and Fj (i �= j).
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Correlation-based Feature Selection (CFS). CFS [10] is one of well-known
techniques to rank the relevance of features by measuring correlation between
features and classes and between features and other features.

Given number of features k and classes C, CFS defined relevance of features
subset by using Pearson’s correlation equation

Merits =
krkc√

k + (k − 1)rkk

(6)

where Merits is relevance of feature subset, rkc is the average linear correla-
tion coefficient between these features and classes and rkk is the average linear
correlation coefficient between different features.

Normally, CFS adds (forward selection) or deletes (backward selection) one
feature at a time, however, in this research, we used Sequential Forward Floating
Search (SFFS) as the search direction.

Sequential Forward Floating Search (SFFS). SFFS [18] is one of a classic
heuristic searching method. It is a variation of bidirectional search and sequen-
tial forward search (SFS) that has dominant direction on forward search. SFFS
removes features (backward elimination) after adding features (forward selec-
tion). The number of forward and backward step is not fixed but dynamically
controlled depending on the criterion of the selected subset and therefore, no
parameter setting is required.

Causal Discovery Algorithm. In this paper, three standard (PC, TPDA, SC)
and one state-of-the-art causal discovery algorithms (HITON) are used as causal
feature selection methods. In the final output of the causal graph from each algo-
rithm, the unconnected features to classeswillbe considered as eliminated features.

1. PC Algorithm
PC algorithm [14],[4] is the prototype of constraint-based algorithm. It con-

sists of two phases: Edge Detection and Edge Orientation.

Edge Detection: the algorithm determines directed edge by using conditionally
independent condition. The algorithm starts with:

i) Undirected edge with fully connected graph.
ii) Remove a share direct edge between A and B (A−B) iff there is a subset

F of features that can present conditional independence (A, B|F ).

Edge Orientation: The algorithm discovers V-Structure A − B − C in which
A − C is missing.

i) If there are direct edges between A − B and B − C but not A − C, then
orient edge A → B ← C until no more possible orientation.

ii) If there is a path A → B − C and A − C is missing, then A → B → C.
iii) If there is orientation A → B → ... → C and A − C then orient A → C.
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2. Three Phase Dependency Analysis Algorithm (TPDA)
TPDA or PowerConstructor algorithm [15] has three phases: drafting, thickening
and thinning. In drafting phase, mutual information of each pair of nodes is
calculated and used to create a graph without loop. After that, in thickening
phase, edge will be added when that pair of nodes can not be d-separated. (node
A and B are d-separated by node C iff node C blocks every path from node A to
node B [12].) The output of this phase is called an independence map (I-map).
The edge of I-map will be removed in thinning phase if two nodes of the edge
can be d-separated and the final output is defined as a perfect map [15].

3. Sparse Candidate Algorithm (SC)
SC algorithm has two phases: restrict and maximize steps [17]. In restrict step,
candidate sets are chosen by heuristic estimates of size k (define by user) and
then a hill climbing search is performed in maximize step. In this second step,
a network is started with empty graph and one of the operators: add, delete or
reverse that provides the highest score will be chosen and applied to the current
network. Finally, the algorithm will be repeated until there is no change in the
candidate set [17],[12],[19].

4. HITON Algorithm
HITON [5] is one of state-of-the-art causal discovery algorithms that can be
used as feature selection and can scale up to deal with thousands of features.
HITON identifies Markov Blanket of the classes (or target) and then removes by
backward greedy wrapper search of the features from the Markov Blanket that
do not affect the classifier performance [5],[20].

2.2 Ensemble Classifier

Bagging. Bagging [21] or Bootstrap aggregating is one of the earliest, simplest
and most popular for ensemble based classifiers. Bagging uses Bootstrap that
randomly samples with replacement and combines with majority vote. Bootstrap
is the most well-known strategy for injecting randomness to improve generaliza-
tion performance in multiple classifier systems and provides out-of-bootstrap
estimate for selecting classifier parameters [6]. Randomness is desirable since it
increases diversity among the base classifiers, which is known to be a necessary
condition for improved performance. However, there is an inevitable trade off
between accuracy and diversity known as the accuracy/diversity dilemma [6].

3 Experimental Setup

3.1 Dataset

The medical datasets used in this experiment were taken from UCI machine
learning repository [22]: heart disease, hepatitis, diabetes and Parkinson dataset
and from Causality Challange [23]: lucas and lucap datasets. The details of
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Table 1. Datasets

Dataset Sample Features Classes Missing
Values

Data type

Heart Disease 303 13 5 Yes Numeric (cont. and discrete)
Diabetes 768 8 2 No Numeric (continuous)
Hepatitis 155 19 2 Yes Numeric (cont. and discrete)
Parkinson’s 195 22 2 No Numeric (continuous)
Lucas 2000 11 2 No Numeric (binary)
Lucap 2000 143 2 No Numeric (binary)

datasets are shown in Table 1. The missing data are replaced by mean and mode
of that dataset.

3.2 Evaluation

To evaluate feature selection process we use four widely used classifiers: Naive-
Bayes(NB), Multilayer Perceptron (MLP), Support Vector Machines (SVM) and
Decision Trees (DT). The parameters of each classifier were chosen based on the
highest average accuracy of the experiment datasets from base classifier. MLP
has one hidden layer with 16 hidden nodes, learning rate 0.2, momentum 0.3, 500
iterations and uses backpropagation algorithm with sigmoid transfer function.
SVMs uses linear kernel and set the regularization value to 0.7 and Decision
Trees use pruned C4.5 algorithm. The number of classifiers in Bagging is varied
from 1, 5, 10, 25 to 50 classifiers. The threshold value of FCBF algorithm in our
research is set at zero for heart disease, diabetes, parkinson and lucas and 1.4
and 0.15 for hepatitis and lucap dataset, respectively.

The classifier results were validated by 10 fold cross validation with 10 repeti-
tions for each experiment and evaluated by average percent of test set accuracy
of algorithm. For causal feature selection, PC algorithm using mutual informa-
tion as statistic test with threshold 0.01 and maximum cadinality equals to 2. In
TPDA algorithm, mutual information are used as statistic test with threshold
0.01 and assumed that data is monotone faithful. SC algorithm uses BDeu score
function, k = 5 and using Bayesian scoring metric for statistic test. Finally, HI-
TON use G2 statistic test with threshold 0.05, maximum size of the conditional
set is set to 3 and provides output as Markov Blanket of the classes.

4 Experimental Result

Table 2 and table 3 show the number of selected features in each analysis and
the complexity of the algorithm, respectively.

Figure 1 and 2 present example of the average accuracy of heart disease and
lucas dataset. Y-axis presents the average percent accuracy of the classifier and
X-axis shows the number of ensemble from 1 to 50 classifiers. Figure 3 and 4
show the average accuracy of six datasets for each classifier and average of all
classifiers for all six datasets, respectively. Finally, figure 5 presents the examples
of causal graph of lucas data set from PC algorithm.
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Table 2. Number of selected features

Dataset Original Correlation-Based Causal
Feature FCBF CFS+SFFS PC TPDA SC HITON

Heart Disease 13 6 9 13 13 11 4
Diabetes 8 4 4 8 8 0 0
Hepatitis 19 3 10 19 18 0 0
Parkinson’s 22 5 10 22 2 0 0
Lucas 11 3 3 9 10 11 0
Lucap 143 7 36 121 121 123 0

Table 3. The complexity of each algorithm

Algorithm Complexity Remark
FCBF O(MNlogN) M=number of samples, N= number of features
CFS +
SFFS

< O(N2) N= number of features

PC O(|N |4) N= number of features
TPDA O(|N |4) N= number of features
SC O(2k · (c + 1)! · |J |) k = size of candidate set, c = size of the largest

separator in cluster tree, J = a family of cluster
HITON O(|MB|3|N |) MB = Markov Blanket of the class, N = number

of features
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Fig. 1. Average Percent Accuracy of Heart Disease dataset
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Fig. 2. Average Percent Accuracy of Lucas dataset
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5 Discussion

According to table 2, it can be seen that HITON eliminates highest number
of features among other algorithms, however, it can define Markov Blanket for
only heart disease and does not find any Markov Blanket for the remaining
datasets because the data distribution may not be faithful [20] . SC algorithm
also eliminates all features in some datasets because it may not identify true set
of parents when k parameter is not appropriate [12]. FCBF algorithm removes
more features than CFS+SFFS, TPDA and PC algorithms, respectively.

From Table 3, CFS+SFFS has the least complexity among other algorithms.
HITON does not have high complexity because it uses Markov Blanket discovery
that select only parents, children and spouses of the classes. PC and TPDA have
the highest complexity algorithm due to their exhaustive search.

With reference to figure 3, SVM provides less accuracy than MLP because
MLP uses back propagation with sigmoid transfer function and has 16 hidden
node which is non linear system while SVM uses linear kernel with regularization
0.7. In figure 4, CFS+SFFS provides better average accuracy than PC, original,
FCBF, TPDA and SCA, respectively. (HITON algorithm which can select opti-
mal features only in heart disease dataset is not considered in the average graph
in order not to bias result.) PC gives the best average accuacy among causal
feature selection algorithms, however, it can deal only with few hundred fea-
tures [16]. FCBF does not provide highest accuracy because its main objective
is dealing with high dimensional feature while preserving high accuracy [11].
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Although causal feature selection provides slightly less accuracy, more complex-
ity and less number of eliminated features than correlation-based feature selec-
tion, it has benefit to learn underlying causal structure of the classes and features
as an example shown in figure 5.

Fig. 5. Causal structure of Lucas dataset from PC algorithm

6 Conclusion

In this paper, we present a comparison analysis between correlation-based and
casual feature selection for ensemble classifiers. In conclusion, correlation-based
feature selection has slightly higher average accuracy, less complexity and can
remove more irrelevant and redundant features than causal feature selection.
Nevertheless, causal feature selection can reveal causes and consequence of the
classes by defining causal relationship. Ensemble has ability to improve both
correlation-based and causal feature selection. The future work will examine the
result of causal feature selection from bootstrap dataset and combine result with
ensemble classifiers.
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Abstract. Estimating the classification error rate of a classifier is a key
issue in machine learning. Such estimation is needed to compare clas-
sifiers or to tune the parameters of a parameterized classifier. Several
methods have been proposed to estimate error rate, most of which rely
on partitioning the data set or drawing bootstrap samples from it. Error
estimators can suffer from bias (deviation from actual error rate) and/or
variance (sensitivity to the data set). In this work, we propose an error
rate estimator that estimates a generative and a posterior probability
models to represent the underlying process that generates the data and
exploits these models in a Monte Carlo style to provide two biased es-
timators whose best combination is determined by an iterative solution.
We test our estimator against state of the art estimators and show that
it provides a reliable estimate in terms of mean-square-error.

1 Introduction

In a typical supervised learning setting, a classifier is trained on a set of patterns
with the goal being to give accurate classification for future unseen patterns. To
obtain the best possible model, one has to test a number of classifiers and select
the best, as typically different classifiers suit different problems. The misclas-
sification probability is the main performance measure used to select the best
classifier, and it is very important to have an accurate estimator of this measure.
An inaccurate error rate estimator can lead to selecting the wrong classification
model or, for the same classification model, selecting detrimental parameter val-
ues. The problem is particularly aggravated by the small sample sizes [1]. Small
sample sizes are encountered in many applications, such as microarray classifi-
cation [2][3] and domain-specific information extraction [4].

In ideal circumstances, to get an exact estimate of the error rate, one could ob-
tain an exact model of the process that generates the patterns and then use this
model to obtain the error rate estimate either analytically or through Monte Carlo
simulations. However, in realistic situations the pattern generation process is un-
known and only a representative data set is available. Thus, the error rate estima-
tion method aims at estimating the error rate solely using this available data set.
Moreover, this same data set has to be used for designing the classifier too. Most
of the existing error rate estimators rely on evaluating the classifier using portions
of the data obtained either by partitioning or bootstrapping. The estimation error
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for a misclassification rate estimator can be decomposed into the two conflicting
components of bias and variance. An estimator that is insensitive to the precise
locations of the sampled patterns will typically have a low variance and high bias,
and the converse is true too. Obtaining an accurate error rate estimator amounts
to mastering the right trade-off between bias and variance.

2 Error Rate Estimators

Consider a classification data set (X, Y ) = (xi, yi) ∼ G, i = 1, 2, ..., N , where
xi is a p-dimensional feature vector, yi is its classification label, and G is the
distribution from which (X, Y ) is drawn. It is required to estimate the error rate
of a classification rule C : X �→ Y derived from the provided data set, where X
is the domain of features and Y is the set of possible labels.

The most straightforward estimator is the resubstitution estimator, which is
obtained by training the classifier on the whole data set and testing it on the same
data. Because the same patterns are used for training and testing, resubstitution
estimate suffers from severe negative bias (i.e. it severely underestimates the error
rate), especially for complex classifiers, and is of little use by itself.

To combat this bias, researchers have typically used the hold-out method. It
is based on dividing the data into a training set and a test set (as a rule of thumb
the test set is typically taken as one third of the available dataset). The classifier
is trained on the training set and evaluated on the test set. The advantage of
such estimator is that it bases its estimate on patterns unseen in the training
phase. The disadvantage is that it uses only a fraction of the data for training,
leading to a disadvantaged classifier and hence a positive bias. Nevertheless, the
hold-out method is widely used, especially for larger datasets.

An approach that attempts to make use of most of the data for training is
the K-fold cross-validation (CV). It is based on splitting the data into K parts
of equal sizes. Then we perform K different training/testing sessions. In the
ith session we train the classifier on all parts except the ith part and test the
classifier on the ith part. The estimated misclassification rate is the average of the
misclassification rates obtained in the K testing sessions. A special case of CV
is the leave-one-out cross-validation (LOOCV) where we have N partitions each
consisting of a single pattern. The main disadvantage of CV is its large variance.
In general, lower values of K have less variance at the expense of upward bias.

The leave-one-out bootstrap (LOOBS) takes B bootstrap samples of the data.
Each bootstrap sample is obtained by sampling N patterns with replacement.
The misclassification rate for each pattern x is estimated by classifiers trained on
bootstrap samples in which x does not appear. The estimated misclassification
rate is averaged over all patterns. LOOBS has less variance than CV at the
expense of upward bias.

Efron [5] proposed the .632 method to handle the positive bias of the leave-
one-out bootstrap by combining it with the negatively biased resubstitution
estimate as follows:

Ê.632 = 0.632 ∗ ÊLOOBS + 0.368 ∗ Êresub (1)
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The weights are derived from the fact that the expected number of unique pat-
terns in a bootstrap sample of size N is approximately (1 − e−1)N = 0.632N .
The .632 suffers from a negative bias if the classifier is (nearly) a perfect mem-
orizer, such as the nearest neighbor classifier (1NN). In this case Eresub can be
extremely negatively biased (for example Êresub = 0 for 1NN) thus biasing the
whole estimate.

The .632+ method [6] attempts to alleviate the bias problem of the .632
method in case of perfect memorizers, by having variable combination weights,
w, 1 − w where w is a function of the estimated degree of overfitting for the
considered classifier instead of being fixed at 0.632. More recently, Sima and
Dougherty[7] have shown that the optimal combination between LOOBS and
resubstitution depends on the classification rule, sample size and data distribu-
tion. They have shown, for example, that the optimal value of w increases with
increasing Bayes error rate.

A newly proposed method, the so-called bootstrap cross-validation (BCV), pro-
posed by Fu, Carroll and Wang [2], takes B bootstrap samples of size N . The mis-
classification rate is estimated for each sample using leave-one-out cross validation
and then averaged over all samples. An issue with BCV is that the bootstrap sam-
ples contain repeated patterns. Consequently, the LOOCV estimate would be neg-
atively biased due to the overlap between training and testing data. Thus, BCV
can suffer from downward bias, especially with perfect memorizers.

Jiang and Simon [3] proposed the adjusted bootstrap (ABS) method which
is based on assuming an inverse power law relationship between error rate and
number of unique patterns in the training set. The method calculates multi-
ple leave-one-out bootstrap estimates with different bootstrap sample sizes and
consequently different expectations of the number of unique patterns. These es-
timates are used to fit the parameters of the inverse power low curve. The error
estimate is then calculated as the error rate at N unique patterns, as predicted
by the inverse power law. Experiments conducted by Jiang and Simon show that
ABS is moderately conservative (it tends to be upward biased).

In the methods described above each pattern is typically evaluated by an indica-
tor function I(C(xi) �= yi) where C(xi) is the classifier’s output for the ith pattern.
This is usually adequate for a large number of patterns. However, as the number of
patterns becomes small, the discrete nature of this evaluation function will have a
detrimental effect on the estimator’s performance due to variance. In such situa-
tion, each pattern becomes a valuable source of information that has to be used to
its utmost. Replacing the indicator function with a continuous evaluation function
improves the overall accuracy and, in particular, reduces the variance.

Most continuous evaluation functions proposed in the literature (see [8] for a
review) assume a classification method where the output is obtained by thresh-
olding a discriminant function f(x) : X �→ R. These methods utilize the actual
value of the discriminant f(x) instead of thresholded value. Fukunaga and Kessel
[9] proposed the posterior probability misclassification rate estimator, where the
discriminant function is nothing but posterior probability estimates P̂ (y|x). This
approach has been also analyzed in detail by [10] and [11]). In this approach the
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evaluation function becomes 1 − P̂ (C(xi)|xi), where C(xi) is the classification
of pattern xi.

The posterior probability error estimator does not need the labels (except for
designing the classifier) and consequently can make use of unlabeled test patterns.
To further reduce variance, Hand [12][13] proposed the utlization of the marginal
probability G(x) =

∑
y∈Y G(x, y), which can also be estimated using unlabeled

data. The average conditional error rate can then be estimated as

EAC =
∫
X

(1 − P̂ (C(x)|x))Ĝ(x)dx (2)

Typically, P̂ (y|x) is different from the true posterior probability given by

P (y|x) =
G(x, y)∑

yk∈Y G(x, yk)
(3)

This makes the posterior error estimation biased and this bias becomes more
severe as the data set size decreases because the error in estimating P̂ becomes
larger [8].

3 Proposed Estimator

The proposed misclassification rate estimator is based on two different proposed
estimators that have favorable complementary features. Subsequently, the two
estimators are combined in a certain way so as to emphasize their strong aspects.

First, given a random sample (X̂, Ŷ ) ∼ Ĝ of size NG  N , the generative
error rate is defined as follows:

ÊG =
1

NG

NG∑
j=1

I(C(x̂j) �= ŷj) (4)

Since Ĝ is typically only an approximation of G, we expect EG to be biased.
If Ĝ is estimated using a method that has enough degrees of freedom to fit the
dataset, such as Parzen windows, the generated set (X̂, Ŷ ) will be similar to the
provided set (X, Y ) and consequently, ÊG will be downward biased. ÊG can thus
be thought of as a reduced-bias version of the resubstitution estimate.

The other estimate we develop is the Monte Carlo posterior estimate which is
calculated as shown in algorithm 1. The rationale for the Monte Carlo posterior
approach is that we would like to replicate the whole process of drawing patterns
from the distribution and designing a classifier. Relying on just the original
patterns (like in the proposed generative method above or like other estimators
in the literature), will get us “stuck” with the specific positions the original
patterns happen to fall in.

In this work, we estimate the posterior probability P̂ using a Gaussian process
classifier [14], we choose Gaussian processes for three main reasons. First, the
Gaussian process classifier we use is a discriminative estimator. Discriminative
methods are more reliable than generative methods for estimating posterior prob-
abilities especially in small samples, since they do not need to estimate the joint
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Algorithm 1. Monte Carlo posterior error rate estimation
for i = 1 to B do

(Xs, Ys) ∼ Ĝ , Ns = N
(Xt, Yt) ∼ Ĝ , Nt = N

2

Train C on (Xs, Ys)
ÊMCPi = 1

Nt

∑Nt
t=1(1 − P̂ (C(xi)|xi))

end for
ÊMCP = 1

B

∑B
i=1 ÊMCPi

probability G(x, y). Second, Gaussian processes are kernel-based, which means
they can easily be applied on non-Euclidean spaces. Third, Gaussian processes
are based on a formal probabilistic framework.

To derive a good combination of ÊG and ÊMCP we need to observe how they
are related to the actual error rate which depends on the degree of separation
between patterns belonging to different classes based on available features. In a
problem where the features clearly separate classes, the true error rate E and ÊG

tend to be minimum and in this case ÊG tends to be unbiased. On the other hand,
in a problem with almost non-informative features, E tends to the error rate of
a totally random classifier (0.5) while the EG estimate will typically be less than
0.5 since the test is similar to the set fitted by the classifier. Consequently, ÊG

will be significantly down-biased in low class separation problems.
The relation between the bias of ÊMCP and the degree of class separa-

tion can be explained by the effect of replacing the indicator evaluation func-
tion zi = I(C(xi) �= yi), where zi ∈ {0, 1}, with the posterior estimate pi =
1− P̂ (C(xi)|xi), where pi ∈ [0, 1]. Since pi is more smoothed than zi, we expect
that pi < 1 if zi = 1 and pi > 0 if zi = 0. In other words, pi is more opti-
mistic about misclassified patterns and more pessimistic about correctly classi-
fied patterns. Consequently, at low error rates (high separation), ÊMCP becomes
upward-biased. This bias decreases as error rate increases and reaches its min-
imum at error rates near 0.5, where the effects of misclassified and correctly
classified patterns balance out.

To test the validity of the above argument, we conducted Monte Carlo sim-
ulation experiments on different data sets and classifiers. For each data set, we
tried different degrees of class separation by translating and/or scaling each pat-
tern depending on its class. For each degree of class separation we select a set
S of N patterns (N = 20) from the transformed data set, train the classifier on
them and estimate the true error rate E by counting the number of misclassified
patterns when testing the classifier on the patterns not selected in S. We use S
to estimate EG and EMCP . This process is repeated K times (K = 100).

Figure 1 shows the results of one of these simulations, where a Naive Bayesian
classifier is tested on patterns generated from a 10-variate Gaussian distribution
with

∑
= I, μ1 = 0 and μ2i = d ∀ i : 1 ≤ i ≤ 10. Degree of separation is

controlled by changing d, which is shown as the x-axis. The figure shows that
both EMCP and EG tend to be more pessimistic (or less optimistic) as the degree
of separation increases. It shows that EMCP is a good estimator when there is
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Fig. 1. Effect of degree of class separation on error rate estimation. Top-left: Es-
timation of the true error rate E. Top-right: Error estimation bias (ÊG − E and
ÊMCP − E). Bottom-left: Combination weight as calculated by iteratively applying
equations 5 and 6 for 10 iterations. Bottom-right: Bias of the final error estimate
(ÊGMCP − E) All depicted quantities are averaged over 100 trials.

low separation and the error rate is high while EG is a good estimator when
there is high separation and the error rate is low.

This suggests a linear combination of the form

ÊGMCP = wÊMCP + (1 − w)ÊG (0 ≤ w ≤ 1) (5)

where
w = min(1, 2E) (6)

and E is the error rate which depends on the degree of class separation. Thus
w tends to 1 as E tends to 0.5 (low separation) and tends to 0 as E tends
to 0 (high separation). Since E is unknown a priori we replace it in 6 with
ÊGMCP and iteratively apply 5 and 6 starting with w = 0.5. Figure 1 shows
that w converges to nearly 2E. It is worth noting that the combination of EG

and EMCP reduced the resultant bias at the expense of increased variance, a
clear example of the bias/variance tradeoff. Similar behavior was consistently
observed in the experiments performed on other data sets and other classifiers.
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4 Experimental Setup
To test the comparative performance of the proposed estimator, we have per-
formed extensive numerical simulations on four 2-class real-world data sets dif-
ferent from those used to develop our estimator.

For each data set we performed K runs (we set K to 100), where in each run
we randomly sample N patterns from the data set. These represent the training
set, and they will be used to estimate the classifier error rate for each competing
estimator. Table 1 shows the details of the data sets used 1.

The estimators we tested are given in Table 2. For the estimation of P̂ (y|x),
we used Gaussian processes with the neural network covariance function since
our development experiments showed that it has more discriminative power for
small samples compared to other functions such as the standard error isotropic
covariance function. For the estimation of G(x, y) we used Parzen windows with
kernel width estimated using Silverman’s rule[16].

For each setup we estimate bias, variance and mean square error (MSE), which
are calculated as follows

Bias =
1
K

K∑
i=1

(Êi − Ei) (7)

V ariance =
1
K

K∑
i=1

(Êi − Ei)2 − (
1
K

K∑
i=1

(Êi − Ei))2 (8)

MSE =
1
K

K∑
i=1

(Êi − Ei)2 (9)

where Ei and Êi are the true and estimated misclassification rate in the ith run
respectively. The true error rate is estimated by training the classifier on the N
sampled data and testing it on the remaining patterns of the dataset.

Table 1. Datasets

Dataset Number of patterns Dimensionality Percentage of class 1 patterns
wdbc 569 10 37%

wine-red 1599 11 53%
wine-white 4898 11 67%

stock-prediction 7516 3 25%

Table 2. Tested error rate estimation methods

Abbreviation Definition
LOOCV Leave-one-out cross-validation
LOOCVP Leave-one-out cross-validation with Gaussian Process posterior evaluation
LOOBS Leave-one-out bootstrap (50 bootstrap samples)
632 632 bootstrap (50 bootstrap samples)
632+ 632+ bootstrap (50 bootstrap samples)
BCV Bootstrap cross-validation (50 bootstrap samples)
ABS Adjusted bootstrap (50 bootstrap samples, l ∈ {0.7, 1, 2, 3, 4, 5, 6})
GMCP Combined Generative and Monte-Carlo posterior estimates

1 All data sets were obtained from UC Ivrine Machine Learning Repository [15] except
the stock prediction data set.
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For each dataset we tested three different classifiers: the K-nearest neighbor
(KNN) with K = 3, the diagonal linear discriminant analysis (DLDA), and the
classification and regression trees (CART).

5 Experimental Results

Tables 3, 4 and 5 show the results for 3NN, DLDA and CART classifiers respec-
tively. Table 6 shows the ranks of tested estimators (based on MSE) averaged over

Table 3. Results for 3NN Classifier. For each setup, the first row shows the bias, the
second shows the variance and the third shows the MSE.

Data N True LOOCV LOOCVP LOOBS 632 632+ BCV ABS GMCP

wdbc 30 0.096
0.000 0.086 0.024 -0.002 0.003 -0.017 0.023 0.001
0.004 0.001 0.003 0.002 0.003 0.002 0.004 0.001
0.004 0.008 0.003 0.002 0.003 0.002 0.004 0.001

wine-red 30 0.356
0.005 0.030 0.030 -0.044 0.002 -0.103 0.041 -0.018
0.010 0.004 0.006 0.004 0.007 0.003 0.010 0.007
0.010 0.005 0.007 0.006 0.007 0.013 0.012 0.007

wine-white 30 0.357
0.038 0.052 0.049 -0.030 0.024 -0.090 0.049 0.001
0.010 0.004 0.006 0.004 0.006 0.003 0.009 0.006
0.012 0.007 0.008 0.005 0.006 0.011 0.011 0.006

stock 30 0.426
0.083 0.062 0.064 -0.027 0.043 -0.099 0.063 0.063
0.014 0.003 0.007 0.006 0.006 0.004 0.012 0.003
0.021 0.007 0.011 0.007 0.008 0.014 0.016 0.007

wdbc 40 0.091
0.005 0.073 0.030 0.005 0.009 -0.014 0.031 0.004
0.002 0.001 0.002 0.002 0.002 0.001 0.003 0.001
0.003 0.006 0.003 0.002 0.002 0.001 0.004 0.001

wine-red 40 0.353
0.011 0.022 0.035 -0.045 0.004 -0.107 0.022 -0.028
0.008 0.003 0.004 0.003 0.005 0.002 0.006 0.004
0.008 0.003 0.005 0.005 0.005 0.013 0.006 0.004

wine-white 40 0.339
0.018 0.054 0.038 -0.037 0.010 -0.094 0.036 0.002
0.007 0.002 0.004 0.003 0.004 0.002 0.006 0.004
0.007 0.005 0.005 0.004 0.005 0.011 0.007 0.004

stock 40 0.367
0.053 0.064 0.060 -0.016 0.038 -0.077 0.080 0.073
0.010 0.002 0.006 0.005 0.007 0.005 0.012 0.003
0.013 0.006 0.010 0.006 0.008 0.010 0.018 0.008

wdbc 50 0.085
0.005 0.066 0.024 0.000 0.003 -0.017 0.021 0.002
0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.001
0.002 0.006 0.002 0.001 0.001 0.001 0.003 0.001

wine-red 50 0.353
-0.004 0.019 0.024 -0.052 -0.008 -0.115 0.018 -0.027
0.006 0.003 0.004 0.003 0.005 0.002 0.005 0.004
0.006 0.003 0.004 0.005 0.005 0.015 0.006 0.004

wine-white 50 0.327
0.005 0.036 0.024 -0.044 -0.002 -0.102 0.019 -0.017
0.006 0.003 0.004 0.003 0.005 0.002 0.005 0.004
0.006 0.004 0.005 0.005 0.005 0.012 0.006 0.004

stock 50 0.347
0.031 0.045 0.052 -0.022 0.035 -0.083 0.061 0.058
0.005 0.001 0.003 0.003 0.003 0.002 0.006 0.002
0.006 0.003 0.006 0.003 0.004 0.009 0.010 0.005
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setups using the same N . The results show that GMCP is a reliable error rate
estimator in terms of MSE, with 632 and LOOCVP being very close competi-
tors. The combination of generative and posterior makes GMCP, in most setups,
less prone to excessive positive bias occasionally encountered by LOOCVP and
excessive negative bias occasionally encountered by 632, especially for overfitting
classifiers such as CART.

Table 4. Results for DLDA Classifier. For each setup, the first row shows the bias, the
second shows the variance and the third shows the MSE.

Data N True LOOCV LOOCVP LOOBS 632 632+ BCV ABS GMCP

wdbc 30 0.083
0.007 0.106 0.012 0.003 0.004 -0.004 0.010 0.035
0.003 0.001 0.002 0.002 0.002 0.002 0.002 0.002
0.003 0.013 0.003 0.002 0.002 0.002 0.003 0.004

wine-red 30 0.318
-0.006 0.033 0.019 -0.028 -0.007 -0.070 0.007 0.009
0.010 0.006 0.008 0.006 0.009 0.005 0.008 0.007
0.010 0.007 0.008 0.007 0.009 0.009 0.008 0.007

wine-white 30 0.340
0.032 0.059 0.045 -0.005 0.020 -0.053 0.035 0.036
0.011 0.005 0.007 0.005 0.007 0.003 0.008 0.006
0.012 0.008 0.009 0.005 0.008 0.006 0.009 0.007

stock 30 0.484
0.013 0.005 0.010 -0.020 -0.001 -0.058 0.016 0.006
0.023 0.015 0.016 0.014 0.016 0.016 0.018 0.017
0.023 0.016 0.017 0.014 0.016 0.020 0.018 0.017

wdbc 40 0.085
-0.012 0.064 -0.008 -0.014 -0.014 -0.021 -0.010 0.010
0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001
0.002 0.005 0.002 0.002 0.002 0.002 0.002 0.002

wine-red 40 0.313
0.005 0.035 0.029 -0.012 0.002 -0.046 0.014 0.017
0.006 0.003 0.005 0.004 0.005 0.003 0.005 0.004
0.006 0.004 0.005 0.004 0.005 0.005 0.005 0.004

wine-white 40 0.332
0.014 0.035 0.030 -0.007 0.009 -0.047 0.019 0.023
0.007 0.004 0.006 0.005 0.006 0.003 0.006 0.005
0.008 0.005 0.007 0.005 0.006 0.006 0.007 0.005

stock 40 0.495
0.005 -0.004 -0.002 -0.024 -0.012 -0.060 0.010 -0.010
0.017 0.006 0.011 0.008 0.009 0.011 0.011 0.015
0.017 0.006 0.011 0.009 0.009 0.015 0.011 0.015

wdbc 50 0.081
0.003 0.063 0.008 0.001 0.001 -0.004 0.006 0.025
0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002
0.002 0.005 0.002 0.002 0.002 0.002 0.002 0.002

wine-red 50 0.302
0.005 0.028 0.026 -0.005 0.005 -0.036 0.012 0.018
0.004 0.002 0.003 0.003 0.003 0.002 0.003 0.003
0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.003

wine-white 50 0.333
-0.010 0.014 0.007 -0.022 -0.012 -0.055 -0.002 0.005
0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003
0.004 0.003 0.004 0.004 0.004 0.006 0.004 0.003

stock 50 0.473
0.005 -0.003 0.001 -0.019 -0.010 -0.046 0.006 0.006
0.013 0.004 0.011 0.007 0.008 0.011 0.010 0.016
0.013 0.004 0.011 0.008 0.008 0.013 0.010 0.016
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Table 5. Results for CART Classifier. For each setup, the first row shows the bias, the
second shows the variance and the third shows the MSE.

Data N True LOOCV LOOCVP LOOBS 632 632+ BCV ABS GMCP

wdbc 30 0.137
0.005 0.069 0.021 -0.030 -0.017 -0.068 0.016 0.074
0.006 0.003 0.004 0.003 0.004 0.002 0.005 0.003
0.006 0.007 0.005 0.004 0.004 0.007 0.005 0.008

wine-red 30 0.378
0.026 0.029 0.022 -0.098 -0.010 -0.194 0.020 0.019
0.017 0.003 0.006 0.004 0.008 0.003 0.008 0.003
0.018 0.004 0.007 0.014 0.008 0.040 0.009 0.003

wine-white 30 0.388
0.025 0.039 0.031 -0.099 -0.002 -0.194 0.024 0.029
0.017 0.005 0.006 0.004 0.008 0.003 0.009 0.004
0.018 0.006 0.007 0.014 0.008 0.041 0.009 0.005

stock 30 0.458
0.033 0.037 0.029 -0.093 0.004 -0.181 0.039 0.036
0.017 0.004 0.008 0.006 0.007 0.005 0.009 0.004
0.018 0.006 0.008 0.014 0.007 0.038 0.010 0.006

wdbc 40 0.125
-0.003 0.053 0.014 -0.028 -0.020 -0.063 0.007 0.076
0.004 0.001 0.003 0.002 0.002 0.001 0.003 0.002
0.004 0.004 0.003 0.003 0.003 0.005 0.003 0.007

wine-red 40 0.370
-0.023 0.016 0.011 -0.104 -0.030 -0.196 -0.003 0.016
0.016 0.004 0.005 0.003 0.007 0.002 0.007 0.002
0.016 0.004 0.005 0.014 0.008 0.041 0.007 0.003

wine-white 40 0.359
0.032 0.055 0.039 -0.077 0.010 -0.173 0.041 0.048
0.014 0.004 0.004 0.003 0.005 0.003 0.005 0.004
0.015 0.007 0.006 0.009 0.006 0.033 0.007 0.006

stock 40 0.400
0.061 0.049 0.048 -0.063 0.030 -0.148 0.055 0.063
0.011 0.003 0.005 0.004 0.005 0.003 0.006 0.002
0.015 0.005 0.007 0.008 0.006 0.025 0.009 0.006

wdbc 50 0.117
0.012 0.048 0.018 -0.022 -0.016 -0.055 0.013 0.069
0.005 0.002 0.003 0.002 0.002 0.001 0.003 0.002
0.005 0.004 0.003 0.002 0.002 0.004 0.003 0.007

wine-red 50 0.373
0.003 0.019 0.016 -0.096 -0.020 -0.189 0.008 0.017
0.009 0.003 0.003 0.002 0.004 0.002 0.004 0.002
0.009 0.003 0.004 0.011 0.005 0.038 0.004 0.002

wine-white 50 0.351
-0.017 0.023 0.005 -0.100 -0.024 -0.183 -0.005 0.021
0.010 0.003 0.003 0.002 0.004 0.002 0.004 0.002
0.010 0.003 0.003 0.012 0.005 0.035 0.004 0.002

stock 50 0.390
0.027 0.025 0.015 -0.085 0.001 -0.163 0.024 0.046
0.008 0.003 0.004 0.003 0.004 0.003 0.005 0.002
0.008 0.003 0.004 0.010 0.004 0.029 0.006 0.004

Table 6. Average ranks of error rate estimators based on MSE

N LOOCV LOOCVP LOOBS 632 632+ BCV ABS GMCP
30 7 3.6667 4.3333 2.9167 3.5000 5.7500 5.7500 3.08337
40 7 3.5833 4.3333 3.0833 3.5000 6 5.5833 2.9167
50 5.9167 2.9167 4.5000 3.9167 3.8333 6.5000 5 3.4167

Overall 6.6389 3.3889 4.3889 3.3056 3.6111 6.0833 5.4444 3.1389
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6 Conclusions

In this work we developed a complementary pair of error rate estimators that
utilize a generative estimator and a posterior estimator. We proposed an iterative
combination of the two estimators. The iterative solution was based on the fact
that the best combination depends on a hidden parameter (true error rate).
We are planning to study the possibility of integrating more visible and hidden
parameters such as number of samples and amount of overfitting to get a more
reliable estimator.
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Abstract. Several real-world problems (e.g., in bioinformatics/proteomics, or
in recognition of video sequences) can be described as classification tasks over
sequences of structured data, i.e. sequences of graphs, in a natural way. This
paper presents a novel machine that can learn and carry out decision-making
over sequences of graphical data. The machine involves a hidden Markov
model whose state-emission probabilities are defined over graphs. This is
realized by combining recursive encoding networks and constrained radial
basis function networks. A global optimization algorithm which regards to the
machine as a unity (instead of a bare superposition of separate modules) is
introduced, via gradient-ascent over the maximum-likelihood criterion within a
Baum-Welch-like forward-backward procedure. To the best of our knowledge,
this is the first machine learning approach capable of processing sequences of
graphs without the need of a pre-processing step. Preliminary results are reported.

Keywords: Hidden Markov model, relational learning, recursive networks.

1 Introduction

This paper introduces a novel hybrid architecture (along with its training algorithm)
for learning over sequences of graphs (i.e., sequential structured data). The scenario is
an extension of traditional relational learning, where a learning machine is fed with a
graph (an algebraic relation), and it is expected to carry out classification (or, regression)
over the input structured data [5]. In the present setup, we are faced with a sequence
g1, . . . , gn of individual graphs, and the overall sequence has to be modeled and clas-
sified. Examples may help focusing on the nature of this scenario. Several problems
in bioinformatics concern the classification of proteins, or of subparts of proteins. For
instance, prediction of the secondary structure of certain segments within the protein,
or the prediction of the binding state of individual cysteines, starting from the primary
structure. These problems are usually faced (e.g., using hidden Markov models) relying
on a description of the protein as a sequence (string) of amino-acids, each amino-acid
being a symbol drawn from a finite and discrete alphabet, or a real-valued feature vector
drawn from a multiple-alignment profile. In so doing, the very nature of the amino-acids
is overlooked by the machine, which has no opportunity to take benefit from knowledge
of the underlying physical and chemical properties of the amino-acids themselves. As
a matter of fact, each amino-acid is a molecule, built up from specific atoms (having
specific properties) which are implicitly involved in a binary relation defined by the
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atom-atom chemical bonds. Such molecules may be represented as labeled graphs in
a natural manner. Overall, the whole primary structure of the protein can thus be de-
scribed in terms of a sequence of graphs, each representing the amino-acid that is found
at that specific location along the sequence. A machine which is capable of dealing
with such a sequence of graphs, and capable of carrying out an automatic segmenta-
tion of the protein into relevant sub-sequences (segments), may exploit the knowledge
encapsulated in the sub-molecular properties of the polymer.

Another example is found in the area of video processing. Relational learning ma-
chines, such as recursive neural nets (RNN) [8], have been widely applied to image
classification tasks. In this case, a graphical representation of images is extracted, e.g.
in terms of region adjacency graphs (RAG) [3], or multi-resolution trees (MRT) [2].
The idea is that a graphical representation is richer than a traditional, flat feature vector
representation. Given that a video consists of a sequence of still images, and hence, it is
quite obvious that a video is suitably represented as a sequence of graphs (either RAGs
or MRTs). Again, a machine capable of learning and accomplishing classification over
sequences of graphs is sought.

More examples can be found in the areas of molecular chemistry, document pro-
cessing, the World Wide Web, environmental computing, etc. whenever there is a time
dependency between structured objects.

This paper introduces a novel machine that fits the framework of sequential graph-
ical pattern recognition. The architecture is defined as follows. The hidden part of a
hidden Markov model (HMM) [7] is taken, along with its intrinsic capability of mod-
eling long-term time dependencies, and of performing automatic segmentation of long
sequences into sub-sequences. The emission probabilities associated with the states of
the HMM are probability density functions (PDF) defined over labeled graphs1. Emis-
sion PDFs are modeled using a combined artificial neural network (ANN) architecture.
An encoding ANN, as in RNNs for graphs [8], is combined with a radial basis func-
tion (RBF)-like network that realizes the estimation of the PDF. This probabilistic in-
terpretation is made possible by (i) a description of individual graphs as the random
outcomes of a generalized random graph, as was formally defined in [9]; and by (ii) a
constrained RBF which actually realizes a PDF model which satisfies probability ax-
ioms. We stress the fact that the resulting, hybrid machine is not just the aggregation
of separate, cooperating architectures. Rather, it shall be thought of as a whole, since a
global, joint optimization algorithm is developed, which trains all the model parameters
(RBFs parameters, encoding networks weights, HMM initial and transition probabil-
ities) simultaneously in order to increase a shared, overall criterion function, namely
the maximum-likelihood (ML) of the model given a sample of training observation se-
quences. Training takes place within the popular Forward-backward (or, Baum-Welch)
procedure for HMMs [7]. Once training is accomplished, the popular Viterbi algorithm
[7] can be applied in order to carry out segmentation and classification of sequences of
graphical patterns.

The paper is organized as follows: Section 2 gives the fundamental mathematical
details of the algorithm. An application to a learning problem is described in Section 3,
and some concluding remarks are made in Section 4.

1 A formal notion of PDF over labeled graphs is given in the next Section.
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2 Architecture and Training Algorithm

We will use the notion of generalized random graph [9] for a formal definition of the
probabilistic quantities over sequences of graphs that underly the given framework. Let
V be a given discrete- or continuous-valued set (vertex universe), and let Ω be any
given sample space. We define a Generalized Random Graph (GRG) over V and Ω as
a function G : Ω → {(V,E)|V ⊆ V , E ⊆ V × V }. Let then G = {(V,E)|V ⊆
V , E ⊆ V × V }. A probability density function (PDF) for GRGs over V is a function
p : G → � such that: (1) p(g) ≥ 0, ∀g ∈ G, and (2)

∫
G p(g)dg = 1 (refer to [9] for

a discussion on measurability of GRG spaces, i.e. meaning of this integral). Loosely
speaking, any function G(.) = ξ(t) which maps time t (either discrete or continuous)
onto a GRG is then defined to be a stochastic graph process. In turn, a hidden Markov
model over graphs (GHMM) is a pair of stochastic processes: a hidden Markov chain2

and an observable stochastic graph process which is a probabilistic function of the states
of the former. More precisely, a GHMM is defined as a traditional HMM [7] except for
the notion of emission probability, namely as:

1. A set S of Q states, S = {S1, . . . , SQ}, which are the distinct values that the
discrete, hidden stochastic process can take.

2. An initial state probability distribution, i.e. π = {Pr(Si | t = 0), Si ∈ S}, where
t is a discrete time index.

3. A probability distribution that characterizes the allowed transitions between states,
that is aij = {Pr(Sj at time t + 1 | Si at time t), Si ∈ S, Sj ∈ S} where
the transition probabilities aij are assumed to be independent of time t. Note that
{Pr(Sj at time t+ 1 | Si at time t, Sk at time t− 1, . . . ) = aij due to the Markov
assumption.

4. A set of PDFs over GRGs (referred to as emission probabilities) that describes the
statistical properties of the GRGs for each state of the model: bG = {bi(g) = p(g |
Si), Si ∈ S, g ∈ G}.

Let us assume that a certain sequence Y = g1, . . . , gT of graphs generated by a (hid-
den) stochastic graph process has been observed, and that it is the expression (outcome)
of a certain sequence W = ω1, . . . , ωL of states of nature (i.e., classes). Recognition
(classification) of the correct class(es) W relying on the observations Y can be ac-
complished according to the class(es) posterior probability given Y , yielded by Bayes’
theorem:Pr(W | Y ) = p(Y | W)Pr(W)/p(Y ). The quantity Pr(W) is referred to as
the prior probability of W . It can be estimated from relative frequencies of classes as in
statistical pattern recognition. We propose GHMMs for modeling the class-conditional
density p(Y | W). Note that this approach deals with “continuous” recognition tasks,
that is a sequence of classes ω1, . . . , ωL is hidden behind the observations Y , and no
prior segmentation of Y into subsequences Y1, . . . , YL corresponding with the individ-
ual classes in known in advance.

The proposed machine relies on a connectionist non-parametric model of the emis-
sion probabilities of a GHMM, with gradient-ascent global training techniques over
the ML criterion. An ANN is introduced for each state of the GHMM. The output

2 This is a traditional, discrete time random process.



Recognition of Sequences of Graphical Patterns 51

unit of a generic ANN provides an estimate of the corresponding emission probability
(that is, a PDF over GRGs) given the current graphical observation in the input graph
space. Training of the other probabilistic quantities in the underlying Markov chain,
i.e. initial and transition probabilities, still relies on likelihood maximization via the
forward-backward algorithm [7]. The Viterbi algorithm is then applied to the recogni-
tion step [7].

The global criterion function to be maximized during training, namely the likelihood
L of a graphical observation sequence given the model3, is defined as L =

∑
ι∈F αι,T .

The sum is extended to the set F of all possible final states [1] within the GHMM corre-
sponding to the current training sequence. The GHMM is supposed to involveQ states,
and T is the length of the current observation sequence Y = g1, . . . , gT . The forward
terms αι,t = Pr(qι,t, g1, . . . , gt) and the backward terms βι,t = Pr(gt+1, . . . , gT |qι,t)
for ι-th state at time t can be computed recursively as follows [7]:

αι,t = bι,t
∑

j

ajιαj,t−1 (1)

and
βι,t =

∑
j

bj,t+1aιjβj,t+1 (2)

where aιj denotes the transition probability from the ι-th state to the j-th state, bι,t
denotes the emission probability associated with the ι-th state over the t-th graph gt,
and the sums are extended to all possible states within the GHMM. The initialization of
the forward probabilities is accomplished as in HMMs [7], whereas the backward terms
at time T are initialized in a slightly different manner, namely:

βι,T =
{

1 if ι ∈ F
0 otherwise.

(3)

Given a generic parameter θ of an ANN, hill-climbing gradient-ascent overL prescribes
a learning rule of the following well-known kind:

Δθ = η
∂L

∂θ
(4)

where η ∈ �+, and η is commonly known as the learning rate. Let us observe (from [1])
that the following property can be easily shown to hold true by taking the partial deriva-
tives of the left- and right-hand sides of Equation (1) with respect to bι,t:

∂αι,t

∂bι,t
=
αι,t

bι,t
. (5)

In addition, by borrowing the scheme proposed by [1], the following theorem can be
proved to hold true: ∂L

∂αι,t
= βι,t, for each ι = 1, . . . , Q and for each t = 1, . . . , T .

3 A standard notation is used in the following to refer to quantities involved in HMM training
(e.g. [7]). Note that the Greek letter ι (iota) is used to denote the index for a generic state qι

of the GHMM; it shall not be confused with the index i that will be introduced later.
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Given this theorem and Equation (5), repeatedly applying the chain rule we can expand
∂L
∂θ by writing:

∂L

∂θ
=
∑

q

∑
t

∂L

∂bq,t

∂bq,t

∂θ
(6)

=
∑

q

∑
t

∂L

∂αq,t

∂αq,t

∂bq,t

∂bq,t

∂θ

=
∑

q

∑
t

βq,t
αq,t

bq,t

∂bq,t

∂θ

where the sums are extended over all states q of the GHMM involved in the current
training sequence (i.e., all the rows in the current trellis [7]), and to all t = 1, . . . , T ,
respectively. It is seen that all the quantities in the right-hand side of Equation (6) are
available upon recursive processing on the standard HMM trellis, except for ∂bq,t

∂θ . From

now on, attention is thus focused on the calculation of ∂bq,t

∂θ , where bq,t is the output
from the corresponding ANN at time t.

Now, for each ι = 1, . . . , Q let us assume the existence of an integer d and of two
functions, φι : G → �d and pι : �d → �, s.t. bι,t can be decomposed as:

bι,t = pι(φι(gt)). (7)

We call φι(.) the encoding for ι-th state of the GHMM, while pι(.) is simply referred
to as the “emission” associated with that state4. Again, we assume parametric forms
φι(gt|θφι) and pι(x|θpι) for the encoding and for the emission, respectively, and we
set θι = (θφι ,θpι). Bearing in mind Equation (7), we propose a state-specific, two-
block connectionist/statistical model for bι,t as follows. The function φι(gt|θφι) is
realized via an encoding network, suitable to map graphs gt into real vectors xt for
t = 1, . . . , T , as described in [8] for supervised training of RNNs over structured do-
mains. The weights of the encoding network are the parameters θφι . A radial basis
functions (RBF)-like neural net is then used to model the emission pι(xt|θpι), where
θpι are the parameters of the RBF. Basically, for each state ι in the GHMM a state-
specific RBF is expected to define a mixture of Normal densities over the state-specific
encoding φι(gt|θφι) of t-th input graph. From now on, since (i) HMMs assume that
the emission probabilities associated with different states are independent of each other
[7], (ii) a separate connectionist model is adopted for each one of the states of the
GHMM, and (iii) also individual observations (i.e., graphs) within the input sequence
are assumed to be independent of each other given the state [7], we simplify the (cum-
bersome) notation by dropping the state index ι and the time index t, and we focus
on the generic quantity p(φ(g|θφ))|θp). Note that, for notational convenience, in the
following this quantity may be written in short as p(g).

4 It is seen that there exist (infinite) choices for φ(.) and p̂(.) that satisfy Equation (7), the most
trivial being φ(g) = p(g|θ), p̂(x) = x.
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In order to ensure that a PDF is obtained this way, a standard RBF cannot be used
straightforwardly: specific constraints have to be placed on the nature of the Gaus-
sian kernels, as well as on the hidden-to-output connection weights. The training al-
gorithm shall provide us with a likelihood maximization scheme that undergoes such
constraints. Three distinct families of adaptive parameters θ of the ANNs have to be
considered:

(1) Mixing parameters c1, . . . , cn, i.e. the hidden-to-output weight of the RBF network.
Constraints have to be placed on these parameters during the ML estimation process, in
order to ensure that they are in the range (0, 1) and that they sum to one. A simple way
to satisfy the requirements is to introduce n hidden parameters γ1, . . . , γn, which are
unconstrained, and to set

ci =
ς(γi)∑n

j=1 ς(γj)
, i = 1, . . . , n (8)

where ς(x) = 1/(1 + e−x). Each γi is then treated as an unknown parameter θ to be
estimated via ML.

(2) The d-dimensional mean vector μi and d× d covariance matrix Σi for each one of
the Gaussian kernels Ki(x) = N(x;μi, Σi), i = 1, . . . , n of the RBF-like network,
where N(x;μi, Σi) denotes a multivariate Normal PDF having mean vector μi, covari-
ance matrix Σi, and evaluated over the random vector x. A common (yet effective)
simplification is to consider diagonal covariance matrices, i.e. independence among the
components of the input vector x. This assumption leads to the following three major
consequences: (i) modeling properties are not affected, according to [6]; (ii) generaliza-
tion capabilities of the overall model may turn out to be improved, since the number of
free parameters is reduced to a significant extent; (iii) i-th multivariate kernel Ki may
be expressed in the form of a product of d univariate Normal densities as:

Ki(x) =
d∏

j=1

1√
2πσij

exp

{
−1

2

(
xj − μij

σij

)2
}

(9)

i.e., the free parameters to be estimated are the means μij and the standard deviations
σij , for each kernel i = 1, . . . , n and for each component j = 1, . . . , d of the input
space.

(3) The weights U of the encoding network.

In the following, we will derive explicit formulations for ∂p(φ(g|θφ)|θp)
∂θ for each of

the three families of free parameters θ above. These derivatives are then put in place of
∂bq,t

∂θ in Equation (6), obtaining the quantity ∂L
∂θ and, in turn, the overall learning rule

Δθ = η ∂L
∂θ for the generic parameter θ.

As regards a generic mixing parameter ci, i = 1, . . . , n, from Equations (7) and (8),
and since p(g) =

∑n
k=1 ckKk(x), we can obtain Equation 10.



54 E. Trentin, S. Zhang, and M. Hagenbuchner

∂p(φ(g|θφ)|θp)
∂γi

=
n∑

j=1

∂p(g)
∂cj

∂cj
∂γi

(10)

=
n∑

j=1

Kj(x)
∂

∂γi

(
ς(γj)∑n

k=1 ς(γk)

)

= Ki(x)
{
ς ′(γi)

∑
k ς(γk) − ς(γi)ς ′(γi)
[
∑

k ς(γk)]2

}
+
∑
j �=i

Kj(x)
{−ς(γj)ς ′(γi)

[
∑

k ς(γk)]2

}

= Ki(x)
ς ′(γi)∑
k ς(γk)

−
∑

j

Kj(x)
ς(γj)ς ′(γi)
[
∑

k ς(γk)]2

= Ki(x)
ς ′(γi)∑
k ς(γk)

−
⎧⎨⎩∑

j

cjKj(x)

⎫⎬⎭ ς ′(γi)∑
k ς(γk)

=
ς ′(γi)∑
k ς(γk)

{Ki(x) − p(g)}

Bearing in mind that the calculations were carried out for a connectionist model of
the emission probability bι,t associated with the generic ι-th state of the GHMM and
evaluated over t-th graph in the sequence, and using the symbol Q(ι) to denote the
subset of the states involved in the current trellis that are instances of the state ι, we can
reintroduce the state index and the time index t in the notation, and rewrite Equation
(10) as follows:

∂bq,t

∂γ
(ι)
i

=

⎧⎪⎨⎪⎩
ς′(γ(ι)

i )∑
k ς(γ(ι)

k )

{
K

(ι)
i (x(ι)

t ) − bι,t

}
if q ∈ Q(ι)

0 otherwise

(11)

where the writings in the form γ
(ι)
i , x(ι)

t andK(ι)
i (.) (i.e., those having superscript (ι) for

any value of ι = 1, . . . , Q) denote the corresponding quantities γi, xt and Ki(.) within
the RBF associated with ι-th state, respectively, according to the previous notation.
Substituting Equation (11) into Equation (6) and the latter, in turn, into Equation (4),
we obtain the following learning rule for the i-th mixing parameter γ(ι)

i within the ι-th
emission model:

Δγ
(ι)
i = η

∑
q∈Q(ι)

∑
t

βq,t
αq,t

bι,t

ς ′(γ(ι)
i )∑

k ς(γ
(ι)
k )

{
K

(ι)
i (x(ι)

t ) − bι,t

}
(12)

where we implicitly exploited the (obvious) fact that bq,t = bι,t for all q ∈ Q(ι).
For the means μij and the standard deviations σij we proceed as follows. Let θij

denote the free parameter, i.e. μij or σij , to be estimated. We can write:

∂p(φ(g|θφ)|θp)
∂θij

=
∂
∑n

k=1 ckKk(x)
∂θij

(13)

= ci
∂Ki(x)
∂θij
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where the calculation of ∂Ki(x)
∂θij

can be accomplished as follows. First of all, let us

observe that for any real-valued, differentiable function f(.) this property holds true:
∂f(.)
∂x = f(.)∂log[f(.)]

