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Abstract. We propose a novel approach to program simplification in
tree-based Genetic Programming, based upon numerical relaxations of
algebraic rules. We also separate proposal of simplifications from an ac-
ceptance criterion that checks the effect of proposed simplifications on
the evaluation of training examples, looking several levels up the tree.
We test our simplification method on three classification datasets and
conclude that the success of linear regression is dataset dependent, that
looking further up the tree can catch ineffective simplifications, and that
CPU time can be significantly reduced while maintaining classification
accuracy on unseen examples.

1 Introduction

One problem that limits the effective application of Genetic Programming is pro-
gram bloat [1][2][31[4][E][6] [7][8], where program trees tend to grow in size over
the generations, causing the GP process to be computationally expensive. Bloat
may arise from “model overfitting” (formulating a model that is more compli-
cated than necessary to fit a set of training examples) but equally may occur
with no fitness benefit. In addition, program trees sometimes appear contrived
to make the best use of the available constant values set in the initial popula-
tion. Several methods have been proposed to combat bloat: setting a maximum
depth or number of nodes of a GP tree [1][4][9]; modifying the fitness function to
reward smaller programs (parsimony pressure) [10][11][12]; dynamically creating
fitness holes [5]; and operator equalisation [3].

In tree-based GP, program trees in the population may exhibit some algebraic
redundancy, i.e., the mathematical expressions that the trees represent can often
be directly mathematically simplified during the evolutionary process. This was
first proposed by Koza [I] with his editing operation. Two approaches to simpli-
fication of programs are the algebraic and numerical approaches. In the algebraic
approach [I3][I4][15], the rules of algebra are used (in a bottom-up fashion) to
directly simplify the mathematical expression that the tree represents. In the
numerical approach [I6][I7], the evaluation of each of the set of training exam-
ples is examined to determine if particular subtrees can be approximated by a
single constant, removed altogether, or replaced by a smaller subtree. This is
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similar to “lossy compression” of images and aims for a minimal effect upon the
evaluation of training examples.

In this paper, we propose to split the process of simplification into two roles:
proposers which propose a local change to the program tree; and an acceptor
which evaluates the proposed local change and determines whether to accept or
reject it. The novel aspects are that the proposers use numerical relaxations of
algebraic simplification rules, including linear regression, and that the acceptor
evaluates the effect of the proposed local change further up the tree. The overall
research goal is to determine how simplification affects classification accuracy
and computational effort for classification problems. In particular, we wish to
balance the number and severity of simplifications proposed (reduction in tree
size or wasted proposals that are not accepted) and the additional workload in
evaluating them.

The remainder of this paper is structured as follows. Section Pl provides back-
ground on algebraic and numerical approaches to simplification in GP programs.
Section[3ldevelops our new approach to simplification of GP programs based upon
a relaxation of the algebraic rules and separating the roles of simplification pro-
poser and simplification acceptor. Section @ldescribes computational experiments
on three datasets and Section[Bldiscusses the results. Finally, Section[Bldraws some
conclusions and makes recommendations for future research directions.

2 Algebraic and Numerical Approaches to Simplification

In this section we review some existing algebraic and numerical approaches to the
simplification of a program in tree-based GP. We consider a simple GP system
which includes the basic arithmetic operators (4, —, x and protected division
%) together with an ifpos operator (which returns the middle child if the left
child is positive, and otherwise returns the right child).

2.1 Algebraic Simplification

Algebraic simplification of a GP tree involves the exact application of the simple
rules of algebra to nodes of the tree in order to produce a smaller tree representing
an exactly equivalent mathematical expression. For example, for constants a and
¢ and subtree B, we can replace the subtree a x (B x ¢) with the subtree b x B
where b = a X ¢ is a new constant node. This can be implemented efficiently using
hashing in the finite field Z,, for prime p [I415]. The strength of this approach
is that any proposed simplification has no global effect on the evaluation of any
training example. The weakness is that the rules of algebra are applied exactly,
i.e., there is no scope for approximate equivalence, nor equivalence across the
domain of the training examples. There are also some algebraic simplifications
that are difficult for a basic set of locally applied algebraic rules to recognise
when applied in a bottom-up fashion.
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original results vector: new results vector:
(447.992, 285.177, 339.286, 440.127, 548.958) (445.355, 287.095, 339.428, 435.687, 553.804)