∂x . As a consequence, from Equation (9) we can write

∂Ki(x)
∂θij

= Ki(x)
∂

∂θij

d∑
k=1

{
−1

2

[
log(2πσ2

ik) +
(
xk − μik

σik

)2
]}

. (14)

For the means, i.e. θij = μij , Equation (14) yields

∂Ki(x)
∂μij

= Ki(x)
∂

∂μij

{
−1

2

(
xj − μij

σij

)2
}

(15)

= Ki(x)
xj − μij

σ2
ij

which can be substituted into Equation (13), obtaining

∂p(φ(g|θφ)|θp)
∂μij

= ciKi(x)
xj − μij

σ2
ij

. (16)

Now we can reintroduce the state index ι and the time index t in the notation, and rewrite

the Equation as ∂bι,t

∂μ
(ι)
ij

= c
(ι)
i K

(ι)
i (x(ι)

t )
x
(ι)
tj −μ

(ι)
ij

σ
2(ι)
ij

, where x(ι)
tj denotes the j-th component

of the vector x(ι)
t which represents the ι-th encoding of t-th input graph gt within the

training sequence, σ2(ι)
ij is the j-th component of the diagonal of the covariance matrix

associated with the i-th kernel of ι-th emission PDF, while the other symbols have the
same meaning as above. Again, since ∂bq,t

∂μ
(ι)
ij

= 0 when q /∈ Q(ι), the expression can

be substituted into Equation (6) and the latter, in turn, into Equation (4), obtaining the
following learning rule for the j-th component of the mean vector μ(ι)

ij associated with
i-th kernel function within the ι-th emission model:

Δμ
(ι)
ij = η

∑
q∈Q(ι)

∑
t

βq,t
αq,t

bι,t
c
(ι)
i K

(ι)
i (x(ι)

t )
x

(ι)
tj − μ

(ι)
ij

σ
2(ι)
ij

(17)

where, again, we exploited the fact that bq,t = bι,t for all q ∈ Q(ι).
For the covariances, i.e. θij = σij , Equation (14) yields:

∂Ki(x)
∂σij

=
Ki(x)
σij

{(
xj − μij

σij

)2

− 1

}
(18)

which can be substituted into Equation (13) obtaining

∂p(φ(g|θφ)|θp)
∂σij

= ci
Ki(x)
σij

{(
xj − μij

σij

)2

− 1

}
(19)
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that, adopting the notation above for expressing the dependence on the generic ι-th
state of the GHMM and on the time index t, can be substituted into Equation (6) and
the latter, in turn, into Equation (4), obtaining the following learning rule:

Δσ
(ι)
ij = η

∑
q∈Q(ι)

∑
t

βq,t
αq,t

bι,t
c
(ι)
i

K
(ι)
i (x(ι)

t )

σ
(ι)
ij

⎧⎨⎩
(
x

(ι)
tj − μ

(ι)
ij

σ
(ι)
ij

)2

− 1

⎫⎬⎭ . (20)

Finally, let us consider the connection weights U = {v1, . . . , vs} within the encoding

network. The term ∂p(φ(g|θφ)|θp)
∂v in Equation (6) can be computed as follows. Applying

the chain rule yields:

∂p(φ(g|θφ)|θp)
∂v

=
∂p(φ(g|θφ)|θp)

∂y

∂y

∂v
(21)

where y is the output from the unit (in the encoding net) which is fed from connection
v. The quantity ∂y

∂v can be easily computed by taking the partial derivative of the acti-
vation function associated with the unit itself, as usual. In particular, if v = v
m is the
connection weight between the generic m-th unit in a given layer and �-th unit in the
following layer, s.t. the corresponding outputs are ym and y
, respectively, we have

∂y


∂v
m
= f ′


(a
)ym (22)

where y
 = f
(a
) and ym = fm(am) are the activation functions associated with �-th
unit and m-th unit, respectively, and a
 and am are the corresponding activations (i.e.,
inputs), and where f ′


(a
) denotes the derivative of the activation function given.

As regards the quantity ∂p(φ(g|θφ)|θp)
∂y , we proceed as follows. First of all, let us

assume that v feeds the output layer, i.e. it connects a certain hidden unit with j-th
output unit of the encoding net. In this case, we have y = xj , and:

∂p(φ(g|θφ)|θp)
∂xj

=
∂
∑n

i=1 ciKi(x)
∂xj

(23)

=
n∑

i=1

ciKi(x)
∂

∂xj

d∑
k=1

{
−1

2

[
log(2πσ2

ik) +
(
xkwik − μik

σik

)2
]}

=
n∑

i=1

ciKi(x)

{
−1

2
∂

∂xj

(
xjwij − μij

σij

)2
}

= −
n∑

i=1

ci
Ki(x)
σ2

ij

(xjwij − μij)wij .

Equations (22) and (23) can be substituted into Equation (21) obtaining:

∂p(φ(g|θφ)|θp)
∂vjm

= −
n∑

i=1

ci
Ki(x)
σ2

ij

(xjwij − μij)wijf
′
j(aj)fm(am). (24)
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By defining the quantity:

δj = −
n∑

i=1

ci
Ki(x)
σ2

ij

(xjwij − μij)wijf
′
j(aj) (25)

for the generic j-th output unit in the encoding network, we can rewrite Equation (24)
in the following, compact form:

∂p(φ(g|θφ)|θp)
∂vjm

= δjfm(am). (26)

When v is a hidden weight (say, v = vm
 where � and m are the indexes of generic

hidden units connected via v), the quantity ∂p(φ(g|θφ)|θp)
∂vm�

can be obtained applying the
usual backpropagation through structures (BPTS) algorithm [8], once the deltas to be
backpropagated have been initialized at the output layer via Equation (25). In so doing,
a quantity δm can be defined for each hidden unit m such that

∂p(φ(g|θφ)|θp)
∂vm


= δmf
(a
). (27)

Substituting Equation (26) or Equation (27), respectively, into Equation (6) yields an
overall learning rule for any given weight v(ι)

ij within the encoding network associated
with ι-th state of the GHMM in the following, common form:

Δv
(ι)
ij = η

∑
q∈Q(ι)

∑
t

βq,t
αq,t

bι,t
δ
(ι)
i f

(ι)
j (a(ι)

j ) (28)

where the superscript (ι) has the usual meaning.

3 Demonstration

The proposed machine has been implemented, and preliminary experiments were carried
out on a graphical sequence recognition task drawn from the Policemen dataset [4]. This
dataset features images of synthetically generated policemen, having different color, ori-
entation, position of the arms, etc. Directed ordered acyclic graphs (DOAG) were used
for representing the individual images, as explained in [4]. Two-dimensional real-valued
labels are associated with the nodes in this DOAG representation. Sequences were gen-
erated by taking individual images and creating concatenations of images s.t. a coherent
“movement” (as in a cartoon sequence) of the policeman emerged. For instance, the im-
ages in a given sequence may represent the policemen gradually rising then lowering
his left arm, followed by an analogous movement of the right arm. The task involves
158 sequences overall, belonging to 4 disjoint classes. In turn, each class is further di-
vided into subclasses as follows. Class 1: rotation; subclasses: (1.1) clockwise and (1.2)
counter-clockwise. Class 2: shift; subclasses: (2.1) right-left and (2.2) top-down. Class
3: zoom; subclasses: (3.1) zoom-in and (3.2) zoom-out. Class 4: arms movement; sub-
classes: (4.1) both arms up, (4.2) both arms down, (4.3) right arm up, (4.4) right arm
down, (4.5) left arm up, and (4.6) left arm down. Hence, there are 12 classes in total.
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Fig. 1. Sample sequence for subclass 1.1

Fig. 2. Sample sequence for subclass 1.2

The length of individual sequences ranged from 10 to 17 graphs. Figures 1 and 2 show
two sample sequences from Class 1. Note that the starting and ending frame of some se-
quences from different classes were identical, and that for sequences from other classes,
some frames from within a sequence were identical. Hence, a good classification can
only be obtained if the method can encode the given sequences as a whole.

The dataset was split into a training set (72 sequences, chosen by drawing 6 se-
quences from each subclass at random) and a test set (all the remaining sequences).
Separate left-to-right Markov chains were used for each class, each of them having 4
states. Emission probabilities were modeled with 2 multivariate Gaussian kernels RBFs,
and recursive encoding networks having 8 sigmoid hidden neurons, 10 state neurons,
encoding dimension of 2, and a maximum out-degree of 6 (please refer to [8] for a
description of the meaning of such quantities in recursive nets). System parameters
were initialized according to a segmental k-means-like procedure [7]. In the present,
illustrative demonstration the proposed training algorithm was applied for 4 iterations
(i.e., epochs) using different learning rates (obtained via cross-validation) for the spe-
cific parameters involved in the optimization process. Results are reported in Table 1
in terms of recognition accuracy. Although no direct comparison is possible w.r.t. any
other benchmark approaches (since, to the best of our knowledge, the present model is
the first attempt to dealing with classification of sequences of graphs), it is seen from Ta-
ble 1 that: (i) the architecture is indeed suitable to graphical sequence modeling; (ii) the
training algorithm, whilst focusing on the maximization of the likelihood (of the model
given the training sample) criterion, results also in a significant accuracy in terms of the
sequence recognition rate criterion; and (iii) comparison between the accuracy on the
training and test sets confirms that learning capability of the machine does not prevent
emergence of an appreciable generalization capability.

We found that the residual classification error is attributed to two of the subclasses
whose properties are such that a correct classification requires the encoding of the asso-
ciated data labels. Since the labels provide features which are furthest from the output
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Table 1. Recognition accuracy of sequences from the Policemen dataset

Accuracy on training set Accuracy on test set
Upon initialization 51.39 % 39.53 %
After training 87.50 % 86.05 %

layer, and hence, this implies that the proposed approach priorizes the encoding of struc-
ture over the data labels. In general, it can be expected that the classification result will
improve further when training is carried out for more iterations, or by adding direct
forward links from the labels to the output layer.

4 Conclusion and On-Going Work

The paper introduced a first model for learning and classification over sequences of
graphs. The architecture relies on an underlying HMM structure, capable of dealing
with long-term dependencies in sequential data of arbitrary length. Emission PDFs
over GRGs are estimated by means of a combination of recursive encoding nets and
constrained RBF-like nets. A global optimization algorithm, aimed at the maximiza-
tion of the likelihood of the model given the training observation sequences has been
developed. Preliminary results confirm that the architecture and the algorithms are ef-
fective, both in terms of learning and generalization capabilities. Current efforts are
focused on evaluating and further improving the classification and regression ability of
the approach, and on its application to more difficult, real-world tasks.
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Abstract. Emotion recognition is a relevant task in human-computer
interaction. Several pattern recognition and machine learning techniques
have been applied so far in order to assign input audio and/or video
sequences to specific emotional classes. This paper introduces a novel
approach to the problem, suitable also to more generic sequence recog-
nition tasks. The approach relies on the combination of the recurrent
reservoir of an echo state network with a connectionist density estimation
module. The reservoir realizes an encoding of the input sequences into a
fixed-dimensionality pattern of neuron activations. The density estima-
tor, consisting of a constrained radial basis functions network, evaluates
the likelihood of the echo state given the input. Unsupervised training
is accomplished within a maximum-likelihood framework. The architec-
ture can then be used for estimating class-conditional probabilities in
order to carry out emotion classification within a Bayesian setup. Pre-
liminary experiments in emotion recognition from speech signals from
the WaSeP c© dataset show that the proposed approach is effective, and
it may outperform state-of-the-art classifiers.

Keywords: Emotion recognition, echo state network, radial basis func-
tions, maximum likelihood, density estimation.

1 Introduction

In the last few years, human-machine interaction (HMI) has been taking a more
and more important position in our everyday life. However, up to date expressive
and emotional conversation is a matter of human-human communication (HHC)
only. Current machines are not capable of neither understanding nor expressing
subjective states or emotional expressions. Since this second, implicit channel of
communication (containing information about the speaker himself, the situation,
and the ongoing interaction) is so important for natural and efficient HHC, it is
believed that the only way to render HMI more natural and efficient is to imple-
ment the capabilities to recognize, understand, and express these conversational
elements in machines. In the present work a novel approach towards recognizing
emotional expressions is introduced. The model relies on the combination of an
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echo state network (ESN) [8] and a constrained radial basis functions (RBF)-like
network [1] suitable for density estimation. The basic idea is that the recurrent
reservoir of the ESN realizes an encoding of an input sequence (e.g., an acoustic
observation sequence obtained from the speech signal of the user whose emo-
tional state has to be recognized) by means of the pattern of activation of its
state neurons. The RBF is trained in order to estimate the probability density
function (pdf) which characterizes the distribution of the reservoir activation
patterns within the encoding space. The model is trained according to an algo-
rithm aimed at the maximization of the likelihood of the encoding (i.e., of the
echo-state) given the input sequence. For these reasons, we refer to the overall
machine as the maximum echo-state-likelihood network (MESLiN). The training
scheme is inherently unsupervised and non-discriminative, along the line of sta-
tistical parametric pdf estimation techniques relying on the maximum-likelihood
(ML) criterion [2]. Nonetheless, it can be applied in emotion recognition tasks
by using a separate MESLiN for estimating the class-conditional pdf [2] for each
of the classes involved in the problem. In order to proof the concept of this ap-
proach, experiments based on a corpus containing pseudo words spoken in six
different emotional prosodies, WaSeP c© [17], have been conducted.

The remainder of the paper is organized as follows. In Section 2 the approach is
presented, introducing the echo state encoding and the ML estimation algorithm.
Section 3 introduces the utilized dataset, the feature extraction process, and
reports the performance of humans in a large scale perception test. Sections
4 and 5 report on the achieved classification results for the experiments and
conclude the paper, respectively.

2 The Maximum Echo-State-Likelihood Network

The model is introduced in the framework of emotion recognition from speech
signals, although it can be applied to several sequence recognition tasks using
different feature spaces. As we stated in the previous section, a separate, class-
specific, and independent MESLiN is used for each emotion involved in the task.
In so doing, in the following we will focus on a generic machine, trained over the
corresponding, emotion-specific training sample, with the understanding that the
algorithm has to be subsequently applied to as many MESLiNs as the number
of classes at hand.

In this perspective, suppose that a sample T = {Y1, . . . ,Yn} of n acoustic
observation sequences has been observed. The pdf estimation problem faced
in this paper can be stated as follows: assuming that all the sequences in T
have been independently drawn from a certain pdf p(Y), how can the dataset
be used in order to estimate a “reasonable” model of p(Y)? We assume that
p(Y) is a function having fixed and known parametric form, being determined
uniquely by the specific value of a set of parameters θ = (θ1, . . . , θk). To render
this dependency on θ in a more explicit manner, we will modify our notation
slightly by writing p(Y) as p(Y|θ). Given the assumption, the formulation of the
question posed above can be restated as: how can we use the sample T in order
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to obtain estimates for θ that are meaningful according to a certain “optimality”
criterion? A sound answer to the question may be found in the adoption of the
ML criterion, along with a suitable method for maximizing the likelihood p(T |θ)
of the parameters given the sample. Since Y1, . . . ,Yn are assumed to be i.i.d., the
likelihood p(T |θ) can be written as p(T |θ) =

∏n
i=1 p(Yi|θ). Before attempting the

maximization of the likelihood, it is necessary to specify a well-defined form for
the pdf p(Y|θ). Let us assume the existence of an integer d and of two functions,
φ : {Y} → �d (where {Y} is the universe of all possible observation sequences)
and p̂ : �d → �, s.t. p(Y|θ) can be decomposed as:

p(Y|θ) = p̂(φ(Y)). (1)

It is seen that there exist (infinite) choices for φ(.) and p̂(.) that satisfy Eq. (1),
the most trivial being φ(Y) = p(Y|θ), p̂(x) = x. We call φ(.) the encoding, while
p̂(.) is simply referred to as the “likelihood”. Again, we assume parametric forms
φ(Y|θφ) and p̂(x|θp̂) for the encoding and for the likelihood, respectively, and
we set θ = (θφ, θp̂). For notational convenience, we will sometimes write p(Y) as
a shortcut for p(Y|θ).

We propose a two-block connectionist/statistical model for p(Y|θ) as follows.
The function φ(Y|θφ) is realized via an echo state network, suitable to map
sequences Y into real vectors x. The weights of the ESN become the parameters
θφ. A radial basis functions (RBF)-like neural net is then used to model the
likelihood function p̂(x|θp̂), where θp̂ are the parameters of the RBF. In order
to ensure that a pdf is obtained, constraints have to be placed on the hidden-
to-output connection weights of the RBF (assuming that normalized Gaussian
kernels are used).

First, let us focus on the ESN-based model for φ(Y|θφ). An ESN [8] is a par-
ticular, recent type of recurrent neural network (RNN). Among the advantages
of an ESN over common RNNs are the stability towards noisy inputs [14] and
the efficient method to adapt the weights of the network [7]. ESNs are applicable
in many different tasks such as classification, pattern generation, or controlling
tasks [14,15,8,7]. However, in this application the ESN is used to encode the
input data sequence within its current state, i.e. the pattern of activation of
the neurons in its reservoir. A schematic representation of an ESN is shown in
Figure 1. The most important part of the network is the so called reservoir. It
is a collection of neurons (typically, from around ten to a few thousand in num-
ber), that are loosely connected to each other. Typically, the probability of a
connection between neuron ai and neuron aj (to be set in the connection matrix
W ) is around 2% − 10% and usually decreases with a rising number of neurons
within the reservoir, whereas the connections between the input and output layer
with the reservoir are all set. This loose connectivity leads, in turn, to several
small cliques of neurons that are recursively connected to each other, sensitive
to a certain dynamic within the data received through the input and from other
connected neurons. If observed as separated from the rest of the network, an
individual clique may appear to follow a seemingly random pattern. However, if
observed along with all the competing and supporting cliques within the large
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k Input Neurons l Output NeuronsReservoir (n Neurons)

W
WoutWin

Fig. 1. Schematics of an echo state network with k input neurons, l output neurons,
and n neurons in the reservoir. The input is fully connected to the reservoir via W in as
well as the reservoir with the output via W out. The topology of the connections within
the reservoir, as well as their weights W , are set randomly.

reservoir, the reactions of the clique to the inputs are anything but random.
Since there are feedback and recursive connections within the reservoir, not only
the input is taken into account for the output but also the current state of each
of the neurons, and the history of all previous inputs. Therefore, ESNs are an
ideal candidate for encoding dynamic processes, such as emotional expressions
or non-verbal utterances [14,15].

In contrast to standard feedforward neural networks, such as multi-layer per-
ceptrons, the ESN incorporates previous features and states into its current state,
rendering it an ideal approach for encoding tasks, possibly including the model-
ing of typical dynamics found in the speech signals (e.g., prosody of emotional
expressions). The encoding of an acoustic observation sequence Y = y1, . . . ,yT

(where T is not fixed, but sequence-specific) for a generic ESN in the system is
accomplished as follows:

1. Initialize the states of the ESN randomly.
2. Feed the ESN with the first L acoustic feature vectors Y1, . . . ,YL (to mini-

mize the influence of the random initialization)1.
3. Save the current state x̂ of the ESN as the starting state.
4. Set the ESN in x̂, and sequentially feed the ESN with inputs Y.
5. Let x denote the encoding of Y, i.e. the state of the reservoir at the end of

sequence Y.
6. Feed the RBF with x.

1 In this paper we used L = 5.
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Given the fact that the weights θφ of the ESN are not optimized, the ML esti-
mation of the RBF parameters θp̂ given T requires now to find parameters that
maximize the quantity

p(T |θp̂) =
n∏

i=1

p̂(φ(Yi|θφ)|θp̂). (2)

A hill-climbing algorithm to carry out ML estimation of the parameters θp̂ can be
obtained as an instance of the gradient-ascent method over p(T |θp̂) in two steps:
(i) initialization, i.e., start with some initial, e.g. “random”, assignment of values
to the RBF parameters; (ii) gradient-ascent, i.e., repeatedly apply a learning rule
in the form Δθp̂ = η∇θp̂

{∏n
i=1 p̂(φ(Yi|θφ)|θp̂)} with η ∈ �+. This is a batch

learning setup. In practice, neural network learning may be simplified, yet even
improved, with the adoption of an on-line training scheme that prescribes Δθp̂ =
η∇θp̂

{p̂(φ(Y|θφ)|θp̂)} upon presentation of each individual training sequence Y.
Two distinct families of adaptive parameters θ have to be considered:

(1) Mixing parameters c1, . . . , cn, i.e. the hidden-to-output weights of the
RBF network. Constraints have to be placed on these parameters during the
ML estimation process, in order to ensure that they are in [0, 1] and that they
sum to one. A simple way to satisfy the requirements is to introduce n hidden
parameters γ1, . . . , γn, which are unconstrained, and to set

ci =
ς(γi)∑n

j=1 ς(γj)
, i = 1, . . . , n (3)

where ς(x) = 1/(1 + e−x). Each γi is then treated as an unknown parameter θ
to be estimated via ML.

(2) d-dimensional mean vector μi and d × d covariance matrix Σi for each
of the Gaussian kernels Ki(x) = N(x;μi, Σi), i = 1, . . . , n of the RBF, where
N(x;μi, Σi) denotes a multivariate Normal pdf having mean vector μi, covari-
ance matrix Σi, and evaluated over the random vector x. A common (yet effec-
tive) simplification is to consider diagonal covariance matrices, i.e. independence
among the components of the input vector x. This assumption leads to the fol-
lowing three major consequences: (i) modeling properties are not affected sig-
nificantly, according to [10]; (ii) generalization capabilities of the overall model
may turn out to be improved, since the number of free parameters is reduced;
(iii) i-th multivariate kernel Ki may be expressed in the form of a product of d
univariate Normal densities as:

Ki(x) =
d∏

j=1

1√
2πσij

exp

{
−1

2

(
xj − μij

σij

)2
}

(4)

i.e., the free parameters to be estimated are the means μij and the standard
deviations σij , for each kernel i = 1, . . . , n and for each component j = 1, . . . , d
of the input space.

In the following, we will derive explicit formulations for ∂p̂(φ(Y|θφ)|θp̂)
∂θ for the

two families of free parameters θ within the proposed model. As regards a generic
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mixing parameter ci, i = 1, . . . , n, from Eq. (3), and since p(Y) =
∑n

k=1 ckKk(x),
we have

∂p̂(φ(Y|θφ)|θp̂)
∂γi

=
n∑

j=1

∂p(Y)
∂cj

∂cj

∂γi
(5)

=
n∑

j=1

Kj(x)
∂

∂γi

(
ς(γj)∑n

k=1 ς(γk)

)

= Ki(x)
{

ς ′(γi)
∑

k ς(γk) − ς(γi)ς ′(γi)
[
∑

k ς(γk)]2

}
+
∑
j �=i

Kj(x)
{
−ς(γj)ς ′(γi)
[
∑

k ς(γk)]2

}

= Ki(x)
ς ′(γi)∑
k ς(γk)

−
∑

j

Kj(x)
ς(γj)ς ′(γi)
[
∑

k ς(γk)]2

= Ki(x)
ς ′(γi)∑
k ς(γk)

−
{∑

j

cjKj(x)

}
ς ′(γi)∑
k ς(γk)

=
ς ′(γi)∑
k ς(γk)

{Ki(x) − p(Y)} .

For the means μij and the standard deviations σij we proceed as follows. Let
θij denote the free parameter, i.e. μij or σij , to be estimated. It is seen that:

∂p̂(φ(Y|θφ)|θp̂)
∂θij

= ci
∂Ki(x)

∂θij
(6)

where the calculation of ∂Ki(x)
∂θij

can be accomplished as follows. First of all, let us
observe that for any real-valued, differentiable function f(.) this property holds
true: ∂f(.)

∂x = f(.)∂log[f(.)]
∂x . As a consequence, from Eq. (4) we can write

∂Ki(x)
∂θij

= Ki(x)
∂logKi(x)

∂θij
(7)

= Ki(x)
∂

∂θij

d∑
k=1

{
−1

2

[
log(2πσ2

ik) +
(

xk − μik

σik

)2
]}

.

For the means, i.e. θij = μij , Eq. (7) yields

∂Ki(x)
∂μij

= Ki(x)
xj − μij

σ2
ij

. (8)

For the covariances, i.e. θij = σij , Eq. (7) takes the form:

∂Ki(x)
∂σij

= Ki(x)
∂

∂σij

{
−1

2
log(2πσ2

ij) −
1
2

(
xj − μij

σij

)2
}

(9)

=
Ki(x)

σij

{(
xj − μij

σij

)2

− 1

}
.
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3 Dataset Description and Feature Extraction

The experiments in this work are based on the “Corpus of spoken words for
studies of auditory speech and emotional prosody processing” (WaSeP c©) [17],
which consists of two main parts: a collection of German nouns and a collection
of phonetically balanced pseudo words, which correspond to the phonetical rules
of German language. For this study the pseudo words have been chosen as the
basis. This pseudo word set consists of 222 words, repeatedly uttered by a male
and a female actor in six different emotional prosodies: neutral, joy, sadness,
anger, fear, and disgust. Furthermore, a perception test has been conducted
with 74 native German listeners, who were asked to rate and name the category
or prosody that they were just listening to, resulting in an overall accuracy of
78.53%. It was also observed that the most confused emotion is “disgust”, which
is conform with the assumptions of Scherer [13].

In the dataset, each of the pseudo words consists of a concatenation of two
syllables, including for instance: “hebof”, “kebil”, or “sepau”. The average dura-
tion of the speech signals depends on the specific emotion, ranging from 0.75 sec.
in the case of the “neutral” prosody, to 1.70 sec. in the case of “disgust”. Figure
2 shows a sample waveform (and, spectra) of a signal from the dataset, corre-
sponding to the emotion “joy”. The data was recorded using a Sony TCD-D7
DAT-recorder and the Sennheiser MD 425 microphone in an acoustic chamber
with a 44.1 kHz sample rate and later down-sampled to 16 kHz with a 16 bit res-
olution. Relative Spectral Perceptual Linear Predictive Coding (RASTA-PLP)
acoustic parameters were used as acoustic features. In [4] perceptual linear pre-
dictive speech analysis (PLP) was first introduced as a method to represent
speech signals with respect to human perception and with as few parameters
as possible. However, PLP is sensitive to steady-state spectral factors caused
by transmission channels, e.g. different transducers [6,5]. Therefore, [6] proposes
the relative spectral methodology (RASTA) for PLP, rendering it more robust
without increasing the computational burden significantly.

The PLP analysis is based on two perceptually and biologically motivated
concepts, namely the critical bands, and the equal loudness curves, shown in
Figure 3. One line represents the sound pressure (dB) that is required to per-
ceive a sound of any frequency as loud as a reference sound of 1 kHz. The critical
band filtering is analogous to the popular Mel frequency scaled cepstral coeffi-
cients (MFCC) triangular filtering, but the 21 filters are equally spaced along
the Bark scale (instead of applying the Mel scale). The equal loudness curve is
approximated by

E(w) = 1.151 ·
√

(w2 + 144 · 104) · w2

(w2 + 16 · 104) · (w2 + 961 · 104)
,

according to [12], and it is applied to the filtered signal. The next steps are
specific to the RASTA processing, and they follow the implementation recom-
mendations in [6]. After transforming the spectrum to the logarithmic domain
and the application of RASTA filtering, the signal is transformed back using
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Fig. 2. Original waveform (top), spectrum after RASTA processing (middle), and
RASTA-PLP cepstral coefficients (bottom)

Fig. 3. Equal loudness curves

the exponential function. The last steps are comprised by an estimation of
the linear predictive coding (LPC) coefficients as introduced by [11], and by
the transformation of the LPC coefficients to cepstral values. In Figure 2 a
comparison between the original waveform, the spectrum after RASTA process-
ing and the RASTA-PLP cepstral coefficients are shown.
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4 Experiments

Preliminary experiments were carried out using female speech signals from the
WaSeP c© dataset, for a total of 1386 variable-length acoustic observation se-
quences (231 sequences per each class of emotion). A 10-fold crossvalidation
procedure has been adopted for evaluating the classification performance. Each
fold was defined by splitting the overall dataset, at random, into a training sam-
ple (1254 sequences) and a test sample (132 sequences). The folds were created
such that (i) the 10 test sets did not overlap with each other (i.e., no sequences
could appear more than once in a test set), and (ii) a uniform prior distribu-
tion of individual classes was granted (namely, 22 sequences per class in each
test set). Unfortunately, no direct competition from related work is available for
the dataset used in this experiment. A qualitative baseline is the result from
the human perception test mentioned in Section 3 (average accuracy of 78%).
Furthermore, similar results (around 70%) are available in the literature. For
example, 70% accuracy was achieved in a seven category experiment using three
feature sets in a multi classifier system [16]. In the earlier work by Lee et al.,
similar frame-based features, as in this approach, were used as input to hidden
Markov models (HMM). MFCC-based features were extracted and the classifica-
tion task was to identify four different emotions. The HMMs reached an overall
accuracy of around 76% [9].

Table 1 reports the recognition accuracies (averaged over the 10 folds) ob-
tained with MESLiN, and other traditional classifiers, in the present setup. All
the traditional classifiers were trained at the acoustic frame level. Classification
on test set was accomplished by averaging over the class-specific scores yielded
by the classifier along the whole observation sequence. The nearest neighbor clas-
sifier [2] was used first, in order to fix a baseline. Then, Multi-layer Perceptron
(MLP) networks were trained, having 2-layer topology featuring a hidden layer
with 14 units, sigmoid activation functions in both hidden and output layers.
Training was accomplished by applying 500 training epochs with a learning rate
of 0.3, and a momentum rate equal to 0.2 (these parameters were selected via
preliminary cross-validation). The same MLP architecture, and training param-
eters, were also applied within a 10-iterations AdaBoost strategy [3], Support
vector machine (SVM) with RBF kernels were used, having γ = 0.1, ε = 0.001
(tolerance of the termination criterion.), and ν = 0.5.

Table 1. Average recognition accuracy of sequences from the WaSeP c© dataset

Method Average accuracy (%)

Nearest Neighbor 33.90
MLP 39.32
AdaBoost 45.87
SVM 48.01
MESLiN 86.39
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Finally, MESLiN was evaluated. Due to the intrinsically non-discriminative,
ML training setup used in this paper, separate class-specific MESLiNs were
trained independently over the training sequences belonging to the correspond-
ing class. Classification was accomplished according to the usual maximum-a-
posteriori (MAP) framework, via Bayes decision rule [2]. Since the class prior
probabilities are identical in the present setup, the MAP criterion reduces to a
direct maximum class-conditional pdf decision rule, i.e. assign a sequence to the
emotion whose MESLiN model yields the highest likelihood. The MESLiNs are
initialized as follows. Since the output of the feature extraction process described
in Section 3 is 21-dimensional, k = 21 input neurons are used for the reservoir.
Furthermore, they are connected to all the n = 100 state neurons (with tanh as
transfer function) in the reservoir, featuring randomly initialized topology and
values of the connection weights. An overall 10% of the possible unit-to-unit
connections in the reservoir are taken, and the weight matrix W is normalized
with a spectral width of α = 1 [7]. The RBF-like network features n = 3 ker-
nels, having mean, covariances, and mixing parameters initialized as follows. The
components of the mean vectors were initialized at random (uniformly) over the
range I = (−0.5, 0.5); the components of the diagonal covariance matrices were
initialized to a fixed value, namely

√| I | /n; the mixing parameters were ini-
tialized at random over the interval (0.0, 1.0) such that they sum to 1. Training
of the MESLiN was accomplished for 20 epochs, using different, quantity-specific
learning rates for the mixing parameters (ηγ = 1.0e−06), the means of the Gaus-
sians (ημ = 1.0e−10), and the corresponding variances (ησ = 1.0e−11). All the
parameters were set during a preliminary cross-validation stage. Results confirm
the approach is effective. A concise discussion is given in the next section. Table
2 shows the confusion matrix yielded by MESLiN. It is seen that “disgust” is
the most confusable class. This is in line with the same phenomenon reported
above for the human listeners. In this case, it is confused with “neutral” most
of the times.

Table 2. Confusion matrix (MESLiN)

neutral joy sadness anger fear disgust

neutral 21.90 0.10 0.00 0.00 0.00 0.00
joy 0.50 18.70 0.20 0.00 2.50 0.10

sadness 0.50 0.00 21.40 0.10 0.00 0.00
anger 0.00 1.10 0.30 18.90 0.30 1.40
fear 0.00 0.60 1.60 0.20 19.60 0.00

disgust 14.80 0.90 0.60 0.10 2.00 3.60

5 Conclusions

The paper introduced a novel connectionist approach to the task of sequence
modeling and classification. The model combines the reservoir of an ESN with
a constrained RBF-like architecture. The former realizes a recurrent encoding
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of the observation sequence into a pattern of activation of the neurons (i.e., the
state of the ESN), whilst the RBF estimates the pdf of such encodings. A ML-
based training scheme was developed, which ensures satisfaction of probabilistic
axioms (i.e., the estimated model turns out to be a proper pdf). Training is
inherently unsupervised (the pdf of the overall training sample is estimated).
Nonetheless, the machine can be successfully applied to supervised classification
tasks over sequences, by training separate class-conditional models for each one
of the classes involved in the problem. In so doing, each class features its own
recurrent encoding ESN, and its own pdf model. The algorithm was applied
to emotion recognition in speech signals from the WaSeP c© dataset. Prelimi-
nary results confirm the approach is effective, yielding the highest recognition
accuracies over a number of state-of-the-art classifiers. Surprisingly enough, the
performance of the proposed classifier is even higher than the average accuracy
yielded by humans on a similar task. We argue this is due to the following rea-
sons: (i) the system was trained on data having the same nature as the data
used for test, whilst humans do not undergo any data-specific training, but they
assign test utterances to an emotional class according to generic, prior knowl-
edge of their (subjective) concept of specific emotions; (ii) in particular, from
the humans’ point if view, no hard distinctions can be made between certain
emotions; and (iii) the audio recordings in the dataset are not real-world utter-
ances, since they were performed by actors. It is likely that this introduces a
significant bias, such that humans cannot easily recognize the emotion from the
acted expression, while the machine learns from the training sample how actors
tend to give a certain interpretation of the same emotion (e.g., affecting specific
features) that, later, can be easily recognized in the test data. In the light of
these considerations, future work is focusing on a fully unsupervised applica-
tion of the proposed model: sequences belonging to all classes are merged in a
single training set, and the ML training is applied in order to let the machine
discover its own “clusters” of emotions (i.e., how the emotions are distributed
and concentrated in the encoding space yielded by the ESN).
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Abstract. In this study we address the linear classification of noisy high-dimen-
sional data in a two class scenario. We assume that the cardinality of the data is
much lower than its dimensionality. The problem of classification in this setting
is intensified in the presence of noise. Eleven linear classifiers were compared
on two-thousand-one-hundred-and-fifty artificial datasets from four different ex-
perimental setups, and five real world gene expression profile datasets, in terms
of classification accuracy and robustness. We specifically focus on linear clas-
sifiers as the use of more complex concept classes would make over-adaptation
even more likely. Classification accuracy is measured by mean error rate and
mean rank of error rate. These criteria place two large margin classifiers, SVM
and ALMA, and an online classification algorithm called PA at the top, with PA
being statistically different from SVM on the artificial data. Surprisingly, these
algorithms also outperformed statistically significant all classifiers investigated
with dimensionality reduction.

1 Introduction

Classification is one of the basic tasks in machine learning. Many different classification
methods were proposed (see e.g. [1, 2, 3]). In the standard inductive setting, a classifier
will be selected according to a set of training examples and its accuracy is tested on a
set of test examples. Problems arise if a collected dataset contains more features than
samples. In this case even simple classifiers have the complexity to adapt perfectly to a
given training set and loose their ability of generalization (overfitting) [4]. Dimension-
ality reduction methods, like for example PCA, ICA, can antagonize this problem but
complicate the interpretation of a classifier in terms of its original input space [5, 6].
The problem of overfitting is increased in real life applications. The single datapoint
can be affected by measurement errors and a classifier will adapt to a noisy dataset.

Aim of this investigation is the influence of different types of noise on the perfor-
mance of linear classifiers for high-dimensional data of low cardinality.

2 Classification

Classification is the task of predicting a categorial label y ∈ Y of a datapoint x ∈ X.
A classifier is a mapping c : X → Y. In the following we will concentrate on binary
� Corresponding author.
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classification Y = {+1,−1} and real valued input spaces X ⊆R
n. A classifier is chosen

from a concept class C, a set describing all classifiers fulfilling some model assumptions.
The aim is to find the classifier c∗ ∈ C which minimizes the number of errors over the
distribution of all possible labeled pairs D(x,y)

c∗ = argmin
c

1
2

∫
|c(x)− y|dD(x,y). (1)

The distribution of D(x,y) is usually not known. In this case a classifier c is selected
(trained) by a learning algorithm t(C,S) → c according to a finite set S of m examples

S = S(P,N) = {(x,+1) |x ∈ P}∪{(x,−1) |x ∈ N}. (2)

Here P denotes the set of k (positive) examples of the first class and N denotes the set
of l (negative) examples of the second class. The error rate of a classifier is estimated
on an independent (test-) dataset S′ = S(P′,N′) with S∩S′ = /0. This estimator can be
formalized as

ferr =
1

2|S′| ∑
(x,y)∈S′

|c(x)−y|. (3)

2.1 Linear Classifiers

The concept class of linear classifiers is given by

Clin = {c(x) = sign(ωT x−θ ) |ω ∈ R
n,θ ∈ R}. (4)

The decision boundaries of these classifiers are linear equations of the form

ωT x = θ . (5)

ω and θ are normally substituted by ω := ω/||ω ||2 and θ := θ/||ω ||2 in order to gain
a unique representation of each classifier. Here || · ||2 denotes the Euclidian norm. In a
geometric interpretation ω can be seen as the norm vector of the line. The threshold θ
can be seen as the line’s distance to the origin.

In this analysis we focus on datasets with higher dimensionality than cardinality
(m � n), which is the basic scenario in many tasks, like image analysis [7], speech
recognition [8] and gene expression analysis [9]. Although linear classifiers are very
simple models, they tend to overfit on such datasets. This was shown, for example, by
Cover’s theorem [10] stating that a database of m-datapoints (in general position) within
a n-dimensional space can be separated in an arbitrary way with probability

P(m,n) =
(1

2

)m−1 n−1

∑
k=0

(
m−1

k

)
. (6)

If the ratio n/m is greater than 0.5, P(m,n) is rapidly increasing towards 1 and a classi-
fier without any training error can be found for an arbitrary dataset of these dimensions.
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3 Training Algorithms

This section contains a brief description of the eleven training algorithms that were used
in this study. The algorithms are divided into model-based algorithms (3.1), linear and
quadratic programming algorithms (3.2) and iterative algorithms (3.3).

3.1 Model Based Classifiers

The algorithms listed here were created with assumptions on the class densities.

Fisher Linear Discriminant Analysis (LDA). The LDA classifier is built with the as-
sumption, that both class densities are Gaussians with a common covariance Σ . The
hyperplane calculated by this algorithm minimizes the error for datapoints chosen ac-
cording to these class densities. For this the inverse of Σ is needed. On a real dataset
the estimate Σ̂ of Σ has to be used. Σ̂ will become singular for datasets with higher
dimensionality than cardinality. In this case the inverse of Σ̂ is usually replaced by
the Moore-Penrose Inverse. Besides the standard LDA (mean), we have used a variant
LDA (median), for which the estimation of the class centroid was done by applying the
median feature-wise.

Nearest Centroid (NC). The nearest centroid algorithm assumes, that both class den-
sities are Gaussians with a common covariance of form c · I, c ∈ R (I is the identity
matrix). In this way the NC can be seen as a special case of LDA. Under these assump-
tions only the class centroids have to be calculated for the final classification. For a
new example the Euclidian distances to all centroids are calculated. The datapoint will
receive the label of its nearest centroid.

Nearest Shrunken Centroid (NSC) [11]. The nearest shrunken centroid is a feature
reducing version of the NC. Here, additionally the class independent (overall) centroid
is calculated. The main idea of the NSC is, that feature dimensions in which a class
centroid is near to the overall centroid are not useful for characterizing the class. The
class-wise centroids are shrunken feature–wise towards the overall centroid. If a single
entry of a centroid gets negative, it is set to zero. The amount of shrinkage is determined
by a set of parameters Δ . In this study experiments for i ∈ {1, . . . ,30} different sets of
shrinking parameters Δi j = i/30∗max{|d0 j|, |d1 j|} were done. Here d0 j and d1 j denote
the distances of the class-wise centroids to the overall centroids in feature dimension j.

3.2 Linear and Quadratic Programming Training Algorithms

This section contains algorithms, which optimize an objective function by a linear or
quadratic program. In order to handle non-linear separable datasets a penalty term of
slack variables ξi is added to the objective function. The tradeoff between the penalty
term and the original objective function can now be regulated by a cost parameter C.

Support Vector Machine (SVM) [2]. The support vector machine searches for the
hyperplane, which maximizes the Euclidian distance between the hyperplane and the
datapoints next to it (maximal L2 margin). This can be formulated as a quadratic prob-
lem for minimizing the Euclidian norm ||ω ||2 of ω .
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min
ω,ξ

‖ω‖2
2 +C

N

∑
i=1

ξi

s.t. ∀i : yi(ωT xi)−θ ≥ 1− ξi

∀i : ξi ≥ 0

LIKNON [12]. The LIKNON algorithm can be seen as the L1 variant of the SVM.
Minimizing the L1 norm ||ω ||1 of ω forces many ωi to zero. The corresponding fea-
tures of the datapoints will not be used for the final classification. In this way a feature
reduction is achieved. The optimization problem of the LIKNON algorithm can be for-
malized as a linear program.

min
ω,b,ξ

‖ω‖1 +C
N

∑
i=1

ξi

s.t. ∀i : yi(ωT xi)−θ ≥ 1− ξi

∀i : ξi ≥ 0

LESS [13]. The LESS classifier belongs to the group of weighted centroid classifiers.
Linear programming is used here to find a weight vector w, which minimizes the trade-
off between its L1 norm and the penalization term. Here again a feature selection is
implicitly performed.

min
w,ξ

‖w‖1 +C
N

∑
i=1

ξi

s.t. ∀i : yi

M

∑
j=1

wj(2xi j(μ0, j − μ1 j)+ (μ2
0, j − μ2

1 j)) ≥ 1− ξi

∀i : ξi ≥ 0 ∀ j : wj ≥ 0

μ0 and μ1 denote the class-wise centroids.

3.3 Iterative Training Algorithms

The algorithms in this section adapt the linear model in an iterative way. During each
iteration, i.e. presentation of a data point, the classifier will be modified. Many iterative
algorithms are designed for the online learning setting. In this scenario new labeled data
points will be available one by one. The classifier will be adapted after receiving a new
datapoint. In this study the online learning setting was simulated by iterating 10000
times through permuted versions of the original dataset.

Perceptron [14]. The perceptron algorithm is one of the classical iterative algorithms.
The hyperplane will be updated until it separates the data points correctly. No objective
function is considered for the choice of the hyperplane.

ALMA [15] and ROMMA [16]. The two algorithms ALMA (approximate maximal
margin algorithm) and ROMMA (relaxed online maximum margin algorithm), approx-
imate a maximum margin solution of the L2 margin in an iterative way.
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Passive Aggressive Algorithm (PA) [17]. The update rule of PA utilizes the hinge loss
l(ω∗;(x,y)) = max(0,1− y(ωx− θ )). Here ω∗ denotes the vector of all classifier pa-
rameters (ω1, . . . ,ωn,−θ )T . If a datapoint is classified correctly with a margin greater
or equal to one, the hinge loss is equal to zero. Otherwise, the loss is increasing ac-
cording to the distance between this margin and the datapoint. In the linear separable
case, an update step of PA has to fulfill the constraint l(ω∗;(xt ,yt)) = 0. By this con-
straint not only a correct classification of xt but also a minimal distance between the
classifier and xt is enforced. In each iteration t the classifier will be selected, which
has the minimal modification of ω∗

t . If the classification of xt fulfills the constraint, no
modifications have to be done and PA is passive. Otherwise, PA forces aggressively the
correct classification of xt . For the linear inseparable case, the optimization problem can
be formalized as

ω∗
t+1 = argmin

ω∗∈Rn+1

1
2
||ω∗ −ω∗

t ||22 +Cξ 2

s.t. l(ω∗;(xt ,yt)) ≤ ξ

This is equal to the PA-II variant proposed in [17].

4 Experimental Setup

The first part of this study is an empirical comparison of the classifiers in several artifi-
cial noise settings. For all experiments we use different datasets with a dimensionality
of n = 100 and 25 datapoints for each of the two classes. A graphical visualization of
the experimental setup can be found in Figure 1. For all algorithms various parameters
settings were tested prior to the results given here. The best found parameter values
were chosen and fixed for the results given in the following. We will first introduce
some notation used within this section. The vector 1 is the vector, which is equal to 1 at
each position. The vector 1x is equal to 1 in the first x positions and 0 on the other posi-
tions. The vector 1̄x is defined as 1−1x. The function d : R

n → R
n×n converts a vector

v ∈ R
n into a n×n - dimensional diagonal matrix. The main diagonal of this matrix is

filled with the elements of v. A Gaussian distribution with mean μ and covariance Σ
will be denoted byN (μ ,Σ). We will write s(k,Φ) to denote a function which creates a
set of k datapoints chosen according to distribution Φ .

4.1 Breakdown Experiments

Here the test error of a classifier trained on samples P = s(k,Ψ1) and N = s(l,Ψ0) is com-
pared to a classifier trained on contaminated samples P̃ and Ñ. A contaminated version
X̃ = s̃(X, i,Φ) of a sample X ∈ {P,N} is generated by replacing i ≤ |X| examples by
new ones, which were chosen according to distribution Φ . The number of contaminated
datapoints is increased from 0 to |X| (class breakdown). For all experiments the test sets
are chosen as P′ = s(k,Ψ1) and N′ = s(l,Ψ0). Each test was repeated on ten different
samples. A table of the concrete experiments can be found in Table 1. The meanx ex-
periment was done for x ∈ {5,10,25,50}. The sdx′ experiment for x′ ∈ {102,103,104}.
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Fig. 1. The four settings of the artificial data experiments: Upper left: mean breakdown ex-
periment. The distribution of the noisy datapoints differs from the distribution of the original
datapoints in the first x dimensions of their common mean vector. The mean vector of the noisy
datapoints is equal to 0 for the first x dimensions. Upper right: sd breakdown experiment. The
noisy datapoints are chosen according to a Gaussian distribution with higher standard deviation
than the standard deviation of the Gaussian of the original one. Lower left: class breakdown ex-
periment. In this setting the noisy datapoints are chosen according to the distribution of the other
class. Lower right: single outlier experiment. In this experiment a single noisy datapoint is moved
in a certain direction. The datapoint is moved either towards the other class ( f orward), or away
from the other class (backwards), or orthogonal to the other class (sideways).

Table 1. Breakdown experiments that were performed

experiment P/P′ N/N′ P̃ Ñ

meanx s(25,N (1,d(1))) s(25,N (−1,d(1))) s̃(P, i,N (1̄x,d(1))) s̃(N, i,N (−1̄x,d(1)))

sdx s(25,N (1,d(1))) s(25,N (−1,d(1))) s̃(P, i,N (1,xd(1)) s̃(N, i,N (−1,xd(1)))

class s(25,N (1,d(1))) s(25,N (−1,d(1))) s̃(P, i,N (−1,d(1))) s̃(N, i,N (1,d(1)))

4.2 Single Outlier Experiments

In this test a classifier trained on samples P = s(k,Ψ1) and N = s(l,Ψ0) is compared to
a classifier trained on samples Pτ

x = s̄(P,x,τ) = P∪{10τx} and N. Here x is a random
point from the corresponding unit sphere and τ ∈ { 1, . . . ,5}. For each x, ten different
datasets were resampled. Some characteristics of the used datasets are given in Table 2.
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Table 2. Single outlier experiments

experiment P/P′ N/N′ Pτ
x

forward s(25,N (1̄1,d(1̄1))) s(25,N (−1̄1,d(1̄1))) s̄(P,−1̄1/||−1̄1||,τ)

backwards s(25,N (1̄1,d(1̄1))) s(25,N (−1̄1,d(1̄1))) s̄(P, 1̄1/||1̄1||,τ)

sideways s(25,N (1̄1,d(1̄1))) s(25,N (−1̄1,d(1̄1))) s̄(P,11/||11||,τ)

Table 3. Real data sets

name #Fea #Pos #Neg

Bittner [18] 8067 19 19

Golub [19] 3571 47 25

Buchholz/Kestler [9] 169 37 25

Notterman [20] 7457 18 18

West [21] 7129 25 24

4.3 Experiments on Real Datasets

The classifiers were additionally compared on real data sets. For this setting a 10×10
cross-validation was chosen. A 10×10 cross-validation is a 10-fold repetition of a 10-
fold cross-validation test on permuted variants of the initial dataset. The result will be
the average error of the 10 single experiments. In a single 10-fold cross-validation test
a dataset is divided into ten equal part. Nine parts are used to train the classifier and
one part is used for testing. This procedure is repeated for all ten parts of the data. The
mean error of these tests is calculated. The used data sets are chosen from the field of
gene expression analysis. A list of the used data sets is given in Table 3.

5 Results

mean Breakdown results. The LDA-based algorithms are the only classifiers that are
influenced for mean5 and mean10 (data not shown). They show error rates between
30% and 50% in these experiments, all other classifiers have zero error. Performance
decreases for all other classifiers starting with mean10, but is still much better than
the LDA classifiers. For 25 and 50 noisy dimensions (mean25, mean50) performance
decreases uniformly to 2% to 50% starting with 15 noisy datapoints. All classifiers are
robust to this kind of noise, if the number of noisy datapoints is low. The NC-based
classifiers are more robust on an increasing number of noisy datapoints and are only
deteriorating for 24 or 25 noisy datapoints. Performance of SVM and LIKNON on
lower noise levels is inferior to the iterative algorithms.

sd Breakdown results. The results of the sd breakdown experiments can be seen in
Figure 2. The single rows contain the results of the sd100, the sd1000 and the sd10000

breakdown experiment. The classifiers ALMA, PA, LIKNON and SVM are not influ-
enced in any experiment until all datapoints were replaced by noisy datapoints. One
noisy datapoint is enough to increase the error rate of the NC-based classifiers. This
effect increases with a higher standard deviation. The LDA-based algorithms fluctuate
around their initial error rate of about 20%. For all sd experiments there is a number of
datapoints for which the error rate of LDA (median) is rapidly increasing towards 50%.
The LDA (mean) has an error rate of 50% only for the number of 25 noisy datapoints.
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Fig. 2. Error curves of the sd breakdown experiment. The mean error of ten repetitions is shown.
The number of noisy datapoints per class is given on the horizontal axis. The rows include the
results from sd100, sd1000, and sd10000 (top to bottom).

class Breakdown results. The results of the class breakdown experiment are given in
Figure 3. The classifiers show a linear increasing error rate according to the increasing
number of noisy datapoints. An exception to this are the model-based classifiers. The
classifiers NC, NSC and LESS show a flat error curve until a level of 13 noisy datapoints
per class is reached. The LDA-based classifiers fluctuate around the 50% error rate in
the range of 5 and 20 noisy datapoints.

Single outlier results. The error curves of the single outlier experiments are given in
Figure 4. Only the model based classifiers were influenced in the experiments back-
wards and sideways. A exception to this is the NSC in the sideways experiment. The
other classifiers are only affected in the forward experiment.

Average ranking on artificial datasets. The rank over all classifiers was calculated for
all single experiments and noise levels. The mean rank is shown in Table 4. The best
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Fig. 3. Error curves of the class breakdown experiment over an increasing number of noisy data-
points per class. The mean error of ten repetitions is shown.
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Fig. 4. Error curves of the single outlier experiments. The mean error of ten repetitions is shown.
The distance from the outlier to the class centroid is given on the horizontal axis.
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Table 4. Average ranks over all experiments on artificial datasets

LDA (mean) LDA (median) NC NSC PER ROMMA ALMA PA SVM LIK LESS

8.62 9.02 6.48 6.91 5.49 4.41 4.62 4.41 4.60 5.06 6.37

Table 5. Results of the real data experiments. The results of the 10×10 cross-validation are given
by the mean errors in percent and standard deviations. The last two columns show the average
error and the average rank over all datasets.

Bittner Golub Notterman Buchholz West
Average

error
Average

rank
LDA (mean) 46.84±6.88 42.22±6.84 34.17±7.53 45.32±7.35 44.69±6.83 42.65 9.9

LDA (median) 46.84±7.00 44.31±6.56 35.28±7.30 45.48±6.44 47.35±9.47 43.85 10.7
NC 50.53±1.11 2.50±0.59 2.78±0.00 27.26±0.92 39.39±4.41 24.49 6.4

NSC 8.68±2.17 4.17±1.13 5.28±2.43 29.19±2.21 15.10±1.72 12.48 5.4
PER 28.42±3.88 11.39±2.60 5.83±2.05 26.77±3.58 16.33±2.89 17.75 6.9

ROMMA 20.53±7.21 5.83±2.68 6.39±2.64 26.77±3.15 17.96±3.94 15.50 6.8
ALMA 10.53±0.00 2.22±0.97 2.78±0.00 19.03±5.20 9.59±1.38 8.83 1.9

PA 9.74±2.50 2.64±0.44 2.78±0.00 19.52±3.68 10.41±1.79 9.02 2.8
SVM 14.74±2.83 2.64±0.44 2.78±0.00 16.13±3.88 10.61±2.32 9.38 3.2
LIK 13.95±2.79 7.64±1.35 3.06±0.88 24.52±4.08 17.96±4.49 13.43 5.5

LESS 41.58±4.77 2.50±0.59 4.72±1.87 28.23±2.97 30.00±6.24 21.41 6.5

average ranks were achieved by PA (4.41), ROMMA (4.41), SVM (4.60), and ALMA
(4.62). We found significant differences between PA and SVM (Wilcoxon rank sum
test: p = 0.0028) and ROMMA and SVM (Wilcoxon rank sum test: p = 0.0006). We
also found a significant difference between SVM, PA, ROMMA and all classifiers with
dimensionality reduction NSC, LESS, and LIKNON (9 Wilkoxon rank tests, all p <
0.000014 after Holm correction for multiple testing).

Cross-validation results on real datasets. The results of the cross–validation experi-
ments can be seen in Table 5. The LDA variants show high error rates for all datasets.
Compared to the other centroid based classifiers the NSC has better error rates on
the datasets Bittner and West. On these datasets the improvement is better than 10%.
Among the classifiers, which try to maximize the margin, ALMA has best error rates
on the datasets Bittner, Golub and West. The SVM achieves equal or better result on the
other datasets. The results of PA are comparable to the results of SVM and ALMA.

6 Conclusion

In this study a set of eleven linear classifiers were compared in terms of noise robustness
and classification rates. The classifiers were tested on real and artificial high dimen-
sional datasets. The artificial datasets fulfilled the model assumptions of the classifiers
LDA and NC. Within these tests, a small number of undirected noisy datapoints lead to
rapid increasing error rates. NC-like algorithms are more influenced by this effect than
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the LDA-like ones. This can be seen in the sd breakdown experiments and the single
outlier experiments. If the noise is directed, the NC-like algorithms perform different
to the LDA-like algorithms. In the class breakdown experiment, 50% of all datapoints
could be replaced by noisy ones. The LDA-based classifiers show a mean error rate of
about 50% in this experiment. The centroid based classifiers are superior to the others
in the early stages of the forward single outlier test. Effects of the noise variant chosen
in the mean breakdown experiment could only be seen for high values of x. In this case,
all NC-based classifiers were more robust for higher noise rates. Only the LDA-based
algorithms were highly affected of this kind of noise. This is not too surprising and
supports the findings of Raudys & Duin [22], that when the total number of learning
samples approaches the dimensionality some of the eigenvalues of the sample covari-
ance matrix become extremely large while the others become extremely small. This
negatively affects classifier performance. The other classifiers are more robust in the sd
breakdown experiments. Especially the large margin classifiers are unaffected by this
scenario. These classifiers are more sensitive to direct noise. This can be seen by their
linear increasing error rates in the class breakdown.

The effects of feature selection were different for single algorithms. The NSC ob-
tained equal or better results than NC in the sd breakdown experiments and in the class
breakdown experiments for higher noise rates. LESS is more comparable to NC, but be-
comes more instable in the sd breakdown experiments. LIKNON has lower error rates
than the SVM in the mean breakdown experiments. The top mean rank over all artifi-
cial experiments was gained by PA, ROMMA, ALMA and SVM. Surprisingly, these
algorithms also outperformed statistically significant all classifiers with dimensionality
reduction (NSC, LESS, LIKNON). This might be due to the problem of finding a mean-
ingful subset of features in these very high-dimensional spaces of low cardinality [23].
Also as volume of the feature space increases exponentially with dimensionality, noise
on each of the coordinates does not affect the location of the datapoint too much and
thus margin classifiers seem to be superior in this setting. This is also supported by the
good performance of the single outlier experiments in which the pure feature selection
algorithm NSC scored worse than margin algorithms.

On the real datasets the large margin classifiers were slightly better than the centroid
based classifiers. There were two examples among the used datasets (Bittner and West),
which could hardly be classified by NC and LESS. The error curves of the NSC has
comparable results to the other classifiers on this datasets. Concerning the error rates
over all real datasets, the top three classifiers are ALMA, PA and SVM. The overall best
performance for these types of high-dimensional data of low cardinality is given be PA,
as it scores top on the artificial data and second on the expression profiles.
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Abstract. Matrix neural gas has been proposed as a mathematically
well-founded extension of neural gas networks to represent data in terms
of prototypes and local principal components in a smooth way. The addi-
tional information provided by local principal directions can directly be
combined with charting techniques such that a nonlinear embedding of a
data manifold into low dimensions results for which an explicit function as
well as an approximate inverse exists. In this paper, we show that these
ingredients can be used to embed dynamic textures in low dimensional
spaces such that, together with a traversing technique in the low dimen-
sional representation, efficient dynamic texture synthesis can be obtained.

1 Introduction

Neural gas (NG) and topology representing networks as proposed by Martinetz
constitute particularly robust methods to represent a given data set and its
topology in terms of a lattice of neurons [11,12]. In contrast to the popular
self-organizing map [7], no prior lattice structure is specified such that direct
visualization of data is not possible. On the contrary, the correct, probably ir-
regular topology of the underlying data manifold can be inferred which accounts
for the particular robustness of the approach.

Neural gas is often used for data preprocessing, e.g. data compression or clus-
tering. Recently, extensions of NG have been proposed which also adapt local
matrices during training such as to minimize the quantization error [13,1]. This
corresponds to local coordinate systems which represent smooth local principal
directions of data. It has been demonstrated in [2], that these additional parame-
ters offer sufficient information to extract explicit local coordinate systems from
the data which can be further processed to obtain a global nonlinear projection
of the underlying manifold e.g. using manifold charting [3]. This way, an explicit
mapping together with its approximate inverse is obtained which can map high
dimensional data into low dimensional space. In [2], the possibility to use this
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mapping for low dimensional data visualization and representation has been ex-
plored in comparison to popular alternative visualization schemes as referenced
e.g. in [10]. Unlike popular alternative visualization methods such as locally lin-
ear embedding, maximum variance unfolding, or stochastic neighbor embedding,
manifold charting in combination with matrix neural gas does not only embed
the given data points, but it provides an explicit low dimensional embedding
of the data manifold and an approximate inverse of the map. Hence additional
information is available which can be explicitly used in further applications.

In this contribution, we will demonstrate the suitability of manifold embed-
ding by matrix neural gas for an interesting problem from computer graphics,
the efficient synthesis of dynamic texture based on given examples. Dynamic
texture synthesis is the process of producing an animation of dynamic textures
which preserve the behavior of the system similar to its original appearance.
There exist two fundamentally different approaches for dynamic texture syn-
thesis: physics-based methods generate dynamic texture based on mathematical
models of the natural phenomena, see e.g. [18,4]. Physics-based models provide
a flexible synthesis, since the dynamic texture can be controlled through a few
parameters in a mathematical equation system. The drawback of this approach
is that each model is appropriate only for a particular texture and cannot be
transferred to other domains. As an alternative, image-based models overcome
this limitation. They use a global model for different textures and synthesize
dynamic textures from a model based on the appearance of the whole texture in
a series of images. Different principled approaches can be distinguished such as
simple extensions of static texture synthesis to 3D [20], spatiotemporal models
based on the pixel level [16], or dynamical models on the image level, such as
proposed in [15,6]. The latter approach is particularly promising since it can
capture common non-trivial dynamical development such as rotation. This way,
dynamic texture synthesis becomes a problem of system identification based on
a sequence of image data such that dynamic texture can be directly generated
along the trajectory of the system based on given initial conditions.

Typically, image sequences possess a very high dimensionality such that sys-
tem identification is not possible in the raw image space. Therefore, the ap-
proaches presented in [15,6] first project the images onto low dimensional space
with a standard principal component analysis (PCA), performing system identi-
fication e.g. using classical linear auto-regressive models in the low dimensional
projection space, afterwards. Since PCA gives rise to an approximate inverse
by means of the pseudo-inverse of the transformation matrix, dynamic textures
can be generated this way. The resulting model is rather flexible, but it has the
drawback that a global linear embedding is used such that images are not ap-
propriately sampled and represented in particular at points in time with rapid
movements (e.g. flapping flag). Therefore, it has been proposed e.g. in [8,9] to use
recent nonlinear manifold learning techniques as proposed in machine learning
instead of a global linear embedding.

In this contribution, we demonstrate that recent matrix learning schemes for
neural gas together with a global coordination technique, manifold charting,
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give rise to a nonlinear manifold embedding which can successfully be used in
this context. This way, neural low-dimensional nonlinear manifold embedding
can serve as an essential step in the highly non-trivial application in computer
graphics to automated dynamic texture synthesis. Now, we first introduce matrix
neural gas which allows us to extract local linear manifold projections from a
given data set. These can be combined to a global nonlinear embedding with
approximate inverse using manifold charting. We describe the inclusion of this
method into the general pipeline for dynamic texture synthesis, afterwards, and
we demonstrate its applicability in a variety of examples.

2 Nonlinear Manifold Embedding Based on Matrix
Neural Gas

Matrix neural gas

Assume data {x1, . . . ,xm} ⊂ R
N are sampled from a manifoldX ⊂ R

N . The aim
of neural gas is to represent the given data in terms of prototypes {w1, . . . ,wk} ⊂
R

N faithfully such that the prototype wi adequately resembles its receptive field
Ri := {x | i = argminj{d(x,wj)}} where usually the Euclidean distance is used

d(x,wi) = (x − wi)t(x − wi) . (1)

NG has been derived in [11] as a stochastic gradient descent of the following cost
function

ENG(w) ∼ 1
2

k∑
i=1

∫
hσ(ki(x)) · d(x,wi)P (dx) (2)

where P refers to the probability distribution of the data points x. ki(x) ∈
{0, . . . , k−1} constitutes a permutation of prototypes arranged according to the
distance, i.e.

ki(x) := |{wj | d(x,wj) < d(x,wi)}|
If distances coincide, ties are broken deterministically. hσ(t) = exp(−t/σ) is an
exponential curve with neighborhood range σ > 0. For vanishing neighborhood
σ → 0, the standard quantization error is obtained.

As an alternative to online optimization, a batch approach can be taken if data
are given in advance. For a discrete finite data set, the cost function (2) can be
optimized in a batch scheme repeatedly updating prototypes and rank assign-
ments until convergence [5]. Usually, during training, the neighborhood range σ
is annealed to 0 such that the quantization error is recovered in final steps. In
intermediate steps, a neighborhood structure of the prototypes is determined by
the ranks according to the given training data. This choice accounts for a high
robustness of the algorithm with respect to local minima of the quantization
error, further, a smooth update of neighbored points is guaranteed this way [12].

Classical NG relies on the Euclidean metric which induces isotropic cluster
shapes. More general ellipsoidal shapes can be achieved by the generalized metric
form

dΛi(x,wi) = (x − wi)tΛi(x − wi) (3)
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instead of the squared Euclidean metric (1) where Λi ∈ R
N×N is a symmet-

ric positive definite matrix with detΛi = 1. These constraints are necessary to
guarantee that the resulting formula defines a metric which does not degenerate
to a trivial form (Λi = 0 constituting an obvious trivial optimum of the cost
functions). A general matrix Λi can account for correlations and appropriate
nonuniform scaling of the data dimensions. The parameters Λi in (3) can be
optimized during training together with the prototype parameters and assign-
ments. The corresponding cost function (2) which uses (3) instead of (1) can be
optimized in batch mode, yielding matrix NG (MNG):

init wi randomly
init Λi as identity I

repeat until convergence
set kij := ki(xj)
set wi :=

∑
j hσ(kij)xj/

∑
j hσ(kij)

set Λi := S−1
i (detSi)1/n where
Si :=

∑
j hσ(kij)(xj − wi)(xj − wi)t

It has been shown in [1] that this update scheme converges to a local optimum
of the NG cost function under mild conditions.

Local linear projections

The matrix Si corresponds to the correlation of the data centered at prototype
wi and weighted according to its distance from the prototype. For vanishing
neighborhood σ → 0, the standard correlation matrix of the receptive field is
obtained. The resulting Mahalanobis distance corresponds to a scaling of the
principal axes of the data space by the inverse eigenvalues in the eigendirec-
tions. Thus, ellipsoidal cluster shapes arise which are aligned according to local
principal components of the data. Since neighborhood cooperation is applied to
both, prototype adaptation and matrix learning during batch training, a reg-
ularization of matrix learning is given and neighbored matrices have a similar
form.

Local matrices as learned by MNG provide local linear transformations of the
data in the following way: Assume the eigenvalue decomposition

Λi = Ωt
i ·Di ·Ωi

is given with a diagonal matrix Di of eigenvalues and eigenvectors collected in
Ωi. Assume data should be mapped to dimensionality n where, usually, n <
N . Then we can reduce Di to only the d smallest eigenvalues (which are the
main eigenvalues of Si, i.e. they belong to the main principal components of the
receptive field) getting the n×N matrix Dred

i . The formula

Ai : R
m → R

d,x �→ Dred
i ·Ωt

i · (x − wi) (4)

gives the local linear projection of the data points to the main principal compo-
nents of the receptive field induced by the ith chart of the data manifold. If n is
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chosen at most 3, every map Ai provides a linear visualization of the manifold
which is faithful within the receptive field of prototype wi because it corresponds
to the main eigenvalues of the local chart, as proposed in the contribution [2].

Note that, depending on the dimensionality N of the original data points, full
matrix learning in MNG is rather time consuming, requiring matrix inversion
of order O(N3) in every step. Since only the minor n eigenvalues of the ma-
trix Ωi are relevant for the local projection, we can priorly reduce the matrix
such that the scaling of only the minor d principal components is individually
adapted while the scaling remains identical (and nonzero to avoid degeneration)
for all other directions. This can be achieved efficiently with any algorithm which
extracts the major n principal components of the generalized data correlation
matrix, e.g. a generalized Sanger rule as proposed in [13], reducing the matrix
determination to O(N). It has been demonstrated in [13] that the reduction to
the largest n principal components can be explicitely included into the metric
computation step, such that an overall reduction of the complexity to O(N) re-
sults, assuming independence of the number of iterations for eigenvector learning
and neural gas of N .

Global coordination by manifold charting

The projections (4) provide valid local linear transformations of the data in
the neighborhood of the respective prototype. Different methods which allow to
combine these local projections to a global map have been proposed e.g. [17,3].
We will rely on manifold charting as introduced in [3] which glues the linear
pieces together such that a good agreement can be observed at the overlaps.

Assume that linear projections A1, . . . , Ak are given by formula (4) which
define k local projections of the data points z1i = A1(xi), . . . , zki = Ak(xi)
of the data points x1, . . . ,xm. Assume that, in addition, a responsibility value
pij = pi(xj) is specified for every data point xj and chart Ai which defines the
responsibility of this chart for the data point, whereby

∑
i pij = 1 for every j.

Here, we can use Gaussian bells centered at the prototypes to arrive at these
responsibilities. More precisely, set Ni = |Ri| as the number of points in the
ith receptive field. Let Si be the correlation matrix of the ith receptive field
as computed in MNG and S̃i = Si/Ni the associated matrix. Then we set the
responsibility of the ith receptive field for point xj as

p̃ij = p̃i(xj) =
Ni

p
· 1

(2π)m/2
√
|S̃i|

· exp(−0.5 · (xj −wi)t · S̃−1
i · (xj − wi)) (5)

where the prior Ni/p refers to the relative number of points in chart i. The
responsibilities pij are obtained thereof by normalization pij = p̃ij/

∑
i p̃ij .

The goal is to combine the local charts Ai by means of local affine mappings
Bi : R

n → R
n to a global mapping such that the compositions lead to matching

points if more than one chart is responsible for a data point. The mappings Bi

are determined in such a way that the following costs are minimized

Echarting =
1
2
·
∑
i,j,l

pjipli‖Bj(zji) −Bl(zli)‖2 (6)
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which (as can be seen by a simple algebraic transformation) also give the differ-
ence of the globally mapped points and the local affine transformations of the
points. As shown in [3] a unique analytic solution of this problem can be found.
The final points are then obtained by the formula xj �→∑

i pijBi(zij).
Note that, depending on the distribution of the prototypes, the assignments

will be sparse since pij will be almost zero for receptive fields i which lead to a
high rank w.r.t xj . To speed up the computation, it is possible to cut off these
small assignments and work with sparse matrices. Based on these choices of pij

provided by (5) and zij provided by the affine transformations (4), MNG can
be combined with manifold charting to give a global nonlinear visualization of
data. Obviously, this visualization can be described by an explicit mapping of
R

N → R
n by means of the formula

x �→
∑

i

pi(x) · Bi(Ai(x)) (7)

where pi(x) is computed according to (5), the local linear mappings Ai are
given by (4), and the affine transformations Bi to glue the charts together are
determined solving equation (6).

Inverse map

To arrive at an approximate inverse map, we take a simple point of view which
allows us to compute the inverse algebraically. Note that every local linear pro-
jection Ai possesses an approximate inverse A−1

i induced by the pseudo-inverse
of Dred

i · Ωi. Since Ai maps to lower dimensions, this is, of course, no exact
inverse but its best approximation in a least squares sense. Further, obviously,
the affine transformations Bi can be inverted exactly. Thus, for every z ∈ R

n,
an approximate inverse of the image of (7) can be determined in the follow-
ing way: for a given x, we determine the inverse under chart i: A−1

i ◦ B−1
i (z).

From these possibly preimages, we take the one with maximum responsibility
according to (5).

3 Dynamic Texture Synthesis by System Traversal

In [8,9], dynamic texture synthesis is modelled as a system identification prob-
lem. First, images are nonlinearly mapped to a low-dimensional space. In low
dimensions, a method to track temporal developments based on initial conditions
is defined. Since every point in the embedding space can be inversely mapped to a
point in the original high dimensional space, a sequence of images corresponding
to a dynamic texture results. This way, a compressed representation of dynamic
textures can be obtained since it is sufficient to store the parameters of the
global nonlinear map and its inverse and only the low dimensional projections
of the given image sequence which, for n � N , requires much less space than
the original texture sequence. Further, interpolation of texture images as well
as generation of texture based on new starting points becomes possible since a
model is available to track the dynamics in the low dimensional projection space.



90 B. Arnonkijpanich and B. Hammer

The contribution [9] relies on a mixture of probabilistic principal component
analysis (MPPCA) together with global coordination to obtain a global non-
linear embedding of the data manifold [19,17]. Here we propose to substitute
MPPCA by matrix NG since, as we will demonstrate in experiments, a greater
robustness and smoothness of the method can be achieved. Thus, we combine
global coordination based on matrix NG as described in the previous section
with the tracking dynamics in the low dimensional projection space as intro-
duced in [9]. For convenience, we shortly describe the traversal mechanism as
proposed in [9].

Assume a dynamic texture is given which, making the temporal depen-
dency explicit, is denoted as x(t), x(t + 1), . . .∈ R

N . The corresponding low-
dimensional projections are denoted as z(t), z(t+1), . . .∈ R

n. Motion prediction
starts from a sequence of at least two points g(t−1), g(t) in R

n which are prob-
ably obtained as projections of images. Now the temporal successors of g(t) are
obtained in six steps based on the low dimensional vectors z(i) as follows (σ1,
α, σ2 are positive parameters):

1. Sampling neighbors: K nearest neighbors N of g(t) are sampled from the
data z(i) and exponentially weighted according to the distance from g(t)
with weight W 1

i := exp(−‖g(t) − z(i)‖2/σ2
1).

2. Temporal smoothness: The similarity of the difference vectors dz(i) := z(i)−
z(i − 1) of the neighbors z(i) in N and the considered trajectory dg(t) :=
g(t) − g(t − 1) is computed based on the cosine distance and exponentially
weighted, yielding weight W 2

i := exp(α(dz(i)td(g(t))/(‖dz(i)‖ · ‖dx(t)‖) −
1)).

3. Noise perturbation: for every neighbor z(i) in N , noisy successors of g(t)
are sampled using the direction of the trajectory at z(i) and a Gaussian
noise vector νj with components ∼ N(0, σ2) leading to possible positions
gij(t+ 1) = g(t) + (z(i+ 1) − z(i)) + νj .

4. Drift prevention: Each candidate is weighted according to its distance from
the trajectory leading to the weight p(gij(t + 1)) = W 1

i W
2
i

∑
l ϕ((gij(t +

1) − zk)/h) where ϕ is a window function with window width h.
5. Normalization: These weights are normalized such that

∑
ij p(g

ij(t+1)) = 1.
6. Prediction: The successor is chosen from these points according to the prob-

ability p(gij(t+ 1)).

This way, the overall direction of the trajectory gives rise to the respective suc-
cessor of a given starting position. Slight noise accounts for typical effects when
dealing with natural phenomena. An additional neighborhood integration makes
sure that the created trajectory does not diverge from the dynamics as deter-
mined by the given data set.

4 Experiments

An important example of dynamic texture is given by image sequences of nat-
ural phenomena as available in the DynTex database [14]. Each pixel gradually
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Table 1. Number of local models used to map the respective dynamic texture into low
dimensional space and number of frames included in the dynamic textures

Dataset no. local models no. frames
wave 3 200

escalator 4 251
smoke 5 251
fall 2 200

straw 4 251

changes its intensity or color level depending on the kind of image sequence.
Examples of natural phenomena used in this work are referred to as wave, es-
calator, smoke, straw, and fall. All images have an original size of 288 by 352
pixels with RGB color codes. Because of the high dimensionality, we resized the
images to 50% with respect to the original size resulting in 144 times 176 pix-
els. Then, each image corresponds to a 76,032 dimensional vector formed by the
RGB values of the pixels. Before applying matrix NG, data were projected to
100 dimensions using simple principal component analysis.

We compare the result of matrix NG and mixtures of probabilistic compo-
nent analysis as described in [19] together with global manifold charting and
trajectory traversal as described above. The dimensionality n has been chosen
as 40. The number k of local components is chosen such that, on average, about
50 frames are represented by one local model. The lengths of the considered
dynamic textures and the number of local models is shown in Tab. 1.

We evaluate the method by the mean absolute distance of the generated im-
ages and the original images averaged over time, as shown in Tab. 2. Further, we
exemplarily show a visual comparison of the images as obtained by MNG and
MPPCA in comparison to the original image in Figs. 2 - 5. The synthesis results
indicate that manifold embedding based on MNG is able to generate high-quality
video, while charting based on MPPCA generates lower visual quality of video
over time. The synthesized image sequences by MNG are smooth with respect
to temporal evolution due to the included neighborhood cooperation, and sharp
features are better preserved in the single images. MPPCA contains blurring in
single images and a larger trend towards discontinuities when generating image
sequences. This manifests in a larger error of the generated images. The develop-
ment of the absolute error over time per pixel is depicted in Fig. 1. Obviously, for
MPPCA, the error is not uniformly distributed but it accumulates at points in
time such that errors are clearly observable for MPPCA. In comparison, the er-
ror of MNG is very smooth such that no abrupt changes in the visual appearance
can be observed.

Both methods, dynamic tecture generation based on MPPCA or MNG, rely on
prototypes which represent parts of the data space. Commonly, these prototypes
are computed as averages, such that both methods have the drawback that
they somehow smooth details in the images. Since high contrast features are of
particular relevance for the human observer, deviations from the original images
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Table 2. Average absolute reconstruction errors averaged over the number of frames
on the given image sequences and standard deviations

Dataset MPPCA MNG
wave 33.7319 ± 2.7425 31.3815 ± 0.5540

escalator 30.8114 ± 2.0043 24.5836 ± 0.1290
smoke 14.2246 ± 0.5515 12.5402 ± 0.2278
fall 48.4483 ± 0.8815 47.3001 ± 0.0537

straw 37.3818 ± 0.5610 36.7924 ± 0.1960
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Fig. 1. Absolute error per pixel between the generated images and the true image
sequence over time for MPPCA and MNG for the wave texture (left) and fall texture
(right). Obviously, the error obtained by MPPCA is large for some time points in which
a low quality of the reconstructed texture can visually be observed.

Fig. 2. This figure shows reconstructed image sequence of waves. The first column
represents the original reference frames. The second and third columns demonstrate
the frames reconstructed by manifold charting based on MPPCA and matrix NG,
respectively.
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Fig. 3. This figure shows reconstructed image sequence of smoke. The first column rep-
resents original reference frames. The second and third columns demonstrate the frames
reconstructed by manifold charting based on MPPCA and matrix NG, respectively.

Fig. 4. This figure shows reconstructed image sequence of fall. The first column repre-
sents original reference frames. The second and third columns demonstrate the frames
reconstructed by manifold charting based on MPPCA and matrix NG, respectively.

can clearly be observed by humans, albeit the error is small, as can be seen
for the examples ‘fall’ and ‘straw’ which include high contrast or lots of details,
respectively. This drawback could be prevented by substituting the averaged
prototypes by features with more contrast or details, respectively, obtained e.g.
by appropriate postprocessing.
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Fig. 5. This figure shows reconstructed image sequence of straw. The first column rep-
resents original reference frames. The second and third columns demonstrate the frames
reconstructed by manifold charting based on MPPCA and matrix NG, respectively.

5 Discussion

We have introduced a method which allows the global nonlinear embedding of
complex manifolds into low dimensions based on matrix neural gas, leading to
an explicit embedding function as well as its approximate inverse. Thereby, an
essential part is given by matrix neural gas as presented in this paper, which
extracts prototypes and local principle directions from the data in a robust and
topology preserving way such that a set of smooth local linear maps is obtained.
These can be combined using charting techniques such that a global smooth em-
bedding arises. In comparison to alternatives such as mixtures of probabilistic
principal components, topology preservation has the beneficial effect that man-
ifold charting deals with smooth maps which can be glued together more easily,
and the reconstruction error by means of the approximate inverse shows good
agreement to the original manifold also at the borders of the local linear pieces.
We have demonstrated that this technique can successfully be used in a complex
task from computer graphics, namely the synthesis of dynamic textures based
on given image sequences.
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Abstract. In recent years, data streaming has gained a significant im-
portance. Advances in both hardware devices and software technologies
enable many applications to generate continuous flows of data. This in-
creases the need to develop algorithms that are able to efficiently process
data streams. Additionaly, real-time requirements and evolving nature of
data streams make stream mining problems, including clustering, chal-
lenging research problems. Fuzzy solutions are proposed in the literature
for clustering data streams. In this work, we propose a Soft Incremental
C-Means variant to enhance the fuzzy approach performance. The ex-
perimental evaluation has shown better performance for our approach
in terms of Xie-Beni index compared with the pure fuzzy approach with
changing different factors that affect the clustering results. In addition,
we have conducted a study to analyze the sensitivity of clustering results
to the allowed fuzziness level and the size of data history used. This
study has shown that different datasets behave differently with changing
these factors. Dataset behavior is correlated with the separation between
clusters of the dataset.

Keywords: Fuzz Clustering, Soft Clustering, Data Streams, C-Means,
Clustering Data Streams.

1 Introduction

In recent years, the data stream model has gained a significant importance.
Advances in both hardware devices and software technologies enable many ap-
plications to generate continuous flows of data. This has increased the sources
of streaming information and thus the need to develop algorithms that are able
to efficiently process data streams. These algorithms have to consider related
scalability issues. Huge volumes of data with continuous and evolving nature
of streaming data have introduced two main challenges; (i) infeasibility of stor-
ing the entire data (ii) and infeasibility of multiple passes processing. These
challenges have motivated data research communities to provide appropriate so-
lutions that are able to overcome these problems. Query processing over data
streams [3], sketching of data streams [7] and mining problems [12] are the most
studied problems in this context.

Data clustering problem is one of the most studied mining problems in the
literature [17,16]. Data clustering techniques can be classified on different bases.
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One possible distinguishing characteristic is how the technique relates data
points to different clusters. The literature presented three types: (i) hard clus-
tering (ii) fuzzy clustering (iii) and soft clustering [24]. In hard clustering, each
data point belongs to exactly one cluster. In fuzzy clustering each data point
belongs to all clusters with different membership degrees. Soft clustering relaxes
the absolute fuzziness constraint so it relates a data point to only a subset of
clusters which are the most similar under some threshold of similarity. In this
work we present a Soft Incremental C-Means variant for clustering streaming
data; the SIC-Means approach.

2 Related Work

The literature of clustering data streams is fairly mature. Research work on dy-
namic clustering in incremental basis has started in late eighties in the context
of information retrieval [5]. Adapting dynamic clustering techniques to work for
data streams didn’t show a great success due to the evolving nature of data
streams. O’Callaghan et al. [22] proposed a k-median based clustering algorithm
for streaming data. Their algorithm receives the streaming data in chunks, ap-
plies the clustering process and then frees the memory representing the clus-
tering solution with weighted centroids. They obtain the weighted centroids of
the entire stream received so far by applying the same algorithm to the cen-
troids obtained from chunks. They showed that their algorithm outperformed
BIRCH [31] in terms of sum of squared distance.

Aggarwal et al. [1] proposed an important framework for clustering data
streams. They simply suggest to develop a two phase framework; an online
phase and an offline phase. The online phase processes the continuous stream
of data building sufficient statistics and collecting enough information to the
offline phase to use in extracting data clusters. The importance of this frame-
work is not only gained from the CluStream approach they proposed utilizing
this framework, but also from being the basic idea of many important following
research work in clustering data streams [23,6,18,26,27]. Park and Lee [23], Jia
et al. [18] and Tu and Chen [26] use the online phase to build a data histogram.
They then merge neighboring dense cells in clusters during the offline phase un-
der different measures for density. DenStream algorithm [6] considers a different
approache for both online and offline phases. They collect neighborhood density
information during the online phase. They then use this information to build
clusters in a similar way to conventional DBScan algorithm [11].

Many other approaches in the literature proposed solutions for clustering data
streams under different assumptions and from different perspectives [13, 30,21,
2, 8, 29, 4, 25, 19, 20, 9]. However, all these algorithms proposed hard clustering
solutions. Some applications generate data items that can belong to more than
one cluster of data. Hore et al. [14] proposed a fuzzy incremental clustering
solution for data streams based on C-means algorithm. This solution assumes
that all data items belong to all clusters with different degrees of strength. Our
research attempts to improve the pure fuzzy approach. We argue that assuming
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all data items to belong to all clusters may be misleading. Some data items are
obviously far from some clusters. In general, we can assume that every data item
can belong to one or more clusters under some threshold of similarity. We apply
this soft clustering concept to the incremental clustering solution.

3 SIC-Means

Streaming data algorithms in the literature assume that data points arrive and
get processed either in batches or one at a time. We consider the former paradigm
where ni points arrive at time instant ti. Our approach is an improvement to
Hore’s approach presented in [14] with applying the soft clustering concept [15].
We use a threshold α on allowed fuzziness so that after applying the fuzzy
clustering process, a data point pj belongs to a cluster ck iff the corresponding
degree of membership ukj ≥ α

number−of−clusters .

The SIC-Means approach, which stands for Soft Incremental C-Means, takes
three input parameters; number of clusters c, size of history used h and fuzzi-
ness threshold α. SIC-Means assigns a weight to each data point reflecting its
importance. The effect of these weights needs to be incorporated in the objective
function. Similar to [10], we define the fuzzy objective function to be minimized
as follows:

Jm(U, V ) =
c∑

k=1

n∑
j=1

um
kjwj ‖pj − vk‖ (1)

Where
U : fuzzy membership matrix
V : cluster centers vector
ukj : the degree of membership of point pj in cluster ck
vk : the center of cluster ck
wj : the weight of point pj

In our work, we consider J1.5(U, V ) which has shown better experimental results
in our experiments than other values of fuzzifier m. Furthermore, we use Eu-
clidean distance as a dissimilarity measure. At any time instant ti, SIC-Means
clusters Ni weighted points where:

Ni = min(ni + c ∗ (i− 1), ni + c ∗ h), i ≥ 1 (2)

New data points are assigned unit weights while cluster centers of stage i has
weights wk’s where:

wk =
Ni∑
j=1

ukj , 1 ≤ k ≤ c (3)

Algorithm 1 outlines the main steps of a single SIC-Means stage. At each stage,
the clustering algorithm considers old centers of the last h stages in addition to
the newly received data points. If the current stage i < h, then we use all the
available history up to the moment. After each time instant ti, onlymin(c∗i, c∗h)
weighted points are kept in memory representing the cluster centers for the last
h stages.
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Algorithm 1. Stage i of SIC-Means Algorithm
1. Collect the instant data and history centers in a matrix P.
2. Prepare weight matrix W, assign a unit weight to every new data point.
3.
if i = 1 then

Select initial cluster centers as (i − 1)th stage cluster centers
else

Select initial cluster centers arbitrarily
end if
4.
repeat

4.1 Update the membership matrix U utilizing the formula

ukj =

[∑c
l=1

(
‖pj−vk‖
‖pj−vl‖

) 2
m−1

]−1

, 1 ≤ j ≤ Ni, 1 ≤ k ≤ c

4.2
for all ukj in U do

if ukj < α
c

then
ukj ← 0

end if
end for
4.3 Normalize U so that ∑c

k=1 ukj = 1, 1 ≤ j ≤ Ni

4.4 Update cluster centers using the formula

vk =
∑Ni

j=1 wjum
kjpj∑Ni

j=1 wjum
kj

, 1 ≤ k ≤ c

4.5 Calculate the objective function using the formula
Jm(U, V ) =

∑c
k=1

∑Ni
j=1 um

kjwk ‖pj − vk‖
until there is no change in the objective function
5. Calculate the centers weighs for future instants.

wk =
∑Ni

j=1 ukj , 1 ≤ k ≤ c

4 Evaluation

We have conducted a set of experiments to evaluate the performance of our
approach. The experiments have shown an improvement, over using the pure
fuzzy approach, under a standard evaluation scheme for fuzzy clustering algo-
rithms. In this section, we first present the evaluation scheme we use, describe
the evaluation datasets and then show the experimental results.

4.1 Evaluation Scheme

In our experiments, we use the popular Xie-Beni index [28] which is designed to
internally validate fuzzy clustering solutions. XB index can be calculated using
the following equation

XB =
1
n

∑
∀ck∈C

∑
∀pj∈P um

kj ‖pj − ck‖
min∀cl,ck

(‖cl − ck‖) (4)
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Where
C : is set of all clusters
P : is set of all data points
m : is the fuzzifier

As discussed in [28], this index favors more compact and separate clusters. The
lower the value of this index, the better the solution.

4.2 Data

In our evaluation, we use three artificial datasets; each of 100,000 2D points, to
evaluate SIC-Means performance. The three datasets are drawn randomly from
Gaussian distributions to form globular clusters. We have chosen these datasets
for two main reasons. First, Hoer et al. [14] used one of these datasets to evaluate
their algorithm. As we will introduce later in this section, we compare the per-
formance of our new method relative to that of Hore et al. so it was appropriate
to use the same dataset they used in evaluation. Second, a known limitation for
C-means algorithm and its variants with Euclidean distance is to favor discov-
ering globular clusters. In our research, we focus on showing the improvement
of applying soft clustering concept to incremental fuzzy approaches. So we have
chosen the datasets that serve our focus isolating the known C-means limitations.

The main difference between the three datasets is the separation between clus-
ters. As shown in Figure 1, dataset DS1 clusters are strongly overlapped, dataset
DS2 clusters are slightly overlapped and dataset DS3 clusters are well-separated.
As soft clustering techniques is concerned with cutting off data points from far
clusters, this variation in clusters separation should show the effectiveness of the
technique.

4.3 Experimental Results

In our experiments, we have studied the effect of two major factors; fuzziness
threshold α and size of history h. We have conducted our experiments using the
true number of clusters studying the change in Xie-Beni index value with varying
these factors. In these experiments, α = 0 represents the pure fuzzy approach
which is Hore’s approach. Figures 2 - 4 show the results of these experiments.

As shown in Figure 2(a), XB index values on DS1 dataset for 0 < α ≤ 0.6 are
lower compared to α = 0 for all history sizes (values of h). The upper bound of
this range is extended to approach 0.8 at h ≥ 2. Figure 2(a) shows that history
size greater than 2 does not provide a significant improvement for DS1 dataset;
curves of history sizes 3 and 4 are approximately identical. These observations
are supported by Figure 2(b) that shows obvious lower values of XB index for
different α values with changing history size from 0 to 7. In addition, excluding
the pure fuzzy approach, at α = 0, in Figure 2(c) shows improvement with
increasing history size up to h = 4. Increasing history size after that degrades
the performance. This can be explained by the evolving nature of data stream.
According to the input order of the data points, more history weighted points
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(a) Original distribution of dataset DS1

(b) Original distribution of dataset DS2

(c) Original distribution of dataset DS3

Fig. 1. Original distribution of evaluation datasets
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(a) SIC-Means performance for different history sizes

(b) SIC-Means performance for different fuzziness thresholds

(c) SIC-Means performance for different fuzziness thresholds
excluding pure fuzziness

Fig. 2. SIC-Means performance on DS1 dataset
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(a) SIC-Means performance for different history sizes

(b) SIC-Means performance for different fuzziness thresholds

Fig. 3. SIC-Means performance on DS2 dataset

can bias new points to the wrong clusters. However, it is obvious that considering
more history does not always improve the overall performance.

Figure 3(a) shows similar observations on DS2 dataset. One obvious difference
that XB index values are lower on DS2 dataset for wider range of α values,
0 < α ≤ 0.8 than the corresponding value at α = 0 for all history sizes < 4. On
the other hand, this shows an earlier performance degradation with increasing
history size than DS1 dataset. These observations are supported by Figure 3(b).

Figure 4(a) can lead us to conclude that the more the clusters separated, the
less the history needed. It shows almost no need to keep history data. Also this
can be well observed in Figure 4(b). In almost all cases, the pure fuzzy approach
is outperformed for all fuzziness thresholds and history sizes.
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(a) SIC-Means performance for different history sizes

(b) SIC-Means performance for different fuzziness thresholds

Fig. 4. SIC-Means performance on DS3 dataset

5 Conclusion

In this paper, we introduced the combination of incremental and soft clustering
concepts. We incrementally cluster batches of data points using weighted C-
means variant. At any time instant, we consider a new batch of points with
number of old batches of weighted points. These old points represent the cluster
centers in earlier stages of the algorithm.

Combining incremental clustering with soft clustering has shown an ability
to improve the fuzzy clustering results in terms of Xie-Beni index values. This
improvement depends on different factors. From one hand, threshold for allowed
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fuzziness affect the performance. All thresholds of soft clustering used dominate
the pure fuzzy clustering approach. However, considering more history does not
always give better results. Evolving nature of data streams may bias new points
to join the wrong clusters with increasing the history size above some value.
History size value that separates performance improvement from performance
degradation differs with changing the clusters separation. The better the clus-
ters are separated, the lower history size needed. This property fits the limited
memory constraint imposed by the data stream model.

6 Discussion and Future Work

In this work, we have shown the effectiveness of combining soft clustering tech-
nique with C-means based incremental clustering technique. However, more
evaluation techniques can be investigated. We may investigate building a fuzzy
ground truth for evaluation datasets used. Existence of this ground truth will
enable using external validation measures. Also, we may investigate how these
clustering solutions tolerate errors in parameter selection; for example how they
perform when clustering using wrong number of clusters. Other factors worth
investigation are: sensitivity analysis of data input order and effect of using
different dissimilarity measures.
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20. Lühr, S., Lazarescu, M.: Connectivity based stream clustering using localised den-
sity exemplars. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD
2008. LNCS (LNAI), vol. 5012, pp. 662–672. Springer, Heidelberg (2008)

21. Nasraoui, O., Uribe, C., Coronel, C., Gonzalez, F.: Tecno-streams: tracking evolv-
ing clusters in noisy data streams with a scalable immune system learning model.
In: ICDM 2003. Third IEEE International Conference on Data Mining, November
2003, pp. 235–242 (2003)

22. Callaghan, L.O., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-
data algorithms for high-quality clustering. In: Proceedings of the International
Conference on Data Engineering, pp. 685–696. IEEE Computer Society Press, Los
Alamitos (2002)

23. Park, N.H., Lee, W.S.: Statistical grid-based clustering over data streams. SIG-
MOD Record 33(1), 32–37 (2004)



SIC-Means: A Semi-fuzzy Approach for Clustering Data Streams 107

24. Selim, S., Ismail, M.: Soft clustering of multidimensional data: a semi-fuzzy ap-
proach. Pattern Recognition 17(5), 559–568 (1984)

25. Tasoulis, D.K., Adams, N.M., Hand, D.J.: Unsupervised clustering in streaming
data. In: ICDMW 2006: Proceedings of the Sixth IEEE International Conference
on Data Mining - Workshops, pp. 638–642. IEEE Computer Society Press, Los
Alamitos (2006)

26. Tu, L., Chen, Y.: Stream data clustering based on grid density and attraction.
ACM Transactions Knowledge Discovery Data 3(3), 1–27 (2009)

27. Wan, L., Ng, W.K., Dang, X.H., Yu, P.S., Zhang, K.: Density-based clustering
of data streams at multiple resolutions. ACM Transactions Knowledge Discovery
Data 3(3), 1–28 (2009)

28. Xie, X., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on
pattern analysis and machine intelligence 13(8), 841–847 (1991)

29. Yang, C., Zhou, J.: Hclustream: A novel approach for clustering evolving heteroge-
neous data stream. In: ICDMW 2006: Proceedings of the Sixth IEEE International
Conference on Data Mining - Workshops, pp. 682–688. IEEE Computer Society,
Los Alamitos (2006)

30. Yang, J.: Dynamic clustering of evolving streams with a single pass. In: Proceedings
of 19th International Conference on Data Engineering, March 2003, pp. 695–697
(2003)

31. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method
for very large databases. SIGMOD Record 25(2), 103–114 (1996)



The Mathematics of Divergence Based Online
Learning in Vector Quantization

Thomas Villmann1,�, Sven Haase1, Frank-Michael Schleif2, Barbara Hammer2,
and Michael Biehl3

1 Department of Mathematics/Natural Sciences/Informatics,
University of Applied Sciences Mittweida, 09648 Mittweida, Germany

thomas.villmann@hs-mittweida.de
2 Clausthal University of Technology, Institute of Computer Science,

Clausthal-Zellerfeld, Germany
3 Rijksuniversity Groningen,

Johann Bernoulli Inst. for Mathematics and Computer Science, The Netherlands

Abstract. We propose the utilization of divergences in gradient descent
learning of supervised and unsupervised vector quantization as an alter-
native for the squared Euclidean distance. The approach is based on the
determination of the Fréchet-derivatives for the divergences, wich can be
immediately plugged into the online-learning rules. We provide the mathe-
matical foundation of the respective framework. This framework includes
usual gradient descent learning of prototypes as well as parameter opti-
mization and relevance learning for improvement of the performance.

Keywords: vector quantization, divergence based learning, information
theory, clustering, classification.

1 Introduction

The utilization of non-standard metrics in unsupervised and supervised vector
quantization is a challenging topic which has an increasing importance for data
processing. Prototype based vector quantization for clustering and classification
usually is based on the Euclidean distance like the prominent k-means [18], the
self-organizing map (SOM,[15]) or the neural gas (NG,[19]) for unsupervised
data modeling and learning vector quantization schemes (LVQ,[15]) or support
vector machines (SVM,[29]) in case of supervised learning.

However, the standard Euclidean metric may be not appropriate for faith-
ful data processing [25],. Therefore, recent developments extend the standard
approaches by incorporating advanced dissimilarity measures for the data mod-
elling. Examples are in the area of functional data processing and visualization
[17],[22],[33] or more generally – kernelized metrics [21],[12], bilinear forms for
dissimilarities [28] or general dissimilarities [3],[5]. These dissimilarity measures
take into account the structure of the data and, therefore, realize a data adequate
processing, which may lead to better results.

In this paper we concentrate on a special data type – positive measures p (x).
Positive measures are supposed to be positive functions p (x) for the support
� Corresponding author.
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x ∈ Ω. If further
∫

Ω
p (x) dx = 1 holds, p is called a density measure, or simply

density for short. Density data play an important role in many research areas:
For example, spectral data occurring in mass-spectrometry or remote sensing
usually are positive measures or densities [34], [32]. The dissimilarity between
densities (positive measures) is naturally judged by (generalized) divergences.
First vector quantization approaches using divergences apply the batch mode of
learning [2],[13] by means of the expectation-maximization methodology. In this
scheme, all data have to be available at hand, which is not assumed in the online
learning mode of the respective algorithms. Gradient descent leaning usually is
realized as stochastic gradient descent optimization. However, this learning mode
requires the calculation of the derivatives, which determine the adaptation rule
for the prototypes. Thus, we concentrate in this paper, how divergences can be
incorporated into gradient based supervised and unsupervised prototype-based
learning schemes. For this purpose, we have to investigate the derivatives of
divergences, which turn out to be functional derivatives mathematically known
as Fréchet-derivatives.

The paper is organized as follows: We first briefly reconsider SOM/NG and
generalized LVQ (GLVQ,[26]) as widely used representatives for the families of
gradient based unsupervised and supervised vector quantization algorithms to
explain, how the derivatives of the underlying dissimilarity measure come into
play. Thereafter we give the Fréchet-derivatives for several divergence families,
which then can immediately plugged in. Further, we explain some parameter
optimization strategies for parametrized divergences, which are related to hy-
perparameter optimization [27] and relevance learning [10], respectively.

2 Prototype Based Vector Quantization

2.1 Unsupervised Vector Quantization

Prototype based vector quantization (VQ) is a mapping of data v ∈ V ⊆ R
n,

distributed according to the data density P , onto a set W = {wr ∈ R
n}r∈A of

prototypes. The set A is an appropriate index set, D is the input dimension and
N = #A the number of prototypes.

The aim of unsupervised vector quantization during learning is to distribute
the prototypes in the data space such that they represent the data as good as
possible. This property is judged by quantization error

EVQ =
∫
ξ
(
v,ws(v)

)
P (v) dv (1)

based on the dissimilarity measure ξ and

s (v) = argmin
r∈A

[ξ (v,wr)] (2)

being the best matching unit (winner). Hence, the quantization error can be
seen as the expectation value for the mapping error in the winner determination.
Robust approximators for optimum unsupervised vector quantizers are the NG
and SOM.
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For the NG the above cost function EVQ is modified to

ENG =
1

2C (λ)

∑
r

∫
P (v) hσ (r) ξ (v,wr) dv

with the so-called neighborhood function hσ (r) = exp
(

−rank(r)
2σ2

)
and is the rank

function counting the number of prototypes r′ for which ξ (v,wr′) ≤ ξ (v,wr)
holds [19]. For SOM a cost function can be defined by

ESOM =
∫
P (v)

∑
r

δs(v)
r · le (v, r) dv

with local errors le (v, r) =
∑

r′ hσ(r, r′)ξ( v,wr′) and δ
s(v)
r is the Kronecker-

symbol using Heskes’ variant [11]. Here, the neighborhood function hσ(r, r′) =

exp
(

−ξA(r,r′)
2σ2

)
is the distance measured in the index set A.

For SOMs, the index set A is equipped with a topological order usually taken
as regular low-dimensional grid. However, compared with standard SOM the
winning rule in Heskes-SOM is slightly modified:

s (v) = argmin
r∈A

[le (v, r)] . (3)

For both algorithms learning is realized as a stochastic gradient with respect to
the prototypes wr:

�wr = −ε∂ENG/SOM

∂wr
(4)

which contains as an essential ingredients the derivative ∂ξ( v,wr′)
∂wr

.

2.2 Supervised Vector Quantization

The goal of supervised learning vector quantization (LVQ) is the optimization
of the classification accuracy for given data v ∈ V ⊆ R

n equipped with class
labels cv. Further, a class label yr is attached to each prototype. Again, the data
v are mapped onto the winning prototype according to the mapping rule (2).
If cv �= ys(v) a classification error is detected. The overall classification error
cannot be optimized directly by gradient descent learning, because it is not
differentiable. Therefore, it has to be replaced by an differentiable cost function
reflecting essential properties of the classification accuracy. For this purpose the
generalized learning vector quantization (GLVQ) scheme was developed [26]. The
cost function of GLVQ is given by

EGLVQ =
∑
v

μ (v) (5)

defining the classifier function μ (v)

μ (v) =
ξ+ − ξ−

ξ+ + ξ−
. (6)
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with ξ+ = ξ
(
v,ws+(v)

)
. The value s+ (v) is the winning prototype with the ad-

ditional constraint that cv = ys+(v) holds. In analogy, ws−(v) has has minimum

distance ξ− = ξ
(
v,ws−(v)

)
for all prototypes wr with class labels different to

cv, i.e. yr �= cv. Then the generalized LVQ (GLVQ) is derived as gradient de-
scent on the cost function EGLVQ (5) with respect to the prototypes. In each
learning step, for a given data point, both ws+(v) and ws−(v) are adapted in
parallel taking the derivatives ∂EGLVQ

∂ws+(v)
and ∂EGLVQ

∂ws−(v)
:

�ws+(v) = ε+·θ+·
∂ξ
(
v,ws+(v)

)
∂ws+(v)

and �ws−(v) = −ε−·θ−·
∂ξ
(
v,ws−(v)

)
∂ws−(v)

(7)

with the scaling factors

θ+ =
2 · ξ−

(ξ+ + ξ−)2
and θ− =

2 · ξ+
(ξ+ + ξ−)2

. (8)

The values ε+ and ε− ∈ (0, 1) are the learning rates.

3 Divergences as Dissimilarities and Derivatives Thereof

As mentioned in the introduction, frequently the quadratic Euclidean norm is
used for the dissimilarity measure ξ in both supervised and unsupervised vector
quantization. In the following we show how it can be replaced by divergence
measures. Yet, the strategy is straight forward: If the derivative of a divergence
is determined it can be plugged into each gradient based vector quantization
scheme including the above examples SOMs, NG or GLVQ.

Divergences estimate the dissimilarity between density functions or positive
measures. In information theory they are related mutual information [16]. Ac-
cording to the classification given in Cichocki et al. [4], one can distinguish at
least three main classes of divergences, the Bregman-divergences, the Csiszár’s
f -divergences and the γ-divergences [4]. If a divergence D (p||ρ) is given, the
mathematical framework for the functional derivative with respect to ρ is the
concept of Fréchet-derivatives or functional derivatives δD(p||ρ)

δρ [8],[14]. In the
following we will explain the functional derivatives for these divergence classes.
Thereby we assume that p and ρ are positive measures in x ∈ Ω and integrals
are taken according to support Ω.

3.1 Basic Divergences

Let Φ be a strictly convex real-valued function with the domain L (the Lebesgue-
integrable functions). Further, Φ is assumed to be twice continuously Fréchet-
differentiable [14]. Bregman divergences are defined as DB

Φ : L × L −→ R
+

with

DB
Φ (p||ρ) = Φ (p) − Φ (ρ) − δΦ (ρ)

δρ
(p− ρ) (9)
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whereby δΦ(ρ)
δρ is the Fréchet-derivative of Φ with respect to ρ. For the choice

Φ (f) = f2, the Euclidean distance is obtained. The Fréchet-derivative is

δDB
Φ (p||ρ)
δρ

=
Φ (p)
δρ

− Φ (ρ)
δρ

−
δ
[

δΦ(ρ)
δρ (p− ρ)

]
δρ

(10)

An important subset of Bregman divergences are the β-divergences

Dβ (p||ρ) =
∫
p · p

β−1 − ρβ−1

β − 1
dx −

∫
pβ − ρβ

β
dx (11)

with β �= 1 and β �= 0. The Fréchet-derivative is

δDβ (p||ρ)
δρ

= −p · ρβ−2 + ρβ−1 . (12)

In the limit β → 1 the divergence Dβ (p, ρ) becomes the generalized Kullback-
Leibler-divergence

DGKL (p||ρ) =
∫
p log

(
p

ρ

)
dx−

∫
p− ρdx. (13)

with the Fréchet-derivative

δDGKL (p||ρ)
δρ

= −p

ρ
+ 1 (14)

Csiszár’s f -divergences are generated by a convex function f : [0,∞) → R

with f (1) = 0 (without loss of generality) as

Df (p||ρ) =
∫
ρ · f

(
p

ρ

)
dx (15)

with the definitions 0 · f ( 0
0

)
= 0, 0 · f (a

0

)
= limx→0 x · f ( a

x

)
= limu→∞ a · f(u)

u
[6] with the famous Hellinger divergence in case of densities p and ρ [30]:

DH (p||ρ) =
∫

(
√
p−√

ρ)2 dx (16)

with the generating function f (u) = (
√
u− 1)2 with u = p

ρ . The Fréchet-
derivative of Df (p||ρ) writes as

δDf (p||ρ)
δρ

= f

(
p

ρ

)
+ ρ

∂f (u)
∂u

· −p
ρ2 (17)

with u = p
ρ which yields δDH (p||ρ)

δρ = 1−
√

p
ρ . We can identify also an important

subset of f -divergences – the so-called α−divergences [4]:

Dα (p||ρ) =
1

α (α− 1)

∫ [
pαρ1−α − α · p+ (α− 1) ρ

]
dx (18)
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with the generating f−function

f (u) = u

(
uα−1 − 1

)
α2 − α

+
1 − u

α

and u = ρ
p . In the limit α → 1 the generalized Kullback-Leibler-divergence

DGKL (13) is obtained. The Fréchet-derivative is calculated as

δDα (p||ρ)
δρ

= − 1
α

(
pαρ−α − 1

)
. (19)

The α−divergences are closely related to the generalized Rényi-divergences
[1],[23],[24]:

DGR
α (p||ρ) =

1
α− 1

log
(∫ [

pαρ1−α − α · p+ (α− 1) ρ+ 1
]
dx
)

(20)

with the Fréchet-derivative

δDGR
α (p||ρ)
δρ

= − α∫
[pαρ1−α − α · p+ (α− 1) ρ+ 1]dx

δDα (p||ρ)
δρ

. (21)

The very outlier-robust γ-divergence class is defined according to

Dγ (p||ρ) =
1

γ + 1
log

[(∫
pγ+1dx

) 1
γ

·
(∫

ργ+1dx
)]

− log

[(∫
p · ργdx

) 1
γ

]
(22)

proposed by Fujisawa&Eguchi [9]. In the limit γ → 0 Dγ (ρ||p) becomes
the usual Kullback-Leibler-divergence for normalized densities. For γ = 1 the
Cauchy-Schwarz -divergence

DCS (p||ρ) =
1
2

log
(∫

ρ2 (x) dx·
∫
p2 (x) dx

)
− log

(∫
p (x) · ρ (x) dx

)
(23)

is obtained, which was suggested for information theoretic learning by J.
Principe investigating the Cauchy-Schwarz-inequality for norms [20]. The
Fréchet-derivative of Dγ (p||ρ) becomes

δDγ (p||ρ)
δρ

=
ργ(∫

ργ+1dx
) − pργ−1(∫

p · ργdx
) (24)

Due to the lack of space, the derivation of these results can be found in [31].
If we now identify v with a vectorial representation of p and the prototypes w

as the respective ρ representation, the obtained derivative can be immediately
plugged into gradient learning schemes as above outlined.

In an example application we consider the data vectors v ∈ R
2 with ‖v‖ = 1

and v1 distributed in [0, 1] according to the density q (v1) = 2v1. We learned
a one-dimensional SOM for α-, β- and γ-divergences with different parameter
setting. The resulted prototype distributions are depicted in Fig. 1. Obviously,
the influence of the parameter variations is detectable. In particular, the limits
to the Kullback-Leibler-divergence setting are clearly observable.
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Fig. 1. Illustration of divergence based learning. The w1-components of the prototypes
are depicted for learning α-, β-, γ-divergences (from top to bottom). The horizontal
axis is the prottype number. The data distribution was according to q (v1) = 2v1 with
v1 ∈ [0, 1], randomly, and v2 = 1 − v1.
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3.2 Parameter Adaptation in Divergence Based Learning

Considering the parametrized divergence families of γ-, α-, and β-divergences,
one could further think about the optimal choice of the so-called hyperparam-
eters γ, α, and β as suggested in a similar manner for other parametrized
LVQ-algorithms [27]. In case of supervised learning schemes for classification
based on differentiable cost functions, the optimization can be handled as an
object of a gradient descent based adaptation procedure. Thus, the parameter
is optimized in dependence of the classification task at hand.

Suppose, the classification accuracy for a certain approach is given as

E = E (ξη,W )

depending on a parametrized divergence ξη with parameter η and the set
W = {wr} of prototypes. If E and ξη are both differentiable with respect to
η according to

∂E (ξη,W )
∂η

=
∂E

∂ξη
· ∂ξη
∂η

,

a gradient based optimization is derived by

�η = −ε∂E (ξη,W )
∂η

= −ε ∂E
∂ξη

· ∂ξη
∂η

depending on the derivative ∂ξη

∂η for a certain choice of the divergence ξη.
We assume in the following that the (positive) measures p and ρ represent

the data v and prototypes w, respectively. If the measures p and ρ are contin-
uously differentiable, then , considering derivatives of parametrized divergences
∂ξη

∂η with respect to the parameter η, it is allowed to interchange integration and
differentiation, under the assumption that the resulting integral exists [7]. Hence,
we can differentiate parametrized divergences with respect to their hyperparam-
eter in that case. For the several α-, β-, and γ-divergences characterized in sec.
3.1 we obtain after some elementary calculations [31]:

– β-divergence Dβ (p||ρ) from (11)

∂Dβ (p||ρ)
∂β

=
1

β − 1

∫
p

(
pβ−1 ln p− ρβ−1 ln ρ−

(
pβ−1 − ρβ−1

)
(β − 1)

)
dx

−
∫ (

pβ ln p− ρβ ln ρ
) 1
β
− 1
β2

(
pβ − ρβ

)
dx

– α-divergence Dα (p||ρ) from (18)

∂Dα (p||ρ)
∂α

= − (2α− 1)
α2 (α− 1)2

∫ [
pαρ1−α − α · p+ (α− 1)ρ

]
dx

+
1

α (α− 1)

∫
pαρ1−α (ln p− ln ρ) − p+ ρdx
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– generalized Rényi-divergence DGR
α (p||ρ) from (20)

∂DGR
α (p||ρ)
∂α

= − 1
(α− 1)2

log
(∫ [

pαρ1−α − α · p+ (α− 1) ρ+ 1
]
dx
)

+
1

α− 1

∫
pαρ1−α (ln p− ln ρ) − p+ ρdx∫

[pαρ1−α − α · p+ (α− 1) ρ+ 1]dx

– Rényi-divergence DR
α (p||ρ) from (20) for normalized densities

∂DGR
α (p||ρ)
∂α

= − 1
(α− 1)2

log
(∫

pαρ1−αdx
)

+
1

α− 1

∫
pαρ1−α (ln p− ln ρ) dx∫

pαρ1−αdx

– γ-divergence Dγ (p||ρ) from (22)

∂Dγ (p||ρ)
∂γ

= − (2γ + 1)

γ2 (γ + 1)2
ln
(∫

pγ+1dx
)

+
∫
pγ+1 ln pdx

(γ + 1)γ
∫
pγ+1dx

− 1
(γ + 1)2

ln
(∫

ργ+1dx
)

+
∫
ργ+1 ln ρdx

(γ + 1)
∫
ργ+1dx

+
1
γ2 ln

(∫
p · ργdx

)
−
∫
pργ ln ρdx

γ
∫
p · ργdx

3.3 Relevance Learning for Positive Measures

Density functions are required to fulfill the normalization condition whereas
positive measure are more flexible. This offers the possibility to transfer the
idea of relevance learning also to divergence based learning vector quantization.
Relevance learning in learning vector quantization is weighting the input data
dimensions such that classification accuracy is improved [10].