candidate
simplification

o
B,

results vector: results vector: results vector:
(211.9, 136.6, 161.5, 207.3, 263.5)  (0.473, 0.479, 0.476, 0.471, 0.480) (211.9, 136.6, 161.5, 207.3, 263.5)
range = 0.009 unchanged
average value: 0.4758

simplification

MSE(original,new) = 10.769

Fig. 1. An example where range simplification causes a (possibly) significant change
to the tree one level up. The left subtree (S1) has relatively large values in its results
vector (the evaluation of the subtree on the training examples), and is divided by the
right subtree (S2) which has relatively small evaluation values. Even though the range
of 82 is only 0.009, the division means the simplification potentially magnifies the
changes further up the tree.

2.2 Numerical Simplification

Numerical simplification of a GP tree involves the replacement of a subtree with
a smaller (possibly approzimate) substitute based upon the local effect on the
evaluation of the training examples. Two simple methods recently investigated
are:

1. Range simplification [16]. In evaluating the training examples, if the range
of values a node takes is sufficiently small (less than a range threshold),
then the node is replaced by a single constant-node (the average value). The
strengths of range simplification are that equivalence is based only upon the
observed range of the training examples; it also deals with nodes that are
calculated from constant values; it allows for features or subtrees with a very
small range of values to be simplified; and it is computationally inexpensive.
However, the weakness is that local simplifications can have an adverse effect
further up the tree in some cases. Figure[Ilgives an indication of the potential
effect of a local range simplification further up the tree. These changes may
have a large effect on the outcome, but could otherwise be swamped by other
sources of noise or uncertainty.

2. Removing redundant children [I7]. In evaluating the training examples, if the
difference between the values at a parent node and its child are sufficiently
small (less than a redundancy threshold in this paper) then the parent can be
replaced by the child. Song et al [I7] use the criterion that the sum of absolute
deviations (SAD) be zero over all training examples, i.e., >, |p; —¢;| =0
where p; and ¢; are the evaluation of the ith training example at the parent
and child respectively. This is a slight relaxation of algebraic simplification
to the actual range of values taken by the training examples.
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3 New Relaxed Approach to Simplification

We propose a new relaxed approach to simplification. Firstly, we use numerical
evaluation of the training examples to determine if the algebraic rules are ap-
proximately satisfied. Secondly, we evaluate the numerical effect of any proposed
local simplifications further up the tree before accepting them. Hence, we clearly
separate the proposal of a local simplification from the acceptance or rejection
of the proposal based upon its effect on the numerical evaluation of the train-
ing examples. This addresses the weakness of exact algebraic simplification by
covering simple algebraic rules and allows for approximate satisfaction of these
rules. It also addresses the weakness of local numerical simplification by looking
at the effect further up the tree before accepting a proposed simplification.

3.1 Proposers

In this paper we use three numerical simplification operators — range simplifica-
tion and removal of redundant children (as in Section [22), and linear regression
(described further below) — to numerically evaluate possible algebraic simpli-
fications, relaxing each equality slightly. Between the three operators, we cover
most simple algebraic rules. We make a small modification to each of the first
two operators presented before: for simplicity, we use a constant range threshold
for range simplification; and we use mean square error (MSE) for redundancy
checking (rather than SAD).

Linear regression. Consider the nodes Y and S in a GP tree, where S is a child
or grandchild subtree of Y. If we can approximate Y by

Y=bxS+a (1)

or
Y=b0%S+a (2)

sufficiently closely for some constants a and b, then we may be able to signifi-
cantly reduce the size of the tree. This is an extension of simple algebraic rules
and allows for approzimate linearity of node Y against subtree S (or !). Figure
gives two examples in which linear regression will reduce a tree where other
simplification methods do not. A candidate simplification’s tree size using this
method will be a maximum of 4 4 |S| nodes, with a possible simplification to
2 4+ |S| under certain conditions on a and b, where |S| is the number of nodes
in subtree S. To evaluate linearity, we use Pearson’s correlation coefficient. We
consider all children and grandchildren of Y as S for simplification and choose
the one with the highest value of Pearson’s r2 greater than a regression threshold.
The proposal is to replace node Y by the simplest version of equation () or (2)
as appropriate.

3.2 Acceptor

In order to check that a proposed simplification won’t cause a significant change
further up the tree, we compare the results vectors (the evaluation of the subtree
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highest correlation
with

Fig. 2. Simplification examples that are not covered by simple (local) algebraic rules,
but are covered by linear regression. Here S represents a particular repeated subtree
in each example and Y corresponds to the entire subtree.

proposed simplification

Fig. 3. The acceptor evaluates the effect of a proposed simplification n levels up the
tree. Here, arrows point to the node that the MSE calculation applies.

on all training examples) of the old and new (simplified) tree. FigureBlillustrates
which nodes are checked against for different values of n. We go to the ancestor
node n levels up and calculate the mean square error (MSE) at that node, i.e.,
> (new; — old;)?, where old; and new; are the original and newly simplified
evaluations of the ith training example respectively. If the MSE is less than an
acceptance threshold, then we accept the simplification and make the change to
the tree; if it is not, then we reject the simplification and keep the old tree. In
this way we aim to change the tree’s fitness as little as possible.

4 Experimental Design

Datasets. To test our simplification system we ran experiments on three different
classification datasets: Coins (14 features, 3 classes, [14][16]), Wine (13 features,
3 classes, [18]) and Breast-Cancer Wisconsin (9 features, 2 classes, [19]). Coins
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consists of 600 images (each 64 x 64 pixels) of five cent pieces against a random
noisy background. Wine gives the result of a chemical analysis of Italian wines
from three cultivars (the classes). Each instance of the Breast-Cancer Wisconsin
dataset corresponds to a benign or malignant diagnosis.

GP system setup. All experiments were run with the following setup: population
size 100, number of generations 100, maximum depth of tree 40, mutation rate
28%, crossover rate 70%, elitism rate 2%. The terminal set consists of the features
and random float numbers in the range [—10, 10]. We used static range selection
[20] to choose the class from the tree output and ten-fold cross validation to
evaluate each tree in the population.

Simplification frequency. We perform simplification checks on the whole popula-
tion every k generations, simplifying the population before the selection process
occurs for the next generation. We do not simplify the initial population as this
may remove too many of the useful “building blocks” present.

Choice of threshold values. For the operators we have implemented there are six
different thresholds that we need to test in our experiments: the proposal thresh-
olds (range width, redundant MSE and regression r2); the acceptance thresholds
(acceptance MSE and the number of levels to look up n); and simplifying the
population every k generations. Preliminary experiments suggested a reasonable
range of values of each threshold. The set of values for each threshold used in our
more extensive experiments can be seen in Table[Il so considering all combina-
tions we have 3° x 4 = 972 configurations in total, and we ran each configuration
on the same set of 100 random seeds.

5 Results and Discussion

Classification accuracy vs computational effort. Table [Il summarises the results
for each dataset. The base result is a standard GP with no simplification (and
recall that the maximum tree depth is 40), for comparison with all other results.
All datasets performed differently in our tests. Regarding average test accuracy,
the Coins dataset fluctuated greatly over all configurations, some performing
much worse than the base system, but some also a lot better (see Figure M.
On the other hand, the Wisconsin dataset’s average test accuracy is virtually
unchanged in the range [95.22%, 95.71%)], while the Wine dataset is at least 8-
9% worse than the base system. When considering computational effort (CPU
time), all datasets show significant savings. The biggest ‘reasonable’ time savings
(meaning not too much degradation in test accuracy) for the Coins dataset is
approximately 75% savings, Wisconsin 60%, and Wine 35%. The Wine dataset
runs so quickly, however, that changes in CPU time are difficult to measure accu-
rately, and the time taken across all configurations varies within approximately
0.1 of a second.