In the framework of divergence based gradient descent learning we multi-
plicatively weight a positive measure q (x) by λ (x) with 0 ≤ λ (x) < ∞ and the
regularization condition

∫
λ (x) dx = 1. Incorporating this idea into the above

approaches we have to replace in the divergences p by p · λ and ρ by ρ ·λ. Doing
so we can optimize λ (x) during learning for better performance by gradient de-
scent optimization of the GLVQ cost function (5) as it is known from vectorial
relevance learning but paying now attention to the utilization of divergences.
This leads here, again, to Fréchet-derivatives of the incorporated divergence D
but now with respect to the weighting function λ (x) – δD(λ·p||λ·ρ)

δλ .
In particular we obtain for the Bregman divergence

δDB
Φ (λ · p||λ · ρ)

δλ
=
Φ (λ · p)
δλ

− Φ (λ · ρ)
δλ

−
δ
[

δΦ(λ·ρ)
δρ λ (p− ρ)

]
δλ

(25)

with
δ
[

δΦ(λ·ρ)
δρ λ (p− ρ)

]
δλ

= (p− ρ)
(
δ2 [Φ (λ · ρ)]

δρ δλ
λ+

δΦ (λ · ρ)
δρ

)
.
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This yields for the generalized Kullback-Leibler-divergence

δDGKL (λ · p||λ · ρ)
δλ

= p · log
(
p

ρ

)
− p+ ρ . (26)

Further, for the β-divergences (11) we have

δDβ (λ · p||λ · ρ)
δλ

=
ρ · (λ · p)β + (ρ · (β − 1) − p · β) · (λ · ρ)β

λρ (β − 1)
. (27)

For f -divergences (15) we consider with u = p
ρ

δDf (λ · p||λ · ρ)
δλ

= ρ · f
(
p

ρ

)
+ λ · ρ∂f (u)

∂u

δu

δλ

= ρ · f
(
p

ρ

)
(28)

because of δu
δλ = 0. The relevance learning of α-divergences (18) follows

δDα (λ · p||λ · ρ)
δλ

=
1

α (α− 1)

[
ρ ·
((

p

ρ

)α

+ α− 1
)
− p · α

]
, (29)

whereas the respective gradient of generalized Rényi-divergences (20) can be
derived from this as

δDGR
α (λ · p||λ · ρ)

δλ
=

α∫ [
λ ·
(
ρ ·
(

p
ρ

)α

− α · p + (α − 1) · ρ
)

+ 1
]
dx

δDα (λ · p||λ · ρ)
δλ

.

(30)

The γ-divergences finally yields

δDγ (λ · p||λ · ρ)
δλ

=
p (λ · p)γ

γ
∫

(λ · p)γ+1
dx

+
ρ (λ · ρ)γ∫

(λ · ρ)γ+1
dx

− p · (γ + 1) · (λ · ρ)γ

γ
∫

(λ · p) · (λ · ρ)γ
dx

.

Again the important special case γ = 1 is considered: the relevance learning
scheme for the Cauchy-Schwarz divergence (23) is derived as

δDCS (λ · p||λ · ρ)
δλ

=
p · λ · p∫
(λ · p)2 dx +

ρ · λ · ρ∫
(λ · ρ)2 dx − 2 · p · λ · ρ∫

λ2 · p · ρdx . (31)

As before, if we identify p and ρ with the data v and the prototypes w, the
derivatives can be immediately put into a gradiend descent learning scheme.

4 Conclusion

In this article we provide the mathematical foundation for divergence based
supervised and unsupervised vector quantization bearing on the derivatives of
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the applied divergences. For this purpose, we first characterized the main sub-
classes of divergences, Bregman-, α-, β-, γ-, and f -divergences following [4].
The mathematical framework of Fréchet-derivatives is then used to calculate the
functional divergence derivatives.

We exemplary explain the utilization of this methodology for famous exam-
ples of supervised and unsupervised vector quantization including SOM, NG,
and GLVQ. Further, we discuss, how a parameter adaptation could be inte-
grated in supervised learning to achieve improved classification results in case
of the parametrized α-, β-, and γ-divergences. In the last step we considered a
weighting function for generalized divergences based on positive measures. The
optimization scheme for this weight function for a given classification task is
again obtained by Fréchet derivatives, and one ends up with a relevance learn-
ing scheme analogously to relevance learning for usual (Eulidean) supervised
learning vector quantization [10].
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32. Villmann, T., Merényi, E., Hammer, B.: Neural maps in remote sensing image
analysis. Neural Networks 16(3-4), 389–403 (2003)

33. Villmann, T., Schleif, F.-M.: Functional vector quantization by neural maps. In:
Chanussot, J. (ed.) Proceedings of First Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing (WHISPERS 2009), pp. 1–4. IEEE
Press, Los Alamitos (2009)

34. Villmann, T., Schleif, F.-M., Kostrzewa, M., Walch, A., Hammer, B.: Classification
of mass-spectrometric data in clinical proteomics using learning vector quantization
methods. Briefings in Bioinformatics 9(2), 129–143 (2008)

http://www.uni-leipzig.de/~compint/mlr/mlr_01_2010.pdf


Cluster Analysis of Cortical Pyramidal Neurons
Using SOM

Andreas Schierwagen1,�, Thomas Villmann2, Alan Alpár3, and Ulrich Gärtner3

1 Institute for Computer Science, University of Leipzig, 04109 Leipzig, Germany
schierwa@informatik.uni-leipzig.de

2 Department of Mathematics/Physics/Computer Sciences,
University of Applied Sciences Mittweida, 09648 Mittweida, Germany

3 Department of Neuroanatomy, Paul Flechsig Institut for Brain Research,
University of Leipzig, 04109 Leipzig, Germany

Abstract. A cluster analysis using SOM has been performed on mor-
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1 Introduction

In the neurosciences, brain organization is studied at different levels both in
ontogenetic and phylogenetic development. At the cellular level, neurons in dif-
ferent brain regions of one species and in the same brain region of different
species are compared with respect to their structural and functional properties.
We find a great variety in neuronal shapes and cell types, as well as a large vari-
ability within neuron classes (Fig. 1, left). Neuronal structure is characterized
by elongated processes (neurites); among them, two kinds can be differentiated,
the often-branching dendrites and the axon. From a functional point of view,
axons and dendrites are conduits for electrical and chemical signals. The shapes
of neurites determine both the routes for signal transmission within the nervous
system and the way in which electrical signals are processed and transmitted [1].

The formation of a neuron’s dendritic and axonal branching patterns is partly
determined by genetic factors and partly by interactions with the surrounding
tissue. The invention of transgenic mice mutations has provided important means
for understanding gene function. In these mutants, gene overexpression may
affect several organs and tissues, including the cells and networks of the brain.

In the following, we describe the method of morphological quantification (neu-
romorphometry) and its use for classification of pyramidal neurons. More specif-
ically, neurons in the same brain region (somatosensory cortex) of two ’species’
of mice (wildtype and transgenic type) have been compared with respect to
their shape properties. Shape classification was performed with an unsupervised
learning method, i.e. Kohonen’s self-organizing maps.
� Corresponding author.
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Fig. 1. Pyramidal neurons from layers II/III of synRas mouse cortex. Left: light micro-
graph of retrogradely labelled neurons, right: pyramidal neuron rendered with CVAPP.

2 Materials and Methods

2.1 Experimental Basis and Reconstructions

We used data derived from experiments with three synRas mice aged nine
months as well as with three wildtype mice of the same age. The details of experi-
mental procedures have been described in [2]. The main deliverables were two sets
of retrogradely labelled pyramidal cells (28 cells from wildtype and 28 cells from
transgenic mice) which were reconstructed (Fig. 1) using NeurolucidaTM (Micro-
BrightField, Inc.). The system allowed accurate tracing of the cell processes in
all three dimensions and continuous adjustment of the dendritic diameter with a
circular cursor. A motorized stage with position encoders enabled the navigation
through the section in the xyz axes and the accurate acquisition of the spatial
coordinates of the measured structure. All visible dendrites were traced without
marking eventual truncation of smaller dendritic sections. This may have led to
certain underestimation of the dendritic tree, especially in synRas mice with
a larger dendritic tree. To gain both optimal transparency for optimal tracing
facilites and at the same time a possibly complete neuronal reconstruction, sec-
tions of 160 μm thickness were used. Thicker sections allowed only ambiguous
tracing of thinner dendritic branches. Shrinkage correction was carried out in
the z axis, but not in the xy plane, because shrinkage was negligible in these
dimensions [2].
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2.2 Editing and Conversion of Morphology Files

The morphology files created in this way were processed with CVAPP [3], a cell
viewing, editing and format converting program for morphology files (Fig. 1,
right). In particular, CVAPP has been used to edit and convert the Neurolu-
cida ASCII files to the SWC format describing the structure of a neuron in
the simplest possible way. In this format, each line encodes the properties of a
single neuronal compartment. The format of a line in a SWC file is as follows:
nTxyzRP . In turn, these numbers mean: (1) an integer label (increasing by
one from one line to the next) that identifies the compartment, (2) an integer
that represents the type of neuronal segment (0-undefined, 1-soma, 2-axon, 3-
dendrite, 4-apical dendrite, etc.); (3)-(5) xyz coordinates of compartment, (6)
radius of compartment, (7) parent compartment (defined as -1 for the initial
compartment).

2.3 Terminology and Shape Characteristics

Neurons are 3D objects, and the location of their cell bodies within the nerve
tissue, as well as the number, spatial extent, branching complexity and 3D
embedding of their axonal and dendritic arborizations, are prominent shape
characteristics that may differ significantly between cell types. Morphological
measurements of these characteristics (neuromorphometry) can be described as
follows [4,5].

The dendrites of a neuron are representeded as trees of segments arising from
the cell body (soma). A segment is defined as a portion of dendrite extend-
ing between two branching points (intermediate segments), or between a node
(branching point) and a tip (terminal segments). Dendritic segments are approx-
imated by cylindric sections of length l and diameter d. The distance from the
soma to a point on the dendritic tree measured along the course of the segments
lying inbetween is the path length which is generally greater than the Euclidean
distance between the corresponding points. Measurements of dendritic trees can
be differentiated into metrical and topological ones. Measurements include the
length and diameter of the segments, path lengths, Euclidean distances of termi-
nal tips from the cell soma and branching angles. A different class of measures is
concerned with the spatial embedding in 3D space and focuses on, e.g., the spa-
tial extension, spatial density, spatial orientation, and space filling (fractality)
of the structure [6].

Dendritic trees may be categorized by topological type depending on the pat-
terning of segments, independently of metrical and orientation features. The tree
is reduced to a skeleton structure of points (branching or terminal points) and
segments between these points. Such a skeleton forms a specific tree out of a
finite set of possible different topological tree types. The tree-asymmetry index
provides a discriminative measure based on asymmetries of pairs of subtrees at
bifurcations. Other parameters used are order and degree (Fig. 2).
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Fig. 2. Representation of dendritic topology. The tree is depicted by a set of connected
segments (A) which are labeled by the degree of their subtrees (B) and their centrifugal
order (C).

The order γ represents the topological distance from the soma. Its value is
an integer incremented at every bifurcation (centrifugal order). A value of γ = 0
is assigned to the primary segments, i.e. those emerging directly from the soma.
The degree n represents the number of tips of a subtree (or partition) stemming
from a segment. In a binary tree, it is related to m, the number of segments of the
partition, by m = 2n− 1. The dendritic systems of pyramidal cells are divided
into basal and apical parts. Each of the subdivisions is considered separately
(see Section 3).

All morphologic measurements were extracted from the anatomical files by
using the L-Measure software [7]. This software allows the automated extraction
of multiple sets of neuroanatomical parameters from reconstructed neurons. Our
neuron data included no (or only partial) reconstructions of the axon; thus only
the soma and the dendritic trees (basal and apical separately) were considered. L-
Measure allows to derive more than 40 neuroanatomical parameters; a number of
them, however, are correlated with each other. Thus, we selected 19 independent
morphometric parameters (see Table 1) for each of which mean value, standard
deviation, minimum and maximum were calculated.

2.4 Feature Space Representation

The shape of a given neuron in three-dimensional space can be characterized
by the vector x = [x1, x2, ..., xN ] where xi stands for any measurement. If x
allows the original shape to be reconstructed to a specified degree of accuracy,
x provides a (more or less) complete representation of the original shape. In the
present case, the dimension of the feature space is 19 × 4 = 76.

The vector x can be displayed as point in the respectiveN -dimensional feature
space. Neurons belonging to two distinct neural classes can be characterized by
clouds of points in the feature space. Provided the measures are sound, vectors
defined by similar neurons will be located close to each other in the feature space,
while those corresponding to different neurons will tend to be distant from each
other. This means, the Euclidean distance in the feature space is related to the
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Table 1. Definitions of morphological parameters used in this study

Bifurcations Number of dendritic bifurcations (nodes)
Segments Number of dendritic segments
Trees Number of dendritic trees arising from the soma
Tips Number of terminal segments per dendritic trees (tree

degree)
Segment order Number of bifurcations between soma and terminal tips
Partition asymmetry Partition asymmetry of a subtree, defined as Ap = |r−l|

r+l−2
,

with r and l the degrees of the two sub-subtrees
Diameter Diameter of a segment
Segment length Length of a dendritic segment
Daughter ratio Diameter ratio of the two daughter segments at a bifur-

cation
Parent–child ratio Diameter ratio between parent and daughter diameter at

a bifurcations
Last parent diameter Diameter of parent segment of the last bifurcation before

tips
Rall’s power Best fitting parameter n for Rall’s formula: dn

p = dn
a +dn

b ,
where dp , da, db, are the parent diameter and the two
daughter diameter

Segment taper Taper rate per segment, calculated as the difference be-
tween final and initial diameter divided by the initial di-
ameter at each segment

Unit taper rate Taper rate per unit length, calculated as the difference
between final and initial diameter divided by the segment
length

Euclidean distance Euclidean distance between soma and segment
Path distance Path distance between soma and segment
Contraction Ratio between the Euclidean distance and the distance

along the path
Local bifurcation angle Angle between the two daughters at each bifurcation
Remote bifurcation angle Angle between the tips of the two daughters of each bi-

furcation

dissimilarity between the shape of the respective cells. It is therefore obvious to
approach the problem of classifying nerve cells through a procedure of clustering
the respective vectors in the feature space.

2.5 Cluster Analysis

The data classification was realized using the Kohonen Self-Organizing Map
(SOM) algorithm [8] to map the complex database on the two-dimensional plane
visualizing the synRas activation effect, and to designate the relevant variables
contributing to the model.

The SOM algorithm is an unsupervised learning procedure which can be sum-
marized as follows. The data are assumed to be n-dimensional real data vectors
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v ∈ V which are mapped onto a set W = {wr}r∈A of prototypes. Thereby, A
is an usually two-dimensional discrete lattice and N = #A is the number of
prototypes. SOMs, here taken in the variant of T.Heskes [9], minimize the cost
function

E =
∫
P (v)

∑
r

δs(v)
r

∑
r′
hσ(r, r′)( v − wr′)2dv (1)

with δ
s(v)
r being the Kronecker-symbol and P (V ) is the data distribution. The

neighborhood function

hσ(r, r′) = exp
(−‖r − r′‖

2σ2

)
(2)

describes the learning cooperativeness between the lattice nodes. Learning of the
prototypes is realized as a stochastic gradient descent on the cost function E for
decreasing neighborhood range σ with respect to the prototypes wr:

�wr = −ε ∂E
∂wr

(3)

= exp
(−‖s (v)−r‖

2σ2

)
(v − wr) (4)

whereby

s (v) = argmin
r∈A

[∑
r′
hσ(r, r′)(v − wr′)2

]
. (5)

is the so–called winning node. The mapping rule (5) determines a winner–take–
all learning.

SOMs can be taken as a mapping of high-dimensional data onto a low-
dimensional lattice [10]. Under certain conditions this mapping is topology pre-
serving, i.e. similar data points are mapped onto neighbored lattice neurons or
the same lattice node [11]. Yet, this topographic mapping can not be achieved for
any data-lattice-configuration. Growing variants of SOM (GSOM) try to adapt
the edge length ratio as well as the dimensionality of the lattice to result a
topographic map [12].

Nevertheless, topography has to be judged after SOM-learning by respective
quality measures to assure topography. For this purpose, the robust topographic
product (TP) is frequently applied [13]. It calculates the averaged distortion of
distance ratios within the set of prototypes and relates these to the respective
node distance ratios within the SOM-lattice. The TP yields approximately zero-
values for topology preserving mapping whereas values deviating significantly
from zero indicate violations in topographic mapping. For a detailed description
we refer to [13]. If the SOM is topology preserving then further investigations like
component plane analysis or other can be applied. Component planes picture the
value distribution of the prototypes wr for a single data dimension. Thereby, the
prototypes are arranged according to the position of their assigned lattice nodes
r. In this way, the topological ordering of the prototypes can be visualized.
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Fig. 3. SOM frequency map for neuron morphometry data. It shows the distribution
of the samples, wildtype (WT) and transgenic neurons (SE), over each SOM node.

One method to detect clusters in the lattice space of SOMs is the U-Matrix
method [14]. The U-matrix for a two-dimensional rectangular lattice A of size
n1×n2 has the size (2n1 − 1)×(2n2 − 1) and is calculated according the following
scheme: For each lattice node r = (r1, r2) the matrix element u2r1,2r2 is the
mean of the distances of the prototype wr to those prototypes wr′ for which
r′ is a neighbored node in the rectangular lattice A. The elememt u2r1−1,2r2 is
the distance to the prototype wr′ with r′ = (r1 − 1, r2). The other neighbored
matrix elements of the entry u2r1,2r2 are calculated accordingly. Thus, matrix
entries give an indication of cluster boundaries between the respective nodes
in case of a topographic mapping. Therefore, topology preservation is strongly
demanded for correct interpretation [10].

The SOM analysis was performed in MATLAB with the publicly available
SOM Toolbox [15].

3 Results

For the given data set of 56 data points, each containing the n = 76 morpho-
logical features, GSOM yielded a 4 × 3 lattice (Fig. 3). As we can see, each
SOM node was hit by pyramidal neuron data. Some nodes were hit either only
by transgenic (SE) or by wildtype (WT) neuron data, and others by both. The
overall classification accuracy after labeling the map by majority vote is about
77% which refers to non-random partitioning but with class overlap.

After learning the TP was calculated to measure the map quality. It yielded a
value of 0.0078 indicating a good topology preservation. This topological ordering
can also be seen considering the component planes (CP) of the map (Fig. 4). To
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make it more accessible, only the first 20 of the 76 parameters were presented as
CPs. Shown are the values of only one feature in each map unit (in the original
by color-coding). These planes show a clear structure and refer to correlated
features if the respective planes look similar in the value distribution.

Fig. 4. Component planes of the SOM in Fig. 3

If we take for example the parameters 3 and 5, we see that the CPs of these
two features are quite similar, meaning that the distances of these values in the
same area of the map correlate. According to the parameter coding list, the two
parameters represent the number of bifurcations and the number of branches
of the basal dendritic tree. Here a correlation is actually present, because for
binary trees a strict relationship holds (see Section 2.3). Comparing the class
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distribution (Fig. 3) with the component planes one can further detect features
which are distinguishing for the classes. For example, low values in the features
8–13 refer with high probability to wildtype pyramidal neurons.

Fig. 5. U-Matrix of generated SOM

The topological ordering allows further investigations by computing the U-
Matrix. Fig. 5 shows the U-Matrix of the 28 wildtype and 28 synRas pyramidal
neurons on a size 4×3 SOM. The U-Matrix indicates that the data space can be
divided in regions of different data density. The right part of the map has very
high density whereas in the left part the density is moderate or low (left upper
corner). Further, we see from the frequency map (Fig. 3) that the data of the
wildtype pyramidal neurons are mainly mapped onto the dense part of the map.
Hence, the parameter of these data have a low variance whereas the variety for
the transgenic pyramidal neurons is higher (upper left corner).

4 Conclusion

In this paper, we described a neuromorphometry protocol and its application for
classification of cortical neurons using Kohonen SOM. We employed the visual-
ization capabilities of the SOM method – the U-matrix and the component plane
representation – to analyze samples of pyramidal neurons of the somatosensory
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cortex of wildtype and transgenic mice with respect to their shape properties.
Our primary goal was to explore the question of whether pyramidal neurons
from layer II/III of the somatosensory cortex of wildtype and of transgenic mice
should be considered as members of two different classes or not.

In previous studies, we obtained ambiguous results which needed clarification.
In Ref. [2], we found that the volume of the neocortex of synRas mice is expanded
up to 25% as compared to wildtype mice. This is due to the dramatically en-
larged volume of the cortical pyramidal cells caused mainly by increased dendritic
diameter and tree degree, whereas the number of neurons remains unchanged.
Changes are generally less prominent in layers II/III than in layer V. For ex-
ample, topological analyses revealed significant differences between synRas and
wildtype mice regarding any parameters considered, i.e., number of intersections,
branching points (nodes) and tips (leaves), in both basal and apical dendrites of
layer V neurons but not of layers II/III neurons. Thus, while pyramidal neurons
from layer V of synRas and wildtype mice cortex can be clearly considered as
members of different classes, the situation has been ambiguous for layer II/III
neurons.

Our study has demonstrated that the SOM can be successfully employed for
resolving the shape classification problem of layer II/III neurons. As a result of
SOM–learning, pooled data of the two samples were clustered with classification
accuracy of 77%. This means, the data were non-random partitioned but with
class overlap. Both the topological product of 0.0078 and the component planes
of the map indicate a good topology preservation.

In particular, the consideration of the component planes suggests that se-
lected features may be sufficient for classification. For this investigation a more
detailed analysis is required. In future work, we plan to use the method of su-
pervised learning vector quantization with relevance learning for classification,
which automatically provides a classification dependent feature weighting [16].
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logical Phenotyping in Transgenic Mice: A Multiscale Fractal Analysis. In: Deutsch,
A., et al. (eds.) Mathematical Modeling of Biological Systems, vol. II, pp. 191–199.
Birkhuser, Boston (2007)

7. Scorcioni, R., Polavaram, S., et al.: L-Measure: a web-accessible tool for the anal-
ysis, comparison and search of digital reconstructions of neuronal morphologies.
Nat. Protocols 3, 866–876 (2008)

8. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997)
9. Heskes, T.: Energy functions for Self-Organizing Maps. In: Oja, E., Kaski, S. (eds.)

Kohonen Maps, pp. 303–316. Elsevier, Amsterdam (1999)
10. Bauer, H.-U., Herrmann, M., Villmann, T.: Neural Maps and Topographic Vector

Quantization. Neural Networks 12, 659–676 (1999)
11. Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology Preservation in Self–

Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions
on Neural Networks 8, 256–266 (1997)

12. Bauer, H.-U., Villmann, T.: Growing a Hypercubical Output Space in a Self–
Organizing Feature Map. IEEE Transactions on Neural Networks 8, 218–226 (1997)

13. Bauer, H.-U., Pawelzik, K.: Quantifying the neighborhood preservation of Self-
Organizing Feature Maps. IEEE Transactions on Neural Networks 3, 570–579
(1992)

14. Ultsch, A., Siemon, H.P.: Kohonen’s self–organizing feature maps for exploratory
data analysis. In: Proceedings of ICNN 1990, International Neural Network Con-
ference, pp. 305–308. Kluwer, Dordrecht (1990)

15. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Toolbox for Mat-
lab 5. Report A57, April 2000. Helsinki University of Technology, Finland (2000)

16. Hammer, B., Villmann, T.: Generalized Relevance Learning Vector Quantization.
Neural Networks 15, 1059–1068 (2002)



Parallelized Kernel Patch Clustering

Stefan Faußer and Friedhelm Schwenker

Institute of Neural Information Processing, University of Ulm, 89069 Ulm, Germany
{stefan.fausser,friedhelm.Schwenker}@uni-ulm.de

Abstract. Kernel based clustering methods allow to unsupervised par-
tition samples in feature space but have a quadratic computation time
O(n2) where n are the number of samples. Therefore these methods are
generally ineligible for large datasets. In this paper we propose a meta-
algorithm that performs parallelized clusterings of subsets of the samples
and merges them repeatedly. The algorithm is able to use many Kernel
based clustering methods where we mainly emphasize on Kernel Fuzzy
C-Means and Relational Neural Gas. We show that the computation
time of this algorithm is basicly linear, i.e. O(n). Further we statistically
evaluate the performance of this meta-algorithm on a real-life dataset,
namely the Enron Emails.

1 Introduction

Having a large dataset of possibly 100, 000 samples or more imposes several prob-
lems on an unsupervised clustering algorithm. While prototype-based clustering
algorithms acting in input space, especially k-means, have a linear computation
time to cluster the samples they still need to pass multiple times over the sam-
ples - one pass per iteration to adapt the prototypes until they converge. This
even gets more computationally expensive for Kernel based clustering methods.
Kernel based clustering methods allow to unsupervised partition samples in fea-
ture space. Often those samples are nonlinear distributed in input space and are
easier to partition in a certain feature space which makes the Kernel methods
more useful. However Kernel based clustering methods have the main penalties
that they have a quadratic computation time and cannot express the prototypes
directly but with a convex combination of existing samples. Therefore multiple
passes over the dataset gets even more costly for the Kernel based clustering
methods.

To reduce the passes over the data, Fahim et al. [1] have observed that certain
samples near to their cluster centre stay in their cluster for some iterations and
therefore the distance calculation and assignment steps can be ommited for those
samples. However these observations only apply to standard k-means, i.e. needs
convex cluster shapes and hard sample to cluster assignments. A slightly older
but still popular attempt to cluster large datasets is the CLARANS algorithm [2]
which approximates a k-medoid method that minimizes the search in the dataset
by heuristics and two parameters. Other efforts have been made to parallelize
the k-median algorithm (Guha et al. 2000 - 2003) [3] by independently clustering
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data streams (or Patches) to gain lk weighted cluster (which are represented by
samples), where l is the number of parallelized clusterings, and then cluster again
the lk samples to finally gain k cluster. First attempts to parallel cluster samples
in subsets with k-means and exchange their statistics have been done as well [4]
and speeded up the standard k-means algorithm by O(k/2). Later on, Guhas
popular method [3] has been extended for other prototype-based clustering al-
gorithms, namely k-means and batch neural gas [5]. Speed ups for the Kernel
based methods to cluster large datasets have been done in Kernel K-Means [6]
by block-wise calculating and processing the Kernel matrix which represents the
similarities between the samples. In a recent scientific paper, Hasenfuss et al
[7] have extended Guhas method furthermode with the Relational Neural Gas
method (called Patch Relational Neural Gas) but restricted it for the time being
to a sequential clustering procedure.

Our contribution in this paper is a generalization of the Patch Relational
Neural Gas algorithm [7] to integrate multiple Kernel based clustering methods
and call this algorithm simple the Kernel Patch Clustering (KPC) method. We
additionally show the integration of Kernel Fuzzy C-Means and Kernel K-Means
within the KPC method and the new assignment update formulas. This expands
the algorithm generally for soft memberships. Furthermore we describe a meta-
algorithm that performs parallelized clusterings of subsets of the samples using
the Kernel Patch Clustering method and merges them repeatedly. It can be
shown that the computational time is linear regarding the amount of samples.
Lastly we statistically evaluate the performance of this meta-algorithm on a real-
life dataset, namely the Enron Emails and show that Kernel Fuzzy C-Means with
its soft memberships integrated in KPC perform better than Relational Neural
Gas with its hard memberships.

2 Kernel Based Methods for Clustering

Typically most divisive clustering methods aim to minimize a common quan-
tization error. Assume that we want to partition x1, x2, . . . , xN samples in K
disjoint sets or cluster and each cluster has a representing prototype ck then the
actual quantization error or intra-cluster variance (ICV) can be written as:

E =
K∑

k=1

N∑
i=1

fk(i)d(ck, xi) (1)

where fk(i) is a hard or bounded soft assignment of sample i to cluster k and
d(ck, xi) is the distance between sample xi and cluster prototype ck. If d(ck, xi) is
measured by the euclidean distance and fk(i) is a hard assignment then E is the
exact quantization error that k-means minimizes. This happens by repeatedly 1.
updating fk(i): assign samples to clusters based on their distance to their nearest
prototypes and 2. updating ck: move prototypes to their cluster centres until the
prototypes converges locally. For the euclidean distance the general function to
calculate the current prototypes is as follows:
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ck =
∑N

i=1 fk(i)xi∑N
i=1 fk(i)

Now suppose that we would transform all samples xi ∈ X and prototypes ck ∈ X
to a (higher dimensional) feature space using the mapping function φ : X → F

that maps X from input space to a possible high-dimensional feature space F.
This would allow us to calculate the prototypes in feature space. Unfortunately
such mapping functions are costly and often unknown. Still we can calculate
the distance between such (theoretically) transformed samples using a positive-
definite and symmetric kernel κ(xi, xj) and applying the kernel trick, i.e. define
the prototypes as linear combinations of existing transformed samples. Now fur-
ther assume that we want to weight each sample i with a weight w(i). We can
then set up the new weighted distance function dweighted(φ(ck), φ(xi)) in feature
space. The distance function dweighted(φ(ck), φ(xi)) can be written as:

dweighted(φ(ck), φ(xi)) = ||φ(xi) −
∑N

j=1 f
φ
k (j)w(j)φ(xj)∑N

j=1 f
φ
k (j)w(j)

||2 (2)

= 〈φ(xi), φ(xi)〉 − 2

〈
φ(xi),

∑N
j=1 f

φ
k (j)w(j)φ(xj )∑N

j=1 f
φ
k (j)w(j)

〉
+〈∑N

j=1 f
φ
k (j)w(j)φ(xj )∑N

j=1 f
φ
k (j)w(j)

,

∑N
j=1 f

φ
k (j)w(j)φ(xj )∑N

j=1 f
φ
k (j)w(j)

〉

= κ(xi, xi) −
2
∑N

j=1 f
φ
k (j)w(j)κ(xi, xj)∑N

j=1 f
φ
k (j)w(j)

+

∑N
j=1
∑N

l=1 f
φ
k (j)fφ

k (l)w(j)w(l)κ(xj , xl)

[
∑N

j=1 f
φ
k (j)w(j)]2

Note that there are many repeatings in the above formula that have to be cal-
culated in the right order to avoid wasting computational time. Contrary to
standard k-means where we iteratively update the prototypes we can here only
repeatedly update the assignments by calculating and comparing the distances.
For Weighted Kernel K-Means the assignment update step is:

fφ
k (i) =

⎧⎪⎨⎪⎩
1, if dweighted(φ(ck), φ(xi)) < dweighted(φ(cl), φ(xi)),

l = 1, . . . ,K, l �= k

0, else
(3)

For Weighted Kernel Batch Neural Gas or Weighted Relational Neural Gas [9]
the assignment update step is:

fφ
k (i) = exp

(−rank(φ(ck), φ(xi))
λ

)
(4)

where rank(φ(ck), φ(xi)) = |{φ(cl) | dweighted(φ(cl), φ(xi)) < dweighted(φ(ck),
φ(xi)), l = 1, . . . ,K, l �= k}| ∈ {0, . . . ,K − 1}. Lastly the assignment update
steps for Weighted Kernel Fuzzy C-Means [8] gets:
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fφ
k (i) =

1∑K
l=1[

dweighted(φ(ck),φ(xi))
dweighted(φ(cl),φ(xi))

2
m−1 ]

(5)

The output of such a Kernel based clustering method is then the assignments f
that determines the hard (Relational Neural Gas, Kernel K-Means) or soft (Ker-
nel Fuzzy C-Means) assignments of the given samples to K cluster. Comparing
the three algorithms, Kernel Fuzzy C-Means and Relational Neural Gas are more
insensitive to initializations as both algorithms update their indirectly defined
prototypes not only by their greedy winner samples but also by other samples
determined through neighborhood size λ (Relational Neural Gas) or fuzzifier m
(Kernel Fuzzy C-Means). The Kernel Fuzzy C-Means algorithm however has the
plus that it uses soft assignments, i.e. gives possibly more information on the
data. On the other hand if fuzzifier m→ 1 then this algorithms behaves exactly
like Kernel K-Means. All three Kernel methods have the same drawback that
they have a quadratic computation time O(N2) which renders them unusable
for vast datasets.

3 Kernel Patch Clustering

Assume that we have N samples that we want to separate in K sets but we only
can cluster up to M samples with one of the Kernel based clustering methods
described above due to the high required computational time. Now suppose that
we select instead the first M samples out of N , i.e. set up a Patch, cluster them
into K cluster and choose the best k samples per cluster as approximative cluster
prototypes. This results in exactly k ·K samples that represent K cluster. Now
they can be weighted by the number of samples they represent and can be itself
clustered with the next M samples. This can be iterated until every N samples
have been processed in Patches with a maximum size of M and k ·K samples
representing the final K prototypes are left. Let us now formulate these thoughts
in the following Kernel Patch Clustering algorithm:

– Input:
• kernel function κ, samples x ∈ XN

• number of patches C, whereas C = N
M , M = maximum samples to cluster

per patch
• number of cluster K
• number of samples per cluster k
• choose one Kernel clustering method (Kernel K-Means, Kernel Fuzzy

C-Means, Relational Neural Gas)
– Initialize:

• I = arbitrary permutation of {1, . . . , N}
• J0 = {∅}
• w0 = {∅}
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– for t = 1 to C
• Construct Patch Pt ∈ R

|St|×|St| with sample indices
St = {J(t−1), I(t−1) N

C
, . . . , It N

C
} using kernel funktion κ and samples x.

This Patch Pt has now the similarities between all current choosen sam-
ples {I(t−1) N

C
, . . . , It N

C
} plus the last k-approximation of the prototypes

J(t−1). Append the vector {1}N
C to the weights wt−1 so that the whole

weight vector wt has a length of k ·K + N
C (or a length of N

C for the first
time)

• Arbitrary initialize cluster assignments fold ∈ R
K×|St| and perform se-

lected Kernel clustering method using weights wt−1 and Patch Pt with
K cluster to get new cluster assignments fnew ∈ R

K×|St|
• Select the k best samples for each cluster K out of St using the k-

approximation (6), the assignments fnew and the distance function for
the selected clustering method. Fill the sample indices in Jt ∈ N

K·k
• Calculate the new weights wnew

tl = {ml

k } ∈ R
k, for l = 1, . . . ,K, where

ml is the number of samples belonging to cluster l. Form the weight
vector wt = {wnew

t1 , . . . , wnew
tK }

– Output:
• k-approximation of final prototypes JC

• final cluster assignments fnew

Note that the number of PatchesC has to be choosen such that it is still computa-
tionally possible to cluster N

C +k ·K samples per Patch. For the k-approximation
we simply determine the k samples that are nearest to their own cluster centre
(prototype) and do that for each cluster l (as introduced in [7] for Relational
Neural Gas):

argmini|gφ
l (i)=1(d(φ(xi), φ(cl))), l = 1, . . . ,K (6)

The above equation has to be repeated k-times to get the k-best approxima-
tions of each cluster prototype l, each time removing the winner sample xi so
that it cannot be selected once more. As this requires hard cluster assignments
gφ

l (i), the soft assignments of Kernel Fuzzy C-Means have to be first converted
by defining that a sample i belongs to the cluster l with the highest fuzzy mem-
bership argmaxl(f

φ
l (i)). For the most settings the algorithm will be done after

having calculated the distances and assignments of the rest of the (N − k ·K)
samples using the k-approximation of final prototypes JC and the final cluster
assignments fnew.

3.1 Parallelized Kernel Patch Clustering

While the Kernel Patch Clustering approach described above clusters the sam-
ples in a single pass over the dataset, i.e. if we consider the k-approximations
of the prototypes as new samples, it is still a serial process. Easily this can be
parallelized by distributing the clustering of the Patches P1, . . . , PC and the cal-
culating of the k-approximations of the resulting prototypes to multiple systems
connected by a network or multiple threads on one system possibly handled by
multiple processors. This can be formulated in the meta-algorithm to perform
parallelized Kernel Patch Clusterings:
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– Input:
• maximum samples to cluster per patch M
• number of maximum parallelizations μ

– while not all samples are processed
1. Construct up to μ patches P1, . . . , Pμ, each patch Pi having the next M

samples and the last weighted k-approximations of the prototypes Jlast

2. Distribute the μ patches to μ systems or threads and cluster the patches
parallelized

3. Calculate the k-approximations of the resulting prototypes Ji and their
weights wi parallelized

4. Collect all μ k-approximations J1, . . . , Jμ, remove any duplicated samples
and save it in Jlast. Divide their corresponding weights by 1

μ as they will
be distributed later on in μ parallel clusterings

5. (optional): Cluster the μ k-approximations in Jlast ∈ N
μ·k·K to get one

k-approximation Jlast ∈ N
·k·K

– Output:
• μ k-approximations of final prototypes Jlast

Step 2 and 3 can be done completely parallelized, i.e. cluster M · μ samples
parallelized. In step 4, the results of those μ clusterings are collected resulting
in μ · k ·K weighted samples, representing k-approximations of K prototypes.
As those samples are reinserted in step 1, it is possible that the result of the
clusterings in step 4 produces duplicated samples that have to be removed. In
step 5 we optionally cluster the final μ · k · K weighted samples once more
to gain exactly k · K k-approximations of K prototypes and to be conform
with the output of the serial Kernel Patch Clustering algorithm. This step is
recommended for high values of parallelizations μ as without the (re-) clustering
of the prototypes this might result in too much samples to cluster in step 1.

Complexity: The complexity of one clustering operation is O((M + k ·K)2)
where M is the maximum number of samples per patch, K the number of clus-
ter and k the number of samples per cluster (being the k-approximation of K
prototypes). As the size of M +k ·K however is bounded and generally indepen-
dent of N and we have to perform N

M such clustering operations, the summed
clustering complexity results in O((M+k ·K)2 N

M ) ∼ O(M ·N) ∼ O(N) in terms
of N . Moreover this clustering complexity can even be reduced linear through
parallelizations by a factor of μ. However the tradeoff is that the complexity of
one clustering operation rises to O((M + μ · k ·K)2) which is bearable for small
values of μ, k and K. For higher values of μ, k and K like μ · k · K ≥ M , it
is advisable to perform an additional clustering step (step 5 in the algorithm
above) to get only one k-approximation of the cluster.

4 Experiments and Results

To evaluate the Kernel Patch Clustering method we have conducted experiments
with one synthetic (five two-dimensional gaussian distributed cluster), one widely
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known (Wisconsin Diagnostic Breast Cancer) and one real-life (Enron Emails)
dataset. We have compared the performances of Relational Neural Gas (RNG),
Kernel Fuzzy C-Means (KFCMEANS) and integrations of those two methods
into the Kernel Patch Clustering (KPC). Furthermore we have compared these
methods to the basic approach to arbitrarily choose some samples out of all
samples and cluster them using KFCMEANS. For all experiments we have set
the neighborhood range λ for RNG to be exponentially falling from N

2 to 0.01
which are stable standard values (see [9]). The fuzzifier for KFCMEANS had
been set to 2.0 for the synthetic dataset and 1.25 for both other datasets to
reach more hard than soft memberhips. We have done time measurements of
these algorithms for the Enron Emails dataset.

4.1 Five Two-Dimensional Gaussian Distributed Cluster

This synthetic dataset had been created by five multivariate (two-dimensional)
gaussian distributions with the parameters μ1 = {0, 0}, μ2 = {1, 0}, μ3 = {0, 1},
μ4 = {1, 1}, μ5 = {0.5, 0.5} and a variance of σ2 = 0.01. As it can be seen in
figure 1, the amount of samples drawn from the distributions are unequal which
highly complicates the clustering problem. We have assigned each cluster a class
label and have 50 samples in class 1, 100 in class 2, 100 in class 3, 500 in class 4
and 500 in class 5. We have choosen a linear kernel to calculate the similarities
between the samples:

κ(xi, xj) = (xi · xj)

For all clustering methods the aim was to partition the samples in K = 5 cluster.
We have performed 50 test runs with each algorithm and then have calculated
the intra-cluster variance (ICV), i.e. quantization error with hard assignments
(same conditions for all methods) and the class prediction score by comparing

Fig. 1. Five two-dimensional gaussian distributed cluster, μ1 = {0, 0}, μ2 =
{1, 0}, μ3 = {0, 1}, μ4 = {1, 1}, μ5 = {0.5, 0.5}, variance σ = 0.01, 1250 samples
(50, 100, 100, 500, 500)
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the cluster sets with the class labels. The results can be seen in table 1. For
the last method we arbitrarily choose the same size of samples as in one Patch
(100). We tried to experiment with the Patch size but have observed that any
size between 50 to 500 had not made any statistical difference. Same applies for
different number of parallelizations: 1 ≤ μ ≤ 6. However for Patch sizes below
50, the KPC - RNG algorithm had often problems finding K = 5 cluster while
the KPC - KFCMEANS algorithm still converged. In general the KFCMEANS
method performs way better than the RNG method for this dataset, probably
because of the soft relaxations of the assignments of samples to cluster. Inte-
grated into the KPC algorithm, both methods still perform nearly as well while
being (theoretically) much faster.

Table 1. Cluster validations on five two-dimensional gaussian distributed cluster. All
methods had to partition the sample into K = 5 cluster. For Kernel Patch Clustering
(KPC), 100 samples were processed per Patch, k = 3-approximation, μ = 1, . . . , 6
parallelizations. The values were averaged over 50 runs.

KFCMEANS RNG KPC - KPC - arbitrary choosen
KFCMEANS RNG KFCMEANS

quantization error 23.43 43.29 23.89 43.77 31.85
class prediction 100% 88.82% 100% 88.8% 97.1%

4.2 Wisconsin Diagnostic Breast Cancer

The Wisconsin Diagnostic Breast Cancer database is a widely known dataset
that has been contributed to the UCI machine learning repository [11] in 1995.
It consists of 569 samples describing each characteristics of the cell nuclei taken
from a Breast mass with 30 real valued features. The task is to classify the cell
nuclei either as malignant or benign. We have standardized the samples to zero
mean and unit variance and have calculated the similarities between them by a
RBF-Kernel with parameter σ = 5:

κ(xi, xj) = exp(−||xi − xj ||2
2σ2 )

Same as for the synthetic dataset we have calculated the quantization error and
the class prediction score. The results can be seen in table 2. All algorithms had
about the same performance in terms of those two validation criteria.

4.3 Bag of Words – Enron Emails

The Bag of Words dataset at the UCI machine learning repository [11] do-
nated in 2008 consists of five different text collections that each delivers plenty
word to document assignments. For our experiments we have choosen the En-
ron Emails text collection which consists of 39, 861 documents, 28, 102 different
words and approximately 1, 900, 000 document to word assignments. To calculate
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Table 2. Cluster validations on Wisconsin Diagnostic Breast Cancer database. All
methods had to partition the sample into K = 10 cluster. For Kernel Patch Clustering
(KPC), 50 samples were processed per Patch, k = 3-approximation. The values were
averaged over 50 runs.

KFCMEANS RNG KPC - KPC -
KFCMEANS RNG

quantization error 221 223 224 222
class prediction 90.5% 90.1% 89.8% 90%

the similarities between the documents we have choosen the Bhattacharyya ker-
nel [10] with a multinomial distribution, setting parameter X = 1

8 :

κ(p, p′) = [
M∑
i=1

(pip
′
i)

1
2 ]X

where pi = number of words i in document a∑
j number of words j in document a

and p′i = number of words i in document b∑
j number of words j in document b .

As the complexity of the co-occurence matrix necessary to calculate the kernel
rises with the number of words, we could only handle about 200 samples per
clustering and had parallelized the clusterings on a four core machine (parameter
μ = 4). Furthermore we have performed a serialized clustering on the same
machine (parameter μ = 1). As no class labels are known for these documents
we can therefore solely evaluate the quantization error. The results with 5 and
10 cluster can be seen in table 3. This time the difference between the simple
approach to choose arbitrarily 200 samples and cluster them and the appliance
of the KPC algorithm with either KFCMEANS or RNG is clearly visible. Also
it can be seen that KPC-KFCMEANS produces slightly better cluster results
than KPC-RNG.

Table 3. Cluster validations on the Enron Emails. For Kernel Patch Clustering (KPC),
200 samples were processed per Patch, k = 3-approximation. The values were averaged
over 20 runs.

K μ quant. error time[s]

KPC-RNC 5 1 17226 357
KPC-KFCMEANS 5 1 17141 369
KPC-RNC 5 4 17328 126
KPC-KFCMEANS 5 4 17272 131
arbitrary choosen, KFCMEANS 5 - 17596 3
KPC-RNC 10 1 16211 438
KPC-KFCMEANS 10 1 16234 493
KPC-RNC 10 4 16384 155
KPC-KFCMEANS 10 4 16372 203
arbitrary choosen, KFCMEANS 10 - 16780 5
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5 Conclusion

We have described a meta-algorithm that performs parallelized clusterings with
Kernel based methods and merges the results iteratively. The necessary extensions
to the distance calculations and the assignment steps of Kernel Fuzzy C-Means,
Kernel K-Means and Relational Neural Gas to include sample weightings have
been shown. Experimentally we have observed that the loss of accuracy is rather
low and the parallelized KPC algorithm can be used for vast real-life datasets that
otherwise could not be clustered. As such a real-life dataset we have choosen the
Enron Emails which have approximately 1, 900, 000 total words and have shown
that the parallelized KPC method performs far better than a simple randomized
approach. By the integration of the Kernel Fuzzy C-Means algorithm this par-
allelized method can determine soft memberships of samples to cluster. The real
usefulness of those soft memberships can be better determined by datasets that
are naturally fuzzy which might be done in another contribution.
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Abstract. We present here a complete system for the localization of
facial features in frontal face images. In the first step, face detection is
performed using Viola & Jones state of art algorithm. Then, a cascade of
neural networks localizes precisely 28 facial features. The first network
performs a coarse detection of three areas in the image corresponding
roughly to left and right eyes and mouths. Then, three local networks
localize, in these areas, 9 key points per eye and 10 key points on the
mouth. Thorough experiments on 3500 images from standard databases
(Feret, BioID) show the detector accuracy, its generalization ability and
speed.

1 Introduction

Localizing facial features (like mouth and eye corners or eyebrow) is usually the
first step in applications like face recognition, expression analysis or action unit
identification [1,2]. These key-points are also very useful for model alignment.

Active shape model [3] [4] and active appearance model [5] are commonly
used to perform the detection. Unfortunately, they rely on an unstable optimiza-
tion procedure which depends on hundreds of parameters encoding shape (and
texture) variations. Other statistical methods include Neural Networks [6][7],
Bayesian Networks [8], Support Vector Machines [9] and Cascade Of Boosted
Ensembles (using either Haar filter [10] or Gabor jet [11]). Though most of these
algorithms are able to detect precisely a small number of facial features (typ-
ically four, including eye centres, mouth and nose), their accuracy on a large
number of key-points is rarely stated.

In our previous works (described in [7]), manually cropped images are fed to
a neural network trained to output a probability map. Facial feature hypothetic
locations (eye centers and mouth corners) corresponded to local maxima in this
map.

We present in this paper a fast and an accurate method for precise facial
feature localization. A facial detector is used to extract the face in the image.
Then, a neural network performs coarse detection, defining 3 regions of interest
(left and right eyes and mouth) within the face image. In the second stage,
another network is applied on each region to detect 28 points (mouth contour,

F. Schwenker and N. El Gayar (Eds.): ANNPR 2010, LNAI 5998, pp. 141–148, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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eye contour and eyebrow). Such a cascade was already explored in [12] but they
only detected 10 points.

The paper is organized as follows. Section 2 details the 3 stages: face detec-
tion, coarse to fine facial feature localization. Section 3 is devoted to sensitivity
analysis and experimental results on several benchmark datasets. Conclusion
and prospects are presented in section 4.

2 Overview

2.1 Face Detector

To extract automatically face in images, we use the OpenCV’s face detector
which provides an implementation of the Viola-Jones algorithm [13]. It uses
Haar-like filters as weak classifiers. The AdaBoost algorithm makes a forward
selection of the best features and trains the weak learners. To run in real-time,
strong classifiers are arranged in a cascade in order of complexity, where each
classifier is trained only on examples which pass through the previous classifiers.

2.2 Coarse Localization

This step detects three Regions Of Interest (ROI) corresponding roughly to eyes
and mouth in the detection window. To achieve, we train a fully connected
multilayer perceptron using back-propagation algorithm to detect five points:
eye centers, nose tip and mouth corners.

Neural network inputs can be either the gray levels of sub-sampled extracted
faces. To improve the robustness of our detector, we synthesized new face images
by translating the detection and modifying the scale factor of the face detector
by 10% of the inter-ocular distance (this corresponds to the standard deviation
of the eye position in the detection image). To obtain face images invariant to
illumination effects, the images are normalized. Statistical mean and standard

Fig. 1. System overview
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Fig. 2. Train database

deviation are estimated on a window centered on the center of the detection
window with a size equal to the half of the detection window (fig. 2. The 10
outputs are the (X,Y ) coordinates normalized between -1 and 1 of the five
facial features we try lo localize.

2.3 Precise Localization

In this last step, three fully connected multilayer perceptrons are used to deal
with eyes and mouth area. They detect 28 points: 9 for each eye and eyebrow
contours and 10 for the two lip contours (fig. 1). The eye localizers have 9x2=18
outputs and the mouth localizer has 20 outputs.

Coarse localization determines three ROIs bounding the eye centres and the
two mouth corners. We chose the size of these ROIs as a fraction of the de-
tection window size to obtain images including all the points that we try to
localize. We made a statistical study on face pattern coordinates in detection
images to find the smallest window that contains these points in most of the
cases. Finally, to compensate the imprecision of the ROI centre coordinates, we
increased ROI dimensions by the mean localization error of the coarse localizer.
As before (Section 2.2), to train these three neural networks, we synthesized new
images.

3 Setup and Sensitivity Analysis

In order to estimate the parameters of the detector, we manually labeled the
ground truth of 320 images from a homemade database (so called ISIR database)
containing frontal faces with small expression and natural rotation changes of
men and women with different specificities (facial hair, glasses). Training dataset
includes 256 peoples and the other 64 images are used to stop training. The
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size of the training set is artificially expanded to 3700 examples using basic
image transformations like small translation, rotation and scaling. For each set
of parameters, we performed 3-fold cross-validation. The localization error E
for an example is the mean Euclidian distance between the detected feature
positions (xi, yi) and the true (labelled) feature positions (x̃i, x̃i), normalized
with respect to the inter-ocular distance D. The mean localization error Em is
computed over the whole dataset.

E =
1
N

N∑
i=1

√
(xi − x̃i)2 + (yi − ỹi)2

D
(1)

3.1 Coarse Localization

We evaluated several image coding schemes: gray-level sub-sampled images of
size 20x20 and 30x30 pixels and principal component analysis on images of size
20x20, 30x30 and 60x60 pixels resulting into 70, 90 and 100 eigenvalues re-
spectively (corresponding to 90% of the explained variance). Mean localization
results for the 5 points are reported table 1. We get quite similar results using
gray level 30x30 images (900 input cells) and eigenvalues (100 input cells) and
100 hidden cells. In both cases, the mean localization error Emv on the validation
set is lower than 6% for the five points we try to localize.

Table 1. Mean localization error on training set (Emt) and validation set (Emv) for
five points with the coarse detector

Inputs Number of Emt Emv

input cells
20x20 images 400 6.0% 7.1%

ACP on 20x20 images 70 8.9% 9.2%
30x30 images 900 4.3% 5.9%

ACP on 30x30 images 90 6.0% 6.9%
ACP on 60x60 images 100 4.3% 5.8%

3.2 Precise Eye Localization

We want to localize 4 points on each eyebrow and 5 points on each eye as shown
in fig 1. We have already defined the sizes and position of the ROI in section
2.3. We evaluated several resolutions (6x10, 10x15, 13x20, 16x25, 19x29, 22x34
pixels) for precise eye detection.

Lowest resolution (6x10 pixels) results in a high localization error (higher than
5%) on the training set while the highest resolution (22x34 pixels) generalizes
poorly. Best results correspond to the following parameters: 13x20=260 input
cells and 10 hidden neurons. The mean localization error Emv on these 18 feature
points is 4.8%.
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3.3 Precise Mouth Localization

We have evaluated two sizes for the mouth region of interest: small size (including
mouth only) and large size (including the mouth and some parts of nose and
chin). For each size, three image resolutions were tested. Small ROIs lead to
4.5% as mean localization error while large regions give better results: the mean
localization error is 4%. The sensitivity to resolution is quite low. Best results
correspond to the following parameters: 21x23 input cells and 20 hidden neurons.
The mean localization error Emv on these 10 feature points is 4%.

4 Experimental Results

We trained and tune the parameters of the cascade localizer on the ISIR dataset
divided into independent training and cross-validation sets. Then, to evaluate the
localizer generalization ability, we tested it extensively, without any retraining
on several benchmark databases.

4.1 Results on the ISIR Database

Table 2 details performances (mean localization error) for all the face patterns
that we want to localize. Center and contour of the eye are localized with a high
precision (the mean error is less than 3%). This is partially due to the face detec-
tor that produces eye-centered detections. Mouth features are precisely localized
too (the mean error is equal to 4%) though mouth position is more variable. Pre-
cision on eyebrow is a little poorer (6.4%) but performance evaluation is biased
due to ground truth imprecision. The percentage of correctly detected images
with a localization error lower than 10% is 98% for the eye and eyebrow regions
and 93% for the mouth contour (fig. 3).

Table 2. Mean localization error on training set (Emt) and validation set (Emv) for dif-
ferent facial features compared to the standard deviation of their position in detection
image (SD)

SD Emt Emv

Mouth (10 points) 10.5% 3.3% 4.0%
Eye centers (2 points) 6.4% 2.7% 3.0%

Eyes contour (8 points) 6.9% 3.1% 3.3%
Eyebrows (8 points) 9.4% 5.7% 6.4%

28 facial points 8.9% 3.8% 4.4%

Table 3 compares test error of each step of our architecture for 4 points (eyes
and mouth corners). First column reports the localization error on eye centers
and mouth corners using only the Viola-Jones detector: we use as localization
hypothesis the mean position of each feature (estimated on the training dataset)
inside the detection windows. Second column reports the mean error after the
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Fig. 3. Percentage of images with a mean localization error lower to the X axis value
for eyes points (a) and mouth points (b)

coarse localization. The third column reports the mean error for the same points
after the fine localization step. This proves that reducing the research area with a
coarse step allows us to increase locally the image resolution without having too
many input cell. Moreover it shows that cascading localizers increases drastically
the system accuracy.