Proposal and acceptance thresholds. In general as we increase the value of each
of the range width, redundant MSE and acceptance MSE thresholds, CPU time
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Comparisons graph for Regression Threshold - Coins dataset

Average Test Accuracy (%)
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Comparison graph for looking n levels up - Coins dataset

Average Test Accuracy (%)
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Fig. 4. Two scatter plots showing the average test accuracy vs average CPU time for
the Coins dataset. Each point is one of the 972 configurations. The top graph highlights
the different values for the regression threshold (‘o> = no regression, ‘1’ = 0.99, ‘5’
= 0.95, and ‘8’ = 0.80), and the bottom graph highlights looking n levels up. The lines
represent the performance of the base system for comparison.
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Table 1. Average CPU time taken (in seconds) and test classification accuracy (as a
proportion) grouped by different thresholds for each dataset. Results for each of the
three levels of the range threshold are collected over 3* x 4 = 324 combinations of the
other five thresholds, etc.

Coins Wine Wisconsin
Time (s.d.) T.Acc (s.d.) Time (s.d.) T.Acc (s.d.) Time (s.d.) T.Acc (s.d.)
Base 4.87 1.80 0.8594 0.0314 1.09 0.40 0.7346 0.0379 6.66 2.27 0.9532 0.0063
Range Threshold
0.1 2.07 0.25 0.8490 0.0205 0.70 0.02 0.6567 0.0305 3.93 0.55 0.9546 0.0020
0.5 1.96 0.22 0.8498 0.0202 0.70 0.02 0.6503 0.0295 3.89 0.53 0.9546 0.0021
1.0 1.89 0.20 0.8489 0.0192 0.70 0.02 0.6466 0.0287 3.84 0.52 0.9545 0.0021
Redundancy Threshold
0.01 2.11 0.26 0.8540 0.0188 0.70 0.02 0.6531 0.0295 3.92 0.54 0.9546 0.0020
0.05 1.94 0.21 0.8491 0.0203 0.70 0.02 0.6507 0.0294 3.88 0.53 0.9546 0.0021
0.10 1.88 0.20 0.8445 0.0205 0.70 0.02 0.6498 0.0296 3.86 0.53 0.9546 0.0021
Regression Threshold
none 1.96 0.26 0.8632 0.0210 0.70 0.02 0.6399 0.0295 3.42 0.57 0.9541 0.0024
0.99 2.07 0.25 0.8547 0.0220 0.71 0.02 0.6582 0.0314 4.22 0.61 0.9543 0.0022
0.95 1.96 0.21 0.8446 0.0201 0.70 0.02 0.6548 0.0300 4.04 0.53 0.9549 0.0021
0.80 1.90 0.19 0.8343 0.0175 0.70 0.02 0.6520 0.0280 3.86 0.47 0.9549 0.0018
Levels Up
0 1.49 0.11 0.8301 0.0192 0.68 0.02 0.6241 0.0215 3.15 0.31 0.9550 0.0019
1 2.18 0.28 0.8585 0.0210 0.71 0.03 0.6630 0.0349 4.35 0.70 0.9543 0.0022
2 2.25 0.29 0.8590 0.0208 0.71 0.03 0.6665 0.0343 4.15 0.61 0.9543 0.0023
Acceptance Threshold
0.01 2.21 0.29 0.8534 0.0193 0.70 0.02 0.6563 0.0306 3.98 0.56 0.9545 0.0021
0.05 1.90 0.20 0.8485 0.0199 0.70 0.02 0.6499 0.0296 3.87 0.53 0.9546 0.0020
0.10 1.80 0.18 0.8457 0.0201 0.70 0.02 0.6474 0.0285 3.81 0.51 0.9546 0.0020
Simply Every k Generations
3 2.08 0.24 0.8487 0.0200 0.71 0.02 0.6585 0.0309 4.29 0.60 0.9546 0.0021
4 1.94 0.22 0.8490 0.0194 0.70 0.02 0.6488 0.0290 3.81 0.53 0.9546 0.0022
5 1.89 0.22 0.8499 0.0201 0.70 0.02 0.6463 0.0297 3.55 0.48 0.9545 0.0022

goes down (Wine stays constant however), but so does average test accuracy
(except for Coins when the range threshold is 0.5 and Wisconsin which stays
fairly constant). It appears that linear regression is causing more computational
overhead than it is worth. The Coins dataset shows this most clearly (see the top
graph in Figure[): the time taken with no regression is similar to that with 0.95
and 0.80 values, but the test accuracy stays higher, i.e., additional computational
overhead is not offset by the simplifications made. We see similar CPU time
savings without regression in the Wisconsin dataset, but test accuracy remains
fairly constant. On the Wine dataset, however, using linear regression has higher
test accuracy than not using it, but the test accuracy is still significantly less
than that of the base system.

How far up the tree to evaluate. In general it seems that as we increase the
number of levels we look up before accepting a simplification, the overall average
CPU time increases (with the exception of Wisconsin with 2 levels), but so
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does the test accuracy (Wisconsin’s test accuracy remains relatively constant
however). This is best displayed in the Coins dataset where both CPU time and
test accuracy change significantly (see the bottom graph in Figured). In general,
looking 0 levels up amounts to a significant time reduction but also a significant
reduction in test accuracy, while looking 1 or 2 levels up only is slightly more
computationally expensive but maintains a lot higher test accuracy.

How often to simplify. Overall, there doesn’t seem to be much change in test
accuracy among the different values for k. As we simplify less often, the CPU
time reduces significantly on the Coins and Wisconsin datasets, while the time
remains unchanged on Wine. This indicates that it might be useful to investigate
simplifying even less often.

Comparing number of proposals vs number of acceptances. A central research
question is how much computational overhead arises from generating propos-
als and testing for acceptance. We expect that relaxing the proposal thresholds
generates more proposals, each of which must be tested for acceptance. Table
compares the number of simplifications proposed and accepted, and percent-
age accepted, for each proposal operator. It shows the effect of increasing the
acceptance threshold within each of these for the Coins dataset (however, the fol-
lowing general observations apply across all datasets) as follows. Unexpectedly,
we see fewer proposed simplifications (it is apparent that there may be some
“repeat proposing” of simplifications, i.e., a candidate gets rejected but is pro-
posed again later on since it is still a good candidate at the local level—this also
explains the higher CPU time for more stringent acceptance threshold values).
As expected, the number of accepted proposals increases (except for Coins when
the regression threshold is in {0.99,0.95}, where the number accepted is rela-
tively similar for acceptance threshold in {0.05,0.10}). The average percentage
of proposals accepted also increases, although at different rates for each dataset
and proposal operator (the best acceptance percentage was just over 50%). The
CPU time decreases due to a combination of fewer proposals (lower calculation
overhead) and higher number of proposals accepted (overhead incurred in our
implementation if a simplification proposal is rejected). The Coins dataset shows
the largest reduction in CPU time, while none is observed on the Wine dataset.
As expected, the average test accuracy decreases—as we accept less accurate
approximations of portions of the tree, this causes the tree itself to have poorer
accuracy in general. Again, Wisconsin is an exception, showing little change in
test accuracy. Coins shows the highest reduction in test accuracy as well as CPU
time seen above, so there seems to be a tradeoff. It is interesting to note, how-
ever, that some individual combinations of the simplification operators actually
increase the average test accuracy compared to the base system (see the top
graph in Figure @). This could mean that simplifications are taking place in an
early generation, allowing more of the search space to be covered in less time,
but further research would be required to establish this.

How the proposal thresholds affect the number of proposals and acceptances.
Across all datasets, for the linear regression operator, decreasing the value of
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Table 2. Comparison of number of simplifications proposed vs number accepted for
the Coins dataset. Results for each of the three levels of the range threshold by three
levels of the acceptance threshold are collected over 3% x 4 = 108 combinations of the
other four thresholds, etc.

Proposal Thresh. Accept Thresh. #Prop #Acpt %Acpt Time (s) (sd) T.Acc (sd)

Base Sys. - - - - 4.87 1.8 0.8594 0.0314
0.01 468.37 131.54 28.09 2.29 0.52 0.8531 0.0218

g 0.1 0.05 340.77  142.53 41.82 2.00 0.35 0.8483 0.0199
3 0.10 301.51  147.29 48.85 1.91 0.32 0.8455 0.0193
2 0.01 428.95 111.66 26.03 2.18 0.49 0.8535 0.0208
B 0.5 0.05 305.13  120.69 39.55 1.89 0.31 0.8492 0.0192
EO 0.10 270.29 125.77 46.53 1.81 0.28 0.8467 0.0188
] 0.01 422.51 95.31 22.56 2.17 0.65 0.8535 0.0223
= 1.0 0.05 284.44 103.66 36.44 1.83 0.41 0.8481 0.0197
0.10 228.95 96.33 42.07 1.68 0.31 0.8450 0.0186