Table 3. Mean localization error on validation set after each step of the system

VJ detector Coarse localization Fine localization
Eye centers (2 points) 6.4% 4.8% 3.0%

Mouth corners (2 points) 10.5% 7.2% 3.7%

4.2 Results on the Inrialpes, BioID and Feret Test Databases

The system has been successively evaluated on the 60 frontal faces from Inrialpes
database, 1500 images from BioID database [14] and the 1918 images FERET
Duplicate I dataset [15] without retraining the neural networks. (fig 4) shows
some results we obtain on these bases.

Inrialpes database includes frontal faces with poor luminosity conditions and
the system performs a mean localization error of 7% (fig 4b).

On BioID database that contains large changes in expressions and has very
poor luminosity conditions (emphasis has been laid on “real world” conditions),
the system gives a mean localization error of 11% on 28 facial features (fig 4c).

Finally, Feret database contains multi-ethnic subjects with small facial ex-
pression changes and some subjects wear glasses. We only have the eyes, mouth
centres and the nose tip manually labelled. Although the learning database that
we used only includes European subjects without glasses, the mean localization
error on eyes and mouth centre is lower than 6% (fig 4a).
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Fig. 4. Localisations on Feret database (a), Inrialpes database (b) and BioID
database (c)

5 Conclusion and Prospects

We have presented here a new localizer able to detect precisely the eyes, eyebrows
and mouth contours. It uses a cascade of neural networks. The face is first
detected using a standard algorithm. The first stage performs a coarse detection
of three regions of interest corresponding roughly to eyes and mouth. The second
stage localizes precisely 28 facial features on the eye contour, the eyebrow and the
mouth contour. The mean localization error is lower than 5% on the validation
set. To show the generalization ability, we evaluate the system on three standard
databases, namely Inrialpes, bioId and Feret, where faces are sometime slightly
expressive, multi-ethnic or poorly illuminated. Results are really encouraging
as the overall localization error is lower than 8%. Moreover, the computation
speed (including face detection, coarse and fine localization) is nearly 20 images
per second. In our previous works [7], we already showed the system ability to
localize coarsely facial features in orientation-free images by combining several
experts dedicated to each facial pose. So, we can easily combine parallel and
cascade approaches to build an orientation-free fine localizer. Other future works
include active appearance model initialization and action unit detection for facial
expression labelling.
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Abstract. One of the important properties of hidden Markov models is
the ability to model sequential dependencies. In this study the applicabil-
ity of hidden Markov models for emotion recognition in image sequences
is investigated, i.e. the temporal aspects of facial expressions. The un-
derlying image sequences were taken from the Cohn-Kanade database.
Three different features (principal component analysis, orientation his-
tograms and optical flow estimation) from four facial regions of interest
(face, mouth, right and left eye) were extracted. The resulting twelve
paired combinations of feature and region were used to evaluate hidden
Markov models. The best single model with features of principal com-
ponent analysis in the region face achieved a detection rate of 76.4 %.
To improve these results further, two different fusion approaches were
evaluated. Thus, the best fusion detection rate in this study was 86.1 %.

1 Introduction

For over a hundred years people are interested in understanding emotions. One of
the most important and pioneering researcher, who has dealt with this issue, was
Charles Darwin [6]. By examining the interaction between facial muscles and the
associated emotions, he introduced the first rules of emotion recognition. Paul
Ekman developed a so-called Facial Action Coding System (FACS) [9] to encode
the emotions using the facial muscles. He distinguished six basic emotions: “joy”,
“anger”, “surprise”, “disgust”, “sadness” and “fear”.

Hidden Markov Models (HMMs) are often used in speech recognition [15]
and increasingly also for emotion recognition [20,4] because they are able to
model temporal dependencies. HMMs are probabilistic models which consist of
a countable number of states, transitions and corresponding emissions. HMMs
are easy to model, but variable by the parameters that describe them.

Lisetti and Rumelhart [14] proposed a NN-based approach to recognize the
facial expressions in which they selected different face regions manually. Lien
et al. [13] compared different methods that use optical flow. Lin et al. [7] utilized
principle component analysis (PCA) and hierarchical radial basis functions for
facial emotion recognition.

F. Schwenker and N. El Gayar (Eds.): ANNPR 2010, LNAI 5998, pp. 149–160, 2010.
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In this study, HMMs were utilized for recognition of facial expressions in image
sequences. The aim was to investigate the behavior of HMMs in facial expres-
sion recognition and to demonstrate whether HMMs are capable of recognizing
emotions in image sequences sufficiently well. Hence, four regions in the image
sequences were selected manually: face, mouth, right and left eye. Afterward, in
each region of the image, three different features, namely principal component
analysis, orientation histograms and optical flow estimation, were extracted. The
resulting twelve paired combinations of feature and region were used to evaluate
the HMMs. Numerous experiments to optimally adjust the HMMs were con-
ducted. The optimal number of states and the optimal number of the normal
distributions of the Gaussian Mixture Models (GMMs), which were attached to
the states, were determined empirically. Additionally, two different model ar-
chitectures were evaluated. To improve the over-all performance further, two
approaches to fuse the results of the twelve individual models were developed.

The rest of the paper is organized as follows: Section 2 provides a brief
overview of the HMMs, GMMs and the two classifier fusion approaches. In Sect. 3
the images and the extraction of the features are described. The experiments and
the results will be introduced in Sect. 4. Section 5 gives a brief summary of the
paper.

2 Stochastic and Functional Principles

2.1 Hidden Markov Models

A Hidden Markov Model (HMM) λ = (Z, V, π,A,E) is a statistical model which
is composed of two random processes [8][16]. The first process is a Markov chain
consisting of a defined number of states Z = (z1, ..zn) and corresponding state
transition probabilities which form the transition matrix A = (aij). The prob-
ability aij designates the probability to change from state zi to state zj. The
third component of this process is the initial probability vector π which defines
the probabilities of the states to be the initial state. The second random pro-
cess defines the output: it consists of possible observations V = (v1...vm) and
the observation matrix E = {ej(k)} storing the probabilities ej(k) of observa-
tion vk being produced from the state zj . The sequence of observations provides
information about the sequence of the hidden states.

The topology of the transition matrix defines the structure of the model. A
connection between two states zi and zj is given, if the corresponding entry aij

is greater than 0. The following two models were utilized in this study: fully
connected model with aij > 0 ∀ i, j and a forward model with aij = 0 for i > j
and j > i+ 1, i.e. only connections to the state itself and to the following state
are allowed.

One property of the HMM is that the next state only depends on the current
state. The values at time t− i, i > 1 have no influence. This is called the Markov
property, e.g. for a sequence of states Q = q1...qL, qi ∈ Z:

P (qt+1 = zj | qt = zi, qt−1 = zk, ...) = P (qt+1 = zj | qt = zi) . (1)
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There are three basic problems associated with HMMs [16]. Each of it can be
solved with a specific dynamic programming algorithm:

Decoding Problem. Given the parameters of the model λ = (Z, V, π,A,E)
and a observed output sequence O = O1, ..., OL. Evaluate the most likely
state sequence which could have generated the output sequence.
Solution: Viterbi algorithm.

Evaluation Problem. Given the parameters of the model λ = (Z, V, π,A,E).
Compute the probability of an observed output sequence O = O1, ..., OL.
Solution: forward algorithm.

Learning Problem. Given a set of output sequences O1, ..., OL and the struc-
ture of the model λ = (Z, V ). Determine the transition matrix A, the obser-
vation matrix E and the initial probability vector π so that the probability
for this HMM, producing O1, ..., OL, is the maximum value.
Solution: Baum-Welch algorithm1.

The HMMs were utilized for classification. Therefore, one HMM λi, i = 1, ..., n
for each emotion class was trained using data of one class. The probabilities P (O |
λi) for an unclassified observation O and the i-th HMM were estimated with the
forward algorithm. For numerical reasons, the logarithm of the probabilities was
used in the computation because they could become very small. The maximum
of the n achieved values P (O | λi), one for each HMM, lead to the most likely
class. This architecture is called a log-likelihood estimator.

2.2 Gaussian Mixture Models

A Gaussian mixture model (GMM) g(f1, ..., fm) is a probabilistic model for esti-
mation of probability density functions [3]. It combinesm Gaussian distributions
f1, ..., fm. Each distribution fi is defined as fi = (μi, Σi, αi). The value μi is the
expected value and thus the center of the normal distribution. The value Σi

defines the covariance matrix of the i-th distribution. The third value αi stands
for the weight of the i-th distribution in the probability density function with∑m

i=1 αi = 1.
The individual distributions fi are assumed to be stochastically independent

and defined as followed:

fi(x | μi, Σi) =
1√

(2π)N/2 | Σi |
exp
(
− 1

2
(x− μi)TΣ−1

i (x− μi)
)
. (2)

This defines the total probability P (X | f1, ..., fm) with:

P (X | f1, ..., fm) =
m∑

i=1

αifi(X,μi, Σi) . (3)

In this study, one GMM in each state of the HMM was utilized to define the
observation probabilities E, which were mentioned in Sect. 2.1. It should be
1 The Baum-Welch algorithm is an instance of the expectation-maximization algo-

rithm.
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noted that GMMs cannot take temporal dependencies into account as HMMs
do. The parameters of the GMM are trained with an expectation maximization
algorithm.

2.3 Classifier Fusion

Combining classifiers is a promising approach to improve classifier results. A
team of classifiers, which is intended to be fused, needs to be accurate and
diverse [11]. While accuracy of a classifier is clear, diversity means that if a
sample is classified falsely, not all classifiers should agree on a wrong class-label.
In this paper different feature views on the data are constructed to produce
diversity and two very simple but intuitive fusion techniques were evaluated.

Vote-Fusion. The results of the log-likelihood estimators lead at best all to
the same class, but normally they are different. To nullify this problem, the
first fusion method vote the results of selected log-likelihood estimators.

Probability-Fusion. The other fusion approach did not combine the results
but the probabilities P (O | λi) of selected log-likelihood estimators. To com-
bine several estimators, the class-wise sums are computed. A summation of
the logarithmic values is equivalent to a multiplication of the probabilities.
Only then is the maximum determined to obtain the most likely class. This
implies statistic independence of the models, which is unfortunately not fully
given since the features were generated from the same sequence.

3 Data Collection

The Cohn-Kanade dataset is a collection of image sequences with emotional
content [5], which is available for research purposes. It contains image sequences
which were recorded in a resolution of 640×480 (sometimes 490) pixels with
a temporal resolution of 33 frames per second. Every sequence is played by an
amateur actor who is filmed from a frontal view. The sequences always start with
a neutral facial expression and end with the full blown emotion which is one of
the six categories “fear”, “joy”, “sadness”, “disgust”, “surprise” or “anger”.

To acquire a suitable label, the sequences were presented to 15 human labelers
(13 male and two female). The sequences were presented as a video. After the
play-back of a video the last image remained on the screen and the test person
was asked to select a label. Thus, a label for every sequence was created as the
majority vote of the 15 different opinions. The result of the labeling procedure
is given in Table 1 showing the confusion matrix of the test persons according to
the majority of all persons. The resulting data collection showed to be highly im-
balanced: the class “joy” (105 samples) occurred four times more often than the
class “fear” (25 samples) and in addition, this expression could not be identified
by the test persons.

In all automatic facial expression recognition systems some relevant features
are extracted from the facial image first and these feature vectors are utilized
to train some type of classifier to recognize the facial expression. One problem
is here how to categorize the emotions: one way is to model emotions through
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Table 1. Confusion matrix of the human test persons against the majority of all 15
votes (left). The right column shows the share of the facial expressions in the data set
(hardened class labels).

maj.\test pers. joy ang. sur. disg. sad. fear no. samples

joy 104 0 0 0 0 1 105
ang. 0 39 0 6 3 1 49
sur. 1 0 72 0 1 17 91
disg. 1 12 1 54 1 12 81
sad. 0 6 2 2 70 1 81
fear 1 1 3 6 1 13 25

a finite set of emotional classes such as anger, joy, sadness, etc, another way
is to model emotions using continuous scales such as valence (the pleasantness
of the emotion) and arousal (the level of activity) of an expression [12]. In this
paper, a discrete representation in six emotions was used. Finding the most
relevant features is definitely the most important step in designing a recognition
system. In our approach, prominent facial regions such as the eyes, including
the eyebrows, the mouth and for comparison the full facial region have been
considered. For these four regions orientation histograms, principal components
and optical flow features have been computed. Principal components (eigenfaces
approach) are very well known in face recognition [19] and orientation histograms
were successfully applied for the recognition of hand gestures [10] and faces [18],
both on single images. In order to extract the facial motion in these regions,
optical flow2 features from pairs of consecutive images have been computed, as
suggested in [17].

4 Experiments and Results

In this section, experiments which concern both the number of the distributions
and the architecture of the HMMs are presented. The results of the achieved
single models will be shown and the results of the two different fusion methods
will be demonstrated.

4.1 Adjusting the Number of Gaussian-Components

We started with simple models with only one state and mixture. By doing so,
a model is constructed which neglects any sequential dependencies. Thus, the
transition matrix was just a vector. The results of the twelve feature-region pairs
with this plain model are shown in Table 2. The next step was to improve the
results by optimizing the models.

Numerical test runs were conducted with 10-fold cross-validation. The num-
ber of states were evaluated from 1 to 9 and the number of mixture components
2 We were using a biologically inspired optical flow estimator which was developed by

the Vision and Perception Science Lab of the Institute of Neural Processing at the
University of Ulm [1,2].
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from 1 to 4. The transition matrices were fully connected. The results of this
process are shown in Table 2. The adjustments on the number of distributions
led to higher detection rates than they were in the plain model. The experiments
showed that by increasing the number of states, the corresponding number of
mixture components per state became smaller. We determined that a total num-
ber of 8-20 for all distributions is sufficient for this application. One negative
effect of a high number of distributions was, that some emotions were recog-
nized very poorly: since the more states and mixtures were chosen, the more
parameters had to be estimated. There were a few emotions with only little data
(see Table 1), so the fine-tuning could not be adjusted well enough and it led to
overfitting. Additionally, there was no model which was optimal for all emotions.
The emotion “joy” had the best recognition rate with PCA-features in the region
face, whereas the emotion “anger” was best recognized in the region of the left
eye and features with optical flow estimation. The best results for the different
emotions and the corresponding models are shown in Table 3.

Table 2. Results for expression concerning the number of states, the corresponding
number of mixtures per state and the detection rate for all twelve models. In case of
more than one state, the transition matrix was fully connected.

no. feature region no. st/mix det. rate no. st/mix det. rate

1 PCA face 1 / 1 0.727 9 / 2 0.742
2 PCA mouth 1 / 1 0.641 8 / 2 0.671
3 PCA right eye 1 / 1 0.421 7 / 2 0.444
4 PCA left eye 1 / 1 0.472 3 / 2 0.479
5 Orientation histograms face 1 / 1 0.678 4 / 2 0.710
6 Orientation histograms mouth 1 / 1 0.678 4 / 3 0.732
7 Orientation histograms right eye 1 / 1 0.440 4 / 2 0.473
8 Orientation histograms left eye 1 / 1 0.417 9 / 2 0.475
9 Optical flow face 1 / 1 0.627 8 / 2 0.638

10 Optical flow mouth 1 / 1 0.639 9 / 2 0.646
11 Optical flow right eye 1 / 1 0.437 7 / 3 0.471
12 Optical flow left eye 1 / 1 0.449 8 / 4 0.491

Table 3. Best recognition rate and corresponding model for each emotion

emotion det. rate feature region no. st/mix

joy 0.981 PCA face 9 / 2
anger 0.816 Optical flow left eye 8 / 4
surprise 0.978 Orientation histograms mouth 4 / 3
disgust 0.593 Optical flow face 8 / 2
sadness 0.889 Orientation histograms mouth 4 / 3
fear 0.200 PCA mouth 8 / 2
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4.2 Investigating Temporal Dependence

In this subsection, the temporal properties of the learned models and the un-
derlying data is studied. To study the influence of the topology of the HMM to
the classifier, fully connected models were compared with forward models (see
Sect. 2.1). It was discovered that the transition matrix of the fully connected
model approximated the transition matrix of the forward model during training.
Since the detection rate of the forward model was higher, we concluded that
the forward model can model the time dependence better in this case. By using
the forward model, also computation time can be saved because not all possible
entries in the transition matrix have to be adapted. Another advantage of the
forward model is the avoidance of local minima. The fully connected model has
a higher risk to descend toward a local minimum [8].

The expectation values of the GMMs (see Sect. 2.2) form the centers of the
normal Gaussian distributions. For initialization, the k-means procedure was
used to ensure that the centers cover the entire feature space. To investigate
whether the centers are different from each other after the training, the pairwise
distances of the expected values were calculated. If the observed probabilities in
the states are equal, using HMMs does not provide any benefit. Figure 1 shows
the differences of an example with four states and two mixtures per state as
grayscale values. It can be observed, that both, the distances between centers in
different states as well as centers within a state, differ. Thus, there is a corre-
sponding difference between the data assigned to the respective states. This can
be demonstrated more descriptive by producing average images of each state.
Figure 2 shows average images of the emotion “joy” made from 103 sequences.
The images were assigned to the states using the Viterbi algorithm.

Fig. 1. Pairwise distances of the centers of the Gaussian distributions as grayscale
values: the brighter the grayscale value, the greater the distance. On the diagonal are
the distances to itself (no distance = black). (iZjM designates the i-th mixture M of
the j-th state Z).
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Fig. 2. Average pictures for each state. A four state model of the emotion “joy” was
utilized and the paths of 103 sequences were computed.

4.3 Results of the Single Models

Based on the considerations above, the individual models were developed. For-
ward models with the optimized configurations for the number of states and
mixture components were used (see Table 2). The best single model with a total
detection rate of 76.4 % was the model with PCA-features in the region face.
Table 4 shows the confusion matrix of this model. The emotions “joy”, “anger”
and “disgust” were often confused. This occured particularly in the eye-regions.
One reason for this could be that for these three emotions either the eyes have to
be pinched together or the cheek muscles goes up because of a smile. However,
with “surprise”, “sadness” and “fear” the eyes are open. The emotion “fear”
was often confused with the emotion “surprise”, in which the greatest confusion
occurs in the region mouth. The open mouth of the two emotions might play a
role here.

Table 4. Confusion matrix of the best single model: features with PCA of the region
face. The columns stand for the labeled emotion, the rows for the detected emotions.
The recognition rate of each single emotion is shown in the last column.

det.emo\emo. joy ang. sur. disg. sad. fear

joy 102 4 0 11 2 5
ang. 0 26 0 8 6 0
sur. 0 0 82 2 3 7
disg. 3 9 3 47 1 3
sad. 0 10 5 8 68 5
fear 0 0 1 5 1 5

det.rate 0.981 0.531 0.901 0.580 0.840 0.200

4.4 Results of the Fused Models

To improve the total detection rate even further, the results of the twelve in-
dividual models were fused. For a better overview, the individual models were
coded according to the number of the rows of Table 2. For instance, model 1



A Hidden Markov Model Based Approach for Facial Expression Recognition 157

Table 5. Top ten combinations with vote-fusion and probability-fusion of the developed
twelve single models. The coding of the models corresponds to the first column in
Table 2.

vote-fusion probability-fusion

no. of models det. rate no. of models det. rate

1 2 5 6 9 10 0.817 1 2 5 6 7 9 10 11 0.861
1 2 5 6 9 0.815 1 2 3 5 6 9 10 12 0.859
1 2 6 8 9 10 0.815 1 2 3 5 6 9 10 12 0.859
1 2 6 9 10 11 0.815 1 2 5 6 7 9 10 12 0.859
1 2 4 5 6 9 10 0.815 1 5 6 9 0.857
1 2 6 7 9 10 0.813 2 5 6 9 10 12 0.857
1 5 6 9 10 12 0.813 1 2 4 5 6 7 9 0.857
1 2 6 9 12 0.810 1 2 4 5 6 9 11 0.857
1 2 5 6 8 9 10 0.810 1 5 6 9 10 0.854
1 2 5 6 10 11 12 0.810 1 2 4 5 6 10 12 0.854

recognized the emotion “joy” with 97.1 %, while it reached less than 25 % for
the emotion “anger”. On the other hand, model 12 showed different results: for
emotion “anger” a detection rate of 63.3 % was obtained, but the detection rate
for “joy” was lower than with model 1. To combine the advantages of these
models and neutralize the disadvantages as possible, the decisions of the models
were fused. In the following, the results of the two fusion approaches will be
presented:

Vote-Fusion. A simple fusion approach is to vote the detected emotions of all
twelve classifiers. If a test sequence is classified incorrectly from one model,
but the other eleven models detect it correctly, it will be outvoted. After the
training of the individual classifiers, we investigated whether the classifica-
tion rate could be improved, if not all twelve models would be combined.
Therefore, all 212 model combinations were computed. The results of the top
ten combinations are shown in Table 5. The appearance of the models 1
and 6 in all displayed combinations is originated from their good individual
recognition performance. Models using the eye regions occur only sporadi-
cally in this list. This shows that these models could reduce the classification
rate because of their minor accuracy. The combination of all face and mouth
regions led to a detection rate of 81.7 %. This means that, compared to the
best single model, this combination has the ability to recognize 23 sequences
more.

Probability-Fusion. This approach, as mentioned in Sect. 2.3, combines the
logarithmic probabilities which are obtained from the six HMMs of each log-
likelihood estimator. In many cases, when a sample was misclassified, the
probability of the incorrect emotion was just slightly higher than the one of
the correct emotion. The class-wise multiplication of the posterior probabil-
ities has the potential to overcome the limitations of the early hardening in
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the vote-fusion. The results are also shown in Table 5. Again, the face and
mouth regions played an important role. The result, showing the highest
classification rate of 86.1 % (372 out of 432), consisted of all models using
the features of the regions face and mouth and the models 7 and 11. Table 6
shows the confusion matrix. This was the highest achieved recognition rate
in this study. Thus, the probability-fusion could recognize 19 sequences more
than the vote-fusion.

Table 6. Confusion matrix of the best result, obtained with probability-fusion: com-
bination of all models with features of the regions face and mouth and the two models
with orientation histograms and optical flow features in the right eye region. Total
detection rate: 86.1 %.

det.emo\emo. joy ang. sur. disg. sad. fear

joy 105 0 0 11 2 4
ang. 0 36 0 3 2 0
sur. 0 1 89 1 0 8
disg. 0 7 1 65 1 10
sad. 0 5 1 1 76 2
fear 0 0 0 0 0 1

det. rate 1.000 0.735 0.978 0.803 0.938 0.040

5 Summary

The aim of this study was to investigate the behavior of HMMs in facial expres-
sion recognition and to demonstrate whether HMMs are capable of recognizing
emotions in image sequences sufficiently well.

432 image sequences from the Cohn-Kanade database were used as dataset.
Four different regions in each image were extracted (face, mouth, right and left
eye) and three different methods for feature extraction were applied (PCA, ori-
entation histograms and optical flow estimation). The data of each combination
of region and feature was utilized to train a log-likelihood estimator which con-
sisted of six HMMs (one for each emotion). The emotions were: “joy”, “anger”,
“surprise”, “disgust”, “sadness” and “fear”.

Not only the detection performance but also the architecture and the learning
behavior was investigated. First, experiments with different number of states and
mixtures per state were performed. It was observed that by increasing the num-
ber of states, the number of Gaussian distributions had to be reduced to achieve
a good classification performance. As a result of this investigation, twelve single
models for the feature-region pairs were identified. Also, experiments with the
transition matrix, i.e. the structure of the HMMs, were conducted. We discovered
that the forward models were slightly better than the fully connected models.
The best single model with a detection rate of 76.9 % was the forward model
with PCA-features in the region face (see Table 4). This model classified 332 out
of 432 sequences correctly.
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Furthermore, the outputs of the individual models were fused to combine
the advantages of the models and possibly neutralize the shortcomings. Two
fusion approaches were evaluated: vote-fusion and probability-fusion. These fu-
sion approaches showed that the classification rates can be improved further
by combining the results of the different models. The best fusion result with a
classification rate of 86.1 % is shown in Sect. 4.4, including a confusion matrix
in Table 6. This was the highest achieved recognition rate with 372 out of 432
detected sequences.

The experiments and results show that HMMs are very well capable of emotion
recognition in image sequences. Time dependencies can simply be modeled by
HMMs and the experiments also show that they play an important role.
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Abstract. In this paper an accurate real-time sequence-based system for repre-
sentation, recognition, interpretation, and analysis of the facial action units 
(AUs) and expressions is presented. Our system has the following characteris-
tics: 1) employing adaptive-network-based fuzzy inference systems (ANFIS) 
and temporal information, we developed a classification scheme based on neu-
ro-fuzzy modeling of the AU intensity, which is robust to intensity variations, 
2) using both geometric and appearance-based features, and applying efficient 
dimension reduction techniques, our system is robust to illumination changes 
and it can represent the subtle changes as well as temporal information involved 
in formation of the facial expressions, and 3) by continuous values of intensity 
and employing top-down hierarchical rule-based classifiers, we can develop ac-
curate human-interpretable AU-to-expression converters. Extensive experi-
ments on Cohn-Kanade database show the superiority of the proposed method, 
in comparison with support vector machines, hidden Markov models, and neur-
al network classifiers.  

Keywords: biased discriminant analysis (BDA), classifier design and evalua-
tion, facial action units (AUs), hybrid learning, neuro-fuzzy modeling. 

1   Introduction 

Human face-to-face communication is a standard of perfection for developing a natu-
ral, robust, effective and flexible multi modal/media human-computer interface due to 
multimodality and multiplicity of its communication channels. In this type of com-
munication, the facial expressions constitute the main modality [1]. In this regard, 
automatic facial expression analysis can use the facial signals as a new modality and 
it causes the interaction between human and computer more robust and flexible. 
Moreover, automatic facial expression analysis can be used in other areas such as lie 
detection, neurology, intelligent environments and clinical psychology.  

Facial expression analysis includes both measurement of facial motion (e.g. mouth 
stretch or outer brow raiser) and recognition of expression (e.g. surprise or anger). 
Real-time fully automatic facial expression analysis is a challenging complex topic in 
computer vision due to pose variations, illumination variations, different age, gender, 
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ethnicity, facial hair, occlusion, head motions, and lower intensity of expressions. 
Two survey papers summarized the work of facial expression analysis before year 
1999 [2, 3]. Regardless of the face detection stage, a typical automatic facial expres-
sion analysis system consists of facial expression data extraction and facial expression 
classification stages. Facial feature processing may happen either holistically, where 
the face is processed as a whole, or locally. Holistic feature extraction methods are 
good at determining prevalent facial expressions, whereas local methods are able to 
detect subtle changes in small areas.  

There are mainly two approaches for facial data extraction: geometric-based me-
thods and appearance-based methods. The geometric facial features present the shape 
and locations of facial components. With appearance-based methods, image filters, 
e.g. Gabor wavelets, are applied to either the whole face or specific regions in a face 
image to extract a feature vector [4].  

The sequence-based recognition method uses the temporal information of the se-
quences (typically from natural face towards the frame with maximum intensity) to 
recognize the expressions. To use the temporal information, the techniques such as 
hidden Markov models (HMMs) [5], recurrent neural networks [6] and rule-based 
classifier [7] were applied. 

The facial action coding system (FACS) is a system developed by Ekman and Frie-
sen [8] to detect subtle changes in facial features. The FACS is composed of 44 facial 
action units (AUs). 30 AUs of them are related to movement of a specific set of facial 
muscles: 12 for upper face (e.g. AU 1 inner brow raiser, AU 2 outer brow raiser, AU 
4 brow lowerer, AU 5 upper lid raiser, AU 6 cheek raiser, AU 7 lid tightener) and 18 
for lower face (e.g. AU 9 nose wrinkle, AU 10 upper lip raiser, AU 12 lip corner 
puller, AU 15 lip corner depressor, AU 17 chin raiser, AU 20 lip stretcher, AU 23 lip 
tightener, AU 24 lip pressor, AU 25 lips part, AU 26 jaw drop, AU 27 mouth stretch). 
Facial action units can occur in combinations and vary in intensity. Although the 
number of single action units is relatively small, more than 7000 different AU combi-
nations have been observed. To capture such subtlety of human emotion paralinguis-
tic communication, automated recognition of fine-grained changes in facial expres-
sion is required (for more details see [8, 9]). 

The main goal of this paper is developing an accurate real-time sequence-based 
system for representation, recognition, interpretation, and analysis of the facial action 
units (AUs) and expressions. We summarize the advantages of our system as follows:  

 

1) The facial action unit intensity is intrinsically fuzzy. We developed a classification 
scheme based on neuro-fuzzy modeling of the AU intensity, which is robust to in-
tensity variations. Applying this accurate method, we can recognize lower intensity 
and combinations of AUs.  

2) Recent work suggests that spontaneous and deliberate facial expressions may be 
discriminated in term of timing parameters. Employing temporal information in-
stead of using only the last frame, we can represent these parameters properly. 

3) By using both geometric and appearance features, we can increase the recognition 
rate and also make the system robust against illumination changes. 

4) By employing top-down hierarchical rule-based classifiers such as J48, we can auto-
matically extract human interpretable classification rules to interpret each expression. 

5) Due to the relatively low computational cost, the proposed system is suitable for 
real-time applications. 
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The rest of the paper has been organized as follows:  In section 2, we describe the 
approach which is used for facial data extraction and representation using both geome-
tric and appearance features. Then, we discuss the proposed scheme for recognition of 
facial action units and expressions in section 3 and section 4 respectively. Section 5 
reports our experimental results, and section 6 presents conclusions and a discussion. 

2   Facial Data Extraction and Representation 

2.1   Biased Learning 

Biased learning is a learning problem in which there are an unknown number of 
classes but we are only interested in one class. This class is called “positive” class. 
Other samples are considered as “negative” samples. In fact, these samples can come 
from an uncertain number of classes. Suppose x |i 1, … , N  and y |i 1, … , N  
are the set of positive and negative d-dimensional samples (feature vectors) respec-
tively. Consider the problem of finding d r transformation matrix w (r d), such 
that separates projected positive samples from projected negatives in the new sub-
space. The dimension reduction methods like fisher discriminant analysis (FDA) and 
multiple discriminant analysis have addressed this problem simply as a two-class 
classification problem with symmetric treatment on positive and negative examples. 
For example in FDA, the goal is to find a subspace in which the ratio of between-class 
scatter over within-class scatter matrices is maximized. However, it is part of the 
objective function that negative samples shall cluster in the discriminative subspace. 
This is an unnecessary and potentially damaging requirement because very likely the 
negative samples belong to multiple classes. In fact, any constraint put on negative 
samples other than stay away from the positives is unnecessary and misleading. With 
asymmetric treatment toward the positive samples, Zhou and Huang [10] proposed 
the following objective function: w arg max trace w S wtrace w S w  (1) 

where S and S  are within-class scatter matrices of negative and positive samples 
with respect to positive centroid, respectively. The goal is to find w that clusters only 
positive samples while keeping negatives away. The problem of finding optimal w, 
becomes finding the generalized eigenvectors α’s associated with the largest eigenva-
lues λ’s in the below generalized eigenanalysis problem: S α λS α (2) 

Our goal is developing a facial action unit recognition system that can detect whether 
the AUs occur or not. The input of the system is a sequence of frames from natural 
face towards one of the facial expressions with maximum intensity. Suppose we have 
extracted a feature matrix or a feature vector from each frame. In order to embed facial 
features in a low-dimensionality space and deal with curse of dimensionality dilemma, 
we should use a dimension reduction method. For recognition of each AU, we are 
facing an asymmetric two-class classification problem. For example when the goal is 
detecting whether AU 27 (mouth stretch) occur or not, the positive class includes all of 
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sequences in the train set that represent stretching of the mouth; other sequences are 
considered as negative samples. These samples can come from an uncertain number of 
classes. They can represent any single AU or AU combinations except AU 27. In fact, 
our problem is a biased learning problem. 

2.2   Appearance-Based Facial Feature Extraction Using Gabor Wavelets 

In order to extract the appearance-based facial features from each frame, we use a set 
of Gabor wavelets. They allow detecting line endings and edge borders of each frame 
over multiple scales and with different orientations. Gabor wavelets remove also most 
of the variability in images that occur due to lighting changes [4]. Each frame is con-
volved with p wavelets to form the Gabor representation of the t frames (Fig. 1).  

 

 
AU 17+AU 23+AU 24 AU 1+AU 2+AU 5 

Fig. 1. Examples of the image sequences and their representation using Gabor wavelets  

However, for applying the Zhou and Huang’s method, which is called biased dis-
criminant analysis (BDA), to the facial action unit recognition problem we should 
first transform the feature matrices of the sequence into a one-dimensional vector that 
ignores the underlying data structure (temporal and local information) and leads to the 
curse of dimensionality dilemma and the small sample size problem. Thus, we use 
two-dimension version of BDA algorithm by simply replacing the image vector with 
image matrix in computing the corresponding variance matrices to reduce the dimen-
sionality of each feature matrix in two directions [11]. Then, we apply BDA algorithm 
to the vectorized representation of the reduced feature matrices. Also, In order to deal 
with singularity in the matrices we use 2D and 1D principle component analysis 
(PCA) algorithms [12], before applying 2DBDA and BDA respectively. 

2.3   Geometric-Based Facial Feature Extraction Using Optical Flow 

In order to extract geometric features we use a facial feature extraction method pre-
sented in [13]. The points of a 113-point grid, which is called Wincanide-3, are placed 
on the first frame manually. Automatic registering of the grid with the face has been 
addressed in many literatures (e.g. see [14]). For upper face and lower face action units 
a particular set of points are selected. The pyramidal optical flow tracker [15] is em-
ployed to track the points of the model in the successive frames towards the last frame 
(see Fig. 2). The loss of the tracked points is handled through a model deformation 
procedure (for detail see [13]). For each frame, the displacements of the points in two 
directions with respect to the first frame are calculated and placed in the columns of a 
matrix. Then, we apply 2DBDA algorithm [11] to the matrix in two directions. The 
vectorized representation of the reduced feature matrix is used as geometric feature 
vector. 
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Fig. 2. Geometric-based facial feature extraction using grid tracking 

3   Facial Action Unit Recognition Using Neuro-Fuzzy Modeling 

3.1   Takagi-Sugeno Fuzzy Inference System and Training Data Set 

The flow diagram of the proposed system is shown in Fig. 3. In order to recognize 
each single AU we construct a fuzzy rule-based system. The reduced feature vector is 
used as the input of the system.  

 

 
Fig. 3. Block diagram of the proposed system (n is number of the facial action units) 
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Each system is composed of n Takagi-Sugeno type fuzzy if-then rules of the below 
format: 
 R : if x is  A and … and x  is A  then y p p x p x              i 1, … , n  
 

Here, y is variable of the consequence whose value is the AU intensity and we should 
infer it. x , … , x  are variables of the premise, i.e. features,  that appear also in the part 
of the consequence. A , … , A i 1, … , n  are fuzzy sets representing a fuzzy sub-
space in which the rule R  can be applied for reasoning (we use Gaussian membership 
function with two parameters), and p , p … , p  i 1, … , n  are consequence para-
meters. The fuzzy implication is based on a fuzzy partition of the input space. In each 
fuzzy subspace, a linear input-output relation is formed.  

When we are given x x , x x , … , x x , the fuzzy inference system 
produces output of the system as follows:  

For each implication R , y  is calculated as: 

                       y p p x p x i 1, … , n  (3) 

The weight of each proposition y y  is calculated as: w A x … A x i 1, … , n (4) 

Then, the final output y inferred from n rules is given as the average of all y  i1, … , n  with the weights w , i.e. y ∑ y w / ∑ w . 
For modeling each system, i.e. each single AU, we should extract the rules using 

training data. Depending on the AU that we want to model it, the sequences in the 
training set are divided into two subsets: positive set and negative set. The positive set 
includes all of sequences that the AU occurs on them; other sequences are placed in 
the negative set. Then, by applying the method discussed in section 2, we extract the 
feature vector for each sequence. Assuming the last frames of the sequences in the 
training set have maximum intensity, the target value of feature vectors which are in 
the positive set and negative set is labeled 1 and 0 respectively. We also use some 
sequences several times with different intensities, i.e. by using intermediate frames as 
the last frame and removing the frames which come after it. For these sequences, if 
the original sequence was negative the target value is again 0. Otherwise, the target 
value of corresponding feature vector for produced sequence is calculated by: t sumdistancessumdistances  (5) 

where sumdistances  is the sum of the Euclidian distances between point of the 
Wincandide-3 grid in the last frame of the produced sequence and their positions in 
the first frame (a subset of points for upper face and lower face action units are used). 
Similarly, sumdistances  is the sum of the Euclidean distances between points of the 
model in the last frame of the original sequence and their positions in the first frame; 
e.g. if we remove all frames which come after the first frame then t 0, and if we 
remove none of the frames then t 1. We model each single AU two times, using 
geometric and appearance features separately. In test phase, the outputs are added and 
the result is passed through a threshold.  When several outputs were on, it signals that 
a combination of AUs has been occurred.  
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Modeling of each system, i.e. each single AU, is composed of two parts: structure 
identification and parameter identification. The structure identification relate to parti-
tion of the input space, i.e. number of rules. In parameter identification process the 
premise parameters and consequence parameters are determined.  

3.2   Structure Identification Algorithm 

We use some of the training samples as the validation set. This set is used for avoid-
ing the problem of overfitting data in the modeling process. Suppose x , x , … , x  are 
the inputs of the system. Moreover, suppose d  is the number of divided fuzzy sub-
space for x . The initial value of d  i 1, … , k is 1, because at first the range of each 
variable is undivided. Also, let V, i.e. the value of mean squares of errors of the model 
on validation set be a big number. The algorithm of modeling is as follows:  
 

1) The range of x  is divided into one more fuzzy subspace (e.g. "big" and "small" 
if d 1 or "big", "medium" and "small" if d 2) and the range of the other va-
riables x ,  x , … , x  are not more divided. This model is called model 1; e.g. in the 
first iteration, model 1 consisting of two rules of the below format: R : if x  is big then y p p x  R : if x is samll then y p p x  

Similarly the model in which the range of x  is divided in to one more subspace and 
the rage of other variables x ,  x , … , x  are not more divided, is called mode 2. In this 
way we have k models. 

2) For each model the optimum premise parameters (mean and variance of the 
membership functions) and consequence parameters are found by the parameter iden-
tification algorithm described in the next subsection. This algorithm applies hybrid 
learning, to determine the premise and consequence parameters. 

3) For each model, the mean squares of errors (MSE) using training data is calculated: MSE ∑ y tP  (6) 

Here, P is number of the training data, y j 1, … , P  is the final output inferred from 
rules of the model for j’th feature vector in the training set. t j 1, … , P  is target 
value for j’th input vector in training set, which is a number between 0 to 1. Then, the 
model with least mean squares of errors is selected. This model called stable state 
model. Let T be the MSE of the stable state model using validation set. 

4) If T V stop otherwise, let d d 1. where s is index of the stable state 
model; let V T and go to step 1.  

 
After each iteration of the modeling algorithm, the range of a variable is divided to 

one more fuzzy subspace. In each fuzzy subspace, a linear input-output relation in 
consequence part of the corresponding rule is used to approximate the intensity of 
AU. Consequently, a highly non-linear system can be approximated efficiently by this 
method. Applying this accurate approach, we can recognize the lower intensity and 
combinations of AUs. 
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3.3   Parameter Identification Using Hybrid Learning 

The goal of this section is determining the optimum premise parameters (mean and 
variance of the membership functions), and consequent parameters of the model, as-
suming fixed structure. We use an adaptive-network-based fuzzy inference system 
(ANFIS) to determine the parameters (for more details see [16]). This architecture 
represents the fuzzy inference described in subsection 4.1. Given the values of premise 
parameters, the overall output can be express as a linear combinations of consequence 
parameters. In forward pass of the hybrid learning algorithm, functional signals go 
forward till layer 4 of the ANFIS and the consequence parameters are identified by the 
least squares estimate. In the backward pass, the error rates propagate backward and 
the premise parameters are updated by gradient descent procedure. 

Alternatively, we could apply the gradient descent procedure to identify all para-
meters. But this method is generally slow and likely to become trapped in local mini-
ma. By using the hybrid algorithm, we can decrease the dimension of search space 
and cut down the convergence time. 

4   Facial Expression Recognition and Interpretation 

Although we can use a SVMs for classification of six basic facial expressions (by 
feature vectors directly or AU intensity values), employing rule-based classifiers such 
as J48 [17], we can automatically extract human interpretable classification rules to 
interpret each expression. Thus, novel accurate AU-to-expression converters by con-
tinues values of the AU intensities can be created. These converters would be useful 
in animation, cognitive science, and behavioral science areas. 

5   Experimental Results 

To evaluate the performance of the proposed system and other methods like support 
vector machines (SVMs), hidden Markov models (HMMs), and neural network (NN) 
classifiers, we test them on Cohn-Kanade database [18]. The database includes 490 
frontal view image sequences from over 97 subjects. The final frame of each image 
sequence has been coded using Facial Action Coding System which describes sub-
ject's expression in terms of action units. For action units that vary in intensity, a 5-
point ordinal scale has been used to measure the degree of muscle contraction. In 
order to test the algorithm in lower intensity situation, we used each sequence five 
times with different intensities, i.e. by using intermediate frames as the last frame. Of 
theses, 1500 sequences were used as the training set. Also, for upper face and lower 
face AUs, 240 and 280 sequences were used as the test set respectively. None of the 
test subjects appeared in training data set. Some of the sequences contained limited 
head motion.    

Image sequences from neutral to the frame with maximum intensity, were cropped 
into 57 102 and 52 157 pixel arrays for lower face and upper face action units 
respectively. To extract appearance features we applied 16 Gabor kernels to each 
frame. We used the same dimension reduction method in the proposed and SVMs 
methods. Depending on the single AU that we want to model it, the geometric and 
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appearance feature vectors were of dimension 4 to 8 after applying the dimension 
reduction techniques. In training phase we allowed the target value of feature vector 
for multiple systems (single AUs) to set 1, when the input consists of AU combina-
tions. The value of the threshold is set to 1 (see Fig. 3). 

Table 1 and Table 2 show the upper face and lower face action unit recognition 
results respectively. In the proposed method, an average recognition rate of 88.8 and 
95.4 percent were achieved for upper face and lower face action units respectively. 
Also, an average false alarm rate of 7.1 and 2.9 percent were achieved for upper face 
and lower face action units respectively. In SVMs method, we first concatenated the 
reduced geometric and appearance feature vectors for each single AU. Then, we 
classify them using a two-class SMVs classifier with Gaussian kernel. Due to use of 
crisp value for targets, this method suffers from intensity variations. In HMMs 
method, the best performance was obtained by three Gaussians and five states. The 
Gabor coefficients were reduced to 100 dimensions per image sequence using PCA 
and 2DPCA (like [19]).  The geometric features were reduced to 8 dimension using 
PCA. Then, we concatenated the geometric and appearance feature vectors. For each 
single AU and also each AU combination, a hidden Markov model was trained, i.e. in 
this method we consider each AU as a class. We used the same dimension reduction 
method in the NN and HMMs methods. 
 

Table 1. Upper face action unit recognition results (R=recognition rate, F=false alarm) 
 

Proposed method 
AUs 

 
Sequences Recognized AUs 

True Missing or extra  False 
1 20 17 2(1+2+4), 1(1+2) 0 
2 10 7 1(1+2+4), 2(1+2) 0 
4 20 19 1(1+2+4) 0 
5 20 20 0 0 
6 20 19 0 1(7) 
7 10 9 0 1(6) 

1+2 40 37 2(2), 1(1+2+4) 0 
1+2+4 20 18 1(1), 1(2) 0 
1+2+5 10 8 2(1+2) 0 

1+4 10 7 3(1+2+4) 0 
1+6 10 8 1(1+6+7) 1(7) 
4+5 20 17 2(4), 1(5) 0 
6+7 30 27 2(1+6+7), 1(7) 0 

Total 240 213 24 3 
R 88.8% 
F 7.1% 

 

HMMs 
AUs 

 
Sequences Recognized AUs 

True Missing or extra False 
1 20 15 2(1+2+4), 2(1+2) 1(2) 
2 10 6 2(1+2+4), 1(1+2) 1(1) 
4 20 18 1(1+2+4) 1(2) 
5 20 20 0 0 
6 20 18 1(1+6) 1(7) 
7 10 7 2(6+7) 1(6) 

1+2 40 38 1(1+2+4) 1(4) 
1+2+4 20 16 2(2), 2(1+2) 0 
1+2+5 10 7 3(1+2) 0 

1+4 10 5 3(1+2+4) 2(5) 
1+6 10 6 2(1+6+7) 2(7) 
4+5 20 14 3(4), 1(5) 2(2) 
6+7 30 25 2(1+6+7), 3(7) 0 

Total 240 195 33 12 
R 81.3% 
F 12.9% 

  
SVMs 

AUs 
 

Sequences Recognized AUs 
True Missing or Extra False 

1 20 15 2(1+2+4), 1(1+2) 2(2) 
2 10 6 2(1+2+4) 2(1) 
4 20 18 1(1+2+4) 1(2) 
5 20 20 0 0 
6 20 19 1(1+6) 0 
7 10 7 0 3(6) 

1+2 40 35 1(2), 2(1+2+4) 2(4) 
1+2+4 20 15 2(1), 2(2) 1(5) 
1+2+5 10 6 2(1+5) 2(4) 

1+4 10 4 3(1+2+4) 3(5) 
1+6 10 6 3(1+6+7) 1(7) 
4+5 20 15 2(1+2+5) 3(2) 
6+7 30 24 2(1+6+7), 2(7) 2(1) 

Total 240 190 28 22 
R 79.2% 
F 17.1% 

 

NN 
AUs 

 
Sequences Recognized AUs 

True Missing or Extra False 
1 20 14 3(1+2+4) 3(2) 
2 10 5 4(1+2+4) 1(1) 
4 20 18 1(1+2+4) 1(2) 
5 20 18 1(4+5) 1(5) 
6 20 18 2(1+6) 0 
7 10 6 2(6+7) 2(6) 

1+2 40 36 2(2), 2(1+2+4) 0 
1+2+4 20 16 2(1), 2(2) 0 
1+2+5 10 7 2(1+2) 1(4) 

1+4 10 5 4(1+2+4) 1(5) 
1+6 10 6 2(1+6+7) 2(7) 
4+5 20 16 3(4) 1(1) 
6+7 30 24 3(1+6+7), 3(7) 0 

Total 240 189 38 13 
R 78.8% 
F 15.4% 
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Although this method can deal with AU dynamics properly, it needs the probability 
density function for each state. Moreover, the number of AU combinations is too big 
and the density estimation methods may lead to poor result especially when the 
number of training samples is low. Finally, in NN methods we trained a neural 
network with an output unit for each single AU and by allowing multiple output units 
to fire when the input sequence consists of AU combinations (like [20]).  

 
Table 2. Lower facial action unit recognition results (R=recognition rate, F=false alarm) 

 
Proposed method 

AUs 
 

Sequences Recognized AUs 
True Missing or 

extra 
False 

9 8 8 0 0 
10 12 12 0 0 
12 12 12 0 0 
15 8 8 0 0 
17 16 16 0 0 
20 12 12 0 0 
25 48 48 0 0 
26 24 18 4(25+26) 2(25) 
27 24 24 0 0 

9+17 24 24 0 0 
9+17+23+24 4 3 1(19+17+24) 0 

9+25 4 4 0 0 
10+17 8 5 2(17), 1(10) 0 

10+15+17 4 3 1(15+17) 0 
10+25 8 8 0 0 
12+25 16 16 0 0 
12+26 8 6 2(12+25) 0 
15+17 16 16 0 0 

17+23+24 8 8 0 0 
20+25 16 16 0 0 
Total 280 267 11 2 

R 95.4% 
F 2.9% 

 

HMMs 
AUs 

 
Sequences Recognized AUs 

True Missing or 
extra 

False 

9 8 8 0 0 
10 12 11 1(10+17) 0 
12 12 12 0 0 
15 8 6 1(15+17) 1(17) 
17 16 16 0 0 
20 12 12 0 0 
25 48 45 2(25+26) 1(26) 
26 24 19 3(25+26) 2(25) 
27 24 24 0 0 

9+17 24 22 2(9) 0 
9+17+23+24 4 2 2(19+17+24) 0 

9+25 4 4 0 0 
10+17 8 3 3(10+12) 2(12) 

10+15+17 4 2 2(15+17) 0 
10+25 8 7 1(25) 0 
12+25 16 16 0 0 
12+26 8 5 2(12+25) 1(25) 
15+17 16 16 0 0 

17+23+24 8 6 1(17+23) 1(10) 
20+25 16 12 2(20+26) 2(26) 
Total 280 248 22 10 

R 88.6% 
F 8.9% 

  
SVMs 

AUs 
 

Sequences Recognized AUs 
True Missing or 

extra 
False 

9 8 8 0 0 
10 12 8 2(10+7) 2(17) 
12 12 12 0 0 
15 8 6 2(15+17) 0 
17 16 14 2(10+17) 0 
20 12 12 0 0 
25 48 43 2(25+26) 3(26) 
26 24 18 3(25+26) 3(25) 
27 24 24 0 0 

9+17 24 22 2(9) 0 
9+17+23+24 4 1 3(9+17+24) 0 

9+25 4 4 0 0 
10+17 8 2 4(10+12) 2(12) 

10+15+17 4 2 2(15+17) 0 
10+25 8 7 1(25) 0 
12+25 16 16 0 0 
12+26 8 3 3(12+25) 2(25) 
15+17 16 16 0 0 

17+23+24 8 6 2(17+24) 0 
20+25 16 11 3(20+26) 2(26) 
Total 280 235 31 14 

R 83.9% 
F 12.5% 

 

NN 
AUs 

 
Sequences Recognized AUs 

True Missing or 
extra 

False 

9 8 7 1(9+17) 0 
10 12 8 2(10+7) 2(17) 
12 12 11 1(12+25) 0 
15 8 6 2(15+17) 0 
17 16 13 2(10+17) 1(10) 
20 12 12 0 0 
25 48 42 3(25+26) 3(26) 
26 24 19 2(25+26) 3(25) 
27 24 23 1(27+25) 0 

9+17 24 22 2(9) 0 
9+17+23+24 4 1 3(9+17+24) 0 

9+25 4 4 0 0 
10+17 8 4 2(10+12) 2(12) 

10+15+17 4 2 2(15+17) 0 
10+25 8 7 1(25) 0 
12+25 16 16 0 0 
12+26 8 3 3(12+25) 2(25) 
15+17 16 16 0 0 

17+23+24 8 6 2(17+24) 0 
20+25 16 12 3(20+26) 1(26) 
Total 280 234 32 14 

R 83.6% 
F 12.9% 
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The best performance was obtained by one hidden layer. Although this method can 
deal with intensity variations by using continues values for target of feature vectors, it 
suffer from trapping in local minima. Also unlike the proposed method, in NN clas-
sifier there is no any systematic approach to determine the structure of the network, 
i.e. number of hidden layer and hidden units. Table 3 shows the facial expression 
recognition results using J48 [17] classifier. As discussed in section 4, by applying 
each rule-based classifier we can develop an AU-to-expression converter. 

 
Table 3. Facial expression recognition results using J48 [17] classifier 

 
Confusion matrix for J48 classifier (total number of samples=2916, correctly 
classified samples=2710 (92.935%), incorrectly classified samples=206 (7.065%) : 
 
 

The resulted tree for converting the AU intensities to 
expressions using J48. Each path from root to leaf 
represents a rule (S=surprise, G=gloomy, F=fear, 
H=happy, A=angry, D=disgust, the value of each AU 
is between 0 and 1): 
 

 

Classified 
as → 

Surprise Gloomy Fear Hap-
py 

Angry Disgust 

Surprise 579 7 7 0 7 0 
Gloomy 6 467 0 0 13 0 

Fear 23 0 402 0 49 0 
Happy 0 0 0 618 0 0 
Angry 29 11 0 0 404 18 
Disgust 6 0 0 0 30 24 

 
Detailed accuracy by class for J48 classifier: 
 
 
True positive 

rate  
False 

positive rate 
Precision ROC area Class 

0.965 0.028 0.900 0.992 Surprise 
0.961 0.007 0.963 0.996 Gloomy 
0.848 0.003 0.983 0.987 Fear 
1.000 0.000 1.000 1.000 Happy 
0.874 0.040 0.803 0.973 Angry 
0.870 0.007 0.930 0.987 Disgust 

6   Discussion and Conclusions 

We proposed an efficient system for representation, recognition, interpretation, and 
analysis of the facial action units (AUs) and expressions. As an accurate tool, this 
system can be applied to many areas such as recognition of spontaneous and delibe-
rate facial expressions, multi modal/media human computer interaction and lie detec-
tion efforts. In our neuro-fuzzy classification scheme each fuzzy rule applies a linear 
approximation to estimate the AU intensity in a specific fuzzy subspace. In addition 
combining geometric and appearance features increases the recognition rate. 

Although the computational cost of the proposed method can be high in the train-
ing phase, when the fuzzy inference systems were created, it needs only some matrix 
products to reduce the dimensionality of the geometric and appearance features in the 
test phase. Employing a 3 3 Gabor kernel and a grid with low number of vertices, 
we can construct the Gabor representation of the input image sequence and also track 
the grid in less than two seconds with moderate computing power. As a result, the 
proposed system is suitable for real-time applications. Future research direction is to 
consider variations on face pose in the tracking algorithm.  
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Abstract. This paper presents a combined method of content-based retrieval 
and classification of ultrasound medical images representing three types of ova-
rian cysts: Simple Cyst, Endometrioma, and Teratoma. Combination of histo-
gram moments and Gray Level Co-Occurrence Matrix (GLCM) based statistical 
texture descriptors has been proposed as the features for retrieving and classify-
ing ultrasound images. To retrieve images, relevance between the query image 
and the target images has been measured using a similarity model based on 
Gower’s similarity coefficient. Image classification has been performed apply-
ing Fuzzy -Nearest Neighbour ( -NN) classification technique. A database of 
478 ultrasound ovarian images has been used to verify the retrieval and classifi-
cation accuracy of the proposed system. In retrieving ultrasound images, the 
proposed method has demonstrated above 79% and 75% of average precision 
considering the first 20 and 40 retrieved images respectively. Further, 88.12% 
of average classification accuracy has been achieved in classifying ultrasound 
images using the proposed method.  

Keywords: Ultrasound Medical Image Retrieval, Ovarian Cyst Classification, 
Texture Feature, Histogram Moments, Fuzzy -NN. 

1   Introduction 

With advancements in image processing and pattern classification techniques, Content-
Based Image Retrieval (CBIR) has become one of the most active research topics of 
computer vision during the last 15-years. As medical images are produced in large 
number everyday during regular clinical practice, they have been frequently used in 
developing and analyzing the performance of such retrieval systems. This has even-
tually lead medical domain to be cited as one of the principal application domains of 
CBIR technologies in terms of potential for high impact. A large number of proposi-
tions have already been made for content-based retrieval of medical images including 
radiology images, X-ray images, CT images of lung, dermatology images, MRI images 
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of heart and brain, ultrasound images of kidney and breast [1, 2]. However, to the best 
of our knowledge, no published research has yet reported the application of CBIR and 
image classification techniques over ultrasound images of ovarian abnormalities.  