E 0.01 486.03 136.64 28.11 2.27 0.51 0.8566 0.0190
2 0.01 0.05 370.32  159.29 43.01 2.07 0.38 0.8537 0.0180
= 0.10 326.42 162.73 49.85 1.98 0.35 0.8517 0.0175
B 0.01 436.42  109.46 25.08 2.20 0.57 0.8537 0.0215
% 0.05 0.05 291.89 111.38 38.16 1.84 0.31 0.8477 0.0188
'g 0.10 255.86 114.56 44.78 1.77 0.27 0.8460 0.0183
_g 0.01 397.38 92.41 23.26 2.16 0.60 0.8498 0.0235
Q 0.10 0.05 268.14 96.21 35.88 1.80 0.34 0.8442 0.0207
m 0.10 218.47 92.10 42.16 1.66 0.24 0.8394 0.0188
0.01 2.13 0.42 0.8653 0.0076

none 0.05 - - - 1.90 0.30 0.8629 0.0066

.Ju:; 0.10 1.83 0.29 0.8614 0.0066
g 0.01 252.68 78.89 31.22 2.31 0.56 0.8580 0.0124
ﬁ 0.99 0.05 181.62 81.38 44.81 2.00 0.37 0.8539 0.0100
] 0.10 157.63 81.11 51.46 1.90 0.32 0.8520 0.0093
% 0.01 517.82 142.15 27.45 2.22 0.59 0.8500 0.0201
§ 0.95 0.05 365.83  151.47 41.40 1.89 0.37 0.8439 0.0161
b 0.10 313.79 151.09 48.15 1.78 0.30 0.8399 0.0138
ot 0.01 989.28  230.30 23.28 2.18 0.65 0.8401 0.0300
0.80 0.05 693.01  256.32 36.99 1.81 0.40 0.8333 0.0254

0.10 596.26 260.33 43.66 1.70 0.32 0.8296 0.0231

the threshold increases the number of simplification proposals. Proportionately,
the number of proposals accepted increases but on average the percentage of pro-
posals accepted decreases, indicating the acceptance operator is working. Sur-
prisingly, for range simplification and redundancy, as we increase the value of
the threshold, we actually see a reduction in proposals on average, and therefore
a reduction in proposals accepted as well. A possible reason for this reduction
could be the nature of the proposal operators: in both cases, once a simplifica-
tion has occurred, those nodes can no longer be further simplified through these
two methods. However, a linear regression simplification could in turn allow for
another simplification the next level up the tree, a sort of cascading effect.
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6 Conclusions

All configurations of the simplification operators significantly reduced the CPU
time for the GP process to run. However, the tradeoff between CPU time and
classification accuracy was different for different configurations and different
datasets. Range simplification and removing redundant children appear to be
useful simplification operators to use because they are simple and computation-
ally efficient. However, the computational tests were inconclusive as to whether
the linear regression operator we introduced is worth using (good for Coins, poor
for Wine, no change for Wisconsin). Evaluating the effect of proposed simplifi-
cations further up the tree (rather than blind acceptance) appears to be very
effective (Coins and Wine show that classification accuracy improves); looking
one level up seems to be sufficient. As there is little reduction in test accuracy
for any of the acceptance MSE threshold values tested in this paper, a more le-
nient MSE value may be desired for further CPU time reductions. Finally, when
simplifying a population, it seems to be better to do so less often because of the
high overhead incurred, so the less often you simplify, the faster the GP process
runs (our best results were simplifying every five generations).

Avenues for future research include investigating the effect of simplification
on tree size and tree depth across different generations, eliminating repeat pro-
posal of the same simplification by the regression operator, applying the linear
regression operator on more datasets to see if there is any consistency amongst
different types of problems, and further investigating simplifying less often to
find the optimal balance between size reduction and computational overhead.
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