 

 

 
 

Fig. 1. Sample ultrasound images representing three types of ovarian cysts: Simple Cyst, Endo-
metrioma, and Teratoma 

 
Ovarian cysts are particularly heterogeneous in nature (Fig. 1) and profiling them 

accurately is very important in order to arrive at a diagnosis. During the past decade, 
visual ultrasound examination has been accepted as the optimal diagnostic modality 
for the non-invasive assessment of ovarian cysts and other types of ovarian abnormal-
ities [3]. Although, several ultrasound-based algorithms have been proposed for this 
purpose, recognition of inherent patterns through visual observation of ultrasound 
images remains the best way for assessing their nature and category. However, this 
method largely depends on the accumulation of practical experience in identifying the 

(a) Simple Cyst (b) Simple Cyst 

(c) Endometrioma (d) Endometrioma 

(e) Teratoma (f) Teratoma
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morphology and characteristics of various types of ovarian cysts present in their cor-
responding ultrasound images. Therefore, inexperienced ultrasonographers and gyne-
cologists always face difficulties in differentiating among different types of cysts 
resulting in lower rate of correct diagnosis. Since incorrect diagnosis can either result 
in unnecessary biopsies/surgery, or worse, missed cases, there is a huge need for in-
experienced operators to be given supporting tools to help increase their diagnostic 
accuracy. The proposed system for retrieval and classification of ultrasound images 
could serve the purpose of such a decision support tool in the diagnosis of ovarian 
abnormalities. 

The subsequent discussions of the paper have been organized as follows: methods 
for calculating and combining histogram moments and GLCM based texture feature 
have been explained in Section 2. Section 3 provides a brief theoretical overview cov-
ering the similarity matching and image classification techniques applied. Section 4 
demonstrates the experimental results achieved applying the proposed method in re-
trieving and classifying ultrasound images of ovarian cysts, and finally, Section 5 con-
cludes the paper. 

 

 

Fig. 2. Flowchart of the proposed system for retrieval and classification of ultrasound ovarian 
images 

2   Feature Extraction 

The proposed method of ultrasound ovarian image retrieval and classification works in 
three main stages: (i) feature extraction and fusion, (ii) image retrieval by similarity 
measurement, and (iii) image classification using Fuzzy -NN. Since automated seg-
mentation of ultrasound images is still an open problem, the proposed method requires 
manual intervention in selecting the Region of Interest (ROI) for feature extraction 
from an ultrasound image. Once the region has been specified using a number of points 
on the image surface, the rest of the process of feature extraction, feature fusion, image 
retrieval and classification is done automatically without further intervention from the 
user. The flowchart of the proposed system is given in Fig. 2. 
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In this work, the following 2-types of features have been extracted from ultrasound 
images for the purpose of their retrieval and classification:  

 

(a) Histogram Moments 
(b) GLCM Based Statistical Texture Descriptors 

2.1   Histogram Moments 

Histogram based feature is one of the most widely used visual features in image re-
trieval and classification. The histogram of an image   is an -dimensional vector , ;  0,1,2, , 1, where  is the number of gray levels and ,  is 
the number of pixels with gray level value  . Histogram feature is relatively robust to 
background complication. Besides, it is also insensitive to changes such as image size, 
rotation and slight transition, each of which has little or no impact on the distribution 
of the gray levels in an image. However, the disadvantage of using histogram feature 
is that different images can have similar overall histogram in a large image database. 
Consequently, this can lead to poor performance in terms of retrieval and classifica-
tion accuracy. Another drawback of using histogram features for ultrasound image 
classification is that an ultrasound image can have histogram with many empty bins 
due to the quantization process involved in the imaging system. As a result, slight 
changes in illumination may cause a shift in the histogram  , which can introduce 
huge changes between the set of features obtained from two similar images. The mo-
ment-based approach can minimize these problems since it smoothes the 
gram . The histogram distribution of an image can be interpreted as a probability 
distribution and can be characterized by its moments. Stricker and Orengo [4] intro-
duced a method using the central moment approach. Mandal et al. [5] used orthogonal 
Legendre moments for histogram indexing, which resulted in a better performance 
than regular or central moments. Legendre moments are based on orthogonal Legen-
dre polynomials. A Legendre polynomial is defined as follows: 1! 2 1  

 
(1) 

The value of    can be expressed as: 

1 /
,  ,  

!2 2 ! 2 ! ! 
The -th Legendre moment of a function  is defined by 2 12        0,  

Replacing the value of  from Eq. (1), and applying the definition of centrals 
moments,   can be expressed as: 
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2 12  

 

It can be observed that the Legendre moment of any order depends only on the regular 
moments of the same order and lower and can be calculated easily using the above 
equation. 

Generally, the image grey levels range from 0 to 255. Since, the Legendre poly-
nomials are orthogonal only in the interval 1, 1 , the dynamic range of the  has 
to be mapped onto this interval. The histogram  function  can then be written 
as an infinite series expansion in terms of the Legendre polynomials as: 
 

 

 

From this equation, the image pdf can be reconstructed using first   1  moments 
as follows:  
 

 

 

The reconstructed  function  is then free from any quantization effect and 
has no empty bins. The optimum number of moments required for reconstructing the 
image  accurately is an important concern. Usually, 10-16 moments can give a 
good representation of an image  when it does not contain any sharp peak [5]. 
Ultrasound ovarian images usually contain sharp peaks with empty bins and therefore 
cannot be represented well using a small number of moments. To quantify the recon-
struction efficiency as well as the no. of moments required to better represent ultra-
sound images, we have calculated the Signal to Error Ratio  as follows [5]: 
   

 

Where,  and  are the original histogram and the moment reconstructed 
histogram respectively. Table 1 shows the percentage of images having a  greater 
than a certain threshold value using 8, 16, 32, 64, 128 moments.  

Table 1.  of the re-constructed image histogram  with finite number of moments. 
Using 128 moments, 98% of the reconstructed histograms have 8 . 

 No. of Moments 

 8 16 32 64 128 
> 8 dB 52% 79% 91% 97% 98% 
> 9 dB 41% 72% 86% 97% 97% 
> 10 dB 35% 67% 80% 93% 95% 
> 11 dB 31% 63% 77% 91% 94% 
> 12 dB 25% 57% 72% 88% 92% 
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As can be observed from Table 1, use of 64 and 128 moments demonstrates the best 
re-construction capability. However, calculation of 128 moments is computationally at 
least twice as expensive as calculating 64 moments. In addition, use of 64 moments 
instead of 128 has a significant impact on reducing the dimension of the extracted 
feature vector. Therefore, we opted for using the first 64 moments as image histogram 
based features. 

2.2   GLCM Based Texture Feature 

The co-occurrence probabilities of GLCM provide a second-order method for gene-
rating texture features [6]. These probabilities represent the conditional joint probabil-
ities of all pair wise combinations of grey levels in the spatial window of interest with 
respect to two parameters: inter-pixel distance  and orientation . The probabili-
ty measure can be defined as: | , , where  , the co-occurrence 
probability between grey level    and  ,  is defined as:  

 ,∑ ,,  

 

Here  ,  represents the number of occurrences of grey level  and  within a specific 
window, given a certain pair of  , ; and  is the quantized number of grey levels. 
The sum in the denominator thus represents the total number of grey level pairs ,  
within the window. For extracting GLCM based texture features from ultrasound 
ovarian images, we obtained four co-occurrence matrices from each image using 0, 45, 90, 135  degree and  1  pixel. After that, 19-statistical texture de-
scriptors have been calculated from each of these co-occurrence matrices as proposed 
in [6] and [7]. These descriptors are: angular second moment (energy), contrast, corre-
lation, sum of squares, inverse difference moment, sum average, sum variance, sum 
entropy, entropy, difference variance, difference entropy, two information measures 
of correlation, maximal correlation coefficient, autocorrelation, dissimilarity, cluster 
shade, cluster performance, and maximum probability. Then, by taking the range 
statistics (maximum and minimum), and average of these texture descriptors calcu-
lated using the four GLCMs, a total of  19 3 57  texture features were extracted 
from each of the images and used for their retrieval and classification. 

2.3   Feature Fusion and Normalization 

After extracting the histogram moments and GLCM based texture features from an 
image, they are organized into a single feature vector. Each feature vector  , consist-
ing of 121 features  64 57 , is then normalized as: 

   

 
where,    and    are the mean and standard deviation of feature vector  . 



 Content-Based Retrieval and Classification of Ultrasound Medical Images 179 

3   Image Retrieval and Classification 

3.1   Similarity Model for Image Retrieval 

For retrieving ultrasound images, Gower’s similarity coefficient [8] based similarity 
model has been used in which combination of features to constitute a global similarity 
is done as an average of each of the individual similarities on each feature. The model 
is defined as follows [9]: 

 ∑∑  (2) 

 

Here,   is the result of comparing image  and  on their feature  , and  repre-
sents the possibility of comparing image   and   on their feature  .  In Eq. (2),  1 if image   and  can be compared on feature , otherwise,  0. If the 

image  and image    can be compared across all the considered features, ∑
, which is the dimension of the feature vector. So, global similarity    between 

images   and   is defined as an average of the similarities on each feature between 

image and   and  . The quantity  can be defined as follows: 
 1  (3) 

 

Where  represents a normalization factor and is calculated as: 
 where ;  1,2, ,  is the set of values taken by each of the image  of 

the sample considered for the feature .  1  if image  and  are identical and  0  if they are completely different.   can take a positive value between 0 

and 1 if the two images have a certain degree of similarity according to feature . 
Using Eq. (3) and considering that all features can be compared, global similarity   between two images  and , as defined in Eq. (2), can be re-written as: 

 1 1  (4) 

3.2   Image Classification Using Fuzzy -NN 

Let  be the set of all possible input patterns, and , , ,  be a 
set of input training patterns for which the corresponding class labels are already 
known. In the conventional -NN algorithm, the Euclidean distances between the test 
pattern and all training patterns are calculated, and the test pattern is assigned the 
class label that most of the -closest training patterns have [10]. Let the Euclidean 
distance between the test pattern  and the training pattern  be de-

noted by ∑ . Since the number of training patterns is  , a 
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total of  such distances are calculated, and the closest -training patterns are identi-
fied as neighbors. The output of the conventional -NN algorithm attains a richer 
semantic when the output is interpreted as a posteriori probability [11]. Hence, instead 
of labeling the output class label equal to the class label that most of the neighbors 
have, the following class confidence values are assigned to the test pattern  : 

 1 no. of neighbors with class label ;  
 

1 ;   (5) 

where  is the characteristic function corresponding to the -th neighbor, i.e., 1 if  has the class label , and 0 otherwise. Here,  is the 
posteriori probability that  belongs to the class . With this formulation, we can still 
derive the hard decision by assigning the class label  to the test pattern  where max , , ,  and  is the total number of classes. 

In the conventional -NN algorithm, all  neighbors receive equal importance, and 
the class label of each training pattern is considered crisp. The fuzzy -NN algorithm 
refines the conventional -NN algorithm- 
 

1. By weighing the contribution of each of the  neighbors based on its distance to 
the test pattern. Evidently, the closest neighbor should receive the highest weight. 
Hence, the -th closest neighbor is weighted based on its relative distance with re-
spect to all -closest neighbors. Thus, the relative weight of the -th neighbor 1, 2, . . . ,  is  / /∑ / / ; where  is the Euclidean distance 

between  and  ; and   determines how strongly the distance is weighted while 
calculating each neighbor’s contribution to the membership value. Here, the de-
nominator is used for normalization such that the sum of the weights = 1. 

2. By considering that each neighbor may belong to more than one class. It typically 
happens where the classes overlap. Hence, the crisp class membership of each 
training pattern, i.e.,  , is modified to the fuzzy membership function  .  

 

To consider the above two refinements, Eq. (5) is modified to the following [12]: 
 

  1 /∑ 1 /  

 

Where  is the fuzzy membership of the -th neighbor in the -th class. In this 
case  is interpreted as the fuzzy membership function [13].  
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In the fuzzy -NN algorithm, the initial membership on each training pattern can 
be assigned in the following two ways [12, 14]: 
 

1. Crisp Membership: Each training pattern can have complete membership in their 
known class and non-memberships in all other classes. 

2. Constrained Fuzzy Membership: The -nearest neighbors of each training pattern 
(say ) are found, and the membership of  in each class is assigned as: 

 0.51 0.490.49           

 

if , 
 

If  

 
(6) 

 

The value  is the number of the neighbors found that belongs to the -th class. This 
initialization technique fuzzifies the memberships of the labeled samples that are in 
the region where classes are overlapping. Moreover, the patterns that are well away 
from the overlapping area are assigned with the complete membership in the known 
class. Consequently, a test pattern lying in the overlapping region will be influenced 
to a lesser extent by the labelled samples that are also in the overlapping area [14]. 

4   Performance Analysis 

Performance of the proposed method of ultrasound ovarian image retrieval and classi-
fication has been tested using 478 ultrasound images of ovarian cysts collected during 
regular clinical practice at the Department of Obstetrics and Gynecology, Royal Vic-
toria Hospital, Montreal. The collected images were classified into three types of 
ovarian cyst: Simple Cyst (187 images), Endometrioma (154 images) and Teratoma 
(137 images). This categorization was performed by at least one expert and the cate-
gorization decision was verified by consulting the proven pathological diagnosis as-
sociated with the respective ultrasound ovarian images.  

4.1   Retrieval Performance 

To evaluate the retrieval performance, randomly selected 50 images of each category 
have been used as the query images. We adopted “Query by Example” for submitting 
the query to the retrieval system where the query is specified by providing an example 
image to the system. A retrieved image is considered a match if it belongs to the same 
category as that of the query image. For quantitative evaluation, retrieval perfor-
mances of each category (simple cyst, endometrioma, and teratoma) were compared 
by calculating “Precision” values for   {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 
120, 140} retrieved results as:      

 
Fig 3. demonstrates the precision curves drawn by calculating the average precision 

values from the retrieved images of each category. As can be observed from this graph, 
the best overall retrieval performance has been achieved in retrieving the ultrasound 
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images of simple cyst. The average precision value lies above 79% for the first 20 
retrieved images and above 75% for the first 40 retrieved images, which indicates very 
satisfactory and consistent retrieval performance.  

 

 
 

Fig. 3. Performance of the proposed method in retrieving ultrasound images of ovarian cysts 

4.2   Classification Performance 

Due to its capability of providing high classification accuracy over small training sets 
as well as comparatively better generalization performance on data that belongs to a 
limited number of classes, fuzzy -Nearest Neighbor (fuzzy -NN) classification 
technique has been chosen in this work for classifying ultrasound images into 3-
categories: simple cyst, endometrioma, and teratoma. The initial membership on each 
training pattern was assigned using Constrained Fuzzy Membership as defined by Eq. 
(6). The choice of the number of nearest neighbors  is the most important customi-
zations that can be made while adjusting fuzzy -NN classifier to a particular applica-
tion domain. By performing experiments with fuzzy -NN applying different values 
of   starting with 3, we found that a stable average classification accuracy of 
88.12% was achieved using 21 (Fig . 4). Feature extracted from 200 images of 
the databases has been used to train the classifier applying “ -Fold Cross Validation” 
technique with    5. Performance of the proposed ultrasound image classification 
method has also been compared with other popular classification techniques namely, 
SVM (with RBF, Sigmoid and Polynomial kernels), ordinary -Nearest Neighbor ( -
NN) and Neural Network (NN). Results regarding these comparisons have been 
summarized in Table 2. 
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Fig. 4. Selection of a suitable value of  (no. of nearest neighbors) for Fuzzy -NN and ordi-
nary -NN classifier 

 
Table 2. Comparison of classification accuracy (%) achieved using different classifiers in 
classifying ultrasound ovarian images 

 

 Simple Cyst Endometrioma Teratoma Average 

Fuzzy -NN 91.44 88.96 83.94 88.12 
-NN 86.10 80.52 81.02 82.55 

SVM (RBF Kernel) 88.77 86.36 84.67 86.60 
SVM (Polynomial Kernel) 86.63 83.12 80.29 83.35 
SVM (Sigmoid Kernel) 88.24 85.71 78.10 84.02 
Neural Network 78.07 74.68 73.72 75.49 

5   Conclusions 

We have presented a combined method for retrieval and classification of ultrasound 
ovarian images using combination of histogram moments and gray level co-occurrence 
matrix based texture descriptors. With 88.12% of average classification accuracy and 
above 79% and 75% precision for the first 20 and 40 retrieved images respectively, the 
proposed method has been able to demonstrate significant potential in support of com-
bining histogram moments and GLCM based texture feature for retrieving and classify-
ing ultrasound images. In future, we plan to investigate the classification and retrieval 
performance of the proposed method using ultrasound images of other types of ovarian 
cysts. Our ultimate objective is to incorporate the proposed method in developing a 
Computer-Aided Diagnosis (CAD) system for providing decision support in the diagno-
sis of ovarian abnormalities. It is expected that by querying such a CAD system with 
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new images and consulting the retrieved results along with their proven pathological 
diagnosis, the physician would gain more confidence in his/her decision or even some-
times see the scope of considering other possibilities towards improving their overall 
accuracy in the diagnosis of ovarian abnormalities. 
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Abstract. Keyword spotting refers to the process of retrieving all in-
stances of a given key word in a document. In the present paper, a novel
keyword spotting system for handwritten documents is described. It is
derived from a neural network based system for unconstrained handwrit-
ing recognition. As such it performs template-free spotting, i.e. it is not
necessary for a keyword to appear in the training set. The keyword spot-
ting is done using a modification of the CTC Token Passing algorithm.
We demonstrate that such a system has the potential for high perfor-
mance. For example, a precision of 95% at 50% recall is reached for the
4,000 most frequent words on the IAM offline handwriting database.

1 Introduction

The automatic recognition of handwritten text – such as letters, manuscripts or
entire books – has been a focus of intensive research for several decades [1,2]. Yet
the problem is far from being solved. Particularly in the field of unconstrained
handwriting recognition where the writing styles of various writers must be dealt
with, severe difficulties are encountered.

Making handwritten texts available for searching and browsing is of tremen-
dous value. For example, one might be interested in finding all occurrences of
the word “complain” in the letters a company receives. As another example,
libraries all over the world store huge numbers of handwritten books that are
of crucial importance for preserving the world’s cultural heritage. Making these
books available for searching and browsing would greatly help researchers and
the public alike. Finally, it is worth mentioning that Google and Yahoo have
announced to make handwritten books accessible through their search engines
as well [3].

Transcribing the entire text of a handwritten document for searching is not
only inefficient as far as computational costs are concerned, but it may also
result in poor performance, since misrecognized words cannot be found. There-
fore, techniques especially designed for the task of keyword spotting have been
developed.

Current approaches to word spotting can be split into two categories, viz.
query-by-example (QBE) and query-by string (QBS). With the former approach,
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all instances of the search word in the training set are compared with all word im-
ages in the test set. Among the most popular approaches in this category are dy-
namic time warping (DTW) [4,5,6] and classification using global features [7,8].
Word shape methods using Gradient, Structural and Concavity features (GSC)
have been shown to outperform DTW in [9,10]. Algorithms based on QBE suffer
from the drawback that they can only find words appearing in the training set.
The latter approach of QBS models the key words according to single characters
in the training set and searches for sequences of these characters in the test set.
The approach proposed in [11,12] requires a character-position based ground
truth for the training set. Consequently, not only bounding boxes around each
word are required, but around each single character. In addition to expensive
manual preprocessing, this imposes a problem since in cursive handwriting it is
often not clear how to segment a word into individual characters.

The approach proposed in this paper uses a neural network based handwrit-
ing recognition system which has several advantages compared to the above
mentioned approaches. First, by treating an entire text line at a time, it is not
necessary to split the text lines of the test set into separate words. Secondly,
being derived from a general neural network based handwritten text recognition
system, any arbitrary string can be searched for, not just the words appearing
in the training set. Thirdly, it is not required to have the bounding box of each
word or character included in the training set. The ASCII transcription of the
text lines in the training set is sufficient to train the neural network.

The rest of this paper is organized as follows. In Section 2, document prepro-
cessing procedures and a neural network for handwritten text recognition are
introduced. In Section 3, we describe how the proposed system can be adopted
to the task of word spotting. An experimental evaluation of this system is pre-
sented in Section 4, and conclusions are drawn in Section 5.

2 Neural Network Based Handwritten Text Recognizer

2.1 Preprocessing

We follow the common approach to offline handwriting recognition by first au-
tomatically segmenting an input document into individual text lines. From each
line, a sequence of feature vectors is extracted, which is then submitted to the
neural network.

The words used in the experiments described in this paper come from the IAM
database [13]. They are extracted from pages of handwritten texts, which were
scanned and separated into individual text lines. After binarizing an image with
a suitable threshold on the gray scale value, the slant and skew of each textline
is corrected and the width and height of the handwriting are normalized [14].

Given the image of a single word, a horizontally sliding window with a width
of one pixel is used to extract nine geometric features at each position from left to
right, three global and six local ones. The global features are the 0th, 1st and 2nd

moment of the black pixels’ distribution within the window. The local features
are the position of the top-most and bottom-most black pixel, the inclination of
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Fig. 1. The schematics of the BLSTM Neural Network. LSTM memory cells (a) in two
distinct recurrent layers process the text line from different directions.

the top and bottom contour of the word at that position, the number of vertical
black/white transitions, and the average gray scale value between the top-most
and bottom-most black pixel. For details on these steps, we refer to [14].

2.2 BLSTM Neural Network

The recognizer used in this paper is a recently developed recurrent neural net-
work, termed bidirectional long short-term memory (BLSTM) neural network [15].
In general, recurrent NN offer a natural way for neural networks to process se-
quential data by reading the sequence one step at a time. Due to recurrent con-
nections within the hidden layer, information from previous times steps can be
accessed. Unfortunately, recurrent neural networks suffer from the vanishing gra-
dient problem, which describes the exponential increase or decay of values as they
cycle through recurrent network layers.

A way to circumvent this problem is the introduction of so-called long short-
term memory blocks. In Fig. 1(a) such a LSTM node is displayed. At the core
of the node, a simple cell, which is connected to itself with a recurrence multi-
plication factor of 1.0 stores the information. New information via the Net Input
enters only if the Input Gate opens and leaves the cell into the network when
the Output Gate is open. The activation of the Forget Gate resets the cell’s
value to 0. The gates and the Net Input are conventional nodes using an arctan
activation function. This architecture admits changes to the cell’s memory only
when one of the gates is open and is therefore able to carry information across
arbitrarily long sequence positions. Thus, at any point in the sequence, the usage
of contextual information is not restricted to the direct neighborhood.

The input layer contains one node for each of the nine geometrical features
and is connected with two distinct recurrent hidden layers. The hidden layers are
both connected to the output layer. The network is bidirectional, i.e. a sequence
of feature vectors is fed into the network in both forward and backward modes.
One hidden layer deals with the forward sequence, and the other layer with the
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Fig. 2. The activation level for all nodes in the output layer. The activation is close to
0 most of the time for normal letters and peaks only at distinct position. In contrast,
the activation level of the ε node is nearly constantly 1.

backward sequence. An illustration of the network can be seen in Fig. 1(b). At
each position k of the input sequence of length t, the output layer sums up the
values coming from the hidden layer that has processed positions 1 to k and the
hidden layer that has processed positions t down to k. The output layer contains
one node for each possible character in the sequence plus a special ε node, to
indicate “no character”. At each position, the output activations of the nodes
are normalized so that they sum up to 1, and are treated as probabilities that
the node’s corresponding character occurs at this position. A visualization of the
output activations along a text line can be seen in Fig. 2. For more details about
BLSTM networks, we refer to [15,16].

The neural network produces a sequence of probabilities for each letter and
each position in the text line. This sequence can be efficiently used for word
and text line recognition as well as for word spotting as shown in the present
paper, where the Connectionist Temporal Classification (CTC) Token Passing
algorithm is utilized for the latter task.

3 Word Spotting Using BLSTM

The neural network described in the previous section produces a sequence of
probabilities for each letter and each position in the text line. This sequence
can be efficiently used for word and text line recognition [15] as well as for
word spotting as shown in the present paper, where the Connectionist Temporal
Classification (CTC) Token Passing algorithm is adapted to the latter task. To
the knowledge of the authors, this is the first attempt to spot keywords using
the CTC algorithm in conjunction with BLSTM neural networks.

3.1 CTC Token Passing Algorithm

The CTC Token Passing algorithm for single words expects a sequence of letter
probabilities of length t as output by the neural network, together with a word
w as a sequence of ASCII characters, and returns a matching score, i.e. the
probability that the input to the neural network was indeed the given word
(Algorithm 1).
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Let n(l, k) denote the probability of the letter l occurring at position k ac-
cording to the neural network output1 and let w = l1l2 . . . ln denote the word to
be matched. The algorithm first expands w into a sequence

w′ = εl1εl2 . . . εlnε = c1c2c3 . . . c2n+1

and creates for every character ci (i = 1, . . . , 2n + 1) and every position j =
1, . . . , t in the text line a token ϑ(i, j) to store the probability that character ci
is present at position j together with the probability of the best path from the
beginning to position j. The tokens are initialized so that their probability is 0
except for the first ε (c1) and the first letter (c2), which are initialized to hold
the value of ε and the probability value of c1 at the first position of the sequence,
respectively (Lines 3–5).

During the following loop over all input sequence positions j, the tokens ϑ(·, j)
are updated, so that a) the token’s corresponding letter l occurs at position j,
b) in the best path, all letters of the word occur in the given order, c) between
two subsequent letters of the word, only ε-node activations are considered and
d) if two subsequent letters of a given word are the same (e.g. positions 3 and 4
in “Hello”), at least one ε node must lie between them. To compute the value of
the token ϑ(i, j), a set Tbest is created in which all valid tokens are stored that
can act as predecessor to the token ϑ(i, j) according to the above mentioned
constraints. If at sequence position j the letter ci is considered (which might
be a real letter or ε), the token corresponding to the same letter ci at sequence
position j − 1 is valid (Line 9). The token corresponding to the letter ci−1 (ε if
ci is a real letter and a real letter if ci = ε) at sequence position j−1 is valid for
each but the first letter (Line 10 and 11). Since two different letters might follow
each other without an ε-node activation, the token corresponding to the letter
ci−2 is valid for these cases, too (Line 12 and 13). Afterwards, the probability of
the best token in Tbest is multiplied with n(i, j) to give the probability of ϑ(i, j).
Algorithm 1 is a slightly simplified version of the one given in [15] and only
suitable for single word recognition, but it is sufficient for our task of keyword
spotting.

The main contribution of this paper is the modification of Algorithm 1 to
search for any given word in a text line s of arbitrary length. First, we add a
virtual node to the output nodes, called the any- or ∗-node and set ∀j n(∗, j) = 1.
Then, assuming that the considered word actually occurs in the given text line,
we distinguish three different cases: a) the word to be searched occurs at the
beginning of the sequence, b) the word occurs at the end of the sequence, and
c) the word occurs in the given text line, but neither at the end nor at the
beginning. This distinction is important in view of whitespace characters ′ ′

following or preceding the word to be searched.
Consider again the given word w = l1l2 . . . ln. To cope with case a), we append

a whitespace character to the word, followed by the any-character. For case b)
1 Due to our normalization procedure, the following statement holds ∀k :

∑
l n(l, k)=1.

Therefore, the output values of the neural network can be indeed considered as prob-
abilities.
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Algorithm 1. The CTC Token Passing Algorithm for single word recognition
Require: input word w = l1l2 . . . ln
Require: sequence of letter probabilities, accessible via n(·, ·)
1: Initialization:
2: expand w to w′ = εl1εl2ε . . . εlnε = c1c2 . . . c2n+1

3: ϑ(1, 1) = n(ε, 1)
4: ϑ(2, 1) = n(l1, 1)
5:
6: Main Loop:
7: for all sequence positions 2 ≤ j ≤ t do
8: for all positions i of the extended word 1 ≤ i ≤ 2n + 1 do
9: Tbest = {ϑ(i, j − 1)}

10: if i > 1 then
11: Tbest = Tbest ∪ ϑ(i − 1, j − 1)
12: if ci �= ε and ci �= ci−2 then
13: Tbest = Tbest ∪ ϑ(i − 2, j − 1)
14: end if
15: end if
16: ϑ(i, j) = max(Tbest) · n(i, j) � multiply the best token’s probability with

the letter probability
17: end for
18: end for

return max {ϑ(2n + 1, t), ϑ(2n, t)} � The word can either end on the last ε
(c2n+1) or on the last regular letter (c2n)

we prefix the word with the any-character and a whitespace. Finally, for case c),
we prefix and append a whitespace and an any-character:

wa = l1l2 . . . ln ∗
wb = ∗ l1l2 . . . ln

wc = ∗ l1l2 . . . ln ∗

If we now use the CTC-Algorithm for single word recognition to compute the
probability of the word being wa, we compute in fact the probability that the
text line starts with the first letter of the word w, followed by the second letter,
and so on until the word’s last letter, followed by a whitespace and then by any
character. Obviously, the size and content of the text following the whitespace
after word w is irrelevant, since n(‘∗′, j) = 1. Similarly, if we run the CTC-
Algorithm with the word wb, we compute the probability that the textline ends
with word w. If the CTC Token Passing algorithm is run with wc, we get the
probability that the word w occurs somewhere in the middle. We can now easily
combine the output of the three runs of the algorithm with wa, wb and wc by
using the maximum

pCTC(w|s) = max {pCTC(wa|s), pCTC(wb|s), pCTC(wc|s)} .



A Novel Word Spotting Algorithm Using BLSTM Neural Networks 191

(a) Returned log Likelihood: -1.7125

(b) Returned log Likelihood: -8.4097

(c) Returned log Likelihood: -9.0727

(d) Returned log Likelihood: -11.0900

(e) Returned log Likelihood: -11.6082

Fig. 3. Search results for the word “found”

Of course, the returned probability of a word still depends upon the word’s
length. To receive a normalized value which can then be thresholded, we divide
pCTC(w|s) by the search word’s length2

p′CTC(w|s) =
pCTC(w|s)

|w| .

How the results of such a search may look like can be seen in Fig. 3. Note
that the system just returns a likelihood of the word being found. Afterwards,
this likelihood can be compared to a threshold to decide whether or not this is
a true match.

4 Experimental Evaluation

4.1 Setup

For testing the proposed keyword spotting method, we used the IAM offline
database3. This database consists of 1,539 pages of handwritten English text,
written by 657 writers. From this database, we used 6,161 lines as a training set,
920 lines as a writer independent validation set, and an additional 920 lines as
2 We define the length according to the number of letters.
3 http://www.iam.unibe.ch/fki/databases/iam-handwriting-database

http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
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a test set. Using the training set, we trained seven randomly initialized neural
networks and used the validation set to stop the back propagation iterations in
the training process. See [15] for details on the neural network training algorithm.
Then we selected the 4,000 most frequent words from all three sets and performed
keyword spotting using these words. Note that by far not all the keywords used
in the test occur in every set.

4.2 Results

Every word w tested on each text line s returns a probability p′CTC(w|s). The
word spotting algorithm compares this probability against a global threshold to
decide whether or not it is a match. We used all returned values p′CTC(w|s) as
a global threshold in oder to make the results as precise as possible. For each of
these thresholds, we computed the number true positives (TP ), true negatives
(TN), false positives (FP ), and false negatives (FN). These number were then
used to plot a precision-recall curve for each neural network (see Fig. 4(a)).
Precision is defined as number of relevant objects found by the algorithm divided
by the number of all objects found TP

TP+FP , while recall is defined as the number
of relevant objects found divided by the number of all relevant objects in the
test set TP

TP+FN .
A precision-recall curve therefore gives us an idea about the noise in the

returned results, given the percentage of how many true elements are found. It
can be seen that the performance of the different networks varies greatly. The
network that performed best on the validation set achieves an average precision
rate of 87.6%. At a recall rate of 50%, the precision is 97.3%.

Based on the validation set, it is possible to pick good networks from the
ensemble of all networks. The network that performed best (Network 6) was
further analyzed. Its precision-recall curve on the independent test set is shown
in Fig. 4(b). The average precision rate is 82.8% and its precision at a recall rate
of 50% is 95.5%. This performance rivals those of the best existing systems, e.g.
[9,8], although on a different, but not harder data set.

In Fig. 5, a rank plot is shown. A rank plot visualizes the quality of the search
results. Each row corresponds to one keyword and dots correspond to positions
of the right occurrences of keywords in the rank. Keywords are sorted according
to the number of occurrences in the test set. Consequently, an optimal rank plot
would have all the black dots on the left hand side of the plot, more black dots
in the lower left hand corner than in the upper left hand corner, while the rest
of the plot should be white.

The rank plot using all search words actually occurring in the test set can be
seen in Fig 5. Although there are few black dots spread over the entire plot, it
can be seen that it comes quite close to the ideal form. Since rank plots cannot
easily be converted into a single number, it is not straight forward to compare
different rank plots. However, they give a good impression about a system’s
performance. The keyword spotting ability of the proposed approach seems to
be independent of the frequency of search word. Both common and uncommon
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(a) Precision-Recall curves for seven different neural networks on the validation set.
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Fig. 4. The Precision-Recall curves of the neural networks
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Fig. 5. The best network’s rank plot for all search words that appear in the test set

words can be spotted since the black dots are aligned on the left side in the lower
and upper part of the rank plot.

5 Conclusion

I this paper, we developed a word spotting algorithm that is derived from a
recurrent neural network based handwriting recognition system. We were able
to demonstrate that it not only performs very well with respect to the word
spotting task, but it also overcomes some of the drawbacks of existing system.
Not only words that appear in the training set can be searched for as in the
query-by-example approach, but any character string. Secondly, to train the
neural network, it is not necessary to have a bounding box for each character in
the training set; just the correct transcription is needed. The performance varies
greatly from one individual neural network to the other; however, an independent
validation set can be used to identify the best performing network.

A future line of research will evaluate the proposed form of keyword spotting
on historical documents. Desirable is also a direct experimental comparison to
other available methods. Combining different neural networks to build one single
improved system as well as modifying different handwriting recognition systems,



A Novel Word Spotting Algorithm Using BLSTM Neural Networks 195

such as HMM based recognizers for the task of keyword spotting, are further
aspects worth to be considered in future research.
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Abstract. In order to interface the amputee’s with the real world, the
myoelectric signal (MES) from human muscles is usually utilized within
a pattern recognition scheme as an input to the controller of a prosthetic
device. Since the MES is recorded using multi channels, the feature vec-
tor size can become very large. In order to reduce the computational cost
and enhance the generalization capability of the classifier, a dimension-
ality reduction method is needed to identify an informative moderate
size feature set. This paper proposes a new fuzzy version of the well
known Fisher’s Linear Discriminant Analysis (LDA) feature projection
technique. Furthermore, based on the fact that certain muscles might
contribute more to the discrimination process, a novel feature weight-
ing scheme is also presented by employing Particle Swarm Optimization
(PSO) for the weights calculation. The new method, called PSOFLDA,
is tested on real MES datasets and compared with other techniques to
prove its superiority.

Keywords: Discriminant Analysis, Myoelectric Control, Particle Swarm
Optimization.

1 Introduction

The myoelectric signal (MES), also known as the Electromyogram (EMG), is
a one dimensional non-stationary signal that carries the distinct signature of
the voluntary intent of the central nervous system. It is usually recorded in a
noninvasive scheme utilizing a set of surface electrodes mounted on the human
forearm. One of the most important application of the MES is its use in con-
trolling prosthetic devices functioning as artificial alternatives to missing limbs.
Advances in myoelectric signals studies revealed that the MES exhibits different
temporal structure for different kinds of the arm movements. This in turn facil-
itated the use of a pattern recognition based myoelectric control strategies for
prosthetics control. To this end, a wide set of pattern recognition methods were
proposed in the literature to produce a computationally efficient and accurate
MES recognition systems [1].

In order to capture the complete muscle activity, a multi channel approach is
usually utilized when measuring the MES signal to capture novel motor informa-
tion from different muscles. However, this will increase the number of extracted
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features (variables that describe these movements) and hence it will increase
the learning parameters of the classifier and may degrade its performance. A
straight forward solution to these problems is to project the data onto low-
dimensional subspaces to extract the most significant features. Many feature
projections techniques were used in myoelectric control with the aim to pro-
duce a statistically uncorrelated or independent feature set, a desirable goal in
any pattern recognition system. Various approaches in dimensionality reduction
were utilized in myoelectric control. These include, principal component anal-
ysis (PCA), a well-known feature projection method which, according to [2],
achieved good performance in the myoelectric control problem , a combination
of PCA and a self organizing feature map (SOFM), proving better results than
PCA alone, according to [3], linear discriminant analysis (LDA) based feature
projection, proving better results than PCA with SOFM, according to [4].

Although LDA is a well known projection technique, but there are many limi-
tations with the classical LDA [5]. The first is that it requires the scatter matrices
to be nonsingular, while in real world problems they can be singular. The sec-
ond limitation with LDA is that it treats all the data points equivalently where
as in the real world problems each sample may belong to each of the different
classes with to certain degree. Finally, classical LDA pays no attention to the
decorrelation of the data, which is a desirable property in many applications.
One possible approach to overcome the first and the third problems was utilized
in myoelectric control, this is based on the use of the uncorrelated linear dis-
criminant analysis (ULDA) that requires the reduced features to be statistically
uncorrelated with one another [6].

As a variation to the ULDA approach which is based on Singular Value De-
composition (SVD) that is known to be expensive in terms of time and memory
requirements for large datasets, this paper proposes a new mixture of fuzzy logic
and discriminant analysis as a novel dimensionality reduction technique. The
proposed method aims to reduce the dimensionality of the extracted feature set
and cluster features, such that the classification accuracy is improved. Due to the
fact that most of the biosignals generated by the human body tend to produce
patterns that are fuzzy in nature (i.e., belongs to different classes with certain
degrees), then the incorporation of the concept of fuzzy memberships is required
to reduce the effect of overlapping and outliers points. The new method, called
PSOFLDA, unlike the current available variations to Fisher’s linear discriminant
analysis (LDA), accounts for the different contribution of different muscles into
the discrimination process. Thus it assumes that certain features are more im-
portant than others. In order to reflect this importance, a novel feature weighting
scheme is introduced employing Particle Swarm Optimization (PSO) technique
for the weights calculation. Also in order to overcome the singularity problem,
a regularization parameter is included within each particle (i.e., member of the
population).

This paper is structured as follows: Section 2 explains the proposed method-
ology. The experimental results are given in section 3. Finally the conclusion is
given in section 4.
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2 Methodology

In this section, first the theory behind the proposed fuzzy discriminant analysis
is introduced. Secondly, an introduction to the Particle Swarm Optimization
(PSO) technique is presented as one possible way to reach the near optimal
solution.

2.1 Weighted Fuzzy Discriminant Analysis

Consider a classification problem with c classes, in which the data set of labeled
training samples is given as:

S = {(x1, y1), (x2, y2), ..., (xl, yl)} ⊆ (X,Y )l (1)

Where X is the input space and Y is the output space. X ⊆ �n , and l is the
number of samples. Each training point xi originally belongs to one of the c
classes and is given a label yi ∈ {1, 2, 3, . . . , c} for i = {1, 2, 3, . . . , l}. The goal
is to find an optimal hyper-plane using the training samples that can recognize
the test points, i.e., the classifier will have a good generalization capability. In
PSOFLDA each point, xi, belongs to each of the c classes with a certain degree
of membership. The fuzzy within class scatter matrix SW , fuzzy between class
scatter matrix SB, and the fuzzy total class scatter matrix ST are given as
follows:

SW =
c∑

i=1

l∑
k=1

um
ik(xk − vi)(xk − vi)T � (wwT ) (2)

SB =
c∑

i=1

l∑
k=1

um
ik(vi − x)(vi − x)T � (wwT ) (3)

ST =
c∑

i=1

l∑
k=1

um
ik(xk − x)(xk − x)T � (wwT ) (4)

where uik is the membership of pattern k in class i, m (given that m > 1) is
the fuzzification parameter, xkj is the value of the k’th sample across the j’th
dimension, vi is the mean of the patterns belonging to class i, and vij is its value
across the j’th dimension. � refers to the Hadamard product operation, w is the
weight vector associated with all features, i.e., w = {w1, w2, ..., wf}, where f is
the total number of features. x is the mean of the training samples which is given
in Eq.(5) below.

x =
1
l

l∑
k=1

xk (5)

In this paper, the value of the membership uik is calculated using a possibilis-
tic fuzzy clustering approach. The cost function of the possibilistic clustering
approach is adopted from [7], as given in Eq.(6) below.

J(θ, U) =
l∑

k=1

c∑
i=1

um
ik(xk − θi)2 +

c∑
i=1

ηi

l∑
k=1

(1 − uik)m (6)
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where θi is the i’th cluster center, ηi are positive constants that are suitably
chosen. The first term in Eq. (6) is the same objective function used in proba-
bilistic clustering approach, while the second term is added to reduce the effect
of outliers. In order to find the membership values from the above equation, then
the values of the clusters centers are needed. A direct way would be to differen-
tiate Eq. (6) with respect to θi, but this in turn would cancel the second term
leaving only the first term. A general look at the first term of Eq. (6) reveals
that it represents the classical within class scatter matrix SW given in Eq. (2) if
the weight is removed. Thus applying the values of the clusters means ensures
that the objective function given by Eq. (6) would settle at a global optimum
value. Then in order to compute the membership values, a differentiation of the
resultant function with respect to uik needs to be done as follows.

∂J(θ, U)
∂uik

= mum−1
ik (xk − vi)2 −mηi(1 − uik)m−1 = 0 (7)

This would in turn result in the following function

uik =
1

1 +
(

(xk−vi)2
ηi

) 1
m−1

(8)

The values of ηi, where i = {1, 2, 3, . . . , c} were chosen to be equal to the
maximum distance between the samples belonging to that class and the class
center.

After computing all the variables, PSOFLDA finds the vector G that would
maximize the ratio of the between class scatter matrix to the within class scatter
matrix by solving the following equation:

G = arg max
G

trace
(
(GTSWG)−1GTSBG

)
(9)

The solution can be readily computed by applying an Eigen-decomposition
on S−1

W SB , provided that the within class scatter matrix SW is nonsingular. In
this paper, we are using a regularized version of SW given by SW = SW + zI
, for some z > 0 that is included in the particle representation of the weights,
where I is an identity matrix. In this way the scatter matrix is guaranteed to be
nonsingular. Since the rank of the between class scatter matrix is bounded from
above by c - 1, there are at most c - 1 discriminant vectors by PSOFLDA.

2.2 PSO Based Weight Optimization

One possible solution for finding the best values of the weights is to employ evo-
lutionary algorithms, or EAs. Powerful EA algorithms include genetic algorithm
(GA) and Particle Swarm Optimization (PSO). PSO is an effective continuous
function optimizer as it encodes the parameters as floating-point numbers and
manipulate them with arithmetic operators. By contrast, GAs are often better
suited for combinatorial optimization because they encode the parameters as
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bit strings and modify them with logical operators. There are many variants to
both approaches, but because PSO is primarily a numerical optimizer, the PSO
is considered in this paper.

Particle swarm optimization, is a population based stochastic optimization
technique developed by Eberhart and Kennedy in 1995 [8]. It represents an
example of a modern search heuristics belonging to the category of Swarm In-
telligence methods. PSO mimics the behavior of a swarm of birds or a school of
fish. The swarm behavior is modeled by particles in multidimensional space that
have two characteristics: position (p) and velocity (s). These particles wander
around the hyper space and remember the best position that they have discov-
ered. A particle’s position in the multi-dimensional problem space represents one
solution for the problem. They exchange information about good positions to
each other and adjust their own position and velocity with certain probabilities
based on these good positions. The original formula developed by Kennedy and
Eberhart was improved by Shi and Eberhart with the introduction of an inertia
weight � that decreases over time, (typically from 0.9 to 0.4), to narrow the
search that would induce a shift from an exploratory to an exploitative mode.
Though the maximum velocity of a particle (smax) was no longer necessary for
controlling the explosion of the particles, Shi and Eberhart continued to use it,
often setting smax = pmax that is the maximum velocity is equaled to the max-
imum value along the specific dimension, in order to keep the system within the
relevant part of the search space. This was found to be a good idea that signifi-
cantly improves the PSO performance and at the same time it costs very little
computationally. During iterations each particle adjusts its own trajectory in the
space in order to move towards its best position and the global best according
to the following equations:

sij(t+ 1) = �sij(t) + c1r1(pbestij − pij) + c2r2(gbestij − pij) (10)

pij(t+ 1) = pij(t) + sij(t+ 1) (11)

Where
i: is the particle index
j: is the current dimension under consideration
pi: is the current position,
si: is the current velocity
�: is the inertia weight
t: is the current time step
r1 and r2 are two random numbers uniformly distributed in the range (0,1),

c1 and c2 are cognitive and social parameters respectively, pbesti is the local best
position, the one associated with the best fitness value the particle has achieved
so far, and gbesti is the global best position, the one associated with the best
fitness value found among all of the particles.

The personal best of each particle is updated according to the following
equation:

pbesti(t+ 1) =
{
pbesti(t) if (pbesti(t)) ≤ f(pi)
pi(t) if (pbesti(t)) > f(pi)

}
(12)
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Finally, the global best of the swarm is updated using the following equation:

gbest(t+ 1) = arg min
pbesti

f(pbesti(t+ 1)) (13)

Where f(.) is a function that evaluates the fitness value for a given position. This
model is referred to as the gbest (global best) model. In this paper, each particle
will represent a vector whose elements are the weights assigned to each feature
plus the regularization parameter z. The idea here is to generate a new weight
vector by utilizing a set of particles that wander through the solution space
searching for the best possible representation achieving the minimum error rates.
In such a system, the fitness function was chosen to be the error rates achieved
by a suitable classifier. The details of the classifiers chosen will be given in the
experiments section.

3 Experiments and Results

In order to present a fair comparison with the available techniques, we include
many of them in the experiments. The details of the experiments carried on are
listed below:

– Comparison with other methods: The PSOFLDA will be compared
against two groups of other techniques: the first has already been applied
into myoelectric control like ULDA [5], and PCA [2]. The second group in-
clude technique that were not used within the myoelectric control problems,
like Orthogonal Linear Discriminant Analysis (OLDA) [9], and Fuzzy Dis-
criminant Analysis (FLDA) [10]. These were included because they represent
new variations to Fisher’s LDA.

– Testing method employed: The general testing scheme employed is a
three way data split. The dataset utilized is divided into three sets: training,
validation, and testing. An initial projection matrix is calculated based on
the training set. Then a validation set is used in order to optimize the weights
to produce the optimum projection matrix that can minimize the mean of
the training and validation errors. Finally a completely unseen testing set is
utilized to measure the generalization capability of the proposed system.

– Parameters of PSO: Specifically the following parameters values were
used: maximum number of generations, 100; maximum velocity smax: 20%
of the range of the corresponding variable; maximum value along a specific
dimension pmax = 1 and minimum pmin =0; w decreases linearly from 0.9
to 0.4; and acceleration constants c1, c2 are set to 2.0.

The MES dataset utilized in this research is the same one that was originally
collected and used by Chan et al [6]. Eight channels of surface MES were collected
from the right arm of thirty normally limbed subjects (twelve males and eighteen
females). Each session consisted of six trials. Seven distinct limb motions were
used, hand open (HO), hand close (HC), supination (S), pronation (P), wrist
flexion (WF), wrist extension (WE), and rest state (R). Data from the first two
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Table 1. Classification Results Achieved by Different Methods

Feature Set Divisions PSOFLDA FLDA ULDA OLDA PCA

WT Validate 96.26 93.28 93.35 93.35 89.90
Test 94.60 92.32 92.44 92.44 88.21

TDAR Validate 95.02 92.25 92.38 92.38 83.51
Test 93.68 91.67 91.79 91.79 81.93

trials were used as training set and data from the remaining four trials were
divided equally into two trials for validation (trails 1 & 2) and two trails for
testing (trails 3 and 4).

As a first part of the MES pattern recognition system, two sets of features
were extracted from the original dataset in order to test the performance of the
proposed method with different feature extraction techniques. The first set of
extracted features included a combination of the first four autoregressive (AR)
coefficients and the root mean square value (Time-Domain (TD) feature) as
the feature vector (dimensionality is 40 = 8 channels 5 features/channel). This
feature set was referred to as the TDAR feature set. The second feature set
extracted included the mean of the square values of the wavelet coefficients using
a Symmlet wavelet family with five levels of decomposition (dimensionality is
48 = 8 channels 6 features/channel). This feature set was referred to as WT
feature set. The analysis window size was 256 msec. Data that were 256 msec
before or after a change in limb motion were removed from the training set to
avoid transitional data. As a dimensionality reduction part, all of the following
five methods: PSOFLDA, ULDA, OLDA, FLDA, and PCA were utilized to
compare their performance with different feature sets. The final step of the MES
recognition system involves a suitable classifier that can be chosen at the disposal
of the designer. In the current experiments a Linear Discriminant Analysis (LDA)
classifier was chosen. The advantage of this classifier is that it does not require
iterative training, avoiding the potential for under- or over-training [6].

The classification results averaged across thirty subjects (with one standard
deviation) using both the TDAR and the WT feature sets reduced in dimen-
sionality with PSOFLDA, ULDA, OLDA, FLDA, and PCA are shown in Fig.1.
The number of extracted features from all methods was set to c - 1, where c is
the number of classes, since the discriminant analysis based techniques usually
ends up with c - 1 features. The results shown for both the validation and the
testing sets were given first without post processing (referred to as Initial), then
with a majority vote (MV) as a post processing step, followed by the transitional
data between classes removed (NT), and finally with both majority vote and the
removal of the transitional data (MV+NT). The results for both the validation
and testing sets are given in the Table-1.

It is clear from the results that the PSOFLDA was able to outperform all other
methods. This is due to the fact the PSOFLDA is assigning higher importance to
good features compared to those that are less useful. At the same time, the using
of the classification accuracy as a judgment criterion on the weights values moved
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Fig. 1. Classification accuracies using different feature sets averaged across 30 subjects
with different dimensionality reduction techniques (a) Using the TDAR validation set
and (b) Using the TDAR testing set (c) Using the WT validation set and (d) Using
the WT testing set

the projection matrix closer toward the optimal projection matrix than all other
techniques. Also the PSOFLDA assigns lower fuzzy membership values to the
outliers points, thus reducing their effect. Another issue to be mentioned here
is that with all of the feature projection techniques, the WT features achieved
higher accuracies than that achieved using the simple TDAR features. But from
the computational cost point of view the performance of the system with the
TDAR features is still highly accepted.

In order to provide a rigorous validation or comparison with existing tech-
niques for dimensionality reduction, the confusion matrix for all the subjects
was also computed for the different feature sets. A plot of the diagonal values of
the confusion matrices (class wise classification accuracy) with both the TDAR
and the WT feature are presented in Fig.2 respectively, each with the validation
and testing sets results. All the results indicate that there were more significant
enhancements when applying the PSOFLDA method than that of the other
techniques.
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Fig. 2. Diagonal values of the confusion matrix averaged across 30 subjects using the
proposed PSOFLDA in comparison with FLDA, ULDA, OLDA, and PCA (a) Using the
TDAR validation set and (b) Using the TDAR testing set (a) Using the WT validation
set and (b) Using the WT testing set

4 Conclusion

In this paper, a novel feature projection technique based on a mixture of fuzzy
logic and Fisher’s LDA was developed. Unlike the typical variations to LDA, The
new technique assigned higher importance to good features compared with oth-
ers. The importance was based on a weighting scheme that was optimized with
PSO technique. This in turn caused the PSOFLDA’s projection matrix to be
closer to the optimal. The proposed PSOFLDA technique was fairly compared
with other techniques like FLDA, ULDA, OLDA, and PCA proving to present
better results on real MES datasets. This in turn proves the ability of the pro-
posed technique in enhancing the performance of the multifunction myoelectric
hand control system.

Acknowledgments. The Authors would like to acknowledge the support of
Dr. Adrian D. C. Chan from Carleton University for providing us with the MES
datasets.
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Abstract. In the context of biomedical image processing and bioinfor-
matics, an important problem is the development of accurate models for
image segmentation and DNA spot detection. In this paper we propose
a highly efficient unsupervised Bayesian algorithm for biomedical im-
age segmentation and spot detection of cDNA microarray images, based
on generalized Gaussian mixture models. Our work is motivated by the
fact that biomedical and cDNA microarray images both contain non-
Gaussian characteristics, impossible to model using rigid distributions
like the Gaussian. Generalized Gaussian mixture models are robust in
the presence of noise and outliers and are more flexible to adapt the
shape of data.

1 Introduction

In recent years a lot of different algorithms were developed in the aim of au-
tomatically learning to recognize complex patterns, and to make intelligent
decisions based on observed data. Machine learning, a branch of artificial in-
telligence, offers a principled approach for developing and studying automatic
techniques capable of learning models and their parameters based on training
data. Recent advances in machine learning have fascinated researchers from bi-
ology/bioinformatics community because they offer promise for the development
of novel supervised and unsupervised methods that can help in specifying, de-
tecting, and diagnosing different diseases, while at the same time increasing
objectivity of the decision-making process. The relation history between biology
and the field of machine learning is long and complex. The flexibility of machine
learning techniques is expected to improve the efficiency of discovery and un-
derstanding in the mounting volume and complexity of biological data. Machine
learning techniques have been used, for instance, in [1] for microarray analysis
and classification, in [2] for DNA microarray image spot detection, in [3] for
biomedical image analysis, and in [4] for multiple limb motion classification.

Mixture models are one of the machine learning techniques receiving consid-
erable attention in different applications. Mixture models are normally used to
model complex datasets. In most of biomedical applications, the Gaussian den-
sity is applied for data modeling [4,5]. However, data are generally non-Gaussian
[6]. Many studies have demonstrated that the generalized Gaussian distribution
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(GGD) can be a good alternative to the Gaussian thanks to its shape flexibility
which allows the modeling of a large number of non-Gaussian signals [7,8]. The
GGD for a variable x ∈ R is defined as follows:

P (x|μ, α, β) =
βα

2Γ (1/β)
e−(α|x−μ|)β

(1)

where α = 1
σ

√
Γ (3/β)
Γ (1/β) , −∞ < μ < ∞, β > 0, and α > 0, and Γ (.) is the

Gamma function given by: Γ (x) =
∫∞
0 tx−1e−tdt, x > 0. μ, α and β denote

the distribution mean, the inverse scale parameter, and the shape parameter,
respectively. The GGD is flexible thanks to its shape parameter β that controls
the decay rate of the density function. In other words, β allows the GGD to take
different shapes depending on the data. Fig. 1 shows us two main reasons to use
GGD. First, the parameter β controls the shape of the pdf. The larger the value,
the flatter the pdf; and the smaller the value, the more picked the pdf. Second,
when β = 2 and β = 1, the GGD is reduced to the Gaussian and Laplacian
distributions, respectively. In the past few years, several approaches have been
applied for GGDs parameters estimation such as moment estimation [9], en-
tropy matching estimation [10,11], and maximum likelihood estimation [12,13].
It is noteworthy that these approaches consider a single distribution. Concern-
ing finite mixture models parameters estimation, approaches can be arranged
into two categories: deterministic, and Bayesian methods. In deterministic ap-
proaches, parameters are taken as fixed and unknown, and inference is founded
on the likelihood of the data. In the recent past, some deterministic approaches
have been proposed for the estimation of finite generalized Gaussian mixture
(GGM) models parameters (see, for instance, [14,15]). Despite the fact that de-
terministic approaches have controlled mixture models estimation due to their
small computational time, many works have demonstrated that these methods
have severe problems such as convergence to local maxima, and their tendency
to overfitt the data [16] especially when data are sparse or noisy. With com-
putational tools evolution, researchers were encouraged to implement and use
Bayesian MCMC methods and techniques as an alternative approach. Bayesian
methods consider parameters to be random, and to follow different probability
distributions (prior distributions). These distributions are used to describe our

Fig. 1. Generalized Gaussian Distributions with different values of the shape parameter
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knowledge before considering the data, as for updating our prior beliefs the like-
lihood is used. Please refer to [16] for interesting and in depth discussions about
the general Bayesian theory. In this paper, we describe a Bayesian algorithm
for GGM learning and provide two examples of their applications in Biomed-
ical/Bioinformatics fields. Biomedical image segmentation is chosen to be our
first application since medical images are highly corrupted by noise, and con-
tain non-gaussian characteristics. For the second application, we are interested
in developing an algorithm capable of automatically detecting the spots in DNA
microarray images.

The rest of this paper is organized as follows. Section 2 describes the Bayesian
estimation algorithm. In section 3, we demonstrate the efficacy of the model on
two applications. Our last section is devoted to the conclusion.

2 Bayesian Estimation of the GGM Model

A general Gaussian mixture with M components is defined as:

P (x|Θ) =
M∑

j=1

P (x|μj , αj , βj)pj (2)

where pj are the mixing proportions which are constrained to be non-negative
and sum to one, and p(x|μj , αj , βj) is the GGD describing component j. The
symbol Θ = (ξ, p) refers to the whole set of parameters to be estimated, know-
ing that ξ = (μ1, α1, β1, ..., μM , αM , βM ), and p = (p1, ..., pM ). The two main
problems in finite mixture models are the estimation of the parameters vector Θ
and the number of components M . Supposing that the number of classes M is
known then for N observations , X = (x1, ..., xN ), the likelihood corresponding
to this case is:

P (X|Θ) =
N∏

i=1

M∑
j=1

P (xi|ξj)pj (3)

where ξj = (μj , αj , βj). For each variable xi, let Zi, the unobserved or missing
vector, be an M -dimensional vector that indicates to which component xi be-
longs. In other words, Zij equals 1 if xi belongs to class j and 0, otherwise. The
complete-data likelihood for this case is then:

P (X , Z|Θ) =
N∏

i=1

M∑
j=1

(P (xi|ξj)pj)Zij (4)

where Z = {Z1, Z2, ..., ZN}. Then, the estimation of each Zij , defined as the
posterior probability that the ith observation arises from the jth component of
the mixture is:

Ẑ
(t)
ij =

P (t−1)(xi|ξ(t−1)
j )pt−1

j∑M
j=1 P

(t−1)(xi|ξ(t−1)
j )pt−1

j

(5)

where t denotes the current iteration step and ξ
(t)
j and p

(t)
j are the current

evaluations of the parameters.
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Bayesian MCMC simulation methods are applied to get the posterior distri-
bution π(Θ|X , Z). Generally MCMC methods are found on the Bayesian theory,
which means that they allow for probability statements to be made directly
about the unknown parameters of a mixture model, while taking into consid-
eration prior or expert opinion. In order to get the posterior distribution using
MCMC, we need to combine the prior information about the parameters, π(Θ),
with the observed value or realization of the complete data P (X , Z|Θ). This can
be reached from Bayes formula:

π(Θ|X , Z) =
π(Θ)P (X , Z|Θ)∫
π(Θ)p(X , Z|Θ)

∝ π(Θ)P (X , Z|Θ) (6)

where (X , Z) is the complete data. With the joint distribution, π(Θ)P (X , Z|Θ),
in hand we can deduce the posterior distribution (Eq. 6). Having π(Θ|X , Z)
we can simulate our model parameters Θ, rather than computing them. Tak-
ing advantage of the missing data Z, we simulate Z according to the posterior
probability π(Z|Θ,X ). This is done by associating with each observation xi a
missing Multinomial variable Zi ∼ M(1; Ẑi1; ...; ẐiM ). This choice is based on
two reasons, first, we know that each Zi is a vector of zero-one indicator vari-
ables. Second, the probability that the ith observation, xi, arises from the jth
component of the mixture is given by Ẑij .

For p simulation we need to get π(p|Z(t)), using Bayes rule: π(p|Z)= π(Z|p)π(p)∫
π(Z|p)π(p)

∝ π(Z|p)π(p). This indicates that we need to determine π(Z|p), and π(p). More-
over, we know that the vector P is defined on the simplex (0 ≤ pj ≤ 1 and∑M

j=1 pj = 1), then the typical choice, as a prior, for this vector is a Dirichlet
distribution with parameters η = (η1, ..., ηM )

π(p) =
Γ (
∑M

j=1 ηj)∏M
j=1 Γ (ηj)

M∏
j=1

p
ηj−1
j (7)

As for π(Z|p) we have:

π(Z|p) =
M∏

j=1

π(Zi|p) =
N∏

i=1

M∏
j=1

p
Zij

j =
M∏

j=1

p
nj

j (8)

Where nj =
∑N

i=1 IZij=1 , then we can conclude that:

π(p|Z) = π(Z|P )π(p) =
Γ (
∑M

j=1 ηj)∏M
j=1 Γ (ηj)

M∏
j=1

p
ηj−1

j

M∏
j=1

p
nj

j =
Γ (
∑M

j=1 ηj)∏M
j=1 Γ (ηj)

M∏
j=1

p
ηj+nj−1

j

(9)
∝ D(η1 + n1, ..., ηM + nM )

D denotes the Dirichlet distribution with parameters (η1 + n1, ..., ηM + nM ).
From (Eq. 9) we can deduce that the Dirichlet distribution is a conjugate prior
for the mixture proportions, which means that the prior and the posterior have
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the same form. Let us now define ξ priors, which are supposed to be drawn
independently. For the parameters ξ, we assigned independent Normal priors
for the distributions means, and Gamma priors for the inverse scale and shape
parameters [17,18]:

μj ∼ N (μ0, σ
2
0) , βj ∼ G(αβ , ββ) , αj ∼ G(αα, βα)

Where N (μ0, σ
2
0) is the normal distribution with mean μ0 and variance σ2

0 ,
G(αβ , ββ) is the gamma distribution with shape parameter αβ and rate param-
eter ββ . μ0, σ2

0 , αβ , ββ, αα, βα are called the hyperparameters of the model.
With this priors, we can deduce the posterior distributions for μ, α, and β to be:

π(μj |Z,X ) ∝ e
(μj−μ0)2

2σ2
0

+
∑

Zij=1
(−αj |xi−μj |)βj

(10)

π(αj |Z,X ) ∝ ααα−1
j e−βααj (αj)nj e

∑
Zij=1

(−αj |xi−μj |)βj

(11)

π(βj |Z,X ) ∝ β
αβ−1
j e−βββj (

βj

Γ (1/βj)
)nj e

∑
Zij=1

(−αj |xi−μj |)βj

(12)

It is quite easy to notice that we cannot simulate directly from these posterior
distributions because they are not in well known forms. To solve this problem we
applied the well known Metropolis-Hastings (M-H) algorithm given in [19]. The
major problem in the M-H algorithm is the choice of the proposal distribution.
Random Walk M-H given in [19] is used here to solve this problem, then the
proposals are considered to be: μ̃j ∼ N (μ(t−1)

j , ζ2), α̃j ∼ LN (log(α(t−1)
j ), ζ2),

β̃j ∼ LN (log(β(t−1)
j ), ζ2), where LN is the log-normal distribution, since, we

know that α̃j > 0 and β̃j > 0. ζ2 is the scale of the random walk.
In fact, choosing a relevant model consists both of choosing its form and

the number of components M . The integrated or marginal likelihood using the
Laplace-Metropolis estimator [19] is applied in order to rate the ability of the
tested models to fit the data or to determine the number of clusters M . The
integrated likelihood is defined by [19]

p(X|M) =
∫
π(Θ|X ,M)dΘ =

∫
p(X|Θ,M)π(Θ|M)dΘ (13)

where Θ is the vector of parameters of a finite mixture model, π(Θ|M) is its
prior density, and p(X|Θ,M) is the likelihood function taking into account that
the number of clusters is M .

3 Experimental Results

In this section, we apply the Bayesian estimation of the GGM in biomedical
image segmentation, and microarray image spot detection. We validate the al-
gorithm by comparing it to different state of the art algorithms. In the following
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applications, we used 5000 iteration for our Metropolis-within-Gibbs sampler (we
discarded the first 800 iterations as “burn-in” and kept the rest), and our specific
choices for the hypeparameters were (μ0, σ

2
0 , αα, βα, αβ , ββ) = (0, 1, 0.2, 2, 0.2, 2).

To increase the sensitivity of the random walk sampler, the scale of the random
walk was chosen to be ζ2 = 0.01.

3.1 Biomedical Image Segmentation

Image segmentation is one of the major challenges in image analysis, since image
analysis tasks highly depend on how well previous segmentation is accomplished.
Image segmentation is the procedure of dividing an image into different groups
with each group enjoying similar properties such as texture, color, boundary,
and intensity. Despite, the existence of different segmentation methods, many
of them fail to provide satisfactory results when applied on biomedical images.
Reasons behind this failure are numerous. First, image segmentation is strongly
influenced by the quality of data and biomedical images contain different noises
such as speckle, shadows which may cause the boundaries of structures to be
indistinct and disconnected. Second, most of image segmentations algorithms
are founded on the assumption that the data are Gaussian which is not the
case for biomedical images. Further complications arise as the contrast between
areas of interest in biomedical images is low, which make the extraction of the
desired regions impossible as they are statistically indistinguishable. Last but
not least, most of existed segmentation methods do not integrate uncertain prior
knowledge.

In this section, we develop a new segmentation methodology, using the Bayesian
MCMC algorithm developed in section 2. We can divide our method into two
main steps: histogram adjustment, and identification of object of interest using
the Bayesian GGM with the integrated likelihood. We validate our algorithm by
comparing it to a state of the art segmentation algorithm [20]. This method is
divided into two stages: preprocessing, and object segmentation. Preprocessing
stage contains histogram adjustment, noise reduction, and layer of interest extrac-
tion using K-means algorithm. For the object segmentation a marker-controlled
watershed technique is used.

The first image used is the image of a rat spleen tissue pulps (Fig. 2(a)).
For visual differentiation of cellular components, the tissue section was stained
with haematoxylin and eosin (H&E). Under a microscope, nuclei are usually
dark blue, red blood cells orange/red, and muscle fibers deep pink/red. The
feature used to differentiate red and white is the density of the lymphocytes. The
white pulp has lymphocytes and macrophages surrounding central arterioles. The
distribution of the lymphocytes in red pulp is much looser than those in white
pulp. Evaluating the severity of infection requires identifying the white pulps.
We started by transforming the color image to a gray level image (Fig. 3(a)) in
order to simplify the processing procedure. For grayscale image nuclei are dark
objects within a gray background. Then histogram adjustment [21] is applied
on the image to increase image contrast (Fig. 3(b)). At this point, we applied
our Bayesian GGM to identify the object of interest in the image (Fig. 3(c)).
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(a) (b)

Fig. 2. Microscopic images used, (a) The rat spleen tissue pulps (Courtesy of Dr. Jinglu
Tan), (b) Lung Carcinoid tumor (Courtesy of Dr. Robert Cardiff)

(a) (b)

(c) (d)

Fig. 3. The different stage outputs for the two methods on the rat spleen tissue, (a)
The gray scale image, (b) The image after histogram adjustment, (c) The identified
object of interest using our method, (d) The identified object of interest using the state
of the art algorithm

Comparing the output from our method to the one from the watershed method
(Fig. 3(d)), we can find that we were able to reach a higher identification for the
infected regions. Also, the proposed method is less complex due to the fact that
we did not need to use neither noise reduction, nor marker-controlled watershed
techniques.

The second image is an image of a carcinoid tumor seen in the lung of eighty
one years old female (Fig. 2(b)). To be able to differentiate visually the cellular
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(a) (b)

(c) (d)

Fig. 4. The different stage outputs for the two methods on the Lung Carcinoid tumor,
(a) The gray scale image, (b) The image after histogram adjustment, (c) The identified
object of interest using our method, (d) The identified object of interest using the state
of the art algorithm

components, the tissue section was stained with haematoxylin and eosin (H&E).
The size of the tumor is of 2.5 cm long as shown in the image. First we trans-
formed the image into gray scale image (Fig. 4(a)). Next, we applied the his-
togram adjustment on the image (Fig. 4(b)), and last we applied our algorithm
on it to reach the object of interest (Fig. 4(c)). Also, it is quite clear here that
our algorithm outperformed the watershed algorithm. Experimental results show
that the proposed method is effective and accurate in segmenting microscopic
images even without the need of noise reduction stages and marker-controlled
watershed techniques to separate the touching objects.

3.2 Spot Detection and Image Segmentation in DNA Microarray
Data

In this section, we propose an optimized clustering-based method for microarray
image segmentation using GGM. Our algorithm is based on the fact that GGM
is flexible to model the shape of data, and have high immunity to noise. To assess
the performance of our method, we compare it to two well known algorithms:
k-means clustering microarray image segmentation (SKMIS) [22], and optimized
k-means microarray image (OKMIS) [23]. We evaluate the segmentation perfor-
mance of the three methods on the spot images from ApoA1 Data [24].
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DNA microarray technology is a high throughput technique allowing the com-
prehensive measurement of the expression level of thousands of genes simultane-
ously in the studies of genomics for biology and medicine [25]. Complementary
single stranded DNA (cDNA) microarrays consist of thousands of individual
DNA sequences printed in a high density array. Nowadays, microarray experi-
ments are used to compare gene expression from two samples: target or experi-
mental, and control. The mRNA of both biological tissues (normal and tumor)
is extracted, then reversed transcribed into complementary DNA (cDNA) copy,
followed by a labeling procedure using two fluorescence dyes, Cyanine Cy3 (green
channel) and Cy5 (red channel). After labeling, the two samples are mixed and
hybridized with the arrayed DNA sequences. Afterwards, fluorescence measure-
ments are made for each dye separately, and the digital image scanner records the
intensity level at each microarray location producing two grayscale images [26].

Image analysis is a highly important aspect of cDNA microarray experiments,
as it is responsible for reducing an image of spots into a table with a measure of
the intensity for each spot. Efficient, accurate and automatic analysis of cDNA
spot images is necessary in order to apply this technology in different biological
experiments. cDNA microarray gene expression data analysis involves three main
stages: spot localization or gridding, background separation or image segmenta-
tion, and intensity estimation. Spot localization or gridding is used to identify
blocks and to position rows and columns of spots within each block. Background
separation or image segmentation is used to segment the image into background
or foreground, and the intensity estimation step gets the red and green intensi-
ties and assigns the log ratio after background correction in order to represent
the log relative abundance of each spot. These stages are quite important, since
the accuracy of the resulting data is essential in posterior analysis.

In cDNA microarray experiments, noise is a challenging problem as it can
be produced by laser light reflection, dust on the glass slide, and photon and
electronic noise. These noises force microarray images to vary in intensity, in
the spot sizes and positions. For this reason, we decided to apply the Bayesian
GGM on this problem for its immunity to noise. Over the past few years, many
approaches have been proposed for microarray image segmentation. Fixed circle
segmentation is the first applied technique on microarray images, its idea is to
assign the same circle size to all the spots. Another proposed method in order
to avoid the drawback of the fixed circle segmentation is the adaptive circle
segmentation technique. This algorithm fits a circle with adaptive size around
each spot, in order to characterize the pixels in the circle as signal pixels and the
pixels out of the circle as background pixels (i.e. foreground or background). An-
other technique that has been efficiently used in microarray image segmentation
is clustering, since it is not restricted to a particular shape and size for the spots.
Single k-means clustering microarray image segmentation (SKMIS) attempts to
cluster the pixels into two groups, one for foreground, and the other for back-
ground. Therefore in SKMIS, feature vector is reduced to a single variable in the
Euclidean one-dimensional space. Optimized k-means microarray image segmen-
tation (OKMIS) not only consider the intensity of the pixel but also the shape
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(a) (b) (c) (d) (e)

Fig. 5. Five noisy spots obtained from the 1230c1G/R microarray image

SKMIS

OKMIS

GGM

(a) (b) (c) (d) (e)

Fig. 6. The experimental results of the three methods on the five noisy spots

of the spot based on the fact that the position of the pixel could also influence
the result of the clustering. Our algorithm is very simple as we only apply a two
component GGM to classify the data to either foreground or background.

In order to compare GGM, OKMIS and SKMIS, we applied the three meth-
ods on the 1230c1G/R microarray image obtained from the ApoA1 data. Fig. 5
shows some examples for the noisy spots in our microarray image. From Fig. 6 it
is clear that our method was able to retrieve the true foreground from the back-
ground. We also observe that the GGM outperformed the SKMIS and OKMIS
in identifying noisy pixels from foreground. Note that, the GGM was able to
take the data form. Hence, the GGM is more suitable when dealing with cDNA
microarray image segmentation.
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4 Conclusion

In this paper, we have presented a new Bayesian algorithm for biomedical image
segmentation and multi-class DNA classification. Our method is based on GGM
models which chief advantage is their flexibility and immunity to noise. We
have used the Monte Carlo simulation technique of Gibbs sampling mixed with
a Metropolis-Hasting step for parameters estimation. The Bayesian estimation
of the model parameters incorporates uncertainty which disease diagnosis, for
instance, are in need. For the selection of number of clusters we have used the
integrated Likelihood. The experimental results show the effectiveness of the
proposed method in two interesting applications.
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Abstract. In recent years many alternative methodologies and tech-
niques have been proposed to perform non-destructive inspection and
maintenance operations of moving structures. In particular, ultrasonic
techniques have shown to be very promising for automatic inspection
systems. From the literature, it is evident that the neural paradigms
are considered, by now, the best choice to automatically classify ul-
trasound data. At the same time the most appropriate pre-processing
technique is still undecided. The aim of this paper is to propose a new
and innovative data pre-processing technique that allows the analysis
of the ultrasonic data by a complex extension of the Empirical Mode
Decomposition (EMD). Experimental tests aiming to detect defective
areas in aircraft components are reported and a comparison with classi-
cal approaches based on data normalization or wavelet decomposition is
also provided.

1 Introduction

The challenge of guaranteeing reliable and efficient safety checks for engineer-
ing structures has received much attention in recent years in many industrial
contexts. This is of crucial importance in the case of moving structures (such as
with transportation vehicles or rotating machinery) and in the case of aircraft in-
spection and maintenance. Traditionally inspection and maintenance operation
are performed by trained human operators but, unfortunately, this approach
does not ensure an adequate reliability level and, at the same time, it requires
prohibitive amounts of time and high costs. In addition, humans cannot detect
cracks or any other irregularities in the structure components which are not
visible to the naked eye. To face the above problems, many alternative method-
ologies and techniques have been proposed to perform non-destructive inspec-
tion and maintenance operations. These are based on the analysis of different
signals such as ultrasonics, acoustic emissions, thermography, laser ultrason-
ics, X-radiography, eddy currents, shearography, and low-frequency methods [1].
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In particular, in the last decade, ultrasonic techniques have shown to be very
promising for non-destructive inspection and control, becoming an effective al-
ternative to such traditional and well studied approaches such as thermography,
eddy current and shearography.

Major works of literature describing ultrasound based techniques for inspec-
tion and evaluation purposes can be conveniently clustered into two categories.
The first category concentrates on the study of the data acquisition and manip-
ulation processes in order to prove the relationship between data and structural
defects or composition of the material. The second category concentrates instead
on the a posteriori analysis of the ultrasound data in order to (fully or partially)
refer to some computational algorithm the automatic recognition of material
composition, operative conditions, presence of defects and so on. Most of the
works in the literature belong to the first category [12] [4] [10].

Works belonging to the second category are the least developed of the two and,
moreover, their level of inspection reliability, is still inadequate, especially for
those sectors (namely transportation) where an error can have serious health and
safety consequences. Almost all the works in this category proposed a well-known
framework based on some pre-processing technique followed by a classifier able
to recognize the patterns in the data. For example in [7], the wavelet transform
was used in conjunction with an artificial neural network to distinguish the
ultrasonic flaw echoes from those scattered by micro-structures. A quite similar
approach was introduced in [11] which addressed the problem of pipe inspection
by ultrasonic guided waves.

The automatic detection of internal defects in composite materials with non-
destructive techniques based on ultrasonic techniques was addressed also in [14].

In [8] the authors addressed the flaw detection problem by using a radial basis
function neural network and they tried to demonstrate that a neural based ap-
proach overcame the classical threshold based for flaw detection problems. The
author’s idea in [13] was, instead, to cluster the signals in the similarity space
(using the Kohonen Self organizing Algorithm to cluster datasets in an unsuper-
vised manner) and then to use this result in order to distinguish between signals
corresponding respectively to non defect, flat defects (cracks), and volumetric
defects. A high resolution pursuit based signal processing method (an enhanced
version of the matching pursuit algorithm that provides high time-resolution
time-frequency representations and resolves closely time-spaced features) was
proposed in [5] for detecting flaws close to the surface of strongly scattering ma-
terials, such as steel and composites, in NDT applications. In [6] an approach to
non-destructive pipeline testing using ultrasonic imaging was proposed.

Finally, in [9], an evaluation of various types and configurations of neural
networks developed for the purpose of assisting in accurate flaw detection in
steel plates was illustrated.

Therefore, from the literature, it is evident that the neural paradigms are
considered, by now, the best choice to classify ultrasound data in an automatic
inspection system. At the same time the most appropriate pre-processing tech-
nique is still undecided. The wavelet based approaches seem to be the most
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promising ones but, considering that in this area an error could waste time,
money and even endanger someone’s life, further efforts have to be done in order
to increase reliability.

The aim of this paper is then to propose a new and innovative data pre-
processing technique to explore the pattern embedded in the data. A comparison
with classical approaches based on data normalization or wavelet decomposition
is also provided. In the proposed pre-processing procedure the complex valued
Fourier coefficients of the ultrasound signals are decomposed by using Empirical
Mode Decomposition (EMD) [16] into a set of oscillation modes or IMFs (in-
trinsic mode functions). In this way, the phase information is defined locally for
both the real and imaginary components of the decomposition. This facilitates
the detection of the temporal locking of phase information between the compo-
nents, known as phase synchrony. The existence of phase synchrony between a
pair of components has been used to characterise shared signal dynamics in a
variety of applications.

It is this methodology of converting a real-valued data source into a complex
signal in order to obtain a set of synchrony features that is novel to our work.
The new data representation is then applied as an input to a supervised neural
classifier trained to recognize the defective areas from the non-defective ones. To
demonstrate the effectiveness of the proposed approach it has been applied to
detect and classify internal defects in aircraft composite materials and in par-
ticular in a Honeycomb structure containing different inserts placed to simulate
some of the most common defective situations in aircraft materials.

2 The Proposed Approach

Ultrasonic Inspection uses sound signals at frequencies beyond human hear-
ing (more than 20KHz), to estimate some properties of the irradiated material
by analysing either the reflected (reflection working modality) or transmitted
(transmission working modality) signals. A typical ultrasonic based inspection
system consists of several functional units, such as pulser, receiver, transducer,
and display devices. A pulser is an electronic device that can produce a high
voltage electrical pulse. Driven by the pulser, the transducer generates a high
frequency ultrasonic energy. The sound energy is introduced into and propagates
through the materials in the form of waves. In the transmission modality the re-
ceiver is placed on the opposite side of the material from the pulser whereas
in the reflection modality the pulser and the receiver are placed on the same
side of the material. Inspection devices can be or not be in contact with the
material. In the latter case a liquid (couplant) is used to facilitate the transmis-
sion of ultrasonic vibrations from the transducer to the test surface. Ultrasonic
data can be collected and displayed in a number of different formats. The three
most common formats are known in the Non Destructive Testing (NDT) world
as A-scan, B-scan and C-scan presentations. Each presentation mode provides a
different way of looking at and evaluating the region of material being inspected.
In this paper the analysis of ultrasonic data acquired from the reflection work-
ing modality and A-Scan representation is reported. This means that for each
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Fig. 1. Scheme of the procedure involved in the proposed approach

point of the inspecting material we have a continuous signal that represents the
amount of received ultrasonic energy as a function of time.

The temporal evolution of the ultrasound signal xu,v(t) relative to the po-
sition (u, v) onto the plane associated to the upper surface of the material to
be inspected is the input to the core of proposed approach that consists of two
main steps: the pre-processing of the data in order to emphasize the differences
between signals relative to the same class and its subsequent neural classifi-
cation. The proposed pre-processing step includes multiple operative phases
that are schematized in figure 1. In the pre-processing phase, each ultrasound
signal xu,v(t) is, firstly, represented in term of its spectral components by using
the discrete Fourier transform (DFT). In this way the new signal representa-
tion Zu,v(k) = Au,v(k) + jBu,v(k) lies in the field of complex numbers and it is
well suited for the next part of the analysis. The signal Zu,v(k) is decomposed
into a set of complex IMFs, γi(z) where i = 1, . . . ,M , by a applying a complex
extension of EMD, bivariate EMD [18]. The real and imaginary parts of the de-
composition, �{γi(k)} and �{γi(k)}, denote the IMFs for Au,v(k) and Bu,v(k)
respectively. By construction, the phase information for each IMF is well de-
fined at each instant k and facilitates a highly localised comparison between the
phase information of Au,v(k) and Bu,v(k) [2]. The degree of phase synchrony,
the temporal locking of phase information, between �{γi(k)} and �{γi(k)} is
then determined to characterise the dynamics of Zu,v(k). The information is
represented by a matrix ρu,v(f, k) which denotes the synchrony at index k and
frequency f .

The feature vector Yu,v(f) = y1, y2, ...yM relative to the considered xu,v(t)
ultrasound signal is finally built by considering the integral of the phase syn-
chrony values for each frequency bin, that is Yu,v(f) =

∫K

0 ρu,v(f, k)dk. The
feature vector Y is, finally, normalized (zero mean and unit standard deviation)
and it is given as input to a neural classifier trained with a back propagation
algorithm to recognize defective from non defective areas.
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The following sub-sections will describe the bivariate empirical mode decom-
position strategy and the following phase synchrony methodology.

The EMD Algorithm. Empirical mode decomposition [16] is a data driven
time-frequency technique which adaptively decomposes a signal, by means of a
process called the sifting algorithm, into a finite set of AM/FM modulated com-
ponents. These components, called “intrinsic mode functions” (IMFs), represent
the oscillation modes embedded in the data. By definition, an IMF is a function
for which the number of extrema and the number of zero crossings differ by at
most one, and the mean of the two envelopes associated with the local maxima
and local minima is approximately zero. The EMD algorithm decomposes the
signal x(t) as

x(t) =
M∑
i=1

Ci(t) + r(t) (1)

where Ci(t), i = 1, . . . ,M , are the IMFs and r(t) is the residual. The first IMF
is obtained as follows [16].

1. Let x̃(t) = x(t);
2. Identify all local maxima and minima of x̃(t);
3. Find an “envelope,” emin(t) (resp. emax(t)) that interpolates all local minima

(resp. maxima);
4. Extract the “detail,” d(t) = x̃(t) − (1/2)(emin(t) + emax(t));
5. Let x̃(t) = d(t) and go to step 2); repeat until d(t) becomes an IMF.

Once the first IMF is obtained, the procedure is applied iteratively to the residual
r(t) = x(t) − d(t) to obtain all the IMFs. The extracted components satisfy so
called monocomponent criteria and the Hilbert transform can be applied to each
IMF separately. This way, it is possible to generate analytic signals, having an
IMF as the real part and its Hilbert transform as the imaginary part, that
is x + jH(x) where H(·) is the Hilbert transform operator. Equation (1) can
therefore be augmented to its analytic form given by

X(t) =
M∑
i=1

ai(t) · ejθi(t) (2)

where the trend r(t) is purposely omitted, due to its overwhelming power and
lack of oscillatory behavior. Observe from (2), that now the time dependent
amplitude ai(t) and phase function θi(t) can be extracted. By plotting the am-
plitude ai(t) versus time t and instantaneous frequency fi(t) = dθi

dk [21], a time-
frequency-amplitude representation of the entire signal is obtained, the so called
Hilbert–Huang spectrum (HHS).

ComplexExtensions of EMD. In order to obtain a set ofM complex/bivariate
IMFs, γi(k), i = 1, . . . ,M , from a complex signal z(k) using bivariate EMD, the
following procedure is adopted [18]:
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1. Let z̃(k) = z(k);
2. To obtain Q signal projections, given by {pθq}Q

q=1, project the complex signal
z̃(k), by using a unit complex number e−jθq , in the direction of θk, as

pθq = �(e−jθq z̃(k)
)
, q = 1, . . . , Q (3)

where �(·) denotes the real part of a complex number, and θq = 2qπ/Q;
3. Find the locations {tqj}Q

q=1 corresponding to the maxima of {pθq}Q
q=1;

4. Interpolate (using spline interpolation) between the maxima points [tqj , z̃(t
q
j)],

to obtain the envelope curves {eθq}Q
q=1;

5. Obtain the mean of all the envelope curves, m(k), and subtract from the
input signal, that is, d(k) = z̃(k)−m(k). Let z̃(k) = d(k) and go to step 2);
repeat until d(k) becomes an IMF.

Similarly to real-valued EMD, once the first IMF is obtained, γ1(k), the proce-
dure is applied iteratively to the residual r(k) = z(k) − d(k) to obtain all the
IMFs.

Once the IMFs have been obtained, the real and imaginary components can
be treated as a two sets of IMFs, �{γi(k)} and �{γi(k)}. The instantaneous
amplitudes and phases for each set of IMFs can then be determined.

Phase Synchrony. To measure phase synchrony between x1 and x2, bivariate
EMD is firstly applied to the complex signal x1 + jx2 [2]. The instantaneous
amplitudes for the real and imaginary components of the decomposition, the
i = 1 . . .M IMFs at each time instant k = 1 . . .K, are denoted by �{ai(k)} and
�{ai(k)} respectively. The instantaneous phase difference between each IMF
component is given by ψi(k). The degree of phase synchrony between x1 and x2
is given by [2]

φi(k) =
Hmax −H

Hmax
(4)

where H = −∑N
n=1 pn ln pn, the Shannon entropy of the distribution of ψi(k −

W
2 : k + W

2 ) defined by a window of length W , N is the number of bins and pn

is the probability of ψi(k − W
2 : k + W

2 ) within the nth bin [23]. The maximum
entropy Hmax is given by

Hmax = .626 + 0.4 ln(W − 1) (5)

The value of φ is between 0 and 1, 1 indicating perfect synchrony and 0 a
non-synchronous state. An additional step can be incorporated to model simul-
taneously for component relevance.

φi(k) =
{

0, if �{ai(k)} < εPr

0, if �{ai(k)} < εPi
(6)

where Pr is the power of the original real component (similarly for Pi) and ε
is an appropriate threshold. Once the phase synchrony information has been
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estimated, it can be conveniently plotted on a synchrony spectrogram, similar
to plots produced in [22]. A synchrony spectrogram is essentially a standard
time-frequency spectrogram with amplitude information replaced by values for
phase coherence. The information can be represented by ρ(f, k), which denotes
the phase synchrony at index k and frequency f .

3 Experimental Setup

To illustrate the effectiveness of the proposed approach a set of ultrasound mea-
surements on a composite material (referred to as the standard in the following)
has been considered. The material has a Honeycomb structure with Nomex Core
and 48 plies thicknesses. Ultrasonic data were obtained by an ultrasonic reflec-
tion technique that uses a single transducer serving as transmitter and receiver
(5MHz). The standard contains artificial defects introduced during the manu-
facturing process and composed of the following materials: Brass Foil, Pressure
Sensitive Tape, Dry Peel Ply, (in the following [A] stands for Tape, [F] for Peel
Ply, [B] for Brass). In particular brass inserts were introduced to represent voids
and delamination), dry peel ply to represent inclusions by means of reflection
techniques and adhesive tape to represent inclusions by means of transmission
techniques. For each standard, defects were positioned as reported in figure 2.
The typical insert locations are:

1. Two plies from topside surface for Brass and Pressure Sensitive Tape and
five plies for Peel Ply(top)

2. Mid part thickness (mid)
3. One and two plies from backside surface for Brass and Pressure Sensitive

Tape and five plies from backside surface for Peel Ply (bottom)

The data set for the considered standard consists of 193x181 spatial samples.
Each spatial sample xu,v(t) consists of 77 measurements of the received signal
so that the whole data set consists of a matrix sized 193x181x77. In figure 3,

Fig. 2. Defect Scheme
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Fig. 3. On the left, an ultrasound signal in A-scan representation is reported. The
central and left parts of the figure shows its complex representation after DFT compu-
tation.
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Fig. 4. The EMD decomposition of the DFT of an ultrasound signal: the IMFs relative
to the real part of the ultrasound signal are plotted in blue, those relative to the
imaginary part are plotted in red

a spatial sample xu,v(t) (i.e. an ultrasound signal in A-scan representation) and
its complex representation after DFT computation are shown (real part is plotted
in blue, imaginary part in red).

For each input signal, firstly, the DFT was computed and then a complex
signal Zu,v(k) = Au,v(k)+ jBu,v(k) of length 77 was obtained. The BEMD algo-
rithm was then applied to this complex signal to produce a set of complex IMFs,
γi(k). The real part of this decomposition is shown in blue in figure 4, which
denotes the IMFs obtained for the real part Au,v(k), whereas the imaginary
component of the IMFs, those representing Bu,v(k), are shown in red.

The phase synchrony matrix ρ of the IMFs computed for each complex signal1

associated with the initial ultrasound signal was then computed obtaining a
250 × 66 sized matrix for each signal.

Finally the feature vector Y was computed as described in the above section
and then a 250 long vector was associated to each ultrasound signal.

1 In many instances, the IMFs were computed by averaging the decomposition of
Zu,v(k) + v where v denotes complex white Gaussian noise of variance smaller than
that of Zu,v(k). This enables the embedded data modes to be detected more accu-
rately. For more information on noise assisted EMD, the reader is referred to [3].
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Fig. 5. The feature vector obtained (length 250) for two different signals belonging to
a defective area (in blue) and non defective area (in red) respectively

In figure 5 the feature vectors Y for a non defective point (red line) and for a
defective point (blue line) are shown.

The feature vectors Y containing phase synchrony patterns were finally sup-
plied as the input to a supervised neural classifier that, for each vector gives
a pair of values indicating the class of the considered point in the material. In
particular the considered neural network is a 3 layers Back Propagation network
with 80 hidden neurons (tansig activation functions) and 2 output neurons (lin-
ear activation functions). Defective points are associated with the output values
[1,-1] whereas, for non defective points, [-1,1] is the expected output of the neural
network. The net has been preliminarily trained using 407 point (207 belong-
ing to defective areas and 200 belonging to non defective areas). In figure 6 the
points selected to train the classifier are indicated (white pixels indicate non de-
fective points, black pixels indicate defective points). As reported, the training
points have been chosen from a subset of defective areas in order to evaluate the
capability of the proposed approach to generalize knowledge on unseen defects.

Fig. 6. The points used to train the neural classifier

4 Experimental Results

In this section the capability of the proposed framework to automatically detect
defective areas in composite materials will be demonstrated and a comparison
with standard techniques will be also provided. In particular three experiments
have been carried out:
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Fig. 7. Defective points detection by supplying as input to the neural network the
signal acquired by the receiver (on the left), the wavelet coefficients (in the center) and
the synchronization scores (on the right) extracted as described in section 2.

– the ultrasonic signals without any preprocessing have been classified by the
neural network (in particular the 77 available samples for each point are
given as input to the net after the normalization in the range [-1,1]));

– a classical pre-processing approach based on wavelet decomposition has been
applied to the ultrasonic signal and then provided to the classifier (the DB3
family were used and the decomposition was carried out until level 3. The
resulting 92 coefficients were then used to represent the ultrasound signal).

– the proposed preprocessing with EMD has been applied as described in the
previous section and then the obtained feature vectors have been classified.

It should be noted that, in order to compare the effects that the different pre-
processing techniques have on the final results, in all the three experiments, we
have used the same training set, the same neural network and we have applied
the same post-processing spatial filtering.

In figure 7 the results obtained in the three experiments are shown. In this
figure we report the results obtained by the classifier using the same threshold
to separate the defect and sound areas.

Figure 7 demonstrates that the wavelet pre-processing increases segmentation
performance with respect the case of no pre-processing but it’s clear that only
the analysis of the synchrony based on complex extension of EMD and performed
on DFT coefficients is able to reveal all the defective areas. At the same time,
the EMD based approach, erroneously classified as defective a number of non
defective points (false positive occurrences) and, moreover, some holes remained
in the defective areas (false negative occurrences).

To partially overcome this problem a post-processing filtering has been ap-
plied on each of the above segmented images. In particular, dilation and erosion
operations have been performed on the images by using the same 3 × 3 square
structuring element [15]. After this step the segmentation results in the three
considered cases became respectively those shown in figure 8.

The post-processing step both eliminated most of the false positive occur-
rences and filled most of the holes in the detected defective areas. After this
final step it became much more evident the advantage of using EMD based pre-
processing: all the defective regions have been detected and only three small
regions have been miss-classified as defective ones. On the contrary the wavelet
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Fig. 8. The regions segmented as defective areas after a spatial filtering based on the
connectivity analysis in the case of no preprocessing (on the left), wavelet pre-processing
(in the center) and EMD based pre-processing

based pre-processing have not segmented 4 defective regions (practically half
of those place on the bottom-side of the standard) whereas in the case of no-
preprocessing the miss-detected regions have been much more. On the other
side, in the case of wavelet based approach or no-preprocessing, the edge of
the detected defective areas are better defined than in case of EMD based pre-
processing and this could be very useful in the case where some geometrical
description of the detected areas is required. In any case, considering that in
the inspection context it is extremely important to detect all the defective areas,
even if this could generate some false positive detection, it is possible to conclude
that the EMD based pre-processing could be considered the best choice.

References

1. Boller, C., Chang, F.-K., Fujino, Y.: Encyclopedia of Structural Health Monitoring.
John Wiley & Sons, Chichester (2009)

2. Looney, D., Park, C., Kidmose, P., Ungstrup, M., Mandic, D.P.: Measuring phase
synchrony using complex extensions of EMD. In: IEEE/SP 15th Workshop on
Statistical Signal Processing, pp. 49–52 (2009)

3. Wu, Z., Huang, N.E.: Ensemble Empirical Mode Decomposition: A noise-assisted
data analysis method. Center for Ocean-Land-Atmosphere Studies, vol. 193 (2004)

4. Shah, A.A., Ribakov, Y., Hirose, S.: Nondestructive evaluation of damaged concrete
using nonlinear ultrasonics. Materials and Design 30(3), 775–782 (2009)

5. Ruiz-Reyes, N., Vera-Candeas, P., Curpian-Alonso, J., Cuevas-Martýnez, J.C.,
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Abstract. Different heart tissue identification is important for therapeutic 
decision-making in patients with myocardial infarction (MI), this provides 
physicians with a better clinical decision-making tool. Composite Strain 
Encoding (C-SENC) is an MRI acquisition technique that is used to acquire 
cardiac tissue viability and contractility images. It combines the use of black-
blood delayed-enhancement (DE) imaging to identify the infracted (dead) tissue 
inside the heart muscle and the ability to image myocardial deformation from 
the strain-encoding (SENC) imaging technique.  In this work, various machine 
learning techniques are applied to identify the different heart tissues and the 
background regions in the C-SENC images. The proposed methods are tested 
using numerical simulations of the heart C-SENC images and real images of 
patients. The results show that the applied techniques are able to identify the 
different components of the image with a high accuracy.  

1   Introduction 

Imaging of the heart anatomy and function using magnetic resonance imaging (MRI) 
is an important diagnostic tool for heart diseases. Delayed-enhancement (DE) MRI 
after contrast agent administration is used to differentiate viable from infarcted 
myocardial tissue. Also, myocardial contractility pattern can be characterized from 
functional MR images. By combining the information from the viability and 
functional images, three different tissue types can be distinguished: 1) healthy 
myocardium; 2) infarcted myocardium; and 3) non-contracting, but viable, tissue, 
which could represent hibernating tissue [1]. The identification of the hibernating 
myocardium is very important as it is the tissue that will mostly benefit from 
revascularization [2]. Inversion-recovery imaging is considered the gold standard 
technique for acquiring DE MR Images [3]. The obtained image has T1-weighted 
contrast, and after the administration of the contrast agent, high signal intensity from 
infarcted myocardium is obtained. Strain-encoding (SENC) MR is used for directly 
imaging myocardial strain [4] where it is based on applying parallel planes of 
saturated magnetization to the cardiac tissue with initial tagging frequency, ωo, which 
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depends on the slice thickness and slice profile in the z-direction. Two images are 
then acquired with different demodulation frequencies, in the z-direction, from which 
a functional image of the heart is obtained [4]. Composite SENC have been 
developed, where it shows both functional and viability information of the heart in 
single acquisition [1].  

Previously, a method is proposed to identify different heart tissues from MRI C-
SENC images using an unsupervised multi-stage fuzzy clustering technique. The 
method was based on sequential application of the fuzzy c-means (FCM) and iterative 
self-organizing data (ISODATA) clustering algorithms [5].  In a more recent work 
[6], a bayesian classifier is proposed to identify the background region (air), then the 
filtered tissue regions are classified into the different tissue types using fuzzy C-
means clustering algorithm.  

In this work, several classification and clustering techniques are proposed to 
identify the background and the different tissue types. Numerical simulations and real 
MR images of patients are used to validate the segmentation techniques, which show 
excellent results. The paper is organized as follows; section 2 briefly describes the C-
SENC. Section 3 describes the proposed system. Section 4 describes the used data 
sets, explains the details of the experiments conducted, and the results are presented. 
Finally, the paper is discussed and concluded in sections 5. 

2   Theory of C-SENC 

The SENC technique is used to measure the local strain of deforming tissues. In 
SENC MRI, the magnetization of the object under test at point y and time t is 
modulated in the slice-selection direction with a sinusoidal pattern of a spatial 
frequency, ω (y, t)—which is initially uniform everywhere. Because of the 
contraction of the LV, myocardial deformation occurs, and the tag pattern moves and 
undergoes deformation that makes the tissue’s new frequency, ω(y, t), proportionally 
changing with the degree of deformation at the pixel y. The resulting image intensity 
at this pixel can be given by [4]: 

 

I(y, t; ωT) = M y, z, t S z e dz ,                                 (1) 
 

where y is the pixel location, ωT is the tuning value, and I(y, t; ωT)  is the signal 
intensity. The equation shows that the signal intensity at a certain point and time is the 
integral in the slice-selection direction of the longitudinal magnetization multiplied by 
the encode phase factor over the slice profile S(z). Using some simplifications [4], the 
resulting image is approximated to 

 

I(y, t) = ρ y, t S ω ω y, t  ,                                     (2) 
 

where ρ(y,t) represents the proton density of the voxel, and S(ω) is the Fourier 
transform of the slice profile. ω  is called the tuning frequency, which is determined 
during the image acquisition by an applied tuning gradient. It is noticed that the 
function S(.) is shifted in proportion to the change in the tagging frequency, ω, which 
depends on the tissue deformation. Two images are acquired at two tuning 
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frequencies, ωa and ωb, and from these two images we can estimate the local 
frequency of the slice using the following relation [4]: 
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where I(y, t; ωa) and I(y, t; ωb) are the images acquired at tuning values ωa and ωb 
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thus, the  tissue strain at location y and time t can be estimated from [4]:  

)5(,1001)
ω
ω

(  t)ε(y,
t

o ×−=  

where ωo is the initial tagging frequency and ωt  is the tags frequency at time t. 
In C-SENC [1], the SENC pulse sequence is modified to acquire an image at the 

beginning of the acquisition with no-tuning to capture the signal from the recovering 
DC magnetization. Thus the first image differentiates between normal and infarcted 
myocardium because of their different longitudinal recovery rates after contrast agent 
injection, the second image, low-tune image, shows the static tissue, and the third 
image, high-tune image, shows the contracting tissue. 

3   Proposed System 

Several classifiers are used to classify the different image regions. First, an input 
vector, x = [f1, f2, f3, L], is constructed, where f1 is a feature that represents the pixel 
intensity in the high-tune image, f2 is a feature that represents the pixel intensity in the 
low-tune image, f3 is a feature that represents the pixel intensity in the no-tune image, 
and L is the label of the current pixel, where L є {‘healthy’, ‘infarcted, ‘hibernating’, 
‘background’} regions. Fig. 1 shows the input data.  

 

 

Fig. 1. The input data vector 

In case of using unsupervised learning clustering algorithm, simple K-means, a 
labeling stage is added after the clustering stage and the input data becomes 3-D only, 
as the fourth cell will be omitted. The labeling stage uses information from the 
average-pixel intensity in each identified cluster. The rules used in the labeling stage 
are usually verified by medical domain experts. Fig. 2 shows the proposed system. 
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Fig. 2. The block diagram of the proposed system 

4   Experimental Results 

Simulated images with signal-to-noise ratio 21 dB are generated for C-SENC images. 
This data represents test data containing regions of healthy, infracted, hibernating 
tissues and background. The image is divided into four regions, where the upper 
quarter represents a healthy contracting tissue, the second quarter from above 
represents hibernating tissue, the third quarter from the above represents an infracted 
tissue, and the lower quarter represents the background region. This data is used to 
validate the proposed method. The imaging parameters used in simulation are: The 
slice selection is 10 mm, matrix size is 100 X 100, low and high tuning frequencies 
are 0.2 mm-1 and 0.3 mm-1, respectively, and the initial tagging frequency is 0.21 mm-1. 
Human volunteer is scanned on Philips Acheiva 3T MR scanner with same imaging 
parameters of the simulation. C-SENC images are acquired 10–15 min post contrast 
agent injection [7]. The simulated and the Real C-SENC images are used to construct 
the input data, that is fed into the classification block to classify the different 
components in the image. Fig. 3, and Fig. 4 show simulated and real C-SENC images. 

4.1   Simulated Data Results 

We have chosen 6 popular classifiers, multilayer perceptron (MLP), support vector 
machine (SVM), radial basis function (RBF), decision trees (DT), bayes classifier, 
and simple k-means clustering technique. All implementation are carried out using the  
 
 

 

Fig. 3. Simulated (a) high-tune, (b) low-tune, (c) T1-weighted C-SENC image 
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Fig. 4. Real (a) high-tune, (b) low-tune, (c) T1-weighted C-SENC image 

WEKA library [8]. For all the supervised learning techniques, we use 10 fold cross 
validation and the default parameters that are set in WEKA. After constructing the 
input vector from the simulated images, we feed this data into the classifier block. 

In case of MLP, the time taken to build the model is 43.27 seconds. Table 1. shows 
the confusion matrix. The correctly identified regions are 87.09% while, 12.91% are 
wrongly classified.  

Table 1. The confusion matrix when using multilayer perceptron with 10 folds cross validation 

 Healthy  Hibernating Infarcted Background 
Healthy  2354 96 35 14 

Hibernating 83 1953 438 27 
Infarcted  39 516 1943 1 

Background 4 35 3 2459 

 
Support vector machine (SVM) is also used, where the time taken to build the 

model is 1.02 seconds. Table. 2 shows the confusion matrix. The correctly identified 
regions are 87.77% while, 12.23% are wrongly classified. 

Table 2. The confusion matrix when using SVM with 10 folds cross validation 

 Healthy  Hibernating Infarcted Background 
Healthy  2379 77 32 11 

Hibernating 94 1906 472 29 
Infarcted  46 427 2025 1 

Background 5 26 3 2467 

 
J48 decision tree is also used, where the time taken to build the model is 0.61 

seconds. The constructed tree size is 131 with 66 leaf nodes. Table. 3 shows the 
confusion matrix. The correctly identified regions are 87.02% while, 13.98% are 
wrongly classified.  
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Table 3. The confusion matrix when using J48 DT with 10 folds cross validation 

 Healthy  Hibernating Infarcted Background 
Healthy  2324 109 44 22 

Hibernating 114 1988 384 15 
Infarcted  50 497 1950 2 

Background 25 23 2 2451 

 
Radial basis function (RBF) is also used, where the time taken to build the model is 

9.41 seconds. Table. 4 shows the confusion matrix. The correctly identified regions 
are 87.49% while, 12.51% are wrongly classified.  

Table 4. The confusion matrix when using RBF with 10 folds cross validation 

 Healthy  Hibernating Infarcted Background 
Healthy  2375 80 34 10 

Hibernating 92 1904 475 30 
Infarcted  39 448 2011 1 

Background 12 27 3 2459 
 

Naive Bayes classifier is also used, where the time taken to build the model is 0.09 
seconds. Table. 5 shows the confusion matrix. The correctly identified regions are 
87.57% while, 12.43% are wrongly classified.  

Table 5. The confusion matrix when using Bayes classifier with 10 folds cross validation 

 Healthy  Hibernating Infarcted Background 
Healthy  2389 73 28 9 

Hibernating 106 1902 470 23 
Infarcted  53 428 2018 0 

Background 9 41 23 2448 
 
Finally, unsupervised machine learning technique, simple k-means (SKM), is used 

where the Euclidean distance is used as a distance function. Table. 6 shows the 
confusion matrix. The correctly clustered regions are 84.44% while, 15.56% are 
wrongly clustered.  

Table 6. The confusion matrix when using SKM 

 Healthy  Hibernating Infarcted Background 
Healthy  2371 84 27 17 

Hibernating 108 1876 480 37 
Infarcted  60 412 2026 1 

Background 4 20 2 2475 

 
In case of using the SKM algorithm, no time is needed to build a model. It is the 

fastest technique in the proposed techniques. But, as stated in section 3, labeling stage 
is needed when using unsupervised learning technique.  
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Fig. 5. The result after applying SKM on the simulated C-SENC images 

Fig. 5 shows the result after applying SKM on the simulated C-SENC images. As 
shown in the figure it was able to cluster the 4 regions in the simulated images. Also, 
we can notice that there are misclustered pixels. 

From the previous results, we notice that the majority in the wrongly classified or 
clustered regions is in the infracted and hibernating regions, and this is due to the near 
characteristics between those regions, since they are nearly have the same pattern in 
the low-and high tune images, and slightly differs in the no-tune image as shown in 
the simulated image.  

After testing all the previous techniques, we found that SVM, Naive Bayes 
classifier, and SKM are the best classifiers in terms of time and accuracy. Although 
the MLP has a good accuracy but it is time consuming, also J48 DT has a good 
accuracy but the tree size is large. 

4.2   Real MR Data Results 

Real C-SENC images are acquired, and samples from different regions are manually 
selected to test the SVM, Naive Bayes and SKM classification techniques. Fig. 6 
shows the different regions that are selected from the image. 

For simplicity, 3 regions only are selected, healthy, infracted and background, as in 
real MR images, if there is a hibernating tissue, it just appear in a very fine region. 
And it is practically impossible to determine hibernating tissues visually. 

 

 

Fig. 6. Different selected regions represent healthy, infracted tissue and background 
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Table 7. The confusion matrix when using Bayes classifier with 10 folds cross validation 

 Background Healthy Infarcted 
Background 555 0 0 

Healthy 0 168 47 
Infarcted  0 8 256 

 
Firstly, Naive Bayes algorithm with 10 fold cross validation is used. Table. 7 

shows the confusion matrix. The correctly identified regions are 95.04% while, 4.95% 
are wrongly classified.  

SVM with 10 fold cross validation is also used, where the time taken to build the 
model is 0.66 seconds. Table. 8 shows the confusion matrix. The correctly identified 
regions are 93.59% while, 6.4% are wrongly classified.  

Table 8. The confusion matrix when using SVM with 10 folds cross validation 

 
Background Healthy Infarcted 

Background 555 0 0 
Healthy 0 163 48 

Infarcted  10 8 246 

 
Finally, simple k-means (SKM) is used and table. 9 shows the confusion matrix. 

The correctly clustered regions are 88.55% while, 11.45% are wrongly clustered.  

Table 9. The confusion matrix when using SKM 

 
Background Healthy Infarcted 

Background 555 0 0 
Healthy 0 141 70 

Infarcted  44 4 216 

 

 

Fig. 7. The myocardium has been clustered to three different types of tissues  
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Fig. 7 shows a long-axis view of the heart where we define a region of interest in 
the heart muscle (myocardium). The myocardium is clustered to different groups, 
healthy, infracted and hibernating tissues. The white arrows point to potentially 
infracted regions, while the red arrows point to potentially hibernating regions. The 
healthy regions of the myocardium appear in green color. 

5   Summary and Conclusion 

In conclusion, in this work, we attempt to investigate machine learning techniques 
like MLP, SVM, Bayesian, RBF, DTs and SKM to identify the different heart tissues 
and background in C-SENC cardiac images.  The proposed techniques allows for 
objectively identifying divergent heart tissues, which would be potentially important 
for clinical decision-making in patients with MI. The proposed method is tested using 
numerical simulations of the heart C-SENC images of MI and real images of patients. 
The results show that the proposed techniques are able to identify the different 
components of the image with a high accuracy. The proposed techniques vary in the 
computation time and accuracy. In our opinion using SVM, Bayes classifiers gives 
the best results, as they have high accuracy and low computation time. The 
misclassified instances is due to the poor SNR, 21 dB, however; recently new imaging 
techniques are proposed, where better quality images are obtained, which enhance the 
classification results. 
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Abstract. Hotel revenue management is perceived as a managerial tool
for room revenue maximization. A typical revenue management system
contains two main components: Forecasting and Optimization. A fore-
casting component that gives accurate forecasts is a cornerstone in any
revenue management system. It simply draws a good picture for the fu-
ture demand. The output of the forecast component is then used for
optimization and allocation in such a way that maximizes revenue. This
shows how it is important to have a reliable and precise forecasting sys-
tem. Neural Networks have been successful in forecasting in many fields.
In this paper, we propose the use of NN to enhance the accuracy of a Sim-
ulation based Forecasting system, that was developed in an earlier work.
In particular a neural network is used for modeling the trend component
in the simulation based forecasting model. In the original model, Holt’s
technique was used to forecast the trend. In our experiments using real
hotel data we demonstrate that the proposed neural network approach
outperforms the Holt’s technique. The proposed enhancement also re-
sulted in better arrivals and occupancy forecasting when incorporated in
the simulation based forecasting system.

1 Introduction

The importance of hotel arrivals and hotel occupancy forecasting stems from its
need when designing a hotel revenue management system. Revenue management
is the science of managing a limited amount of supply to maximize revenue by
dynamically controlling the price/quantity offered [1] [2]. While cutting edge
revenue management systems are currently in use by the airline industry, only
recently has it been considered for the hotel industry. Because of the large num-
ber of existing hotels, the amount of possible total savings, if one implements
optimized revenue management systems, is potentially large.

Revenue management forecasting methods fall into one of three types: Histor-
ical booking models, advanced booking models and combined models. Historical
booking models only consider the final number of rooms or arrivals on a particu-
lar stay night. Advanced booking models only include the build up of reservations

F. Schwenker and N. El Gayar (Eds.): ANNPR 2010, LNAI 5998, pp. 241–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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over time for a particular stay night. Combined models use either regression or a
weighted average of historical data and advanced booking models to develop fore-
casts. A review of forecasting methods for all three types is found in [3] and [6].
In this study, a particular interest is devoted to reservations data as they are very
rich and contain very useful information indicating the actual demand to come.

A simple but efficient forecasting technique that is based on reservations data
is the Pickup method. The Pickup forecasting model is a popular advanced
booking model which exploits the unique characteristics of reservations data
instead of relying only on complete arrival histories to make better forecasts.
The main idea of using the pickup method is to estimate the increments of
bookings (to come) and then aggregate these increments to obtain a forecast of
total demand in the future [1]. Pickup is defined as the number of reservations
picked up from a given point of time to a different point of time over the booking
process [3]. A good comparison among the different variations of the pickup
forecasting method and applying it on simulated hotel data can be found in [4].

In the theory of forecasting there have been two competing philosophies. The
first one is based on developing an empirical formula that relates the value to
be forecasted with the recent history (for example ARIMA-type or exponential
smoothing models). The other approach focuses on developing a model from first
principles that relates the value in questionwith the availablevariables/parameters
etc, and simulate that model forward to obtain the forecast. Because the majority
of real-world systems are either intractable or very complex to model, most fore-
casting applications follow the first approach. In contrast, Zakhary et al [5] present
a forecasting application following the second approach, namely Forecasting Hotel
Arrivals and Occupancy Using Monte Carlo Simulation.

In this paper, we propose an enhancement to the above mentioned model. In
particular, a neural networks model is proposed to provide a multi-step ahead
forecast for the trend component of the simulation model. In our experiments
we demonstrate that the proposed neural network based model provides a more
accurate estimate for the trend and results in better arrivals and occupancy
forecasting when incorporated in the overall forecasting system. Our case study
was based on real reservations data from Plaza hotel 1, Alexandria, Egypt.

The paper is organized as follows: Next section briefly describes the simulation
based forecasting system, specifically the estimation of the system components.
Section 3 reviews Neural Networks and its usage in forecasting. Section 4 presents
the details of the proposed method for forecasting the trend. Section 5 shows
the experiments and finally the paper is concluded in Section 6.

2 Forecasting Arrivals and Occupancy Using Simulation

This section briefly describes the simulation based forecasting model. For more
details refer to [5]. The forecasting simulator consists of two main modules: the

1 Plaza Hotel, Alexandria, Egypt is a 4 stars, Mid-size, business as well as sea-side
hotel. http://www.plazaegypt.com/home.htm

http://www.plazaegypt.com/home.htm
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analysis module and the simulation module. The analysis module takes as an in-
put the historical reservation records. It then analyzes these data and uses it to
extract many parameters and components like: trend, seasonality, booking curves,
cancellations dynamics, length of stay, etc. Distributions of these components are
deduced from the data directly. For every distribution or parameter, a suitable
approach is devised to estimate it. For example, the seasonal index is estimated
using the multiplicative seasonal decomposition [6]. The length of stay and room
type distributions are estimated using a simple frequency based distribution esti-
mator. The effects of the average daily reservations ( i days prior to arrival) and
the trend and seasonality are estimated by assuming that the net reservation rate
b(i) equals a normalized reservation rate bn(i) times a trend component tr(t) times
a seasonal component s(t), where t is the arrival date, as follows:

b(i) = bn(i) ∗ tr(t) ∗ s(t) (1)

The reservation rates bn(i) are estimated by grouping the reservation curves to
high, medium and low according to their corresponding seasonality indexes, and
estimating a template for each seasonal index. The simulation module takes the
parameters and components estimated by the analysis module as an input to
generate forward reservation records that would take place in the future. Ana-
lyzing these generated reservation cases; one can obtain realistic predictions for
occupancy, arrivals, and revenue in the future. One advantage of this simulation
approach is that one obtains distributions of future key parameters (reserva-
tions, arrivals, etc). This is performed by running the simulator many times
from the current (deterministic) starting point (determined by the current snap-
shot of existing reservations), thereby producing many paths, each obtained by
the different random components of the future reservations process.

3 NN in Forecasting

A neural network (NN) is a semi-parametric model, inspired by how the brain
processes information. It consists of a network of neurons (or nodes) that perform
a weighted sum operation, followed by applying a nonlinear squashing function.
Some of these nodes are hidden nodes that perform intermediate computations,
and feed into the output node (which produces the final output). There are
typically many free parameters in the network (called the weights). If the number
of parameters or the number of hidden nodes is left unchecked, the network can
overfit the data [7].

NNs can be useful for nonlinear processes that have an unknown functional
relationship and as a result are difficult to fit [8]. The main idea with NNs is that
inputs, or dependent variables, get filtered through one or more hidden layers
each of which consist of hidden units, or nodes, before they reach the output
variable. Next the intermediate output is related to the final output [9]. One
major application area of NNs is forecasting. Refer to Kline et al [10]. for a good
survey of the literature. A general problem with nonlinear models is the “curse
of model complexity and model over parametrization”.
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NNs offers a natural alternative to traditional forecasting techniques. They
have three great advantages over traditional forecasting methods:

1. They have universal approximation capabilities,
2. They can recognize “on their own” implicit dependencies and relationships

in data,
3. They can learn to adapt their behavior (their prediction) to changed condi-

tions quickly and without complication.

4 Proposed Trend Component Forecasting Using NN

As shown in Equation 1, the trend tr(t) is a key component in forecasting the
reservations and then arrivals and occupancy. Enhancing the accuracy of esti-
mating the trend will definitely lead to a more precise forecasting model. For this
reason a forecasting model is applied for predicting the trend in the considered
forecast horizon. Due to the importance of this component to the whole system,
Artificial Neural Networks is used to forecast it.

Investigating the nature of the trend curve shown in Figure 1, it is obvious
that it changes very frequently and abruptly. In addition, the training process
in neural networks usually envolves intensive computations. For these reasons, it
is better to simplify the forecasting problem. This could be done by converting
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Fig. 1. The daily trend extracted from Plaza Hotel data versus a weekly version
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the daily trend into a weekly trend by averaging the trend values of each week.
In this case, the points to be forecasted will shrink by a factor of seven. For
example, to forecast three months, we need to forecast 14 weekly points instead
of 92 daily points. Each forecasted point is then considered a forecast for the
corresponding week.

The proposed approach is to train a set of different neural networks for fore-
casting the future trend levels. These neural networks will vary in forecast hori-
zon, number of inputs, formation of inputs, and the number of hidden nodes.
For each forecast horizon, the best three neural networks are used in forecasting.
The forecast value is the average of their forecasts. The proposed method can
be described in steps as follows:

1. Prepare the inputs for Neural Networks
2. Adjust the NN parameters (Number of hidden units, Learning rate, ...)
3. Train the different NNs
4. Forecast using the best trained NNs

In the following subsections, we describe the sequence in more details.

4.1 Prepare Inputs

In multi step ahead forecasting using NN there are three well-known ways: the
iterative approach, the direct approach, and the parallel approach [10]. In the
iterative approach the model is trained on a one-step ahead basis. The trained
model is then used to forecast one step ahead (i.e. one week ahead). The fore-
casted value is then fed as input to the model to forecast the subsequent point,
and continue in this manner until the end of the forecast horizon. In the direct
approach, a different network is used for every point in the future to be fore-
casted. For example, if the forecast horizon is 14 weeks, so 14 networks are built,
each one forecasting a specific week in the future. When forecasting, these 14
networks are applied to obtain the forecast of the required forecast horizon. Of
course, every network is trained separately. In the parallel approach, only one
network is used with a number of outputs equal to the length of the horizon to
be forecasted. The network is trained in a way so that output number k pro-
duces the kth step ahead forecast. In this work, we mainly focus on the direct
approach. Neural networks are trained with a number of inputs that varies from
two inputs to six inputs. Input/output pairs used in training can be built using
different ways. As follows, we describe the different ways we suggest to build the
input/output pairs:

– M-I: input lags are consecutive irrespective of the forecast horizon
– M-II: input lags are interleaved in proportion to step-ahead being forecasted
– M-III: consists of sampling in the same way as M-II. Instead of skipping time

series values, averages are formed. The target output is also averaged
– M-IV: is same like M-III without averaging output
– M-V: is same like M-I , but one of the inputs is the average of eight conse-

quent inputs. This is to account for the effect of longer term average
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Given the time series x(t−m), ..., x(t−3), x(t−2), x(t−1), x(t), x(t+1), x(t+
2), x(t+3), ..., x(t+n). The generated input/output pairs for horizon=2 and num-
ber of lags =2 for this series using the different aforementioned methods are:

– M-I: x(t − 1), x(t) ⇒ x(t+ 2)
– M-II: x(t− 2), x(t) ⇒ x(t+ 2)
– M-III: average(x(t − 3), x(t − 2)), average(x(t − 1), x(t)) ⇒ average(x(t +

1), x(t+ 2))
– M-IV: average(x(t− 3), x(t− 2)), average(x(t− 1), x(t)) ⇒ x(t+ 2)
– M-V: average(x(t− 8), ..., x(t− 1)), x(t) ⇒ x(t+ 2)

4.2 Adjust Parameters and Train Neural Networks

A five-fold validation procedure is used to select the best number of hidden
nodes [11]. The following candidate values are considered for the number of
hidden nodes: NH = [0, 1, 3, 5]. Note there is a possibility of having zero hidden
nodes (NH = 0), meaning simply a linear model. Balkin and Ord [12] have shown
that the possibility of switching to a linear model for some time series improved
performance. Concerning the other less key parameters and model details, The
sigmoid is used as activation functions for the hidden layer, and a linear for
output layer. Training is performed using the Levenberg-Marquardt algorithm
for 500 epochs, using a momentum term 0.2, and an adaptive learning rate with
initial value 0.01, an increase step of 1.05 and a decrease step of 0.7.

Trend variable sdes(t) is converted to weekly averages. Neural Networks are
built with variations in forming training data (five variations) and number of
lags (five variations). For each forecast horizon, the best three NNs are chosen.

4.3 Forecast Trend Using Trained NNs

For each forecast horizon, formulate the input according to the selected NN
structure. Forecast the value of the required horizon in weeks. The output of
each forecast horizon is the mean value of the three selected NN of that horizon.
The next step is to convert the weekly forecasted points to daily forecasts. This is
done by simply repeating each forecast seven times. The last step is to additively
tune the level of the forecast. This is done by fitting a straight line on the past
data and then getting the forecast of this linear regression for the interval to be
forecasted. The mean value of the NN forecast is additively set to be that of the
regressed forecast. This is done by subtracting the NN forecast mean and adding
the linear regression mean.

Next section describes the results of applying the proposed NN model versus
the Holt’s technique used primarily in the simulator based forecasting system to
forecast the trend obtained from Plaza Hotel for three intervals.

5 Experiments and Results

The proposed model is trained using the trend data of a complete year. The
model is tested by forecasting the subsequent 3 months. Table 1 lists the 3
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Table 1. The in-sample and the three months ahead forecast periods for the three
forecasted snapshots

Snapshot No. In-Sample Period Forecast Period

1 1-Oct-2006 - 30-Sep-2007 1-Oct-2007 - 31-Dec-2007
2 1-Oct-2006 - 31-Oct-2007 1-Nov-2007 - 31-Jan-2008
3 1-Oct-2006 - 30-Nov-2007 1-Dec-2007 - 29-Feb-2008

different training and testing periods that were used in our experiment. We
compare the performance of the proposed model to Holt’s forecasting method.
A detailed discussion to this technique can be found in [13]. We have chosen to
compare the proposed NN Forecasting technique to Holt’s forecasting method
for two reasons:

1. The Holt’s technique is used for forecasting the trend in our original simu-
lation based forecasting system [5],

2. By definition Holt’s is a suitable technique for forecasting data that have
trend and no seasonality[13].

We use as error measure the symmetric mean absolute percentage error, defined
as follows for both the the arrivals and occupancy time series:

SMAPE =
1
M

M∑
m=1

|ŷm − ym|
(|ŷm| + |ym|)/2 (2)

where ym and ŷm are the actual time series value and the forecasted value
respectively. Also, M is the total number of points that are forecasted.

Due to the limited length of the actual data (17 complete months), only three
different forecast snapshots could be used. Thus we could not apply test of signifi-
cance on the results. Figure 2 depicts the trend versus the NN forecast and Holt’s
forecast for the first interval. Table 2 compares the SMAPE error measures of the
proposedmodel to the Holt’s method. Analyzing the results, it is obvious that Neu-
ral Network forecasting method has outperformed Holt’s methods.

In other cases, trend can go upward or downward. To test the performance
of the NN model in such cases, an upward trend is generated by multiplying
the original trend of plaza in a straight line with an upward trend. The model
is trained using the modified trend. Forecast of the first interval against the
modified trend is shown in Figure 3. Table 3 shows the corresponding SMAPE
error measures. Similarly, trend has been modified with a downward trend and
the results are shown in Figure 4 and Table 4. Investigating the results one can see
that NN model has stable performance whether the trend is stationary, upward
or downward. Finally in Table 5 we compare the overall forecast SMAPE for the
Out-of-Sample periods for the original Monte Carlo Model [5] to the enhanced
model that uses the proposed NN trend forecasting.
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Fig. 2. The original trend component of Plaza Hotel versus its forecasts using the
proposed NN model and Holt’s in the 1st interval

Table 2. The SMAPE error measures of the proposed NN model versus Holt’s for
forecasting the trend of Plaza Hotel

NN model Holts

1st Interval 0.2574 0.2697
2nd Interval 0.2537 0.2589
3rd Interval 0.2625 0.2808

Average 0.2541 0.270867

Table 3. The SMAPE error measures of the proposed NN model versus and Holt’s for
forecasting an upward modified version of trend of Plaza Hotel

NN model Holts

1st Interval 0.2674 0.2729
2nd Interval 0.2424 0.2589
3rd Interval 0.2625 0.2808

Average 0.25743 0.2709
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Fig. 3. The modified upward trend component of Plaza Hotel versus its forecasts using
the proposed NN model and Holt’s in the 1st interval

Table 4. The SMAPE error measures of the proposed NN model versus and Holt’s for
forecasting an downward modified version of trend of Plaza Hotel

NN model Holts

1st Interval 0.2737 0.2846
2nd Interval 0.2364 0.2482
3rd Interval 0.2786 0.2921

Average 0.2629 0.2750

Table 5. The Overall Forecast SMAPE for the Out-of-Sample Periods for the Original
Monte Carlo Model versus Modified Model

Arrivals Occupancy

Original Monte Carlo Model 43.9 37.7
Modified Monte Carlo Model 42.21 37.1
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Fig. 4. The modified downward trend component of Plaza Hotel versus its forecasts
using the proposed NN model and Holt’s in the 1st interval

6 Conclusions

In this paper we propose an enhancement to a simulation based forecasting model
previously developed. In particular we suggest using NNs to estimate the trend
component, which is one of the key components that the forecasting model is based
upon. In the original model, Holt’s method is used for trend forecasting. Experi-
mental results on real hotel data show that the use of NN increases the accuracy of
trend forecasting by 5%. This improvement is also reflected in the overall arrivals
and occupancy results of the overall simulation based forecasting system.

We believe that the gain from using NN for estimating the trend component
in the forecasting system can be more significant in hotel environments in which
the trend component is the main contributor to the reservation process. This is
of particular importance to us since we plan to test and deploy the developed
forecasting system in various hotel types (resort, city hotels, airport hotels, ...etc)
that exhibit different reservation patterns.
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Abstract. User authentication using fingerprint information provides conven-
ience as well as strong security at the same time. However, serious problems 
may cause if fingerprint information stored for user authentication is used 
illegally by a different person since it cannot be changed freely as a password 
due to a limited number of fingers. Recently, research in fuzzy fingerprint vault 
system has been carried out actively to safely protect fingerprint information in 
a fingerprint authentication system. In this paper, we propose hardware 
architecture for a geometric hashing based fuzzy fingerprint vault system. The 
proposed architecture consists of the software module and hardware module. 
The hardware module performs the matching for the transformed minutiae in 
the enrollment and verification hash table. We also propose a hardware 
architecture which parallel processing technique is applied for high speed 
processing.  

Keywords: Fingerprint authentication, fuzzy vault, geometric hashing, fuzzy 
fingerprint vault. 

1   Introduction 

The authentication system based on biometric information offers greater security and 
convenience than the traditional methods of personal verification. The biometrics 
such as fingerprint, iris, and voice has been received considerable attentions, which 
refers the personal biological or behavioral characteristics used for verification or 
identification. Since biometrics cannot be lost or forgotten like passwords, biometrics 
has the potential to offer higher security and more convenience for the users. The 
fingerprint is chosen as the biometrics for verification in this paper. Owing to their 
uniqueness and immutability, fingerprints are today the most widely used biometric 
features. If the biometric data are compromised, the user may quickly run out of the 
biometric data to be used for authentication and cannot re-enroll[1-2]. Recently, study 
on fuzzy fingerprint vault which fuzzy vault theory is applied to fingerprint 
authentication has been carried out after Juels and Sudan proposed the fuzzy vault 
                                                           
* Corresponding author. 
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theory. Fuzzy fingerprint vault is a cryptology method which secret key and 
fingerprint information of the user are combined to obtain a secret key for only the 
right user. Real minutiae of the user is protected by creating a polynomial using the 
user's secret key and organizing the fingerprint template of the user with the user's 
real minutiae after creating the chaff minutiae randomly[3]. 

While study to simultaneously protect user fingerprint information and secret key 
of that user using fuzzy fingerprint vault is being reported, they cannot be realized 
because the alignment process was omitted due to absence of the fingerprint. To solve 
this problem, a method which geometric hashing technique is applied to the fuzzy 
fingerprint vault system was proposed[4-7]. The geometric hashing technique is an 
object authentication algorithm which object information is extracted and stored in a 
database and searched after being geometrically transformed[8]. 

In this paper, we propose hardware architecture for a fuzzy fingerprint vault system 
based on geometric hashing. The proposed architecture is performed by combining 
the software and hardware modules. The software module consists of modules for 
fingerprint minutiae information extraction, fingerprint template generation, 
fingerprint hash table generation and database storage. The hardware module consists 
of the matching module, verification module and memory to store the enrollment hash 
table and verification hash table. The matching module compares the transformed 
minutiae of the enrollment hash table and transformed minutiae of the verification 
hash table. The verification module takes the role of the calculation according to the 
result of the matching module. In addition, we propose a hardware architecture which 
parallel processing technique is applied for high speed processing of the fuzzy 
fingerprint vault system. Software module is identical to the previously proposed 
hardware architecture. The hardware module consists of the memory for storing the 
enrollment hash table and verification hash table, matching modules and the 
verification module.  

The organization of the paper is as follows. Section 2 introduces fuzzy fingerprint 
vault based on the geometric hashing. Section 3 explains the hardware architecture for 
fuzzy fingerprint vault based on the geometric hashing, Section 4 shows the 
experimental results and Section 5 concludes. 

2   Fuzzy Fingerprint Vault 

Juels and Sudan proposed a scheme for crypto-biometric system called fuzzy vault. 
This is method which can protect the user's important secret key and biometric 
information using fuzzy concept. Clancy et al. proposed a fuzzy fingerprint vault 
based on the fuzzy vault of Juels and Sudan[4-5]. Using multiple minutiae location 
sets per finger, they first find the canonical positions of minutia, and use these as the 
elements of the set A. They added the maximum number of chaff minutiae to find R 
that locks. However, their system inherently assumes that fingerprints are pre-aligned. 
This is not a realistic assumption for fingerprint-based authentication schemes. 

The architecture of the fuzzy fingerprint vault system of Chung et al. [6] consists 
of two processes: enrollment and verification processes as shown in Fig. 1. 
Enrollment process consists of minutiae information acquisition stage, enrollment 
hash table generation stage again. In minutiae information acquisition stage, minutiae 
information includes real minutiae of a user and chaff minutiae generated randomly.  
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(a) Enrollment processing  

 

 
(b) Verification processing 

Fig. 1. Fuzzy fingerprint vault system  

It is challenging to perform fingerprint verification with the protected template added 
by chaff minutiae. And then, Chung et al. applies modified geometric hashing. 
According to the geometric characteristics of the minutiae information, a table, called 
an enrollment hash table, is generated. Let mi = (xi, yi, θi, ti) represent a minutia and L 
= {mi | 1 ≤ i ≤ r} be a locking set including the real and chaff minutiae. In L, the real 
and chaff minutiae can be represented by G = {mi | 1 ≤ i ≤ n} and C = {mi | n+1 ≤ i ≤ 
r}, respectively. Note that, the enrollment hash table is generated from L. In the 
enrollment hash table generation stage, an enrollment table is generated in such a way 
that no alignment is needed in the verification process for unlocking vault by using 
the geometric hashing technique. That is, alignment is pre-performed in the 
enrollment table generation stage.  

After the enrollment process, the verification process to separate the chaff 
minutiae(C) from the real minutiae(G) in the enrollment minutiae table should be 
performed. In the verification process, minutiae information(unlocking set U) of a 
verification user is obtained and a table, called verification table, is generated 
according to the geometric characteristic of the minutiae. Then, the verification table 
is compared with the enrollment minutiae table, and the subset of real minutiae is 
finally selected. Note that, the verification table generation stage is performed in the 
same way as in the enrollment process. In comparing the enrollment and verification 
minutiae tables, the transformed minutiae pairs with the same coordinates, the same 
angle, and the same type are determined. The minutiae pairs having the maximum 
number and the same basis are selected as the subset of real minutiae(G). Also, any 
additional alignment process is not needed because pre-alignment with each minutia 
is executed in the enrollment and verification minutiae table generation stages. 

3   Hardware Architecture of the Fuzzy Fingerprint Vault 

To implement the hardware system of the fuzzy fingerprint vault, the proposed 
architecture was performed by integrating software and hardware modules as shown in 
Fig. 2. The enrollment processing for the fuzzy fingerprint vault system consists of steps 
for real minutiae extraction, chaff minutiae generation, fingerprint template generation,  
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Fig. 2. Flow diagram of the fuzzy fingerprint vault system 

 

fingerprint hash table generation and fingerprint database storage. The verification 
processing consists of steps for input fingerprint minutiae extraction, fingerprint hash 
table generation, matching and verification (Candidate list generation step).  

The matching step and verification step of the verification processing is performed 
in hardware. Since the amount of computation of the matching step for the 
verification processing increases as the number of chaff minutiae increases in the 
enrollment processing, it is advisable for the matching step and verification step to be 
performed in hardware. On the other hand, the enrollment processing and fingerprint 
hash table generation step in the verification processing are performed in software. 
The proposed hardware module consists of two memories(enrollment and verification 
hash table), matching module and verification module as shown in Fig. 3. Hash table 
for each is organized of transformed minutiae. The enrollment fingerprint transformed 
minutiae is created by geometric transformation of user's real minutiae and chaff 
minutiae that was inserted to protect this in the enrollment processing. The 
verification fingerprint transformed minutiae is created by geometric transformation 
of minutiae of the fingerprint for verification.  

The enrollment hash table can be expressed as E = {tri | 0 ≤ i ≤ r-1} where r is the 
number of enrollment fingerprint templates. tri is the hash table which is created 
through geometric hashing after selecting mi among the fingerprint template as  
the reference point and consists of r-1 transformed minutiae. The verification 
fingerprint transformed minutiae can be expressed as V = {trj | 0 ≤ j ≤ s-1} where s is 
the number of verification fingerprint templates. The matching module consists of the 
Compare module and Count module. The Compare module is the module that 
compares the enrollment fingerprint transformed minutiae and verification fingerprint 
transformed minutiae and the Count module calculates the number of corresponding  
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Fig. 3. Structural diagram of the proposed hardware module 

transformed minutiae. The verification module is the module that aligns calculated 
similarity in high similarity order. 

It assumes the number of enrollment fingerprint templates to be r, tr of the 
enrollment hash table E to be r, number of the verification fingerprint template to be s 
and tr of the verification hash table V to be s. First, tr0 of the verification hash table 
and tr0 of the enrollment hash table is input to the matching module. In the Compare 
module of the matching module, tr0 of the verification hash table and tr0 of the 
enrollment hash table are compared. After comparing the coordinate, angle and type 
of the transformed minutiae for the two tr0 that were input, whether or not they match 
is sent to the Count module. The Count module calculates the number of transformed 
minutiae that match. Then, tr1 of the enrollment hash table is input to the matching 
module and compared with the tr0 of the verification hash table. After comparison of 
all tr in the enrollment hash table with tr0 of the verification hash table are completed 
using the same method, tr1 of the verification hash table is input to the matching 
module. Up to trs-1 of the verification hash table is compared by executing this 
repeatedly. The verification module performed alignment of the calculated similarity. 
By using the number of corresponding transformed minutiae, similarity is measured 
and candidate list is generated in high similarity order. 

In this paper, we also propose a hardware architecture which parallel processing 
technique is applied to reduce the matching time. Separation of the software and 
hardware modules is identical to the previously proposed hardware architecture. The 
proposed parallel processing hardware module consists of two memories storing the 
enrollment hash table and verification hash table, matching module and verification 
module as shown in Fig. 4. For parallel processing, the number of matching modules 
used in the hardware module is two. While the architecture of the matching module is 
similar to the previously proposed hardware architecture, it is different because the 
input enrollment fingerprint transformed minutiae is output after the comparison. The 
architecture of the verification module is identical to the previously proposed 
hardware architecture. When the number of the enrollment fingerprint templates is r 
and the number of the verification fingerprint templates is s, the enrollment hash table 
E consists of r and verification hash table V consists of s. 
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Fig. 4. Structural diagram of the proposed parallel processing technique hardware module 

4   Experimental Results 

The number of real minutiae that was used in the hardware architecture experiment 
for the fuzzy fingerprint vault system based geometric hashing proposed in this paper 
is between a maximum of 90 and minimum of 16. The experiment was performed by 
adding 100, 200, 300 and 400 chaff minutiae. The software module was realized by 
using C language in Visual C++ 6.0.  

For hardware module implementation, a Spartan 3E starter board was used. The 
development board contains a Xilinx XC3S500E FPGA. The hardware module was 
designed by using VHDL in Xilinx ISE 9.2. Hardware simulation was performed in 
Moledmsim XE 6.0. 

Table 1 shows the major resources that were used when the hardware architecture 
for the proposed fuzzy fingerprint vault and hardware architecture which the parallel 
processing technique was applied were implemented in the development board. Since 
the parallel processing hardware architecture has matching modules whose number 
equals that of the verification fingerprint transformed minutiae when there is one 
matching module in the proposed hardware architecture, the amount of resources that 
are used is large. It can be seen that the amount of hardware is about 56% higher for 
the number of slices, about 28% higher for the number of slice flip flops and 58% 
higher for the total number of 4 input LUTs in the parallel processing hardware 
architecture. 

Execution time of the hardware module for the fuzzy fingerprint vault system was 
measured with number of chaff minutiae equal to 100, 200, 300 and 400. As shown in 
Table 2, real time processing is possible even when the number of chaff minutiae is 
increased to improve security in the proposed hardware architecture.  

Table 1. Major resources when matching module is implemented in a Xilinx Spartan 3E FPGA  

Number of 
matching module

Number of Slices 
Number of Slices 

Flip Flop 
Total Number of 4 

input LUTs 
1 419 out of 4,656(9%) 161 out of 9,312(2%) 668 out of 9,312(7%) 

2 496 out of 4,656(10%) 246 out of 9,312(2%) 762 out of 9,312(8%) 
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Table 2. Required number of cycles according to the number of chaff minutiae  

Number of chaff minutiae  Chaff minutiae 
Module 100 200 300 400 

software 30,128,840 56,376,516 75,087,761 110,009,410 

1 matching module 10,023,288 12,027,946 18,763,596 26,461,481 

2 matching module 8,173,713 9,808,456 15,301,191 21,578,603 

5   Conclusion 

While a user authentication system using fingerprint information provides convenience 
and strong security at the same time, serious problems may cause if the fingerprint 
information is used illegally or leaked. In this paper, we proposed hardware 
architecture for a geometric hashing based fuzzy fingerprint vault system. The 
matching module of the proposed hardware architecture was performed so that all 
transformed minutiae in the enrollment fingerprint hash table are matched with each 
transformed minutiae in the verification fingerprint hash table. In addition, the 
hardware architecture of the matching system which parallel processing technique was 
applied for high speed processing of the system organizes matching modules in 
number equal to the number of transformed minutiae in the input fingerprint hash table 
and matches them simultaneously. Execution time of the proposed system was 0.24 
second for 36 real minutiae and 200 chaff minutiae and 0.53 second for 400 chaff 
minutiae. In addition, execution time for hardware architecture with 2 matching 
modules which parallel processing technique was applied was 0.18 second and 0.47 
second respectively for the same condition. Based on the experimental result, it was 
verified that real-time fingerprint authentication is possible by using the hardware 
architecture of the proposed fuzzy fingerprint vault system and high speed processing 
is possible by applying parallel processing technique.  
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Abstract. Clustering and visualization constitute key issues in computer-
supported data inspection, and a variety of promising tools exist for such
tasks such as the self-organizing map (SOM) and variations thereof. Real
life data, however, pose severe problems to standard data inspection: on
the one hand, data are often represented by complex non-vectorial objects
and standard methods for finite dimensional vectors in Euclidean space
cannot be applied. On the other hand, very large data sets have to be dealt
with, such that data do neither fit into main memory, nor more than one
pass over the data is still affordable, i.e. standard methods can simply not
be applied due to the sheer amount of data. We present two recent exten-
sions of topographic mappings: relational clustering, which can deal with
general proximity data given by pairwise distances, and patch processing,
which can process streaming data of arbitrary size in patches. Together,
an efficient linear time data inspection method for general dissimilarity
data structures results. We present the theoretical background as well as
applications to the areas of text and multimedia processing based on the
generalized compression distance.

1 Introduction

The availability of electronic data increases dramatically in nearly every aspect of
daily life, and it is estimated that the amount of electronic data doubles roughly
every twenty months. At the same time, the quality and information content
of modern data is constantly improving, and, often, data are represented in
dedicated structures such as XML files, sequences, or graph structures. While
both aspects allow the access to detailed and specialized information according
to the current need of the user, this access is far from trivial and often buried
in the sheer amount of information. Because of these problems automatic data
mining tools play a major role to visualize and customize data such that humans
can more easily access the relevant information at hand.

A multitude of different techniques has been developed in the context of in-
teractive information visualization and data mining [23,33]. One very popular
technique is offered by the self-organizing map (SOM) [18]: a lattice of neurons
is arranged according to the data similarity such that clustering, browsing, and
visualization become possible. This way, SOM can serve as data inspection tool
or as preprocessing step for further information processing. In consequence, SOM
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has successfully been applied to diverse areas such as robotics, telecommunica-
tion, web and text mining, bioinformatics, etc. [18].

With increasing quality and availability of electronic data, new challenges
arise: data sets become larger and larger and, often, data are not available a
priori, rather, data are stored in a distributed way and can be accessed only in
sequential order. This property makes it infeasible to keep all data items in main
memory at once or to sift through the data more than once. In consequence, many
standard data mining methods cannot be applied in such situations, such as e.g.
standard SOMs with online or batch training. Due to this fact, data mining
for very large or streaming data has become one central issue of research. Sev-
eral approaches have been proposed including extensions of k-means clustering
and variants with approximation guarantees, heuristics which rely on sampling
and according statistical guarantees or grid based methods, such as e.g. CURE,
STING, and BIRCH, or iterative compression approaches which process only a
fixed subset of the given data at a time [6,10,1,2,20,9,12,32,35].

Another challenge is the fact that more and more electronic data are stored
together with dedicated structures such as XML files, temporal or spatial se-
quences, trees, or graph structures. These data are typically not represented as
standard Euclidean vectors and a comparison of data by means of the Euclidean
metric is often not appropriate. Rather, problem-adapted specific choices should
be used such as alignment distances, tree or graph kernels, etc. Most classi-
cal statistical data mining tools such as SOM have been proposed for vectorial
data and, hence, they are no longer applicable in such situations. A variety of
methods which extend SOM to more general data structures has been proposed:
Statistical interpretations of SOM as considered in [11,17,30,31] allow to change
the generative model to more general data. The approaches are very flexible
but computationally quite demanding. For specific data structures such as time
series, recursive models have been proposed [3,14]. Online variants of SOM have
been extended to general kernels [34]. However, these versions have been derived
for (slow) online adaptation only. The approach [19] provides a fairly general
method for large scale application of SOM to non-vectorial data: batch opti-
mization is extended to general proximities by means of the generalized median.
Thereby, prototype locations are restricted to data points which restricts the
flexibility of the approach compared to the original setting.

Note that large data sets constitute a particular problem for SOMs for general
data structures: if data are characterized by pairwise dissimilarities instead of
Euclidean vectors, squared complexity is already necessary to store the relevant
information in a dissimilarity matrix. In consequence, training algorithms display
at least quadratic complexity which is infeasible for large data sets. Only few
proposals address this problem such as [4,5]. Here, information is approximated
by a small representative subset of the matrix and extended to the full data
afterwards. The drawback of this approach is that a representative subset of the
dissimilarity matrix has to be available prior to training, which is commonly not
the case for streaming data without direct random access.
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In this contribution, we present two ideas which extend SOMs to large dis-
similarity data sets such that a method with linear time and constant memory
results. On the one hand, we extend SOM to data given by pairwise dissim-
ilarities in a way which is similar to relational fuzzy clustering as derived in
[15,16]. We transfer these settings to SOM together with an investigation of the
underlying mathematics for general data sets. On the other hand, we rely on
extensions of clustering to large data sets by means of patch clustering as pro-
posed in [1,10,6]. We extend this scheme to the relational approach resulting in
a constant memory and linear time method. We demonstrate two applications
to text files and symbolic musical data.

2 Relational Self-Organizing Maps

2.1 Standard Batch SOM and Corresponding Cost Function

Topographic maps constitute effective methods for data clustering, inspection,
and preprocessing. Classical variants deal with vectorial data x ∈ R

n which are
distributed according to an underlying distribution P in the Euclidean space.
The goal of prototype-based clustering algorithms is to distribute prototypes
wi ∈ R

n, i = 1, . . . , k among the data such that they represent the data as accu-
rately as possible. A new data point x is assigned to the winner I(x) which refers
to the prototype with smallest averaged distance

∑k
l=1 hλ(nd(i, l)) · ‖x − wl‖2.

Here, hλ(t) = exp(−t/λ2) denotes an exponential function with neighborhood λ
and nd(i, l) denotes a priorly chosen neighborhood structure of neurons, often
induced by a low dimensional lattice in a low-dimensional Euclidean or hyper-
bolic space, to achieve greater flexibility of the lattice structure [24]. Prototypes
are adapted such that SOM optimizes the cost function [17]

ESOM(w) =
1
2

k∑
i=1

∫
δi,I(x) ·

k∑
l=1

hλ(nd(i, l)) · ‖x − wl‖2 P (dx)

Often, this cost function is optimized by means of an online stochastic gradient
descent. Alternatively, if data x1, . . . , xm are available priorly, batch optimiza-
tion can be done. The corresponding discrete cost function is given by

ESOM(w,x) =
1
2

k∑
i=1

m∑
j=1

δi,I(xj) ·
k∑

l=1

hλ(nd(i, l)) · ‖xj − wl‖2 .

This is optimized by an iterative optimization of assignments and prototypes
until convergence in Batch SOM, see Algorithm 1. The neighborhood cooperation
is usually annealed to λ→ 0 during training such that the quantization error is
optimized in the limit of small neighborhood size. It has been shown in [8] that
this procedure converges after a finite number of steps to a local optimum of the
SOM cost function for fixed λ. In the following theoretical considerations, we will
always assume a fixed and small neighborhood parameter λ. This consideration
approximately corresponds to final stages of training.
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Algorithm 1. Batch SOM

input

data {x1, . . . , xm} ⊂ R
n;

begin

init wi randomly;

repeat

set I(j) = argmini

∑k
l=1 hλ(nd(i, l)) · ‖xj − wl‖2;

set wi =
∑

j hλ(nd(I(j), i))xj/
∑

j hλ(nd(I(j), i));

until convergence;

return wi;

end.

2.2 Pseudo-Euclidean Embedding of Dissimilarity Data

In the following, we restrict the presentation to an overview of the key ingre-
dients, omitting a few details and all proofs, which can be retrieved from [13].
Here, we deal with the application of SOM to settings where no Euclidean em-
bedding of the data points is known. We will more generally deal with data points
xi which are characterized by pairwise dissimilarities dij = d(xi, xj) which are
symmetric and 0 if xi = xj . D denotes the corresponding matrix of dissimilari-
ties. It can hold that no isometric Euclidean embedding can be found, i.e. SOM
for Euclidean data is not applicable in this case. Discrete data such as DNA
sequences or strings and alignment of those constitute one example.

For every matrix D, the so-called pseudo-Euclidean embedding exists, i.e.
a vector space with symmetric bilinear form 〈·, ·〉 (which need not be positive
definite) and embeddings xi of the points xi can be found such that d(xi, xj) =
〈xi − xj ,xi − xj〉 [26]. More precisely, define the centering matrix J = I −
1/m11t with identity matrix I and the vector 1 = (1, . . . , 1) ∈ R

m. Define the
generalized Gram matrix associated to D as G = − 1

2 · JDJ . Obviously, this
matrix is symmetric and, thus, it can uniquely be decomposed into the form
G = QΛQt with orthonormal matrix Q and diagonal matrix of eigenvalues Λ
with p positive and q negative entries. Taking the square root of Λ allows the
alternative representation in the form

G = XIpqX
t = Q|Λ|1/2

(
Ipq 0
0 0

)
|Λ|1/2Qt

where Ipq constitutes a diagonal matrix with p entries 1 and q entries −1, i.e.
X = Qp+q|Λp+q|1/2 where only p + q nonzero eigenvalues of Λ are taken into
account. We can define the symmetric bilinear form in R

p+q

〈x,y〉pq =
p∑

i=1

xiyi −
p+q∑

i=p+1

xiyi .
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Then, the columns of X constitute vectors xi with pairwise dissimilarities dij =
〈xi−xj ,xi−xj〉pq. This embedding is referred to as pseudo-Euclidean embedding
of the data points. The values (p, q,m− p− q) are referred to as signature.

Since the algorithm of Batch SOM (Algorithm 1) relies on vector operations
and the computation of dissimilarities only, this algorithm can directly be used
for arbitrary dissimilarity data embedded in pseudo-Euclidean space: given D,
we can compute corresponding vectors x such that 〈xi,xj〉pq = dij holds for all
data points. For these vectors and the corresponding dissimilarities, Batch SOM
can directly be applied whereby the bilinear form 〈x − w,x − w〉p,q takes the
role of the squared Euclidean norm ‖x − w‖2 in the algorithm.

However, there are two drawbacks of this naive procedure: on the one hand,
we rely on the pseudo-Euclidean embedding the computation of which is costly
(cubic complexity) and the interpretation of which is not clear. The prototypes
are points in this pseudo-Euclidean space and probably depend on the chosen
embedding, i.e. another vectorial embedding which shares the properties of the
pseudo-Euclidean one could probably lead to fundamentally different prototypes.
On the other hand, a connection of the SOM algorithm in pseudo-Euclidean
space to the SOM cost function or, more desirable, a cost function which is inde-
pendent of the concrete embedding is not clear as well as connected properties
such as convergence of the algorithm.

Now we first reformulate batch SOM in pseudo-Euclidean space such that
it becomes independent of the concrete pseudo-Euclidean embedding and it is
based on the dissimilarity matrix D only. Afterwards, we discuss a connection
to a cost function and questions concerning the convergence of the algorithm.

2.3 Relational SOM

The key observation to reformulate batch SOM independent of a concrete em-
bedding of points consists in the fact that prototypes are located on special
positions of the vector space only. Prototypes have the form

wi =

∑
j hλ(nd(I(j), i))xj∑

j hλ(nd(I(j), i))
=
∑

j

αijx
j

where
∑

j αij = 1. Further, one can compute that for every linear combinations∑
j αijx

j and
∑

j α
′
ijx

j with
∑

j αij = 1 and
∑

j α
′
ij = 1 and symmetric bilinear

form 〈·, ·〉 with dij = 〈xi − xj ,xi − xj〉 the following is valid:〈∑
i

αix
i −
∑

i

α′
ix

i,
∑

i

αix
i −
∑

i

α′
ix

i

〉
= (α′)tDα− 1

2
·αtDα− 1

2
·(α′)tDα′

These observations immediately allow us to reformulate batch SOM in pseudo-
Euclidean space independent of the concrete vector embedding of points. The
key issues are to substitute prototype locations wi =

∑
ij αijx

j by coefficient
vectors αi = (αi1, . . . , αim) and to substitute the computation of dissimilarities



264 B. Hammer and A. Hasenfuss

Algorithm 2. Relational SOM

input

symmetric dissimilarity matrix with zero diagonal D ∈ R
m×m;

begin

init αij ≥ 0 such that
∑

j αij = 1;

repeat

compute distij = [Dαi]j − 1
2
· αt

iDαi;

set I(j) = argmini

∑k
l=1 hλ(nd(i, l)) · distjl;

set αij = hλ(nd(I(j), i)))/
∑

j hλ(nd(I(j), i)));

until convergence;

return αij ;

end.

of prototypes and data points by means of the above formula. The resulting
algorithm, Relational SOM, is displayed as (Algorithm 2).

This algorithm is equivalent to vectorial SOM under the identity wi =∑
ij αijx

j whereby it does not rely on an explicit embedding but on the pair-
wise dissimilarities only. This shows that the winner assignments of SOM in
pseudo-Euclidean space are independent of the concrete embedding.

2.4 Convergence

Since relational SOM is equivalent to batch SOM in pseudo-Euclidean space,
it follows immediately that the algorithm converges towards a fixed point of
the algorithm whenever the embedding is in fact Euclidean: in this situation,
standard SOM is implicitly performed in the (Euclidean) space and the corre-
sponding guarantees of the standard batch SOM as e.g. revisited in [8] hold.
If the pseudo-Euclidean embedding is a non-Euclidean embedding, i.e. negative
eigenvalues occur, the guarantees of standard batch SOM do not hold and one
can indeed find situations where divergence of the algorithm is observed, i.e. the
algorithm ends up in cycles. Batch SOM in Euclidean space relies on a subse-
quent optimization of the underlying cost function with respect to prototype
locations and winner computations. Since an optimum is picked at both steps,
the cost function decreases in every epoch in the Euclidean setting and because
of the finite number of different possible winner assignments, convergence of the
algorithm can be observed after a finite number of epochs.

For the non-Euclidean setting, it turns out that the subsequent computation
of prototypes and winner assignments does not necessarily compute optima in
the two steps. While it can easily be seen that the winner assignment as given in
SOM is optimal, the choice of prototypes as generalized mean of the data points
according to the winner assignment is not: it can happen that a saddle point
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eigenvalue 1

eigenvalue −1 cluster 1
cluster 2

Fig. 1. Example of points in pseudo-Euclidean space for which relational clustering
does not converge to a fixed point. It is indicated by arrows which points cyclically
change their cluster assignments.

with worse cost function value instead of an optimum is picked if the negative
directions of the bilinear form are dominant in this situation. Then an optimum
would lie at the borders of the solution space since it would be beneficial to
push prototypes away from the data with respect to the negative directions of
the pseudo-Euclidean space. An efficient determination of the global optimum,
however, is not possible because non-convex quadratic programming is NP hard
[29,25]. Further, even if optima at the borders of the solution space could be
computed easily in this setting, their usefulness can be doubted and numerical
problems are likely to occur. Thus, the choice of the prototypes as generalized
mean, which optimizes the problem only with respect to the positive directions
of the pseudo-Euclidean space, seems a reasonable compromise in this situation.

Due to this fact, divergence can occur. Consider, for example, pseudo-Euclidean
space with signature (1, 1, 0) and the points as displayed in Fig. 1. For small enough
neighborhood rangeλ, the cluster assignment of four points changes in every epoch
as indicated by the arrows. Note, however, that this setting heavily relies on a large
contribution of the negative axes to the bilinear form. In practice, the positive di-
rections usually by far outweigh the negative directions such that this problem
seems unlikely in practice: we did not observe divergence of the algorithm for real
life data sets in a single experiment so far.

2.5 Dual Cost Function

The SOM cost function as introduced above constitutes a reasonable evaluation
measure of batch SOM in pseudo-Euclidean space, albeit cases exist at least in
theory where no local optimum of this cost function is actually found by batch
SOM in this setting as discussed above. This cost function relies on the pseudo-
Euclidean embedding and has no meaning if only the dissimilarity matrix D is
available. Fortunately, one can substitute the SOM cost function by a so-called
dual function for every fixed point of relational SOM which does not depend on
the concrete pseudo-Euclidean embedding but which relies on D and the win-
ner assignments only. More precisely, the following equality holds: assume a fixed
point of relational SOM and batch SOM in pseudo Euclidean space, respectively,
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is found, characterized by winner assignments I(j) and corresponding prototypes
wi. Then, we find ESOM(w,x) = E∨

SOM(I,x) where

E∨
SOM(I,x) :=

∑
i

1
4
∑

j hλ(nd(I(j), i))

∑
jj′

hλ(nd(I(j), i)))hλ(nd(I(j′), i)))djj′

The dual SOM cost function relies on winner assignments only and it measures
the dissimilarities of data points within clusters as defined by the winner assign-
ments, averaged over the prior topological neighborhood structure. As such, it is
independent of a vectorial embedding of data but constitutes a valid cost func-
tion for clusterings based on dissimilarity data only. Since it coincides with the
standard SOM cost function for fixed points of the algorithm, we can conclude
that also the value of the standard batch SOM cost function is independent
of the concrete vectorial embedding of data for fixed points of the algorithm.
Further, for the euclidean case, also the overall structure of these two cost func-
tions coincides in the sense that a one-one correspondence of global optima of
the SOM cost function and its dual holds. For non-Euclidean settings, winner
assignments can correspond to saddle points of the SOM cost function.

We would like to mention that the identification of the dual SOM cost function
gives rise to another (at least theoretical) possibility to deal with non-Euclidean
dissimilarities D. In analogy to relational k-means clustering as discussed e.g. in
[28,21], the shape of the dual SOM cost function is approximately independent
of constant shifts of off-diagonal elements of D for small neighborhood λ and
common lattice structures nd. More precisely, if d̃ij = dij + d0 · (1 − δij), d0
denoting a positive constant and δij the Kronecker delta, one can find for any
fixed winner assignment I

E∨(I, d̃ij) − E∨(I, dij) =
1
4

⎛⎝∑
ij

h(I(j), i) − k

⎞⎠
where k denotes the number of prototypes. If we assume that the neighborhood
function nd(i, j) is nonnegative and it equals 0 if and only if i = j, then the
term

∑
ij h(I(j), i) converges to m for small λ, i.e. the difference of the two cost

functions becomes a constant, and hence local optima can be observed at exactly
the same places. Since I is discrete, this already holds for approximations of the
limit setting.

Since every symmetric dissimilarity measure becomes Euclidean for large
shifts of the off-diagonal elements, one could in principle first use the minimum
shift which is necessary to make data Euclidean, and apply standard SOM in
Euclidean space or its relational counterpart, afterwards, whereby convergence
is guaranteed. Unfortunately, as demonstrated in [13], the numerics can become
more difficult for shifted data, since differences in the dissimilarities are more
and more annihilated such that relational SOM for non-Euclidean data can lead
to better results than relational SOM for the corresponding shifted Euclidean
data. Hence, the direct application of relational SOM might be advisable albeit
convergence is not guaranteed in general.
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3 Patch Processing

The time and space complexity of relational SOM constitutes one major draw-
back of the method: space complexity is linear, and time complexity is quadratic
with respect to the number of data points (assuming a constant number of pro-
totypes and epochs of the method). Note that the information which represents
the data, the dissimilarity matrix D, itself is quadratic with respect to the num-
ber of data, i.e. every method which is linear necessarily has to pick only subsets
of the full matrix D, neglecting possible relevant information of D.

Obviously, its complexity makes relational SOM unsuitable for large data
sets. Therefore, we propose an approximative method which yields to an intuitive
linear time and constant space algorithm, using patch clustering as introduced for
Euclidean SOM in [1]. Our assumption is that single data points are available in
consecutive order. Further, we assume the existence of a method to compute the
pairwise dissimilarity of data on demand. These assumptions are quite reasonable
if a very large (possibly distributed) data set is dealt with for which some problem
specific dissimilarity measure is used. It is in general infeasible to precalculate
the full dissimilarity matrix D in this case, such that methods which reduce
the necessary information on demand to only a linear part of matrix D are
favourable.

The main idea of the proposed method is to process data in patches which
fit into main memory. Every patch is compressed by means of the resulting
prototypes and their multiplicities resp. a limited-space approximation thereof.
This information serves as additional input for the next patch computation such
that all already seen data are implicitly taken into account in every step.

More precisely, we process m data points in np patches of priorly fixed size
p = m/np. We assume divisibility of m by np for simplicity. A patch Pt is
represented by the corresponding portion of the dissimilarity matrix D:

Pt = (dsl)s,l=(t−1)·p+1,...,t·p ∈ R
p×p

which represents the dissimilarities of points (t − 1) · p + 1, . . . , t · p. For every
patch, the prototypes of the former patch are added with multiplicities according
to the size of their receptive fields, and relational SOM is applied to this extended
patch. Thereby, it is no longer possible to represent prototypes by means of the
full coefficient vectors αi since this would require linear space for storage and,
in addition, computing the dissimilarity of prototypes and data points would
eventually require the full (quadratic) dissimilarity matrix D - both demands
are infeasible for large data sets. Therefore, we use an approximation of the
prototype representation by a finite number K of coefficients with maximum
contribution and (since these can be more than K) which are closest to the
respective prototype. Formally, a K-approximation refers to the K indices j1,
. . . , jK corresponding to points xj1 , . . . , xjK with smallest dissimilarity to wi.

This definition gives rise to a formalization of extended patches which are
processed in turn in patch processing and which specify the parts of the matrix D
necessary for the algorithm. Assume the current patch Pt is considered. Assume



268 B. Hammer and A. Hasenfuss

Nt−1 refers to the index set of the K-approximation of all prototypes obtained in
the previous step. When considering k prototypes, the size of this set is |Nt−1| =
k ·K. For the next round of patch processing, dissimilarity clustering is applied
to the points corresponding to the indices in Nt and the data from the current
patch, i.e. we need the following part of the dissimilarity matrix

P ∗
i =

⎛⎝ d(Nt−1) d(Nt−1, Pt)

d(Nt−1, Pt)t Pt

⎞⎠
where d(Nt−1) = (duv)u,v∈Nt−1 denotes the inter-dissimilarities of points from
the K-approximation, and d(Nt−1, Pt) = (Duv)u∈Nt−1,v=(t−1)·p+1,...,t·p denotes
the dissimilarities of points in the K-approximation and the current patch. We
refer to P ∗

i as extended patches.
Based on these data handling techniques, patch relational SOM can be defined

as iterative processing of patches enriched by the K-approximation of prototypes
from the previous patch. The prototypes contribute to the new clustering task
according to the sizes of their receptive fields Ri, i.e. a prototype wi is counted
with multiplicity |Ri|. Correspondingly, every point xj in Nt−1 contributes with
multiplicity mj = |Ri|/K. It is straightforward to extend relational SOM to deal
with multiplicities mj of point xj . The only change concerns the update of the
coefficients αij , which is enriched by the multiplicities. Taking this as subroutine,
patch relational SOM can be performed as shown in Algorithm 3.

After processing, a set of prototypes together with a K-approximation is ob-
tained which compresses the full data set. An inspection of prototypes is easily
possible by looking at the points which are closest to these prototypes.

Note that the algorithm runs in constant space if the size p of the patches is
chosen independently of the data set size m. Similarly, under this assumption,
the fraction of the distance matrix which has to be computed for the procedure
is of linear size O(m/p · p) = O(m) and the overall time complexity of patch
clustering is of size O(m/p · p2) = O(mp) = O(m), assuming constant p. Hence,
a linear time and constant space algorithm for general dissimilarity data results
which is suited for large data sets, if constant patch size is taken according to
the available space. Note that this algorithm, unlike alternatives such as [4,5],
does not require a representative subpart of the matrix D prior to training,
rather, data can be processed in the order as they are accessed, i.i.d. and non
i.i.d. cases leading to virtually the same final result of the algorithm due to the
incorporation of the statistics of all already seen data in every patch.

4 Experiments

We present two applications of relational SOM with underlying hyperbolic lat-
tice structure [24]. In both cases, data are treated as symbolic strings, for which
general dissimilarity measures such as alignment or n-gram kernels are available.
In this contribution we rely on a dissimilarity measure which has been derived
from information theoretic principles and which can be considered as an efficient
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Algorithm 3. Patch Relational SOM

begin

cut the first patch P1;

apply relational NG to P1 → prototypes W1;

compute the K-approximation N1 of W1;

update multiplicities mi of N1;

set t = 2;

repeat

cut the next patch Pt;

construct extended patch P ∗
t using Pt and Nt−1;

set multiplicities of points in Pt to mi = 1;

apply relational NG with multiplicities to P ∗
t → prototypes Wt;

compute K-approximation Nt of Wt;

update multiplicities mi of Nt;

t → t + 1;

until t = nP

return prototypes WnP ;

end.

approximation of a universal dissimilarity measure which minorizes every reason-
able dissimilarity. The normalized compression distance (NCD) [7] is defined as

NCD(x, y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
where x and y are strings, xy its concatenation, and C(x) denotes the size of a
compression of the string x. For our experiments, bzip2 was used.

4.1 Mapping MIDI Files

In this application, classical music represented in the MIDI format should be
mapped. The data set consists of a selected subset of 2061 classical pieces from
the Kunst der Fuge archive. To extract relevant strings which represent the
MIDI files, a directed graph was extracted based on pitch differences and rel-
ative timings as intermediate step. As discussed in [22], the representation is
widely invariant to shifts of the overall pitch and scalings of the overall tempo,
thereby emphasizing on the melody underlying the musical piece and abstracting
from the specific orchestration. The paths of the graph are then concatenated
and represented in byte code, leading to a string representation suited for NCD.
A relational hyperbolic SOM with 85 neurons was trained. Figure 2 shows the
projection of the hyperbolic grid into the Euclidean plane. Obviously, the com-
posers sharing a common style or epoch are mostly situated close to each other.
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4.2 Mapping Newsgroups

The goal of this applications is to map 183,546 articles from 13 different news-
groups in a semantically meaningful way by means of a relational HSOM. The
texts were preprocessed by removing stop words and applying word stemming
[27]. Patch processing was applied using relational HSOM with 85 neurons and
a 3 approximation of the prototypes. Since the full dissimilarity matrix would
occupy approx. 250 GB space, it is no option to process the data at once or
precalculate the full dissimilarity at once. Instead, 183 patches of around 1000
texts were taken and the distances of these patches were precalculated, resulting
in only around 12 MB space. In addition, since patch processing requires the
dissimilarities of the extended patches, around 1000 · 85 · 3 dissimilarities had
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Fig. 2. Relational Hyperbolic Self-Organizing Map for 2061 classical pieces which are
compared by symbolic preprocessing and NCD. Labeling of the neurons is based on
majority vote.
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Fig. 3. Visualization of 183,546 newsgroup articles using patch relational HSOM, dis-
playing the topographic arrangement of the biggest newsgroups on the map. In this
case, patch processing reduces the required space of the full dissimilarity matrix from
approx. 251 GB to only around 13 MB.

to be computed on demand for every patch. This way, the whole computation
could be performed on a common desktop computer in reasonable time.

The outcome is depicted in Fig. 3. Clearly, the data arrange on the lattice ac-
cording to their semantic meaning as mirrored by the corresponding newsgroup,
such that visualization and browsing become possible.

5 Conclusions

We have presented an extension of SOM which is capable of mapping huge dis-
similarity data sets in constant space and linear time such that visualization
and data inspection become possible for the user. The main ingredients are an
extension of SOM to a relational setting which corresponds to the implicit ap-
plication of SOM in pseudo-Euclidean space, and a decomposition of the full
clustering procedure into separate pieces by means of patch processing. Inter-
estingly, the method is quite intuitive and can be linked to the standard SOM
cost function or its dual, such that extensions such as supervision [13] are easily
possible.
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